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Preface

With the ever-increasing coverage of information technology in our daily lives,
protecting confidentiality, integrity, and privacy of information via the usage of
cryptography and other security technology will be an undeniable responsibil-
ity of researchers. The ICICS conference series is a well-established forum for
researchers in universities, research institutes, and industry to get together to
share the latest research results and exchange ideas in the areas of information
and communications security. ICICS has taken place in a number of different
countries including China (1997, 2001, 2003, 2005, 2007, 2009, 2011), Australia
(1999), Singapore (2002), Spain (2004, 2010), USA (2006), and UK (2008). It was
a memorable moment for the Center for Information Security and Cryptography
(CISC), University of Hong Kong, to host the 14th International Conference on
Information and Communication Security (ICICS 2012) in Hong Kong. This is
because 2012 is the year that the University of Hong Kong started using the
new Centennial Campus, which marks the 100th anniversary of HKU. Hosting
ICICS, a renowned conference that had 13 successful past events, was a special
tribute to the new campus. Participants of ICICS 2012 could use this event as
a chance to visit this freshly launched new campus.

A more important attraction than visiting the new HKU Centennial Campus
is to enjoy the strong technical program of ICICS. There were 101 submissions
from 20 countries. A total of 23 regular papers and 26 short papers were accepted.
The papers cover many important areas in information security such as privacy,
security in mobile systems, software and network security, cryptanalysis, applied
cryptography, as well as GPU-enabled computation. Each submission was anony-
mously reviewed by at least two reviewers. We would like to sincerely thank our
43 Program Committee members (from 16 countries) as well as all sub-reviewers
and external referees who worked under a very tight review schedule, for their
valuable time, effort, and contributions to the program.

The event of ICICS could only be made possible by the collaborating efforts of
many other parties behind the scenes, including the Steering Committee Chair,
local OrganizingCommittee members, Publication Chairs, and participants. Last,
but not the least, we would like to thank also our co-organizers, the Institute of
Software of Chinese Academy of Sciences (CAS), the Institute of Software and
Microelectronics of Peking University, and the Information Security and Forensics
Society (ISFS).

October 2012 K.P. Chow
Lucas C.K. Hui

S.H. Qing
S.M. Yiu
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Pierangela Samarati Università degli Studi di Milano, Italy
Miguel Soriano Universitat Politecnica de Catalunya, Spain
Willy Susilo University of Wollongong, Australia
Tsuyoshi Takagi Kyushu University, Japan
Wen-Guey Tzeng National Chiao Tung University, Taiwan
Zhihui Wang Dalian University of Technology, China
Andreas Wespi IBM Zurich Research Laboratory, Switzerland
Duncan S. Wong City University of Hong Kong, Hong Kong
Yang Xiang Deakin University, Australia
Guomin Yang University of Wollongong, Australia
Shucheng Yu University of Arkansas at Little Rock, USA
T.H. Yuen The University of Hong Kong, Hong Kong
Fangguo Zhang Sun Yat-sen University, China
Wentao Zhang Institute of Information Engineering,

Chinese Academy of Sciences, China
Yuliang Zheng University of North Carolina at Charlotte, USA
Jianying Zhou Institute for Infocomm Research, Singapore

Additional Reviewers

Duegi Aranha
Claudio Agostino Ardagna
Roy Arnab
Ning Cao
Ching Bon Chan
Patrick P.F. Chan
Leurent Gaetan
Takuya Hayashi
Yin Hu
Xinyi Huang
Qiong Huang
Pustogarov Ivan

Ravi Jhawar
Qingguang Ji
Grobschadl Johann
Aapo Kalliola
Vadnala Praveen Kumar
Hyunrok Lee
Zhang Lei
Huang Lin
Hsiao-Ying Lin
Zhen Liu
Giovanni Livraga
Xu Ma



Organization IX

Thomas Martin
Kirill Morozov
Lan Nguyen
Takashi Nishide
Bertram Poettering
Anudath Krishna Prasad
Rodrigo Roman
Peter Schwabe
Lu Shi
Youngjoo Shin
Abdulhadi Shoufan
Xiao Tan

Boyang Wang
Weiping Wen
Jia Xu
Zhenyu Yang
Jiawei Yuan
Haibin Zhang
Mingwu Zhang
Wentao Zhang
Hui Zhang
Yao Zheng
Yan Zhu
Youwen Zhu



Table of Contents

Full Papers

Applied Cryptography

Audio Steganalysis Based on Lossless Data-Compression Techniques . . . . 1
Fatiha Djebbar and Beghdad Ayad

Enhancing the Perceived Visual Quality of a Size Invariant Visual
Cryptography Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Yang-Wai Chow, Willy Susilo, and Duncan S. Wong

Impact of the Revocation Service in PKI Prices . . . . . . . . . . . . . . . . . . . . . . 22
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Audio Steganalysis
Based on Lossless Data-Compression Techniques

Fatiha Djebbar and Beghdad Ayad

1 UAE university, UAE
fdjebbar@uaeu.ac.ae

2 Canadian University in Dubai, UAE
beghdadayad@gmail.com

Abstract. In this paper, we introduce a new blind steganalysis method that can
reliably detect modifications in audio signals due to steganography. Lossless data-
compression ratios are computed from the testing signals and their reference ver-
sions and used as features for the classifier design. Additionally, we propose to
extract additional features from different energy parts of each tested audio signal
to retrieve more informative data and enhance the classifier capability. Support
Vector Machine (SVM) is employed to discriminate between the cover- and the
stego-audio signals. Experimental results show that our method performs very
well and achieves very good detection rates of stego-audio signals produced by
S-tools4, Steghide and Hide4PGP.

Keywords: audio steganalysis, active speech level, lossless data-compression.

1 Introduction

In contrast to steganography, which is the science of hiding a message in an innocu-
ous multimedia cover file, steganalysis is the science of detecting the presence of hid-
den messages. Audio steganalysis techniques have been actively investigated in the last
decade. This interest is attributed to the growing number of steganography algorithms
and the threats they represent. In practice, the work of a steganalyst is based on finding
any unnatural modification resulting from the embedding process that might exist in the
suspected audio file. To date, there is no known steganographic system that hides data
in a perfect secure and undetectable way. All embedding algorithms leave a fingerprint
in the stego-audio unless a very small embedding capacity is achieved. Although some
research works had managed to reliably detect the presence of hidden data in audio-
signals, so far all of them rely on the change of the intrinsic properties (features) of the
audio signals to distinguish between stego- and cover-audio signals. Once the features
are extracted, most of the steganlysis methods apply a learning process to differentiate
between the cover- and the stego-audio signals. The learning process is done by training
a machine learning such as a support vector machine (SVM) [1] on a dataset fed with
statistical properties (features) extracted from the cover and stego-audio signals. The
right choice of these features reinforce the discriminatory power between cover- and
stego-audio signals.

T.W. Chim and T.H. Yuen (Eds.): ICICS 2012, LNCS 7618, pp. 1–9, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 F. Djebbar and B. Ayad

Authors in [2] presented a universal steganalysis algorithm for high quality recorded
speech. In this work, a statistical model is constructed to capture the irregularities be-
tween the cover and the stego signals’ spectrograms. The use of audio quality mea-
sures for audio steganalysis was proposed by [3]. The authors selected a set of nineteen
perceptual and non-perceptual domain audio quality measures (i.e, Signal-to-noise ra-
tion, Log likelihood) to distinguish between the stego-signal and its de-noised version
(used as an estimate to the cover-signal). ANOVA test [4] and SFS (Sequential Float-
ing Search) [5] were used to select the most appropriate measures to better detect the
presence of hidden messages. To improve the latter technique, [6] proposed a content
independent distortion measures as features for the classifier design. Instead of creating
a reference signal via a de-noised version of the stego-signal, they proposed to use a
single reference signal that is common to all signals to be tested. The author has also
minimized the set of quality measure used in [3] to only five. In [7], the features are
extracted from the histograms of both statistical moments and frequency domain of the
tested audio signal. The same methodology was applied by [8]. However, only higher
order statistical moments of histogram and frequency histogram for both signal and its
wavelet sub-bands are extracted and used as features to train an SVM classifier. The
features (mean, variance, skewness, and kurtosis) wavelet coefficients are supposed to
provide information about the frequency distribution of the audio signal and informa-
tion about the difference between the wavelet coefficients and their linear predictive
values. The same principle in selecting the features was followed by [9]. However, the
signal reference used is a self-generated signal via linear predictive coding. In [10], the
authors used the mean and the standard deviation as features captured from high fre-
quencies of first, second, third and fourth order derivatives of the audio signal spectrum.
A reference signal is generated by randomly modifying the least significant bits of the
stego signal. The latter method was further improved in [11] by extending the features
developed in [10] to include mel-cepstrum coefficients (widely used in speech recogni-
tion) [12] extracted from the second derivative and also from wavelet spectrums of the
audio signal. This method is also an improvement of the work presented in [13], where
mel-cepstrum coefficient were exploited for the first time in audio steganalysis and used
as features to train the classifier. More recently, the same authors [14] proposed to use
stream data mining for high complexity audio signals steganalysis. Their approach is
based on extracting the second order derivative based Markov transition probabilities
and high frequency spectrum statistics as features of the audio streams. A steganalysis
method based on features extracted from the co-occurrence matrix of audio signals is
presented in [15]. The statistic features are calculated from the amplitude components
of audio signals. Preprocessing of principal component analysis (PCA) is performed on
statistic features trained with SVM classifier. In the same perspective, [16] proposed to
use Hausdorff distance [17]. Wavelet de-noising is applied on the stego-signal to create
a cover-signal estimate. The Hausdorff distance measure is computed at various wavelet
decomposition levels from which the statistical moments are generated. In [18], the ste-
ganalysis method is based on negative resonance phenomenon in audio signal created
due to data embedding. The proposed method uses features such as mean, variance,
skewness and kurtosis derived from the stego and its linear predicted value. In general,
the features used in previous work are extracted from the entire tested audio-signals, a
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process that could dilute the hiding error effect on the stego-audio signal. To select our
features, we exploit the disparities in lossless data-compression ratios between audio
files with different information quantities (i.e., cover- and the stego-signals). We com-
pute the compression rates of distinct parts of each audio signal to collect additional
features to collect more informative data allowing to enhance the classifier capability.
Thus, each tested signal is split into four energy level parts: noise, low, medium and
high using active speech level (ASL) which is defined in ITU-T Recommendation P.56
[19]. The rational to not utilize only the entire signal for the compression process is that
different energy level parts (power classes) in the audio signal could be impacted differ-
ently during the hiding process. Extra features collected from this energy parts provide
more informative data allowing to enhance the classifier capability. Since the original
signal will not be available during the testing stage, we need to create a reference signal
for the received audio-files in order to compute the features vector. By randomly modi-
fying the 1st LSB layer of the tested signal, a signal version is created and is used as the
reference signal. We show the efficacy of our proposed algorithm on a large database
of audio signals and on different steganographic algorithms such as Steghide, Stool and
Hide4PGP [20,21,22]. This paper is organized as follows: the impact of lossless data-
compression and ASL on cover and stego signals are presented in Section 2 and Section
3. Section 4 discusses the preprocessing steps to generate our features. In Section 5.2,
classification results by SVM and evaluation study are revealed. Finally, we conclude
this chapter with a summary of our work in Section 6.

2 Lossless Data-Compression and Signal Energy

Lossless data compression involves the compression of any type of files in a way that
they can be latter recovered bit-wise identical to the original. It is based on removing
redundant or ”unnecessary” bits of data to reduce the file to its smallest version. When
data is hidden in a cover file, the quantity of information of the file changes and so does
the compression ratios. However, since the audio signal content and its energy vary as
time progresses, performing lossless data-compression on distinct energy parts of the
signal allows to capture all subtle changes in the audio-signal. For the compression
operation, we selected three utilities (zip, rar and wavpack). These tools give distinct
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Fig. 1. Compression rates (1- compression ratio) for noisy part (a) and entire signal (b)
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compression ratios when applied on the same audio file, which result in augmenting
the detection rates of stego-audio signals as more informative data are collected. The
Figures (1a) and (1b) illustrate the varying effect of lossless data-compression per-
formed with zip, rar and wavpack utilities, on noise-only as well as an entire speech
signals. The figures also describe the relation between the compression rate and the en-
ergy associated to the audio signal. More precisely, the higher are the energies the lower
are compression rates of the audio signals (noise or signal). This result shows that using
lossless data compression, stego and cover audio signals are more distinguishable at
their lower energy parts.

3 Active Speech Level

ASL determines a speech activity factor (Spl) representing the fraction of time where
the signal is considered to be active speech and the corresponding active level for the
speech part of the signal [19]. The speech activity algorithm computes the speech en-
ergy value at each sample time (frame) and is computed using the library tool voicebox
available at http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/
voicebox.html . To determine which frames belong to high, medium, low and
noisy (pause) power classes of active speech, Spl (dB) is compared with a discrete
set of thresholds. The thresholds set are chosen based on experimental considerations
and they are specific to normalized audio files of our datasets which statistics are shown
in Table 1. An example of speech-signal division process to parts with different power
classes using ASL and the thresholds set is illustrated in Figure (2a). Final division
result is shown in Figure (2b).

The impact of lossless data-compression on different power classes of audio signals
is illustrated in Figures (3a) and (3b). These figures show that stego-audio signals are
less compressible than the original audio signals (Figure 3b). In addition, the figures
also indicate that the compression rates are more less important in high energy audio

Table 1. Statistics about the composition of the datasets in terms of different audio signal parts
and thresholds set used to categorize the frames as noisy, low, medium or high

Power classes Audio (%) Speech (%) Music (%)
2700 sec 1550 sec 1150 sec

Noise 14.76 24.03 2.26
Low 15.54 22 6.84

Medium 50.03 39.19 64.64

High 19.67 14.78 26.26

Power Threshold
classes (dB)

noise -45
Low -35

Medium -25
High -15

http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
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signal parts (medium and high). This confirms our statement made in the previous sec-
tion where cover and stego signals are better discriminated in the lower energetic parts
of the audio signals.

4 Features Extraction

The features extraction step starts by creating the features vector representing the com-
pression factors difference (ε) between received (tested) audio-signals and their self-
generated reference versions. Features extraction are done as follows:

1. The speech signal is split into M frames of 10 ms and N samples each, st(m,n),
1 ≤ m ≤M and 1 ≤ n ≤ N .

2. For each frame, compute Spl using voicebox tool.
3. Classify the frame as high, medium, low or noisy by comparing its Spl to the values

shown in Table 1.
4. Reassemble the frames of the same category into one part as shown in Figure 2b. At

the end of the process, each audio file will be divided into four audio signal parts:
noisy, low, medium and high energy.

5. Compute the compression ratio ηi for each part of the audio-signal as well as the
entire signal using lossless data compression utilities (zip, rar and wavpack). For
each audio signal, 15 compression ratios are computed (ηi, i=1...15) .

6. Calculate the compression factors difference (εi, i=1...15) between similar cate-
gories of tested st and its reference audio-signal sr sush as: εi =

√
|ηti − ηri|.

The square root, a non linear amplification, is used to augment feeble ηi values and
therefore to signify their impact in the classification process. The Figures (4a) and
(4b) show the relative difference between ε values extracted from noisy parts as
well as entire signals.

The features vector of each audio signal contains 15 coefficients: Features = ε1, ε2, ..., ε15
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nals (4b) of 100 audio-files. The compression is performed by zip utility and the stego files are
generated with Hide4PGP.
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5 Evaluation Measures

5.1 Datasets

For each tested steganography algorithm, two datasets are produced: training and test-
ing (Tr and Ts). Each dataset contains 270 stego and cover WAV audio signals of 10 s
length. All signals are sampled at 44.1 kHz and quantized at 16-bits. Each training and
testing dataset contains 135 positive (stego) and 135 negative (cover) audio samples.
We used on-line audio files from different types such as speech signals in different lan-
guages (i.e, English, Chinese, Japanese, French, and Arabic), and music (classic, jazz,
rock, blues). All stego-audio signals are generated by hiding data from different types:
text, image, audio signals, video and executable files. The datasets Tr and Ts consist of
a matrix of {εi, li},where εi refers to 15 compression-factors difference, and li ∈ {±1}.
The values +1 and -1 correspond to ”Stego-audio” and ”non Stego-audio” classes re-
spectively. The performance of the proposed steganalysis algorithm is measured by the
ability of the system to recognize and distinguish between stego and cover-audio sig-
nals. Next, we present a performance analysis of our steganalysis algorithm.

5.2 Results

In this section, we investigate the detection rate of our steganographic algorithm based
on classification results of the SVM classifier used in conjunction with the Radial Ba-
sis Function (RBF) kernel [23]. In this study, we used SVMs library tool available at
http://www.csie.ntu.edu.tw/˜cjlin/libsvm. The detection rates of our
algorithm are reported in Tab.2, more details are reported in the Figures 5b and 5a. The
performance of the proposed steganalysis method is measured by how well the system
can recognize and distinguish between the stego and the cover-audio signals. In order
to analyze the evaluation measures, we firstly define the following:

– TP: stego-audio signal classified as stego-audio signal
– TN: cover-audio signal classified as cover-audio signal
– FN: stego-audio signal classified as cover-audio signal
– FP: cover-audio signal classified as stego-audio signal

In the subsequent formula, all represents the number of all positive and negative audio
signals. The value of the above information is used to calculate the Accuracy(AC) =
TP+TN

all . Following the preparation of the training and testing features vectors for for
each studied steganographic tool, we use SVM classifier in conjunction with the RBF
kernel for the classification process. The results of the performance evaluation study
are reported in Table 2 where the accuracy of each tool is measured by the AC value.
The true positive rate and false negative rates are reported in Figure 5a while in Fig-
ure 5b true-positive versus true-negative rate of the proposed steganalysis algorithm are
presented. Higher AC values and ROC correspond to more accurate steganalysis detec-
tion performance. The results show that the features extracted by our method are very
informative for the classification process. In addition, we only used 15 features for the
classification which results shorten the computation time needed for the classification
process. Most importantly, the proposed method offers very high accuracy in regards
to stego-audio files detection. Stego files generated by Hide4PGP and Stools are 100%
detected (Figure (5b)) versus 96% in Steghide.

http://www.csie.ntu.edu.tw/~cjlin/libsvm


8 F. Djebbar and B. Ayad

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru

e 
P

o
si

ti
ve

 R
at

e

 

 

Hide4PGP
Stools
Steghide

(a) ROC curves
Hide4PGP S−Tools Steghide

0

10

20

30

40

50

60

70

80

90

100

 

 

TP

TN

(b) True positive versus true
negative rates

Fig. 5. Lossless compression-based audio-steganalysis results on tested steganographic methods
[20,21,22]

Table 2. Overall lossless data compression-based audio steganalysis

Hiding methods AC
Hide4PGP 1

S-Tools 0.91
Steghide 0.81

6 Conclusion

In this paper, we proposed a simple to implement yet effective new blind audio steganal-
ysis method. This method is based on lossless data compression techniques. To improve
the detection rates of our method, more informative features are extracted from distinct
energy parts of the audio signals. The proposed method have shown better accuracy
rates when compared with existing landmark methods. Finally, the success of the pro-
posed steganalysis method in detecting steganographic audio signals encouraged us to
plan future investigations such as minimizing the features vector and further extending
our proposed method to other steganographic applications which involve hiding small
amount of data in the audio signals.
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Abstract. Two of the main areas of research in visual cryptography
have been on improving the visual quality of the recovered image and
in reducing the pixel expansion of the shares. This paper addresses both
of these visual cryptography issues. First, a method to enhance the per-
ceived visual quality of the recovered image using various image filtering
techniques is presented. In particular, these image filtering techniques
are used to enhance the local and global contrasts of a grayscale image.
Second, a multi-pixel block size invariant visual cryptography scheme
that maintains the relative density of local neighboring pixels is pro-
posed. This method encrypts blocks of pixels based on whether the total
number of black pixels within the respective blocks is above or below a
certain threshold. In conjunction, these approaches effectively improve
on the perceived visual quality of a recovered visual cryptography image.

Keywords: Visual cryptography, visual quality, image filtering, size in-
variant, multi-pixel encoding.

1 Introduction

A visual secret sharing scheme known as visual cryptography was introduced by
Naor and Shamir [11] as a means of using images to conceal information. The
concealed information can be decrypted by the human visual system without any
need of a computer to perform decryption computations. As such, this scheme
can even be decrypted by individuals who have no knowledge of cryptography.

In the k -out-of-n Visual Cryptography Scheme (VCS) originally proposed
by Naor and Shamir, a secret image is assumed to consist of a collection of
black and white pixels. The secret image is used to create a set of n shares,
each to be printed on a separate transparency. Individually, the shares look like
random black and white pixels that reveal no information about the secret image,
other than the image size. When a threshold number of shares, k, or more are
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stacked together, the human visual system averages the black and white pixel
contributions of the superimposed shares to recover the hidden information.
White is usually treated as transparent in order to allow colors (i.e. black) of the
other shares to pass through it when superimposed. Stacking any k − 1, or less,
shares together does not reveal any information that can be used to recover the
secret image, hence a (k, n)-VCS.

Since the introduction of visual cryptography, many researchers have proposed
a variety of different VCSs over the years. One of the main drawbacks of tradi-
tional VCSs is the pixel expansion. In traditional VCSs, each pixel in the original
secret image is represented using m pixels in each of the resulting shares. The
parameter m is known as the pixel expansion, because the recovered image will
be m times larger than the secret image [3]. Pixel expansion typically increases
with the number of created shares, in some cases this increase is exponential.
Large pixel expansion has a number of drawbacks in terms of the quality of the
recovered image and the complexity of the VCS [4]. Furthermore, it makes it
inconvenient for carrying shares and wastes storage space [6]. Therefore, one of
the main areas of research has been in reducing the pixel expansion. A num-
ber of researchers have proposed techniques for dealing with the pixel expansion
problem in order to develop VCSs with no pixel expansion [2, 3, 6, 7, 10, 12–14].
In these size invariant VCSs, shares have the same size as the original secret
image, thus m = 1.

In conjunction with reducing the pixel expansion, another commonly re-
searched area has been in improving the visual quality of VCSs. Splitting the
secret image into multiple shares in visual cryptography has the effect of re-
ducing the contrast in the recovered image. Since visual cryptography relies on
the human visual system to average the black and white pixel contributions of
superimposed shares, the perceived visual quality of the recovered image is an
extremely important issue. In general, the lower the overall contrast in the re-
covered image, the lower the perceived visual quality, as it becomes harder for
the human mind to form a mental image of the secret image.

The issue of visual quality is even more vital in the case of size invariant
VCSs, because in order to preserve the size, some information from the secret
image is definitely lost. Unlike the traditional VCS, which is called deterministic
because reconstruction of a secret pixel is guaranteed, size invariant VCSs give
no absolute guarantee on the correct reconstruction of the original pixels. As
such, it is not possible to recover the exact secret image from the shares. For the
guarantee of a correct reconstruction, a certain pixel expansion must be paid in
a deterministic scheme [4].

Our Contribution. This paper addresses both the issue of visual quality and
the pixel expansion concern in visual cryptography. For grayscale images, we
show that the perceived visual quality of the recovered image can be improved
by using image filtering techniques prior to encrypting the secret image. It should
be noted that other grayscale image VCSs can potentially benefit from the im-
plementation of similar image filtering techniques. In addition, we also propose a
size invariant VCS that maintains the relative density of local neighboring pixels
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in the recovered image. This is because unlike VCSs which encrypt individual
pixels separately, in our proposed VCS we encrypt a block of multiple pixels
based on the density of black pixels within the entire block. Together, these
methods have the overall effect of enhancing the perceived visual quality of the
recovered image.

2 Preliminaries

This section presents a brief background in relation to VCSs, including the (k,
n)-VCS construction as defined by Naor and Shamir [11] and how it can be used
for grayscale images.

2.1 Fundamentals of VCSs

In general, a (k, n)-VCS encrypts a secret image into n shares. Each share
contains a collection of black and white pixels that do not reveal any information
about the secret image. The secret image can only be recovered by stacking
together k or more shares. The human visual system averages the black and white
pixel contributions of the superimposed shares to recover the hidden information.
No information is revealed if less than k shares are stacked together.

The resulting structure can be described by two collections of n×m binary
matrices, C0 and C1, where each row in these matrices represents the black and
white subpixel configuration that are used to encrypt one share. Since each pixel
in the secret image is encrypted in each share as m subpixels, this represents the
pixel expansion. A square is usually a good choice for the subpixel configuration
because it maintains the aspect ratio. To encrypt a white pixel in the secret
image, one of the matrices in C0 is randomly selected, whereas to encrypt a
black pixel, one of the matrices in C1 is randomly selected.

Stacking shares together has the effect of ‘OR’ing the m subpixels of the
respective matrix rows. The gray-level of the stacked shares is proportional to
the Hamming weight H(V) of the ‘OR’ed binary vector V of length m. This
gray-level is interpreted by the human visual system as black if H(V) ≥ d and
as white if H(V) < d − αm for some fixed threshold 1 ≤ d ≤ m and relative
difference α > 0 [11].

Definition 1. Let k, n, m and d be non-negative integers which satisfy 2 ≤
k ≤ n and 1 ≤ d ≤ m. Two collections of n×m binary matrices, C0 and C1,
constitute a (k, n)-VCS if the following conditions are satisfied:

1. For any S in C0, the ‘OR’ operation of any k of the n rows satisfies H(V)
< d − αm.

2. For any S in C1, the ‘OR’ operation of any k of the n rows satisfies H(V)
≥ d.

3. For any subset {i1, i2, ..., iq} of {1, 2, ..., n} with q < k, the two collections
of q×m matrices Dt for t ∈ {1, 0} obtained by restricting each n×m matrix
in Ct (where t = 0, 1) to row i1, i2, ..., iq are indistinguishable in the sense
that they contain the same matrices with the same frequencies.
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The first two conditions are known as the contrast and the third condition as
the security [11]. Ateniese et al. [1] showed how general access structures can be
constructed for a (k, n)-VCS. A (2, 2)-VCS can be represented by the following
two collections of binary matrices, known as the basis matrices of a VCS:

C0 = {all matrices obtained by permutating the columns of

[
0 0 1 1
0 0 1 1

]
}

C1 = {all matrices obtained by permutating the columns of

[
0 0 1 1
1 1 0 0

]
}

2.2 VCSs for Grayscale Images

Since the secret image in the original VCS is assumed to consist of black and
white pixels, for grayscale images the secret image can first be converted to an
image containing only black and white pixels through a techniques known as
dithering [9]. Dithering is a technique commonly used in printing applications
to create an illusion of color depth in images with a limited color palette. Colors
not available in the palette are approximated by a diffusion of colored pixels
from within the available palette. The basic principle of the diffusion is to pack
pixels with a higher density to represent darker colors and to distribute the pixels
sparsely to represent lighter colors [8].

In a dithered image, the human eye perceives the diffusion as a mixture of
colors within it. This means that for grayscale images, the human visual system
perceives different gray levels from the distribution of black and white pixels.
Figure 1 depicts this process for a (2, 2)-VCS. The secret image, which is a
256-level grayscale image, is shown in Figure 1(a). Figure 1(b) shows the same
image after Floyd-Steinberg dithering [5]. Note that the Floyd-Steinberg dither-
ing technique was used for all dithered images in this paper. The dithered image
can then be encrypted into two shares using the basis matrices presented in the
previous section. An example of the recovered image obtained by stacking the
two resulting shares together is shown in Figure 1(c). The original secret image

(a) (b) (c)

Fig. 1. Example of Naor-Shamir (2, 2)-VCS applied to a grayscale image by first dither-
ing the image. (a) The secret grayscale image; (b) Dithered image; (c) Recovered image,
with a pixel expansion of m = 4.
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size was 512×512, whereas the shares and recovered image sizes are 1024×1024,
hence this gives a pixel expansion of m = 4.

3 Related Work

The VCS defined in the previous section is referred to as a deterministic VCS,
because reconstruction of the secret pixels is guaranteed. A probabilistic visual
cryptography scheme (probVCS) was presented by Yang [14], where each pixel in
the original image is represented using a single pixel in the image that is recon-
structed from the shares, thus giving rise to a scheme with no pixel expansion.
A similar size invariant VCS was previously proposed by Ito et al. [7].

The main characteristic of the probabilistic scheme is that there is no guar-
antee that each pixel in the recovered image accurately represents the actual
pixel from the original secret image. This is because a black pixel in the origi-
nal secret image may be incorrectly represented, with a certain probability, as a
white pixel in the reconstructed image, and vice versa. This presents a trade off
between pixel expansion and the accuracy of the recovered image. Cimato et al.
[3] generalized Yang’s [14] model and showed that it is possible to trade pixel
expansion for the probability of a good reconstruction.

Chen et al. [2] proposed a method that maps a block of pixels in the original
grayscale secret image into a block of the same size in each share. They presented
two techniques based on histogram width-equalization and histogram depth-
equalization to generate corresponding share blocks with multiple levels, each
containing different black and white pixel densities, rather than just two levels
as implemented in traditional visual cryptography. However, their method is only
able to handle the special case of a (n, n)-VCS. Wu et al. [13] in turn developed
a histogram approach for color images, which provides a tunable feature that
allows the user to control the quality of the recovered image.

Hou and Tu [6] introduced a VCS based on a method of encoding multiple
pixels simultaneously. In their approach, a number of successive white or black
pixels are taken as a unit of encryption. The probability that these pixels will
be encrypted as black pixels depends on the ratio of black pixels in the basis
matrices. However, Liu et al. [10] suggested that the method proposed in Hou
and Tu [6] has a security defect, where a participant may see the contour of the
secret image only by viewing the image of his/her own share. In their paper,
they proposed two other multi-pixel VCS encryption methods that attempt to
improve the visual quality by reducing the variance in the recovered image. They
argue that a smaller variance gives rise to better visual quality especially in terms
of the evenness of the pixel distribution in the recovered image. They further
suggest that since black pixels can be recovered perfectly, to obtain good visual
quality for the recovered image the secret image should have a black background.
Therefore, they suggest thresholding a grayscale image into a black and white
image first before applying the multi-pixel VCS. Ito et al. [7] have previously
made a similar observation for encrypting color images, where white pixels can
perfectly be recovered.
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4 Image Filtering

In view of the fact that the aim of visual cryptography is for the human visual
system to decrypt the superimposed shares, it is conceivable that the perceived
visual quality of the recovered image can be improved by performing image
filtering prior to encryption. Yang and Chen [15] observed that since the contrast
of a recovered image is poor, it is possible to prioritize certain ‘more important’
pixels during the encryption. They proposed a size reduced VCS, in which they
performed edge detection on the secret image to identify important pixels, as
these edge pixels give the most meaningful information about the image. Once
identified, the important pixels and less important pixels are given different pixel
expansions during encryption. As such, the size of the resulting shares is smaller
than that of the traditional size expanded VCSs.

Instead of performing edge detection, we propose a method to enhance the
perceive edges by passing the secret image through a sharpening filter. This
has the effect of increasing the local contrast at discontinuities in the image,
which have distinct gray-levels, hence making it easier to perceive edges in the
image. To the human visual system, the resulting image appears sharper. For
this we apply a Laplacian operator using a 3×3 kernel. Figure 2(a) shows the
image produced by applying this sharpening filter to the secret image previously
shown in Figure 1(a). The dithered image, after sharpening, is shown in Figure
2(b). This image was then encrypted using the Naor-Shamir (2, 2)-VCS into
two separate shares, and the image recovered by superimposing the two shares
is shown in Figure 2(c). By comparing this recovered image with the image in
Figure 1(c), one can see an improvement in the perceived visual quality of the
resulting image.

In addition to an image sharpening filter, which increases the local contrast
at discontinuities, the global contrast of the secret image can also be enhanced
using histogram equalization. In general, a grayscale image has 256 possible in-
tensity values. An image histogram can be constructed to represent the intensity
distribution of the pixels in an image over these values. Histogram equalization
is a technique that can be used to spread the image intensity to cover the full
0−255 range of values. For images that do not cover the full range of values,
histogram equalization effectively increases the global contrast of an image.

The complete overall process taken to enhance the perceived visual quality of
the resulting recovered image is listed as follows:

1. Perform histogram equalization
2. Pass the resulting image through a sharpening filter
3. Dither the image produced from the previous step
4. Apply a VCS

This full process is illustrated in Figure 3. Figure 3(a) shows the secret image
along with its corresponding histogram. In a histogram the horizontal axis rep-
resents the intensity values and the vertical axis represents the number of pixels
for each intensity value. Histogram equalization is performed on the secret image
and the resulting image, and its histogram, are shown in Figure 3(b). One can
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(a) (b) (c)

Fig. 2. Example of how the perceived visual quality of a VCS can be improved using
an image sharpening technique. (a) Image after sharpening; (b) Dithered image; (c)
Recovered image.

(a) (b)

(c) (d) (e)

Fig. 3. Enhancing the perceived visual quality of a VCS via image filtering techniques.
(a) Secret image and its corresponding histogram; (b) Image resulting from histogram
equalization and its histogram; (c) Image produced after passing it through a sharp-
ening filter; (d) Dithered image; (e) Recovered image.

observe the enhancement in the global image contrast. The image is then passed
through a sharpening filter, resulting in the image shown in Figure 3(c). This
image is then dithered to get an image with only black and white pixels, shown
in Figure 3(d). The dithered image was then encrypted using the Naor-Shamir
(2, 2)-VCS, and Figure 3(e) shows the image recovered by superimposing the
two shares.

One can see a difference in the visual quality of the recovered image by com-
paring the images shown in Figure 1(c), Figure 2(c) and Figure 3(e). The details
in the image can be perceived more clearly in the recovered image obtained using



Enhancing the Perceived Visual Quality of a Size Invariant VCS 17

the described image filtering techniques. Admittedly, passing the secret image
through these image filters effectively modifies the original image. Nevertheless,
since the primary goal of visual cryptography is for the human visual system
to be able to perceive the recovered image, enhancing the visual quality in this
manner certainly achieves that objective.

5 Block Threshold Visual Cryptography

In this section, we propose a VCS that encrypts blocks containing multiple pixels.
The aim of this approach is to preserve the relative density of local neighboring
pixels in a recovered image. Probabilistic VCSs produce shares with no pixel
expansion by encrypting individual pixels as either black or white in a proba-
bilistic manner. However, since each pixel is treated independently, there is no
guarantee that density of pixels within small areas in the recovered image is ac-
curate. As such, the recovered image looks rather noisy. By proposing a scheme
that encrypts blocks of pixels based on the density of the pixels within the block,
this maintains the relative density of pixels within the block, thereby improving
the perceived visual quality of the recovered image.

The proposed VCS is built from the same basis matrices, C0 and C1, as the
traditional (k, n)-VCS. However, instead of performing encryption on a per pixel
basis, in this scheme encryption is performed by taking a multi-pixel block as
a unit of encryption. The block size contains the same number of pixels, m, as
in the traditional (k, n)-VCS. If the total number of black pixels within the
block is greater than a certain threshold, the corresponding block of pixels in
the shares are encrypted using the pixel configuration representing a black pixel
block, which is randomly chosen from the collection of C1 matrices with equal
frequencies. On the other hand, if the total number of black pixels within the
block is less than, or equal to, the threshold, then the corresponding block of
pixels in the shares are encrypted using the pixel configuration representing a
white pixel block, which is randomly chosen from the collection of C0 matrices
with equal frequencies. The adopted threshold for determining whether a block
should be encrypted as a white or black pixel block, is half the total number
of pixels within the block, i.e. m

2 . We will refer to this as the Block Threshold
Visual Cryptography Scheme (BTVCS) and is defined as follows:

Construction. (k, n)-BTVCS. Let k, n, m and t be non-negative integers which
satisfy 2 ≤ k ≤ n and 0 ≤ t ≤ m. Let C0 and C1 be two collections of n×m basis
matrices corresponding to white and black pixel configurations for a traditional (k,
n)-VCS, with n being the number of shares and m being the pixel expansion. For
each block of p×q pixels in the secret image, where the number of pixels in p×q
is equal to m, let t be the total number of black pixels within the block. If t ≤ m

2 ,
encrypt the corresponding block in the n shares as a ‘white’ pixel block by randomly
selecting a matrix from C0. Otherwise, encrypt the corresponding block in the n
shares as a ‘black’ pixel block by randomly selecting a matrix from C1.

Since BTVCS is built from the same basis matrices as the traditional VCS, the
contrast and security conditions are also the same. In a sense, BTVCS can be seen
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as the image being reconstructed using large pixels (i.e. the pixel configuration
obtained from the basis matrices used to represent white and black pixel blocks)
as its basic building components. From an image processing point of view, this
is somewhat similar to reducing the resolution of an image whilst maintaining
its image size. The relative perceived density of the local neighboring pixels is
maintained, whilst the image resolution is reduced.

The dimensions of the block of pixels, p×q, should ideally be as close to a
square as possible given the number of pixels m. For example, for at (2, 2)-
BTVCS the pixel configurations can take the form of a 1×2 block using the
following collections of basis matrices, where m = 2:

C0 = {all matrices obtained by permutating the columns of

[
0 1
0 1

]
}

C1 = {all matrices obtained by permutating the columns of

[
0 1
1 0

]
}

A (2, 2)-BTVCS can also be constructed using the pixel configurations obtained
from the collections of basis matrices previously presented in Section 2.1, where
m = 4. In this case, the block pixel configuration can either be a 2×2 or a 1×4
pixel block. However, using the dimensions of 2×2 will produce better visual
results as shown in the section to follow.

6 Results and Discussions

To illustrate the end result of performing encryption using different VCSs, Fig-
ure 4 shows comparisons between the resulting recovered images for a gradient
image obtained by applying various VCSs. The gradient image, where the gray-
levels smoothly transition from black to white, is shown in Figure 4(a) with its
corresponding dithered image shown in Figure 4(b). Figure 4(c) shows the result
of Naor and Shamir’s traditional (2, 2)-VCS which has pixel expansion. Figure
4(d) in turn shows Yang’s [14] size invariant (2, 2)-probVCS. Figures 4(e), 4(f)
and 4(g) were obtained using (2, 2)-BTVCS with block dimensions of 1×2, 2×2
and 1×4 respectively.

(a) (b) (c)

(d) (e) (f) (g)

Fig. 4. Results of various (2, 2)-VCSs on a gradient image. (a) Gradient image; (b)
Dithered gradient image; (c) The traditional VCS with pixel expansion; (d) probVCS;
(e) BTVCS with block dimensions of 1x2; (f) BTVCS with block dimensions of 2x2;
(f) BTVCS with block dimensions of 1x4.
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(a)

(b)

(c)

(d)

Fig. 5. Recovered images resulting from different techniques. Left image: with dither-
ing only. Center image: with sharpening and dithering. Right image: with histogram
equalization, sharpening and dithering. (a) (2, 2)-BTVCS with block dimensions of
1x2; (b) (2, 2)-BTVCS with block dimensions of 2x2; (c) (2, 2)-BTVCS with block
dimensions of 1x4; (d) (2, 2)-probVCS.
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From the figures, it can be seen that Naor and Shamir’s traditional VCS and
Yang’s probVCS are better at capturing the overall range of intensity values.
However, the former has pixel expansion and the later gives the appearance of
more noise as compared to the BTVCS approach. BTVCS with block size of m
= 4 gives rise to higher contrasting regions compared to with m = 2. Also, in
comparing BTVCS with pixel blocks of 2×2 and 1×4, it can be seen that for the
1×4 case there are some undesirable streaks of white in the darker areas. This
is because if m pixels are encrypted in a single row, there will be cases where all
the black (resp. white) pixels are all located on one side of the block. This effect
becomes more prominent with increasing block sizes. Hence, the reason why
block pixel dimensions p×q, should ideally be as close to a square as possible.

Figure 5 shows the results of the size invariant schemes on the secret image
that was previously shown in Figure 1(a). Figure 5(a) shows recovered images
resulting from the (2, 2)-BTVCS with block dimensions of 1×2. Figure 5(b)
in turn shows recovered images resulting from the (2, 2)-BTVCS with block
dimensions of 2×2. This is followed by Figure 5(c) which shows recovered images
resulting from the (2, 2)-BTVCS with block dimensions of 1×4. Finally, Figure
5(d) shows recovered images resulting from Yang’s [14] (2, 2)-probVCS.

In general, it can be seen from the recovered images that the perceived visual
quality is improved when the secret image is enhanced using the image filtering
techniques, as the details in the image can be seen more clearly. In addition, the
overall density of pixels in the recovered images using BTVCS are more evenly
distributed and give rise to a better visual appearance, compared to the random
pixel density of probVCS, which appears to be rather noisy. Similar observations
that encrypting multiple pixels produce more evenly distributed pixels in recov-
ered image have also been made in the multi-pixel schemes proposed by Hou
and Tu [6] and Liu et al. [10]. Of the different BTVCS block dimensions, using
a block size of m = 4 results in recovered images with higher contrast between
light and dark regions. Also, ideally the dimensions should form a block that
is as close to a square as possible. Otherwise, undesirable white stretches may
occur in the darker regions.

7 Conclusion

This paper addresses the issue of visual quality in the recovered image and the
problem of pixel expansion in the resulting shares, which are two major concerns
in visual cryptography. We show that before performing dithering, the local and
global contrasts of the image can first be enhanced to improve the resulting
recovered visual cryptography image. In addition, we proposed a size invariant
VCS that encrypts pixel blocks using a thresholding approach to maintain the lo-
cal density of pixels in the recovered image. Since the goal of visual cryptography
is for the human visual system to decrypt the hidden information, these image
filtering techniques together with our size invariant VCS successfully enhances
the resulting visual quality of the recovered image.
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Abstract. The ability to communicate securely is needed for many net-
work applications. Public key infrastructure (PKI) is the most extended
solution to verify and confirm the identity of each party involved in any
secure transaction and transfer trust over the network. One of the hardest
tasks of a certification infrastructure is to manage revocation. Research
on this topic has focused on the trade-offs that different revocation mech-
anisms offer. However, less effort has been paid to understand the ben-
efits of improving the revocation policies. In this paper, we analyze the
behavior of the oligopoly of certificate providers that issue digital certifi-
cates to clients facing identical independent risks. We found the prices in
the equilibrium, and we proof that certificate providers that offer better
revocation information are able to impose higher prices to their certifi-
cates without sacrificing market share in favor of the other oligarchs. In
addition, we show that our model is able to explain the actual tendency
of the SSL market where providers with worst QoS are suffering loses.

Keywords: PKI pricing, SSL certificates, CRLs.

1 Introduction

Nowadays, there is a wide range of technology, products and solutions for se-
curing electronic infrastructures. As with physical access security, the levels of
security implemented should be commensurate with the level of complexity, the
applications in use, the data in play, and the measurement of the overall risk at
stake. A consensus has emerged among technical experts and information man-
agers in government and industry that Public Key Infrastructure (PKI) offers
the best feasible solution to these issues. PKI [1] has been a popular, yet often
reviled technology since its adoption in the early nineties.

Currently deployed PKIs rely mostly on Certificate Revocation Lists (CRLs)
for handling certificate revocation [2]. Although CRLs are the most widely used
way of distributing certificate status information, much research effort has been
put on studying other revocation distribution mechanisms in a variety of scenar-
ios [3,4]. These studies aim to compare the performance of different revocation
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mechanisms in different scenarios. However, none of these studies have explicitly
modeled the interaction among CAs. In this paper, we model this interaction by
using a game-theoretic approach.

With the appearance of novel network environments (e.g VANET orMANET),
the quantity of CAs in the SSL certificate market is becoming larger and the
market concentration diminishes, but it is not simple to eliminate the oligopoly in
the short-term. During the 90s, the certification market, the competition among
CAs appears mainly as price competition. In this situation, malignant price com-
petition would be detrimental to the interests of the users and lead to the CA’s
pay crisis. Facing the situation, the main CAs have begun to change the com-
petitive strategies from basic price competition to price and quality of services
(QoS) competition. To provide better QoS, CAs have to improve their revoca-
tion service, and specifically the freshness of the CRLs. Users will pay more for a
service that issues certificate status information faster. Time-to-revocation met-
ric is visible to costumers by checking the CA’s repositories where they publicize
the revocation information.

The model of this article deals with an oligopoly of CAs which compete in cer-
tificate prices and QoS, and do not know the certificate revocation probability in
the next interval for sure. The assumption that the revocation probability is ex-
ante uncertain is quite logical and intuitive. The number of revoked certificates
vary with time and in a manner that cannot predictable with certainty. We show
that an uncertain revocationprobability introduces a systematic risk that does not
decrease by selling more certificates. If CAs are risk averse, this effect relaxes price
competition. The equilibrium characteristic of the certification market is found by
establishing a price competition model with different QoS. We consider that there
are diversities in the certification service quality, andwe describe factors that affect
the service quality such as the CRL lifetime. By combining the characteristics of
the certificationmarket and considering the conveniences of modeling, two key pa-
rameters are selected to measure the QoS and a duopoly price competition model
with service quality differentiation is established.

2 Related Work

Although PKI has been a widely adopted solution for many years now, very few
works have dealt with the impact of the revocation mechanism in the prices CAs
offer. Most of the literature [4,5], intend to optimize the revocation mechanism
to minimize the overhead or to improve the reliability. However, the most ex-
tended revocation mechanism is still CRL. Authors in [6] analyze the revocation
mechanisms based on based on empirical data from a local network. They con-
clude that the freshness of the revocation data depends on how often the end
entities retrieve the revocation information but the bandwidth cost is high if end
entities retrieve the revocation lists often.

Ma et al. in [7] propose a series of policies that certification authorities should
followwhen releasing revocation information.According to this study, aCA should
take different strategies when providing certificate services for a new type of cer-
tificates versus a re-serving type of certificates. Authors give the steps by which a
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CA can derive optimal CRL releasing strategies and they prove that a CA should
release CRLs less frequently in the case that the fixed cost is higher, the variable
cost is higher, the liability cost is lower, or the issued age of certificates is shorter.
Similarly authors in [8] authors address the CRL release problem through a sys-
tematic and rigorous approach which relies on a mix of empirical estimation and
analytical modeling. They propose four different models which seek to exploit the
variation in certificate specific properties to provide guidance to the CA in deter-
mining the optimal CRL release intervals and the associated costs. However, none
of these works neither analyze the impact of CRLs releasing policies in the prices
that the CA charges nor model the interaction among CAs. In this paper, we ad-
dress these issues using a game theoretic approach.

3 Modeling the Certificate Provider Competition

To formalize our arguments we describe a model of the certificate market with
profit-maximizing certification authorities and a continuum of network users.
When a user requests the status of given certificate, the CA does not always
provides the most updated information but a pre-signed CRL [4,5]. In this con-
text, the CA will bear the liability cost due to any damage that may occur
between the revocation of a certificate and the release of the CRL.

3.1 Demand for Certificates

We consider an oligopoly of A CAs, indexed by i = 1, · · · , A − 1, and N users
in the economy, where N is large relative to A.Each user has the same strictly
concave expected utility function and faces the risk to lose l when using a re-
voked certificates. The probability π of operating with a revoked certificate is
equal for each user in the network, and conditional on π operating with revoked
certificates of different users are statistically independent. This probability is out
of the user’s control so that no moral hazard problem arises. Except for their
probabilities of operating with revoked certificates, individuals are assumed to
be identical. However, π is not known ex-ante with certainty but is a random
variable distributed on [π;π] with cumulative density function F (π). Each user
has an initial wealth w > 0. When operating with a revoked certificate, users
may suffer a loss. We assume that the user’s wealth exceeds the potential loss,
that is, l ≤ w.

Users can purchase different certificate types from the CA with different revo-
cation updating service. We characterize this product by the price of the certifi-
cate Pi > 0 and an indemnity Ci > 0 the CA pays to the user if it suffers from an
attack and operates with another user whose certificate was revoked. Note that
as CRLs are not issued each time a certificate is revoked but periodically, users
will be operating with outdated information. Let (Pi, Ci, ti, si) be a certificate
contract offered by CAi which specifies the price Pi to be paid by an user and
the level of coverage Ci paid to the user if an attack takes place and she operates
with a revoked certificate. Let ti represent the CRL updating interval, and si
represent the security level.
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Let us assume that the total utility U which users can get after they purchase a
certificate consists of two parts. The first part is wealth utility which represented
by Uw the other part is QoS utility which the applicant can get after they obtained
the CA’s services, represented by UQoS . The total utility U is defined as:

U(Pi, Ci, ti, si) = α1Uw + α2UQoS ,∀αk ∈ [0, 1] and
∑

αk = 1; k = 1, 2. (1)

where αi represents the significance level of U respectively.
On the one hand, we calculate the wealth utility. If no attack due to misuse

of a revoked certificate happens after the user has purchase the service the CA,
a user gains w − Pi, on the contrary a user gains w − Pi + Ci. We assume that
all users have same loss with two-point distribution:

μ = (w − Pi)(1− π) + (w − Pi + Ci)π = w − Pi + πCi, (2)

σ2 = π(1 − π)C2
i . (3)

Hence we can characterize the wealth utility by the mean and variance of Eq. (2)
and Eq. (3) respectively. Thus, we can define Uw as a mean-variance utility
function:

Uw(Pi, Ci) = μ−Rσ2, (4)

where R represents the Arrow-Pratt index of absolute risk aversion. This means
that the larger R is, the more risk averse the user is and the smaller Uw is.

On the other hand, let UQoS be a linear function of the QoS that the CA
offers. Thus, we define UQoS as:

UQoS(ti, si) = πθ

(
β1si + β2

1

ti

)
,∀βk ∈ [0, 1],

∑
βk = 1 and θ > 0; k = 1, 2. (5)

where θ represents the quality preference parameter of the user, and β1 represents
the user’s preference to security level and β2 represents the user’s preference to
CRL issuing interval. Note that the higher the level of security the CA provides,
the larger UQoS is; the longer the CRL updating interval is, the smaller UQoS is.
It is also worth noting that θ is unknown to the CAs a priori.

In order to calculate the total utility of the user, we must unify the dimension
of the security level and the CRL updating interval. Thus, using (1),(4) and (5)
the total utility is calculated as:

U(Pi, Ci, ti, si) = α1[w − Pi − πCi −Rπ(1− π)C2
i ] + α2

[
πθ

(
β1si + β2

1

ti

)]
. (6)

Note that according to this expression, users are willing to pay higher prices for
those certificates whose issuer provides a better QoS. Note that issuing certificate
status information faster, highly increases the QoS of the revocation service.
Thus, certificates linked to a better revocation service provide more utility to
the user.
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3.2 Supply of Certificates

We consider an oligopoly of CAs operating in the certification market. CAs
compete for users by offering certificates and CRLs. The service qualities of
their CA products are also different. The level of service quality is mainly shown
by the CRL updating interval and the security level1.

When choosing a CA, a user takes into account several factors. Our goal is to
gauge the impact of the revocation service on the certificate prices. However, it
should be noted that, for convenience, many website owners choose the registrar’s
authority regardless of the price. Before issuing a certificate, the CA verifies that
the person making the request is authorized to use the domain. The CA sends an
email message to the domain administrator (the administrative or registrant con-
tact, as listed in the Whois database) to validate domain control. If there is no
contact information in the Whois database or the information is no longer valid,
the customer may instead request a Domain Authorization Letter from his/her
registrar and submit the letter to the CA as proof of his/her domain control. If
the administrative/registrant contact fails to approve the certificate request, the
request is denied. This authentication process ensures that only an individual who
has control of the domain in the request can obtain a certificate for that domain.
Therefore as CAs compete by quoting a certificate price which has associated a
particular quality of service, we have Bertrand competition. The CA that quotes
the lowest certificate price with the highest QoS sells to all users.

4 Equilibrium Certificate Providers

In this section we consider the certification industry with an oligopoly ofA certifi-
cation authorities and analyze the competitive forces that determine equilibrium
of certificate selling. Our main goal is to find the prices at which CAs obtain their
maximum profit, i.e., when they reach the game equilibrium. Recall that these
certificates differ in the QoS so that ∀i, j; i �= j, ti �= tj and si �= sj . We assume
that the certification market is covered in full. Users will intend to maximize their
utility, i.e.:

θ∗ = argmax
θ

U(Pi, Ci). (7)

On the other hand, CAs will intend to minimize their costs. The CA’s costs
consists of fixed and variable costs. Each time a new CRL is issued, a CA incurs
both fixed and variable costs. The fixed cost depends on two factors. The fix
component is due to the release of a new CRL, and does not depend on the
number or certificate type. The variable factor depends on the number of cer-
tificates contained in the CRL (i.e. depends on the size of the CRL) and on the
type of certificate (i.e. certificate with higher security level induce higher costs).
Note that in this variable cost it is included the cost of processing each certificate

1 Note that additional QoS parameters could be introduced in the model. In fact, CAs
distinguish themselves by offering additional value-added services (e.g. GoDaddy
bundling domain registration with certificate issuance), turn-around time, etc.
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revocation request. We define the service quality cost of CAi (i.e. Q(si, ti)) as a
variable that includes both fixed and variable costs associated to the QoS. The
first and second derivative of Q(si, ti) with respect to si, ti are positive. Hence,
we can calculate the gain function Gi of any CAi:

Gi = θ∗Pi −Q(si, ti), (8)

where the gain function captures the overall profits of CAi for a given certificate
product characterized by (Pi, Ci).

We assume that the game between the two CAs is static with incomplete
information, they choose the respective certificate price at the same time to
maximize their profits. Now we differentiate (8) with respect to Pi and Ci. In
order to obtain the certificate price and the coverage in the equilibrium, let each
derivative formula equal to zero. Solving the resulting linear system, we will
obtain the price of each CA P ∗

i and the corresponding coverage C∗
i .

P ∗
i :

∂Gi

∂Pi
= 0, C∗

i :
∂Gi

∂Ci
= 0. (9)

4.1 Duopoly of CAs

To better illustrate the results obtained in the previous section, we particularize
the case of the oligopoly to a duopoly where only two CAs are offering certificates.
This simplification, we allows us to draw some conclusion that can be easily
extrapolated to the real scenario where there are more than a dozen CAs. To
show that the level of service quality depends on the CA, we assume that the
CA indexed by i = 1 offers better quality than the second CA in both QoS
parameters, i.e., t1 < t2 and s1 > s2.

Following the methodology aforementioned, we have to find the prices in the
equilibrium. In this situation, first we find the value of θ∗ at which a user has
no obvious trend between the certificates offered by different CAs.

α1[w − P1 − πC1 −Rπ(1− π)C2
1 ] + α2

[
πθ

(
β1s1 + β2

1

t1

)]
=

α1[w − P2 − πC2 −Rπ(1− π)C2
2 ] + α2

[
πθ

(
β1s2 + β2

1

t2

)]
, (10)

which results in:

θ∗ =
α1 (P1 − P2 + πC1(1 +RC1 −RπC1)− πC2(1−RC2 +RπC2))

πα2K
(11)

where K = β1(s1− s2) + β2

(
1
t1
− 1

t2

)
. So the market demand of CA2 is θ∗, and

the demand of CA1 is 1− θ∗.
Using (8) we calculate the gain function Gi of CA1 and CA2 :

G1 = (1− θ∗P1)−Q(s1, t1), (12)
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G2 = θ∗P2 −Q(s2, t2). (13)

We obtain the certificate price and the coverage in the equilibrium :

P ∗
1 =

2π α2K

3α1
P ∗
2 =

π α2K

3α1
, C∗

1 = C∗
2 =

1

2R (−1 + π)
. (14)

From these results we can conclude that:

– In the equilibrium, when both CAs achieve their maximum gain, CA1 obtains
a higher price than CA2. This is mainly due to the fact that when both CAs
have associated the same probability of an attack, as the QoS of the first
CA is better so that CA1 can set a higher price per certificate.

– In the equilibrium, the coverage that each CA should establish is the same
and is inversely proportional to the risk-aversion and the probability of op-
erating with a revoked certificate.

5 Analysis and Results

5.1 Impact of the Preference Ratio α2

α1

As the ratio between the preference of QoS utility and wealth utility of the user
increases (i.e., users are more interested in a high security service and a good
revocation mechanism) the prices of both CAs in the equilibrium also increase.
This effect is reasonable, as the improvement of the revocation mechanism gives
a higher security level which also increases the costs. This cost increment is com-
pensated with a higher price in the equilibrium. Analyzing two CAs operating in
the oligopoly such that ti < tj and si > sj , it is worth noting that the increment
speed of CAi’s QoS is faster than that of CAj , so the increment speed of its
certificate price is also faster than the other CA.

5.2 Impact of the Security Level Difference

When the level of security that a CA offers is much higher than in the others,
the certificate value is also much higher. Thus, CAs that offer certificates with
higher level of encryption and larger keys are able to make their certification
product differentiable. For instance, SSL security levels vary depending upon
the way on SSL certificate is installed on a server and the configuration used.
SSL is simple to use but its security can be compromised if basic installation an
configurations are not completed to a competent level, hackers are then able to
decrypt the security on a badly installed SSL certificate. Once the certificates of
a CA are differentiable from the other CAs, CAs do not have to use malignant
prices anymore to compete. As the difference of this QoS between CAs becomes
bigger, the prices that they can charge also increase. Note that if the preference
extent which the user shows to the security level (i.e. β1) increases, the differences
in the certificates as products will be more apparent, thus the increase in the
CA’s certificate prices will also increase. The same results are expected with the
increment of the interest of the users to a better service from the CAs (α2), that
is, not higher security but also a more efficient revocation mechanism.



Impact of the Revocation Service in PKI Prices 29

5.3 Impact of the QoS of the Revocation Mechanism

CAs that are able to offer revocation mechanisms with fresher information and
high availability are able to make their certification product differentiable. Re-
call that this QoS increase of the revocation mechanism induces higher costs, as
revocation information has to be issued more frequently. These costs are com-
pensated with an increase of the price that CAs can charge for the certificates
in the equilibrium. The reasons are the same that in the previous case, but now
users pay more attention to the revocation mechanism rather than to the level
of security. Analytically, that means that β2 increases, so that the user is more
interested in the efficiency of the revocation mechanism. This increase induces
a proportional increase in the equilibrium prices of the CAs. Note that in this
case, the increase of CAi which has higher QoS of the revocation mechanism
is faster than that of CAj . Again, the CA that has better service (no matter
if it is higher security level or a more efficient revocation mechanism) has the
advantage in competition.

5.4 Impact of the Revocation Probability

Logically, with an increase of the probability of operating with a revoked certifi-
cate, CAs charge more for their certificates. The reason is obvious as the CAs set
they price mainly based on a forecast of this probability. An increase of π will
induce an increase of the compensation expenses that a CA will have to pay to
any victim of an attack due to the misuse of a revoked certificate. Consequently,
this increase will lead to a proportional increase of compensation cost and ser-
vice cost so that the CAs have to increase their prices to compensate the cost
increases. Note that this increase is twice faster in the case of the CAi.

6 Case Study: SSL Providers

Finally, to corroborate the benefits of the presented model, we analyze the case
of current SSL providers that issue digital certificates. An SSL certificate can be
obtained from amounts as low as $43 to as high as $3000 per year. Whilst the
type of encryption can be the same, the cost is determined by the rigour of the
certification process as well as the assurance and warranty that the vendor can
provide. Table 1 shows the prices and QoS that the leading CAs operating in the
SSL Certificate market are offering. The SSL Certificate market was traditionally
dominated by a small number of players, namely VeriSign and Thawte. Whilst
in a monopolistic position they had the capability of charging inflated prices for
a commodity product. However new providers with no necessity to hold prices
high were able to offer SSL certificates at far more reasonable prices.

The SSL certificate vendors provide insurance against the misuse of certificates
and this differs from one vendor to another. Verisign provides warranties of up to
$250,000 while Entrust and GoDaddy offer a $10,000 warranty. The higher the
insurance, the more inscription/authentication is provided by the SSL vendors.
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Analyzing Table 1, it is worth noting that not always a lower price means lower
quality. Therefore, it is evident that current CAs operating in this market are
competing both in price and quality of service.

To test whether these factors are determinant factors for the certficate prices,
we perform a multivariate regression analysis explaining the yearly price of SSL
certificates. General regression investigates and models the relationship between
a response (Certificate price) and predictors (Warranty, issuing interval and CRL
lifetime). Note that the response of this model is continuous, but you we have
both continuous and categorical predictors. You can model both linear and poly-
nomial relationships using general regression. With this model we determine how
the certficate price changes as a particular predictor variable changes. We use
data from a survey of CAs performed in 2010 [9]. The obtained regression model
is expressed in the following equations for high and low assurance certificates,
respectively:

Price/Y ear($) = 98, 4353 + 0, 000220857 W − 0, 549141 Itime + 8, 6116
1

CRLLf

,

P rice/Y ear($) = 20, 0405 + 0, 000220857 W − 0, 5491411 Itime + 8, 6116
1

CRLLf

,

where W denotes the warranty, Itime is the mean issuing time, and CRLLf is
the mean lifetime of the CRLs issued by the CA.

Note that both regression equations show that the coefficient of the predictor
associated to the CRL’s mean lifetime is significant. In fact, the p-value associ-
ated to this predictor is 0, 008 which indicates that is statistically significantly.
Overall, the variables within the model are explaining a large portion of the
variation in the certificate price. With a coefficient of determination R2 above
the 81%, we are capturing important drivers of certificate prices. The residuals
from the analysis are normally distributed, i.e., no evidence of nonnormality,
skewness, or unidentified variables exists.

Table 1. SSL Certificate Types and Services offered by main CAs [9]

SSL Provider Product Name Price/Year($) Warranty($) Assurance Mean Issuing time Mean CRL
lifetime

COMODO EnterpriseSSL Plat-
inum

311.80 1,000,000 High Under 1 hour 4 days

COMODO InstantSSL Pro 169.80 100,000 High Under 1 hour 4 days

Verisign Secure Site Pro Cert 826.67 2,500,000 High 2-3 days 15 days

Verisign Managed PKI for
SSL Std

234.00 100,000 High 2-3 days 15 days

GeoTrust QuickSSL Premium 118.00 100,000 Low Immediate 10 days

GeoTrust True BusinessID 159.20 100,000 High 2 days 10 days

Go Daddy Standard SSL 42.99 10,000 Low Immediate 1 day

Go Daddy Standard Wildcard 179.99 10,000 Low Immediate 1 day

Entrust Advantage SSL Cer-
tificates

167.00 10,000 High 2 days 1 week

Entrust Standard SSL Cer-
tificates

132.00 10,000 High 2 days 1 week

Thawte SSL 123 129.80 - Low Immediate 1 month

Thawte SGC Super cert 599.80 - High 2 days 1 month
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Using the proposed model, we are able to explain these different prices and
the corresponding market share and they potential evolution. First we analyze
the number of revoked certificates as it will determine the probability of operat-
ing with a revoked certificate. Figure 1 shows the evolution of the daily number
of revoked certificates per CA. These data were collected from different SSL
CRLs that the CAs make public at their repositories. It is worth noting, that
the number of revoked certificates highly varies depending on the CA. Thus,
GoDaddy revokes more than 500 certificates per day on average while VerSign
revokes less than 4 certificates per day on average. Therefore, the probability π of
operating with revoked certificates is higher when trusting certificates issued by
GoDaddy. As our model shows, using expression (14), the probability π directly
affects the price of the certificate. Thus, as GoDaddy has a higher π, we would
expect to charge less for its certificates. However, the price is quite similar to its
competitors. Thus, GoDaddy is not able to sell as much certificates as the other
oligarchs, and its market share is smaller.

Our model would expect GoDaddy to compete not only in prices but also
in QoS to gain market share. As our model shows, the reaction of GoDaddy to
compete in the oligopoly is to offer better quality of service. From table 1, we
can see that GoDaddy is the CA that issues CRLs more often. Using this CRL
releasing policy, users increase their utility and, at the same time, the probability
of operating with a revoked certificate is also reduced. However, the variable
costs increase due to this way of issuing CRLs. Similarly, Comodo intends to
gain market share by decreasing the time it takes to issue a certificate and also
reducing the CRL lifetime. Note that VeriSign, the leading CA, is the one who
is offering the worst QoS, both in terms of CRL lifetime and time to issue a new
certificate.
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Fig. 1. Evolution of the daily number of revoked certificates per CA
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7 Conclusions

The market of certificate providers can be described as an oligopoly where oli-
garchs compete not only in price but also in quality of service. In this paper we
have modeled this oligopoly using a game theoretic approach to find the prices
in the equilibrium. We have been able to capture the QoS of the products of-
fered by a CA, by means of the timeliness of the revocation mechanism and the
security level. In our model of the certification industry with profit-maximizing
CAs and a continuum of individuals we showed that although the undercutting
process in certification prices seems similar to the price setting behavior of firms
in Bertrand competition there exists a crucial difference depending onf the QoS
of the revocation service. The solution of the game for two CAs in the oligopoly
that offer certificates with different QoS shows that the revenues of the CA which
provides a better revocation mechanism and a higher security level are larger.
Therefore, a CA when setting the prices of its certificate and the compensation
expenses, it has to take into account not only the probability of operating with
a revoked certificate, but also the quality of the revocation mechanism and the
security level. Thus, any CA should comprehensively consider the difference in
quality of its services compared with other CAs.
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Abstract. We show that the attack of deWeger on RSA using continued
fractions extends to Multi-Prime RSA. Let (n, e) be a Multi-Prime RSA
public-key with private key d, where n = p1p2 · · · pr is a product of
r distinct balanced (roughly of the same bit size) primes, and p1 <
p2 < . . . < pr. We show that if pr − p1 = nα, 0 < α ≤ 1/r, r ≥ 3 and

2d2 + 1 < n2/r−α

6r
, then Multi-Prime RSA is insecure.

Keywords: continued fractions, RSA, Multi-Prime RSA, Wiener’s at-
tack, de Weger’s attack.

1 Introduction

The RSA cryptosystem, invented by Rivest, Shamir and Adleman [18] in 1977,
is one of the most important public key cryptosystems. For example, it is used
by Web servers and browsers to secure Web traffic. In RSA, an integer n = pq
(the RSA modulus) is a product of two large distinct primes of the same bit
size. The public exponent e < φ(n) and the private exponent d < φ(n) satisfy
the equation ed ≡ 1 mod φ(n), where φ(n) = (p − 1)(q − 1) is Euler’s totient
function. The public key is the pair (n, e) and the private key is d.

Multi-prime RSA (MPRSA) is a simple extension of RSA in which the modu-
lus has three or more distinct primes. It was patented by Compaq in 1997 [7,1]. In
MPRSA with r primes, the modulus is n = p1 · · · pr, where p1 < p2 < . . . < pr.
As with RSA, we only consider 1

2n
1/r < pi < 2n1/r for 1 ≤ i ≤ r. In this case n

is said to be a product of distinct r-balanced primes. Clearly, we have

1

2
n1/r < p1 < n1/r < pr < 2n1/r.

The key generation of MPRSA is similar to RSA. It is as follows.

– Let n be the product of r randomly chosen distinct balanced primes p1, . . . , pr,
where p1 < p2 < . . . < pr.

– Compute Euler’s totient function of n : Φ(n) =
∏r

i=1(pi − 1).
– Choose an integer e, 1 < e < Φ(n), such that gcd(e, Φ(n)) = 1.
– Compute the multiplicative inverse d = e−1 mod Φ(n).

T.W. Chim and T.H. Yuen (Eds.): ICICS 2012, LNCS 7618, pp. 33–44, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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n is called the MPRSA modulus. The public-key is (n, e) and the private key is d.
In general, the running time of generating (n/r)-bits primes for MPRSA will

decrease with increasing number of primes [11].
The encryption of MPRSA is identical to that of RSA. For any message m ∈

Zn, the ciphertext is
c = me mod n.

The standard decryption of MPRSA is the same as standard decryption of RSA.
For any ciphertext c ∈ Zn, the plaintext is

m = cd mod n.

When Chinese Remainder Theorem (CRT) is used in decryption, the MPRSA
takes time less than in RSA. A speed-up of a factor at least r/2 (and at most
r2/4) is estimated [11]. A speed-up of 1.73 has been achieved in practice for
3-prime RSA compared to RSA using CRT with a 1024-bit modulus [5,11].

In other words, there are two practical reasons to use more than two primes.

1. The primes are smaller and key generation takes less time despite there being
more of them.

2. Decryption takes less time if one uses CRT.

Many attacks on RSA are extended to MPRSA. For examples, small private
exponent attacks on RSA by Wiener [24] (when the private key d < n1/4) is
extended to MPRSA by Ciet et al. [6] and Hinek et al. [12]. Boneh and Dur-
fee attack [4] on RSA using lattice reduction technique [13] and Coppersmiths
method [8] for d < n0.292 is also extended to MPRSA by Hinek et al. [12]. The
generalization of Blömer and May’s lattice based attack for arbitrary public ex-
ponents RSA [2,16] is extended to MPRSA by Ciet et al. [6]. Some of the partial
key exposure attacks on RSA are extended to MPRSA, see [11, Ch.9] for some
details.

De Weger [23] showed that if n = pq has a small difference between its prime
factors p − q = nβ, 1

4 ≤ β ≤ 1
2 , then the private key d = nδ of RSA can be

recovered when δ < 3
4 − β. In this paper,we show a similar result on MPRSA.

Using Wiener’s interval proposed by [17], we show that d can be recovered when

2d2 + 1 < n2/r−α

6r < φ(n), for r ≥ 3; and when 2d2 + 1 < 2n3/2−2α + 1, for r = 2
and φ(n) > 3

4n.
The paper is organized as follows. In section 2, we review some basic facts

about continued fractions, and Wiener’s interval. In Section 3, we cryptanalysis
MPRSA with small prime difference. In Section 4, we compare between our at-
tacks and other small private exponent attacks. An example of the cryptanalysis
is given in Section 5. Finally, Section 6 includes the conclusion.

2 Preliminaries

In this section, we briefly recall some basic definitions and facts that will be used
in the paper.
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A (finite) continued fraction expansion (CF ) [19] is an m-tuple of integers

[q1, q2, ..., qm]

with q2, ..., qm > 0, which is an abbreviation of the following rational number:

q1 +
1

q2 +
1

q3+...+ 1
qm

.

Let a, b be two positive integers satisfying gcd(a, b) = 1 and a < b. The rational
number c = a

b has a unique CF [q1, q2, ..., qm] with qm > 1, which can be
computed in time O(log2b) using the following algorithm [21]:

– c0 = c.
– compute ci =

1
ci−1−�ci−1� for i = 1, · · · ,m, where m ≤ 2 log b is the smallest

value of i such that �ci	 = ci.
– return [q1, q2, . . . , qm], where qi = �ci	 for i = 1, · · · ,m.

If c is an irrational number, then the computation can be continued for m→∞.
In this case, we have infinite CF :

q1 +
1

q2 +
1

q3+...+ 1
...

.

It will be shortened to [q1, q2, . . .].

Theorem 1. (Legendre) [19] Let α be a real number. If c and d are positive
integers such that gcd(c, d) = 1 and∣∣∣α− c

d

∣∣∣ < 1

2d2
,

then c
d is a convergent of the CF expansion of α.

Definition 1. [17] Let m be a real number and (n, e) be an RSA public key with
private key d, where ed − 1 = tφ(n). We define a Wiener’s attack on (n, e,m),
denoted by WA(n, e,m), as follows:

WA(n, e,m) =

⎧⎨⎩
t
d , if t

d is one of the convergents of the CF expansion of e
m ;

failure, otherwise.

WA(n, e,m) is said to be succeeds if it returns t/d.
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Definition 2. [17] Let (n, e) be an RSA public key. An interval I ⊂  (set of
real numbers) is said to be a Wiener’s interval for (n, e) if for every m ∈ I,
WA(n, e,m) succeeds.

The following theorem determines a Wiener’s interval for an RSA public-key
(n, e).

Theorem 2. [17] Let (n, e) be an RSA public key with private exponent d. Then

I =]φ(n)− φ(n)
cd2+1 , φ(n) +

φ(n)
2d2−1 [ is a Wiener’s interval for (n, e), where

c =

⎧⎪⎪⎨⎪⎪⎩
2, if d <

√
φ(n)−1

2 ;

4, if
√

φ(n)−1
2 ≤ d < φ(n)−1

4 .

Theorem 2 is also true for MPRSA [17].

3 The Attack

In this section, we show that the result of de Weger [23] on RSA can be extended
to MPRSA using Wiener’s interval . By choosing m = n− Γ, where

Γ =

r∑
i

n

n1/r
−

r∑
i,j
i<j

n

n2/r
+

r∑
i,j,k=1
i<j<k

n

n3/r
+ ...− (−1)r,

we show that m lies in Wiener’s interval (Theorem 2).
Now, let

Λ = n− φ(n) =

r∑
i

n

pi
−

r∑
i,j=1
i<j

n

pipj
+

r∑
i,j,k=1
i<j<k

n

pipjpk
+ ...− (−1)r;

Then we can rewrite Λ and Γ as follows.

Λ = Λ1 − Λ2 + ...− (−1)rΛr,

where

Λk =

r∑
i1,..,ik
i1<..<ik

n

pi1pi2 ...pik
, 1 ≤ k ≤ r.

And
Γ = Γ1 − Γ2 + ...− (−1)rΓr,

where
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Γk =

r∑
i1,..,ik
i1<..<ik

n

nk/r
= Cr

kn
1−k/r , 1 ≤ k ≤ r

and

Cr
k =

r!

k!(r − k)!
(k ≤ r).

Lemma 1. Let n = p1p2...pr be a product of distinct r-balanced primes and
pr − p1 = nα, 0 < α ≤ 1/r. Then

|Λk − Γk| < 2k(2k − 1)Cr
kn

1+α− k+1
r ,

where k is a positive integer such that k ≤ r.

Proof

|Λk − Γk| ≤
∑r

i1,..,ik
i1<..<ik

∣∣∣ n
pi1pi2 ···pik

− n
nk/r

∣∣∣
=
∑r

i1,...,ik
i1<..<ik

n|nk/r−pi1pi2 ···pik |
nk/rpi1pi2 ···pik

≤
∑r

i1,...,ik
i1<...<ik

n|pk
r−pk

1 |
1

2k
n2k/r

=
∑r

i1,...,ik
i1<...<ik

2kn(pr−p1)(p
k−1
r +pk−2

r p1+...+pk−1
1 )

n2k/r

<
∑r

i1,...,ik
i1<...<ik

2kn1+α(2k−1n
k−1
r +2k−2n

k−1
r +...+20n

k−1
r )

n2k/r

=
∑r

i1,...,ik
i1<...<ik

2kn1+αn
k−1
r (2k−1+2k−2+···+1)

n2k/r

= 2k(2k − 1)Cr
kn

1+α− k+1
r .

♦

Proposition 1. Let n = p1p2 · · · pr be a product of distinct r-balanced primes
and pr − p1 = nα, 0 < α ≤ 1/r. Then

|Λ− Γ | <

⎧⎨⎩
1
4n

2α−1/2, if r = 2;

3rn1+α−2/r, if r ≥ 3, and 2k(2k − 1)Cr
k ≤ n1/r

r−1 (2 ≤ k ≤ r).
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Proof
If r = 2, then

|Λ− Γ | = |p1 + p2 − 1− (2
√

n− 1)| = p1 + p2 − 2
√

n = (p1−p2)
2

p1+p2+2
√
n

< (p1−p2)
2

4
√
n

= 1
4n

2α−1/2.

If r ≥ 3 and 2k(2k − 1)Cr
k ≤ n1/r

r−1 ,

|Λ− Γ | < |Λ1 − Γ1|+
r∑

k=2

|Λk − Γk|.

Using Lemma 1, for every 2 ≤ k ≤ r, we have

|Λk − Γk| < 2k(2k − 1)Cr
kn

1+α−(k+1)/r

≤ n1/r

r−1 n1+α−(k+1)/r

= n1+α−k/r

r−1 ≤ n1+α−2/r

r−1 .

It follows that

|Λ− Γ | < 2rn1+α−2/r +
∑r

k=2
n1+α−2/r

r−1

= 2rn1+α−2/r + (r − 1)n
1+α−2/r

r−1

< 3rn1+α−2/r. ♦

Theorem 3. Let n = p1p2 · · · pr be MPRSA modulus, where p1, p2, · · · , pr are
distinct r-balanced primes. If pr − p1 = nα, 0 < α ≤ 1/r and

2d2 + 1 <

⎧⎨⎩
2n3/2−2α + 1, if r = 2 and φ(n) > 3

4n;

n2/r−α

6r , if r ≥ 3, and 2k(2k − 1)Cr
k ≤ n1/r

r−1 , 2 ≤ k ≤ r

then the system is insecure.

Proof: Using Theorem 2, we need only to show that

|m− φ(n)| < φ(n)

2d2 + 1
,

where m = n− Γ. We have

|m− φ(n)| = |Λ− Γ |.

Thus, by Proposition 1, we have
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|m− φ(n)| <

⎧⎨⎩
1
4n

2α−1/2, if r = 2;

3rn1+α−2/r, if r ≥ 3, 2k(2k − 1)Cr
k ≤ n1/r

r−1 , 2 ≤ k ≤ r.

We have two cases.

Case 1: r = 2. If φ(n) > 3
4n, then

|m− φ(n)| < 1
4n

2α−1/2 = 1
4n

2α−3/2+1 = 1
4

n
n3/2−2α

< 1
4

n
d2 <

4
3φ(n)

4d2 < φ(n)
3d2 < φ(n)

2d2+1 .

Case 2: r ≥ 3 and 2k(2k − 1)Cr
k ≤ n1/r

r−1 . We have

|m− φ(n)| < 3rn1+α−2/r = 3r n
n2/r−α < 3r 2φ(n)

n2/r−α

= φ(n)
n2/r−α

6r

< φ(n)
2d2+1 . ♦

Remark 1. 1. if α = 1
r , then the upper bound of d is

√
n1/r−6r

12r which is similar

to the upper bound
√

n1/r

2(2r2−1) in [12].

2. Since the maximum numbers of safe primes for MPRSA are 3, 3, 4, and 5
for 1024, 4038, 4096, and 8192 bits respectivelly [11], the condition 2k(2k −
1)Cr

k ≤ n1/r

r−1 in Theorem 3 is always satisfied.

4 Comparison

In this section, we compare between our attack and the previous attacks.

1. For r = 2, and 0 < α ≤ 1
2 , we have two cases:

(a) If 0 < α < 1
4 , then Fermat’s method [23] factorizes n = p1p2 in polyno-

mial time if p2 − p1 = nα.
(b) If 1

4 ≤ α ≤ 1
2 , then de Weger’s attack [23] finds d = nδ when p2−p1 = nα,

where δ < 3
4 − α.

2. To the best of our knowledge, for r ≥ 3, there is no generalization of Fer-
mat’s method for MPRSA. Our attack (Theorem 3) can be considered as an
extensions of de Weger’s attack since α ≥ 0 and for r = 2, de Weger’s attack
is a special case of Theorem 3.
It is important to point that all known small private exponent attacks on
MPRSA become less effective when increasing the number of primes in the
modulus [11, Section 9.3].

3. When the public exponent e is full sized, our attack is superior than other
small private exponent attacks on MPRSA. Figure 1 shows a comparison
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Fig. 1. Comparison between Theorem 3 and previous private exponent attacks on
MPRSA

between our attack and attacks of Hinek et al. (Eqs.(1) and (2)) [11,12] and
Ciet et al. (Eq.(3))[6,11] when r = 3, 4, and 5, where

δ <
1

3r
(4r − 1− 2

√
(r − 1)(4r − 1))− ε, ε > 0 (1)

δ <
1

5r
(6− 4r + 2

√
4r2 − 7r + 4)− ε, ε > 0 (2)

δ < (r −
√

r(r − 1))/r − ε, ε > 0 (3)
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5 Numerical Example

In this section we give an example for the presented attack. We used Shoup’s
package [20] NTL in the implementation.

Let n = p1p2p3p4 be a product of four primes each of size 100 decimal digits
such that p4 − p1 ≤ n0.19. Thus, α = 0.19 and δ = 0.15.

Suppose that e of size 400 decimal digits.

n = 2557376388987292753761761577769565198593697483152866036088506944889557\
1324087356114126315325667501129171069698135515159727452127849294044657\
0831074401027667970486289464022334468742943259375220427200453728525267\
6190931908757043225664568346467057103301435702171307412146715922277287\
201425288416218336119931028736578683955425009746831075119013819142265\
046330193730129013231484126392267563403208765626567.

e = 1282614524058427157062184165654804666686202713945353160716561456711662\
1440047797087437150450386110068699112022894288537169165237544058155230\
6989260432762549159378268935666955616295237915067408912864464892356007\
2178514725395063517274319094914872498494209259672479885879192200723926\
3551649087786820580473700277994100163665081397126926938775218211019808\
38177155732917433260529153810425421897963203104501.

Now, we compute m = n− Γ.

m = 2557376388987292753761761577769565198593697483152866036088506944889557\
1324087356114126315325667501114786198428094046819899205736032544379321\
4558263983852318376236785961085727729598425439320664127806023007674883\
4867456943752227591895411010482236721185353733731279977833581405492208\
9270729727409929097052543902309899002404074626571583979407425064383316\
94875626840505790931689488829900292770669173758408.

and CF (e/m) =

[0, 1, 1, 162, 2, 1, 63, 1, 4, 5, 2, 1, 1, 1, 1, 9, 2, 1, 1, 2, 1, 5, 1, 1, 278, 1, 10, 3, 2,
1, 3, 1, 1, 1, 1, 2, 1, 7, 3, 11, 7, 15, 1, 1, 1, 17, 4, 5, 2, 2, 2, 8, 1, 2, 3, 1, 6, 1, 1,
1, 1, 4, 2, 2, 1, 1, 2, 3, 1, 1, 14, 1, 2, 7, 1, 1, 3, 2, 2, 1, 1, 1, 2, 5, 143, 1, 2, 1, 1,
1, 10, 1, 7, 18, 1, 4, 3, 1, 1, 101, 1, 8, 2, 1, 32, 1, 6, 2, 8, 1, 2, 53, 11, 3, 3, 1, 1, 1,
1, 1, 2, 1, 1646332861278020346917835445367, 1, 6, 3, 1, 1, 4, 1, 2, 1, 11, 1, 4, 3,
1, 2, 1, 1, 1, 7, 2, 5, 5, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 5, 1, 2, 1, 4, 1, 2, 1, 5, 10, 1, 7,
1, 4, 1, 4, 2, 1, 1, 1, 1, 3, 154, 5, 2, 11, 2, 23, 7, 1, 2, 1, 6, 5, 1, 9, 1, 6, 1, 8, 1, 3,
3, 1, 1, 8, 2, 1, 6, 1, 1, 2, 9, 2, 3, 1, 1, 3, 1, 1, 2, 1, 1, 7, 1, 6, 2, 1, 2, 1, 7, 2, 71,
2, 1, 5, 2, 1, 97, 4, 1, 1, 1, 1, 3, 1, 2, 6, 2, 1, 5, 1, 33, 15, 1, 1, 5, 1, 1, 19, 2, 1, 6,
5, 2, 8, 1, 1, 14, 1, 1, 1, 2, 1, 2, 12, 1, 2, 3, 3, 133, 3, 6, 12, 3, 14, 1, 3, 29, 3, 5, 3,
4, 1, 1, 1, 2, 4, 15, 2, 15, 1, 1, 3, 6, 1, 2, 2, 1, 5, 3, 1, 6, 18, 1, 1, 1, 2, 1, 1, 1, 1,
1, 1, 69, 399, 4, 1, 6, 1, 3, 3, 1, 1, 1, 6, 1, 7, 1, 3, 8, 1, 2, 50, 3, 1, 1, 11, 2, 62, 1,
5, 5, 1, 1, 1, 3, 1, 1, 1, 6, 1, 2, 3, 1, 2, 1, 1, 1, 12, 5, 1, 22, 2, 36, 1, 1, 1, 3, 4, 1,
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4, 15, 1, 3, 1, 3, 2, 1, 1, 1, 3, 1, 5, 2, 2, 1, 1, 17, 1, 16, 1, 2, 1, 1, 6, 6, 27, 3, 1, 4,
2, 2, 10, 2, 1, 2, 3, 2, 1, 1, 4, 4, 11, 2, 3, 1, 10, 1, 1, 2, 1, 1, 2, 20, 13, 1, 2, 1, 3, 3,
1, 1, 1, 1, 11, 3, 1, 1, 97, 1, 4, 12, 3, 6, 2, 73, 1, 1, 1, 1, 3, 1, 1, 16, 8, 4, 5, 1, 2,
60, 1, 1, 10, 1, 3, 2, 1, 1, 2, 20, 1, 1, 1, 2, 1, 61, 1, 3, 1, 44, 2, 13, 1, 1, 6, 3, 4, 1,
3, 1, 2, 202, 1, 4, 1, 9, 1, 2, 2, 1, 40, 1, 8, 2, 6, 99, 3, 2, 3, 1, 10, 2, 22, 1, 4, 1, 3,
4, 1, 3, 1, 15, 2, 10, 5, 1, 1, 1, 427, 1, 3, 1, 2, 3, 2, 2, 91, 1, 1, 1, 2, 1, 1, 2, 1, 23,
1, 3, 12, 6, 2, 13, 1, 16, 1, 1, 8, 4, 1, 2, 44, 1, 2, 22, 2, 1, 1, 4, 1, 3, 27, 1, 2, 3, 1,
2, 7, 1, 6, 1, 1, 1, 6, 5, 1, 1, 1, 1, 1, 1, 5, 4, 1, 1, 15, 2, 1, 4, 18, 1, 1, 1, 2, 2, 3, 2,
4, 13, 4, 1, 9, 3, 1, 2, 11, 1, 1, 6, 30, 2, 2, 2, 11, 17, 1, 1, 1, 1, 1, 2, 7, 7, 1, 2, 2,
1, 2, 1, 3, 7, 31, 1, 3, 1, 2, 452, 1, 19, 9, 11, 1, 2, 1, 1, 2, 6, 1, 28, 10, 4, 1, 2, 3,
2, 5, 2, 1, 15, 1, 3, 2, 42, 5, 1, 1, 2, 1, 1, 4, 1, 1, 9, 2, 1, 3, 8, 6, 32, 1, 3, 2, 12, 1,
4, 1, 11, 2, 1, 41, 4, 1, 6, 2, 1, 1, 48, 2, 2, 3, 2, 2, 4, 2, 4, 4, 10, 1, 12, 14, 4, 1, 2, 92].

Thus, we can conclude that

d = 189877018016769650162234978064222550351916979376481456967901.

p1 = 71112944731410736200936098026102194286183896202223461645293266435374\
24133992279467748393278156440741.

p2 = 71112944731410736200936161704354259548674079134065376681839091861977\
76492054347020753847107491042031.

p3 = 71112944731410736200936135161274092520974419744378917664439975869666\
14471703183603466271783937017379.

p4 = 71112944731410736200936153839445191771143086686623743978164216730335\
75558876657813072394314100437063.

6 Conclusion and Futures Work

Let n = p1p2 · · · pr, and pr − p1 = nα. Based on Wiener’s Interval , we have

showed that MPRSA is insecure if 2d2 + 1 < n2/r−α

6r < φ(n), for r ≥ 3; and

2d2 + 1 < 2n3/2−2α + 1, for r = 2 and φ(n) > 3
4n.

Many interesting questions arise from the work presented above. For examples:

1. The possibility to generalize Fermat’s method to MPRSA. It seems that
pr − p1 = nα, α = 1

r .

2. Uses of lattice instead of CF.

3. Improve the condition 2d2 + 1 < n2/r−α

6r .
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Abstract. A public key cryptosystem based on factoring and a combi-
natorial problem of matrices over ZN proposed in 2010 is analyzed in
this paper. We propose an efficient partial private key recovery attack
on it by solving a problem of recovering implicit polynomials with small
coefficients given their large roots and deriving the large roots from the
public key. From the partial information of private key, we can decrypt
any ciphertext of the cryptosystem by a simple computation. Our im-
plicit polynomial recovery is an application of lattice basis reduction.

Keywords: Public Key Cryptography, Combinatorial Cryptosystem,
Implicit Polynomial Recovery, Lattice, LLL Algorithm.

1 Introduction

Many asymmetric encryption schemes have been proposed after the discovery of
public key cryptography, including the well known ones based on number theo-
retic problems like RSA and ElGamal. It is important for public key cryptogra-
phy to research secure and fast asymmetric encryption cryptosystems relying on
other hard mathematical problems such as lattice problems (e.g., Atjai-Dwork
[1], GGH [5] and NTRU [6] public key cryptosystems) and combinatorial prob-
lems (e.g., knapsack trapdoors [8]).

Recently, a new combinatorial public key cryptosystem mixed with integer
factorization problem were presented [13]. The authors of [13] thought that the
security of the system is not dependent on the intractability of integer factor-
ization but on a hard combinatorial problem involving matrices. Some attacks,
especially lattice attacks and private key recovery attacks, were stressed and ex-
tensively discussed in [13], and the authors concluded that the lattice reduction
algorithms do not work for this cryptosystem.

In this paper, we propose a partial private key recovery attack on the above
cryptosystem [13] by using the means of lattice. We observe that a secret matrix
A in the private key of the cryptosystem has relatively small entries compared
with the RSA modulus N . By analyzing the relations between the public and
secret matrices in the system, we derive elements in ZN which are roots of

T.W. Chim and T.H. Yuen (Eds.): ICICS 2012, LNCS 7618, pp. 45–57, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



46 J. Xu, L. Hu, and S. Sun

some polynomials modulo N with the entries of A as their coefficients. Then
we can construct some lattices and run the well known LLL algorithm [7] to
recover the relatively small coefficients. This problem of recovering an implicit
polynomial with small coefficients given its large roots is a dual of the problem
of finding small roots of a polynomial with large coefficients, which is solved
by Coppersmith in his seminal paper [3] in 1996. With the recovered matrix A,
we can find out the factorization of N and partially recover information on the
other secret matrices D and F in the private key. With this partially private key
information, an attacker can recover the plaintext of any ciphertext by a very
simple computation.

The paper is organized as follows. In Section 2 we give a description for the
cryptographic system in [13]. We present our cryptanalysis on it in Section 3.
The last section is the conclusion.

2 Description of the Public Key Encryption System

In this section we review the public key encryption scheme proposed in [13].

Key Generation: This cryptosystem involves n × n matrices over ZN , where
n is an even integer and N = pq is a random 1024-bit RSA modulus with two
primes p and q of length of 512 bits. The authors of [13] suggest n is chosen as
2 or 4. Let Γ be the set of all n × n matrices over ZN such that each entry in
odd-numbered rows is multiples of p and each entry in the even-numbered rows
is multiples of q. Define two n× n permutation matrices P1 and P2 as follows:

P1 =

⎡⎢⎢⎣
0 · · · 0 1
0 · · · 1 0
· · ·

1 · · · 0 0

⎤⎥⎥⎦ , P2 =

⎡⎢⎢⎣
0 · · · 0 1
1 · · · 0 0
· · ·

0 · · · 1 0

⎤⎥⎥⎦ .

Four matrices C,D,E, F ∈ Zn×n are chosen such that

C + EP1 ∈ Γ, D + FP2 ∈ Γ. (1)

Randomly generate an n × n invertible matrix A over Z whose all entries have
“short” binary length of 59 bits, then generate another matrix A

′ ∈ Zn×n
N such

that A
′ − A ∈ Γ . Randomly choose two invertible matrices D and F in Zn×n

N ,
and compute ⎧⎨⎩B ≡ D−1A

′
(mod N),

G ≡ D−1C (mod N),
H ≡ F−1E (mod N).

(2)

Public Key: The RSA modulus N and three matrices B, G and H .
Private Key: The primes p, q and the matrices D, F and A.
Encryption: The plaintext m is coded into an n-dimensional column vector
(m1, · · · ,mn)

t, where each entry mi is of length of 450 bits. The sender randomly
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chooses two n-dimensional vectors r = (r1, · · · , rn)t and s = (s1, · · · , sn)t over
ZN . The ciphertext is a 2-tuple (u, v) given as follows:{

u ≡ Bm+ Gr + s (mod N),
v ≡ HP1r + P2s (mod N).

(3)

Decryption: Given a ciphertext (u, v), the receiver computes the plaintext m
as follows: ⎧⎪⎪⎨⎪⎪⎩

t = (t1, . . . , tn)
t ≡ Du + Fv(mod N),

wi = ti mod p when i is odd,
wi = ti mod q when i is even,
m = A−1(w1, . . . , wn)

t.

3 Attack on the Public Key Encryption Scheme

In this section we present a partial private key recovery attack on the scheme
including: (i) revealing the primes p and q and the secret matrix A by using a lat-
tice basis reduction method. This is done by implicit polynomials recovery; and
(ii) getting partial information of the secret matrices D and F . With such par-
tial private key information in hand, a ciphertxet-only attacker can decrypt any
ciphertext of this cryptosystem by a simple operation only like the decryption
process.

3.1 Recovering Relations on Secret Matrices and Factoring
the RSA Modulus

From Formulas (1) and (2) in the key generation, we have

DG + FHP1 ≡ C + EP1 (mod N), and DG + FHP1 ∈ Γ. (4)

Let Di and Fi denote the i-th rows of D and F respectively. Then{
DiG + FiHP1 ≡ 0 (mod p) for odd i,
DiG + FiHP1 ≡ 0 (mod q) for even i.

(5)

Since D + FP2 ∈ Γ by (1), we have{
DiP

−1
2 + Fi ≡ 0 (mod p) for odd i,

DiP
−1
2 + Fi ≡ 0 (mod q) for even i.

(6)

By the two above equalities we obtain{
Di(G− P−1

2 HP1) ≡ 0 (mod p) for odd i,
Di(G− P−1

2 HP1) ≡ 0 (mod q) for even i.
(7)

Structure of the Matrix G− P−1
2 HP1:

Let m = n/2. Clearly, W := G − P−1
2 HP1 is a matrix which any attacker

can know from the public key. By the first relation of (7), since D(mod p) is
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invertible over Zp and chosen at random, and p is a large prime of 512 bits, with
a probability very close 1 the remainder of W modulo p has rank m and its first
m rows are linearly independent over Zp. Thus, with this probability we assume

W ≡
(

W1

T1W1

)
(mod p), (8)

where W1 ∈ Zm×n
p is of rank m over Zp and T1 ∈ Zm×m

p . Similarly, with a
probability very close 1 we have

W ≡
(

W2

T2W2

)
(mod q), (9)

where the rank of W2 ∈ Zm×n
q is m over Zq and T2 ∈ Zm×m

q .

By the Chinese remainder theorem, there is an m×n matrix W̃ over ZN such
that W̃ = W1(mod p) and W̃ = W2(mod q), and there is also an m×m matrix
T over ZN such that T = W1(mod p) and T = W2(mod q). Then from (8) and
(9), we get

G− P−1
2 HP1 ≡

(
W̃

T W̃

)
(mod N). (10)

Relations on the Secret Matrix D:

Consider the block submatrices of D. Let P3 denote an n× n permutation ma-
trix which transforms a column vector (x1, x2, · · · , xn)

t into (x1, x3, · · · , xn−1,
x2, x4, · · · , xn)

t, and Δ be the set of all n × n matrices over ZN such that all
entries in the first m rows are multiples of p and all entries in the last m rows are
multiples of q. Then, an n×n matrix D′ over ZN is in Γ if and only if P3D

′ ∈ Δ.
By (7),

P3D(G− P−1
2 HP1) ∈ Δ. (11)

Evenly partition P3D into

P3D =

(
D(1) D(2)

D(3) D(4)

)
,

where D(1), D(2), D(3), D(4) are four m×m matrices over ZN . Plugging (10) into
(11), we have (

D(1) D(2)

D(3) D(4)

)(
W̃

T W̃

)
∈ Δ,

and in other words, {
(D(1) + D(2)T )W̃ ≡ 0 (mod p),

(D(3) + D(4)T )W̃ ≡ 0 (mod q).
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Since W̃ (mod p) and W̃ (mod q) are both of rank m, we have{
D(1) ≡ −D(2)T (mod p),

D(3) ≡ −D(4)T (mod q).
(12)

Relations Related on the Secret Matrix A:

By the key generation, we have DB − A = A′ − A ∈ Γ and

P3DB − P3A ∈ Δ.

Let

P3A =

(
A(1) A(2)

A(3) A(4)

)
, B =

(
B(1) B(2)

B(3) B(4)

)
be the even partitions of matrices. The above relation says that(

D(1) D(2)

D(3) D(4)

)(
B(1) B(2)

B(3) B(4)

)
−
(
A(1) A(2)

A(3) A(4)

)
∈ Δ,

and equivalently, ⎧⎪⎪⎨⎪⎪⎩
D(1)B(1) + D(2)B(3) ≡ A(1) (mod p),
D(1)B(2) + D(2)B(4) ≡ A(2) (mod p),

D(3)B(1) + D(4)B(3) ≡ A(3) (mod q),

D(3)B(2) + D(4)B(4) ≡ A(4) (mod q).

(13)

Plugging (12) into (13), we have⎧⎪⎪⎨⎪⎪⎩
D(2)(B(3) − TB(1)) ≡ A(1) (mod p),

D(2)(B(4) − TB(2)) ≡ A(2) (mod p),

D(4)(B(3) − TB(1)) ≡ A(3) (mod q),
D(4)(B(4) − TB(2)) ≡ A(4) (mod q).

(14)

Again with a probability very close to 1, A(1) and A(2) are invertible over Zp

and over Zq.
Let K = (B(3)−TB(1))−1(B(4)−TB(2)) (mod N), which is an m×m matrix

and can be computed from the public key N,G,H,B. Then the relations in (14)
lead to: {

A(2) ≡ A(1)K (mod p),
A(4) ≡ A(3)K (mod q).

(15)

These are implicit relations related on the secret matrix A and the secret primes
p and q.

Now we go to recover these implicit relations by using the fact that A is a
relatively small matrix, and then find the secret primes. To simplify the notations
and illustrate the principle, below we first consider the simplest case that n = 2.
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The method is similar for other cases of n but involves higher dimensional lattices
and further skills.

Recovering A and Factoring N when n = 2:

For n = 2, P3 is the identity matrix,

P3A =

(
A(1) A(2)

A(3) A(4)

)
= A =

(
a11 a12
a21 a22

)
, P3B =

(
B(1) B(2)

B(3) B(4)

)
= B =

(
b11 b12
b21 b22

)
,

and K = (b21−Tb11)
−1(b22−Tb12) (mod N). From the pair of relations modulo

p and q in (15), we get a relation modulo N as (a12 − Ka11)(a22 − Ka21) ≡
0 (mod N), which is

a11a21K
2 − (a11a22 + a12a21)K + a12a22 ≡ 0 (mod N). (16)

Note that the aij are of length of not exceeding 59 bits, the sizes of the coefficients
in (16) (namely a11a21, a11a22+a12a21, a12a22) are not more than 119 bits, which
are relatively small integers compared with the 1024-bit modulus N . This is a
problem of recovering an implicit polynomial with small coefficients given its
large roots. See Appendix A for its general description and a solution. It can be
regarded as a dual of the problem of finding small roots of a polynomial with
large coefficients, which had been solved by Coppersmith in his seminal paper
[3] in 1996 by the well known lattice basis reduction method. For our problem,
we can recover the small coefficients also by the lattice means as follows.

Construct a matrix as ⎛⎝1 0 −K2(mod N)
0 1 K
0 0 N

⎞⎠
and let L1 be the three-dimensional lattice spanned by its rows. Run the LLL
lattice basis reduction algorithm and get a short lattice vector (a, b, c) in the lat-
tice. Obviously, all lattice vectors (a, b, c) satisfy that aK2−bK+c ≡ 0 (mod N).
Since the lattice is of very low dimension like 3, we almost always obtain the
shortest vector (a, b, c) in L1.

Note that a12/a11(mod N) and a22/a21(mod N) are two roots of (16), from
this we know that (a11a21, a11a22 + a12a21, a12a22) and (a, b, c) are proportional
modulo N . They are relatively very small with respect to N , so they must be
proportional in the usual sense. Assume that (a11a21, a11a22 + a12a21, a12a22) =
t(a, b, c). This t is a small integer, we can exhaust to search it. In fact, t = 1
holds with a probability of about 39 percent (see the corollary in Appendix B).

For each small searched value of t such that ta, tb, tc are of length of not
exceeding 119 bits, factor ta and tc as ta = x1x3 and tc = x2x4 with x1, · · · , x4 of
no more than 59 bits. We note that integers of lengths of less than two hundreds
bits like 119 bits are very easy to factor by using the open source software like
Shoup’s number theoretical library NTL [11] or Magma [2]. From the complete
decomposition of ta and tc, there may be several choices for these xi, and hence
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we test whether x1x4+x2x3 = tb holds or not. If yes, we let (a11, a12, a21, a22) =
(x1, x2, x3, x4) and compute gcd(a12 − Ka11, N). This will generally get p by
gcd(a12 −Ka11, N) = p.

Experimental Result for n = 2: We have implemented the above attack
with the LLL algorithm on a PC with Intel(R) Core(TM) Quad CPU (2.83GHz,
3.25GB RAM, Windows XP). For n = 2, our experiment always successfully
outputs the shortest vector (a, b, c), and amongst 100 instances randomly gener-
ated, there are 40 times that t is equal to 1. The time complexity is very low, all
work including the lattice computation and decomposition test can be finished
within ten seconds.

Recovering A and Factoring N when n = 4:

For n = 4, let

K =

(
k1 k2
k3 k4

)
, A(i) =

(
ai bi
a

′

i b
′

i

)
, 1 ≤ i ≤ 4.

The relations in (15) then become:⎧⎪⎪⎨⎪⎪⎩
k1a1 + k3b1 − a2 ≡ 0 (mod p),
k2a1 + k4b1 − b2 ≡ 0 (mod p),
k1a3 + k3b3 − a4 ≡ 0 (mod q),
k2a3 + k4b3 − b4 ≡ 0 (mod q).

(17)

From the pair of relations modulo p and q in (17), we get relations modulo N as⎧⎪⎪⎨⎪⎪⎩
k2
1(a1a3) + k2

3(b1b3) + k1k3(a1b3 + a3b1)
−k1(a1a4 + a2a3)− k3(a2b3 + a4b1) + a2a4 ≡ 0 (mod N),
k2
2(a1a3) + k2

4(b1b3) + k2k4(a1b3 + a3b1)
−k2(a1b4 + a3a2)− k4(b2b3 + b1b4) + b2b4 ≡ 0 (mod N).

(18)

Obviously, we can get the same relations on a
′

i, b
′

i (1 ≤ i ≤ 4) as (18) from⎧⎪⎪⎨⎪⎪⎩
k1a

′

1 + k3b
′

1 − a
′

2 ≡ 0 (mod p),

k2a
′

1 + k4b
′

1 − b
′

2 ≡ 0 (mod p),

k1a
′

3 + k3b
′

3 − a
′

4 ≡ 0 (mod q),

k2a
′

3 + k4b
′

3 − b
′

4 ≡ 0 (mod q).

(19)

Construct two six-dimensional lattices L2 and L3 which are generated by the
rows of the matrices⎛⎜⎜⎜⎜⎜⎜⎝

1 − k2
1(mod N)

1 − k2
3(mod N)

1 − k1k3(mod N)
1 k1
1 k3

N

⎞⎟⎟⎟⎟⎟⎟⎠ and

⎛⎜⎜⎜⎜⎜⎜⎝
1 − k2

2(mod N)
1 − k2

4(mod N)
1 − k2k4(mod N)
1 k2
1 k4

N

⎞⎟⎟⎟⎟⎟⎟⎠
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respectively.Running theLLLalgorithm,weget a reducedbasis ofL2,{α1, · · · , α6},
and a reduced basis of L3, {β1, · · · , β6} (the vectors in a basis are listed in the in-
creasing length order).

Note that the following vectors which we desire to find⎧⎪⎪⎨⎪⎪⎩
(a1a3, b1b3, a1b3 + a3b1, a1a4 + a2a3, a2b3 + a4b1, a2a4) ∈ L2,
(a1a3, b1b3, a1b3 + a3b1, a1b4 + b2a3, b2b3 + b4b1, b2b4) ∈ L3,

(a
′

1a
′

3, b
′

1b
′

3, a
′

2b
′

3 + a
′

3b
′

1, a
′

1a
′

4 + a
′

2a
′

3, a
′

2b
′

3 + a
′

4b
′

1, a
′

2a
′

4) ∈ L2,

(a
′

1a
′

3, b
′

1b
′

3, a
′

2b
′

3 + a
′

3b
′

1, a
′

1b
′

4 + b
′

2a
′

3, b
′

2b
′

3 + b
′

4b
′

1, b
′

2b
′

4) ∈ L3

(20)

are of sizes less than 2118 ·
√
3 · 12 + 3 · 22 < 2120, which are relatively very short

vectors compared with most vectors in L2 and L3 with 1024-bit components.
Let{
(a1a3, b1b3, a1b3 + a3b1, a1a4 + a2a3, a2b3 + a4b1, a2a4) = x1α1 + · · ·+ x6α6,
(a1a3, b1b3, a1b3 + a3b1, a1b4 + b2a3, b2b3 + b4b1, b2b4) = y1β1 + · · ·+ y6β6,

(21)
where xi, yi ∈ Z, 1 ≤ i ≤ 6. In our experiment (see below), we observe that to
search short vectors x1α1 + · · ·+ x6α6 and y1β1 + · · ·+ y6β6 in the lattices, only
the first three or four coefficients in the two tuples of coefficients, x1, · · · , x6 and
y1, · · · , y6 are not zero and they are always very small integers like ones with
absolute values less than 50. This is reasonable because under the increasing
length order, the last two vectors, α5 and α6, or β5 and β6, are obviously much
longer than the first several vectors α1, α2, α3, α4 and β1, β2, β3, β4. Do an ex-
haust lexicographical-like search for the integral coefficient vector (x1, · · · , x6)
with x6 and x5 being set to 0 prior and all other components starting from 0 to
a small number like 50 (in absolute value sense), and find all linear combinations
x1α1 + · · · + x6α6 of length less than 2120. More precisely, we require that the
first, second and last components of these vectors are all of length not exceeding
118 bits and the other components are of length not exceeding 119 bits.

Further, note that for the desired two vectors in (21), let (c1 · · · , c6) be either
one of them, then c23 − 4c1c2 = (a1b3 + a3b1)

2 − 4a1a3b1b3 = (a1b3 − a3b1)
2 and

similarly c24−4c1c6, c25−4c2c6 are complete square numbers over integers. If one of
c23−4c1c2, c

2
4−4c1c6, c

2
5−4c2c6 is not a complete square number, then the vector

(c1 · · · , c6) is not a desired vector of the form (21). Otherwise, by continuing to
find square roots of the completely square numbers, we get the intended values
for a1b3 and a3b1 from the values of a1b3 + a3b1 and a1b3 − a3b1, and similarly
get the intended values for a1a4, a3a2, b1a4, b3a2, a1b4, a3b2, b1b4, b3b2. All these
values obtained should be of length not exceeding 118 bits, if any one of such
requirements invalidates, then the vector (c1 · · · , c6) can not be a desired vector
of the form (21).

Search all linear combinations x1α1 + · · · + x6α6 satisfying all requirements
mentioned above, and let them form a set S2. Similarly in the lattice L3, search
all vectors y1β1 + · · ·+ y6β6 with the same restrictions and then form a set S3.
Typically in our experiment, the cardinalities of S2 and S3 are less than 500.

Now for the desired two vectors in (21), the first three components are pair-
wisely identical. This tells us that by simply finding “projective collisions” of S2
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and S3, we will find all vectors in S2 such that their first three components are
equal to the corresponding components of some vectors in S3. In our experiment,
there are typically less than 200 such collisions. For any one of such three dimen-
sional vectors, if it is a desired one which can be the projection of the vectors in
(21), then the values obtained for a1a3, b1b3, a2a4, b2b4 and the intended values
obtained for a1b3, a3b1, a1a4, a3a2, b1a4, b3a2, a1b4, a3b2, b1b4, b3b2 should satisfy
many division relations like the following

a1a3| gcd(a1b3, a1a4, a1b4) · gcd(b1a3, a2a3, b2a3).

If any one of such relations invalidates, then we discard the collision. Otherwise,
we can further try to find the values for a1, · · · , a4, b1, · · · , b4 as follows.

By using the fact that a1 divides gcd(a1a3, a1b3, a1a4, a1b4) and many similar
relations hold, factoring some of 14 products for

a1a3, b1b3, a2a4, b2b4, a1b3, a3b1, a1a4, a3a2, b1a4, b3a2, a1b4, a3b2, b1b4, b3b2,

which are all of lengths not exceeding 118 bits and are easy to factor as shown
in the previous subsection about the case of n = 2, we will get at once the values
for a1, · · · , a4, b1, · · · , b4 and distill out improper candidates that the values for
a1, · · · , a4, b1, · · · , b4 are not less than 259. Finally, we get all proper candidates
for a1, · · · , a4, b1, · · · , b4. In our experiment, there are typically less than 100
such candidates.

Nowwe have found out all candidate tuples for (a1, a2, a3, a4, b1, b2, b3, b4). From
any such tuple, we get the factorization ofN by computing p = gcd(k1a1 + k3b1−
a2, N).These candidate tuples are also suitable for (a′1, a

′
2, a

′
3, a

′
4, b

′
1, b

′
2, b

′
3, b

′
4) since

they both satisfy the completely same requirements, and they can not be distin-
guished. However, fortunately, there are only few such candidate tuples (let the
number of candidate tuples be l), and that means there are at most l(l− 1) choices
for the invertible matrix A. In our experiment, l is always less than 30. Thus, we
have recovered the secret matrix A in the sense that we limit it into a small range.
The l(l − 1) possibilities for A can be further removed out or namely we can fur-
ther fix the choice after doing one or few proper ciphertect-only decryptions, see
Subsection 3.3 below.

As mentioned in the case of n = 2, if the entries of the original (a1, a2, a3, a4, b1,
b2, b3, b4) are small and this vector has a multiple whose all entries are of length
not exceeding 59 bits, then there may be several candidates for A, however,
this happens with a much lower probability than in the case of n = 2 (See the
proposition of Appendix B).

Experimental Result for n = 4: In the search of short vectors in L2, the last
two coefficients of the integral linear combinations x1α1+ · · ·+x6α6, x5 and x6,
are always zero, and in many cases x4 is also zero. While for other coefficients,
they are always less than 50 in absolute values. A similar situation happens
for L3. The whole computation time for finding the (a1, a2, a3, a4, b1, b2, b3, b4)
including lattice computing and factorization is within two hours.
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3.2 Partial Information Recovery of Secret Matrices D and F

When n = 2, p and q are factored out and the matrix A is found, the secret
matrix D can be partially recovered as{

(D(1), D(2)) ≡ (A(1), A(2))B−1 (mod p),

(D(3), D(4)) ≡ (A(3), A(4))B−1 (mod q),
(22)

by (16). Although we do not completely know what is D, we have gotten its half
information by (22). The similarity does for F by the fact that D + FP2 ∈ Γ ,
and this suffices to mount a ciphertext-only attack. See Subsection 3.3.

For n = 4, p and q are revealed and there are at most l2 − l possibilities for
A, recall the process of key generation, we have{

Di ≡ AiB
−1 (mod p) when i is odd,

Di ≡ AiB
−1 (mod q) when i is even.

(23)

Once we select some possibility for A, we can get half information of D by (23).
Similarly, since D + FP2 ∈ Γ , we can also obtain its half information of F .

3.3 Ciphertext-Only Attack

Recall the decryption process,⎧⎨⎩
t = (t1, . . . , tn)

t ≡ Du + Fv (mod N),
wi = ti mod p when i is odd,
wi = ti mod q when i is even.

When n = 2, we have{
wi =

(
(Di mod p) u + (Fi mod p) v

)
(mod p) when i is odd,

wi =
(
(Di mod q) u + (Fi mod q) v

)
(mod q) when i is even,

so theplaintext is completely recoveredasm= (m1, · · · ,mn)
t = A−1(w1, . . . , wn)

t.
For n = 4, although there are probably l(l − 1) choices for the secret matrix

A and for the partial information of D and F , we can try each possibility to
decrypt the plaintext. If a meaningful information for the plaintext is recovered,
then we find out a proper choice for the secret matrices A, D and F . Thus,
by doing one or few proper ciphertext-only decryptions, we in fact recover the
secret matrix A and fix the choice.

4 Conclusion

In this paper, we proposed an efficient partial private key recovery on the com-
binatorial public key cryptosystem recently proposed in [13]. The partial in-
formation recovery of private key is sufficient to decrypt any ciphertext of the
cryptosystem in a simple computation.
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We recover the partial information of private keys in the cryptosystem by
solving a problem of recovering implicit polynomials with small coefficients given
their large roots, and the large roots are derived from the public key. The problem
of recovering an implicit polynomial with small coefficients can be regarded as a
dual of the problem of finding small roots of a polynomial with large coefficients,
and these two problems were solved respectively by Coppersmith in [3] in 1996
and in this paper by the lattice basis reduction method.
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A Recovering Implicit Polynomials with Small
Coefficients

Problem. Assume f(x1, · · · , xn) ∈ Z[x1, · · · , xs] is a polynomial with unknown
coefficients and absolute values of these coefficients are relatively small com-
pared to some large integer N . Given a1, · · · , as ∈ ZN such that f(a1, · · · , as) ≡
0 (mod N). We expect to recover f(x1, · · · , xs).

Solution: Let f(x1, · · · , xs)=
∑

(k1,··· ,ks)

ck1,··· ,ksx
k1
1 · · ·xks

s . Then we have∑
ck1,··· ,ksa

k1
1 · · · aks

s ≡ 0 (mod N). Construct a lattice L which is generated

by the rows of the matrix

(
I α
0 N

)
, where I is the identity matrix whose num-

bers of rows and columns are equal to the number of nonzero coefficients ck1,··· ,ks

with (k1, · · · , ks) �= (0, · · · , 0), and α is a column vector whose entry at the po-
sition labeled by (k1, · · · , ks) is equal to ak1

1 · · · aks
s (mod N). A lattice vector

(· · · , ãk1,··· ,ks , · · · , ã0,··· ,0) in L satisfies
∑

(k1,··· ,ks) �=(0,··· ,0) ãk1,··· ,ksa
k1
1 · · ·aks

s ≡
ã0,··· ,0 (mod N), it results in a solution for the problem. Running the LLL algo-
rithm for L, we may find out a small solution for the problem.

B Probability That Several Random Integers Are
Coprime

Proposition. Let N be a large positive integer and l ≥ 2 be an integer. The
probability that l integers which are chosen uniformly at random and indepen-
dently in the interval [1, N ] are coprime is about

∏
prime r≤N

(1 − 1
rl
), where the

product is taken over all primes r not exceeding N . If l = 2, then this probability
is about 0.6181. If l = 8, this probability is about 0.9959.

Proof: Set SN = {1, 2, · · · , N} and let Sl
N = SN × · · · × SN be the Descarte-

sian product of l copies of SN . Then the set Sl
N − {(a1, · · · , al) ∈ Sl

N :
gcd(a1, · · · , al) = 1} is equal to

⋃
2≤k≤N

(kS[Nk ])
l. We restrict the index k in the

union is square-free, that is, k is a product of distinct primes. For such integers,
define ρk = (−1)u if k is a product of u distinct primes. By the inclusion-exclusion

principle, the cardinality of the above union is equal to
∑

2≤k≤N (−ρk)
[
N
k

]l
, and

hence, the number of pairs of coprime integers in SN is equal to

N l +
∑

2≤k≤N

ρk
[
N
k

]l ≈ ∑
1≤k≤N

ρk
(
N
k

)l
≈ N l(1− 1

2l
− 1

3l
− 1

5l
+ 1

6l
− 1

7l
+ · · · )

≈ N l
∏

prime r≤N

(1− 1
rl
) ≈ N l

∏
prime r

(1− 1
rl
).
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When l = 2,
∏

prime r

(1− 1
rl
) ≈ 0.6181. When l = 8,

∏
prime r

(1− 1
rl
) ≈ 0.9959.

Corollary. For a random matrix with integral entries independently and uni-
formly chosen in a large interval [1, N ], the probability that its two entries in
each row are coprime is about 0.61812 ≈ 0.3821.
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Abstract. At ACNS 2011, Wu and Zhang proposed a new lightweight block
cipher which is named LBlock. The design rationale of LBlock considers the
trade-offs between security against cryptanalyses and performance in
low-resource implementations. In this paper, we present new attacks on reduced-
round LBlock using related-key differential cryptanalysis. Firstly, we construct a
new related-key boomerang distinguishing attack on 16-round LBlock.
Secondly, we construct a key recovery attack on 22-round LBlock based on a
16-round related-key truncated differential. In contrast to the published crypt-
analysis results of reduced-round LBlock, our attacks have advantages on data
and computational complexities.
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1 Introduction

Due to a growing requirement of ciphers suited for constrained environment, the de-
sign and analysis of lightweight block cipher have received a lot of attention. Many
lightweight block ciphers have been proposed such as PRESENT [4], KLEIN [6], LED
[7], LBlock [14], Piccolo [11] and KATAN & KTANTAN [5].

LBlock is a lightweight block cipher with the Feistel structure, which is proposed by
Wu and Zhang at ACNS 2011 [14,15]. The components of LBlock represent the trade-
off between fast diffusion and performance in resource-constrained environment. For
the differential analysis, The authors of LBlock proved that the probability of 15-round
characteristic can be lower than 2−64 [14]. For the impossible differential analysis, a
14-round impossible differential is used to mount a key recovery attack on 20-round
LBlock [14]. For the integral attack, a 15-round integral distinguisher is used to mount
a key recovery attack on 20-round LBlock [14]. Although Shibutani et al.’s paper men-
tioned they can break 22-round LBlock using integral analysis [12], the details of the
attack has not been publicly verifiable yet. Thus the complexities of Shibutani et al.’s
attack are described as “?” in Table 1. Recently, a key recovery attack on 22-round
LBlock is presented in [9], which takes advantage of a 14-round related-key impossible
differential. Table 1 includes the existing attacks of LBlock.
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In this paper, we present new related-key differential attacks on reduced-round LBlock.
We first propose a 16-round related-key boomerang distinguishing attack, which has a
successful probability of 2−60. The distinguisher exploits two 8-round related-key char-
acteristics. Then we present a key recovery attack on 22-round LBlock, which uses a
16-round related-key truncated differential. The time and data complexities of our key
recovery attack are 267 and 264.1 respectively, which are better than the previous attacks
on 22-round LBlock.

Table 1. Summary of the existing attacks on LBlock

Rounds Time Data Type Reference
13 253 - related-key differential distinguisher [14]
16 260 - related-key boomerang distinguisher this paper
20 263.7 263.7 integral key recovery [14]
22 ? ? integral attack [12]
22 270 268 related-key impossible key recovery [9]
22 267 264.1 related-key differential key recovery this paper

2 Preliminary

In this section, we first list some notions and notation which will be used in the follow-
ing analysis. Next, a brief description of LBlock is presented. Finally, the method of the
related-key boomerang attack is recalled in short.

2.1 Notations

1. Vi is a 64-bit word, which denotes the input of round i. Moreover, Vi,l and Vi,r are
32-bit words, where Vi = Vi,l‖Vi,r.

2. K denotes the 80-bit master key and subkeyi is 32-bit subkey of round i. Further-
more, subkey j

i is the j-th nibble of subkeyi and subkey j,k
i is the k-th bit of subkey j

i .
3. For 0 ≤ i ≤ 9, si denotes a 4-bit input-output S-box, and s−1

i is its inverse.
4. Δx denotes the difference between two values of x. X denotes an active nibble with

an uncertain difference.
5. ≪ 8 denotes an 8-bit cyclic left rotation, ⊕ denotes the bitwise exclusive-or (XOR)

operation, and ‖ is the concatenation of two binary strings.

2.2 A Brief Description of LBlock

The first introduction of the LBlock proposal was described by Wu and Zhang at ACNS
2011 [14]. In [15], some literal flaws of the initial proposal were fixed. Here we briefly
recall the illustration of LBlock. The i-th round of the LBlock is shown in the left of
Fig. 1, and the F function is shown in the right of Fig. 1. The block length of LBlock
is 64-bit, and the key length is 80-bit. Where Vi = Vi,l‖Vi,r is the input of round i. The
round function F first computes Vi,l⊕ subkeyi, then applies eight different 4-bit S-boxes.
The round function F finally applies a permutation P, which exchanges the places of
the eight nibbles.
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isubkey

liV, riV,

liV ,1+ riV ,1+

⊕
isubkey

0s1s2s3s4s5s6s7s

F liV,

Fig. 1. Left of the figure is the i-th round of LBlock and right of the figure is the F function

The key schedule stores an 80-bit master key K in key register, which is denoted by
K = k79k78k77k76 · · · · · · k1k0. It repeats the following operations for i = 1 to 32:

1. Output the leftmost 32 bits of current register K as subkeyi.
2. K ≪ 29
3. [k79k78k77k76] = s9[k79k78k77k76], [k75k74k73k72] = s8[k75k74k73k72]
4. [k50k49k48k47k46] = [k50k49k48k47k46] ⊕ [i]2

where s8 and s9 are two 4-bits S-boxes and [i]2 is a binary counter.

2.3 The Related-Key Boomerang Attack

The related-key attack was first introduced by Biham in [1]. The attack allows adversary
to encrypt plaintexts and decrypt ciphertexts under multiple secret keys, but the relation
between the secret keys is known to (or even chosen by) the adversary. The boomerang
attack was introduced by Wagner in [13]. By extending the boomerang attack in the

P

Q
'P

'Q

'D
'CC

D

in
αΔ in

αΔ

key
αΔ key

αΔ

out
αΔ out

αΔ

in
βΔ

in
βΔ

key
βΔ

key
βΔ

out
βΔ

out
βΔ

Eα

Eα

Eβ

Eβ

Eα

Eα

Eα

Eα

Eβ

Eβ

Eβ

Eβ

Fig. 2. A schematic of related-key boomerang attack
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related-key model [2], Biham et al. proposed the related-key boomerang attack. As
shown in Fig. 2, the related-key boomerang attack views a cipher E as a decomposition
into two sub-ciphers, such that E = Eα ◦ Eβ. In each of two sub-ciphers, there exists
a high probability related-key differential for constructing a boomerang attack. Based
on the boomerang technique, algorithms can be built to distinguishing a “weak” block
cipher from an ideal cipher. The examples of boomerang distinguishing attacks can be
found in [3,8].

If the probability of the Eα differential (Δin
α , Δ

out
α , Δ

key
α ) is p and the probability of the

Eβ differential (Δin
β , Δ

out
β , Δ

key
β ) is q, it was proven that the probability of the correspond-

ing related-key boomerang attack is close to (p · q)2.

3 Related-Key Boomerang Attack on 16-Round LBlock

In [9], Minier and Naya-Plasencia found that ones are able to construct subkey differ-
ences with a very low general weight. Thus, here we consider a related-key boomerang
distinguisher, which exploits the weakness of key scheduling.

Let E denote the 16 rounds of LBlock and Eα denote the first eight rounds (1 to 8)
of E. Eβ is viewed as the sub-cipher of the following 8 rounds (9 to 16). In this section,
we first introduce the subkey differences that are used in our boomerang attack. Then
we present an 8-round related-key characteristic of Eα and Eβ, separately. Finally, we
propose the related-key boomerang distinguishing attack on 16-round LBlock.

3.1 The Subkey Differences

The following differencesΔkey
α and Δkey

β are selected for constructing the 8-round related-
key differential of Eα and Eβ, respectively.

Δ
key
α = 0x00000200000000000000, Δkey

β = 0x0000c000000000000000

According to the key schedule of LBlock, the subkey differences of Eα, which can be
obtained from Δkey

α , have probability 1. The subkey differences of Eα are given in the
left of Table 2. According to the key schedule of LBlock, the equation s9(0x3) = 0x8
in subkey7 is satisfied with a probability of 2−2. Thus, the subkey differences of Eβ,
which are obtained from Δkey

β , have a probability of 2−2. The subkey differences of Eβ
are given in the right of Table 2.

Table 2. The subkey differentials for the related-key boomerang distinguishing attack

Δ
key
α :00000200000000000000 Δ

key
β :0000c000000000000000

Δsubkey1 : 0 0 0 0 0 2 0 0 Δsubkey1 : 0 0 0 0 c 0 0 0 Δsubkey9 : 0 0 0 0 0 2 0 0
Δsubkey2 : 0 0 0 0 0 0 0 0 Δsubkey2 : 0 0 0 0 0 0 0 0 Δsubkey10 : 0 0 0 0 0 0 0 0
Δsubkey3 : 0 0 0 0 0 0 0 0 Δsubkey3 : 0 0 0 0 0 0 0 0 Δsubkey11 : 0 0 0 0 0 0 0 0
Δsubkey4 : 0 0 0 1 0 0 0 0 Δsubkey4 : 0 0 6 0 0 0 0 0 Δsubkey12 : 0 0 0 1 0 0 0 0
Δsubkey5 : 0 0 0 0 0 0 0 0 Δsubkey5 : 0 0 0 0 0 0 0 0 Δsubkey13 : 0 0 0 0 0 0 0 0
Δsubkey6 : 0 0 0 0 0 0 0 0 Δsubkey6 : 0 0 0 0 0 0 0 1 Δsubkey14 : 0 0 0 0 0 0 0 0
Δsubkey7 : 0 0 8 0 0 0 0 0 Δsubkey7 : 8 0 0 0 0 0 0 0 Δsubkey15 : 0 0 8 0 0 0 0 0
Δsubkey8 : 0 0 0 0 0 0 0 0 Δsubkey8 : 0 0 0 0 0 0 0 0 Δsubkey16 : 0 0 0 0 0 0 0 0
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Fig. 3. An 8-round related-key characteristic of Eα. The 8-round related-key characteristic of
Eβ is the same as Eα. In other words, the difference Δsubkeyi of Eβ is equal to the difference
Δsubkeyi−8 of Eα and the difference of round i of Eβ is equal to the difference of round i-8 of Eα,
for 9 ≤ i ≤ 16.

3.2 The 16-Round Related-Key Boomerang Distinguisher

The 8-round related-key characteristic of Eα shown in Fig. 3 works for the subkey
differences of Δkey

α . It contains seven active S-boxes, and the probability of the seven
active S-boxes are equal to 2−2. Therefore the 8-round related-key characteristic of Eα
has probability 2−14.

We choose Δkey
β to ensure the Δsubkeyi of Δkey

β equals the Δsubkeyi−8 of Δkey
α , for 9 ≤

i ≤ 16. Thus, we can reuse the 8-round related-key characteristic of Eα as the related-
key characteristic of Eβ. As a result, we obtain an 8-round related-key characteristic of
Eβ, which has a probability of 2−16.

Based on the related-key differential of Eα and Eβ, the corresponding differences in
Fig. 2 are derived as follows.

Δin
α = 0x0000000000000020 Δout

α = 0x8000150800000490
Δin
β = 0x0000000000000020 Δout

β = 0x8000150800000490
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The related-key differential of Eα (Δin
α , Δ

out
α , Δ

key
α ) has a probability of 2−14, and the one

of Eβ (Δin
β , Δ

out
β , Δ

key
β ) has a probability of 2−16. Thus, the related-key boomerang distin-

guisher of 16-round LBlock succeeds with a probability of (2−14 × 2−16)2 = 2−60. As a
result, the boomerang distinguisher works as follows.

1. Chooses a random message P and calculates Q = P ⊕ Δin
α .

2. Encrypts P and Q, obtain C = Ek(P) and D = Ek⊕Δkey
α

(Q).
3. Selects C

′
= C ⊕ Δout

β and D
′
= D ⊕ Δout

β .
4. Decrypts C

′
and D

′
, obtains P

′
= E−1

k⊕Δkey
β

(C
′
) and Q

′
= E−1

k⊕Δkey
α ⊕Δkey

β

(D
′
).

5. Checks if P
′ ⊕ Q

′
= Δin

α .

For ideal ciphers with 64-bit block size, the probability of the final equation P
′⊕Q

′
= Δin

α

must be 2−64. On the other hand, the final equation is expected to hold with a probability
of (2−14×2−16)2 = 2−60 in the related-key boomerang distinguisher, which is apparently
lower than exhaustive search. Therefore, an adversary can distinguish 16-round LBlock
and an ideal cipher by executing the above boomerang attack.

