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Abstract. Scalar product protocol aims at securely computing the dot
product of two private vectors. As a basic tool, the protocol has been
widely used in privacy preserving distributed collaborative computations.
In this paper, at the expense of disclosing partial sum of some pri-
vate data, we propose a linearly efficient Even-Dimension Scalar Product
Protocol (EDSPP) without employing expensive homomorphic crypto-
system and third party. The correctness and security of EDSPP are
confirmed by theoretical analysis. In comparison with six most frequently-
used schemes of scalar product protocol (to the best of our knowledge),
the new scheme is a much more efficient one, and it has well fairness.
Simulated experiment results intuitively indicate the good performance
of our novel scheme. Consequently, in the situations where divulging
very limited information about private data is acceptable, EDSPP is an
extremely competitive candidate secure primitive to achieve practical
schemes of privacy preserving distributed cooperative computations. We
also present a simple application case of EDSPP.

Keywords: privacy preserving, distributed computation, scalar product
protocol.

1 Introduction

The advances of flexible and ubiquitous transmission mediums, such as wireless
networks and Internet, have triggered tremendous opportunities for collaborative
computations, where independent individuals and organizations could cooperate
with each other to conduct computations on the union of data they each hold.
Unfortunately, the collaborations have been obstructed by security and privacy
concerns. For example, a single hospital might not have enough cases to analyze
some special symptoms and several hospitals need to cooperate with each other
to study their joint database of case samples for the comprehensive analysis
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results. A simple way is that they share respective private database and bring
the data together in one station for analysis. However, despite various shared
benefits, the hospitals may be unwilling to compromise patients’ privacy or vio-
late any relevant law and regulation [1, 2]. Consequently, some techniques [3, 4]
for privacy preserving distributed collaborative computations were introduced
to address the concerns by privacy advocates. Nowadays, a large amount of at-
tention [5–7] has been paid to dealing with the challenges of how to extract
information from distributed data sets owned by independent parties while no
privacy is breached.

Actually, many privacy preserving problems in distributed environments can
essentially be reduced to securely computing the scalar product of two private
vectors. Some recent examples are as follows. Murugesan et al. [8] proposed
privacy preserving protocols to securely detect similar documents between two
parties while documents cannot be publicly disclosed to each other, and the
main process of their schemes, securely computing the cosine similarity between
two private documents, is achieved by scalar product protocol. A privacy pre-
serving hop-distance computation protocol in wireless sensor networks is intro-
duced in [9] and secure scalar product protocol is used to privately compute
the value of

∑
xiyi, where xi and yi are the private coordinates. Then, the dis-

tance S2 =
∑

(xi − yi)
2 =

∑
x2
i − 2 ∗∑xiyi +

∑
y2i can be securely obtained.

See [6, 7, 10, 11] for more concrete applications of scalar product protocol.
As secure computation of private vectors is fundamental for many privacy

preserving distributed computing tasks, several schemes [12–16] have been pro-
posed to perform the secure computation. Du and Zhan presented two practical
schemes in [12]: scalar product protocol employing commodity server (denoted
as SPP-CS) and scalar product protocol using random invertible matrix (de-
noted as SPP-RIM). Through algebraic transformation, another scalar product
protocol was introduced in [13] (denoted as ATSPP). Based on homomorphic
encryption, two solutions for securely computing dot product of private vec-
tors are given in [14] (denoted as GLLM-SPP) and [15] (denoted as AE-SPP)
respectively. A polynomial-based scalar product protocol (denoted as PBSPP)
was lately presented by Shaneck and Kim [16]. The computational complexity
of SPP-RIM and ATSPP is O(n2) where n is the dimensionality of private vec-
tors. SPP-CS and PBSPP have good linear complexity, but they employ one
or more semi-trusted third parties, such as the commodity server in SPP-CS.
GLLM-SPP and AE-SPP encrypt the private elements by using expensive ho-
momorphic cryptosystem. As is well known, the public key cryptosystems are
typically computationally expensive and they are far from efficient enough to
be used in practice. The protocols will be vulnerable to unavoidable potential
collusion attacks while employing the semi-trusted third parties. As a result,
previous schemes of scalar product protocol are still far from being practical in
most situations.

