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Preface

The 7th International Workshop on Security (IWSEC 2012) was held at Nishi-
jin Plaza, Kyushu University, in Fukuoka, Japan, during November 7–9, 2012.
The workshop was co-organized by ISEC in ESS of IEICE (Technical Com-
mittee on Information Security in Engineering Sciences Society of the Institute
of Electronics, Information and Communication Engineers) and CSEC of IPSJ
(Special Interest Group on Computer Security of Information Processing Society
of Japan).

This year, the workshop received 53 submissions, of which 16 were accepted
for presentation. Each submission was anonymously reviewed by at least five
reviewers, and these proceedings contain the revised versions of the accepted
papers. In addition to the presentations of the papers, the workshop also featured
a poster session and four invited talks. The invited talks were given by James
Hughes, Matt Bishop, Suguru Yamaguchi, and Katsuyuki Takashima.

The best paper award was given to “Boomerang Distinguishers for Full
HAS-160 Compression Function” by Yu Sasaki, Lei Wang, Yasuhiro Takasaki,
Kazuo Sakiyama, and Kazuo Ohta, and the best student paper award was given
to “Efficient Concurrent Oblivious Transfer in Super-Polynomial-Simulation
Security” by Susumu Kiyoshima, Yoshifumi Manabe, and Tatsuaki Okamoto.

A number of people contributed to the success of IWSEC 2012. We would like
to thank the authors for submitting their papers to the workshop. The selection
of the papers was a challenging and delicate task, and we are deeply grateful
to the members of Program Committee and the external reviewers for their in-
depth reviews and detailed discussions. We are also grateful to Andrei Voronkov
for developing EasyChair, which was used for the paper submission, reviews,
discussions, and preparation of these proceedings.

Last but not least, we would like to thank the General Co-chairs, Tsutomu
Matsumoto and Kanta Matsuura, for leading the Local Organizing Committee,
and we also would like to thank the members of the Local Organizing Committee
for their efforts to ensure the smooth running of the workshop.

August 2012 Goichiro Hanaoka
Toshihiro Yamauchi
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Model-Based Conformance Testing for Android

Yiming Jing1, Gail-Joon Ahn1, and Hongxin Hu2

1 Laboratory of Security Engineering for Future Computing (SEFCOM)
Arizona State University, Tempe, AZ85281, USA

{ymjing,gahn}@asu.edu
2 Delaware State University, Dover, DE19901, USA

hxhu@asu.edu

Abstract. With the surging computing power and network connectivity
of smartphones, more third-party applications and services are deployed
on these platforms and enable users to customize their mobile devices.
Due to the lack of rigorous security analysis, fast evolving smartphone
platforms, however, have suffered from a large number of system vulner-
abilities and security flaws. In this paper, we present a model-based con-
formance testing framework for mobile platforms, focused on Android
platform. Our framework systematically generates test cases from the
formal specification of the mobile platform and performs conformance
testing with the generated test cases. We also demonstrate the feasibil-
ity and effectiveness of our framework through case studies on Android
Inter-Component Communication module.

1 Introduction

According to a recent report from research firm [5], the worldwide smartphone
market ballooned 65.4% year over year in the second quarter of 2011, indicating
the total shipments of 100 million units. In addition, with the surging computing
power and network connectivity of smartphones, more third-party applications
and services are deployed on these platforms and enable users to customize
their devices. Many legitimate applications tend to manipulate users’ sensitive
information such as contact list, locale information, and other credentials [14].
To protect such sensitive attributes, it is necessary to ensure that smartphones
are properly configured and rigorously validated.

Fast evolving smartphone platforms, however, have raised considerable secu-
rity concerns due to the lack of rigorous security analysis. At the same time, a
large number of system vulnerabilities and security flaws on smartphone plat-
forms have continuously been reported. For instance, an unprotected component
was discovered in the phone application of Android version 1.1 [15]. This flaw
allowed any malicious application to make phone calls without the permission
it ought to have. Another recent work [10] indicated that the message passing
system in Android can be a target for denial-of-service and hijacking if used
incorrectly.