4 Related-Key Differential Attack on 22-Round LBlock

In [9], a related-key impossible attack, which exploits the weakness of the key sched-
ule, was presented on reduced-round LBlock. Since the key schedule of LBlock does
not provide a fast diffusion [9], it is possible to construct a 16-round related-key trun-
cated differential. In this section, a new key-recovery attack on 22-round is proposed by
exploiting a 16-round related-key truncated differential.

4.1 The Subkey Differences

The difference ΔK = 0x00000010000000000000 is selected for constructing the 16-
round related-key truncated differential, which will be described in the next subsection.
According to the key schedule, we obtain a subkey differences in the first 22 round
from ΔK, which is shown in Table 3. Since the equation s8(0x2) = 0x2 in subkey10 is
satisfied with probability 2−2, the subkey differences has probability 2−2 as well.

Table 3. The subkey differences in the first 22 round of LBlock

ΔK : 00000010000000000000
Δsubkey1 : 0 0 0 0 0 0 1 0 Δsubkey8 : 0 0 0 0 0 0 0 0 Δsubkey15 : 0 0 0 0 0 4 0 0
Δsubkey2 : 0 0 0 0 0 0 0 0 Δsubkey9 : 0 0 0 0 0 0 0 0 Δsubkey16 : 0 0 0 0 0 0 0 0
Δsubkey3 : 0 0 0 0 0 0 0 0 Δsubkey10 : 0 2 0 0 0 0 0 0 Δsubkey17 : 0 0 0 0 0 0 0 0
Δsubkey4 : 0 0 0 0 0 8 0 0 Δsubkey11 : 0 0 0 0 0 0 0 0 Δsubkey18 : 0 0 0 2 0 0 0 0
Δsubkey5 : 0 0 0 0 0 0 0 0 Δsubkey12 : 0 0 0 0 0 0 0 8 Δsubkey19 : 0 0 0 0 0 0 0 0
Δsubkey6 : 0 0 0 0 0 0 0 0 Δsubkey13 : 0 0 0 0 0 0 0 0 Δsubkey20 : 0 0 0 0 0 0 0 0
Δsubkey7 : 0 0 0 4 0 0 0 0 Δsubkey14 : 0 0 0 0 0 0 0 0 Δsubkey21 : 0 X 0 0 0 0 0 0

Δsubkey22 : 0 0 0 0 0 0 0 0
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4.2 The 16-Round Related-Key Truncated Differential

The detail of the 16-round related-key truncated differential is depicted in Fig. 4, which
is used for our 22-round key recovery attack. In Fig. 4, numeral represents a nibble with
this specific difference. Such as, a numeral 1 in the subkey1 denotes that this nibble has
difference 1. Zero-difference nibbles are represented by 0. The active nibbles (X, X,̂4)
represent three different conditions on their differences, which are described as follows.

– One active nibble X xor the other active nibble X produces difference 0 with prob-
ability 1/15 ≈ 2−3.9. We call it vanished condition.

– One active nibble X xor the other active nibble X produces a non-zero difference
with probability 14/15 ≈ 2−0.1. We call it unvanished condition.

– A specific difference 4 marked by ̂4 in Fig. 4 is a input difference of S-box. The
equation s2(4) = 1 satisfies with probability 2−2. We call it S-box condition.

The 16-round related-key truncated differential in Fig. 4 has 14 vanished conditions, 1
S-box condition and 3 unvanished conditions. Based on the probabilities of the subkey
differences, the 16-round related-key truncated differential has a probability of about
((1/15)14 × 2−2 × (14/15)3 × 2−2) > 2−59.

4.3 The Key Recovery Attack for 22 Rounds

Combing our 16-round related-key truncated differential, we can mount a key recovery
attack for 22 rounds. Our key recovery attack is based on the following observation. In
the round function of LBlock, every 4-bit nibble in the underlying subkey only affects
itself. In key-recovery procedure, one can guess one nibble of subkey each time, and
then partially decrypts the corresponding nibble of ciphertext pairs. By checking the
difference of the decrypted nibble, we rule out some ciphertext pairs. Therefore, the
time complexity of the key recovery attack can be reduced.

Our key recovery attack is derived from the related-key truncated differential shown
in Fig. 5. The key-recovery differential requests one vanished and two unvanished con-
ditions. Thus a difference Δ1 = (000X0000, 00000000) from round 17 to round 22 veri-
fies the key-recovery differential with a probability of (1/15) × (14/15)2 ≈ 2−4.1. Since
the 16-round related-key truncated differential has a probability of 2−59. After the 22-th
round, the output difference is Δ2 = (V22,l,V22,r) = (XXXXXXX0, XX00XX0X) with a
probability 2−59×2−4.1 = 2−63.1. Therefore, there exist one pair of plaintexts verifies the
16-round related-key truncated differential and the key-recovery differential, when 263.1

pairs of plaintexts with difference Δ3 = (00000010, 00000004) are encrypted.
Without loss of generality, a pair satisfies the truncated difference Δ2 with a probabil-

ity of about (15/16)12 × (1/16)4 ≈ 2−17.1. Therefore, there exist about 246 pairs satisfy
the truncated difference Δ2 after 22 rounds, when 263.1 pairs of plaintexts with difference
Δ3 are encrypted. One pair of 22-round ciphertexts, which has a difference Δ2, satisfies
the key-recovery differential whit a probability of ((1/15)12 × (14/15)2 ≈ 2−47, when
decrypted from round 22 to round 17. If the subkeys are wrong, there exist one pair
of 22-round ciphertexts satisfies the key-recovery differential with a probability of 2−1,
when the 246 pairs of 22-round ciphertexts are decrypted from round 22 to round 17.
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Fig. 4. A 16-round truncated differential path for the key recovery attack. The active nibbles (X,
X,̂4) represent vanished, unvanished and S-box conditions on their differences, respectively.
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Fig. 5. A related-key differential from round 17 to round 22

Table 4. The relations among the subkey bits in the partial decryptions

The underline bits of subkeyi can be obtained from the underline bits of subkey22, where 17 ≤ i ≤ 21
subkey17 k15k14k13k12 k11k10k9k8 k7k6k5k4 k3k2k1k0 k79k78k77k76 k75k74k73k72 k71k70k69k68 k67k66k65k64

subkey18 k66k65k64k63 k62k61k60k59 k58k57k56k55 k54k53k52k51 k50k49k48k47 k46k45k44k43 k42k41k40k39 k38k37k36k35

subkey19 k37k36k35k34 k33k32k31k30 k29k28k27k26 k25k24k23k22 k21k20k19k18 k17k16k15k14 k13k12k11k10 k9k8k7k6

subkey20 k8k7k6k5 k4k3k2k1 k0k79k78k77 k76k75k74k73 k72k71k70k69 k68k67k66k65 k64k63k62k61 k60k59k58k57

subkey21 k59k58k57k56 k55k54k53k52 k51k50k49k48 k47k46k45k44 k43k42k41k40 k39k38k37k36 k35k34k33k32 k31k30k29k28

subkey22 k30k29k28k27 k26k25k24k23 k22k21k20k19 k18k17k16k15 k14k13k12k11 k10k9k8k7 k6k5k4k3 k2k1k0k79

The underline bits of subkeyi can be obtained from the underline bits of subkey21, where 17 ≤ i ≤ 20
subkey17 k15k14k13k12 k11k10k9k8 k7k6k5k4 k3k2k1k0 k79k78k77k76 k75k74k73k72 k71k70k69k68 k67k66k65k64

subkey18 k66k65k64k63 k62k61k60k59 k58k57k56k55 k54k53k52k51 k50k49k48k47 k46k45k44k43 k42k41k40k39 k38k37k36k35

subkey19 k37k36k35k34 k33k32k31k30 k29k28k27k26 k25k24k23k22 k21k20k19k18 k17k16k15k14 k13k12k11k10 k9k8k7k6

subkey20 k8k7k6k5 k4k3k2k1 k0k79k78k77 k76k75k74k73 k72k71k70k69 k68k67k66k65 k64k63k62k61 k60k59k58k57

subkey21 k59k58k57k56 k55k54k53k52 k51k50k49k48 k47k46k45k44 k43k42k41k40 k39k38k37k36 k35k34k33k32 k31k30k29k28

subkey22 k30k29k28k27 k26k25k24k23 k22k21k20k19 k18k17k16k15 k14k13k12k11 k10k9k8k7 k6k5k4k3 k2k1k0k79

The underline bits of subkeyi can be obtained from the underline bits of subkey20, where 17 ≤ i ≤ 19
Round 17 k15k14k13k12 k11k10k9k8 k7k6k5k4 k3k2k1k0 k79k78k77k76 k75k74k73k72 k71k70k69k68 k67k66k65k64

Round 18 k66k65k64k63 k62k61k60k59 k58k57k56k55 k54k53k52k51 k50k49k48k47 k46k45k44k43 k42k41k40k39 k38k37k36k35

Round 19 k37k36k35k34 k33k32k31k30 k29k28k27k26 k25k24k23k22 k21k20k19k18 k17k16k15k14 k13k12k11k10 k9k8k7k6

Round 20 k8k7k6k5 k4k3k2k1 k0k79k78k77 k76k75k74k73 k72k71k70k69 k68k67k66k65 k64k63k62k61 k60k59k58k57

Round 21 k59k58k57k56 k55k54k53k52 k51k50k49k48 k47k46k45k44 k43k42k41k40 k39k38k37k36 k35k34k33k32 k31k30k29k28

Round 22 k30k29k28k27 k26k25k24k23 k22k21k20k19 k18k17k16k15 k14k13k12k11 k10k9k8k7 k6k5k4k3 k2k1k0k79
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If the subkeys are guessed correctly, there exist one pair of 22-round ciphertexts
satisfies the key-recovery differential, when the 246 pairs of 22-round ciphertexts are
decrypted from round 22 to round 17.

In the procedure of our key recovery, the adversary can partially decrypt one nibble
each time. For better understanding, the relations among the subkey bits in the partial
decryptions are described in Table 4. The procedure of the attack is described as follows.

1. encrypt 263.1 pairs of plaintexts with a difference of Δ3.
2. For the 263.1 pairs of output, the adversary chooses the pairs that satisfy difference
Δ2. Without loss of generality, one pair satisfies Δ2 with a probability of (15/16)12×
(1/16)4 ≈ 2−17.1. Thus, there remain 246 pairs satisfy difference Δ2.

3. The partial decryption of round 22 involves subkey0
22, subkey2

22, subkey3
22, subkey4

22,
subkey5

22, subkey6
22, subkey7

22.
(a) For every guess of subkey0

22, the adversary partially decrypts the 2-th nibble
of V23,l of the 246 pairs of 22-round ciphertexts and verifies if the difference
of the decrypted nibbles equal to zero. Since this verification has one vanished
condition, there remain 246 × 2−3.9 = 242.1 pairs.

(b) In similar, the partial decryption of the 1,5,7-th nibble of V23,l require three
vanished condition. Consequently, there remain 242.1 × 2−3.9×3 = 230.4 pairs.

(c) For every guess of 12 bits (subkey2
22, subkey4

22, subkey5
22), the adversary par-

tially decrypts the 3,4,6-th nibbles of V23,l of the 230.4 pairs and verify whether
the differences of the decrypted nibbles not equal to zero. Since this verification
has one unvanished condition, there remain 230.4 × 2−0.1 = 230.3 pairs.

After the partial decryption of round 22, there remain about 230.3 pairs of 21-round
ciphertexts, which satisfy (ΔV22,l, ΔV22,r) =(XX00XX0X 000X00XX0).

4. The partial decryption of round 21 involves subkey0
21, subkey1

21, subkey2
21, subkey4

21,
subkey6

21. As shown in Table 4, the three subkey bits (subkey0,0
21 , subkey0,1

21 , subkey0,2
21 )

can be obtained from subkey7
22. Thus, the adversary needs to guess 17 bits in subkey21.

Similar to the decryption of round 22, the decryption of round 21 partially decrypt
the 0,3,6-th nibbles of V22,l. It requires three vanished condition. Then the adver-
sary partially decrypts other nibbles in the decryption of round 21. Since this step
has three vanished conditions and one unvanished condition, there remain about
230.3 × 2−11.8 = 218.5 pairs of 20-round outputs after this verification, which satisfy
(ΔV21,l, ΔV21,r)=(000X0XX0 00X0000X).

5. The partial decryption of round 20 involves subkey0
20, subkey3

20, subkey5
20. As shown

in Table 4, the two subkey bits (subkey5,3
20 , subkey5,2

20 ) can be obtained from subkey0,1
22 ,

subkey0,0
22 . Thus, the adversary needs to guess 10 bits in subkey20.

Similar to the decryption of round 22, the adversary partially decrypts the 2,4-
th nibble of V21,l. It requires two vanished condition, and then the decryption of
round 20 partially decrypts the 1-th nibble of V21,l. Since this step has two vanished
conditions, there remain 218.5 × (2−3.9)2 = 210.7 pairs of 19-round outputs after this
verification, which satisfy (ΔV20,l, ΔV20,r) = (00X0000X X0000000).

6. The partial decryption of round 19 involves subkey1
19 and subkey7

19. As shown in
Table 4, subkey1

19 can be obtained from (subkey3,2
22 , subkey3,1

22 , subkey3,0
22 , subkey2,3

22 )
and subkey7

19 can be obtained from (subkey2,1
21 , subkey2,0

21 , subkey1,3
21 , subkey1,2

21 ) di-
rectly. Thus, no subkey nibbles need to be guessed.
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After the partial decryption of round 19, the adversary verifies if the pairs of 18-
round outputs satisfy (ΔV19,l, ΔV19,r) = (X0000000, 0X000000). Since this step re-
quires one vanished conditions, there remain 210.7 × 2−3.9 = 26.8 pairs of 18-round
outputs after this verification.

7. The partial decryption of round 18 involves subkey4
18 and subkey6

18. As shown in
Table 4, subkey6,1

18 can be obtained from subkey0,3
20 and subkey6,0

18 can be obtained
from subkey0,2

20 directly. Thus, the adversary needs to guess 6 bits of subkey18.
Similar to the decryption of round 22, the decryption of round 18 partially decrypt
the 7-th nibble of V19,l. It requires one vanished condition and the decryption of
round 18 partially decrypt the 6-th nibble of V19,l. Since this step requires one van-
ished conditions, there remain 26.8×2−3.9 = 22.9 pairs of 17-round outputs after this
verification, which satisfy (ΔV18,l, ΔV18,r) = (0X000000, 000X0000).

8. the partial decryption of round 17 involves subkey4
17. As shown in Table 4, (subkey4,2

17 ,
subkey4,1

17 and subkey4,0
17 ) can be obtained from (subkey0,3

22 , subkey0,2
22 , subkey0,1

22 ). Thus,
the adversary needs to guess 1 bit of subkey17.
For every guess of the 1-bit subkey partially decrypt round 17 to verify if the pairs
of 16-round outputs satisfy Δ1 = (ΔV17,l, ΔV17,r) = (000X0000, 00000000). Since
this step has one vanished conditions, there exists one pair of 16-round outputs that
satisfies difference Δ1 with a probability of 22.9 × 2−3.9 = 2−1.

9. After the decryption of round 17, if there exists one pairs of 16-round outputs satisfy
Δ1, the adversary knows he has successfully recovered 62 subkey bits. The left 18
bits of the master key can be recovered by exhaustive searches.

Considering the equation of s8(0x2) = 0x2 in subkey10 has been satisfied, the adversary
just needs to guess 22 pairs of subkey4

18. According to the key schedule of LBlock, the
22 pairs of subkey4

18 are obtained from the equation of s8(0x2) = 0x2. In similar, the
adversary only needs to guess 23 pairs of subkey6

21.
The time complexity of the above partial decryption is about 267. Therefore, the 80-

bit master key can be recovered with the time complexity of about 267+264+218 ≈ 267.
Since 263.1 pairs of ciphertexts need to be stored during the attack, the data complexity
of our key recovery attack is about 264.1. Although the whole codebook is 264 for a
64-bit cipher, the related-key pairs allow the attacker access 2 ∗ 264 pairs of plaintext
and ciphertext. After the partial decryption of round 17, there exists one pair with a
probability of 2−1. Thus the success probability of our key recovery attack is 2−1.

5 Conclusions

In this paper, we have proposed new related-key differential attacks on the reduced-
round LBlock. First we constructed a boomerang distinguishing attack on 16-round
LBlock, which exploits the slow diffusion of the key schedule. Then we presented a
key recovery attack on 22-round LBlock by using the 16-round related-key truncated
differential. Compares to the known results, the time and data complexities of our key
recovery attack are both reduced. Although our attacks do not threaten the practical
security of LBlock, future work may seek to extend the existing attacks to more rounds
LBlock based on our related-key differentials.
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Low-Rate Denial-of-Service Attack�
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Abstract. Low-Rate Denial-of-Service (LRDoS) attack is an emerging
threat to Internet because it can evade detection and defense schemes for
flooding based attacks. LRDoS attack at application level is particularly
difficult to counteract as it mimics legitimate client. Although there are
several approaches proposed to mitigate LRDoS attacks, they are limited
to particular protocols, target systems, or attack patterns that they are
not able to detect this threat at application level. In this paper, we pro-
pose a nonparametric detection algorithm and a hybrid defense system to
mitigate LRDoS attacks at application level. Our extensive experiments
have confirmed the effectiveness of the detection and defense system.

1 Introduction

Denial-of-Service (DoS) attack is one of the most serious security concerns in
the Internet as they prevent legitimate users from using Internet services. DoS
attack is also known as flooding attack due to the fact that it sends out high
rate requests or packets to consume resources. However, high rate traffic is sta-
tistically abnormal to legitimate traffic that it is easy to be detected [1]. On the
contrary, Low-Rate Denial-of-Service (LRDoS) attack can evade detection and
defense methods designed for flooding-based attacks, therefore attracts more and
more interests in literature.

LRDoS attack is typically illustrated by ON/OFF traffic pattern because
it sends out intermittent pulses of malicious packets or requests to a target
[2–5]. It was originally designed to attack TCP mechanism [2,3,5] and later was
generalized to application level by exploiting vulnerability of feedback control
based Internet services [4].

In this paper, we focus on application level LRDoS attacks because they make
detection and defense more difficult than network level attacks do. The difficulty
lies in two major reasons. First, application level LRDoS attacks send requests
following the same characteristic of legitimate clients such that it is difficult to
distinguish attack requests from legitimate requests. Second, there is a variety of
LRDoS attacks that exploit application specific knowledge to launch an attack,
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which requires a general countermeasure approach without knowing particular
vulnerability the attack exploits. For example, approaches [2, 5–13] have been
proposed to detect and defend LRDoS attacks. However, they are limited either
to particular protocols and target victim or to specific attack patterns that
are not able to protect Internet services. [2, 5, 6, 12] rely on specific features of
TCP; [7,10] assume the attack is periodic; [11] is designed for the specific LRDoS
attack proposed in [14] that needs to estimate victim’s service time.

Motivated by these aspects, we provide a detection algorithm and a defense
system to mitigate LRDoS attacks at application level. Our detection algorithm
has two distinct features: (1) unlike most existing detection mechanisms, it can
detect both periodic and non-periodic LRDoS attacks; (2) it exploits the feature
directly affected by LRDoS attacks and uses nonparametric sequential test. To
do this, it adopts a nonparametric method to identify the anomalies in admission
rate resulted from LRDoS attacks. Admission rate is a parameter that determines
whether a request is accepted or not. It is widely used in Internet services for
the provision of guaranteed QoS. More importantly, it relies on no protocols or
applications which makes our algorithm general for detecting application layer
LRDoS attacks. Simulation and testbed results show our detection algorithm
can effectively discover LRDoS attacks in various attack scenarios. In the testbed
experiments, the attack can be found just after the arrival of the first pulse.

We propose a defense algorithm to quickly restore service immediately after
detecting an attack. Our defense algorithm is a combination of rate-based and
queue-length based method. It proactively drops requests according to a drop-
ping probability before requests reach the admission controller. By doing so, our
defense system overcomes slow reaction time of admission controller and also
helps the victim to achieve a utilization level close to the desired value. Our
experiments show the defense system can quickly restore system performance as
soon as an attack is detected.

The remainder of this paper is organized as follows. The next section reviews
related works. The nonparametric approach is presented in Section 3, followed
by an introduction for the defense system in Section 4. Section 5 details the
LRDoS attack simulation and testbed results. Section 6 concludes this paper.

2 Related Works

Since an LRDoS attack has ON/OFF traffic pattern, it can evade the detec-
tion schemes targeting at flooding-based DoS attacks and therefore motivates
the design of several new countermeasure approaches [2, 5–13]. However, these
approaches cannot mitigate LRDoS attacks at application level because of two
reasons. First, since all of these approaches aim at LRDoS attacks on TCP or par-
ticular systems (e.g., wireless network, P2P network, etc.), they rely on features
specific to TCP or those systems. For example, Luo et al. proposed a detection
scheme that exploits anomalies in incoming TCP data traffic and outgoing TCP
ACK traffic [5]. Shevtekar et al. regarded a TCP flow as malicious if its period
is equal to the fixed minimal retransmission timeout (RTO) and its burst length
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is no less than other connections’ RTTs [9]. Maciá-Fernández et al. [11] estab-
lished the defense goal as reducing service queue positions seized by the attacker
and discussed some possible defense techniques. To detect distributed LRDoS
attacks, Xiang et al. [13] used generalized entropy and information distance to
quantify the anomalies in packets. Their solution requires to control all routers
in the network.

Second, the majority of previous work focuses on the Shrew attack [2] that
has a fixed attack period equal to TCP’s minimal RTO. For example, spectral-
analysis approaches rely on the spectrum difference between Shrew attack flows
and normal flows [7,8,10]. Sun et al. suggested using autocorrelation and dynamic
time warping (DTW) to detect Shrew attacks, because its traffic bursts are the
same and have fixed period [6]. However, LRDoS attacks are not necessarily
periodic. Our detection method makes no assumption of periodic attacks that it
is more general than these approaches.

Although some mechanisms have been proposed to detect application level
DoS attacks, they could not effectively detect LRDoS attacks because their as-
sumptions and detection features are usually not applicable to LRDoS attacks.
For example, Ranjan et al. [15] assumed that inter-arrival time of requests de-
creases over time and requests also ask for specific resources that could overload
the server. LRDoS attacks dispatch requests following the ON/OFF pattern
and need not send specific requests that could lead to severer damage. Xie and
Yu proposed a hidden semi-Markov model to represent normal user’s browsing
behaviors [16]. Although their method may notice a high request rate when an
LRDoS attack sends request, it may miss the attack when the attacker dispatches
nothing because it has difficulty in distinguishing high request rate caused by
an LRDoS attack from a flash crowd. Moreover, such parametric method de-
pends on the accuracy of the model. Our detection scheme employs suitable
feature and nonparametric method to uncover LRDoS attacks, thus it avoids
the disadvantages of existing detection mechanisms.

3 Detecting LRDoS Attacks

We propose a new detection scheme to identify LRDoS attacks, which distin-
guishes itself from other detection mechanisms against LRDoS attacks in two
aspects. First, it aims at both periodic and non-periodic LRDoS attacks while
the majority of existing detection mechanisms focuses on periodic LRDoS at-
tacks. Second, for the sake of effectiveness and efficiency, it exploits the fea-
ture directly affected by LRDoS attacks and uses nonparametric sequential test.
More precisely, our scheme employs admission rate for the detection, because
an LRDoS attack intends to force the victim server to drop normal requests by
throttling its admission rate [17]. Admission rate can detect both periodic and
non-periodic LRDoS attacks because it does not rely on LRDoS attack’s fre-
quency character. Moreover, we adopt a nonparametric CUSUM algorithm [18]
and light-weight detection algorithm to avoid unrealistic assumptions on arrival
patterns of legitimate requests and to achieve online detection.
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As the CUSUM method assumes that the mean value of the variable changes
from negative to positive when a change occurs, we define the detection measure
as

Z(t) = d(t) −median(dn)− ν × IQR(dn), (1)

where d(t) = 1−α(t), α(t) is admission rate, dn is the training dataset obtained
in the absence of LRDoS, and ν is a parameter adjusted by the user. To avoid
noise in the training dataset, we adopt robust statistics [19] in the design of Z(t).
That is, we use median instead of mean and employ interquartile range (IQR)
defined as the difference between the third and the first quartiles [19] to replace
standard deviation.

Let T det be the detection time for Z(t) when

yz(t) > Ccusum = 0, (2)

where yz(t) is the CUSUM value of Z(t) and Ccusum is the threshold of CUMSUM
that is defined as the mean of sequence dn −median(dn). The detection system
reports the existence of an LRDoS attack when (2) holds.

To make it sequential, we update yz(k), k ∈ Z+ every time unit as

yz(k) =

{
yz(k−1) + Z(k) k ∈ Z+,
0 k = 0.

(3)

Let T att be the start time of an LRDoS attack, and the detection delay τdelay is

τdelay = T att − T det. (4)

The averaged detection delay (ADD) and false alarm rate (FAR) are denoted
as [20]

ADD(T det) = E(T det − T att), (5)

FAR(T det) =
1

E0T det
, (6)

where E(·) is the expectation function and E0 is the expectation of yz(k), k ∈ Z+,
before the attack. As our target of detection is a sequence of pulses, we define
averaged detection pulse (ADP) instead of ADD as the performance metric.
ADP is defined as number of pulses before the detection alarm is raised. For
example, suppose the attack sequence starts at t = 0 with τ = 1 second. If the
algorithm reports at t = 3.2 second that an attack is present, ADP = 3 as three
pulses are passed before the alarm.

4 Defending against LRDoS Attacks

In this section we present a defense scheme. As the attack traffic exhibits ON/OFF
pattern, we could drop packets adaptively according to the packet arrival rate.
This can be done through a virtual queue [21] whose virtual capacity is updated
by the change in the arrival rate. However, our defense mechanism not only needs
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to be sensitive to rate changes, but also needs to regulate the queue length to a
target value such that the Internet service has a high utilization rate.

A queue-length based algorithm can achieve the goal of regulating traffic.
For example, Queue Regulated Virtual Queue (QRVQ) scheme [22] updates the
virtual capacity according to the deviation of the queue length from its target
value. QRVQ is reported to be more robust under various traffic situations at
the cost of slow adaptation to changes of arrival rate.

Recognizing the complementary strengths of rate-based and queue-based al-
gorithms, we propose a hybrid algorithm for our defense system that maintains a
virtual target arrival rate, denoted by λv, and a virtual queue that has a capacity
of Cv requests per second. Cv and λv are updated according to{

Ċv(t) = K1(λv(t)− λ(t)),

λ̇v(t) = K2(q
∗ − q(t)),

(7)

where q(t) is the queue length, q∗ is the target queue length, K1 and K2 are
constants, and λ(t) is the arrival rate of the requests. Therefore, when q(t) > q∗,
λv is reduced. Consequently, Cv also decreases, which results in rejecting more
requests. The dropping probability is defined as

π(t) = (λ(t)− Cv(t))/λ(t). (8)

This new algorithm has two advantages. First, it updates Cv directly based
on traffic rates, which allows for a fast response to traffic changes. Second, by
maintaining a target queue length, the traffic rate is more predictable than rate-
based one.

Our defense scheme is summarized in Algorithm 1.

Algorithm 1. Hybrid Algorithm Framework

Input: capacity of defense system C,
arrival rate to the defense system λ,
virtual capacity Cv,
virtual queue λv.

Output: drop rate π
1: for each arrived request do
2: q(t) = q(t)− C ×Δt+ λ(t)Δt, update queue size;
3: π = (λ(t)−Cv)/λ(t), update drop rate;
4: update Cv and λv according to (7);
5: drop packet in real queue according to π;
6: end for

5 Evaluation

5.1 Target Victim

In this section we adopt a web server [4] as targeted victim whose model is
given in Figure 1. Details of the server please refer to [4]. In the presence of
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attack, the server evolves through three different stages before returning to the
steady state: saturation, recovery I, and recovery II. Figure 2(a) shows how the
admission rate and the system utilization behave during these three stages. We
have proven that according to various attack periods, the sequence of these stages
forms three general cases as shown in Figure 2(b). Details please refer to [23]. In
the following experiments, we will investigate the performance of our proposed
scheme in these three cases. It is worth noting that examining this web server is
just an example of our methodology that can be applied to investigate the effect
of detection and defense system on other Internet services.

Fig. 1. Structure of the web server used in this section
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Fig. 2. The effects of the attack on the admission rate. η1, η2 and η3 are time elapsed
between different stages, respectively.

5.2 Simulation Results

This subsection presents MATLAB simulation results to evaluate the perfor-
mance of detection algorithm and defense system. We use the parameters from
[4]: A = 0.00267, B = 0.2, C = 0.024, D = −1.4, � = 75, K = 0.01, μ = 90, and
ρ∗ = 0.7. Details of these parameters please refer to [4].

When evaluating the performance of the detection algorithm, we generated
three kinds of background traffic [24–26]: log-normal, pareto and poisson dis-
tributed traffic. The parameters of the distributions were set such that for each
of the distribution the mean arrival rate was 100 requests per second. We also
generated periodic and random attack sequences in the simulation. Due to paper
limit, we only present poisson distributed background traffic and periodic attack
as illustrations, the others can be found in the supplementary [27].
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Figure 3 shows the detection rate (DET), FAR and ADP for case 1, 2, and 3.
The background traffic was poisson distributed; ν varied from 0 to 2. We found
for all the three cases, our detection algorithm is effective as DET ≥ 0.996,
FAR ≤ 0.024 when ν = 1.8. In case 3, the detection rate decreases as ν increases.
This can be explained as follows. The period of case 3 is larger than the period
of case 1 and 2, as shown in [28] and Figure 2(b). Therefore the oscillation
of admission rate due to attack in case 3 has a low frequency than that in
case 1 and 2. This low oscillation results in a low detection rate as increased ν
means detection algorithm is tolerant to deviations. Also due to the fact that
increased ν means normal oscillations of admission rate are likely to be classified
as normal, FAR is a decreasing function of ν. In addition, we found there is a
tradeoff between FAR and ADP for all the three cases. This is because increased
ν reduces detection measure Z(t), which in turn makes it longer to accumulate
the deviation of attacked admission rate to normal value before the deviation
exceeds the threshold. Among three cases, case 3 has the highest ADP in general.
This results from the the fact that it has the largest attack periods that yields
an oscillation with low frequency.
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(b) The detection perfor-
mance of case 2.
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(c) The detection perfor-
mance of case 3.

Fig. 3. The detection rate, false alarm rate, and averaged detection pulse of CUSUM
detection algorithm. The background normal traffic is poisson distributed.
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Fig. 4. Defense scheme comparison for periodic attacks

To evaluate the performance of our defense system, we compared it with
AVQ [21] and QRVQ [22] by considering the average queue length and ratio of
dropped normal requests to total normal requests. In our simulation, q∗ = 100
requests, K1 = 0.8, K2 = 0.5, and the attack pulses are periodic. We also
conducted random attacks, whose results can be found in the supplementary [27].
Figure 4 presents the results, which shows our hybrid approach achieves a good
performance. Figure 4(a) illustrates the averaged queue length versus λa/λn,
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where λa and λn are arrival rate of attack and normal requests, respectively. It
can be seen that the queue length regulation achieved by AVQ is low because it
is a pure rate based scheme. On the other hand, our hybrid scheme and QRVQ
both regulate the queue length very closely to the predefined target value. The
averaged queue length of our hybrid scheme is similar to that of QRVQ, however,
they differ in the ratio of dropped normal requests to total normal requests, as
shown in Figure 4(b). Figure 4(b) demonstrates that the hybrid scheme drops
less normal requests than QRVQ. This is because the hybrid approach responds
quickly to arrival rate changes, thus can accept more requests.

5.3 Testbed Results

A testbed was set up to emulate the attack scenarios and to evaluate the de-
tection and defense algorithms. Figure 5 shows the diagram of the testbed. The
target was a web server running Minihttpd 1.9 [29], which was equipped with a
proportional-integral (PI) controller to perform admission control. A legitimate
client generated HTTP requests continuously using Httperf [30] with an arrival
rate of 100 requests per second. There were also seven attack zombies, each of
which generated attack traffic at a rate of 100 requests per second. These zombies
were synchronized by the network time protocol.

Legitimate
User

Victim
Web server

Router1 Router2 Router3

Detection and 
Defense system

Zombie3

Zombie2

Zombie4 Zombie5 Zombie6

Zombie7

Zombie1

Fig. 5. The testbed topology

To evaluate the effectiveness of our detection method, we used it for the traces
collected from the testbed. We wanted to know whether the algorithm we eval-
uated in simulation can still work in real situations. More importantly, whether
the impact of ν is the same for DET, FAR and ADP in actual environment.
Thus we let the detection parameters be the same as the ones used for simula-
tion. We conducted 16 experiments, each one contained an attack period varied
from 29.3 seconds to 249 seconds, covered all the three cases. We repeated each
experiment 4 times and obtained the mean of each performance metric. The re-
sults are shown in Table 1. We found the impact of ν is the same as the simulation
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Table 1. Detection performance on testbed

case 1 case 2 case 3

DET FAR ADP DET FAR ADP DET FAR ADP

ν = 0 1 0.14 1 1 0.33 1 1 0.25 1
ν = 1 1 0.14 1 1 0.12 1 1 0 1
ν = 2 1 0.09 1 1 0 1 1 0 1

results. That is, detection rate is 1 for all ν; increased ν causes small FAR. ADP
equals 1 for all the three cases. These results show that the proposed CUSUM
detection scheme can effectively discover LRDoS attacks.

The performance of the defense system was also assessed. Figures 6 illustrates
how the defense system can mitigate the effects of an attack. It shows the arrival
rates at the defense system and the resulting arrival rates at the server. The
peaks in the request arrival rate caused by LRDoS attacks are clearly smoothed
out by the defense system.

1.45 1.5 1.55 1.6 1.65 1.7 1.75 1.8
time

λ coming into defense system

λ passing through defense system

Fig. 6. Testbed results for the performance of the defense system

6 Conclusions

LRDoS attacks at application level exploit vulnerability of Internet services and
are hard to counteract because of their low averaged rate and sending legitimate
requests. Despite the fact that some approaches have been presented to mitigate
LRDoS attacks, they are limited to certain protocols, system or attack patterns.
Therefore, it is important to address the security issues and threats to these
Internet services.

In this paper we restrict our attention to the countermeasures on LRDoS
attacks at the application level. We have designed a nonparametric sequential
test and an adaptive queue management algorithm to quickly restore system
performance. Extensive simulation and testbed experiments have been carried
out to validate the results.
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Abstract. In this paper, we present a mechanism that utilizes network traffic 
behavior and packet filtering statistics to improve firewall performance. The 
proposed mechanism allows optimizing the filtering rules order and their  
corresponding fields order upon certain threshold qualification following the 
divergence of the traffic behavior. The current and previous traffic windows 
statistics are used to check the system stability using Chi-Square Test. The 
achieved gain in processing time compared to related mechanisms is due to 
minimizing the overhead corresponding to the frequency of updating the securi-
ty policy rule/field structures. 

Keywords: Packet Classification, Rule Order, Rule-fields Order, System Sta-
bility, Chi-square Test. 

1 Introduction 

In this paper, we propose a mechanism to optimize firewall early acceptance path as 
well as early rejection path. Based on traffic statistics, a decision is made regarding 
whether or not there is a need to reorder the rules and/or rule-fields orders. The pro-
posed mechanism is based on the following three optimization levels: 1) Filtering 
rules are reordered in a descending manner according to their packet matching histo-
grams. This will yield to faster packet filtering time for the next similar traffic (opti-
mization in the acceptance path). 2) Rule-fields are reordered in a descending manner 
according to their packet not matching histograms. This will reduce the time needed 
for tuple comparison (optimization in the rejection path). 3) The firewall will continue 
filtering packets using certain rule and rule-fields orders under a certain threshold 
qualification (the system stability decision). This will reduce the time needed for the 
reordering process and updating the firewall security policy structure. The three opti-
mization levels will minimize the total packet filtering time and therefore the firewall 
performance will be improved significantly. 

The paper is organized as follows: Section 2 discusses the related work. Section 3 
presents the mathematical model of the proposed mechanism. Section 4 evaluates the 
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firewall performance against the proposed mechanism. Finally, Section 5 concludes 
the paper. 

2 Related Work 

The most early research works on firewall focus on the improvement of packet 
searching times using various mechanisms including hardware-based solutions [6, 7], 
specialized data structures [8, 9, 5, 10, 11, 12], and heuristics [5].  Research works in 
[17, 23, 4, 13 and 14] focus on the statistical filtering schemes to improve the average 
packet filtering time. The structure of searching by taking into account the packet 
flow dynamics is introduced in [3, 14, 15, 16].  

The idea of firewall optimization through early packet rejection was introduced in 
[1, 2, 23, 21and 18]. In [1] early packet rejection is done through rule- fields ordering. 
In [2] early packet rejection is done through multilevel filtering process including 
field and intersection filtering modules. In [23] a new approach named FVSC is pro-
posed to optimize the rejection path. PBER technique in [18] is considered as a gener-
alization of FVSC [23] it finds short cuts for both accepted and rejected packets. In 
[21] a binary search on prefix length algorithm is applied to every policy filtering 
field along with the property of splaying the search tree nodes while maintaining the 
min-node at high level for early packet rejection.  

The most relative to this paper is research work dealing with rules reordering 
which falls into two categories: Rules reordering including dependency as in[16, 23,] 
these research work give an approximation of the optimal rules order. Disjoint Rules 
reordering as in [24, 25]. Up to our knowledge all research work done in the field of 
firewall optimization through rule reordering, emphasis on the importance of rule 
field reordering in early packet rejection. In [1] we were the first to propose the idea 
of rule-field reordering and focus on its major effect in reducing the overall packet 
processing time.  

3 Proposed Work 

In this paper, we use the Firewall Decision Tree Tool (FDT) described in [26]. FDT 
tool releases the dependency relation between rules. As a result, the filtering rules can 
be reordered according to their matching frequencies. 

The mathematical model in this paper is based on rule and rule-fields histograms 
proposed in [1]. A mechanism named Dynamic Rule and Rule-Fields Ordering (DR-
RFO) is proposed in [1]. In which the reordering process is carried out at the end of 
each network traffic window. Thus, in this paper we propose a mechanism named 
Dynamic Rule and Rule-Fields Ordering with Decision Test (DR-RFOD) to organize 
the reordering process according to the system stability test.  

Since the proposed work in this paper uses the rule and rule-fields histograms, we 
will describe them in more details in the following section. Then we will discuss the 
decision regarding the rule/rule-fields reordering processes. 
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3.1 Mathematical Model 

Histogram of Rule Matching Probability and Field not Matching Probability 
Considering that packet matching test in firewall is based on a security policy with N 
rules, excluding the default “Deny” rule. Each rule consists of a maximum number  
of M fields, excluding the action field. A N×M matrix vector F(i,j) represents the 
security policy, that is: 
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Where iϵ{1,2,…,N} and j ϵ{1,2,…,Mi} are the indices for rule and field respectively.  
Let aw,s(i,j)l and bw,s(i,j)l represent the status of the lth packet matching and not 

matching an active field F(i,j) in rule R(i), respectively. Where w (w ϵ{1,2,…,W}), s 
(s ϵ{1,2,…,S}) and l(l ϵ{1,2,…,L}) are the window, segment and packet indices, re-
spectively. During the process, when the lth packet matches the field F(i,j) in the rule 
R(i), the state value of aw,s(i,j)l is incremented by “1”,  while bw,s(i,j)l remains no 
change. That is: 

  

(2)

 

By contrast, when the lth packet does not match the field F(i,j)in the rule R(i), the state 
of bw,s(i,j)l is incremented by “1”,  while aw,s(i,j)l remains no change. That is: 

  

(3) 

Note that if the lth packet is not tested for the field F(i,j) in the rule R(i), the state value 
of aw,s(i,j)l and bw,s(i,j)l remain no change. That is: 
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Let Cw,s(i)=aw,s(i,Mi) and Dw,s(i,j)=bw,s(i,j) present the number of packets in the sth 

segment matching rule R(i)|i=1,2,…,N and not matching field F(i,j)|j=1,2,…,Mi contained in 
R(i) on segment basis, respectively. 

Therefore, the probability of packet matching rule R(i) on segment basis can be de-
fined as: 
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Likewise, the probability of packet not matching field F(i,j)|j=1,2,…,Mi in the rule R(i) on 
segment basis can be defined as: 
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More explanation can be found in [1]. 
At the end of each window there will be an average probability for each rule and 

field which give us a further indication of the importance of that rule or field, that is: 
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Where ( )wr iRP )(  and ( )
wiRr jiFP )(),( are the average probabilities for R(i) and F(i,j) 

in R(i) in the wth window, respectively. 

Reordering Decision 

A-Statistical rules reordering decision 
Assume that the firewall consists of N filtering Rules with certain order in the previous 
window (w-1)th. We want to know if this order will be changed or not in the wth win-
dow. First let us introduce some notations to be used in Table 1. 

Table 1. Previous and current situations for policy filtering Rules 

State(k) R1 R2  … RN Total 

Previous(w-1) n(w-1), 1 
E(w-1),1 

n(w-1),2 

E(w-1),2 
 n(w-1),N 

E(w-1),N 
T(w-1) 

Current(w) nw,1 
Ew,1 

nw,2 

Ew,2 
 nw,N 

Ew,N 
Tw 

Total  C1 C2  CN T 

 
Let n(w-1),i and nw,i (observed values) are the number of matched packets by Rule 

R(i) in the (w-1)th and wth windows, respectively. To know if there is a significant 
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difference between the observed and expected values we use the Chi-square test to 
test the equality of two multinomial distributions. That is: 
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where Ek,i is the expected number of packets to be matched by R(i) in the current or 
previous window. That is: 
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If p_value ( ))((2 NRulesχ ,dF)<α → The system is not stable and there is a need to 
reorder the security policy rules according to histograms of packet matching R(i) on 
window basis in descending order. The new rule distribution will be computed using 
the following equation, where )_(1 valueP−=δ : 

 1))(()1())(( ))(( −−+= wrwrwr iRPiRPiRP δδ  (11) 

Otherwise, if p_value ( ))((2 NRulesχ ,dF)>α → The system is stable, no need to 

reorder the rules. The same previous rule order will be used for the next window and 
the rules histograms will be renewed using the above equation. 

The probability of the current window is given more weight. By doing this the be-
havior of the traffic in the previous window will not be ignored and will have relative-
ly less effect than the traffic behavior in the current window. As a result the new 
computed average probabilities would allow producing a better optimized rules order-
ing for the next window traffic. This procedure will be followed for each rule fields. 

B) Statistical policy rule-fields reordering decision 
Here, we discuss whether to decide to reorder the policy rules fields or not using the 
number of packets non-matching field F(i,j) in rule R(i) Where i ϵ{1,2,…,N}, j ϵ{1,2,…,Mi} . So the same concept of chi-square used in the previous section will be 
applied for fields of each rule in the security policy as shown in table 2. That is: 
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Where jkm , (observed) is the number of non-matched packets by F(i,j) in  R(i), k 

refers to the current or previous situation. Ek,j is the expected number of packets non 
matching F(i,j) in  R(i) in the current or previous window. That is: 
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Table 2. Previous and current situations for policy filtering Fields for Rule Ri 

State(k) Fi,1 Fi,2 … Fi,Mi Total 
Previous(w-1) m(w-1), 1 

E(w-1),1 
m(w-1),2 

E(w-1),2 
 m(w-1),Mi 

E(w-1),Mi 
T(w-1) 

Current(w) mw,1 
Ew,1 

mw,2 

Ew,2 
 mw,Mi 

Ew,Mi 
Tw 

Total  C1 C2  CMi T 

 

If p_value ( )(
2 )),(( iRjiFχ ,dF)<α → There is a need to reorder the fields in  R(i) 

according to histograms of packet non matching F(i,j) in R(i) on window basis in 
descending order. The new F(i,j) distribution in R(i) will be computed using the fol-
lowing equation, where )_(1 valueP−=δ . 

 ( ) ( ) ( )
1)()()( ),()1(),( ),( −−+=

wiRrwiRrwiRr jiFPjiFPjiFP δδ  (14) 

Otherwise, if p_value ( )i(R))j,i(F(χ 2 ,dF)>α → no need to reorder the fields in R(i). 

Rules and rule-fields reordering processes are independent of each other. Depending on

))((2 NRulesχ  and )(
2 )),(( iRjiFχ tests,  the system may change the rules order 

without changing the fields order and vice versa or changing only some rule fields order. 
The following algorithms show the main operation of the statistical module. In Al-

gorithm 1 the buildup of the candidate rule list that are independent and equivalent  
to the original security policy using FDT tool takes place as well as getting the  
initial rule and rule-field probabilities to start with after training the system S0 seg-
ments. Algorithm 2 is responsible for packet filtering process using function tu-
ple_comparasion(l). Then it computes rule and rule-fields statistics (Lines 12-13)  
 

Algorithm 1. Startup Phase 

1:   <SP>← FDT(Policy Rules) 
2:s0←1 
3:l0←1 
4:repeat 
5: inisialize(a0,b0) 
6: whilel0<=L0 do 
7:  ls0←get_pak(fs0) 
8:  tuple_comparasion(lws) 
9:  l0←l0+1 
10: end while 
11: no_mat_Rs←last_Field(a) 
12: no_nonmat_Frs←r_Field(b) 
13: pRs ←prob_Rules(no_mat_Rs) 
14: pFieldrs ←prob_Field(no_nonmat_Frs)  
15: s0← s0 +1 
16:   untils0=S0 

17:   avgpR0 ←avg(sum(pRs0)s0=1:S0) 
18:   avgpFieldr0 ←avg(sum(pFieldrs0)s0=1:S0) 
19:   previous_R0 ←sum(no_mat_Rs0)s0=1:S0 

20:   previous_RFieldr0 ←sum(no_nonmat_Frs0) s0=1:S0 

21:   previous_avgpR0← avgpR0 

22:   previous_avgpFieldr0 ← avgpFieldr0 
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Algorithm 2. System Stability  

1:w← 1 
2:s←1 
3:repeat 
4: l←1 
5: repeat 
6:  inisialize(a,b) 
7:  whilel<=Ldo 
8:   lws←get_pak(fws) 
9:   tuple_comparasion(lws) 
10:   l←l+1 
11:  end while 
12:  no_mat_Rs←last_Field(a) 
13:  no_nonmat_Frs←r_Field(b) 
14:  pRs ←prob_Rules(no_mat_Rs) 
15:  pFieldrs ←prob_Field(no_nonmat_Frs)  
16:  s← s +1 
17: untils=S 
18: avgpR ←avg(sum(pRs)s=1:S ) 
19: avgpFieldr ←avg(sum(pFieldrs)s=1:S ) 
20: //*current state*// 
21: current_R ←sum(no_mat_Rs)s=1:S 

22: current_RFieldr ←sum(no_nonmat_Frs) s=1:S 

23: current_avgpR← avgpR 
24: current_avgpFieldr ← avgpFieldr 
25://*Rule-Fields stability test*// 
26: foreachr ϵ R 
27:  p_valuer←chi_square(previous_RFieldr  , 

current_RFieldr) 
28:  δr ←1- p_valuer 

29:  current_avgpFieldr←(1- δr)* 
current_avgpFieldr + δr * 

previous_avgpFieldr 
30:  ifp_valuer<α 
31:   Ruler ←reorder(ruler, 

current_avgpFieldr) 
32:  end if 
33: end for 
34://*Rules stability test*// 
35: p_valueR←chi_square(previous_R, current_R) 
36: current_avgpR←(1- δr)* current_avgpR +  
δr * previous_   avgpR 
37: ifp_valueR< α 

reorder(R, current_avgpR) 
38: end if 
39: /*update the previous state*/ 
40: previous_R ← current_R 
41: previous_RFieldr ← current_RFieldr 

42: previous_avgpR← current_avgpR 
43: previous_avgpFieldr ← current_avgpFieldr 

44: w← w +1 
45:untilw=W 
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and calculate the corresponding segment probabilities (Lines 14-15). Lines (18-19) 

compute the average rule and rule-fields probability on window basis. )(
2 )),(( iRjiFχ

and ))((2 NRulesχ are computed in (Lines 25-38). Also, the re-ordering process for 
rule-fields and rules is done in a descending manner according to current average prob-
ability based on if statement in lines 30 and 37. The current rule-fields and rule average 
probability are computed in (Lines 29 and 36). In (Lines 38-42) the previous state varia-
bles are updated to be used in the next traffic window. 

4 Evaluation 

4.1 DR-RFOD vs DR-RFO 

In order to evaluate the performance of the proposed mechanism, an algorithm that 
dynamically changes the order of the rules and rule-fields according to system stabil-
ity has been implemented using MATLAB programming environment. This experi-
ment is done using 20 filtering rules and 200 traffic windows each of 1000 packets. 
These numbers are used just to make it easy to trace the rules and fields ordering posi-
tion process using both DR-RFO and DR-RFOD mechanisms. 

DR-RFOD vs DR-RFO According to Rules Reordering Process 
The algorithms in DR-RFO and DR-RFOD mechanisms start optimizing the rule 
positions after treating the second window. In DR-RFO mechanism positions of the 
rules are updated dynamically after treating each window. On the other hand, in DR-
RFOD mechanism positions of the rules are updated dynamically according to eq. (9) 
and eq. (11) after system stability test. Fig.1 compares the evolution in R1 as an ex-
ample using DR-RFO and DR-RFOD mechanisms. The horizontal constant lines in 
the figure shows the corresponding windows for DR-RFOD mechanism where the 
system was stable according to eq. (9) and no rule reordering process is done. 

 
Fig. 1. Evolution in R1 using DR-RFO and DR-RFOD 
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DR-RFOD vs DR-RFO According to Rule-Fields Reordering Process 
The same concept used in rules reordering process will be used in rule-fields  
reordering process. In DR-RFO mechanism positions of the rule-fields are updated 
dynamically after treating each window. On the other hand, in DR-RFOD mechanism 
positions of the rule-fields are updated dynamically according to eq. (12) and eq. (14) 
after system stability test. Fig.2 compares the evolution for field Source-IP in R1 as 
an example using DR-RFO and DR-RFOD mechanisms.  

 

Fig. 2. Evolution in Field Source-Port in R1 using DR-RFO and DR-RFOD 

Fig. 3 shows the cumulative processing time for DR-RFO and DR-RFOD for dif-
ferent values of α. For α=0.005, the gain for using DR-RFOD for 200 traffic windows 
is 9.1119(s), while for α=0.05 the gain is18.2855(s). 

 

Fig. 3. Cumulative processing time for DR-RFOD vs DR-RFO for different α values 
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4.2 The Effect of Error Precision (α) on DR-RFOD Mechanism 

This experiment studies the effect of different α values in the cumulative execution 
time and the number of rule/rule-fields reordering process. Fig.4 gives an idea about 
the execution time needed for each of the 200’s windows for different α values. 

 
Fig. 4. Execution time for DR-RFOD for different α values 

Table 3 compares different values of α and their corresponding number of 
rule/rule-field reordering process. When α decreases: 1) The frequency of the reorder-
ing process is also decreased this is because for a given computed χ2, decreasing the 
value of α will increase χ2

α ending with χ2
α >computed χ2 and therefore no need for 

reordering. 2) The cumulative execution time increases. This is because in fact when 
we decide not to reorder we might keep the system running with a non-efficient con-
figuration (order) for longer time and therefore it might take longer execution time 
than when we reorder often especially if the cost of re-ordering is small and this de-
pends on the number of rules and rule-fields in the security policy. 

Table 3. The effect of different alfa in reordering frequency and cumulative processing time 

α No. Reordering 
Rules/Fields

Cumulative Pro-
cessing Time (s)DR-

RFOD  

≈ (s) 

R RF Total 
0.5 102 198 300 47.4047 

47-48 
0.4 80 151 231 47.8677 
0.3 63 124 187 47.9697 
0.2 47 80 127 48.0900 
0.1 26 36 62 48.1036 
0.05 14 28 42 48.3715 

48-57 
0.04 11 29 40 49.3784 
0.03 10 27 37 49.7656 
0.02 9 18 27 49.9930 
0.01 6 3 9 57.3541 
0.005 4 0 4 57.5448 

57-60 
0.004 4 0 4 57.5537 
0.003 3 0 3 57.7527 
0.002 1 0 1 58.1344 
0.001 1 0 1 60.5990
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5 Conclusion 

In this paper, we have proposed a mechanism to improve firewall packet filtering time 
through optimizing the order of security policy filtering rules and rule-fields. The 
proposed mechanism is based on reordering rules and rule-fields according to packet 
matching and non-matching histograms, respectively. The current and previous traffic 
windows statistics are used to check the system stability using Chi-Square Test. If the 
system stability test indicates that the firewall is stable the same current rule and/or 
rule-fields orders are used for filtering the next traffic window. Otherwise, an update 
of the rule and/or rule-fields order structures is required for filtering the next traffic 
window. The proposed mechanism gives better cumulative execution time compared 
to DR-RFO mechanism. Also, the effect of α on the cumulative processing time and 
on the frequency of the reordering process has been discussed. In future work, we 
intend to investigate the effect of dynamically changing the traffic window size, and 
improve the proposed mathematical model to take into consideration security policy 
with dependent rules.  
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Abstract. Botnet is becoming the biggest threat to the integrity of Internet and
its resources. The advent of P2P botnets has made detection and prevention of
botnets very difficult. In this paper, we propose a set of metrics for efficient bot-
net detection. The proposed metrics captures the unique group behavior that is
inherent in bot communications. Our premise for proposing group behavior met-
rics for botnet detection is that, group behavior observed in botnets are unique
and this unique group behavior property is inherent in the botnet architecture.
The proposed group behavior metrics uses three standard network traffic char-
acteristics, namely, topological properties, traffic pattern statistics and protocol
sequence and usage to derive the proposed metrics. We derive six group behav-
ior metrics and illustrate the efficiency of botnet detection using these metrics. It
was observed that, group behavior metrics offers a promising solution for botnet
detection.

1 Introduction

Malicious botnets has become a major security threat to the integrity of Internet [19]. A
bot is an autonomous software agent which is programmed to perform some designated
tasks automatically. A network formed by a set of bots residing in different hosts is
referred to as a botnet. Though the concept of botnet was initially designed for benign
purposes, its current usage in Internet serves for more malicious causes [3].

Peer to Peer (P2P) botnets [16] is new generation botnets which have replaced the
old centralized IRC/HTTP based botnets [8]. P2P botnets are more stealthy and hard to
detect. Due to the distributed and autonomous network structure of P2P systems, it is
almost impossible to shutdown a botnet [6]. Attackers have become aware to strengths
of P2P botnets and there has been steady increase in bot malwares that use P2P protocol
for malicious botnets.

In this paper, we propose a set of metrics that capture group behavior among hosts to
detect botnets. Our premise for proposing group behavior metrics for botnet detection
is that, group behavior observed in botnets are unique and this unique group behavior
property is inherent in the botnet architecture. As bots are software agents and follow
a fixed protocol, their communication patterns are similar. In our work, we exploit this
property of bot behavior to detect them. The proposed work uses topological properties,
traffic pattern statistics and protocol based signatures for identifying hosts which have
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similar communication patterns. In evaluating the group behavior metrics for botnet
detection, we found that the metrics deliver accurate and precise detection of bots in the
traffic.

The paper is organized as follows. The succeeding section discusses the relevant
work with respect to group behavior based botnet detection. Section 3 gives an overview
on the inherent group behavior of botnets. The derivation of the proposed group be-
havior metrics is presented in section 4. The group behavior metrics is evaluated for
accuracy on detecting P2P botnets in section 5. Section 6 concludes the paper by sum-
marizing the contribution of the work and brief comments on future work.

2 Related Work

Botnet detection is a non-trivial problem [5]. Experience with respect to centralized
IRC/HTTP based botnet detection and mitigation will prove that[19]. Now, the chal-
lenge of botnet detection has become harder due to the advent of P2P botnets. Research
is yet to provide standard and efficient system for botnet detection [12]. Existing botnets
detection methodologies suffer from the tactics used by attackers to thwart detection.
Just like software, the bot malware is constantly updated and new revised versions are
released, periodically. With P2P technology, this update process is distributed and au-
tonomous, which make botnet resilient to detection and mitigation.

Existing work on group behavior based detection of botnets are very few [2,1,18].
Group behavior is often looked due to the intuitive belief that presence of groups of
bots within the same subnet is highly unlikely. However, a look at the traffic through
an ISP gateway will prove otherwise. Due to bot propagation mechanism, it is highly
likely that more than few bots exist in the traffic of a subnet.

Choi.H et al [2] proposed BotGAD, a framework for capturing group activity in net-
work traffic for botnet detection. They provided a comprehensive overview of current
climate in botnet detection research and the usefulness of group behavior as a measure
for botnet. Chang.S and Daniels [1] proposed a set of schemes to detect C&C chan-
nel of P2P botnets. In this work, the authors characterize a host behavior by jointly
considering the spatial and temporal correlations within the traffic. These correlations
essentially capture the group behavior of hosts within the network traffic. Hosseinpour
and Borazjani [18] proposed a botnet detection framework that uses Artificial Immune
System (AIS) to detect common network behavior in the traffic. This approach primarily
focuses on detecting spam messages and port scan activity of infected hosts. Spamming
and port scanning activities exhibits strong group behaviour among the infected hosts
and this property of the malicious behaviour is used to detect them.

3 Group Behavior in P2P Botnets

The generic development cycle of a malicious botnet consists of three primary stages
[13] , as shown in figure 1. First, the malicious bot is made to install on an end-user ma-
chine by various techniques such as, social engineering, spamming, etc. This process
is referred to as bot infection or initial infection. In the second stage of botnet devel-
opment cycle, the bot searches and connects to bots that reside in other infected hosts.
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Fig. 1. Bot Development Cycle

Thus, the malicious botnet is formed. This stage also establishes a command and con-
trol (C&C) channel for the botmaster (attacker) to control the bot. Additionally, bots
try to propagate itself to hosts in the infected host’s network neighborhood. Bots are
generally equipped with propagation mechanisms which will spread the bot malware
to hosts which are connected to the infected host. At the third stage, the bot downloads
infection vectors through C&C channel which will program the bot for future malicious
tasks. This process is referred to as secondary injection. After the three stages, the bots
and botnet is ready for malicious attacks controlled by the botmaster.

As mentioned earlier, group behavior among bots is inherent due to the botnet archi-
tecture. After the initial infection, each phase in the development cycle of the malicious
botnet adds strong group behavior properties to the bot behavior.

Once a host is being infected with the malicious bot code, the bot tries to propagate
itself to other hosts that are connected to the infected host. Through this process, the bot
infects other neighboring hosts with the same bot code. As the hosts that are infected
using the propagation mechanism are infected with the same bot code, the bots’ network
behavior is completely identical. However, this identical network behavior is often dif-
ficult to notice, as this behavior is hidden within the hosts’ network traffic generated
by other benign applications within the infected host. The proposed group metrics in
this paper aim to capture the bots’ identical network behavior that is hidden within the
infected hosts’ benign traffic.

In the second stage of botnet development cycle, the malicious bot installed in the
infected host tries to connect to other bots (peers). This process in P2P terminology is
referred to as peer discovery process [11]. This peer discovery process causes a bot to
exhibit strong group behavior with respect to common network connectivity. In most
bots, the peer discovery process starts by trying to connect to a set of peers whose IP
addresses are hard-coded within the bot code. This property causes the bots to have
high common connectivity, as bots infected with the same malware will connect to the
same list of peers. Even between different versions of bot malware, large number of
peers in the hard-coded peer list remains unchanged. After the peers in the hard-coded
peer list are connected, the bot downloads a list of active peers in the botnet through the
successfully connected peers. This downloaded peer list is almost the same for different
bots in the botnet. This further strengthens the common network connectivity among the
bots. Thus, the similarity between the network topology among bots is inherent. If the
attacker tries to hide this similarity by randomizing and sub-grouping the peer list, thus
formed botnet will be disconnected and hard to manage for the attacker. Thus, similarity
in network topology is key feature for detecting group behavior in bots.

During the attack phase of a botnet, bots exhibit strong group behavior. This is pri-
mary due to the fact that attacks are coordinated using a set of bots. For example, Denial
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of Service (DoS) attacks using bots are usually coordinated using a set of bots. Hence,
bots tend to behave in the same fashion. Additionally, the command and control channel
is not unique to a bot. Due to the propagation mechanism of P2P protocols, there is a
high probability of bots in the same subnet to receive the same attack commands. In P2P
networks, such as eDonkey, local peers are preferred over distant peers for propagation.
This property of the botnet system make the bots to exhibit strong group behavior in
terms of network connectivity, traffic pattern and protocol sequence and usage.

4 Group Behavior Metrics

The group behavior metrics for hosts in the network are derived using three network
traffic characteristics, namely, topology, traffic pattern and protocol usage. The process
of deriving the group behavior metrics from the network traffic is illustrated in figure 2.
The process comprises of five stages. In the succeeding sections, we discuss each stage
of deriving the group behavior metrics.

For each of three network traffic characteristics, we use features that capture group
behavior in network behavior. Common connectivity among hosts is derived from the
topological properties of the network and is used for capturing the group connectivity.
Similarity in packet sizes and frequency is used to measure the group behavior in traffic
patterns. Similarity in protocol sequence exhibited by hosts in their network traffic is
used to measure the group behavior in protocol usage. Thus, the process uses the three
primary characteristics of network traffic to derive the group behavior metrics.

Fig. 2. Group Behavior Metrics
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4.1 Topological Properties

In the first step, the topology of the network that is represented in the network is ex-
tracted, as shown in figure 2. A directional graph GIP (V,E) is used to represent the
topology, with vertices (V ) being the set of unique host IPs found in the network traffic
and edges (E) represent the communication links between source IP and destination IP
found in the packet header. Similarly, a directional graph GIP/PORT (V,E) is used to
represent the topology that considers both IP address and port numbers. The vertices in
graph GIP/PORT (V,E) is a set of unique host IP address and port number pairs found
in the network traffic and edges (E) represent the link between source IP / source port
and destination IP / destination port.

After the topology graphs GIP (V,E) and GIP/PORT (V,E) are defined, each topol-
ogy is divided into groups based on the connectivity between the hosts. Sub-graphs
are defined for each graphs GIP (V,E) and GIP/PORT (V,E). These sub-graphs are
formed by considering the connectivity of hosts in the graph, such that strongly con-
nected hosts are formed into sub-graphs. The process of deriving this sub-graphs is
discussed later in this section.

The purpose of dividing the topology into sub-graphs is to reduce the complexity
of deriving the group behavior metrics. Without grouping, deriving the group behavior
metric for each host with all remaining hosts in the topology is almost impossible due
to computational complexity. In this case, for deriving the group behavior metric, each
host’s network behavior has to be compared with the remaining hosts in the network.
Such a process has computational complexity in the order of O(N2), where N is the
number of hosts in the network. By dividing the topology into groups, the group behav-
ior is evaluated for hosts only within the sub-graphs of the topology. This reduces the
complexity of the group behavior metric computation, significantly.

To find the groups of strongly connected hosts in the topology, we use community
detection algorithm [4]. The fundamental idea behind community detection algorithms
is that, the nodes of a network can be formed into groups based on the connectivity
between them. Newman [10], in his seminal work proposed the notion of modularity
which is used as a measure to group nodes in a network. Modularity is a benefit function
which quantifies the quality of grouping a certain set of nodes in the network based
on connectivity. Modularity [10] is high for set of nodes which have a high degree
of connectivity between them but less to nodes with few connections. Hence, in other
words, modularity aims to maximize the number links within the group and minimize
the links between the groups. We use the community detection algorithm proposed by
Schuetz and Caflisch [14].

Community detection algorithm aim to group strongly connected nodes. The out-
come from the community detection algorithm is a group index to each host in the
topology. The nature of strong connectivity among bots will be preserved by the com-
munity structure detection algorithm. In community detection terminology, groups or
clusters are referred to as communities. Therefore, hereinafter, the terms communities
and groups will be used interchangeably.

At stage two, the group behavior within the topological properties of the network is
evaluated. For each graph, GIP (V,E) and GIP/PORT (V,E), the common connectivity
[9] of nodes is derived by computing the number of common neighbors between two
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hosts within the community. The common neighbor for every node pairs in the sub-
graphs is computed. The property of bot to have high common connectivity is captured
using this metric.

4.2 Traffic Pattern Statistics

As discussed in section III, bots exhibit a common traffic pattern. However, this traffic
pattern similarity is often hidden within the network traffic generated by the benign ap-
plications in the infected host. Typical features of network traffic statistics [15] include,

– Aggregated number of incoming packets
– Aggregated number of incoming bytes
– Aggregated number of outgoing packets
– Aggregated number of outgoing bytes

The above four features are most common used traffic statistics features in existing
detection systems. It should be noted here that, the four features represent only the
incoming and outgoing bandwidth of a specific host communication. Traffic patterns,
however, cannot be perceived using the above four features. Furthermore, the aggre-
gation of packet and byte count for host traffic allows the bot traffic properties to be
hidden within the benign traffic. Thus, the conventional features of traffic statistics are
inadequate for deriving group behavior.

For representing the traffic pattern, we primarily use packet size feature of the net-
work traffic. At stage three, we extract the traffic information for each host in the net-
work. For each host, we record different packet sizes that are observed within the host’s
network traffic. Additionally, the frequency of packet sizes within the host’s commu-
nication is also extracted. Hence, for ith host in the network, the traffic information is
represented as

(
P I
E , F I

E

)
, where P I is the set of packet sizes observed for the ith host,

F I is the set of frequency of corresponding packet size and S is the number of unique
packet sizes observed within the host’s network traffic.

After the traffic pattern is extracted, the common traffic pattern is evaluated for every
two hosts within every group in the topology. Similarity in traffic pattern using the
packet size representation is computed as follows:

P I,J
Common = P I ∩ P J ∀I ∈ C and ∀J ∈ C (1)

F I,J
Common =

∑
K=PCommon

min
(
F I
K , F I

K

)
(2)

Equation 1 finds common packet sizes observed between ith and jth host in the topol-

ogy community C. The number of packets
(
F I,J
Common

)
between ith and jth host that

have similar packet size is computed in equation 2. The two features namely, F I,J
Common

and number of elements in P I,J
Common are used to represent the group behavior in traffic

pattern between the ith and jth host. Similarly, traffic pattern similarity is computed for
all hosts pairs within the different topology communities.
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4.3 Protocol Sequence Signature

Protocol usage is an important property for botnet detection. This feature is more impor-
tant in group behavior metrics, as the protocol among the bots is fixed and the protocol
sequence exhibited by bot traffic is highly similar. This phenomenon in bots is fur-
ther illustrated in the results section of the paper, where we discuss the efficiency of this
particular metric. Protocol sequence of a host represents the different protocols and pro-
tocol states of the host network behavior and also the various protocol state transitions
exhibited by the host’s network communications.

At stage four, the protocol usage and sequence is extracted from the network traffic.
First, we identify the protocol of each packet in the network traffic by using
wireshark’s protocol dissectors. The wireshark’s protocol dissectors identifies the pro-
tocol and also the type of protocol message, for example, HTTP get request, eDonkey
protocol’s kademlia hello request/response, etc. The wireshark dissectors searches the
packet payload for keywords to identify protocol message type of the packet. For each
packet, the protocol state is defined in the following format: <Network Layer Protocol>
. <Transport Layer Protocol> . <Application Layer Protocol> . <Application Layer
Message Type> . <Application Layer Message sub-type>. Hence, a protocol state def-
inition looks like ”ip.tcp.edonkey.helloreq”.

After protocol analysis, for each host, the sequence of protocol communication is
captured in a state graph. For every ith host in the network, a state graph (SI) represents
the protocol sequence of host’s network traffic. In the state graph, the different unique
protocol states observed in the host’s traffic is defined. The sequence of protocol usage
is represented as state transitions in the state graph.

With the protocol sequence state graphs defined for all hosts in the network, we then
compute the similarity in protocol sequence between every two hosts in a network topol-
ogy community. The similarity between state graphs of two hosts is used to compute
the common behavior in protocol sequence and usage. For measuring the similarity be-
tween two state graphs, we use two different similarity measures, namely, Levenshtein
distance [17] and Jaccard similarity [7]. Levenshtein distance is most commonly used
approach for comparing DNA sequences in bio-sciences. The distance measure com-
putes the number of minimum steps necessary to change a graph/sequence A to another
graph/sequence B. The computed number of steps represents the Levenshtein distance
between graph A and B. The Jaccard similarity is a more generic similarity measure
that computes the ratio of number of common elements between graph A and B with
the total number of unique elements in A and B.

PSI,J
Levenshtein = L

(
SI , SJ

)
, ∀I ∈ C and ∀J ∈ C (3)

PSI,J
Jaccard =

(
SI ∪ SJ

)
−
(
SI ∩ SJ

)
SI ∪ SJ

∀I ∈ C and ∀J ∈ C (4)

Equation 3 computes the Levenshtein distance between protocol sequence state graphs
of every ith and jth host in the topology community C. The algorithm for computing
the Levenshtein distance function L() can be found here [17]. Similarly, equation (4)
computes the Jacobian similarity measure between state graphs and of every ith and jth

host in the topology community, respectively.
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4.4 Group Behavior Graph

The metrics derived from the above three group behavior properties is used to define a
group behavior graph. The features used include,

– CN I,J
IP − Number of Common Neighbors between two hosts in graph GIP (V,E)

– CN I,J
IP/PORT− Number of Common Neighbors between two hosts in graph

GIP/PORT (V,E)

– P I,J
Common− Number of Similar Packet Size

– F I,J
Common− Frequency of Similar Packet Size

– PSI,J
Levenshtein− - Levenshtein Distance between protocol sequence

– PSI,J
Jaccard− Jaccard Similarity measure between protocol sequence of two hosts.

Host pairs, which have non-zero values for all the above six group behavior features are
added to group behavior graph. That is, if the derived six group behavior metrics are
non-zero for Ith and J th host, then the host I and J are added to the group behavior
graph as vertices and the added vertices are connected using an edge. Thus, all hosts
which exhibit strong common behavior are captured in the group behavior graph.

In order to filter hosts which exhibit benign group behavior, we define a threshold (T )
for each of the above group behavior features. Hence, hosts which has group behavior
feature values below the threshold are removed from the group behavior graph. We
propose to train the threshold value for the six group behavior features using known
bot group behavior. In the next section, we illustrate that finding the threshold is not
difficult and can be statically defined.

After the threshold based filtering, the group behavior graph consists only of infected
hosts and the botnet topology is represented by this graph.

5 Results and Evaluation

In this section, the proposed group behavior metrics is evaluated for accuracy in detec-
tion of botnets. Furthermore, the properties of the observed group behavior with respect
to the three network traffic characteristics, namely, topology, traffic pattern and protocol
usage are discussed.

The results using the group behavior metrics is summarized in Table 1. The threshold
for filtering hosts in group behavior graph is trained as a simple Bayesian classifier. The
trained threshold is listed in Table 1.

5.1 Experimental Setup

Among our research community, real botnet traffic is a scarce resource. Due to the
sensitive nature of the content in network traffic traces, ISPs are reluctant to share their
traffic captures. It is even more difficult to obtain network traffic traces that contain few
bots in the traffic. To evaluate the efficiency of group metrics, we needed a traffic data
that has few bots in the traffic. Thus, we had to build our own network traffic data.
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Table 1. Detection Accuracy

Number of Hosts in Benign Traffic 42456
Number of Hosts in Benign Traffic 8556

with Group Behavior
Threshold for Group Behavior Graph

CNI,J
IP CNI,J

IP/PORT
P I,J
Common F I,J

Common PSI,J
Levenshtein PSI,J

Jaccard

143 59 15 2964 62 0.7
Bots used for Training Threshold 6

Bots used for Testing 4
Detected Bots 4

Detection Accuracy 100%

Initially, we collected from various sources, bot traffic captures from different ver-
sions of the same bot malware. We were able to collect network traffic generated by
10 different versions of Stormbot [13]. The malware network traffic is captured using
honeypots which ran different versions of the Stormbot.

To create the network setup, we use traffic captured from an ISP’s gateway. The
captured network traffic is real-world traffic data, thus, gives a realistic network setup.
We select the 10 IPs from the ISP traffic data and map the IP addresses to the 10 different
Stormbot attack traffic data. Once the IP address in the attack traces are modified, we
merge and synchronize the 10 attack traffic data with the ISP traffic dataset. Now, the
merged network traffic data comprises of 10 bots that run different versions of Stormbot.
Using this network data, we evaluate the efficiency of botnet detection using group
behavior metrics.

For testing the detection accuracy of the proposed group behavior metrics, two net-
work traffic datasets are built using the above technique. The first traffic dataset com-
prises of 6 bots within traffic, that is merged using 6 bots and ISP traffic data. ISP traffic
data acts as the background traffic for the network setup. This dataset is used for training
the threshold (T) that is used to filter the group behavior graph. Similarly, the second
dataset, comprises of 4 bots within traffic. This dataset is used for testing the detection
accuracy of the proposed group behavior metrics.
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Fig. 3. (a) Group Behavior in Topology (b) Group Behavior in Traffic Pattern
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5.2 Group Behavior in Topology

In this section, we discuss the topology properties that were observed in normal topol-
ogy and P2P botnet topology. Analyzing the structure of groups identified by the com-
munity detection algorithm, it was found that the topological properties within and
between groups of normal and P2P botnet topology differs significantly.

In normal topology, communities are evenly and sparsely connected, whereas, in
botnet topology, communities are strongly connected with many intra community links.
Density of links within communities is relatively high in P2P botnet topology, whereas,
in normal P2P, hosts and links are evenly distributed within communities.

The most notable observation in the group structure is that, in normal topology, the
hosts are connected in one-to-many connectivity configuration (tree structure) within
the community. In most cases, communities have one or two central host to which all
other hosts in the community are connected. Due to the above intra community struc-
ture, most of the hosts within the community have one common neighbor. On the other
hand, in P2P botnet communities, the hosts are connected in many-to-many connectivity
configuration. Botnet communities are very strongly connected. Due to many-to-many
connectivity, infected hosts have many common neighbors (mostly > 150 and < 400).
This is shown in Figure 3a. It can be clearly observed from Figure 3a, that number
of common neighbors observed is different between normal topology and P2P botnet
topology. In normal topology, 99.56% of hosts in the network have less than two com-
mon neighbors. Whereas, in botnets, number of common neighbors ranges between 236
and 396.

Thus, the number of common neighbors between hosts found within the community
is efficient to be used for botnet detection and it is key feature describing the group
behavior of hosts.

5.3 Group Behavior in Traffic Pattern

Packet size and frequency of packet size within traffic of a specific host is used in
our approach to represent the traffic pattern. This is a unique way of representing
the traffic pattern and these features truly captures the traffic pattern of network be-
havior. In this section, we discuss the efficiency of using similarities between packet
size and frequency of packet size to compute group behavior of hosts for botnet
detection.

Figure 3b shows the unique packet size similarities observed between hosts which
exhibit group behavior. It can be observed that, in benign traffic, number of similar
packet size ranges between 0 and 9. Whereas, the infected hosts in the botnet show high
similarity in packet size which range between 16 and 24. In other words, the number of
similar packet size between bots is between 16 and 24. Therefore, there is a clear dis-
tinction between packet size similarities between benign hosts and infected hosts of the
botnet. This distinction is captured in this metric and used for botnet detection. Similar
distinction in similarity was also observed over the second group behavior metric for
traffic pattern - frequency of packet size.
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5.4 Group Behavior in Protocol Sequence

Using protocol sequence as a feature for botnet detection is an unprecedented approach.
As mentioned earlier in the paper, the Levenshtein distance and Jaccard distance is used
to represent the protocol sequence similarity between hosts in the network community.
Figure 4 shows the Levenshtein distance observed between protocol sequence of benign
hosts and botnets.

Similarity in protocol sequence between bots and benign hosts are not completely
different. The probability distribution of Levenshtein distance observed from figure 4
shows that the two distributions overlap. Hence, protocol sequence similarity is not a
distinct metric as observed in group behavior metrics derived using topology and traffic
pattern characteristics. However, though distributions overlap in Figure 4, the distri-
butions are not completely similar. The center of distributions lies far apart. Protocol
sequence similarity measure is still efficient for botnet group behavior detection.

Inferring from Figure 4, Levenshtein distance observed for protocol sequence be-
tween infected hosts range between 49 and 98. Within this range, 22% of the hosts that
exhibit group behavior in benign traffic are observed. As 21% of the uninfected hosts in
the network exhibit group behavior, the false positives using only this metric for botnet
detection is 4̃ % and the true positives is 100%. This illustrates the strength of group
behavior metrics for botnet detection. With better protocol analysis techniques, the false
positives can still reduce further.

6 Conclusion

In this paper, we have presented a set of group behavior metrics which are efficient
for botnet detection. The property of bots to exhibit similar communication patterns is
exploited to derive these metrics. Three network properties, namely, topological char-
acteristics, traffic statistics and protocol usage sequence is used to derive the group
behavior for each host in the network. It is observed that, group behavior of bots is
distinctly captured by these metrics.
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Abstract. Hash algorithms are widely used for data integrity and au-
thenticity. Chinese government recently published a standard hash algo-
rithm, SM3, which is highly recommended for commercial applications.
However, little research of SM3 implementation has been published. We
find that the existing optimization techniques cannot be adopted to SM3
efficiently, due to the complex computation and strong data dependency.
In this paper, we present our novel optimization techniques: shift ini-
tialization and SRL-based implementation. Based on the techniques, we
propose two architectures: compact design and high-throughput design,
both of which significantly improve the performance on FPGA. As far
as we know, our work is the first one to evaluate SM3 hardware perfor-
mance. The evaluation result suggests that SM3 with low area and high
efficiency is suitable for hardware implementations, especially for those
resource-limited platforms.

Keywords: SM3, hash algorithm, FPGA, optimization, hardware per-
formance evaluation.

1 Introduction

At present, the performance in hardware has been demonstrated to be an impor-
tant factor in the evaluation of cryptographic algorithms. The ASIC (Application-
Specific IntegratedCircuit) and FPGA (Field-ProgrammableGate Array) are two
common hardware devices for cryptographic implementations. FPGA implemen-
tation has become more and more popular recently since it is reconfigurable and
relatively flexible.

Hash algorithms that compute a fixed-length message digest from arbitrary
length messages are widely used for many purposes in information security. SM3
hash algorithm [1] was published by Chinese Commercial Cryptography Admin-
istration Office in December, 2010. As the only standard hash algorithm of China
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and the replacement of other hash algorithms, SM3 is being integrated into most
commercial security products in China.

Up to now, there are no results for hardware implementation of SM3 in lit-
erature. As far as we know, our work is the first one to evaluate SM3 hardware
performance. Although SM3 can be implemented in a similar way as SHA-1 and
SHA-256 which have a similar structure, the common optimization techniques
cannot be efficiently applied for SM3 implementations, due to the complex com-
putation and strong data-dependency in the iteration. Furthermore, when SM3
is implemented in FPGA without specific optimizations, we find that the use
of registers and LUTs (Look-Up Tables) is not balanced. Much more registers
are used than LUTs. So the number of registers will determine the number of
occupied slices. Apparently, the imbalance increases the area and reduces the
resource utilization.

Our goal is to propose new optimization techniques for SM3 implementation,
either to minimize the area or to maximize the throughput. The paper makes
two contributions as follows.

1. We propose a very compact architecture for processing one message.
Compared with the “standard” (defined in Section 5) SM3 implementation, the
compact one only occupies 60% area with no degradation of throughput. The
compact architecture is based on our novel optimization techniques – shift ini-
tialization and SRL (Shift Register LUT) based implementation, which are based
on the following observations.

– There is a unique characteristic in SM3 algorithm. For processing one data
block, the message expansion takes 68 clock cycles, while the iteration takes
64 rounds. It indicates that in the first four cycles, the iteration module is
idle.

– Some area-saving optimization can be done by utilizing the idle four cycles,
which means trading time for space.

– The initialization circuit occupies substantial registers and LUTs. Instead of
initializing in one cycle, the circuit can complete the process in the additional
four clock cycles.

– SRL is helpful to balance registers and LUTs in FPGA.

2. We propose a high-throughput architecture for processing two concurrent
messages alternatingly.
Our optimization techniques are more efficient for the two-message architecture.
Compared with the stand implementation, the high-throughput one improves
the throughput by 69%, and also saves 17% area. Compared with the compact
implementation, the high-throughput one also achieves a 68% throughput im-
provement with only a 40% area increase, resulting in that the ratio of through-
put to area increases by 20%. The high-throughput architecture is inspired by
the following observations.

– By inserting registers in the critical path, the strong data dependency can be
avoided for processing two independent message. And the throughput will
significantly increase.
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– The two messages can share the same computation unit for compression and
expansion in an alternative form. Thus, the LUT resources are reused.

– However, the registers for variable storage have to be doubled for processing
two messages. Fortunately, the shift initialization structure and SRL-based
implementation can provide a good means to minimize the register consump-
tion.

The rest of this paper is organized as follows. Section 2 presents the SM3 hash
algorithm. Section 3 analyzes the critical path and describes our optimization
techniques and the compact architecture. Section 4 proposes the high-throughput
architecture. Section 5 defines the standard implementation and presents the
implementation and comparison results. Section 6 presents related works. Section
7 concludes the paper.

2 Preliminary: SM3 Hash Algorithm

The SM3 hash algorithm processes a message of length l (l < 264) bits to produce
a final digest message of 256 bits after padding and compressing. The message,
which is composed of multiple blocks of 512 bits each after padding, is expanded
and fed to the 64 cycles of the compression function in words of 32 bits each.

2.1 Message Padding and Parsing

The binary message of length l to be processed is appended with a ’1’ and padded
with zeros of length k until (l+k+1) ≡ 448 mod 512. And the resultant padded
message is parsed into N 512-bit blocks, denoted B(1), B(2), ..., B(N). These
B(i) message blocks are fed individually to the message expander.

2.2 Message Expansion

The functions in the SM3 algorithm operate on 32-bit words, so each 512-bit

blockB(i) from the padding stage is viewed as 16 32-bit blocks denoted Bj
(i), 0 ≤

j ≤ 15. The message expander takes each B(i) and expands it to form 68 32-bit
blocks Wj and 64 32-bit blocks Wj

′, according to the equations:

P1(X) = X ⊕ (X ≪ 15) ⊕ (X ≪ 23) (1)

Wj =

{
Bj

(i), 0 ≤ j ≤ 15;
P1(Wj−16 ⊕Wj−9 ⊕ (Wj−3 ≪ 15)) ⊕ (Wj−13 ≪ 7)⊕Wj−6, 16 ≤ j ≤ 67.

(2)

Wj
′ = Wj ⊕Wj+4 (3)

where x ≪ n denotes a circular rotation of x by n positions to the left. All
additions in the SM3 algorithm are modulo 232.
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2.3 Message Compression

The Wj and Wj
′ words from the message expansion stage are then passed

to the SM3 compression function. The function utilizes 8 32-bit working vari-
ables labeled A,B,C,D,E, F,G,H , which are initialized to predefined values
V0

(0), . . . , V7
(0) at the start of each call to the hash function. Sixty-four itera-

tions of the compression function are then performed, given by:

SS1 = ((A ≪ 12) + E + (Tj ≪ j)) ≪ 7

SS2 = SS1⊕ (A ≪ 12)

TT1 = FFj(A,B,C) +D + SS2 +Wj
′

TT2 = GGj(E,F,G) +H + SS1 +Wj

D = C C = B ≪ 9 (4)

B = A A = TT1

H = G G = F ≪ 19

F = E E = P0(TT2)

where

Tj =

{
79cc4519, 0 ≤ j ≤ 15;
7a879d8a, 16 ≤ j ≤ 63.

(5)

and the functions denoted FFj , GGj and P0 are given by:

FFj(X,Y, Z) =

{
X ⊕ Y ⊕ Z, 0 ≤ j ≤ 15;
(X ∧ Y ) ∨ (X ∧ Z) ∨ (Y ∧ Z), 16 ≤ j ≤ 63.

(6)

GGj(X,Y, Z) =

{
X ⊕ Y ⊕ Z, 0 ≤ j ≤ 15;
(X ∧ Y ) ∨ (¬X ∧ Z) ∨ (Y ∧ Z), 16 ≤ j ≤ 63.

(7)

P0(X) = X ⊕ (X ≪ 9)⊕ (X ≪ 17) (8)

where ⊕ represents the bitwise XOR operation, ∨ the bitwise OR operation, ∧
the bitwise AND operation and ¬ the bitwise NOT operation.

After 64 iterations of the compression function, an intermediate hash value
V (i) is calculated:

V0
(i) = A⊕ V0

(i−1), V1
(i) = B ⊕ V1

(i−1), . . . , V7
(i) = H ⊕ V1

(i−1) (9)

The SM3 compression algorithm then repeats and begins processing another 512-
bit block from the message padder. After all N data blocks have been processed,
the final 256-bit output, V (N), is formed by concatenating the final hash values:

V (N) = V0
(N)V1

(N) . . . V7
(N) (10)
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3 Proposed Compact Architecture

In this section, based on the analysis of the critical path, we find that the fixed
critical path limits the maximum frequency and the throughput. Then we turn
to minimize the area to improve the ratio of throughput to area. We propose
a shift initialization structure to reuse hardware resources, and the SRL-based
implementation to balance registers and LUTs. Based on them, the compact
architecture is proposed.

3.1 Critical Path

The critical path refers to the one which creates the longest delay, and it limits
the maximum working frequencies of systems. From Equations (4), it can be
observed that the SM3 round computation is oriented towards the A and E
value calculations. The remaining values do note require any computation, aside
from the rotations of B and F . The values of A and E are both computed from
SS1, which depends on the previous values of A and E, as depicted in Equations
(11)-(13).

SS1 = (A ≪ 12 + E + Tj ≪ j) ≪ 7 (11)

A = FFj(A,B,C) + D + Wj
′ + SS1⊕ (A ≪ 12) (12)

E = P0(GGj(E,F,G) + H + Wj + SS1) (13)

A<<<12 E Tj<<<j GGj(E,F,G) H Wj

<<<7

Next E

Fig. 1. The critical path of SM3

Note that the rotation operation does not require additional resources in hard-
ware, and SS1 ⊕ (A ≪ 12) can be synthesized with the addition to one-stage
LUTs in FPGA. Thus, Equation (13), E path, is longer than Equation (12) by a
delay of one-stage LUTs . The additional LUTs are used to implement function
P0. For E path, the computations of SS1 and GGj +H +Wj that are both the
addition of three numbers can be processed simultaneously. The structure of the
critical path of SM3 algorithm is depicted in Figure 1.



110 Y. Ma et al.

The additions of three numbers are optimized by CSA (Carry Save Adder),
which separates the sum and carry paths and minimizes the delay caused by
traditional carry propagation. The rotation ≪ 7 sets up a major barrier for
optimizing the critical path, because it isolates the additions of SS1 from oth-
ers. Thus SS1 has to be computed separately. Pre-computing H +Wj is useless
for shortening the critical path, as the computation of SS1 is still in the criti-
cal path. Further more, both A and E depend on their values of the previous
round. Thus, the critical path is almost fixed, due to the strong data dependency.
Thus, the throughput is hardly improved due to such a critical path. For the
SM3 implementation, in order to improve the ratio of throughput to area, our
optimization goal is to minimize the resource consumption.

3.2 Message Expansion

The input data block expansion described in Equations (1)-(3), can be imple-
mented with registers and XOR operations. The output value is selected between
the original data block, for the first 16 rounds, and the computed values, for the
remaining rounds. Figure 2 depicts the implemented structure. In order to elim-
inate this expansion computation from the critical path, both W and W ′ are
the outputs of registers.

Fig. 2. The SM3 message expansion structure

SRL-Based Implementation. In the register-based structure, sixteen 32-bit
width registers are needed to implement the expander. It can be observed that
most of them are only used to temporarily store data, so we use SRLs to replace
the shift register for area saving.

In FPGA, LUTs can also be configured as 16-bit shift registers, as shown in
Figure 3. One SRL can implement a 1-bit wide, 16-bit long shift register. Thus,
SRL used to reduce registers provides a way to balance registers and LUTs. The
input CE is used to control data shift, and Addr is used to change the length of
the shift register dynamically. In addition, the SRL contents can be initialized
by designers.

In SM3 message expansion, the registers used to create the temporal delay of
Wj can be replaced by SRLs, as shown in Figure 4, where SRL-x represents a
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Fig. 3. The Shift Register LUT structure

SRL-3 SRL-4

SRL-3

Fig. 4. SRL-based message expansion structure

32-bit wide, x-bit long shift register. Only 6× 32 registers and 3 × 32 SRLs are
used to implement the 32-bit 16-length shift registers.

It should be noticed that Wj
′ = Wj ⊕Wj+4 implying that the first W0

′ will
not be obtained until j = 4. Due to this fact, the compressor starts to iterate
64 rounds after its input W0

′ is generated at the 4th clock round. Therefore,
the SM3 module takes 68 cycles to process one 512-bit chunk of data with the
additional 4 clock cycles for initializing Wj

′. In fact, our optimization techniques
are inspired by the additional four cycles.

3.3 SIS-Based Compact Architecture

Shift Initialization Structure (SIS). Before every 64-round iteration, vari-
ables A to H should be initialized using intermediate hash values V0 to V7. And
after the computation of a given data block, the finial values of internal variables
A to H are XORed to the current intermediate hash values V0 to V7. Especially,
for the first message block, V0 to V7 are initialized by constants IV . If these
operations were implemented in a straightforward manner, eight multiplexers
and eight XOR gates would be required. In this section, we propose a shift ini-
tialization structure that can efficiently completes the initialization and XOR
operation with a low area.

When the message expander is initializing Wj
′ in the first four clock cycles,

the compressor is idle. Therefore, instead of completing XOR in one clock cycle,
we use shifted registers to operate that in the four cycles. The SIS is based on
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Equations (14), as presented in the most right part of Figure 5. Furthermore, us-
ing shift registers has another advantage, allowing us to replace the 256 registers
V0 to V7 with only 64 SRLs.

for j = 0 to j = 3 do

{D,C,B,A} = {C,B,A,V3 ⊕D}
{H,G, F,E} = {G,F, E, V7 ⊕H}

endfor

(14)

for j = 0 to j = 4 do

{V3, V2, V1, V0} = {V2, V1, V0, A}
{V7, V6, V5, V4} = {V6, V5, V4, E}

endfor

When configured, the SRLs for V0 to V7 are initialized using the constant IV .
For the first message block, the values of V0 to V7 are derived from IV , and
the values of A to H are set to zero. After the shift initialization, both V0 to
V7 and A to H equal the value of XOR zero to IV , i.e. IV , meaning that the
initialization properly complete.

Proposed Compact Architecture. Based on SIS, we propose a very compact
SM3 architecture, depicted in Figure 5 which is approximately symmetrical.
Three CSAs are used to reduce the path delay, followed by five 32-bit adders
that can be implemented conveniently by Carry Propagate Adders (CPAs) in
FPGAs.

The shift initialization, as shown in the most right part of Figure 5, also allows
us to remove many multiplexers. For variables B,D,F and H the multiplexers
are saved, because whenever in the first four cycles or in the next 64-round
iterations the assignments for them are not changing. But for C and G, the
multiplexers are needed as the rotation operation exists. Notice that the XOR
gate and multiplexer used for E in the right part of Figure 5 don’t increase the
resource consumption and the critical path, because they can be synthesized to
one-stage LUTs of six inputs with the function P0. That is why we do not use the
output of XOR gates to update V0 and V4, as the XOR gates can be synthesized
with the multiplexers.

In this architecture, only 160 LUTs, that divided into 5 groups of 32, are
required for the whole round implementation on the basis of the iteration struc-
ture. Two groups are used for the two multiplexers of C and G, two for the
SRL-4’s, and the last one for the multiplexer and XOR gate of A.

Efficient Shift Output. We use the SRL-based implementation for a efficient
reading of the final hash values. Addr, the input of SRL which acts as a RAM,
can be used to dynamically change the length of shift register. That means we
can control Addr to obtain any register value in the SRL as long as we know the
right address of that register. Thus, when CE is low, we successively increase
Addr from 2-bit 00 to 2-bit 11 to obtain V0 to V3 and V4 to V7 sequentially.
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Fig. 5. The proposed compact SM3 architecture

4 Proposed High-Throughput Architecture

In this section, in order to further improve resource utilization, we propose a
high-throughput architecture that can processes two independent messages al-
ternatingly. That is motivated by the long and symmetrical critical path in SM3.
We split the critical path in half by inserting registers to increase the maximum
frequency and throughput. Meanwhile, the iteration and expansion LUT circuits
are reused in our high-throughput architecture. Furthermore, the SRL optimiza-
tion technique can be used more efficiently for registers saving in the architecture,
yielding a higher throughput/area.

4.1 High-Throughput Architecture

We propose a high-throughput architecture that processes two independent mes-
sages alternatingly, as shown in Figure 6 where FDW , SS1 and GHW are the
inserted registers. The computation of these register variables are presented in
Equations (15), which are all three-number additions, labeled Stage 1 in Figure
6. The additions are implemented by CSA that consists of one-stage LUT and
one 32-bit CPA. For the path after the registers labeled Stage 2 in Figure 6,
either for A or E, the calculating path is also one 32-bit CPA and one-stage
LUT. Thus, The critical path is shorten by half.

FDW = FFj(A,B,C) +D +Wj
′

SS1 = (A ≪ 12 + E + Tj ≪ j) ≪ 7 (15)

GHW = GGj(E,F,G) +H +Wj
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For other variables B to D and F to H , one more stage of registers, named Ar

to Cr and Er to Gr in Figure 6, are required to ensure that these variables are
updated at the same round with A and E.

FFj

P0

C

B

FDW

SS1

GHW

C
S
A

A

Cr

Br

Ar

E

F

G

Er

Fr

Gr

Ar<<<12

GGj

W'j+1

Wj+1

A

E

D Dr

H Hr

Fig. 6. The high-throughput round architecture of SM3

SIS-Based Implementation. SIS can be embedded efficiently in the archi-
tecture, as depicted in the most right part of Figure 6. In the architecture, the
shift initialization for two messages runs according to Equations (16). The ini-
tialization process here is similar to that in the compact architecture, except for
processing two messages alternatingly.

for j = 0 to j = 7 do

{Dr , D,Cr, . . . , Ar, A} = {D,Cr, C, . . . , A, V X3 ⊕Dr}
{Hr,H,Gr, . . . , Er, E} = {H,Gr, G, . . . , E, V X7 ⊕Hr}

endfor

for j = 0 to j = 8 do

{V X3, V Y3, V X2, . . . , V X0, V Y0} = {V Y3, V X2, V Y2, . . . , V Y0, A}
{V X7, V Y7, V X6, . . . , V X4, V Y4} = {V Y7, V X6, V Y6, . . . , V Y4, E}

endfor
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Instead of two SRL-4’s in the compact architecture, two SRL-8’s are needed to
store eight intermediate values V X and V Y for X and Y alternatingly. More
precisely, the first SRL-8 stores intermediate values in order of {V X3, . . . , V Y0},
and the second SRL-8 {V X7, . . . , V Y4}. Notice that this change does not increase
LUT consumption, because SRL-4 and SRL-8, the difference of which is the
length of shift register, are both implemented by 32 LUTs. Furthermore, Dr and
Hr used to temporarily store D and H are needed for executing XOR with V X3

and V X7 in Figure 6.

Adding Additional Pipeline. We add additional pipeline named Stage 0 for
keeping the critical path as expected, as labeled in the two dotted frames of
Figure 6. One-stage LUTs are not enough to implement the CSA for FDW ,
because the total number of input variables is seven, as shown Equations (15)
where Wj

′ = Wj ⊕Wj+4. Thus we compute the additions D+Wj
′ and H +Wj

in the previous round. Stage 0 pre-computes the additions using Cr + W ′
j+1

and Gr + Wj+1 of the previous round.
With this pipeline, an additional clock cycle is required for each block. The

additional cycle, however, can be hidden in the initialization of A to H . There-
fore, each 512-bit chunk of the two messages can be processed within 136 clock
cycles, 68 cycles for each message.

4.2 Message Expansion

Similar to the message expansion in the compact architecture, the expander for
two alternative messages are implemented using SRL, as shown in Figure 7. Only
6×32 registers and 7×32 SRLs are used to implement the 32-bit 32-length shift
registers, which store the expanded messages for X and Y alternatingly. With
the registers shifting, the expansion function circuit is reused for the alternative
messages.

SRL-7

SRL-4 SRL-2 SRL-2

SR
L-5

SRL-5

Fig. 7. The SRL-based message expansion structure for two messages
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5 Hardware Performance Evaluation

As there is no hardware implementation of SM3 in literature, we provide a
standard SM3 implementation as a baseline for our optimized implementations.
Honestly, we do not intentionally make it slower or larger. The standard imple-
mentation is defined as follows.

– The message padding module is not included. As the message padding is
performed once to the end of the message, and has no significant cost when
implemented in software. This is consistent with majority of other hash cores.

– The message expansion module is implemented based on the structure as
shown in Figure 2, which is a common implementation in other hash algo-
rithms such as SHA-1.

– The iteration process works as follows. Variables A to H are initialized with
IV for the first message block. The iteration module is idle in the first four
cycles waiting for W0

′. In the iteration, The assignments of A and E are
implemented according to Figure 1. At the last iteration round, besides the
iteration operation, A to H performs XOR operation with V0 to V7.

– The intermediate value V0 to V7 are assigned as follows. For the first message
block, V0 to V7 are also initialized with IV . For the subsequent blocks, V0

to V7 are assigned by A to H at the first iteration round.

Table 1. Hardware Performance of SM3 and SHA-256 implementations

Name Devices Slices
Max Freq.
(MHz)

Bits/cycle
ThrPut.
(Mbps)

ThrPut/Slice

Standard-SM3 Virtex-5 384 214 7.53 1611 4.20

C-SM3 Virtex-5 234 215 7.53 1619 6.92

T-SM3 Virtex-5 328 362 7.53 2726 8.31

SHA-256[2] Virtex-5 319 221 7.76 1714 5.37

In order to evaluate our SM3 designs, both the compact and the high-throughput
designs are implemented on Xilinx Virtex-5 (XC5VLX110T-3) FPGA, and Place
and Route by Xilinx ISE 13.2. For simplicity, the compact and high-throughput
implementations are named C-SM3 and T-SM3, and the standard one named
Standard-SM3. Table 1 shows the comparison results of implementation per-
formance in terms of slices, working frequency, bits processed per cycle and
throughput per slice (ThrPut/Slice).

Implementation results indicate that C-SM3 only occupies 234 Slices and P-
SM3 achieves a high throughput of 2.7 Gbps on Virtex-5. In addition, both the
two implementations achieve a high ratio of throughput to area.

Compared with Standard-SM3, C-SM3 only occupies 61% area with no degra-
dation of throughput, resulting in that the Throughput/Slice increases 65%.
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Also, compared with Standard-SM3, T-SM3 improves the throughput by 69%,
and also saves 17% area. When compared with the compact implementation, the
high-throughput one also achieves a 68% throughput improvement with only a
40% area increase, resulting in that the ratio of throughput to area increases
by 20%. The comparison result suggests that our optimization techniques are
not only effective for the one-message architecture, but more efficient for the
two-message architecture.

When compared with the best SHA-256 implementation[2], our C-SM3 occu-
pies 73% slices, while achieving a 29% improvement to ThrPut/Slice. This means
that our SM3 implementation can occupy much smaller area with a competitive
throughput.

6 Related Work

Several techniques have been proposed to improve the FPGA implementations
of hash algorithms, such as using CSAs, using embedded memories, pipelining,
unrolling and rescheduling.

CSA techniques are used to improve the partial additions [3,4]. We also use
CSAs in the standard and optimized implementations. The rotation operation
≪ 7, however, limits further optimization for shortening the critical path.

The usage of embedded memories such as block RAMs to store the required
constants can save resources [3,4,5]. The technique is useless for SM3 implemen-
tation, as there are not substantive constants need to be stored.

Pipelining techniques are helpful to achieve higher working frequencies [3,5,6].
These technique, however, can hardly improve the maximum frequency in SM3
implementations, due to the rotation operation ≪ 7 in SS1 and the strong
dependency of variables A and E. The details have been explained in Section
3.1. Unrolling techniques optimize the data dependency [4,6,7,8,9], while they
may significantly increase the required hardware resources .

The pipeline architecture for multiple messages is also useful to achieve a
high throughput for multiple independent messages [7,8,10]. The main idea of
the techniques is reusing the calculation logic to decrease the area and process-
ing multiple messages simultaneously to increase the throughput. Nonetheless,
the register resources are duplicated several times. Our optimization techniques
provide a good means to minimize the registers in the multiple-message archi-
tecture.

Rescheduling and hardware reutilization techniques can improve hardware re-
alizations both in speed and in area [3,5]. The rescheduling technique can not
be applied in SM3 implementation directly, due to the ROL operations ≪ 9 for
B and ≪ 19 for F in the iteration of SM3. Instead of the finalization operation
within the 64-round iteration in the techniques, our finalization operation is com-
pleted before the iteration begins, which allows us to remove many multiplexers
for the variables A to H .
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7 Conclusion

This paper optimizes and evaluates the hardware performance of SM3 hash algo-
rithm on FPGA for the first time. We propose novel techniques to optimize the
SM3 implementation, since common optimization techniques are not applicable.
Implementation results clearly indicate that our techniques allow a substantial
reduction on reconfigurable resources, either in the compact architecture or in
the high-throughput architecture. Thus, SM3 with higher efficiency is suitable
for hardware implementations, especially for the resource-limited hardware plat-
forms. In fact, our optimization techniques can also be used for the implemen-
tations of other hash algorithms, such as SHA-2. We will work on this issue in
the next stage.
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Abstract. Traditional secret sharing assume the absolute secrecy of the
private shares of the uncorrupted users. It may not hold in the real
world due to the side-channel attacks. Leakage-resilient cryptography
is proposed to capture this situation. In the continual leakage model,
the attacker can continuously leak the private value owned by the user
with the constraint that the information leaked should be less than �
between updates. We propose continual leakage-resilient dynamic secret
sharing under split-state model in this paper. After a preprocessing stage,
the dealer is able to dynamically choose a set of n users and to allow
a threshold of t users to reconstruct different secrets in different time
instants, by using the same broadcast message. The secrets are protected
even if an adversary corrupts up to t − 1 users and obtains continual
leakage from the rest of them. Our scheme can provide the security for
secret sharing under continual leakage model while at the same time
allowing the users to join and quit the scheme dynamically.

1 Introduction

Secret sharing is an important cryptographic primitive that a dealer shares a
secret value between a group of users P . Any set of t (threshold) users from
P can jointly recover the secret value. However, the collusion of any t − 1 or
less users cannot obtain any information about the secret value. Secret sharing
was firstly proposed by Shamir [13]. This type of secret sharing is sometimes
referred as threshold secret sharing, in contrast with the secret sharing with
general access structure. In this paper, we will focus on the threshold secret
sharing. Secret sharing is useful in applications that require a collaboration like
the management of cryptographic keys and secure multi-party computation.

Dynamic secret sharing has the feature that the dealer enables different sets of
users (based on different access structures) to recover different secrets in different
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time instants simply by sending the same broadcast message to all of them. It
was firstly formalized by Blundo et al. [3]. In the sense of threshold secret sharing,
the dealer can choose different sets of users to recover different secrets, but a
threshold of them is sufficient to recover a secret. It is fully dynamic since anyone
can join or leave the system at any time, and the authorized set (to recover the
secret) can be chosen at the time of generating the broadcast message (instead of
the user share generating phase). In practical application, consider the example
of the board of directors of a company. A threshold of the directors can sign
a contract on behalf of the company. However, the members of the board of
directors may change from time to time. Furthermore, it is favorable that only
the directors of the related departments is capable to sign on certain projects.
Therefore, dynamic (threshold) secret sharing is useful in this kind of situation.

Traditional secret sharing schemes assume the absolute secrecy of the user
shares. Like many cryptosystems, such assumption may not hold in the real
world due to the side-channel attacks, such as the timing attack, power analysis,
etc. These attacks capture partial information about the private user shares and
their internal states through various physical attributes of a computation device.
Therefore, traditional security model can no longer provide security guarantee
under the side-channel attack. Hence, leakage-resilient cryptography is proposed
to capture this scenario in recent years. The relative leakage model was firstly
introduced by Akavia et al. [1] which allows the attacker to learn at most �-
bits information about the internal state of the system. Later on, the continual
leakage model [9] describes that the secret key is updated periodically and the
attacker can learn information continually, with the constraint that at most �-
bits leakage of internal state is allowed between update.

Our Contribution. Our main result is to construct a dynamic secret sharing
scheme under the continual leakage model (CLM-DSS). In our scheme, the at-
tacker can continually learn the share owned by each user with the constraint
that the total information leaked is less than �-bits between update. The random
number used to update the share can also be leaked. Our scheme will guarantee
the privacy of the secret value even up to t− 1 parties are corrupted (where t is
threshold) and information owned by other parties are partially leaked. More-
over, the user can dynamically join and leave the secret sharing scheme. For
different secret values, we can set different authorized set and threshold for each
of them.

We model the leak function in our security model as the split-state model
in [7]. Dav̀ı et al. [7] assumed that the memory of a system can be divided
into two parts, and each of them is accessed independently by different process
and different time interval. Therefore, when there is side-channel attack on the
memory, the attacker can only obtain leakage from one part only. Therefore in
the security model, the leak oracle is modeled in a way that the leak function
can only leak on one part of the memory at one time, but not leak on both parts
simultaneously.

Our Techniques. Our construction is based on the dynamic threshold encryp-
tion by Delerablée and Pointcheval [8]. Our construction begins with generating
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the master key and the public key as in [8]. Instead of sending a share directly to
each user as in [8], the dealer encrypts it and sends the corresponding ciphertext
and decryption key to the user. We use the Continual-Leakage-Resilient Sharing
(CLRS)-friendly encryption scheme in [6] to provide the leakage-resilient prop-
erty as well as the update protocol. Therefore, we can update the ciphertext and
the secret key asynchronously to protect the secret value under the continual
leakage model.

We have a few restrictions imposed on our security model due to the build-
ing blocks we used. Firstly, we use the split-state model for leakage since the
ciphertext and the secret key of the CLRS-friendly encryption scheme is leaked
independently in [6]. Secondly, we use the non-adaptive adversary and corrup-
tion model to handle the corruption of users which is inherited from the dynamic
threshold encryption in [8]. Finally, we assume that the secret value to be shared
and the master key of the dealer is leak-free, or else we can continuously leak
on them and thus get the exact value of them. This is a common assumption in
leakage-resilient cryptography, such as [5,11]1.

Related Work. It is useful to compare our scheme with other primitives from
the literature. Firstly, standard secret sharing scheme [13] provides security when
some subset of the shares are fully compromised which others are fully secure.
Laih et al. [10] gave the first dynamic threshold secret sharing such that dif-
ferent secrets can be shared by different broadcast messages. Blakley et al. [2]
introduced the user disenrollment to the dynamic threshold secret sharing. Their
security models also assume full security of the uncorrupted users. In our security
model, the shares that are not fully compromised can be partially leaked.

In leakage-resilient secret sharing, Boyle et al. [5] introduced a (non-dynamic)
secret sharing which guarantees the privacy of the secret value only under the
bounded leakage model; while we provide the security under the continual leakage
model. The continual leakage-resilient secret sharing scheme for general access
structure proposed by Dodis et al. [9] mainly focus on two parties and when it
extends to more than two parties, the user cannot dynamically join and leave
the scheme.

2 Security Model

Our goal is to give the definition of dynamic threshold secret sharing scheme
under continual leakage model. We require that any user can dynamically join
the secret sharing system. For each secret, the dealer can dynamically choose
the share group P and the threshold value t. Finally, the secret share stored in
each device may be continuously leaked by the attacker.

Our security is modified from the model of dynamic secret sharing in [3],
by changing from monotone access structure to threshold access structure, and
adding the update and leak oracle for the continual leakage model.

1 There exist cryptosystems that allow leakage of the master secret key, such as
identity-based encryption in [14].
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2.1 Security Notion

A dynamic threshold secret sharing scheme is a tuple of algorithms CLR DSS =
(Setup, SharePreprocess, Update, MsgGen, Reconstruct) as follows:

– Setup(1λ): On input a security parameters 1λ, it outputs (MK, PK), where
MK is the master secret key of the dealer and PK is the corresponding public
key. PK may include the maximal size of an authorized set m, and a list of
participants L.

– SharePreprocess(MK,PK,S,P): On input MK, PK, the space of possible se-
crets S and a set of participants P = (ID1, . . . , IDn), it outputs the corre-
sponding shares a1, . . . , an for each participant, and may update L.

– MsgGen(PK,s, t,P ′, (a1, . . . , an)): On input PK, a secret s ∈ S, a threshold
t, a set of participants P ′ with corresponding shares (a1, . . . , an), it outputs
the broadcast message M .

– Update(PK, ai): On input PK, each user updates his share ai to protect the
privacy of the secret share against continual leakage from the attacker. It
outputs the updated share a′i.
In this model, we also assume that the share ai is split into two parts and
they are updated and accessed independently. Denote them as sh1 and sh2,
and define Updateb (b = 1, 2) as follows (we omit the input PK for simplicity):
Updateb(shb) → sh′

b: The randomized update algorithm takes the index b
and the current version of the share shb and outputs an update version sh′

b.

The notation Updatekb (shb) denote the operation of updating the share shb

successively k times in a row so that Update0b(shb) = shb, Update
k+1
b (shb) =

Updateb(Update
k
b (shb)).

– Reconstruct(PK, (a1, . . . , at),M): On input PK, the secret shares (a1, . . . , at)
and a broadcast message M , it outputs the secret value s.

2.2 Security Model

First we will define what information can be leaked and what the leakage function
should be in the split-state model. As described before, user i will have a secret
share ai which is stored in two parts sh1 and sh2. The leak function f (which is
an input to the Leak oracle) is a function of ai and the random value used. We
denote stateb = (shb, Rb) for b ∈ {1, 2}, where Rb is the randomness used for
shb. We can see that the attacker only leaks on the information on each user’s
share and randomness since other information are either leak-free or published.
There is one restriction to the leak function f as specified in [7]. For each user
i, the leak oracle can only be applied on either state1 or state2, but it cannot
be applied on both of them at the same time.

Correctness: It consists of two parts:

– Update Correctness: Notice that the update of sh1 and sh2 can be asyn-
chronous, which means that for any sequence of i ≥ 0, j ≥ 0, sh′

1 ←
Updatei1(sh1), sh′

2 ← Updatej2(sh2), the updated shares (sh′
1, sh

′
2) can be

viewed as a valid share a used for reconstruction.
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– Reconstruct Correctness : If M ← MsgGen(PK, s, t,P ′, (a1, . . . , an)) and (a′1,
. . . , a′t) is a (updated) subset of the shares (a1, . . . , an), then s← Reconstruct
(PK, (a′1, . . . , a

′
t),M).

Privacy: For any secret s shared by a set P of registered users with a threshold
t, any collusion that contains less than t users from this authorized set and the
bounded leakage from the uncorrupted users cannot learn any information about
the secret s.

We formally define the above privacy notion, under the classical semantic
security notion and under various attacks, using a game between the adversary
A and the challenger C. Both the adversary and the challenger are given as input
a security parameter 1λ. The restriction we impose are:

– A cannot get any leakage about the master secret key and secret value.
– A has to decide the challenge set P∗ of users, the challenge threshold t∗,

and the identities set I that he will corrupt at the beginning of the game.
This restriction is called non-adaptive adversary and corruption model(NAA-
NAC). We restrict that |P∗⋂ I| ≤ t∗ − 1.

– A cannot get leakage of more than � bits between updates.

We now define our game CorruptLeak which consists of the following phases:

1. Setup: The adversary A sends to the challenger C the challenge set P∗ of
users, the challenge threshold t∗, and the identities set I that he will corrupt.
C runs Setup(1λ) to obtain the set of parameters param = (MK,PK). The
public key PK is given to A. Denote the secret space as S. C stores an
initially empty list L of the form (ID, b, shb, �b, randb), which stores a part
of the share shb (b=1/2) for a user ID, the leaked bits, and the randomness
used for the next update.

2. Query Phase 1: The adversary A adaptively issues queries:
– Join query: on input an identity ID, C runs the a = (sh1, sh2) ←

SharePreprocess(MK,PK, S, ID) to create a new user in the system. C
chooses the randomness rand1 and rand2 used for the next update for
sh1 and sh2 respectively. C stores (ID, 1, sh1, 0, rand1) and (ID, 2, sh2, 0,
rand2) in the list L.

– Corrupt query: on input an identity ID ∈ I, C retrieves (ID, 1, sh1, ·, ·)
and (ID, 2, sh2, ·, ·) ∈ L and returns a = (sh1, sh2) to A.

– Leak query: on input an identity ID ∈ I ∪ P∗, a leakage function f :
{0, 1}∗ → {0, 1} and b = 1/2, C retrieves (ID, b, shb, �b, randb) ∈ L. If
�b ≤ �, then C responds with f(shb, randb) and increases the counter
�b = �b + 1 in the list L. Otherwise returns ⊥.

– Update query: on input an identify ID and b = 1/2, C retrieves (ID, b,
shb, �b, randb) ∈ L and computes sh′

b = Updateb(shb; randb). It samples
fresh random number rand′b and updates (ID, b, sh′

b, 0, rand′b) ∈ L.
3. Challenge: A submits a secret value s∗ ∈ S to C. C sets s∗0 = s∗ and s∗1

to be a random number. C retrieves (ID∗
j , b, sh

∗
j,b, ·, ·) ∈ L for all IDi ∈ P∗

where b = 1/2. Denote a∗j = (sh∗
j,1, sh

∗
j,2). C flips a uniform coins b′

$←− {0, 1},
generates M∗ = MsgGen(MK, s∗b′ , t

∗,P∗, {a∗j}) and sends it to A.
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4. Query Phase 2: A adaptively issues Join, Corrupt and Leak queries as
in phase 1 , but the constraint is that the total number of identities ID ∈ P∗

asked in Corrupt queries is less that t∗ − 1 (which is P∗ ∩ I ≤ t∗ − 1) and
the Leak queries in phase 2 cannot be executed in the target set of users
P∗ − P∗ ∩ I.

5. Guess: Finally, A outputs a bit b∗ ← {0, 1} and wins the game if b∗ = b′.

The advantage of A is defined as AdvA(λ) = |Pr[b
′
= b]− 1

2 |.

Definition 1. A dynamic threshold secret sharing scheme is �-continual leakage
resilient if for all PPT adversaries A, AdvA(λ) ≤ negl(λ).

3 Notation and Preliminaries

Bilinear Maps. Let G1,G2 and GT be three cyclic groups of prime order p. A
map ê : G1 × G2 → GT is bilinear if for any generators g1 ∈ G1, g2 ∈ G2 and
a, b ∈ Zp, ê(ga1 , g

b
2) = ê(g1, g2)

ab. Let G be a pairing generation algorithm which
takes as input a security parameter 1λ and outputs (p,G1,G2,GT , ê) ← G(1λ).
The generators of the groups may also be given. All group operations as well as
the bilinear map ê are efficiently computable.

The Symmetric External Diffie-Hellman Assumption (SXDH) [12]. The
SXDH assumption is that the DDH assumption holds in G1 and G2.

The Multi-Sequence of Exponents Diffie-Hellman Assumption (MSE-
DDH) [8]. We now give the following decisional problem (�,m, t)-MSE-DDH
introduced by Delerablée and Pointcheval [8]. Let (p,G1,G2,GT , ê)← G(1λ) be a
bilinear map generator and let �, m and t be three integers. Let g0 be a generator
of G1 and h0 a generator of G2. Given two random coprime polynomials f and
g, of respective orders � and m, with pairwise distinct roots −x1, . . . ,−x	 and
−y1, . . . ,−ym respectively, as well as several sequences of exponentiations of
some random and hidden α, γ ∈ Zp:

g0, g
γ
0 , . . . , g

γ�+t−2

0 , gα·γ0 , . . . , gα·γ
�+t

0 , g
k·γ·f(γ)
0

h0, h
γ
0 , . . . , h

γm−2

0 , hα·γ
0 , . . . , hα·γ2m−1

0 , h
k·g(γ)
0 ,

and T ∈ GT , decide whether T is equal to e(g0, h0)
k·f(γ).

Delerablée and Pointcheval [8] showed that this problem belongs to the general
Diffie-Hellman exponent problem due to Boneh et al. [4]. Therefore, the generic
security of the assumption follows the result from [4]. We emphasize on the fact
that, whereas the assumption has several parameters, it is non-interactive, and
thus falsifiable.

Continual Leakage-Resilient Sharing (CLRS) and CLRS-Friendly
Encryption. We review the two user continual leakage-resilient sharing (2-
CLRS) in [6]. It is constructed from an updatable encryption. An updatable
encryption [6] is a standard public key encryption scheme (KeyGen, Encrypt,
Decrypt) with two additional procedures:
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– SKUpdate: On input a secret key sk, it outputs an updated key sk′.
– CTUpdate: On input a ciphertext ct, it outputs an updated ciphertext ct′.

The 2-CLRS in [6] is constructed as follows (without the share preprocess phase):

– Setup: On input a security parameter 1λ, it samples (pk, sk) ← KeyGen(1λ)
and outputs the public key pk.

– MsgGen: On input a secret s, it calculates ct ← Encryptpk(s) and outputs
two shares sh1 = sk and sh2 = ct.

– Update: On input a share sh1 or sh2, it outputs SKUpdate(sk) orCTUpdate(ct).
– Reconstruct: On input sh1 and sh2, it outputs s← Decryptsk(ct).

We say that an updatable encryption scheme is an �-CLRS-friendly encryption
if the corresponding 2-CLRS is correct and �-continual leakage resilient. The
details of the construction of the �-CLRS-friendly encryption is in [6].

4 Our Construction

In this section, we will describe how to construct dynamic secret sharing scheme
under continual leakage model (CLM-DSS).

Our construction is inspired from the threshold encryption scheme by Deler-
ablée and Pointcheval [8]. In order to allow leakage of secret shares of different
users, we adopt the CLRS-friendly encryption scheme described in [6]. It is com-
posed of (KeyGen, Encrypt, Decrypt, SKUpdate, CTUpdate). Then the secret share
of each user is composed of two parts: (1) the secret key of the CLRS-friendly
encryption [6], and (2) the ciphertext which is the encryption of the secret key
of the threshold encryption [8]. By [6], both parts can be updated and leaked
independently in the security proof.

4.1 CLM-DSS Scheme

Setup(1λ) : Given the security parameter 1λ, it runs (p,G1,G2,GT , ê)← G(1λ).
Also, two generators g ∈ G1 and h ∈ G2 are randomly selected as well as
two secret values γ, α ∈ Z∗

p. Finally, a set D = {di}m−1
i=1 of values in Z∗

p is
randomly selected, where m is the maximal size of an authorized set. This
corresponds to a set of dummy users, that will be used to complete a set of
authorized users. It computes u = gαγ , v = ê(g, h)α. Denote H : G1 → GT

be an efficiently computable function and its inverse H−1 is also efficiently
computable. The list of users L is initially empty. It sets

PK = (m,u, v, h, hα, {hγi}m−2
i=1 , {hαγi}2m−1

i=1 ,D, H,H−1, L), MK = (g, γ, α).

SharePreprocess(MK,PK, S,P) : Given MK,PK and a set of users P (our scheme
supports the secret space S = GT ), for each identity IDi ∈ P , it ran-
domly chooses a new and distinct xi ∈ Z∗

p such that xi should be different
from all previous one, including the dummy users in D. It runs (pki, ski)←
KeyGen(1λ) and cti ← Encryptpki(H(g

1
γ+xi )) of the CLRS-friendly encryp-

tion of [6]. It generates the share ai = (ski, cti) for user IDi. The value
(xi, IDi) is published by putting it into L.
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MsgGen(PK, s, t,P , (a1, . . . , an)) : Given PK, the secret s, a threshold t and a
set of users P = (ID1, . . . , IDn), it first finds the corresponding xi for IDi

from L. Denote the set P̄ be the set of all xi. It randomly picks k ∈ Z∗
p and a

random subset D̄ ⊆ D of size m+ t−n−1. It outputs the broadcast message
M = (C1, C2, C3, D̄), where:

C1 = u−k, C2 = hk·α·
∏

xi∈P̄ (γ+xi)·
∏

x∈D̄(γ+x), C3 = s · vk.

Update(PK, ai) : For a share ai = (ski, cti), it can either update the first or
the second part. For Update1(ski), it calls the function SKUpdate(ski). For
Update2(cti), it calls the function CTUpdate(cti).

Reconstruct(PK, (a1, . . . , at),M) : Given PK, a broadcast message M = (C1, C2,
C3, D̄), and shares ai = (ski, cti) for i = 1 . . . , t, denote T = (x1, . . . xt) be the
corresponding value in L. It first calls the function uski ← H−1(Decryptski
(cti)), where we can get uski = g

1
γ+xi . We can compute

σi = ê(uski, C2) = e(g, h)
k·α·

∏
xi∈P̄

⋃
D̄(γ+xi)

γ+x .

Denote Ω as the set of {σ1, . . . σt}. Finally, it can recover the secret s:

s =
C3

(ê(C1, hp(T,P̄ )(γ)) ·Aggregate(GT , Ω))
1

c(T,P̄ )

,

where hp(T,P̄ )(γ) is computed from PK since

p(T, P̄ )(γ) =
1

γ
·

⎛⎝ ∏
x∈P̄

⋃
D̄−T

(γ + x)− c(T, P̄ )

⎞⎠ ,

c(T, P̄ ) =
∏

x∈P̄
⋃

D̄−T

x,

Aggregate(GT , Ω) = Aggregate(GT , {ê(g, C2)
1

γ+x }x∈T )

= ê(g, C2)
1∏

x∈T (γ+x) = ê(g, h)k·α·
∏

xi∈P̄
⋃

D̄−T (γ+xi).

The Aggregate algorithm computes ê(g, C2)
1

(γ+x1)...(γ+xt) given Ω = {σj =

ê(g, C2)
1

γ+xj }tj=1. The detail of Aggregate can be found in [8].

Correctness. Assuming that Ω is correct, we have

ê(C1, h
p(T,P̄ )(γ)) ·Aggregate(GT , Ω)

=ê(g−k·α·γ , hp(T,P̄ )(γ)) · ê(g, C2)
1∏

x∈T (γ+x)

=ê(g, h)−k·α·γ·p(T,P̄ )(γ) · ê(g, h)k·α·
∏

x∈P̄
⋃

Dm+t−s−1−T (γ+x)

=ê(g, h)k·α·c(T,P̄ ) = (vk)c(T,P̄ ).
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4.2 Security

Hybrid Game Definitions. We first define several hybrid games. The main
part of the proof is to show statistical indistinguishability between these games.
The output of each game consists of the view of the adversaryA as well as a bit b
chosen by the challenger C representing its choice of which challenge secret s∗0, s

∗
1

to be shared. Denote Q as |P∗| − t∗ + 2, where |P∗| is the size of the challenge
set of users and t∗ is the threshold. We describe the games in details below.

– GameReal: This is the original “CorruptLeak” game.
– Game i: In Game i, for Leak queries on the first i uncorrupted identities

from P∗, the challenger C will answer the query using a random number,
and for the rest of the identities, C answers it using the valid key.

– GameFinal: It is the same as Game Q, except that instead of sharing the
challenge secret value s∗b , we just share a random number. More specifically,
in GameFinal, the secret shares used in the LeakOracle are all random
and the broadcast message is just a random number. Thus, the view of the
adversary in GameFinal is independent of the challenger’s bit b.

Theorem 1. For z ≥ 6, n ≥ 3z−6, our secret sharing scheme is �SK-continual
leakage-resilient under the SXDH assumption and the (l,m, t)-MSE-DDH as-
sumption, for �SK ≤ min(z/6− 1, n− 3z+6) log(p)−ω(log(λ)), P∗ ∩I ≤ t− 1,
l = I − P∗ ∩ I and m = max |P∗|.

Proof. In order to prove that our secret sharing scheme is �SK-continual leakage
secure, we will build several games to simulate the different cases and show that
those games are indistinguishable under the SXDH, MSE-DDH assumption and
the following lemma.

Lemma 1. Let z ≥ 6, n ≥ 3z − 6. Given (p,G1,G2,GT , ê), an efficiently com-
putable function H : G1 → GT , the CLRS-friendly encryption [6] algorithm
Encrypt with corresponding public key pk, secret key sk and the sequences:

x1, x2, . . . , xl+1; g
1

γ+x1 , g
1

γ+x2 , . . . , g
1

γ+xl ; {hα·γi}2m−1
i=0 , {hγi}m−2

i=0 , gα·γ , ê(g, h)α.

For simplicity, we denote the above mentioned sequences as D. Let (sh1, sh2) =

(sk,Encryptpk(H(g
1

γ+xl+1 ))) and (sh′
1, sh

′
2) = (sk,Encryptpk(R)) where R is ran-

domly chosen from the message space. Then under the SXDH assumption:

(D, f1(sh1), f2(sh2))
stat≈ (D, f1(sh

′
1), f2(sh

′
2)),

as long as the function f1 and f2 have the output size |f1|, |f2| ≤ min(z/6 −
1, n− 3z + 6) log(p)− ω(log(λ)).

Proof. According to the security of the CLRS-Friendly Encryption in [6], no

PPT adversary can distinguish the ciphertext of H(g
1

γ+xl+1 ) from a random
number, as long as |f1|, |f2| ≤ min(z/6− 1, n− 3z + 6) log(p)− ω(log(λ)), even

given the value H(g
1

γ+xl+1 ). Therefore, given the sequence D, no PPT adversary
can distinguish these two distributions under the SXDH assumption. ��
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Lemma 2. GameReal
stat≈ Game 0.

It is easy to see that GameReal is the same as Game 0.

Lemma 3. For i = 0, . . . , Q − 1, under the SXDH assumption with z ≥ 6, n ≥
3z−6, �SK ≤ min(z/6−1, n−3z+6) log(p)−ω(log(λ)), Game i

stat≈ Game i+1.

Proof. If there exists an adversary A who has a non-negligible advantage in dis-
tinguishingGame i andGame i+1, we will create a PPT algorithm B which will
distinguish between (D, f1(sh1), f2(sh2)) and (D, f1(sh

′
1), f2(sh

′
2)) from Lemma

1 with non-negligible probability. This will yield a contradiction, since these dis-
tributions have a negligible statistical distance if the CLRS-friendly encryption
scheme [6] is secure.
B simulates either Game i or Game i + 1 with A as follows. It starts by

running the Setup algorithm by itself and giving A the public parameters by
using the Lemma 1’s instances. By the notion of the Lemma 1, B can create
enough valid keys and responds to all the A’s queries.

For the Join queries on the (i + 1)-th uncorrupted identity from P∗, B just
responds by putting xl+1 in L. When A issues the Leak query on the (i + 1)-th
identity, B will encode the leakage A asks for this key in Phase 1 as a single
polynomial time computable function f . It can do this by fixing the values of
all other keys and fixing all other variables involved in the challenge key. B
then receives a sample 〈D, f1(SH1), f2(SH2)〉(where SHi is either distributed
as shi or sh′

i using the notation of the Lemma 1). B will use f1(SH1), f2(SH2)
to answer A’s Leak query for the (i + 1)-th identity by implicitly defining the
challenge key as (SH1, SH2).

At some point, A declares the challenge secret value, and B flips a coin b and
produces the challenge broadcast message M∗. Since M∗ is independent of the
queries above, the ciphertext is well-distributed. The Phase 2 is the same as
the Phase 1 except the forbiddance of the Leak queries.

If SH2 is the ciphertext of H(g
1

γ+xl+1 ), then B responds with the correct leak
query, so B properly simulates Game i. If SH2 is the ciphertext of a random
number, it correctly simulates Game i + 1. ��

Lemma 4. If the (l,m, t)-MSE-DDH assumption holds, where t− 1 ≥ P∗ ∩ I,
l = I − P∗ ∩ I, m = max |P∗|, then Game Q

stat≈ GameFinal.