In this paper, we focus on the useful secure primitive, scalar product proto-
col [12], and propose a simple and linearly efficient protocol for securely com-
puting the scalar product of two private vectors, even-dimension scalar product
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protocol (EDSPP). The novel scheme does not employ homomorphic encryption
system and any auxiliary third party. Theoretical analysis confirms that the
protocol is correct and no private raw data is revealed although it brings about
some limited information disclosure. Simulated experiment results and compari-
son indicate that the new scheme has good fairness and it is much more efficient
than the previous ones. As a result, our new scheme is a competitive secure
candidate to achieve practical schemes of privacy preserving distributed coop-
erative computations while disclosing partial information is acceptable. Similar
to the existing works [12–16], our protocol is also under semi-honest model [17],
where each participant will correctly follow the protocols while trying to find
out potentially confidential information from his legal medium records. It is re-
markable that the semi-honest assumption is reasonable and practicable, as the
participants in reality may strictly follow the protocols to exactly obtain the
profitable outputs.

The rest of the paper is organized as follows. Section 2 proposes the new
solution for scalar product protocol, and then presents the theoretical analysis of
its correctness, security, communication overheads and computation complexity.
The performance comparison and experiment results are displayed in section 3.
At last, section 4 concludes the paper.

2 Even-Dimension Scalar Product Protocol

2.1 Problem Definition and Our Scheme

In scalar product protocol, there are two participants, denoted as Alice and Bob.
Alice privately holds a vector x = (x1, x2, · · · , xn) and Bob has the other private
vector y = (y1, y2, · · · , yn), where n is a positive integer. Their goal is that Alice
receives a confidential number u and Bob obtains his private output v while the
private vector is not disclosed to the other party or anyone else. Here, u and v
meet x · y = u + v. That is, scalar product protocol enables two participants
to securely share the dot product of their confidential vectors in the form of
addition.

As a secure primitive, scalar product protocol [12, 14] has extensive privacy
preserving applications and an efficient scalar product protocol will boost the
practical process of privacy preserving distributed cooperative computation. In
this paper, we consider a special case where n is an even number (suppose n = 2k,
k is a positive integer). Then, at the expense of disclosing partial sum of some
private data, we propose an efficient Even-Dimension Scalar Product Protocol
(EDSPP). In our scheme, the private data is hidden by stochastic transformation,
and each participant obtains a private share of the scalar product of their private
even-dimension vectors at last. The novel scheme has linear complexity and
no third party is employed. Besides, it just needs a secure channel to securely
transmit the data and does not use any public key cryptosystem. The detailed
steps are displayed in protocol 1. In step 1.1 of the scheme, the participants
protect their private numbers through randomization. Then, step 1.2 works out
the secure share of the scalar product of each two dimensions. Finally, they
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privately obtain the expected outcomes in step 2. As can be seen from protocol 1,
the private vectors are handled two by two dimensions, thus, our new scheme
can only compute the dot product of even-dimension vectors.

Protocol 1. Even-Dimension Scalar Product Protocol (EDSPP)

Input: Alice has a private 2k-dimension vector x = (x1, x2, · · · , x2k) and Bob holds
another confidential 2k-dimension vector y = (y1, y2, · · · , y2k). (k ∈ Z

+, xi, yi ∈
R, i = 1, 2, · · · , 2k)

Output: Alice obtains private output u and Bob securely gets v which meet

u+ v = x · y =
2k∑

i=1

xiyi.