Software developers often utilize conformance testing as an indispensable step
to check errors and flaws in both developing and maintaining software systems.

G. Hanaoka and T. Yamauchi (Eds.): IWSEC 2012, LNCS 7631, pp. 1–18, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Conformance testing attempts to bridge the gap between system implementa-
tion and design requirements. It compares the expected behaviors described
by the system requirements with the observed behaviors of an actual imple-
mentation. The observed results reflecting the conformance of implementation
strongly depends on the adopted test cases [12]. In addition, test automation [17]
has recently become quite common for reducing the cost of software testing
procedures. A typical automated testing harness mainly offers automation in
managing, executing and evaluating tests. However, such an approach cannot
effectively support automated test generation. Manually creating test cases is
tedious, error-prone, and often insufficient for proving the conformance of sys-
tem implementation [19]. Such a problem exists in the widely used test harness
for Android, Google’s Android testing framework [3] [1]. Android testing frame-
work only adopts hand-crafted test cases for conformance testing and fails to
provide a comprehensive set of test cases.

Model-based testing involves developing a data model to generate tests. The
model is developed based on the design requirements, and reflects the expected
features of the System Under Test (SUT) [7]. Unlike hand-crafted tests, model-
based approach helps reuse the generated test cases and improves the efficiency
of testing procedures. If any requirement changes, a tester only needs to update
the model and get a new suite of test cases, avoiding the tedious work of changing
hand-crafted test cases.

In this paper, we present a model-based conformance testing framework for
evaluating Android platforms. Our framework automatically generates and ex-
ecutes test cases. Moreover, we demonstrate the feasibility and practicality of
our approach through case studies on Android Inter-Component Communica-
tion (ICC) module. We chose ICC for several reasons: (1) ICC is one of the core
modules of Android as it supports collective interactions of applications; (2) the
requirements of ICC are publicly available. To conduct conformance testing in
our framework, we first derive the formal models and properties for Android ICC
from design requirements. The formal specifications of models and properties are
fed into an analysis module to automatically generate test cases, which systemat-
ically enable the rigorous conformance testing for the Android platform. MCTF
checks whether the SUT’s behaviors conform to functional and non-functional
requirements. For example, the requirements specify a set of desired behaviors.
Therefore, it is necessary to discover invalid and malformed inputs that may
violate those requirements and should be caught and handled properly. Having
comprehensive conformance testing would ensure the correctness and assurance
of ICC in Android.

The remainder of this paper is organized as follows. Section 2 gives an overview
of Android ICC. Section 3 discusses our framework and demonstrates how our
framework can be applied to examine the conformance of Android ICC. Section 4
presents a tool chain designed with our framework followed by the discussion on
performance analysis. Section 5 describes the related work. Section 6 concludes
this paper and elaborates the future directions.
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2 Overview of Android ICC

Smartphone applications inherently tend to communicate with each other. An-
droid ICC is a sophisticated messaging system designed to support such inter-
actions. In this section, we give a brief overview of Android ICC as described in
Android documentation for SDK (SDKD) [2] and Android Compatibility Defi-
nition Document (CDD) [1].

2.1 Components

The basic unit in Android application communication is component. Each com-
ponent is a logical building block that could support each other. Four types of
components are defined with various requirements.

– Activities are components that provide graphic user interface (GUI). The
Android GUI is implemented as a stack of activities starting one after an-
other, where each activity is presented as a window on the screen.

– Services are components that run in the background to perform long-running
operations. Unlike activities, a service does not have any graphic interface.
Instead, services provide Remote Procedure Call (RPC) interfaces.

– Broadcast Receivers are asynchronous components that receive and reply to
system-wide broadcasts from other components.