Proof. Initially, the attacker output a target set P∗ = {ID∗
1 , . . . , ID

∗
|P∗|} of

identities that he wants to attack (the target authorized set), and a set I of
identities that he wants to corrupt, with |I| � l + t − 1 and |P∗ ∩ I| � t − 1.
Given the (l,m, t)-MSE-DDH instance with the bilinear group (p,G1,G2,GT , ê),
two coprime polynomials f and g of respective orders l and m with their pairwise
distinct roots (−x1, . . . ,−xl) and (−xl+t, . . . ,−xl+t+m−1), and given:

g0, g
γ
0 , . . . , g

γ�+t−2

0 , gα·γ0 , . . . , gα·γ
�+t

0 , g
k·γ·f(γ)
0

h0, h
γ
0 , . . . , h

γm−2

0 , hα·γ
0 , . . . , hα·γ2m−1

0 , h
k·g(γ)
0 , T,
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where T is either equal to ê(g0, h0)
k·f(γ) or a random elements from GT . We can

randomly choose xl+1, . . . , xl+t−1 from Z∗
p (different from other xi’s) and write

f , g and an additional function q as:

f(X) =

l∏
i=1

(X + xi), q(X) =

l+t−1∏
i=l+1

(X + xi), g(X) =

l+t+m−1∏
i=l+t

(X + xi).

The polynomial f corresponds to a set of l users not in the target set that can
be corrupted. The polynomial q corresponds to a set of t− 1 users of the target
set that can be corrupted. The polynomial g corresponds to the |P∗|− t+1 users
of the target set and the rest dummy keys used in the challenge phase, and the
users of the target set can be leaked by the leakage function specified by the

attacker. For i ∈ [1, l + t− 1], we set fi(γ) =
f(γ)·q(γ)

γ+xi
.

Setup: To generate the system parameters, the simulator B calculates g =

g
f(γ)·q(γ)
0 and sets

h = h0, u = g
α·γ·f(γ)·q(γ)
0 = gα·γ , v = e(g0, h0)

α·f(γ)·q(γ) = e(g, h)α.

The two latter formula can be computed from the MSE-DDH instance input,
since f · q is a polynomial of degree l + t− 1. B then sets the set D = {di}m−1

i=1

corresponding to dummy users:

– D∗ = {di}m+t−|P∗|−1
i=1 is a subset of {xi}l+t+m−1

l+t . This subset corresponds to
the dummy users included to complete the target set in the challenge phase
as mentioned above.

– {di}m−1
m+t−|P∗| is a set of random elements in Z∗

p.

Finally, B sets PK as the definition in the previous section.

Query: For each Join query with input IDi, B puts (x, IDi) ∈ L where:

– if IDi ∈ I ∩ P∗, B sets x as an “unused” element in {xi}l+t−1
l+1 .

– if IDi ∈ I − I ∩ P∗, B sets x as an “unused” element in {xi}l1.
– if IDi ∈ P∗ − I ∩ P∗, B sets x as an “unused” element in {xi}l+t+m−1

l+t .

– if IDi /∈ I ∪ P∗, B randomly picks a x /∈ {xi}l+t+m−1
i=1 in Zp.

When comes to the Leak query, B answers it using a random number. When

receiving the Corrupt query for xi, B computes the valid key g
1

γ+xi = g
fi(γ)
0

using the MSE-DDH problem instance and gives it to A.
Challenge: B picks a random bit b and generates a broadcast message for the
secret s∗b for a dummy set D∗:

C∗
1 = g

−k·γ·f(γ)
0 = u−k′

, C∗
2 = h

k·g(γ)
0 = hk′·α·

∏
xi∈P∗∪D∗ (γ+x), C∗

3 = T · s∗b ,
where k′ = k

α·q(γ) . B returns (C∗
1 , C

∗
2 , C

∗
3 ,D∗) to A.

The definition of GameFinal is the same as Game Q except for that instead
of sending vk

′ · s∗b to A, B sends vk
′ · R to the attacker, where R is a random

number. If T = e(g0, h0)
k·f(γ), then C∗

3 = vk
′ · s∗b which is the simulation of

Game Q. If T is a random number in GT , then C∗
3 is random in GT . Therefore

B simulates the GameFinal. ��
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Putting Them All Together. Following the above lemmas, we can easily get

GameReal
stat≈ GameFinal. Recall that the output of each game includes the

view of A at the end of experiment along with the challenger’s choice bit b, since
A’s guess b′ at the end of the game can be efficiently computed from the output
of each game. In the GameFinal, the view of A is independent of the random
bit b. Hence we have Pr[A wins] = 1

2 since the two games are indistinguishable
under the SXDH assumption the MSE-DDH assumption. ��
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Abstract. Secure Multiparty Computation (SMC) enables untrusting
parties to jointly compute a function on their respective inputs without
revealing any information but the outcome. Almost all techniques for
SMC support only integer inputs and operations. We present a secure
scaling protocol for two parties to map real number inputs into inte-
gers without revealing any information about their respective inputs.
The main component is a novel algorithm for privacy-preserving random
number generation. We also show how to implement the protocol using
Yao’s garbled circuit technique.

1 Introduction

For the last 30 years the field of privacy-preserving techniques for distributed
computation, also called Secure Multiparty Computation (SMC), has been grow-
ing. It offers solutions for multiple parties to compute functions without revealing
their respective inputs to each other. These techniques have come a long way
from the first theoretical ideas to practical solutions for problems such as elec-
tronic voting, auctions, data mining, network management and optimisation.

Almost all secure multiparty computation techniques have a message space
consisting of a finite set of integers and the operations they provide are only
defined over the integers. What if you want to engage in a privacy preserving
protocol with real numbers, or floating point approximations? You can either
extend a SMC technique to support fixed-point [1] or floating-point [2, 3] arith-
metic, or you create a mapping from the inputs into the integer space and then
use conventional SMC [4–6]. The first approach introduces more complexity and
limits the choice of techniques to just a few, the latter raises an interesting pri-
vacy question: How do you agree on a mapping without revealing information
about the inputs?

In this paper we present the first secure scaling protocol for two parties.
It enables them to agree on a mapping (by scaling) in a privacy-preserving
manner. The key building block for this protocol is a novel algorithm for privacy-
preserving random number generation. We also provide an efficient implemen-
tation of the protocol.
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2 Secure Multiparty Computation

Secure Multiparty Computation (SMC) protocols enable parties to carry out
distributed computation tasks without having to reveal their inputs to each
other. The most famous example is the millionaires problem: Two millionaires
want to find out who is richer without revealing their actual wealth to each
other. When SMC was introduced in 1982 by Yao [7], he used this example as a
motivation.

Yao’s Garbled Circuits. The earliest generic solution for SMC was proposed
by Yao in 1986 [8]. It is a constant-round protocol for securely computing a
two-party function while at the same time keeping the inputs private. Let Alice
and Bob be two parties holding the inputs x(A) and x(B) respectively and f be
a polynomial-time function. The first step is to view f as a Boolean circuit C.

Boolean Circuit: A Boolean circuit consists of wires and gates. The wires trans-
mit a value {0, 1} and the gates compute a Boolean function on their input wires,
and output the result to another wire. This wire may then be connected to the
input of another gate or be an output value of the circuit (Figure 1). Mathe-
matically we describe a circuit by a series of functions gi(α, β), α, β ∈ {0, 1},
gi : {0, 1}n → {0, 1}.

α β γ

g1

g2

δ = g2(g1(α, β), γ)

with α, β, γ, δ ∈ {0, 1}
and gi : {0, 1}2 	→ {0, 1}

Fig. 1. A Boolean circuit consisting of 2 two-input gates

Once the input wires to a gate are given values α, β, it is possible to compute
g1(α, β) and assign it to the output wire which becomes an input to g2(·, ·), etc.
The output of the circuit is given by the values of the output wires of the circuit.
Thus, computing the circuit C is essentially just allocating appropriate Boolean
values to all wires of the circuit.

Privacy: The values for some wires are provided by Alice, and others by Bob.
These represent private inputs that should not be leaked to the other party.
Likewise all intermediate values have to remain hidden, since they could reveal
information about the inputs. The only values learned should be the outputs.
The protocol works by having one party (say Alice) first generate a garbled
version of the circuit and then send it to Bob. To create the garbled circuit Alice
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first assigns random labels for the 0 and 1 states of all wires. She then uses
these labels as keys to encrypt the truth-tables of the gates and finally sends
the encrypted values to Bob. In this form it doesn’t leak any information to
Bob. However, he can obtain the output of the circuit by decrypting it, using
the labels given to him by Alice. In order to ensure that Bob learns nothing
more than the output itself, Bob is only given the labels for the actual input
values (not all possible inputs). He receives the labels for his input by running
an oblivious transfer protocol with Alice (See [9] for further details).

Security Model: Yao’s protocol for SMC is secure in the semi-honest model, i.e.,
parties are assumed to correctly follow the protocol, and there is no efficient
adversary that can extract more information from the transcript of the protocol
execution than is revealed by that party’s private input and the result of the
function. There are also extensions to the protocol which are secure against
certain types of active adversaries: (See Lindell and Pinkas [9] and the citations
therein).

Practicality: Recent contributions [10, 11] improved the efficiency of implemen-
tations of Yao’s protocol significantly.

Over the past few years several implementations for generic secure two-party
computation using garbled circuits have been developed [11–14]. They differ in
abstraction level, supported optimisation techniques and efficiency. We use [14]
because it allows construction of dynamic loops.

There are other protocols for secure multiparty computation, varying in as-
sumptions, security guaranties, number of supported parties, performance and
supported operations (see [15] for an overview). However, our protocol translates
naturally into a Boolean circuit.

3 Secure Scaling

Almost all secure multiparty computation techniques support only integers as
inputs and operations on the integers. To engage in a privacy preserving protocol
having real numbers, or floating point approximations, as inputs, you can define
a mapping from the real inputs into the integer space and then use conventional
SMC.

The obvious trivial approach to map real numbers to integers is scaling and
quantisation. Let r ∈ R be the real number input. Then i = �s ·r	 is the mapping
from r to i, where �·	 is the function that rounds to the nearest integer, and s
is a scaling factor the parties agree on.

It is easy to see that the scaling factor leaks information about the inputs,
since it has to be chosen such that all inputs are mapped into the finite set and
are still distinguishable. Each party can support a different set of scaling factors,
depending on their respective inputs. Revealing these sets to each other leaks
information. They want to agree on a scaling factor without having to reveal
any information about their supported sets other than they contain the chosen
scaling factor.
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We propose a Secure Scaling protocol to pick a scaling factor at random out of
the intersection of ranges given by two parties. The basic idea is to first compute
a secure set intersection and then, without revealing the intersection, pick an
element at random (see Section 4.4). While secure set intersection protocols are
readily available we propose the first protocol we know of to draw a random
number from a private range.

4 Drawing Random Numbers from a Private Range

We don’t want to reveal the range of the scaling factors, once it is computed
with the privacy-preserving set-intersection protocol. Instead we keep it in the
encrypted space and use it as the input to the random number algorithm. The
goal of this algorithm is to pick an element uniformly at random out of the range
without giving the participants any more information than the randomly drawn
element itself.

We first show the simple case where the range starts with 0 and has a power of
two elements. Then we allow for an arbitrary number of elements, still starting
with 0, and finally we present the algorithm where both bounds of the range are
arbitrary values.

4.1 Range N2m−1 = {0, 1, 2, . . . , 2m − 1}

The set N2m−1 = {0, 1, 2, . . . , 2m−1} is the set of integers that can be represented
by an m-bit number. If we choose m random bits, each with probability 1/2, the
binary number denoted by these bits will be uniformly distributed over N2m−1.
The algorithm combines random bits chosen by both parties, and then chooses
m of these.

Let the private input m come from a finite set I = {0, 1, . . . , n}, which is
agreed on by both parties, and, N2n−1 = {0, 1, . . . , 2n− 1} be the set of all n-bit
integers. Now both parties choose r(A), r(B) ∈R N2n−1, respectively, where ∈R
means chosen uniformly at random from the set. The algorithm first combines
the random n-bit inputs by the bitwise exclusive OR operation (XOR) to get
r, and then selects the m least significant bits of r by computing the output
x = r mod 2m.

Algorithm 1. urandom1: Drawing x randomly from {0, 1, 2, . . . , 2m − 1}
Inputs: (private) m ∈ I
Outputs: x = urandom1({0, 1, . . . , 2m − 1})

r ← r(A) XOR r(B) {r(A), r(B) ∈R N2n−1, where r(i) is provided by party i}
x ← r mod 2m

return x
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Correctness: It is easy to see that x ∈ {0, 1, . . . , 2m−1} since that is exactly the
co-domain of r mod 2m. We also have to show that x is a uniformly distributed
random variable over that range.

Lemma 1. If at least one of r(A) and r(B) is chosen uniformly at random out of
N2n−1 = {0, 1, . . . , 2n−1} then r = r(A) XOR r(B) is a random number uniformly
distributed over N2n−1.

Proof. Let N2n−1 = {0, 1, 2, . . . , 2n − 1} be the set of all integers that can be
represented by n bits. If r(A) is a random variable on N2n−1, then there exists a

unique random vector (r
(A)
1 , . . . , r

(A)
n ) on {0, 1}n such that r(A) =

∑n
i=1 2

i−1r
(A)
i .

If r(A) is uniformly distributed over N2n−1 then the r
(A)
i ’s are mutually inde-

pendent Bernoulli random variables with parameter 1/2. r = r(A) XOR r(B) can

now be written as r =
∑n

i=1 2
i−1ri with ri = r

(A)
i XOR r

(B)
i . Note that the XOR

operation returns 1 iff both arguments are different.
Assume that r(A) is uniformly distributed. Therefore

Pr[ri = 1|r(B)
i = 0] = Pr[r

(A)
i = 1] = 1/2

Pr[ri = 1|r(B)
i = 1] = Pr[r

(A)
i = 0] = 1/2.

Note that the value of r
(B)
i has no influence on Pr[ri = 1]. Thus Pr[ri = 1] =

Pr[ri = 0] = 1/2. XOR is a bitwise operation and the ri are mutually indepen-
dent and thus r is uniformly distributed over N2n−1. ��

Now x = r mod 2m can be rewritten as x =
∑m

i=1 2
i−1ri since the mod2m op-

eration selects the m least significant bits of r. The ri are mutually independent
Bernoulli random variables with parameter 1/2, hence x is a random variable
uniformly distributed over {0, 1, . . . , 2m − 1}.

Security: We want to keep the input m private. We will ensure that the parties
don’t learn it using the garbled circuit technique (see Section 5). What’s left to
show is that neither party can choose their input to manipulate the output. A
successful attack would distort the uniform distribution of the output. However,
we know from Lemma 1 that the output is uniformly distributed as long as at
least one input is uniformly distributed. So even if party A (or party B) deviates
from the protocol and deliberately chooses a specific value for r(A) (or r(B)) the
output will remain uniformly distributed.

4.2 Range Nq = {0, 1, . . . , q}
In this section, we relax the restriction that the size of the range must be an
exact power of two. Now we allow any range Nq = {0, 1, . . . , q} with q ∈ N. The
number of elements in that range is not necessarily a power of two and therefore
we can’t directly apply Algorithm 1.
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We use the acceptance-rejection method to constructing a Las Vegas type
algorithm that uses Algorithm 1 repeatedly until it produces a value in the
required range. To do this, we extend Nq to N2m−1 so that it is of the form of
Algorithm 1. That is, we choose the unique m ∈ N with 2m−1− 1 < q ≤ 2m− 1,
and then run the algorithm as described in Algorithm 2. This approach translates
naturally into a compact circuit with a number of gates that is linear in the input
size.

Algorithm 2. urandom2: Drawing x randomly from {0, 1, . . . , q}
Inputs: (private) q ∈ N2n−1

Outputs: x = urandom2({0, 1, . . . , q})
m ← �log2(q) + 1
repeat

x ← urandom1({0, 1, . . . , 2m − 1})
until x ≤ q
return x

Correctness: When the algorithm terminates x ∈R {0, 1, . . . , q} since the exit
condition ensures x ≤ q, and urandom1 produces non-negative numbers, and
x is uniformly distributed since acceptance-rejection sampling of a subset of a
uniform distribution is again uniformly distributed.

The number of iterations of the loop follows a geometric distribution. Let X
be a random variable describing how many iterations Algorithm 1 takes to get
a valid result. The probability that X ≤ k with k ∈ N is

Pr[X ≤ k] = 1− (1− Pr[x ≤ q])k.

The probability that the exit condition is fulfilled in one iteration is

Pr[x ≤ q] ≥ 2m−1 + 1

2m
>

1

2
,

because 2m−1 − 1 < q ≤ 2m − 1, and so Pr[X ≤ k] > 1− (1/2)k.
That means that even in the worst case the expected number of iterations is

less than 2, and the probability of less than 10 iterations is greater than 99.9%.
We illustrate the performance in Section 5.2.

Security: Again, neither party can distort the uniform distribution of the random
value by the same argument as for Algorithm 1.

4.3 Range Np,q = {p, p + 1, . . . , q}
In the most general case where the range is arbitrary we first shift it to zero and
then use Algorithm 2 to compute a random value and finally shift it back to the
initial range (See Algorithm 3 for details).
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Algorithm 3. urandom3: Drawing x randomly from {p, p+ 1, . . . , q}
Inputs: (private) p, q ∈ N2n

Outputs: x = urandom3({p, p+ 1, . . . , q})
m ← �log2(q − p) + 1
repeat

s ← urandom1({0, 1, . . . , 2m − 1})
until s ≤ q − p
return x = s+ p

Correctness and Security: Correctness and security follow from the same argu-
ments as for Algorithm 2.

4.4 Secure Scaling

Once we have a random number generator, we can build an efficient solution for
the secure scaling problem.

Both parties input their smallest (p(A), p(B)) and biggest (q(A), q(B)) possible
scaling factors. The first step is to determine the intersection of these ranges
by computing the boundaries of the intersection as p = max(p(A), p(B)) and
q = min(q(A), q(B)). In the second step we use the random number generator to
select an element out of {p, p+ 1, . . . , q}.

Algorithm 4. The Secure Scaling algorithm

Inputs: p(A), q(A), p(B), q(B) ∈ N2n−1

Outputs: s ∈R {p(A), p(A) + 1, . . . , q(A)} ∩ {p(B), p(B) + 1, . . . , q(B)}
p ← max(p(A), p(B))
q ← min(q(A), q(B))
s ← urandom3({p, p+ 1, . . . , q})
return s

Correctness and Security: Correctness and security follow from the same argu-
ments as for Algorithm 2. In the following section we show how to implement
all of the steps needed in Algorithm 4 using garbled circuits.

5 Secure Scaling with Boolean Circuits

We compute the secure scaling algorithm with Yao’s garbled circuit technique by
expressing it as a Boolean circuit. Boolean circuits are easily combined, so we will
show the subcircuits corresponding to the elementary operations in the algorithm.

We will describe the complexity of each subcircuit by the number of non-
linear two-input gates in relation to the number of bits l needed to represent the
inputs p(A), p(B), q(A), q(B). A linear input gate has an even number of zeros and
ones in the truth table. The linear gates for a constant output or the (negated)
identity of an input wire can be trivially optimised away, e.g. XOR gates can be
evaluated essentially for free [16], therefore the dominating factor for efficiency
of the circuits is the number of non-linear gates.
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– (min(q(A), q(B)), max(p(A), p(B))): To compute these we use the integer com-
parison circuit described by Kolesnikov et al. [17], it has a complexity of l
non-linear gates.

– (m← �log2(q − p) + 1	): In this step we don’t actually have to compute m,
because all we need later on is a bit mask to select the �log2(q − p) + 1	
least significant bits. Therefore we first compute t = q − p with the integer
subtraction circuit described in [17] and then we use a chain of OR-gates
(see Figure 2) to calculate the mask 2�(log2(t)+1� − 1. This circuit consists of
l − 1 non-linear gates.

y0

∨

t0. . .

. . .

. . .

∨ �

yl−3

tl−3

∨ �

yl−2

tl−2tl−1

�

yl−1

Fig. 2. A chain of OR gates to compute y = 2�log2(t)+1� − 1

– (r = r(A) XOR r(B)): r is just a bitwise XOR between r(A) and r(B). There-
fore the complexity is 0 non-linear gates.

– (s = r mod 2m): Computing modulo a power of two is the special case where
we just want to select the m least significant bits of r. We can achieve this
by computing a bitwise AND between r and 2m − 1, the bit-mask with the
m least significant bits set to 1. This is exactly the bit-mask we computed
before. The complexity is l non-linear gates.

– (repeat until s ≤ q − p): Note that this loop has an unknown number of iter-
ations, therefore it is impossible to generate the whole circuit to compute the
loop beforehand. However, in this case, where the exit condition of the loop
does not reveal any sensitive information, we can use a step-by-step approach.
That is, the creator generates the circuit for one round of the loop and then
the evaluator evaluates the circuit and reveals the result of the exit condition.
Depending on that result the creator then generates either another round of
the loop or goes on with the rest of the algorithm. Note that the disclosure of
the result of the exit condition gives neither party an advantage in inferring
the other parties input as long as their random inputs are kept private. This
privacy is guaranteed by the garbled circuit technique.
For the exit condition we can reuse q − p which we computed before. Thus
we only need an integer comparison circuit [17] which has a complexity of l
non-linear gates.

– (x = s+ p): We use the addition circuit of [17] to compute this sum. Again,
the complexity is l non-linear gates.



Conversion of Real-Numbered Privacy-Preserving Problems 139

Overall Complexity: Let X describe the number of iterations of the repeat-until
loop in Algorithm 2. Then the number of non-linear gates add up to 2l+2l−1+
X(2l) + l = 5l− 1 + 2lX . Since X follows a geometric distribution with success
probability 1/2 < p ≤ 1, we know that 1 ≤ E[X ] < 2, thus the expected overall
complexity is less than 9l.

5.1 Implementation

We chose the EFSFE framework of Henecka and Schneider [14] to implement our
example of the random scaling factor. Amongst other optimisation techniques
used in this framework the following are particularly useful for our application:

– Pipelined circuit execution: The circuit generation and evaluation processes
are overlapped in time [11] thereby removing the need to construct the com-
plete circuit before the evaluation, which is useful here because we cannot
build the circuit in advance, since the number of iterations is dynamic.

– Oblivious-transfer extension: In [18], Ishai et al. show how to efficiently ex-
tend Oblivious transfer. You first have to execute a certain amount of con-
ventional OTs and then by using this result you can generate a virtually
unlimited number of very efficient OTs. (The initial OTs take ∼ 0.5 s, and
then every additional OT takes only 3.5 μs).

The EFSFE framework contains a library of circuits for common arithmetic
which can be easily combined to describe the desired function. You can combine
circuits from and add circuits to the library by extending the CompositeCircuit
class. For example, the implementation of the chain of OR-gates circuit as shown
in Figure 2 is done by defining subcircuits and connecting them with wires as
follows:

public class NextBitMask extends CompositeCircuit {

protected void createSubCircuits() throws Exception {

for(int i=0; i<l-1; i++){

subCircuits[i] = OR_2_1.newInstance();

}

super.createSubCircuits();

}

protected void connectWires() throws Exception {

for(int i=0; i<l-1; i++){

inputWires[i].connectTo(subCircuits[i].inputWires, 0);

}

inputWires[l-1].connectTo(subCircuits[l-2].inputWires, 1);

for(int i=0; i<l-2; i++){

subCircuits[i+1].outputWires[0].connectTo(

subCircuits[i].inputWires, 1);

}

}

protected void defineOutputWires() { ... }
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5.2 Measurements

All our measurements were run on an iMac with a Core i3 3Ghz processor, run-
ning Mac OS X 10.6.8 and Java 1.6.0 31. We ran measurements for four different
input sizes (10, 100, 1000 and 10000 bits). For each size we ran the secure scaling
algorithm 10000 times with inputs (p(A), p(B), q(A), q(B)) generated uniformly at
random from the set of non-negative integers able to be represented by the given
number of bits. The resolution of the measurements is 1 ms, therefore the data
points for the 10 bit input size are not very precise and only included in the
graph to underline the overall trend. Figure 3 shows the distributions of the
runtimes for the different input sizes. The single red line denotes the median,
the blue box include the data points from the 25th to the 75th percentile and the
whiskers include all points up to 1.5 times the size of the blue box. The linear
circuit complexity with respect to input bit lengths is clear. Note also the very
strong right skewness of the data.

Figure 4 shows the complementary cumulative distribution functions of the
number of iterations for different input sizes. That is the probability that a run has
more than X iterations. We also added the worst case scenario for 1000 bit inputs,
that is the inputs are chosen such that the private range is 2999 and therefore the
probability that the exit condition of the loop is fulfilled is (2999+1)/21000 ≈ 1/2.
We see that the input size has little effect on the distribution. Even for the worst
case the probability for a high number of iterations drops rapidly.
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Fig. 3. Runtime distributions of the secure
scaling algorithm for different input sizes
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6 Conclusions

This paper presents a protocol to solve the secure scaling problem. Its main com-
ponent is, to our knowledge, the first privacy-preserving random number genera-
tor. We believe that it might be a useful component for other privacy-preserving
protocols. We show the practicality of our solution by an implementation of the
protocol.
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Abstract. Protocol for fair exchange of digital signatures is essential
in many applications including contract signing, electronic commerce, or
even peer-to-peer file sharing. In such a protocol, two parties, Alice and
Bob, would like to exchange digital signatures on some messages in a fair
way. It is known that a trusted arbitrator is necessary in the realization
of such a protocol.

We identify that in some scenarios, it is required that prior to the
completion of the protocol, no observer should be able to tell whether
Alice and Bob are conducting such an exchange. Consider the following
scenario in which Apple engages Intel in an exchange protocol to sign a
contract that terminates their OEM agreement. The information would
be of value to a third party (such as the stock broker, or other OEM
companies). If the protocol transcript can serve as an evidence that such
a communication is in progress, any observer of this communication,
including the employees of both companies, would be tempted to capture
the transcript and sell it to outsiders.

We introduce a new notion called perfect ambiguous optimistic fair
exchange (PAOFE), which is particularly suitable to the above scenario.
PAOFE fulfils all traditional requirements of cryptographic fair exchange
of digital signatures and, in addition, guarantees that the communica-
tion transcript cannot be used as a proof to convince others that the
protocol is in progress. Specifically, we formalize the notion of PAOFE
and present a rigorous security model in the multi-user setting under
the chosen-key attack. We also present a generic construction of PAOFE
from existing cryptographic primitives and prove that our proposal is
secure with respect to our definition in the standard model.

1 Introduction

Consider a scenario in which Apple engages Intel in a fair exchange protocol to
sign a contract that pays an amount of money for the early termination of the
use of Intel technology in the next generation of Macbook and iMac desktop
computers. In this situation, reveal of the contract, or leakage of the information
about this contract, prior to its effective date will be potentially harmful to
the companies. For instance, Apple may be reluctant to expose prematurely the
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changes it is introducing to its next generation products, which may possibly
affect the sales of the current generation of the products. On the other hand, the
potential termination of cooperation with Apple may lead to a decline of Intel’s
shares value. Therefore, it is necessary that the fair exchange protocol should
not leak any information about the signatures being exchanged.

To the best of our knowledge, ambiguous optimistic fair exchange (AOFE) [9]
is the closest cryptographic solution to the above problem. An AOFE protocol
comprises three parties, namely, signer Alice, verifier Bob, and a semi-trusted
third party known as the “arbitrator”. In a typically execution of an AOFE pro-
tocol, Alice delivers a “commitment” of her signature, called ambiguous partial
signature, to Bob. Upon successful verification of the ambiguous partial signa-
ture, Bob delivers his full signature to Alice. After verifying the full signature
from Bob, Alice sends to Bob her own full signature. This completes the protocol.

Bob can approach the arbitrator for assistance in the situation in which Al-
ice refuses to send her full signature at the end of the exchange protocol. The
ambiguous partial signature is designed in such a way that the arbitrator can
turn it into Alice’s full signature, which is indistinguishable to a “real” signature
created by Alice. In this way, as long as the arbitrator is trusted to carry out
its duty, Bob can always be assured he can obtain a full signature from Alice,
either from Alice or the arbitrator. In addition, the arbitrator is not required to
take part in typical executions of the protocol.

AOFE differs from traditional optimistic fair exchange (OFE) schemes, for
example [1, 3, 5–8, 10–12, 14], in the sense that the ambiguous partial signature
does not reveal the identity of its creator. Specifically, in OFE, everyone can
verify that Alice has created a commitment of her signature in the first step. This
may create an unfair situation to Alice as Bob can simply use Alice’s commitment
as a mean to his advantage. For instance, if Alice’s signature represents her
contract tender for Bob’s service, Bob can use Alice’s commitment as a way to
ask for a higher price from another party. On the other hand, the ambiguous
partial signature in AFOE has the extra property that it can be created by either
Alice or Bob. Thus, while Bob can be assured that this is Alice’s commitment
of her signature, he cannot convince anybody that this is Alice’s commitment
since he could have been the creator of the ambiguous partial signature as well.
Nonetheless, in AOFE, the arbitrator knows who is the creator of the ambiguous
signature.

Unfortunately, AOFE is inadequate to the aforementioned problem we raised
earlier. If AOFE is employed in the above scenario, Apple will transmit the
ambiguous partial signature to Intel on the contract of the termination of the
use of Intel technology in its next generation of computers as the first step of
the exchange. This ambiguous partial signature itself leaks sufficient information
to be valuable. The reason is that in this scenario, it does not matter who is
the signer of this contract. The valuable information to an outsider is that these
two companies are discussing about a potential termination, which is the partial
signature. The ambiguous partial signature created by Apple or Intel is sufficient
evidence to prove the authenticity of the information. At the first sight, one may
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think that providing a secure channel between the parties would be sufficient in
the above scenario. Nevertheless, this approach has a huge drawback. To build
a secure channel between any two parties is known to be extremely expensive,
and therefore, this approach will not be feasible in practice.

One key observation about the existing exchange protocol is that the ambigu-
ous partial signature in AOFE, as well as the regular partial signature in OFE,
is indeed publicly verifiable. This is not strictly a necessary functional require-
ment of an exchange protocol. In fact, this may have an undesirable effect as
illustrated in our case earlier. In general, if Bob is known to be trustworthy, for
example, if Bob is a government department, then malicious observer Oven who
obtains an ambiguous partial signature submitted to Bob knows the intention of
Alice. Besides, we make the observation that the arbitrator in AOFE knows who
the creator of an ambiguous partial signature is, and is capable of converting it
into a full signature. A high level of trust has to be placed on the arbitrator.

Hence, we introduce a new notion, called Perfect Ambiguous Optimistic Fair
Exchange (PAOFE), as a practical cryptographic solution to the aforementioned
scenario. Indeed, our solution builds on top of AOFE and it also fulfills all the
security requirements of an AOFE. In addition, PAOFE enjoys a new property
called Perfect Ambiguity in which the equivalent of an “ambiguous partial sig-
nature” leaks no information about the actual signer, intended recipient and the
signature itself, and not even in the view of the arbitrator. Thus, no outsider
can tell if an exchange is in progress.

1.1 Our Contributions

In this paper we make the following contributions.

1. We propose the notion of Perfect Ambiguous Optimistic Fair Exchange,
which allows a signer Alice to generate a partial signature in such a way
that no outsider, not even the arbitrator, is able to infer any useful informa-
tion about the signature. Indeed, a partial signature in PAOFE generated
by the signer Alice with Bob being the receiver is indistinguishable to a ran-
dom bit string chosen from the signature space. In other words, any partial
signature is indistinguishable to a partial signature on a random message
with respect to a random signer and receiver. To realize this notion, Bob’s
secret key is required in the verification of the partial signature in PAOFE.
Thus, only Bob is able to verify the partial signature, and an outsider gains
nothing about the transaction. Both the identities of the signer and receiver
and the content of an transaction are perfectly hidden.

2. We define a security model for PAOFE in the multi-user setting under
chosen-key attack. Our model captures the existing security requirements
for AOFE, namely, signer ambiguity, resolution ambiguity, security against
signers, security against verifiers and security against the arbitrator. In ad-
dition, PAOFE covers an additional requirement: perfect ambiguity. It is
required that any user can generate a partial signature whose distribution
is indistinguishable from that of a partial signatures generated by Alice. In



Perfect Ambiguous Optimistic Fair Exchange 145

other words, a specific partial signature generated by Alice with recipient
Bob is indistinguishable from a partial signature uniformly randomly chosen
from the whole signature space.

3. We propose a generic construction of PAOFE from two well established
cryptographic primitives, namely, AOFE and key-private encryption and
provide the security proof of our proposal in the proposed model. Our generic
construction works in the standard model and does not involve any extra
assumptions.

1.2 Paper Organization

In the next section, we review the notions and security models of public key
encryption and AOFE respectively. In Section 3, a formal definition of PAOFE,
together with the security model in the multi-user and chosen key setting is pro-
posed. Then, we propose a generic construction of PAOFE and also provide the
security proof of our scheme under our model in Section 4. Finally, we conclude
the paper in Section 5.

2 Building Blocks

Throughout the paper, the following notations are used. For a finite set S, s← S
denotes that an element is randomly chosen from S. By y ← AO(x), we mean
the algorithm A, on input x and having access to oracle O, outputs y. By x := y,

we mean variable x is assigned with the value of y. We use [A1(in1)→ out1]
P⇐⇒

[A2(in2) → out2] to denote that two PPT algorithms A1 and A2 outputs out1
and out2 respectively upon the completion of the protocol P in which A1 takes
as input in1 and A2 takes as input in2.

2.1 Encryption

A public key encryption scheme E consists of three algorithms: E = (Kg,Enc,Dec).
We consider indistinguishability of encryptions against adaptive chosen cipher-
text attacks, denoted by IE-CCA [2]. It is identical to the more widely used notion
IND-CCA [4]. Here we just adopt the notion IE-CCA, as the authors did in [2].
We define the adversary’s advantage IE-AdvEA(k) as

∣∣∣∣Pr [b = b̃

∣∣∣∣ (ek, dk)← Kg(1κ), (m0,m1, α)← AODec(ek, find),

b← {0, 1}, cb ← Encek(mb), b̃← AODec(cb, α, guess)

]
− 1

2

∣∣∣∣ .
E is said to be IE-CCA secure if the function IE-AdvEA(k) is negligible for any
PPT adversary A.

To hide the information about the public key under which an encryption is
conducted, we consider indistinguishability of keys under adaptive chosen cipher-
text attacks, denoted by IK-CCA [2]. For an efficient algorithm A, we define the
adversary’s advantage IK-AdvEA(k) as
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∣∣∣∣∣∣Pr
⎡⎣b = b̃

∣∣∣∣∣∣
(ek0, dk0)← Kg(1κ), (ek1, dk1)← Kg(1κ),
(m,α)← ADdk0

(·),Ddk1
(·)(ek0, ek1, find), b← {0, 1},

cb ← Encekb
(m), b̃← ADdk0

(·),Ddk1
(·)(cb, α, guess)

⎤⎦− 1

2

∣∣∣∣∣∣ .
E is said to be IK-CCA secure if the function IK-AdvEA(k) is negligible for any
PPT adversary A.

To guarantee both the message-privacy and key-privacy properties at the same
time, we combine the above two security notions into one.

Definition 1. An encryption scheme E consisting of three algorithms E = (Kg,
Enc, Dec) is said to be IE-IK-CCA secure if for any probabilistic polynomial-time
algorithm A, the advantage of A AdvIE-IKA (κ) is negligible in κ, where AdvIE-IKA (κ)
is defined as∣∣∣∣∣∣Pr

⎡⎣b = b̃

∣∣∣∣∣∣
(ek, dk)← Kg(1κ), (m,α)← AODec(ek, find), b← {0, 1},

cb ←
{
Encek(m) if b = 0
c′ ← C if b = 1

, b̃← AODec(cb, α, guess)

⎤⎦− 1

2

∣∣∣∣∣∣ .
where C is the whole ciphertext space with respect to any message and any public
key, and A is allowed invoke the decryption oracle ODec(·) at any point with the
only restriction of not querying cb during the guess stage.

It is easy to see that any public key encryption scheme that is both IE-CCA secure
and IK-CCA secure will be IE-IK-CCA secure. Since Cramer-Shoup encryption
scheme [4] is both IE-CCA secure and IK-CCA secure [2], it is IE-IK-CCA secure.

2.2 Ambiguous Optimistic Fair Exchange

We review the notion and security model of the ambiguous optimistic fair ex-
change protocol introduced in [9].

Definition 2. An ambiguous optimistic fair exchange scheme involves the users
(signers and verifiers) and the arbitrator, and consists of the following (proba-
bilistic) polynomial-time algorithms:

– PMGen: On input 1κ where κ is a security parameter, it outputs a system
parameter PM .

– SetupTTP: On input PM , the algorithm generates a secret key ASK, and a
public key APK of the arbitrator.

– SetupUser: On input PM and (optionally) APK, it outputs a secret/public
key pair (SK,PK). For a user Ui, we use (SKi, PKi) to denote the user’s
key pair.

– Sig and Ver: Sig(M,SKi, PKi, PKj, APK), outputs a (full) signature σ on
M of user Ui with the designated verifier Uj, where message M is chosen
by user Ui from the message space M defined under PKi, while Ver(M , σ,
PKi, PKj, APK) outputs ! or ⊥, indicating σ is Ui’s valid full signature
on M with the designated verifier Uj or not.
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– PSig and PVer: These are partial signing and verification algorithms respec-
tively. PSig(M,SKi, PKi, PKj, APK) outputs a partial signature σP , while
PVer(M,σP ,PK, APK) outputs ! or ⊥, where PK = {PKi, PKj}.

– Res: This is the resolution algorithm. Res(M,σP , ASK,PK), where PK =
{PKi, PKj}, outputs a full signature σ, or ⊥ indicating the failure of re-
solving a partial signature.

Resolution ambiguity property states that any “resolved signature” Res(M , PSig
(M,SKi, PKi, PKj, APK), ASK, {PKi, PKj}) is computationally indistin-
guishable from the “actual signature” Sig(M , SKi, PKi, PKj, APK).

The security of an AOFE scheme consists of four aspects: signer ambiguity, secu-
rity against signers, security against verifiers, and security against the arbitrator.

SIGNER AMBIGUITY. We require that any PPT distinguisher D succeeds with
at most negligible probability greater than 1/2 in the following experiment.

PM ← PMGen(1k)

(ASK,APK)← SetupTTP(PM)

(M, (SK0, PK0), (SK1, PK1), δ) ← DORes(APK)

b ← {0, 1}
σP ← PSig(M,SKb, PKb, PK1−b, APK)

b′ ← DORes(σP , δ)

success of A := [b′ = b

∧(M,σP , {PK0, PK1}) �∈ Query(D,ORes)]

where δ is D’s state information, oracle ORes takes as input a valid partial sig-
nature σP of user Ui on message M with respect to verifier Uj (i.e. (M , σP ,
PKi, PKj) such that PVer(M , σP , {PKi, PKj}, APK) = !), and outputs a
full signature σ on M under PKi, PKj, and Query(D,ORes) is the set of valid
queries D issued to the resolution oracle.

SECURITY AGAINST SIGNERS. We require that any PPT adversary A suc-
ceeds with at most negligible probability in the following experiment.

PM ← PMGen(1k)

(ASK,APK)← SetupTTP(PM)

(SKB, PKB)← SetupUser(PM,APK)

(M,σP , PKA)← AOB
PSig,ORes(APK,PKB)

σ ← Res(M,σP , ASK, {PKA, PKB})
success of A := [PVer(M,σP , {PKA, PKB}, APK) = !

∧ Ver(M,σ, PKA, PKB, APK) = ⊥
∧ (M,PKA) �∈ Query(A, OB

PSig)]

where oracle ORes is described in the previous experiment, oracle OB
PSig takes as

input (M,PKi) and outputs a signature on M with respect to PKi and PKB
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generated using SKB, and Query(A, OB
PSig) is the set of queries made by A to

oracle OB
PSig.

SECURITY AGAINST VERIFIERS. We require that any PPT adversary A
succeeds with at most negligible probability in the following experiment.

PM ← PMGen(1k)

(ASK,APK)← SetupTTP(PM)

(SKA, PKA) ← SetupUser(PM,APK)

(M,σ, PKB) ← AOPSig,ORes(APK,PKA)

success of A := [Ver(M,σ, PKA, PKB, APK) = !
∧ (M, ·, {PKA, PKB}) �∈ Query(A, ORes)]

where oracle ORes is described in the experiment of signer ambiguity, Query(A,
ORes) is the set of queries made by A to oracle ORes, and oracle OPSig takes as
input (M,PKj) and outputs a signature on M with respect to PKA and PKj

generated using SKA.

SECURITY AGAINST THE ARBITRATOR. We require that any PPT adver-
sary A succeeds with at most negligible probability in the following experiment.

PM ← PMGen(1k)

(APK,ASK∗) ← A(PM)

(SKA, PKA) ← SetupUser(PM,APK)

(M,σ, PKB) ← AOPSig(ASK∗, APK,PKA)

success of A := [Ver(M,σ, PKA, PKB, APK) = !
∧ (M,PKB) �∈ Query(A, OPSig)]

where ASK∗ is A’s state information, which might not be the corresponding
private key of APK, oracle OPSig is described in the previous experiment, and
Query(A, OPSig) is the set of queries made by A to oracle OPSig.

3 Perfect Ambiguous Optimistic Fair Exchange

In a PAOFE scheme, we require that given a partial signature, no outsider should
be able to learn any information about it. Specifically, the message on which the
partial signature was generated, in addition to the identities of both the signer
and the receiver should be completely hidden. To achieve this, we require that
the verification algorithm in PAOFE to involve the secret key of the receiver,
rather than the case that the partial signature is publicly verifiable in AOFE.
Besides, we extend the resolution algorithm in AOFE to the resolution protocol
in PAOFE. Since an algorithm can be seen as a non-interactive protocol, our
model is more general and could capture a larger class of schemes.

Definition 3. A perfect ambiguous optimistic fair exchange scheme involves
the users (signers and verifiers) and the arbitrator, and consists of the following
(probabilistic) polynomial-time algorithms/protocols:
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– PMGen: On input 1κ where κ is a security parameter, this algorithm out-
puts a system parameter PM.

– SetupTTP: On input PM, the algorithm generates a secret key ASK, and a
public key APK of the arbitrator.

– SetupUser: On input PM and (optionally) APK, it outputs a secret/public
key pair (SK,PK). For a user Ui, we use (SKi,PKi) to denote the user’s key
pair.

– Sig and Ver: Sig(M , SKi, PKi, PKj, APK), outputs a (full) signature σ
on message M of user Ui with the designated verifier Uj, while Ver(M , σ,
PKi, PKj, APK) outputs ! or ⊥, indicating σ is Ui’s valid full signature on
M with the designated verifier Uj or not.

– PSig and PVer: These are partial signing and verification algorithms re-
spectively. PSig(M, SKi, PKi,PKj ,APK), run by a signer Ui, outputs a par-
tial signature σP , while PVer(M,σP , SKj ,PKi, PKj ,APK), run by a verifier
Uj, outputs ! or ⊥.

– Res: This is a resolution protocol between the verifier Uj and the arbitra-
tor, involving a pair of interactive algorithms (ResV ,ResT ). ResV (M , σP ,
SKj, PKi, PKj, APK), run by the verifier, outputs a full signature σ, or ⊥
indicating the failure of resolving a partial signature.

Resolution ambiguity property states that any “resolved signature” ResV (M , PSig
(M, SKi, PKi, PKj, APK), SKj, PKi, PKj, APK) is computationally indistin-
guishable from the “actual signature” Sig(M , SKi, PKi, PKj, APK).

3.1 PAOFE Models

– Perfect Ambiguity: Intuitively, we require that no outsiders, even the ar-
bitrator, should be able to learn any information about a partial signature
such as the content of the message or the identities of the signer and receiver.
This ensures the privacy for both the signer and the receiver. To achieve this
property, we require that in the view of an outsider, the partial signature is
indistinguishable to a signature randomly sampled from the signature space.
Formally, we require no PPT distinguisher A succeeds with non-negligible
probability in the following experiment:

PM← PMGen(1k)

(APK,ASK∗)← A(PM)

(SKB ,PKB)← SetupUser(PM,APK)

(M, (SKA,PKA), Υ )← AOB
PSig,O

B
FakePSig,O

B
PVer(ASK∗,APK,PKB)

b← {0, 1}
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σP ←
{
PSig(M, SKA,PKA,PKB ,APK) if b = 0
σ′
P ← S if b = 1

b′ ← AOB
PSig,O

B
FakePSig,O

B
PVer(σP , Υ )

success of A := [b′ = b

∧(M,σP ,PKA) �∈ Query(A, OB
PVer)]

where Υ is A’s state information, S is the whole partial signature space,
oracle OB

PSig takes as input (M,PKj) and outputs a partial signature of

PKB’s on M with the receiver’s public key being PKj , oracle OB
FakePSig

takes as input (M,PKi) and returns a fake partial signature of user Ui’s
generated using SKB on M with the receiver’s public key being PKB, oracle
OB

PVer takes as input a partial signature σP of user PKi’s on message M
with the verifier being PKB, i.e., (M,σP ,PKi), and outputs ! or ⊥, and
Query(A, OB

PVer) is the set of queries A issued to oracle OB
PVer. Note that in

previous ambiguous optimistic fair exchange models, the partial verification
oracleOB

PVer was not provided, as a partial signature is publicly verifiable. To
cope with the change in PAOFE that partial signature is no longer publicly
verifiable, we provide a partial signature verification oracle to the adversary
in the security model.

– Signer Ambiguity: Informally, signer ambiguity means that B may forge
partial signatures that look indistinguishable from those generated by A.
Formally, we require no PPT distinguisher A succeeds with non-negligible
probability in the following experiment:

PM ← PMGen(1k)

(ASK,APK) ← SetupTTP(PM)

(M, (SK0,PK0), (SK1,PK1), Υ ) ← AORes(APK)

b ← {0, 1}

σP ←
{
PSig(M, SK0,PK0,PK1,APK), b = 0
FakePSig(M, SK1,PK0,PK1,APK), b = 1

b′ ← AORes(σP , Υ )

success of A := [b′ = b

∧ (M,PK0,PK1) �∈ Query(A, ORes)

where Υ is A’s state information, oracle ORes takes an input (M,PKi,PKj)
and starts an execution of the Res protocol with the adversary running
the interactive algorithm ResR , algorithm FakePSig is a fake partial sig-
nature signing algorithm and FakeSig(M, SKj ,PKi,PKj ,APK) outputs a
forged partial signature σP on M of user Ui with the designated verifier Uj

generated using SKj , and Query(A, ORes) is the set of queries A issued to
the resolution oracle ORes.

– Security against Signers: We require that any PPT adversary A, who
models a dishonest signer, succeeds with at most negligible probability in
the following experiment:
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PM ← PMGen(1k)

(ASK,APK) ← SetupTTP(PM)

(SKB,PKB) ← SetupUser(PM,APK)

(M,σP ,PKA) ← AOB
PSig,O

B
FakePSig,O

B
PVer,ORes(APK,PKB)

InputT := (M,ASK,PKA,PKB)

InputV := (M,σP , SKB,PKA,PKB,APK)

[ResT (InputT )→ stateT ]
Res⇐⇒ [ResV(InputV)→ σ]

success of A := [PVer(M,σP , SKB,PKA,PKB,APK) = !
∧ Ver(M,σ,PKA,PKB,APK) = ⊥
∧ (M,PKA) �∈ Query(A, OB

FakePSig)]

where all the four oracles are described in the previous experiments, Query(A,
OB

FakePSig) is the set of queries made by A to oracle OB
FakePSig. Note that

the adversary is not allowed to corrupt PKB, otherwise it can easily success
in the experiment by simply using SKB to produce a fake partial signature
under public keys PKA, PKB and outputting it.

– Security against Verifiers: We require that any PPT adversary A, who
models a dishonest verifier, succeeds with at most negligible probability in
the following experiment:

PM ← PMGen(1k)

(ASK,APK) ← SetupTTP(PM)

(SKA,PKA) ← SetupUser(PM,APK)

(M,σ,PKB) ← AOPSig,OFakePSig,OPVer,ORes(APK,PKA)

success of A := [Ver(M,σ,PKA,PKB,APK) = !
∧ (M,PKA,PKB) �∈ Query(A, ORes)]

where oracle ORes is described in the previous experiments, oracle OPSig

takes as input (M,PKj) and outputs a partial signature of PKA’s on M with
the receiver’s public key being PKj generated using SKA, oracle OFakePSig

takes as input (M,PKi) and returns a fake partial signature of user Ui’s
generated using SKA on M with the receiver’s public key being PKA, oracle
OPVer takes as input a partial signature σP of user Ui’s on message M with
the receiver’s public key being PKA, i.e., (M,σP ,PKi), and outputs ! or ⊥,
and Query(A, ORes) is the set of queries A issued to the resolution oracle.

– Security against the Arbitrator: We require that any PPT adversaryA,
who models a dishonest arbitrator, succeeds with at most negligible proba-
bility in the following experiment:

PM ← PMGen(1k)

(APK,ASK∗) ← A(PM)

(SKA,PKA) ← SetupUser(PM,APK)
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(M,σ,PKB) ← AOPSig,OFakePSig,OPVer(ASK∗,APK,PKA)

success of A := [Ver(M,σ,PKA,PKB,APK) = !
∧ (M,PKB) �∈ Query(A, OPSig)]

where all the three oracles are described in the previous experiment, ASK∗

is A’s state information, which might not be the corresponding secret key of
APK, and Query(A, OPSig) is the set of queries A issued to oracle OPSig.

4 Generic Construction

In this section, we will present a generic construction of PAOFE. Let Γ =
(PMGen, SetupTTP, SetupUser, Sig, Ver, PSig, PVer, Res) be an ambiguous opti-
mistic fair exchange scheme. Let E = (Kg, Enc, Dec) be a public key encryption
scheme that is IE-IK-CCA secure.

A perfect ambiguous optimistic fair exchange can be constructed as follows:

– PMGen: This algorithm calls Γ.PMGen(1κ) → PM where κ is a security
parameter, and outputs PM := PM .

– SetupTTP: The arbitrator runs Γ.SetupTTP(PM) → (ASK,APK), and sets
(ASK,APK) := (ASK,APK).

– SetupUser: Each user Ui runs Γ.SetupUser(PM, APK) → (SKi, PKi) and
E .Kg(1κ)→ (eki, dki) respectively, and sets (SKi, PKi) := ((SKi, dki), (PKi,
eki)).

– PSig: To partially sign a messageM with the verifier Uj , Ui runs Γ.PSig(M ||
PKi|| PKj , SKi, PKi, PKj, APK) → σ′

P and then encrypts it under Uj ’s
public encryption key ekj by running c = E .Encekj (σ

′
P ). The partial signature

is set as σP := c.
– PVer: On receiving a partial signature σP on message M from the signer

Ui, user Uj decrypts it using its own decryption key dkj , i.e., σ
′
P = E .Decdkj

(σP ), and then checks if Γ.PVer(M ||PKi||PKj , σ
′
P , PKi, PKj, APK) = !. If

so, it accepts; otherwise, it rejects.
– Sig: To fully sign a message M for the verifier Uj, Ui calls Γ.Sig(M || PKi||
PKj , SKi, PKi, PKj, APK)→ σ and sends σ to Uj .

– Ver: On receiving a full signature σ from Ui, Uj outputs Γ.Ver(M || PKi||
PKj , σ, PKi, PKj , APK).

– Res: Given a partial signature σP on message M from the signer Ui, user
Uj decrypts it using its own decryption key dkj , i.e., σ′

P = E .Decdkj (σP ),
and sends (M,σ′

P ,PKi,PKj) to the arbitrator.The arbitrator first checks the
validity of σ′

P by running Γ.PVer(M || PKi|| PKj , σ′
P , PKi, PKj, APK). If

it’s invalid, it returns ⊥ to Uj . Otherwise, it returns Γ.Res(M || PKi|| PKj ,
σ′
P , ASK, PKi, PKj) to Uj .

4.1 Security Analysis

Our generic construction is secure according to the model in Section 3.1. Detailed
security analysis is presented in the full version of this paper [13].
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5 Conclusion

We proposed the notion of perfect ambiguous optimistic fair exchange, and gave
a formal security model. We then proposed a generic construction of PAOFE,
and proved its security under the proposed model in the standard model.

Our generic construction involves an encryption and an AOFE scheme and
thus, it is bounded to be less efficient than AOFE. We leave it as our future work
to construct more efficient PAOFE schemes, probably without directly using any
encryption scheme.
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Abstract. We consider the following problem: a user with either limited
resources or limited expertise wants to outsource its private documens,
which are associated with noisy keywords, to an untrusted cloud server in
a private manner, while maintaining the ability to retrieve the stored data
in a fault-tolerant manner. For example, the organization of homeland
security wishes to outsource its private criminal database comprised of a
set of criminal dossiers to the cloud server in encrypted form and hopes
to retrieve encrypted dossiers by biometrics.

In this paper, we first present a general framework for searching on
private-key encrypted data by noisy keywords in a fault-tolerant man-
ner. Then we propose a concrete scheme which is proved secure against
an adaptive adversary under well-defined security definition. It achieves
search in two rounds of communication, and requires an amount of work
from the server that is linear in the number of noisy keywords.

Keywords: Noisy Keyword, Searchable Encryption, Storage
Outsourcing.

1 Introduction

Consider a cloud data system: a user with either limited resources or limited
expertise wishes to outsource its private data to an untrusted cloud server in a
private manner, while maintaining the ability to retrieve the stored data. The
informal security requirement for this system claims that the cloud server should
not learn any useful information about the data that it stores for the user and the
queried words. A feasible solution to preserve privacy is to design a searchable
encryption scheme such that: 1) the records are stored in disguised/encrypted
form. 2) the key employed to encrypt the data is kept secret from the cloud
server. 3) the records can be searched for securely and efficiently[21].

Motivated by the practical relevance of this problem, the research community
has mainly considered two models for searching with privacy (see the related work
for a detailed description) quite extensively and presented a number of techniques
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that vary in costs and the levels of security guarantees, e.g. [1–7, 14, 15, 17, 19–21].
Unfortunately, except[14, 5] all of solutions above that only support exact key-
word search do not apply to the situation where the keywords associated with the
records are noisy data. For example, the organization of homeland security wishes
to outsource its private criminal database comprised of a set of criminal dossiers
to the cloud server in encrypted form and hopes to retrieve encrypted dossiers by
biometrics whenever. As we know, biometric traits are the deciding factors to rec-
ognize a person’s identity by using special features such as face, finger-prints, iris,
voice, DNA, and so on. However, biometric data are noisy, even two readings of
the same biometric source are rarely identical. Therefore, exact-match search over
biometric data does not work. It seems that searching on encrypted fuzzy data in
a private manner is much more difficult. To address this problem we present a
solution for privacy-preserving noisy-keyword-based search on remote encrypted
data in a fault-tolerant manner.

1.1 Related Work

Various methods have been proposed for searching on encrypted data. The exist-
ing solutions can be divided into two classes according to the models of searching
on encrypted data with privacy.

Searching on private-key encrypted data. In this setting, the user itself en-
crypts the database and uploads it to the server so that only somebody holding
the private key can obtain the records it retrieves. Solution in this model can
be realized with optimal security by using the work of Goldreich and Ostrovsky
about oblivious RAM in [12], which hides the identities of the data items being
accessed from a remote server. Because of the overwhelming cost of the oblivious
RAM protocol (see the analyse in [18]), it was always quoted as a theoretical
solution that was clearly infeasible in practice. Compared with the method of
[12], Song et al.[20] presented a solution with little communication in one round
of interaction. However, their construction is not secure against statistical anal-
ysis. In [6], Chang and Mitzenmacher proposed a scheme based on index. In
their scheme, the overhead required for a query is proportional to the number of
files. In [7], Curtmola et al. presented two solutions, in which the server’s search
time is optimal but updates to the index are inefficient. The authors also con-
sidered adaptive security of their schemes. Li et al. [14] provided a solution for
privacy-preserving fuzzy search on encrypted data. To achieve fuzzy search, the
user constructs a wildcard-based fuzzy keyword set for each keyword according
to some edit distance before outsourcing data, which incurs extra large storage.
There also exists other solutions in this model, however, almost all of existing so-
lutions except [14] do not apply to the situation where the keywords associated
with the records are noisy data. Our goal is to design an efficient and secure
noisy-keyword-based searchable encryption scheme in a fault-tolerant manner
under this model.

Searching on public-key encrypted data. In this setting, the party who searches
over the data can be different from the party that generates it. In other words,
anyone with access to a party’s public key can add encrypted data to the
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database, but only the party holding the decryption key can decrypt and re-
trieve. As far as we know, solution in this model was proposed for the first time
by Boneh et al. in [2]. The scheme in [2] reveals the users access pattern. In
[3], Boneh et al. presented a solution that guarantees the complete privacy of
queries by sacrificing efficiency. Bellare et al.[1] proposed fast search schemes in
the random oracle model. Since the encryption algorithm they utilized is deter-
ministic, their constructions provide weak security guarantees. Bringer et al.[5]
described a primitive called Public Key Error-Tolerant Searchable Encryption
and applied it to biometric identification. In addition, some works about more
complex search have been studied such as range queries[4, 19], join queries[15]
and conjunctive searches[17, 4].

1.2 Our Contribution

We propose a general framework for noisy-keyword-based searchable private-key
encryption in a fault-tolerant manner. This general scheme allows to search on
encrypted/disguised data with a noisy keyword. In addition, different from all
the previous schemes, which use the same private key to encrypt all documents,
our scheme utilizes the fuzzy extractor, which can extract a uniformly random
string ki from each noisy keywords wi in a noise-tolerant way. The extracted ki
is used to encrypt the documents which are associated with noisy keyword wi.
The advantage follows the fact that our scheme does not store the extracted ki.
Instead, the noisy keyword itself effectively acts as the key, and only when the
”correct keyword” is presented will the documents be decrypted. Therefore, if a
ki is leaked for some reason, the privacy of the documents that are not labeled
with wi is still preserved. Another important notion we employ is secure sketch,
which can be used to construct the fuzzy extractor.

In accordance with the simulation-based security definition presented in [7]
and the real condition in noisy-keyword-based search, we present a notion named
match pattern, and use it in security proof. Compared with the notion of search
pattern, which refers to the information whether searches are for the same word
or not[7], match pattern indicates how well the queried words match the noisy
keywords.

We present a concrete scheme which is proved secure against an adaptive ad-
versary under the simulation-based security definition presented in [7]. It achieves
search in two rounds of interaction, and requires an amount of work from the
server that is linear in the number of noisy keywords. Our idea comes from the
SSO/Approx/Squ protocol proposed by Du and Atallah in [10], where they
address the problem that a user, who outsources its database comprised of N
keywords to the server, wants to know which keyword in the database is closest
to the query string x. We use this protocol as a building block in our concrete
scheme.

Organization. The remainder of this paper is structured as follows. In Sec-
tion 2 we introduce the notions of secure sketch and fuzzy extractor. In Section
3 we present a general framework for noisy-keyword-based searchable private-key
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encryption and describe its security requirement. Section 4 describes a concrete
scheme, argues its correctness and security. We consider performance issues in
Section 5. Finally, Section 6 concludes the paper.

2 Useful Tools

2.1 Preliminaries

If X is a random variable, we denote the probability distribution over the range
of the variable by X for simplicity. We denote the uniform distribution over
binary strings of length l by Ul. For a set A, the notation a ←r A means a is
chosen uniformly at random from A. For a matrix B, the rank of B is denoted
by Rank(B).

The Hamming distance between two strings of equal length is the number
of positions at which the corresponding symbols are different. The edit distance
between two strings is the number of operations required to transform one string
into the other. The set difference between two sets is the size of the symmetric
difference of the two sets.

The min-entropy H∞(X) of a random variable X is −log(maxxPr(X = x)).
A random variable with min-entropy at least m is called an m-source. We
define average min-entropy of X given Y to be the logarithm of the aver-
age probability of the most likely value of X given Y , namely H̃∞(X |Y ) =

−log(Ey←Y [2
−H∞(X|Y )]). The statistical distance between two probability

distributions X and Y is defined as SD[X,Y ] = 1
2

∑
v |P[X = v] − P[Y = v]|.

We use X ≈ε Y to denote that X and Y are at distance at most ε.[9]

2.2 Secure Sketch and Fuzzy Extractor

The following descriptions and definitions are based on [9, 8]. LetM be a metric
space with distance function dis. t is a threshold value. Informally, a secure sketch
allows precise reconstruction of a noisy input w ∈ M from any w′ close to w
without revealing much about w.

Definition 1. An (m,m′, t)-secure sketch is a pair of efficient randomized pro-
cedures (SS,Rec) such that the following hold:

1. The sketching procedure SS on input w ∈ M returns a string s ∈ {0, 1}∗.
The recovery procedure Rec takes as input an element w′ ∈ M and s ∈ {0, 1}∗.

2. Correctness: If dis(w,w′) ≤ t, then Rec(w′, SS(w)) = w.
3. Security: For any m-source overM, the min-entropy of W given s is high:

For any (W,E), if H̃∞(W |E) ≥ m, then H̃∞(W |SS(W ), E) ≥ m′.

Next we present the definition of fuzzy extractor. As opposed to secure sketch,
the goal of fuzzy extractor is not to recover the original noisy input, but to
extract a close-to-uniform string R from w and then reproduce R exatcly from
any w′ that is close to w. The reproduction is done with the help of the helper
string P that is generated during the initial extraction procedure.
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Definition 2. An (m, l, t, ε)-fuzzy extractor is a pair of efficient randomized
procedures (Gen,Rep) such that the following hold:

1. Given w ∈ M, Gen outputs an extracted string R ∈ {0, 1}l and a helper
string P ∈ {0, 1}∗. Rep takes as input an element w′ ∈ M and a string P ∈
{0, 1}∗.

2. Correctness: If dis(w,w′) ≤ t and (R,P )← Gen(w), then Rep(w′, P ) = R.
3. Security: For all m-sources W overM, the string R is nearly uniform even

given P; that is, if H̃∞(W |E) ≥ m, then (R,P,E) ≈ε (Ul, P, E).

A secure sketch can be used to construct a fuzzy extractor that extracts a key by
combining the sketch with a strong randomness extractor, such as the universal
hash functions which extract well even from conditional min-entropy.

Lemma 1. Suppose we compose an (m,m′, t)-secure sketch (SS,Rec) for a space
M and a universal hash function Ext: M → {0, 1}l as follows: In Gen,choose
a random i and let P = (SS(w), i) and R = Ext(w; i); let Rep(w′, (s, i)) =
Ext(Rec(w′, s), i). The result is an (m, l, t, ε)-fuzzy extractor with l = m′ + 2 −
2log(1/ε).

Remark. It is noting that: 1)There exist many concrete constructions of secure
sketch and fuzzy extractor for the Hamming distance, set difference, edit distance
and other notions of distance, e.g. [9, 16]. 2) The concrete constructions of secure
sketch and fuzzy extractor are not our goal, we use them as building blocks
to construct our scheme. 3)In our general framework we do not assume any
particular metrics to measure the closeness between w′ and w.

3 General Framework

3.1 Definition for Noisy-Keyword-Based Searchable Private-Key
Encryption

We begin by defining a general framework for searching on encrypted data by
noisy keywords in a fault-tolerant manner. A user owns a private document
set D = {D1, · · · , DN}, each document is associated with corresponding noisy
keyword. We consider an honest-but-curious server in the sense that it correctly
follows the protocol specification while it attempts to derive as much information
as possible from user’s queries and access patterns.

In the following definitions, we use id(Di) to denote the identifier of the docu-
ment Di, and threshold to denote the predetermined threshold value. Let δ(D)
denote the set of all noisy keywords in D. If dis(x,wi) ≤ threshold, we refer to
x and wi as synonyms. W.l.o.g, we assume that for a noisy keyword wi ∈ δ(D),
if x is a synonym of wi, then x is not synonymous with all the other noisy key-

words in δ(D), furthermore, it is evident that dis(x,wi) = min
|δ(D)|
j=1 dis(x,wj).

We use μ(wi) to denote the set of all the synonyms of wi, and δ′(D) to denote⋃|δ(D)|
i=1 μ(wi). Let D(wi) be the set of identifiers of documents in D that are
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labeled with noisy keyword wi. For some queried word xi ∈ δ′(D), if xi is syn-
onymous with wj , then D(xi) = D(wj). We denote the set of ciphertexts of all
documents in D by C=(c1, · · · , cN ) and the set of ciphertexts of documents in
D that are associated with noisy keyword wi by Cwi .

Definition 3. ANoisy-Keyword-basedSearchablePrivate-keyEncryption scheme
NKSPE= (KeyGen, Document-Storage, Search) consists of three phases:

1. KeyGen(1k): given a security parameter k as input, output a secret key K.
2. Document-Storage(K,D) : given a document set D = {D1, · · · , DN} and

a secret key K as input, output a secure index I and a series of cipher-
texts C=(c1, · · · , cN ). For each Dj associated with noisy keyword wi, the
ciphertexts are produced by employing a fuzzy extractor and a private-key
encryption scheme as follows:
Gen(wi) : given wi ∈ δ(D) as input, output an extracted string ki and a

helper string Pi.
Enc(Dj , ki) : given Dj and ki (extracted from wi) as input, output cipher-

text cj under private key ki .
3. Search(I, x) is an interactive two party protocol between the user and the

server. For any query x ∈ δ′(D), the user generates corresponding trapdoor
t under secret key K. Given the trapdoor t and index I, the server can find the
wi which is synonymous with x and the user will get encrypted documents
Cwi . Then the decryption procedure utilizing fuzzy extractor is as follows:
Rep(x, Pi) : given x and Pi as input, reproduce the decryption key ki.
Dec(Cwi , ki) : given Cwi and ki as input, output corresponding documents.

We now define correctness for such an NKSPE scheme.

Definition 4. For all k ∈ N, for all K output by KeyGen(1k), for all (I,C)
output by Document-Storage(K,D), for all wi ∈ δ(D), for all x ∈ δ′(D), if
dis(x,wi) ≤ threshold and (ki, Pi)← Gen(wi), then

Cwi ← Search(I, x) ∧ ki ← Rep(x, Pi) ∧ Dec(ki, cj) = Dj, for all cj ∈ Cwi .

We say the NKSPE scheme is correct.

3.2 Security Definition

In this paper, we will follow the security definitions presented in [7]. The secu-
rity requirement for searchable encryption is typically characterized as one that
nothing should be leaked except the result of a search, which is referred to as
access pattern. However, except for oblivious RAMs, there exists no practical
construction that satisfies this requirement, all existing exact-match schemes
also disclose whether queries are for the same keyword or not, which is re-
ferred to as search pattern. Curtmola et al.[7] analyzed two existing security
definitions that had been used for searching on private-key encrypted data:
IND2-CKA(Indistinguishability against Chosen-Keyword Attacks) in [11] and
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a simulation-based definition in [6]. They pointed out that IND2-CKA was not
strong enough to ensure that an index could be safely employed to construct a
searchable private-key encryption scheme. For the simulation-based definition in
[6], they pointed out that even an insecure scheme would satisfy this definition
and this definition was inherently non-adaptive. In [7], Curtmola et al. pro-
posed more accurate security definitions for searchable private-key encryption
scheme under non-adaptive and adaptive adversarial models 1respectively. In
next section we will present an adaptively secure NKSPE scheme under security
definitions in [7].

Next we introduce four auxiliary notions we will use in security definition.
Except Definition 7, the following descriptions and definitions are based on [7].

Definition 5. (History) Let D be a set of N documents. A q-query history over
D is a tuple H = (D,x) that consists of the document set D and a vector of q
query keywords x = (x1, · · · , xq), where xi ∈ δ′(D), for all i ∈ [1, q].

Definition 6. (Access pattern) The access pattern induced by a q-query history
H = (D,x) is a tuple α(H) = (D(x1), · · · ,D(xq)).

Compared with the notion of search pattern in exact-match scenario, we present
a notion termed match pattern in noisy-keyword-based search scenario, which
indicates how well the queried words match the noisy keywords.

Definition 7. (Match pattern) The match pattern induced by a q-query history

H = (D,x) is a matrix β(H) = (b1, · · · ,bq), where bi= (b1i , · · · , b
|δ(D)|
i ) and

bji indicates the closeness degree2 between queried word xi and noisy keyword wj,
where i ∈ [1, q] and j ∈ [1, |δ(D)|].

Next, we present the definition of the trace of a history, which can be considered
as the information the user would like to leak about the history to the server.
This should include document size and identifier, the number of keywords used
in all documents , access pattern and match pattern.

Definition 8. (Trace) Let D be a set of N documents. The trace induced by a
q-query history H = (D,x) is a sequence τ(H) = (id(D1), · · · , id(DN ), |D1|, · · · ,
|DN |, |δ(D)|, α(H), β(H)) consisting of sizes and identifiers of the documents in
D, the number of noisy keywords, the access and match patterns induced by H.

We now present the adaptive simulation-based security definition, where we re-
quire that the view of an adversary(including the index, the trapdoors and the
ciphertexts) generated from an adversarially and adaptively chosen history be
simulatable given only the trace.

1 Non-adaptive adversaries make queries without considering previous trapdoors and
search outcomes while adaptive ones make queries according to previous trapdoors
and search results.

2 The actual closeness degree depends on the particular metric in concrete scheme.
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Definition 9. (Adaptive semantic security) Let NKSPE=(KeyGen,
Document-Storage, Search) be a Noisy-Keyword-based Searchable Private-key En-
cryption scheme, k ∈ N be the security parameter, A = (A0, · · · ,Aq) be an ad-
versary such that q ∈ N and S = (S0, · · · ,Sq) be a simulator and consider the
following probabilistic experiments RealNKSPE,A(k) and SimNKSPE,A,S(k):

RealNKSPE,A(k) SimNKSPE,A,S(k)
K ← KeyGen(1k) (D, stA) ← A0(1

k)

(D, stA) ← A0(1
k) (I,C, stS) ← S0(τ (D))

(I,C) ← Document-Storage(K,D) (x1, stA) ← A1(stA, I,C)
(x1, stA) ← A1(stA, I,C) (t1, stS) ← S1(stS , τ (D, x1))
generate trapdoor t1 from K and x1 for 2 ≤ i ≤ q
for 2 ≤ i ≤ q (xi, stA) ← Ai(stA, I,C, t1, · · · , ti−1)

(xi, stA) ← Ai(stA, I,C, t1, · · · , ti−1) (ti, stS) ← Si(stS , τ (D, x1, · · · , xi))
generate trapdoor ti from K and xi let t = (t1, · · · , tq)

let t = (t1, · · · , tq) output v= (I,C, t) and stA
output v= (I,C, t) and stA

We say that NKSPE is adaptively semantically secure if for all polynomial-size
adversaries A = (A0, · · · ,Aq) such that q = poly(k), there exists a non-uniform
polynomial-size simulator S = (S0, · · · ,Sq), such that for all polynomial-size
distinguisher D,

|Pr[D(v, stA) = 1 : (v, stA)← RealNKSPE,A(k)]

−Pr[D(v, stA) = 1 : (v, stA)← SimNKSPE,A,S(k)]| ≤ negl(k)

where stA is a string that captures A’s state, and the probabilities are taken over
the random coins of KeyGen, Document-Storage and trapdoor.

4 Efficient and Secure Noisy-Keyword-Based Searchable
Private-Key Encryption

In this section we present our concrete NKSPE construction, and argue its cor-
rectness and security according to the definitions in section 3. The concrete
scheme is described in Fig.1.

Different noisy data, such as different biometric information, has different
error patterns3. In our concrete construction, we consider

∑n
k=1(wik − xk)

2 as
metric to measure the closeness between binary strings x = x1 · · ·xn and wi =
wi,1 · · ·wi,n. In fact, the value

∑n
k=1(wik − xk)

2 is the same with the Hamming
distance between x = x1 · · ·xn and wi = wi,1 · · ·wi,n.

3 Biometric measurements usually have to be processed before they fall under a suit-
able metric space; For example, techniques such as IrisCode transform images of
irises into strings in the Hamming space. This procedure is itself a research area.
Transformations of biometric feature vectors into binary strings have been discussed
in [13].
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1. KeyGen(1k): sample K1 ←r {0, 1}k and invertible matrix Q ←r Mn+3,n+3(F),
where Mn+3,n+3(F) is a predetermined finite integral matrix group consisting of
invertible (n+ 3)× (n+ 3) matrices over field F. output K = (K1,Q).

2. Document-Storage(K,D) :

- Init(D) :
1) scan (D) and generate the set δ(D)
2) for all wi ∈ δ(D), output D(wi)

- BuildIndex(K, δ(D), {D(wi)|wi ∈ δ(D)}) :
3) R ←r F
4) for 1 ≤ i ≤ |δ(D)|, creat index Iwi = (Awi , Bwi)
4.1) for each wi = wi,1 · · ·wi,n ∈ δ(D), Ri ←r F, let wi = (

∑n
k=1 w

2
ik +R−

Ri, wi1, · · · , win, 1, Ri), then compute Awi = Qw�
i

4.2) compute EXT.Gen(wi), output an extracted string ki and a helper Pi

4.3) compute Bwi = πK1(D(wi)||Pi)
- Data-Storage(D) :
5) for each Dj associated with noisy keyword wi(1 ≤ j ≤ N, 1 ≤ i ≤ |δ(D)|),
compute SKE.Enc(Dj , ki), output ciphertext cj under private key ki

3. Search(I, x):
- for any query x = x1 · · ·xn, RA ←r F, the user constructs a vector x =
(1,−2x1, · · · ,−2xn, RA, 1), then generates trapdoor t = xQ−1 under secret
key Q. The user sends t to the server.

- for 1 ≤ i ≤ |δ(D)|, the server computes t × Awi = xQ−1Qw�
i = xw�

i ,

gets dis′ = min
|δ(D)|
i=1 xw�

i and the corresponding i. The server then returns
(dis′, Bwi) to the user.

- the user computes dis(x,wi) = dis′ +
∑n

k=1 x
2
k − R − RA. If dis(x,wi) >

threshold, it implies that there exists no matched record with overwhelming
probability. Otherwise, the user computes π−1(K1, Bwi), gets D(wi) and Pi.
The user then sends search result, i.e. D(wi), to the server.

- the server returns Cwi to the user.
- the user computes EXT.Rep(x, Pi) to reproduce the decryption key ki, then
outputs SKE.Dec(Cwi , ki).

Fig. 1. An adaptively secure NKSPE scheme

We assume that each helper string is a l-bit string. Each wi ∈ δ(D) is as-
sociated with at most m documents, The identifier of each document can be
represented as an h-bit string. π : {0, 1}k × {0, 1}l+m∗h → {0, 1}l+m∗h is a
pseudorandom permutation. Let SKE=(Enc,Dec) be a PCPA-secure symmetric
encryption scheme (refer to [7], Appendix A). Let EXT=(Gen,Rep) be a fuzzy
extractor.

Weobserve that, for aqueriedwordx, thematchpattern isb= (b1, · · · , b|δ(D)|),
where bj = t×Awj . Next, we analyze the correctness of our concrete scheme.

Theorem 1. The NKSPE scheme described in Fig.1 is correct (i.e. satisfies
Definition 4).
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Proof. For query string x = x1 · · ·xn ∈ δ′(D), let x = (1,−2x1, · · · ,−2xn, RA,
1). For each wi = wi,1 · · ·wi,n ∈ δ(D), let wi = (

∑n
k=1 w2

ik+R−Ri, wi1, · · · , win,
1, Ri). Thus,

xQ−1Qw
i = xw

i = (

n∑
k=1

w2
ik + R−Ri)− 2(x1wi1 + · · ·+ xnwin) + RA + Ri

=

n∑
k=1

(wik − xk)
2 −

n∑
k=1

x2
k + RA + R

Therefore,

n∑
k=1

(wik − xk)
2 = xw

i +

n∑
k=1

x2
k −RA −R

Since
∑n

k=1 x2
k −RA −R is a constant, the server can use xw

i to compute the
closest match and return corresponding (dis′, πK1(D(wi)||Pi)). It is evident that
dis(x,wi) = dis′ +

∑n
k=1 x2

k −R−RA ≤ threshold (x is a synonym of wi). After
receiving D(wi), the server returns Cwi to the user. The user then computes
Rep(x, Pi) to reproduce the decryption key ki. Therefore, the user can decrypt
Cwi correctly. This completes the proof.

4.1 The Proof of Security

In this subsection, we analyze the security of our concrete scheme.

Theorem 2. The proposed scheme is adaptively secure (i.e. satisfies Definition
9) assuming that the private-key encryption scheme SKE is PCPA-secure and π
is a pseudorandom permutation.

Proof. What we need to do is to construct a simulator S = (S0, · · · ,Sq) such
that for the adversary A = (A0, · · · ,Aq), the outputs of RealNKSPE,A(k) and

SimNKSPE,A,S(k) are computationally indistinguishable. We construct a sim-

ulator S = (S0, · · · ,Sq) that adaptively produces a string v′ = (I ′,C′, t ′) =
(I ′, c′1, · · · , c′N , t′1, · · · , t′N ) as follows:

1. S0(1k, τ(D)) : it constructs a simulated index I ′ by making a table comprised
of entries (Ai, Bi), for i = 1, · · · , |δ(D)|, where Ai ←r Mn+3,1(F) and Bi ←r

{0, 1}l+m∗h, such that for the matix A|δ(D)|×(n+3) = (A
1 , · · · ,A

|δ(D)|)
,

Rank(A) = min(|δ(D)|, n + 3). S0 then includes I ′ in stS and outputs
(I ′,C′, stS), where c′i ←r {0, 1}|Di|.
We now claim that I ′ is indistinguishable from a real index, i.e. the tuples
(Ai, Bi) are indistinguishable from tuples (Awi , Bwi). It is evident that the
distributions over Ai and Awi are identical, and that Bi is indistinguishable
from Bwi = π(D(wi)||Pi) since π is a pseudorandom permutation. Further-
more, since the private-key encryption scheme is PCPA-secure, each c′i is
indistinguishable from a real ciphertext.
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2. S1(stS , τ(D, x1)) : it solves system of linear equations Ax = b1. Note that
it knows b1 from the trace of (D, x1). We denote a solution of Ax = b1 by
t∗ (if there exists solution). Let t′1 = t∗ that is indistinguishable from a
real trapdoor t1, since t1 ×Awi = t′1 ×Ai holds for all i ∈ [1, |δ(D)|]. S1
then includes t′1 in stS and outputs (t′1, stS).

3. Si(stS , τ(D, x1, · · · , xi)) : Si generates a trapdoor t′i in the same way that S1
does, i.e. by solving the system of linear equations Ax = bi. Si then includes
t′i in stS and outputs (t′i, stS). It is evident that t

′
i is indistinguishable from

a real trapdoor ti. This completes the proof.

Remark. Note that in our security proof if |δ(D)| ≤ n + 3, then Rank(A) =
Rank(A,bi) = |δ(D)| ≤ n+3 which guarantees thatAx = bi must have solution.
Otherwise, for a randomly selected matrix A in advance, it is hard to guarantee
Rank(A) = Rank(A,bi) ≤ n + 3. A solution to this problem is to divide |δ(D)|
noisy keywords into � |δ(D)|

n+3 " groups. There are at most n+ 3 noisy keywords in
each group. The user selects and stores different secret keys for each group.

5 Performance

5.1 Exact Efficiency of the Proposed Scheme

For each query, the number of rounds of communication is exactly 2. The user
computes 1 matrix multiplication, the server performs |δ(D)| vector inner prod-
uct operations. Regarding storage, the user must have a long-term storage for
private key K = (K1,Q) and a random number R. The server stores an in-
dex I comprised of |δ(D)| entries (each entry includes a matrix of dimensions
(n+ 3)× 1 and a (l + m ∗ h)-bit string) and N encrypted documents.

5.2 Comparison

In this subsection, we highlight the differences between the fuzzy keyword search
scheme in [14] and ours in Table1.

Metric. In [14], edit distance is used to measure the similarity, while Hamming
distance is considered when the input can be represented as a binary string in
our concrete scheme.

Security. The scheme in [14] was proved secure against IND2-CKA, however, it
is not adaptively secure. The reason is that for a query (w, k), the simulator has
no idea how many simulated trapdoors it should compute even if given the trace
of (D, (w, k))4. While our scheme is proven secure against adaptive adversary.

Efficiency. The scheme in [14] requires two rounds of communication for each
query. Assume that the length of all keywords is polynomial in n. For a query
(w, k), the user computes the trapdoor set of size O(nk), the server compares
this trapdoor set with the index table. Regarding the server’s storage, except for
N encrypted documents, the size of index is O(Mnk), where M is the number
of distinct keywords in document set and k is the edit distance.

4 To search with (w, k), the user computes a trapdoor set T of size O(nk), where w is
a fuzzy query with edit distance k and n is the length of w.
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Table 1. Performance (per query) and properties comparison between the scheme in
[14] and ours

Performance and Properties [14] ours

metric edit distance Hamming distance

security IND2-CKA adaptively secure

server computation O(Mn2k) O(M)

server’s extra storage (index) O(Mnk) O(M)

user computation O(nk) O(1)

user storage O(1) O(1)

number of rounds 2 2

6 Conclusion and Future Work

In this paper, we presented a general framework for noisy-keyword-based search-
able private-key encryption in a fault-tolerant manner. Under this framework,
we proposed a concrete scheme which is proved adaptively secure according to
the simulation-based security definition presented in [7]. The keyword search
finishes in two rounds of interaction bewteen the user and the server, and re-
quires an amount of work from the server that is linear in the number of noisy
keywords. Finally, we compared the scheme in [14] and ours both in properties
and efficiency.

In our model, only the owner of the document set can search on encrypted
documents by noisy keywords. The next problem we will address is a natural
extension where a group of authorized parties other than the owner can submit
search queries. On the other hand, we will consider other notions of distance
such as set difference, edit distance and so on in concrete NKSPE schemes.
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Abstract. Attribute-Based Signatures (ABS) is a versatile primitive
which allows an entity to sign a message with fine-grained control over
identifying information. A valid ABS only attests to the fact that “A
single user, whose attributes satisfy the predicate, has endorsed the
message”. While ABS has been well investigated since its introduc-
tion, it is unfortunate that key exposure–an inherent weakness of digital
signatures–has never been formally studied in the scenario of ABS. We
fill this gap by proposing a new notion called forward secure ABS, its
formal security models and a generic (also the first) design based on well
established crypto primitives.

1 Introduction

Attribute-Based Signatures [13,15] (or, ABS for short) is a primitive proposed to
provide signer anonymity. An ABS allows an entity to sign a message with fine-
grained control over identifying information. A valid ABS signature attests to the
fact that “A single user, whose attributes satisfy the predicate, has endorsed the
message”. Ring signatures [18,5,19] and group signatures [9,3,6] are comparable
to special cases of ABS, in which the only allowed predicates are disjunctions over
the universe of attributes (identities). In ABS, each entity possesses a set of at-
tributes and a key-authority generates the associated private keys, with which one
can sign a message with a predicate satisfied by his/her attributes. The signature
reveals no more than the fact that a single user with some set of attributes satisfy-
ing the predicate has attested to the message. In particular, ABS does not provide
any information on the particular set of attributes used to satisfy the predicate.
For example, an “(Engineer, Department A)” or an “(Engineer, Department B)”
can independently generate an ABS to assure the recipient that the signature was
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produced by an “Engineer” without disclosing the department information. Fur-
thermore, users of ABS cannot collude to pool their attributes together (which
separates ABS from mesh signatures): It is never possible for an “(Engineer, De-
partment A)” and an “(Auditor, Department B)” to collude and generate an ABS
satisfying the predicate “(Auditor, Department A)”.

1.1 Key Exposure Problem

Ordinary digital signatures have a fundamental limitation: If the private key of
a signer is compromised, all the signatures of that signer become worthless. This
may become quite a realistic threat since if the private key is compromised, any
message can be forged. All future signatures are invalidated as a result of such
a compromise, and more importantly, no previously issued signatures can be
trusted. Once a leakage has been identified, there may exist some key revocation
mechanism to be involved immediately in order to prevent the generation of any
signature using the compromised private key. However, this does not solve the
problem of forgeability for past signatures. It is not possible to ask the signer to
re-issue all previous signatures due to many physical and practical limitations.
The problem of key exposure in ABS is more serious. In ABS, if a user’s secret
key is exposed to an adversary, the adversary can generate not only ABS for
any documents, but can also sign any documents on behalf of any users with the
same attributes. The exposure of one user’s secret key not only requires changing
the attribute name for the whole group, but also renders all previously obtained
ABS invalid, because one cannot distinguish whether a signature is generated
by an adversary after it has obtained one of the secret keys or by a legitimate
user before key exposure.

Forward Secure Signature. Forward-secure signature schemes are designed
to resolve the key exposure: a fundamental limitation of digital signature. The
goal of a forward-secure signature scheme is to preserve the validity of past
signatures even if the current secret key has been compromised. The concept
was first suggested by Anderson [2], and solutions were designed by Bellare and
Miner [4]. The idea is that even a compromise of the present secret key does
not enable an adversary to forge signatures pertaining to the past. This can be
achieved by the key evolution paradigm: dividing the total time of the validity
of the public key into T time periods, and using a different secret key in each
time period while the public key remains the same. Each subsequent secret key
is computed from the current secret key via an update algorithm, while any
past secret key cannot be computed by the current one. The time period during
which a message is signed becomes part of the signature as well. The property
of forward security means that even if the current secret key is compromised, a
forger cannot forge signatures for past time periods. In other words, the forger
can only forge signatures for documents pertaining to time periods after the
exposure but not before. The integrity of documents signed before the exposure
remains intact.
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1.2 Contribution

We propose a new notion called Forward Secure Attribute-Based Signatures (FS-
ABS). It is similar to a normal ABS but providing forward security. That is,
even when a secret key is compromised, previously generated signatures remain
valid and do not need to be re-generated. It can greatly reduce the damage of
exposure of any secret key of users in the environment. We formally define the
security of FSABS, provide a generic design of FSABS and suggest some efficient
instantiations.

2 Preliminaries

This section briefly reviews the preliminaries required in our scheme.

2.1 Monotone Span Programs

Let Υ : {0, 1}n → {0, 1} be a monotone boolean function. A monotone span
program for Υ over a field F is an � × t matrix M with entries in F, along with
a labeling function a : [�] → [n] that associates each row of M with an input
variable of Υ , that for every (x1, ..., xn) ∈ {0, 1}n, satisfies the following:

Υ (x1, ..., xn) = 1⇐⇒ ∃v ∈ F1×	 : vM = [1, 0, 0, ..., 0], and

(∀i : xa(i) = 0⇒ vi = 0).

In other words, Υ (x1, ..., xn) = 1 if and only if the rows of M indexed by
{i|xa(i) = 1} span the vector [1, 0, 0, ..., 0]. We call � the length and t the width
of the span program, and � + t the size of the span program.

2.2 NIWI Proof of Knowledge

We give a brief overview of the non-interactive witness-indistinguishable (NIWI)
proof of knowledge. We refer the reader to [10,11] for detailed definitions.

Let R be an efficiently computable ternary relation. For triplets (gk, x, w) ∈ R
we call gk the setup, x the statement and w the witness. Given some gk we let
L be the language consisting of statements in R. A non-interactive proof system
for a relation R comprised of the following algorithms:

– Setup: Outputs a setup (gk, sk).
– CRSGen: On input (gk, sk), outputs a reference string crs.
– Prove: On input (gk, crs, x, w), where (gk, x, w) ∈ R, outputs a proof π.
– Verify: On input (gk, crs, x, π), outputs 1 if the proof is acceptable and 0 if

rejecting the proof.

We call (Setup,CRSGen,Prove,Verify) a non-interactive proof system for R with
Setup if it has the completeness and soundness properties described below.
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– The perfect completeness requirement is that for all adversaries A we have

Pr[(gk, sk)← Setup(1λ); crs← CRSGen(gk, sk); (x,w)← A(gk, crs);

π ← Prove(gk, crs, x, w) : Verify(gk, crs, x, π) = 1 if (gk, x, w) ∈ R] = 1.

– The perfect soundness requirement is that for all adversaries A we have

Pr[ (gk, sk)← Setup(1λ); crs← CRSGen(gk, sk);

(x, π)← A(gk, crs) : Verify(gk, crs, x, π) = 0 if x /∈ L] = 1.

A non-interactive proof is composable witness indistinguishable if there is a prob-
abilistic polynomial time simulator CRSSim, such that for all non-uniform poly-
nomial time adversaries A we have

Pr[(gk, sk)← Setup(1λ); crs← CRSGen(gk, sk) : A(gk, crs) = 1]

≈Pr[(gk, sk)← Setup(1λ); crs← CRSSim(gk, sk) : A(gk, crs) = 1],

and for all adversaries A we have:

Pr[(gk, sk)← Setup(1λ); crs← CRSSim(gk, sk);

(x,w0, w1)← A(gk, crs);π ← Prove(gk, crs, x, w0) : A(π) = 1]

= Pr[(gk, sk)← Setup(1λ); crs← CRSSim(gk, sk);

(x,w0, w1)← A(gk, crs);π ← Prove(gk, crs, x, w1) : A(π) = 1],

where we require (gk, x, w0), (gk, x, w1) ∈ R.
A non-interactive proof is a proof of knowledge (perfect knowledge extraction)

if there is a probabilistic polynomial time knowledge extractor (Ext1,Ext2), such
that for all non-uniform polynomial time adversaries A we have

Pr[(gk, sk)← Setup(1λ); crs← CRSGen(gk, sk) : A(gk, crs) = 1]

≈Pr[(gk, sk)← Setup(1λ); (crs, τ )← Ext1(gk, sk) : A(gk, crs) = 1],

and for all adversaries A we have:

Pr[(gk, sk)← Setup(1λ); (crs, τ )← Ext1(gk, sk); (x, π)← A(gk, crs);

w ← Ext2(gk, crs, τ, x, π) : Verify(gk, crs, x, π) = 0 or (gk, x, w) ∈ R] = 1.

Definition 1. A non-interactive proof system is a perfect non-interactive wit-
ness indistinguishable (NIWI) proof of knowledge if it has perfect completeness,
perfect soundness, composable witness indistingushable and perfect knowledge ex-
traction.

3 Security Models

We give our security models of forward secure attributed-based signatures and
define relevant security notions.
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3.1 Syntax of Forward Secure Attribute-Based Signatures

Let A be the universe of possible attributes. A claim-predicate over A is a mono-
tone boolean function, whose inputs are associated with attributes of A. We say
that an attribute set A ⊆ A satisfies a claim-predicate Υ if Υ (A) = 1 (where an
input is set to be true if its corresponding attribute is present in A).

Definition 2. A forward secure attribute-based signature scheme is a tuple of six
algorithms parameterized by a universe of possible attributes A, a total number
of time period T and a message space M:

– FSABS.TSetup (to be run by a trustee): On input the security parameter 1λ,
generates public reference information TPK.

– FSABS.ASetup (to be run by an attribute-issuing authority): On input the
security parameter 1λ, generates a key pair (APK,ASK).

– FSABS.AttrGen: On input (ASK,A ⊆ A), outputs an assoicated signing key
skA,0.

– FSABS.Update: On input skA,i and a time period j (where i < j ≤ T ),
outputs an assoicated signing key skA,j .

– FSABS.Sign: On input (PK = (TPK,APK), skA,t,m ∈ M, Υ, t), where
Υ (A) = 1 and t is the time period, outputs a signature π.

– FSABS.Verify: On input (PK = (TPK,APK),m, Υ, π, t), outputs accept or
reject.

Correctness. FSABS schemes must satisfy that signatures signed according to
specification are accepted during verification.

3.2 Notions of Security of Forward Secure Attribute-Based
Signatures

Security of forward secure attributed-based signature schemes has unforgeability
and privacy.

1. Unforgeability.
The unforgeability for forward secure attributed-based signature schemes is
defined in the following game between the Challenger C and the Adversary
A in which A is given access to oracles JO, CO and SO:
(a) C generates

TPK ← FSABS.TSetup(1λ) and (APK,ASK)← FSABS.TSetup(1λ).

C gives A the public information PK = (TPK,APK).
(b) A may query the following oracles according to any adaptive strategy.

– skA,t ← GO(A, t). The AttrGen Oracle, on input an attribute set A
and a time period t, returns the corresponding secret key skA,t ←
FSABS.Update(LABS.AttrGen(ASK,A), t). We require for the same
(i,A, t) as input, the same skA,t is the output.
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– σ ← SO(A, t,m, Υ ). The Sign Oracle, on input an attribute set
A, a time period t, a message m and a claim-predicate Υ where
Υ (A) = 1, returns a valid signature σ ← FSABS.Sign(PK, skA,t ←
FSABS.Update(FSABS.AttrGen(ASK,A), t),m, Υ, t).

(c) A gives C a time period t∗, a claim-predicate Υ ∗, a message m∗ and a
signature π∗.

B wins the game if:
(1) FSABS.Verify(PK,m∗, Υ ∗, π∗, t∗)=accept ;
(2) (·, t∗,m∗, Υ ∗) is not a query input to SO ; and
(3) Υ ∗(A) = 0 for all (A, t) queried to GO with t ≤ t∗.
We denote by

Advunf
A = Pr[A wins the game ].

Definition 3 (Unforgeability). A Forward Secure Attribute-Based Signa-

ture scheme is unforgeable if for all PPT adversary A, Advunf
A is negligible.

The unforgeability ensures that a valid signature must be signed by a user
with attributes satisfying the predicate in the current time period.

2. Privacy.
In order to protect privacy, forward secure ABS must hide the attributes used
during signature generation. This is defined in the following game between
the Challenger C and the Adversary A in which A is given the ASK. A
does not need to query any oracle since it can generate the signing keys by
himself.
(a) C generates

TPK ← FSABS.TSetup(1λ) and (APK,ASK)← FSABS.TSetup(1λ).

C gives A the public information PK = (TPK,APK) and also ASK.
(b) A sends C (A0,A1,m, t, Υ ), where Υ (A0) = Υ (A1) = 1.
(c) C chooses a random bit b ∈ {0, 1} and generates

skAb,t ← FSABS.Update(FSABS.AttrGen(ASK,Ab), t).

It generates the signature πb ← FSABS.Sign(PK, skAb,t,m, Υ, t) and
sends σb to A.

(d) A outputs a bit b′.
A wins the game if b′ = b. We denote by

AdvAnon
A =

∣∣∣Pr[ A wins the game ]− 1

2

∣∣∣.
Definition 4 (Privacy). A Forward Secure Attribute-Based Signature
scheme is private if for all PPT adversary A, AdvAnon

A is negligible.

The privacy property ensures that it is hard to distinguish between two
signatures, each associated with different attributes, which both satisfy the
claim-predicate.
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4 Our Generic Forward Secure Attribute-Based
Signature Scheme

Our scheme is motivated by the attribute-based signature scheme from [15].

4.1 Forward Secure Credential Bundle

We extend the credential bundle primitive in [15] with forward security.

Definition 5 (Forward Secure Credential Bundle). A forward secure cre-
dential bundle scheme is parameterized by a message spaceM and a time period
T , and consists of the following four algorithms.

– CB.Setup: On input a security parameter 1λ, outputs a verification key vk
and a secret key sk.

– CB.Gen: On input sk and a set of messages {m1, . . . ,mn} ⊆ M, outputs a
credential c0 (of time 0), which consists of a tag τ0 and values σ1,0, . . . , σn,0.

– CB.Update: On input a credential ct1 of time t1 and a new time period t2
(with t1 < t2 ≤ T ), outputs a new credential ct2 .

– CB.Ver: On input vk, a message m, a time period t and a credential (τ, σ),
outputs 1 for accept and 0 for reject.

The scheme is correct if for all (vk, sk)← CB.Setup(1λ), c0 = (τ0, σ1,0, . . . , σn,0)
← CB.Gen(sk, (m1, . . . ,mn)) and ct = (τt, σ1,t, . . . , σn,t)← CB.Update(c0, t), we
have CB.Ver(vk,mi, t, (τt, σi,t)) = 1 for all i ∈ [1, n].

Observe that one can generate a new bundle on a subset of attributes. Our
security definition below requires that taking a subset of a single bundle and
update is the only way to obtain a new bundle in time t2 from existing bundles at
time t1 ≤ t2. In particular, attributes from several bundles cannot be combined;
and credentials of the present time cannot be used to find credentials of the past.

Definition 6. A credential bundle scheme is forward secure if the success proba-
bility of any polynomial-time adversary in the following experiment is negligible:

1. Run (vk, sk)← CB.Setup(1λ), and give vk to the adversary.
2. The adversary is given access to an extract oracle with input (t, (m1, . . . ,mn)).

It obtains ct ← CB.Update(c0, t), where c0 ← CB.Gen(sk, (m1, . . . ,mn)).
3. Finally the adversary outputs (t∗, τ∗, (m∗

1, σ
∗
1), . . . , (m

∗
n∗ , σ∗

n∗)).

We say the adversary succeeds if CB.Ver(vk,m∗
i , t

∗, (τ∗, σ∗
i )) = 1 for all i ∈

[1, n∗], and if no superset of (m∗
1, . . . ,m

∗
n∗), was ever queried (in a single query)

to the extract oracle with time t ≤ t∗.

Instantiation. From any plain forward secure digital signature scheme (e.g.
[12,1,16,8,7,14]) we can easily construct a credential bundle scheme in which
the bundle is a collection of signatures of messages “τ ||mi”, where each mi is
the name of an attribute and τ is an identifier that is unique to each user.
Conversely, when a credential bundle scheme is restricted to singleton sets of
messages, its forward security definition is equivalent to normal forward secure
digital signature.
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4.2 Forward Secure ABS Construction

Let A be the desired universe of ABS attributes. Let A′ denote a space of pseudo-
attributes, where A ∩ A′ = ø. For every message m and claim-predicate Υ we
associate a psuedo-attribute am,Υ ∈ A′. Let CB be a secure credential bun-
dle scheme, with message space A ∩ A′, and let (NIWI.Setup, NIWI.CRSGen,
NIWI.Prove, NIWI.Verify) be a perfect NIWI proof of knowledge scheme. Our
ABS construction is as follows:

FSABS.TSetup: Let λ be a security parameter. The signature trustee runs (gk, sk)

← NIWI.Setup(1λ), crs← NIWI.CRSGen(gk, sk) as well as (tvk, tsk)← CB.Setup
(1λ) and publishes TPK = (gk, crs, tvk).

FSABS.ASetup: The attribute-issuing authority runs (avk, ask)← CB.Setup(1λ)
and publishes APK = avk and sets ASK = ask.

FSABS.AttrGen: The key generation algorithm takes as input a subset of at-
tributes A ⊂ A and the secret key ASK. Ensure that A contains no pseudo-
attributes. Then output the result of skA,0 ← CB.Gen(ASK,A).

FSABS.Update: On input a signing key skA,i for attribute A and new time period
j, if i < j ≤ T the user updates the secret key by skA,j ← CB.Update(skA,i, j).

FSABS.Sign: The signing algorithm takes as input the public keys TPK, APK,
a signing key skA,i for attribute A and current time period j, a message m and
a claim-predicate Υ . Assume Υ (A) = 1. Parse skA,j as (τ, {σa,j |a ∈ A}). Define

Υ̃ := Υ ∨ am,Υ , where am,Υ ∈ A′ is the pseudo-attribute associated with (m,Υ ).

Thus, we still have Υ̃ (A) = 1. Let {a1, . . . an} denote the attributes appearing
in Υ̃ . Let vki be avk if attribute ai is a pseudo-attribute, and tvk otherwise.
Finally, let Φ[vk,m, Υ, j] denote the following boolean expression:

∃τ, σ1, . . . , σn : Υ̃ ({ai|CB.Ver (vki, ai, j, (τ, σi)) = 1}) = 1

For each i, set ˆσi,j = σai,j from skA,i if it is present, and to any arbitrary
value otherwise. Compute π ← NIWI.Prove(crs, Φ[vk,m, Υ, j], (τ, ˆσ1,j , . . . , ˆσn,j)).
Output π as the ABS signature.

FSABS.Verify: The verification algorithm takes as input a message M , a signature
π, a time period j, a signing policy Υ and the public keys TPK, APK. Output
the result of NIWI.Verify(crs, Φ[vk,m, Υ, j], π).

Security of the Generic Construction

Theorem 1. The scheme is private if the NIWI is composable witness indistin-
guishable.

The privacy follows directly from the composable witness indistinguishable prop-
erty of the NIWI.
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Theorem 2. The scheme is unforgeable if the NIWI has knowledge extraction
and the CB is forward secure.

Proof. If the NIWI scheme is sound, we can show that any adversary A that vio-
lates ABS unforgeability can be used to construct an algorithm B that breaks the
security of the underlying credential bundle scheme, with non-negligible proba-
bility. Suppose B receives vk from the challenger C of the CB security experi-
ment. Let B flips a random coin b = 0/1 and perform one of the following two
simulations:

Simulation 0: B runs (gk, sk) ← NIWI.Setup(1λ), (crs, τ) ← NIWI.Ext1(gk, sk)
and sets tvk = vk. Note that A cannot distinguish a real CRS from a simulated
CRS by the security of the NIWI proof system. B gives TPK = (gk, crs, tvk) to
A. B runs (APK,ASK)← FSABS.ASetup(1λ) honestly and gives APK to A.

When A makes a query A ⊆ A to the FSABS.AttrGen Oracle, B computes
the response honestly using ASK. When A makes a query (A, t,m, Υ ) to the
FSABS.Sign Oracle, B requests from C the CB.Gen Oracle a singleton bundle for
the pseudo-attribute associated with (m,Υ ) and time t. B uses the result as a
witness to generate a NIWI proof of Φ[vk,m, Υ, t] to use as the simulated ABS
signature.

Finally A outputs a valid forgery (m∗, Υ ∗, π∗, t∗), B uses NIWI.Ext2 with the
trapdoor τ to extract a witness for Φ[vk,m∗, Υ ∗, t∗]. Extraction succeeds with
overwhelming probability, thus we obtain a bundle that contains the pseudo-
attribute associated with (m∗, Υ ∗) and time t∗, or sufficient attributes to satisfy
Υ ∗. If the bundle contains the pseudo-attribute, then it represents a forgery
against tvk = vk from the experiment with C, since B has never requested
(t∗, (m∗, Υ ∗)) from the CB.Gen Oracle.

Simulation 1: Similar to above, except that B sets avk = vk instead of tvk. B
honestly generates tvk as in FSABS.TSetup. B gives simulated ABS signatures
to A by generating bundle signatures on the pseudo-attribute. B forwards all of
A’s queries on its FSABS.AttrGen Oracle to the CB.Gen Oracle provided by C.
Finally A outputs an ABS forgery and B uses NIWI.Ext2 with the trapdoor τ
to extract a witness. If the extracted bundle satisfies Υ ∗ (rather than contains
the associated pseudo-attribute), then B returns the bundle as a forgery in the
experiment with C.

The above simulations are identical from the view of A. Any valid forgery by
A must be extracted to give a forgery suitable for one of the two simulations.
Therefore, we can see that the advantage of one of the two simulations in its
unforgeability game is comparable to that of A in the ABS forgery game (losing
only a factor of 1/2). ��

Instantiation. We can instantiate our generic construction using the CB scheme
is section 4.1 and the NIWI proof of Groth and Sahai [11]. Note that the Groth
and Sahai’s proof (for the SXDH and DLIN instantiation) only has a knowledge
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extractor for the group elements, but not the exponent elements [17]. Observe
that the private keys of our CB scheme only consist of the group elements. There-
fore, we simply use the SXDH or DLIN instantiation of the Groth and Sahai’s
proof together with our CB scheme.

5 Conclusion

Key exposure is a fundamental limitation of ordinary digital signatures: If the
secret key of a signer is compromised, all the signatures of that signer become
worthless. This issue can be properly addressed using forward-secure techniques,
which ensures that past signatures remain valid even if the current secret key is
leaked. While the notion of attributed-based signatures was introduced in 2008
and many variants have been proposed, the issue of key exposure in ABS has
never been formally studied. We filled this gap by giving a generic (also the first)
design of forward-secure attributed-based signatures with provable security. We
believe the result presented in this paper will draw the attention of cryptogra-
phers and anticipate more efficient designs of forward-secure attributed-based
signatures.

Acknowledgement. Joseph K. Liu, Xinyi Huang and Jianying Zhou are sup-
ported by the EMA project SecSG-EPD090005RFP(D). Willy Susilo is sup-
ported by the ARC Future Fellowship (FT0991397).

References

1. Abdalla, M., Reyzin, L.: A New Forward-Secure Digital Signature Scheme. In:
Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 116–129. Springer,
Heidelberg (2000)

2. Anderson, R.: Two remarks on public-key cryptology. Manuscript, September 2000.
Relevant material presented by the author in an invited lecture at the Fourth ACM
Conference on Computer and Communications Security (1997)

3. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of Group Signatures: For-
mal Definitions, Simplified Requirements, and a Construction Based on General
Assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–
629. Springer, Heidelberg (2003)

4. Bellare, M., Miner, S.: A Forward-Secure Digital Signature Scheme. In: Wiener, M.
(ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 431–448. Springer, Heidelberg (1999)

5. Bender, A., Katz, J., Morselli, R.: Ring Signatures: Stronger Definitions, and Con-
structions Without Random Oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 60–79. Springer, Heidelberg (2006)

6. Boneh, D., Boyen, X., Shacham, H.: Short Group Signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

7. Boyen, X., Shacham, H., Shen, E., Waters, B.: Forward-secure signatures with un-
trusted update. In: ACM Conference on Computer and Communications Security,
pp. 191–200. ACM (2006)

8. Camenisch, J., Koprowski, M.: Fine-grained forward-secure signature schemes
without random oracles. Discrete Applied Mathematics 154(2), 175–188 (2006)



Forward Secure Attribute-Based Signatures 177

9. Chaum, D., van Heyst, E.: Group Signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)

10. Groth, J.: Simulation-Sound NIZK Proofs for a Practical Language and Constant
Size Group Signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 444–459. Springer, Heidelberg (2006)

11. Groth, J., Sahai, A.: Efficient Non-interactive Proof Systems for Bilinear Groups.
In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008)

12. Krawczyk, H.: Simple forward-secure signatures from any signature scheme. In:
ACM Conference on Computer and Communications Security, pp. 108–115. ACM
(2000)

13. Li, J., Au, M.H., Susilo, W., Xie, D., Ren, K.: Attribute-based signature and its
applications. In: Feng, D., Basin, D.A., Liu, P. (eds.) ASIACCS, pp. 60–69. ACM
(2010)

14. Libert, B., Quisquater, J.-J., Yung, M.: Forward-secure signatures in untrusted
update environments: efficient and generic constructions. In: ACM Conference on
Computer and Communications Security, pp. 266–275. ACM (2007)

15. Maji, H.K., Prabhakaran, M., Rosulek, M.: Attribute-Based Signatures. In: Ki-
ayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 376–392. Springer, Heidelberg
(2011)

16. Malkin, T., Micciancio, D., Miner, S.K.: Efficient Generic Forward-Secure Sig-
natures with an Unbounded Number of Time Periods. In: Knudsen, L.R. (ed.)
EUROCRYPT 2002. LNCS, vol. 2332, pp. 400–417. Springer, Heidelberg (2002)

17. Meiklejohn, S.: An extension of the groth-sahai proof system. Master’s thesis,
Brown University (2009)

18. Rivest, R.L., Shamir, A., Tauman, Y.: How to Leak a Secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001)

19. Shacham, H., Waters, B.: Efficient Ring Signatures Without Random Oracles. In:
Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 166–180. Springer,
Heidelberg (2007)



On Constant-Round Precise Zero-Knowledge

Ning Ding and Dawu Gu

Department of Computer Science and Engineering
Shanghai Jiao Tong University, China

{dingning,dwgu}@sjtu.edu.cn

Abstract. Precise zero-knowledge, introduced by Micali and Pass
[STOC’06], captures the idea that a view of any verifier can be indif-
ferently reconstructed. Though there are some constructions of precise
zero-knowledge, constant-round constructions are unknown to exist. This
paper is towards constant-round constructions of precise zero-knowledge.
The results of this paper are as follows.

– We propose a relaxation of precise zero-knowledge that captures the
idea that with a probability arbitrarily polynomially close to 1 a view
of any verifier can be indifferently reconstructed, i.e., there exists a
simulator (without having q(n), p(n, t) as input) such that for any
polynomial q(n), there is a polynomial p(n, t) satisfying with prob-
ability at least 1− 1

q(n)
, the view of any verifier in every interaction

can be reconstructed in p(n, T ) time by the simulator whenever the
verifier’s running-time on this view is T . Then we show the impossi-
bility of constructing constant-round protocols satisfying our relaxed
definition with all the known techniques.

– We present a constant-round precise zero-knowledge argument for
any language in NP with respect to our definition, assuming the
existence of collision-resistant hash function families (against all
nO(log log n)-size circuits).

1 Introduction

(Question.) Zero-knowledge proofs were introduced by Goldwasser, Micali and
Rackoff [6]. Their definition essentially states that an interactive proof of x ∈ L
provides zero (additional) knowledge if, for any efficient verifier V , the view of
V in the interaction can be “indistinguishably reconstructed” by an efficient
simulator S-interacting with no one- on just input x. Since efficiency is formal-
ized as polynomial-time, a worst-case notion, zero-knowledge too automatically
becomes a worst-case notion. Micali and Pass [7] argued that this worst-case
definition of zero-knowledge may not suffice to characterize that the view can be
reconstructed indifferently. For instance, taking part in an interaction to gain a
view only requires n steps while the simulator may need n10 steps to reconstruct
this view. It is hard to say n and n10 are indifferent.

Hence [7] put forward a notion of precise zero-knowledge, which augments the
definition of zero-knowledge by presenting an additional precision requirement
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that a prover provides a zero-knowledge proof of x ∈ L if the view v of any
verifier in an interaction with the prover about x can be reconstructed in the
same time within a constant/polynomial factor.

To construct precise zero-knowledge protocols [7] developed a method, called
the “cut-off” technique. A simulator with the “cut-off” technique still adopts
the rewind strategy, but in the first run it records the verifier’s running-time
and then in the second run if the verifier cannot output the message within
this recorded time then the simulator cancels this rewind. Though its success
probability (in extracting secret) in each rewind becomes smaller, after ω(1)
or ω(logn) rewinds the simulator can succeed with overwhelming probability,
achieving polynomial or linear precision respectively. Recently, [3] proposed a
notion of precise time and space simulatable zero-knowledge which strengthes
the notion of precise zero-knowledge by requiring that a view of any verifier in
each interaction with a prover can be reconstructed in the same time and space
simultaneously. Then it adopted an improved “cut-off” technique to construct
some precise time and space simulatable zero-knowledge protocols.

Also, [8] presented a slightly relaxed notion of weak-precise zero-knowledge
that requires the precision requirement holds with overwhelming probability.
This paper does not distinguish the two notions for concision of statement.

There are also some negative results. [7] showed there don’t exist black-box
precise zero-knowledge protocols for any non-trivial language, and [8] showed
Barak’s non-black-box zero-knowledge argument [1] are imprecise due to the
imprecise simulation strategy.

As the known precise zero-knowledge protocols use at least ω(1) rounds, a
natural question arose at that time if there exist constant-round precise zero-
knowledge proofs or arguments. As we will point out later, it seems unhopeful to
adopt the known simulation strategies to realize precise simulation in constant-
round constructions. So a feasible way towards this question is to present a
slight but meaningful relaxation and then construct constant-round precise zero-
knowledge protocols with respect to this relaxation. In this paper we will inves-
tigate the question in this way and attempt to present an answer to it.

1.1 Our Results

Recall that precise zero-knowledge requires that with probability 1 − neg(n) a
view of any verifier can be reconstructed in p(n, T ) time whenever the verifier’s
running-time on this view is T . We consider a relaxation that for a protocol to be
precise zero-knowledge, there is a strict polynomial-time simulator (without hav-
ing q(n), p(n, t) as input) such that for any polynomial q(n), there is a precision
p(n, t) satisfying with probability 1 − 1

q(n) the simulator’s running-time in out-

putting a view is bounded by p(n, T ) whenever a verifier’s running-time on this
view is T . Namely, we slightly relax the satisfiable probability from 1 − neg(n)
to 1− 1

q(n) where q(n) can be an arbitrarily large polynomial.

Though a precise zero-knowledge protocol w.r.t. the standard definition in
[7,8] of course satisfies our relaxation, our focus in this work is constant-round
constructions. As we will show later, all known constant-round zero-knowledge
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protocols do not satisfy the relaxation. We will also point out that it seems still
unhopeful to adopt the known simulation techniques to construct constant-round
zero-knowledge protocols satisfying the relaxation.

Our main contribution in this paper is a constant-round construction of pre-
cise zero-knowledge protocols for any language in NP satisfying the relaxation.
Formally, we achieve the following result.

Theorem 1. Assume the existence of hash function families which collision-
resistance hold against all nO(log log n)-size circuits. Then there exists a constant-
round precise zero-knowledge argument for each language in NP with respect to
our relaxation.

Our Technique. Notice that using the “cut-off” technique, we can achieve the
following result that for any q(n), a simulator with the “cut-off” technique can
extract secret information (in one rewind interval) with probability 1− 1

q(n) and

thus the simulation satisfies a precision related to p(n, t). Note that q(n) should
be known to the simulator in advanced. However, for any other polynomial q′(n)
this simulator may not achieve a precision (related to q′(n)) with probability
1− 1

q′(n) .

Our idea for going beyond this barrier is to rewind the verifier sufficiently
large polynomial (less than nlog logn/5) times such that for any polynomial q(n),
we can always be ensured that the extraction can succeed with probability at
least 1 − 1

q(n) , while on the same time the whole simulation is still of strict

polynomial-time (not super-polynomial-time).
To realize this idea, we combine the constructions of Barak’s protocol [1] and

ordinary zero-knowledge protocols to propose a desired protocol. The protocol
consists of two phases. Phase 1 adopts a mixed structure of Barak’s protocol and
ordinary zero-knowledge protocols. Phase 2 is a constant-round zero-knowledge
universal argument (ZKUA) of the statement that x ∈ L or the transcript τ
of phase 1 is in a language Λ. Basically, τ consists of the verifier’s description
and those messages generated in the ordinary run of one rewind interval. The
language Λ consists of those τ ’s, in which if we perform at most nlog logn/5

rewinding runs with “cut-off” techniques at the verifier, it can output a correct
secret information. (This actually means that we relegate all rewinds to the
verification of τ ∈ Λ.)

Our simulator for this protocol is an extension of Barak’s simulator. That is,
our simulator commits to (the oblivious machine of) the verifier’s code and the
auxiliary input bits really accessed by the verifier (not the entire auxiliary input)
as well as performs other computation in phase 1. We remark that it is due to
this strategy of committing only to accessed auxiliary bits that we can bypass the
imprecision of Barak’s simulator shown in [8]. In phase 2, the simulator employs
a parallel simulation strategy which adopts the honest prover with the witness
to interact with the verifier and in parallel calls the simulator of ZKUA. S finally
adopts the output generated in that one of the two parallel simulation which
first finishes as the simulated view of phase 2. We will show the simulator can
achieve our definition indeed.
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1.2 Organizations

The rest of the paper is arranged as follows. We assume familiarity with the
notations and notions used throughout this paper. Section 2 analyzes the barri-
ers for constructing constant-round precise zero-knowledge protocols. Section 3
formalizes our relaxation and demonstrates the impossibility of constructing
constant-round protocols satisfying the relaxation with the known techniques.
Section 4 presents our constant-round protocol and shows it is an argument for
any language in NP. Section 5 presents a novel precise simulator for the proto-
col and proves that the protocol is precise zero-knowledge with respect to this
relaxation. Section 6 concludes the paper.

2 Barriers for Constructing Constant-Round Precise
Zero-Knowledge

In this section we introduce the notion of precise zero-knowledge in [7,8] and
review the know constructions and lastly point out the barriers that all the
known constructions and simulation strategies cannot realize constant-round
precise zero-knowledge protocols.

2.1 Precise Zero-Knowledge

Counting Steps. If M is a probabilistic machine, denote by Mr the determinis-
tic one obtained by fixing the content of M ’s random tape to r, by STEPSMr(x)

the number of computational steps taken by Mr on input x.
Assume (P, V ) uses u-round prover’s messages. In an execution of (P, V ), for

any V ∗ with an auxiliary input aux, denote by v = (x, aux, (m1,m2, ...,mu)) the
view of V ∗, where mi is the ith prover’s message (w.l.o.g, assume V ∗ is determin-
istic). Then denote by STEPSV ∗(v) the number of computational steps taken
by V ∗ running on view v, i.e. V ∗’s running-time on input x and auxiliary input
aux and letting the ith message received be mi. In counting steps, we assume
that an algorithm A, given the code of a second algorithm B and an input x,
can simulate the computation of B on input x with linear-time slowdown [7].
(This assumption is inessential and we can use the logarithmic slowdown in-
stead. Actually, for Turing machines and Random Access Machines, logarithmic
slowdown is achieved.)

Definition 1. (Precise Zero-Knowledge [7,8]) Let (P, V ) be an interactive
proof or argument system for a language L, p : N ×N → N be a monotonically
increasing 2-variate polynomial. We say that (P, V ) is a zero-knowledge proof or
argument with precision p if there exists a probabilistic algorithm S such that for
every polynomial-time V ∗ and every auxiliary input aux ∈ {0, 1}∗ for V ∗:

1. The view of V ∗ in an interaction with P , where the public input is x and
P has a witness w for x ∈ L, is computationally indistinguishable from the
output of S(x, V ∗, aux).
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2. For sufficiently long random coins r ∈ {0, 1}∗, let v be the view generated
by Sr(x, V

∗, aux). Then Pr[STEPSSr(x,V ∗,aux) ≤ p(n, STEPSV ∗(v))] = 1 −
neg(n).

We refer to S as above as a precise simulator. We say that (P, V ) has polynomial
precision or linear precision if p(n, t) is a polynomial or linear function in t.

Remark 1. The original definition in [7,8] requires it holds with probability 1 that
STEPSSr(x,V ∗,aux) ≤ p(n, STEPSV ∗(v)). Definition 1 is actually the definition
of weak precise zero-knowledge in [8]. As said before, we don’t distinguish the
two notions in this paper.

2.2 Barriers for Achieving Constant-Round Constructions

Though there exist some constructions of precise zero-knowledge, constant-round
constructions are unknown to exist. We now review the reasons that the known
constructions cannot achieve the constant-round property and polynomial pre-
cision simultaneously.

Confliction Between “Cut-off” Simulation and Constant-Round Re-
quirements. The known constructions of precise zero-knowledge in [7,8,3] em-
ploy “cut-off” simulation techniques. One such simulator counts the verifier’s
running-time in the first run and then in each rewinding run it uses the counted
time to bound the verifier’s computation, which finally ensures the simulation
time is no more than a polynomial of the verifier’s running-time. As shown in e.g.
[8], the simulator’s successful probability in extracting the secret information is
at most 1−1/poly(n) in a rewind interval. Thus to make the success probability
overwhelming, a precise zero-knowledge protocol should use at least ω(1) rewind
intervals. Thus it seems impossible to construct constant-round protocols with
the “cut-off” techniques.

Imprecision of Barak’s Non-black-box Simulator. One may ask if we can
modify the known constant-round non-black-box zero-knowledge protocols to
obtain precise zero-knowledge. However, the current situation is that the only
known construction paradigm of constant-round non-black-box zero-knowledge
is Barak’s protocol [1]. However, as shown in [8], Barak’s protocol is also im-
precise. Recall that Barak’s protocol consists of two phases. In phase 1, the
verifier sends a random hash function h to the prover, which then responds
with a commitment c to the 0-string. Then the verifier sends back a random
string r. Let τ denote (h, c, r). In phase 2, the prover proves to the verifier via
a WI universal argument that either x ∈ L or τ ∈ Λ for a well-defined language
Λ ∈ Ntime(nlog logn). We now show the simulator for this protocol is imprecise.

Given access a verifier’s code, Barak’s protocol can be simulated without
making use of rewinding: To perform simulation, the simulator commits to the
hash of the verifier’s message function including the auxiliary input (instead of
committing to zeros). The verifier’s next message function is then a program
whose output, on input c, is r. This provides the simulator a valid witness to
use in phase 2. However, consider a verifier V ∗ that has a very long auxiliary
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input, but most of the time only accesses a small portion of it. The simulator
will always commit to the hash of whole description of V ∗ (including the whole
auxiliary input) and will thus always take long time, while V ∗ might run fast a
large portion of the time. Hence the simulation strategy is imprecise.

3 Our Relaxation

In this section we present a slight relaxation on the precision requirement
and then point out that the known techniques cannot achieve this relaxation
and the constant-round property simultaneously. A constant-round precise zero-
knowledge protocol satisfying the relaxation will be introduced in next section.

3.1 The Relaxed Definition

Definition 1 requires that the precision p holds for all verifiers with probability
1−neg(n). Thus a slight relaxation is to require that with a probability arbitrarily
polynomially close to 1, there exists a precision p which holds for all verifiers.
Namely, we only relax the satisfiable probability from 1 − neg(n) to 1− 1/q(n)
where q(n) can be an arbitrarily large polynomial. The formal definition is as
follows.

Definition 2. (The relaxation.) Let (P, V ) be an interactive proof or argu-
ment system for a language L. We say that (P, V ) is a precise zero-knowledge
proof or argument, if there exists a strict PPT algorithm S satisfying the follow-
ing conditions:

1. For every poly-time V ∗ and every auxiliary input aux ∈ {0, 1}∗ to V ∗, the
output of S(x, V ∗, aux) is computationally indistinguishable from V ∗’s real
view interacting with P (x,w).

2. For any polynomial q(n), there is a monotonically increasing 2-variate poly-
nomial p : N × N → N such that for each poly-time V ∗ and each auxiliary
input aux ∈ {0, 1}∗ to V ∗, for sufficiently long random coins r ∈ {0, 1}∗,
letting v be the view generated by Sr(x, V

∗, aux), Pr[STEPSSr(x,V ∗,aux) ≤
p(n, STEPSV ∗(v))] ≥ 1− 1

q(n) .

3.2 Limitations of the Known Techniques

At this moment one may ask if the known techniques for constructing precise
zero-knowledge can achieve our relaxation and the constant-round property si-
multaneously. Unfortunately, we now point out that the known construction
techniques cannot do this job indeed.

Let us first consider the known precise zero-knowledge protocols and the “cut-
off” simulation techniques sketched in Section 2.2. As shown there, a simulator
can succeed in extraction in each rewind interval with probability 1− 1

poly(n)
. For

any polynomial q(n), this success probability can be instantiated with 1− 1
q(n) .
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Thus we have there is a polynomial p(n, T ) such that with probability 1− 1
q(n) ,

the simulation is precise. However, in this construction q(n) should be known
to the simulator in advanced. That means for any larger polynomial q′(n) this
simulator cannot achieve any precision related to q′(n) with probability 1− 1

q′(n) .

This shows Definition 2 cannot be satisfied by this construction.
Let us then consider Barak’s protocol and his simulator. It can be seen that

the barrier shown in Section 2.2 still exists w.r.t. out relaxation. That is, for a V ∗,
any q(n) and p, there exists an aux of length more than p(n, T ) where T denotes
V ∗’s running-time. Since Barak’s simulator needs to compute a commitment to
V ∗’s next message function which contains aux, its running-time is more than
p(n, T ), contradicting condition 2 of Definition 2. So Barak’s simulator is still
imprecise with respect to Definition 2.

4 The Protocol

In this section we present a constant-round zero-knowledge argument. In Sec-
tion 4.1 we give a high-level overview of the protocol. In Section 4.2 we present
the actual construction and prove it is an interactive argument for NP.

4.1 The Overview

Our protocol consists of two phases. Phase 1 adopts a mixed structure of Barak’s
protocol and ordinary zero-knowledge protocols. The adopted structure of or-
dinary zero-knowledge protocols is a commitment-challenge-response paradigm.
That is, the verifier first sends the prover n commitments to random strings
which then responds with a random challenge indicating that some commitments
should be revealed, and lastly the verifier opens the corresponding commitments.

The adopted structure of Barak’s protocol is that in the above step of sending
a challenge, the prover additionally sends the verifier a commitment to the 0-
string and after the verifier opens some commitments, the prover sends the
verifier a commitment to the hash of the 0-string. The goal of this strategy is
for using Barak’s non-black-box simulation strategy.

In phase 2, the prover proves to the verifier that it knows a witness for x ∈ L
or the transcript of phase 1 is in a language Λ. The definition of Λ requires that
a transcript is in Λ iff what are committed by the prover in phase 1 are actually
a program and some auxiliary input bits such that the program on given the
auxiliary input bits and a challenge, can output the value of one unrevealed
commitment by the verifier in phase 1.

4.2 Our Language Λ and Protocol

In this subsection we present our protocol, which uses the following crypto-
graphic primitives:
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– Let {Hn}n∈N , in which each h ∈ Hn maps {0, 1}∗ to {0, 1}n, denote a hash
function family which collision resistance holds against all nO(log logn)-size
circuit.

– Let HCom denote a two-round perfectly-hiding commitment scheme, BCom
denote a one-round (or two-round) perfectly-binding commitment scheme.
For simplicity of statement we always use C or Z to denote a perfectly-hiding
or perfectly-binding commitment (while ignoring the possible first message
of HCom and BCom).

– Let PRG denote a pseudorandom generator which admits the following prop-
erties. On input an n-bit random seed r, PRG(r) can iteratively generate
arbitrarily polynomial pseudorandom bits. That is, it generates a fixed poly-
nomial pseudorandom bits in each iteration, and then when run iteratively,
PRG(r) can output an arbitrarily polynomial pseudorandom bits. [4] pre-
sented one construction of such PRGs. PRG will be used in our definition
of language Λ. In the verification of membership in Λ, PRG will be run it-
eratively. That is, the verification sets up a repetition process and in each
repetition PRG(r) is run once to output a fixed polynomial bits iteratively
based on the internal state generated in the previous iterations.

– Let CoinToss denote a constant-round coin-tossing protocol, which runs as
follows. The verifier first adopts HCom to compute a commitment to a ran-
dom n-bit string and sends it to the prover, which responds with an inde-
pendent n-bit strings. Then the verifier opens the commitment. Then the
XOR of the two strings are the final coins.

– Let ZKUA denote a constant-round zero-knowledge universal argument for
any language in NE defined in [2] and its simulator runs in strict polynomial-
time. Note that [2] already presented a construction of ZKUA, but its sim-
ulator runs in expected polynomial-time. We can easily adapt it to our re-
quitement. The ZKUA in [2] consists of two phases, where phase 1 is an
“encrypted” commitment-challenge-commitment construction and phase 2
is an ordinary zero-knowledge protocol of knowledge, aiming at proving that
the committed messages in phase 1 are consistent and satisfy the require-
ment of a PCP verification. Due to the call to the simulator of the ordinary
zero-knowledge protocol in simulation, the simulator of this ZKUA runs in
expected polynomial-time.
Now we replace the zero-knowledge protocol in phase 2 by Barak’s zero-
knowledge protocol in [1] (note that phase 2 itself of Barak’s protocol is
a WI universal arument). Thus we can see the new ZKUA owns a strict
polynomial-time simulator and still satisfies the weak proof of knowledge
property. Thus the new ZKUA is a desired universal argument.

Now we present a definition of Λ in Definition 3. Assume L is an arbitrary NP
language and our argument for L is shown in Protocol 1.

Definition 3. (Language Λ). We define Λ as follows: τ = (h, σ, U, Z1, Z2, r) ∈
Λ iff there exist a program Π ∈ {0, 1}n, a string y (as auxiliary input to Π) and
coins (s1, s2) such that the following conditions can be verified within nlog log n

steps:
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Public input: x ∈ {0, 1}n (statement to be proved is “x ∈ L”);
Prover’s auxiliary input: w (a witness that x ∈ L).