1: Step 1:
2: for j = 1 to k do
3: Step 1.1: Alice locally generates two random real numbers aj and cj such that

aj + cj �= 0. Then, she computes pj = aj + cj , x
′
2j−1 = x2j−1 + aj and x′

2j =
x2j + cj , and sends {pj , x′

2j−1, x
′
2j} to Bob by a secure channel. Bob randomly

generates two real numbers bj and dj which meet bj − dj �= 0, and computes
qj = bj − dj , y

′
2j−1 = bj − y2j−1 and y′

2j = dj − y2j . Then, he securely sends
{qj , y′

2j−1, y
′
2j} to Alice.

4: Step 1.2: Alice locally calculates

uj = y′
2j−1(x2j−1 + 2aj) + y′

2j(x2j + 2cj) + qj(aj + 2cj)

and Bob, by himself, computes

vj = x′
2j−1(2y2j−1 − bj) + x′

2j(2y2j − dj) + pj(dj − 2bj).

5: end for
6: Step 2: Alice obtains u =

∑k
j=1 uj and Bob gets v =

∑k
j=1 vj .

To visually illustrate how our novel scheme works, we give a concrete example
as follows. Alice has a 4-dimension vector x = (2.3,−81.9, 96.7,−27.1), and
Bob’s private vector is y = (−19.5,−78.1, 39.2, 52.8). According to protocol 1,
they, by the following procedures, can obtain the scalar product’s private shares
u and v, which meet u+ v = x · y, respectively.
– Alice generates random numbers: a1 = −53.0 and c1 = 99.8 for the first two

dimensions of x. Then, she computes
p1 = a1 + c1 = 46.8, x′

1 = 2.3 + a1 = −50.7 , x′
2 = −81.9 + c1 = 17.9,

and sends {p1, x′
1, x

′
2} to Bob. At the same time, Bob randomly selects:

b1 = 28.7 and d1 = 11.3 for the first two dimensions of y. Then, he computes
q1 = b1 − d1 = 17.4, y′1 = b1 − (−19.5) = 48.2 , y′2 = d1 − (−78.1) = 89.4,

and sends {q1, y′1, y′2} to Alice.
– Analogously, for the latter two dimensions, Alice and Bob generates random

numbers {a2 = −81.1, c2 = −17.5} and {b2 = −56.9, d2 = −31.2}, re-
spectively. Alice computes p2 = −98.6, x′

3 = 15.6 , x′
4 = −44.6, and Bob
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computes q2 = −25.7, y′3 = −96.1 , y′4 = −84.0. Then, they send {p2, x′
3, x

′
4}

and {q2, y′3, y′4} to each other.
– Alice and Bob computes {u1, u2} and {v1, v2}, respectively, by the following

way.

u1 = y′1(x1 + 2a1) + y′2(x2 + 2c1) + q1(a1 + 2c1) = 8074.88

u2 = y′3(x3 + 2a2) + y′4(x4 + 2c2) + q2(a2 + 2c2) = 14494.72

v1 = x′
1(2y1 − b1) + x′

2(2y2 − d1) + p1(d1 − 2b1) = −1723.34

v2 = x′
3(2y3 − b2) + x′

4(2y4 − d2) + p2(d2 − 2b2) = −12134.96

– At last, Alice obtains the secure share u = u1 + u2 = 22569.6, and Bob gets
his private output v = u1 + u2 = −13858.3.

If we directly calculates the dot product of x and y, it is 2.3∗(−19.5)+(−81.9)∗
(−78.1)+96.7 ∗ 39.2+ (−27.1) ∗ 52.8 = 8711.3 which is exactly equal to the sum
of u = 22569.6 and v = −13858.3. It shows the above steps are correct.

2.2 Correctness Analysis

To confirm the correctness of EDSPP, we need to consider,

Theorem 1. After performing EDSPP, Alice’s private output u and Bob’s se-
cret output v meet u+ v = x · y =

∑2k
i=1 xiyi. That is, EDSPP is correct.