– Content Providers are components that provide public data interfaces to
other components. A content provider provides common database commands
such as query, insert, update and delete, through which other components
can retrieve and store data.

2.2 Intents and Intent Filters

Intents play a leading role in connecting the components of applications. An
intent object is a data structure carrying information about its desired recipients
and optional data. Applications communicate with each other by sending and
receiving intents. All intents are processed and delivered by a centralized “post
office”, the intent resolver.

Like a post office processing parcels in the real world, the intent resolver finds
qualifying recipients by checking the attributes of an intent object.

Primary intent attributes include action and data:

– Action is a string naming the general action to be performed. An intent can
contain at most one action.

– Data is a tuple consisting of both the URI of the data to be acted on and
its MIME media type. This attribute indicates the data to be processed by
the action.

Secondary attributes include component, category, extras and flags.

– Component Name is a string naming the component that should handle the
intent.
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– Category is a string containing additional information about the kind of
component that should handle the intent.

– Extras is a key-value pair of additional information to be delivered to the
recipient component.

– Flags is a set of strings that instruct the Android system to launch an
activity.

Each component can be bound to one or more intent filters, which declare capa-
bilities of the components. An intent filter includes three attributes describing
the intents it would accept, including action, category and data. Intents and
components are correlated via intent filters. Android maintains a map between
public components and intent filters. The intent resolver finds the matching
intent filters for a given intent, then delivers the intent to the corresponding
components based on the map.

3 Model-Based Conformance Testing Framework
(MCTF)

In this section, we present our conformance testing framework, called model-
based conformance testing framework (MCTF), which is depicted in Figure 1.
Our framework is designed for generating test cases and facilitating rigorous
conformance testing with the generated test cases. We divide the framework
into four steps as follows:

1. System Modeling: Android Modeling.
First, all parameters and properties of Android are derived from Android
CDD and Android SDKD. Based on the identified parameters and proper-
ties, a model is defined. Parameters describe data objects and attributes of
the system. Properties lay out rules regulating interactions of parameters.
Android parameters and properties are then formally represented.

2. Test Case Generation.
The most significant recent development in testing is the application of for-
mal reasoning techniques, such as model checking [11], theorem proving [24]
and SAT solving [23], to generate test cases from the formal specification. In
this step, the formal model is utilized to automatically derive abstract test
cases, leveraging a formal reasoning technique.

3. Test Case Translation.
The generated test cases from the previous step are not suitable for direct
execution, since they are generated in an abstraction level. Therefore, it is
crucial to bridge the gap between abstract test cases and executable test
cases. The translation is performed to extract necessary information from
abstract test cases and construct executable test cases.

4. Test Case Execution.
In this step, executable test packages are generated by compiling executable
test cases. With the executable test packages, an Android device or emulator
is tested. For each test case, the results are monitored and recorded. Finally,
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Translator

Abstraction

Formal Verifier

Compiler

Android 
Modeling

Test Case 
Generation

Test Case 
Translation

Test Case 
Execution

Android CDD + SDK Document

Parameter Specification Property Specification

Abstract Test Cases

Executable Test Cases

Test Runner

Result Report

Fig. 1. Model-based Conformance Testing Framework

a human readable report is generated once all the tests are executed. The
generated test report may contain supplemental information, such as screen-
shots, to further examine other functional and non-functional components.

In order to conduct model-based conformance testing, it is crucial to have a
well-designed and general purpose language to represent the model. Alloy [20] is
a structural modeling language based on first order logic, and has been widely
used in the modeling community. The usage of Alloy for the representation of
models is an attractive aim. Our framework adopts Alloy to formally represent
an Android model. As we discussed earlier, the formal model is in turn utilized
by formal reasoning tools such as Alloy Analyzer, to generate abstract test cases,
which are then translated into executable test cases.

We now demonstrate how Android ICC can be rigorously tested through the
four steps shown in Figure 1, identifying specific mechanisms for each MCTF
task.