1. V → P : Verifier selects h ←R Hn. Choose ui ←R {0, 1}n and compute Ci ←
HCom(ui) for 1 ≤ i ≤ n. Send h and Ci, 1 ≤ i ≤ n, to prover.

2. P → V : Prover selects a random σ ∈ {0, 1}n and computes Z1 ←R BCom(0n).
Send σ and Z1 to verifier.

3. V → P : For each i satisfying that the ith bit of σ is 0, open all these Ci to prover.
4. P → V : Prover computes Z2 ←R BCom(h(0n)) and sends Z2 to verifier.
5. V → P : For all i satisfying the ith bit of σ is 1, send these ui’s to prover. Let

U denote the set consisting of these ui’s. Then prove to prover via a constant-
round zero-knowledge protocol of that these ui’s are the committed messages in
the corresponding Ci’s.

6. P ↔ V : Prover and verifier execute CoinToss to agree with random r ∈ {0, 1}n.

Let τ denote (h, σ, U, Z1, Z2, r).

P → V : Prover proves to verifier using its input w via ZKUA that x ∈ L or τ ∈ Λ.

Protocol 1. Our precise zero-knowledge argument for L

1. Z1 = BCom(Π ; s1) and Z2 = BCom(h(y); s2), where s1, s2 denote the ran-
domness in commitments.

2. Run the following repetitions at most nlog logn/5 times. In the jth repetition,
j > 0, do the following:

(a) Iteratively run PRG(r) based on its existing internal state generated in
the previous (j−1) runs (if j = 1, PRG has no internal state) to generate
sufficient pseudorandom bits, denoted (σj , rj) (where σj ∈ {0, 1}n and ri
is used as randomness in BCom, which length is a fixed polynomial that
we omit specifying for clearness of statement);

(b) Compute Z∗
j ← BCom(Π ; rj);

(c) Run Π(σj , Z
∗
j , y) (y as auxiliary input) and during this running if Π

needs an additional auxiliary input bit beyond y, cancel the running and
denote by ⊥ Π’s output, else let U∗

j denote Π’s output. In the case Π’s
output is U∗

j , if there exists at least one string in U∗
j (viewed as a set)

such that it is in U , the verification of this condition succeeds. In other
cases, continue the repetitions.

A witness w for τ ∈ Λ is a tuple of (Π, y, s1, s2) satisfying Definition 3.

Theorem 2. Assume the existence of hash function families which collision-
resistance hold against all nO(log logn)-size circuits. Then Protocol 1 is an inter-
active argument for L.

Due to the hiding property of the commitments, any prover in the ordinary
run cannot know the value of any unrevealed commitment and the committed
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program and auxiliary input by the prover are independent of the values in
the unrevealed commitments. So the program cannot output any unrevealed
message. Thus the transcript cannot belong to Λ, which leads to the soundness.
We remark that the full proof of Theorem 2 employs the simulator of the zero-
knowledge protocol in Step 5 to show the soundness. Due to short of space we
omit the full proof.

5 The Precise Simulator

In this section we will prove the following result.

Theorem 3. Protocol 1 is precise zero-knowledge with respect to Definition 2.

In Section 5.1 we present the overview and actual description of our precise
simulator. In Section 5.2 we show this simulator satisfies all requirements in
Definition 2 and complete the proof of Theorem 3.

5.1 The Description

Let V ∗ denote any verifier of length {0, 1}n/2, aux be an arbitrarily long auxiliary
input to V ∗, S denote our simulator. Basically, S behaves like Barak’s simulator,
which runs as a prover interacting with V ∗, tries to obtain a witness for the
transcript τ of phase 1 and lastly uses this witness for the combined statement
in phase 2. Informally, in phase 1 S commits to V ∗’s next message function
excluding aux in Step 2. W.l.o.g. let Π ∈ {0, 1}n denote this committed program
(more precisely, S first computes V ∗’s next message program and then generates
Π as an oblivious machine of this program). Notice that in Step 3 V ∗ (i.e. Π)
may access some positions in aux. Thus S emulates Π ’s computation on input
S’s message of Step 2 as well as aux to generate an output, and at the same time
records those auxiliary input bits Π really accesses. Let y denote the auxiliary
bits. Then S commits to the hash of y in Step 4.

In phase 2 S adopts a parallel simulation strategy, in which it uses (Π, y)
(as well as some coins used in commitments) as a witness for the transcript
in Λ to interact with V ∗, and in parallel, it employs the simulator of ZKUA
to generate a view. S finally adopts that view generated in the one of the two
parallel simulation which first finishes as the simulated view of phase 2.

Oblivious Machines. We outline some facts on obvious machines to help un-
derstand the execution of Π . A machine is oblivious if the sequence in which it
accesses memory locations is equivalent for any two inputs with the same run-
ning time, e.g. oblivious Turing Machines (TM) and oblivious Random Access
Machines (RAM). If an oblivious machine accesses more memory locations, it
consumes more running-time. W.l.o.g. we assume a machine can be emulated by
an oblivious machine with polynomial slowdown (for any unspecified appropri-
ate computational model used for verifiers and the simulator). For instance, [9]
showed how to emulate an arbitrary one-tape TM by a two-tape oblivious TM
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Input: x ∈ {0, 1}n (statement to be proved is “x ∈ L”);
Verifier’s code: V ∗ ∈ {0, 1}n/2; V ∗’s auxiliary input: aux ∈ {0, 1}∗.

1. V ∗ → S: S emulates V ∗ to output h and Ci for 1 ≤ i ≤ n.
2. S → V ∗: Compute the oblivious machine corresponding to V ∗’s next message

function (excluding aux), denoted Π ∈ {0, 1}n. S selects a random σ ∈ {0, 1}n and
random coins s1. Compute Z1 ← BCom(Π ; s1) and send (σ, Z1) to V ∗.

3. V ∗ → S: S emulates Π to output some ui’s. During the emulation, S records those
bits in aux accessed by Π . Denote by y these accessed bits. (Also run V ∗ to finish
this step.)

4. S → V ∗: S chooses random coins s2 and computes Z2 ← BCom(h(y); s2). Send Z2

to V ∗.
5. V ∗ → S: S emulates V ∗ to output the remainder ui’s and interacts with V ∗ in the

following zero-knowledge proof. Let U denote the set consisting of these ui’s.
6. S ↔ V ∗: S and V ∗ run CoinToss to agree with coins r ∈ {0, 1}n.

Let τ denote (h, σ, U, Z1, Z2, r).

S → V ∗: S adopts the following parallel simulation strategy. It adopts the honest
prover’s strategy with witness (Π, y, s1, s2) to prove to V ∗ via ZKUA that x ∈ L or
τ ∈ Λ, and in parallel it calls the simulator of ZKUA to generate a simulated view. S
halts whenever an arbitrary one of the two parallel simulation finishes, and adopts the
view in the finished one as the simulated view in phase 2.

Algorithm 1. The precise simulator S

with a logarithmic slowdown, and [5] showed how to emulate an arbitrary RAM
by an oblivious RAM with a poly-logarithmic slowdown.

In our simulation, Π is an oblivious machine corresponding to the verifier’s
next message function. Thus in an execution of Π , more auxiliary input bits
Π accesses, more running-time Π consumes. Thus that Π accesses more auxil-
iary input bits is equivalent to that Π consumes more running-time. So in the
verification of τ ∈ Λ, the condition that the execution of Π(· · · , y) should be
canceled if Π needs to access more auxiliary input bits than y is equivalent to
that the execution of Π(· · · , y) should be canceled if Π ’s running-time is more
than (the poly-logarithmic overhead of) V ∗’s running-time. This fact will be
used to establish the precision property of S in next subsection.

The actual construction of the simulator is shown in Algorithm 1.

5.2 Analysis

In this subsection we present the following three claims to show that S can
provide precise zero-knowledge property with respect to Definition 2. We also
sketch the proofs of them but omit the full details due to short of space.
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Claim 4. For any polynomial q(n), with probability at least 1− 1
q(n) (Π, y, s1, s2)

is a witness for τ ∈ Λ and on the occurrence of this the membership of τ ∈ Λ
can be verified with (Π, y, s1, s2) in O(q(n)ω(log n)T ) time, where T denotes the
running-time of Π(σ, Z1, y).

Proof. (sketch) Let Π(· · · , y) denote Π with y hardwired. We need to show the
conditions in Definition 3 can be satisfied. In the verification of τ ∈ Λ, first
assume each prover’s message (σj , Z

∗
j ) is truly random. If in the execution of

Π(σj , Z
∗
j , y) Π doesn’t need to access any auxiliary bit beyond y, Π(σj , Z

∗
j , y)

can output some decommitments to those in the verifier’s message of Step 1.
Since σj equals the real challenge with probability 2−n, there is a commitment
which was not revealed in the real interaction, but is revealed in the output of
Π(σj , Z

∗
j , y). Thus the membership of τ ∈ Λ can be verified. Thus all that is left

is to show Π doesn’t need any auxiliary input bit beyond y in one repetition
with high probability. In fact, it is true that within 2q(n)ω(logn) repetitions, the
desired event occurs with probability at least 1− 1

2q(n) − neg(n). Now replacing

each (σj , Z
∗
j ) by the pseudorandom strings output by PRG(r), the probability is

at least 1− 1
q(n) . So the claim holds. ��

Claim 5. For any pair (x,w) such that w is the witness for x ∈ L, the view
of V ∗ in an interaction with the honest prover of Protocol 1 holding (x,w) is
computationally indistinguishable from S’s output on input (x, V ∗, aux).

Proof. (sketch) We use S1 (resp. S2) to denote S’s strategy with the first (resp.
second) strategy used in phase 2. We have both S1’s and S2’s outputs are in-
distinguishable from the real view of V ∗. In particular, over any noticeable sub
probability space, S1’s output is indistinguishable from S2’s. We then show S’s
output is indistinguishable from S1’s. If there is only an negligible probabil-
ity that S’s strategy in phase 2 equals S2, the fact holds. Otherwise, let B
denote the noticeable event that S’s strategy in phase 2 equals S2. So on the
occurrence of B, S is actually S1. Then for any D, |Pr[DS(n) = 1]−Pr[DS1(n) =
1]| ≤ Pr[B]|Pr[DS(n) = 1|B] − Pr[DS1(n) = 1|B]| + Pr[B]|Pr[DS(n) =
1|B] − Pr[DS1(n) = 1|B]| ≤ |Pr[DS(n) = 1|B] − Pr[DS1(n) = 1|B]|.
Since |Pr[DS(n) = 1|B] − Pr[DS1(n) = 1|B]| = neg(n), S’s output is indis-
tinguishable from S1’s. The claim holds. ��
Claim 6. S satisfies condition 2 of Definition 2.

Proof. (sketch) Choose a random sufficiently long coins rand for S. Let T ′ de-
note STEPSV ∗

aux(v), where V ∗
aux denotes V ∗ with the auxiliary input aux. We

now analyze the running-time of S. First, S runs in strict polynomial-time. S’s
running-time for emulating V ∗

aux is O(T ′+T ). Due to Claim 4 and the relatively
efficient prover property of ZKUA, S’s running-time in phase 2 is O(nc0T c) for
some constant c0, c (where c0, c are independent of T, T ′). So we have there ex-
ists a polynomial p(n, T ′) such that S’s running-time is less than p(n, T ′) with
probability 1− 1

q(n) . The claim holds. ��
Combining the three claims, we complete the proof of Theorem 3. Then com-
bining it with Theorem 2, we also complete the proof of Theorem 1.
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6 Conclusions

In this paper we investigate the question of how to construct constant-round
precise zero-knowledge protocols. Since there are some barriers in solving this
question that cannot be go beyond with all the known techniques, we look for a
meaningful relaxation for precise zero-knowledge and a candidate constant-round
construction with respect to the relaxation.

As a result, we propose one such relaxation that requires that with a prob-
ability arbitrarily polynomially close to 1, there exists a precision p such that
the simulator can reconstruct all verifiers’ views satisfying the requirement p.
Then we show the impossibility of constructing constant-round protocols sat-
isfying our relaxed definition with all the known techniques, which makes the
relaxation meaningful with respect to constant-round constructions. The main
contribution of this work is a constant-round precise zero-knowledge argument
for NP satisfying the relaxation.
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Abstract. Attribute-based encryption (ABE) is a promising crypto-
graphic tool for fine-grained access control. However, the computational
cost in encryption commonly grows with the complexity of access policy
in existing ABE schemes, which becomes a bottleneck limiting its ap-
plication. In this paper, we formulize the novel paradigm of outsourcing
encryption of ABE to cloud service provider to relieve local computation
burden. We propose an optimized construction with MapReduce cloud
which is secure under the assumption that the master node as well as at
least one of the slave nodes is honest. After outsourcing, the computa-
tional cost at user side during encryption is reduced to approximate four
exponentiations, which is constant. Another advantage of the proposed
construction is that the user is able to delegate encryption for any policy.

1 Introduction

Recently, much attention has been attracted by a new public-key primitive called
attribute-based encryption (ABE). ABE achieves flexible one-to-many encryp-
tion instead of one-to-one, which has significant advantage over the traditional
public key primitives. ABE thus is envisioned as an important tool for addressing
the problem of secure and fine-grained data sharing and access control on un-
trusted server in cloud computing. Until now, there are two kinds of ABE having
been proposed: key-policy attribute-based encryption (KP-ABE) and ciphertext-
policy attribute-based encryption (CP-ABE). In KP-ABE, the access policy is
assigned in private key, whereas, in CP-ABE, it is specified in ciphertext.

However, one of the main efficiency drawbacks of ABE is that the computa-
tional cost in encryption phase grows with the complexity of the access formula.
Thus, before ABE can be widely deployed in cloud computing for the purpose
of providing secure access control, there is an increasing need to improve its
efficiency. To address this problem, outsourced ABE, which provides a way to
outsource encryption or/and decryption to third party service providers without
revealing data or private keys, was introduced [17][28]. Outsourced ABE has a

T.W. Chim and T.H. Yuen (Eds.): ICICS 2012, LNCS 7618, pp. 191–201, 2012.
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wide range of applications. For example, in the cloud computing environment
which has mobile devices or sensors as information collection nodes, user termi-
nal (e.g. mobile device) has constrained computation ability to independently
finish basic encryption or decryption to protect sensitive data residing in public
cloud. Outsourced ABE allows user to perform heavy encryption or/and decryp-
tion through “borrowing” the computation resources from a third party service
provider. Therefore, with this paradigm computation/storage intensive tasks can
be performed even by resource-constrained users.

1.1 Contribution

In this paper, concerning on outsourcing encryption of ABE, we formulize the
security definition for this novel paradigm. We propose an outsourced ABE con-
struction with delegated encryption. In this construction, user is to control the
trival policy while a two-leveled MapReduce paradigm is utilized to produce
a partial ciphertext for the user specified policy. The proposed construction is
secure under the assumption that the master node as well as at least one of
the slave nodes in MapReduce cloud is honest. This assumption is weaker than
those assumptions in previous work which require all the nodes in the cloud
are honest. Furthermore, we state that another advantage of our construction
is that through introducing trivial policy, it is able to delegate encryption for
any policy, while in previous work [28], user is required to specify a hybrid one
connected by an AND gate.

1.2 Related Work

The notion of ABE, which was introduced as fuzzy identity-based encryption in
[25], was firstly dealt with by Goyal et al. [16]. Two different and complementary
notions of ABE were defined. In KP-ABE, each ciphertext is labeled with a set of
attributes and each key is associated with an access structure. On the contrary, In
CP-ABE, each private key is identified by a set of attributes and each ciphertext
is labeled with an access structure. A construction of KP-ABE was provided
in the same paper [16], while the first CP-APE construction supporting tree-
based structure in generic group model is presented by Bethencourt et al. [5].
Subsequently, a number of variants of ABE schemes have been proposed since
its introduction [8][22][27][20][26][21][24]. However, almost all of them requires a
large number of exponentiations at user side during encryption.

To reduce the load at local, it always desires to deliver expensive computa-
tional tasks outside. Actually, the problem that how to securely outsource differ-
ent kinds of expensive computations has drew much attention from theoretical
computer science community [3][2][4][1]. But they are not suitable for reliving
ABE computational overhead of exponentiations at user side. To achieve this
goal, the traditional approach is to utilize server-aided techniques [6][19][18][7].
However, previous server-aided techniques are oriented to accelerating the speed
of exponentiation using untrusted servers. Directly utilizing these techniques in
ABE will not work efficiently.
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Another approach might be to leverage recent general outsourcing technique
or delegating computation [15][13][12][9][14] based on fully homomorphic en-
cryption or interactive proof systems. However, Gentry [14] has shown that even
for weak security parameters on “bootstrapping”, the operation of homomor-
phic encryption would take at least 30 seconds on a high performance machine.
Therefore, even if the privacy of the inputs and outputs can be preserved by
utilizing these general techniques, the computational overhead is still huge and
impractical.

Another two related work similar to us are [17] and [28]. In [17], a novel
paradigm for outsourcing decryption of ABE is provided while in [28] the authors
presented the PP-CP-ABE (privacy preserving cipher policy attribute-based en-
cryption) which allows to securely outsource both decryption and encryption
to third party service providers. Comparing with our work, i) the former has a
different goal aiming at partial decryption delegation but we consider on out-
sourcing encryption of ABE; ii) the latter is the inspiration of this paper. Based
on Zhou’s work [28], we formulize the notion of outsourcing encryption of ABE
and propose an optimized construction to enhance Zhou’s scheme [28] in both
security and functionality.

1.3 Organization

This paper is organized as follows. In Section 2 we describe the system model of
our scheme. The construction and its security analysis are presented in Section
3. Finally, we draw conclusion in Section 4.

2 System Model

2.1 MapReduce

A two-leveled MapReduce [10] which is a software framework for supporting
data-intensive computing, comprises a set of slave computer nodes and a master
computer node. We now give an overview of MapReduce’s workflow as follows.

– Upload Phase. User contacts with the master node to get knowledge which
slave nodes are free. Then, he/she goes on to upload a set of data and
“operations”, i.e. complied Java classes, to these slave nodes to produce
partially encrypted ABE ciphertext.

– Map Phase. After data and implementations have been uploaded, the
MapReduce is triggered. Each involved slave node becomes a “mapper” node,
which scans the information uploaded on it to obtain the key-value pair. Fur-
thermore, the mapper node takes the key-value pair as input and executes
the map function to generate an intermediate key-value pair. The phase can
be denoted as Map(k, v)→ (k′, v′).

– Reduce Phase. After each slave node finishes its assigned task, MapReduce
starts the “Reduce” phase, in which the master node is selected as the re-
ducer. The reducer executes reduce function on the set of intermediate pairs
(k′, v′) with the same key and outputs the final result. The phase can be
denoted as Reduce({(k′, v′)})→ Output.
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2.2 System Model

Fig. 1. System Model for Outsourcing Encryption of ABE

We present proposed system model for outsourcing encryption of ABE scheme
in Fig. 1. Comparing with that for traditional ABE, a MapReduced cloud is
involved to execute the delegated ABE encryption task.

With the custom in [17], we denote (Ienc, Ikey) as the input to encryption
and key generation in ABE. Therefore, in CP-ABE, (Ienc, Ikey) = (A, ω) while
that is (ω,A) in KP-ABE, where ω and A are attribute set and access structure
respectively. Then, based on the proposed system model, we provide algorithm
definitions as follows.

– Setup(λ) : The setup algorithm takes as input – a security parameter λ. It
outputs the public key PK and the master key MK.

– KeyGen(Ikey,MK) : For each user’s private key request on Ikey, the key
generation algorithm takes as input – an access structure (or attribute set)
Ikey and the master key MK. It outputs the private key SK.

– EncryptU(Ienc,M) : The encryption algorithm at user side takes as input
– an attribute set (or access structure) Ienc and the message M. It outputs
the partially encrypted ciphertext at local CTU and the set of outrourcing
encryption keys {OEKi}ni=1 where n is the number of slave nodes in MapRe-
duce cloud to be assigned.

– EncryptMR(Ienc, {OEKi}ni=1) : The delegated encryption algorithm at the
MapReduce cloud takes as input – an attribute set (or access structure)
Ienc and the set of outsourcing encryption keys {OEKi}ni=1. It outputs the
partially encrypted ciphertext at MapReduce CTMR.

– Decrypt(CT, SK) : The decryption algorithm takes as input – a ciphertext
CT = (CTU,CTMR) which was assumed to be encrypted under the attribute
set (or access structure) Ienc and the private key SK for access structure (or
attribute set) Ikey. It outputs the message M if γ(Ikey, Ienc) = 1, otherwise
outputs ⊥, where γ is a predicate predefined.
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2.3 Adversary Model

In the system, we assume that the master node as well as at least one of the
slave nodes in MapReduce cloud is “honest-but-curious”. Specifically, they will
follow our proposed protocol but try to find out as much private information
as possible based on their possession. We note that this adversary model is
weaker than that in [28], which requires the whole encryption service provider
is “honest-but-curious”.

Therefore, two types of adversaries are considered: i) The MapReduce service
provider, who can potentially access all the information including encrypted
message, the outsourcing encryption keys, etc; ii) A curious user, who can obtain
his individual private key and share his authentication with others.

Having such intuition, we will follow the replayable chosen-ciphertext attack
(RCCA) security in [17] and define RCCA security for our setting.

Setup. The challenger runs setup algorithm and gives the public key PK to the
adversary.

Phase 1. The challenger initializes an empty set Dkey. Proceedingly, adversary
is allowed to make the following queries for several times.

– Private key query. Upon receiving Ikey, challenger runs key generation algo-
rithm on Ikey to obtain SK and returns SK after setting Dkey = Dkey∪{Ikey}.

– Encryption query. Upon receiving M, j and Ienc, challenger runs encryption
algorithm totally to obtain CT and {OEKi}ni=1. But only return CT and
{OEKi}ni=1,i�=j to adversary.

– Decryption query. Upon receiving CT encrypted under Ienc, challenger gen-
erates SK for Ikey and performs decryption on CT to obtain M. Finally
return M.

Challenge. Adversary submits two messages M0 and M1. In addition the ad-
versary gives I∗enc satisfying that γ(Ikey, I

∗
enc) = 0 for all Ikey ∈ Dkey. Challenger

flips a random coin b and encrypts Mb under I∗enc totally. Finally return the
resulting ciphertext CT∗.

Phase 2. Phase 1 is repeated with the restrictions: i) Adversary cannot issue
private key query on Ikey where γ(Ikey, I

∗
enc) = 1. ii) Decryption query will be

answered normally except that the response would be either M0 or M1, then
challenger responds with a special message instead.

Guess. Adversary outputs a guess b′ of b.

Definition 1. A CP-ABE or KP-ABE scheme with outsourced encryption is
secure against replayable chosen-ciphertext attack if all polynomial time adver-
saries have at most a negligible advantage in the game defined above.

Finally, beyond the RCCA security, we also specify that i) An ABE with del-
egated encryption is CPA-secure (or secure against chosen-plaintext attack) if
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no polynomial time adversary has non-negiligible advantage in a modified game,
in which the decryption query in both phase 1 and phase 2 is removed; ii) An
ABE with delegated encryption is secure in selective model if no polynomial
time adversary has non-negiligible advantage in a modified game, in which the
I∗enc submission is advanced to an additional stage before setup.

3 Proposed Construction

3.1 Access Structure

In the proposed construction, private keys will be identified with a set ω of
descriptive attributes, while the encryption policy is specified as an access tree
T . We will briefly review the concept of access tree in [5] as well as [28] before
providing our construction.

Let T be a tree representing an access structure, in which each interior node
is a threshold gate (i.e. AND gate or OR gate) while the leaves are associated
with attributes. A user is able to decrypt a ciphertext with a given key if and
only if there is an assignment of attributes from the private key to leaf nodes of
the tree such that the tree is satisfied.

To facilitate working with the access tree, we define a few notations and
functions as follows.

– numx is the number of children of an interior node x. In order to uniquely
identify each child, an ordering between the children of every node is defined,
that is, the children of node x is numbered from 1 to numx. Therefore, if
assuming y is the child of node x, we could denote index(y) as such number
associated with the node y.

– kx is the threshold value of an interior node x, specifically, when kx = 1,
the threshold gate at x is OR gate and when kx = numx, that is an AND
gate. We note that if x is a leaf node it is described by an attribute and a
threshold value kx = 1.

– The function parent(x) returns the parent of the node x in the tree. attr(x)
returns the attribute associated with the leaf node x.

3.2 Our Construction

We utilize the MapReduce paradigm to split the secret s used in ciphertext into
n pieces and each of them is dealt by slave node separately. Another trick used
is to introduce a trival policy Tθ consisting of a single leaf node θ to improve
[28]. Specifically, our scheme supports to delegate encryption with any generic
tree-based access policy.

Before providing construction, we define some basic tools used later.

Definition 2 (Bilinear Map). Suppose G,GT be cyclic groups of prime order
q, writing the group action multiplicatively. g is a generator of G. Let e : G×G→
GT be a map with the following properties:
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– Bilinearity: e(ga1 , g
b
2) = e(g1, g2)

ab for all g1, g2 ∈ G, and a, b ∈R Zq;
– Non-degeneracy: There exists g1, g2 ∈ G such that e(g1, g2) �= 1, in other

words, the map does not send all pairs in G× G to the identity in GT ;

We also define the Lagrange coefficient Δi,S for i ∈ Zq and a set S of elements
in Zq :

Δi,S =
∏

j∈S,j �=i

x− j

i− j

Then, the proposed construction in detail is shown as follows.

– Setup(λ) : The setup algorithm is executed by authority. Select a bilinear
groupG of prime order q with generator g and two random integers α, β ∈ Zq,
and define a hash function H : {0, 1}∗ → G modeled as a random oracle.
Finally, output the public key PK = (G, H(·), g, h = gβ, e(g, g)α) and the
master key MK = (β, gα).

– KeyGen(ω,MK) : For each user’s private key request, the authority runs the
key generation algorithm. Choose r ∈R Zq and rj ∈R Zq for each attribute
j ∈ ω ∪ {attr(θ)}. Finally compute and output the private key as SK = (d =

g
α+r
β , {dj0 = gr ·H(j)rj , dj1 = grj}j∈ω∪{attr(θ)}).

– EncryptU(TU,M) : To encrypt a message M with access policy TU, firstly
pick an integer s ∈R Zq and randomly select a 1-degree polynomial qR(·) such
that qR(0) = s. Furthermore, let s1 = qR(1) and s2 = qR(2). Then, make an
n-splits on s1 by randomly selecting s11, . . . , s1n ∈ Zq with s11+. . .+s1n = s1
and set OEKi = s1i for i = 1, . . . , n. Finally, it outputs the partially en-
crypted ciphertext at local CTU = (TU ∧Tθ, Ẽ = Me(g, g)αs, E = hs, (Eθ0 =
gs2 , Eθ1 = H(attr(θ))s2 )) and the set of outsourcing keys {OEKi}ni=1.

– EncryptMR(TU, {OEKi}ni=1) : The delegated encryption algorithm is exe-
cuted by the MapReduce cloud. As described in Section 2.1, user uploads
(TU,OEKi) which is scaned as the key-value pair to the i-th slave node. Then
the MapReduce is triggered.

• Map. The slave node i finishes the “partial encryption” task by choosing

a (kx−1)-degree polynomial q
(i)
x (·) for each node x (including the leaves)

in the tree TU in a top-down manner. The selected polynomial q
(i)
x (·)

must satisfy the restriction that q
(i)
x (0) = s1i if x is the root node in TU,

otherwise q
(i)
x (0) = q

(i)
parent(x)(index(x)). Let YU denote the set of leaf nodes

in TU, then the partially encrypted ciphertext at slave node i is computed

as CT
(i)
MR = ({E(i)

y0 = gq
(i)
y (0), E

(i)
y1 = H(attr(y))q

(i)
y (0)}y∈YU). The map

function for outsourced encryption is described as Map(TU,OEKi) →
(TU,CT

(i)
MR).

• Reduce. Let qy(x) =
∑n

i=0 q
(i)
y (x) for y ∈ YU. The master node is

selected as the reducer. Then, after gathering all the intermediate key-

value pairs {(TU,CT
(i)
MR)}ni=1 sent from the other slave nodes, reducer
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computes CTMR = ({Ey0 =
∏n

i=1 E
(i)
y0 = gqy(0), Ey1 =

∏n
i=1 E

(i)
y1 =

H(attr(y))qy(0)}y∈YU). The reduce function for outsourced encryption

can be described as Reduce({(TU,CT
(i)
MR)}ni=1)→ CTMR.

Finally, such ciphertext CTMR is sent back to user.
– Decrypt(CT, SK) : The recursive decryption algorithm is executed by user.

Suppose CT = (CTU,CTMR) is encrypted under the policy corressponding
to SK, then the decryption is followed in a down-top manner.

• For each leaf node y in the hybrid access tree TU∧Tθ, let i = attr(y) and
the decryption is presented as follows.

Fy =
e(Ey0, di0)

e(di1, Ey1)
=

e(gqy(0), grH(i)ri)

e(gri , H(attr(y))qy(0))
= e(g, g)rqy(0)

• For each interior node y, let Sy be an arbitrary ky-sized set of child nodes
z such that Fz �=⊥. If no such set exists then the node is not satisfied
and the function returns ⊥. Then, the decryption is presented as follows.

Fy = (
∏
z∈Sy

Fz)
Δi,Sy (0)

= (e(g, g)
∑

z∈Sy
rqz(0))Δi,Sy (0) = e(g, g)

∑
z∈Sy

rqparent(z)(index(z))Δi,Sy (0)

= e(g, g)
r
∑

z∈Sy
qy(i)Δi,Sy (0)

= e(g, g)rqy(0)

Finally, we are able to decrypt the root node by computing FR = e(g, g)rqR(0) =
e(g, g)rs. Then, the ciphertext can be decrypted by computing

M =
Ẽ

e(E,d)
FR

=
Me(g, g)αs

e(hs,g
α+r
β )

e(g,g)rs

3.3 Security Analysis

Theorem 1. The proposed construction is CPA-secure under the assumption
that the master node as well as at least one of the slave nodes in MapReduce
cloud is “honest-but-curious” in the generic group model.

Proof. We observe that in the security game shown in Section 2.3, the chal-
lenge ciphertext has a component Ẽ which is randomly either M0e(g, g)

αs or

M1e(g, g)
αs. We can instead consider a modified game in which Ẽ is either

e(g, g)αs or e(g, g)ν, where ν is selected uniformly at random from Zq, and the
adversary must decide which is the case. It is clear that any adversary has ad-
vantage ε in the origianl game can be transformed into an adversary that has
advantage at least ε

2 in the modified game. Then, we would like to bound the
adversary’s advantage in the modified game.
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Then, we are to denote φ0 : Zq → {0, 1}logq as a random encoding for the
group operation gx ∈ G and φ1 : Zq → {0, 1}logq as a random encoding for
e(g, g)x ∈ GT . Let g = φ0(1).

At setup time, simulator chooses α, β ∈R Fq. Note that if β = 0 which happens
with probability 1

q , then setup is aborted. Finally, publish public parameters

h = gβ and e(g, g)α to adversary.
When the adversary calls for the evaluation of H on any string i, simulator

maintains a list L to store the response to hash query. Upon receiving a string
i, if the entry (i, gti) exists in L, straightforwardly return gti . Otherwise, pick
ti ∈R Fq and return gti after adding the entry (i, gti) into T .

When the adversary makes its j-th private key request on ωj of attributes,

challenger picks r(j) ∈R Fq and comptutes d = g
α+r(j)

β and we have di0 =

gr
(j)+tir

(j)
i and di1 = gr

(j)
i for i ∈ ωj ∪ {attr(θ)} and r

(j)
i ∈R Zq.

When the adversary makes encryption request on M, j as well as TU, the
simulator chooses s ∈R Fq. Then it splits s into s1 and s2 with linear secret
sharing. i) For s1, the simulator continues to split it into s11, . . . , s1n and uses

the linear secret sharing scheme associated with TU to construct shares λ
(j)
i of s1j

(j = 1, . . . , n) for all relevant attributes i. Then, the simulator makes a reduce by

computing Ei0 = g
∑k

j=1 λ
(j)
i and Ei1 = gti

∑k
j=1 λ

(j)
i for each relevant attribute i.

ii) For s2, the simulation perform computation like Section 3.2 to obtain Eθ0 =

gs2 and Eθ1 = gtθs2 . Finally, these values along with Ẽ = Me(g, g)αs, E = gs

and {s1i}ni=1,i�=j are sent to adversary.
When adversary asks for challenge on M0,M1 and T ∗, simulator’s action is

identical to the response to encryption query, except that it picks u ∈R Zq and

constructs the encryption as follows: Ẽ = e(g, g)u and E = hs. For each relevant
attribute i, Ei0 = gλi and Ei1 = gtiλi .

Subsequently, the response to the group operation is identical to that in [5].
Therefore, using the generic bilinear group model, it is able to be shown that with

probability 1 − O(p
2

q ) taken over the randomness of the choice of variable values
in the simulation, adversary’s view in this simulation is identically distributed to
what its view would have been if it had been given Ẽ = e(g, g)αs, where p is the
bound on the total number of group elements received from queries to hash func-
tions, group G,GT and the bilinear map e, and from its interaction with security
game. Therefore, the proposed construction is secure in the proposed model.

In our construction, the reduce operation is run by the master node which is
honest. Moreover, a further split on s1 is performed to “map” the “partial en-
cryption” task onto n slave nodes to allow for concurrent execution. Since at
least one of the slave nodes is honest, they are not able to recover s1 to fake
access policy even if n− 1 slave nodes collude.

Finally, we specify that though the proposed construction is secure against
chosen-plaintext attack, it is allowed to be extended to the stronger RCCA-
security guarantee by using simulation-sound NIZK proofs [23]. Alternatively, if
we are willing to use random oracle, then we can use standard techniques such
as the Fujisaki-Okamoto transformation [11].
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4 Conclusion

In this paper, we formulize the paradigm of outsourcing encryption of ABE in
cloud computing. We utilize MapReduce to propose a security enhanced con-
struction which is secure under the assumption that the master node as well
as at least one of the slave nodes in cloud is honest. Another advantage of the
proposed construction is that it is able to delegate encryption for any access
policy, instead of a special hybrid access policy. With our proposed outsourcing
method, the computational cost at user side in encryption algorithm is reduced
to four exponentiations, which is constant and does not grow with the number
of attributes included in the ciphertext.

Acknowledgements. This work is supported by the National Natural Science
Foundation of China (Nos. 61272423, 60973141, 61100224 and 60970144), Spe-
cialized Research Fund for the Doctoral Program of Higher Education of China
(No. 20100031110030), Natural Science Foundation of Guangdong Province (No.
10451009101004573), and Foundation for Distinguished Young Talents in Higher
Education of Guangdong Province (No. LYM10106).

References

1. Atallah, M.J., Frikken, K.B.: Securely outsourcing linear algebra computations. In:
Proceedings of the 5th ACM Symposium on Information, Computer and Commu-
nications Security, ASIACCS 2010, pp. 48–59. ACM, New York (2010)

2. Atallah, M.J., Li, J.: Secure outsourcing of sequence comparisons. International
Journal of Information Security 4, 277–287 (2005)

3. Atallah, M.J., Pantazopoulos, K., Rice, J.R., Spafford, E.E.: Secure outsourcing of
scientific computations. In: Zelkowitz, M.V. (ed.) Trends in Software Engineering.
Advances in Computers, vol. 54, pp. 215–272. Elsevier (2002)

4. Benjamin, D., Atallah, M.J.: Private and cheating-free outsourcing of algebraic com-
putations. In: Proceedings of the 2008 Sixth Annual Conference on Privacy, Security
and Trust, PST 2008, pp. 240–245. IEEE Computer Society,Washington, DC (2008)

5. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: IEEE Symposium on Security and Privacy 2007, pp. 321–334 (May 2007)

6. Bicakci, K., Baykal, N.: Server Assisted Signatures Revisited. In: Okamoto, T. (ed.)
CT-RSA 2004. LNCS, vol. 2964, pp. 143–156. Springer, Heidelberg (2004)

7. Chen, X., Li, J., Ma, J., Tang, Q., Lou, W.: New Algorithms for Secure Outsourc-
ing of Modular Exponentiations. In: Foresti, S., Yung, M., Martinelli, F. (eds.)
ESORICS 2012. LNCS, vol. 7459, pp. 541–556. Springer, Heidelberg (2012)

8. Cheung, L., Newport, C.: Provably secure ciphertext policy abe. In: Proceedings of
the 14th ACM Conference on Computer and Communications Security, CCS 2007,
pp. 456–465 (2007)

9. Chung, K.M., Kalai, Y., Liu, F.H., Raz, R.: Memory Delegation. In: Rogaway, P.
(ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 151–168. Springer, Heidelberg (2011)

10. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

11. Fujisaki, E., Okamoto, T.: Secure Integration of Asymmetric and Symmetric En-
cryption Schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–
554. Springer, Heidelberg (1999)



Outsourcing Encryption of ABE 201

12. Gennaro, R., Gentry, C., Parno, B.: Non-interactive Verifiable Computing: Out-
sourcing Computation to Untrusted Workers. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010)

13. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings
of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, pp.
169–178. ACM, New York (2009)

14. Gentry, C., Halevi, S.: Implementing Gentry’s Fully-Homomorphic Encryption
Scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129–
148. Springer, Heidelberg (2011)

15. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive
proofs for muggles. In: Proceedings of the 40th Annual ACM Symposium on Theory
of Computing, STOC 2008, pp. 113–122. ACM, New York (2008)

16. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Proceedings of the 13th ACM Con-
ference on Computer and Communications Security, pp. 89–98 (2006)

17. Green, M., Hohenberger, S., Waters, B.: Outsourcing the decryption of abe cipher-
texts. In: Proceedings of the 20th USENIX Conference on Security, SEC 2011, p.
34. USENIX Association, Berkeley (2011)

18. Hohenberger, S., Lysyanskaya, A.: How to Securely Outsource Cryptographic Com-
putations. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 264–282. Springer,
Heidelberg (2005)

19. Jakobsson, M., Wetzel, S.: Secure Server-Aided Signature Generation. In: Kim,
K.-C. (ed.) PKC 2001. LNCS, vol. 1992, pp. 383–401. Springer, Heidelberg (2001)

20. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully Secure Func-
tional Encryption: Attribute-Based Encryption and (Hierarchical) Inner Product
Encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91.
Springer, Heidelberg (2010)

21. Li, J., Ren, K., Zhu, B., Wan, Z.: Privacy-Aware Attribute-Based Encryption with
User Accountability. In: Samarati, P., Yung, M., Martinelli, F., Ardagna, C. (eds.)
ISC 2009. LNCS, vol. 5735, pp. 347–362. Springer, Heidelberg (2009)

22. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-
monotonic access structures. In: Proceedings of the 14th ACM Conference on Com-
puter andCommunications Security, CCS 2007, pp. 195–203. ACM,NewYork (2007)

23. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: 40th Annual Symposium on Foundations of Computer Sci-
ence, pp. 543–553 (1999)

24. Sahai, A., Seyalioglu, H., Waters, B.: Dynamic Credentials and Ciphertext Del-
egation for Attribute-Based Encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 199–217. Springer, Heidelberg (2012)

25. Sahai, A., Waters, B.: Fuzzy Identity-Based Encryption. In: Cramer, R. (ed.) EU-
ROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

26. Waters, B.: Dual System Encryption: Realizing Fully Secure IBE and HIBE under
Simple Assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
619–636. Springer, Heidelberg (2009)

27. Waters, B.: Ciphertext-PolicyAttribute-BasedEncryption:AnExpressive, Efficient,
and Provably Secure Realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011)

28. Zhou, Z., Huang, D.: Efficient and secure data storage operations for mobile cloud
computing. Cryptology ePrint Archive, Report 2011/185 (2011)



Security Enhancement
of Identity-Based Identification with Reversibility

Atsushi Fujioka1, Taiichi Saito2, and Keita Xagawa1

1 NTT Secure Platform Laboratories,
3-9-11 Midori-cho, Musashino-shi, Tokyo 180-8585, Japan

{fujioka.atsushi,xagawa.keita}@lab.ntt.co.jp
2 Tokyo Denki University,

5 Senju Asahi-cho, Adachi-ku, Tokyo 120-8551, Japan
taiichi@c.dendai.ac.jp

Abstract. In this paper, we discuss security enhancement for a natural
class of identity-based identification (IBI) protocols.

We first introduce reversible Σ-type IBI protocol, which is an exten-
sion of reversible identification protocol by Kurosawa and Heng.

We next propose a transformations from a reversible IBI protocol
secure against static-identity and passive attacks to another one secure
against adaptive-identity and (active and) concurrent attacks. The trans-
formation requires no other cryptographic primitives and no additional
number-theoretic assumptions, and the security proof is accomplished
without the random oracles.

Keywords: identity-based identification, reversible Σ-type identifica-
tion, impersonation under active and concurrent attacks.

1 Introduction

Identification is an important research topic in information and communication
security, and identity-based identification (IBI) provides functionality of identifi-
cation in identity-based setting [15]. The functionality is realized with a protocol
between a prover and a verifier, where the prover wants to show the identity to
the verifier, and the verifier needs not to have any other information related to the
prover except the prover’s identity. For engaging the protocol, IBI requires a private
key generator (PKG) as other identity-based cryptographic primitives do so. The
PKG publishes a public parameter to setup an identification system. It generates a
secret key corresponding to a given identity of an entity, and gives the secret key to
the entity. The entity performs identification with the given secret key. Thus, this
concludes that IBI has three phases: Setup, Extract, and Identification.

Security of IBI protocols is defined by an experiment of an adversary who
acts as (cheating) verifiers to gather much knowledge in the learning phase after
the setup phase and then acts as a (cheating) prover to impersonate some entity
in the challenge phase. We say that the protocol is secure when the probability
that, in the experiment, the adversary succeeds in impersonation is negligible.
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The first security formulation for IBI was given by Kurosawa and Heng [11], and
Bellare, Namprempre, and Neven provided formal descriptions of IBI [2].

A strong security notion of IBI protocols is defined as security against im-
personation under concurrent attacks [3]. Roughly speaking, an adversary in
the security model against impersonation under passive attacks (called imp-pa
model [3]) is only allowed to eavesdrop communications in identification, though
an adversary in the security model against impersonation under active attacks
(called imp-aa model [3]) is allowed to sequentially access entities who prove their
identities. If an identification protocol is secure against an adversary is allowed
to concurrently access entities who prove their identities, it is said to be secure
against impersonation under concurrent attacks (imp-ca secure [3]).

In addition, the security notions of IBI protocols are classified depending on
selection of identities. The imp-atk security is also called security against imper-
sonation under adaptive-identity attacks (adapt-id-imp-atk security) [2,14], where
atk denotes a type of attacks such that atk ∈ {pa, aa, ca}. We can consider a weak
version of the adapt-id-imp-atk security such that an adversary requests secret
keys of identities only at the beginning of the learning phase, which is called
security against impersonation under static-identity attacks (stat-id-imp-atk se-
curity) [14].

Security Enhancement of Identity-Based Identification. Along with these
formulations, a few security enhancement techniques have been investigated [7,14].
A well-known OR-proof technique [7] enhances the security of standard identifi-
cation protocols from the passive security to the concurrent security. Moreover,
it is applicable also to IBI protocols, if the underlying IBI protocol is Σ-type [8],
which is a similar property to Σ-protocol [6]. Furthermore, Rückert proposed
another security enhancement technique which can convert a stat-id-imp-atk se-
cure IBI protocol to an imp-atk secure IBI protocol where atk denotes a type
of attacks such that atk ∈ {pa, aa, ca} [14]. The technique is applicable to any
IBI protocols, however, it needs a chameleon hash function [10] as an additional
cryptographic primitive.

Though both the techniques do not require the random oracles [4] for their
security proofs, a chameleon hash function is still necessary when we convert a
stat-id-imp-pa secure IBI protocol to an adapt-id-imp-ca secure one combining the
OR-proof technique and the Rückert technique. To the best of our knowledge,
there is no security enhancement transformation from a stat-id-imp-pa secure IBI
protocol to an adapt-id-imp-ca secure one without an additional primitive.

Our Contributions. We first introduce reversible Σ-type IBI protocol, which
is an extension of reversible identification protocol by Kurosawa and Heng [12].
When we apply the identity-based construction [2] to a reversible identifica-
tion [12], we obtain a reversible Σ-type IBI protocol. We also note that many
IBI protocols from signature schemes in [11] are reversible Σ-type.

We next propose a transformations from a stat-id-imp-pa secure reversible IBI
protocol to another adapt-id-imp-ca secure one. The transformation requires no
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other cryptographic primitives and no additional number-theoretic assumptions,
and the security proof is accomplished without the random oracles.

Organization. We give a definition of identity-based identification and a related
notion in Section 2. Section 3 provides a security enhancement technique, its
security proof and discussions with the related works.

2 Definitions

In this section, we present a definition of identity-based identification (IBI) pro-
tocols and introduce a property similar to Σ-type [8]. We adopt the definition
of IBI protocols in [2].

Identity-Based Identification. We adopt the definition of IBI protocols in [2].
Let IBI = (SetUp, KG, P, V) be an IBI protocol, where SetUp is the master-key-
generation algorithm that on input 1κ outputs mpk and msk , KG is the user-
key-generation algorithm that on input (mpk , msk , id) outputs sk id , P is the
prover algorithm that, taking inputs mpk , id and sk id , interacts with V, and V
is the verifier algorithm that, taking inputs mpk and id , interacts with P and
finally outputs dec ∈ {accept , reject}.

The PKG uses SetUp to generate master public key mpk and secret key msk ,
publicizes mpk and keeps msk secret. It also uses KG to generate a secret key
sk id for the entity of an identity id . The entity having id uses P, as a prover.
The prover interacts with another entity who uses V as a verifier to convince the
verifier that the identity is id . If both the entities correctly follows the protocol,
V outputs accept .

We describe the formal definitions of security of IBI based on the following
experiments Expadapt-id-imp-atk

IBI,I (κ) between a challenger and an impersonator I =
(CV, CP), where atk denotes a type of attacks such that atk ∈ {pa, aa, ca}.
Experiment Expadapt-id-imp-atk

IBI,I (κ):
Setup Phase: The challenger obtains (mpk , msk) ← SetUp(1κ) and ini-

tializes HU , CU , TU , PS ← ∅, where HU , CU , and TU denote the sets
of honest users, corrupted users, and target users, respectively, and PS
denotes the set of provers’ sessions. The impersonator CV is given the
security parameter 1κ and the master public key mpk .

Learning Phase: The impersonator CV can query to the oracles Init,
Corr and Conv when atk = pa, and also to Prov when atk = {aa,
ca}. Note that id �∈ HU \ TU means that id is target user, corrupted
user, or non-initiated user.
– The oracle Init receives input id . If id ∈ HU ∪CU ∪TU , then Init

returns ⊥. Otherwise, it obtains sk id ← KG(mpk , msk , id), adds id
to HU , and provides CV with id .

– The oracle Corr receives input id . If id �∈ HU \ TU , then Corr
returns ⊥. Otherwise, it adds id to CU , deletes id from HU , and
returns sk id to CV.
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– The oracle Conv receives input id . If id �∈ HU , then Conv returns
⊥. Otherwise it returns a transcript of a transaction between the
prover with identity id and a verifier.

– (only when atk = aa) The oracle Prov receives inputs id , s, and
Min. If id �∈ HU \ TU , then Prov returns ⊥. Otherwise if PS = ∅,
it sets PS = {(id , s)}, picks a random coin ρ, and sets a state of
the prover stP[(id , s)] ← (mpk , sk id , ρ). Next, it obtains (Mout,
stP[(id , s)])← P(Min, stP[(id , s)]). Finally, it returns Mout. If Mout

is the final message of the protocol, Prov sets PS ← ∅.
– (only when atk = ca) The oracle Prov receives inputs id , s, and

Min. If id �∈ HU \ TU , then Prov returns ⊥. If (id , s) �∈ PS , then
it adds (id , s) to PS , picks a random coin ρ, and sets a state of
the prover stP[(id , s)] ← (mpk , sk id , ρ). Next, it obtains (Mout,
stP[(id , s)])← P(Min, stP[(id , s)]). Finally, it returns Mout.

Challenge Phase: CV outputs a target identity id∗ and stCP. If id∗ is
not in HU then the challenger outputs 0 and halts. Otherwise, the
challenger sets TU ← {id∗}, and gives stCP to CP. CP can query to
the oracles Init, Corr, and Conv, (and Prov when atk = aa or ca)
as in the learning phase. Finally, the challenger obtains (tr , dec) ←
Run[CP(stCP)Init,Corr,Conv(,Prov) ↔ V(mpk , id∗)] and outputs dec.

In the case of atk = aa, the Prov oracle allows only a single session at a time.
On the other hand, in the case of atk = ca, it allows multiple sessions at the
same time.

Definition 2.1. Let IBI = (SetUp, KG, P, V) be an IBI protocol and I = (CV,
CP) an impersonator. Let κ be a security parameter. The advantage of I in
attacking IBI is defined by

Advadapt-id-imp-atk
IBI,I (κ) := Pr

[
Expadapt-id-imp-atk

IBI,I (κ) = accept
]
.

We say that an IBI protocol, IBI, is secure against impersonation under adaptive-
identity and concurrent attacks (adapt-id-imp-ca secure) if Advadapt-id-imp-ca

IBI,I (κ)
is negligible for every polynomial-time impersonator I, is secure against im-
personation under adaptive-identity and active attacks (adapt-id-imp-aa secure)
if Advadapt-id-imp-aa

IBI,I (κ) is negligible for every polynomial-time impersonator I,
and is secure against impersonation under adaptive-identity and passive attacks
(adapt-id-imp-pa secure) if Advadapt-id-imp-pa

IBI,I (κ) is negligible for every polynomial-
time impersonator I.
According to [14], we also describe a weaker security definition of IBI based
on the following experiments Expstat-id-imp-atk

IBI,I (κ) (atk ∈ {pa, aa, ca}) between a
challenger and an impersonator I = (CV, CP).

Experiment Expstat-id-imp-atk
IBI,I (κ):

Setup Phase: At the beginning of this phase, the impersonator CV issues
a single corruption query (id1, . . . , id t) to the challenger before seeing
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master public key. The challenger is given the security parameter 1κ,
obtains (mpk , msk)← SetUp(1κ), and computes sk idi

← KG(mpk , msk ,
id i) for all i (1 ≤ i ≤ t). It sets CU ← {id1, id2, . . . , id t} and then
returns (sk id1 , . . . , sk idt

) to CV. The challenger initializes HU , TU ,
PS ← ∅. The impersonator CV is given the security parameter 1κ and
the master public key mpk .

Learning and Challenge Phases: The learning and challenge phases are
defined as the same way as those in the experiments Expadapt-id-imp-atk

IBI,I (κ),
except that the impersonator I is not allowed to additional queries to
Corr during these phases.

Definition 2.2. Let IBI = (SetUp, KG, P, V) be an IBI protocol and I = (CV,
CP) an impersonator. Let κ be a security parameter. The advantage of I in
attacking IBI is defined by

Advstat-id-imp-atk
IBI,I (κ) := Pr

[
Expstat-id-imp-atk

IBI,I (κ) = accept
]
.

We say that IBI is secure against impersonation under static-identity and con-
current attacks (stat-id-imp-ca secure) if Advstat-id-imp-ca

IBI,I (κ) is negligible for every
polynomial-time I, is secure against impersonation under static-identity and ac-
tive attacks (stat-id-imp-aa secure) if Advstat-id-imp-aa

IBI,I (κ) is negligible for every
polynomial-time I, and is secure against impersonation under static-identity
and passive attacks (stat-id-imp-pa secure) if Advstat-id-imp-pa

IBI,I (κ) is negligible for
every polynomial-time I.

Reversible Σ-Type IBI Protocol. We define an analogue of Σ-protocols in
the context of IBI protocols. Let IBI = (SetUp, KG, P, V) be an identity-based
identification protocol.

Suppose that communication between P and V is realized by the following
three-move protocol through which five polynomial-time algorithms (Σibi-gnc,
Σibi-cmt, Σibi-clg, Σibi-rsp, Σibi-chk) are used, and that Σibi-cmt, Σibi-rsp, and Σibi-chk

are deterministic.

P→ V: P computes r ← Σibi-gnc(mpk , id), x = Σibi-cmt(mpk , id , r) and sends x
to V.

V→ P: V computes c← Σibi-clg(mpk , id) and sends c to P.
P→ V: P computes y = Σibi-rsp(mpk , id , sk id , r, c) and sends y to V.
V: V outputs accept if x = Σibi-chk(mpk , id , c, y) holds, and, reject otherwise.

Let Rnd(mpk ,id) denote a set {r | r ← Σibi-gnc(mpk , id)}, and assume that r is
uniformly distributed over Rnd(mpk,id).

We call this type of three-move IBI protocols canonical, and moreover, we call
an IBI protocol IBI reversible Σ-type if it is canonical and satisfies three proper-
ties: y-uniformity, special soundness, special commitment, and special response.
y-Uniformity: Let Res(mpk,id) be a set {y | y ← Σibi-rsp(mpk , id , sk id , r,
c), c ← Σibi-clg(mpk , id), r ∈ Rnd(mpk,id)}. For any fixed (mpk , id , sk id , c),
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y = Σibi-rsp(mpk , id , sk id , r, c) is uniformly distributed over Res(mpk ,id) if r is
uniformly distributed over Rnd(mpk,id).
Special Soundness: We can compute the user secret key sk id for an identity
id from mpk , id and two accepting transcripts (x, c, y) and (x, c̃, ỹ) such that
c �= c̃. That is, there is a polynomial-time algorithm Σibi-ext that takes as inputs
mpk , id and two transcripts (x, c, y) and (x, c̃, ỹ) satisfying x = Σibi-chk(mpk , id ,
c, y) = Σibi-chk(mpk , id , c̃, ỹ) and c �= c̃, and outputs sk id .
Special Commitment: We can compute r from mpk , id , sk id , c, y such that
Σibi-cmt(mpk , id , r) = Σibi-chk(mpk , id , c, y). That is, there is a polynomial-time
algorithm Σibi-rvs that takes as inputs mpk , id , sk id , c, and y, and outputs r.
Special Response: We can generate y only from mpk and id such that for
some r and c, Σibi-cmt(mpk , id , r) = Σibi-chk(mpk , id , c, y) holds, and the gen-
erated y is randomly and uniformly distributed over Res(mpk ,id). That is, there
is a polynomial-time algorithm Σibi-gnr that takes as inputs mpk and id , and
outputs y.

Note that the y-uniformity and special response properties imply the following
special zero-knowledge property.
Special Zero-Knowledge: We can obtain an accepting transcript from a chal-
lenge c, mpk and id . That is, there is a polynomial-time algorithm Σibi-sim

that takes on inputs mpk , id and c such that c ← Σibi-clg(mpk , id), runs
y ← Σibi-gnr(mpk , id) and x ← Σibi-chk(mpk , id , c, y), and outputs (x, y). The
distribution of transcripts generated by Σibi-clg and Σibi-sim is indistinguishable
from that of real transcripts.

3 Proposed Security Enhancement Transformations

3.1 Description

Here we propose a generic transformation that converts any stat-id-imp-pa secure
reversible Σ-type IBI protocol into an adapt-id-imp-ca secure IBI one. We note
that, in conversion, x and id are treated as challenges. Our transformation mod-
ifies a three-move transaction (x, c, y) of the underlying protocol into another
three-move one ((X ′, Y ′, X ′′), c, (x, y, Y ′′)) such that Y ′ ← Σibi-gnr(mpk , ĩd),
X ′ = Σibi-chk(mpk , ĩd , id , Y ′), Y ′′ ← Σibi-gnr(mpk , ĩd), and X ′′ = Σibi-chk(mpk ,
ĩd , x, Y ′′), where ĩd is a fixed string called master identity and is a part of
master public key for the constructed IBI protocol.

Let IBI′ = (SetUp′, KG′, P′, V′) be a reversible Σ-type IBI protocol, where (P′,
V′) is realized by (Σ′

ibi-gnc, Σ′
ibi-cmt, Σ′

ibi-clg, Σ′
ibi-rsp, Σ′

ibi-chk) and the y-uniformity,
special soundness, and special commitment properties are shown by (Σ′

ibi-gnr,
Σ′

ibi-ext, Σ′
ibi-rvs).

From this Σ-type IBI protocol IBI′, we construct another IBI protocol IBI =
(SetUp, KG, P, V) as follows.

SetUp: It takes as input 1κ, runs (mpk ′, msk ′)← SetUp′(1κ), (mpk ′′, msk ′′)←
SetUp′(1κ), chooses a master identity ĩd , and outputs (mpk , msk) = ((mpk ′,
mpk ′′, ĩd), msk ′).
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KG: It takes as input (mpk , msk , id), parses mpk and msk as mpk = (mpk ′,
mpk ′′, ĩd) and msk = msk ′, respectively, runs Y ′

id ← Σ′
ibi-gnr(mpk ′′, ĩd),

X ′
id = Σ′

ibi-chk(mpk ′′, ĩd , id , Y ′
id ), sk ′

id ← KG′(mpk ′, msk ′, X ′
id ) and outputs

sk id = (sk ′
id , X ′

id , Y ′
id ).

P: P takes as input (mpk , id , sk id ), and parses mpk and sk id as mpk = (mpk ′,
mpk ′′, ĩd) and sk id = (sk ′

id , X ′
id , Y ′

id ), respectively.

V: V takes as input (mpk , id), and parses mpk as mpk = (mpk ′, mpk ′′, ĩd).
P→ V: P computes r ← Σ′

ibi-gnc(mpk ′, X ′
id), x = Σ′

ibi-cmt(mpk ′, X ′
id , r), Y ′′ ←

Σ′
ibi-gnr(mpk ′′, ĩd), X ′′ = Σ′

ibi-chk(mpk ′′, ĩd , x, Y ′′), and sends (X ′
id , Y ′

id , X ′′)
to V.

V→ P: V computes c← Σ′
ibi-clg(mpk ′, X ′

id ) and sends c to P.

P→ V: P computes y = Σ′
ibi-rsp(mpk ′, X ′

id , sk ′
id , r, c) and sends (x, y, Y ′′) to V.

V: V outputs accept if x = Σ′
ibi-chk(mpk ′, X ′

id , c, y), X ′
id = Σ′

ibi-chk(mpk ′′, ĩd , id ,
Y ′
id ) and X ′′ = Σ′

ibi-chk(mpk ′′, ĩd , x, Y ′′) hold, and, reject otherwise.

Setup
SetUp(1κ)

(mpk′,msk′) ← SetUp′(1κ)
(mpk ′′,msk′′) ← SetUp′(1κ)
choose a master identity ĩd

output (mpk,msk) = ((mpk′,mpk′′, ĩd),msk ′)
Extract

KG(mpk,msk , id)

mpk = (mpk ′,mpk ′′, ĩd)
msk = msk ′

Y ′
id ← Σ′

ibi-gnr(mpk ′′, ĩd)
X′

id = Σ′
ibi-chk(mpk ′′, ĩd, id, Y ′

id )
sk ′

id ← KG′(mpk′,msk ′, X′
id )

outputs skid = (sk ′
id , X

′
id , Y

′
id )

Identification
P(mpk , id , skid ) V(mpk, id)

mpk = (mpk′,mpk′′, ĩd) mpk = (mpk′,mpk′′, ĩd)
skid = (sk ′

id , X
′
id , Y

′
id )

r ← Σ′
ibi-gnc(mpk′, X′

id )

x = Σ′
ibi-cmt(mpk ′, X′

id , r)

Y ′′ ← Σ′
ibi-gnr(mpk′′, ĩd)

X′′ = Σ′
ibi-chk(mpk′′, ĩd , x, Y ′′) (X′

id , Y
′
id , X

′′)
−→ c ← Σ′

ibi-clg(mpk′, X′
id )

c
y = Σ′

ibi-rsp(mpk′, X′
id , sk id , r, c) ←−

(x, y, Y ′′)
−→ check x = Σ′

ibi-chk(mpk′, X′
id , c, y),

X′
id = Σ′

ibi-chk(mpk ′′, ĩd, id, Y ′
id ), and

X′′ = Σ′
ibi-chk(mpk ′′, ĩd, x, Y ′′)

output accept if all hold;
otherwise, output reject

Fig. 1. Proposed Transformation
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3.2 Security

In this section, we show that the proposed transformation can enhance the secu-
rity of reversible Σ-type IBI protocols from the security against impersonation
under static-identity and passive attacks (i.e., stat-id-imp-pa security) to the secu-
rity against impersonation under adaptive-identity and (active and) concurrent
attacks (i.e., adapt-id-imp-ca security).

Theorem 3.1. If there exists a stat-id-imp-pa secure reversible Σ-type IBI pro-
tocol, then there exists an adapt-id-imp-ca secure IBI protocol.

Proof (Sketch). Suppose that there exists an adapt-id-imp-ca impersonator, I =
(CV, CP), against IBI. We construct a stat-id-imp-pa impersonator, I′ = (CV′,
CP′), against IBI′. Here we outline the construction.

Suppose that I ′ obtains two accepting transcripts ((X ′
id∗ ,Y ′

id∗ , X ′′), c, (x, y,
Y ′′)) and ((X ′

id∗ , Y ′
id∗ , X ′′), c̃, (x̃, ỹ, Ỹ ′′)) by rewinding I. There are two cases

that (A) x �= x̃ or (B) x = x̃. We call the impersonator I that makes the former
and latter transcripts a type A and type B impersonator, respectively.
From Type A Impersonator: We first describe the case that I is a type
A impersonator, because it is easier. In the setup phase of the static-identity
experiment, I ′ issues no corruption query to its stat-id-imp-pa challenger. I′
receives mpke from the challenger. It generates (mpks, msks) ← SetUp′(1κ),
chooses ĩd , and sets mpk ′ = mpks, mpk ′′ = mpke, and mpk = (mpk ′, mpk ′′, ĩd).
I ′ starts the experiment with the impersonator I by feeding mpk .

In the learning phase, since I ′ has msk ′, it can generate sk ′
id and then sk id .

Thus, I ′ can perfectly simulate the oracles.
In the challenge phase, I declares the target identity id∗, and then, I ′ declares

ĩd as the target identity. I ′ rewinds I and obtains two transcripts ((X ′
id∗ , Y ′

id∗ ,
X ′′), c, (x, y, Y ′′)) and ((X ′

id∗ , Y ′
id∗ , X ′′), c̃, (x̃, ỹ, Ỹ ′′)). We can classify the

transcripts into two cases: If X ′
id∗ has already been generated for a distinct

identity id �= id∗, then I ′ obtains two accepting transcripts under mpk ′′ and ĩd ,
that is, (X ′

id∗ , id∗, Y ′
id∗) and (X ′

id , id , Y ′
id ) with X ′

id∗ = X ′
id . I ′ can extract sk ĩd

from the two transcripts due to the special soundness property, and wins the
stat-id-imp-pa experiment. Otherwise, it has the transcripts for distinct x and
x̃. It extracts sk ĩd from the two accepting transcripts, (X ′′, x, Y ′′) and (X ′′,
x̃, Ỹ ′′) under mpk ′′ and ĩd due to the special soundness property, and wins the
stat-id-imp-pa experiment.
From Type B Impersonator: We next consider the case that I is a type B
impersonator. Let Q be an upperbound of the number of the Init queries from
I. In the setup phase of the static-identity experiment, I′ generates (mpk s,
msks) ← SetUp′(1κ), chooses ĩd , and sets mpk ′′ = mpk s. I ′ then guesses i∗ ∈
{1, . . . , Q} such that in the i∗-th Init query, I initializes the target identity
id∗. Next, I ′ generates sk ′′

ĩd
← KG′(mpk ′′, msk ′′, ĩd). I ′ generates Q random

identities id ′
i (1 ≤ i ≤ Q), converts id ′

i to X ′
i with Ŷi using mpk ′′, and issues a

corruption query (X ′
1, . . . , X ′

i∗−1, X ′
i∗+1, . . . , X ′

Q) to the challenger. Then I ′
receives the secret keys (sk ′

1, . . . , sk ′
i∗−1, sk ′

i∗+1, . . . , sk ′
Q) for (X ′

1, . . . , Xi∗−1,
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Xi∗+1, . . . , X ′
Q) and the master public key mpke. It sets mpk ′ = mpke and sets

mpk = (mpk ′, mpk ′′, ĩd) (see Fig. 2). I ′ starts the experiment with I by feeding
mpk .

I I′ challenger
choose (id ′

1, . . . , id
′
Q)

Ŷi ← Σ′
ibi-gnr(mpk ′′, ĩd) (X ′

1, . . . , X
′
i∗−1,

X ′
i = Σ′

ibi-chk(mpk ′′, ĩd , id ′
i, Ŷi) X ′

i∗+1, . . . , X
′
Q)

−→
(sk ′

1, . . . , sk
′
i∗−1,

sk ′
i∗+1, . . . , sk

′
Q)

mpke

←−
◦ Init

id j

−→
R′ ← Σ′

ibi-rvs(mpk ′′, ĩd , sk ′′
ĩd

, idj , Ŷj)

id j Y ′
j = Σ′

ibi-rsp(mpk ′′, ĩd , sk ′′
ĩd

, R′, id j)
←−

◦ Corr
id j

−→
sk j If j �= i∗, sk j = (sk ′

j , X
′
j , Y

′
j )

←−

Fig. 2. Sketch of Init and Corr oracle simulation

In the learning phase, I ′ answers the oracle queries as follows: On an Init
query id j , I computes Y ′

j such that X ′
j = Σ′

ibi-chk(mpk ′′, ĩd , id j , Y ′
j ) by using

Σ′
ibi-rvs and Σ′

ibi-rsp. On a Corr query id , if id = id i∗ then I aborts. Otherwise,
since id = id j for j �= i∗, I can return sk id = (sk ′

j , X ′
j , Y ′

j ) (see Fig. 2).
On a Prov query id i (id i �= id i∗), I answers the query by using sk id = (sk ′

i,
X ′

i, Y ′
i ). The problem arises on id i∗ , since I ′ does not have sk ′

i∗ . Even in this
case, I ′ can simulate id i∗ by using sk ′′

ĩd
. Given id i∗ with a session s, then it

simulates the conversation (x̂, ĉ, ŷ) and the commitment X ′′ of x̂, and returns
(X ′

i∗ , Y ′
i∗ , X ′′). On the query (id i∗ , s, c), it newly generates the conversation

(x, c, y) and computes a decommitment Y ′′ by using sk ′′
ĩd

and x. Then, it returns
(x, y, Y ′′) (see Fig. 3).

In the challenge phase of the inner experiment, I declares the target identity
id∗. We see that id∗ = id i∗ occurs with probability 1/Q. Otherwise, I ′ aborts.
I ′ randomly chooses two challenges c and c̃ and obtains two transcripts ((X ′

id∗ ,
Y ′
id∗ , X ′′), c, (x, y, Y ′′)) and ((X ′

id∗ , Y ′
id∗ , X ′′), c̃, (x̃, ỹ, Ỹ ′′)). Suppose that

both transcripts are accepted. If X ′
id∗ equals to X ′

i for i �= i∗, then I ′ aborts. If
x �= x̃ then I ′ aborts. Otherwise, I ′ obtains two accepting transcripts (x, c, y)
and (x, c̃, ỹ) under mpk ′ and X ′

id∗ = X ′
i∗ . Due to the special soundness, I ′
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I I′
◦ Prov

id i∗

−→ ĉ← Σ′
ibi-clg(mpk ′, X ′

i∗ )
ŷ ← Σ′

ibi-gnr(mpk ′, X ′
i∗)

x̂ = Σ′
ibi-chk(mpk ′, X ′

i∗ , ĉ, ŷ)

Ŷ ← Σ′
ibi-gnr(mpk ′′, ĩd)

(X ′
i∗ , Y ′

i∗ , X ′′) X ′′ = Σ′
ibi-chk(mpk ′′, ĩd , x̂, Ŷ )

←−
c
−→ y ← Σ′

ibi-gnr(mpk ′, X ′
i∗)

x← Σ′
ibi-chk(mpk ′, X ′

i∗ , c, y)

R← Σ′
ibi-rvs(mpk ′′, ĩd , sk ′′

ĩd
, x, Ŷ )

(x, y, Y ′′) Y ′′ = Σ′
ibi-rsp(mpk ′′, ĩd , sk ′′

ĩd
, R, x)

←−

Fig. 3. Sketch of Prov oracle simulation on id i∗

can extract sk i∗ . Then, I ′ declares X ′
i∗ as the target identity and can win the

stat-id-imp-pa experiment. ��
Due to page limitation, the proof of Theorem 3.1 is given in the final version of
this paper.

3.3 Discussions

On Reversible Σ-Type Protocols. Kurosawa and Heng [12] defined a re-
versible property for identification protocols, and showed the conversion of the
reversible identification protocol to trapdoor commitment scheme and vice versa.
They also constructed an online/offline signature scheme, directly combining a
signature scheme and a reversible identification protocol [12, Section 5]. The
constructed scheme has smaller size of public keys than that of a scheme based
on the Shamir-Tauman construction [16], which simply combines a signature
scheme and a trapdoor commitment scheme.

Canetti et al. [5] defined augmented Σ-protocol, which is an extension of Σ-
protocol for proving knowledge for some relation and has a property similar to
“reversible” for standard identification. They then construct an identity-based
trapdoor commitment scheme [1] from any signature scheme with an augmented
Σ-protocol.

From a reversible Σ-type IBI protocol, which is an extension of reversible
identification protocol [12], we can construct a trapdoor commitment scheme.
In addition, we can construct a multi-trapdoor commitment [9], identity-based
trapdoor commitment [1], simulation-sound trapdoor commitment [13], and non-
malleable trapdoor commitment [13] from it.

We observe that many IBI protocols fall into reversible Σ-type. Kurosawa and
Heng [12] noted that many practical identification protocols have the reversible
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property. Applying to the reversible identification protocol the certificate-based
construction by Bellare, Namprempre, and Neven [2], which constructs an IBI
protocol from an identification protocol and a digital signature scheme, we ob-
tain a reversible Σ-type IBI protocol. We also note that the Kurosawa-Heng
construction [11] can convert a signature scheme with an augmented Σ-protocol
into a reversible Σ-type IBI protocol.

On Security Enhancements. It is known that a trapdoor commitment scheme
enhances the security of IBI protocol from the static-identity setting to the
adaptive-identity setting [14]. Consequently we may apply the constructed trap-
door commitment to the IBI protocol in order to enhance its security.

However, we present a transformation that converts a stat-id-imp-pa secure IBI
protocol to an adapt-id-imp-ca secure one. In this transformation, an instance
of an underlying IBI protocol is directly combined with another instance of
the same IBI protocol, instead of constructing multi-trapdoor commitment and
simply combining it with IBI protocol. The obtained IBI protocol attains more
efficiency than the one by simple combination of the underlying IBI protocol with
the multi-trapdoor commitment schemes, as well as we see in the construction
of online/offline signature schemes in [12].

Yang et al. [17] presented a construction of IBI protocols secure under weak-
selective-identity attacks in the standard model. In this paper, we discuss only se-
curity under adaptive-identity and static-identity attacks (adapt-id-imp-atk and
stat-id-imp-atk), not weak-selective-identity attacks. In [8], it is shown that secu-
rity under weak-selective-identity attacks is not stronger than stat-id-imp-atk se-
curity, and stat-id-imp-atk security is not stronger than adapt-id-imp-atk security.

4 Conclusion

We introduced reversible Σ-type IBI protocol, which is an extension of reversible
identification protocol by Kurosawa and Heng [12]. Then, we proposed a secu-
rity enhancement technique for reversible Σ-type identity-based identification
protocols. The proposed transformation can convert a stat-id-imp-pa secure IBI
protocol to an adapt-id-imp-ca secure one. It requires no other cryptographic
primitives and no additional assumptions, and the security proof is done with-
out the random oracles.
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Abstract. Near Field Communication (NFC) has reinvigorated the
multi-application smart card initiative. The NFC trials are relying on
an extension of Issuer Centric Smart Card Model (ICOM) referred as
Trusted Service Manager (TSM) architecture, which may create mar-
ket segregation. Where the User Centric Smart Card Ownership Model
(UCOM) takes an opposite approach of delegating the smart card own-
ership to its users. Therefore, to reconcile these two approaches we pro-
posed the Coopetitive Architecture for Smart Cards (CASC) that avoids
market segregation, increase revenue generation, and provide flexibil-
ity, robustness, and scalability. To support the CASC framework in this
paper, we propose an application installation protocol that provides
entity authentication, trust assurance and validation, mutual key and
contractual-agreement generation. The protocol is compared with exist-
ing protocols on its performance, stated security, and operational goals.
Furthermore, CasperFDR is used to provide a mechanical formal analysis
of the protocol.

1 Introduction

In late 1990s, the multi-application smart card initiative enabled heterogeneous
applications to co-exist and share resources in a secure and reliable manner [1].
At the time, it was envisioned that diverse organisations would converge with
their services on a single device [2]; however, the reality has been different.

The issues related to the card ownership, marketing potential of the card sur-
face, customer loyalty, and potential revenue stream, hindered any meaningful
collaboration effort [3]. In addition, there were other voices mainly concerned
with the security implication [4]. The enthusiasm died quickly until a new tech-
nology termed as Near Field Communication (NFC) emerged that enables a
mobile phone to emulate a contact-less smart card [5]. Since 2007, NFC based
mobile services with applications like banking, telecom, and transports are in
trial around 38 countries [6]. In these trials, the smart card management ar-
chitecture is based on the framework that has been deployed in the smart card
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industry since its inception, namely Issuer Centric Smart Card Ownership Model
(ICOM). In the ICOM, smart cards are issued and controlled by a centralised au-
thority known as a card issuer. Application providers require prior-authorisation
from the card issuers to install their applications. The extension of the ICOM
deployed in the NFC based trials is termed as Trusted Service Manager (TSM)
architecture [7]. The TSM is an entity that can be either a card issuer or an
independent third party. It manages the card platform, and relationship with
individual stakeholders.

In contrast, User Centric Smart Card Ownership Model (UCOM) [3] is based
on the citizen ownership architecture. In this model, cardholders (users) own
smart cards, and they have the choice to install or delete any application. To
reconcile between the UCOM and TSM, we proposed the Coopetitive Architec-
ture for Smart Card (CASC)1 that merges the TSM and UCOM frameworks,
thus increasing the overall scalability of the multi-application smart card archi-
tecture, and possibly provide more revenue-generating opportunities than the
TSM can individually achieve.

1.1 Contributions

In this paper, based on the CASC architecture, we propose a trusted and se-
cure entity authentication, key generation, and contractual-agreement protocol
for application download referred as Application Acquisition and Contractual
Agreement Protocol (ACAP). The contractual-agreement guarantees to the par-
ticipating entities that they have executed the protocol and as a successful out-
come, an application is installed (and the application is operational).

1.2 Organisation

In section two, we provide a brief motivation behind the coopetitive architecture.
A succinct discussion on the smart card architecture that supports the CASC
framework is provided in section three. In this section we only discuss elements
of the smart card design that is required to support the proposed protocol. These
two sections set the background on which we base the security and operational
requirements of the proposed protocol. Next in section four, the description of
the ACAP is provided. Section five analyse the ACAP to see whether it meets the
stated goals and requirements in comparison to existing protocols. In addition,
we discuss the implementation experience and performance measurement of the
ACAP along with formal analysis based on the CasperFDR. Finally, in section
six we provide concluding remarks and list future research directions.

2 Motivation for Coopetitive Architecture

The TSM architecture, in a simplistic form, is illustrated in figure 1. In such
an environment, a customer of a Mobile Network Operator (MNO) that has a
1 To facilitate the blind reviewing process, references to CASC are removed.
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relationship with the TSM-1 will only be able to have applications from Card
Issuing Bank (CIB), Transport Service Provider (TSO) and leisure centres that
are associated with the TSM-1. However, if the respective customer CA does
banking with the CIB2 that is associated with the TSM-2 (figure 1) then either
she has to acquire a new smart card from the TSM-2 or change bank. Therefore,
in such a scheme, there is a potential for the segmentation of the market.

One possible option is to have all application providers maintain relationships
with all or most of the TSMs. For example, in figure 1, the CIB1 of TSM-1
should also have a relationship with the TSM-2. Another possible option is to
create a syndicated scheme in which multiple TSMs participate.

Therefore, any application

CIB1MNO1 TSO1

Leisure
Centre 1

CIB2MNO2 TSO2

Leisure
Centre 2

TSM-1 TSM-2

CA CB Cc CD CE CF

Fig. 1. Trusted Service Manager Architecture

provider affiliated with one
TSM will be able to issue its ap-
plication to a customer of any
syndicated TSM. Both scenar-
ios can be argued to be work-
able, but they also suffer from
limited scalability, flexibility,
and ubiquity of the framework.

The limited scalability roots
from: (a) not all application
providers could establish or
manage relationships with every possible TSM, and (b) not all TSMs would
be part of a single syndicated TSM. In addition, to be part of a collaborative
scheme a TSM might require subscription fee from application providers. There-
fore, small or medium-scale organisations like local libraries, universities, and
health centres, etc., may not be able to afford it. We consider that such a barrier
to enter the scheme reduces its flexibility. Furthermore, it lacks true ubiquity as
different countries might opt for having their own independent TSMs. Thereby,
tourists or business travellers would face difficulty in acquiring applications (e.g.
TSO’s application) in a foreign country. These issues are on top of the ones
that are discussed in [4] including ownership privileges, customer loyalty and
relationship management, card surface marketing, and revenue generation [3].

In the UCOM, most of the issues discussed above are not present [3]. We
consider that UCOM itself will be a preferable solution, but it is difficult to
conceive that it can have a widespread acceptance in the business community.
Therefore, a compromise between the TSM and UCOM is referred as Coopetitive
Architecture for Smart Cards (CASC).

The coopetitive architecture focuses on the core competences of individual
companies and leaves other areas to the organisations that have expertise in
them. For example, an MNO in the coopetitive architecture can be a TSM and
even have the ability to form alliance with other companies to provide their
services via the respective smart cards. In addition, it also enables the users to
download applications they like from any of the application providers of their
choice. The main stake the MNO has is to generate maximum revenue out of its
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investment in the secure element, and its security. Therefore, if there is a way in
which an application can be securely downloaded onto a smart card that does
not have any prior relationship with the particular application provider and the
MNO charges the customer for acquiring the application. Then in such a model,
there is a probability that customers would actually generate higher revenue for
the respective card issuer or TSM than in the traditional architecture based on
the ICOM.

3 Coopetitive Architecture for Smart Cards

In this section, first we discuss the coopetitive architecture and then briefly
describe the multi-application smart card architecture to support it.

3.1 Smart Card Architecture Overview

A generic architecture is illustrated in figure 2, for brevity we will only discuss
those components that are related to this paper. On top of the hardware layer
is the Trusted Environment & Execution Manager (TEM), which is discussed in
the next section.

Above TEM is the smart

Trusted Environment & Execution Manager

Smart Card Runtime Environment

Smart Card Firewall

Smart Card Virtual Machine

System Classes Application Programming Interfaces (APIs)

Card
Privileges
Manager

Application
A

Smart Card Hardware

Native Code

Platform’s Space

Subscription
Manager

Application Installation &
Deletion Manager

Application
B

Application
C

Application
D

TSM’s Space Cardholder’s Space

Fig. 2. Generic Smart Card Architecture for
Coopetitive Framework

card runtime environment that
might conform to any of the
smart card platforms or oper-
ating systems (e.g. Java Card
[8] or Multos [9]). The smart
card firewall manages the inter-
application communication
and access to the platform ser-
vices (i.e. APIs). The top most
layer is partitioned into three
sections separated by the fire-
wall mechanism: namely the
Platform’s, TSM’s, and Card-
holder’s space. The Platform’s space holds the platform APIs, where application
related to individual entities (e.g. TSM and cardholder) are in their respective
spaces.

3.2 Trusted Environment and Execution Manager (TEM)

A TEM provides a platform independent dynamic, runtime, and remote – secu-
rity and reliability assurance mechanism for the UCOM based smart cards. In a
naive manner, we can term it as a trusted platform base for the smart cards; how-
ever, TEM’s functionality differs from the traditional Trusted Platform Module
[10]. For the sake of concision, we will only discuss the TEM component referred
as the attestation handler in this section that is directly related to this paper.
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The attestation handler implements the security-assurance and validation
mechanism that certify to the requesting entity (e.g. Service Provider: SP) that
the smart card’s state is as it was at the time of a third party evaluation and
stated by the evaluation certificate [11]. An evaluation certificate is a crypto-
graphically signed certificate issued by an evaluation body, and the respective
card manufacturer places it on the platform. The evaluation certificate will cer-
tify a unique signature key pair of the Smart Card Manufacturer (SCM). The
SCM will use the signature key to issue certificates to the manufactured smart
cards that conform to the evaluated product (see figure 3). A point to note is
that at present Common Criteria (CC) [12] or any other evaluation scheme, for
that matter, does not provide any such service but proposals presented in [11]
and [13] can be utilised.

The process initiated by the attestation handler validates both the hardware
and software state of the platform. It is a two-part mechanism: tamper-evidence
and reliability assurance. To make a smart card tamper-resistant, the respec-
tive SCM implements hardware based tamper protections. The tamper-evidence
process verifies whether the implemented tamper-resistant mechanisms are still
in place and effective. The reliability assurance process verifies that the soft-
ware part of the smart card platform is not been tampered/modified. For the
description of the TEM and implementation of the attestation handler see [14].

4 Application Acquisition and Contractual Agreement
Framework

In this section, we detail the security and operational goals for the Application
Acquisition and Contractual Agreement protocol (ACAP) that facilitates applica-
tion installation/deletion in the CASC, and propose a protocol that meets them.

4.1 Security and Operational Goals

An ACAP for the CASC should meet sixteen goals stated in [14] along with the
additional goals listed as below:

G17) Platform & Application User Separation (PAU) Attack: A malicious user
provides access credentials of a genuine user to an SP and downloads the
application on her smart card [14]. A protocol should tie a platform with its
respective card-owner (user) to avoid platform & application user separation
attack.

G18) Contractual Agreement: On the successful execution of the protocol, the
communicating entities will mutually sign a contractual agreement. This
will act as a proof that a particular application was installed on a smart
card.

G19) Proof of Transaction: The smart card will notify the TSM about the ap-
plication installation. Depending upon the TSM’s policy, it will charge the
user’s account and notify the smart card to activate the application so it
can execute.
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For formal definition of the italicised terms in the above list, readers are advised
to refer to [15]. Later, we will revisit these goals for the protocol comparison (see
table 3).

4.2 Enrolment Phase

A Smart Card Manufacturer (SCM) will get their smart card product certified
from a certification authority that would issue a Product Evaluation Certificate
(PEC), as shown in figure 3. It will endorse that the platform conforms to the
stated security and operational requirements [14], along with the attestation
process and its effectiveness.

The SCM may deliver the

Common Criteria
Certification Authority

Card Manufacturer

PEC

Smart Card Signature
Key Pair Certificate

Smart Card Encryption
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Chain1

Chain 2

Fig. 3. Certificate Hierarchy in the Coopetitive
Framework

smart cards to a card issuer (e.g.
a TSM) that will also certify
the smart card signature key
pair. Now, it will have two cer-
tificates, one issued by the SCM
and second by the TSM. Finally,
the respective smart card will
be acquired by a cardholder who
will then initiate the ownership
acquisition process, which would
generate a user signature key pair, certified by the smart card.

There are two roots in this hierarchy (figure 3), the CC certificate authority,
and the TSM. The reasons for having two separate roots are: a) to provide
privacy protection to users who do not want to reveal the identity of their TSMs,
and b) smart cards may not be permanently bonded with a particular TSM.

Depending upon the association of an SP with the TSM of a smart card, the
appropriate chain of certificates will be provided by the smart card. If the SP is
not an associate of the TSM, then the certificate chain 1 (figure 3) with the CC
certification authority as a root will be used; otherwise, chain 2 will be used.

4.3 Proposed Protocol

Software on a mobile phone that supports the application installation process is
referred as Card Application Management Software (CAMS) [16] in the UCOM.
A cardholder requests the respective SP to download an application that initiates
the ACAP protocol. The notation used to describe the ACAP is listed in table
1, where ACAP messages are listed in table 2 and discussed as below:
Message 1. The SP will initiate the ACAP by generating a random number
(NSP ) and Diffie-Hellman exponential (gsp) [19]. For computational efficiency,
the SP might have a pre-computed buffer of random numbers and Diffie-Hellman
exponentials. To avoid DoS attacks, the SP will compute a Session Identifier
(SID) by SID = HSPk

(gsp|NSP |SCIP ). The key (HSPk
) used to generate the

HMAC is not shared with any-other entity and SCIP is the current Internet
Protocol (IP) address of the respective smart card. When an SP will receive a
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Table 1. Protocol Notation

SP :Denotes a Service Provider.
SC :Denotes a smart card.
T :Denotes the enrolled TSM.
U :Denotes a cardholder (user).
App :Denotes the downloaded application contents.
Xi :Represents the identity of an entity X.
gx :Current Diffie-Hellman exponential (mod p) generated by the entity X.
CX :Signature key pair certificate of an entity X.
NX :Random number generated by an entity X.
A → B :Message sent by an entity A to an entity B.
X|Y :Represents the concatenation of the data items X, Y in the given order.
SigX(Z) :Is the signature on data Z by an entity X using a signature algo [17].
H(Z) :Is the result of generating a hash of data Z.
Hk(Z) :Is the result of generating a keyed hash (HMAC) of data Z using k.
[M ]

eKX−Y

aKX−Y
:Message M encrypted by the encryption key eKX−Y and then MAC is
computed using the key aKX−Y , shared between entities X and Y.

DHG :Details the Diffie-Hellman group that is used to generate the gSP [18].
ALP :SPs defines the Application Lease Policy (ALP) [16] that states the

minimum security and operational requirements an SC has to meet to
get the application lease. The application can be downloaded only after
the SC satisfies the lease requirements [3].

ReqV :The message sent by the respective SP to a SC requesting to provide a
current state validation.

CAR :List of cryptographic algorithms supported by the respective SP.
CAS :List of cryptographic algorithms selected by the respective smart card

from the CAR.
ParOpt :Optional parameters of the protocol messages.
AppDoD :An anonymised message that details the application properties (e.g.

size) and it is used for charging purposes by the scheme manager.

message from the SC, it will first verify the SID. If the SID corresponds to an
open session, and it computes correctly for the stated IP address (from where
the message is received), then the SP will proceed with processing the message.

Message 2. On receipt, the SC will first check the DHG whether support the
selected group or not. If it cannot support the selected group then the smart
card will sends a rejection message that lists the DH groups supported by the
smart card. The SC then verifies whether it satisfy the ALP requirements. In
addition to the security and operational requirements, the ALP also stipulates
the required memory to install the application. The SC checks, whether it has
enough available space to accommodate the requested application. If the SC
cannot satisfy the ALP, it will terminate the protocol and notify the cardholder.

Otherwise, the SC will then generate a random number (NSC) and Diffie-
Hellman exponential (gsc). It can now also generate the shared key (i.e. DH =
(gsp)sc mod p) and from this key, the SC will generate the session encryption
Ke = HDH(NSP |NSC |0) and MAC key Ka = HDH(NSP |NSC |1). Session keys
for the application download process can also be generated in the similar fashion.
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Table 2. Application and Contractual Agreement Protocol (ACAP)

M1. SP → SC : NSP |gsp|DHG|ALP |SID
M2. SC → SP : NSC |gsc|[SignU (SCi|Ui|gsp|gsc|NSP |NSC |PEC)|CU ]

eKSC−SP

aKSC−SP
|SID

M3. SP → SC : RV | [SignSP (SPi|Appi|gsp|gsc|NSC |NSP )|CSP |CAR|PO]
eKSC−SP

aKSC−SP

M4. SC → SP : [SignSC(SCi|Ui|NSC |NSP |PO)|CAS|CSC ]
eKSC−SP

aKSC−SP
|SID

M5. SC → SP : [SignSC(H(App)|SPi|Appi|ALP |SCi|Ui|NSC |NSP )]
eKSC−SP

aKSC−SP
|SID

M6. SP → SC : [SignSP (H(App)|SCi|Ui|SPi|NSC |NSP |PO)|CSP ]
eKSC−SP

aKSC−SP

M7. SC → T : CardID| [Ti|SCi|Ui|AppDoD|N ′
SC ]

eKSC−T

aKSC−T
|SIDT−SC

M8. T → SC : [SignT (Ti|SCi|Ui|NT |N ′
SC |TC|ActApp)|Card′ID|SID′

T−SC ]
eKSC−T

aKSC−T

The SC will sign the data containing the PEC (Product Evaluation Certifi-
cate) with user’s signature key, then it is concatenated with the user’s certificate.
The entire message is encrypted and MACed, and appended to the gSC and NSC .

Message 3. The SP will retrieve the gsc and calculate DH = (gsc)sp mod p. Similar
to the SC, the SP will also generate the session encryption and MAC keys.

The SP verifies the user’s certificate, and the details of the cardholder listed
in the user’s certificate should match the SP’s authenticated customer that re-
quested the application download. This is to avoid users from installing applica-
tions for which they are not authorised (i.e. see requirement 17 in section 4.1).
The SP verifies the signature and checks whether the PEC meets the minimum
security-requirement set out in the SP’s ALP. If it does not, the SP will terminate
the protocol.

If there is no error, the SP will request (i.e. RV ) the SC to provide a proof that
it complies with the stated PEC. The SP then appends the encrypted message
that contains cryptographic algorithms supported (CAR) by the SP (i.e. for use
in application download), and an optional parameter (PO). The PO field is used
by the SP if its application also has a third party evaluation certificate that is
attached the certificate with message.

Message 4. On receipt of the message 3, the smart card verifies whether it
supports the cryptographic algorithms listed in the CAR. If not, then the SC
will send a list of cryptographic algorithms supported by the SC. If the SP does
not support any of them, it can terminate the protocol and notify the user.

Otherwise, the SC will check whether the SP’s identity is included in the
associated SP’s list (section 4.2). If it is included, the application will be installed
in the TSM’s space (section 3.1). If the SP’s identity is in the list, then in
the response message the SC will include the TSM’s identity as an optional
parameter (PO).

The SC will then initiate the platform attestation process as discussed in sec-
tion 3.2. A correct signature that includes the protocol related data (i.e. random
numbers and identities) will ascertain that the smart card is still in conformance
with the evaluated state. The SC also includes the list of cryptographic algo-
rithms (CAS) selected from the CAR list for the application download process.
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Up to this point, the protocol achieves the entity authentication (e.g. SC,
user, and SP), provides SC trust validation proof, and has generated session
keys. For performance comparison (table 4), we refer to the message 1-4 as AKG
(Authentication, Key Generation and Trust Validation) phase. After receiving
the message 4, the respective SP will initiate the application download pro-
cess, which is beyond the scope of this paper. However, for completeness, the
communicating parties may choose one of the symmetric key-based application
download protocol from the GlobalPlatform specification [20].

Message 5. Once the application download is completed, the SC will generate
a message that acts as an SC to SP contract. The SC will generate the hash
of the downloaded application and sign it with identities of the SP, downloaded
application, SC, and the user.

Message 6. The SP verifies the H(App) generated by the SC and activates the
application lease to the user on the SP’s server. The application lease activation
does not mean that the respective SC can be used to access SP’s services. The
access to services is only activated at the successful conclusion of the ACAP,
when the SC activates the application and it dials back home to activate the
access to sanctioned services. Similarly, the SP’s application is not activated on
the SC; it is in the blocked (dormant) state. If the SP is not associated with the
scheme TSM, then the SP will sign the message containing H(App).

To activate an application, the SC requires the scheme TSM’s authorisation.
If the SP is associated with the TSM, it will send the identities of the SC,
user, and downloaded application to the respective TSM. The TSM in reply will
generate the ActApp = SignT (Appi|SPi|SCi|Ui|NSP |NSC). The ActApp acts
as an application activation message and it will be included in the message 6 as
an optional parameter (ParOp). In this scenario, the last two messages will be
redundant and will not be executed. This message acts as an SP to SC contract.

Message 7. In scenarios where the SP is not a member of the TSM, the user has to
pay for the application download as per TSM policy and after this the TSM will
issue the ActApp. The SC will request the TSM to issue ActApp by sending the
above message. The SC will use a one-time pseudo card identity (CardID) (i.e.
privacy reason) so that an eavesdropper may not be able to match the CardID
uniquely to the SCi. The SC will encrypt the message containing the identities
of TSM, SC, and user. It then appends the application details (AppDoD) and
a new random number generated by the SC. The AppDoD will not have any
details of the application that can help the TSM to uniquely identify either the
SP or the application. It will include the memory occupied by the application,
and if the TSM charges the user according to the space usage then this data will
be used to calculate the charge. Finally, the SC uses the one-time SIDT−SC that
is generated in previous protocol runs with the TSM, to avoid the DoS attack
on the TSM’s server; . The process to generate the CardID and SIDT−SC is
explained in the next message.
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Message 8. The TSM will first verify whether the CardID and SIDT−SC cor-
responds to the values in its database so that it will process the transaction
and charge the user’s account. Afterwards, the TSM will sign the message
that includes the transaction certificate of the charge performed by the TSM
and the ActApp. The ActApp is generated similarly as detailed in the mes-
sage 6; however, the value in the Appi is a pseudo value that has no relation
with the actual identity of the downloaded application. Finally, the TSM will
generate the SID for the next session SID′

T−SC = HKT (Card′ID|Ti|SCi) and
Card′ID = H(Ti|SCi|N ′

SC |NT ). The TSM will store the generated Card′ID and
SID′

T−SC in the internal database.
After the SC receives the ActApp, it activates the application and notifies the

cardholder about the successful outcome of the application installation, and any
incurred charge. The charging mechanism for the individual transactions is on
sole discretion of the respective TSM.

5 Analysis of the ACAP Protocol

In this section, we analyse the proposed ACAP in terms of informal analysis,
mechanical formal analysis (CasperFDR), and practical implementation with
performance comparison.

5.1 Brief Informal Analysis of the Protocol

In this section, we constantly refer to the protocol requirements and goals for the
ACAP; therefore, here onward any reference to a goal or requirement number
refers to the listed item in section 4.1.

As shown in the table 3, the most promising results were from the ASPeCT
and JFK protocols that meet a large set of goals. The T2LS protocol [28] meets
the trust assurance goal by default, but similar to SCP81 it is based on the TLS
protocol, which does not meet most of the requirements. A note in favour of
the SCP10, SCP81, MM, and SM protocol is that they were designed with the
assumption that an application provider has a prior trusted relationship with the
smart card issuer; thus implicitly trusting the respective smart card. Whereas,
the proposed ACAP protocol meets all the listed goals.

5.2 Protocol Verification by CasperFDR

The CasperFDR approach was adopted to test the soundness of the proposed
protocol under the defined security properties. In this approach, the Casper com-
piler [29] takes a high-level description of the protocol, together with its security
requirements. It then translates the description into the process algebra of Com-
municating Sequential Processes (CSP) [29]. The CSP description of the protocol
can be machine-verified using the Failures-Divergence Refinement (FDR) model
checker [29]. The intruder’s capability modelled in the Casper script for the pro-
posed protocol is as: 1) an intruder can masquerade any entity in the network,
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Table 3. Protocol comparison on the basis of the stated goals (see section 4.1)

Gs Protocols
STS[21] AD[22] ASPeCT[23] JFK[24] T2LS SCP81[25] MM[26] SM[27] ACAP

G01. ∗ ∗ ∗ ∗ ∗ ∗ −∗ −∗ ∗
G02. ∗ ∗ ∗ ∗ ∗ ∗ ∗ −∗ ∗
G03. ∗ ∗ ∗ ∗ ∗ ∗ ∗ −∗ ∗
G04. ∗ ∗ ∗ ∗ ∗ ∗ ∗
G05. ∗ ∗ ∗ ∗ ∗ ∗ ∗ −∗ ∗
G06. ∗ ∗ ∗ ∗ −∗ ∗
G07. ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
G08. ∗ ∗ ∗ ∗ ∗ ∗ ∗ −∗ ∗
G09. ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
G10. ∗ ∗ ∗ ∗ ∗ ∗
G11. ∗ (∗) +∗ ∗ ∗ ∗ +∗ +∗ ∗
G12. (∗) (∗) (∗) (∗) (∗) ∗
G13. ∗ −∗ ∗
G14. ∗ ∗
G15. (∗) ∗ ∗ ∗
G16. −∗ ∗
G17. ∗
G18. ∗
G19. ∗ +∗ +∗ +∗ +∗ ∗

Note: ∗ means that the protocol meets the stated goal, (∗) shows that the protocol
can be modified to satisfy the requirement, +∗ shows that protocol can meet the stated
goal but requires an additional pass or extra signature generation, and −∗ means that
the protocol (implicitly) meets the requirement not because of the protocol messages
but because of the prior relationship between the communicating entities.

2) (s)he can read the messages transmitted by each entity in the network, and
3) (s)he cannot influence the internal process of an agent in the network.

The security specification for which the CasperFDR evaluates the network
consists of: 1) the protocol run is fresh and both applications were alive, 2) the
key generated by the SP and SC is not known to the intruder, 3) entities have
mutually authentication and key assurance at the conclusion of the protocol,
4) long terms keys of communicating entities are not compromised, and 5) the
user’s identity is not revealed to the intruder. The CasperFDR tool evaluated
the protocol and did not find any feasible attack(s).

5.3 Practical Implementation

The proposed ACAP does not provide any specific details of the cryptographic
algorithms to be used during the protocol run. This choice is left to the respec-
tive SPs and smart cards. To provide a performance measure for the ACAP,
we have used Advance Encryption Standard (AES) [30] 128-bit key symmetric
encryption with Cipher Block Chaining (CBC) [15] without padding for both en-
cryption and MAC operations. The signature algorithm is based on the Rivest-
Shamir-Aldeman (RSA) [15] 512-bit key. We have used SHA-256 [31] for the
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Table 4. Protocol Performance Measures (Milliseconds)

Protocols \Phases SSL [32] TLS [33] Kerberos [34] ACAP
Card One Card Two

32-bit 32-bit 32-bit 16-bit 16-bit
AKG Phase (M1-4) 4200 4300 4240 3395 3559
Contract Phase (M5-6) - - - 1253 1294
Charge Phase (M7-8) - - - 1407 1470
Total (M1-8) - - - 6055 6323

hash generation by the TEM. For Diffie-Hellman key generation we used 2058-
bit group with 256-bit prime order subgroup specified in the RFC-5114 [18].

The architecture of the ACAP test-bed is based upon three entities: a smart
card, an SP and a TSM. The entities SP and TSM are implemented on a laptop
with 1.83 GHz processor, and 2 GB of RAM, running on Windows XP. The
smart card entity is implemented on a 16-bit Java Card and the implementation
takes 9799 bytes of memory space. The implemented protocol was executed for
1000 iterations and time taken to complete individual iteration was recorded.
The performance measures are taken from two different 16-bit Java Cards, and
an average of recorded measurements for both cards is listed in table 4. For
comparison, we have selected the SSL performance measured by Pascal Urien
[32], TLS from Urien and Elrharbi [33], and (public key based) Kerberos by
Harbitter and Menascé [34].

The rationale behind the choice of SSL and TLS for comparison lies in the
GlobalPlatform’s SCP81 [25], which specifies the adoption of the TSL for the
NFC based mobile service architecture (i.e. TSM Framework discussed in section
2). Whereas, public key based Kerberos is suitable for the Multos application
management architecture [35]. Table 4 show that the proposed protocol perform
better than other listed protocols, which are either already adopted in case of
the SCP81 or can be adopted in the smart card industry.

6 Conclusion and Future Research Directions

In this paper, we proposed a protocol referred as ACAP that provides the en-
tity authentication, trust validation, mutual key and the contractual-agreement
generation. The ACAP was then compared with existing protocols ranging from
the internet-based protocols to ones that were specifically designed for the smart
card environment. We have implemented the protocol and provided its perfor-
mance measure. At the time of writing, authors were not aware of any other
protocol that satisfies the same number of security and operational goals within
the performance matrix of the ACAP.

As part of the future research direction, first we would like to provide a de-
tailed formal analysis of the protocol. In addition, we consider that one of the
important topics is how we can avoid the simulator problem and provide assur-
ance to an SP that a smart card is a tamper-resistant, tamper-evident and a
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reliable device. In addition, we will look into the platform and runtime environ-
ment architecture that supports the TSM’s and cardholder’s space on the same
device. Furthermore, we will analyse the prospects of extending the coopetitive
framework to general purposes tamper-resistant devices.
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Abstract. Android has become one of the most popular mobile operat-
ing system because of numerous applications it provides. Android Market
is the official application store which allows users to search and install
applications to their Android devices. However, with the increasingly
number of applications, malware is also beginning to turn up in app
stores. To mitigate the security problem brought by malware, we put
forward a novel permission-based abnormal application detection frame-
work which identifies potentially dangerous apps by the reliability of their
permission lists. To judge the reliability of app’s permissions, we make
use of the relation between app’s description text and its permission list.
In detail, we use Naive Bayes with Multinomial Event Model algorithm
to build the relation between the description and the permission list of
an application. We evaluate this framework with 5,685 applications in
Android Market and find it effective in identifying abnormal application
in Android Market.

Keywords: Android, Abnormal Application, Permission Reliability.

1 Introduction

Nowadays, smartphones occupy an important position in people’s daily life. They
allow users to communicate, surf the Internet or have all kinds of entertainments
at any place. The most common mobile operating systems used by modern smart-
phones include Android, iOS and Symbian. Android, which is an open source
Linux-based mobile operating system distributed by Google, is one of the most
popular mobile operating systems today. Because of its open architecture which
is convenient to develop and debug the applications, more and more developers
turn to pay attention to this rising system.

With the arising of numerous Android applications, there exists lots of app
stores providing more convenient platforms for users to search and install the free
and paid applications. Among all these Android app stores, Google Play Store
[1] (named as Android Market originally) is the official app store for Android
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smartphone users. A research report released by AppBrain showed that the total
number of apps in Android Market was over 450,000 at the beginning of June,
2012 [2]. In Android Market, users can browse the description, application’s
information and the permission list in the application’s main interface. For most
users searching applications in the market, they usually make a decision on
selecting which applications to install based on three aspects: the introductions
of applications (including descriptions and application screenshots), ratings and
other users’ reviews.

Unlike Apple’s App Store, Google has minimal involvement in Android Mar-
ket. Android Market provides diverse applications not only developed by famous
corporations, but also by some small companies or amateur individual develop-
ers. Once published, apps from the Android Market can only be removed by
Google because of being reported malicious or their content violating terms of
use. So without Google’s restrict check on applications, Android Market may
contain some malicious applications. For this reason, some measures should be
taken to ensure the security of Android devices.

In this paper, we propose a method to analyze the potential security problem
of an application in app stores. In detail, we put forward a permission-based
abnormal application detection framework to mitigate the security problem in
Android Market by the reliability of app’s permissions. We design a detailed
predicting model which is the most important part in the framework to reflect the
relation between the description and the permission list of an application. With
this model, we can predict the actually needed permission list of an application
in Android Market based on its description.

We use 5,685 free applications in the Android Market to evaluate our per-
mission predicting models and find that this model is effective in predicting the
permission list of an application in Android Market. Besides, we apply our se-
curity framework in the detection of reliability of applications’ permissions and
give out a test on real malware announced by Google.

The following sections of this paper proceeds as follows. Section 2 describes
the related work about Android malware detection. Section 3 overviews our
framework. Section 4 describes the process of our experiment. Section 5 evaluates
this model on 5,685 apps in Android Market. Section 6 applies our method on
detecting the reliability of permissions and few malicious apps announced by
Google and section 7 concludes.

2 Related Work

Smartphone security is a growing concern in recent year. Static analysis and dy-
namic analysis are two main approaches for the detection of malware. In Android
platform, Enck et al. [3] present a dynamic tainting analysis to protect the secu-
rity of users’ sensitive data. They labeled the information with different types.
At last, the system made a result based on the policies. They also tested this
tool on 30 applications and found that 20 of these applications taking suspicious
actions on users’ data.
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Enck et al. [4] also designed a tool to decompiled the Android executable file
into Java source code to make a static analysis to identify malicious Android
applications. They studied 1,100 Android applications with this method and
obtained 27 finds including the leakage of phone identifiers, location information
sent to advertisement servers and some specific attacks on Android OS.

Same authors [5] designed and implemented a framework to identify the dan-
gerous applications based on their certain combinations of permissions. They
designed Kirin which modified the application installer with this method to pre-
vent the malicious applications.

Portokalidis et al. [6] utilize virtualization method to detect the security of
Android applications. In detail, they put forward a method to analyze the secu-
rity of applications in the remote servers which held the mirror of smartphone in
the virtual environment. They implemented this system and took some analysis
on the parameters of this system such as battery level and CPU utilization.

Zhou et al. [7] proposed a permission-based behavioral footprinting scheme
and heuristics-based filtering scheme to detect the malware. The former com-
pared the application with the known Android malware based on their permis-
sions to detect the new sample of them. The latter was used to identify the
unknown malicious families. The experiment was taken with 204,040 apps col-
lected from 5 different app stores.

Burguera et al. [8] made use of k-means method with the time of system call
as the features to identify the malware. The experiment was tested on two known
Android malware.

3 Security Framework

3.1 Permission-Based Abnormal Application Detection Framework
Overview

In this paper, we put forward a novel permission-based abnormal application
detection framework in Android Market. The main point of our framework is
that the description of an application is closely related to its permission list in
Android platform. Here, the description of an application, which can be found in
Android Market, describes the features and the functions of this application. In
other word, the description information concretes the functions of the application
implementing. Permission-based security model is one of the most important
security measures of Android devices. Permission model is used to restrict to
access to some special resources. It can also be said to restrict to take some
potentially dangerous actions. If an application wants to accomplish some specific
actions, it has to request the corresponding permissions. So the permission list
of an application reflects the actions, or even functions of this application. For
example, if an app defines the function of sharing files in its description text,
this sharing files function should contain two-step actions. The first one is to
find the users to be shared with the file from contact. The other is transferring
the file to the selected users via network. Based on these two-step actions, this
application should request READ_CONTACT and INTERNET permissions to realize
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its function. Therefore, we believe that the description and the permission list
of an application are closely related. However, for the malicious applications,
they usually hide some potentially dangerous actions which lead to their actions
being not accord to the described functions.

Based on this intuitive conclusion, we provide a permission-based abnormal
application detection framework to analyze the potential dangers of an app in
Android Market. The detailed framework is shown in Figure 1. In this frame-
work, the most crucial part is the model which reflects the relation between the
description and the permission list. With this model, we can predict an app’s
normal permission list. Furthermore, after the analysis of the permission com-
parator, if the permission list of an app is not accord to its predicted normal
permission list, we think this app is with hidden danger.

Fig. 1. permission-based abnormal application detection framework

In this platform, we can model the description and the permission list of an
application to have a research on our security framework. In this concrete envi-
ronment, we define the description and the permission list of an application as
the following signs. Formally, let p = [p1, p2, . . . pk]

T be the output permission
list, in which pk ∈ {0, 1} denotes whether permission indexed as k should be
requested by an application. Let d = (x1, x2, . . . x|V |) denotes the description of
an application, in which xi is the index of a word in the dictionary, V is the
number of words in the dictionary. Thus, our work in the next several sections
is to analyze the usability of our framework in Android. More specifically, we
utilize this security framework to predict the hidden dangers of an application
based on its description. In our paper, we only detect the reliability of the ap-
plication’s permission list and view this as the criterion of the hidden dangers
of the application.

3.2 Model Selection

Based on our research problem, we should model the relation between the de-
scription and the permission list of an application well in Android platform. In
detail, we use machine learning techniques to predict the permissions of an app
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based on the description of this app. Here, the description which is requested to
be provided by developer of this application can be found in Android Market.
The basic structure diagram is shown in Figure 2. Because we use supervised
learning method to model this relationship, we should collect enough training
examples at first. After learning the training examples’ relation between the
description and permission list, the model can be used in predicting the really
needed permission list of an arbitrary application.

Fig. 2. Model Structure Diagram

We use Naive Bayes algorithm with multinomial event model [9] to classify the
description of an application based on different permissions. This algorithm is a
specialized version of Naive Bayes algorithm. Multinomial Naive Bayes algorithm
models the words according to multinomial distribution. That is to say, it not
only considers whether a word occurred or not, but also take the times of a word
occurs into consideration. This algorithm is proved to have a better result than
Naive Bayes algorithm in most occasions [10].

Formally, we have defined p(i) = [p
(i)
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At last, the model will output a predicted real permission list of an application.
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4 Experiment

After overviewing our framework, we will model the relation between the de-
scription and the permission list of an application in Android platform. In our
work, we aim to analyze the really needed permissions of an application from
the perspective of its functions. To evaluate our model built in Section 3.3, we
have an experiment on the most influential application store - Android Market
- to do our experiment.

4.1 Selection of Permissions to Be Predicted

We crawled 8,050 applications (top 350 apps in 23 categories) in April, 2011
in Android Market to get the statistics of permissions. Here, we calculate the
number of 122 different kinds of permissions [11] occurring in these 8,050 appli-
cations. From this statistics, INTERNET was the most frequently requested per-
mission. The number of this permission occurring in 8,050 apps was nearly 7,000.
That is to say, most of these apps requested this permission to access internet,
which shows the spread of mobile internet. There were also other permissions re-
quested a lot by applications, such as ACCESS_COARSE_LOCATION (requested 2115
times), ACCESS_FINE_LOCATION (requested 2127 times), ACCESS_NETWORK_STATE
(requested 3755 times). Except these frequently occurring permissions, nearly
100 of 122 permissions occurred only few times in these apps, which agrees with
the opinion in [12]. Because many of the Google defined Android permissions are
not common occurring in our dataset, we omit these uncommon permissions. In
this paper, we will only focus on the permissions frequently occurring.

Based on the times occurring of different permissions in our statistics, we se-
lect the permissions which are valuable to be researched. The rule we select the
permissions is as follows: we will pick up the permissions based on their occurring
times (we define the times as more than 200 in this paper) in these 8,050 appli-
cations. For these permissions, we can use enough training examples to give a
prediction on this kind of permissions. At last, we choose 23 common permissions
to make a prediction, including ACCESS_COARSE_LOCATION, READ_CONTACTS and
CALL_PHONE.

4.2 Dataset

Because we use a supervised learning method to make a prediction on the real
permission list of an application in Android Market, we have to obtain enough
training examples whose permission list is trusted to do this experiment. We
crawled 8,050 applications (top 350 apps in 23 categories, including their de-
scriptions and permission list) in Android Market in April, 2011, as discussed
before. Here, we assume that these apps are all well-written and not malicious
because of the top rank of these apps. So we can use these high-quality apps
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as training and testing examples to evaluate our model. However, some of these
applications’ descriptions are not written in English, so we will not use these
apps to train our model. Finally, we use 5,685 apps to do this experiment. The
process of the experiment is as follows.

– Step 1: Put all the words occurring in applications’ descriptions into the
dictionary.

– Step 2: For each different permission, we use mutual information filter to pick
up the words with high mutual information to this permission to generate a
new dictionary which owns words have a great influence on this permission.

– Step 3: Model to predict all 23 permissions in Multinomial Naive Bayes
algorithm. Using 10-fold cross validation to test the quality of the models
for different permissions.

5 Results

In this section, we evaluate the model with 5,685 apps in Android Market. The
prediction of permissions of these apps is made by the model of different per-
missions. To analyze the quality of the model, we compare the real permissions
requested by the applications with the predicted permissions. We analyze the
result of the prediction of permissions from 2 aspects:

1. We measure the area under the ROC curve (AUC) of different permissions’
models to estimate how well our method does to build the relation between
the description and the permission list of an application in this problem.

2. We pick up few words which have great influence on the prediction of cor-
responding permissions to analyze the influence of different words on these
permissions.

5.1 Evaluation of Model

We use 10-fold cross validation to have a test on this dataset to evaluate the
proposed model’s quality. At first, we get the Receiver Operating Character-
istic (ROC) curves and the Area Under roc Curve (AUC) [13] form the test
applications. AUC is metric to evaluate the accuracy of classifying.

Then, we list the value of AUC of 23 permissions in Table 1. From this ta-
ble, we find the quality of the models predicting different permissions is fine.
All of these models’ AUC are above 0.8. So for the models of 23 permissions,
they reasonably predict the result of permission list. What’s more, 12 of 23 per-
missions have the AUC value greater than 0.9 such as INTERNET, RECEIVE_SMS,
READ_CONTACTS. For these excellent predicted permissions, it indicates that some
certain functions of an application can obviously reflect the existence of these
permissions. For example, the function of making a call or sending messages
can definitely correspond to the permission about call or message. For some
permissions, we guess the reason why the model on these permissions does not
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Table 1. AUC value of the model on 23 permissions

Permission AUC Permission AUC

ACCESS_COARSE_LOCATION 0.864 SET_WALLPAPER 0.922

ACCESS_FINE_LOCATION 0.851 WRITE_EXTERNAL_STORAGE 0.913

ACCESS_NETWORK_STATE 0.806 GET_ACCOUNTS 0.902

ACCESS_WIFI_STATE 0.845 GET_TASKS 0.853

CHANGE_WIFI_STATE 0.867 KILL_BACKGROUND_PROCESSES 0.934

INTERNET 0.904 WRITE_SETTINGS 0.910

READ_PHONE_STATE 0.880 CALL_PHONE 0.928

RECEIVE_SMS 0.924 SEND_SMS 0.964

READ_CONTACTS 0.915 WAKE_LOCK 0.877

WRITE_CONTACTS 0.944 VIBRATE 0.843

CAMERA 0.909 RECEIVE_BOOT_COMPLETED 0.872

RECORD_AUDIO 0.898

predict so well is that some certain functions may be mapped into few possible
permissions. For instance, function about connecting to the internet may relates
to the internet permission or WiFi permission. We can use either of these two
permissions or both of these to realize our functions. This factor may influence
the accuracy of the model on these permissions to some degree. In general, this
result shows that it is effective to predict the real permission list of an applica-
tion based on its description. So we believe that our model is an effective model
to build the relation between the description and the permission list.

5.2 Pick Up Influential Words

Next, we will pick up some influential words based on the parameters of the
models of each permission. Here, we define the influential words with two
features.

– The words should occur frequently in the description of applications. In this
paper, we define the frequency as 100 according to 5,685 apps.

– The words should have dominant impact (the dominant impact in this pa-
per is defined as that the positive/negative impact on the occurrence of a
permission is as five times as the negative/positive impact on the occurrence
of this permission) on positive or negative side to some certain permissions
as well.

After selecting influential words based on these two features, we list the result
of some of these words in Table 2.

From the words we list in Table 2, we find the result of these influential words is
basically fit in with our common sense. For example, in the permissions about loca-
tion, word “weather” is positive to the occurrence of ACCESS_COARSE_LOCATION,
but is not positive to ACCESS_FINE_LOCATION. In contrast, word “GPS” is positive
to ACCESS_FINE_LOCATION but not COARSE. For most applications, we think that
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Table 2. Influential words according to different permissions

Permission Positive Words Negative Words

ACCESS_COARSE_LOCATION location, map, weather bible, wallpaper, word

ACCESS_FINE_LOCATION GPS, location, map bible, dictionary, wallpaper

ACCESS_NETWORK_STATE ringtone dictionary, phrases

ACCESS_WIFI_STATE dictionary, word calculator, jokes, ringtone

CHANGE_WIFI_STATE Wi-Fi book, dictionary, joke

INTERNET news, online, vedio, keyboard, plugin

READ_PHONE_STATE radio, ringtone, word locate

RECEIVE_SMS family, message, SMS dictionary, image, joke

READ_CONTACTS call, contact, message dictionary, English, game

WRITE_CONTACTS contact, group, message calculator, dictionary, game

CAMERA photo, picture, camera sound, joke, dictionary

RECORD_AUDIO call, record, voice wallpaper, game, weather

SET_WALLPAPER animated, wallpaper, film calculator, call, GPS

WRITE_EXTERNAL_STORAGE file, video, reader task, widget

GET_ACCOUNTS contact, registry, expense audio, word, sports

GET_TASKS lock, security, ringtone calculator, word

KILL_BACKGROUND_PROCESSES kill, running, task dictionary, word, weather

WRITE_SETTINGS alarm, lock, ringtone book, calculator

CALL_PHONE call, contact, group file, joke, game

SEND_SMS SMS, message dictionary, sound

WAKE_LOCK chat, player, radio bible, dictionary, calculator

VIBRATE alarm, battery, chat bible, joke, word

RECEIVE_BOOT_COMPLETED battery, backup, notification calculator, dictionary

coarse location permission is used in occasions like weather report and restaurant
recommendation. So the influential words in this model are corresponding with
practice. Besides this example, words such as “picture” and “photo” are positive
to the CAMERA permission, which also fit in with our expectation. So the extraction
of influential words from models is also basically correct from empirical analysis.
From this result, we also conclude the description of an application has a strong
relation with the permission list of this application. Therefore, it is a good way to
make a model predicting an app’s different permissions based on its description.

In addition, some words occur several times no matter as a positive word
or a negative word, such as dictionary, calculator, message and location. This
indicates that if this kind of words occurs in the description of an application,
the model can predict the permissions correctly to a great extent. Here, we
take the word “dictionary” as an instance. The word “dictionary” is positive to
ACCESS_WIFI_STATE permission, but is negative to permissions about location
and permissions about call and SMS. So if there is a word “dictionary” in an
application, we will have a quite high probability to make a correct prediction
on different permissions of this application. Therefore, the occurrence of these
words greatly contributes to the quality of models. As for these influential words,
most of these words, such as map, wallpaper, camera and keyboard, are directly
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represent one of an application’s functions. It can be said the word “map” indi-
cates that one of the application’s functions is map. The similar case goes with
word “wallpaper” and “keyboard”. This also demonstrates the functions of an
application closely relate to the actions.

6 Permission Comparator

6.1 Method to Detect Reliability of Permissions

For an application in Android Market, we define the reliability of its permissions
as whether this application should request this permission from the perspective
of its functions. If an app really needs a permission to accomplish its actual
function, we think that the request of this permission is reliable. On the other
hand, if an app requests a permission which has no relation with its description,
we guess this permission is unreliable.

We can use the model mentioned in Section 3 to detect the reliability of an
application’s permissions. In detail, if the model which makes a prediction on the
real permission list of an application predicts one of the permissions requested
by an application should not occur, we believe this permission of this applica-
tion is not reliable. To apply our model better in detecting the reliability of an
application, we should choose a fine threshold of our model to get a higher True
Positive Rate without influencing False Positive Rate too much when predicting
the reliability of permissions. So from the ROC curves, we find that we can tune
the thresholds of different permissions to fulfill the requirement of greater than
90% True Positive Rate and less than 30% False Positive Rate. That is to say,
we can use some suitable thresholds to automatically detect the reliability of
the permissions of an application. Therefore, our security framework is effective
in finding the application with wrongly requested permission list in install-time
permission system.

6.2 Test on Real Malware

After choosing a fine threshold of our model, we use this model to predict the
reliability of malicious apps’ permissions. Here we test this method on a real
malware announced by Google.

Themalware is SteamyWindow,whichwas announced to carryAndroid.Pjapps
code in February, 2011. A report on this malicious application by Symantec shows
that this malware adds several bookmarks to the browser and sends users personal
information to some certain server. Besides, it can also send some text messages
and block some messages with the number of service provider [14].

In Android Market, there was a legitimate application whose name, descrip-
tion and screenshot were all similar with this malware but behaviors were dif-
ferent. The permission list of the legitimate version application is INTERNET and
RECORD_AUDIO. However, the malicious application’s permission list is INTERNET,
RECORD_AUDIO, RECEIVE_SMS and READ_HISTORY_BOOKMARKS.
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After testing this application with our model, the result is that the mali-
cious application should not request RECEIVE_SMS permission (we didn’t have
a test on the permission READ_HISTORY_BOOKMARKS for the reason discussed in
section 4.1). This result corresponds with the analysis report by Symantec. The
RECEIVE_SMS permission in the malicious app is used to drop some messages
without users’ attention. So in this example, RECEIVE_SMS permission should
not be added in manifest file and is disobey with the ordinary description of this
application.

Besides this application, among all the applications announced malicious by
Google, many of these malware conceal themselves as an existed trusted appli-
cation in Android Market. However, these malware change the permission list
and add some malicious functions to the ordinary applications.

After testing this malicious application with our model, we think the method
predicting the reliability of permissions can also be used in mitigating the secu-
rity problem of apps in some extent, especially the apps that conceal themselves
as some trusted apps. For these malicious applications, some of their permis-
sions are usually additionally added to realize the malicious activity. So we can
analyze the reliability of their permission lists based on the relation between the
description and the permission list.

7 Conclusion

In this paper, we provide a permission-based abnormal application detection
framework which identify an abnormal Android app based on its description and
its permission list. This novel framework consists two parts: the model which
reflects the relation between the description and the permission list and the
permission comparator. In detail, we use machine learning method (Naive Bayes
with Multinomial Event Model) to predict the occurrence of different permissions
of an application based on its description.

We evaluate our model with 5,685 applications collected from 23 different cat-
egories in official application store. The result shows that our model is able to
have an accurate prediction on different permissions. Besides, we extract some
words that have great influence on different permissions. Furthermore, we define
the permission comparator to detect the reliability of the permission list of an
application and view the permission list’s reliability as the criterion of detecting
application with hidden danger. After using this model to test a real malware,
we find this method is effective in mitigating the security problem of Android
applications, especially the malware that conceals themselves as a legitimate app.
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Abstract. In this paper, we discuss our proposed method to acquire
privacy-protected data from Symbian smartphones running the latest OS
version 9.4, S60 5th Edition, and smartphones running the prior OS ver-
sion 9.3, S60 3rd Edition. We then present our reverse-engineering analy-
sis work on the active and deleted Short Message Service (SMS) message
recovery from the on-phone memory in the Symbian smartphones. We
describe the encoding and format of the raw data of the SMS messages
so as to achieve an automated parsing and recovery of the messages. Our
experiments on various sent, received, draft and deleted messages showed
that we were able to recover both the active (in its entirety) and deleted
SMS messages (partially) correctly and automatically.

Keywords: Symbian forensics, security, memory analysis, mobile
phones, smartphones, data acquisition, deleted SMS message recovery.

1 Introduction

As mobile phones are becoming increasingly prevalent and are constantly evolv-
ing into “smarter” devices (i.e. smartphones with higher processing power and
enhanced features), capabilities to perform in-depth forensics on these devices
also become essential. However, most current mobile phone forensics tools are
still restricted to the acquisition and analysis of basic active files and data (i.e.
logical data acquisition) on the Subscriber Identity Module (SIM), memory cards
and the internal flash memory [1–7].

In the event that private application data is isolated and data-caging is in
place, such security mechanisms prevent in-depth acquisition of important ev-
identiary data. For example, current Symbian deleted SMS recovery tools [8]
have a limitation as they are only capable of recovering deleted SMS messages
residing in the SIM card. SMS entries on the SIM card are marked as deleted
or active. To undelete an SMS, the tools simply change the state flag in the
allocation table from “free” to “in use”. However, the real challenges arise when
it is necessary to recover deleted SMS messages residing in the internal phone
memory originally. This scenario is common due to it being a default configura-
tion in smartphones these days (because of the memory limitation in the SIM

T.W. Chim and T.H. Yuen (Eds.): ICICS 2012, LNCS 7618, pp. 240–251, 2012.
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card). Therefore, the capability to recover such deleted SMS messages to aid in
forensics investigation is very important and necessary.

In this work, we focus on the recovery of deleted SMS messages from Sym-
bian smartphones. We propose a method to conduct an in-depth evidentiary
data acquisition from Symbian smartphones running the latest OS version 9.4,
S60 5th Edition, and the prior OS version 9.3, S60 3rd Edition1. The acquisi-
tion method supports the retrieval of the relevant SMS message data from the
Symbian smartphones. We also design an SMS recovery tool which accesses the
associated data to reconstruct the deleted SMS messages.

Our main contributions in this work include: (i) creating our customised cer-
tificate and utility module to secure the required access to the phone, while at
the same time, preserving its security protection mechanism against other soft-
wares (ii) reverse-engineering and analysing the relevant data to support the
reconstruction of deleted SMS messages, (iii) building the tool to acquire the
data and reconstruct deleted SMS messages residing in the on-phone memory
of Symbian smartphones, and (iv) experimenting on the smartphones which run
the latest Symbian OS version 9.4, S60 5th Edition, and older OS version 9.3, S60
3rd Edition (i.e. Nokia N97 and E72, respectively). To the best of our knowledge,
this is the first work on the recovery/carving of privacy protected deleted data
from the Symbian smartphones since the introduction of its platform security
framework in the S60 3rd Edition OS.

The rest of the paper is organised as follow. In Section 2, we present an
overview of the existing work on mobile phone forensics research. We describe
the in-depth acquisition and reverse-engineering experimental work with regard
to the Symbian privacy-protected SMS data in Section 3. Future work is de-
scribed in Section 4 and conclusions follow in Section 5.

2 Mobile Phone Forensics Research

In an early work [1], Willassen researched on the forensic investigation of GSM
phones. The author presented the types of data of forensic relevance, which can
exist on the phones, the SIM and the core network, and emphasized the need
for more sound mobile forensics procedures and tools.

In [2], Casadei et al. presented their SIMbrush tool developed for both the
Linux and Windows platforms. The tool relied on the PCSC library and sup-
ported the acquisition of the entire file system, including the non standard files,
on the SIM. However, files with restricted read access conditions could not be
extracted.

In [3], Kim et al. presented a tool to acquire the data from a Korea CDMA
mobile phone’s internal flash memory. The tool communicated with the phone

1 S60 4th Edition does not exist and the next edition after the 3rd Edition is the 5th.
Since S60 3rd Edition, Symbian phones begin to use a “hardened version” of its OS,
which includes capabilities restrictions and a platform security framework. Versions
prior to the 3rd and 5th Edition are not relevant to our work as forensics acquisition
was technically easier [5].
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through the RS-232C serial interface and was able to acquire the existing files
on the phone using the underlying Qualcomm Mobile Station Modem diagnostic
mode protocol.

In [4], Mokhonoana and Olivier proposed an on-phone forensic tool to acquire
the active files from a Symbian OS v7 phone and store it on the removable media.
Instead of interfacing with the PC connectivity services, the tool interacted with
the operating system to perform a logical copy of the files. The tested phone was
Sony Ericcson P800. One main limitation of the tool was that those files in use
could not be copied (e.g. call logs, contacts).

In [5], Distefano et al. proposed the mobile phone internal acquisition tech-
nique on the Symbian OS v8 phones. The mobile phone data was acquired using
a tool residing on the removable media, instead of the PC/mobile phone USB
connection based approach. The tool utilized the Symbian S60 File Server API
in the read-only mode. The authors carried out experiments comparing the tool
with Paraben Device Seizure (USB connection to phone) and P3nfs (Remote
access through Bluetooth). The tool took a longer time to perform the acquisi-
tion. However, it was able to acquire more data compared to the P3nfs. When
compared with the Paraben Device Seizure, lesser data was acquired. However,
the authors observed that the larger data size from Paraben was due to the
additional information from its acquired data management.

In [6], Jansen et al. proposed a phone manager protocol filtering technique by
intercepting the data between the phone and the phone manager. The objective
was to address the latency in the coverage of newly available phone models by
existing forensic tools. The authors also proposed an identity module program-
ming technique, to populate the phone’s SIM with reference test data, so as to
provide a baseline for the validation of SIM forensic tools.

Surveys on Existing Tools
In [9], Jansen and Ayers evaluated the state-of-the-art SIM forensic tools to
understand the capabilities and limitations in their data acquisition, examina-
tion and reporting functions. The tools surveyed included Cell Seizure, GSM
.XRY, MOBILedit! Forensic, TULP 2G, Forensic Card Reader, Forensic SIM,
SIMCon and SIMIS. It was observed that most information such as the IMSI
and SMS/EMS could be found by the tools.

In [10], Bhadsavle and Wang evaluated the effectiveness of the Paraben De-
vice Seizure on a test data populated T-Mobile locked SIM. They determined
that 100% of the test data were retrieved.