Proof. In step 1.1 of EDSPP, there are x′
2j−1 = x2j−1 + aj, x

′
2j = x2j + cj ,

pj = aj + cj , y
′
2j−1 = bj − y2j−1, y

′
2j = dj − y2j and qj = bj − dj . Then,

x′
2j−1(2y2j−1 − bj) = 2x2j−1y2j−1 − bjx2j−1 + 2ajy2j−1 − ajbj,

x′
2j(2y2j − dj) = 2x2jy2j − djx2j + 2cjy2j − cjdj ,

pj(dj − 2bj) = ajdj − 2ajbj + cjdj − 2bjcj ,

y′2j−1(x2j−1 + 2aj) = bjx2j−1 + 2ajbj − x2j−1y2j−1 − 2ajy2j−1,

y′2j(x2j + 2cj) = djx2j−1 + 2cjdj − x2jy2j − 2cjy2j ,

qj(aj + 2cj) = ajbj + 2bjcj − ajdj − 2cjdj .

According to step 1.2, we have uj = y′2j−1(x2j−1+2aj)+y′2j(x2j +2cj)+qj(aj+
2cj) and vj = x′

2j−1(2y2j−1 − bj) + x′
2j(2y2j − dj) + pj(dj − 2bj). Thus,

uj + vj = x2j−1y2j−1 + x2jy2j . (1)

There are u =
∑k

j=1 uj and v =
∑k

j=1 vj in step 2, then, u+v =
∑k

j=1(uj+vj) =
∑k

j=1(x2j−1y2j−1 + x2jy2j). Therefore,

u+ v =

2k∑

i=1

xiyi (2)

That is, u+ v = x · y holds at the end of EDSPP, which completes the proof.
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2.3 Security Analysis

In this subsection, we will analysis the security of EDSPP under semi-honest
model [17], where each participant correctly follow the protocol while trying
to find out potentially confidential information from his legal medium records.
Generally, we consider the view of each participant in this protocol and whether
some privacy can be deduced from the view.

During the execution of EDSPP, Alice receives y′2j−1, y
′
2j and qj , symmetri-

cally, Bob learns x′
2j−1, x

′
2j and pj.

From y′2j−1 and y′2j , Alice cannot learn any information about y2j−1 and
y2j . While qj is known to her, the sum of −y2j−1 and y2j will be derived by
y2j−y2j−1 = y′2j−1−y′2j− qj , however, Bob’s private numbers y2j−1 and y2j are
still unrevealed. Analogously, Bob can figure out x2j−1 +x2j = x′

2j−1 +x′
2j −pj ,

while he cannot obtain any more information about Alice’s privacy x2j−1 and
x2j . Therefore, each real element of the private vectors of both participants is
not disclosed in EDSPP. If the elements of the vectors are 0 or 1, EDSPP is not
secure. GLLM-SPP [14] is more fit for securely computing the scalar product of
binary vectors.

Quantification of Disclosure Level. Here, we give the quantification of
disclosure level about Alice’s private data x2j−1 and x2j . While EDSPP has
been applied, if T = x′

2j−1 + x′
2j − pj , then, Bob learns that (x2j−1, x2j) is

randomly located at the line T = x2j−1+x2j , the slope of which is exactly equal
to −1.

(1) While x2j−1, x2j ∈ R, that is, before EDSPP being applied, according to
Bob’s view, (x2j−1, x2j) is randomly located at two-dimensional real space R

2.
After EDSPP, the distribution space of (x2j−1, x2j) is reduced to a line. However,
as both x2j−1 and x2j are random in Bob’s view, then, he cannot extract the
original private numbers x2j−1 and x2j from their sum T = x′

2j−1 + x′
2j − pj .