3.1 System Modeling: Android Modeling

A model for a specific software system is an abstract specification of the sys-
tem’s behaviors. Parameters and properties comprise a typical model for cap-
turing such behaviors. The parameters are attributes or variables that appear
in a piece of requirements. After parameters are identified, their types and valid
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Intent
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Category

Data

Intent Resolver

IntentFilter1
Action

Category

DataURI
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Category

DataURI

Component

Activity1

Component

Activity2

Fig. 2. Implicit Intent Resolution

value ranges should be identified as well. For example, if an input variable ac-
cepts integers in the range of 1 to 12, the identified parameters should use the
same valid range. Properties are identified from the information about the rela-
tionships among parameters.

Android modeling procedure consists of three steps: model construction from
requirements, specification of model parameters, and specification of model
properties.

Model Construction from Android ICC Requirements. For testing An-
droid systems and applications, testers derive parameters and properties from
Android SDKD and Android CDD. Android SDKD defines the requirements
of Android system, including objects and logics of Android functions and pack-
ages. Android CDD complements Android SDKD by providing additional tech-
nical details of various versions of Android platform.

For example, a technical section in Android SDKD says that “there are three
Intent characteristics that can be filtered on: actions, data and categories”. From
this, testers identify three parameters: action, category and data. The definition
of these three attributes also shows the data type of each parameter. That is,
action is any string, category is any string set and data is a pair (2-tuple) of
strings.

Android SDKD and Android CDD describe Android ICC in two categories:
Explicit Intent Resolution and Implicit Intent Resolution, depending on the tar-
get attributes for the resolution process. If the component name of an intent
is a non-empty set, this intent is an explicit intent because the recipient com-
ponent is given explicitly. The intent resolver delivers explicit intents to the
recipients designated by the ComponentName attribute, regardless of other at-
tributes in the intent. Such process is called Explicit Intent Resolution. Actually,
no resolution process is occurred because the recipient is already specified by the
sender.
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Thus, intent, component and intent resolver are identified as parameters of
explicit intent resolution. The attribute ComponentName is consulted. The prop-
erty of explicit intent resolution is trivial, as abstracted below:

– Property 1: The intent should be delivered to the recipient designated by
the component name attribute of the intent.

Implicit intents do not specify any recipient component but wait for the intent
resolver to determine which component they should be resolved to, based on the
action, data and category attributes specified in the intent. This process is called
Implicit Intent Resolution.

The parameters of implicit intent resolution include intent, intent filter, com-
ponent, and intent resolver. Action, category and data are attributes that are
consulted during the resolution process. Each attribute corresponds to a test,
in which the attribute of the intent is matched against that of the intent filter.
To be delivered to the component, an implicit intent must pass all the three
tests on the intent filters bound with the component. Since a component can be
bound with multiple intent filters, an intent that does not pass through one of
a component’s intent filters may pass another.

In the action test, the Android Intent Resolver tests both the action of the
intent object and the action set of the intent filter. An intent names a single
action while the intent filter specifies one or more actions. To pass the action
test, the action specified in the intent object must match at least one of the
actions specified in the intent filter. The action set of the intent filter object
must not be empty. A special case is an intent without actions, which passes all
action tests. The properties of action test can be summarized as follows:

– Property 2: The action specified in the Intent object must match one of
the actions listed in the filter.

– Property 3: An Intent object that does not specify an action automatically
passes the test as long as the filter contains at least one action.

The category fields in both the intent and intent filter are a set of category strings.
To pass the category test, the category set of the intent should be the subset of
the category set of the intent filter. The filter can list additional categories, but
it cannot omit any in the intent. An intent without category passes all category
tests by default. The properties of category test can be summarized as follows:

– Property 4: Every category in the Intent object must match a category in
the filter. The filter can list additional categories, but it cannot omit any in
the intent.

– Property 5: An Intent object with no category should always pass this test,
regardless of the attributes in the filter.