In [11], Williamson et al. studied the performance of different mobile phone
forensic tools (i.e. TULP 2G, MOBILedit! Forensic, Cell Seizure and Oxygen
Phone Manager) on the Nokia phones. The authors concluded that some tools
failed to deliver some promised features (e.g. MD5 hash was not found in MO-
BILedit!, SHA1 hash was not found in Cell Seizure).

In [12], Ayers et al. conducted a comprehensive study on the current mo-
bile phone forensic tools and presented their findings in the NIST report. The



Symbian Smartphone Forensics and Security 243

evaluated tools included the Paraben Device Seizure, Pilot-Link, GSM .XRY,
Oxygen Phone Manager, MOBILedit!, BitPIM, TULP 2G, SecureView,
PhoneBase2, CellDEK, SIMIS2, ForensicSIM, Forensic Card Reader, SIMCon
and USIMdetective. The authors presented each tool’s capabilities and limita-
tions on a range of mobile phones, covering different operating systems, processor
types, and hardware components. Some examples of the tested phones included
Samsung SGH-i300, Motorola MPX220, Sony Ericsson P910a, Nokia 7610 and
BlackBerry 7780.

In [7], Hoog presented the existing forensic evidence acquisition tools for the
Android phone. The Android Debug Bridge (ADB) enabled interaction with
the phone over the USB connection. Therefore, active files on the phone can be
retrieved through the “adb pull” command. Other tools such as the Nandroid
backup and Paraben Device Seizure also supported the extraction of files resid-
ing on the phone.

In [8], the SIM Manager tool attempted to recover deleted SMS messages
from the SIM card. The SMS messages were stored in a file on the SIM card and
each slot in the file contained an SMS. When an SMS was deleted, the slot was
marked as “free”. To undelete the SMS, the tool can mark the SMS slot as “in
use”. However, if the deleted SMS messages were stored in the internal phone
memory instead, it would not be possible to recover them after deletion by using
this tool.

As we can observe from the above-mentioned research, they focus on the ac-
quisition and analysis of active files and data on the phones, with the exception
of [8]. In the event of the need to recover deleted sensitive data from smartphones,
it is often not possible to use the existing tools. They are either unable to per-
form a sufficient level of acquisition (due to privacy protection and data-caging
present in smartphones) or an in-depth analysis requiring a reverse-engineering
effort (due to the different encoding approaches of different OSes and applica-
tions). To support the reconstruction of deleted data, an in-depth acquisition
and analysis of user data from the phones is required. In our work, we focus on
designing and developing an acquisition and analysis tool for recovering deleted
privacy protected data from the Symbian smartphones. Our work mainly in-
volves obtaining a privileged access to the phone’s privacy protected data in the
Symbian smartphones’ internal memory and subsequently reverse-engineering
the acquired data for the recovery of deleted data. We describe our work using
the example of deleted SMS recovery, in this paper.

3 Symbian Deleted SMS Recovery

The main challenge in performing an in-depth data acquisition from the internal
memory of the Symbian smartphones arises from its built-in security mechanism,
which prevents applications from accessing or even viewing private data of the
other applications. Such data-caging mechanisms are also present in smartphones
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running other OSes due to the need for privacy protection as smartphones con-
tain an increasingly substantial amount of confidential and sensitive information
such as saved passwords, application configuration settings and data, emails,
contacts, notes, calendar of personal and business schedules, and messages.

3.1 Symbian AllFiles Capability

Since Symbian S60 3rd Edition OS, the platform security architecture was put
in place to restrict access to sensitive functionalities. Applications or tools with-
out having been granted the required capability would not be able to access the
restricted Symbian APIs. The AllFiles capability in Symbian allows an unre-
stricted read access to the entire filesystem. We describe the method to obtain
this capability, as follow.

In Symbian, the loader can only run executable files from the \sys\bin direc-
tory (from any drive). However, a process with the DiskAdmin capability can
access the mapdrive API that maps sub-directories to unused drive letters on
the phone [13]. We obtained the DiskAdmin capability through our Symbian De-
veloper Certificate [14]. Therefore, it becomes possible to create a sub-directory
\sys\bin under any directory in the phone, place executable files in it and then
map it to a new drive letter, effectively placing these executable files into the
valid executable path. Details on this mapping technique can be found in [13].

In addition, to eliminate the need to integrate the above-mentioned executable
file loading module into all tools and applications requiring high-level privileges,
we generate a customised Symbian Authority Certificate and place it into the
phone using the mapdrive API. This is achieved by triggering the Symian Certifi-
cate Store (SWICertStore) Updater, so that the phone can store our customised
certificate. With this certificate residing in the phone, we are now able to sign
our tool to provide it with any required high-level privilege (i.e. Allfiles capabil-
ity). The main advantage of this approach is that, unlike the existing HelloOX2
hack [15], which disables the Symbian install server’s security mechanism, we do
not compromise the security of the phone by leaving it vulnerable to malwares.
We can authorise the installation of specific tool/s by signing it with this higher
authority certificate, while the phone still preserves its security mechanism to
guard against other unauthorised softwares.

3.2 Reconstruction of Active and Deleted SMS Messages

We observed that the data that is associated with the deleted SMS messages
exists in the \Private\1000484b\Mail2\Index file of the phone’s internal memory.
Enabled by the AlLfiles capability (in Section 3.1), this file is now exposed. We
retrieved this private Index file to support our analysis. Other than this Index
file, there exist several sub-folders in the \Private\1000484b\Mail2 folder. The
files within these sub-folders are associated with the active SMS messages. We
conducted 50 experiments to obtain the SMS test data for analysis purpose.
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Reconstruction of Active SMS Messages
Each file in the \Private\1000484b\Mail2 corresponds to an active SMS message.
Based on our analysis on the data to identify and retrieve relevant information
such as the contact number, the contact name, the message contents, the GMT
setting and the timestamp information, we observed that each file can be con-
sistently parsed according to the format in Table 1 to obtain its corresponding
SMS message.

Table 1. SMS Header and Data Format

Offset Length Description Value(s) and Meaning

0 4 SMS header marker 0x683C0010

16 1 SMS type 0x04 (Incoming) or 0x08 (Outgoing)

21 1 or 2 Packet length

+36 1 or 2 SMS message length

+0 <length> SMS message

The “offset” column in Table 1 refers to the absolute offset location within
the file. A plus sign prefix, if present, represents a relative offset from the end of
the previous entry.

Variable-Length Length Field
As shown in Table 1, a variable-length field is used for representing the length of
the packet and message. This representation is very similar to the UTF-8 encod-
ing, except that the lower bits were used here. If the lowest significant bit was
set, the length field was extended to the following byte. Otherwise, the length
field only occupied one byte. The following algorithm was designed to determine
the actual packet and SMS message length.

1. Read the first “length” byte. Take note of the lowest significant bit.
2. Right-shift the byte by one bit. Assign this as the length.
3. If the lowest significant bit was set, right-shift the length by another bit.

Read the next byte, left-shift it by six bits and logical OR it with the length
in step 2.

4. Subtract one from the length to obtain the actual length.

The remaining data may contain an optional “sent SMS” data block (for outgo-
ing message type only) and other essential information such as the timestamp,
contact number or contact name. Table 2 shows the sent SMS data format and
Table 3 shows the remaining data following either the SMS header (and mes-
sage data) or the “sent SMS” data block (if present). The actual length for the
contact name, contact number, SMS centre number and sender number has to
be computed by dividing the provided length information by four.

Typically, the type of SMS (whether sent or received) can be determined from
the message type indicator (1 byte at offset 16 as shown in Table 1). However,
during our investigation, we observed a special case, which is the “PAIF mes-
sage”. The PAIF message is a configuration request SMS, which was sent by the
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Table 2. Sent SMS Data Format

Offset Length Description Value(s) and Meaning

+11 1 Sent SMS marker 0x01 (Data present) or 0x00
(Data not present, no need to
parse further)

+5 1 Sent flag 0x00 (Not sent, draft SMS) or
0x01 (Sent SMS)

+11 8 Sent timestamp Time when SMS was sent

+0 1 Contact number length

+0 <length> Contact number e.g. “+6512345678”

+0 1 Contact name length

+0 <length> Contact name e.g. “Person A”

Table 3. Remaining SMS Data Format

Offset Length Description Value(s) and Meaning

+8 or +10 3 GMT value For GMT offset computation (+8
if sent block not present, otherwise
+10)

+5 1 SMS index entry number Entry number (incrementally gen-
erated)

+3 8 SMS creation timestamp Time when SMS was created (appli-
cable for draft and sent SMS only)

+2 1 SMS centre number length

+0 <length> SMS centre number e.g. “+6512345678”

+2 1 Sender number length Only applicable for received mes-
sage

+0 <length> Sender number e.g. “+6587654321” (Only applica-
ble for received message)

+2 8 SMS received timestamp Only applicable for received mes-
sage

smartphone to the mobile service provider automatically. Upon investigation,
the header indicates a received SMS (message type = 0x04) but it contains the
optional “sent SMS” data block. To handle this special scenario, we first deter-
mine the SMS message type through its type indicator byte, and then override
it as a Sent SMS if the Sent SMS header block is present. Otherwise, the SMS
message is deemed to be a received SMS.

For an outgoing SMS, the “Sent flag” field within the “sent SMS” data block
will determine whether the SMS has been sent. If it has not been sent, it will
be classified as a draft SMS. Otherwise, it will be classified as a sent SMS. The
timestamp represented the date and time as the number of microseconds since
midnight, January 1st, 0 AD nominal Gregorian, as mentioned in [16]. An ex-
ample of an active sent SMS message is shown in Figure 1 and an active received
SMS message is shown in Figure 2.
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Fig. 1. Active Sent SMS Message

Fig. 2. Active Received SMS Message

Reconstruction of Deleted SMS Messages
We observed that each deleted SMS entry in the index file contains the start
marker, “0x6A0F00102C”. To extract a deleted SMS, this start marker is firstly
located. The index file is parsed according to the format shown in Table 4.
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Table 4. Deleted SMS Header and Data Format

Offset Length Description Value(s) and Meaning

0 5 SMS start marker 0x6A0F00102C

8 8 Timestamp Sent or received timestamp

28 1 SMS message type 0x44 (sent or draft message) or
0x00 (received message)

56 1 or 2 SMS message length

+0 <length> SMS message

+0 1 Contact information
length

+0 <length> Contact information Contact number or contact
name (if present in address
book)

+2 8 SMS received timestamp Only applicable for received
message

The maximum number of bytes that each entry can hold as a deleted SMS
message is observed to be 64 bytes. This is indicated by the length information
of “0x0102”. Therefore, if the original message is less than or equal to 64 bytes,
the entire message can be recovered. Otherwise, only a partial deleted SMS is
recoverable. The length information provided in the table is also of a variable
length. The actual length is computed by simply dividing the provided length in-
formation by four. If the first byte is “0x01”, the length information is contained
in this first byte and its following byte. Otherwise, if the first byte is in the range
of “0x04” to “0xFC”, the length information is provided by this byte alone. In
addition, no GMT setting information was provided in the index file entries for
the deleted SMS messages. To retrieve the next deleted entry, a search for the
next start marker is conducted and the data has to be parsed accordingly (as
shown in Table 4). This procedure is repeated until no more deleted SMS start
marker is found. An example of a deleted sent SMS record is shown in Figure 3
and a deleted received SMS record is shown in Figure 4.

Further Memory Dump Investigation
We conducted an investigation to find out if the rest of the deleted SMS mes-
sage (i.e. after the 64th byte) can be retrieved from the raw data space. We
developed an internal phone memory dump tool, which accessed the Symbian
TBusLocalDrive API, to perform an internal phone memory dump. The dump
was performed on the internal phone memory as it was the configured location to
store the SMS messages. The tool required another manufacturer-approved ca-
pability, the TCB capability, which we signed using our certificate and installed
on to the Symbian phones. We then made an attempt to search the entire in-
ternal phone memory dump for the non-recoverable part of the deleted SMS
message contents (i.e. >64 bytes). The contents could not be found.



Symbian Smartphone Forensics and Security 249

Fig. 3. Deleted Sent SMS Message

Fig. 4. Deleted Received SMS Message

4 Future Work

We plan to conduct further and more thorough investigations on the persistency
of the deleted SMS messages. Our preliminary investigation results showed that
the persistency of the deleted SMS messages does not depend on factors such
as how long the phones have been left running or the active use of other ap-
plications. Instead, it depends on the messaging application. The deleted SMS
messages were observed to be undetectable after transmission of “sufficient”
multiple subsequent SMS messages (e.g. after the subsequent transmission of
ten active SMS messages, we observed that one of the deleted SMS messages
became undetectable). Another planned future work is the reconstruction of
other Symbian privacy-protected deleted application data such as the multime-
dia messaging service (MMS) messages, emails, notes, and other common data
types present in smartphones.

5 Conclusions

In this paper, we identified the need for an in-depth acquisition and analysis of
the privacy-protected data in the Symbian smartphones, which were running the
latest OS version 9.4, S60 5th Edition, as well as the prior OS version 9.3, S60 3rd
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Edition. We obtained the necessary Symbian capability to access the privacy-
protected data without compromising the phone’s built-in security mechanism.
This was achieved through the generation and installation of our customised
high-level privilege certificate onto the phone through our developed mapdrive
exploit.

In addition, we performed reverse-engineering on the acquired data to derive
the encoding and format of the data so as to reconstruct both active and deleted
SMS messages. Through our research, we also discovered the presence of a special
scenario (i.e. PAIF message) and proposed the approach to handle it correctly
when designing and developing our recovery tool. Our experiments on various
sent, received, draft and deleted messages showed that we were able to recover
both the active (in its entirety) and deleted SMS messages (up to a message
length of 64 bytes) correctly and automatically.
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Abstract. Malware often encrypts its malicious code and sensitive data
to avoid static pattern detection, thus detecting encryption functions and
extracting the encryption keys in a malware can be very useful in secu-
rity analysis. However, it’s a complicated process to automatically detect
encryption functions among huge amount of binary code, and the main
challenge is to keep high efficiency and accuracy at the same time. In
this paper we propose an enhanced detection approach. First we de-
signed a novel process level emulation technique to efficiently analyze
binary code, which is less resource-consuming compared with full sys-
tem emulation. Further, we conduct program partitioning and assembly-
to-IL(intermediate language) translation on binary code to simplify the
analysis. We applied our approach to sample programs using crypto-
graphic libraries and custom implemented version of typical encryption
algorithms, and showed that these routines can be detected efficiently.
It is convenient for analysts to use our approach to deal with the en-
crypted data within malware automatically. Our approach also provides
an extensible interface for analysts to add extra templates to detect other
forms of functions besides encryption routines.

Keywords: Encryption detection, Process emulation, Intermediate lan-
guage, Binary code analysis.

1 Introduction

Recent years have witnessed a dramatic rise in the growth of work on automati-
cally detecting certain algorithms in programs especially in malware. In order to
solve the problem of algorithm detection, a number of approaches were proposed,
and most of them are mainly heuristic[10][9][6]. However, despite an increasing
interest in algorithm identification in binary programs, in particular in detecting
cryptographic primitives, there still lacks systematic and convenient approaches
that facilitate researchers to perform efficient detection.
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We present a generic encryption function detecting approach using Process
Emulation and IL(intermediate language)-based Program Analysis, which is tar-
geted at achieving fast, convenient and extensible detection. The basic principles
behind our technique are stripping unnecessary runtime information, simplifying
analysis process and providing interface for new extensions. First, we designed
and implemented our own process emulator to reduce the overhead brought by
emulating full system environment. Then we adopted a custom defined IL to
simplify analyzed program. Based on this IL, not only we designers but also
other analysts could easily write a template to match certain algorithms. And
finally, we combined IL-based template matching and dynamic data verification
to improve the accuracy and efficiency of encryption routines identification.

Some of the contributions of this work are listed below.

– Lightweight process emulation. We designed process emulation, a novel em-
ulation technique, to run a program within its host operating system, and
only emulate the necessary components of a system for the program to be
analyzed. This technique provides a lightweight emulation environment with
fast speed while keeping fine-grained analyzing capability.

– IL-based program transformation. To address the issues of dynamic program
pattern matching and analysis, we further extended detection method by
introducing intermediate language as analyzing medium, increasing its effi-
ciency and accuracy, and acquiring platform compatibility at the same time.

– Flexible template matching. We provided an open interface for analysts to
write template of different algorithms in IL form. Our emulator dynamically
loads templates during the detection phase and uses template to construct
heuristics.

– Template based data filtering and verification. Traditional matching
approaches may verify all runtime data, and meanwhile test huge amount
of unrelated data. Our IL based analyzer first matches code fragments with
templates and filters out those data of mismatching code fragments. Then,
a data verifier is designed to check matched data and deploy refined input-
output verification. The process not only improves verification efficiency sig-
nificantly, but also reduces false positive rate to negligible level.

The rest of the paper is structured as following. Section 2 gives an overview of
algorithm detection problem and related work. Section 3 describes our approach
in detail. Section 4 gives concrete instance of template based encryption function
detection and evaluation results. Some countermeasures to our approach are
discussed in section 5 and an overview about future work is given. And section 6
concludes this paper.

2 Problem Statement

Encryption function detection is a problem of searching certain algorithms in
programs especially in binary code. This work is based on the following as-
sumptions: (1) The knowledge of the algorithm is obtained before detection; (2)
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The implementation of the algorithm is not aimed at failing the detection de-
liberately. These assumptions are reasonable in the real world for the following
reasons. First, it is always prudent to adopt mature encryption algorithms for
the consideration of security, and these mature encryption algorithms are gener-
ally public and are tested for a long term. So we suppose that the precondition of
detecting an encryption algorithm is knowing its details. Second, In most cases,
the purpose of the encryption algorithms in malware is to protect malicious code
and to hide sensitive data. Thus these encryption algorithms are often imple-
mented without being obfuscated or packed in order to provide accuracy and
efficiency.

Previous detection methods generally take advantage of certain properties of
an algorithm as the signature. Caballero et al.[3] took advantage of the fact that
encryption routines use a high percentage of bitwise arithmetic instructions. The
approach of Groebert el al.[4] was based on both generic characteristics of cryp-
tographic code and signatures for specific instances of cryptographic algorithms.
Zhang et al.[12] proposed an algorithm plagiarism detection approach using crit-
ical runtime values. And Zhao et al.[13] used input-output correlation of certain
ciphers to detect cryptographic data.

There are several reasons why proposing new detection techniques is necessary
to current security analysis.

– Existing approaches usually use tools such as QEMU[2] and PIN[8] to trace
data and instructions. And these tools don’t have satisfactory performance.
Actually, Groebert el al.[4] reported that for a malware analysis process the
tracing took 14 hours and the analysis phase 8 hours.

– Existing approaches are not extensible. That is to say, analysts can’t easily
adjust these specific approaches to either adapt different implementations of
algorithms or to detect new ones.

– Taking traced instructions alone as input is not enough to acquire effective
heuristics. For dynamic data based detection, the main problem is how to
filter out useless data according to heuristics.

In contrast to previous work in this area, the goal of our work is to design
extensive, convenient and efficient detection approach. We argue that a new
approach for efficient tracing is necessary. And because the data feature related to
algorithm is very important for heuristics, it is suggested to combine instructions
and data together to acquire powerful heuristics. What’s more, a simple form
of program is able to improve analyzing efficiency and help an analyst deploy
her own detection. We improved the detection approach in two aspects: one is
to perform a high speed program tracing using process emulation, and the other
one is to translate program into IL to simplify construction of heuristics and
third-party matching extension design. In addition, our approach verifies the
matching result with input-output data correlation to reduce the chance of false
positive, and to extract the input and output parameter(e.g., the secret key) at
the same time.
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3 Our Approach

Our approach adopts a hybrid methodology combining code characteristic match-
ing and data input-output verification. To make dynamic analysis possible, the
program we’re trying to analyze is first executed in an emulation environment,
and low-level runtime data is acquired in this step. Then, traced instructions
are partitioned to fragments, and translated to our IL representations. For each
block of program, fuzzy matching techniques which are inaccurate but fast are
used with existing algorithm templates implemented in IL. And finally, dy-
namic data verification is conducted to identify the correct algorithm and extract
parameters.

3.1 Process Emulation

A full-system emulator, such as Bochs[7], often emulates a set of fully func-
tional hardware, and runs an operating system on the emulated hardware. It
usually runs as a user-space process in the host operating system. A program to
be analyzed runs in the emulated operating system, where non-privileged and
privileged instructions are all executed in a software emulated environment.

Fig. 1. Comparison of Full System Emulation and Process Emulation

Because of the nature of instruction emulation, full-system emulators often
have a poor performance. Through actual tests, we found that Bochs emulator
runs 102 slower than non-emulated environment. To emulate a single instruction,
we often need tens even hundreds of actual instructions, which considerably
impacts the runtime performance of a full-system emulator.

In program analysis using full-system emulation, we see that the guest
(emulated) operating system and the host operating system are usually the same,
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and the OS specific operations, such as process context switch, are trivial to our
analysis. Therefore, we came up a program emulation proposal that directly em-
ulates the target program on host operating system, which we called process
emulation.

Being different from full-system emulation, process emulation directly uses
the host operating system to provide OS-specific features, such as handling sys-
tem API calls. This assumption requires the guest OS and the host OS to be the
same. The process emulator is a user-space application that can emulate other
user-space applications, where CPU instruction execution, memory management
and some OS features are emulated by the process emulator, and system call-
s/APIs are executed by the host operating system. The comparison of full system
emulation and process emulation is shown in figure 1.

One advantage of process emulation is that all system API calls are hooked
by the emulator. Hence, sandboxing can be easily achieved and malware can be
run directly on the emulator, preventing the malware from interfering with the
real OS.

3.2 Program Partitioning

The first step of analysis after program tracing is program partitioning, where
sequential instructions traced from process emulation are partitioned into basic
blocks or program segments. The goal of this stage is to make partitioned seg-
ments the same scale as an algorithm implementation. In static analysis, it is
possible to reconstruct the whole control flow graph or function call hierarchy,
but in dynamic analysis however, it’s usually impossible to obtain the complete
image of a program, because we cannot get through all execution paths in one
time of execution. Whenever a conditional branch is met, only the determined
path is executed, so we cannot build a complete control flow graph through lim-
ited execution traces. Hence, partitioning the program into appropriate scale at
appropriate point is crucial to the follow-up steps. We develop some partition-
ing algorithms with different granularity, including basic blocks, inter-procedure,
procedure call, etc.

3.3 Intermediate Language

Dynamic program tracing usually produces low-level, fine-grained program data,
including processor register values, memory access values, etc. The fact that our
IL is designed to be close to machine language makes translation from tracing
result to IL can be done with the lowest cost. The instruction set of our IL is
highly reduced as well, which helps to increase template matching performance,
and grasp primary runtime information at the same time. In this way, we build
up an IL that is light-weighted, platform-compatible and easy to analyze, and is
used in each step of analysis, including dynamic translation, template algorithm
implementation, programmatching and dynamic data verification. The structure
of an IL template is shown in figure 2.
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Fig. 2. IL Program Template

3.4 Assembly-to-IL Translation

In the translation step, binary instructions are translated into IL instructions.
This is usually done after program partitioning, because the translation may lose
information about original program context. The translation is not accurate,
which means that some irrelevant information is discarded. For example, the
zero flag in x86 architecture indicates if an arithmetic operation produces a zero
value[5], and most of the time, we don’t care if the value is zero, so the value of
zero flag is discarded in the translation.

Selection of Instructions. Not all traced instructions are translated into IL
instructions. Normally, translations are limited to these categories: arith-
metic, logical, bitwise, data transferring, control-flow transferring, etc.

Memory Access. Data used in program execution is usually contained in mem-
ory. For almost every algorithm implementation, its input and output pa-
rameters are first stored in memory, then displayed on the screen or stored in
a file. By identifying memory reading and writing, we can generate dynamic
inputs and outputs of a program, and perform data verification in later stage.
We treat the memory as a global array object, and memory reading and writ-
ing are translated into array getting and setting at the index specified by
the address of memory access.

Data Preservation. The advantage of dynamic program analysis is that we
have direct access to runtime data which is unavailable in static analysis.
Each instruction in IL program segment has an optional field that stores its
original context, including memory access values, instruction pointer, etc.
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3.5 Template Matching

In template matching step, IL segments are matched to template IL programs
using fuzzy matching techniques, and the matched segments are further verified
in data verification step.

A template program is an implementation of a certain algorithm written in IL
code, which can be executed in IL interpreter and has explicit input and output
format. A dynamic translated IL program segment, on the other hand, contains
an incomplete translation of traced instructions, and usually cannot be executed
in the interpreter. Also, it contains runtime data of the original program, which is
different from IL templates. Template matching is done in IL-instruction level or
IL control-flow level(control flow information is contained in dynamic translated
program), and is controlled by a posteriori threshold, which defines the matching
accuracy.

In template matching step, efficiency is usually more important than accuracy.
Previous research of data pattern matching showed that analyzing large amount
of irrelevant data is the bottleneck of dynamic data analysis. Hence, the main
purpose of template matching is that we can filter out most of the impossible
traced result with little cost. To keep a low false-negative rate, we should only
filter out the “obviously impossible” segments. Fortunately in most cases, most
of the dynamic translated segments satisfy such a condition. We designed some
fine-tuned template matching algorithms, including direct mapping, instruction
frequency, CFG matching and scale predicting.

3.6 Dynamic Data Verification

In this step, all input and output data is first extracted from the program seg-
ment. We assume that all the data needed for analysis is stored in memory, and
we define the input data as the memory values first referenced by memory read-
ing, and the output data as the memory values last set by memory writing. This
data is then further processed into memory chunks, according to its memory
offset(address).

Next, we try to construct possible algorithm parameters from the memory
chunks. We use some heuristic techniques to eliminate low-priority data, such as
pointer values, all-zero (initializing) values, etc. Each possible set of parameters
is in turn injected into the IL interpreter.

Then, after injection of parameters, the IL interpreter executes the template
program to produce output results. Each output result is then verified in the
program segment’s output data, and if a matching is found, we confirm that
the implementation of a certain algorithm exists in a program segment. The
workflow of data verification is shown in figure 3.

We can see that we don’t have to know the exact implementation of the
algorithm we’re trying to analyze. We just have to provide one template imple-
mentation, and the data verification will test if they are the same.

False positives are highly unlikely to happen when the input and output pa-
rameters reach a certain length, say 128-bit. We may take the AES encryption
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Fig. 3. Dynamic Data Verification

as an example. Each 128-bit input block is encrypted into an 128-bit output
block, and whenever the correct 128-bit data shows up in a program segment’s
runtime data, we may safely say that it contains an AES encryption, because
the implementation is similar to the template, which is verified in the template
matching step, and the corresponding data is correct, verified in this step.

The data verification step tells us if an algorithm implementation truly exists
in the original program, and extracts its corresponding parameter, completing
the analysis.

4 Experiment and Evaluation

We choose several custom programs as well as common cryptography libraries
such as OpenSSL[11] to implement cryptographic algorithms, and use them as
testing programs for proof-of-concept evaluation of accuracy, effectiveness and
performance. The cryptographic algorithms we use include AES(128-bit and
256-bit), RC4, MD5, SHA1 and SHA2, and the implementations of the same
algorithm are different and independent. The AES implementations are from the
original Rijndael implementation, OpenSSL library and Nettle[1] crypto library,
the RC4 implementation is custom, and the hash functions are from OpenSSL
library. A primary result of all testing programs is shown in table 1.

Partitioning Strategy. In experiments, we use the inter-procedure partition-
ing as the main program partitioning method. The basic-block partitioning
can hardly satisfy the structure of template algorithms, since template al-
gorithms often have many basic blocks and a complicated control-flow. The
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Table 1. The Test Results

Binary Algorithm Algorithm Detected Description

aes std.exe AES 128-bit aes subkey be Original AES implementation

aes nettle.exe AES 128-bit aes subkey le Nettle crypto library

aes ssl.exe AES 128-bit aes key OpenSSL library

aes256 ssl.exe AES 256-bit aes key 256 OpenSSL library

rc4 custom.exe RC4 rc4 key Custom implementation

md5 ssl.exe MD5 md5 core OpenSSL library

sha1 ssl.exe SHA1 sha1 core OpenSSL library

sha2 ssl.exe SHA2 sha2 core OpenSSL library

procedure partitioning tracks a whole function call in one partition, which
has a huge memory consumption, and is difficult to achieve an acceptable
performance because of the vast amount of data. The inter-procedure parti-
tioning satisfies all our needs, as it can get the appropriate partition scale,
and the fact that it has no memory need makes the analysis can be done
simultaneously with tracing.

Matching Algorithms. We find that complicated matching algorithms are not
necessary in our analysis, and we primarily combine the instruction frequency
and scale predicting as the matching algorithm. Direct mapping algorithm
has complexity of O(n2),which is too slow for fast but inaccurate matching.
Instruction frequency has complexity of O(n), and in actual experiments it
can distinguish matching program segments from other segments quite well.
CFG matching algorithm is unavailable in most circumstances, since the
CFG of a segment is not always available in one dynamic execution. And
finally, the scale predicting turns out to be very effective. It has the complex-
ity of O(1) and can efficiently identify those segments which are too large
or too small for a template program. The matching similarity is combined
from all matching algorithms, and mapped to [0, 1]. We use a threshold of
0.95 in all experiments, and then the non-matching segments usually have
similarity of less than 0.90. We list each of the matching similarity in table 2.

Table 2. Matching Results

Binary Algorithm Algorithm Detected Similarity

aes std.exe AES 128-bit aes subkey be 0.9650

aes nettle.exe AES 128-bit aes subkey le 0.9713

aes ssl.exe AES 128-bit aes key 0.9610

aes256 ssl.exe AES 256-bit aes key 256 0.9574

rc4 custom.exe RC4 rc4 key 0.9585

md5 ssl.exe MD5 md5 core 0.9527

sha1 ssl.exe SHA1 sha1 core 0.9577

sha2 ssl.exe SHA2 sha2 core 0.9652
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Performance. The performance evaluation includes both program emulation
(tracing) and analysis. As tracing and analysis are done at the same time,
we run each testing program twice, one with analysis and one without anal-
ysis. The performance result is shown in table 3. The tracing time is usually
trivial in each program execution comparing to the analysis. We see that
program tracing takes less than 1 second, which is much faster than whole
system emulation(booting Bochs alone will take about 5 minutes, and trac-
ing is also slower). During analysis, the dynamic data verification step is the
most time-consuming one, because there’s a lot of data to be verified by IL
template, which is run by the IL interpreter. Improper program partition-
ing and template arguments can severely slow down this step, as a large
segment can produce much irrelevant data, and a small length of template
input argument will heavily increase the number of times in searching, thus
burdening the data verification. We also tested the effectiveness of template
matching, and found that analysis took 10 to 50 times longer without tem-
plate matching. Besides, these is no acceleration in the IL interpreter, which
also downgrade the analysis. Despite all this, the average analysis(including
tracing) speed is 167 kIPS(instructions per second), which is more than 10
times faster than the previous result of 15 kIPS(excluding tracing). Such
performance result is quite acceptable considering there’s no optimizations
in this proof-of-concept evaluation.

Table 3. Performance Evaluation

Binary Time(trace) Time(analysis) Time(total) Insts kIPS

aes std.exe 0.013(s) 3.712 3.725 103,757 27.854

aes nettle.exe 0.068 21.395 21.463 808,828 37.684

aes ssl.exe 0.025 0.822 0.847 230,241 271.831

aes256 ssl.exe 0.025 0.847 0.872 234,680 269.128

rc4 custom.exe 0.051 1.775 1.826 459,642 251.720

md5 ssl.exe 0.016 0.422 0.438 147,256 336.200

sha1 ssl.exe 0.065 0.512 0.577 36,018 62.422

sha2 ssl.exe 0.011 0.745 0.756 57,507 76.067

5 Discussion

5.1 Countermeasures

Our method may produce false negatives when used against protected code or
custom implementations of an algorithm. In these conditions, the original struc-
ture of an algorithm is sabotaged, and then failing our analysis. We discuss these
conditions in details, and possible counterattacks against these conditions.

Anti-emulation. Malware may use anti-emulation techniques to protect from
being analyzed. These techniques are usually small hacks or tricks which
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utilize bugs or incompleteness of the emulator. By fixing bugs and improving
the completeness of emulation, we can overcome most of the anti-emulation
techniques.

Code Obfuscation. Many malware authors use code obfuscation techniques to
protect their program from being detected. Obfuscation usually transforms
the instruction flow and control flow of a program, which compromise the
ability of matching template algorithms in our analysis. Hence, our analysis
method cannot be used against strong code obfuscation(such as VM ob-
fuscation). However, with a few changes, we may make our analysis method
invulnerable to code obfuscation. We see that data integrity can be preserved
even in obfuscation, we just have to modify the partitioning and matching
algorithms. The first and simplest modification is to lower the threshold of
template matching. Many simple obfuscators use instruction transforms to
confuse analysts, but the fundamental meaning of a program remains un-
changed. As our matching is not 100% accurate, we just have to enlarge the
tolerance of the similarities between a program segment and an algorithm
template. To deal with strong obfuscation which usually uses virtual machine
protection, we may try carefully select the representing set of instructions to
be translated into IL code. For example, a virtual machine obfuscator may
translate a single DIV instruction into its own VM representation. During
interpretation of the VM representation, such DIV instruction will eventu-
ally be executed by the same or a similar instruction. We may select a set of
instructions that are rarely used by internal logic part of a VM obfuscator,
and in this way we can still use instruction frequency as a valid matching
algorithm.

Custom Implementations. A malware author may use a non-standard ver-
sion of standard algorithm. For example, one may change the constants in a
cryptographic algorithm, producing a similar but different algorithm. Such
modifications will bypass the data verification part of our analysis, as the
detected algorithm produced a different result. This issue may be addressed
by considering the constants in a algorithm as input arguments, and keep-
ing only the computations in the algorithm templates. Some developers may
break an algorithm into small parts, and such an implementation cannot
be detected using a whole algorithm. We may also try split a template al-
gorithm into small blocks, but doing so will certainly increase the running
time of analysis.

6 Conclusion

In this paper, we presented a novel program analysis technique using process
emulation and IL-based analysis which is fast and extensible. We tested the
effectiveness and accuracy using custom programs implemented with common
cryptographic libraries. The result showed that we could identify encryption or
hashing functions within these programs, and extract the corresponding input
and output data of these functions. The performance evaluation shows that
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program tracing and analysis could be done within acceptable time, usually less
than one minute for small-scale programs, which is superior to most existing
analysis techniques.

We further studied possible countermeasures against our technique, and future
improvements of our technique. We showed that these countermeasures could be
solved by strengthening our system and refining algorithms. We plan to develop
new program matching algorithms which may concern data characteristics, and
further improve the performance of our technique.
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Abstract. We analyse the security of code by extending the KLEE sym-
bolic execution engine with a tainting mechanism that tracks information
flows of data. We consider both simple flows from direct assignment op-
erations, and (more subtle) indirect flows inferred from the control flow.
Our mechanism prevents overtainting by using a region-based static anal-
ysis provided by LLVM, the compiler infrastructure machine on which
KLEE runs. We rigorously define taint propagation in a formal LLVM
intermediate representation semantics, and show the correctness of our
method. We illustrate the mechanism with several examples, showing
how we use tainting to prove confidentiality and integrity properties.

1 Introduction

Analysis methods based on symbolic execution (developed initially by King [8])
have been proved to scale very well to real life code. For instance, KLEE [3],
a symbolic execution engine running on top of the LLVM low-level virtual ma-
chine [9], has been used to identify subtle bugs in the popular GNU COREUTILS
library, covering over 430K lines of C code.

In symbolic execution, the program is dynamically explored through all its
branches looking for implementation bugs like memory manipulation errors. In
order to avoid trying the entire (arbitrarily large) input space, program inputs
are assumed to be symbolic variables that remain uninstantiated (but become
constrained) at execution time.

Unfortunately, existing symbolic execution tools can’t deal with code that
uses cryptography: the search space blows up when exploring the insides of such
functions, as they are specifically designed to avoid being invertible (e.g., hash
or encryption operations), and hence the underlying constraint solver of the
symbolic execution engine (e.g., STP [6] for KLEE) is unable to find suitable
inputs in a reasonable time.

In order to cope with this problem, recent work [5] extends KLEE by introduc-
ing “symbolic” functions that replace concrete ones (e.g., a symbolic encryption
function symbol replacing a OpenSSL’s AES implementation), and prevent their
exploration. In order to specify the behaviour of symbolic functions and allow
the analysis to progress, symbolic functions are endowed with rewriting rules
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that detail abstractly their functional properties (e.g., that decryption inverts
encryption). The advantage is that these symbolic functions can be efficiently
implemented using lookup tables, enabling the symbolic execution of the whole
protocol.

1 unsigned char K[ ]
2 = ”SECRETSECRET” ;
3

4 void
5 o ra c l e ( ){
6 int i ;
7 unsigned char IV [ 2 5 6 ] ;
8 unsigned char C[ 2 5 6 ] ;
9 unsigned char P[ 2 5 6 ] ;

10

11 read ( IV , 256 ) ;
12 read (C, 256 ) ;
13

14 decrypt (P, C, K) ;
15

16 //XOR wi th prev i ous b l o c k /IV
17 for ( i =0; i <256; i++)
18 P[ i ] ˆ= IV [ i ] ;
19 //Check padding . .
20 i f ( i s v a l i d (P) )
21 wr i t e ( ‘ ‘ v a l i d ’ ’ , 5 ) ;
22 else
23 wr i t e ( ‘ ‘ i n v a l i d ’ ’ , 7 ) ;
24 }

1 int i s v a l i d (unsigned char ∗ P){
2 int i ;
3 // v a l i d paddings in [ 1 , 256 ]
4 for ( i=256−P[ 2 5 5 ] ; i <255; i++)
5 // a l l pads = pad l eng th
6 i f ( P[ 2 5 5 ] != P[ i ] )
7 return 0 ;
8 return P[ 2 5 5 ] != 0 ;
9 }

Fig. 1. Is this code secure?

Taint analysis [12] is a powerful method for discovering security violations.
The analysis is used typically to identify dangerous flows from untrusted inputs
into sensitive destinations, in order to detect, for instance, code or SQL injec-
tion attacks. This is an integrity property that tells whether untrusted values can
reach and modify trusted placeholders. One may also be interested in the dual
property of confidentiality, i.e., whether sensitive values can leak to untrusted
sinks (e.g., whether secret information is disclosed to the network). We rely on
tainting to formally justify the usage of symbolic function abstractions for re-
placing concrete cryptographic primitives. In order to show it is safe to perform
such an abstraction, we need to reason about which information needs to be kept
secret. For instance, consider an encrypted message that is sent on the network;
the encryption key has been established off-band and is meant to be secret. We
can only replace this encryption by a symbolic (black box) message that is totally
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opaque to an attacker when the key is actually verifiably secret to the attacker.
That is, we can trust an eavesdropped message will not be decrypted (nor any
information will deduced from it) by an attacker only if no information about
the encryption key was (inadvertently) leaked by the program itself.

Let us illustrate the kind of code we wish to analyse. Consider the oracle C
function of Figure 1. It represents a last word oracle used in the classic padding
oracle attack [13,10]. Two 256-byte long blocks are input in lines 11 and 12,
the initialization vector IV and the ciphertext C. Line 14 decrypts C into P
using secret key K. Then, lines 17 and 18 xor the result with IV (since this is
using CBC encryption mode for block ciphers). Finally, the padding is checked
with function is valid() in line 20. This function, shown in the right hand-side of
Figure 1, checks the padding method is valid (using PKCS#5), i.e., that the last
bytes are either 1, or 22, 333, and so on. This code illustrates the confidentiality
concerns we are interested in analysing: Can an attacker obtain information
about P from observing just the output?

As shown in [13], an attacker providing a random IV and observing the answer
(that is, “valid” or “invalid” depending on the output of is valid(P)) can infer
the last byte of P. In this paper, we develop a mechanism to detect subtle leaks
of information of this class. Briefly, in our analysis, the decrypted P of line 13 is
secret and thus marked high (by specification), with security level H. Then, at
runtime, the analysis detects information being output under a high guard (i.e.,
the conditional in line 19 of the result of function is valid()). At that point our
analysis would issue a security warning.

The above example illustrates our interest in detecting all potential leaks,
including partial information. So even a 1-bit leak of P constitutes a valid attack
in our setting. We aim at formal results, thus we formalize the LLVM semantics
on which KLEE runs. Previous work describes the standard LLVM semantics [5],
and we extend it here to model taint propagation. This enables us to show
formally that tainting works as desired. More precisely, our contributions are as
follows:

– We illustrate, via examples, the challenges in implementing different tainting
mechanisms in the LLVM virtual machine (Section 2).

– We define three LLVM semantics to model taint propagation, each one more
precise than the previous (Section 3):

1. A basic tainting semantics for modelling direct, assignment-based flows.
2. A more advanced tainting semantics for both direct and indirect flows

arising from branching operations.
3. A region-based tainting semantics that prevents overtainting, and is thus

more precise than the previous case while still correct.

We show security for both (2) and (3) above (Theorems 1 and 2,
respectively).

Even though our development of tainting is aimed towards analysing crypto-
graphic protocol implementations, it can of course be used in analysing regular,
non-protocol code, in order to detect dangerous flows of data.
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Related Work. To our knowledge, this is the first tainting/information flow ap-
proach specific for the LLVM virtual machine and KLEE, which combines both a
working prototype and rigorous semantics with formal security results. However,
of course there exist lots of work for tracking information in programming lan-
guages. First, more applied taint analyses [2]: tainting has been used for unknown
vulnerability detection, automatic input filter generation, malware analysis, and
test case generation (see the survey in [12] and the references therein). Second,
more theoretic information flow works [11], both for static and dynamic settings,
and for higher and lower level languages.

The first work we are aware on defining formal semantics for LLVM is [5].
There is more recent work [14] that also gives semantics, and focuses in mecha-
nized formalizations of LLVM for proving intermediate optimizations correct in
the Coq theorem prover.

2 Information Flow and Tainting in the LLVM

In order to understand the semantic rules needed to implement tainting in Sec-
tion 3, in this section we consider some simple examples that illustrate the kind
of issues we run into when dealing with tainting. Our examples are purposely
simple, since we work at the level of LLVM IR (intermediate representation)
code, which is considerably more verbose than C.

LLVM IR code is organized as a collection of function definitions, each one con-
taining a sequence basic blocks. Each basic block is tagged with an entry label, to
which other blocks can jump into. Basic blocks typically end when control needs
to be transferred elsewhere. LLVM provides “local variables” (registers), which
are identified by starting with a ’%’ character. Registers are used thoroughly,
since they are often needed by the compilers in order to generate code that re-
spects static single assignment (SSA), a property that simplifies LLVM’s static
analysis and optimizations (e.g., constant propagation). The complete LLVM
language contains many instructions; in this paper we use and illustrate the
main ones, like arithmetic, branching, routine call and return, and memory ma-
nipulation operations. The complete list is available elsewhere [9].

We assume given an arbitrary set of taint levels that we use to taint variables,
be them registers or memory cells. Initially, the memory (which contains data
as well as the executable code) is untainted. Tainted data is introduced from the
external environment of the program, and once inside the program starts propa-
gating through variables and memory cells during execution. We allow different
sources of data, which may be potentially tainted with different levels. We model
the sources as files (in the UNIX sense, so that files can also be IO devices and
network connections) that the code reads from and writes to. We then assign
taint levels to files. Taint levels are (partially) ordered. For simplicity, and with-
out loss of generality, we present our examples assuming just two levels: L (for
low) and H (for high), with L < H. In these examples, the experiment we run
is as follows: we assume H as the taint level for the inputs from the standard
input (0 in POSIX systems), and then check that the taint level of data written
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to the standard output (1 in POSIX systems) is L. If we ever see an output H,
we declare that there is a dangerous flow, and conclude the code is insecure.

Direct Flows. Figure 2 shows the simplest form of information flow: an as-
signment that transfers taint from a source variable to another variable. On the
left we see C code and on the right we show equivalent LLVM code. The C code
declares two variables of one byte, of type char, named input and output. We
then input a byte from the the standard input (which we assign taint level H),
using function read. The input byte is saved on input. Then we assign input to
output, and finally send output to the standard output using function write. It is
clear that data flows from variable input to output, hence, there is a (dangerous)
flow, since H data is being leaked.

On the right hand side of Figure 2 we see the LLVM IR code, which it’s more
verbose and complex; it uses registers as well as memory accesses, and types are
explicit (i8 for a byte, i32 for 4-byte integer; the types for constants 0 and 1 are
ommitted).

C variables input and output correspond to different memory locations re-
served by the LLVM operation alloca (lines 1–2). Pointers %input p and %output
(respectivelly) reference both variables. Line 3 reads a byte into memory location
pointed by %input p, and line 4 loads that char into register %input. The rele-
vant flow occurs at line 5, where local register %input is assigned a value loaded
from memory using operation load. The memory pointer used, %input p, is used
in function read with file descriptor 1 (which has taint level H). Line 6 uses an-
other memory operation, store, to save in memory the value of %input into
memory location %output p. This example shows the need to propagate taint
levels both from and back memory cells into registers, something we address in
the semantics developed in next section.

Being able to capture direct flows is already quite useful, and many taint
techniques do just that [12], since each flow may potentially lead to a dangerous
bug.

Indirect Flows. Figure 3 shows a more subtle flow. As we can see in the C
code on the left, a H variable input is used to switch and assign to variable
output different values. The effect is that at the end of execution, output holds
the value of input, even though there is no direct flow from input to output. So
tainting input would not directly taint output. This is a classical indirect flow
arising from the control flow: input controls a conditional (the switch) in the
code that has an impact on output. On the right hand side of Figure 3 we see
the equivalent LLVM IR code. LLVM has a primitive switch operation as well
(see line 5), so the mapping is quite direct, as each branch is implemented via
jumps to entry labels of the different basic blocks (e.g., bb0 in line 11).

The standard way of detecting these flows is to taint the control flow of the
program under execution, so any following operation and its resulting memory
or register modifications gets tainted with the control flow taint. In this case,
the switch statement of line 5 causes the control flow to be tainted with H
since we have a condition on variable input which is itself H. Then all following
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instructions inherit the taint level H, effectively tainting the result of any in-
struction, including the assignment to output. This works, but has the potential
problem of overtainting, since the H level is now carried on forever, unless one
can somehow turn it off at some point (see Section 3). Nevertheless, thanks to
the static analysis facilities provided by the LLVM framework, we will be able
to compute regions where each branch under the influence of the switch termi-
nates and merges into a common point (bb256 at line 26 in the example); this
information is going to be used in Section 3 to prevent overtainting, by knowing
when to stop carrying the control flow taint introduced in H branches.

1 char input ;
2 char output ;
3 read (H, &input , 1 ) ;
4 output = input ;
5 wr i t e (L,&output , 1 ) ;

1 %input p = alloca i 8
2 %output p = alloca i 8
3 ca l l i32 @read ( 1 , i 8 ∗ %input p , 1)
4 %input = load i 8 ∗ %input p
5 store i 8 %input , i 8 ∗ %output p
6 ca l l i32 @write ( 0 , i 8 ∗ %output p , 1)

Fig. 2. Direct flow example: C code (left), LLVM IR code (right)

1 char input ;
2 char output ;
3 read (H, &input , 1 ) ;
4

5 switch ( input ){
6 case 0 :
7 output = 0 ;
8 case 1 :
9 output = 1 ;

10 . . .
11 case 255 :
12 output = 255 ;
13 }
14 wr i t e (L , output , 1 ) ;

1 %input p = alloca i 8
2 %output p = alloca i 8
3 ca l l i32 @read ( 0 , i 8 ∗ %input p , 1)
4 %input = load i 8 ∗ %input p , a l i g n 1
5 switch i 8 %input , l a b e l %bb256 [
6 i 8 0 , l a b e l %bb0
7 . . .
8 i 8 255 , l a b e l %bb255 ]
9 bb0 :

10 store i 8 0 , i 8 ∗ %output p
11 br l a b e l %bb256
12 . . .
13 bb255 :
14 store i 8 255 , i 8 ∗ %output p
15 br l a b e l %bb256
16 bb256 :
17 ca l l i32 @write ( 1 , i 8 ∗ %output p , 1)

Fig. 3. Indirect flow via conditionals example: C code (left), LLVM IR code (right)

Pointer Arithmetic and Memory. Figure 4 shows another subtle situation.
We only show the C code for simplicity. This code copies the value of variable
input into output in a special way: it initializes an array with zeroes, and then
stores a 1 into the position given by input. Then the array is traversed until a 1
is found; while it is not 1, output is incremented. At the end of the loop, output
holds the value of input, and this constitutes a dangerous flow since output is
sent to the environment in line 7. Unfortunately the prevention mechanism we
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hinted above to deal with indirect flows in the last subsection does not work
here: marking the control as H at the branch does not help in identifying this
flow, as execution is not under a branch depending on input: the loop uses
array[0] . . . array[input− 1] but never reaches array[input].

The problem here is in line 5: since we have a H index (input) accessing the
array, the whole array is potentially H. If we could mark all the array as H, output
would become tainted immediately entering the loop, and then the problem
would disappear, as array[0] would already be H. At the C code, we could
mark the whole array as H if one element has been marked H. Unfortunately
at the LLVM IR level we do not have arrays anymore, only memory cells. The
conservative decision we make in our semantics in next section is to mark the
whole memory as H, for this particular case. This can be made more precise in
the future, although it is enough for our current needs. (For instance, memory
reserved afterwards is unaffected.)

3 Taint Semantics

Our semantics is an extension of earlier work [5]. Besides that work, one can also
refer to the original (informal) semantics of LLVM [9].

Semantic rules describe formally how an LLVM machine executes, i.e., how
it evolves from state to state depending on the current instruction. State is
represented by a tuple 〈pc,M,G, fs〉, where pc is the program counter, M the
memory, G the global identifiers, and fs the stack of activation frames.

The specific details on how LLVM works for each instruction are not crucial
for the understanding of this paper, though, since our addition of tainting does
not change the semantics of [5], only builds on it.

Direct Flow Semantics. We tag LLVM registers and memory cells with taint
levels H and L, and use metavariable tl to range through them. Given two levels
tl1 and tl2 we use lattice join operation ∨ that operates as usual: tl1 ∨ tl2 = L
when tl1 = tl2 = L, and tl1 ∨ tl2 = H otherwise.

To illustrate the semantics, we show rule ADD for arithmetic addition:

opM(pc) = id = add t op1, op2 v(op1,L) = (tl1, t, vop1)v(op2,L) = (tl2, t, vop2)

〈pc,M,G, (rslt,L, ret,A) :: fs〉 −→
〈nxtM(pc),M,G, (rslt,L{id → (tl1 ∨ tl2, t, xop1+txop2)}, ret,A) :: fs〉

ADD

It starts by looking up the instruction pointed by the program counter pc, using
auxiliary function opM(pc) (in this rule, opM(pc) = id = add t op1, op2). This
gives two operands op1 and op2, of type t. The actual values of op1 and op2 are
looked up using auxiliary function v() (the value can be either a constant with
taint level L, or a local binding in L, or a global value in G). For op1, for instance,
we have v(op1,L) = (tl1, t, vop1). Here we get a triple indicating the taint level tl1,
the type t, and finally the value vop1 . (Similarly for op2.) We can then update the
context with the new value for identifier id with triple (tl1∨tl2, t, vop1+tvop2) The
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remaining arithmetic rules (for subtraction, multiplication, bit manipulation,
and so on) are similar.

This semantics is concrete: bytes input are concrete bytes, and conditions in
branching rules are deterministically evaluated. A symbolic semantics changes
input values to symbolic variables, and branching rules may depend on actual
assignments to the symbolic variables. A symbolic semantics of LLVM is provided
in [5]; we could do it here, although for our purposes is not needed: the changes
we do for tainting are completely orthogonal (under the assumption that the pc
is always concrete, that is, there’s no dynamic code).

1 char array [256 ]={0} ; //256 zeros
2 char input ;
3 char output ;
4 read (H, &input , 1 ) ; // read a char from a H f i l e
5 array [ input ]=1;
6 for ( output=0; ! array [ output ] ; output++); //Count zeros
7 wr i t e (L , output , 1 ) ; // wr i te output to a L f i l e

Fig. 4. Indirect flow via array indexing example (C code)

Indirect Flow Semantics. In order to account for indirect flows, we need
to modify contexts and carry on a taint level of the execution. We call this
the taint level of the program counter, noted by tpc, and add it to regular
contexts: 〈pc, tpc,M,G, fs〉. Initially tpc is L, and it evolves when H conditions
are evaluated in branches. The rules of interest are conditionals (BRT) and
(BRF); next we show rule (BRT):

opM(pc) = br c labelt l1 labelt l2 v(c,L) = (ts, i1, 1)

〈pc, tpc,M,G, (rslt,L, ret,A) :: fs〉 −→ 〈l1, tpc ∨ tl,M,G, (rslt,L, ret,A) :: fs〉BRT

Here, we can see that the condition c is evaluated into a taint level ts, and
this taint level is used to update the taint level of the program counter, which
becomes tpc ∨ tl. This is analogous in rule (BRF).

We conclude this subsection by noting that all regular direct-flow semantics
have the control flow taint added in their results; for instance, the new rule
ADD includes the taint level control flow tpc added to the result taint level of
id, assigning to it the taint level of tpc ∨ tl1 ∨ tl2.

Analysis Methodology. Armed with any of the above semantics, we can check
integrity and confidentiality by querying the program at specific places to check
the taint level of certain variables of interest.

In the following we focus on confidentiality (integrity is analogous). We let an
execution trace tr(h1, . . . , hn) → o1, . . . , ok stand for a chain of semantic rules
from the initial context (as defined in [5]), with n input READ rules from H
applied assigning byte hi, in order. Analogously, the trace contains k WRITE
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rules, and each output value is oi, in order. (The READ and WRITE rules may
be interleaved.) The output values oi come from applications of rule WRITE of
Figure 3: its taint value is tpc ∨ tl, for taint level tl of the written byte joined
with the control flow taint level tpc.

Definition 1. A trace tr(h1, . . . , hn) → o1, . . . , ok is no-taint when the taint
level of every oi is L. A program satisfies no-taint when every possible execution
trace is no-taint.

Definition 2 (Attacker model). Our notion of security is derived from a
game experiment. Assume the program is run with high inputs h1, . . . , hn chosen
uniformly (i.e. randomly with uniform distribution) from the space of possible
inputs M . Then, an attacker is given the outputs o1, . . . , ok of the execution
trace tr(h1, . . . , hn) → o1, . . . , ok, and is asked which inputs were used. We say
the program is secure if the probability of guessing the inputs is 1/|M | for every
trace.

This notion of security is related to the classical definition non-interference [1];
for convenience, we took a probabilistic setting in which security is defined as
a game since it simplifies the reasoning w.r.t. our byte-granulated memory and
low-level machine representation.

Theorem 1. If a program satisfies no-taint then it is secure.

Note that its converse does not hold in general. For instance, consider the code of
Figure 1 modified such that it writes “valid” instead of “invalid”. In that case,
all tainted outputs are the same and thus the code is actually safe, although
no-taint is not passed. As such, this specific case must be handled manually in
our current setting.

Region-Based Semantics. The C code of Figure 1 does not pass no-taint:
after the for loop in is valid(P), there is a H control flow taint tpc, and hence
the output gets an H as well.

The first step into extending the above semantics to prevent overtainting is to
construct a control flow graph. For simplicity, we assume there is a single function
defined, so that there is only one sequence of basic blocks. LLVM’s control flow
graph is then a directed, connected graph that contains the different basic blocks
of a program. It has a single start and end node, from which other nodes are
reached. Control flow graphs for the examples in the paper are shown in Figure 5.
In each case we can see the entry block and exit blocks.

The following are standard graph theory and compilers concepts [7]. A basic
block bb0 dominates basic block bb1 when every path from the entry to bb1
contains bb0. Also, bb1 postdominates bb0 if every path from bb0 to the exit
passes trough bb1. A region is a connected subgraph of the control flow graph
that has exactly two connections to the remaining graph: an entry and an exit
(this is why they are also known as single-entry-single-exit (SESE) regions). We
can then characterize an SESE region by a pair of blocks: the entry and exit
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blocks to the region. The entry basic block of a region is passed through when
entering the region; it is considered part of the region, and dominates all basic
blocks in the region. Similarly, the exit basic block is passed through after leaving
the region; it is not considered part of the region.

Figure 5 shows the control graphs as computed by LLVM. In the control flow
graph shown in Figure 5(a), corresponding to the code of Figure 3, there are
several regions: a large region containing all basic blocks with entry and exit
bb256 (which is not part of the region, and singleton blocks with entry bbX (for
X < 256) and exit bb256. (In practice, LLVM static analysis ignores singleton
regions, as they are always contained in a larger region.) In the control flow
graph shown in Figure 5(b), corresponding to the code of Figure 4, there are
two regions: one with entry entry and exit out, and one with entry loop and exit
out.

Fig. 5. Control flow graphs of basic blocks. (a) Graph for code of Figure 3, (b) Graph
for code of Figure 4.

The important point is that control flow information (e.g., information that
was added in a H branch to the control flow taint) has a region as its scope: the
scope is pushed when entering a region (i.e., entering its entry basic block), and
cleared (i.e., popped) once exiting the region (that is, we pass through its exit
basic block), so we are free to reset the control flow taint to the previous state,
since no information can be leaked anymore. In order to implement regions in
the semantics, we need to add a stack of control flow taints. The rule is that
whenever we enter a new region, we need to push a L value in the stack; whenever
we exit, we pop the head of the stack. We use the following auxiliary function,
that manipulates the stack:

region(pc, s, tl) =

⎧⎪⎪⎨⎪⎪⎩
push(s, head(s) ∨ tl)

if pc = entry into new region
pop(s) if pc = exit current region
s otherwise

This function is built using a previous pass of the code through LLVM’s static
analysis to compute regions. Initially, stack s is empty. As we enter into new
regions, we push new control flow taint levels.

The new method, called precise-no-taint, is similar to no-taint of the pre-
vious section but operates in the new semantics, and is thus more precise. We
show this more precise semantics is as secure as the previous one.
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Theorem 2. If a program satisfies precise-no-taint then it is secure.

The proof is similar to that of Theorem 1, although it now requires modularizing
per region; H information that happened in a closed region in the past does not
influence L outputs.

4 Conclusions

Tainting is an important technique to find dangerous information flows. Our ad-
dition of a dynamic tainting mechanism to KLEE is natural and complementary
to the safety checks done by KLEE alone, like memory errors and overflows.

Our method can be used in isolation or coupled with previous work in order
to verify code that uses cryptography; this framework is promising for analysing
complex and long cryptographic protocol implementations. A longer version with
more details, prototype code (as a patch to the latest KLEE distribution), and
proof sketches can be found on our project website [4].

As future work, we intend to:

– Analyze larger, real-life code with subtle manipulation of sensitive data, in
a similar vein to the toy example of Figure 1.

– Use the present analysis to prove secrecy of cryptographic materials like
encryption keys; this will enable us to abstract away from concrete crypto-
graphic primitives and use abstract, symbolic counterparts, as done in [5].

– Finally, we also we want to investigate more precise memory pointer tainting,
as discussed in Section 2.

This work has been supported by the European Union Seventh Framework Pro-
gramme under grant agreement no. 295261 (MEALS), and by the PICT-PRH
316 project.
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Abstract. Privacy protection and user revocation are essentially con-
flicting requirements in many cryptographic protocols. It is a particularly
challenging problem to harmonize them in a secret handshake protocol
that is geared to offering strong privacy protection on the participants’
group membership in the protocol execution. In this paper, we study this
problem and propose a generic approach to provide revocation support
in secret handshake protocols, without sacrificing the notion of privacy
preserving. The main building block of our approach is CGC (Confiden-
tial Group Communication), a primitive formulated in this paper, and
we present a concrete instantiation so as to realize our generic approach.

1 Introduction

Users nowadays are much more concerned with individual privacy than years
ago. The growing privacy awareness calls for privacy-preserving techniques that
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members from the same group, each holding a membership credential, to estab-
lish a shared session key and authenticate each other, with the following two
requirements. Firstly, an eavesdropper observing a handshake session learns no
meaningful information about the participants, including whether they belong
to the same group and whether the handshake is successful or not. Secondly,
a non-member (i.e., a user not in the group) cannot pretend to be a member.
Compared to other privacy-preserving entity authentication primitives, a secret
handshake protocol is “affiliation-hiding” in the sense that the protocol does not
reveal which group the handshake participants belong to. Since its introduction
by Balfanz et. al. in [3], the notion of secret handshake has attracted enormous
attention due to many interesting applications, such as private mutual authen-
tication between two secret government agents or two private club members.

User revocation is an indispensable component for any practical secret hand-
shake scheme. A member may leave or be evicted from a group. It is also likely
that a user’s secret credential is compromised. These scenarios demand the
system to have a timely and effective revocation mechanism such that those
members’ credential should be nullified and the credential holders cannot run
secret handshake protocols successfully with other group members. Despite that
numerous secret handshake schemes have been proposed in the literature, in-
cluding [1, 3, 4, 10, 6–9], the revocation problem is neglected in almost all of
those using reusable credentials except in [7, 10, 9]. However, the revocation in
[10, 7] requires a synchronized rekey protocol upon all users, which is unscalable
and inefficient, while the solution in [9] is problematic, because the approach
of credential-validity-checking does not rule out the possibility that the revoked
user authenticates her counterpart first.

Our Contributions. In this work, propose a generic approach to provide re-
vocation support in secret handshake protocols. In specific, we first introduce a
new cryptographic primitive called CGC (Confidential Group Communication),
which allows two users with the same valid group membership to establish a se-
cret channel. User revocation is handled in CGC in a way that revoked users are
excluded from accessing such a secret channel. Building on top of CGC, we then
propose a generic approach to provide revocation support in secret handshake
schemes, with the basic idea being to execute secret handshake in the secret
channel established by CGC. Our approach does not make any changes on the
underlying secret handshake protocol, thus it is applicable to all existing and
future reusable credential based secret handshake schemes.

2 System Model

A secret handshake scheme considers a set of security-sensitive user groups op-
erating under a global authority GA who is in charge of setting up global pa-
rameters. In an open network environment, e.g. the Internet, a member in a
group expects to communicate with another group member in a private fashion
such that they end up agreeing on a shared secret when they satisfy an agreed
policy, e.g. the same group membership and/or certain attributes. Otherwise,
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none of them can determine her counterpart’s membership information. We are
interested in secret handshake supporting user revocation, where GA revokes a
user whenever the user leaves her group voluntarily or is evicted. As a result of
revocation, the revoked user is of no difference from non-members, e.g., she can-
not successfully run a secret handshake with a legitimate member. The following
definition is adapted from [1].

Definition 1. A secret handshake scheme with revocation (SHS-R) consists
of five algorithms {Setup, CreateGroup, AddMember, Handshake, Revoke} as
described below.

– Setup: Given a security parameter 1κ, the algorithm, executed by GA, out-
puts a suite of global parameters denoted as params which are shared by all
groups.

– CreateGroup: Taking params as input, a group manager GM runs this al-
gorithm to initialize a group’s public information G and the group’s secret
key skG.

– AddMember: GM runs this algorithm with a user U requesting to join its
group. Taking as input public group information G and group secret key skG,
the algorithm assigns a credential credU to U as a result of user admission.

– Handshake: Two players A and B run this protocol interactively with their
respective private input credA and credB. When the protocol ends, if A and
B satisfy each other’s handshake rules, they successfully share a common
secret key, and mutually authenticate each other (if needed). For all other
scenarios, the handshake fails.

– Revoke: When a group member U with credential credU is revoked, GM runs
this algorithm to update the group’s public revocation list R such that R =
R ∪ {U, credU}, and U is excluded from the group and is a non-member.

A SHS-R scheme must satisfy the following core security properties:

– Correctness. Honest members satisfying the handshake rules will always
successfully complete the handshake.

– Impersonator resistance. An adversary not satisfying the rules of the
handshake is unable to impersonate a group member and to successfully
establish a shared secret with an honest group member.

– Detector resistance. An adversary not satisfying the rules of the hand-
shake cannot decide whether some honest party satisfies the rules or not.
Affiliation hiding is implicit in this property.

– Unlinkability. It is not feasible to tell whether two executions of the hand-
shake protocol were performed by the same party or not, even if both of
them were successful.

3 A Generic Approach

As shown above, there exist several secret handshake schemes using reusable
credentials, but the revocation issue is not well addressed, e.g., [1, 5, 8] do not
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consider revocation at all, while the revocation method in [9] is not secure. In this
section, we give a generic approach to provide revocation support to these secret
handshake schemes. In particular our approach transforms a secret handshake
scheme without revocation support into a SHS-R scheme. As such, the approach
also facilitates the development of new protocols as the protocol designers are
relieved from considering user revocation.

The building block of our approach is Confidential Group Communication or
CGC, a primitive defined as an encryption scheme for a group of users, allowing
group members to communicate with one another in a secret manner such that
the conversation remains confidential to any non-members. In other words, CGC
enables a confidential channel exclusively for all group members. As a result,
each group member can send and receive messages via the channel, and only
group members can access the communicated messages. Moreover, CGC revokes
members such that once a member is revoked, she immediately becomes a non-
member, losing the access to the channel established by other group members.

3.1 Confidential Group Communication

We formally specify Confidential Group Communication CGC as follows:

Definition 2. A CGC scheme is defined as the following six algorithms.

– CGC.Setup: Given a security parameter 1κ, a global authority GA execute
this algorithm to set up public global information params.

– CGC.CreateGroup: Taking params as input, a group manager GM runs this
algorithm to initialize a group’s public information G and the group’s secret
key KG .

– CGC.UserJoin: Taking as input group secret key KG and user identifier U ,
it outputs a secret member key skU . Depending on instantiations, skU could
be unique to U or a shared secret among all members.

– CGC.Enc: Taking as input a message m and a member key skU , it outputs a
ciphertext c.

– CGC.Dec: Taking as input skU and a ciphertext c, it outputs the corresponding
plaintext m.

– CGC.Revoke: Taking as input user identifier U, GM executes this algorithm
to revoke U by outputting the updated revocation list of the group. As a result
of revocation, skU is no longer useful (in performing CGC.Enc and CGC.Dec).

We impose the following security requirements upon a CGC scheme:

• Plaintext Secrecy. The CGC.Enc algorithm should keep the secrecy of
the encrypted plaintexts. In particular, CPA (chosen plaintext attack) security
suffices for our use in this work.
• Key Privacy. The CGC scheme must also be key private, which intuitively

means that it is infeasible to learn under which key a ciphertext is generated.
In our setting, key privacy implies affiliation hiding, i.e., the ciphertexts do not
disclose information on the group to which the ciphertexts are intended.
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An Instantiation. We note that public-key broadcast encryption cannot di-
rectly instantiate CGC, because it cannot attain key privacy1. Our instantiation
still needs to make use of public-key broadcast encryption, but using it for key
update in case of user revocation. Specifically, we require group members to
share a secret key, and instantiate the encryption algorithm by a key private
symmetric key encryption scheme. The main issue at this point is how to enable
the group members to update the shared secret key in case of user revocation.
Our solution is to use public-key broadcast encryption, such that a new key is
encrypted under the broadcast encryption. As public-key broadcast encryption
supports user revocation, all group members except the revoked members can
decrypt and get the new key. We stress that in this instantiation, since broadcast
encryption is not directly involved in the encryption algorithm, it is not required
to be key-private, thus any existing public-key broadcast encryption scheme can
be used as long as it supports user revocation. The details of the instantiation
are below:

– CGC.Setup: Determines a key-private symmetric key encryption scheme SE,
e.g., AES-CBC , and sets params = 〈SE〉.

– CGC.CreateGroup: GM selects a secret key SE.kG for SE; also, determines
a public-key broadcast encryption scheme PBEG, and establishes the public
key PBEG.pk and a set of user private keys {PBEG.ski}i for PBEG. Sets the
group public information as G = 〈SE, PBEG, pubG〉, and sets the group secret
key as KG = 〈SE.kG, {PBEG.ski}i〉.

– CGC.UserJoin: To enrol a user, U , set its member secret key skU = 〈SE.kG,
PBEG.sk	〉, where PBEG.sk	 is a un-assigned user private key of PBEG.

– CGC.Enc: Given a message m, set the ciphertext as c = SE.Enc(m, SE.kG),
where SE.Enc(·) is the encryption algorithm of SE.

– CGC.Dec: Given a ciphertext c, decrypt c as m = SE.Dec(c, SE.kG), where
SE.Dec(·) is the decryption algorithm of SE.

– CGC.Revoke: Upon revocation of user U , update the revocation list of PBEG
to include U (the revocation list is a part of PBEG.pk); update SE.kG by
assigning a new value, and encrypt it using the public-key broadcast en-
cryption as rekey msg = PBEG.Enc(SE.kG); publish rekey msg in a public
directory, such that group members can retrieve and decrypt it using their
respective PBEG.sk.

Security. Since the above CGC scheme relies on a key private symmetric key
encryption scheme for data encryption, it straightforwardly inherits plaintext
secrecy and key privacy. Thus, we have the following theorem.

Theorem 1. The above instantiation is a secure CGC scheme, given that the
underlying symmetric key encryption SE is plaintext secret and key private.

1 As far as we know, all existing public-key broadcast encryption schemes in the lit-
erature are not key private. The key private broadcast encryption scheme in [2] is
more precisely multicast encryption.
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3.2 Our Approach

Basic Idea. As indicated earlier, we cannot expect to invoke explicit credential
validity checking to address the revocation issue in secret handshake. Thus, our
rationale is to eliminate the possibility that a revoked member can participate
in a secret handshake protocol. In particular, equip a group with a CGC scheme,
such that group members run the secret handshake protocol in a secret channel
established by the CGC scheme. User revocation is implicitly handled by the
CGC scheme, which guarantees that only group members can access the secret
channel, while non-members including revoked members are excluded from the
channel.

Concretely, given a (general) secret handshake scheme without revocation
support Γ , we compile it into a SHS-R scheme Γ ′ as follows. Exploiting a CGC
scheme, e.g., the above instantiation, all group members share a secret key for
a (global) symmetric key encryption scheme, and a private key for the group’s
public-key broadcast encryption scheme. When running Γ with a peer, a group
member encrypts the messages that she needs to send out with the symmetric
key encryption; while upon receipt of a message from her peer, she decrypts
the message first, and then behaves upon the decrypted message following the
specification of Γ . User revocation is handled in a straightforward way by the
CGC scheme.

We note that in case of user revocation, the remaining group members do not
need to update their shared secret key as long as they have no plan to partic-
ipate in handshakes. In other words, it suffices for a group member to update
her key right before her participation in a handshake protocol. Due to the use
of broadcast encryption, even if she misses some previous rekey messages, she
can still get the latest key. Therefore, using the above CGC scheme in our ap-
proach allows group members to synchronize key update on the necessity basis,
contrasting to [7, 10] which require strict synchronization.

Caveat. We have two comments. (1) If the original secret handshake scheme Γ
itself involves a shared secret (e.g., [5]), we make that secret a persistent quantity
in Γ ′, and it no longer needs to be updated in case of user revocation. (2) The
approach seems not applicable to the secret handshake with dynamic matching
scheme in [1], which allows groups members from certain different groups to
perform handshake. In fact, the approach still works if we let the groups whose
members are allowed to make handshake share a secret key.

A Revisit. Let us briefly examine the security of the approach. Adversaries
to a secret handshake protocol include not only non-members, but also group
members who do not participate the handshake or who do not satisfy the hand-
shake rules in question. For a non-member adversary, since the CGC encryption
is key private, intuitively the adversary cannot get extra information. But for a
member adversary, the situation is complicated. In particular, having access to
the secret channel, the adversary can see the execution of the handshake protocol
(i.e., Γ ). Even though the adversary cannot learn useful information from the
execution of Γ itself (as Γ is a secret handshake protocol), a subtle vulnerability
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is the following: as the handshake protocol (i.e., Γ ) is supposed to be executed in
a secret channel, once the adversary can decide that what it sees is a handshake,
then the secret channel must be established by group members of the group it
belongs to. This compromises affiliation hiding.

To be concrete, suppose that the original secret handshake protocol Γ involves
a party sending out a message, which consists of a 80-bit component and a 120-
bit component. If a member adversary observing an execution of Γ ′ intercepts a
corresponding message, and decrypts using its own secret key and gets a message
of the above format, then the adversary can know that Γ ′ is running between
two members of its group. In this example, the attack still works even if the
message of Γ is of a single component, but with a recognizable structure, e.g.,
it is a timestamp.

We have to rectify this issue. Our intuition is that it is in fact not necessary
to encrypt all messages of Γ , and it suffices to only encrypt the message that
is essential for key establishment and mutual authentication. We observe that
within all the messages sent out by a party, there must be at least one random
component. Depending on specific schemes, it could be an element intended for
key establishment or a randomized credential element, or even a nonce . Such
random components must exist in a secret handshake protocol, due to the need to
be secure against replay attacks and the need to randomize a user’s credential.
The characteristic of such a component is that it is a uniformly distributed
element within its domain (e.g., a finite field).

Based on this observation, we revise our above approach to be such that each
party, when running Γ , selects a single random component within her messages
that is critical for the handshake, and encrypts with the CGC scheme. Figure 1
depicts the idea, where m1 (resp. m′

2) is one of the essential random components

Alice Bob

M1=(m1, m2)

M2=(m’1, m’2, m’3)

M3

Essential random component

(a) Original secret handshake scheme Γ

Alice Bob

M3

M1=(CGC.Enc(m1), m2)

M2=(m’1, CGC.Enc(m’2), m’3)

(b) Secret handshake scheme with re-
vocation Γ ′

Fig. 1. Generic Approach of Transforming Γ to Γ ′

that Alice (resp. Bob) needs to send out; and only m1 (resp. m′
2) needs to

be encrypted among Alice’s (resp. Bob’s) messages, leaving other components
intact. For this approach to work, of course we assume that the secret handshake
protocol Γ is natural , in the sense that during the course of Γ , there will be no
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other messages that de-randomize the component (e.g., the protocol does not
involve the appearance of the component or its hash value in other messages).
Note that if the bit length of the component to be encrypted does not match
that of the encryption scheme, padding of random bits applies and the random
padding will be ignored at the decryption side. Finally, it is clear that the effect
of the CGC scheme for revocation remains.

Security. For security of our approach, we have the following theorem, and the
proof can be found in the full version.

Theorem 2. If Γ is a secret handshake protocol and the CGC scheme satisfies
plaintext secrecy and key privacy, then the resulting Γ ′ by applying our approach
on Γ is a secret handshake protocol.

Comparison with [10]. The secret handshake protocol in [10] also relies on
group members sharing a secret to handle user revocation. Our proposal in this
work distinguishes from [10] mainly as follows. (1) First of all, [10] presents a
concrete (membership-credential based) scheme, while our proposal is a generic
approach intending to provide revocation support to all reusable credential based
secret handshake schemes. (2) Secondly, even though both require group mem-
bers to share a secret key for symmetric key encryption, there are distinctions
on the way the shared secret key is used. Specifically, in [10] the participants in
a handshake run Diffie-Hellman key exchange first to generate an ephemeral key,
which is then XORed with the shared secret key to generate a session key, and
the session key is used for symmetric key encryption. As a result, the symmetric
key encryption is not necessarily key private. In contrast, the shared secret key is
directly used for symmetric key encryption in our approach, thus the encryption
must be explicitly key private. (3) In [10], the entire handshake session is carried
out in the confidential channel established by the symmetric key encryption.
But as analyzed earlier, this is not secure in our approach as we are considering
general secret handshake where the adversary can compromise group members
and can be active (in [10] such an adversary can only be passive). (4) Finally,
as mentioned earlier the method in [10] requires strict synchronization for key
update for group members (in case of user revocation), while our approach solves
this problem and group members update the shared key on the necessity basis,
due to the use of public-key broadcast encryption.
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Abstract. Among the RFID distance bounding protocols in the liter-
ature, besides defending against various attacks such as impersonation,
distance fraud, Mafia attack, terrorist attack, and distance hijacking,
some also support mutual authentication and tag privacy protection.
Due to the requirements of being lightweight, low-cost, and efficient, it
is the common objective to design new RFID distance bounding proto-
cols which require fewer message flows and less complex cryptographic
operations, while maintaining or enhancing the security and privacy of
the protocols. In this paper, we propose a new RFID distance bounding
protocol which achieves mutual authentication, supports the untrace-
ability of the tags, and resists all the attacks above by having only one
slow transmission phase, and is more efficient and energy-saving when
compared with other protocols’ two slow phases. The new protocol re-
quires the tag to evaluate a PRF function for two times only, rather
than three times as in one of the most efficient mutually authenticated
RFID distance bounding protocols currently available, for example, the
Swiss-Knife protocol.

Keywords: RFID,Distance Bounding, Privacy, Mutual Authentication.

1 Introduction

RFID (Radio Frequency Identification) is a technology that has been widely used
in our daily life. An RFID tag is a simple chip equipped with an antenna, which
allows the tag to communicate with a reader. The reader needs to determine
whether the tag is valid and within a legitimate distance which we call a neigh-
bor area by using a distance bounding protocol. As an identification method,
better than the bar code, an RFID chip makes it possible to identify non-line-of-
sight objects using wireless communication technology. Nowadays, RFID chips
have already been deployed in many big supermarkets such as Wal-Mart. They
have also been increasingly applied to track goods or even animals and so forth.
In addition, another important application of RFID is proximity-based authen-
tication, such as the student card for entering a library, the payWave -enabled
visa card for payment, and the electronic passport.
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There have been a handful of RFID distance bounding protocols proposed
recently [1–7]. Among them, various attacks have been proposed and consid-
ered in their security analysis. Five of the most commonly considered attacks
are: Impersonation fraud [1], Distance fraud [1], Mafia fraud [9], Terrorist fraud
[9], and Distance hijacking attack [10]. In this paper, we only consider the dis-
tance hijacking attacks in single-protocol environment defined in [10]. To mit-
igate Mafia fraud attack, Brands and Chaum [1] presented the first distance
bounding protocol in 1993. In 2005, Hancke and Kuhn proposed a simple and
efficient distance bounding protocol [2], but it cannot prevent terrorist fraud
attacks. Subsequently there’re some other protocols proposed. However, they
either cannot prevent terrorist attacks [3–5, 7], or are not quite efficient [6]. In
2011, Avoine et al. prevented a general method to defeat terrorist frauds [8].
They made a conclusion that at least a (3, 3) threshold secret-sharing scheme
should be used to resist terrorist frauds. Our distance bounding protocol is based
on this paper.

Besides the security issue, another critical concern of RFID technology is pri-
vacy. We mainly consider the tag’s privacy which suffers from traceability, which
means that the adversary can distinguish whether it’s the target tag that is com-
municating with a reader. Actually, in order to preserve the tag’s privacy, many
methods have been proposed [6, 11–15]. One of the most well-known methods
is hash-chain based schemes [13–15], however, all of them suffer from the de-
synchronization attack by Juels and Weis [16]. What’s more, only in [6] the tag’s
privacy issue is considered in a distance bounding protocol.

Finally, the efficiency of a distance bounding protocol is an important concern
of RFID technology, due to the tag’s limited computation and storage capacities.
Among the previous distance bounding protocols, only [6] has the expected prop-
erties at the same time: resistant to terrorist fraud attacks, protecting the tag’s
privacy, achieving mutual authentication. Nevertheless, there’re four slow trans-
mission flows in this protocol and the tag needs to compute the time-consuming
pseudo-random function(PRF) for three times; what’s more, the reader exhaus-
tively searches for the tag’s ID from its local database at each protocol run,
which again reduces the efficiency. Therefore we need to design a secure efficient
distance bounding protocol which protects the tag’s privacy as well.

Contribution. We propose a new efficient RFID distance bounding protocol
which achieves mutual authentication and resists all the current attacks with only
single slow phase. Our protocol also preserves tag’s privacy with untraceability
efficiently, which can prevent the de-synchronization attack as well.

Table 1 shows a comparison between our scheme and the previous schemes.
From the second column to the fourth column, we show the adversary’s success
probability of launching Mafia frauds, terrorist frauds and distance hijacking at-
tacks respectively to these selected protocols. The fifth column indicates whether
those protocols protect the tag’s privacy, and the sixth column gives the reader’s
cost of providing the service of tag’s privacy protection. The next column rep-
resents whether these protocols support mutual authentication. In the eighth



An Efficient RFID Distance Bounding Protocol with Tag Privacy 287

column, we give the cost of the tag needed in each protocol, where we mea-
sure the cost as the number of computation of pseudo-random function (PRF ),
hash function (Hash), commitment (com.), symmetric key encryption (Enc.)
and signature (sig.). The last column displays how many flows needed in slow
phases in each protocol. Taking the limited space into account, we don’t put the
impersonation frauds or distance frauds in Table 1 since these two attacks are
easy to be prevented and all of the protocols are resistant to them.

Table 1. Comparison of distance bounding protocols

Maf. Terr. Hij. Pri. Pri.-cost MA Comp. of tag No. of flows
of reader in slow phase

BC [1] ( 1
2
)n NO 1 NO - NO 1com.+1sig. 2

HK [2] ( 3
4
)n NO ( 1

2
)n NO - NO 1PRF 2

MP [3] ( 1
2
)n NO ( 1

2
)n NO - NO 2Hash 3

KA [7] ≈(1
2
)n NO ( 1

2
)n NO - NO 1PRF 2

Reid et al. [5] ( 3
4
)n ( 3

4
)n ( 1

2
)n NO - NO 1PRF+1Enc. 2

Swiss-knife [6] ( 1
2
)n ( 3

4
)n ( 1

2
)n YES O(n)PRF YES 3PRF 4

Our scheme ( 3
4
)n ( 3

4
)n/( 7

8
)n † ( 1

2
)n YES O(1)PRF YES 2PRF 2

† If the malicious tag T gives one of {r1,r2,r3} to the adversary A, the success prob-
ability of A is ( 3

4
)n; if T gives two of {r1,r2,r3} to A, the success probability of A

is ( 7
8
)n.

Outline. We organize the remainder of this paper as follows. In Section 2, we
describe our new scheme. In Section 3, we analyze the security and privacy of
our protocol. Finally, we give the conclusion of this paper.

2 Our Protocol

As shown in Fig. 1, the tag has an identifier ID, an alias identifier ID′ which
is actually used during the protocol run and is computed through a PRF func-
tion h initialized with ID′ := h(ID, s), and a secret key s that is viewed as a
vector (s1, . . . , sn), where n is a security parameter. The reader has a database,
consisting of pairs of (s, ID, TID, TID′), where TID and TID′ are used as the
index to search the tag’s ID, and they are initialized with TID := h(ID, s) and
TID′ := h(h(ID, s), s) respectively. Both of the tag and the reader can compute
a PRF and a (3, 3) threshold scheme. There are three phases in our scheme as
in Fig. 1. We give the description of the protocol as follows.

Initialization Phase

(1) The tag generates a random nonce NA of length n and transmits NA along
with ID′ to the reader.

(2) The reader searches in the database using the index TID or TID′. If ID′ =
TID′, the reader will update its database as shown in Fig. 1. If success, it
generates a random nonce NB of length n and computes a 3n-bit sequence
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{H}3n = f(s,NA, NB, ID′) and splits it into three shares: r1, r2 and v
respectively. Furthermore, it obtains the value of r3 by computing r3 =
r1⊕ r2⊕ s. Meantime, the reader sends NB and v′ to the tag. We denote by
v′ the value of v received by the tag.

(3) The tag receives NB and v′. It also computes the same sequence H and
splits it into three shares like the reader. After calculating v, it compares
the values of v and v′. If they are same, the protocol continues. Otherwise
the protocol fails. We point out that this step can detect the failure of the
protocol at an early time, which makes the protocol more efficient.

Interactive Phase. The interactive phase is also called the fast bit exchange
phase or the critical time phase, which consists of n rounds in total.

(1) The reader picks a random bit ci, starts the clock and sends ci to the tag.
(2) The tag makes corresponding response ri according to both ci and vi and

transmits r′i to the reader. We denote r′i by the value received by the reader.
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(3) Upon receiving r′i, the reader stops the clock, stores r′i and the measured
RTT Δti.

(4) Repeat the first three steps for n times in total.

Check Result Phase. The tag updates its ID′ by ID′ := h(ID′, s). The reader
checks the received answers (r′1, r

′
2, ...r

′
n) and the delay time (Δt1, Δt2, ...Δtn).

If every response r′i matches the expected value ri and every delay time
Δti ≤ Δtbound where Δtbound is a given bound which indicates the tag is within
the neighbor area, then the protocol succeeds and the reader also updates its
database. Otherwise, the protocol fails.

Remark 1. There is no fault-tolerance here, for we only consider noiseless com-
munication. As to the noisy communication, we can use two numbers T1, T2,
denoted as the number of positions for which ri �= r′i and Δti > Δtbound respec-
tively. If T1 + T2 > T where T is a given threshold, then the protocol fails.

3 Security Analysis

We consider an active polynomial time adversary A who has the ability to eaves-
drop, modify, inject and remove messages exchanged between all parties in the
system. Furthermore, we consider a strong A which can also observe the result of
a protocol run and even be able to observe the result of each round of a protocol
run. We assume that genuine tags will not give their secret keys to attackers.

NA and NB are both randomly chosen so that they are used like a one-time
pad. Actually, the presence of NA and NB are used to prevent replay attacks and
also allow the reader to authenticate the tag in the result check phase, for only
the tag and the reader know the shared secret key s, NA and NB simultaneously.
Since H is an output of the PRF function f , the adversary can’t recover s by
decoding H even if she/he can obtain part of H , that is v, which is used to
allow the tag to authenticate the reader. We will give a detailed analysis on the
security and privacy of our scheme as follows.

Impersonation Fraud Resistance. Without s, the adversary can generate
the correct ri with probability negligibly different from 1

2 since f is a PRF. Thus
the best the adversary can do is to guess the response randomly with success
probability 1

2 when receiving a challenge in each round of the fast bit exchange
phase. Overall, the adversary’s success probability is ( 12 )

n, which is negligible.

Distance Fraud Resistance. In this attack, the adversary can generate r1, r2,
r3 and v and thus can get through the first slow phase easily. However, during the
fast bit exchange phase, without knowing ci, the adversary still needs to guess the
corresponding answer ri from {r1, r2, r3} and sends it to the reader in advance
in order to make the delay time measured by the reader within the bound.
Therefore, at each round the success probability is 1

2 (
1
2 × 1 + 1

2 ×
1
2 ) = 3

4 and
after n rounds, the adversary’s success probability is (34 )

n, which is negligible.

Mafia Fraud Resistance. Again, without s, the adversary cannot compute the
response strings r1, r2 and r3 before the fast bit exchange phase. When carrying
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out a Mafia fraud attack, the attacker has two choices: using pre-ask strategy
or not. Using the pre-ask strategy, the adversary slightly accelerates the clock
signal provided to the tag and transmits an anticipated challenge bit c′i before the
reader sends its challenge bit ci. In half of all cases, the adversary will guess the
right challenge bit, that is c′i = ci, and thus can get the correct value ri from the
tag in advance. Afterwards, the adversary runs the fast phase with the authentic
reader. In the other half of all cases, the adversary can simply reply with a
guessed response bit when interacting with the reader, which will be correct
with the probability of 1

2 . Therefore, in each round, the success probability of
the adversary is 1

2 × 1 + 1
2 ×

1
2 = 3

4 . If the attacker doesn’t use the pre-ask
strategy, she/he will have to guess the challenge bit ci with a success probability
of 1

2 before receiving it when executing the fast bit exchange phase with the
reader. Thus we consider the adversary’s success probability in each round as
the maximum one, that is 3

4 . To sum up, the adversary can get through the
whole protocol with probability of (34 )

n, which is negligible.

Terrorist Fraud Resistance. It’s trivial to see that the malicious tag cannot
give all the r1, r2 and r3 to the attacker, for the attacker will be able to recover
the secret key s easily by s = r1 ⊕ r2 ⊕ r3. Since v is sent as plaintext in our
protocol, the malicious tag can give it to the adversary directly. Hence we will
consider the following two scenarios.

First, we consider the situation that the malicious tag gives v and one of
r1, r2 and r3 to the attacker. Without loss of generality, we assume that it
gives her/him r1 and v. When receiving a challenge bit ci, the adversary knows
both ci and vi, and also knows the answer when civi = 00. However, she/he
doesn’t know the value of ri2 or ri3, which means when civi �= 00, she/he has
to guess the value of the answer. Suppose we use Pki=j to denote the prob-
ability of ki = j, then the probability that the adversary replies correctly is
Pci=0 · (Pvi=0 · P[vi=0|ci=0] + Pvi=1 · P[vi=1|ci=0]) + Pci=1 · (Pvi=0 · P[vi=0|ci=1] +

Pvi=1 · P[vi=1|ci=1]) =
1
2

(
1
2 × 1 + 1

2 ×
1
2

)
+ 1

2

(
1
2 ×

1
2 + 1

2 ×
1
2

)
= 5

8 . Similarly, we
can calculate the adversary’s success probability when she/he gets r2 or r3 re-
spectively. It is interesting to point out that when giving the attacker r3, she/he
will guess the right answer with probability of 3

4 . That is, the adversary can get
though the protocol with a maximal probability of (34 )

n, which is negligible.
Then, we consider the situation that the malicious tag gives the adversary

two of r1, r2 and r3. With a similar analysis, we can compute the adversary’s
maximal success probability is ( 78 )

n. One interesting thing is that once passing
the protocol, the adversary will know she/he has replied with all the correct
responses and furthermore she/he can recover part of the secret key s according
to si = ri1 ⊕ ri2 ⊕ ri3. For example, if we assume that the malicious tag gives the
adversary {v,r1,r2}, and the protocol run succeeds, then the adversary under-
stands that she/he has guessed all the correct responses when the actual response
should be ri3. As is shown in the protocol, there’s an average probability of 1

2
that the response is ri3. Hence after one successful protocol run the adversary can
obtain � 12n	 bits of s. We point out that the probability of recovering secret key
is a conditional probability, where the condition is the adversary has passed the
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distance bounding protocol successfully. If the adversary’s success probability is
negligible, then the probability of recovering the secret key is also negligible.

Distance Hijacking Attack Resistance. We only consider the situation of
distance hijacking attacks in single-protocol environment. To launch a distance
hijacking attack in our protocol, the adversary first impersonates a reader to
communicate with an exploited tag. The tag will send the preliminary informa-
tion to the reader, that is NA and ID. Upon receiving NA and ID, the attacker
acting as a fraudulent tag sends NA and her/his own identity ID′ to the authentic
reader. Finally, the exploited tag will execute the fast bit exchange phase with the
reader. However, the exploited tag computes H with {H}3n = f(s,NA, NB, ID),

while the authentic reader computes H with {H}3n = f(s′, NA, NB, ID′), where
s′ is the shared secret key between the attacker and the authentic reader, and
the authentic reader searches s′ out in the database according to the attacker’s
identifier ID′. Therefore, the success probability of the adversary is ( 12 )

n, when
the values of pseudo-random string H computed by the reader and the tag are
same with different inputs.

Privacy. As we have mentioned above, ID′ is initialized with ID′ := h(ID, s),
where ID is the tag’s identity. Upon communicating with the reader, the tag
transmits ID′ instead of ID to the reader. What’s more, the tag will update
the value of ID′ at the end of fast bit exchange phase(see Fig. 1). Since h is
a PRF, if the adversary can tell if two sessions have the same tag involved, it
means that it can distinguish two different outputs generated by a PRF with
non-negligible probability, which is impossible. Hence our protocol supplies the
property of untraceability for tags.

Remark 2. Our protocol prevents the de-synchronization attack by using both
TID and TID′. When launching a de-synchronization attack, the adversary either
prevents the tag updating ID′, for example by modifying v′ sent from the reader
to the tag, or prevents the reader updating TID and TID′ in the check result
phase, for example by tampering the value of response bits sent from the tag to
the reader so that the protocol will fail. It’s not difficult to see no matter the
adversary stops the tag or the reader from updating its data, the value of ID′

sent by the tag will always be equal to either TID or TID′. That is, the tag is
always synchronized with the reader.

4 Conclusion

In this paper, we proposed a new efficient mutually authenticated distance
bounding protocol that is resistant to all the current attacks. Our protocol also
protects privacy of tags through an anonymous method, which achieves untrace-
ability and prevents de-synchronization attacks. To our best knowledge, it is the
most efficient method to provide the untraceability for the tag in RFID distance
bounding protocols.
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Abstract. Traditional textual password authentication techniques have
numerous well documented security and usability flaws, yet have seen
near universal deployment due to their desirable efficiency properties.
As a result, many users who may prefer alternative authentication ap-
proaches are forced to use passwords or PINs on a daily basis due to
a lack of control over third party servers. This work explores the use
of a mobile device as a proxy for password management in an attempt
to improve remote password authentication without making changes to
remote servers.

A universal proxy-based authentication framework is presented which
allows users to employ a method of their own choice to authenticate
locally to their mobile devices (e.g., biometrics or graphical passwords).
The framework is also compatible with many communication channels
between the mobile proxy and local terminal (e.g., Bluetooth or audio).
To demonstrate the practicality of this general framework, a concrete
implementation using an “out-of-band” audio channel, called PIN-Audio,
is also provided. While existing password management solutions may
provide a reasonable level of security for commonplace services, PIN-
Audio is recommended for a user-friendly deployment for security critical
applications, such as online banking.

Keywords: User Authentication, Passwords, Mobile Devices.

1 Introduction

The goal of user authentication is to ensure that only legitimate users are granted
access to a computer system while all others are restricted. User authentication
can be achieved by establishing credentials between a user and a system, and
having users demonstrate that they possess them whenever they wish to access
the system. Authentication is one of the most widely studied problems in the
realm of computer security. This is due both its fundamental nature, as few
security guarantees can be made for a system which allows unauthorized access,
as well as the frequency and wide variety of settings in which it takes place.

While many innovative authentication techniques have been proposed, histor-
ical and economic factors have stymied the adoption of these novel methods in
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practice. Updating an entire system of computers to use an alternate approach
might be costly and time consuming. As such, despite the great theoretical ad-
vancements made in this domain, the vast majority of computer systems are left
using basic passwords as their primary form of authentication. Recent develop-
ments in mobile devices, such as cell phones, can be utilized to help address this
issue. The past decade has seen the emergence of smarter and cheaper mobile
phones that have both the computational power and user interfaces necessary
to support a wide variety of potential new authentication techniques. Further-
more, phone usage habitats have evolved alongside this technology to the point
where some people consider their mobile devices to be more important than their
wallets [12].

This paper proposes a way in which mobile phones can be used to place users
in control of what authentication method they use. Updating a single mobile
phone is far more cost effective than altering an entire computer system; indeed,
most cell phone users are already accustomed to installing new applications and
software. As a result, this would allow users to select the authentication method
that works best for them rather than waiting for a less likely event that the
operators of a remote service (that needs authentication) updates their system
with a more suitable mechanism.

The core improvement detailed in this work is a framework for providing
more secure authentication without necessitating any changes be made to remote
servers. The technique is referred to as “proxy-based authentication”. The basic
concept is to provide users with a mobile proxy for authentication to a local
terminal, which in turn authenticates users to a remote service. Rather than
forcing users to remember passwords themselves, leading to short and predictable
passwords, passwords will be stored in the portable device, allowing them to be
long and fully randomized.

While phone based password management software has been previously pro-
posed, our innovation lies in the automated transfer of credentials from the
mobile appliance to the terminal. Furthermore, previous portable password man-
agers again restrict users to standard PIN or passphrase techniques for authenti-
cation to the mobile proxy. In contrast, proxy-based authentication allows users
to select whichever technique they are most comfortable with for authenticating
to the proxy phone. This opens up the possibility for utilizing novel authentica-
tion technology that is best suited for mobile hardware without forcing service
providers to make any alterations to their systems.

2 Related Work

A vast majority of remote services that are available today utilize password-based
authentication. In the absence of action on behalf of service providers, attempts
have been made to improve the security and usability of authentication while
preserving backward compatibility with passphrases. This section briefly outlines
previous solutions of this kind, which are known as password managers.
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Password managers are programs that accept weak passwords as input and
output passphrases that are considered to be strong. This is accomplished by
using a computing device to generate strong passwords rather than humans
themselves, who behave poorly when asked to create passphrases of sufficient
entropy. The appliance can then store the secure passwords that have been gen-
erated and output them to its user whenever he or she requires access. Password
management software is divisible into three broad categories: desktop, remote,
and portable managers.

Desktop password management systems store passwords directly on the ter-
minal that is used to authenticate to remote hosts. High profile examples of
programs in this category include Mozilla Firefox [9] and RoboForm by Siber
Systems [13]. In contrast, remote managers such as LastPass, developed by the
corporation of the same name [8], and Mozilla Weave [10] use one or more non-
local servers to keep track of passphrases. The third class of managers utilize
auxiliary mobile hardware like cell phones as a password bank. Sperle’s KeeP-
assMobile for J2ME enabled devices [5] and OI Safe for the Android platform
by OpenIntents UG [11] both fall into this category.

All of these solutions utilize a master password to protect the numerous pass-
words which they store, therefore increasing usability but having no effect on
security. Beyond this, each manager category has its own set of shortcomings.
Desktop managers offer no portability for people who use more than a single
terminal to authenticate to remote servers. That is, since these programs use
the terminal itself as a password repository, they do not provide a mechanism
for retrieving these passwords when a different terminal is in use.

While remote managers do allow for use from numerous terminals, they force
users to place trust in the system of a third party service provider. This branch of
passphrase managers operate by encrypting individual passwords with a master
value prior to storing them remotely. They are therefore vulnerable to an offline
dictionary attack in the event that these remote machines are compromised.
Furthermore, if one computer is used to store passwords for more than one
user, an adversary will be able to recover passwords belonging to several users
by compromising a single machine. As a final drawback, remote managers are
often proprietary, allowing their operators keep the precise details behind how
passwords are treated after they leave a user’s system guarded as a secret.

In contrast, it is easier to place trust in a portable manager as it can be managed
locally by users themselves rather than relying on an external entity to do so [1]. It
is also more difficult to eavesdrop on authentication with portable devices due to
the small form factor of mobile hardware.Unfortunately, existingmobile password
managers suffer from poor usability by requiring that the long and random pass-
words stored on the portable appliance be manually copied to the authentication
terminal. This also providesmalicious entities with a potential opportunity for ob-
serving the password entry. Such an attack could be accomplished either through
casual non-technical attacks like shoulder surfing or sophisticated attacks such as
Balzarotti, Cova, and Vigna’s video based technique [6] or the audio logging tech-
nique introduced by Zhuang, Zhou, and Tygar [7].
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3 Secure Authentication Framework from the Client Side

3.1 Threat Model

Before delving deeper into the details of the proxy-based authentication frame-
work, it is necessary to establish the capabilities attributed to adversaries in
our system as well as which devices are trusted with which pieces of data. The
parties involved in this system are a human user U, a mobile device M, a local
terminal T, and a remote server S. In order to provide increased security, rather
than placing the burden of generating and remembering a password on U, a
password is assumed to be pre-established between M and S.

While U is responsible for recalling the credentials used to authenticate to M,
U need not remember or even be aware of the password shared between M and
S. It can therefore be as long and random as dictated by the security needs of
the application in question rather than the memory and security knowledge of a
human user. Whenever U would usually authenticate to S through T, U instead
authenticates to M. M reacts by retrieving the encrypted password for S from se-
cure, tamper-resistant storage. This secure storage medium is available on many
portable appliances. Only when U authenticates to M is the password corre-
sponding to S unlocked. Next, M authenticates to T, encrypts the passphrase
for S and transmits it to T.

If M and T were to share a traditional high bandwidth wireless channel such
as WiFi or Bluetooth, this could be utilized to efficiently transmit the encrypted
PIN. Doing so would have a unfavorable impact on the framework’s universality,
usability, and security, however. Along the same lines, since wireless channels
are not physically authenticatable, they would leave the channel vulnerable to
man-in-the-middle attacks on the framework. For these reasons OOB channels
are recommended over conventional wireless channels for forming the secure
communication link from M to T. Adversaries are assumed to be capable of
eavesdropping on, but not modifying, transmissions over an OOB channel.

In this system, T, S, and M are all trusted with knowledge of the password, but
it is only permanently stored in an encrypted form on M. T transmits password
values to S without storing them, while S need only store the value produced by
hashing password values with a weakly collision resistant hash function. While
it is natural that S and M share this secret value, T’s awareness of the secret is
undesirable. This is because it would be beneficial to be able to authenticate to S
using Ts that are public or may be compromised. Unfortunately, T’s knowledge
of the secret password is a necessary consequence of avoiding any server side
changes in this proxy-based authentication framework. If changes to the server
were permitted, T could instead blindly pass the encrypted password through to
S who would then be delegated the responsibility of decrypting it and recovering
the plaintext secret. A third party could perform the same service, but this
presents similar and perhaps deeper security challenges to those incurred by
trusting T.
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3.2 Design

The proxy-based authentication framework is comprised of two overall compo-
nents. First, a phase occurs where U authenticates to M. This is followed by a
phase where the M authenticates itself to T instead of U doing so directly.

User-to-Phone Authentication. The authentication primitive that U selects
to access M is critical to the framework as a whole both in terms of security and
usability. The method used to secure M will unlock all of the passwords it stores,
so it must be as resilient to attack as possible. Adding to its importance, using
a mobile proxy burdens users by requiring them to interact with an additional
device, so the authentication mechanism put into effect must be as usable as
possible. Biometric authentication is a good match for these needs and adapts
more easily for use on portable devices than for use in alternative settings, such
as remote servers.

Phone-to-Terminal Authentication. Prior to using this proxy-based authen-
tication framework to authenticate to a given service, users must first initialize
M and T. This process need only be carried out once for each T U wishes to
authenticate through. The rest of the initialization step depends on the time
of channel in use. If M and T share compatible interfaces for a conventional
wireless channel, this channel must be bootstrapped by establishing a shared
key. Previous work on this topic, also known by “device pairing,” can be used
to achieve this.

If an OOB channel is to be used in place of an in-band wireless channel as
discussed in Section 3.1, a suitable channel must first be selected based on the
transmitters and corresponding receivers available on T and M. Since a bidirec-
tional channel is needed, M and T must be equipped with both complementary
input and output interfaces. One possibility is to form an audio channel using
microphones and speakers. This particular OOB channel is particularly promis-
ing due to the ubiquity of these interfaces and is explored in more detail in its
own section, 4.

Finally, a shared secret must be established between M and T. Once a given
M and T have been properly initialized, the next required step is for M to
authenticate to T. This can be executed immediately following the initialization
phase when it is required by using particular a particular combination of M and
T for the first time. The authentication protocol can be accomplished by using
the keys established in the initialization phase to execute any challenge-response
(C-R) authentication protocol of the user’s choosing.

The difference between the distinct initialization and registration phases should
be noted. The initialization phase is required whenever a new M and T are to
be used in conjunction with each other. The registration phase, on the other
hand, is required whenever a new S is used with M for the first time or when
U wishes to refresh the password used to authenticate to S. After initializing,
M can register with any number of Ss, after which M can skip directly to the
authentication phase when using this service in the future.
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3.3 Framework Security Guarantees

In this section the security implications of the proxy-based authentication frame-
work are explored. In Section 3.1, it was established that M, S, and T are all
trusted with the password used to authenticate to S. Let p bits be the length
of the shared password and k bits be the size of the key by U to authentication
to M. Additionally, assume for the sake of simplicity that both M and S have a
policy in effect restricting U to q authentication attempts.

Given these values, an adversary has at most a q/2p chance of success by
bypassing M completely and simply attempting to pose as U by guessing pass-
words and sending them to S for verification. If the attacker compromises the
M’s tamper-proof hardware and is able to copy the contents M, but is not able to
bypass M’s access control mechanisms, he or she will have 2k key possibilities to
try in order to gain access to M’s data, implying a q/2k probability of success for
this attack. If an adversary instead compromises S, he or she will only be able to
recover the weakly collision resistant hashes of the passwords stored on S, since
S is assumed to store these values in lieu of saving the passwords themselves.

If a malicious entity was able to gain access to both M and S, he or she
could perform a brute force attack to recover the password corresponding to
S by performing 2k hash operations at worst. The most direct attack on this
framework would involve recovering the secret U uses to authenticate to M as
well as compromising M, in which case all the passwords on M could be unlocked,
breaking the security of the framework entirely. If reasonable parameters are
selected, such as p = k = 80 and q = 3, proxy-based authentication achieves
computational security against all adversaries except the one who is able to
both compromise M and learn the secret to authenticate to M.

4 Illustrative Instantiation Using an Audio Codec

In this segment of the paper, we discuss PIN-Audio, a practical implementation
of the theoretical proxy-based authentication framework introduced in Section
3. It is possible to use a conventional wireless channel as a communication link
between M and T was mentioned. Due to the universality, security, and usability
issues involved, it may not always be possible or desirable to use such a channel.
Fortunately, M and T will always feature some other forms of output interfaces.
In scenarios where M and T share corresponding input and output interfaces,
these can be used to construct an OOB channel instead. This section proposes the
use of an audio channel as a basis for transmissions from T to M and vice versa.
In essence, a C-R protocol adhering to the framework established in Section 3.2
will be executed over this audio channel. While any authentication mechanism
can be used by U to access M, we opted to use a standard PIN based approach.
A pictorial representation of this concrete version of proxy-based authentication
is provided in Figure 1.
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Fig. 1. Authenticating to a Remote Server Using a Mobile Proxy and an Audio Channel

4.1 Design and Implementation

In order to support this authentication system it is necessary to install new soft-
ware on T andM. T requires a password client application while a password server
program is needed by M. Recall, however, that no modifications of S need to be
made in order to accommodate PIN-Audio. In this implementation the initializa-
tion phase was assumed to already be completed. That is, a pre-shared symmetric
key was simply copied on to M and T at installation time. In practice, this can
be achieved by performing a Diffie-Hellman key exchange over the audio channel
as described in Section 3.2. This technique does handle both the registration and
authentication steps required to access a remote service, though. Both of these
phases proceed as per the framework outlined in Section 3.2.

Device Setup. Before proceeding with the implementation, specific devices had
to be chosen to fit all of the players involved in the proxy-based authentication
framework provided in Section 3.1. A desktop computer was selected for T as
would be the case in a practical implementation. Rather than actually using a
cell phone as M, however, a simulated proof-of-concept prototype was developed
using a laptop computer. With built in microphones and speakers, these devices
had all the hardware necessary to serve the roles of T and M respectively. Thus,
a password server application was designed for the laptop and a password client
application was crafted for the desktop. Since no changes to it were necessary, S
was left out of this simulation.

Construction of a Robust Audio Channel. Data is encrypted prior to
transmission. The resultant ciphertext is used as input to a Base64 encoder in
order to facilitate transfer via audio. Base64 was selected because this encoding
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leads to lower error rates for audio transmissions. This is owed to the fact
that byte encoded data produces values that are outside the range of sounds
that can be reliably produced on low quality audio hardware. In contrast, a
Base64 encoding ensures that data is within the required range. unfortunately,
this higher reliability comes at the cost of a decrease in efficiency, as Base64
encoded data takes 1.33 times as long to transmit as equivalent data under a
byte encoding.

Once Base64 encoded, the data is next passed to Schifra, which is a robust
and open source implementation of the Reed-Solomon (RS) Error Correcting
Code (ECC) developed by Partow [2]. RS ECC is required to guard the audio
data against transmission errors and to perform forward error correction. This is
a necessary component as retransmitting data in this setting is too costly to be
viable. With these preprocessing steps out of the way, the proper conversion of
data to sounds can begin. To attain this, the RS ECC processed data is encoded
on last time using the Pulse-Code Modulation codec of Lopes and Aguiar’s
Digital Voices project [3,4]. This codec is robust, working well in environments
with high levels of ambient noise, as well as usable, since it uses a pleasant
“Soprano Flute” sound as a basis for its transmissions. A start marker or “initial
hail sequence” and end indicator or “stop sequence” are employed in order to
detect the beginning and end of the audio based data transmissions.

Intuitively, once encoded the audio data is sent through the originating com-
puter’s speakers and received by the destination device’s microphone. The de-
coding process at the recipient’s end is the inverse of the encoding process. In
order to provide security, it is only necessary to encrypt the data being sent
from M to T. Leaving the channel from T to M open will impact the protocol’s
privacy, however, since T’s responses contain an identifier of the S that U wishes
to access. In order to achieve privacy as well as security the link from T to M can
be encrypted as well. This implementation opted for security as well as privacy
by encrypting transmissions in both directions.

Desktop Password Client Application. The password client program de-
veloped for T can be divided into five main components: a keyboard listener,
an active window handler, an encryption/decryption and encoding/decoding en-
gine, an audio codec engine, and a key thrower. The keyboard listener comes into
play first. When U presses the keyboard shortcut associated with the password
client (for PIN-Audio, the F8 key was used in this capacity) this portion of the
program triggers the application.

The software’s active window handler then checks if the window that is cur-
rently active is a web browser. If this is the case, it extracts the name of the
web site that is currently active in the browser. Note that while PIN-Audio
only supports authentication to web sites through a browser, the proxy-based
authentication framework can be extended to support authentication to any
remote server S. Next, the client generates a 80 bit long random nonce and con-
catenates it with the specified request type and S’s identifier. Possible options
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for the request type are login, registration, and password change. The two engine
segments are then called upon to encrypt and encode this data as detailed in
Section 4.1, which is played through T’s speakers.

Once T has finished its audio transmissions, it shifts to its listener component
to wait for the start sequence of the response from M’s password server program.
When this special value is detected, T’s application captures audio until it no-
tices the designated stop sequence value. This acquired audio is decrypted and
decoded again using the process provided in Section 4.1. Finally, if the nonce
that was initially sent by T matches the nonce M sent back to it, the software’s
key thrower places the transmitted password in the correct field of the web site
that is currently being viewed.

Laptop Password Server Application. The password server for our laptop M
was written in Java, with the exception of Schifra, Partow’s C++ RS ECC imple-
mentation. Just as with the desktop password client, the laptop server executed
this code through a shell. Further, the encryption, decryption, encoding, and de-
coding processes all occur in the same fashion as T’s client program as it is laid out
in Section 4.1. As soon as M’s server application starts it begins listening for the
unique audio start sequence. When this has been detected the program decodes
the received audio and asks U to authenticate to M by entering his or her PIN. Af-
ter authenticating, M requests that U confirm the request sent by T. If U accepts,
M reacts as dictated by the transmitted request type. If the solicitation is for reg-
istration, a password of the minimum length deemed secure for the application
at hand is generated uniformly at random. The passphrase is then encrypted and
stored. If a login type request is received, an existing password corresponding to
S is retrieved from the phone’s memory.Irrespective of the request type, M always
concludes by transmitting the proper passphrase over the audio channel.

4.2 Implementation Security Guarantees

PIN-Audio utilizes a 4 decimal digit PIN for user-to-phone authentication. As-
suming that 4 decimal digits are equivalent to 15 bits, the chance of success for
an attack scenario where M alone is compromised becomes q

215 at best. This con-
trasts with the security offered by conventional user selected passwords, which
can be guessed with a maximum probability of q

|D| where D is the dictionary

containing all of U’s possible password choices. PIN-Audio clearly offers better
security in cases where |D| < 215. Compromising S in place of M would yield an
attacker no advantage when PIN-Audio is in use. This is also an improvement
over normal passwords, which can be recovered by launching a dictionary at-
tack on a compromised S. Like the general framework, PIN-Audio offers no real
security in the scenario where both M and S were compromised, though. This
is due to the fact that a malicious entity could recover the password for S by
performing at worst 215 hash operations.
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5 Conclusion

This paper presented a mobile proxy-based framework for authenticating to re-
mote servers. This system leverages a personal, portable device in a novel manner
by using it as an intermediary between a user and the authentication termi-
nal used. This provides the possibility of performing both secure user-to-phone
authentication and cryptographic phone-to-terminal authentication. Most crit-
ically, it can be readily utilized by users in search of stronger security without
requiring any changes be made to existing server architectures. While the manual
transfer of shorter, less secure passwords offered by alternative mobile password
managers may be sufficient for less sensitive applications, PIN-Audio is recom-
mended for authentication to online services, such as banking, that demand high
levels of security.
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Abstract. Universal hash function based multiple authentication was
originally proposed by Wegman and Carter in 1981. In this authentica-
tion, a series of messages are authenticated by first hashing each message
by a fixed (almost) strongly universal2 hash function and then encrypt-
ing the hash value with a preshared one-time pad. This authentication
is unconditionally secure. In this paper, we show that the unconditional
security cannot be guaranteed if the hash function output for the first
message is not encrypted, as remarked in [1]. This means that it is not
only sufficient, but also necessary, to encrypt the hash of every message
to be authenticated in order to have unconditional security. The security
loss is demonstrated by a simple existential forgery attack. The impact
of the attack is also discussed at the end.

Keywords: ε-Almost Strongly Universal hash functions, multiple au-
thentication, unconditionally secure, Quantum Key Distribution.

1 Introduction

Since its first introduction by Wegman and Carter [11] in 1979, Universal hash
functions have been extensively studied over the years. They have diverse ap-
plications from cryptography to computer science to coding theory. In cryptog-
raphy, they can be used for, among others, constructing unconditionally secure
message authentication codes (MACs). There has been various Universal hash
function constructions for authentication by Wegman and Carter, Stinson, and
others [3, 5, 6, 8, 9, 12, 14–16,18, 20–24].

Typical use of Universal hash functions, more accurately ε-Almost Strongly
Universal2 (ε-ASU2) hash functions, in MACs is such that a one-time key (used
to identify a hash function in the family) is used to authenticate one message; be-
cause two uses of the same key may reveal the key through the message-tag pairs.
In this sense, this version of the Wegman-Carter authentication is similar to the
one-time pad (OTP). Hence, the key consumption rate of the authentication in
this scheme is usually quite high. In this paper we focus on another proposal by
Wegman and Carter [24] that uses a fixed ε-ASU2 hash function (identified by
a fixed key), followed by OTP encryption of the hash function output, so that
the hash function can be reused. This scheme is also called counter-based multi-
ple authentication [1] when the OTPs preshared between Alice and Bob can be
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identified by counters. The key consumption rate of this scheme asymptotically
approaches the tag length.

Contribution. This short paper addresses a simple existential MAC forgery
attack when the universal hash function based multiple authentication is used
as remarked in [1]. In its original proposal in [24], Wegman and Carter proposed
to apply the OTP to the hash of every message that is exchanged. In [1], however,
the authors stated that it is not necessary to apply the OTP to the hash of the
initial message. As we will see later in Section 3, not using the OTP in the
initial round, or in any other round for that matter, will result in the adversary
being able to forge the correct tag for his/her chosen message without knowing
the authentication key at all. The attack is very simple and straightforward,
and also very cheap in terms of computation and storage depending on the
properties of the underlying hash function family. But the impact can be deep if
such authentication is used in, for example, Quantum Key Distribution (QKD).

2 Background

Definitions. First, some definitions are in order. In what follows, we letM and
T be finite sets, and H a class of hash functions fromM→ T .

Definition 1. A class H is Universal2 (U2), if there exists at most |H|/|T |
hash functions h ∈ H such that h(m1) = h(m2), for any two distinct m1,m2 ∈
M. If there are at most ε|H| hash functions instead, the class H is ε-Almost
Universal2 (ε-AU2).

Definition 2. A class H is XOR Universal2 (XU2) if there exists at most
|H|/|T | hash functions h ∈ H such that h(m1) = h(m2)⊕ t, for any two distinct
m1,m2 ∈ M and any t ∈ T . If there are at most ε|H| hash functions instead,
the class H is ε-Almost XOR Universal2 (ε-AXU2).

Definition 3. A class H is Strongly Universal2 (SU2) if (a) the number of
hash functions in H that takes an arbitrary m1 ∈ M to an arbitrary t1 ∈ T
is exactly |H|/|T |, and (b) the fraction of those functions that also takes an
arbitrary m2 �= m1 in M to an arbitrary t2 ∈ T (possibly equal to t1) is 1/|T |.
If the fraction in (b) instead is at most ε, the class H is ε-Almost Strongly
Universal2 (ε-ASU2).

Here we note that SU2 is the optimal case, corresponding to 1/|T |-ASU2, since
ε ≥ 1/|T | [21]. Also, note that ASU2 families are AXU2 and AU2, and that
AXU2 families are AU2; however, the reverse is not true.

Definition 4. A hash function h from M → T is called XOR-linear if, for
any two m, m′ ∈ M, h(m⊕m′) = h(m)⊕h(m′). Similarly, a family H is called
XOR-linear if any hash function h ∈ H is XOR-linear.
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Unconditionally Secure MAC. Unconditionally secure authentication theory
was first developed by Simmons in [19] and later by Wegman and Carter in
[11,24]. Wegman and Carter proposed using the classes of ε-ASU2 hash functions
for unconditionally secure MAC constructions. The application of ε-ASU2 hash
functions to construct provably unconditionally secure MACs is straightforward.
In these constructions, Alice and Bob share a secret key k to identify a hash
function hk in a family H of ε-ASU2 hash functions fromM→ T . When Alice
wants to send a message m to Bob, she computes t = hk(m) and sends it
along with m. Upon receiving m and t, Bob checks the authenticity of m by
computing hk(m) using his share of the key and comparing it with t. If hk(m)
and t are identical, then Bob accepts m as authentic; otherwise, he rejects it.
If Eve tries to impersonate Alice and sends m′ without knowing the key k,
that is, without knowing hk, the best she can do is to guess the correct tag
for m′. The probability of success in this case is P1 = 1/|T |. If Eve waits and
intercepts a message-tag pair (m, t) from Alice and substitutes m with m′, then
the probability P2 of guessing the correct tag t′ for m′ is at most ε (≥ 1/|T |). In
other words, even seeing a valid message-tag pair does not increase Eve’s success
probability above ε. Therefore, by using a family of ε-ASU2 hash functions with
suitably chosen ε, one can achieve unconditionally secure message authentication.
Practical applications require not only ε to be small but also the length l of the
key k identifying a hash function in ε-ASU2 family to be as small as possible.

The most attractive property of unconditionally secure MACs is that the
security does not depend on any computational complexity assumptions, as is
the case for other MAC schemes like CBC-MAC based on AES or HMAC based
on SHA. Also, in terms of speed, Universal hash function based MAC such
as UMAC is much faster than its counterparts. Unconditional security, however,
comes at a price: the key consumption. This is because the key cannot be reused;
repeated use of a key may reveal the whole key through the message-tag pair.
For this reason, Wegman and Carter proposed in [24] an efficient and effective
way to resolve this by proposing to encrypt the hash function output with an
OTP in order to reuse the same key many times. In particular, their proposal
is as follows. Alice and Bob share a secret but fixed hash function h ∈ H and a
series of keys Ki, i = 1, 2, · · · , of length log |T | to be used as OTP to encrypt the
output of h. Then a series of messages mi, i = 1, 2, · · · , can be authenticated by
using h(mi)⊕Ki as the authentication tag. An efficient way to implement this
is to use a counter c that is incremented by 1 after each message transmission.
In this case, the authentication tag for a message (c,mc) is computed as

t = h(mc)⊕Kc, , c = 1, 2, · · · . (1)

This counter-based multiple authentication scheme is provably unconditionally
secure. It has also been stated in [1] as a remark that in this scheme the OTP
in the initial round can be omitted, since in the authors’ own words “it is not
necessary”. That is, for the first message m1, h(m1) can be sent as is. So with
this small revision the above scheme becomes as follows: The authentication tag
for a message (c,mc) is now computed as
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t =

{
h(m1), c = 1,

h(mc)⊕Kc−1, c = 2, 3, · · · .
(2)

We will see in the next section that this new scheme is not secure in general and
there may exist a very simple MAC forgery attack in this case.

Related Work. Different variants of the above scheme were proposed after
Wegman and Carter’s original proposal, such as stateful mode by Shoup [18] and
computationally secure version by Brassard [10] and so on. The stateful mode by
Shoup [18] is also referred to as Wegman-Carter-Shoup (WCS) authentication.
The security bounds for the WCS scheme were improved by [4]. The security of
these schemes for various Universal hash function families were studied in Black
and Cochran [7] and Handschuh and Preneel [13]. They have demonstrated that
for some families of Universal hash functions a single forgery is enough to find
another forgery and for many families a few successful forgeries lead to efficient
key recovery.

3 The Attack

In this section, we show that the scheme in (2) is not in general secure and
present a simple existential forgery attack that exploits the structure of the
hash function family used. In particular, if the underlying hash function family
is for example XOR-linear, then the attack is straightforward. And there exists
(A)SU2 families of hash functions that are XOR-linear, e.g., the SU2 family H3

in [24].
Let us first note that for (1) to be (unconditionally) secure, h (or H) at least

needs to be AXU2 [15]. So, for (2) to be secure, the subset Hm �→t of H that
Eve identifies after seeing the first message-tag pair (m, t) should be AXU2. We
will now see shortly that this requirement does not necessarily be satisfied even
when H is SU2, the strongest family of all Universal2 hash function families.

As described in (2), the first message (1,m1) is sent along with the au-
thentication tag t1 = h(m1) from Alice to Bob. Eve intercepts the three-tuple
(1,m1, t1) and identifies the set Hm1 �→t1 := {f ∈ H : f(m1) = t1}. Note that
|Hm1 �→t1 | = |H|/|T | by Definition 3(a). So, at the end of the first round, from
Eve’s point of view, the (fixed) secret hash function h is taken from Hm1 �→t1

instead of H. If, for any two distinct m,m′ ∈M and any t ∈ T ,

|{f ∈ Hm1 �→t1 : f(m)⊕ f(m′) = t}| ≤ ε|Hm1 �→t1 |, (3)

then the scheme in described by (2) is secure, since this would mean thatHm1 �→t1

is ε-AXU2. Here, ε is Eve’s success probability when attacking the system. The
definitions of (A)SU2 hash functions, however, does not guarantee that (3) holds.
In fact, |{f ∈ Hm1 �→t1 : f(m) ⊕ f(m′) = t}|, for some distinct m,m′ ∈ M and
t ∈ T , could be as large as |Hm1 �→t1 |. If this is the case, then there is a very
simple existential forgery attack that Eve can use to attack the authentication.
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In particular, in the second round, Alice sends (2,m2, t2), where t2 = h(m2)⊕K1,
to Bob. Eve intercepts the three-tuple (2,m2, t2) and searches for mE such that
f(m2)⊕f(mE) = t is fixed by all f ∈ Hm1 �→t1 . And then, she sends (2,mE, t⊕t2)
to Bob, since

h(mE)⊕K1 = h(mE)⊕ h(m2)⊕ t2 = t⊕ t2. (4)

From the above discussion, we naturally arrive at the following theorem about
the security of the scheme in (2).

Theorem 1. Let AUTH be the authentication described in (2) where the secret
hash function h is chosen from an ASU2 family H. Then, the success probability
of an adversary A attacking AUTH is only upper bounded by the trivial bound
1, that is,

P success
AUTH (A) ≤ 1. (5)

Proof. Suppose that (1,m1, t1) with t1 = h(m1) is the first message-tag pair and
the message number that Alice has sent to Bob. By intercepting the three-tuple,
A identifies Hm1 �→t1 := {f ∈ H : f(m1) = t1}. Now, the proof follows directly
from the fact, for some distinct m,m′ ∈ M and t ∈ T ,

|{f ∈ Hm1 �→t1 : f(m)⊕ f(m′) = t}| ≤ |Hm1 �→t1 |. (6)

It might seem that the computational complexity of the attack is huge at first
sight, since identifying the set Hm1 �→t1 requires an exhaustive search. But, Eve
does not need exhaustive search if she knows the structure of the underlying hash
function family H. Consider as an example the case when H is XOR-linear. As
mentioned earlier, there are (A)SU2 hash function families that are XOR-linear.
In this case, Eve simply observes the first three-tuple (1,m1) with t1 = h(m1)
from Alice to Bob, and saves a copy of m1 and t1 in her memory. Then in the
second round, she intercepts (2,m2, t2) with t2 = h(m2) ⊕ K1, and replaces it
with (2,mE, t1 ⊕ t2) where mE = m1 ⊕ m2. Eve now knows that mE will be
accepted as authentic, because the hash function h is XOR-linear and then

h(mE)⊕K1 = h(m1 ⊕m2)⊕K1 = h(m1)⊕ h(m2)⊕K1 = t1 ⊕ t2. (7)

Upon receiving (2,mE, t1⊕t2), Bob verifies the authenticity of mE by computing
h(mE) ⊕ K1 and comparing it with t1 ⊕ t2. As we have just seen, the correct
tag for mE is t1 ⊕ t2. In the subsequent rounds, Eve uses the same strategy to
forge the MAC for a new message chosen similarly to mE above. In general, at
the i-th round, Eve replaces the three-tuple (i,mi, ti) that she intercepted with
(i,m1 ⊕mi, t1 ⊕ ti).

Note that this attack is very simple and that Eve does not need to know the
actual secret key that is being used. All she needs to do is store the initial message
and tag pair from the initial three-tuple. Even if there does not exist mE ∈ M
such that f(m2) ⊕ f(mE) = t is fixed by all f ∈ Hm1 �→t1 , Eve can choose a
messagemE for which f(m2)⊕f(mE) is fixed by majority of f ∈ Hm1 �→t1 and still
have a high probability of success. It all depends on the structure and properties
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of the underlying hash function family used in the authentication. Therefore, we
stress that when the counter-based multiple authentication scheme is used it is
very important to encrypt the hash function output of every message that is to
be exchanged. And Wegman and Carter were right to propose to encrypt the
hash of every message. After all, since both (1) and (2) require asymptotically
the same amount of secret key, one does not sacrifice much by masking the hash
of every message, should this authentication be used.

4 Impact

We now discuss the impact of the existence of the straightforward attack pre-
sented in the previous section in the context of Quantum Key Distribution
(QKD). First, let us briefly recall what QKD is and why authentication is needed
in QKD.

QKD, first proposed by Bennett and Brassard in 1984 [2], is a provably secure
(or universally composably secure) key agreement technique that consist of two
parts: quantum transmission over a quantum channel and classical postprocess-
ing over a classical public channel. In QKD, the legitimate users first exchange
quantum signals over the quantum channel to generate a raw key. Then, they
agree on a shared secret key from the raw key by performing a joint postprocess-
ing by communicating on public channel. QKD is proven to be unconditionally
secure, provided that the public channel is immutable; see, for example, [17]. If
the public channel is not not authentic, QKD is, like any other key agreement
protocol, susceptible to a man-in-the-middle attack. Therefore, authentic public
communication channel is a must. Moreover, to guarantee unconditional security
of QKD an unconditionally secure authentication is needed.

The standard choice for authentication in QKD is the Wegman-Carter type of
authentication, based on ε-ASU2 hashing. To kick-start the authentication, the
legitimate parties use preshared secret key. In the first round the users use the
pre-shared key, which is long enough to authenticate the messages exchanged in
this round. In the following rounds, a part of the key generated in the previous
rounds is used for subsequent authentication. Therefore, the key-consumption
rate of the authentication directly affects the key output rate of QKD, and so
one needs an authentication with less key-consumption rate. Moreover, in QKD
no limit is put on Eve’s computational power and memory.

When the authentication in (2) is used in QKD, only h is preshared by Alice
and Bob. The OTP key in the second round is a portion of the QKD generated
key in the first round, and the OTP key in the third round is a portion of the
QKD generation in the second round, and so on. So, the OTP keys are not, and
need not be, preshared by Alice and Bob. Now in the first round, Eve identifies
Hm1 �→t1 and searches for mE such that f(m2) ⊕ f(mE) = t is fixed by all or
most of f ∈ Hm1 �→t1 . If the attack is successful, then Eve breaks the QKD in
this round and as a consequence learns the QKD generated key, and thus the
OTP key K2 used in the next round. We stress here that the success probability
is in general quite high. So in the next round Eve will know h(m3) = t3 ⊕K2,
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and together with the knowledge of h(m1) she will be able to find h. Therefore,
the consequence of not masking the hash value of the first message can be serious,
at least, in QKD.