(2) While L � x2j−1, x2j � U (L < U), then, before EDSPP, (x2j−1, x2j)
is randomly located at a (U − L) × (U − L)-square area in Bob’s view. At the
end of EDSPP, Bob can figure out T = x′

2j−1 + x′
2j − pj which is equal to

x2j−1 + x2j . Furthermore, x2j−1 = T − x2j and x2j = T − x2j−1, thus, Bob
knows T − U � x2j−1, x2j � T − L. Then, he obtains

max{L, T − U} � x2j−1, x2j � min{U, T − L}.

According to the range of x2j−1 and x2j , it is easy to get 2L � T � 2U .
If 2L � T < L + U , then, max{L, T − U} = L and min{U, T − L} = T − L.

Therefore, Bob can find out L � x2j−1, x2j � T − L.
If L+ U � T � 2U , then, max{L, T − U} = T − U and min{U, T − L} = U .

In Bob’s view, there will be T − U � x2j−1, x2j � U .
In this situation, Bob can obtain a more narrow range about x2j−1 and x2j ,

but he cannot exactly deduce the value of them except the following two extreme
cases: x2j−1 = x2j = L, T = 2L and x2j−1 = x2j = U, T = 2U .

In general, the new scheme sacrifices some security in a certain level, but the
private raw data is still protected especially when the elements of the private
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vectors are real number. Alice and Bob disclose nothing but the sum x2j−1+x2j ,
y2j−1 + y2j to each other in EDSPP. Besides, two participants carry out sym-
metric computations, send and receive symmetrical data, consequently, EDSPP
is quite fair.

2.4 Communication Overheads and Computational Complexity

The following contributes to the computational cost: (1) In step 1.1 of EDSPP,
Alice and Bob respectively generate two random number and perform three ad-
ditions. In step 1.2, each party performs three multiplications and two additions.
All the above operations loop for k times. (2) In step 2, they each carry out k−1
additions.

Therefore, the computational complexity of EDSPP is O(n) in total. Here, n
is the dimension number of their private vectors and n = 2k in the protocol.

The transmitting data contains x′
2j−1, x

′
2j , pj , y

′
2j−1, y

′
2j and qj (j = 1, 2, · · · , k)

in EDSPP. Thus, the total communication overheads are 3nb0 bits (n = 2k).
Here, b0 is the bit length of a message.

2.5 A Simple Application Case

In many privacy-preserving distributed computations [18, 19], a key step is to
securely find out which one of the points holden by one party is nearest to another
point of the other participant. For simplicity, we deal with the problem that Alice
has two private points P1(P11, P12, · · · , P1d) and P2(P21, P22, · · · , P2d), and Bob
privately holds another point Q(Q1, Q2, · · · , Qd). They want to find out which
one of P1 and P2 is closer to Q without disclosing the private coordinates of
each point to each other or anybody else. Here, we use the scalar product of the
coordinates as the distance of two points, that is, |PiQ| = ∑d

j=1 PijQj (i = 1, 2).
In fact, comparison of distances measured by other metrics, such as Euclidean
distance and consine similarity, can be easily transferred into comparison of the
dot products. Based on EDSPP, we present a simple but efficient solution for
the above problem.

– Alice locally generates a random positive real numbers α and d random real
numbers r1, r2, · · · , rd. Then, she sets the 2d-dimensional vectors

P ′
i = (αPi1, r1, αPi2, r2, · · · , αPid, rd), (i = 1, 2).

Bob randomly generates a random positive real numbers β and d random
real numbers R1, R2, · · · , Rd, and computes his private 2d-dimensional vector
by the following way

Q′ = (βQ1, R1, βQ2, R2, · · · , βQd, Rd).

– Alice and Bob collaboratively perform EDSPP such that Alice obtains
U1, U2 and Bob gets his private outputs V1, V2 which meet Ui + Vi = P ′

i ·
Q′ (i = 1, 2).
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– At last, Alice sends δ = U1−U2 to Bob. Then Bob computes Δ = δ+V1−V2

and finds out the closer one by comparing Δ with 0.