Data contains URI and type. The URI specifies the location of the data in three
sub-attributes: scheme, authority and path. The data type specifies the MIME
type of the data. Android also allows wildcards when specifying data subtype in
both the intent and intent filter.
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– Property 6: An Intent object that contains neither a URI nor a data type
passes the test only if the filter likewise does not specify any URIs or data
types.

– Property 7: An Intent object that contains a URI but no data type passes
the test only if its URI matches a URI in the filter and the filter likewise
does not specify a type.

– Property 8: An Intent object that contains a data type but no URI passes
the test only if the filter lists the same data types and similarly does not
specify a URI.

– Property 9: An Intent object that contains both a URI and a data type
passes the data type part of the test only if its type matches a type listed in
the filter.

Figure 2 shows an example of implicit intent resolution. In this example, a public
component is bound with two intent filters. An intent resolver attempts to resolve
the intent shown on the left. If all of the tests pass for both intent filters, the
intent is delivered to the two components on the right.

Specification of Model Parameters. Based on Android SDKD and Android
CDD, we formulate the identified parameters. We first define Component as
follows:

Definition 1. A component is represented with a (τ), where τ is a unique name
of the component;

Intent can be defined as follows:

Definition 2. An intent is represented with a 5-tuple (τ, α, Γ, σ), where τ is
the name of the recipient component; α is an action string that describes the
action to be performed; Γ is a set of category strings that represent the type
of components which should handle the intent; and σ is a 2-tuple (uri, type)
consisting of data URI and data type.

Intents can be classified into two categories: explicit intent and implicit intent,
as we discussed earlier. We formally define them as follows:

Definition 3. Explicit intents designate the target component by its component
name field. The set of explicit intents is denoted as EI. EI={i | i ∈ I∧i.τ �= null}

Definition 4. Implicit intents do not specify a target. The set of implicit intents
is denoted as II. II={i | i ∈ I ∧ i.τ = null}

Then, the intent filter can be defined as:

Definition 5. An intent filter is represented with a 3-tuple (Λ, Γ, σ), where Λ
is a set of action strings; Γ is a set of category strings; and σ is is a set of
(uri, type) tuples consisting of data URI and data type.
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We now formally define the intent resolver with sets and relations as:

– C is a set of components, {c1, · · · , cp};
– I is a set of intents, {i1, · · · , im};
– F is a set of intent filters, {f1, · · · , fq};
– FC ⊆ F × C, a many-to-many filter-to-component assignment relation;
– EIC, a one-to-one explicit intent-to-component assignment relation;
– IIF , a one-to-many implicit intent-to-filter assignment relation;

Based on the above-defined model, we now give the formal specification of iden-
tified parameters with Alloy as follows:

module android/ICC
abstract sig Str {}
sig actionStr extends Str{}
sig categoryStr extends Str{}
sig uriStr extends Str{}
sig typeStr extends Str{}
sig dataTuple {

uri: lone uriStr,
type: lone typeStr }

abstract sig Object {}
sig Component extends Object {

componentName: lone componentStr }

sig Intent extends Object {
componentName: lone componentStr,
action: lone actionStr,
category: set categoryStr,
data: lone dataTuple }

sig Filter extends Object {
action: set actionStr,
category: set categoryStr,
data: set dataTuple }

sig Resolver {
IIF: Intent -> set Filter,
IIF_A: Intent -> set Filter,
IIF_C: Intent -> set Filter,
IIF_D: Intent -> set Filter,
FC: Filter -> set Component,
EIC: Intent -> lone Component }

The first sig statement declares Str, which represents a string that can be
assigned to other objects. Then, we define component, intent and intent filter
which have all the necessary attributes for intent resolution. We then declare
a resolver, which defines several relations which map intents to sets of intent
filters. The value ranges of all the parameters are strings.