5 Solution

As we have seen in Section 3, masking the hash function output of every message
with an OTP is both necessary and sufficient for unconditional security of the
authentication scheme under review. One might, however, wonder whether there
are other solutions than to encrypt the hash of the first message in scheme (2). We
answer this question in the negative if one aims for unconditional security, unless
one uses another unconditionally secure encryption than OTP. Since the attack
exploits the fact that the hash value is known for the first message message,
masking the hash value of the first message, or any other message for that
matter, is necessary.

6 Conclusion

We have reviewed the universal hash function based multiple authentication. We
pointed out that masking the hash value of every message is not only sufficient
but also necessary to guarantee security. Furthermore, we presented an existen-
tial forgery attack. The attack is straightforward and exploits the property of
the underlying hash functions. The impact of the attack is also discussed in the
context of QKD.
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Abstract. In this paper, we present a rigorous evaluation of Thing and
Ying’s attack (TY attack) [11] along with practical implementations. We
find that the cryptanalysis time of their attack is too high to be practical.
We also propose a more general time memory trade-off by combining the
distinguished points strategy with TY attack. Both theoretical analysis
and experimental results show that our new design can save about 53.7%
cryptanalysis time compared to TY attack and can reduce about 35.2%
storage requirement compared to the original rainbow attack.

Keywords: time memory tradeoff, cryptanalysis, rainbow attack.

1 Introduction

A basic problem in symmetric-key cryptology is the computation of preimages
or inversion of one-way functions. There are two straightforward ways (suppose
the function has an n-bit input): first one can perform an exhaustive search
over an average of 2n−1 values until the target is reached. A second solution
is to precompute and store 2n input and output pairs in a table. If one then
needs to invert a particular value, one just looks up the preimage in the table, so
inverting requires only a single table lookup. Both methods will be impractical if
n becomes larger. Cryptanalytic time memory trade-off (TMTO) is a technique
that comes between these two extremes. It inverts a one-way function in time
shorter than the exhaustive search method, using a storage smaller than the
table lookup method.

Since the first TMTO algorithm was proposed by Hellman [6], many of its
extensions [5,3,1] and variants [9,7,2,8,4] have appeared. In 2009, Thing and Ying
proposed a new TMTO [11] for password recovery. Compared to the traditional
rainbow table, it has higher success probability and lower storage requirements.
In this paper, we present a rigorous evaluation on the performance of TY attack
along with practical implementations, we find that it has high cryptanalysis
time. Combining the distinguished point (DP) [5] strategy with TY attack, we
design a new variant of TMTO, which is a general framework not only applicable
to password crack but also to cryptanalysis of cryptosystems. We also make a
comparison between our new design and TY attack. Experimental results show
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that new design can save about 53.7% cryptanalysis time compared to TY attack
and can reduce about 35.2% storage requirement compared to original rainbow
attack.

The paper is organized as follows. In Section 2, some basic TMTO method-
ologies are provided, followed with the analysis of TY attack. Formal definitions
and algorithms of our new design are given in Section 3. Section 4 identifies
the performance evaluation and experimental results. Finally, conclusions are in
Section 5.

2 Time-Memory Trade-Off Methodology and Analysis of
TY Attack

2.1 Time-Memory Trade-Off Methodology

Let f be a one-way function, given output y (y ∈ Y ), the trade-off target is
to recover the corresponding preimage x (x ∈ X) satisfying f(x) = y, where
X and Y are the input space and the output space respectively. In the of-
fline stage of Oechslin’s TMTO [9], we randomly choose m starting points:
SP0, SP1, ..., SPm−1 (SPi ∈ X, 0 ≤ i ≤ m− 1) and iteratively compute SPi for
t times by using a compound function: Fj = Rj ◦ f , where Rj is called reduction
function or mask function which maps Y to X , 1 ≤ j ≤ t and ◦ denotes function
composition. The offline computation is as follows.

SP0 = x0,0
F1−→ x0,1

F2−→ x0,2 · · ·
Ft−→ x0,t = EP0

SP1 = x1,0
F1−→ x1,1

F2−→ x1,2 · · ·
Ft−→ x1,t = EP1

...
...

SPm−1 = xm−1,0
F1−→ xm−1,1 · · ·

Ft−→ xm−1,t = EPm−1

we only store (SP0, EP0), (SP1, EP1), ..., (SPm−1, EPm−1) in a table called rain-
bow table and sort the table with respect to ending points. In the online stage,
we firstly apply Rt to y and look up the result in the ending points of the table.
If we find a matching ending point, we know how to rebuild the chain using the
corresponding starting point and locate x. If we don’t find a match, we try if we
find it by applying Rt−1, Ft to see if the preimage was in the second last column
of the table. Then we try to apply Rt−2, Ft−1, Ft, and so forth.

2.2 Analysis of TY Attack

The basic idea of TY attack is similar to rainbow attack. The difference lies
in their table structures. Suppose h is a hash function which is often used to
password encryption. The precomputation of the i-th table is as follows.
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xi h−→ H
R1−→ xi

1,1
F2−→ xi

1,2 · · ·
Ft−→ xi

1,t

H + 1
R1−→ xi

2,1
F2−→ xi

2,2 · · ·
Ft−→ xi

2,t

H + 2
R1−→ xi

3,1
F2−→ xi

3,2 · · ·
Ft−→ xi

3,t
...

...

H + k
R1−→ xi

k+1,1
F2−→ xi

k+1,2 · · ·
Ft−→ xi

k+1,t

where H is the hash value of xi and Fj = Rj ◦ h (1≤ j ≤ t). It only store one
starting point of xi and k + 1 ending points for the i-th table. k is a constant
value to control the table size. The online analysis is the same to that of rainbow
attack. When a match is found in the table, it is easy to rebuild the corresponding
H + d (0 ≤ d ≤ k) by using the matched chain index and the stored xi, then
locate the possible preimage.

In [11], Thing et al. said that the optimal value of k is 2m−2, where m is num-
ber of chains in rainbow table. In this way, storage usage can be maximum and
only one table is computed in the offline stage. It can save 50% storage require-
ment in comparison to rainbow table. However, we found that it requires higher
cryptanalysis time which makes it to be impractical in real world applications. In
traditional TMTO, we often sort the precomputed table and the searching time
in a sorted table is often ignored. But in TY attack, hash value of the second
column increased in order and sorting will break this order, thus disturbing the
correctness of the attack. Searching in an unsorted table will greatly increase the
online cost. Online time comparisons between TY attack and rainbow attack
are listed in Table 1.

Table 1. Online time complexity comparison

Attack Rainbow attack TY attack

Parameters (m, t, r) (k, t, r)

Function calculation O( t
2

2 ) O( t
2

2 )
Table look-up O(t) O(t)
Comparison of each table look-up O(log(m)) O(k + 1)

From table 1, given N = 224,m = 215, t = 29, r = 1 for rainbow attack and
N = 224, k = 2m − 2 = 216 − 2, t = 29, r = 1 for TY attack, table look-up of
TY attack needs totally t(k+1) = 225− 29 ≈ 225 comparisons, which is slightly
larger than brute force comparisons of 224. The online performance comparisons1

among rainbow attack, TY attack and brute force attack are given in Table 2.

1 We randomly generate 500 integers in the searching space {i|0 ≤ i ≤ 224 − 1, i ∈ Z}
and calculate their digest values by using MD5. Inversion of each digest value is done
by rainbow attack, TY attack and brute force attack.
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Table 2. Experimental results of the online time complexity comparison

Rainbow attack TY attack Brute force attack

(m, t, r)|(k, t, r)|N (215, 29, 1) (216 − 2, 29, 1) 224

Average cryptanalysis time

to success 1.86 sec 7.59 sec 14.70 sec
to failure 2.58 sec 15.18 sec -
total 2.22 sec 9.83 sec 14.70 sec

Average function calculations

to success 43505 74978 4499522
to failure 174654 215898 -
total 110391 116549 4499522

Average false alarms

to success 52 139 -
to failure 256 497 -
total 156 245 -

From Table 2, the average function calculations (total) of TY attack is almost
the same to that of rainbow attack as we just expected in Table 1, but it takes
more cryptanalysis time than rainbow attack in all cases, since the cost of table
look-up dominates the total online cost. In failure case, TY attack takes more
time than brute force attack.

In the meantime, Ying and Thing themselves also found the existing drawback
of TY attack and proposed a sorting method [12] to improve the performance of
the recovery process. The basic idea is to add some tags to each ending point and
sort the ending points in the usual alphabetical order. These tags can be used
to derive the corresponding initial hash value, which correctly solve the sorting
problem. However, the revised attack can only be applied to password cracking
scenario and the existence of these reserved tags will add difficulties in designing
the index algorithm. They also did not present any experimental comparisons
between their improved version and original rainbow attack but only gave a
theoretical estimation of 23% reduction in storage requirement, which seems to
be lack of convincing.

3 A New Design

In this section, we propose a new variant of TMTO by combining DP strat-
egy with TY attack. It is a general framework and can be applied not only to
password cracking but also to the cryptanalysis of cryptosystem.
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3.1 Offline Stage

In the offline stage, we choose a constant value X (i.e.,X = 0) and com-
pute k1 × k2 starting points through H(X + i) + j (0 ≤ i < k1, 0 ≤ j <
k2). Then, we choose tmax different evaluation function: F1, F2, ..., Ftmax , where
Fk = Rk ◦ h, 1 ≤ k ≤ tmax and Rk is the reduction function. We iteratively
compute the (i, j)-th chain through Xj

i,k = Fk(X
j
i,k−1), X

j
i,0 = (H(X + i) ⊕

j) mod N, 1 ≤ k ≤ tmax. The chain stops when the most significant |k2|2 bits
of some Xj

i,k is found to be j or the current chain length exceeds tmax. If the
chain stops in the latter case, we discard it. The offline stage can be shown as
follows.

SP 0
0 = H(X + 0)⊕ 0

F1−→ ◦ F2−→ · · ·
F

l0
0−→ (0 ‖ R0

0) = EP 0
0

SP 0
1 = H(X + 1)⊕ 0

F1−→ ◦ F2−→ · · ·
F

l0
1−→ (0 ‖ R0

1) = EP 0
1

...
...

SP 0
k1−1 = H(X + k1 − 1)⊕ 0

F1−→ ◦ F2−→ · · ·
F

l0
k1−1−→ (0 ‖ R0

k1−1) = EP 0
k1−1

SP 1
0 = H(X + 0)⊕ 1

F1−→ ◦ F2−→ · · ·
F

l1
0−→ (1 ‖ R1

0) = EP 1
0

SP 1
1 = H(X + 1)⊕ 1

F1−→ ◦ F2−→ · · ·
F

l1
1−→ (1 ‖ R1

1) = EP 1
1

...
...

SP 1
k1−1 = H(X + k1 − 1)⊕ 1

F1−→ ◦ F2−→ · · ·
F

l1
k1−1−→ (1 ‖ R1

k1−1) = EP 1
k1−1

...
...

SP k2−1
0 = H(X + 0) ⊕ (k2 − 1)

F1−→ ◦ F2−→ · · ·
F

l
k2−1
0−→ (k2 − 1 ‖ Rk2−1

0 ) =
EP k2−1

0

SP k2−1
1 = H(X + 1) ⊕ (k2 − 1)

F1−→ ◦ F2−→ · · ·
F

l
k2−1
1−→ (k2 − 1 ‖ Rk2−1

1 ) =
EP k2−1

1
...

...

SP k2−1
k1−1 = H(X + k1 − 1)⊕ (k2 − 1)

F1−→ ◦ F2−→ · · ·
F

l
k2−1
k1−1−→ (k2 − 1 ‖ Rk2−1

k1−1) =

EP k2−1
k1−1

2 For all || in this paper, |α| means the binary length of integer α.
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For each chain, we only store:

S[0, 0] = {R0
0, l

0
0, 0} 0 < l00 ≤ tmax

S[1, 0] = {R0
1, l

0
1, 1} 0 < l01 ≤ tmax

...

S[i, j] = {Rj
i , l

j
i , i} 0 < lji ≤ tmax

...

S[k1 − 1, k2 − 1] = {Rk2−1
k1−1, l

k2−1
k1−1, k1 − 1} 0 < lk2−1

k1−1 ≤ tmax

where Rj
i (0 ≤ i ≤ k1 − 1, 0 ≤ j ≤ k2 − 1) is the rest (n−|k2|) bits of the ending

point in the (i, j)-th chain, lji is the length of the (i, j)-th chain and n = |EP j
i |.

All these chains have different lengths and can be split into groups of size k2
according to their definition of DP. We sort each DP group with respect to Rj

i

and store them in k2 tables indexed by their DP definition, which is also equal
to j of the starting points and also to the most significant |k2| bits of ending
points.

Let d1 = |k1|, d2 = |k2|, l = |tmax| and n = |N |, then |S[i, j]| = |Rj
i |+ |l

j
i |+

|i| = n − d2 + l + d1 bits. We have k1 × k2 starting points, thus the storage
requirement is M = P × k1× k2× (n− d2 + l+ d1) bits, where P (0 < P ≤ 1) is
the proportion of chains which meet a predefined DP before their length reach
tmax. More details of P is given in the next section.

3.2 Online Stage

Give Y (ciphertext in block ciphers and MACs, key stream segment in stream
ciphers, hash value in password encryptions, etc), to lookup the preimage (secret
key in block ciphers and MACs, internal state in stream ciphers, password in
password encryptions, etc), we proceed in the following manner: First we apply
Rtmax to the ciphertext Y and get Y0 = Rtmax(Y ), Y0 is now a DP for some
definition of DP. The value of the most significant |k2| bits of Y0 is corresponding
to a table in which the most significant |k2| bits of each ending point equals to
that of Y0. Then, we look up the rest n− |k2| bits in this table as follows.{

Rj
i

?
= (rest (n− |k2|) bits of Y0)

lji
?
= tmax

(1)

If both equations succeed, then a match is found and we get the corresponding
index i stored in the match S[i, j] and compute Xj

i,tmax−1 from the starting point
(H(X + i)⊕ j) mod N , where j is the value of the most significant |k2| bits of
Y0. Then we check whether Xj

i,tmax−1 is the preimage or a false alarm.

If either equation of (1) fails, then we apply Rtmax−1, Ftmax to Y as Y
Rtmax−1−→

Y1
Ftmax−→ Y0 and check Y0 and Y1 separately. Provided that we have computed Y

iteratively for k times and 1 ≤ k ≤ tmax:

X
Rtmax−(k−1)−→ Yk−1

Ftmax−(k−2)−→ Yk−2 · · ·
Ftmax−→ Y0. (2)
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We search each Yq(0 ≤ q ≤ k − 1) in a corresponding DP table and check{
Rj

i
?
= (rest (n− |k2|) bits of Yq)

lji
?
= tmax − q

(3)

if both equations succeed, then a match is found. Xj
i,tmax−q can be computed

from the starting point (H(X + i) ⊕ j) mod N by iteratively doing the com-
putation from F1 to Ftmax−q−1. Then we check whether Xj

i,tmax−q is a false
alarm or the preimage. If no match is found or false alarm occurred, then we
set k ← k + 1 and repeat the process above until k > tmax. It is easy to know

that new design needs O(
t2max

2 ) function calculations and O(
t2max

2 ) table look-ups,
each table look-up only needs log2|k1| comparison because of the sorted ending
points.

3.3 The Selection of tmax

The main modification caused by the introduction of DP is the variable chain
length. Therefore, the selection of tmax has a great influence on the performance
of the new design. Let k = |k2|, n = |N | and P1(t) be the probability that a
DP is reached in less than t iterations. Let P2(t) be the probability that no
DP is reached in less than t iterations. Thus P1(t) = 1 − P2(t) and we can

easily get P2(t) =
∏t−1

i=0(1 − 2n−k

2n−i ). An approximate expression can be obtained

knowing that i' 2n. By fixing i to t−1
2 , we have P2(t) ≈ (1 − 2n−k

2n− t−1
2

)t. Finally,

we have P1(t) ≈ 1− (1− 2n−k

2n− t−1
2

)t, thus the probability to reach a DP in less

than tmax iterations is P1(tmax) which is also the P we defined in Section 3.3.
According to [10], The average chain length of a DP table is t = 2k = k2. Given
N = 224, k1 = 28, and k2 = 28, the theoretical and experimental results of
P1(tmax) are listed in Table 3.

Table 3. The value of P1(tmax)

tmax Theoretical result Experimental result

1.0× 28 63.28% 63.26%
1.5× 28 77.75% 77.56%
2.0× 28 86.25% 86.43%
2.5× 28 91.83% 91.90%
3.0× 28 95.05% 95.13%
a (N, k1, k2) = (224, 28, 28)

From Table 3, we see that the larger tmax is, the higher P1(tmax) will be.
However, larger tmax also leads to higher time complexity in the online stage as
described in Section 3.3. Therefore, tmax should not be too large or too small.
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4 Performance Evaluation and Experimental Results

In this section, we present a rigorous evaluation on the performance of our new
design correspond with experimental results (the analysis of success probability
can be found in the full version).

4.1 Online Time Complexity Comparison

Given N = 232, common parameters of TY attack are (k, t, r) = (2 × 220 −
2, 212, 1) and common parameters of new design are (k1, k2, tmax) = (455, 212, 2×
212). These chosen parameters can assure that both attacks have the same stor-
age requirement and TY attack has the optimal table structure. Experimental
results are listed in Table 4.

Table 4. Experimental results of the online comparison

New design TY attack

(k1, k2, tmax)|(k, t, r) (455, 212, 213) (221 − 2, 212, 1)

Average cryptanalysis time

to success 3 min, 23.10 sec 7 min, 17.74 sec
to failure 6 min, 7.11 sec 16 min, 46.89 sec
total 4 min, 31.00 sec 9 min, 45.72 sec

Average function calculations

to success 4,393,370 4,772,551
to failure 15,470,394 13,971,075
total 12,206,927 7,164,167

Average false alarms

to success 548 1153
to failure 1388 4099
total 896 1919

The experimental results show that the average function calculations of our
new design is higher than TY attack, but it can save 53.7% cryptanalysis cost,
since it needs less table look-ups and occurs less false alarms than TY attack.

4.2 Storage Requirement Comparison

In this part, the basic consumption is that all these attacks have the same
precomputation time. Therefore, given N = 224, the common parameters for
these attacks and the storage space comparison are listed in Table 5 (more
details can be found in the full version).
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Table 5. Storage space comparison

Attack Rainbow attack New design TY attack

(m, t, r)|(k1, k2, tmax)|(k, t, r) (215, 29, 1) (26, 29, 210) (215, 29, 1)
Entries 215 0.8643× 215 215 + 2
Entry size 48-bit 31-bit 24-bit
Experimental result 256 KB 166 KB 161 KB

N = 224

The storage medium is ’.txt’ file and we put each entry in a single line to
the file. Results in Table 5 show that our new design can save about 35.2%
storage requirement compared with rainbow attack, TY attack can save about
37.1% storage requirement compared with rainbow attack. For more details and
further discussion, please refer to the full version.

5 Conclusion

In this paper, we present a rigorous analysis on the performance of TY attack
and find that it has higher precomputation time and its online attack time is
no better than brute force attack. Therefore, TY attack is an impractical attack
even though it has higher success probability and lower storage requirement than
rainbow attack. By combining the DP strategy with TY attack, we propose a
new variant of TMTO, which is a general framework and can be applied not only
to password cracking, but also to cryptanalysis of cryptosystems. Evaluations of
the performance show that our new design has higher success probability than
rainbow attack and has slightly lower success probability than TY attack under
the basic assumption that all these three attacks use the same storage space.
It can save about 53.7% cryptanalysis time compared with TY attack and can
save about 35.2% storage requirement compared with original rainbow attack.
The amount of storage requirement we have saved is slightly lower than that of
TY attack (37.1%), but we achieved a great improvement on the cryptanalysis
time, making our new design to be a practical TMTO which can well be used in
the storage limited applications.
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Abstract. In this paper, we propose a new attack for block ciphers by
applying the well known time-memory-data (TMD) trade-off to plaintext
recovery attack (PRA), thus creating two new schemes: TMD-PRA-I and
TMD-PRA-II. Compared with the traditional trade-off attacks, these two
schemes possess several robust properties which can greatly increase the
success probability and enhance the process of analysis. We also evaluate
the performance of our schemes by applying them to several block ciphers
like DES, Triple-DES, Skipjack and AES. Results show that they have
favourable performance especially when the key size is larger than the
block size, which gives us a reminder that PRA based on TMD trade-off
should be considered when designing a new cryptographic scheme.

Keywords: time-memory trade-off, time-memory-data trade-off, plain-
text recovery attack.

1 Introduction

Many cryptanalytic problems can be solved in theory using an exhaustive search
in the key space, but are still hard to solve in practice because each new instance
of the problem requires to restart the process from scratch. The basic idea of
a time-memory trade-off (TMTO) is to find a trade-off between the exhaustive
search and the exhaustive storage. It carries out an exhaustive search once for
all such that following instances of the problem become easier to solve.

The technique of TMTO was firstly introduced by Hellman [8] in 1980. It is a
chosen plaintext attack which applies TMTO to the one-way function mapping
the keyspace to the cipherspace by encrypting a fixed known message using a
block cipher. Since then, many of its extensions[7,5,10] and variants[4,1,6] have
appeared. All these TMTOs focus on inverting a one-way function at a single
data point. Biryukov and Shamir [3] stated that multiple data can be combined
with Hellman’s tradeoff, resulting in a time-memory-data (TMD) trade-offs for
stream ciphers. Later, Biryukov and Mukhopadhyay [2] found that the usual
TMD tradeoff attack on stream ciphers can be considered to be a time-memory-
key trade-off (BS-TMD) attack on block ciphers. This attack applies to the
situation where the goal of the attacker is to obtain one out of many possible
keys.
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In this paper, we attempt to shift the attack target of the traditional TMTO
from key recovery to plaintext recovery for block ciphers and observe a potential
one-way function which maps plaintext space to ciphertext space, thus proposing
a new application of TMTO by applying TMD trade-off to plaintext recovery
attack (PRA). Compared with the traditional TMD attack, we prove that the
precomputed tables in the new application have several robust properties (i.e. no
false alarms and no merges), which can greatly increase the success probability
and accelerate the process of attack. Through the comparison with BS-TMD
attack on several specific block ciphers (i.e. DES, Triple-DES, Skipjack and
AES), we found that our new attack is appropriate for an infrequently changing
key scenario and has better performance when key size is larger than block size.
It should be classified to the fixed key attacks which prove to be more practical
than the variable key attacks which BS-TMD attack belongs to. Furthermore,
our results show that it does not make sense to increase the key size without a
corresponding increase of the block size.

The paper is organized as follows. Some basic TMDmethodologies are given in
Section 2. We present the formal definitions and algorithms of our new schemes
in Section 3. Section 4 identifies the coverage rate and trade-off complexity of our
new schemes. Performance evaluation is provided in Section 5. Conclusions are
in Section 6. Before we proceed, we give the general notations of the parameters
below:

– N : denotes the searching space.
– m : denotes the number of chains in a single table.
– t : denotes the chain length.
– r : denotes the number of tables.
– f : denotes a one-way function.
– P : denotes the plaintext space.
– C : denotes the ciphertext space.
– K : denotes the key space.
– T : denotes the time complexity in the online stage.
– M : denotes the memory requirement of trade-off method.
– D : denotes the size of ciphertexts the attacker have obtained.
– E : denotes the time complexity in the offline stage.

2 Time-Memory-Data Trade-Off Methodology

The encryption algorithm of a block cipher can be treated as an one-way function
fp = f(·, p) maping K to C, where p is a fixed known plaintext. Given some
ciphertext c ∈ C, the goal of the attacker is to invert this function to get the
corresponding encryption key, while keeping the complexity as low as possible.
The BS-TMD attack consists of two stages: an one-time offline stage followed
by an online stage. In the offline stage, a set of tables are prepared covering
N/D of the domain points. We randomly choose m distinct keys k0

1 , k
0
2, ..., k

0
m

and compute each key iteratively by using a compound function Fi = ri ◦ fp,
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where ri is called reduction function which maps C to K and ◦ means function
composition. The precomputation of the i-th (1 ≤ i ≤ r) table is as follows.

SP i
1 = k0

1
Fi−→ k1

1 · · ·
Fi−→ kt

1 = EP i
1

SP i
2 = k0

2
Fi−→ k1

2 · · ·
Fi−→ kt

2 = EP i
2

...
...

SP i
m = k0

m
Fi−→ k1

m · · ·
Fi−→ kt

m = EP i
m

where SP i
j and EP i

j represent the starting point and the ending point in the
j-th chain of the i-th table respectively, ks

j is the domain point (key), 1 ≤ j ≤
m, 0 ≤ s ≤ t. We only store (SP i

1, EP i
1), (SP i

2 , EP i
2),...,(SP i

m, EP i
m) and sort

these pairs with respect to ending points.
In the online stage, we look for the pre-image in all the tables for each data

point cj (1 ≤ j ≤ D). This process is similar to Hellman’s TMTO. The com-
plexity of the online analysis requires a total of t applications of fp and t table
look-ups for each table and each data point. In order to minimize the waste of
table coverage due to birthday collisions, the proper choice of m and t would typ-
ically satisfy N = mt2 and N/D domain points need to be covered. Therefore,
we need r = t/D tables of each size m × t corresponding to different functions
Fi (1 ≤ i ≤ r). Hence memory requirement is M = rm = mt/D entries and the
online cost for all the D data points is T = t × t/D × D = t2, resulting in a
tradeoff formula N2 = TM2D2, 1 ≤ D2 < T, E = N/D. More details can be
found in [3,2].

3 Apply Time-Memory-Data Trade-Off to PRA

In this section, we will describe the details of our new attacks and propose two
PRA schemes of TMD-PRA-I and TMD-PRA-II based on TMD attack. First,
we will propose some basic assumptions here.

Generally speaking, encryption algorithm of a block cipher can be treated as a
one-way function. Given the encryption key k, plaintext x and the corresponding
ciphertext y, we have f(k, x) = y. f is one-to-one mapping, that is to say when
k is fixed, given any plaintext x ∈ P , we can only get one ciphertext y ∈ C
satisfying f(k, x) = y and given any ciphertext y ∈ C, there is only one preimage
x ∈ P satisfying f−1(k, y) = x. We always denote f as the keyed one-to-one
mapping f(k, ·) hereafter.

We assume that the attacker can access to an encryption oracleOf of the block
cipher. He can query any plaintext to Of and Of will return the corresponding
ciphertext. Given D ciphertexts which are the results of the different plaintexts
encrypted by a block cipher under a fixed key, his target is to recovery these
plaintexts as more as possible. We also assume that the size of plaintext space
is same to that of ciphertext space, namely |P | = |C| = N = 2n (n is the block
size).
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3.1 TMD-PRA-I

TMD-PRA-I directly treats the encryption oracle as the iterative function F to
precompute a ciphertext table which is different from the classic key table in
traditional TMTO. We randomly choose m distinct plaintexts: c01, c

0
2, ..., c

0
m in

P and precompute as follows.

SP1 = c01
F−→ c11

F−→ c21 · · ·
F−→ ct1 = EP1

SP2 = c02
F−→ c12

F−→ c22 · · ·
F−→ ct2 = EP2

...
...

SPm = c0m
F−→ c1m

F−→ c2m · · ·
F−→ ctm = EPm

We only store (SP1, EP1), (SP2, EP2),..., (SPm, EPm) and sort these pairs with
respect to the ending points. The online stage is similar to the procedure of
Hellman’s TMTO. However, we will prove that no false alarm will occur in the
process of the online analysis in TMD-PRA-I.

Proposition 1. If f is an one-to-one mapping and |P | = |C| = N , no false
alarm will occur in the process of online analysis in TMD-PRA-I.

Proof. Suppose that a false alarm occurred in the online stage, that is to say,
we have applied the iterative function F to the given ciphertext y for k (1 ≤
k ≤ t− 1) times and the online chain is y

F−→ y1
F−→ y2 · · · F−→ yk, we find

a matching ending point EPi = cti = yk (1 ≤ i ≤ m) and the online chain
merged with the chain which we reconstruct from the corresponding starting
point SPi = c0i . Suppose the merging point is yq (1 ≤ q ≤ k) for online chain
and csi (t−k+1 ≤ s ≤ t) for the reconstruted chain, thus we have csi = yq, that is
F (cs−1

i ) = F (yq−1), according to the definition of F , we derive f(cs−1
i ) = f(yq−1)

where cs−1
i �= yq−1. In this way, ciphertext yq (or csi ) will be decrypted to two

different plaintexts (cs−1
i and yq−1), which is contradictious to the assumption

that f is an one-to-one mapping. Consequently, no false alarm will occur during
online analysis. �

We can easily know that the online analysis time of TMD-PRA-I is same to
that of Hellman’s method. However, there is no false alarm in TMD-PRA-I,
thus its performance is better, since Hellman [8] points out that the expected
computation due to false alarms increases the expected computation by at most
50 percent. There may exist many overlap sectors among the chains of a single
ciphertext table. To release this problem, we present another scheme in the
following section.

3.2 TMD-PRA-II

Based on TMD-PRA-I, we introduce t different permutations:P1, P2, ..., Pt de-
fined on ciphertext space {z|z ∈ Z, 0 ≤ z ≤ N − 1} and redefine iterative func-
tion as Fj = Pj ◦ f , 1 ≤ j ≤ t. The offline stage of TMD-PRA-II is as follows.
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SP1 = c01
F1−→ c11

F2−→ c21 · · ·
Ft−→ ct1 = EP1

SP2 = c02
F1−→ c12

F2−→ c22 · · ·
Ft−→ ct2 = EP2

...
...

SPm = c0m
F1−→ c1m

F2−→ c2m · · ·
Ft−→ ctm = EPm

In this way, the chain will not enter into a loop and overlap sectors among
different chains will not exist. There may exist collisions among chains, but
these collisions will not lead to merges or loops. The online stage is similar to
the rainbow attack [10]. The total number of calculations we have to make is thus
t(t−1)

2 which is half as much as TMD-PRA-I. In the rainbow table, merge only
occur when collisions occurred in the same column and collisions of different
columns will not lead to merge. We will prove that there is no merge even if
collisions occurred in the same column of the ciphertext table.

Proposition 2. If f is an one-to-one mapping and |P | = |C| = N , then no
merge will occur in the ciphertext table of TMD-PRA-II.

Proof. please see the details of the proof in the full version. �

Proposition 2 states that ciphertext table of TMD-PRA-II is born to be a per-
fect table, which needs no additional computations to deal with the merged
chains. Hence it has higher coverage rate than rainbow table. Collision of dif-
ferent columns may occur, but it only leads to a cross point instead of merge.
Based on Proposition 2, we can easily get a corollary:

Corollary 1. If f is an one-to-one mapping and |P | = |C| = N , no false alarm
will occur in the process of the online analysis in TMD-PRA-II.

Corollary 1 states that TMD-PRA-II is more efficient than the rainbow attack
in the online stage, since it need no additional computations to due with false
alarms.

4 Success Probability and Trade-Off Complexity

In this section, we will present a rigorous analysis on the time complexities,
memory requirements and success probabilities of TMD-PRA-I and TMD-PRA-
II respectively.

4.1 Success Probability of TMD-PRA-I

The ciphertext table of TMD-PRA-I is a matrix of m × t. For each 0 ≤ k < t,
let mI

k denote the number of distinct entries appearing in the k-th column,

which has not appeared in any of the previous columns and Hk = {cji |1 ≤ i ≤
m, 0 ≤ j ≤ k} denotes the set of distinct ciphertexts in the sub matrix of m× k.
Therefore, mI

k = |Hk \Hk−1| and let pIk = mI
k/N denote the proportion of the
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distinct ciphertexts in the k-th column. Suppose we choose mI
0 = m distinct

starting points, then pI0 = m/N and the relationship between mI
k+1 and mI

k can

be written as mI
k+1 = (1−

∑k
j=0 pIj)m

I
k, or equivalently pIk+1 = (1−

∑k
j=0 pIj )p

I
k.

Now, we denote sIk =
∑k−1

j=0 pIj and sI1 = pI0 = m/N . By the definition of sIk, the

expected coverage rate of a single ciphertext table can be written as CI = N
mts

I
t ,

hence the coverage rate for all t (t ≥ 1) tables can be written as

C∗
I = 1− (1− sIt )

t. (1)

Under the matrix stopping rule of mt2 = N [3], the simulation results of C∗
I are

listed in the Table 1.

Table 1. Simulation results of C∗
I

(m, t) C∗
I

(222, 24) 58.68%
(214, 28) 57.79%
(210, 210) 57.74%
(26, 212) 57.73%

N = 230,mt2 = N

From the Table 1, we see that the coverage rate of a single ciphertext table
is approximately 86.1%, which is very close to the results of a single Hellman
table [9].

4.2 Success Probability of TMD-PRA-II

We will create one ciphertext table with mt rows and t columns. For each 0 ≤ k <
t, let mII

k denote the number of distinct entries appearing in the k-th column,
which has not appeared in any of the previous columns. Let pIIk = mII

k /N denote
the proportion of the distinct ciphertexts in the k-th column. Suppose we choose
mII

0 = mt distinct starting points, then pII0 = mt/N and mII
k can be written

as mII
k = (1 −

∑k
j=0 pIIj )mt, or equivalently, pIIk = (1 −

∑k
j=0 pIIj )pII0 . Now, we

denote sIIk =
∑k−1

j=0 pIIj and sII1 = pII0 = mt/N . By the definition of sIk, the

expected coverage rate of the precomputed table is CII = N
mt2 s

II
t . Under the

matrix stopping rule of mt2 = N , we denote CR as the coverage rate of a single
rainbow table. The simulation results of CII and CR are listed in the Table 2.

From Table 2, it is obvious that the success probability of TMD-PRA-II is
higher than that of rainbow table, since there is no merged chains in the ci-
phertext table as we have specified in the proposition 3. Furthermore, success
probability of TMD-PRA-II is higher that that of TMD-PRA-I (i.e. suppose
(m, t) = (210, 210), CII = 63.23% which is higher than C∗

I = 57.74%), since any
chain will not enter into a loop and there are no overlap sectors among chains
in TMD-PRA-II.
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Table 2. Comparison between CII and CR

(m, t) CII CR

(222, 24) 64.39% 56.93%
(214, 28) 63.28% 55.64%
(210, 210) 63.23% 55.58%
(26, 212) 63.22% 55.56%

N = 230,mt2 = N

4.3 Time Complexity of the Online Stage and Memory
Requirement

According to the matrix stopping rule of mt2 = N . Given E = N
D , we generate

r = t
D (D ≤ t) tables, each of which contains m rows and t columns for TMD-

PRA-I and produce one table which contains mt
D rows and t columns for TMD-

PRA-II. The time complexity of the online stage can be divided into two parts:
one for the function calculations, another for the table look-ups. According to the
descriptions of the online stage in section 3, both function calculations and table
look-ups of TMD-PRA-I are O(t2), function calculations and table look-ups of

TMD-PRA-II are O( t
2D
2 ) and O(tD) respectively.

Memory requirement is measured by the number of entries, each of which
contains one starting point and one ending point. For TMD-PRA-I, there are m
chains in each of the t

D tables, the memory requirement is thus mt
D entries. For

TMD-PRA-II, there are one table which contains mt
D chains, hence the memory

requirement is also mt
D .

4.4 Trade-Off Curve

We assume that the function calculations dominate the online cost for both
TMD-PRA-I and TMD-PRA-II and we will ignore the factor of two in the func-
tion calculations of TMD-PRA-II, since it does not significantly affect
the analysis. The cost of table look-ups can be greatly reduced by considering
the distinguished point method of Rivest [5]. From the previous analysis of Sec-
tion 4.3, trade-off curves of TMD-PRA-I and TMD-PRA-II are TI(MID)2 = N2

and TIIM
2
IID = N2 respectively. Therefore, trade-off curve of TMD-PRA-II is

inferior to that of TMD-PRA-I. For example, given |P | = |C| = N = 248, we

can choose (TI ,MI , D) = (N
2
3 , N

1
3 , N

1
3 ) = (232, 216, 216) and (TII ,MII , D) =

(N
2
3 , N

1
3 , N

2
3 ) = (232, 216, 232). This indicates that TMD-PRA-II requires more

ciphertexts in order to keep the same analysis cost and memory requirement as
TMD-PRA-I.
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5 Performance Evaluation

In this section, we propose a detailed evaluation on the performance of our
attacks by applying them on various block ciphers. The results are listed in the
following table 3.

Table 3. Comparisons of TMD-PRA-I on various block ciphers

Block Cipher (|K|,|C|) Ciphertexts(D) Time(T) Memory(M) Preprocessing(E)

DES (56,64) 216 232 232 248

Triple-DES (112,64) 216 232 232 248

Triple-DES (168,64) 216 232 232 248

Skipjack (80,64) 216 232 232 248

AES (128,128) 232 280 256 296

AES (192,128) 232 280 256 296

AES (256,128) 232 280 256 296

Any block cipher (k,n) 2n/4 2n/2 2n/2 23n/4

Any block cipher (k,n) 2n/3 22n/3 2n/3 22n/3

The results of the Table 3 show that the complexity and efficiency of TMD-
PRA-I only depend on the block size instead of the key size. We also present
comparisons between our attacks and BS-TMD attack proposed by Biryukov
et al [2]. The comparison results are listed in the Table 4, 5 and 6.

Table 4. Trade-off attacks on 112-bit key Triple-DES

Attack Data Type Data(D) Time(T) Memory(M) Preprocessing(E)

TMD-PRA-I FKa 216 232 232 248

TMD-PRA-I FK 224 220 230 240

BS-TMD VKb 216 280 256 296

BS-TMD VK 224 264 2112 288

a Denotes the set of ciphertexts which are the results of different plaintexts
encrypted by a block cipher under a fixed key.

b Denotes the set of ciphertexts which are the results of a known plaintext
encrypted by a block cipher under various keys.

Compared with DES, the advantage of our attack becomes more apparent
when applied to Triple-DES with 112-bit key and 168-bit key respectively. The
similar results also can be found in the Table 4 and 6. When the key size is
larger than the block size, the performance of TMD-PRA-I is explicitly superior
to that of BS-TMD. Consequently, it does not make sense to increase the key size
without a corresponding increase of the block size when designing a new block



Applying Time-Memory-Data Trade-Off to Plaintext Recovery Attack 329

Table 5. Trade-off attacks on 128-bit key AES

Attack Data Type Data(D) Time(T) Memory(M) Preprocessing(E)

TMD-PRA-I FK 224 292 258 2104

TMD-PRA-I FK 232 280 256 296

BS-TMD VK 224 292 258 2104

BS-TMD VK 232 280 256 296

Table 6. Trade-off attacks on 192-bit key AES

Attack Data Type Data(D) Time(T) Memory(M) Preprocessing(E)

TMD-PRA-I FK 232 284 254 296

TMD-PRA-I FK 248 260 250 280

BS-TMD VK 232 2120 2100 2160

BS-TMD VK 248 296 296 2144

cipher. However, when the key size is same to the block size, the complexities
of TMD-PRA-I and BS-TMD are identical (Table 5 shows this case). In this
scenario, our preference would be BS-TMD attack, since it can recovery an
encryption key instead of a plaintext. Evaluation results of TMD-PRA-II are
similar to TMD-PRA-I, please see more details in the full version (also including
further discussions and observations).

6 Conclusion

In this paper, we attempt to shift the targets of the traditional time-memory-
data trade-off from key recovery to plaintext recovery for block ciphers, thus
proposing a new attack by applying the time-memory-data trade-off to plain-
text recovery attack. Two attack schemes of TMD-PRA-I and TMD-PRA-II
have been constructed and several vigorous properties have been proved. Com-
pared with the traditional time-memory-data trade-offs, new schemes possess
higher success probability and efficiency benefitting from these properties. We
also evaluate the performance of our new schemes by applying them to several
block ciphers, resulting in a better performance than BS-TMD when the key
size is larger than the block size. Consequently, we believe that this target shift-
ing is valuable and it does not make sense to increase the key size without a
corresponding increase of the block size when designing a new block cipher.
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Abstract. Side-channel analyses allow to extract keys from devices
whatever their length. They rely on tools called “distinguishers”. In this
paper, we intend to compare two generic distinguishers per se: we pro-
vide a characterization environment where all the implementation details
are equal, hence a fair comparison.

In the field of distinguishers that use a model, the notion of equiva-
lence between distinguishers has already been studied in some seminal
works [6, 13]. However, no such work has been carried out for generic
distinguishers, that work on observable values distributions rather than
on their values themselves. In this paper, we set up simulations that aim
at showing experimentally that two generic distinguishers are different.
Then, we develop a theory to actually prove that one distinguisher is
better than the other.

Keywords: InformationTheoretic (IT)metrics,Probability/Cumulative
Density Function (PDF/CDF), Kolmogorov-Smirnov Analysis (KSA),
Inter-class Kolmogorov-Smirnov Analysis (IKSA), Masking.

1 Introduction

Smart cards play a crucial role in many security systems. These devices typically
operate in hostile environments and, therefore, the data they contain might be
relatively easily compromised. For example, their physical accessibility some-
times allows a number of very powerful attacks against their implementation.
During the last decade, side-channel attacks in general, and power analysis at-
tacks in particular, have shaken the belief in the security of smart cards. Kocher
et al. showed in their pioneering article [10] that a smart card that is unprotected
against power analysis attacks can be broken without difficulty. The core idea of
side-channel attacks is to compare some key-dependent predictions of the physi-
cal leakages with actual measurements, in order to identify which prediction (or
key) is the most likely to have given rise to the measurements. In practice, it
requires both to be able to model the leakages with a sufficient precision in order
to build the predictions, and to have a good comparison tool, thereafter referred
to as a distinguisher, to efficiently extract the keys.

In 2008, Mutual Information Analysis (MIA) [7] has been proposed as a new
side-channel distinguisher. MIA aims at genericity in the sense that it is expected

T.W. Chim and T.H. Yuen (Eds.): ICICS 2012, LNCS 7618, pp. 331–340, 2012.
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to lead to successful key recoveries with as little assumptions as possible about
the leaking devices it targets. Previous works [14, 19, 23] demonstrated that the
estimation of probability density functions for these key-dependent models is of
decisive importance to the performance of MIA in practice.

The authors of [19] suggested an alternative distinguisher that do not require
explicit density estimation: the Kolmogorov-Smirnov test. It is a non-parametric
statistical test to distinguish between distributions by computing the absolute
difference between their cumulative distribution. Reference [24] explores the ef-
fectiveness and efficiency of the Kolmogorov-Smirnov Analysis (KSA) in the
context of SCA and compare it to the MIA in a number of relevant scenarios
ranging from unprotected to masked implementations.

All the distinguishers listed above compare the key-dependent predictions of
the physical leakages versus actual measurements. Our approach in this paper
consists in comparing the conditional leakages between themselves (pairwise) in
order to efficiently recover the secret key. We name this approach “inter-class”.
We provide a methodology to fairly compare two SCA distinguishers based on
simulations.

The remainder of this article is organized as follows. The definition of the
state-of-the-art and inter-class metric is given in section 2. This section con-
trasts the principle of inter-class metrics with other metrics. In section 3, a
fair framework to evaluate and compare distinguishers is given. We applied this
methodology to compare the KSA and the inter-class KSA (aka IKSA). These
theoretical results are then validated by simulations in section 4. Section 5 con-
cludes the paper and gives some perspectives for future works.

Our Contributions
This paper presents three novel contributions. First, we propose the notion of
“inter-class” metrics, which allows to build a new distinguisher for SCA aimed to
be efficient when exploiting several kinds of leakages. The originality of this new
test is that it does a pairwise comparison between the key-dependent leakage
classes. Second, we apply this notion to the Kolmogorov-Smirnov test which
yield the Inter-class Kolmogorov-Smirnov Analysis (IKSA). In order to compare
two SCA distinguishers, we propose a simulation-based “fair” framework which
takes into account the different errors of estimation tools used in simulation
process. Third, we present several experiments to compare IKSA to KSA using
this framework, where simulated attacks are performed against unprotected and
protected AES with Boolean masking. Attacks’ simulation in section 4 confirm
that the IKSA compares favorably to KSA and that IKSA is non-equivalent to
KSA, even when masking is applied to ensure some protection.

2 Mutual and Inter-class Distinguishers

2.1 Notations

We use capital letters, like Z, to denote a random variable (RV), calligraphic
letters, like Z, to denote its support (set of possible values), and lowercase letters,
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like z, for its realizations. The expectation of Z is denoted by E[Z]. The Hamming
weight of z is written as HW (z). We use the following notations.

– X : a RV that represents the leakage (e.g. the measured current drawn by a
cryptographic device);

– K: the cryptographic key;
– Z: the input or the output of the cryptographic device (i.e. its plaintext or

ciphertext);
– Y = ψ(Z,K): a sensitive variable used internally, that depends both on

Z (known by the attacker) and K (unknown by the attacker). We assume
that this sensitive variable Y can be computed exhaustively from K by the
attacker and that it causes the leakages; put differently, when the key guess
is correct, X and Y are dependent.

Side-channel analysis consists in estimating whether X and Y are dependent for
every key guess, i.e., for every value K = k. The analysis is said to be sound if
the greatest dependence is obtained for the correct value of the key, noted k�. In
this case, the key can be extracted successfully from the device. In practice, the
values taken by X are noisy, because they consist in physical measurements and
because the link between X and Y is imperfect (it might involve other variables,
yielding algorithmic noise). Therefore, many couples (X,Y ) are required for the
2n estimations (for each value of K) to find the correct key, where n is the
bit-width of K.

2.2 Inter-class Notion

Distinguishers can be defined based on the analysis of values or of distributions.

– Examples of distinguishers based on values: DPA [10], CPA [5], stochas-
tic [16], DCA [1].

– Distinguishers based on distributions: MIA [2], KSA [24], etc.

The distinguishers based on values can be considered weaker than those based
on distributions. A justification is that there exist some distributions (e.g. the
log-normal distribution) that are not uniquely determined by their moments.
Distinguishers based on distributions are referred to as information-theoretic
and have been acknowledged as more generic.

Several “distances” D( · ; · ) are known to measure the dependency between
two distributions, such as Kullback-Leibler (KL) divergence, Hellinger distance,
or Kolmogorov-Smirnov (KS) distance. In the sequel, we focus on KS test, be-
cause it has been investigated recently and constitutes an interesting competitor
to the (already much discussed) mutual information based attacks.

The distance between distributions D( · ; · ) is used to build distinguishers in
two different ways:

1. (marginal-to-conditional approach) D(X |Y ;X), which yields the KSA dis-
tinguisher,

2. (inter-class approach) D(X |Y ;X |Y ′), where Y ′ is an independent copy of
Y , which yields its inter-class counterpart, called IKSA.
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3 Comparison Methodology

3.1 Frameworks

In this section, we analyze previous comparison frameworks, highlight possible
limitations and motivate for a new setting. The first proposed evaluation frame-
work is [17] basically suggests to use a leakage metric to quantify the maximal
chance that an optimal attacker would have to extract secrets. This metric rep-
resents a vulnerability analysis, for an attacker might not be able to turn the
leakage into a successful attack. For the comparison of attacks, i.e. of distin-
guishers, [17] suggests metrics like o-th order success rate (with o ∈ �1, 2n�)
or guessing entropy. In another framework [23, 24], the distance to the nearest
rival is employed; it is the same definition as previously termed “Correlation
Contrast” in [3]. Many other metrics can be invented, such as the signal (distin-
guisher expected value for the correct key k�) to noise (distinguisher variance
over incorrect keys k ∈ Fn

2\{k�}) ratio [8] or the norm-2 of the characterized
coefficients in a stochastic profiling [9].

Recent analyses [23] suggest pitfalls in the evaluation methodologies for dis-
tinguishers. Errors can arise from many sources:

– Estimation Bias: the estimator does not converge to the correct value. For
instance, the MIA with few bins for the PDF estimation can have a square
bias significantly larger than its variance.

– Estimation Algorithm: it can approximate the data. Whatever the kernels
used in PDF constructions [14], the binning of the observed side-channel
reduces its accuracy.

– Success Rate Error: it is a random variable, that has its own variance.
– Sampling Errors: the random variables are not drawn a sufficient number

of times and thus do not obey to their law. As a rule of thumb, estimations
are incorrect if a discrete RV has been measured a fewer number of times
than the size of its set of possible values.

In the sequel, we intend to compare KSA [24] and IKSA on a fair basis.

3.2 The Kolmogorov-Smirnov as SCA Distinguisher

In a first stage of the SCA attack, an adversary has to estimate the leakage
probability density functions (PDFs) for different key-dependent models. In a
second stage, this adversary has to test the dependence of these models with
actual measurements. The problem of modeling a PDF from random samples of a
distribution is a well studied problem in statistics, referred to as PDF estimation.
A number of solutions exist, ranging from simple histograms to kernel density
estimation [7, 14] or data clustering [20].

Interestingly, an explicit PDF estimation is not always necessary and there
also exist statistical tools to compare two PDFs directly from their samples. The
Kolmogorov-Smirnov (KS) test is typical of such non-parametric distinguishers.
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In the context of SCA, the KSA test has been mentioned first in [19] as a
non-parametric statistical test to distinguish between distributions. Then, [24]
explores the effectiveness and efficiency of the Kolmogorov-Smirnov Analysis
(KSA) and compare it with the Mutual Information Analysis (MIA). It is mainly
used as a one-sample test where it allows the comparison of the frequency distri-
bution of a sample to some known distribution, such as a Gaussian distribution,
it can also be used as a two-sample test. As a two-sample test KSA distance com-
pares the distributions of values in the two data vectors X1 and X2 of length
n1 and n2, respectively. The null hypothesis for this test is that X1 and X2

have the same distribution. The alternative hypothesis is that they have differ-
ent distributions. The KSA distance is a simple measure which is defined as the
maximum value of the absolute difference between two cumulative distribution
functions (CDFs): DKSA = supx∈X |FX1(x) − FX2(x)|, where FX1 and FX2 are
the empirical CDFs (aka ECDFs). By definition a (univariate) ECDF is a step
function. It is the proportion of observed values of a RV, that are less than or
equal to some value. We can write it as: FX(x) = 1

N

∑N
i=1 Ixi≤x. In this formula,

the tuple {xi}i∈�1,N� denotes the values realized by the RV X . The function
I is an indicator, which is equal to one when the enclosed expression is true,
and zero otherwise. Like MIA, the KSA distinguisher measures the maximum
distance between the leakage (measurements) X and the hypothesis-dependent
conditional observations X | Y :

DKS = EY sup
x∈X

∣∣FX(x) − FX|Y (x)
∣∣ . (1)

The KSA returns the largest difference when the key is correct, i.e. when k = k�.
In contrast to KSA, IKSA consists in comparing the conditional leakages

between themselves, pairwise. The Inter-class KSA distinguisher can write as:

DIKSA =
1

2
· EY,Y ′ sup

x∈X

∣∣FX|Y (x) − FX|Y ′(x)
∣∣ , (2)

where Y ′ is an independent copy of Y . The 1/2 factor makes up for double counts
((Y, Y ′)↔ (Y ′, Y )).

3.3 Increasing the Fairness of the Estimations

We try here to eliminate or at least bound the errors listed in Sec. 3.1.

– The KS distance is shown to be unbiased by the Glivenko-Cantelli theo-
rem [22], (and furthermore there is a uniform convergence). This is never
true for entropy estimators (for instance, all the estimation methods pre-
sented in [14] are biased).

– We use an estimation algorithm that keeps the data unchanged (see Eqn. (1)
and (2)); Our estimation for KSA is the same as that of Whitnall, Oswald
and Mather [24].

– We quantity the success rate error. An upper bound of the variance of the
success rate error is shown below to behave as 1/

√
N , where N is the number

of experiments (also called “number of queries” in [17]).
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– We consider attacks with a noise large enough for the success rate to be well
below 100% for a number of queries smaller than the size of its definition
set.1

3.4 Bounding the Success Rate

Let Si denote i.i.d. Bernoulli variables that take binary values in {0, 1} with
probabilities p and 1 − p, where p is the success probability. The success rate
is defined as SR = 1

N

∑N
i=1 Si and has expectation E[SR] = p, i.e., SR is an

unbiased estimator of the success probability. According to the strong law of
large numbers the success rate converges to p almost surely: SR

a.s.−→ p. In
addition, E[SR] = p, i.e. SR is an unbiased estimator of the success rate. Now,
the standard deviation of SR is easily computed:

σ(SR) =
√

1
N2 ·N · σ2(Sj) =

√
p·(1−p)

N . (3)

Thus, the estimation error on the success rate is maximized when p is close to
1/2, and is minimized when p is almost equal to 0 or 1.

In practice, one wishes to compare the success rates of two distinguishers
by examining the values of intermediate p (i.e. p ≈ 1/2). Note that there is a
uniform majoration σ(SR) � 1

2
√
N
, but the error bars can be a function of p

and N . The criterion for analyzing experiments will be that errors bars never
overlap. Otherwise (see Fig. 1 for N = 10), more experiments must be done,
so as to reach a situation such as Fig. 1 for N = 200. The exact number of
experiments depends on the distinguishers to be relatively characterized. The
closer they are in success rate, the more experiments are required.

Fig. 1. Examples of success rates errors (Eqn. (3)) for various numbers of experiments

1 For instance, it can be seen in Fig. 2 that for the unprotected (resp. Boolean masked)
AES, the number of traces to recover the key successfully with probability > 80% is
about 2, 000 (resp. 70, 000), which is significantly greater than the number of possible
plaintexts (i.e. 2n = 256) for σ � 8.
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4 Simulation Results

In this section, we perform several attack experiments to compare KSA and
IKSA. Our methodology allows to observe how the different attacks behave
against unprotected reference and a masking scheme, and to compare their re-
sistance for different noise’s standard deviations.

In what follows, we consider a model in which the leakage variable X is ex-
pressed as a deterministic leakage function φ of the intermediate variable Y with
an independent additive noise N .

Target Leakage: We list hereafter the leakages we consider and the underlying
leaking variables:

– 1st-order leakage of an unprotected implementation: X = φ(Y ) + N ;

– 2nd-order leakage of 1st-order Boolean masking scheme [18]: X = φ(Y ⊕
M) + φ(M) + N , where the mask M is a uniformly distributed RV.

The leakage measurements have been simulated as samples of the random vari-
ables X with φ = HW 2 and assuming an additive white Gaussian noise N ∼
N (0, σ2). For both attacks, the sensitive variable Y was chosen to be an AES
S-box output of the form S(Z ⊕ k�), where S : F8

2 → F8
2 is SubBytes, Z is uni-

formly distributed over F8
2, and represents a varying plaintext byte and k� ∈ F8

2

represents the key byte to recover.

Side-Channel Distinguishers: We apply KSA and IKSA such as described in
previous sections. The guess key k is tested by estimating DKSA(X ; φ̂(Y (k)))

and DIKSA(X ; φ̂(Y (k))), respectively, where φ̂ is the prediction function. We
select the Hamming weight function as prediction function in our simulations.

Attack Simulation Results: For each investigated context, we compute the first-
order success rate of the attacks, over a set of 200 independent experiments
for several noise standard deviation values. For comparison purposes, we com-
pute the same metric for other univariate distinguishers: MIA, DPA [4], CPA,
VPA [11] and 2O-CPA [21]. Figure 2 summarizes the number of leakage mea-
surements required to observe a success rate of 90% in retrieving k� for those
SCA attacks. This figure is the compilation of success rates curves obtained for
different values of the noise standard deviation (see examples in Fig. 3).

The results presented in Fig. 2 show the significant gain of number of measure-
ments needed induced by IKSA compared to KSA attack. Our new distinguisher
compares favorably to KSA: the IKSA attack outperforms the KSA attack when
targeting the unprotected implementation or even when the Boolean masking
scheme is used for the protection. As expected, CPA performs well in both sce-
narios since the dependency between the leakage and the model is linear. But,

2 Assuming Hamming weight leakage model is realistic for implementations on simple
microcontrollers [12].
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Fig. 2. Evaluation of N90%, the number of messages to achieve a success rate greater
than 90%, according to the noise standard deviation when attacking unprotected (left)
and Boolean masking (right) AES implementation
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Fig. 3. Success rate of both IKSA and KSA distinguishers when attacking one substi-
tution box of an unprotected AES (left) and of a Boolean masking scheme (right)

we like to stress that we focus in this paper only on information-theoretic dis-
tinguishers which are generic.

In [13], a notion of asymptotic equivalence (noted “∼”) for side-channel dis-
tinguishers is introduced: two distinguishers are said equivalent if the number
of traces to overcome a given success rate (say 90%) decreases when the noise
variance increases. For example, the likelihood and the Pearson correlation are
equivalent in this sense. A look at N90% curves in Fig. 2 shows that other
univariate distinguishers exhibit a similar equivalence law:

– DPA ∼ CPA on an unprotected implementation (left);
– 2O-CPA ∼ VPA on a first-order masked implementation (right);
– KSA ∼ MIA on both implementations (already proved in [24]).

However, IKSA and KSA are not equivalent. The difference between IKSA and
KSA ∼ MIA is materialized in Fig. 2 as a circle in cyan color. To the best of
our knowledge, it is the first time that two distinguishers that do not become
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equivalent in the sense of [13] are put forward. Incidentally, we note that this
conclusion could not have been derived mathematically under the usual Gaussian
approximation, because under this approximation equivalence holds as σ → +∞.
This tends to show that the mutual and inter-class approaches are of a different
kind, even in a mono-variate context.

5 Conclusions and Perspectives

In this paper, we have introduced the new “inter-class” concept to distinguish be-
tween various partitionings. We applied this concept to the Kolmogorov-Smirnov
distance, resulting in IKSA. We also proposed a simulation-based fair framework
to compare the two distinguishers KSA and IKSA. Our framework takes in ac-
count the different sources of errors estimations. We used this framework to com-
pare KSA to IKSA using the success rate metric. Security metrics are clearly in
favor of IKSA even when the implementation is unprotected or protected using
a first-order Boolean masking countermeasure (with a linear leakage model).

An interesting question for the future work is to give a theoretical proof of
the soundness of the distinguishers. Also, we endeavour to find a mathematical
explanation why IKSA outperforms KSA for usual leakage functions.
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4. Bévan, R., Knudsen, E.W.: Ways to Enhance Differential Power Analysis. In: Lee,
P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 327–342. Springer, Hei-
delberg (2003)
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Abstract. Recently, composite-order bilinear pairing has been shown
to be useful in many cryptographic constructions. However, it is time-
costly to evaluate. This is because the composite order should be at least
1024bit and, hence, the elliptic curve group order n and base field be-
come too large, rendering the bilinear pairing algorithm itself too slow
to be practical (e.g., the Miller loop is Ω(n)). Thus, composite-order
computation easily becomes the bottleneck of a cryptographic construc-
tion, especially, in the case where many pairings need to be evaluated
at the same time. The existing solution to this problem that converts
composite-order pairings to prime-order ones is only valid for certain
constructions. In this paper, we leverage the huge number of threads
available on Graphics Processing Units (GPUs) to speed up composite-
order pairing computation. We investigate suitable SIMD algorithms for
base/extension field, elliptic curve and bilinear pairing computation as
well as mapping these algorithms into GPUs with careful considerations.
Experimental results show that our method achieves a record of 8.7ms
per pairing on a 80bit security level, which is a 20-fold speedup compared
to the state-of-the-art CPU implementation. This result also opens the
road to adopting higher security levels and using rich-resource paral-
lel platforms, which for example are available in cloud computing. For
example, we can achieve a record of 7 × 10−6 USD per pairing on the
Amazon cloud computing environment.

1 Introduction

A bilinear pairing ê : G×G→ GT is said to be over a composite-order group if the
order G and GT is composite. Pairings with this property are commonly used in
recent cryptographic constructions, specifically in functional encryption schemes,
e.g., [2,5,7]. On the other hand, evaluating a pairing over a composite-order group
is much more expensive compared to its prime-order counterpart. To achieve the
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same 80bit (AES) security level, the composite order should be at least 1024 bit
to be difficult to factorize, while a much smaller prime order (e.g., 160bit) is
enough. As a result, the underlying finite field, elliptic curve operations and the
pairing evaluating algorithm itself become much slower. An estimation [3] shows
that the composite-order pairing would be 50x times slower than its prime-
order counterpart. Thus, composite-order pairing computation easily becomes
the bottleneck of a cryptographic construction, especially in cases where multiple
such pairings need to be evaluated at the same time (e.g., decryption algorithm
in the scheme [5]). Furthermore, one typical scenario of functional encryption
schemes is the outsourced database scenario where the database server needs to
decrypt the whole encrypted data with particular decryption key that embeds
the query predicate. As a result, the database needs to evaluate mass amount of
composite-order parings as fast as possible.

There are some efforts to address this problem. Freeman [3] proposed a method
that can convert a scheme constructed with a composite-order pairing to a
prime-order pairing construction with the same functionality. However, Free-
man’s method is not black-box; it is only valid for certain cryptographic con-
structions. [8] points out that some schemes inherently require composite-order
groups and cannot be transformed mechanically by using Freeman’s method.

In this paper, we leverage the huge number of threads available on GPUs
(Graphics Processing Units) to speed up the composite-order bilinear pairing
computation. The proposed method considers parallelism both within and be-
tween pairings. To compute a pairing, we use a block of threads, while we
concurrently run many blocks to compute many pairings in parallel. We first
implemented 32bit modular addition, subtraction and multiplication on each
thread. Addition, subtraction and multiplication operations on finite field Fq are
conducted on a block of threads via Residue Number System (RNS) [6]. Multi-
plication and square operations on extension field Fq2 and addition and double
operations on an elliptic curve are implemented upon Fq operations, which in
turn are based on a block of threads. Putting all together, the bilinear pairing
algorithm [1] is implemented upon the Fq operations, Fq2 operations, and the
elliptic curve operations. Compared to the existing work, our method is trans-
parent and generic to cryptographic schemes. It can serve for all cryptographic
schemes constructed in composite-order pairings.

To the best of our knowledge, this work is the first on evaluation of bilinear
pairings over composite-order group on graphics card hardware. Porting the ex-
isting CPU-version code into the GPU is not trivial, due to the different levels
of parallelism provided by CPUs and GPUs. As a result, we need to find and
implement the optimized parallel (e.g., SIMD-fashion) algorithms for GPU that
evaluate arithmetic operations on base field, extension field, elliptic curve, and
the bilinear pairing algorithm itself. Different design decisions were made com-
pared to the CPU code. For example, Fq operations in our implementation is
done by a block of threads via RNS instead of the serialized method on CPU. Due
to RNS, we had to seek the formulas that can minimize the number of modular
reductions. Moreover, the multiplication inverse in the proposed implementation
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needs to be avoided which motivates us to choose a projective coordinate system
to represent elliptic curve points and to postpone the final powering operation
back to CPU. The experimental results show that the proposed method achieves
a 20-fold speedup on a 80bit security level, compared to the state-of-the-art im-
plementation [9] for CPUs. Specifically, it achieves a record of 8.7ms per pairing
on average, which is comparable with prime-order group pairings.

The rest of this paper is organized as follows. The arithmetic operations and
algorithms are presented in Section 2. Section 3 discusses the implementation
considerations on mapping the algorithms. The experimental results are shown
in Section 4.

2 Arithmetic Operations

We employ Barreto et al.’s algorithm [1] to evaluate bilinear pairing. Its details
(including the algorithm to evaluate gU,V ) can be found in the full version [11]
of this paper, which is also specifically designed for the composite-order pairing.
We note that we choose Barreto et al.’s algorithm because the flow of computa-
tions in it only depends on the system parameters but not on the input points.
Therefore, their algorithm fit well with SIMD fashion of GPUs.

The arithmetic operations required by Barreto et al.’s algorithm are the op-
erations in the extension field Fq2 and the elliptic curve E(Fq) which are in turn
based on operations in the base field Fq. Specifically, given a, b ∈ Fq2 ;P,Q ∈
E(Fq), we consider a× b, a2, P + Q and 2P operations.

The multiplication inverse in Fq is expensive in our GPU implementation,
which motivates us to avoid it. However, there are two occasions which may
require multiplication inverse. One is in the addition and double operations of
E(Fq). This can be avoided by using a projective coordinate system to represent
elliptic curve points and we do so. The second one is in the final powering of
bilinear pairing. However, we identify that the final powering is not a bottleneck
of the whole system. In fact, through the experiments, we find that the final
powering is 500+ times faster than the Miller’s loop on the CPU. Therefore, we
can leave the work of final powering (and therefore multiplication inverse in Fq)
to the CPU.

Furthermore, cryptographic constructions may only require the result of a
product of bilinear pairings [5]. In this case, we can calculate the multiple pairings
result (without the final power) on the GPU, then multiply them and do the
single final powering to get the result. In this way, the cost to compute the final
powering would be even ignored.

2.1 Base Field Operations

Motivated by the feasibility of performing fast and parallelized operations on
multi-core graphics hardware, we choose to represent the base field elements
of Fq in Residue Number System (RNS). In RNS, an n-length vector a =
(a1, a2, ..., an) is chosen such that gcd(ai, aj) = 1 for all i �= j and q < A where
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A =
∏n

i=1 ai is called the dynamic range of a. For any x, 0 ≤ x ≤ q, it can
be represented uniquely in RNS as 〈x〉a = (x mod a1, x mod a2, . . . , x mod an),
and recovered uniquely in the form of x mod A due to the Chinese Remainder
Theorem.

The purpose of using RNS is to break down some basic arithmetic oper-
ations that include ) ∈ {+,−,×} to small pieces which can be parallelized
and computed using the multiple cores of the GPU. That is, 〈x〉a ) 〈y〉a =
((x1 ) y1) mod a1, . . . , (xn ) yn) mod an) where 〈x〉a = (x1, . . . , xn) and 〈y〉a =
(y1, . . . , yn). Note that division (and therefore multiplication inverse in Fq) and
comparison in RNS are non-trivial and usually avoided from using as they do
not offer speed advantage over conventional methods.

It is known that the multiplication operation on Fq can be done in RNS
using the RNS Montgomery multiplication algorithm (see [6]). But there are few
papers dealing with addition and subtraction on Fq in RNS. If we see the RNS
Montgomery multiplication algorithm as the first step to compute multiplication
(the second step is the mod q operation), we can find a uniform way to handle
addition and subtraction in RNS as well. Basically, given two elements a, b ∈ Fq,
we calculate addition a + b, subtraction a − b and multiplication a× b without
any modular operations. The result may grow up; when it becomes larger than
a threshold, we employ an explicit modular reduction (i.e., mod q) to bring back
the result to the allowed range again. This idea makes the operations in base
field Fq simple and clear. Moreover, since the first step addition, subtraction
and multiplication are cheap in RNS, this method allows us to fully focus on the
most expensive part; that is, the second step: modular reduction.

To perform modular reduction, we employ the Montgomery Modular Reduc-
tion algorithm in RNS. Algorithm 1 shows the algorithm (derived from [6, Alg.
3], as we discussed). In the algorithm, the dynamic ranges of bases a and b are
denoted as A and B, respectively.Also note that the output of Algorithm 1 is
sB−1(modq) where the component B−1 should be removed in the conventional
way of using the Montgomery Multiplication algorithm (see [6]).

Algorithm 1. Montgomery Modular Reduction in Residue Number
Systems [6]

Input: 〈s〉a∪b.
Output: 〈w〉a∪b, where w < 2q and w ≡ sB−1 (mod q).
Ensure: gcd(B, q) = 1, gcd(A,B) = 1, 4q ≤ B and 2q ≤ A.

1 〈t〉b ← 〈s〉b · 〈−q−1〉b 〈t〉a∪b ⇐ 〈t〉b
2 〈u〉a ← 〈t〉a · 〈q〉a
3 〈v〉a ← 〈s〉a + 〈u〉a
4 〈w〉a ← 〈v〉a · 〈B−1〉a 〈w〉a ⇒ 〈w〉a∪b

5 return 〈w〉a∪b

The symbol ⇒ (or ⇐) represents a base extension algorithm [10,4]. Given
an RNS representation 〈x〉c, this algorithm outputs 〈x〉d for d �= c. The two
base extensions 〈t〉a∪b ⇐ 〈t〉b and 〈w〉a ⇒ 〈w〉a∪b are the most computationally
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expensive parts of Algorithm 1.The following theorem (whose proof is given
in the full version [11]) states the correctness of Algorithm 1.

Theorem 1. For any integer s such that 0 ≤ s < αq2, Algorithm 1 outputs
w such that 0 ≤ w < 2q if B > αq and A > 2q.

Therefore, when the result of a{+,−,×}b grows beyond threshold αq2, we can
reduce it back to w < 2q. Furthermore, we can control parameter α, such to
trade off between the number of reductions and the number of threads; a larger
α results a larger threshold, but B > αq will be larger as well, requiring a larger
number of bases to represent.

2.2 Extension Field Operations

Given an element a ∈ Fq2 , a can be written as x + iy where x, y ∈ Fq and
i2 = −1. The multiplication a× b :

a× b = (x1 + iy1)(x2 + iy2) = (x1x2 − y1y2) + i(x1y1 + x2y2)

which requires two reductions with four cheap multiplications and two cheap
additions in RNS. Since the number of reductions meets with the lower bound
(two), we do not resort to more advanced methods (e.g., Karatsuba multiplica-
tion). Similarly, squaring a2 requires two reductions as well.

a2 = (x2
1 − y21) + i2x1y1

2.3 Elliptic Curve Operations

As we discussed, we adopt the Jacobian projective coordinate system for rep-
resenting points in elliptic curve to avoid multiplication inverse in Fq. A point
P = (X,Y, Z) in Jacobian projective coordinates can be mapped to ( X

Z2 ,
Y
Z3 ) in

affine coordinates. As we will often use Z2, we store Z2 in the coordinates as
well and we call this modified Jacobian coordinates: (X,Y, Z, Z2). To make the
addition formula simpler, Q is also given in affine coordinates (X2, Y2).

As in the previous section, we are interested to find patterns like
∑

AiBi in
operations, to minimize the number of modular reductions. The refined formulas
to compute addition and double in E(Fq) are shown in Table 1 provided that
P = (X1, Y1, Z1, Z

2
1 ) and Q = (X2, Y2).

3 Implementation and Analysis

In this section, we discuss how the previous presented algorithms are mapped to
CUDA programming model. In CUDA programming model, programmers can
define the block size for their own kernel function. The block size defines how
many threads are within each block. CUDA guarantees that threads in the same
block can communicate and will execute on the same physical SM (streaming
Multiprocessors). A detailed description on SM can be found in the full version.
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Table 1. E(Fq) Operations

2(X1, Y1, Z1, Z
2
1 ) (X1, Y1, Z1, Z

2
1 ) + (X2, Y2)

Y 2
1 H = X2Z

2
1 −X1

S = 2Y 2
1 X1 e0 = Y2Z1

M = (Z2
1 )

2 + 3X2
1 r = Z2

1e0 − Y1

X3 = T = M2 − 2S H2 = (H)2

Y3 = −MT +MS − 8(Y 2
1 )

2 X3 = (r)2 − (HH2)− 2X1H
2

Z3 = 2Y1Z1 e1 = −X3 +X1H
2

Z2
3 = (Z3)

2 e2 = Y1H

Y3 = e1r − e2H
2

Z3 = Z1H

Z2
3 = (Z3)

2

In this paper, we consider 1024/2048 bit composite order (w.r.t. 80/112bit se-
curity levels). As the word length in GPU is 32 bits, we need at least 32/64 bases to
represent a 1024/2048bitnumber inRNS. In fact, the least numberwe can choose is
33/65. To complete Montgomery modular reduction (Algorithm 1), we need addi-
tional 32/64 bases. Moreover, we employ Shenoy’s base extension algorithmwhich
requires onemorebase.Therefore, for the 80bit security level,weneed33+33+1=67
bases to represent a singel element in Fq. Specifically, eachFq element is mapped to
a block of 67 threads. For each thread, a 32bit unsigned integer (UINT32) is used
to represent the element (under the particular base of that thread).

We don’t consider parallelism within the operations in the Fq2 and E(Fq),
as our goal is to compute as many as possible pairings at one time (a typical
goal in the server setting). Therefore, we simply represent Fq2 elements to be
a vector (x, y) where x, y are UINT32. Similarly, we represent P = (x, y, z, z2)
in E(Fq) (x, y, z are UINT32). Therefore, each block handles eactly one pairing
calculation. This grid/block arrangements also simplify the design.

The base field operations include a+b mod m, a−b mod m and a×b mod m
where a, b < m and m < 232. For example, to compute a + b mod m, there are
two cases: a + b < m and m ≤ a + b < 2m. In the second case, we have to
output a+ b−m and therefore we need test whether a+ b < m or not. However,
this case handling, depending on the input values, causes a branch divergence
on GPU. In the full version [11] of this paper, we present methods to minimize
the divergence for all the base field operations.

GPU also provides some memory to use. Some of it can be accessed only within
a thread; some can be shared among threads of the same block. Some may have
special (1D/2D) caches. We have to carefully choose which memory to use to
achieve an optimized performance. To allocate memory, the basic idea is that
we (try to) store all variables to the register file of their threads such that the
access time to them can be ignored. For the inter-thread data generated in the
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modular reduction algorithm, we use shared memory to store it, as the content
in a register file can be only used within one thread. Moreover, we also store 67
(and 131) bases and those one-dimensional precomputed values in the constant
memory to facilitate its 1D cache. Although the time for the fist access to them
is large (400-600 cycles), the overall access time could be small as the algorithms
and their threads fetch them frequently. For example, in each algorithm, the first
thing is to load the associated base of that thread to the register. We also store
the 2D array of the base extension algorithm to the texture memory so that we
can benefit from the spatial locality and the 2D cache of the texture memory.
Through the CUDA profiler’s report, we verified that we indeed exploit caching
well and the cache-hit rate is very high.

4 Experimental Results

The experiments were conducted on NVIDIA GeForce GTX 285, GTX 480 and
Amazon EC2 Cloud 1 (equipped with two Tesla M2050). Specifically, GTX
285, 480 and EC2 have 240, 480 and 448x2 cores separately where each with
1.476GHz, 1.4GHz and 1.15GHz clock. Moreover, GTX 285, 480, EC2 also have
1GB, 1.5GB and 3GBx2 graphical memory on board. Their CUDA versions are
1.3 (GT200), 2.0 (Fermi) and 2.0 (Fermi).

We incorporateAmazonEC2 cloudbecause it is a popularway to instantiate the
outsourced database scenario that requiresmass evaluation of composite-order bi-
linear pairings.We study the real price paid to the EC2 cloud to evaluate each pair-
ing. For comparison, we also choose Pairing-Based Cryptography (PBC) library
version 0.5.11 (built uponGMP library2 version 5.0.1) as the benchmark that runs
on Intel Core 2 E8300CPUat 2.83GHz and 3GBmemory. GMP library is designed
to be as fast as possible with highly optimized assembly code. Through the exper-
iments, we choose random points P,Q ∈ E(Fq) as the input to evaluate ê(P,Q).

We compare the running time on CPU and GPUs. The results are shown in
Fig. 1. The GPUs method seems not to have advantage when the number of
pairings is small (< 32), as the hardware is not fully occupied. With the number
becoming larger, the speedup in running time increases. This indicates that the
GPUs method is especially suitable for the case that multiple composite-order
pairings should be evaluated at the same time.

Specifically, in the 80bit security level, GTX 285, M2050 (Amazon EC2) and
GTX 480 achieve a running time of 17.4ms, 11.9ms and 8.7ms per pairing re-
spectively, which is 9.6, 14.3 and 19.6 times faster respectively compared to the
state-of-the-art CPU implementation (171.1ms per pairing). We note that this
result has been comparable with prime-order pairing implementation on CPU
(see the dashed lines in Fig. 1), where both A and D179 [9] pairing are for
80bit security and A is the fastest. With 2.1 USD charged per hour, 11.9ms on
Amazon EC2 also means that the cost to compute a single pairing is as low as
(2.1× 11.9)/(60× 60× 1000) = 7× 10−6 USD.

1 http://aws.amazon.com/ec2/
2 http://gmplib.org/

http://aws.amazon.com/ec2/
http://gmplib.org/
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Abstract. To enhance graphical passwords, we have developed a system of click-
draw based graphical password scheme (named CD-GPS) that combined current
graphical password techniques and evaluated its performance with human users.
In real settings, we identify that the effect of tolerance is a key factor affecting
the usability of our scheme, however, we have not explored its specific effect in
our previous work. In this paper, we therefore conduct a user study to investigate
the effect of tolerance on creating and confirming the click-draw based graphical
passwords. In particular, we conduct two experiments with totally 60 participants
in the user study. The results show that accurate memory and reproduction for
the CD-GPS scheme can be significantly reduced when the tolerance is greatly
decreased (e.g., 12×12 pixels). In the end, we further discuss how to select an
appropriate tolerance for the scheme of CD-GPS in real deployment.

Keywords: Graphical Password, Authentication, Usable Security, Click Draw,
Tolerance Evaluation, Human Factors.

1 Introduction

User authentication is the process to verify whether a user is allowed to access to a par-
ticular system or resource. Traditionally, alphanumeric passwords (or called text-based
passwords) is a widely used method in authenticating users, however, the alphanumeric
passwords have some drawbacks with regard to both usability and security [1,2]. For
instance, currently, a secure text-based password should be 8 characters or longer, ran-
dom with upper-case, lower case characters and special characters. This kind of pass-
words is meaningless and it is hard for human users to remember so that users are more
likely to choose simple and short password instead [1]. These usability problems can be
translated directly into security problems [3].

To mitigate the drawbacks of the alphanumeric passwords, graphical passwords have
been proposed as an alternative to the text-based passwords. The psychology stud-
ies [4,6] showed that human brain was better at remembering and recognizing images
than text. Moreover, several studies [8,5] also reported positive results that users were
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able to remember their graphical passwords accurately after long periods of time. Gen-
erally, graphical passwords can be classified into three categories in terms of the in-
put types [15]: click-based graphical passwords, choice-based graphical passwords and
draw-based graphical passwords. The click-based graphical passwords (e.g., [9], [11])
require a user to click on an object or element of an image, the choice-based graphical
passwords (e.g., [12], [13]) require a user to select a group of images in an ordered
sequence, and the draw-based graphical passwords (e.g., [16], [20]) require a user to
draw some secrets on an image for authentication.

However, there are still some intrinsic limitations regarding to each category of
the above graphical password schemes (e.g., ‘hot-spot’ issue [17]). Relevant security
studies about graphical passwords can be found in [7], [14] and [19]. In our previous
work [10], we proposed and developed a click-draw based graphical password scheme
(called CD-GPS) with the purpose of better enhancing the graphical passwords by com-
bining the above three techniques. In real applications, we notice that the effect of
tolerance is a key factor affecting the usability of the scheme.

In this paper, we therefore conduct another user study to investigate the effect of tol-
erance on creating and confirming the CD-GPS passwords. In the scheme of CD-GPS,
with different values of N , an image can be divided into different tolerance sizes. In
particular, we performed two experiments with totally 60 participants. By analyzing the
experimental results, we find that accurate memory and reproduction for the scheme of
CD-GPS can be significantly reduced when the tolerance size is greatly decreased. For
a pixel tolerance of about 12× 12 (the corresponding value of N is 32), it is extremely
hard for users to reproduce their graphical passwords accurately since a lot of click er-
rors are occurred. Based on the results of user study, we point out that an appropriate
value of N should be smaller than 32.

The rest of this paper is organized as follows: in Section 2, we introduce background
information of the CD-GPS scheme; Section 3 details our experimental methodol-
ogy; the user study and relevant results are described in Section 4; finally, Section 5
concludes our work.

2 Background

In our previous work [10], we proposed and developed a prototype of click-draw based
graphical password scheme (called CD-GPS) aiming to better enhance the graphical
passwords in both usability and security. There are mainly two steps in the scheme:
image selection and secret drawing.

Generally, in the first step of image selection, users are required to select some im-
ages from an image pool in a story ordered sequence. Story memorization can help
users to better remember their selected images and ordered sequence [12]. Then, users
are required to further select one or several images for drawing their secrets. In the step
of secret drawing, the CD-GPS scheme divides an image into a N × N table with ap-
propriate pixel tolerance. Users are required to click-draw their secrets, that is, using a
series of clicks to construct their secrets (e.g., a digital number, a letter).

In our developed example system, the image pool contains 10 everyday images (e.g.,
images of cartoon characters, images of landscape, etc).
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Table 1. The values of N and the relevant smallest tolerance sizes

Value of N Tolerance size (pixel) Size in cm2

20 18.75 × 18.75 0.45
24 15.6× 15.6 0.39
32 11.7× 11.7 0.27

– In the first step, users are required to select 4 images out of the image pool and
remember the sequence like a story, then users should further choose 1 image for
click-drawing their secrets.

– In the following step, the example system set N = 16 and divided an image into
a 16 × 16 table with 256 clickable squares. Thus, the smallest pixel tolerance is
23× 23. Users can click-draw their secrets by clicking a series of clickable squares
within the 16× 16 table.

The previous user study showed that participants preferred our scheme with respect to
both security and usability, and satisfied with this pixel tolerance of 23× 23 with a high
success rate of creation, confirmation and login respectively.

3 User Study

In this section, we first introduce several tolerance sizes that are evaluated in the user
study and we then give an in-depth description of the experimental methodology.

3.1 Tolerance Size

The example system used in this user study is the same as in [10] so that all the images
have the pixel size of 500× 375. As described above, the system will divide an image
into a N×N table in the step of secret drawing (the system used a technique of floating
tolerance in balancing the table). Thus, the value of N can greatly affect the tolerance
size of a clickable square. For instance, in our previous work, we set N = 16, therefore,
the pixel size of the smallest clickable square of an image is 23× 23. Our previous user
study showed that participants were comfortable with this tolerance size.

In the user study, referred to the work [18], we set N to three different values such
as 20, 24 and 32. In general, a bigger value of N means a smaller tolerance size of
clickable squares. The values of N and corresponding tolerance sizes are described in
Table 1. Three values of N (e.g., 20, 24 and 32) are selected because they are respec-
tively increased by one-quarter, one-half and one compared to the value of 16 that we
used in our previous work. With the increase of N , the pixel tolerance is respectively
decreased to 18.75× 18.75, 15.6× 15.6 and 11.7× 11.7.

3.2 Experimental Methodology

We conducted an in-lab user study which consisted of two experiments (named Exper-
iment1 and Experiment2) with totally 60 participants those who were interested in our
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Table 2. Participants’ information in the two experiments respectively

Demographic Male Female

Experiment1 12 8
Experiment2 23 17

work. All participants are university students with diverse backgrounds (e.g., 20 under-
graduate and 40 graduate students) and 20 participants (8 females and 12 males) joined
our previous studies. In total, 25 participants are female while the remaining 35 partic-
ipants are male. In addition, 28 of them are from the department of computer science
(not security related major) and the others are from other science and management ma-
jors. All the participants are regular computer and web users, and ranged in age from
19 to 35 years.

Before the experiments, we gave an in-depth description of the CD-GPS scheme,
introduced our objectives of the user study and showed them how to use the example
system. Each participant could finish 2 practice trials to get familiar with the example
system before the real trials. To investigate the effect of tolerance on creating and con-
firming the click-draw based graphical passwords, we divided the participants into two
experiments as below:

– Experiment1: This experiment involved 20 participants (by means of random selec-
tion) and only required all participants to click-draw their secrets on the same image
(an image of cartoon characters that was very popular in our previous study). Each
participant should create and confirm up to 5 CD-GPS passwords corresponding to
the three tolerance sizes respectively.

– Experiment2: This experiment involved the remaining 40 participants and all these
participants were required to regularly use the two steps (image selection and se-
cret drawing) to create and confirm their CD-GPS passwords. Similar to the Ex-
periment1, each participant should complete 5 CD-GPS passwords for the three
tolerance sizes respectively.

The detailed participants’ information is shown in Table 2. For the Experiment1, we at-
tempt to explore the effect of tolerance to users on creating and confirming their graph-
ical passwords on the same image. On the other hand, in the Experiment2, we aim to
investigate the effect of tolerance on the regular use of the CD-GPS scheme and identify
the minimum affordable pixel tolerance.

For each experiment, we later gave a set of questions to all participants and collected
their feedback about the tolerance sizes. Ten-point Likert scales were used in each
question where 1-score indicates strong disagreement and 10-score indicates strong
agreement. We denoted 5-score as the statement “It is hard to say” for a participant.

4 Results and Analysis

In this section, we describe the results of the two experiments (Experiment1 and Exper-
iment2) and analyze the participants’ feedback.
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Table 3. The success rate of CD-GPS creation and confirmation in the Experiment1 for the three
tolerance sizes

Success Rate 18.75 × 18.75 pixels 15.6 × 15.6 pixels 11.7 × 11.7 pixels

Creation 88/100 (88%) 80/100 (80%) 73/100 (73%)
Confirmation 85/100 (85%) 75/100 (75%) 65/100 (65%)

Table 4. Several questions and relevant scores in the Experiment1

Questions Score (average)

1. I could easily create a password with the pixel tolerance of 18.75 × 18.75 8.5
2. I could easily create a password with the pixel tolerance of 15.6 × 15.6 8.0
3. I could easily create a password with the pixel tolerance of 11.7 × 11.7 7.1
4. I could easily confirm my password with the pixel tolerance of 18.75 × 18.75 8.5
5. I could easily confirm my password with the pixel tolerance of 15.6× 15.6 7.8
6. I could easily confirm my password with the pixel tolerance of 11.7× 11.7 7.1

4.1 Experiment1

In this experiment, each participant should create and confirm 5 CD-GPS passwords.
Totally 100 trails have been recorded during the experiment. The success rates for these
two phases are shown in Table 3. The success rate in the phase of Creation means
that participants created their passwords without restarting while the success rate in
the phase of Confirmation means that participants confirmed their passwords without
restarting and failed attempts. In Table 3, it is easily visible that the success rate is
greatly dropped down with the decrease of the tolerance size (i.e., from 88% to 73% in
the phase of Creation, from 85% to 65% in the phase of Confirmation). The main reason
is that by reducing the tolerance sizes, participants were hard to accurately remember
and reproduce their secrets. For instance, click errors could be significantly increased.

After the experiment, we gave relevant questions to participants and collected their
feedback. The questions and average scores are presented in Table 4. The average scores
are simply average values calculated by the feedback of all participants. In Table 4, it is
easily visible that participants were satisfied with the pixel tolerance of 18.75× 18.75
since the questions of No.1 and No.4 received a high average score of 8.5 respectively.
With regard to the other two tolerance sizes of 15.6× 15.6 and 11.7× 11.7, the average
scores were greatly decreased. During the experiment, most participants reflected that
they considered the pixel tolerance of 15.6 × 15.6 was still fine but it was very diffi-
cult for them to use the CD-GPS scheme if the pixel tolerance was only 11.7 × 11.7.
Therefore, the experimental results show that by increasing the value of N , users could
suffer from the problem of drawing reproduction especially when the pixel tolerance is
decreased to 11.7× 11.7.

4.2 Experiment2

The Experiment2 involved the remaining 40 participants and each participant should
complete 5 CD-GPS passwords. Each trial contains two phases: Creation and Confir-
mation. In this experiment, we attempt to investigate the effect of tolerance on affecting
the regular use of CD-GPS.
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Table 5. The success rate of CD-GPS creation and confirmation in the Experiment2 for the three
tolerance sizes

Success Rate 18.75 × 18.75 pixels 15.6 × 15.6 pixels 11.7 × 11.7 pixels

Creation 188/200 (94.0%) 173/200 (86.5%) 156/200 (78.0%)
Confirmation 179/200 (89.5%) 166/200 (83.0%) 140/200 (70.0%)

Table 6. Several questions and relevant scores in the Experiment2

Questions Score (average)

1. I could easily create and confirm a password in the tolerance of 18.75 × 18.75. 8.3
2. I could easily create and confirm a password in the tolerance of 15.6 × 15.6. 7.2
3. I could easily create and confirm a password in the tolerance of 11.7 × 11.7. 6.5
4. I prefer the pixel tolerance of 18.75 × 18.75 in CD-GPS scheme. 9.4
5. I prefer the pixel tolerance of 15.6 × 15.6 in CD-GPS scheme. 8.2
6. I prefer the pixel tolerance of 11.7 × 11.7 in CD-GPS scheme. 5.7

Up to 200 trials have been recorded during this experiment. The success rates for
these two phases are shown in Table 5. It is easily visible that participants can achieve
a high success rate (94% for the phase of Creation and 89.5% for the phase of Confir-
mation) with the pixel tolerance of 18.75 × 18.75. The same as the Experiment1, the
success rate was quickly decreased when the pixel tolerance was reduced to 15.6×15.6
and especially to 11.7× 11.7. For the pixel tolerance of 11.7× 11.7, the succuss rates
were only 78% and 70% for the phases of Creation and Confirmation respectively. Most
patricians indicated that it was very difficult for them to click on the correct clickable
squares with the pixel tolerance of 11.7× 11.7 so that many click errors were occurred.
These click errors cost most participants a lot of time in click-drawing their secrets
again, which was unaffordable for a regular user.

After the experiment, we also gave relevant questions to all participants and collected
their feedback. The questions and average scores are described in Table 6. For the No.1
question, the average score of 8.3 showed that most participants were satisfied with the
pixel tolerance of 18.75 × 18.75. The scores of the No.2 question was 7.2 while the
No.3 question only obtained a score of 6.5 which indicated that the pixel tolerance of
11.7× 11.7 was not suitable in real deployment.

By comparing the scores in the No.4, No.5 and No.6 questions, we can find that most
participants preferred the pixel tolerance of 18.75×18.75 (obtaining a very high score of
9.4) in that they can easily and accurately create and confirm their CD-GPS passwords.
In addition, participants also gave a score of 8.2 for the No.5 question which indicated
that they felt the pixel tolerance of 15.6×15.6 was still affordable in actual application.
The low score of 5.7 for the No.6 question showed that the pixel tolerance of 11.7×11.7
was not appropriate in real settings.

On the whole, the experimental results indicate that the value of N should be smaller
than 32. The usability of CD-GPS scheme will be greatly reduced when using a small
pixel tolerance of around 11.7× 11.7.
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4.3 Discussion

Based on the two experiments, we can find that determining an appropriate value of N
in the CD-GPS scheme is very crucial. To select an appropriate value, we should make
a balance between usability and security.

Usability. This factor is very important according to our experimental results. In
addition, some previous work [3,18] has shown that a lot of usability problems tended
to translate directly into security problems. Therefore, in the scheme of CD-GPS, we
should first ensure that users can use the scheme comfortably. For a comfortable and
convenient graphical password scheme, users are more likely to create more secure
passwords. The above two experiments showed that it was not comfortable to users if
the value of N reached 32, so that a smaller value of N (i.e., smaller than 32) should be
used in real settings.

This is another important factor for a graphical password. By safeguarding the us-
ability, a more secure graphical password scheme is desirable. In terms of our previous
work [10], the password space of the CD-GPS scheme can be greatly enlarged by in-
creasing the value of N . Take N = 16 as an example, the password space of CD-GPS
is 5.34 × 1018 with 6 clicks on the selected image, which is very larger than the text-
based passwords with 8 characters over a 64-character alphabet (the password space is
2.81 × 1014). The calculation of the password space can be referred to our previous
work [10]. Therefore, we believe that the value N of 16, 20 and 24 can provide large
enough password space in real settings.

Overall, the value of N should be smaller than 32 and can be selected according to
the specific work environment. For example, if a very high security level is desirable
(i.e., in a bank), we can select the value of N to 24. On the other hand, in a regular
environment, we can choose the value of N to 16 or 20.

5 Concluding Remarks

In this paper, we mainly attempt to investigate the effect of tolerance on creating and
confirming the click-draw based graphical passwords. We conducted two experiments
(Experiment1 and Experiment2) with totally 60 participants. From the experimental
results, we find that accurate memory and reproduction for the scheme of CD-GPS
can be significantly reduced when the pixel tolerance is greatly decreased (e.g., 11.7×
11.7 pixels). With this small tolerance size, users cannot accurately click on the right
clickable squares. By balancing both usability and security, we find that an appropriate
value of N should be smaller than 32. The value of 16, 20 and 24 can all provide suitable
properties in the aspect of both usability and security.

Our work is mainly conducted by means of the click-draw based graphical password
scheme. Future work could include conducting another user study with larger and more
varied participants to validate our results, and exploring more specific values of N . In
addition, future work could also include investigating the effect of tolerance on other
click-related graphical password schemes and identifying the relationships.

Acknowledgments. We thank all the participants for their hard work in our user study
and all anonymous reviewers for their valuable comments.
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Abstract. Region Copy-Move forgery, in which a part of the image is copied and 
then pasted to another part of the same image. Some important goals and sensi-
tive objects can be hidden imperceptibly; this forgery is at the rather important 
position in a variety of forensic technology research. But the literatures published 
merely are confined without geometric distortion. And some algorithms focus on 
the special forgery’s model. In order to improve the accuracy of the current al-
gorithms, a new detection is proposed by constructing the circles rather than the 
traditional ways which were based on the square. The seven characterizes are 
constructed according to singular value decomposition. Using main rotation an-
gle based on the radial moment and the proportion of constraint remove the error 
mark. Finally the dictionary-ordering method is applied to save the 
time-consuming. The experiment shows that this newly characteristic can locate 
the area where was tampered. 

Keywords: Blind image forensics, Rotation invariant, Singular value  
decomposition, Radial moment, Copy-Rotate-Move Forgery. 

1 Introduction 

With the wide application of powerful digital image processing software, such as 
Photoshop .It has been becoming easier to create forgeries from one or more images. 
The effective algorithm must be researched and applied to judge whether the image has 
been modified. Meanwhile the current researches focus on the passive authentication, 
which also called blind forensic, is the method to make authentication without any help 
of the auxiliary information. 

In recent years, some scholars have started to develop passive techniques for de-
tecting various methods of image forgeries. Fridrich proposed several statistical 
methods for detecting forgeries based on pattern noise of cameras’ sensor[1,2] Popecu 
and Farid presented method based on color filter interpolation and re-sampling[3,4]. 
Luo gave a proper model for region-duplication forgery, where the seven features are 
calculated for four basic constraints of region-duplication forgery, including two 
connectivity regions and two un-intersection regions [5]. 

The methods mentioned above have a limitation, when the copy region is rotated, the 
manner choosing square image blocks will fail because of dislocation. We propose a 
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new manner matching the blocks based on the circle. Singular value decomposition is 
used to extract the image blocks’ characteristic. 

The rest of the paper is organized as follows. In section 2, the new forgery model is 
introduced. The mechanism of feature extraction and the detection method are  
presented in detail in Section 3. In section 4, some experimental results and the  
corresponding analysis is presented. Finally, we concluded in Section 5. 

2 Proposed Model  

It is known that we can hardly find the two same parts in one natural image. However 
when the regions-rotate-duplication happened, two or more similar parts must be 
existed, although it hardly is seen by naked eyes. 

Before the model is given, two hypotheses are introduced in advance. 

1. The copy region must be the no-holes and connected. 
2. The copy region and paste region have no public set, and their Euclidean distance 

also is greater than the certain value. 
3. The model of Copy-rotate-duplication is given as follows 
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Here, T denotes the transform matrix of copy regions, ),( yx ΔΔ denotes the transla-

tion value, h denotes the fuzzy operation and fuzzy core, and n is the noise and other 

operations. Our aim is to search the cR and oR in one image. 

3 Proposed Detection Scheme 

3.1 Preprocessing 

Gaussian pyramid is a common decomposition way often used in image processing, the 
technique involves creating a series of mage which are weighted down using a 
Gaussian average and scaled down, when the technique is used multiple times. it cre-
ates a stack of successively smaller images, with each pixel containing a local average 
that corresponds to a pixel neighborhood on a lower level of the pyramid. Fig 2 gives 
the illustration about Gaussian pyramid decomposition. 

Let the original image be 0I , which is taken as the zero level, the iI level image of 

Gaussian pyramid can be obtained by making the 1−iI  level image convoluted by  

a window function ),( nmw  with low-pass characteristics, and doing the down 

sampling after the convolution. The process can be described as: 
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Here, the window function w is also called the weight function or generation kernel, 
whose size is usually chosen as 5*5 .The Gaussian pyramid decomposition can reduce 
the complexity of the detection algorithm. 

3.2 Definition and Characteristics of SVD 

Definition: n*mA is a matrix (assume nm ≥ ), the matrix nmU * , nmV * and diagonal 

matrix nm*ℑ can satisfies the following equation. TVUA ℑ= , where 

)...).(0,0,0,,......,,( 2121 kkdiag λλλλλλ ≥≥≥=ℑ , 1 2( , ,......, )mU U U U= ，

1 2( , ,......, )mV V V V=  and ),...2,1(2 kii =λ  is the Eigen values of the matrix 

TAA and AAT , iλ is called the singular of A . For any real matrix A , 

kλλλ ≥≥≥ ......21 .In singular value decomposition, diagonal matrix nm*ℑ  is 

unique. 

Proposition 1: Assume that there are two real matrixes nm*A
,

nm
nm RB *

* ∈
, their 

singular values are ni λλλ ′≥≥′≥′ ......2 , nλλλ ′′≥≥′′≥′′ ......21 respectively, for any 

unitarily invariant norm on 
nmR *

satisfies 

ABdiag nn −≤′−′′′−′′′−′′ ),......,,( 2211 λλλλλλ              (3) 

Because singular value has a good stability, it is not sensitive to noise and lighting 
condition for grayscale change.  
 

Proposition 2: For element orthogonal matrix, such as TVVI 2Q −= , where I  

denotes the unit matrix,V  is a real vector, whose length is 1 and dimensions is n . For 
rotate operation, the rotation transform matrix can decompose multiplication with two 
orthogonal matrixes. For the real matrix A , rotating it means that A * P , P is an 
orthogonal matrix. 

TTT PAApPAPA )())(( =    (4)

Where 1−= PPT , because TAA and TT PAAP )( have a same Eigen values. There-

fore we can say the singular value is robust for rotation. 
 
Proposition 3: Translation is equivalent to replacing two rows or columns, exchanging 
the jthith, of matrix means multiplying the following matrix on the left of A, 

T
jijiji eeeeII ))((, −−−=     (5)
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Where ie and je  denote the ith  and jth  rows of matrix respectively. After transla-

tion, A became AI ji , , meanwhile ij
T

jiji
T III ,,, == . The characteristic equation of 

matrix (
T

jiji AIAI )()( ,, ) is as following: 

0))(I( ,, =− IAIA T
jiji λ   (6)

IAAIIIAAIIIAAI T
jiji

T
ji

T
jiji

TT
ji λλλ −=×−×=− ,,,,,, 。We can conclude that sin-

gular value is also robust for translation. Singular value decomposition possesses some 
variances on algebra and geometry. It not only provides a theoretical basis of image as 
an algebraic feature, but also for the copy-rotate-duplication detection. 

3.3 Rotation Estimation Based on the Radial Moment 

In copy-duplication detection, copy region and paste region have the same translation 
direction, many papers proposed several methods based on the main translation vector. 
While In copy-rotate-duplication detection, those methods almost failed. In this paper, 
according to the fact that the blocks in paste region have the same rotate parameters 
relative to the copy region, calculating the rotate parameter using the radial moment. 
Definition of radial moment:  

 
∞

= =

=
0

2

0

),(sincos),,,(
r

ilqpk drdrgerlqpk
π

θ

θ θθθθψ              (7) 

where ),( θr denotes polar coordinates of image pixels， ),( θrg presents the distri-

bution of brightness in image. lqpk ,,, must be integers，and qp, are non-negative. 

Assume α is the angle of rotation of image and s is the scale factor, the polar co-
ordinates will be: 

rsr *=′ , αθθ +=′                           (8) 
The raw image and rotated image meet: 

dk
ikdlk

dk es ,, ψψ +=′                            (9) 

While in computing, 1=s , We can easily get the information about rotation parameter. 

3.4 Forgery Detection 

Firstly, the doubtful image is decomposed by Gaussian pyramid, and the produced 
sub-image is in low frequency is chosen to overcome the possible distortion. Then the 
sub-image is divided into many circle blocks overlapping each other, the features of 
singular values are extracted from the circle blocks, used as the matching features. The 
dictionary sort is applied to reduce complexity of researching space. We use a main 
rotation angle to remove the mistaking blocks. Finally the morphology is used to fill the 
hole-regions. Area radio is helpful to improve the accurate of algorithm. The detailed 
steps of algorithm are as follows: 
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1. Note regarding color images: In both Extra and Robust Match, if the analyzed 
image is a color image, before proceeding with further analysis, it is first converted to a 

gray image using the standard formula BGRI 114.0587.0299.0 ++= , where n*mI  

denotes the image, its size is nm * . 

2. The image baI *′  is decomposed by Gaussian pyramid, 

       )2log,2logmin(,.,2,1,2/,2/ nmii inbma === . 
Suppose the size of the slider window is r*r . In actual detection, the size of forgery 

area is usually bigger than windows’ size, considering the time-consuming and accu-
racy of algorithm. The step of slider windows is 2/r , the numbers of blocks 

are )1/2(*)1/2( −−= rbraN . 

3.The features are extracted by singular value decomposition of each image block, 

and the singular value vector is construct, which is denoted by ),.......,( 21 rxxxX = . 

4. The all eigenvectors are stored in the matrix A, and the rows of A are lexico-
graphically sorted as before. Then we compute the similarity of the two neighboring 

Eigenvectors. It can be measured by the Euclidean distance jid , . 
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jkik xx , denotes the different eigenvectors respectively, and n is the dimension of the 

eigenvector. 

5. According to the experience threshold. optd Thus, the algorithm also looks at the 

mutual positions of each block pair and outputs a specific block pair only if there are 
many other matching pairs in the same mutual position (the have the same rotate angle). 
Towards this goal ,if consecutive rows are found, the algorithm stores the positions of 
the matching blocks in a separate list(for example, the coordinates of the upper left 
pixel of  a block can be taken as its position)and increments a rotation angle counter 
C ,the rotation angle θ  between the two matching blocks is calculated by the radial 

moment. Then round θ  to the integer and compute 1)()( += θθ sumsum . The 

main rotate angle must be the maximum value of sum in all angles，calibrate the 
neighboring image blocks which meet the above conditions. Finally the holes doubtful 
region is filled by morphology, such as dilate and erosion. 

6. Compute the area of each the connected region, all the regions is sorted by the size 

of the regions, the result is denoted by S , where ),......,,( 21 NsssS = , N is a 

number of regions. We calculate the radio of two consecutive regions. 
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The copy-rotate-duplication must be hold below condition: 

),1(,,,,,k Nlklklkl ∈≠<∀∃ ρρρρ , where k is the index of the copy-rotate- 

duplication region. 



362 Y. Liu, M. Huang, and B. Lin 

4 Experimental Results 

4.1 Effectiveness of Algorithm 

       

   1)raw                  2)forgery             3)detecting result 
 

        

4)raw               5)forgery              6)detecting result    

Fig. 1. Detection result of Copy Move Forgery regions 

In the first part of this section, we apply the method to several examples. An experi-
mental version of the proposed method was implemented in Matlab. Here test images 
have resolution of 512*512. Parameters of the method were set 8=r , 25.1=d , 

.7=N In all experiments, the mean of additive Gaussian noise is zero and intensity 

levels are in the range 255-0 . The raw images are shown in Fig 1  1(row) and 4(row) 
respectively. The respective forgery images are shown in Fig 1 2(forgery) and 
5(forgery). Outcomes of the method are shown in Fig 1 3(detecting result) and 
6(detecting result). 

4.2 Comparison with Relative Literatures 

Compared to [1, 3, 6], the proposed method uses a more information about rotation. 
Proposed approaches literatures are not robust for the rotation operation. Meanwhile, 
the larger number of image blocks need more time and memory. 

Table 1 show that our method proposed a new detection algorithm based on the 
Gaussian pyramid decomposition and singular value decomposition. The radial mo-
ment also plays a very important role in the proposed method, the main rotation angle 
 



 Robust Evidence Detection of Copy-Rotate-Move Forgery in Image 363 

Table 1. Comparison result of reference’ approaches with proposed approaches 

algorithm Eigenvectors Number 
blocks 

dimension rotation 

Fridrich DCT&quantizet
ion 

255025 64 no 

Farid PCA 255025 32 no 
Wu q DWT&SVD 62001 8 no 

Our method GPD&SVD 3969 7 yes 

 
firstly used to remove the mismatch blocks. Thanks to the important characteristic of 
singular value decomposition, it provides a theoretical basis of image as algebraic 
features. Meanwhile its uniqueness and stability also provide a theoretical basis for  
the copy-rotate-duplication detection. Experiment shows that the proposed method  
is robust for additive Gaussian noise and retouching, locating the forgery regions 
accurately. 

5 Conclusion 

Our proposed does not work well in the copy-scale-duplication cases. All the literatures 
based on the overlapping blocks hardly detect this forgery. In recent days, a method 
called SIFT and its improved versions have been introduced to detect this forgery [7, 8, 
9, 10], which base on the pixels matching. While this method still has some faults since 
not all forgery regions are full of feature points and eigenvectors have high dimensions, 
and the process of matching need much more time. In addition, the image segment and 
region growing will be applied .These also increase the difficulty of detection. Facing 
the various forgery methods, it is hard to detect with one or two methods, we must 
depend on the synthesized method. Our future work is to focus on the new detection for 
copy-scale-duplication.  
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Abstract. A new Man-in-the-Middle (MitM) attack called SSLStrip
poses a serious threat to the security of secure socket layer protocol.
Although some researchers have presented some schemes to resist such
attack, until now there is still no practical countermeasure. To withstand
SSLStrip attack, in this paper we propose a scheme named Cookie-Proxy,
including a secure cookie protocol and a new topology structure. The
topology structure is composed of a proxy pattern and a reverse proxy
pattern. Experiment results and formal security proof using SVO logic
show that our scheme is effective to prevent SSLStrip attack. Besides,
our scheme spends little extra time cost and little extra communication
cost comparing with previous secure cookie protocols.

Keywords: Secure Cookie Protocol, MitM, Defending against SSLStrip,
SSL, Proxy Pattern, SVO logic.

1 Introduction

Recently, a new Man-in-the-Middle (MitM) attack called SSLStrip [1] is intro-
duced at the Blackhat conference by Moxie Marlinspike in 2009. It attacks secure
socket layer protocol, the most widely applied security mechanism which makes
secure communication established between two parties over the Internet. Most
seriously, this attack exploits user’s browsing habits, rather than a technical
pitfall in the protocol, to strongly defeat the SSL security. At a high level, the
SSLStrip allows adversaries to insert themselves in the middle of a valid SSL
connection. The user believes that they have a true SSL connection established,
while the adversary has the ability to view the user’s Web traffic in clear-text [1].

Owing to the serious damage of SSLStrip attack, some computer science re-
searchers have paid much attention to prevent SSLStrip attack. Nick Nikiforakis
et al. [2] presented a method to avoid the SSLStrip attack using browser’s history
information. A scheme with cue information is proposed by Shin and Lopes [3],
which relies on web user’s active exploration. Fung and Cheung [4] put forward a
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defending mechanism based on JavaScript code. Nevertheless, these suggestions
only indicate ways to avoid a SSLStrip attack but not how to actively stop it.
The cookie is a technical means to keep HTTP connection state, and it also can
be used to save user’s information [5]. When users relink the same Web server,
browser will read the cookie information and send it to the Web site. Thus,
the cookie should have the capability to check whether the HTTP connection is
secure or not. Therefore, the cookie can be utilized to defend against SSLStrip
attack. Some researchers have put forward some secure cookie protocols. Fu et
al. [6] proposed a Web authentication scheme which mainly uses secure cookie
as an authentication token. It uses cookie to store the authentication token with
client. However, it has the following three flaws: it does not provide a high-level
confidentiality; cookie replay attacks can be easily implemented on it; it is in-
efficient and non-scalable to defend against volume attacks. To overcome these
weaknesses, Liu et al. [7] proposed a secure cookie protocol by improving Fu’s
scheme. Pujolle et al. [8] put forward a secure cookie protocol which implements
a reverse proxy patterns [9]. Unluckily, these secure cookie protocols are both
vulnerable to SSLStrip attack.

The remainder of this paper is organized as follows: In section 2, we propose a
new scheme to prevent SSLStrip attack, followed by relative experiment, perfor-
mance analysis, formal security analysis and comparison with previous schemes
in section 3. Conclusion and the future work are discussed in section 4.

2 The Proposed Cookie-Proxy Scheme

In this section we propose a new scheme to defend against SSLStrip named
Cookie-Proxy, including a secure cookie protocol and a new topology struc-
ture using a proxy pattern and a reverse proxy pattern [9]. To the best of our
knowledge, this is the first time to defend against SSLStrip using secure cookie
protocol. The notations of this paper are explained in Table 1.

Table 1. Notation

Symbol Description

sk Server Key of SSGP
h(•) Hash function
Ekey(M) Encrypt M using key key
Sigkey(M) Sign M using key key
HMACkey(M) Keyed-hash message authentication code of M with key key
‖ String concatenation operation

2.1 A New Topology Structure

The topology structure mainly contains a secure LAN guaranteed proxy (SLGP)
and a secure server guaranteed proxy (SSGP), as shown in Fig. 1. It is clear to
see that SLGP and SSGP are implemented on the gateway of client LAN and
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server Ethernet, respectively. To facilitate presentation, we assume that the LAN
of clients is a secure LAN, which means that there are no attacks such as ARP
spoofing attack, DNS spoofing attack and so on. This assumption can guarantee
the absolute security of the client LAN.

Client

Client

Client

SLGP

Internet

SSGP

Secure LAN

Web Server

Fig. 1. The topology of our scheme

2.2 Our Secure Cookie Protocol

The secure cookie protocol shown in Table 2 is implemented between SLGP and
SSGP. The cookie protocol implemented between the client and the server is still
the commonly used cookie protocol [10]. The SLGP and the SSGP reconstruct
commonly used cookie protocol and get the new form shown in Table 2. Recall
that ks denoting the private key of SSGP for signature. SN denotes secure note
of cookie, whose value is either ’Secure’ or ’Unsecure’. ESN=Sigks(h(SN ‖
CID)). CID is a random digit for each cookie. k=HMACsk(username‖expires).
HMACk=HMACk(username‖expires‖data‖CID‖SN).

Table 2. Our secure cookie protocol

Set-cookie Header

username expires Ek(data) SN CID ESN HMACk optional

Cookie Header

username expires Ek(data) SN HMACk optional

In our secure cookie protocol, there are some new attributes comparing with
Liu’s secure cookie protocol. SN denotes whether the HTTP connection is on
SSL protocol (HTTPS) or not. If the value of SN is ’Secure’, the connection
is on SSL protocol and vice versa. The client browser will not upload cookie to
the server as a request if the value of SN is secure and the protocol type of
request URL is not HTTPS. The server will not return a login web page [10].
If the SSLStrip forges a login web page to SLGP, the SLGP will find and drop
it. As a result, the client must send a request again. ESN is the signature of
h(SN ‖ CID) using private key ks.



368 S. Zhao et al.

2.3 The Mechanism of Cookie-Proxy Scheme

On client-side, the data from outside of the secure LAN is sent to SLGP. After
processing, the data is sent to the gateway of the LAN again. On server-side, the
data from inside and outside of server Ethernet is sent to SSGP. After processing,
the data is sent to the gateway of the Ethernet again. The main function of SLGP
is to check the integrity of essential attributes of set-cookie from server. The main
function of SSGP is to reconstruct set-cookie from Web servers and check the
integrity and validity of cookie from client. If the data itself is cipher-text, SLGP
and SSGP will do nothing.

Fig. 2. The mechanism of Cookie-Proxy Scheme

According to Fig. 2, the operating mechanism of our scheme can be summa-
rized as follows:

Step 1. Client sends request to server.
Step 2. SSGP receives cookie and checks its integrity and validity. Then,

SSGP reconstructs the cookie and sends it to server.
Step 3. Server receives the request data and generates a set-cookie. Then

send it to SSGP.
Step 4. SSGP reconstructs the set-cookie. Then send the modified set-cookie

to client-side again.
Step 5. SLGP receives set-cookie and verifies the signature ESN . If the

signature is not valid, drop the packet.
Step 6. SLGP send the set-cookie to client. The client receives the set-cookie

and stores it in disk or RAM.
Step 7. Client sends request again with a new cookie.
Step 8. Go to Step 2.

In the above mechanism, SLGP should check whether set-cookie has SN or not.
If not, SLGP drops this response packet. SLGP applies public key of SSGP to
SN as a signature verification key verifies ESN as the message signed with
the corresponding private key ks if the value of field SN is ’Unsecure’. If the
signature is not valid, the response packet will be dropped.

Our scheme is composed of a secure cookie protocol, a SLGP and a SSGP. In
order to achieve adequate security, all the components of our secure scheme are
indispensable.
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3 Experiment and Analysis

In this section, we analyze Cookie-Proxy scheme with an experiment and a formal
proof, and then evaluate our scheme with other relevant schemes.

3.1 Experiment

In experiment, we utilize at least four computers and two routers to build our
experimental platform, shown in Fig.1. Four computers are used as client, web
server, SSLGP and SSGP respectively and two routers are deployed on client
LAN and server LAN. Procedures running on client, SLGP and SSGP are based
on the processes discussed in section 2. An adversary as a MitM can be of
any computer in the Internet between SLGP and SSGP in Fig.1. Therefore,
a computer is deployed between SLGP and SSGP to simulate the SSLStrip.
The procedure running on simulated SSLStrip is in accordance with the process
shown in Fig.3.

Fig. 3. The attack process of SSLStrip as MitM between client and server

To evaluate our scheme, five groups of experiment are conducted separately.
On client-side, we use IE, FireFox, Oprea, Safari and Chrome as Web browser
successively. The result of our scheme defending against SSLStrip attack is that
our scheme can defend against SSLStrip attack effectively in all the five browsers.

3.2 Performance Analysis

Two HAMC operations and one verifying signature operation are added to our
scheme, compared with traditional cookie protocols. HAMC operation is a kind
of hash operation and the verifying signature operation is a modular exponenti-
ation operation. The extra time of our scheme is composed of the consumption
of two hash operations, a modular exponentiation operation and two symmet-
ric cryptographic operations. In the process of protocol interaction, no extra
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data transmission consumption is added to our scheme compared with tradi-
tional cookie protocol. Therefore, the total extra cost incurred by our scheme is
0.385(0.273 + 2 × 0.026 + 2 × 0.03)ms according to [11]. Although our scheme
needs some extra time, it improves the security when using HTTPS.

3.3 Security Analysis

In this section we present a formal analysis of the security properties of our
new scheme, including the following five services: authentication, confidentiality,
integrity, anti-replay and anti-SSLStrip attack. The SVO logic [12] analysis of
our scheme is as follows:

M1: C → SLGP→ SSGP→ S: Ci

M2: S→ SSGP: username, expires, data, SN
M3: SSGP→ SLGP: username, expires,{data}k, SN, [h(SN)]ks−1 ,{username,

expires, data, SN}k
M4: SLGP→ C: username, expires,{data}k, SN, {username, expires,

data, SN}k
M5: Key agreement protocol
M6: C→ SLGP→ SSGP→ S: {username, expires, {data}k, SN, {username,

expires, data , SN}k}session−key

The premises of SVO logic are as follows:
A1 indicates the basic assumption, the scheme is running in unsecure envi-

ronment; A2 indicates public key of each principal is public; A3 indicates private
key of each principal is known by itself only; A4 S believes fresh(k); A5 S be-
lieves fresh(CID); A5 C control M1/M4/M5; A6 S believes M2/M4/M6; A7 C
believes PK(S,ks)∧C received {X}ks−1∧C received X⊃C believes (S said X); A8

C believes (C
session−key←−−−−−−−→ S), S believes (C

session−key←−−−−−−−→ S); A9 SLGP believes
SLGP received {username, expires, ∗1, SN, CID, [h(SN)]ks−1 ,∗2}; A10 SSGP
believes SSGP received {username, expires, {data}k, SN, {username, expires,
data , SN}k }session−key ; A11 C controls SV(SN|CID,ks,ESN).

The goals are as follows:

G1: S believes (C said (username, expires, data)∧S believes (username, ex-
pires, data)) By A5, A10, A8, MP

G2: S believes C says (username, expires, data) By A10, A8, A6, A4,Ax3,
Nec, MP

G3: C believe S says SN By A9, A11, A5, MP

Authentication: In our scheme, the server can get the cookie from client, in which
every field is the original value by using detection of SSGP. So the server can
authenticate the client exactly. Obviously, the set-cookie reconstructed by SSGP
is hardly to forge. G1 denotes the authentication of our scheme. Above all, the
server can verify the validity of the client easily and accurately.

Confidentiality: In our scheme, SSGP encrypts data field in set-cookie. By
this way, the data is invisible to client. Thus, the confidentiality is provided in
our new scheme.
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Integrity: If adversaries have modified the field SN of set-cookie from server
or deleted this set-cookie fields, SLGP will check the integrity of domain items,
and verify signature ESN . If there are any abnormalities, SLGP will drop the
whole response packet. The goal G3 ensures this process.

Anti-replay: Obviously, in our scheme each cookie has its unique HMAC. If
an adversary replays a cookie as a request to the server, SSGP will detect it and
drop it. Also, G2 denotes the anti-repay of our scheme.

Anti-SSLStrip: The core of SSLStrip attack is to make users not recognize
what the connection should be, HTTP or HTTPS. Nevertheless, our secure
cookie protocol has mandatory fields: SN and ESN . The SLGP will check these
fields, so the client will definitely know what the connection should be. For this
reason, our scheme can defend SSLStrip attack. Also, the goal G3 ensures that
MitM cannot modify the field SN .

3.4 Comparison of Relevant Cookie Protocols

In this section, we compare our scheme with the other relevant cookie protocols.
Without loss of generality, the digit fields are all recommended to be 128-bit long,
while the string fields are all 1024-bit long in protocols. Let TH , TE , TI and TS

denote the time complexity for hash function, exponential operation, inverse
operation and symmetric cryptographic operation. Typically, time complexity
associated with these operations can be roughly expressed as TE ≈ TI > TS �
TH [11].

Table 3. Comparison with relevant schemes

Item Ours Fu et al. [6] Liu et al. [7] Pujolle et al. [8]

Extra time cost TE + 2TH + 2TS TH 2TH + 2TS 2TH + 6TS

Extra communica-
tion cost

2560 bit 256 bit 2304 bit 2432 bit

Authentication Yes Yes Yes Yes

Confidentiality Yes No Yes No

Integrity Yes No No No

Anti-replay Yes No Yes Yes

Anti-SSLStrip Yes No No No

From Table 3, we can conclude that our scheme spends not so much extra
time cost and extra communication cost, but it gets the ability of withstand-
ing SSLStrip attack and the integrity of protocol comparing with other cookie
protocols.

4 Conclusion

Our contributions in this paper are twofold. Firstly, we elaborate on the draw-
backs of state-of-the-art secure cookie protocols. Secondly, we present a Cookie-
Proxy scheme to defend against SSLStrip attack. The evaluation shows the
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effectiveness of our scheme. However, due to the serious damage of SSLStrip
attack, the cost of resisting against this attack is inevitably high. In the future,
we will focus on improving the deploy-ability of our scheme and reducing security
requirement of client LAN.
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Abstract. ActiveX is used to build reusable software components in Microsoft
Windows. It is widely used by many Windows applications, such as Internet Ex-
plorer and Microsoft Office. As general-purpose components, ActiveX controls
expose methods to applications, which may be used in ways unexpected by the
ActiveX designer, leading to malicious activities. We call such misuse of Ac-
tiveX methods – ActiveX API misuse vulnerabilities. In this paper, we present
a solution which identifies and prevents API misuse of ActiveX controls in In-
ternet Explorer. We construct models to represent normal functionality of Ac-
tiveX methods, and identify ActiveX API misuse by identifying the methods that
can reach dangerous (system) APIs. We then develop a technique for Internet
Explorer to prevent the use of dangerous ActiveX methods. We evaluated our
approach on six real-world ActiveX controls. We are able to identify and pre-
vent ActiveX API misuse in these controls. Our approach is effective in detecting
ActiveX API misuse and has negligible overhead for preventing attacks.

1 Introduction

ActiveX is Microsoft technology to build reusable software components on the Mi-
crosoft Windows platform. It is widely used by many Windows applications, including
Microsoft Office, Windows Media Player, and Internet Explorer (IE), allowing the ap-
plications to use the functionality embedded in ActiveX controls. IE allows methods
in ActiveX controls to be accessed from web pages. ActiveX controls in IE are native
binaries running with the same privilege of the IE process, thus giving web pages the
ability to run native code in the operating system.1

Since ActiveX controls are general-purpose components, they often contain more
functionality than what is needed by the applications using them. The methods of an
ActiveX control may be used in unintended ways. For example, the Snapshot Viewer
ActiveX control (installed with Microsoft Office) can be leveraged by malicious web
pages in IE to create or overwrite files. Due to the complexity of the Windows system,
even if users are aware of the functionality of such ActiveX controls, they may not be
able to foresee how the functionality is used. We call this class of vulnerabilities API

� This work has been supported by a DRTech grant R-394-000-054-232.
1 The Windows Update ActiveX Control in Windows XP and Visual Studio (Windows 7) uses

IE to apply Microsoft updates.

T.W. Chim and T.H. Yuen (Eds.): ICICS 2012, LNCS 7618, pp. 373–380, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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<script language=’JavaScript’>
//Create Activex Object with ProgID
var obj = new ActiveXObject("snpvw.Snapshot Viewer Control.1");
// invoke method SnapshotPath, CompressedPath, ...
obj.SnapshotPath = "c:\\TestSnapshot.snp";
obj.CompressedPath = "c:\\TestSnapshot-compressed.snp";
obj.PrintSnapshot("True");
</script>

Fig. 1. A JavaScript code snippet using Microsoft Office Snapshot Viewer ActiveX Control in IE

misuse: an API of a software component, such as ActiveX, is misused by programs in
ways unexpected by the API designer. We remark that this class of attacks is caused by
misuse of an API rather than a case of misused user authority as in the confused-deputy
problem.

Existing ActiveX security mechanisms are insufficient to prevent API-misuse
attacks. IE’s ActiveX security is based on trust. IE trusts ActiveX controls installed
locally in the Windows system, except those blocked by compatibility flags in the reg-
istry (killbits). For remote ActiveX controls, the user provides a white list of trusted
sites and permit remote ActiveX control from the white list. For untrusted ActiveX
controls, IE asks the user for permission to use the control. In addition, IE implicitly
trusts the control as it only initializes and utilizes the ActiveX interfaces where the Safe
for Initialization and Safe for Scripting properties are implemented by the control. Once
vulnerability in an ActiveX control is known, the typical solution is to completely block
it but that means that all the functionality performed by the control in IE is lost.

In this paper, we develop a solution to identify and prevent API-misuse vulnerabil-
ities in ActiveX controls. Our approach consists of an offline detection phase and an
online prevention phase with proxy-based filtering. In the detection phase, we repre-
sent the normal functionality of the ActiveX control in a graph model which gives the
reachability of ActiveX methods during program execution. This model is generated
through dynamic analysis on standard test cases. We then identify API misuse by ana-
lyzing the access paths in the model which lead to dangerous APIs. In the prevention
phase, we create a proxy to intercept every ActiveX method invocation in IE and block
dangerous ActiveX methods. We are able to identify six real-world documented API-
misuse vulnerabilities, of which, three are from Microsoft. Our prevention mechanism
has low overheads and blocks dangerous methods while preserving other functionality
compared with existing solutions.

1.1 A Motivating Example

We show the API misuse problem with a real-world example. The Microsoft Office
Snapshot Viewer ActiveX Control is a component of Microsoft Office Access 2003. It
is locally installed by default. Thus, is trusted by IE to generate print previews of Office
documents.
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Fig. 2. Overview of our approach on API-misuse detection

The SnapshotPath and CompressedPath methods of the ActiveX are to specify
the path of the snapshot file to be displayed in the Snapshot Viewer. Fig. 1 shows a typ-
ical usage of the control. It renders a print preview of the snapshot file TestSnapsho-
t.snp and also saves the compressed version of the file. This ActiveX control can be
exploited to allow an attacker to download remote files to the local file system or over-
write local files. The attacker invokes SnapshotPath with http://malicious.c-

om/payload.exe to silently download the payload and invokes CompressedPath

with c:\\clickme.exe to save the malicious payload to the local file system.
Such API misuse vulnerabilities are accomplished through the normal functionality

in ActiveX controls. Unlike malware, this type of vulnerability is hard to detect because
the program behavior is not malicious by itself. Instead, it is a “misuse” of standard or
inherent functionality because of the complexity of the operating systems. Hence, we
need a systematic approach to detect API misuse vulnerabilities in ActiveX controls.

2 API-Misuse Detection and Prevention

In this section, we describe the design of our approach. Given an ActiveX control, we
aim to identify and prevent the API-misuse vulnerability in it. We assume we have the
knowledge and test cases performing normal functionality of the ActiveX control. This
can be obtained from software examples or software documentation. Vulnerabilities
such as memory-error exploits are orthogonal and not in our scope.

2.1 ActiveX API-Misuse Vulnerability Detection Phase

In this phase, we identify API-misuse vulnerabilities by building a simple model and
analyzing the model as shown in Fig. 2. We first build models to represent the normal
functionality of ActiveX methods. This step takes an ActiveX control and test cases
invoking the methods in the ActiveX control as the inputs. The output is a model con-
sisting of all function calls in the execution of the program. We analyze the model
by searching for a path from ActiveX methods to dangerous APIs. This step takes
the model and a dangerous APIs specification as inputs. It outputs a list of vulnerable
methods that may result in API misuse.



376 T. Dai et al.

Model Representation. Our model uses a call graph-based representation. A node in the
graph represents a function, which may be called during execution. Every directed edge
in the graph (which is labeled) represents the invocation from a caller to a callee func-
tion. The edge labels contain information about the order, in which a function is called
during execution. More specifically, we classify functions in the model into four types.
Dangerous APIs are a set of APIs that may lead to more privileges than intended for a
web page such as system APIs which expose system resources, e.g., process creation
or file operations. There are two types of functions in an ActiveX control. The ActiveX
functions that are defined as the scriptable interfaces are the exposed APIs in the Ac-
tiveX control, which we call ActiveX methods. We call the rest of the functions in the
ActiveX control as ActiveX inner functions. The functions which are neither ActiveX
methods, inner functions nor a dangerous APIs are called other functions.

The goal of the model is to gather information on the functionality of an ActiveX
control and show the APIs an ActiveX method can reach through paths which represent
potential sequences of function calls. There are two types of paths to dangerous APIs
in the model. A direct access path of an ActiveX method m is when function m called
from a webpage has a path to a dangerous API. There may be ActiveX inner and other
functions along that path, such that m is in the path and there are no ActiveX methods
or ActiveX inner functions in the sub-path from root node to m. An indirect access path
through ActiveX inner function f is a path from the root node to dangerous APIs such
that f is in the path and there are no ActiveX methods or inner functions in the sub-
path from root node to f . An example of an indirect access path is as follows, suppose
IE calls a callback function f which is an inner function in the ActiveX control, this
means that no ActiveX method has been called although an earlier call of some ActiveX
method may have returned the address of f . In summary, our model defines API-misuse
of an ActiveX method m as either a direct access path from m to a dangerous API or
an indirect access path from ActiveX inner function f caused by a ActiveX method m
(these may be a set).

Model Building. The goal of this step is to extract the model of an ActiveX control from
execution of several test cases. The test cases are meant to be representative of the nor-
mal functionality of an ActiveX control. The model is then extracted by instrumenting
the execution of the program (IE) running various (standard) test cases.

Direct access paths are straightforward to detect. The challenge is to correlate an Ac-
tiveX method to an indirect access path. We modify the model by adding pseudo edges,
once an indirect access path is found at an ActiveX inner function f . A conservative
approach is to add pseudo edges from every ActiveX method in the corresponding Ac-
tiveX control to node f . More accurate dynamic or static analysis could be used to
reduce the set of pseudo edges from m but such analysis is necessarily conservative.
As static or dynamic analysis can be challenging in the multi-threaded Windows envi-
ronment which also has the possibility of kernel callbacks.2 Instead, we chose a simple
approach which is to add pseudo edges from the ActiveX methods which were executed
prior to the indirect access path.