In the above scheme, we can obtain

Δ = (U1 + V1)− (U2 + V2) = P ′
1 ·Q′ − P ′

2 ·Q′ = αβ(|P1Q| − |P2Q|).
Thus, if Δ > 0, P2 is closer to Q; otherwise, P1 is closer to Q.

Table 1. Comparison between EDSPP and Existing Schemes

Protocols
Computational Employ

Security Fairness
Complexity Third Party?

GLLM-SPP [14] O(n ∗ H)� No CR-sec�� Very Bad

AE-SPP [15] O(n ∗ H)� No CR-sec�� Good

SPP-RIM [12] O(n2) No L-dis�� Bad

ATSPP [13] O(n2) No L-dis�� Good

SPP-CS [12] O(n) Yes IT-sec�� Good

PBSPP [16] O(n) Yes IT-sec�� Good

EDSPP O(n) No L-dis�� Good

� Suppose the computational complexity of an encryption by homomorphic cryptosys-
tem is O(H). n is the dimension of private vectors.
�� Here, IT-sec denotes “information-theoretically secure”, CR-sec denotes “the secu-
rity based on the intractability of the composite residuosity class problem”, and L-dis
denotes that the scheme will result in limited disclosure about private information
of participants. SPP-CS and PBSPP are vulnerable to collusion attacks, though the
schemes have the security based on information theory.

3 Performance Comparison and Experiment Results

The communication overheads of EDSPP and each previous scheme are O(n),
to demonstrate the special features of EDSPP, we compare it with six most
frequently-used schemes (to the best of our knowledge) in table 1. It indicates
that EDSPP has the best performance in many aspects except for the security.
SPP-CS [12] and PBSPP [16] have the same linear computational complexity as
EDSPP, but SPP-CS and PBSPP employ one or more semi-trusted third par-
ties, which results in that they are extremely vulnerable to unavoidable potential
collusion attacks. While the third party colludes with one party, the other par-
ticipant’s privacy will be seriously breached. The computational complexity of
SPP-RIM [12] and ATSPP [13] are O(n2) which is bigger than that of EDSPP.
GLLM-SPP [14] and AE-SPP [15] use the expensive homomorphic cryptosys-
tem. Additionally, participants execute very similar operations in EDSPP, thus,
the scheme has good fairness. In GLLM-SPP [14] the participant, who generates
the homomorphic encryption system and encrypts each element of his private
vector, will load much more computation and communication than the other
one, thus the fairness of GLLM-SPP is very bad.
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We implement three most computationally efficient schemes, SPP-CS, PBSPP
and EDSPP. In the experiments, each participant is performed on a computer
with Intel Core2 Duo 2.93GHz CPU and 2.0GB memory, and the average ping
time of them is shorter than 1 ms. Figure 1 exhibits the simulated results, which
indicates that all the runtime linearly increase with dimension and EDSPP costs
least time. While the vectors’ dimension are 200 (k = 100), the total running
time of EDSPP is only a little more than 100 ms which is less than one-third of
that of PBSPP and is about one-sixth of the running time cost by SPP-CS.

In summary, the comparative advantages of EDSPP are its simpleness, linear
efficiency, good fairness and it does not employ the expensive homomorphic
cryptosystem and any auxiliary third party. As ideal security is too expensive to
achieve, especially in large-scale systems, and it may be unnecessary in practice,
if disclosing partial information about private data is still acceptable, EDSPP
will be a competitive low-cost candidate secure primitive for privacy preserving
distributed collaborative computations.
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Fig. 1. Running Time of SPP-CS [12], PBSPP [16] and EDSPP (ms = 10−3s, the
private vectors’ dimension n = 2k)

4 Conclusion

In this paper, a linearly efficient scheme for scalar product protocol, EDSPP, has
been proposed. The protocol has no use of expensive homomorphic crypto-system
and third party, which have been employed by existing solutions. Theoretical
analysis and simulated experiment results confirm that the novel scheme is a
competitive candidate for securely computing the scalar product of two private
vectors.
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