2 Non-local control flow transfers where the Windows kernel calls code in the program, some-
what analogous to signals in Unix but are not due to exceptions.
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API-misuse Identification. We identify the API misuse in the ActiveX control by search-
ing for access paths in the model. First, we predefine several categories of (system) APIs
as dangerous APIs in the model, e.g., file, process creation and library loading APIs.
These system APIs allow access to system resources which are normally not exposed to
scriptable ActiveX interfaces in IE. ActiveX methods which can have API misuse are
found by checking whether an access path exists from the ActiveX methods in the test
cases to the dangerous APIs.

2.2 Proxy-Based ActiveX API-Misuse Vulnerability Prevention Phase

To prevent API misuse vulnerability in ActiveX interfaces, we propose a fine-grained
proxy-based solution blocking only dangerous ActiveX methods rather than the whole
control. We intercept every ActiveX method invocation in the browser and reject any
invocation of methods in a blacklist at run time. This blacklist is either generated by
our detection phase or defined by users. Rejected methods raise an E ACCESSDENIED

exception, i.e. General Access Denied exception used in Windows to block access to
certain functionality. The advantage of the exception mechanism is that it does not
affect the use of other methods in the browser, thus, the user can still interact with a
webpage in IE using ActiveX controls as long as dangerous methods are not needed.
Additional policies can allow specified trusted webpages to still use methods in the
blacklist.

3 Implementation

We have prototyped our approach on Microsoft Windows XP SP2. Our API-misuse
detection tool is a PIN tool [1] to collect the function call/return control flow which is
then subsequently analyzed to build the model and find API-misuse paths.

In order to track control flow in the program executable and ActiveX binaries which
are dynamically loaded, we instrument all binaries during execution. Our PIN tool is
an adaptation from [2], which keeps track of how function call and return control flow
happens during execution.

To make it more efficient to search for the ActiveX method corresponding to an
indirect access path, we use a testing strategy which tests one ActiveX method at the
time where possible. This assumes that there is a causal relationship between the single
ActiveX method m and any inner function f found in an indirect access path. This
can be extended to allow more than one ActiveX method in the test case, in which
case, the assumption becomes more relaxed since the causal relation may or may not
hold.

In some cases, an ActiveX method can expose objects of another ActiveX to IE,
giving a web page the complete access to all methods in the exposed control. This is
a more dangerous type of API misuse which is similar to dynamic library loading. To
identify this type of API misuse, we apply heuristics to analyze the library loaded by an
ActiveX method to identify whether an ActiveX method controls which library to load
by specifying an argument – this is a form of data dependency checking.
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Table 1. Number of methods with critical access paths in six ActiveX controls

ActiveX Controls Total file library process access
methods operation loading creation paths

MS ADODB Stream 26 2 0 0 2
MS RDS DataSpace 3 0 1 0 1

MS Office Snapshot Viewer 27 2 3 0 3
Chilkat Crypt 159 2 1 0 2

InstallShield Update Service 14 6 3 3 8
Zenturi ProgramChecker 23 9 4 0 9

4 Evaluation

We evaluated our approach on six real-world ActiveX controls in IE6 SP2: Microsoft
ADODB Stream (ADODB), Microsoft RDS DataSpace (RDS), Microsoft Office Snap-
shot Viewer (Snapshot), Chilkat Crypt (Chilkat), InstallShield Update Service (Install-
Shield) and Zenturi ProgramChecker (Zenturi). All ActiveX controls have exploits in
the Metasploit framework, and have documented functionality except for InstallShield
and Zenturi.

4.1 Effectiveness of API-Misuse Vulnerability Detection

Our evaluation uses test cases constructed from user manuals and MSDN library in
JavaScript or VBScript for the documented ActiveX controls. For the two ActiveX
controls without documentation, we created simple test cases where the parameters
to ActiveX methods are initialized to fixed values according to their type. We de-
fined the following three types of dangerous APIs in our evaluation: file operations
(NtCreateFile and NtWriteFile), process creation (NtCreateProcessEx), and
library loading (LoadLibraryExW).

Table 1 shows the results of testing the ActiveX controls. For each control, we list
the total number of the exposed methods and number of the exposed methods that have
API-misuse access paths found. The access paths are further broken down according
to whether they involve file, library or process APIs. Some methods may have multiple
access paths, so totaling the number of access paths in individual categories may ex-
ceed the total number of methods with access paths. We were successful in detecting
API misuses in all six controls which have known API-misuse vulnerabilities and ex-
ploits in Metasploit. We identified 25 access paths in total of which seven are indirect
access paths which employ callbacks. We now discuss three representative cases in our
evaluation.

The Snapshot Viewer ActiveX Control has 27 methods that are available to IE. The
generated model has 4963 nodes. We identified three methods have access paths to the
system APIs. The SnapshotPath and CompressedPath methods specify the path to
the snapshot file to be displayed in the Snapshot Viewer. We found both have access
paths to NtCreateFile and NtWriteFile with a local or remote URL as the Path.
With a local URL, CompressedPath has a direct access path to NtCreateFile and
NtWriteFile. With a remote URL, SnapshotPath has an indirect access path to the
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same APIs and we identified the callback functions used in the indirect access path.
Other than file operations, PrintSnapshot together with the previous methods also
has a direct access path to LoadLibraryExW.

For the ADODB Stream ActiveX control, we found two methods have direct access
paths to NtCreateFile: (i) the SaveToFile method saves the binary contents of a
Stream object to a file; and (ii) LoadFromFile loads the contents of an existing file
into a Stream object. We detected the API-misuse vulnerability with the SaveToFile
method, which has the same direct access path as in the Metasploit sample attack.
In Windows, NtCreateFile is required to open a file, so LoadFromFile is a false
positive.

For the RDS DataSpace ActiveX Control, we found that the CreateObjectmethod
can load any library and create the object registered in the local system through ac-
cess paths to LoadLibraryExW. In the sample exploit, CreateObject is used to
create objects, from other disabled vulnerable ActiveX controls in IE. It is interest-
ing that this attack bypasses the checking mechanism for preventing certain ActiveX
controls from being loaded in IE. The newly created vulnerable object can be further
exploited to achieve remote code execution. This exploit has the same access path to
LoadLibraryExW found in the test case we analyzed. This is also the vulnerability re-
ported in Microsoft advisory MS06-014 where the killbit checking of IE is bypassed to
allow a blocked library to load.

4.2 Performance Evaluation

To evaluate detection performance, we selected 27 test cases from Office Snapshot
Viewer ActiveX control. Each method is tested separately in a new IE process. The total
time for testing with instrumentation is 1174 seconds (43.5 seconds/test case). The total
time for building the model and checking for API-misuse access paths is 264 seconds
(9.8 seconds/test case). Although our prototype is not an optimized implementation, it
already offers reasonable performance for off-line dynamic analysis.

Our proxy-based prevention mechanism is effective and efficient with negligible
overhead. In fact, we target methods that are not in our blacklist with 12 test cases
from three ActiveX controls. The overheads range from 0.01% to 1.7%.

5 Related Work

Existing work in ActiveX security mainly focus on memory vulnerabilities in ActiveX
controls. Dromann and Plakosh [3] proposed an automated fuzzing system to detect
security flaws in ActiveX controls. Its target is memory-related vulnerabilities, instead
of API-misuse vulnerabilities. Song et al. [4] proposed an approach to detect mali-
cious exploitation of vulnerable ActiveX controls to prevent drive-by download attacks.
The prototype prevention is integrated into IE with ActiveX hooking, using similar
techniques as our proxy to block dangerous methods in ActiveX controls.

On a broader problem domain, there are solutions to detect attacks using system-level
attack graphs generated by dynamic analysis. For example, Backtracker [5] identifies
the files or processes that cause an attack through dependencies between these files
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and processes in a system-level dependency graph. As another example, Martignoni
et al. [6] perform data-flow analysis to identify high-level actions from system calls.

Our approach is also related to solutions to detect security vulnerabilities using
model checking. Schneider [7] proposed security automata for defining security proper-
ties and prevent the illegal actions in the system. MOPS [8] detect attacks by checking
the reachability of a state that violates the desired security goal in a model. Both Sheyner
et al. [9] and Jha et al. [10] construct attack graphs for model checking to detect safety
violation in the system.

6 Conclusion

In this paper, we present a system to detect and prevent ActiveX API misuse vulnerabil-
ities in IE. Our system detects potential ActiveX API misuse in an ActiveX control used
by IE. Our method can also be easily adapted to other applications using ActiveX. We
also provide a prevention mechanism which blocks the use of dangerous ActiveX meth-
ods. The results are promising, as we are able to detect all API misuse vulnerabilities
in the six real-world ActiveX controls and can block the vulnerable ActiveX methods.
The cost of the detection is reasonable and the overhead of the prevention mechanism
is negligible.
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Abstract. Socially and economically, the distributed denial-of-service (DDoS) 
attacks have been serious threats in the cyber world. Despite of many re-
searches, current defense methods can be vulnerable to the DDoS attacks of un-
known traffic pattern to avoid the methods. That is because most of the defense 
policies configured for the methods are fixed thresholds that were mainly de-
termined by the learning of traffic volume. To overcome the problem caused by 
the fixed thresholds, we introduce the endpoint mitigation method based on the 
dynamic thresholding of DDoS defense policies according to the usage changes 
of system resources. We focused on the fact that the usage changes of system 
resources show the abnormal statuses of server if the failure/delay of service is 
occurred by the DDoS attacks that have not been blocked by current defense 
thresholds. The proposed method detects the server overload as measuring the 
usage changes of system resources and automatically adjusts current defense 
thresholds in conjunction with the strength of usage change. As the result, the 
service problem caused by the DDoS attacks can be gradually mitigated by the 
automatic threshold controlling of our method. 

Keywords: cyber threat, network security, distributed denial-of-service attack, 
intrusion detection system, intrusion prevention system. 

1 Introduction 

Internet services have been rapidly developed enough to cover most of our lives [1], 
[2]. However, these important internet services are always exposed to various attacks 
millions time a day [3]. The recent attacks are mainly focused on financial and politi-
cal demands [4], [5]. To achieve these goals, the attackers use the distributed denial-
of-service (DDoS) attacks with the zombie PCs which have been infected with  
malicious codes due to security vulnerabilities. Although many researches [6] to en-
hance security vulnerabilities have been studied, new vulnerabilities are still being 
discovered and new malwares are still being propagated to infect new zombie PCs. In 
recent, the DDoS attack that caused extensive damage to South Korea mobilized ap-
proximately 150,000 zombie PCs [7]. 

To prevent the servers from DDoS attacks, various DDoS defense methods have 
been researched. These works can be divided into the ways to change current network 



382 D. Kim et al. 

 

infrastructure [8], [9] and the ways to maintain the infrastructure [10], [11], [12]. The 
formers to modify network protocols or network configurations are effective for the 
defense of DDoS attack. However, the methods are difficult to spread the technology 
because they need to change current network environments. After all, the latters to 
maintain current network environments are leading research trends on the defense of 
DDoS attack. A research trend recently appeared is visualization techniques [14]. 
However, the techniques have a disadvantage that the information for visualization 
has to be sampled due to the performance problem. 

The researches [10], [11], [12] to maintain current network environments learn the 
traffic patterns of normal and attack, and configure their defense policies as the dif-
ferences of analyzed traffic patterns. After that, they compare the measurement result 
of incoming traffic to the defense policies configured in advance. However, the de-
fense policies with fixed thresholds based on the learned traffic patterns may pass 
many attack packets if weak policies. On the other hand, if strong policies, the fixed 
thresholds may block many normal packets. As the reason, current DDoS defense 
systems cannot arbitrarily apply the strong policies to prepare for new DDoS attacks 
of the future with unknown traffic patterns. Because of this limitation, new DDoS 
attacks to circumvent the policies of fixed thresholds will be continuously appeared, 
and the denials of service by the new attacks will be repeated as well. 

In order to solve the problem of defense policy with the fixed threshold, our me-
thod monitors the usage changes of server resources such as CPU, memory and net-
work session, and automatically controls current thresholds depending on the strength 
of usage change whenever the resource usages show abnormal patterns. That is possi-
ble because service troubles can be detected with the abnormal usage patterns of serv-
er resources. Finally, if any defensive action leads the abnormal usages of server  
resources to the normal usages, the server service will be stabilized. In the paper, our 
method gradually and automatically adjusts the fixed thresholds for the defense me-
chanisms, which are embedded in some security systems, as applying the analysis 
results of current abnormal resource usages. 

The rest of the paper is structured as follows. In Section II, we briefly introduce the 
overview for the automatic control of DDoS defense thresholds, and Section III de-
scribes the detailed operations of our method. In Section IV, the paper introduces the 
SecureNIC which is a FPGA-based network interface card for endpoint DDoS defense 
and presents the experiment results that our prototype program automatically adjusts 
the thresholds of defense mechanisms embedded in the SecureNIC. Finally, we con-
clude the paper in Section V. 

2 The Overview 

Fig. 1 shows the operation overview of our method under DDoS attacks. In Fig. 1, (1) 
when unknown DDoS attacks are incoming into the server via the SecureNIC, (2) if 
the embedded defense mechanisms are applying the policies with wrong thresholds or 
the SecureNIC has not defense mechanisms to detect the new attack traffic patterns, 
(3) the DDoS attacks flow into the server without some attack detection. (4) The serv-
er has service troubles by the attack packets and the service troubles are measured 
with various server usages such as CPU, memory, and network session. The proposed 
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method analyzes the measured resource usages and (5) depending on the results, the 
method adjusts current defense thresholds or triggers new defense mechanism being 
prepared. The prepared defense mechanism means the defense method that is more 
effective if it is activated only in cases of some special attacks. (6) By the proposed 
method, next attack packets are gradually blocked through the changes of defense 
thresholds and the activation of prepared defense mechanism. (7) Finally, the server 
status is stabilized and the service troubles are disappeared as well. 

 

Fig. 1. The overview 

3 Endpoint Mitigation of DDoS Attacks Based on the Dynamic 
Thresholding 

3.1 The Types of Server Loads 

Fig. 2 shows the typical server loads that can be occurred as time passes. In Fig. 2, the 
server load means the current usage ratio (%), which is max 100%, of resources that 
have direct impacts on the server service. In our prototype program, it includes the 
usage ratios of CPU, memory, and network session. Additionally, as a service-wide, it 
can include the usage ratios of PPS, BPS, and SYN_RECV for each protocol and port. 
Large server load means that the values of these usage ratios are high. 

 

Fig. 2. The typical server loads 

Like Fig. 2, normal server loads can be classified into the three types of (1) rising, 
(2) surging, and (3) vibrating. For the classification, the level configuration of re-
source usage ratios is required. From the perspective of DDoS attacks, the case of 
rising means that the attack transfers a small amount of traffic at a low speed to avoid 
the threshold policies of DDoS defense mechanisms. On the other hand, the case of 
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surging means that the attack transfers a large amount of traffic at a high speed in a 
short time to paralyze the server with the weak DDoS defense policy. From the pers-
pective of a server, the cases of rising and surging have a high probability that the 
service troubles will be occurred and on the other hand, the vibrating will be occurred 
routinely.  

Therefore, on the endpoint to mitigate the service troubles caused by DDoS at-
tacks, our method analyzes the changes of server load and detects the cases of rising 
and surging. After that, the method automatically controls the thresholds of current 
defense mechanisms to return the current status of rising and surging to the normal 
vibrating. It also analyzes the fluctuation intensity of server load to determine the 
strength of automatic control. 

3.2 The Analysis of Server Loads 

If some troubles are happened to the services by DDoS attacks, the resource usages 
will show abnormal changes. Thus, if monitoring the server resources, we can deter-
mine whether the service troubles are occurred or not. In the paper, based on the fact, 
the method of paper periodically monitors the resource usage ratios of CPU, memory, 
and network session to determine whether the services are going smoothly. For exam-
ple, in the case of TCP web service, for reliable service to users, the service has nor-
mally the maximum concurrent TCP session number depending on the performance 
of server system. As monitoring the current usage ratio of TCP sessions, the method 
in advance can detect the overload statuses causing service failures. 

Excepting for the cases targeting the vulnerable codes of operating system and ser-
vice program among various DDoS attacks, most of DDoS attacks use the attack 
techniques with the excessive or irregular service requests to occur the service failures 
of target server. For example, if the 100 percent utilization of resources is monitored, 
the service troubles on the server can be detected in advance. Our method periodically 
monitors the usage ratios of resources and detects the service troubles. Then, the me-
thod controls the thresholds of defense policies depending on the change strength of 
resource usages. Therefore, our method can respond to the new and unknown attacks 
that are pointed to the shortcomings of existing methods based on the learned traffic 
volumes. 

 

Fig. 3. Detection and threshold control 
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Fig. 3 shows the detection of service troubles depending on the server loads, which are 
the resource usages. If the resource usages in normal situation exceed the emergency 
level percentage Ue, in general the administrator extends the service performance with 
the upgrades and replacements of current systems. Therefore, if the service is smoothly 
dealing with the service requests of normal users, current usage ratio U0 will not exceed 
Ue, except for special situations. In contrast, if U0 often exceeds Ue by attacks, it means 
that the server will be out of service soon. Eventually, if U0 exceeds Ue as the cases of 
rising and surging on the server loads, the adjustments of current defense thresholds will 
be needed at T0. (Emergency Detection:  0 ). 

On the other hand, if U0 exceeds the warning level percentage Uw, the additional 
analysis about usage changes is required to finally determine whether the services has 
troubles by attacks because this can even occur to normal situations. Our method has 
individual FIFOs (First-In First-Out) on each resource to save, on every second, the 

usage ratio U of maximum n number. The average usage ratio 
∑ | |

 and 

the average usage variations 
∑ | |

 are calculated for each resource on 

every period. The Warning Detection can determine the surging type attack. (Warning 
Detection:  0   0   0 ). The reason that 
current surged U0 needs to be compared to Uavg and Vavg is for excluding the surge 
cases of usage changes that can often happen under normal situations. 

3.3 The Load Measurement of Internal Processes 

In the cases of CPU and Memory, the server overload can be temporarily occurred by 
the internal processes unrelated to the services for external users. For example, under 
the condition that the attack traffic does not flow into the server, the server can be 
overloaded by the programs for server maintenance such as log managements. When 
adjusting the defense thresholds in this situation, the normal user traffic can be 
blocked by the SecureNIC. To avoid the problem, if the server overload is detected as 
Warning or Emergency, it is necessary to determine whether the cause of overload is 
the internal processes or not.  

To do this, our method sorts the processes in descending order of CPU and MEM 
usages. After that, the decision is given by  ∑ 0 ,       

Where: Np = the process number to be selected; Upi = the CPU or MEM usage (%) of 
i-th process; Uint = the set usage to be compared. 

3.4 The Selection of Defense Threshold to Be Adjusted 

If the service troubles occurred by external attack traffic are detected by analyzing the 
resource usages, the analysis to find the cause of theses troubles is worked to deter-
mine how to defend the attacks. By the analysis, our method determines which poli-
cies should be adjusted among the defense mechanisms mounted to the SecureNIC. 
The work uses the traffic statistics of each defense mechanism. Each of the defense 
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mechanisms has individual thresholds for blocking the attacks, and the incoming traf-
fic that exceeds the threshold is blocked. As mentioned earlier, if the server overload 
situation occurs by normal service requests, the administrator will upgrade the system 
performance. Thus, assuming that the server performance is enough for accepting all 
normal service requests, if the service troubles happen in situation that each of the 
defense mechanisms is normally working with each threshold, the reasons of troubles 
can be consider as three cases. 

The first is the case that the service trouble occurs under the situation blocking the 
attack traffic over the threshold. The second is the case that the service trouble occurs 
by the attack traffic under the threshold, and the third is the case that the defense me-
chanism is none for responding the attacks. The point that the resource usage of server 
is abnormally increasing means that any kinds of traffic volumes are unusually in-
creasing. Therefore, the method of this paper selects the defense mechanism closest to 
each threshold among traffic statistics related to each defense mechanism and adjusts 
its threshold stronger. Through this analysis, in the cases of first and second the pro-
posed method can mitigate the service trouble with the adjustment of policy threshold, 
and in the case of third, the method can activate the prepared defense mechanism. 

3.5 The Threshold Control for Attack Defense 

If the defense mechanism to be adjusted is selected, our method adjusts the threshold for 
strengthening the attack response. The purpose of threshold adjustment is to stabilize the 
abnormally overloaded usages through the gradual blocking of specific traffic determined 
as attacks. The existing defense methods fail to block the attack traffic when the defense 
threshold was wrong, and the server service may be out of control because there is no 
time to fundamentally analyze the attack traffic such as the generation of defense rule and 
signature. Therefore, the large damage will be happened economically and socially be-
cause the server needs a lot of time to recover the service.  

On the other hand, the proposed method, by controlling the defense thresholds, 
manages gradually the server load to avoid the out-of-control service during the at-
tacks are continued. The first reason that the gradual threshold adjustment is required 
is because the majority of normal users may be blocked by the strong threshold ad-
justment at a time, and the second is because the method is no need to adjust the de-
fense threshold by force if the server performance is available apart from the attack 
traffic that is incoming. 

Fig. 3 represents the example to determine the strength of threshold adjustment ac-
cording to the resource usage change of rising and surging. In the case of rising type 
the attack traffic increases slowly and in the future we can expect the slow increasing 
of server load. Thus, without the strong threshold adjustment, our approach precisely 
controls the current defense threshold for simply deviating from the emergency level. 
When the server load exceeds the emergency level, our method adjusts the current 
threshold to come U0 to Ug. New threshold Pn is shown to Eq. (1). 

 Eq. (1) 

Where: P0 = current threshold value; Ru = constant ratio that reflects the difference 
of U0 and U1 (If Ru > 1, weak adjustment). 
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In the case of surging type the attack traffic increases rapidly. Thus, in the future 
we can expect the rapid increasing of server load, and if there is no defense for that 
situation, the server will be out-of-control soon. With the strong threshold adjustment, 
it is necessary to urgently stabilize the current server load to the average server load. 
When the server load rapidly exceeds the warning level, our method adjusts the cur-
rent threshold to come U0 to Ug. New threshold Pn is shown to Eq. (2). 

 

 Eq. (2) 

Where: Vavg = average usage variation; Uavg = average usage (%); Rv = constant 
ratio that reflects Vavg (If Rv > 1, weak adjustment). 

3.6 Attack Mitigation 

Although our approach adjusted the thresholds to stabilize the server overload, the 
server load may not be reduced in contrary to our prediction. The first reason is be-
cause the current usage U0 for determining new threshold Pn and the current thre-
shold P0 applied already to the defense mechanism are not proportional relation. 
Therefore, this case can fail to decrease the usage because the attacks were not 
blocked as much as the expected through the threshold adjustment. The second reason 
is due to the wrong selection of defense mechanism although the cause analysis of 
service trouble was performed. The third is the case that there is no defense mechan-
ism for blocking the attacks. The reason that the subsequent attack mitigation is re-
quired, even after the current threshold was adjusted by our method, is because the 
additional defense is needed for the first and second situation to stabilize the server 
load even except for the third case. 

To reduce current overload, our approach firstly adjusts the threshold of defense 
mechanism selected by the cause analysis to the new threshold Pn determined by Eq. 
(1) and Eq. (2). After the threshold changing, if the server load is reduced or main-
tained by monitoring the load at the next time, the threshold adjustment of selected 
defense mechanism is considered as a success. On the other hand, after the threshold 
changing, if the server load is increased, our method adjusts the thresholds of all me-
chanisms embedded in the SecureNIC because the reason of adjustment failure is one 
among the above first and second. At this time, our method decreases the thresholds 
of all defense mechanisms to 10% rather than conforming to Eq. (1) and Eq. (2). Such 
the processes of subsequent defenses are lasted until the server overload is released. 
In the situation of subsequent defense, if the server load is decreased under the warn-
ing level, our method considers as the termination of attack situation, and returns all 
thresholds to their original thresholds. 

3.7 The Selection and Continuous Block of Attack Traffic 

The purpose of proposed method is to mitigate the damage of out-of-service caused 
by an overload condition due to the attacks. The proposed method cannot choose and 
block only attacks. The reason that the method has not the detailed functions is be-
cause the work implemented by software aggravates the server load on the endpoint 
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system. To complement this problem, the SecureNIC includes an intelligent IP-based 
ACL (access control logic) which are based on the arrival time gap of request packets 
between the attack and normal traffic. 

If the thresholds by detecting the server overload are adjusted, the attack and nor-
mal traffic that excesses the thresholds are blocked, and then the remote IP addresses 
are registered to the ACL list. In general, the requests by attack programs are trans-
ferred automatically and quickly, and the requests by normal users are transferred 
manually and slowly. Using the fact, in the first step, if the packet of ACL-registered 
IP address flows into the SecureNIC within the block time of one second, it is blocked 
as requests of attack program and the block time of the ACL entry is doubled as the 
consideration of attack IP. If the packets of ACL-registered IP address do not flow 
into the SecureNIC within the block time, the IP address is deleted from the ACL as 
the consideration of normal user IP. 

4 Experiments 

4.1 SecureNIC 

Our method has been implemented to the management software for controlling the 
host-based DDoS defense network interface card, which is the SecureNIC in Fig. 4. It 
is a NIC developed for the DDoS defense of host-level server and includes one giga 
bit NIC function that supports both the optic and RJ-45 with DDoS defense function. 
With Xilinx FPGA (Field Programmable Gate Array), the SecureNIC supports the 
SYN proxy function for the defense of attacks related to TCP session, the DDoS de-
fense function of network and application level, and various ACL functions. 

 

Fig. 4. The SecureNIC 

Our implementation in the management software monitors the usage ratios (%) of 
CPU, memory, and service session in the SecureNIC-installed server and automatically 
adjusts the thresholds of defense mechanisms based on the hardware security logics in 
the SecureNIC against the attacks of TCP ESTABLISHED flooding [13], UDP/ICMP 
flooding, HTTP GET flooding, and so on. We demonstrate the effectiveness of our me-
chanism through a representative experiment because the way to adjust the thresholds is 
similar to each of the defense mechanisms on the hardware security logics. 

4.2 The Mitigation of TCP ESTABLISHED Flooding Attack 

The SecureNIC blocks most of the abnormal behaviors related to TCP session with 
the SYN Proxy feature on FPGA. However, the SYN Proxy cannot response the  
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attacks exhausting the resource of TCP ESTABLISHED session [13]. Every second, 
our implementation monitors the usage ratio (%) of current ESTABLISHED number 
to maximum allowable ESTABLISHED number. If the usage ratio shows abnormal 
patterns, our method sends RST packets to the attack hosts for disconnecting the 
ESTABLISHED sessions in order of a large number of ESTABLISHED per IP  
address.  

 

Fig. 5. Experiment of TCP established flooding attack 

The number to disconnect the ESTABLISHEDs is P0 – Pn. In Section III.E, P0 is 
the maximum allowable service session number and Pn is the allowable service ses-
sion number to be adjusted. The difference of threshold adjustment compared to other 
defense mechanisms is the point that Pn is not applied to new threshold and the attack 
IPs are forced to ACL on FPGA to block the traffic of attack IPs. 

Fig. 5, on the SecureNIC, shows the experimental results of session defense func-
tion in our approach. The environment is as follows: 

• Apache web server in CentOS 5.6. 
• The maximum allowable TCP ESTABLISHED number is set to 1000. 
• The emergency level is 99% and the warning level is 89%. 
• The normal average ESTABLISHED number is about 200 from 47 to 105 

seconds. The attack is started from 106 seconds. 

In the case of Emergency, the ESTABLISHED attack for exhausting the service ses-
sion resource was performed with full speed of attack tool and only in 2 seconds the 
session usage ratio became 100%. When the usage ratio exceeded 99%, our method 
disconnected the attack sessions to be the previous normal average ratio of about 
20%. In the case of Warning, we increased about 200 ESABLISHED sessions with 
the attack tools every second. That means that the average usage ratio also increases. 
At the time of 113 seconds, our method detected 95% session usage and disconnected 
the attacks sessions to be the measured average usage of about 40% because it was 
matched to the condition of warning level detection. 

4.3 The Load Analysis Log of Internal Processes 

Fig. 6 presents a part of log file saved by our program of the SecureNIC operated in a 
real web hosting server. From the log, when the CPU average usage (USAGE_AVG) 
is 5%, the warning (CPU_STATUS_WARNING) is detected with the current usage  
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91%. The top CPU usage processes except for the service process httpd used about 
74%. Uint had been 50%, our program did not adjust the thresholds because the total 
usage ratio of top processes usage occupied 81% of current usage 91% load. 

 

Fig. 6. The log of internal process load 

5 Conclusion 

Most of the existing DDoS Defense systems determine large thresholds to reduce the 
false alarms of normal situation because their systems apply the defense thresholds of 
fixed type. It means that under the thresholds the probability of successful attack is 
high as well. To solve the problem, we focused on the fact that the service troubles 
can be detected from the usage ratios of system resources. 

Based on the fact, we developed the SecureNIC and the management software 
which includes the method of paper. Finally, in the paper we suggested the automatic 
threshold adjustment method of DDoS defense mechanisms embedded in the Secu-
reNIC of server system through the analysis of current server loads. The effectiveness 
of our method was presented with the automatic control experiment of SecureNIC 
developed by our project team. 

References 

1. Internet World Stats. Internet Growth Statistics,  
http://www.internetworldstats.com/emarketing.html 

2. The Internet Economist. The Internet Economy 25 years After.com,  
http://www.itif.org/files/2010-25-years.pdf 

3. Symantec. Internet Security Threat Report-Volume XV,  
http://eval.symantec.com/mktginfo/enterprise/white_papers/ 
b-whitepaper_internet_security_threat_report_xv_04-2010.en-
us.pdf 

4. Cisco. Cisco 2010 Annual Security Report,  
http://www.cisco.com/en/US/prod/collateral/vpndevc/ 
security_annual_report_2010.pdf  
 
 



 Endpoint Mitigation of DDoS Attacks Based on Dynamic Thresholding 391 

 

5. Symantec. Symantec’s monthly state of spam report (October 2008),  
http://eval.symantec.com/mktginfo/enterprise/other_resources/ 
b-state_of_spam_report_10-2008.en-us.pdf 

6. Lee, J.-H., Sohn, S.-G., Chang, B.-H., Chung, T.-M.: PKG-VUL: Security Vulnerability 
Evaluation and Patch Framework for Package-Based Systems. ETRI Journal (2009) 

7. Hauri. 7.7 DDos Virus Report, http://www.maxoverpro.org/77DDoS.pdf 
8. Liu, X., Yang, X., Xia, Y.: NetFence: Preventing Internet Denial of Service from Inside 

Out. In: ACM SIGCOMM (2010) 
9. Argyraki, K., Cheriton, D.: Scalable Network-layer Defense Against Internet Bandwidth-

Flooding Attacks. ACM/IEEE ToN 17(4) (2009) 
10. Carl, G., Kesidis, G., Brooks, R.: Denial-of-Service Attack-Detection Techniques. IEEE 

Internet Computing 10, 82–89 (2006) 
11. Vijayasarathy, R., Raghavan, S., Ravindran, B.: A system approach to network modelling 

for DDoS detection using a Naive Bayesian classifier. In: Communication Systems and 
Networks, COMSNETS (2011) 

12. Yu., S., Zhou, W., Dross, R., Jia, W.: Traceback of DDoS Attacks Using Entropy Varia-
tions. IEEE Transactions on Parallel and Distributed Systems 22 (2011) 

13. The Open Web Application Security Project. OWASP HTTP Post Tool,  
https://www.owasp.org/index.php/OWASP_HTTP_Post_Tool 

14. Chang, B.-H., Jeong, C.: An Efficient Network Attack Visualization Using Security Quad 
and Cube. ETRI Journal (2011) 



 

T.W. Chim and T.H. Yuen (Eds.): ICICS 2012, LNCS 7618, pp. 392–399, 2012. 
© Springer-Verlag Berlin Heidelberg 2012 

Parameter Pollution Vulnerabilities Detection  
Study Based on Tree Edit Distance 

Yan Cao, Qiang Wei, and Qingxian Wang 

National Digital Switching System Engineering & Technological R&D Center,  
Zhengzhou, China 

vspyan@hotmail.com, funnywei@163.com, 
wqx2008@vip.sina.com 

Abstract. A new web attack pattern called HTTP Parameter Pollution has been 
presented in recent years. The harm and detection method about HPP has become a 
hot topic in the field of web application security. In the paper, we started with ana-
lyzing the HPP attack pattern, researched on the necessary conditions and the po-
tential harm of attack, pointed that the determination of parameter precedence is a 
prerequisite for the implementation and testing of such attacks, and proposed de-
termination method for parameter priority based on tree edit distance to provide the 
necessary support for HPP vulnerabilities detection. As well as, we developed dif-
ferent detection methods for the difference of parameters between URL and the 
page. Finally the detection system for HPP vulnerability was realized, and some 
vulnerabilities have been discovered in real world. 

Keywords: Web security, Parameter pollution, Parameter precedence, Vulne-
rability detection, Edit distance.  

1 HTTP Parameter Pollution Attacks 

HPP(HTTP Parameter Pollution attacks) was put forward first by Stefano Di Paola 
and Luca Carettoni in 2009[1]. Many well-known sites, such as Google, Yahoo, are 
found to have this vulnerability. HPP itself belongs to vulnerability of input valida-
tion.  HPP along with XSS (Cross Site Scripting)[2], parameter tampering[3], SQL 
injection[4], in essence, dues to the lack of input validation. Through exploiting HPP 
vulnerability, attackers can modify the HTTP hard-coded parameters, change the 
behavior of Web applications, access or use the uncontrollable variables, as well as 
bypass input validation checks and WAF (Web Application Firewall Web Application 
Firewall) rules.  

1.1 Priority of Parameter Selection  

We focus on the type of HPP attack in the paper, which transfering the input informa-
tion using URL results in. According to the syntax of the URL, “?” is the end of the  
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file address to access, followed by the parameters passed to the server. Different pa-
rameters separated by “&”. The variable name is before “=”, and the parameter values 
is after “=”. As follows: 

?Username=jybox&pwd=password  
?Do=&id=12  

In order to avoid ambiguous when passed parameter contains special characters, a 
special character needs encoded in hexadecimal, as %hh. For example, if the parame-
ters passed contain “?”, and identifier “?” isolate the file addresses and parameters, 
“?” must be encoded for transmission, expressed as %3F. 

When some parameters with identical name but different values, such as exam-
ple.pl?id=1&id=2&id=3, the parameter id passing for three different values, it is 
need to study pre-conditions of HPP attacks that how the application deal with these. 
That is parameter priority.  

Generally, there are three different ways which web application to deal with such 
issues in:  

 Extract the first value as a parameter value. As id = 1.  
 Extract the last value as the value of the parameter. As id = 3.  
 Extract all values passed to the parameter as a list. For example, when the 

HTML page uses the Checkbox object to represent the form of a check box, 
several parameters with identical name but different values need be passed. 
To support this function, list of all the parameters as an array is passed in the 
majority of the programming language. 

It is no unified standard to process the parameters with identical name but different 
values in different programming languages. Whatever method to choose, that is not 
HPP vulnerability. However, if the web application developer ignores such issues, it 
is likely for an attacker to exploit combining with a variety of ways. How the different 
parameter priorities impact HPP attack will be explained below.  

1.2 HPP Attack  

HPP can be described that given the existing legal parameter p and malicious parame-
ters p’, if the p’ together with the URL encoding hh% of the parameter separator are 
injected together p, becoming the new input parameters p%hhp’, and the application 
doesn’t check legality of the parameter p and filter, p’ would be accepted by the ap-
plication and the attacker’s intent would be achieved.  

The following is to take an example for describing the actual process of HPP attack.  
Scenario: there is one election web site URL: http://host/election.jsp?poll_id=4568, 

containing two candidates called White and Green. The URL of the election passes a 
single parameter poll_id. The server might use the following code:  

ID = Request.getParameter (“pool_id”)  
href_link = “vote.jsp? poll_id =” + ID + “& candidate = xyz”  
Two new links Link1 and Link2:  
Link1: <a href=“vote.jsp?poll_id=4568&candidate=white”> Vote for Mr.White </ a>  
Link2: <a href=“vote.jsp?poll_id=4568&candidate=green”> Vote for Mrs.Green </ a>  
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Through these two links, the users can vote for two candidates.  
When processing parameter pool_id did, server doesn’t check necessarily, so 

pool_id can become an exploitable parameter. An attacker creates a new parameter 
injection URL, as follows:  

http://host/election.jsp? poll_id = 4568% 26candidate% 3Dgreen  

At this point, decoded pool_id is 4568&candidate=green. Thus two election links are 
generated, as follows:  

Link 1’: <a href = vote.jsp? Pool_id = 4568 & candidate = green & candidate = 
the white> Vote for Mr. White </ a>  

Link 2’: <a href = vote.jsp? pool_id = 4568 & candidate = green & candidate = 
green> Vote for Mrs. Green </ a>  

Request.getParameter (candidate) in JSP only takes the first value when encounter 
some parameters with identical name but different values (determined by the priority 
of parameters). Therefore, whichever link the user clicks on, Green would be even-
tually elected. This is a complete instance of HPP attacks.  

In this paper, we begined with analysis of HPP attacks, studied on attack condi-
tions and testing methods, and pointed out the important influence of the parameters 
priority of HPP attack, and proposed the method for determining priority of the para-
meters based on the HTML tree edit distance. As well as more sound and viable solu-
tion about the HPP vulnerability detection was given.  

2 System Architecture  

According to the characteristics of HPP attacks, HPP vulnerability detection system 
based on tree edit distance was designed, consisting of five modules, namely web crawl-
ing module, HTML parsing module, parameters priority determination module, vulnera-
bility scanning module and page response comparison module, as shown in Fig. 1.  

 

Fig. 1. HPP vulnerability detection system 

The main function of each module is represented as follows: 

 Web crawling module traversals web sites following the HTTP protocol, auto-
matically extracts the hierarchy of the web sites, adds a URL link to the web’s 
hierarchy to find these pages containing the passed parameters which can  
be browsed and interacted. From efficiency considerations, crawling depth is  
3-layer.  
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 HTML parsing module obtains web pages from the web crawling module, 
of which DOM structure is parsed, and extracts all the links in the page and 
text and the URL of the form.  

 Parameters priority determination module determines the response beha-
vior of pages which receive some parameters with identical name but differ-
ent values, in order to determine the parameter priority (see 3.1).  

 Vulnerability Scanning module according to the parameter priority passed, 
injectes URL-encoded test parameters into the existing parameters in the page 
in the query string, checks whether there exist injected test parameters in link 
element of the response page, and action and hidden domain of form element, 
in order to detect whether there is the HPP vulnerability (see 3.2). 

 Page response comparison module by HTML tree edit distance algorithm, 
determines whether the two pages are equivalent, to provide the basis for the 
parameters priority determination (see 3.1).  

3 Key Algorithms and Technology 

From Section 1, it can be drawn that the parameters priority determination is a prere-
quisite for HPP vulnerability detection. Parameters priority determination based on 
tree edit distance is the main contributions. Parameters priority determination and 
HPP vulnerability detection are represented in this section.  

3.1 Parameters Priority Determination Based on Tree Edit Distance  

Different web applications pass parameters with identical name but different values in 
different ways. This impact on the HPP attack has been discussed in Section 1. This sec-
tion describes the problem to determine the parameters priority based on tree edit distance.  

A.   A Parameter Priority to Determine Algorithm  

In this paper, the parameters priority determination method requires that one parame-
ter need be transferred for three times. For example, the value orgin at the 1st get the 
server response page P1, 2nd with value new get page P2, and 3rd with value orgin 
and new to get page P3. As follows:  

P1: pptest.php?par1=origin 
P2: pptest.php?par1=new 
P3: pptest.php?par1=origin&par1=new 

By comparison among the three response pages, the parameters priority is determi-
nated. The specific algorithm is shown in Fig. 2.  

Parameter priority determination algorithm is explained as follows:  

1: If the page P1 and P2 are equal, indicating that the identical parameter was 
transferred with both different values , and web application makes the same response, 
at this point, it is unable to determine the parameters priority. 
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2: If the page P2 and P3 are equal, indicating that web applications accepts the last 
value, selection strategy on some parameters with identical name but different values 
is to take the last value. 

3: If the page P1 and P3 are equal, indicating that web applications accepts the first 
value, selection strategy on some parameters with identical name but different values 
is to take the first value. 

 

Fig. 2. Parameter priority determination algorithm 

4: If the page P1, P2, P3 are pair wise unequal, it is suspect that web application to ac-
cept all of the parameter values. Then the two values are connected into new string by a 
comma or space character string. And the new string is compared with page P3 strings. If 
be equal, it shows that web application can accept all of the parameter values.  

5: If the page P1, P2, P3 are pair wise unequal and web application does not accept all 
of the parameter values, it is possible that the page containing dynamic content result in 
the response page being not equal. At this point, the dynamic information contained in 
the response page should be disposed of first. Then go back to Step 2 of the algorithm.  

Page equivalen means that the application made the same response to various requests. 
So, this paper realized comparison between pages based on tree edit distance algorithm.  

B.   Comparison Algorithm between Pages Based on Tree Edit Distance  

HTML tree edit distance is used to quantify the similarity of the structure bewtween 
both pages. Edit distance, also known as Levenshtein distance, usually is used for 
similarity calculation between two strings[5].  

Through parsing hierarchical tag structure, any HTML can be converted to an 
HTML DOM tree. Each node is identified corresponding to its HTML tag name. Each 
data object in HTML document can also be converted into a tree. Therefore, web page 
can be extracted into into HTML tree, and degree of similarity can be calculated be-
tween both pages by the tree edit distance.  

HTML tree edit distance algorithm proposed in this paper improved on the 
STEDM algorithm[6]. Because the tree edit distance operations such as insertion, 
remove, and replacement, are on leaf node, the performance is enhanced.  
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Definition 1. HTML Tree Node Mapping: given tree T1 containing n1 nodes and 
tree T2 containing n2 nodes, mapping set M (i, j) between both trees satisfies (i1, j1 
is), (i2, j2) with the following conditions:  

(1) i1 =i2 if and only if j1=j2. 
(2) If T1[i1] is on the left of the T1[i2], the T2[j1] is on the left of T2[j2]. 
(3) If the T1[i1] is the ancestor of T1[i2], T2[j1] is the ancestor of T2[j2].  

Definition 2. The Tree Edit Distance: If the tree T1 is converted to tree T2, the tree edit 
distance Dis(T1, T2) is the number of operations for two trees to convert. As follows:  

Dis(T1, T2)=Rep× |R| +DEL×|D|+Ins×|I|  

Among them, Rep, Del, Ins respectively represent operations of replace, delete, insert. 
HTML tree edit distance algorithm shown in Fig. 3:  

  

Fig. 3. The HTML tree edit distance algorithm 

By Dist = the dist * (m + n) / 2 * mn normalized, the range of the tree edit distance 
is [0,1]. From manual testing, if the edit distance of web pages is less than 0.15, they 
can be considered equal. If the edit distance is more than 0.8, they can be considered 
unequal. Ranging from 0.15 to 0.8, similarity between them needs to be further ana-
lyzed manually.  

3.2 HPP Vulnerability Scanning 

In this paper, the HPP vulnerabilities of the web application are detected, through inject-
ing the URL-encoded test parameters into known legal parameters and detecting  
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behavior of the response page. If in link element of the response page, and action and 
hidden domain of form element, the injected test parameters are found out, it is consi-
dered that the page contains HPP vulnerability. The detection process is shown in Fig. 4.  

 

Fig. 4. HPP vulnerability scanning process 

For example, the test parameter is encoded into %26testparameter%3Dtp, which is in-
jected into the existing legal parameters parameter=lp. Then elements and domain on the 
answer page are scanned to serach for &testparameter=tp. If the test parameter exists 
and the parameter lparameter can be contaminated, the measured page contains HPP 
vulnerability.  

Parameters in the pages and URL are not identical, so three situations should be 
discussed as follows:  
 If parameters exist in the URL and the page, they can be injected directly to test. 
 If parameters exist in the URL but not page, page may rename the parameters 

in the URL. So it is feasible to search the corresponding renamed parameters 
in the page and re-injection test. 

 If parameters exist in the page and but not URL, the parameters should be ex-
plicitly place in URL and used for re-injection test.  

4 Experiment  

According to technical method in the paper, the HPP vulnerability detection system 
was designed to experimental test.  

In order to verify the validity of the system on the HPP vulnerability detection, the 
system scanned for shopping, education, government, and search engine sites and 
found HPP vulnerabilities in the real Internet environment.  

Take an example of HPP vulnerability on a search engine site. Fig. 5 is the normal 
search results page after entering the keyword result. Fig. 6 shows the page after the 
parameter area injected the test string into area=0%to26kw%3Dtest. Then the pages are 
the same as one before injected. However, when select Page 2 of the search results, as 
shown in Fig. 7, this should show search result with the key words result. But the page 
shown search result with a test parameter test instead. It is shown that through injecting 
the parameter area into the test string, due to selecting the last value of the priority strate-
gy, the server accepted the parameter test, and achieved the purpose of polluting parame-
ter area, to detect HPP vulnerability. In testing, the parameter page in URL is the same 
effect of pollution as area, but the parameters do and src are not.  

There is a certain false rate in the system. Because after the test parameters were 
injected, it was accepted as a new parameter, it did not reach the effect of polluting 
other parameters. For axample, the parameter %26test%3Dtp injected into lparame-
ter=lp, becames a new parameter lparameter=lp%26test%3Dtp, instead of lparame-
ter=lp&test=tp. New parameter assignment resulting in page error is mistaken for 
HPP vulnerability. The system need be improved in the future.  
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Fig. 5. The normal search 
page 

 

Fig. 6. The page after the 
injection parameters 

 
Fig. 7. The page after the pollu-
tion parameters 

5 Conclusion  

Nowadays, web application has been widely applied. Increasingly complex interac-
tions and the dynamic characteristics strengthen the function and role of Web applica-
tions, but it also brings many new security issues. Traditional SQL injection, XSS and 
other web attacks are still continuing today, and the new attack and web vulnerability 
mode will still continue to appear. Although HPP vulnerability exists soon, its harm 
should raise people’s concern and attention.  

We studied on determine method for the priority of parameters based on the 
HTML tree edit distance. From analysis on the characteristics of parameter in the 
URL and page, HPP vulnerability detection solution was proposed. Finally, HPP vul-
nerability detection system was designed and realized. The effectiveness of the para-
meters priority determination has been verified by the experiment and HPP vulnera-
bilities has been discovered in real world. 
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Abstract. In this paper, we focus on designing of path-checking protocols to
verify the valid paths in supply chains. By inputting a valid path, the reader at
the check point is able to verify whether the tags have passed through the valid
path or not. we propose a path-checking solution based on sequential aggregate
message authentication codes. For security and privacy considerations, we add
mutual authentication into path-checking protocols. In order to save resources, we
use SQUASH as message authentication codes which is considered to be suited
for RFID systems. Finally, we do some security and privacy analysis.

Keywords: Supply chains, path-checking, privacy-preserving, sequential MACs.

1 Introduction

Radio Frequency Identification (RFID) technology represents a fundamental change in
the information technology infrastructure. It is a non-contact, automatic identification
technology that uses radio signals to identify, track, sort and detect a variety of objects
including people, vehicles, goods and assets without the need for direct contact.

To track and trace RFID-based products in supply chains recently has seen growing
interests from both academic research and industrial practices. The tags are attached
to some products and go through a special path in a supply chain. The path consists
of a list of steps. Typically, we need to guarantee that the products pass through the
right path as it was supposed to for quality assurance. The path-checking process can
be described as follows. At the beginning, the issuer(I) do preparations for tags, while
attaching a tag Ti to a product. Ti then pass through a series of steps and will be marked
at each one of readers. In the end, the checker will interact with the tags being able to
verify whether, according to some data stored in the tags, they go through the valid path.
The goal of an adversary in such a scheme is to either produce a phony tag or make a
genuine tag which followed a different path that passes the verification of the checking
reader. Meanwhile, an adversary should not be able to trace and recognize tags during
the flow steps in the supply chain.

The rest of the paper is organized as follows. In section 2, we introduce the related
work concerning RFID privacy and path-checking issues in RFID systems. Section 3
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describes informally the proposed scheme in supply chain. Sections 4 demonstrates
security and privacy analysis. And finally, section 5 concludes.

2 Related Work

2.1 RFID Privacy

RFID privacy is one of the areas which are most discussed in recent years. Without
lose of generality, there are two notions of privacy in RFID system: the first one is
commonly known as tag anonymity. That is, an adversary A should not be able to
disclose the identity of tags he reads from or writes into. The second notion is called
untraceability: an adversary A should not be able to trace or track the person(product)
attached with tags by a fake reader. There is a special untraceability named forward
untraceability (also known as forward privacy), that is, an adversary capturing the tags
secret information cannot correlate the tag with its responses before the last complete
protocol run with a valid reader [1].

A great number of privacy-preserving RFID protocols have been proposed in the lit-
erature, Juels offers a survey of much of this work in [2]. Tag anonymity corresponds
to anonymization protocol, one trivial approach is proposed by Sarma named hash-
lock[3], using meta-ID instead of real ID. Later, Weis [4]improved hash-lock to ran-
domized hash-lock identification scheme. Untraceability implies that the tag response
differently upon receiving the same request. The approach to reach untraceability is ei-
ther based on the psedudorandom numbers or the random noise. Most existing protocols
are based on the former primitive, while the HB family protocols [5–7] are based on the
latter named LPN(Parity with Noise) problem. The Ohkubo-Suzuki-Kinoshita protocol
(OSK) [8] made forward privacy possible, the scheme relies on the use of two one-way
hash functions. Variants of the OSK scheme proposed in [9], making it resistant to re-
play attacks. An further improvement to the OSK [10] was proposed by Berbain using
a pseudorandom number generator and a universal family of hash functions, moreover,
they provided a provable secure proof under standard model. Recently, Ma [11] gave a
simpler one of [10] using tags only equipped with pseududorandom generator.

2.2 Path-Checking Scheme

The first RFID path-checking scheme in supply chain was introduced by Ouafi, the
process consists of three sequential phases: namely initialization phase, update phase,
and verification phase. In initialization phase, readers in the supply chain and tags are
initialized with some security parameters. When the tag starts to pass through readers
in supply chain, the tag will come to update phase being written into some path infor-
mation. When the tag is passing by the reader vi, the path information in the tag will
refresh to si. Suppose the path that the tag has passed is ν = {v0, ..., vn}, so sn is the
last status of the tag. At last, the tag enters into verification phase checking whether the
tag passed through a valid path, it is determined by whether s′l equals sn, s′l is the valid
path status previously stored in the checker. Assume ν′ = {v′0, ..., v′l} is the valid path,
s′l can be computed as follows:
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In NDSS 2011, Blass [12] proposed another protocol named TRACKER for the purpose
of object genuineness verification. The process of the TRACKER can be described as
follows. At the beginning, the tag is assigned with the state value S0, when the tag
passes by readeri in the supply chain, readeri update the value Si−1 into Si by Fi,
Si = Fi(S

i−1). At last, by inputting the the current state Sn, the checker will output a
valid path (v0...vl) if the tag passes the verification, otherwise output 0 which implies
the tag fails to pass the verification. TRACKER’s main idea is to encode valid paths in
a supply chain with polynomials, the great advantage of TRACKER is that it does not
require any computational complexity on the tag, only 80 bytes of storage.

Both Ouafi’s and Blass’s protocols suffer from impersonate attacks, their approaches
do not provide authentication for the reader and the tag. An adversary can write anything
he wants to the tag in order to break the path-checking scheme. As for path coding,
Ouafi’s construction uses two hash functions which can be further reduced, moreover,
it did not give security proof. Blass’s path encoding was based on polynomials, whether
the path encoding polynomials are unforgeable or not have not been fully proved. For
the reasons above, we put forward our proposal.

2.3 Sequential Aggregate Message Authentication Codes

Aggregate message authentication codes(MACs) was proposed by Katz et al. [13] al-
low the aggregation of multiple MACs on messages, which was generated by distinct
senders, such that the size of the aggregates was the same as a single MAC. They
proved that if the underlying MAC scheme is existentially unforgeable under an adap-
tive chosen-message attack and is deterministic, then the aggregate message authentica-
tion code generated by computing the XOR of every individual MAC values is secure.
These MACs are especially suited for resource-constrained devices as RFID tags. As a
result, verification of an aggregated tag can be carried out by any verifier that shares all
secret keys with the participating senders.

In an aggregate MAC scheme, the aggregation can be performed by same parties in
different order. In contrast, in a sequential aggregate MAC schemes, each sender gets
as additional input an aggregate-so-far σ′ and transforms that tag into a new aggregate
σ which includes the authentication of a message of his choice.

3 Proposed Scheme

The main purpose of our scheme is to combine authentication and path recording prim-
itive to solve path-checking issues in the RFID based supply chain. Our authentication
protocol is based on Ma’s proposal [11] using only pseudorandom number generator
as its cryptographic primitive, we extend the protocol from one way tag authentication
protocol to mutual authentication protocol. Taking into account that not only the tag
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but also the reader constraints in resources, we use SQUASH[14] algorithm as MAC
in the reader, which is regarded as more efficient and memory-saving than most of the
existing MAC primitive. The idea of sequential aggregate MAC is based on Eikemeier’s
scheme [15].

3.1 Pseudorandom Number Generators

A pseudorandom generator is a deterministic algorithm that receives a short truly ran-
dom seed and stretches it into a long string that is pseudorandom. Stated differently, a
pseudorandom generator uses a small amount of true randomness in order to generate a
large amount of pseudorandom.

Let g : {0, 1}κ → {0, 1}2κ and g = (g1, g2). g1 and g2 respectively map the input
of g to the first n output bits of g and the last n output bits of g. We take g as the
pseudorandom generator in the tag.

3.2 SQUASH Algorithm

In 2008, Adi Shamir [14] presented SQUASH algorithm, a message authentication code
which is based on the one-way function c = m2 mod n coming from the Rabin cryp-
tosystem, performs very well on benchmarks. Moreover, it offers some kind of provable
security based on the hardness of factoring large integers. To make it secure, the binary
length of n must be at least 1000 bits long and is recommended to use Mersenne num-
bers or the more general Cunningham project numbers whose factorization remains
unexplored till now. In our scheme, we use the SQUASH as a MAC algorithm for
recording path information.

3.3 Description of the Our Scheme

Each tag has two variants S and P , S stands for the state of the tag, P stands for the
path information written by readers in the supply chain. P is initialized to IV by the
issuer. S and P change when passing through readers in the supply chain. For better
understanding of our scheme, we use the following definitions:

– a supply chain G = (V,E) consisting of vertices V and edges E.
– pseudorandom number generator g : {0, 1}κ → {0, 1}2κ
– a set T of different tags
– a set S1 of possible states for the tags
– a set S2 of possible path information stored in the tags
– a set K of possible keys stored in reader
– a set R of possible random numbers generated by the readers
– a set of ν valid paths
– issuer I and checker C, issuer I is represented in G by the only vertex without

incoming edges v0, C is a checkpoint, which will check for tag Ti’s path validity.
– A valid path Pvalidi is a special path which C will eventually check products for.

There may be up to ν multiple different valid paths {Pvalid0 , ..., Pvalidl
}in a sup-

ply chain. A valid path Pvalidi={v0, ..., vl}, v0 represents issuer I, vl represents a
checkpoint.
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– a database DB behind each reader to store tuples (S,IV ) of each tag, S stands for
the current state of the tag, IV stands for the initial path information stored in the
tag

– a MAC function using SQUASH algorithm in the reader.
– a function CHECK : S2 × ν × Rl → {0, 1}, assume νi = {v0, ..., vl}, {v0,...,vl}

represent different readers in set νi, the keys of which can be denoted as {K0,...,Kl}
respectively, Rl represents random numbers generated by {v1,...,vl}. The CHECK
function determine that the tag has passed the path νi or not.

We divide the process of our theme into three basic phases as follows:

Initialization Phase. The issuer writes the initial state S and path information P0 = IV
to each tag, and store the tuples (S, IV )for each tag in a database, S and IV are random
numbers, different tags have different values of S and IV .

Authentication and Update Phase. This phase consists of two different parts, an au-
thentication protocol A1 and a path computing method A2. A1 can be described as
follows, every tag has its unique initial state S, the pseudorandom number generator g
can be denoted as g(S) = (g1(S), g2(S)) for the input of S, we use a secret k to denote
the second part of g(S), i.e. g2(S). Upon receiving a challenge ri from readeri, the tag
derives two values, a new secret k = g2(S) and a new state S = g1(S). Then, the tag
authenticates to the reader by replying c1 = g1(ri⊕ k), c2 = k⊕Pi−1. Pi−1 stands for
the path information stored in the tag before encountering readeri. readeri verifies the
answer of the tag by searching its DB: for each tag in the system, the reader fetches the
last known state S

′
, for j = 1 to ω, computes c

′

1 = g1(ri⊕gj2(S
′
)), ω is used for solving

asynchronous issues between the tag and the reader. If c1 = c
′

1, then the tag passes the
authentication and the reader update the DB of S

′
to gj1(S

′
), let k

′
= gj2(S

′
), the reader

computes Pi−1 by c2 ⊕ k
′
. In response, the reader computes new path information Pi

and returns to the tag g2(ri ⊕ k
′
) and k

′ ⊕ ri ⊕ Pi. Upon receiving the messages from
the reader, the tag do the judgement that whether g2(ri ⊕ k) = g2(ri ⊕ k

′
), if true, the

reader will pass the authentication and the tag store the random number ri and updates
the path information from Pi−1 to Pi, otherwise the tag does not do the updating.

A2 mainly contains the computing primitive of path information. Assume νi= {v0 ,
. . . , vl} is the path that the tag passed by, The corresponding l + 1 keys of the readers
are {K0,...,Kl}. Pi represents path information written by a reader in νi, idi represents
id of the reader vi, and ri represents the random numbers generated by vi. In this paper,
we are considering sequential MACs based on Eikemeier’s scheme[15] to encode path
information, {P0,...,Pl} can be computed as follows:

P0 = IV

Pi = idi ‖MAC(Ki, ri ‖ Pi−1)

......

Pl = idl ‖MAC(Kl, rl ‖ Pl−1)

MAC is a function using SQUASH algorithm computed by the reader. Fig.1 illustrates
the authentication and update phase interacting with reader vi.
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Verification Phase. The checker executes the CHECK function to ensure that the tag
has passed through the valid path. The checker first read random numbers stored in the
tag, then verify the path information Pl as Algorithm 1. Assume that the valid path input
is νvalidi = {v′0, ..., v′l}, the corresponding l′ + 1 keys and identities of the readers are
{K ′

0,...,K ′
l} and {id′0,...,id′l}. The the initial and the last path information stored in the

tag is IV and Pl respectively. The CHECK function can be described in Algorithm 1:

Algorithm 1. The CHECK function

P0=IV
for i = 1 to l′ do

P ′
i = id′i ‖ MAC(K′

i, ri ‖ P ′
i−1);

end for
if P ′

l == Pl then
output 1

else
output 0

end if

S 

g=(g1,g2) 

gi
1(S) 

g1(gi
1(S)) || g2(gi

1(S))  

ri 

g=(g1,g2) 

g1(ri k),k Pi-1 

k 

Reader 
Ki 

 

g2(ri k’), k’  ri  Pi 

P0= IV 

Fig. 1. Authentication and update phase in our scheme

4 Scheme Analysis

4.1 Security Analysis

The main security threat comes from two different aspects, one is that an adversary
creates a fake tag passing the authentication of the legitimate reader. The success prob-
ability of this attack has been proved to be upper-bounded by negligible probability ε in
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Ma’s paper. Another threat is that an adversary forges a tag’s valid path information to
deceive the checker in the supply chain. State differently, we have to achieve the goal
that if the verification of tag Ti’s path information PTi by CHECK function returns 1,
then Ti must have gone through the valid path Pv in the supply chain.

From Eikemeier’s work, we know that, assuming t be the number of parties and Q
denote the number of aggregation queries, each of L parties at most, the probability that
an adversary breaks the our sequential aggregate MAC scheme is bounded by 3t(Q +
1)2L2ε, ε stands for the probability of breaking the underlying MAC. Since SQUASH
algorithm remains unexplored, the security of our construction is guaranteed.

4.2 Performance and Privacy

– Hardware Performance. Note that only a PRNG is used in the tag, according to
[11], it is required to an overall gate count of less than 2000 gate equivalents (GE)
for hardware implementations of PRNG. From the Serge’s thesis [16], SQUASH
requires less than 3000 GE. Thereby, both PRNG and SQUASH are suited for con-
strained resources RFID system.

– Anonymity. Tag anonymity means that an adversary is not able to get the real
identity of the tag by eavesdropping the communications between the reader and
the tag. In our scheme, the real identity of the tag is not used in the process of the
communications, so it is an anonymous scheme.

– Untraceability. To ensure untraceability of RFID tags, we refreshes the state S of
the tag at each authentication exchange, then k = g2(S) changes accordingly, as a
result, either c1 = g1(ri ⊕ k) or c2 = k ⊕ Pi−1 is different when facing the same
challenge, so as to achieve untraceability. Forward untraceability requires that even
if the adversary reveals the internal state of a tag Ti at time t, the adversary cannot
tell if a transaction at time t

′
< t involves the tag Ti. To guarantee this privacy

property, we update the secret k of the tag at each conversation. From the time t of
secret k can not infer the secret k

′
at time t′, if t

′
< t and t and t

′
are not at the

same conversation. It is guaranteed by the security attribute of PNRG.
– Path privacy. Another privacy problem we have to consider is path privacy which

exists in path-checking protocol only. It means that the adversary can not get the
concrete path from path information stored in the tag during the flow in supply
chain. In order to achieve path privacy, first, only authenticated reader have the
capability to get the path information. In addition, we use sequential aggregate
MACs to store path information, that is to say, path privacy of the tag depends on
the security of sequential aggregate MACs which can not be computed by adversary
without the keys of the readers.

5 Conclusion

In this paper, we propose a privacy-preserving solution to solve path-checking problems
in RFID-based supply chain. The main idea is to combine authentication and path-
checking together. We extend Ma’s protocol and take sequential aggregate MACs as
path-checking primitive. From the security and privacy analysis we can see that the pro-
posed solution achieve the purpose of privacy-preserving and effective path-checking.
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Abstract. As an important property of anonymous credential, attribute
proof allows user to prove the possession of attributes issued by the issu-
ing authority anonymously. In this paper, we introduced the notation of
Attribute-based signature into anonymous credential to propose an anony-
mous credential with constant complexity attribute proof. Compared with
other constant complexity pairing based schemes, our scheme could sup-
port more types of attribute relations while the public parameter is much
shorter.
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efficient.

1 Introduction

Along with the widely applied electronic identification and requirements of user
privacy, anonymous credential has become a research focus of authentication
technology these days. Besides the basic anonymity, attribute proof plays an
important role in anonymous credential systems, too. By using anonymous at-
tribute proof, user could make an attestation to the verifier that certain at-
tributes were issued to his credential without disclosing his identity.

In current anonymous credentials, the attribute proof usually use the proof
of knowledge algorithms, however, the computational complexity and length of
attestation of these schemes were linearly related to the number of attributes
contained in the proof. To solve this problem, Camenisch and Gross proposed
an efficient coding method and extended the CL anonymous credential with it
to significantly improve the efficiency of anonymous attribute proofs in 2008 [4].
In 2011, Amang Sudarsono et al. proposed a similar scheme in Pairing-Based
anonymous credentials [5].

By using relevant technologies like accumulators, both two schemes mentioned
above can achieve constant complexity of finite attributes(attribute values select
from a small sized finite-set, for example: gender, nationality, age etc.) proofs,
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which make the attribute attestation significantly efficient. Unfortunately, al-
though the two schemes could improve the efficiency of proof, there are still
some drawbacks. In the first scheme, the computational complexity was linearly
related to the total number of the finite attributes. The scheme of [5] could
achieve computational complexity independent with attributes’ number, but the
size of its public parameters was very long so it is hard to apply in resource
limited environment.

Attribute-based Signatures(ABS) [1][2], which is an extension of Identity-
based signature proposed by Maji et al. in 2008 [1], gives us a new idea to build
efficient attributes proofs in anonymous credential. In ABS, the user’s secret
key contains some attribute information, which makes the signature be verified
to be generated by a user holds certain attributes, while hiding the identity of
the true generator. For user-anonymity and attribute attestation were already
contained in the signature scheme, it can be extended into anonymous creden-
tials with efficient attribute proofs. Furthermore, by using ABS, the attribute
proof scheme could support some complex attribute-based policy which is hard
to realize in common anonymous credentials. Although ABS could only sup-
port binary attribute values, we can transform the finite attributes into multiple
binary attributes to solve this problem.

1.1 Our Contributions

In this paper, we propose an anonymous credential system with constant com-
plexity attribute proof using attribute-based signature. Our main idea is to use
an ABS secret key as an attribute-based token and bind string attributes with
it. The proof of finite-attributes could be extracted with the sign protocol of
ABS schemes and we can use knowledge proofs to prove the string attributes.

Compared with scheme [4] and [5], our scheme has following advantages: First,
by using ABS, our scheme can support proofs of threshold relation, which can be
extend to general predicates, which makes our scheme more flexible to using in
the attribute-based access control system. Secondly, for threshold predicates, the
computational complexity is independent with the total number of the possible
finite attributes, which is an advantage to [4]. Finally, for the problem of oversized
public parameters in [5], our scheme significantly reduces the size of user data,
which is about only 1/30 to 1/300 of scheme [5].

2 Preliminaries

2.1 Bilinear Pairings

First, we review the notion of bilinear parings, let G and GT be cyclic groups of
the prime order p, where g is a generator of G.

If there exists a mapping e : G×G→ GT with following properties, then we
call e a bilinear pairing.

Bilinearity: e(ga, hb) = e(g, h)ab for all g, h ∈ G, a, b ∈ Zp;
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Non-dengeneracy: There exist g ∈ G such that e(g, g) �= 1, in other words,
the map does not send all pairs in G×G to the identity in GT .

Computability: There is an efficient algorithm to compute e(g1, g2) for all
g1, g2 ∈ G.

2.2 Assumptions

Our scheme is based on a new assumption we called q-HPDH, the proof of its
security under generic group can be found in our full paper:

Definition 1 (q-HPDH). In a prime order group G with order p,
the q-Hidden-Polynomial-Diffie-Hellman (q-HPDH) problem is, given a tuple

(g, gx, gx
2

, . . . , gx
q

) where x ∈ Zp, g ∈ G and distinct (c1, c2, . . . , cq+1) ∈ Zp, to

compute a tuple gr, gr·
∏q+1

i=1 (x+ci) for some hidden value r �= 0.
Moreover, the following assumptions are used in our anonymous credential

scheme:

Definition 2 (q-SDH [7]). In a prime order group G with order p, the q-

Strong-Diffie-Hellman (q-SDH) problem is, given a tuple (g, gx, gx
2

, . . . , gx
q

)
where x ∈ Zp, g ∈ G, to compute c, g1/(x+c).

Definition 3 (q-HSDH [9]). In a prime order group G with order p, the q-
Hidden-Diffie-Hellman Exponent(q-HSDH) problem is, given a tuple (g, h, gx,
(g1/(x+b1), ub1 , vb1), . . . , (g1/(x+bq), ubq , vbq )) where x ∈ Zp, g, h ∈ G, to compute
(g1/(x+b), ub, vb) for some b distinct from bi(i = 1, . . . , q).

Definition 4 (q-TDH [8]). In a prime order group G with order
p, the q-Triple-Diffie-Hellman Exponent(q-TDH) problem is, given a tuple
(g, gx, gy, (c1, g

1/(x+c1)), . . . , (cq, g
1/(x+cq))) where x, y ∈ Zp, g ∈ G, to compute

grx, gry, grxy for some r.

2.3 BBS+ Signature

In this paper, we adopt the BBS+ signature proposed in [7] to issue the string
attributes for user. This scheme is proposed as following:

Setup. Select bilinear groups G,GT with prime order p and a bilinear map e.
Randomly select g, g0, h1, . . . , hL ∈ G.

KeyGen. Select x ∈ Zp and compute Y = gx. The secret key is x and the public
key is (p,G,GT , e, g, g0, h1, . . . , hL, Y ).

Sign. Given message M1, . . . ,ML ∈ Zp, randomly select w, r ∈ Zp and compute

A = (
∏

1≤j≤L h
Mj

j · gr0 · g)1/(x+w). The signature is (A,w, r).
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Verify. Given the signatures (A,w, r) on message M1, . . . ,ML, check e(A, Y gw)

= e(Π1≤j≤Lh
Mj

j · gr0 · g, g).

The BBS+ signature is proved to be unforgeable against adaptively chosen mes-
sage attack under the q-SDH assumption.

2.4 F-Secure BB Signature

We also adopt F-secure BB signature proposed in [8] in our scheme. This scheme
is proposed as following:

Setup. Select bilinear groups G,GT with prime order p and a bilinear map e.
Select h, h̃ ∈ G.

KeyGen. Select x̃, x̂ ∈ Zp and compute Ỹ = hx̃, Ŷ = hx̂. The secret key is (x̃, x̂)

and the public key is (p,G,GT , e, g, h, Ỹ , Ŷ ).
Sign. Given message m ∈ Zp, randomly select μ ∈ Zp − { x̃−m

x̂ } and compute

S = h1/(x̃+m+x̂μ), T = Ŷ μ, U = ĥμ. The signature is (S, T, U).
Verify. Given the signatures (S, T, U) on message M , check e(S, Ỹ hmT ) =

e(h, h) and e(h̃, T ) = e(U, x̂).

Besides the normal unforgeablity, this signature system has a property called F-
security defined as below: Define bijection F as F (M) = (hM , h̃M ) for Message
M . The F-security of this signature means that no adversary can output a tuple
(F (M), σ) where σ is a valid signature on M unless he previously obtained a
signature on message M . The F-security of FBB signature above can be proved
under the q-HSDH and q-TDH assumptions.

2.5 Proofs of Knowledge

To prove the string attributes and achieve non-transferability we adopt zero-
knowledge proofs of knowledge(POKs) on representations. By using this, the
prover can prove the knowledge of a representation that for some C, g1, g2, . . . ,
gn ∈ G, he knows x1, . . . , xn satisfy the equation C = gx1

1 · · · gxn
n , to simplify

the description, we denote this proof as POK{(x1, . . . , xn)|C = gx1
1 · · · gxn

n }.
Moreover, the POKs can be extended to prove multiple exponents equal. For
prime-order groups which we used in this paper, there exists a knowledge
extractor which can extract these quantities from a successful prover.

3 Scheme Construction

3.1 Anonymous Credential with Efficient Attribute Attestation

By using the signature schemes mentioned above and attribute-based cryptog-
raphy, we propose an anonymous credential scheme with efficient attribute at-
testation, the concrete scheme are defined as follow:
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Setup. LetG andGT be cyclic groups of the prime order p, where g is a generator
of G. e : G × G → GT be a bilinear mapping from G to GT . First, choose
n as the maximum number of attributes in single threshold supported by
the system, then randomly select a number ωi ∈ Z∗

p for each probably used
attribute, furthermore, n−1 additional dummy attributes di are chosen from
Z∗
p as well, these dummy attributes would never be issued.

Secondly, randomly select g0, gF , h0, h1, . . . , hL, h, ĝ, ĥ ∈ G, L is the number
of string attributes. Finally, the public parameters are defined as
params={ G,GT , e, g0, gF , h0, h1, . . . , hL, h, ĝ, ĥ, Ω = {ωi},D = {dj} }.

IssuerGen. To generate the key pair of issuer ,firstly randomly choose x, x0, x̃, x̂ ∈
Z∗
p and compute Y0 = gx0 , Ỹ = gx̃, Ŷ = gx̂, gx, gx

2

, . . . , gx
2n−1

, hx, hx2

, . . . ,

hxn−1

. The issuer secret key is isk = {x, x0, x̃, x̂} and public key ipk = {Y0 =

gx0 , Ỹ = gx̃, Ŷ = gx̂, (gx, gx
2

, . . . , gx
2n−1

), (hx, hx2

, . . . , hxn−1

)}.
CreIssue. Suppose the user has some secret infomation f , the corresponding

public key is F = gfF , the finite attributes contain in the credential is Ωu, as
well as L string attributes M1, . . . ,ML. The issuer proceeds as follow:
1. Check the validity of F and all attributes.

2. Randomly choose a token gu = gu ∈ G and compute Ui = g
1/(x+ωUi

)
u for

each finite attribute ωUi .
3. Use F-secure BB signature with secret key x̃, x̂ to generate a signature on
message u, the signature is defined as σFBB = (S, T, U) = (g1/x̃+u+x̂μ, Ŷ μ,

ĥμ), additionally, issuer computes hu = ĥu.
4. Use the BBS+ Signature scheme with secret key x0 to sign string attributes
M1, . . . ,ML together with f and u, the signature is σBBS = (A,w, r) =

((Fgu
∏L

j=1 h
Mj

j gr0g)
1/(x0+w), w, r).

5. Output the credential cre = gu, Ui, S, T, U, hu, A, w, r.
AttributeProve. When user wants to prove that he has a valid credential which

contains string attributes {SA} = S1, . . . , Sj and his finite attributes satis-
fied with the predicate Υ = (t,A), which is a (t, k)threshold for an attributes
set A(1 ≤ t ≤ k = |A| ≤ n) he proceeds as follow:
1. Firstly choose a subset Ω

′

u he owns that Υ (Ω
′

u) = 1, where Ω
′

u ⊆ A ∩Ωu

and |Ω′

u| = t. Then select the first n+ t− k− 1 attributes from D, for t ≤ k,
the size of this set is less than n− 1, denote it as Dn+t−k−1.
2. By using the aggregate algorithm in [6],it is possible to compute

A1 = g

1∏
ωUi

∈Ω
′
u

(x+ωUi
)

u

Then, for |Dn+t−k−1 ∪ (A \ Ω
′

u)| = (n + t − k − 1) + (k − t) = n − 1, user

could use (g, gx, gx
2

, . . . , gx
n−1

), (h, hx, hx2

, . . . , hxn−1

) to compute

A2 = g
∏

ω∈Dn+t−k−1∪(A\Ω′
u)

(x+ω)
, A3 = h

∏
ω∈Dn+t−k−1∩(A\Ω′

u)
(x+ω)

. 3. Then randomly choose r, s ∈ Z∗
p and output the proof as Π = (π1, π2, π3,

π4) = (Ars
1 , Ar

2, A
r
3, g

s
u).
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4. Randomly select ρπ, ρA, ρS , ρT , ρU , ρH ∈ Z∗
p and compute commitments

Cπ = guĝ
ρπ , CA = AĝρA , CS = SĝρS , CT = T ĝρT , CU = UĝρU , CH = huĝ

ρH .
5. Then randomly select ρw, ρ

′
Z∗
p, sets α = ρAw, ζ = ρSρπ and ξ = ρSρT .

Compute auxiliary commitments Cw = gwĝρw , CρS = gρS ĝρ
′
and set ρα =

ρwρA, ρζ = ρ
′
ρπ, ρξ = ρ

′
ρT .

6. Finally, the user sends Π,Cπ , CA, CS , CT , CU , CH , Cw, CρS to the verifier
and use proofs of knowledge on representations to generate the following
proofs and send it to the verifier:

POK(ρπ, ρA, ρS , ρT , ρU , ρH , ρw, ρ
′
, α, ζ, ξ, s, r, w, f,Mk) :

e(CA, Y0)e(
∏

1≤k≤j,Mk∈{SA}
hMk

k g, g)−1 = {
∏

1≤k≤j,Mk /∈{SA}
e(hk, g)

Mk}

e(gF , g)fe(CA, g)−we(π4, g)
1/se(g0, g)

re(ĝ, Y0)
ρAe(ĝ, g)α (1)

e(CS , Ỹ CπCT )e(g, g)
−1 = e(ĝ, Ỹ CπCT )

ρse(CS , ĝ)ρπ+ρT e(ĝ, ĝ)−ζ−ξ (2)

e(ĥ, CT )e(CU , Ŷ )−1 = e(ĥ, ĝ)ρT e(ĝ, Ŷ )−ρU (3)

e(ĥ, Cπ)e(CH , g)−1 = e(ĥ, ĝ)ρπe(ĝ, g)−ρH (4)

Cπ = π
1/s
4 ĝρπ (5)

Cw = gw ĝρw , 1 = CρA
w g−αĝ−ρα (6)

CρS = gρS ĝρ
′

, 1 = Cρπ
ρS

g−ζ ĝ−ρζ , 1 = CρT
ρS

g−ξĝ−ρξ (7)

Verify. After receiving the attribute attestation from the user, verifier verifies
the correctness of the proofs of knowledge above at first. Then the verifier
checks the following equation:

e(π4, π2) = e(π1, g
∏

ω∈Dn+t−k−1∪A
(x+ω)

)

and
e(π2, h) = e(π3, g)

if all of the above are correct, accept the attestation, otherwise, reject it.

3.2 Security Results

Privacy. In the Attribute Prove procedure, the verifier receives following mes-
sages: (Π,Cπ , CA, CS , CT , CU , CH , Cw, CρS ), for the commitments Cπ, CA, CS ,

CT , CU , CH , Cw, CρS , which is randomized by ρπ, ρA, ρS , ρT , ρU , ρH , ρw, ρ
′
and

the zero knowledge property of POKs, these values contain no extra informa-
tion about the user and is unlinkable. Then we consider the values in Π , for
randomly chosen r and s, the value of π1 and π4 are uniformly distributed in
group G. Furthermore, when π1 and π4 are determined, the value of π2 and π3

are uniquely determined by threshold parameter n, k and attributes in set A,
which is only dependent with the predicate Υ , contains no information about
user attributes and identity, too. From the above analysis, we can see that our
scheme has full privacy and unlinkablity for user identity and attributes.
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Unforgeabilty. For the unforgeability, we have the following theorem:

Theorem 1. The Attribute attestation protocol is a proof of knowledge of a mod-
ified BBS+ signature (A,w, r) on secret f , string type attributesM1, · · · ,ML, and
the finite type of attributes is unforgeable under q-HPDH assumption.

Proof. The proof of Theorem 1 is described in our full paper.

4 Efficiency Results

In this section, we will compare the efficiency of our system with the pairing
based system using accumulators in [5]. We use the same environment in [5]
which described a common eID system, here is the parameter setting:

L: the total number of string attribute types. L̃: the total number of finite
attribute types. n: the total number of finite attribute values. k: the number
of attributes referenced in a proof. In addition, our system uses the following
parameters: N : the upper limit of threshold parameter the system supports.
According to paper [5], in an eID system, an approximate value of those param-
eters are L = 5, L̃ = 40, n = 1000 to 10000 and k = 10, for there is no N in
that scheme, we set it to 20, which is sufficient for normal attribute-based access
control.

4.1 Computational and Communication Complexity

According to paper [5], we consider the computational complexity based on the
number of exponentiations and pairings. Both our scheme and the scheme in
[5] can achieve computational complexity independent with the total number
of finite attribute types L̃, which is an advantage to scheme [4]. Although our
scheme takes some more exponentiations than [5] for the proof of AND relation,
but this is because our scheme is designed for the general threshold predicate
with complexity independent to the type of predicate.

Then we compare the communication complexity of the attributes proof. The
proof length in both our scheme and [5] are independent with the number of
finite attributes in the predicate. For AND relation, our scheme has 3 more
group components than scheme [5], which is roughly equal, but in the situation
of any other relations, our scheme is more efficient. The concrete results can be
found in our full paper.

4.2 Storage Data Size

For scheme [5] there was a main problem that for each probably used attribute
in the system, the user has to store a tuple of corresponding public parameters,
from the discussion of [5], this part of data consists with about 6000 to 60000
elements and would take a space of 200KB to 2MB. For common used eID
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cards, this size is too large. When L = 5, L̃ = 40, n = 1000, k = 10, N = 20, the
total user data size of our scheme, which contains public parameters and user
credentials, contains about 120 group elements. Compared with 6000 to 60000
elements in [5], our scheme can save more than 97 percents storage cost in user
device.

5 Conclusion

In this paper, we considered a new way to build anonymous credentials with
efficient anonymous attributes proofs using Attribute-based signature and pro-
posed a concrete anonymous credential scheme. By using this new construction
idea, our scheme could realize constant complexity attribute proofs while support
more flexible threshold relations. Furthermore, our scheme solves the problem
of the oversized public key in [5]. Finally, our scheme could be extended to sup-
port general attributes predicates, which are hard and inconvenient to realize in
common anonymous credentials.
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Abstract. Breaches of data security and privacy have prompted con-
cerns about data outsourcing. Encryption is an ideal solution, yet search-
ing over encrypted data is a challenging task. Traditional data retrieval
no longer hold, so searchable encryption (SE) techniques rise in re-
sponse. Most of the related efforts are narrowly focused and problem-
specific. None of them has simultaneously achieved the five keyword
search functions (F5): fuzzy, multi-keyword, and ranked search as well
as keyword addition/removal and instantaneous search revocation,
together with the five privacy preserving requirements (P5): keyword
privacy, index privacy, token privacy, search pattern privacy, and
access pattern privacy. In this paper, a full-featured approach called
F5P5 is presented, which achieves F5 and P5 simultaneously. Analysis
and experiments show that F5P5 is secure and privacy preserving, and
provides high-precision search results and is efficiency in terms of com-
putation and storage.

Keywords: Data outsourcing, security, privacy, searchable encryption.

1 Introduction

Data outsourcing promises an economic paradigm of data sharing such as Drop-
box. Despite of all the hype, this paradigm deprives data owners of direct control
over outsourced data and prompts concerns about potential data breaches on
the service provider (SP) side. Searchable encryption (SE) is an ideal solution
to protecting sensitive data, yet searching over encrypted data without touch-
ing the plaintext is a challenging task, which requires that the index for each
encrypted file be elaborately encrypted in a searchable way. Many efforts have
been made. However, none of them has simultaneously achieved the five key-
word search functions (F5): fuzzy, multi-keyword, and ranked search as well
as keyword addition/removal and instantaneous search revocation, to-
gether with the five privacy preserving requirements (P5): keyword privacy,
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Table 1. Overview of related work regarding F5 and P5

Scheme Fuzzy
search

Multi-
keyword
search

Ranked
search

Keyword
+/-

Search
revo-
cation

Keyword
privacy

Index
privacy

Token
privacy

Search
pattern
privacy

Access
pattern
privacy

[1] × × √ × × √ √ √ × ×
[2] × √ √ × × √ √ √ √ √

[3]
√ × × √ × √ √ √ × ×

[4]
√ √ × √ × √ √ √ × ×

F5P5 √ √ √ √ √ √ √ √ √ √

index privacy, token privacy, search pattern privacy, and access pat-
tern privacy. To simultaneously achieve F5 and P5 (F5+P5), big surgeries to
the underlying algorithms of the previous proposals are required. An overview
of the widely referenced related work is illustrated in Table 1.

The rest of the paper is organized as follows. Section 2 is related work. Pre-
liminaries are given in Section 3. Section 4 presents the construction of F5P5.
Security and privacy analysis is presented in Section 5. Section 6 is performance
evaluation. Section 7 concludes this paper.

2 Related Work

Multi-Keyword Search.Multi-keyword search enables users to search by spec-
ifying keywords of interests, and [2] achieved this by leveraging coordinate match-
ing [5] which uses the number of queried keywords that appear in a file (i.e., the
number of keywords that are hit) as the measurement of similarity between a
file and a query. In [2], the similarity score is the inner product of the searchable
index (SI) and searchable token (ST ), both of which are binary vectors record-
ing the existence of the predefined keyword in a file or in a query. Nevertheless,
the similarity scores are coarse in [2], as binary vectors only indicate existence or
not. Suppose files F and F ′ contain keyword w; yet, the number of times that w
appears in F is larger than that in F ′. In [2], both F and F ′ will be returned to
users with the same similarity score; users need to decrypt the files and conduct
certain manual postprocess to obtain the more related one by themselves. Our
F5P5 modifies coordinate matching by changing binary bits in SI into weight
information of corresponding keywords, which is typically the number of times
that the keyword appears in a file. The SP, by doing the modified coordinate
matching, will get fine-grained similarity scores.

Ranked Search. The SP returns top-k files as search results according to cer-
tain scoring mechanism, without ever touching any sensitive information, which
has been achieved by [1] and [2]. However, the order preserving symmetric en-
cryption in [1] only supports single and exact keyword search where search
pattern privacy and access pattern privacy cannot be protected. In [2], two
(n + 1) × (n + 1) matrices (M1,M2) corresponding to n predefined keywords
are used to encrypt SI; keyword addition/removal will result in corresponding
changes to the size of (M1,M2), so the data owner has to re-generate all SI.
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Fuzzy Search. Fuzzy search aims to tolerate various typos and representation
inconsistencies in different searching inputs, yet even two words that are close to
each other would no longer be so after the cryptographic transformation. This
has been coped with in [3], [4] via building a fuzzy keyword set (Fuz). However,
they did not achieve search pattern privacy and access pattern privacy due to
the underlying algorithms. Besides, storage cost of Fuz is another problem. Edit
distance ed(w1, w2) is introduced which is the number of operations1 required
to transform word w1 to w2 [3], [4]. The storage cost of Fuz is O(ted) for a
keyword with length t and edit distance ed in [3]. In [4], both data owners and
users are required to construct bloom filters according to every possible distance
ed′ ≤ ed. So, the storage cost is even larger than [3], considering both the
data owner and the user sides. We construct Fuz by leveraging an information
retrieval technique [8] and the storage cost of Fuz has been reduced to O(t2)
per keyword with length t without requiring users to specify appropriate edit
distance.

Keyword Addition/Removal. Suppose W is the predefined keyword set and
a new file, characterized by some new keywords W ′(W ′ � W ), needs to be
outsourced. W ′ must be added into W for further search. Also, sometimes some
keywords need to be withdrawn from W . Previously, [3] and [4] have tackled
this, yet they are inherently incapable of fulfilling F5+P5. In [1] and [2], keyword
addition/removal will result in re-encryption of all SI.

Search Revocation. It is preferable that the data owner may invoke a user’s
search ability immediately, which is known as instantaneous search revocation.
Previously, [6] achieved this, but a look-up table is introduced, which is inflexible
and has not been widely adopted. So far, none of the methods without look-up
table has achieved search revocation due to the limit of the underlying algorithm.

3 Preliminaries

Semi-Trusted
Service Provider

(SP)
Outsource

Files
Encrypted

Files

Searchable
Tokens (ST)

Encrypted Search
Results

Authorization & Access Control
Data UserData Owner

Searchable 
Indexes (SI)

Fig. 1. Architecture of F5P5

Table 2. Fuzzy keyword set for “cate”

Permuterms Prefixes
/cate /c /ca /cat /cate
e/cat e/ e/c e/ca e/cat
te/ca te/ te/c te/ca
ate/c ate/ ate/c

System Model. We follow a typical architecture for data outsourcing as shown
in Fig. 1. Three entities are involved: data owner O, data user U , and the SP. O
has a collection of files F to be outsourced. O extracts predefined keywords W
from F . O builds SI for each file in F and encrypts the file with a symmetric
cipher E(·). SI is attached to E(F ) and (SI,E(F )) are outsourced to the SP.

1 The operations include changing, deleting, and inserting characters into a word.



F5P5: Keyword Search over Encrypted Data 419

Each user U will be granted a searchable key (SK) by O. U specifies keywords of
interest and generates ST with SK. Then, U sends ST to the SP. The SP evalu-
ates the ST over each SI and returns the ranked top-k files without decrypting
E(F ). We assume the authorization between O and U has been appropriately
established by separate cryptographic techniques. The search ability of U can
be revoked by O, which is called search revocation. Any user U with a valid SK
has the same ability to search. Issues such as selection of E(·), symmetric key
agreement, and access control, are not within the scope of this paper. We only
focus on searchable encryption, which is consistent with previous work [1], [2].

Threat Model. Any user with a valid SK can search over the entire dataset,
which makes collusion of users meaningless, as the collusion will not provide a
greater search ability. The SP is “honest-but-curious” who could be the potential
adversary, which is consistent with previous work [1], [2], [6]. The SP will honestly
follow the protocol, but it is curious to guess or infer underlying information
based on what it knows. To meet high safety standard as [2], in addition to SI,
ST , encrypted files and the search results, we assume the SP has some additional
background information about the encrypted files.

Fuzzy Keyword Set. We construct the fuzzy keyword set Fuz by leveraging
the method in [8]. First, for keyword w = c1c2...ct with t characters, add “/”
to the end: w = c1c2...ct/. Then, by rotating t times w we get t permuterms:
(/c1c2...ct, ct/c1c2...ct−1, ..., c2...ct−1/c1). To illustrate, the permuterms for “cate”
is: (/cate, e/cat, te/ca, ate/c). Each permuterm is expanded to get all its prefixes.
The prefixes of “/cate” are (/c, /ca, /cat, /cate). Note that a valid prefixmust con-
tain “/” and at least one character. Namely, “/” of “/cate” and “e” of “e/cat” are
invalid. Table 2 summarizes Fuz for “cate”. Each keyword with length t will gen-
erate t permuterms and each permuterm has up to t prefixes. So the storage cost
of Fuz is up to O(t2), which yields a better performance than that in [3].

4 Construction of F5P5

Setup. First, data owner O extracts predefined keywords W = (wi, 1 ≤ i ≤ d)
from the files F = (Fj , 1 ≤ j ≤ l) and builds Fuzi for wi, Fuz = (Fuzi, 1 ≤
i ≤ d). Second, O finds a large prime p with ||p|| bits2 and picks g ∈R [2, p− 1],
g−1 · g ≡ 1 mod p. Third, O creates a truncated normal distribution TN(μ, σ2)

within the interval [μ−3σ, μ+3σ], where μ, σ ∈ Z+, μ−3σ > 0, and ||μ|| < ||p||
4 .

Then, O randomly picks 2d secret integers (rq ∈ Z+, 1 ≤ q ≤ 2d) and computes:

R = (Rq = grq mod p, 1 ≤ q ≤ 2d), R−1 = (R−1
q = g−rq mod p, 1 ≤ q ≤ 2d).

Index Generation. For Fj ∈ F , O calculates the number of times that wi ∈ W
appears in Fj : Nj,i, Nj = (Nj,i, 1 ≤ i ≤ d). Then, a d-dimension vector θj is
generated for Fj , where each entry θj,i is constructed as: θj,i = aNj,i, if Nj,i �= 0;

else θj,i = a′. Here, a = xa1
1 xa2

2 ...xae
e , ||a|| < ||p||

4 is a large integer for enlarging

2 We use || · || to denote the number of bits in ·.
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Nj,i. a′ = x
a′
1

1 x
a′
2

2 ...x
a′
e

e is a small integer as dummy weight. Subsequently, based
on θj , a 2d-dimension vector α will be generated. Each entry αi is set as:

αi = θj,i + θj,i+1, αi+d = θj,i − θj,i+1, 1 ≤ i ≤ d.

O randomly picks d integers (mi, 1 ≤ i ≤ d) according to TN(μ, σ2) and rounds
mi to its closest integer. The searchable index SIj for Fj is generated as:

SIj = (m1α1R1, , ... ,mdαdRd ,m1αd+1Rd+1, ... ,mdα2dR2d) mod p.

Then, O randomly picks v ∈ Z+ and publishes (p, 2vμ2). Finally, O encrypts
Fj as E(Fj) and outsources ((SIj , E(Fj)), 1 ≤ j ≤ l) to the SP. The secret
parameters: (g,W,R, a, a′, v,Nj , 1 ≤ j ≤ l) are secretly held by O.

Searchable Key Generation. O sends each authorized user the same search-
able key: SK = (Fuz, μ, σ2, R−1). SK is only sent once.

Token Generation. User U searches by specifying a set of keywords and gen-
erating a searchable token STu with SK. Note that the keywords of interests
may not exactly match the predefined keywords in W . To support fuzzy search,
certain pretreatment should be conducted. Suppose “cate” is a fuzzy keyword.
U will go through Fuz to get the most possible keywords in W for “cate”.

1. Deletion. Delete some characters of “cate”. We illustrate by deleting one
character: (ate, cte, cae, cat). By adding “/” before each word, we get H =
(/ate, /cte, /cae, /cat). For each h ∈ H , if there exists w ∈ Fuzi satisfying
h = w, i is added into Pos.

2. Insertion. Insert some characters into “cate”: (∗cate, c ∗ ate, ca ∗ te, cat ∗
e, cate∗). Three transformations should be conducted.

– Prefix transformation.Wildcards like c1c2...ct∗ are translated into /c1c2...ct∗.
– Suffix transformation.Wildcards like ∗c1c2...ct are translated into c1c2...ct/∗.
– Pre/Suffix transformation. c1...ci ∗ cj...ct are translated into cj ...ct/c1...ci∗.
Finally, we get H = (cate/∗, ate/c∗, te/ca∗, e/cat∗, /cate∗). For each h ∈ H ,
if there exists w ∈ Fuzi such that w is a prefix of h, i is added into Pos.

3. Substitution. Change one character to another: (cat∗, ca∗e, c∗te, ∗ate). After
the same transformations, we get: H = (/cat∗, e/ca∗, te/c∗, ate/∗). For each
h ∈ H , if there exists w ∈ Fuzi such that w is a prefix of h, add i to Pos.

After the same pretreatment for all the fuzzy keywords, we get (wi, i ∈ Pos).
With Pos, a d-dimension vector η will be generated, where each entry ηi is

constructed as: ηi = b, if i ∈ Pos; else, ηi = b′. b = xb1
1 xb2

2 ...xbt
t , ||b|| < ||p||

4
is a random large integer chosen by U for enlarging the actual query entries.

b′ = x
b′1
1 x

b′2
2 ...x

b′t
t is a small random integer called dummy query. A 2d-dimension

vector β is generated where each entry is constructed as:

βi = ηi + ηi+1, βi+d = ηi − ηi+1, 1 ≤ i ≤ d.

U randomly picks d integers (ni, 1 ≤ i ≤ d) according to TN(μ, σ2) and rounds
ni to its closest integer. The searchable token STu is constructed as:

STu = (n1β1R
−1
1 , ... , ndβdR

−1
d , n1βd+1R

−1
d+1, ... , ndβ2dR

−1
2d ) mod p.
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Query. U sends STu to the SP. The SP evaluates STu over each SIj as:

SIj · STu mod p = [Σd
i=1mini(θj,i + θj,i+1)(ηi + ηi+1)

+ Σd
i=1mini(θj,i − θj,i+1)(ηi − ηi+1)] mod p

= 2Σd
i=1(mi−1ni−1 + mini)θj,iηi mod p,

where we set m0 = md, n0 = nd. Since p is a large prime, the results can
be simplified as SSj = 2Σd

i=1(mi−1ni−1 + mini)θj,iηi. The SP gets the final
similarity scores by computing:

SSj/2vμ
2 = (2/v)Σd

i=1θj,iηi(mi−1ni−1 + mini)/2μ
2.

Files will be ordered according to the similarity scores in a descending way
and top-k files will be returned. Here, (mi−1ni−1 + mini)/2μ

2 are interference
elements whose expectation is: E(mi−1ni−1 +mini)/2μ

2 = (E(mi−1)E(ni−1) +
E(mi)E(ni))/2μ

2 = 1. The slight fluctuation of similarity scores due to the
interference elements is a tradeoff between access pattern privacy and search
precision. Experiments later shows that this is a practice-friendly tradeoff.

Keyword Addition/Removal. Suppose Fl+1 is the new file needs to be out-
sourced, which introduces a new keyword wd+1. First, O builds Fuzd+1 for wd+1.
Second, O randomly picks r2d+1, r2d+2 and generates R2d+1, R2d+2 as in Setup.
Third, O re-picks m′

d and randomly chooses md+1 as in Index Generation.
Last, for each Fj , O sets θj,d+1 = a′ and re-encrypts SIj,d, SIj,2d as:

SIj,d = (θj,d + θj,d+1)m
′
dRd mod p, SIj,2d = (θj,d − θj,d+1)m

′
dR2d mod p.

Two new entries SIj,d+1, SIj,2d+2 will be inserted into SIj :

SIj,d+1 = (θj,d+1 + θj,1)md+1R2d+1 mod p,

SIj,2d+2 = (θj,d+1 − θj,1)md+1R2d+2 mod p.

Next, O generates SIl+1 for Fl+1 as it did in Index Generation. Finally,

((SIj,d, SIj,2d, SIj,d+1, SIj,2d+2, j ∈ [1, l]), (SIl+1, E(Fl+1)))

will be sent to the SP and (Fuzd+1, R
−1
2d+1, R

−1
2d+2, d + 1) will be sent to users.

Sometimes, certain predefined keywords wz needs to be removed due to deletion
of some files. In such cases, O re-picks m′

z−1 and updates SIj,z−1, SIj,z+d−1:

SIj,z−1 = (θj,z−1 + θj,z+1)m
′
z−1Rz−1 mod p,

SIj,z+d−1 = (θj,z−1 − θj,z+1)m
′
z−1Rz+d−1 mod p.

Update message (z, SIj,z−1, SIj,z+d−1, 1 ≤ j ≤ l) will be send to the SP. The SP
deletes SIj,z, SIj,z+d and updates SIj,z−1, SIj,z+d−1. U updates SK as SK =
(Fuz\Fuzz, μ, σ2, R−1\R−1

z ).

Search Revocation. F5P5 achieves search revocation by updating pivotal in-
formation. First, O re-picks (r′q ∈ Z+, 1 ≤ q ≤ 2d) as it did in Setup and
generates two update keys respectively for the SP and all unrevoked users:

UKsp = (gr
′
q−rq mod p, 1 ≤ q ≤ 2d), UKu = (grq−r′q mod p, 1 ≤ q ≤ 2d).
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The SP updates SIj with UKsp: SIj,q = SIj,q · gr
′
q−rq mod p. Unrevoked user

U updates SK with UKu: R
−1
q = R−1

q · grq−r′q mod p.

5 Security and Privacy

5.1 Security

We prove the security of F5P5 in two scenarios. First, the SP guesses with SI, ST ,
and background knowledge. Additionally, the SP guesses with ST � SI, which
is a binary relation: ST � SI = (mqnqαqβq, 1 ≤ q ≤ 2d), mi = mi+d, 1 ≤ i ≤ d.

Theorem 1. Alone with the SI, ST , and the background knowledge, F5P5 is
secure as long as the entries of SI or ST are indistinguishable to the SP.

Proof. Since mq, αq, nq, βq ∈ [2, p−1], 1 ≤ q ≤ 2d, SI and ST can be uniformly
denoted as S = (gS1 , ..., gS2q ) mod p. The SP guesses by picking g′ ∈R [2, p− 1]

and S′
q such that (g′)S

′
q = gSq . Since the choice of g and Sq are out of the SP’s

sight, it cannot verify whether g′ = g. Namely, the entries in SI and ST are
indistinguishable to SP. Thus, F5P5 is secure according to Theorem 1.

Theorem 2. In addition to what the SP knows in Theorem 1, F5P5 is secure if
the SP decomposes ST � SI with a negligible advantage.

Proof. According to the construction of SI and ST , a′ is a divisor of αq: a
′|αq.

Also, b′|βq. If the SP decomposes mqnqαqβq, it decomposes mqnqa
′b′. We set:

mq = x
mq1

1 x
mq2

2 ...xmqy
y , nq = x

nq1

1 x
nq2

2 ...xnqy
y , a′ = x

a′
1

1 x
a′
2

2 ...x
a′
y

y , b′ = x
b′1
1 x

b′2
2 ...x

b′y
y .

The probability that the SP decomposes mqnqa
′b′ is:

ε = 1/[(mq1+nq1+a′1+b′1+1)·(mq2+nq2+a′2+b′1+2)...(mqy+nqy+a′y+b′y+1)].

The number of divisors (y) can be large enough as long as p is large enough, so
ε is negligible and F5P5 is secure according to Theorem 2.

5.2 Privacy

Keyword Privacy. Which keywords are being queried must not be divulged.
In F5P5, the SP cannot speculate which keywords are being queried from ST
without SK. Keyword privacy has been achieved.

Index Privacy. The SP should not deduce any sensitive information from SI
and its associated encrypted file. In F5P5, SI are indistinguishably encrypted
without deterministic relationship due to the randommi and ri, so the SP cannot
deduce any underlying information even if it knows background information.

Token Privacy. The SP should not have the ability to generate a valid ST based
on previously ones received from users. In F5P5, the entries within a single ST
are indistinguishably generated thanks to ni, ri. Among different ST , there is no
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Fig. 2. Fuz: Storage cost
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Fig. 5. Time cost of generating ST

deterministic relationship thanks to the random choice of b, b′. Namely, the SP
cannot make up a valid ST from previous ones to search by itself.

Search Pattern Privacy. Search pattern is the information that can be derived
when the SP knows two arbitrary searches are performed for the same keywords.
In F5P5, the random b, b′ makes ST indistinguishable even if two ST involve the
same keywords, so search pattern privacy is preserved.

Access Pattern Privacy. Access pattern refers to search result sequence. Pri-
vate information retrieval (PIR) [7] could solve this but it is inefficient. In F5P5,
result sequence fluctuates slightly due to the interference elements, even if the
same keywords have been queried. Namely, an “as-strong-as-possible” access
pattern privacy is provided, which is consistent with previous work [2].

6 Performance Analysis

We implement F5P5 on a Windows 7 Server (Intel Core(TM) Processor 3.00GHz)
with a real-world dataset the same with [2]: the Enron Email Dataset [9].

Fuzzy Keyword Set Generation. Time and storage costs of building Fuz
depend directly on the cardinality of W : |W |. For the first time, we reduce
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the storage cost to O(t2) per keyword with length t. Fig. 2 is the storage cost
according to different |W |, where 25KB is required when |W | = 140. In Fig. 3,
only 0.68 milliseconds are required when |W | = 140. Note that building Fuz is
a one-time operation before data outsourcing.

Index Generation. Generation of SI involves calculating weight information
and encryption. Fig. 4 is the evaluation of generating SI where |W | = 140.
25.1 seconds are required to build searchable indexes for 1200 files, which is an
improvement compared with previous work.

Token Generation. Generation of ST involves pretreatment of keywords and
encryption. Fig. 5 evaluates the generation of ST . In Fig. 5, the time cost is
almost linear with the number of queried keywords, where 21 milliseconds are
required for 30 keywords (15 fuzzy keywords). Pretreatment accounts most of
the time and encryption only consumes a small part.

Query. Fig. 6 is evaluation of time cost according to different number of key-
words (|F | = 1200, |W | = 140). The time cost keeps almost constant (approx-
imate 29 milliseconds) no matter how many keywords in the query, which it is
a desirable feature and has not been achieved in most related researches except
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[2]. Fig. 7 is evaluation according to different dataset sizes. 21 milliseconds are
required to query among 600 files, which is almost negligible.

Precision and Privacy. The adoption of interference elements involves a trade-
off between search precision and access pattern privacy. We follow the same defi-
nition as [2]: precision, Prek = k′/k, where k′ is the number of files that exist in
the real top-k files; privacy, Prik = (

∑
prij)/k, where prij = |Rankj −Rank′

j |
is the rank perturbation of Fj . Rankj is the rank of Fj in the retrieved top-k files
and Rank′

j is its rank in real top-k files. MSI (MST ) is the magnitude difference
between a and a′ (b and b′). We set MSI = MST for convenience. Fig. 8 is eval-
uation of precision and Fig. 9 is evaluation of privacy (|F | = 1200, |W | = 140),
where large choice of MSI(MST ) will result in high precision and low privacy.
So, MSI(MST ) is a balance parameter between precision and privacy. Preci-
sion in F5P5 is around 95% with approximate 5 privacy (MSI = MST = 3),
compared with 90% precision and 0.08 privacy in [2]. Namely, F5P5 provides
higher precision and better privacy assurance. Also, the slight impact of σ indi-
cates that the interference elements have done a good job of making SI and ST
undistinguishable without reducing precision.

7 Conclusion

We have proposed a full-fledged searchable encryption scheme called F5P5 which
simultaneously achieves the five keyword search functions (F5) and the five pri-
vacy preserving requirements (P5). Thorough analysis shows that F5P5 is secure
and privacy preserving. Experiments based on a real-world dataset show that
F5P5 performs well in terms of both computation and storage with high pre-
cision of search results. As for our future work, we will explore how to assign
different search abilities to different users.
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Abstract. As location-based services become more and more popular, concerns
are growing about the misuse of location information by malicious parties. In or-
der to preserve location privacy, many efforts have been devoted to preventing ser-
vice providers from determining users’ exact locations. Few works have sought
to help users manage their privacy preferences; however management of privacy
is an important issue in real applications. This work developed an easy-to-use
location privacy management system including functions of policy composition,
policy conflict detection and policy recommendation.

Keywords: Location privacy, policy management.

1 Introduction

With the advance of mobile devices and positioning systems, location-based services
(LBSs) have become prevalent. While enjoying the convenience brought by LBSs, con-
sumers have begun worrying about their location privacy due to the very nature of LBSs
which typically require the disclosure of the users’ locations. Undesired exposure of lo-
cation information may render users an easy target of criminal behaviors. For example,
kidnappers could take advantage of LBSs to acquire a target’s daily travel route.

Many efforts [7,8,10] have been devoted to preventing service providers from know-
ing users’ exact locations. However, few works [13–15] have sought to help users man-
age their privacy preferences, which is yet an important issue in real applications and
at the core of the success of these applications. Several exploratory studies [3, 5] have
shown that most users are concerned about their location privacy, but when they are
actually facing the location-based services, they either give up their privacy concerns or
totally abandon the services. The main reasons behind such behavior are summarized as
follows: (i) lack of understanding about the privacy implications of their behavior; (ii)
lack of a proper method for them to control privacy options; (iii) overhead introduced
by privacy protections. For example, existing access control policies like XACML [16]
aim to cover a wide range of needs of access control for various applications, which
are too complicated to be manipulated by non-expert end-users and contain functions
that may not be necessary in location-based services. The complexity of general access
control policies is also the main cause of the management overhead that has been shown
to hinder the adoption of location privacy protection mechanism by the end users.

T.W. Chim and T.H. Yuen (Eds.): ICICS 2012, LNCS 7618, pp. 427–434, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



428 A. Muhammed, D. Lin, and A. Squicciarini

To cope with the above issues, in this work, we present an overview of an easy-to-use
location privacy policy management system. We define a succinct yet expressive policy
language tailored for location privacy protection. We propose algorithms for detecting
policy redundancy, policy conflict and policy merging that ensure the consistency of the
access right being granted as well as efficient policy evaluation. We develop a policy
recommendation function that generates recommended policies based on users’ basic
requirements in order to reduce user’s burden.

The rest of the paper is organized as follows. Section 2 reviews related work. Sec-
tion 3 presents the proposed policy management system. Finally, Section 4 concludes
the paper.

2 Related Work

There have been extensive efforts on location anonymization in order to prevent ser-
vice providers from knowing end-users’ exact locations [1, 2, 6, 7, 9–11]. There are few
works on location privacy policy management. Snekkeness [15] is one of the earliest re-
searchers to identify the concepts for formulating personal privacy policies. Smailagic
et al. [14] proposed a privacy model which specifies location privacy using set theory
and rules. Myles et al. [12] developed a middleware service to allow location-based
applications to use multiple location positioning systems. A recent related work is by
Sadeh et al. [13] who developed an application, namely PeopleFinder, to enable cell
phone and laptop users to selectively share their locations with others. Unlike existing
works, our proposed system considers more policy management related tasks such as
policy composition assistance, policy redundancy and conflict detection.

In addition, it is worth noting that location privacy policies are relevant but different
from the concept of location-based access control (e.g., [4]) in the sense that location
data plays different roles.

3 Location Privacy Policy Management System

The Location Privacy Policy Management System (LPPM) system is installed at user
side, such as users’ smart phones. We assume that users subscribe to location-based
service providers who are allowed to know each user’s location. We also assume that
users may have created groups of contacts (e.g., family, friends) for their use of installed
location-based services. The group information will be leveraged by the LPPM system
to simplify the specification of the location privacy policy.

Figure 1 illustrates the framework of the LPPM system. When a user adds a new
contact to his/her installed location-based service application, the LPPM system takes
the profile of the new contact (such as his/her relationship with the user, hobbies, etc.)
and invokes the recommendation module to generate a candidate privacy policy for the
user’s consideration. If the user is satisfied with the recommended policy, the policy
will be inserted into the policy repository and may be merged with other policies for
storage efficiency as well as evaluation efficiency. If the user modifies the recommended
policy, the revised policy will be checked by the policy conflict detection module before
inserting to the policy repository.
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Fig. 1. Overview of the LPPM System

When someone (say Jack) sends a request to a location-based service provider to
ask for his friend (Bob)’s location, the service provider will direct the request to Bob’s
mobile device. Bob’s LPPM system checks the stored location privacy policies to see
if Jack is allowed to view Bob’s location. The decision is then forwarded back to the
service provider. If Jack is granted the access right, the service provider will display
Bob’s current location on Jack’s device. Otherwise, Jack will receive a message that his
request is denied.

3.1 Location Privacy Policy

We define a policy language (as shown in Definition 1) that is able to specify the com-
mon components and requirements that are related to location privacy concerns.

Definition 1. A location privacy policy P consists of the following components:

– U , E specify the policy target which are defined by a set of user IDs and roles. U/E
excludes users in E from U .

– T is a Boolean expression on the time t, the day d1 and the date d2, which is the
time when a location request is received.

– L specifies a set of policy owner’s locations which are defined by either ranges of
location coordinates, or semantic locations.

– G specifies the granularity of the location disclosure in a five scale system: exact
location, district, city, state, country.

P 〈U/E, T, L,G〉 specifies that users in U but not E are allowed to view the policy
owner’s location at granularity G if the policy owner is within the region L during the
time period defined by T.

A user can define one location privacy policy for an individual user or a group of users.
The access to the policy owner’s location will be granted only when the policy is sat-
isfied. Otherwise, the location request will be denied. The policy evaluation consists of
the following four steps:

1. User u1 wants to query user u2’s location and u1 composes a location request in
the form of Q : 〈RID = u1, QID = u2〉, where RID is the requester’s ID and
QID is the user being queried.
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2. User u1 sends the location request Q to the location-based service which has in-
stalled the location privacy policy management (LPPM) system.

3. The LPPM system searches u2’s policies that are applicable to u1. Policies are
considered applicable to u1 if u1 satisfies the policy target in that u1 is listed in
the policy target or u1’s relationship (role) to u2 is specified in the policy. For
example, the policy target U = {Alice, Bob} and u1 = Alice, or the policy target
U = {Family} and u1 is one of u2’s family members.

4. For each applicable policy, the LPPM system first checks if the current time is
within the time period specified by the time range T . If so, the LPPM system fur-
ther checks if u2’s current location is within the location range L specified in the
policy. To check the location, the LPPM system will convert the semantic locations
(such as a name of a company) defined in the policy into location coordinates to
be compared to u2’s current location coordinates. If the location check is also sat-
isfied, the access to u2’s location will be granted to u1, and the policy evaluation
stops. Otherwise, the LPPM system continues to evaluate the remaining applicable
policies. If none of the applicable policies are satisfied, u1’s request to view u2’s
location will be denied, i.e., u1 will not be able to know u2’s current location.

For example, suppose that Bob allows his colleagues to know his exact location only
when he is in the company during work hours from 8am to 5pm on weekdays. To
achieve this, Bob can use the following policy: P1〈{Colleague}, (8am < t < 5pm)
AND (d1 = {Mon, .., F ri}), companyLoc, exactLoc〉. Given P1, if one of Bob’s
colleagues, Jack, is looking for Bob for a meeting at 10am and Bob is in the company
at that time, Jack will be able to view Bob’s location according to the policy. If Jack
wants to know where is Bob at 12pm while Bob is at lunch outside the company, Jack
will not be able to see Bob’s location in this case.

As another example, assume that Bob usually allows his family members to know
his locations according to the following policy: P2〈{Family}, Anytime, Anywhere,
exactLoc〉. One day, Bob needs to shop for a gift for one of his family members, say
Alice. In order to surprise her, Bob may want to block Alice from knowing his lo-
cations by temporarily changing the policy P2 to P ′

2〈{Family}/{Alice}, Anytime,
Anywhere〉. P ′

2 excludes Alice from the policy target and hence Alice request to view-
ing Bob’s location will be denied.

3.2 Policy Maintenance

For a given new policy, it is important to check if the access right granted by the new pol-
icy has already been included in some existing policies. If so, it is unnecessary to insert
the new -redundant- policy. For example, suppose that Alice is Bob’s family member.
A new policy says that Alice is allowed to view Bob’s location anytime on Saturday:
P4〈{Alice}, d1 = {Saturday}, Anywhere, exatLoc〉; while there is an existing policy
which says that family members are allowed to view Bob’s location anytime during
weekend: P3〈{Family}, d1 = {Weekend}, Anywhere, exatLoc〉. It is obvious that
P4 is covered by the existing policy P3 and does not need to be inserted to the system.
Policy redundancy is formalized as follows.
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Definition 2. (Policy Redundancy) Let Pi〈Ui/Ei, Ti, Li, Gi〉 be a new policy com-
posed by user u, and Sp be a set of existing policies belonging to the user u. Pi is
redundant if there exists a policy Pj〈Uj/Ej , Tj , Lj〉 ∈ Sp, and {Uj/Ej} ⊇ {Ui/Ei}
and Tj ⊇ Ti, Lj ⊇ Li and Gj = Gi.

Based on Definition 2, we can see that P4’s target, time constraint and location range
are all subsets of that of the existing policy P3, and they are specifying at the same
location disclosure granularity, hence, P4 is redundant.

If the above policy P4 is slightly modified to P ′
4 which specifies a different location

disclosure granularity: P ′
4〈{Alice}, d1 = {Saturday}, Anywhere, city〉, P ′

4 is not
considered redundant but conflict with P3. This is because P ′

4 does not allow Alice
to see Bob’s exact location but only the city of the location, while P3 allows family
members including Alice to see Bob’s exact locations. In a nutshell, the conflict may
occur when the new policy grants access to a user which is denied by an existing policy,
or vice versa. Its formal definition is the following.

Definition 3. (Policy Conflict) Let Pi〈Ui/Ei, Ti, Li, Gi〉 be a new policy composed by
user u, and Pj〈Uj/Ej , Tj , Lj, Gj〉 be an existing policy belonging to the user u. Pi

conflicts with Pj if one of the following conditions is satisfied:

– Ej

⋂
Ui �= ∅ and Tj

⋂
Ti �= ∅ and Lj

⋂
Li �= ∅;

– Ei

⋂
Uj �= ∅ and Tj

⋂
Ti �= ∅ and Lj

⋂
Li �= ∅.

After passing the policy redundancy and conflict check, a new policy will be considered
whether it can be merged with existing policies. Merging related policies not only helps
enhance the presentation of policies to users but also improves the efficiency of policy
management and evaluation since fewer policies need to be checked given a location
request.

Before the formal definition, let us first exam an example when two policies can
be merged. Policy P7 states that Jack is allowed to view Bob’s location on Monday
when Bob is at Chicago: P7〈{Jack}, d1=Monday, Chicago, exactLoc〉, and another
policy specifies that Alice is allowed to view Bob’s location when Bob is at Chicago:
P8〈{Alice}, d1=Monday, Chicago, exactLoc〉. P7 and P8 has the same location, time
constraints and location disclosure granularity, but only differ in the policy targets. P7

and P8 can then be merged into one policy Pm〈{Jack,Alice}, d1=Monday, Chicago,
exactLoc〉. In general, two policies can be merged if they are specified at the same
location disclosure granularity and have only one different component. The following
definition summarizes the scenarios when two policies can be merged.

Definition 4. Two policies Pi〈Ui/Ei, Ti, Li, Gi〉 and Pj〈Uj/Ej , Tj , Lj , Gj〉 can be
merged if they satisfy one of the following conditions:

– Two policies have the same policy targets, time constraints, i.e., Ui/Ei = Ui/Ei,
Ti = Tj , and Gi = Gj .

– Two policies have the same policy targets and location constraints, i.e., Ui/Ei =
Ui/Ei, Li = Lj and Gi = Gj .

– Two policies have the same time constraints and location constraints, i.e., Ti = Tj ,
Li = Lj , and Gi = Gj .

The result of the policy merge will be: Pm〈(Ui

⋃
Uj)/(Ei

⋃
Ej), (Ti

⋃
Tj),

(Li

⋃
Lj), Gi〉.
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3.3 Policy Recommendation

The policy recommendation is based on the analysis of the privacy level of the existing
policies. The privacy level dictates visibility of a user’s location on a level hierarchy.
The less the visibility of the user’s location, the higher the privacy level is. In order to
quantify the visibility level, we consider the following parameters:

– Nu: denotes the total number of contacts of the policy owner.
– Np: denotes the number of contacts specified in the policy target.
– Dt, Dd1 , Dd2 : denote the range of the time constraint in the policy.
– Space: denotes the total area that covers the policy owner’s recorded locations.
– Gd: maps the location disclosure granularity to numbers to quantify their visibility

level: exactLoc, district, city, state, country are represented as number 1, 2, 3, 4, 5
respectively.

By comparing each policy component with its corresponding domain (i.e., all possible
values that the policy component may have), we define the privacy level PL as follows:

Definition 5. The privacy level (PLp) of P is defined as the weighted sum of the ra-
tio between each component value and its domain, where wu, and wt and wl are the
weights.

PL = wu
Nu −Np

Nu
+ wt(1−

Dt

24
· Dd1

7

Dd2

12
) + wl(1−

DL

Space

1

Gd
)

The privacy level PL consists of three parts. The first part is the total number of users
in the policy compared to the total number of contacts of the policy owner. If the policy
owner allows more users to view his/her locations, that means the privacy owner has
lower level of privacy concerns, and hence the value of Nu−Np

Nu
will be smaller. The

second part of PL considers the time constraints in terms of hours, days and date. The
longer the time that the policy owner’s locations are disclosed, the lower the privacy
level will be. The last part of the PL integrates the effect of both the range of the space
and the disclosure granularity. The larger the range of the locations and the finer the
granularity, the lower the privacy level will be. Finally, the weight values are used for
the need to adjust the impact of each component if any prior knowledge is available. By
default, the weight values are equal for all components.

We now proceed to introduce the process of policy recommendation which includes
three phases: (1) a preparation phase, (2) a policy generation phase and (3) the finaliza-
tion phase.

Phase 1: The preparation phase aims to build the knowledge base. The LPPM system
needs to have a few policies input by the users to be used as the base of the recommenda-
tion. For the first few policies, the LPPM system groups them based on the relationship
between the policy target and the policy owner. In other words, policies regarding the
same role of users will be placed in the same group. For example, if Alice and Jack are
Bob’s family members, the policies regarding Alice, Jack, and family members, will
be in the same group. The reason of such grouping is that individuals usually maintain
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different rules for different types of contacts. For instance, the privacy policies for fam-
ily members may usually allow the disclosure of the exact locations while the privacy
policies for colleagues may just allow the disclosure of locations at city level. Next, in
each group, the policies are further classified into three categories: low, medium, and
high, according to their privacy levels. In particular, let max(PL) denote the maximum
PL of all existing policies of a user. If a policy’s privacy level is lower than max(PL)

3 ,
the policy is considered to have low privacy protection level. If a policy’s privacy level
is greater than 2·max(PL)

3 , the policy is assigned a high privacy protection level. The
remaining policies are at the medium level.

Phase 2: With the aid of the knowledge base, the second step is to generate the rec-
ommendation policy based on the user input. When a user needs a policy for a certain
scenario, the user just needs to input part of the information that he/she knows and de-
sired privacy level. The LPPM system will fill in the remaining information. The LPPM
system requires the users to specify at least two items when using the recommenda-
tion system: (1) the desired privacy protection level; (2) either the policy target or the
locations to be protected.

In the first case when the user input the policy target and privacy level, the LPPM
system will conduct the following steps. First, the LPPM system locates the group of
policies which contain the same role of the input policy target. For example, Bob indi-
cates that he would like to assign a medium level privacy policy to his new friend Tim.
This input contains information about the privacy level, the role of the policy target
(i.e., “friend”). The LPPM system will search the policy repository to find the group
of policies for “friends”. Within the retrieved policies, the LPPM system further looks
for policies of user requested privacy level, e.g., medium level. Among the qualifying
policies, the one with highest PL value will be selected. Finally, the LPPM system cus-
tomizes the policy target to include the information from user input, e.g., the friend’s
name (i.e., Tim).

In the second case when the user input the locations to be protected and the de-
sired privacy level, the LPPM system will search all the existing policies to find the
ones at the required privacy level. Then, the LPPM system replaces the locations in the
identified policies to the user input. For example, Bob wants to set up location privacy
policies with high level protection when he is traveling at Chicago. The LPPM system
finds that there are three policies at high level which are specified for family, friends
and colleagues respectively. These three policies will be customized by modifying the
locations to “Chicago” and present to Bob for review.

Phase 3: Finally, after the user decides the policies to be added to the system, the
LPPM system will compute the privacy level of the newly inserted policies and store
them for the future use. Note that it is possible that no matching policy is found by the
recommendation function. In that case, the user needs to compose the policy by himself.

4 Conclusion

We developed a location privacy policy management system. The system supports
an easy-to-understand yet expressive policy language. The system also automatically
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detects policy conflict whenever there is a policy update. Moreover, the system gener-
ates recommended policies based on existing privacy policies so that users do not need
to compose entire policy for every new friend. In the future, we plan to implement a
prototype in smart phones to further verify the practical value of the proposed system.
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Abstract. With the increasing popularity of online social networks,
such as twitter and weibo, privacy preserving publishing of social net-
work data has raised serious concerns. In this paper, we focus on the
problem of preserving the sensitive attribute of the node in social net-
work data. We call a graph l-diversity anonymous if all the same degree
nodes in the graph form a group in which the frequency of the most
frequent sensitive value is at most 1

l
. To achieve this objective, we de-

vise an efficient heuristic algorithm via graphic l-diverse partition and
also use three anonymous strategies(AdjustGroup, RedirectEdges, As-
signResidue)to optimize the heuristic algorithm. Finally, we verify the
effectiveness of the algorithm through experiments.

Keywords: socail network, privacy preserving, data publishing, l-diversity.

1 Introduction

Nowadays, online social network sites, such as facebook, twitter and weibo, have
received dramatic interest, more and more people join in various social networks.
People use online social networks to share data, which produce lots of social
network data. If this data is directly exposed to researchers, it will cause the
privacy disclosure, which leads us to study how to effectively anonymize so as
to protect sensitive information in social networks while maximizing the social
network’s utility analysis.

Anonymous methods for relational data have been widely studied.
k-anonymity [1],l-diversity[2],(a, k)-anonymity[3],t-closeness[4],anatomy[5] are
models for anonymizing relational data. As there are some relationships be-
tween the individuals in social networks, anonymizing social network data is
different from anonymizing relational data. Anonymous approaches for social
network data should consider attacks from network’s topological structure. Pri-
vacy in social networks has begun to receive attention recently, and practical
approaches are yet to be devised.

� Corresponding author.

T.W. Chim and T.H. Yuen (Eds.): ICICS 2012, LNCS 7618, pp. 435–444, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



436 L. Yu et al.

Id Degree Sensitive Attribute

1 1 Heart Disease
2 1 Heart Disease
3 1 Flu

4 2 Cancer
5 2 Heart Disease
6 2 Flu

7 3 Cancer
8 3 Cancer
9 3 Cancer

Fig. 1. A 3-degree anonymous graph and a table of nodes’ sensitive attribute

Most of the previous works on protecting the node re-identification and sen-
sitive relationship in social networks. In real social networks, however, nodes are
usually associated with the sensitive attribute, such as disease information. For
example, figure 1 shows a 3-degree anonymous graph1 and a table of nodes’ sen-
sitive attribute. Consider an adversary knows that Bob’s degree is 3. As there
are three nodes with degree 3 in figure 1, we can conclude that Bob has a disease
of cancer even if we can’t ascertain which node is associated with Bob.

l-diversity[2] is an anonymous model for preserving the sensitive attribute in
data publishing. It is first proposed in relational data, requiring at least l ”well-
represented” values in every equivalence group. Moreover, anatomy[5] proposes a
simple l-diversity which requires the frequency of the most frequent sensitive value
in every equivalence group is at most 1

l . Regarding social network data, [6, 7]have
studied l-diversity, but there are certain shortcomings. Tai et al.[6] doesn’t re-
strict the frequency of sensitive attribute, so it couldn’t prevent probabilistic infer-
ence attack. Zhou and Pei[7] doesn’t have a systematic introduction to l-diversity,
the algorithm in [7] is not efficient and experiments are tested only on synthetic
datasets. In this paper, we set nodes’ sensitive attribute as the sensitive informa-
tion. Based on the k-degree anonymity[8], we propose an anonymous approach
that applies the simple l-diversity[5] in every equivalence group. As the anonymiz-
ing social network data is much more complicated than anonymizing relational
data, we propose a heuristic algorithm in our anonymous approach.

In this work, we make the following contributions:

1. We propose a graphic l-diversity anonymous model for privacy preserving
in social network data, which could protect node re-identification as well as
node’s sensitive attribute.

2. We devise three anonymous strategies, and propose a heuristic algorithm
which transforms original social network data G to anonymous social network
data G∗ that obeys the graphic l-diversity anonymity.

3. We evaluate our approach on real datasets and synthetic datasets.

The remainder of the paper is organized as follows. Section 2 gives the problem
definition. Section 3 introduces three anonymous strategies. Section 4 presents

1 The number of nodes, which have the same degree in the graph, is at least 3.
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the anonymous algorithm. Section 5 reports the experimental results. Section 6
presents the related work. Section 7 concludes the paper.

2 Problem Definiton

In this paper, a social network ismodeled as anundirected simple graphG(V,E, S),
where V stands for the node set, E stands for the edge set and S stands for the
node’s sensitive attribute set. Each node is associated with a sensitive attribute.

Definition 1 (l-diversity). An equivalence class is said to have l-diversity if
there are at least l ”well-represented” values for the sensitive attribute. A table
is said to have l-diversity if every equivalence class of the table has l-diversity.

Definition 1 presents l-diversity in relational data, and [2, 5] give some in-
terpretations of the term ”well-represented” in it: distinct l-diversity, entropy
l-diversity, recursive (c,l)-diversity and simple l-diversity. We applies simple l-
diversity in our approach for the following reasons: (1) Distinct l-diversity doesn’t
prevent probabilistic inference attacks; (2) Entropy l-diversity is too restrictive
sometimes; (3) Recursive (c,l)-diversity mainly aims at countering background
knowledge attack which rules out some possible values in sensitive attribute, and
parameters c and l are difficult to set for users.

Definition 2 (graphic l-diversity). A graph G(V,E, S) is graphic l-diversity
if all the same degree nodes in the graph form a group in which the frequency of
the most frequent sensitive value is at most 1

l .

Definition 3 (anonymization cost). Given an original network G and its
anonymous version G∗, the anonymization cost in G∗ is defined as

Cost(G,G∗) = |E(G∗)| − |E(G)|

Anonymization cost is a measure to evaluate the information loss. In our ap-
proach, we almost keep the number of nodes unchanged and restrict the graph
modification to edge additions, that is, graph G∗ is constructed from G by adding
a minimal set of edges. Furthermore, we use the statistical network measures to
verify the utility of anonymous graph G∗. These statistics include average path
length and clustering co-efficient.

3 The Anonymous Strategies

3.1 The AdjustGroup Method

To construct an l-diversity graph, we first enable all the nodes in the group have
the same degree by adding edges after l-diversity partition is done.

The first step is to set a target degree for the group. For a group g, we sort
the nodes in the degree descending order and set the target degree of g to be
the largest degree. All the nodes in g need to have the same target degree. For
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Fig. 2. The AdjustGroup method

example, in figure 2(a), the target degree of the group is 5. The number beside
each node is the degree this node needs to be increased. All these numbers form a
number sequence in ascending order. The second step is to create edges between
nodes in the group. Based on the number sequence, we increase the nodes’ degree
in turn. If the nodes in the number sequence and there is no edge between them,
we create one edge and update the number sequence. For example, in figure 2(b),
two edges are created between nodes in the group, and the number sequence (1,
3, 3) is transformed into (1, 2). In the third step, we randomly create edges
between nodes in the group and nodes ungrouped if there is no existing edge
between them in the original graph. The quantity of random edge additions is
equal to the sum in the number sequence. In figure 2(c), three edges are randomly
created, and all the nodes in the group reach the target degree 5.

The second step in the AdjustGroup method is to decrease anonymization
cost. For example, in figure 2, if we skip the second step directly to the third
step, the number of edge additions will be increased from 5 to 7. Moreover, the
target degree of the created new group is more likely to be increased, which may
also cause the increment of anonymization cost.

3.2 The RedirectEdges Method

To construct an l-diversity graph, when the nodes form a new group, the Ad-
justGroup method enables all the nodes in the new group have the same target
degree. For the node v with the largest degree in the new group, if the degree
of v has already been increased using AdjustGroup method, the anonymization
cost is certainly enlarged. To further reduce the anonymization cost, we propose
the RedirectEdges method to avoid the above case, by redirecting the existing
add edge set {e1, e2, . . . , en} to the edge set {e′

1, e
′

2, . . . , e
′

m} where m ≤ n.
The RedirectEdges method allows us to reduce the degree of v without chang-

ing the nodes’ degree in any group which has been anonymized. Therefore, let
Rv denote the set of edges that should be redirected away from v and Nv denote
the set of nodes besides v that are associated with the edges in Rv. We first
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Fig. 3. The RedirectEdges method

create edges between the nodes in Nv, and all the nodes could be used only
once. Further, residue nodes in Nv randomly created one edge with the nodes
ungrouped in the graph. However, if some of the residue nodes have relationships
with all the ungrouped nodes, we link them back to v. For example, in figure 3(a),
the redirected edges set Rv is {e1, e2, e3, e4} and the associated nodes set Nv is
{v1, v2, v3, v4}. In figure 3(b), we first create an edge e

′

1 between v1 and v2, and
then randomly create edges between {v3, v4} and ungrouped nodes. Because v4
has relationships with all the ungrouped nodes, only one new edge e

′

2 is created
and v4 links back to v again. After proposing the RedirectEdges method, the
existing add edge set {e1, e2, e3, e4} is transformed into the edge set {e′

1, e
′

2, e
′

3}.

3.3 The AssignResidue Method

The degree distribution of the social network follows a power law, which means
that the majority of the nodes have small degree and a few nodes have signifi-
cantly high degree. As the GLD algorithm first processes the high degree node,
the nodes of the last group Nlast usually have the same 1 degree and no process-
ing is needed. If not, the anonymous approach on Nlast is different from the one
of other groups. First, the size of Nlast is (n (mod l)+ l). Moreover, we couldn’t
directly apply the AdjustGroup method on Nlast, because there is no remaining
nodes and the third step in AdjustGroup couldn’t cover this special situation.

We specially process the Nlast in the following steps. First, we apply the
previous two steps in AdjustGroup on Nlast, which output the number sequence.
After that, we set the sum in number sequence as d and create a special l-diversity
group Nspecial whose size is determined by d.

|Nspecial| =
{

d, ifd ≥ l
d + |Nlast|, ifd < l

As the special group Nspecial satisfies l-diversity principle, |Nspecial|(the number
of nodes in Nspecial) must be equal to or more than l. If d is equal to or more
than l, we create d new nodes in Nspecial. Otherwise, |Nspecial| is equal to d plus
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|Nlast|. Moreover, we assign the sensitive values on the nodes in Nspecial on the
basis of l-diversity principle. Finally, |Nspecial| new edges are created between
Nlast and Nspecial to enable all the nodes in |Nlast| have the same degree and
the nodes’ degree in Nspecial is equal to 1.

4 The GLD Algorithm

Following the philosophy in [2], we have the definition 4 and theorem 1 which
are similarly mentioned in [5, 7].

Definition 4 (graphic l-diversity partition). A graphic partition with m
groups is l-diversity, if each group gj(1 ≤ j ≤ m) satisfies the following conditions.

Algorithm 1. Graphic l-Diversity (GLD) Algorithm

Input: An original graph G(V,E, S) and the parameter l.
Output: The anonymous network G∗(V ∗, E∗, S), which is graphic l-diversity.

1: G∗ ← G, LastNode ← φ;
2: sort vi ∈ V (G) as NodeList in the degree descending order;
3: while NodeList �= φ do
4: SeedNode ← NodeList.head();
5: repeat
6: LastNode ← SeedNode;
7: RedirectEdges(SeedNode);
8: update NodeList ;

9: SeedNode ← NodeList.head();
10: until SeedNode = LastNode
11: remove the SeedNode from NodeList ;
12: if NodeList.size()≥ 2l − 1 then
13: AnonymousGroup ← Partition(NodeList) ∪ {SeedNode};
14: AdjustGroup(AnonymousGroup);
15: update NodeList ;
16: else
17: let AnonymousGroup contain the remaining nodes in NodeList with SeedNode;
18: remove the remaining nodes from NodeList ;
19: AssignResidue(AnonymousGroup);
20: end if
21: end while

Function: Partition(NodeList)
22: S ← φ;
23: put vi ∈ NodeList in buckets and node’s sensitive value in each bucket is the same;
24: let S contain l - 1 the largest degree nodes respectively from l - 1 different buckets

whose sensitive values are different from the one to SeedNode and remove them
from NodeList ;

25: while not exist a graphic l-diversity partition for NodeList do
26: find the largest degree node v from bucket of the most frequent sensitive value;
27: find the smallest degree node v

′
in S and the sensitive value of v

′
is different

from v, replace v
′
with v, and place v

′
back into NodeList ;

28: end while
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(1)All the nodes in gj have the same degree; (2)Let c be the most frequent sensitive
value in gj, and freqj(c) be the number of nodes in gj with the sensitive value c; then
freqj(c)

|gj | ≤ 1
l where |gj | is the size (the number of nodes) of |gj|.

Theorem 1. A graphic l-diversity exists, if and only if the graph G(V,E, S)
satisfies the following condition. At most n

l nodes in G are associated with the
same sensitive value, where n is the number of nodes in G.

As shown in algorithm 1, the input of GLD is a original graph G and a
parameter l, and the output is an l-diversity graph G∗ for publishment. GLD
first maintains a list NodeList of nodes in the degree descending order. At each
iteration, we select the first node SeedNode in the NodeList. We repeatedly
perform RedirectEdges to decrease the degree of SeedNode by redirecting
added edges, then update NodeList and SeedNode, until the SeedNode keeps
unchanged(lines 5-10). We remove the SeedNode from the NodeList. If the size
of NodeList is at least 2l - 1, we apply Partition function in selecting l - 1 the
largest degree nodes which have unique sensitive values different from the one
to SeedNode on the basis of the remaining nodes in NodeList satisfy the graphic
l-diversity partition. Let a set AnonymousGroup contain SeedNode and above l
- 1 nodes. We apply AdjustGroup in making all the nodes in AnonymousGroup
have the same degree, and update the NodeList. If the size of NodeList is less
than 2l - 1, let AnonymousGroup contain the remaining nodes in NodeList and
remove them from NodeList. We perform AssignResidue to enable the residual
nodes in AnonymousGroup have the same degree via creating a special group
sometimes. The GLD algorithm ceases when there is no node left in NodeList.

5 Experimental Results

In this section, we evaluate the performance of the proposed GLD algorithm on
one real dataset and one synthetic dataset.

ca-CondMat: This dataset shows a Condense Matter collaboration network
which is built from the scientific collaborations between authors’ papers from
January 1993 to April 2003(http://snap.stanford.edu/data/ca-CondMat.htm).
It contains 23,133 nodes and 186,936 edges. An undirected edge is created
if two authors co-authored a paper. Due to the lack of sensitive attribute in
ca-CondMat, we apply the METIS graph partition tool in deriving the group
identification and set it as the sensitive attribute.

Synthetic Dataset: We also use the software Pajek to generate a graph with
scale-free property. The default number of nodes in synthetic dataset is 5000. In
order to assign a sensitive value to each node in the graph, we assign a random
integer in the range [0,100] to each node on the basis of theorem 1.

In this experiment, We study the utility of anonymous graphs from average
path length and clustering co-efficient. We compare our approach with k-degree
anonymity[8] and other l-diversity methods[6, 7]. Figure 4 shows the average path
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length of anonymous graphs for k, l = 4, 6, 8, 10, 12, 14. As the graph modifica-
tion is restricted to edge additions in these anonymous approaches, the average
path length is trending downwards. Comparing the four anonymous approaches
separately with the original one, we can see the result of k-degree[8] is the best,
but it can’t protect nodes’ sensitive attribute. The result of l-diversity in this
paper is close to that of k-SDA[6], and our approach can also prevent proba-
bilistic inference attack. The l-diversity(1 neighborhood)[7] loses some utility for
protecting 1 neighborhood isomorphism, and its result is the lowest. Figure 5
shows the clustering co-efficient of anonymous graphs. The clustering co-efficient
is trending upwards in the two graphs. Moreover, we can find that clustering co-
efficient is stable in our approach when l = 12, 14. The reason is that we create
some new nodes in AssignResidue. Similar to average path length, our approach
loss little utility in the clustering co-efficient, and it can protect nodes’ sensitive
attribute from probabilistic inference attack. Generally, all these observations
verify that graphic l-diversity model could acceptably capture main features of
the social network.

(a) ca-CondMat (b) Synthetic dataset

Fig. 4. Average path length

(a) ca-CondMat (b) Synthetic dataset

Fig. 5. Clustering co-efficient
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6 Related Work

The problem of privacy protection in social networks is first proposed in [9],
where the authors demonstrate that the naive anonymization strategy which
replaces all identifiers of individuals with randomized integers is not sufficient
by both active and passive attacks.

In anonymizing social network data, there are two categories: clustering-
based approaches and graph modification approaches. The clustering-based
methods[10–13] cluster nodes and edges into groups and anonymize a subgraph
into a super-node. In this way, the details about individuals can be hidden prop-
erly. [10] propose anonymizing a graph by partitioning the nodes and summa-
rizing the graph at partition level. Zheleva and Getoor[11] focuses on the case
where there are multiple types of edges but only one type of nodes, and ap-
plies clustering-based method in protecting relationships disclosure. Cormode et
al.[12] focuses on the problem of anonymizing bipartite graphs. Based on [12],
Bhagat et al.[13] further constructs a model of the rich interaction graph, and
proposes three approaches in protecting users’ rich interaction.

The graph modification methods[6–8, 14–16] anonymize a graph by modifying
edges and nodes in a graph. Hay et al.[15] proposes an approach that obeys a rule
of random edge additions and deletions in anonymizing the graph, this method
can effectively resist some kinds of attacks but suffers a significant cost in utility.
Liu and Terzi[8] first introduces the k-anonymity model from the relational data
to the social network data, and proposes k-degree anonymity to protect each
individual in a group consisting of at least k nodes of the same degree. Zhou and
Pei[14] proposes the stronger model that each individual in a group consisting of
at least k nodes sharing 1-neighbourhood isomorphism. Zou et al.[16] proposes
a k-automorphism model that each individual in a group consisting of at least
k nodes without any structural difference. [6, 7] based on different models apply
l-diversity in protecting nodes re-identification and nodes’ sensitive attribute.

7 Conclusions

In this paper, we consider the l-diversity in anonymizing the social network
data. We present a heuristic algorithm which could transform the original graph
G to an l-diversity G∗ via the three anonymous strategies(AdjustGroup, Redi-
rectEdges, AssignResidue). Our experiments, based on two datasets and several
utility measures, show that our algorithm can effectively produce l-diversity
graph that have acceptable utility.
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Abstract. Smart grid facilitates a customer to sell unused or self-generated 
power back to the grid. This not only helps the power operator to reduce power 
generation, but also brings customers a means of getting revenue. However, the 
process of power selling induces two security problems, namely authentication 
and privacy-preservation. Like other messages, a customer’s request messages 
for power selling should be properly authenticated to avoid various attacks. At 
the same time, the customer’s privacy such as daily electricity usage pattern 
should be properly protected. In this paper, we propose a secure and privacy-
preserving protocol to make this possible. Basically, authentication is done by 
means of anonymous credentials. Even in the reconciliation phase, the power 
operator only knows how much power a customer has uploaded to the grid but 
cannot know when the customer has done so. We evaluate our scheme to show 
that it is effective. 

Keywords: smart grid, power selling, authentication, privacy-preservation, 
anonymous credential, blind signature. 

1 Introduction 

Smart grid is the next generation power grid. It integrates information and communi-
cation technology with power generation and distribution technologies. Its basic func-
tion is to facilitate the power operator to adjust the amount of power generated based 
on customers’ demands. It ensures that customers’ demands are satisfied while excess 
electricity generation can be avoided. This in turn can help protect the environment by 
reducing air pollutants emitted from the power generation process (especially those by 
fossil-fuel generators).  

In the old days, power transmission is always one-way (i.e. from power grid to cus-
tomers). The other way (i.e. from customers back to power grid) is impossible. How-
ever, the introduction of smart grid changes this picture. Selling power back to the 
power grid becomes common in U.S. and European countries [1]. The mechanism is 
in fact beneficial to both the power operator and the customers. The power operator 
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can “recycle” customers’ unused or self-generated power so that it can reduce the 
amount of power generated and thus lower the expenses. The customers can obtain 
revenue by selling power. Suppose a customer owns an electric vehicle. Due to diffe-
rential pricing of electricity, the customer can charge up the battery in his electric 
vehicle during the low tariff hours, and sell the electricity back to the grid during the 
high tariff hours. In some countries, to encourage citizens to build renewable genera-
tion facilities such as wind mills and solar panels, the government dictates that the 
utility company has to buy electricity from the customers at a given tariff. 

Basically, when a customer wants to sell power back to the grid, he/she has to first 
make a request with the amount of power to be uploaded to the control center. The 
control center then authenticates and approves the request. After that, the customer 
starts uploading power to the grid. As the power transmission system and the commu-
nications system are independent of each other, one may ask how the control center 
can ensure that the customer really upload the amount of power agreed in the request. 
To facilitate such checking, the smart meter in the customer’s home has to be up-
graded so that it can measure bi-directional power transmission (i.e. from grid to cus-
tomer and from customer back to grid). The mechanism of power uploading and how 
a smart meter can measure bi-directional power transmission are out of the scope of 
this paper. 

This paper focuses on the security and privacy issues in the communications in-
volved in power selling between the control center and smart meters. Two security 
problems, namely authentication and privacy-preservation are addressed. Like other 
messages, a customer’s request messages for power uploading should be properly 
authenticated. Otherwise, an attacker can generate numerous fake request messages so 
as to affect the power operator’s decision about power generation. At the same time, 
the customer’s privacy such as daily electricity usage pattern should be properly pro-
tected. If a criminal obtains this information, the family is susceptible to being burgla-
rized. Thus we propose a secure and privacy-preserving protocol to resolve both prob-
lems. Basically, authentication is done by means of anonymous credentials (analog-
ous to tickets). A customer first generates a set of credentials and blinding factors. 
The customer “blinds” the credentials and then requests the control center to sign 
them using the control center’s private key. Interested readers may refer to our pre-
vious work [13] for details about the blind signature technique. When the customer 
wants to sell power to the grid, he/she will send an appropriate number of credentials 
(to represent the amount of power to upload) to the control center anonymously. In 
the reconciliation phase, the control center computes the number of used credentials 
to estimate how much power the customer has agreed to upload to the grid (but cannot 
know when the customer has done so), and then compares this value with the smart 
meter measurement. If the values are comparable, payment will be made to the cus-
tomer accordingly. We evaluate our scheme to show that it is effective. 

The rest of the paper is organized as follows: related work is summarized in 
Section 2. The system model and the security requirements are described in Section 3. 
Our scheme is presented in Section 4. The analysis of our scheme is given in Section 
5. Finally, Section 6 concludes the paper. 
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2 Related Work 

The smart grid project was started by the European Union in 2003 [6]. At about the 
same time, the U.S. Electric Power Research Institute started the IntelliGrid Project 
[7] and the US DOE also initiated the Grid 2030 project [8]. In early 2010, NIST 
released a report [5] which describes the potential components and cyber security 
issues of the smart grid system. As such, smart grid research and development is an 
important engineering trend in most developed and developing countries. 

Two recent works [9] and [10] elaborate the importance of a smart grid especially 
with the consideration of renewable energy resources. They propose a communica-
tion-oriented smart grid framework. New requirements of the communication archi-
tecture and possible security problems of the smart grid system are also identified. 

Some major security problems have been pointed out and studied in [3] and [4]. On 
the communication between the control center of the power grid and the smart meter, 
it is proved that a statistical analysis approach cannot protect the system from false 
data injection attack [11]. It would also be infeasible for the smart grid system to 
adopt this approach since the system will need to handle a large amount of data in real 
time, but the control center of the smart grid system only has a few seconds to 
respond.  

Some solutions have been proposed in [12], [13], [14] and [15]. All these works 
provide user authentication. The schemes proposed in [12] and [13] even provide 
some level of user privacy preservation. [12] assumes that the power operator is fully 
trusted and can know the electricity usage pattern of all customers. [13] does not al-
low the power operator to know the electricity usage pattern of any customer. Their 
work also adopts anonymous credentials as in our scheme. However, their use of cre-
dentials with many different values causes huge burden to both the control center as 
well as the communications network during the registration phase. Nevertheless, none 
of the works address the power selling issue. 

3 System Model and Security Requirements 

Following [12] and [13], we assume that a smart gird network can be simplified into 
three basic layers to form a hierarchical structure. At the top level, there is a control 
center maintained by the power operator. At the second level, there are substations in 
the distribution network and each substation is responsible for the power supply of an 
area. At the lowest level, there are smart meters which are placed at the homes of the 
customers. 

Smart meters should send requests to the control center when they want to 
sell power back to the grid. The control center can be a single server located inside the 
power plant or be distributed servers located at different geographical locations 
for load-balancing purposes and to avoid single point of failure. The communication 
channels from the smart meters to the control center and from the substations to 
the control center may be the Internet which is public and is always considered 
unsafe. 
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We aim at designing a system to resolve the following security problems:  

a) Message authentication: Every request message sent by any smart meter 
should be checked to confirm that it is from a valid user. Authentication is the 
basis of the system. Without it, anyone can abuse or attack the system easily. 

b) Identity privacy preservation: The real identity of the customer during the re-
questing phase should be unknown to everyone, including the power operator 
to protect the privacy of customers. 

c) Request message confidentiality: The amount of power to be sold to the grid 
by any smart meter should not be known by any third party in order to protect 
the privacy of the customers. 

d) Traceability: The total amount of power to be uploaded by each customer in a 
certain period of time should be known by the power operator (i.e. its control 
center) so that it can compare this value with the smart meter measurement and 
to arrange payment to the customer accordingly. 

4 Details of Our Scheme 

In our scheme, we assume that any smart meter can communicate with the control 
center via a secure communications channel. That is, every message transmitted is 
encrypted (say using AES encryption) and third parties cannot read the contents with-
out the key concerned. The basic idea of our scheme is to make use of the blind signa-
ture technique for the control center to sign credentials on behalf of customers. In this 
way, when a customer presents a credential anonymously (without any information 
about the customer’s identity provided), the control center cannot tell which customer 
is making the request, yet it can verify the signature to confirm that it is from a valid 
customer because only a valid customer can request for blind signatures. At the end of 
each month, each customer sends the unused credentials back to the control center to 
evaluate the amount of power he has agreed to sell so far. Next let us describe our 
scheme in details. 

A Setup Phase 

During system startup, the control center assigns itself an RSA public and private key 
pair for signing credentials. The public key is assumed to be known by everyone 
while the private key is only known by the control center. 

Whenever a new smart meter is registered, it will be assigned a unique identity for 
identification purpose and a secret value for authentication purpose (details of their 
usage will be discussed later). Also a shared key between the smart meter and the 
control center, sk, will be established. 

B Registration Phase 

At the beginning of each month, the registration phase will be carried out. This phase 
is not anonymous. Customers need to be authenticated using their real identities in 
this phase. For this purpose, the smart meter submits its identity and secret value to 
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the control center (via a secure channel) to authenticate itself. This phase continues 
with the following steps: 

Step 1: Each customer, with the help of the smart meter, sends credential signing re-
quests to the power operator. Each credential Ci is of the format: (CID, date of issuance, 
V). Recall that CID is a unique1 (it has been shown in [13] that the probability of colli-
sion is low if its size is properly set) credential identifier for each credential and V indi-
cates that by presenting a credential, one agrees to upload V credits of power to the grid. 

Step 2: For each credential the smart meter needs, n credentials with n different CIDs 
and blinding factors, where n is pre-determined by the control center, are generated. 
Among them, the control center requests the customer to open (n – 1) of them for 
verification purpose. 

Step 3: If the information in all the “opened” credentials is valid, the control center 
signs the remaining one. Otherwise, it requires the customer to re-submit its request. 
Recall that the blinded version of credential Ci constructed by the customer is in the 
format Bi = (CiFi

e) mod n, where Fi is the blinding factor. For each signed credential, 
the control center assigns each blinded credential Bi a unique blinded credential iden-
tity, BIDi and stores BIDi, Bi together with the customer’s identity into a list L1 in its 
local database. Finally, the control center transmits BIDi and its signature on Bi (i.e. 
(Ci

dFi) mod n) back to the customer. 

Step 4: The smart meter extracts the control center’s signature, Ci
d mod n, on the cre-

dential by multiplying the inverse of the blinding factor Fi to the received signature. 

Step 5: The smart meter repeats Steps 2 to 4 above until all credentials required have 
been signed. 

Step 6: The smart meter stores BIDs and blinding factors of all signed credentials locally. 

Step 7: The control center calculates and records the number of credentials that it has 
signed so far into its local database. 

Step 8: The smart meter of the customer stores these signed credentials properly for 
later usage. Since a smart meter can be considered as a tamper-proof device, we as-
sume that the stored signed credentials cannot be modified by an outsider easily. 

C Power Selling Phase 

This phase can be executed at any time during the month when the smart meter of a 
customer finds that it has excess power to sell back to the grid. To protect the privacy 
of the customer, this phase is anonymous. Customers do not have to authenticate 
themselves in this phase and the validity of the customer is represented by the ano-
nymous credentials made in the registration phase. 

When the customer wants to sell power back to the power grid, the smart meter 
randomly picks and sends an appropriate amount of credentials to represent the 

                                                           
1 It has been shown in [12] that the collision probability of CIDs can be very low if the size of 

CID is properly set. 
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amount of power uploading agreed. In our design, the value of each credential V is 
expressed in terms of credits such that the power operator can impose different 
weights on power sold at different times. For example, a customer can get more reve-
nue if he/she sells power during peak hours. Without loss of generality, assume that 
the current weight is R credits for each unit of power sold. If a customer wants to sell 

T units of power, the smart meter has to submit  VTR /  credentials to the control 

center. The control center then verifies its own signature on each credential. It then 
checks whether the credential identifier CID has been used previously and whether 
date of issuance is up to date. To facilitate the former checking, the control center 
maintains another list L2 to store all used CIDs. This list will also be used in the re-
conciliation phase. A used credential will be considered as invalid. Otherwise, the 
control center includes this new CID into L2 and broadcasts the list to all customers as 
an acknowledgement. In this way, a customer can know that its power selling request 
has been approved by the control center. Each smart meter maintains a list L3 to 
record BIDs and the corresponding blinding factors of credentials in all approved 
power selling instances. 

For each used credential Ci, the smart meter generates a keyed hash on the identity 
of the blinded credential, BIDi, together with the random blinding factor used, Fi. The 
key used here is the shared key, sk, established between the customer and the control 
center in the setup phase. That is, the keyed hash is of the format hsk(BIDi, Fi). All 
these keyed hash values are stored into a list L4. Both lists L3 and L4 will be used in 
the reconciliation phase. 

D Reconciliation Phase 

After a certain time period (e.g. at the end of a month), the reconciliation phase will 
be carried out. Similar to the registration phase, this phase is not anonymous. Cus-
tomers need to be authenticated using their real identities in this phase. 

Assume that a customer has used n credentials for which the BIDs and the corres-
ponding blinding factors are recorded in the list L3 in the smart meter. The list L4 
stores n keyed hash values accordingly. 

In the reconciliation phase, the smart meter sends the list L4 to the control center. 
Upon receiving L4, the control center randomly picks m, where m < n, entries from L4 
to form a sub-list L5. The control center then challenges the smart meter to reveal en-
tries in L5 by providing the m BIDs and the m blinding factors concerned. Upon receiv-
ing the response, the control center re-computes m keyed hash values with the received 
BIDs and blinding factors to see whether they are the same as those listed on L5. On the 
other hand, the control center also checks whether the BIDs actually belong to that 
particular customer by checking their existence in list L1 in its local database. If both 
checking pass, for each pair of BIDi and Fi, the control center tries to use the blinding 
factor Fi to “open” the blinded credential Bi with identifier BIDi (i.e. to compute Ci = 
(Bi / Fi

e) mod n). This is possible because all blinded credentials have been stored in 
list L1 during the registration phase. After obtaining the actual credential Ci which is of 
the format Ci = (CIDi, date of issuance, V), the control center checks whether CIDi has 
been used by checking its existence in the list L2. If all the m opened credentials are 
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valid, the control center assumes that the remaining (n – m) unopened credentials are 
also valid. The control center then trusts that the customer has sold nV credits of power 
to the grid during the month, and later offers payments to the customer. 

5 Security Analysis 

In this section, we evaluate our scheme according to the security requirements listed 
in Section 3: 

a) Message authentication: During the registration phase, a customer needs to au-
thenticate himself/herself using the private key signature before requesting any 
signing of credentials. So when the customer presents the signed credentials 
during the power selling phase, he/she proves himself/herself authenticated. 

b) Identity privacy: Customers only reveal their identities during the registration 
and the reconciliation phases. During the power selling phase, when the cus-
tomer presents the credentials, the control center only knows whether the cre-
dential is from a valid user or not. Due to the properties of the blind signature, 
the credential identity is only known by the owner. The credentials do not 
reveal the identities of the customers. 

c) Request message confidentiality: As we mentioned earlier, we assume that a 
smart meter communicates with the control center via a secure channel. There-
fore, the amount of power to be sold agreed by any smart meter cannot be 
known by any third party. Confidentiality of the request message is preserved. 

d) Traceability: During the registration phase, a customer needs to present his/her 
identity (i.e. not anonymous) to obtain signed anonymous credentials. In the 
reconciliation phase, a customer again needs to present his/her identity to the 
control center. Therefore, the total amount of power requested by each particu-
lar customer in a certain period of time (say a month) can be known by 
the control center. The control center can then properly offer payments to the 
customer at the end of the billing period. 

6 Conclusion 

In this paper, we focused on how to facilitate a customer to sell power back to the 
power grid in a secure and privacy-preserving manner. We proposed a secure and pri-
vacy-preserving protocol to solve the problem. Basically, we adopted the technique of 
anonymous credentials for authentication. These credentials are generated by the cus-
tomer but are blindly signed by the control center. Also based on our design, even in 
the reconciliation phase, the power operator only knows how much power a customer 
has sold to the grid but cannot tell when the customer has done so. We evaluated our 
scheme using security analysis to show that it is effective. In the future, we will inves-
tigate the tradeoff between privacy preservation and traceability statistically, suggest 
how to set the proportion of credentials that the control center should choose for chal-
lenging in the reconciliation phase, and study other security problems in smart grid. 



452 T.W. Chim et al. 

 

Acknowledgement. This research is supported in part by the HKU RCGAS Small 
Project Funding under Grant No. 201109176206, the Collaborative Research Fund of 
the Research Grants Council of Hong Kong under Grant No. HKU10/CRF/10, the 
General Research Fund from the Research Grants Council of the Hong Kong Special 
Administrative Region, China under Project No. RGC GRF HKU 713009E and the 
NSFC/RGC Joint Research Scheme under Project No. N_HKU 722/09. 

References 

1. Networx: Guide to Selling Power Back to the Grid, http://www.networx.com/ 
article/guide-to-selling-solar-geothermal-and 

2. Khurana, H., Hadley, M., Lu, N., Frincke, D.A.: Smart-Grid Security Issues. IEEE Securi-
ty and Privacy Magazine 81–85 (2010) 

3. The Smart Grid Interoperability Panel Cyber Security Working Group: Second Draft 
NISTIR 7628 Smart Grid Cyber Security Strategy and Requirements (2010) 

4. Office of the National Coordinator for Smart Grid Interoperability: NIST Special Publica-
tion 1108: NIST Framework and Roadmap for Smart Grid Interoperability Standards, Re-
lease 1.0 (2010) 

5. SmartGrids: European SmartGrids Technology Platform: Vision and Strategy for Europe’s 
Electricity Networks of the Future. In: European Commission, Directorate-General for Re-
search, Sustainable Energy Systems, EUR 22040 (2006) 

6. Electric Power Research Institute: Intelligrid, http://intelligrid.epri.com/ 
7. US Department of Energy: Grid 2030: A National Vision for Electricity’s Second 100 

Years (2003)  
8. Wen, M.H.F., Leung, K.C., Li, V.O.K.: Communication-oriented Smart Grid Framework. 

In: Proceedings of the IEEE SmartGridComm 2011 (2011) 
9. Li, V.O.K., Wu, F.F., Zhong, J.: Communication requirements for Risk-Limiting Dispatch 

in Smart Grid. In: Proceedings of the IEEE Workshop on Smart Grid Communications 
(2010) 

10. Liu, Y., Ning, P., Reiter, M.K.: False Data Injection Attacks against State Estimation in 
Electric Power Grids. In: Proceedings of the CCS 2009, pp. 21–32 (2009) 

11. Chim, T.W., Yiu, S.M., Hui, Lucas C.K., Li, V.O.K.: PASS: Privacy-preserving Authenti-
cation Scheme for Smart Grid Network. In: Proceedings of the IEEE SmartGridComm’11 
(2011).  

12. Cheung, J.C.L., Chim, T.W., Yiu, S.M., Hui, L.C.K., Li, V.O.K.: Credential-based Priva-
cy-preserving Power Request Scheme for Smart Grid Network. In: Proceedings of the 
IEEE GLOBECOM 2011 (2011) 

13. Fouda, M.M., Fadlullah, Z.M., Kato, N., Lu, R., Shen, X.S.: Towards a Light-weight Mes-
sage Authentication Mechanism Tailored for Smart Grid Communications. In: Proceedings 
of the First International Workshop on Security in Computers, Networking and Communi-
cations, pp. 1018–1023 (2011) 

14. Fouda, M.M., Fadlullah, Z.M., Kato, N., Lu, R., Shen, X.S.: A Lightweight Message  
Authentication Scheme for Smart Grid Communications. IEEE Transactions on Smart 
Grid 2(4), 675–685 (2011) 



A Key Sharing Fuzzy Vault Scheme

Lin You1, Mengsheng Fan1, Jie Lu2, Shengguo Wang2, and Fenghai Li3

1 College of Comm. Engr., Hangzhou Dianzi Univ., Hangzhou 310018, China
2 Zhejiang Wellcom Technology Co., Ltd, Hangzhou 310012, China

3 The Key Lab. of Information Assurance Technology, Beijing 10072, China

Abstract. Based on the classical fuzzy vault and the Diffie-Hellman key
exchange scheme, a key sharing fuzzy vault scheme is proposed. In this
fuzzy vault scheme, the two users cooperatively build their shared fuzzy
vault with a shared key hidden in it using their own biometric features,
and they can respectively use their biometric features to unlock the fuzzy
vault to get their shared key without running the risk of disclosure of
their biometric features later. The security of our scheme is based on the
security of the classical fuzzy vault scheme and and the discrete logarithm
problem in a given finite group.

Keywords: Fuzzy Vault, Diffie-Hellman key exchange, Finite group,
Biometrics, Polynomial interpolation.

1 Introduction

In a cryptosystem, one of the most important procedure is to securely store the
secret key. Generally, the secret key is stored in the user’s computer, a smart
card or other storage medias by using a password for accessing, but it will run
the risks that the storage medias be lost or stolen, or the password will suffer
from the exhaustive search attack. A better way is to use the user’s biometric
features as the access control measure, while the user’s biometric feature or
secret key may also be disclosed if his biometric template and key are separately
stored. Therefore, to ensure their safety simultaneously, the user’s biometric
feature and secret key should be completely blended into one set or a data. A
classical solution is the fuzzy vault proposed by Juels and Sudan in 2002 [1]. In
their fuzzy vault scheme, they used the user’s unique set to blend his secret into
a vault based on Reed-Solomon codes, and the user can recover his secret by
providing a set that overlaps largely with the original set. Even if an attacker
can get the vault he cannot obtain the the user’s secret or the information about
the set.

Diffie-Hellman key exchange scheme is a key cryptographic protocol, but how
to safely store the shared key between the users is also a thorny problem. In
order to produce a shared key between two parties and protect it from being
illegally exposed, based on the ideals of the original fuzzy vault and the Diffie-
Hellman key exchange scheme, a fuzzy vault scheme for the secret key exchange
is proposed in this work. The security of this fuzzy vault scheme is based on
both a polynomial reconstruction problem and a discrete logarithm problem.
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In the following Section 2, the classical fuzzy vault scheme is introduced. Then,
our key sharing fuzzy vault scheme is proposed in Section 3 and its security analysis
is given in Section 4. Finally, some concluding remarks are presented in Section 5.

2 The Classical Fuzzy Vault Scheme

The classical fuzzy vault scheme was invented by Juels and Sudan in 2002 and
was revised in 2006 [2]. Essentially, the fuzzy vault is a scheme for the secure
protection of one’s secret (value or key) by the use of his some private message
set which generally comes from his unique biometrics. A fuzzy vault is composed
of two algorithms, one is called the locking algorithm, and the other is called the
unlocking algorithm, as the following Fig. 1 and Fig. 2 shown, respectively.

Fig. 1. Juels & Sudan’s Fuzzy Vault Scheme–Locking Algorithm

Fig. 2. Juels & Sudan’s Fuzzy Vault Scheme–Locking Algorithm

A fuzzy vault scheme includes two public parameters, one is a finite field Fq

with q a power of a prime, and the other is a Reed-Solomon decoding algorithm
(denoted as RSDECODE for short). The most practical choice for RSDECODE is
the Reed-Solomon decoding algorithm based on Newton’s interpolation [3] or
the Lagrange interpolation polynomial. The following two algorithms for the
fuzzy vault scheme comes originally from the revised work of Juels and Sudan
[2] except for some minor changes. The security of this scheme is based on a
polynomial reconstruction problem.

2.1 Locking Algorithm

INPUT: Parameters n, t, and r such that n ≤ t ≤ r ≤ q, a pre-selected secret
key k ∈ Fn

q , a set A = {ai}ti=1 with ai ∈ Fq being distinct.
OUTPUT: A fuzzy vault V = {R, (n, r, q)} with R being a set of points
{(xi, yi)}ri=1 such that xi, yi ∈ Fq and all xi being distinct.
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1. X , R, V ← Ø;
2. P ← k, that is, k is block-encoded into the coefficients of a polynomials of

degree n in Fq;
3. For i = 1 to t do

– (xi, yi) ← (ai, P (ai));
– X ← X

⋃
{xi};

– R ← R
⋃
{(xi, yi)};

for i = t + 1 to r do
– xi ∈U Fq\X ;
– X ← X

⋃
{xi};

– yi ∈U Fq\{P (xi)};
– R ← R

⋃
{(xi, yi)}.

4. Output R or V = {R, (n, r, q)}.

In order not to leak information about the order in which the xi are chosen,
the set R should be output in a pre-determined order, e.g., the points in R
may be arranged in order of ascending x-coordinates, or else in a random order.
Note that the chaff points in the locking algorithm should be selected so as to
intersect neither the set A nor the polynomial P is for the security consideration.
Generally, the set V combining the set R and the triple vector (n, r, q) is called
a fuzzy vault.

2.2 Unlocking Algorithm

INPUT: A fuzzy vault V comprising a parameter pair (n, r, q) such that n ≤
r ' q and a set R of r points with their two coordinations in Fq. A query
set B = {bi}ti=1 with bi ∈ Fq.

OUTPUT: An element k′ ∈ Fn
q

⋃
{‘null’}.

1. Q← Ø;
2. For i = 1 to t do

– If there exists some yi ∈ Fq such that (bi, yi) ∈ R, set Q← Q
⋃
{(bi, yi)};

– Set k′ ← ‘null’ if Q has less than n points;
– Otherwise, set k′ ← RSDECODE(n,Q);

3. Output k′.

Suppose that the fuzzy vault V is created by Alice and Bob tries to unlock V to
recover the secret key k. Bob has to use his set B to determine the codeword that
encodes the secret key k to get a possible secret key k′. Since the set A specifies
the x-coordinates of “correct” points that lie on the polynomial P . Thus, if B is
close to A, then B will identify a large majority of these “correct” points. Any
divergence between B and A will introduce a certain amount of error. However,
this noise may be removed by means of a Reed-Solomon decoding algorithm
provided that there is sufficient overlap.

The most convenient and unique features to the user is his biometric feature
set, such as the fingerprint features, iris features, retinal features and etc. In
2005, Uludag and et al. [4] proposed a fingerprint-based fuzzy vault. One can
also use our other biometric features to construct fuzzy vault schemes.
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3 A Key Sharing Fuzzy Vault Scheme

The most popular and classical key sharing scheme is the Diffie-Hellman key
exchange scheme [5] which is a specific method for sharing a secret key between
two parties, and it is one of the earliest practical examples of secret key exchange
or secret key scheme implemented within the field of cryptography. The Diffie-
Hellman key exchange method allows two parties that have no prior knowledge
of each other to jointly establish a shared secret key over an insecure commu-
nications channel. This established shared (secret) key can later be used in any
symmetric key algorithm.

In practical applications, the multiplicative group G is generally chosen to be
a multiplicative group F∗

q with q a power of a prime. To increase its security
strength, we can set up the key sharing scheme on an elliptic curve rational
point group or a hyperelliptic curve Jacobian group since the discrete logarithm
problem is much harder than the discrete logarithm problem in the multiplicative
group of a Galois field.

In this section, we will put out a novel fuzzy vault scheme for secret key
sharing scheme based on the classical fuzzy vault and a multiplicative group,
here we denote this scheme as KSFV scheme.

We suppose that Alice and Bob want to establish a shared secret key for
their future cryptographic applications by using their biometric features, such
as their fingerprint features, then they agree on a finite multiplicative group
G = F∗

q with q a power of a large prime and a cyclic subgroup < g > of G with
g an element of some large prime order p. Here, G, q, g and p are assumed to be
public parameters.

3.1 Locking Algorithm

INPUT: A finite multiplicative group G = F∗
q with q a prime power and one

of its cyclic subgroup H =< g > of large prime order p; Positive integers n,
s, t, rA and rB satisfying n ≤ min{s, t} ≤ s + t ≤ rA, rB ' p ; All these
parameters are made public.

OUTPUT: V = {RAB, (p, g, n)}, where RAB is a set composed of much more
than n points with their coordinations in F∗

q .

1. X , X̄, R, RA, RB , V ← Ø;
2. Alice and Bob extract their private biometric features A = {ai}si=1 and

B = {bj}tj=1, respectively;
3. Convert ai and bj (i = 1, . . . , s, j = 1, . . . , t ) into the elements in {2, . . . , p−

1}. For convenience, they are still respectively represented as ai and bj which
are supposed to be different from each others, and the corresponding sets
are still respectively denoted as A and B.

4. Alice randomly selects a select key a ∈ {2, . . . , p−1}, computes ga and sends
it to Bob;

5. For i = 1, . . . , s, Alice compute gai(� αi) and sends the results to Bob;
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6. Bob randomly selects a select key b ∈ {2, . . . , p− 1}, computes gb and sends
it to Alice;

7. For j = 1, . . . , t, Bob computes gbj (� βj) and sends the results to Alice;
8. Alice and Bob compute (gb)a and (ga)b, respectively;
9. For each fixed j ∈ {1, . . . , t}, Alice computes (βj)

ai and set it to αj,i for
i = 1, . . . , s;

10. For each fixed i ∈ {1, . . . , s}, Bob computes (αi)
bj and set it to βi,j for

j = 1, . . . , t;
11. For i = 1, . . . , s and j = 1, . . . , t, set γi,j = αi,j (Obviously, we have αj,i =

gaibj = βi,j);
12. k ← gab (Since (gb)a = gba = gab = (ga)b, k can be regarded as Alice and

Bob’s shared key);
13. Alice and Bob, respectively, set P (x) ← k. That is, k is block-encoded into

the coefficients of a polynomial of degree n in Fp[x];
14. Alice does the following steps:

(a) For j = 1 to t, i = 1 to s do
– (xi+j , yi+j) ← (γi,j , P (γi,j));
– X ← X

⋃
{xi+j};

– R ← R
⋃
{(xi+j , yi+j)};

(b) For l = s + t+ 1 to rA do
– xl ∈U < g > \X ;
– X̄ ← X̄

⋃
{xl};

– yl ∈U < g > \{P (xl)};
– RA ← R

⋃
{(xl, yl)}.

(c) Alice sends RA to Bob.
15. In the meantime, Bob does the similar steps to generate RB with the same

real point set R and rB − (s + t) chaff pints. RB is sent to Alice;
16. SetRAB = RA

⋃
(RB\R). (NotethatRAB = (RA

⋃
RB)\R = RB

⋃
(RA\R));

17. Output V = {RAB, (p, g, n)}.

The output V is regarded as the key sharing fuzzy vault owned by both Alice and
Bob. If one of them wants to restore the shared key k, he/she can independently
use his/her own biometrics to restore the possible shared sky k′ by the following
“Unlocking Algorithm”.

3.2 Unlocking Algorithm

INPUT: A finite multiplicative group G = F∗
q and one of its cyclic subgroup

< g > of large prime order p; Alice and Bob’s biometric sets A′ = {a′i}s
′

i=1

and B′ = {b′j}t
′

j=1 with a′i, b′j ∈ {2, . . . , p − 1}, respectively; A set V =
{RAB, (p, g, n)} satisfying that n ≤ s′, t′ < s′ + t′ ' p, and the all points in
RAB are in F∗

p × F∗
p.

OUTPUT: An element k′ ∈ F∗
p

⋃
{‘null’}.

1. Q← Ø;
2. If Alice and Bob want to recover the shared key k, they do the following:
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(a) For i = 1 to s′, Alice computes ga
′
i (� α′

i) and send α′
i to Bob;

(b) For j = 1 to t′, Bob computes gb
′
j (� β′

j) and send β′
j to Alice;

(c) For each fixed j ∈ {1, . . . , t′}, Alice computes (β′
j)

a′
i and set it to β′

i,j for
i = 1, . . . , s′;

(d) For each fixed i ∈ {1, . . . , s′}, Bob computes (α′
i)

b′j and set it to α′
i,j for

j = 1, . . . , t′;
(e) Alice does the following:

i. If there exists some y ∈ F∗
q such that (α′

i,j , y) ∈ RAB, do
– (xi+j , yi+j) ← (α′

i,j , y);
– Q← Q

⋃
{(xi+j , yi+j)}.

ii. k′ ← RSDECODE(n,Q) (For example, one can apply Newton’s inter-
polation polynomial or Lagrange interpolation polynomial to get a
possible key k′ if Q has no less than n points. );

iii. k′ ← ‘null’ if Q has less than n points.

(f) k′ ← RSDECODE(n,Q) or ‘null’.

3. Similarly, Bob can do the similar steps as Alice does to recover the possible
shared key k′.

4. Output k′.

The locking algorithm and unlocking algorithm can be described as the following
Fig.3 and Fig.4, respectively. Here, the used biometrics are supposed to be the
users’ fingerprints and Lagrange interpolation polynomial is used for the Reed-
Solomon decoding algorithm.
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If Alice and Bob can provide their biometric sets A′ and B′ that are respec-
tively close to or sufficiently overlap A and B, that is, if both of their biometric
sets A′ and B′ contain no less than n “correct” biometric features, then they will
recover their real shared key k successfully. Otherwise, they will fail to recover
a right shared key.

According to Guruswami and Sudan’s polynomial reconstruction algorithm
[6], if the query set Q contains at least min{

√
ns′,
√

nt′} “correct” or real points,
then there exists a polynomial time algorithm to reconstruct the correct polyno-
mial P (x), and it follows that the real shared key k can be recovered successfully.

4 Security Analysis

From the construction of our KSFV scheme, one can see that its security is
based on both the security of the classical fuzzy vault scheme and the discrete
logarithm problem (DLP).

Firstly, the security of our KSFV construction depends on the number of chaff
points rA+rB−2(s+ t) in the target set RAB of the total points rA+rB−s− t.
The greater the number of such points, the more noise there is to conceal the real
polynomial P (x) from an attacker. As many chaff points are added to RAB, there
will be a set of many spurious polynomials that look like P (x). In the absence
of additional favorable information,the probability, that an attacker can obtain
the real polynomial is

(
s+t
n+1

)
/
(
rA+rB−s−t

n+1

)
or
∏n−1

i=0
s+t−i

rA+rB−s−t−i . Since both rA
and rB are taken much larger than n and s + t, the probability is approximate
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to ( s+t
rA+rB

)n which becomes much smaller as rA or rB gets much larger. That is,
the security is proportional to the number of spurious polynomials.

For some more detail security analysis on the classic fuzzy vault, one can refer
to Juels and Sudan’s work (the section 4 in [2]).

Secondly, the shared key k is produced based on Diffie-Hellman key exchange
scheme on a cyclic group H of a large prime p, an attacker can only get k if he
could solve the discrete logarithm problem on H . In addition, since the two users’
biometric features are not directly transferred to each other or stored in our novel
fuzzy vault, but they are hiddenly transferred to the other party by the exponent
calculations with the user’s biometric numbers as the exponents. Hence, to access
to the users’ biometrics features is equivalent to solve the discrete logarithm
problems on H .

5 Conclusion

Based on fuzzy vault scheme and Diffie-Hellman key exchange scheme, a key
sharing fuzzy vault scheme for secure key sharing scheme is proposed in this
work. The security of this fuzzy vault scheme is based on both the security of
the classical fuzzy vault scheme and the discrete logarithm problem. This key
sharing fuzzy vault scheme is just a detailed model but it will be simulated for
fingerprints in our future work. In addition, similar to our method, a key sharing
fuzzy vault scheme for the multiparty secret sharing protocol can also be set up.
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Abstract. This paper presents new versions of the McEliece PKC that
use time-varying convolutional codes. In opposite to the choice of Goppa
codes, the proposed construction uses large parts of randomly generated
parity-checks, presumably making structured attacks more difficult. The
drawback is that we have a small but nonzero probability of not being
successful in decoding, in which case we need to ask for a retransmission.

1 Introduction

The original McEliece construction proposed by McEliece [14] in 1978 is an
asymmetric encryption scheme using a family of error correcting codes. McEliece
proposed a construction based on Goppa codes, and this original construction
remains unbroken today. A few years later, Niederreiter [15] proposed a different
scheme and proposed to use generalized Reed-Solomon codes. It can be shown
that if one uses Goppa codes then Neiderreiter PKC is equivalent to McEliece
PKC. It was also shown by Sidelnikov and Shestakov [16] that the choice of
generalized Reed-Solomon codes is insecure (in both cases). There has been
many proposals of modified schemes, mostly by replacing the Goppa codes by
another family of codes, e.g. LDPC codes [2] or codes for the rank metric [6].
Interestingly, most of these proposals have turned out to be insecure and the
choice of Goppa codes is still the standard solution.

A motivating factor for studying McEliece PKC is that the cryptosystem is
a candidate for post-quantum cryptography, as it is not known to be susceptible
to attacks using quantum computers. There have also been modifications of
McEliece PKC with proved formal security (CCA2-secure), some of which are
presented in [7]. Attempts on improving the rate of the system by using a subset
of the message bits as error vectors have been done. Some approaches appear
in [17]. We should also note that there have been many attempts to build other
public key primitives based on coding theory. There exist an signature scheme
by Courtois, Finiasz and Sendrier [5] from 2001 and an interesting hash function
FSB by Augot, Finiasz and Sendrier [1].

Several versions of McEliece, for example, using quasi-cyclic or quasi-dyadic
codes have been attacked in structural attacks [8]. Faugère et. al. [8] give the
basic setting of structural attacks using algebraic attacks. In this approach, the
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problem of reconstructing the secret matrix is formulated as the problem of solv-
ing a specific overdefined algebraic system, and it applies to any alternant code
(among them Goppa codes). Even though the attack is currently not successful
against Goppa codes, as the system is too difficult to solve, we do not know what
improvements will come in the future.

This paper presents a new version of the McEliece PKC that uses convolu-
tional codes. The first construction is based on tail-biting time-varying convolu-
tional codes. The second construction uses a block code to set the starting state
for the convolutional code. A large part of the code is constructed by randomly
generating parity-checks for a systematic convolutional code. The new proposal
allows for flexible parameters and efficient decoding. The drawback is that we
have a nonzero probability of not being successful in decoding, in which case
we need to ask for a retransmission. In opposite to the choice of Goppa codes,
the first proposed construction uses large parts of randomly generated parity-
checks, and presumably, this makes structured attacks more difficult. This is the
main contribution of the construction. All parity-checks are randomly generated
and of low weight, but not too low. Algebraic attacks applied to our system are
unlikely to be successful, as well as attacks using Sendrier’s support splitting
algorithm.

The paper is organized as follows. In Section 2, we introduce the original
McEliece construction. In Section 3, we then give a basic introduction to convo-
lutional codes. The suggested constructions based on time-varying convolutional
codes are given in Section 4. In Section 5 we investigate the security. Section 6
presents two examples.

2 The Original McEliece Construction

Let us start by giving a short overview of the original McEliece construction of
a public key encryption scheme.

Let G be a k×n generator matrix for a code C capable of correcting e errors, P
a n×n random permutation matrix and S a k×k non-singular matrix. We require
an efficient decoding algorithm associated with C. The sizes of these matrices are
public parameters, but G, P and S are randomly generated secret parameters.
Furthermore, G is selected from a large set of possible generator matrices, say
G ∈ G, where the generator matrices in G all allow a very computationally
efficient decoding procedure. Also, P is selected among all permutations and S
is selected among all non-singular matrices. Then, preprocessing, encryption and
decryption can be described in the following three steps.

A key issue is the selection of a set of easily decodable codes, from which we
select G. The original suggestion was to use all binary Goppa codes for some
fixed code parameters. This is a large enough set of possible codes and they can
all be decoded assuming a fixed number of errors.

In the paper by McEliece [14], parameters (n, k, e) = (1024, 524, 50) were
proposed. These parameters, however, do not attain the promised security level
in [14] due to advances in attacks, see e.g. [11], [13] and [3]. Bernstein, Lange
and Peters proposed (n, k, e) = (1632, 1269, 34) in [4].
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McEliece PKC

1. Alice randomly chooses a triple (S,G, P ) as her secret key. She constructs
the product SGP = Ĝ, which is the public key. Now Alice publishes Ĝ.

2. Bob encrypts a message m by computing the vector c′ = mĜ, using
Alice’s public key Ĝ. He then adds a randomly generated error vector e
of weight e to form the ciphertext, c = c′ + e.

3. Alice decrypts the ciphertext by computing ĉ = cP−1 and uses the ef-
ficient decoding algorithm to decode ĉ to m̂. Finally, the plaintext m is
given by m = m̂S−1.

3 Convolutional Codes and Its Decoding

The underlying idea of this paper is that we can use convolutional codes to con-
struct a McEliece PKC. A convolutional code C is a subclass of error-correcting
codes where b-bit information symbols are transformed into c-bit symbols. The
ratio R = b/c is called the rate of the code. An information sequence u is trans-
formed into a codeword sequence v via uG = v.

For a time-invariant or fixed convolutional code C, G is a matrix such that

G =

⎡⎢⎢⎢⎣
G1 G2 · · · Gm

G1 G2 · · · Gm

G1 G2 · · · Gm

. . . . . . . . .

⎤⎥⎥⎥⎦ ,

and where Gi is a b× c matrix and with zeroes in the empty spaces. The current
output is a linear combination of the current information symbol and the m− 1
previous ones, where m is the memory of the code. The submatrices of each row
are the same as the previous row, but shifted one step. If this property is not
satisfied, it is called a time-variant code, where G is

G =

⎡⎢⎢⎢⎣
G1,1 G1,2 · · · G1,m

G2,1 G2,2 · · · G2,m

G3,1 G3,2 · · · G3,m

. . . . . . . . .

⎤⎥⎥⎥⎦ ,

and all the Gij matrices may be different.
A convolutional code sequence may be infinite, but in our application it is

terminated. For this, we use a tail-biting construction, i.e. starting the encoder
in the same state as it will stop after encoding all information blocks. The code
will have a generator matrix of the form
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G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G1,1 · · · · · · G1,m

. . . . . . . . . . . .
. . . . . . . . . Gi,m

Gi+1,m
. . . . . .

...
...

. . . . . .
...

GL,2 · · · GL,m GL,1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (1)

This is now an (n, k) linear block code. Optimal decoding of convolutional codes
can be done by the Viterbi algorithm, having complexity O

(
2mbk

)
. An alterna-

tive is to use sequential decoding, e.g. the stack algorithm. We refer to [10] and
[12] for a detailed description.

4 A New Construction Based on Convolutional Codes

Our basic idea is that we would like to replace the Goppa code used in McEliece
by a convolutional code that can be efficiently decoded. However, this basic
approach suffers from two problems that we need to deal with.

The first problem is that a usual convolutional code as used for error correcting
purposes has a somewhat limited memory. This is necessary if we would like to
have optimal (ML) decoding through, e.g., the Viterbi algorithm. As an example,
a rate R = 1/2 convolutional code with a memory of 20 would mean that we
will have parity checks of low weight. This would be a security problem, as one
can try to recover the low weight parity checks and through this also recover the
structure of the secret code. The solution we propose here is to use convolutional
codes with large memory, but to use a sequential decoding procedure instead
of Viterbi decoding. Using, e.g., the stack algorithm we can use codes with
much larger memory. This will remove the very low weight parities in the code.
Still leaving low weight parity checks, but if the weight is not very small, the
complexity of finding them will be too large.

The second problem is that a convolutional code usually start in the all zero
state. This means that the first code symbols that are produced will again allow
very low weight parity checks, giving security problems. As we cannot allow the
identification of low weight parity checks, we need to modify this. A similar
problem may occur when we terminate the code.

The solution that we propose is to use so-called tail-biting to terminate the
code, giving tail-biting trellises in decoding. This would work quite straightfor-
ward if we had a small trellis size and were using Viterbi decoding. But for a
large memory size and sequential decoding it is not immediate how tail-biting
could be used, as one has to go through all possible states at some starting point
in the circular trellis. Another approach to solve this problem is to use a block
code to set the starting state. We have examined this approach also.
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4.1 The McEliece PKC Based on a Tail-Biting Convolutional Code

The scheme works as usual McEliece, with a different way of generating the secret
matrix G as well as a different decoding procedure for the decryption process.
The secret generator matrix will have the characteristics of the one appearing in
(1), i.e., it has a cyclic diagonal structure with m matrices Gi,j in each column
and row. We also set the code G to be systematic, see Algorithm 1 for a detailed
description.

Algorithm 1. (Precomputation)

1. Choose parameters: code length n, rate R = b/c, memory m giving 2bm

possible states, and a minimum weight l for all parity checks, where l
should be around bm/2. Also, a value l′, corresponding to the minimum
number of ones in a row in G could be specified.

2. Write up a generator matrix as (1) in systematic form, i.e., choose Gi,1 =
(IJi1) and Gi,j = (0Ji,j), for 2 ≤ j ≤ m, where Ji,1 is chosen to give the
code spanned by Gi,1 maximal minimum distance and Ji,j , for 2 ≤ j ≤ m,
is chosen randomly.

3. Run a test to verify that all parity check positions, or sums of them, have
weight at least l. Also check that every information symbol appears in at
least l parity checks. If this is not the case, go to Step 2.

4. We have now created the secret matrix G. Create the public key matrix
as usual, i.e., randomly choose (S, P ), P permutation and S non-singular,
and compute SGP = Ĝ, and publish Ĝ.

Assuming that we receive a word c with e errors, how do we correct them,
knowing G? A problem when decoding this structure is that we have to guess a
starting state at some time instance and then perform the sequential decoding.
With many possible starting states this increases the complexity of decoding.
We assume that we use the stack algorithm as decoding algorithm and put a
number of possible starting states on the stack in the beginning. An advantage
is that this part of the decoding can be easily parallelized by starting decoding
at different time instances.

We now describe a basic approach for decoding. Compute ĉ = cP−1. Start the
decoding at any time t. On the stack we then put a set S of possible states, which
would be formed from the mb received information symbols in ĉ just before time
t. Since these symbols may be perturbated by the error vector, we put all states
reachable by e′ errors on the stack, where e′ is fixed by the decoding algorithm.
The expected number of errors in an interval of mb symbols is emb/n.

If decoding is unsuccessful we can try a different starting point t. If the correct
state has been established, and decoding is successful, we will get the correct
weight of the error vector. As the weight is assumed to be known, this is a way
of knowing that decoding was successful.

A description of a basic decoding procedure is given in Algorithm 2.
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Algorithm 2. (Decoding in tail-biting construction)

Input: Codeword sequence ĉ

1. Write ĉ = (c1, c2, . . . cn/c), where ci = (ui,pi) is a c bit vector and ui is
the systematic part.

2. Choose a random starting point t and put (ut−m,ut−m+1, . . . ,ut−1) (in-
dex modulo n/c), together with all other vectors with at most distance
e′ from it as starting states in S . Run the stack algorithm until time t is
reached again. If decoding was successful, return the decoded sequence.
Otherwise, do this item again.

3. If many starting points t have been tried without success, ask for retrans-
mission.

4.2 Finding a List of Good Starting States

Finding the correct starting state is the major complexity cost in decoding. To
be able to decode correctly, we need the correct starting state in S, but we also
do not want S to be too large as this gives a high decoding complexity. As
mentioned, we can use different starting points t, and hope that one of them will
have a set S including the correct starting state. We can even put sets S from
many different starting points on the same stack.

In order to decrease the size of S, we propose to use not only mb bits to
form the set S, but to use mb+m′c consecutive bits from c, where we now have
(m+m′)b information bits but can also use m′(c−b) parity checks. Deciding that
we include all such length mb + m′c with at most e′ errors as possible starting
states, this corresponds exactly to finding all codewords in a (mb+m′c, (m+m′)b)
linear code with weight at most e′.

4.3 A Modified Construction

Our construction based on tail-biting convolutional codes has a simple descrip-
tion and it has a good portion of randomness in its construction, making it a
desirable construction. One problem however, is the first part of the decoding,
i.e., finding the correct starting state before starting the efficient stack algo-
rithm. For constructions with security level around 280, this can be done with
reasonable complexity. But the complexity of this process grows exponentially
with the security level measured in bits.

In order to solve this problem we propose a modified construction, using only
polynomial complexity to get the starting state. Our second construction uses
a small block code for setting a starting state and then a larger convolutional
code for the remaining part of the code. The original code is generated by the
generator matrix of the form
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G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
GB

GC

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2)

where GB is a block code (we propose a Goppa code to be used), GC is a random
time-varying systematic convolutional code as in the first tail-biting construction
with memory m = k and white areas represent all zeroes.

The block code GB is an (nB, kB) linear code with efficient decoding of up to
tB errors. We suggest it to be a classical Goppa code. Since the number of errors
in the first nB positions can be higher than the block code can correct, we note
that a decoding error might occur here. It is given by

Pr [more than tB errors in block code] =
e∑

x>tB

(
nB

x

)(
nC

e−x

)(
n
e

) . (3)

With suitable parameters this probability can be made very low. An important
issue is that we need to have a dimension kB of the code larger than the number
of bits in memory mb. This again comes from the fact that we cannot allow low
weight codewords in the dual code. As the block code generally will have more
parity-check symbols per information symbol that leads to an expected existence
of codewords with weight lower than in the convolutional code. So we require,
no codewords of weight less than l in the dual code of GB .

We then use as before a rate b/c convolutional code GC . Since the leftmost
kB information bits are assumed to be already known (if the block decoding
is successful), we do not need to decode these using the sequential decoding
procedure.

5 Analysis of the Security of the Proposed Scheme

First, let us give the complexity formulas for Stern’s algorithm [9]. The complex-
ity of finding a codeword of weight w using Stern’s algorithm, with algorithm
parameter p, is given by W/P , where W and P is defined below. The probability
P of an iteration being successful is

P =

(
w
2p

)(
n−w
k−2p

)(
2p
p

)(
n
k

)(
n−k−w+2p

l

)
4p
(
n−k
l

) (4)

and each such iteration performs

W = (n− k)3/2 + k(n− k)2 + 2lp

(
k/2

p

)
+ 2p(n− k)

(
k/2

p

)2

/2l (5)

bit operations.
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There are two standard approaches to attack McEliece PKC. One is to try to
recover the plaintext from a received ciphertext, whereas the second approach is
a structural attack where we try to recover the structure of the secret generator
matrix.

Plaintext Recovery. Recovery of the plaintext from a ciphertext is best done
by so-called information set decoding algorithms. The simplest form of informa-
tion set decoding appeared in McEliece’s original paper from 1978 [14]. The idea
is to select k out of n columns and hope that no errors occur in these positions
in the received ciphertext. Numerous papers on information set decoding have
been published. The algorithms currently attaining the lowest attack complexity
are described in [11], [13] and [3].

Structural Attacks. In a structural attack we try to recover the structure of
the code. In our case the only deviation from a random code is the convolutional
code structure in terms of low weight parity checks. In fact, in precomputation
we specified the weight of parity checks to be no less than l.

We expect that a structural attack would need to recover parity checks of
weight l, and sketch the difficulty of this problem. It is well known that all
parity checks form codewords of the dual code.

One should also observe that we have a large number of low weight parity
checks (codewords in the dual code). This decreases the complexity of finding one
of them when running Stern’s algorithm, as the probability of being successful
in one iteration increases with the number of existing low weight vectors. In our
case, parity checks are created from mb bits in memory and c additional bits.
For example, there are then at least 2c−b−1 parity checks of weight (mb+c)/2 or
less. But in the precomputation creating the generator matrix, we can keep track
of how many low weight vectors we have and make sure that the complexity of
finding any of them is high enough.

6 Example

For security level around 280, we propose the following set of parameters. Use
parameters (n, k, e,m) = (1800, 1200, 45, 12) with rate R = 20/30. We will have
a security of 281 against decoding attacks, measured by Stern’s algorithm, see
(4) and (5). We get a security level of 278.4 with the best known algorithms [11].
In the construction phase, we set l = 125, i.e., every parity check should have a
weight no less than 125. This is achievable as every parity check has 240 + 30
positions where it can be nonzero. The complexity of finding a weight 125 vector
in the dual code using Stern’s algorithm is roughly 287. As this complexity is
decreased by the number of low weight vectors, we need to keep track of the
number of low weight vectors in the code to guarantee a complexity of about 280
for finding such a low weight parity check.

For the decoding, we keep mb = 240 bits as our starting state. Fixing a
starting time t, the expected number of errors in these 240 information symbols
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is 6. We include another 40 information symbols from just before time t − m
and the corresponding 20 parity checks that is computed from these 240 + 40
information symbols. We also split the 240 symbols in two halves.

Our assumption is now that we have at most 1 error in the added 60 symbols
and at most 3 errors in each of the halves of the state.

We then generate two tables of all parity check syndromes that up to 3 errors
can generate, in total less than 219 entries in each table. One table is expanded
with adding to every entry the 61 syndromes that the additional 60 information
symbols created, giving 225 entries. Merging the two tables, knowing that the
syndrome must be zero, gives 224 surviving states. Now, taking the next 30
information symbols and starting sequential decoding, quickly takes the correct
state to the top of the stack. If we are unsuccessful, pick a new t.

The probability that our assumption about errors is correct is about 0.25, so
the expected total decoding complexity is about 225/0.25 = 227. By assuming
fewer errors, the expected decoding complexity can be further decreased.

6.1 Continuing the Example with the Modified Construction

Considering the same example but with a block code to fix the initial state as
described in Subsection 4.3.

Pick as GB a Goppa code of length nB = 1020, dimension kB = 660 and
with capabability of correcting 36 errors. Let the convolutional code have rate
R = 20/30 and run 25 information blocks. End the code with 30 additional
parity checks. This gives rise to a full code of length 1020 + 25 · 30 + 30 = 1800
and dimension k = 660 + 25 · 20 = 1160.

The decoding step first decodes the Goppa code. For a nB = 1020 code we
expect that algorithms with complexity O

(
n2
)

are still the best choice. There
are algorithms with better asymptotic performance, but they are useful only
for excessively large nB. So we expect say 220 steps for this part. Decoding the
convolutional code is then done in much less time than 220 steps. Overall, this
gives a faster decoding than standard McEliece, requiring close to 222 steps.

With 45 inserted errors, the probability that we get a decoding error can be
found to be around 2−12, see (3).
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Abstract. In this paper, we propose a notion of flexible attribute-based
encryption. Flexible attribute-based encryption is a variant of ciphertext-
policy ABE, which allows one to loosen a decryption policy underlying a
given ciphertext, if one knows some system-wide trapdoor information,
without knowing its underlying plaintext message. We give a concrete
construction of the flexible attribute-based encryption that satisfies in-
distinguishability under the loosening operation, based on the construc-
tion of ciphertext-policy ABE given by Bethencourt, Sahai and Waters.

Keywords: Attribute-based encryption, Ciphertext-policy, Loosening
operation.

1 Introduction

A notion of attribute-based encryption (ABE) was first proposed by Sahai and
Waters [13], in which, a message m is encrypted to a ciphertext c under some
predicate f , and a user with credential X can decrypt the ciphertext c if and only
if the predicate f is satisfied by the user’s credential X : f(X) = 1. The concept
of ABE was further clarified by Goyal, Pandey, Sahai, and Waters [6]. They pro-
posed two complementary forms of ABE: Key-Policy ABE and Ciphertext-Policy
ABE. In this paper, we focus on Ciphertext-Policy ABE, in which attributes are
used to describe users’ credentials and formulas over these attributes are at-
tached to the ciphertext by the encrypting party.

The first construction of Ciphertext-Policy ABE was given by Bethencourt, Sa-
hai, and Waters [4]. Its security is proved under the generic bilinear group with
random oracle model. (We call the model which uses both the generic bilinear
group and random oracle the generic bilinear group with random oracle model.)
Waters [15] gives a construction of ABE which can be proved under the standard
model in a selective manner. Lewko, Okamoto, Sahai, Takashima, andWaters [10]
and Okamoto and Takashima [12] give fully secure constructions of ABE in the
standard model.
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On awhile, ABEhas been applied in building a variety of secure systems [14,5,2].
One of major problems in these applications is that ABE-based systems tend to
lack flexibility. A ciphertext once produced under decryption policy f never can
be decrypted under a more loosened policy or(f,Δf) (if f is not satisfied) by the
definition of security of ABE (of course). However, in reality, the degree of privacy
of information is never fixed: yesterday’s secret is not necessary secret of today.
Even if some information is very restrictive (described as policy f) to be accessed
at this moment of time, the same information gradually can be made more and
more accessible (described as policy or(f,Δf)) as time goes by.

Our contribution. In this paper, we propose a notion of flexible attribute-based
encryption. Flexible attribute-based encryption is a variant of ciphertext-policy
ABE, which allows one to loosen a decryption policy underlying a given cipher-
text, if one knows some system-wide trapdoor information, without knowing its
underlying plaintext message. More precisely, suppose a given ciphertext c was
generated by encrypting a plaintext m under a decryption policy f . The flexible
attribute-based encryption enables a “loosening operation” that, given Δf and
some system-wide trapdoor information γ, converts the ciphertext c into a more
nonrestrictive version of ciphertext c′ which encrypts the same plaintext m un-
der the loosened policy or(f,Δf), without knowing the message m itself. Users
having attributes that satisfy (only) the appended policyΔf now can decrypt the
ciphertext c′ to know the messagem. Here we note that the trapdoor information
γ is independent of individual policies or ciphertexts.

As one of applications of such flexible attribute-based encryption, we can con-
sider an integration of cloud storage services. Suppose two storage services A and
B are going to integrate into one storage service. Suppose, by policy mapping, that
encrypted files CfA under policy fA in service A now should be decrypted also by
entities satisfying policy fB in service B. The authenticated operator in service
A with trapdoor γ can use the loosening operation against those CfA to get new
encrypted files Cor(fA,fB) that can be decrypted also by entities satisfying policy
fB in service B.

We will see that there is a subtlety over security concerning such loosening op-
erations and then we will define two notions of security of flexible attribute-based
encryption, indistinguishability under loosening operation and indistinguishability
under loosening key.

We also give a concrete construction of the flexible attribute-based encryption
that satisfies the indistinguishability under loosening operation and the indistin-
guishability under loosening key, based on the construction of ciphertext-policy
attribute-based encryption given by [4]. Its security proof is given in the generic
bilinear group with random oracle model.

Related works. The concept of our flexible attribute-based encryption is similar
to the attribute-based proxy re-encryption [7,9,8].
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In the attribute-base proxy re-encryption, one can generate re-encryption key
rkf1→f2 , and by using the key rkf1→f2 , a ciphertext cf1 for policy f1 can be re-
encrypted into a ciphertext cf2 for policy f2. To generate such re-encryption key
rkf1→f2 , the secret key skf1 for policy f1 is required. On a while, in our flexible
ABE, all ciphertexts can be “loosened” using the single (system-wide) trapdoor
information γ (which is independent of individual policies).

2 ANotion of Flexible Attribute-Based Encryption

Aflexible attribute-based encryption scheme is a tuple of fivePPTalgorithmsSetup,
Enc, Ext, Dec and Loosen.

Algorithm Setup generates a public parameter par, a master secret mk
and a trapdoor information lk for loosening, given a security parameter 1k:
(par,mk, lk) ← Setup(1k). Algorithm Enc encrypts a given message m to a ci-
phertext c under a given decryption policy represented as a Boolean formula f :
(f, c) ← Enc(par, f,m). Algorithm Ext generates a secret key d for a given at-
tribute set as, using the master secret mk: (as, d)← Ext(par,mk, as). Algorithm
Dec decrypts a ciphertext (f, c) by using a secret key d for an attribute set as to
obtain a resulting plaintext m. The plaintext m may be a special symbol ⊥ indi-
cating a decryption error if something is wrong: m/⊥ ← Dec(par, (f, c), (as, d)).
By using the dedicated trapdoor information lk, algorithm Loosen loosens a de-
cryption policy of a given ciphertext (f, c) so that more entities, that satisfy some
added policy Δf , can also decrypt the ciphertext c, resulting a new ciphertext
(or(f,Δf), c′): (or(f,Δf), c′)← Loosen(par, lk, (f, c), Δf).

Correctness requirement. Under any valid setup information (par,mk, lk)
(← Setup(1k)), if one encrypts any message m ∈ Message(k) under any de-
cryption policy f ∈ Policy(k) to a ciphertext (f, c), then it must be decrypted
to the original plaintext m as Dec(par, (f, c), (as, d)) = m, if the secret key
(as, d) (← Ext(par,mk, as)) is generated for some attribute set as that satisfies
the decryption policy f .

If the ciphertext (f, c) is loosened by a policy Δf to a new ciphertext
(or(f,Δf), c′) as (or(f,Δf), c′) ← Loosen(par, lk, (f, c), Δf), then the
resulting ciphertext c′ must be decrypted to the original plaintext m as
Dec(par, (or(f,Δf), c′), (as′, d′)) = m, even if the attribute set as′ satisfies the
appended policy Δf (or f).

Regarding security under loosening operations. Before defining security in a for-
mal way, here we consider some aspects regarding security of such attribute-based
encryption that gives loosening operations to users.

First of all, the loosening operation should be performed by some entity with
possession of the trapdoor information lk without knowing the underlying mes-
sage. This will be captured in the security condition named ‘indistinguishability
under loosening key’.

Another point is a more subtle one. Suppose an adversary A obtains a cipher-
text c∗ of a plaintext m under a policy f = A or B or C. It is plausible that A
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manages to construct a ciphertext c′ of the same plaintext m (without knowing
m itself) under a more restricted policy f ′ = A or B, based on the ciphertext c∗.
Then, A can use the loosening operation on c′ to get another ciphertext c′′ also
of the same plaintext m but under a loosened policy f ′′ = A or B or D and then
A could know the underlying plaintext m of the original ciphertext c∗ by using a
corrupt key dD of the added attribute D against the ciphertext c′′.

That scenario means that a victim’s ciphertext c∗ can be corrupted even if
c∗ itself has never been processed under loosening operations. (Off course, if the
attribute-based encryption has CCA-security, that type of attack based on mal-
leability can be avoided. However, at the same time we lose the loosening opera-
tions, too.)

We will require that loosening operations for c′ different from c∗ should never
affect the security of c∗, in the security condition named ‘indistinguishability un-
der loosening operation’.

3 Security of Flexible Attribute-Based Encryption

To define security of a flexible attribute encryption scheme, we describe two games
using the framework of code-based games [3]. In the framework, a game GameA
is executed with an adversaryA as follows. First, Initialize executes, and its out-
puts are the inputs to A. Then A executes, its oracle queries being answered by
the corresponding procedures ofGameA.WhenA terminates, its output becomes
the input to the Finalize procedure. The output of the latter is called the output
of the game.

3.1 Indistinguishability under Loosening Operation

Let FABE = (Setup,Enc,Ext,Dec, Loosen) be a flexible attribute encryp-
tion scheme. Let A be an arbitrary PPT adversary against FABE. Our game
Gameind−lso

A,FABE (k) uses the following Initialize and Finalize procedures:

procedure Initialize:

b
$← {0, 1}

(par,mk, lk)← Setup(1k)
return par.

procedure Finalize (b′):

return b′
?
= b.

The game uses procedures Extract, LR and Loosen to answer oracle queries
from A:

procedure Extract (as):
assert(f∗(as) = false)
(as, d)← Ext(par,mk, as)
return (as, d).

procedure Loosen ((f, c), Δf):
assert((f, c)!= (f∗, c∗))
(f ′, c′)← Loosen(par, lk, (f, c), Δf)
return (f ′, c′).

procedure LR (f∗,m0,m1):
assert(f∗(as) = false) for as’s submitted to Extract
(f∗, c∗)← Enc(par, f∗,mb)
return (f∗, c∗).
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In the above, “assert(f∗(as) = false)” means that one must check whether the
condition f∗(as) = false holds or not if f∗ already defined, and abort if it does
not hold, or else continue. Similar for “assert((f, c)!= (f∗, c∗))”.

Definition 1. A flexible attribute encryption scheme FABE is said to be indistin-
guishable under loosening operation (IND-LSO) if for an arbitrary PPT adversary
A its advantage Advind−lso

A,FABE (k) := |Pr[Gameind−lso
A,FABE (k) = 1]− 1/2| is a negligible

function in k.

3.2 Indistinguishability under Loosening Key

Our game Gameind−lsk
A,FABE (k) uses the following Initialize and Finalize proce-

dures:

procedure Initialize:

b
$← {0, 1}

(par,mk, lk)← Setup(1k)
return (par, lk).

procedure Finalize (b′):

return b′
?
= b.

Note that Initialize returns a trapdoor information lk for loosening operation
as well as parameter par (and adversaries A will know lk as well as par). The
game uses procedure LR to answer oracle queries from A:

procedure LR (f∗,m0,m1):
(f∗, c∗)← Enc(par, f∗,mb)
return (f∗, c∗).

Definition 2. A flexible attribute encryption scheme FABE is said to be indistin-
guishable under loosening key (IND-LSK) if for an arbitrary PPT adversary A
its advantage Advind−lsk

A,FABE (k) := |Pr[Gameind−lsk
A,FABE (k) = 1] − 1/2| is a negligible

function in k.

Note that since A has now loosening key lk, A can trivially decrypt the challenge
ciphertext if A had access to Extract-oracle.

4 Concrete FABE Scheme

Definition 3. A function F : {0, 1}∗ → {0, 1}2N is said to be N -linear-
dependency resistant if for any n ≤ N any PPT algorithm A is not able to gen-
erate any n distinct strings x1, . . . , xn with function values F (x1), . . . , F (xn) that
are linearly dependent (as vectors over Z2) except with a negligible probability.
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A hash function F : {0, 1}∗ → {0, 1}2N is N -linear-dependency resistant in the
random oracle model with respect to F .

We construct a concrete flexible attribute encryption scheme based on the at-
tribute encryption scheme of [4]. In the followings,  Leaf(f) denotes a number of
leaf nodes of a given binary formula f . (ρ,M) ← LSS(p, f) denotes a transfor-
mation to convert a Boolean formula f into a linear secret sharing scheme defined
by a share-generatingmatrixM over prime p (with corresponding secret-restoring
coefficients (ωi)i) with an assignment function ρ from the rows of matrixM to the
universe of attributes. For its details we refer to [11]. Predicate IsDH(g, g1, g2, g3)
means the tuple (g, g1, g2, g3) is a Diffie-Hellman tuple, i.e., g3 = ga2 for a satisfy-
ing g1 = ga. For vectors a = (a1, . . . , an) and b = (b1, . . . , bn), their inner product
is written as a · b =

∑
i=1,...,n aibi.

Setup (1k, N(k)):

(g, p, e) ← GenGrp(1k)
Select F (= F1 · · ·F2N ) : {0, 1}∗ → {0, 1}2N

α, β, γ1, . . . , γ2N
$← Zp

h = gβ, w = e(g, g)α, u1 = gγ1 , . . . , u2N = gγ2N

Return par = (g, h, w, F, u1, . . . , u2N ), mk = (β, gα) and lk = γ := (γ1, . . . , γ2N ).

/* (u1, . . . , u2N ) defines a hash function H(S) = u
F1(S)
1 · · ·uF2N (S)

2N */

Enc (par, f,m):
Assert n := �Leaf(f) < N
(ρ,M) ← LSS(p, f) /* Let dimension of M be n× l */

s, r2, . . . , rl
$← Zp, si = Mi · (s, r2, . . . , rl) (i ∈ [1..n])

c0=mws, c1=gs, c2=hs, c3=(gsi)i∈[1..n], c4=(H(ρ(i))si)i∈[1..n],c5=H(f, c0, . . . , c4)
s

Return (f, c = (c0, . . . , c5)).

Ext (f,mk, as):

r
$← Zp, ra

$← Zp (a ∈ as)

d1 = g(α+r)/β

d2 = (grH(a)ra)a∈as, d3 = (gra)a∈as

Return d = (as, d1, d2, d3).

Dec (par, (f, c), (as, d)):
(ρ,M) ← LSS(p, f)
I = ρ−1(as) and compute the constants {ωi}i∈I

κ =
∏

i∈I{e(c3,i, d2,ρ(i))/e(c4,i, d3,ρ(i))}
ωi

Return κc0/e(d1, c2).

Loosen (par, lk, (f, c),Δf):
Loosen the policy f to f ′ = or(f,Δf)
Assert n := �Leaf(f ′) < N and IsDH(g,H(f, c0, · · · , c4), c1, c5)
(ρ,M) ← LSS(p, f ′) /* Let dimension of M be n× l */

Let gs = c1 and r2, . . . , rl
$← Zp /* We don’t know the value of s */

Compute gsi = gMi·(s,r2,...,rl) for i ∈ [1..n] and set c′3 = (gsi)i∈[1..n]

/* The knowledge gs is enough to compute gsi */

c′4 = (gsi(γ·F (ρ(i))))i∈[1..n], c
′
5 = (c1)

γ·F (f ′,c0,c1,c2,c
′
3,c

′
4)

Return c′ = (f ′, c0, c1, c2, c′3, c
′
4, c

′
5).

We can prove the following theorems regarding security of the FABE scheme (the
proofs are in the full version [1]).
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Theorem 1. The FABE scheme with parameter N = N(k) is indistinguishable
under loosening operation in the generic bilinear group model, under the assump-
tion that the function F is (N + 1)-linear-dependency resistant.

Theorem 2. The FABE scheme is indistinguishable under loosening key in the
generic bilinear group model.

5 Conclusion

We proposed a notion of flexible attribute-based encryption, that allows one to
loosen a decryption policy underlying a given ciphertext. We gave a concrete con-
struction of such flexible attribute-based encryption that is provably secure in the
generic bilinear group model.
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Abstract. A dynamic broadcast encryption (DBE) is a broadcast en-
cryption (BE) scheme where a new user can join the system anytime
without modifying preexisting user decryption keys. In this paper, we
propose a non-interactive dynamic identity-based broadcast encryption
(DIBBE) scheme that is fully secure without random oracles. The PKG
does not need to execute any interactive operation with the user during
the lifetime of the system. The ciphertext is of constant size, and the
public key size is linear in the maximal number of receivers for one en-
cryption. This is the first non-interactive DIBBE scheme which is fully
secure without random oracles, and it is collusion resistant for arbitrarily
large collusion of users.

1 Introduction

Broadcast encryption (BE) scheme [1] allows a broadcaster to encrypt a message
to an arbitrarily designated subset S of users who are listening to a broadcast
channel. A BE scheme is said to be fully collusion resistant when, even if all
users that are not in S collude, they can by no means infer information about the
broadcast message [6]. A dynamic broadcast encryption (DBE) is a BE scheme
in which the total number of users is not fixed in the setup phase and a new
user can join the system anytime without modifying preexisting user decryption
keys.

Identity-based (ID-based) encryption [2] is a cryptosystem where the public
key can be represented as an arbitrary string. A private key generator (PKG)
uses a master secret key to issue private keys for users based on their identities.
Many ID-based schemes have been proposed, but practical schemes were not
found until the work of Boneh and Franklin [9] in 2001. Their identity-based
encryption (IBE) scheme was based on efficiently computable bilinear maps,
but it is only provably secure in the random oracle model. Since 2001, several
schemes have been introduced [3,7,10]. There are mainly two security definitions:
full security and selective-ID security, and the selective-ID security is weaker than
full security.

T.W. Chim and T.H. Yuen (Eds.): ICICS 2012, LNCS 7618, pp. 479–487, 2012.
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In 2007, Sakai et al. proposed an identity-based broadcast encryption (IBBE)
scheme with constant size ciphertext and private key [11]. The user can join the
system anytime without generating new decryption keys for preexisting users.
The scheme is only provably secure in the random oracle model. Delerablee pro-
posed another dynamic IBBE scheme [5], where the ciphertext and private key
are also of constant size, and the public key is of size linear to the maximal value
of the set of receivers. The scheme only achieves selective-ID security in the ran-
dom oracle model. Gentry et al. proposed several IBBE schemes [8], one of which
is dynamic, but it only achieves sublinear size ciphertext in the standard model,
or constant size ciphertext in the random oracle model. Boneh et al. described
a dynamic IBBE scheme in 2008, which is only selective-ID secure without ran-
dom oracles [4]. Zhao et al. presented another dynamic IBBE scheme, which is
fully secure without random oracles [12]. However, the PKG needs to execute
multiple interactive operations with each user in the extract phase, which is not
efficient in practice if there are a lot of users in the system. Currently, there is
no non-interactive DIBBE scheme available that is fully secure without random
oracles.

Our Contributions. In this paper, we solve the open problem raised in [5] and
propose a non-interactive DIBBE scheme that is fully secure without random
oracles. The scheme has constant size ciphertexts and a tight reduction based on
the q-wABDHE assumption. To the best of our knowledge, this is the first non-
interactive DIBBE scheme that is fully secure without random oracles. Moreover,
our DIBBE scheme is collusion resistant for arbitrarily large collusion of users.

2 Definitions

Below, we review the definition of a symmetric bilinear map and the security
model for a DIBBE system. We also discuss the complexity assumption on which
our system is based.

2.1 Symmetric Bilinear Map

Let p be a large prime number, G1 and G2 be two groups of order p, and g be a
generator of G1. e : G1 ×G1 → G2 is a symmetric bilinear map, which has the
following properties [3,9,10]:

(1)Bilinearity: For all u, v ∈ G1 and a, b ∈ Zp, e(ua, vb) = e(u, v)ab.
(2)Non-degeneracy: e(g, g) �= 1.
(3)Computability: There exists an efficient algorithm to compute e(u, v), ∀u, v

∈ G1.
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2.2 Complexity Assumption

Our scheme is based on decisional weaker augmented bilinear Diffie-Hellman
exponent (wABDHE) assumption. The detailed definition is as follows: Given a
vector of 2q + 2 elements

(g′, (g′)α
q+2

, . . . , (g′)α
2q

, g, gα, . . . , gα
q

, Z) ∈ G2q+1
1 ×G2

to decide whether Z = e(g′, g)α
q+1

.
An algorithm A that outputs w ∈ {0, 1} has advantage of ε in solving the

decision q-wABDHE problem if

|Pr[A(g′, (g′)α
q+2

, . . . , (g′)α
2q

, g, . . . , gα
q

, e(g′, g)α
q+1

) = 0]

−Pr[A(g′, (g′)α
q+2

, . . . , (g′)α
2q

, g, . . . , gα
q

, Z) = 0]| ≥ ε,

where the probability depends on the random choice of g, g′ ∈ G1, α ∈ Z∗
p , Z ∈

G2, and the random bits consumed by A. We refer to the distribution on the
left or right as PwABDHE or RwABDHE .

We say that the decision (t, ε, q)-wABDHE assumption holds in G1, G2 if no
t-time algorithm has advantage of at least ε in solving the decision q-wABDHE
problem in G1, G2.

2.3 Security Model

In this section, we define full security against an chosen plaintext attack (IND-
ID-CPA) for a non-interactive DIBBE scheme. It is executed by the following
game between an adversary A and a challenger B.

Setup. The challenger runs Setup(λ,m) algorithm to obtain a public key PK
and sends it to A.

Phase 1. The adversary A adaptively issues queries.
Joinging query (IDi): A sends IDi to B. The challenger runs Join algorithm

on IDi and returns A a decryption key dIDi .

Challenge. A sends (S∗,K0,K1) to B, where the identities in S∗ have not been
executed the joining query in Phase 1.

The challenger randomly chooses w ∈ {0, 1} and runs algorithm Encrypt to
obtain (Hdr∗,Kw). It then gives Hdr∗ to adversary A.

Phase 2. A adaptively issues joining query (IDi), where IDi �∈ S∗ .

Guess. Finally, the adversary outputs a guess w′ ∈ {0, 1} and wins the game if
w′ = w.

We call the adversary A in the above game an IND-ID-CPA adversary. The
advantage of A is defined as |Pr[w′ = w]− 1

2 |.
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Definition. A non-interactive DIBBE system is (t, ε, q) IND-ID-CPA secure
if all t-time IND-ID-CPA adversaries making at most q joining queries have
advantage of at most ε in winning the above game.

3 The Proposed DIBBE Scheme

We present a non-interactive DIBBE scheme with constant size ciphertext which
is fully secure without random oracles. The system makes use of the hybrid
encryption paradigm (KEM-DEM) where the broadcast ciphertext only encrypts
a symmetric key used to encrypt the broadcast contents.

3.1 Setup

Given security parameter λ and an integer m, the maximal size of the set of re-
ceivers for one encryption, two groups G1, G2 of order p are constructed. e : G1×
G1 → G2 is a symmetric bilinear map and g is a generator of G1. The PKG ran-
domly chooses l0 ∈ G1, α, β, c ∈ Z∗

p , and computes k0 = gαβ , f(x) = cx. Finally,

the public parameters are (f(x), g, gα, . . . , gα
m

, l0, l
α
0 , . . . , lα

m

0 , k0, k
α
0 , . . . , kαm

0 ) and
α, β are the master secret keys of PKG.

3.2 Join

To an IDi ∈ Z∗
p , the PKG randomly chooses ri ∈ Z∗

p , hi ∈ G1, and sets

d1,i = (hig
ri)

1
αβ(α−IDi) , d2,i = ri, d3,i = (l

f(ri)
0 hi)

1/αβ , labi = {hi, h
α
i , . . . , h

αm

i },

so the corresponding private key is dIDi = (d1,i, d2,i, d3,i, labi).

3.3 Encrypt

For a set S, randomly choose s ∈ Z∗
p ,K ∈ G2, and compute

c1 = k
s·
∏

i∈S(α−IDi)

0 , c2 = (gα)−s, c3 = e(g, g)−s, c4 = K · e(g, l0)s.

The ciphertext is (Hdr, S), where Hdr = (c1, c2, c3, c4). Then K is used to
encrypt the message.

3.4 Decrypt

The receiver of S with identity IDi decrypts

[e(c1, d1,i)e(c2, hig
d2,i)Ai,S(α)]

1∏j �=i
j∈S

(−IDj) c
d2,i

3 = e(g, hi)
s,

[e(c1, d3,i)e(c2, l
f(d2,i)
0 hi)

Bi,S(α)]
1∏

i∈S(−IDi) = e(g, l
f(ri)
0 hi)

s,
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[e(g, l
f(ri)
0 hi)

s/e(g, hi)
s]

1
f(d2,i) = e(g, l0)

s, c4/e(g, l0)
s = K,

where Ai,S(α) =
1
α [
∏j �=i

j∈S(α − IDj)−
∏j �=i

j∈S(−IDj)],

Bi,S(α) =
1
α [
∏

i∈S(α− IDi)−
∏

i∈S(−IDi)].

4 Analysis of the DIBBE Scheme

In this section, we analyze security of the DIBBE scheme and compare the
proposed scheme with the previous ones.

4.1 Security

We now prove that the DIBBE scheme achieves IND-ID-CPA security under the
q-wABDHE assumption without random oracles.

Theorem 1. Assume that the (t′, ε′, q)-wABDHE assumption holds in G1, G2,
then the DIBBE scheme is (t, ε, q − 1) IND-ID-CPA secure for t = t′ − O(texp ·
mq), ε = ε′ + 1/p, q ≥ 2m, where m is the maximal size of the set of receivers
for one encryption and texp is the average time required to exponentiate in G1

respectively.

Proof. Assume A is an IND-ID-CPA adversary as described in Section 2.3, then
we can construct an algorithm B that solves the q-wABDHE problem as follows.
At the beginning of the game, B is given

(g′, (g′)α
q+2

, . . . , (g′)α
2q

, g, gα, . . . , gα
q

, Z) ∈ G2q+1
1 ×G2

to decide whether Z = e(g′, g)α
q+1

.

Setup. B randomly chooses E(x) =
∑m−1

j=0 b0,jx
j , β ∈ Z∗

p and sets

F (x) = xE(x) + b0, f(x) =
1
b0

x, k0 = gαβ, kα
0 = gα

2β , . . . , kαm

0 = gα
m+1β ,

l0 = gF (α), lα0 = gαF (α), . . . , lα
m

0 = gα
mF (α), where b0,j, b0 ∈ Z∗

p .

In fact, B can compute the parameters as follows:

l0 = gb0
∏m−1

j=0 (gα
j+1

)b0,j = g
∑m−1

j=0 b0,jα
j+1+b0 = gαE(α)+b0 = gF (α),

lα0 = gb0α
∏m−1

j=0 (gα
j+2

)b0,j = g
∑m−1

j=0 b0,jα
j+2

gb0α = gαF (α), . . .,

lα
m

0 = gb0α
m∏m−1

j=0 (gα
j+m+1

)b0,j = g
∑m−1

j=0 b0,jα
j+m+1

gb0α
m

= gα
mF (α).

B sends (f(x), g, gα, . . . , gα
m

, l0, l
α
0 , . . . , lα

m

0 , k0, k
α
0 , . . . , kαm

0 ) to A as the public
parameters. Note that the public keys are randomly distributed and indistigu-
ishable from the real scheme for the adversary since E(x), b0 and β are randomly
chosen.

Phase 1. The adversary A adaptively issues queries.
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Joining query 〈IDi〉: A sends IDi to B. B randomly chooses

Ci(x) =
∑m−2

j=0 bi,jx
j , Di(x) = x(x − IDi)Ci(x) + bi,

where bi,j , bi ∈ Z∗
p , and computes dIDi = (d1,i, d2,i, d3,i, labi) as below:

d1,i = (gCi(α))
1
β , d2,i = −Di(IDi) = −bi,

d3,i = (g−
bi
b0

E(α)+(α−IDi)Ci(α))
1
β .

labi = {hi = gDi(α), hα
i = gαDi(α), . . . , hαm

i = gα
mDi(α)}.

Now we need to show that the adversary can compute dIDi as follows.

d1,i = (
∏m−2

j=0 gbi,jα
j

)
1
β = (g

∑m−2
j=0 bi,jα

j

)
1
β = (gCi(α))

1
β ,

d2,i = −IDi(IDi − IDi)Ci(x)− bi = −bi = −Di(IDi),

d3,i = (

m−1∏
j=0

g−
bi
b0

b0,jα
j

·
m−2∏
j=0

gbi,j(α−IDi)α
j

)
1
β

= (g−
bi
b0

E(α)+(α−IDi)Ci(α))
1
β ,

hi = gbi
∏m−2

j=0 (gα
j+2

g−IDiα
j+1

)bi,j = gα(α−IDi)
∑m−2

j=0 bi,jα
j

gbi = gDi(α),

hα
i = gbiα

∏m−2
j=0 (gα

j+3

)bi,j (gα
j+2

)−IDibi,j = gαDi(α),
. . . . . .,

hαm

i = gbiα
m∏m−2

j=0 (gα
j+m+2

)bi,j (gα
j+m+1

)−IDibi,j = gα
mDi(α).

It is a valid private key, because

d1,i = (gCi(α))
1
β = g

Di(α)−bi
αβ(α−IDi) = g

Di(α)−Di(IDi)

αβ(α−IDi) = (hig
d2,i)

1
αβ(α−IDi) ,

d2,i = −Di(IDi) = −IDi(IDi − IDi)Ci(x)− bi = −bi,

d3,i = (g(−
bi
b0

)(F (α)−b0)+Di(α)−bi)
1

αβ = g
(− bi

b0
)F (α)+Di(α)

αβ = (l
f(d2,i)
0 hi)

1
αβ .

labi = {hi = gDi(α), hα
i = gαDi(α), . . . , hαm

i = gα
mDi(α)}.

We conclude that d1,i, d2,i, d3,i, hi are random distributed for the adversary since
E(x), b0, β, Ci(x), bi are randomly chosen. Thus, dIDi is randomly distributed
and indistiguishable from the real scheme for the
adversary because of the randomness of E(x), b0 and Ci(x), bi, β.

Challenge. A sends (S∗,K0,K1) to B, where the identities of S∗ have not been
executed the joining query in Phase 1.

B randomly chooses Kw, w ∈ {0, 1}, and sends Hdr∗ to A, where

c∗1 = (g′α
q+2

)β
∏

i∈S∗ (α−IDi), c∗2 = (g′)−αq+2

, c∗3 = Z−1,,

c∗4 = Kw · Zb0 · e(g′αq+2

, gE(α)), Hdr∗ = (c∗1, c
∗
2, c

∗
3, c

∗
4, S

∗).
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Let s∗ = log gg
′ · αq+1. If Z = e(g′, g)α

q+1

,

c∗1 = (gs
∗α)β

∏
i∈S∗ (α−IDi) = (ks∗

0 )
∏

i∈S∗ (α−IDi),

c∗2 = (g′)−αq+2

= (gα)−s∗ , c∗3 = e(g′, g)−αq+1

= e(g, g)−s∗ ,

c∗4 = Kw · e(g′α
q+1

, gF (α)) = Kw · e(g, l0)s
∗
.

Since log gg
′, α are uniformly random, s∗ is uniformly random, and so Hdr∗ is

a valid and appropriately-distributed challenge to A.

Phase 2. A adaptively issues joining query (IDi), where IDi �∈ S∗.

Guess. A submits a guess w′ ∈ {0, 1}. If w′ = w, B outputs 0 (indicating that

Z = e(g′, g)α
q+1

); else, it outputs 1.

Probability Analysis: When Z is sampled from PwABDHE , Hdr∗ is a valid ci-
phertext for the randomness of s∗, A can guess w′ = w with probability 1/2+ε′.

When Z is sampled from RwABDHE , c∗4 = Kw · Zb0 · e(g′αq+2

, gE(α)). Since
g′, Z, b0, E(x) are uniformly random, c∗4/Kw is random for the adversary except
probability 1/p, and so A can only guess w′ = w with probability 1/2 + 1/p.

Time Complexity: Each joining query requires O(m) exponentiations in G1.
Since A makes at most q − 1 such queries, t′ = t+ O(texp ·mq).

In the reduction, B’s success probability and time complexity are the same
as that of A, except for additive factors depending on p and q respectively. So,
the DIBBE system has a tight security reduction without random oracles. This
completes the proof for Theorem 1.

4.2 Comparison

In this section, we compare the known DIBBE schemes in Table 1.

Table 1. Comparison among DIBBE schemes

Scheme Non-Inter Random Security Public Ciphertext Decrypt Pairing
active oracles model key size size time

[5] yes yes sID O(m) O(1) O(m) 2

[11] yes yes ID O(m) O(1) O(m) 2

[4] yes no sID O(m) O(1) O(m) 2

[8] yes no ID O(
√
m) O(

√
m) O(m) 2

[12] no no ID O(m) O(1) O(m) 2

Ours yes no ID O(m) O(1) O(m) 4

In Table 1, “sID, ID” denote “selective-ID” and “adaptive-ID” security model
respectively, and m represents the maximal number of receivers for one encryp-
tion.
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From Table 1, we conclude that the scheme in [5] and [11] are provably secure
in the random oracle model, and the scheme of [4] is selective-ID secure without
random oracles. In [8,12], the scheme only achieves sublinear size ciphertext or
the PKG needs to interact with each user for many times though the schemes are
fully secure without random oracles. Our scheme is non-interactive with constant
size ciphertext and also fully secure without random oracles. Thus, the proposed
scheme has stronger security than that of the previous ones without decreasing
the efficiency.

5 Conclusion

In this paper, we construct a non-interactive dynamic IBBE scheme with con-
stant size ciphertexts, which achieves full security without random oracles. The
PKG does not need to execute any interactive operation with each user. The se-
curity reduction is based on decision q-wABDHE assumption, it remains an open
problem to construct a fully secure non-interactive DIBBE scheme based on a
more natural assumption, which has a tight reduction without random oracles.
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Abstract. In this paper, we present a comparative study of conventional malware 
family classification techniques and identifiy their limitations. In our study, we 
investigate three different feature set, function length frequency and printable 
string information as static features and Application Programming Interface 
(API) calls and API parameters as dynamic features. In our classification proc-
ess, we used some of well-known machine-learning algorithms by invoking 
WEKA libraries. We made a comparative analysis and conclude that the inde-
pendent features are not good enough to defence against current as well as future 
malware.  

Keywords: malware, classification, static, dynamic. 

1 Introduction 

The Internet has rapidly become an integral part of everyday life and our reliance on it 
is expected to continue to grow. However, its rapid adoption has also left it suscepti-
ble to misuse and abuse. Over the last decade, researchers have adopted a diversity of 
solutions in order to control malware. Much research has been conducted on develop-
ing automatic malware classification systems using data mining and machine-learning 
approaches [1, 2, 3, 4, 5, 6, 7, 8 and 10]. All classification approaches taken in the 
literature can basically be categorized into two types: (i) based on static features of 
the (unpacked) executable file [9, 10, 11, 12] and (ii) based on dynamic features of 
the (packed) executable file [13, 14, 15]. 

In this paper, we investigate performance of malware family classification based 
on the independent feature set by running our experiments on a set of executable files 
collected over 8 year period (2003 to 2010). Our empirical evidences indicate that the 
performance of earlier collected malware executable are better compared to later 
collected malware executable with the same feature set.  

In Section 2, we discuss related work in this area. In Section 3, we describe our 
experimental setup and we present our classification method using machine 
learning technique in section 4. Section 5 presents the experimental results. In 
section 6, we describe the limitations of feature selection. In Section 7, we draw 
conclusions. 
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2 Related Work 

Conventional malware detection and classification systems are based on static features 
extracted from executables by reverse-engineering process. For instance, the authors in 
[4], introduced the static feature extraction process based on three different types of 
feature: Portable Executable (PE); byte-sequence n-grams; and string features. The 
string features are based on text strings that are encoded in program files [17]. The 
string feature outperforms other two techniques in [4]. The authors of [10] used only 
printable string information contained within the executables because they noted that 
an obfuscated file usually does not have any strings consisting of words or sentences; 
packers encode almost all of the strings as nonprintable or random characters. In [12 
and 16], the authors used the n-gram technique to deal with two classification prob-
lems: 1) classification between clean and malicious executables, and 2) classification 
of executables as a function of their payload.  

In other studies, operational code (OpCode) has been used as static information to 
calculate the cosine similarity between two PE executables. For example, sequence 
frequencies [5], sequences and permutations [18] and critical instruction sequences 
[19] are used for differentiating between malware binaries. In a similar but slightly 
different method, the authors of [18] examined the OpCode frequency distribution to 
differentiate between malicious and clean code. However, the OpCode approach is 
not always feasible because some executable files cannot be disassembled properly 
[20]. Some researchers have also used function-based feature extraction [7 and 17], 
where functions are extracted from malware binaries and used to produce various 
attributes to identify the file.  

In [22], the authors executed malware files to generate lists of API calls and then 
calculated the similarity between two API call sequences by using a similarity matrix. 
The run-time execution of malware files to generate usable information has also been 
used in the following papers: maximal common sub-graph detection by capturing 
system calls during the execution [21]; runtime behaviour in the form of sequenced 
events with canonical format [24]; sample of rootkits that use inline function hooking 
[23]. In [13], the authors introduce a malware detection technique combining two 
different dynamic features (from spatial and temporal information) available in run-
time API. The authors of [25] proposed an automated tool running in a virtual envi-
ronment to extract API call features from executables and apply pattern recognition 
algorithms and statistical methods to differentiate between cleanware and malware. In 
all of these cases, the methods give good classification accuracy but at the cost of 
high computational complexity.  

3 Experimental Setup 

3.1 The Data Set 

The malware executables that we used in our experiment are based on our previous 
experiment [10 and 25], which are collected from CA’s VET Zoo [www.ca.com.au]. 
The total numbers of malware executables used in our experiments are 2398. Table 1 
presents the family wise number of malware executables and their corresponding 
number of instances used in the experiment. 
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Table 1. Experimental dataset showing old and new families 

Type Family Number of Executables Number of Instances 
M

al
w

ar
e 

T
ro

ja
n 

Bambo 44 5100 
Boxed 178 56662 

Alureon 41 7635 
Robknot 78 10411 
Clagger 44 4520 
Robzips 72 6549 

W
or

m
s SillyDl 439 56933 

Vundo 80 1660 
Frethog 174 28042 

SillyAutorun 87 9965 

V
ir

us
 

Gamepass 179 23730 
Bancos 446 89554 

Adclicker 65 11637 
Agobot 283 216430 
Looked 66 36644 

Emerleox 75 61242 
Banker 47 12112 

Total 2398 638826 

3.2 Static Feature Vectors 

We unpacked each of the 2398 malware files by means of a command line anti-virus 
engine same as our existing process [10 and 25]. Thus we were able to unpack the 
malware executables in batch mode in order to speed up the unppacking time. From 
the unpacked files, we then extracted the desired static features and passed the infor-
mation to our automated classification system as illustrated in Fig.1.  

 

Fig. 1. Our classification process 
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5 Experiment 

In our test, we do the following three independent tests using each feature set; a) FLF 
test, b) PSI test and c) Dynamic test. The Fig. 3 shows our experimental process.  

 

 

Fig. 3. Experimental process 

5.1 Classification Results Using FLF Method 

Table 2 shows the average and weighted average of the experimental results for the 
function length feature according to meta-classifier. We use three statistics: false posi-
tive (FP), false negative (FN) and the accuracy of detection rate (Acc). The perform-
ance of our experimental study shows that meta-RF gives the best average performance 
compared to other classifiers. As it is higlighted in Table 2, old families, in particular 
Boxed, emerleox, looked give better results than new families such as Adclicker, 
Banker, SillyDI do. 

5.2 Classification Results Using PSI Method 

Table 3 shows the average classification results of the PSI method based on the our 
data set. Meta-RF is, again, the best performer among the classifiers. The classifier 
SVM displays lowest accuracy in both the FLF and PSI methods as indicated in  
Tables 2 and 3. One reason for this would be that SVM is designed to handle data sets 
with a large feature space. Both feature sets for FLF and PSI are relatively small in 
our test (20 and an average of 448 respectively), which may also explain why the 
SVM result is better in the PSI test. However, some families (agobot, alureon, 
robzips, looked, emerleox etc. highlited in Table 3) show better performance com-
pared to others, in particular ropzips shows 100% accuracy for some classifiers, 
which is significant.  



 A Comparative Study of Malware Family Classification 493 

Table 2. Classification results using FLF method 

Family 
 
 

Meta Classifier 
SVM IB1 DT RF 

FP FN Acc FP FN Acc FP FN Acc FP FN Acc 
Adclicker 0.51 0.1 69.17 0.26 0.17 78.33 0.3 0.26 71.67 0.18 0.2 80.83 

Bancos 0.41 0.08 75 0.22 0.12 82.62 0.17 0.15 83.31 0.14 0.12 86.93 
Banker 0.47 0.17 67.5 0.3 0.33 68.75 0.22 0.62 57.5 0.22 0.32 72.5 
Frethog 0.35 0.04 79.71 0.17 0.1 86.18 0.11 0.10 89.42 0.15 0.07 88.53 

Gamepass 0.54 0.13 65.88 0.19 0.25 77.65 0.21 0.34 72.36 0.11 0.17 85.88 
SillyAulorun 0.77 0.11 55.63 0.32 0.2 73.75 0.32 0.33 66.88 0.21 0.25 76.86 

SillyDl 0.58 0.11 65 0.31 0.27 70.35 0.47 0.26 63.14 0.3 0.24 72.56 
Vundo 0.41 0.07 75.63 0.2 0.24 78.13 0.15 0.21 81.88 0.12 0.12 87.5 
clagger 0.1 0.05 92.5 0 0 100 0.15 0.07 88.75 0 0.05 97.5 
agobot 0.01 0.17 90.54 0.07 0.04 94.64 0.04 0.05 95 0.03 0.03 96.25 
alureon 0.05 0.27 83.75 0.2 0.05 87.5 0.1 0.12 88.75 0.07 0.05 93.75 
bambo 0.22 0.15 81.25 0.25 0.13 81.25 0.47 0.22 65 0.12 0.05 91.25 
boxed 0.04 0.02 96.18 0.04 0.02 96.77 0.01 0.03 97.94 0.02 0.03 96.77 

emerleox 0.01 0.01 98.57 0.04 0.01 97.14 0.07 0.01 95.72 0.01 0.01 98.57 
looked 0.05 0.01 96.67 0.01 0.02 98.33 0.03 0.03 96.67 0.03 0.03 96.67 
robknot 0 0.15 92.14 0.15 0.04 90 0.05 0.04 95 0.04 0.04 95.72 
robzips 0.15 0 92.14 0.01 0 99.29 0.01 0 99.29 0.01 0 99.28 

Avg 0.27 0.09 81.11 0.16 0.12 86.01 0.16 0.17 83.01 0.1 0.1 89.27 

Table 3. Classification results using PSI method 

Family 
 

Meta Classifier 
SVM IB1 DT RF 

FP FN Acc FP FN Acc FP FN Acc FP FN Acc 
Adclicker 0.28 0.38 66.67 0.28 0.28 71.67 0.2 0.35 72.5 0.25 0.28 73.33 

Bancos 0.1 0.13 88.19 0.17 0.13 84.21 0.11 0.14 87.16 0.11 0.13 88.29 
Banker 0.37 0.37 62.5 0.3 0.4 65 0.37 0.42 60 0.25 0.35 70 
Frethog 0.26 0.21 76.47 0.12 0.11 87.65 0.14 0.04 90.59 0.1 0.14 87.65 

Gamepass 0.28 0.26 72.36 0.19 0.21 79.41 0.21 0.26 76.48 0.17 0.21 80.88 
SillyAutorun 0.22 0.27 75.01 0.2 0.26 76.88 0.17 0.33 74.38 0.11 0.26 81.25 

SillyDl 0.38 0.33 64.31 0.28 0.32 69.55 0.29 0.31 70 0.26 0.3 71.62 
Vundo 0.01 0.37 80.63 0.22 0.2 78.75 0.07 0.32 80 0.22 0.23 76.87 
clagger 0.05 0.07 93.75 0.02 0.05 96.25 0 0.07 96.25 0 0.05 97.5 
agobot 0.01 0.05 96.79 0.04 0.04 95.37 0.02 0.02 97.5 0.01 0.03 98.03 
alureon 0 0.07 96.25 0.02 0.07 95 0.02 0.02 97.5 0.05 0.07 93.75 
bambo 0.02 0.02 97.5 0.02 0.12 92.5 0 0.05 97.5 0.03 0.05 96.25 
boxed 0.01 0.04 97.06 0.01 0.04 97.35 0.01 0.04 97.36 0.02 0.05 96.17 

emerleox 0.01 0.01 98.57 0.02 0.01 97.87 0 0.09 95.72 0 0.01 99.28 
looked 0 0.01 99.17 0 0.01 99.17 0.01 0 99.17 0 0.01 99.16 
robknot 0.02 0.01 97.86 0.03 0.05 95.71 0.01 0.04 97.15 0.01 0.02 97.85 
robzips 0 0 100 0 0 100 0.01 0 99.29 0 0 100 

Avg 0.11 0.15 86.06 0.11 0.13 87.19 0.09 0.14 87.58 0.09 0.12 89.01 

5.3 Classification Results Using the Dynamic Method 

Table 4 shows that the accuracy for the dynamic method across all classifiers is better 
than the FLF and PSI tests have for each meta-classifier. Once again, meta-RF 
achieves highest accuracy. It is also obvious from table 4 that Robknot shows 100% 
accuracy in dynamic test. However, the Robzips shows accuracy around 99% which is 
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less than PSI test. Therefore, it is clear from our dynamic test that API features can 
detect highest rate of excutable than any other static features. It is also demonstrated 
from our experiment that detection ratio of old executables is better in current feature 
set compared to new executables.  

Table 4. Classification results using dynamic method 

 
Family 

Meta Classifier 
SVM IB1 DT RF 

FP FN Acc FP FN Acc FP FN Acc FP FN Acc 
Adclicker 0.21 0.25 76.67 0.28 0.217 75 0.11 0.3 79.17 0.21 0.25 76.67 
Bancos 0.12 0.11 88.07 0.14 0.1 88.18 0.13 0.12 87.27 0.09 0.1 90.23 
Banker 0.4 0.22 68.75 0.33 0.375 65 0.45 0.3 62.5 0.47 0.27 62.5 
Frethog 0.06 0.07 92.94 0.11 0.071 90.88 0.04 0.11 92.06 0.02 0.1 93.53 

Gamepass 0.11 0.14 87.06 0.17 0.147 84.12 0.15 0.21 82.06 0.17 0.11 85.59 
SillyAutorun 0.23 0.16 80 0.28 0.162 78.13 0.23 0.22 76.88 0.18 0.16 82.5 

SillyDl 0.21 0.31 73.49 0.263 0.235 75.12 0.28 0.31 69.77 0.21 0.22 78.61 
Vundo 0.03 0.08 93.75 0.162 0.075 88.13 0.06 0.08 92.5 0.05 0.11 91.88 
Clagger 0 0.02 98.75 0 0.025 98.75 0.02 0.02 97.5 0 0.05 97.5 
Agobot 0.01 0.01 98.75 0.025 0.006 98.44 0.01 0.01 98.75 0.01 0.01 98.28 
Alureon 0.07 0.07 92.5 0.15 0.075 88.75 0.12 0.02 92.5 0.15 0.1 87.5 
Bamboo 0.01 0.01 98.33 0.067 0.033 95 0.03 0.03 96.67 0.05 0.05 95 
Boxed 0.02 0.01 98.22 0.032 0.029 96.97 0.01 0.01 98.57 0.01 0.02 97.68 

Emerleox 0.04 0.07 94.29 0.071 0.043 94.29 0.04 0.04 95.72 0.04 0.1 92.86 
Looked 0.01 0.01 98.33 0.083 0 95.84 0.05 0.03 95.83 0.05 0.03 95.83 
Robknot 0 0 100 0 0 100 0.02 0 98.57 0 0 100 
Robzips 0.01 0 99.29 0.043 0 97.86 0.02 0 98.57 0.01 0 99.28 

Avg 0.09 0.09 90.54 0.12 0.09 88.85 0.1 0.1 89.15 0.1 0.09 90.01 

 
Fig. 4 shows the comparative results of the accuracy of the above methods based 

on our data set. From the figure, classifier-by-classifier, the dynamic method outper-
forms the other methods. It is also noted from figure 4 that the classifier RF shows 
better performance than the other three do. However, the SVM shows comparable 
performance in dynamic test than other two tests as SVM can handle large data set 
which we mentioned earlier.  

 

Fig. 4. Comparison of accuracy of three different tests 
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6 Limitations  

While static techniques are widely used for malware detection and classification, they 
have some major drawbacks [26]. First, they are often used to find a malware ‘signa-
ture’ or identity, which requires a human expert and can take more time than it is 
available to stop an attack. Secondly, the static feature approach can be easily by-
passed by obfuscation methods.Thus, the inability of the static feature approach to 
accurately detect new forms of malicious executables shifted the focus of virus re-
search to the determination of features that can identify malicious behaviour as a pro-
cess instead of by means of a unique signature.  

Dynamic analysis is time consuming as each malware sample must be executed for 
a certain time period and its actions logged all within a controlled environment to 
ensure that it cannot infect an active platform. This controlled virtual environment is 
quite different from a real runtime environment and the malware may act in different 
ways in the two environments resulting in an inaccurate picture of the malware in the 
logs. Additionally, some malware behavior is triggered only under certain conditions 
(via a specific command or interaction with a human, for example) and this cannot be 
picked up in the virtual environment. Nevertheless,it has been suggested that dynamic 
extraction is a necessary complement to static techniques as it is significantly less 
vulnerable to code obfuscating transformations [12]. 

7 Conclusion 

The results of Section 5 along with figures indicate that the Random Forest machine 
learning technique is best equipped to classify our data. Considering the results of 
Section 5, we conclude that the age (as measured by when the executable file was first 
collected) of the malware used has an impact on the test results. Since our classifica-
tion method is less effective on the latest malware executables as compared to the 
older files in our library. This demonstrates that malware continues to evolve and to 
deploy advanced anti-detection techniques.  

It is comprehensible from our investigation that the independent features are not 
good enough to fight against current as well as future malware. The integrated test 
would perform better and we will explore it in our future work.  
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Abstract. Executable packing is the most common technique to evade
detection by anti-virus software.Many signature-based unpackers have
been presented to uncover hidden viruses,which make the signature-
based anti-virus software successfully detect the packed malicious code.
However,these universal unpackers are computationally expensive and
scanning large collections of executables may take several hours or even
days.In order to improve the computational efficiency, Machine learning
techniques have recently been proven effective in solving the focused is-
sues,but up to now,no methods can show what packing method has been
used in it.In this paper we proposed a fine-grained detection method to
detect whether a malicious code has been packed and which method is
been used to.This method firstly extract a hex-string from the target
object file and then apply a String-Kernel-Based SVM Classifier to im-
plement the fast detection of packed malicious code.We also show that
our system achieves very high detection accuracy of packed executables,
so that only executables detected as packed will be sent to an universal
unpacker, thus saving a significant amount of processing time.

Keywords: Computer Security, String-Based Kernel,Support Vector
Machine, Packed Malicious Code,Computer Virus Detection.

1 Introduction

In these days,honeypot systems,operated in malware analysis groups,encounter
with numerous of malware samples day by day.Unfortunately,large portions of
such malware samples,at around 50%,are identified to be packed with PEiD
tool [1]. Applying packing in malware can degrade the effectiveness of signature-
based AV scanners,for it has no choice but to create a separate signature. There-
fore, It is very significant to develop an efficient automated approach to identify
packers and uncover hidden codes from so huge volumes of malwares. Some uni-
versal unpackers [2, 3] have been developed, and these tools are able to detect
and extract (part of) the original code from the encrypted code without specific
knowledge about the encryption algorithm. However, these universal unpack-
ers introduce a high computational overhead, and the processing time may vary
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from tens of seconds to several minutes per executable. For example, the average
time it takes to unpack a packed virus using the Renovo [3] unpacker is around
40 seconds. For this reason, we need to do some research about how to effectively
distinguish the packed malicious code from the unpacked malicious code.

Machine learning techniques have recently been proven effective in solving the
focused issues in this paper [4–6],but most of the existed works focus on how to
detect whether a malware been packed. In this paper,based on the string-based
kernel function, we proposed a fast fine-grained detection method to accurately
distinguish whether a malware is packed, and if packed, what kind of packed
toolkit has been used? After the packed toolkit has been identified, it can be
directly sent to a special unpacking engineer to implement the hidden code ex-
traction. Therefore, our classification system helps in improving virus detection
while saving a significant amount of processing time.

The remainder of the paper is organized as follows. In Section 2 we present
an overview of the related work. Section 3 introduce the Support Vector Ma-
chine(SVM) and a simple string-based kernel function.In Section 4 we briefly
discuss the Portable Executable (PE) file format, and describe the features used
for classifying PE executables. We then present and discuss the experimental
results in Section 5,and summarize our work in Section 6.

2 Related Works

Although distinguishing between packed and non-packed executables is unde-
cidable [3], several detecting methods have been proposed. The firstly pro-
posed methods is the signature-based methods,and it also has developed many
tools,like PEiD [1]. Signature-based detectors are fast and have relatively low
false positives, but malware authors soon discovered that it was sufficient to use
a slightly different packing algorithm each time to frustrate this kinds of reg-
ular expression matching algorithm, which make the signature-based detectors
produce a high number of false negatives alerts.

The other related works is dynamic unpackers. Dynamic unpackers execute
and monitor a program in memory, and detect attempts of executing dynam-
ically decrypted code. To date, some dynamic unpackers have been proposed:
Omniunpack[7], PolyUnpack[2], which try to monitors the execution of appli-
cations in memory and detects whether a PE file is packed. One important
drawback of the dynamic unpackers is the performance overhead they intro-
duce. Unfortunately, this performance overhead makes it impossible to install
and run them as real-time systems on end-user machines. Therefore, [4, 8] di-
vides the PE file into blocks of 256 bytes , and detect whether a file be packed
by only computing the entropy of each block, the average, and the maximum
block entropy. [9] do not limit the analysis to the PE file entropy and introduce
and motivate the use of additional features that help in distinguishing between
packed and non-packed executables.

To the best of our knowledge, the closest works to ours are [4, 8]. There exist
many difference between [4, 8] and our works.On the one hand, our proposed
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method is a fine-grained classification method,which can identify which packed
tools has been used by a packed malware, but [4, 8] only can detect whether
a malware is packed. On the other hand, we can show that our classification
approach also has a low average processing time with very low false positive and
false negative rates.

3 String-Kernel-Based SVM Classifier

Support vector machines (SVMs) are a set of related supervised learning methods
that are used for classification and regression analysis. SVMmaps the data points
into a high dimensional feature space, where a hyperplane or set of hyperplanes
was constructed to implement the task of classification. According to the form of
the error function, SVM models can be classified into distinct groups. Here, We
only focus on the standard soft-margin SVM problem (C-SVM). The main task in
C-SVM is to solve the following quadratic optimization problemwith respect to α:

minα
1
2α

TQα− 1Tα
Subject to yTα > 0 0 ≤ αi ≤ C, i = 1, · · · ,m (1)

Where Q is the N*N positive semi-definite kernel matrix, Qij = yiyjK(xi, xj),
and K(xi, xj) = (xi)

T (xj) is the kernel function; and 1 is a vector of all ones.C-
SVM predict the class label of a new data point x to be classified by the following

decision function: f(x) = sign(
m∑
i=1

yiαiK(xi, x) + b) Where b is a bias constant.

Traditional regular kernels for SVM work merely on numerical data, which is
unsuitable for internet security where huge amount of string data is presented.
Towards extending SVM for string data processing, many string-based kernel
were proposed.In our implementation, we use K = eλd(i,j) as the kernel function
of the SVM for getting better results,here, d(i, j) is the Levenshtein (or edit)
distance [10]. Analog to the other substring kernel, the computational complexity
of Levenshtein Distance is O(| s ‖ t |). In the case that s and t have the same
length, the complexity is O(n2).

4 JUMPS: JUst-in-tiMe Packer Scanning

4.1 Our Classification System

Figure 1 illustrates the processing procedure of our proposed system. Once a PE
executable is received, our classification system performs a static analysis of the
PE file and extract the first N bytes from its code section. After first N bytes were
translated into a pattern vector, the obtained pattern vector representation of
the PE executable is sent to the SVM classifier. If the executable is classified as
packed, it will be sent to the universal unpacker for hidden code extraction, and
the hidden code will then be sent to the anti-virus scanner. On the other hand, if
the executable is classified as non-packed, it will be sent directly to the anti-virus
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Fig. 1. Our Classifier System Fig. 2. The layout of the packed
binary Hello.exe by UPS packer

scanner. It is worth noting that the PE file classifier may erroneously label a non-
packed executable as packed. In this case the universal unpacker will not be able
to extract any hidden code from the received PE file. Nonetheless, this is not
critical because if no hidden code is extracted, the AV scanner will simply scan
the original non-packed code. The only cost paid in this case is the time spent
by the universal unpacker in trying to unpack a non-packed executable. On the
other hand, the PE classifier may in some cases classify a packed executable as
non-packed. In this case, the packed executable will be sent directly to the anti-
virus scanner, which may fail to detect the presence of malicious code embedded
in the packed executable, thus causing a false negative.Figure 1 also shows that
our classifier may be used to improve virus detection accuracy with low overhead,
compared to a system where all the executables are directly sent to the universal
unpacker.

4.2 Features Extraction

Lets start with a simple example,named UPX, which arguably is among the most
straightforward packers in use today. Fig.2 shows how UPX packs an example
program Hello.exe. When UPX compresses a PE binary, it begins by merging all
of its sections into a single section, with the exception of the resource section. The
combined data is then compressed into a single section of the resulting packed
binary. In Fig2, the code section and data section of hello.exe is compressed and
stored in the Packed Data area of section UPX1 of the resulting binary Hello
upx.exe.

The resulting binary Hello upx.exe contains three sections. The first section
UPX0 is entirely virtual - it contains no physical data and is simply a place-
holder.It reserves the address range when Hello.exe is loaded to memory. The
second section contains the Packed Data, followed immediately by the Unpacker
Code. The entry point in the PE header of Hello upx.exe is changed to point
directly to the Unpacker Code. The third section contains the resource data, if
the original binary had a resource section, and a partial import table, which con-
tains some essential imports from kernel32.dll as well as one imported function
from every DLL used by the original binary.
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From this example, we can get a fact that the packing and unpacking process
is simple. The packer modifies the entry point of the original file and inserting an
unpacking routine.When the compressed binary is launched, the unpacker code
is firstly executed to decompress or decrypt the original code and data into the
UPX0 section, actually allocated in memory and performs some tasks normally
carried out by the PE loader, such as import resolution. lastly, it transfers control
to the original code, for example by jumping to the so-called Original Entry
Point (OEP).

Our method is basically to leverage general behavior of unpacker codes dan-
gled in packed binaries.According to the analysis of more than thirteen different
packing techniques, there exists a one - to - one correspondence between the
unpacker and the packer,so the unpacker can be used to uniquely identify the
packer. By analyzing the execution of a packed malicious code, it can be known
that the unpacker will be firstly executed, so under the help of the AddresssOfEn-
trypoint in the PE Header, we can locate code section including unpacker.Here
we extract it and transform it into a Hex-string as the input features of the
string-kernel-based SVM classifier.

Although the packer can be very tricky by adding padding, indirect jumps,
and other obfuscation methods to the PE file, it can frustrate our approach easily.
In practice, we try to change the value of the N from 150 to 50, the accuracy of
the classification seldom fluctuates. According to results of the experiments, we
can conclude that the unpacking features can be represented by just a few bytes
located by the AddressOfEntryPoint in the PE Header.

5 Evaluation

AS we know, the effectiveness of a classification system based on string subse-
quence kernel can be controlled by the free parameters, “length of a subsequence”
and “weight decay parameter”. In the experiments,we set decay parameter for
subsequence kernel 0.9 and substring length for subsequence kernel 4.

5.1 Data Sets

We performed experiments on 2180 executables in PE format, including 1280
packed viruses collected from the Malfease Project dataset [11], and 900 non-
packed benign executables obtained from a clean installation of Windows XP
Home. Table 1 summarizes the proportion of normal executable and packed
malware.

5.2 Experimental Procedures

SVM classifier is a supervised methods,therefore,we first applied Peid tools to
some of the executables in our collection and obtained a labeled dataset, which
will be used to train and test the performance of our proposed system. Next,
we begin to train and test our system. The training and testing samples were
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Table 1. Proportion of Normal Executable and Packed Malware

Packer Name Sample size
Unpacking Executables 900
Armadillo 600
Aspack 180
Bobsoft 180
Nspack 40
PECompact 20
Petite 60
UPX 160
Upack 20
WinUpack 20

randomly drawn from the original data sets, and the number of instances in all
the training data subsets were restricted with 3% percent to 15% percent for the
unpacked and packed instances.In order to estimate the generalized accuracy,
a 10-fold cross-validation procedure was repeated 5 times. In each of the cross-
validation iteration, the training set was randomly partitioned into 10 disjoint
instance subsets. Each subset was utilized once in a test set and nine times in a
training set.

5.3 Evaluation Metrics

In the context of classification tasks, the terms true positives, true negatives,
false positives and false negatives are used to compare the given classification
of an item (the class label assigned to the item by a classifier) with the de-
sired correct classification (the class the item actually belongs to). And for a
class X.Based on these, we calculate four metrics that are commonly used in
machine learning literature to measure per class performance,which is the Ac-
curacy,Precision,TPR(True Positive Rate) and FPR(False Positive Rate)[12].

5.4 Performance

Firstly, we evaluate wether the proposed system can effectively identify the single
packed executables and un-packed executables. In this expirement, each time we
trained and test the proposed system with a dataset including just one type of
packed malware and un-packed files. Here, we run SVM nine times on each kind
of packed malware and the same un-packed files as training and test dataset
with the 5% and 10% overall dataset as training samples, respectively. Then
the average results are calculated. Fig.3 and Fig.4 report the performance of
Jumps methods averaged in terms of TPR, FPR, Precision, and Accuracy. As
represented in Fig.3 and Fig.4 , the accuracy of the proposed system is not less
than 98%, and false positive is under 0.1% even with the 5% overall dataset as
training samples. Therefore,it is considered that the proposed system perform
well on the identification of single type of packer.



A Fine-Grained Classification Approach for the Packed Malicious Code 503

0

0.2

0.4

0.6

0.8

1

1.2

TPR FPR Precision

Armadillo

ASPack

BobSoft

NsPack

PECompact

Petite

UPX

Upack

WinUpack
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Fig. 6. Performance of JUMPS with dif-
ferent lengths of the features

In the above experiments, we take N=100 as default to test the performance
of our approach. In order to test its robustness, we also evaluate its accuracy
across a range from N=50 to N=150. its results were shown in Fig N.From Fig.
6, we can find that the accuracy of the classification seldom fluctuates.

6 Conclusions

In this paper we do not focus on the improvements in malicious code detection
accuracy achieved after unpacking, Instead, we focus on the accuracy and com-
putational cost related to the classification of packed executables into the packed
and non-packed,inlcuding the identification issues of different packers . we first
analysis its feature of the typical packed malicious code and described how to ex-
tract discriminant features from executable files in Portable Executable format.
Then we developed the packer recognition system based on string-kernel-based
SVM. The experimental results manifest that Jumps’s effectiveness at detecting
packed malware is excellent.

In future, we would like to evaluate our scheme on a larger dataset of packed
and unpacked malicious executables for further improving the detection accu-
racy,and also attempt to explore the inflection point of lengths of the extracted
code.Moreover,we also plan to improve our approach and applied it into the
malicious code with multi-packer in the same samples.
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