Specification of Model Properties. Based on Android SDKD and Android
CDD, we now formulate and specify properties of Android ICC. A fact state-
ment in Alloy puts an explicit constraint on the model. In our cases, we need
to represent the identified properties of intent resolution with facts. According
to the properties identified from the requirements, we then give their formal
specifications.

The formal specification of Property 1, which covers Explicit Intent Resolu-
tion, is shown below:

fact explicitIntentResolution {
all r: Resolver, i: Intent, c:Component |
i.componentName = c.componentName
<=> i->f in r.EIC }

The following shows formal specifications of Property 2-9, which cover Implicit
Intent Resolution:
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fact implicitIntentResolutuion {
all r: Resolver, i: Intent, f:Filter |
i->f in r.IIF_A
and i->f in r.IIF_C
and i->f in r.IIF_D

<=> i->f in r.IIF }

fact actionTest {
all r:Resolver| all i:Intent |all f:Filter |
(f.action!=none and i.action!=none
and i.action in f.action)
or (f.action!=none and i.action = none)
<=> i->f in r.IIF_A }

fact categoryTest {
all r:Resolver| all i:Intent |all f:Filter |
(i.category!=none and i.category in f.category)
or (f.category!=none and i.category = none)
<=> i->f in r.IIF_C }

fact dataTest {
all r:Resolver| all i:Intent |all f:Filter |
(i.data.uri=none and i.data.type=none
and f.data.uri=none and f.data.type=none)
or (i.data.uri in f.data.uri
and i.data.type = none and f.data.type=none)
or (i.data.type in f.data.type
and i.data.uri = none and i.data.uri=none)
or (i.data.uri in f.data.uri
and i.data.type in f.data.type)
<=> i->f in r.IIF_D }

3.2 Test Case Generation

In conformance testing, testers need to generate positive and negative test cases
to examine the implementation thoroughly. Positive test cases test whether the
system behaves exactly as the specified properties when inputs are valid. Neg-
ative test cases test whether the system violates the properties when inputs
are invalid. Formal reasoning tools can generate abstract test cases accordingly.
They translate the model notations into boolean formulas. Then, the formulas
are analyzed to find bindings of the parameters and their values that make the
formulas true or false. Such true and false bindings are positive and negative test
cases, respectively. To generate abstract test cases, we employ Alloy Analyzer to
generate instances that satisfy both facts and predicates.

Positive test cases for a given property are derived from the formal model
representation, in which the property specification serves as a predicate for gen-
erating instances that conform to the very property. Similarly, negative test
cases are generated from the formal model representation, if we consider it as
a predicate to identify counterexamples, which satisfy the negated property. As
a model-based testing framework, MCTF can assist test activities at property
and behavior levels [13].

Property Testing. We take Property 2 as an example to demonstrate the
process of automated test generation for testing a given property from positive
and negative aspects. To simplify the test case generation process, we remove the
parameters and properties that are not related with action test. The following
predicate is defined to derive the positive test cases for the corresponding facts
in the formal property specification.

pred P2_pos(r: Resolver, i:Intent) {
all r: Resolver, i: Intent, f:Filter |
one i.action and i.action in f.action

<=> i->f in r.IIF_A}

This predicate checks Property 2 against the model representation of Android
ICC, then instances are generated. The generated instances are used to construct
positive test cases to ensure that the system should always permit a matched
pair of intent object and intent filter object.
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The corresponding negative test cases for negated Property 2 are generated to
ensure the system never denies a matching pair or accepts a mismatching pair. In
order to derive negative test cases, we specify the negative property with Alloy
as follows:

pred P2_negDeny(r:Resolver, i:Intent,
f:Filter)

{i->f not in r.IIF_A
and i.action in f.action
and i.action!=none

}

pred P2_negAccept(r:Resolver, i:Intent,
f:Filter

){i->f in r.IIF_A
and i.action not in f.action
and i.action!=none
}

Alloy Analyzer requires a bounded input domain, specified by the number
of intents, intent filters, resolvers, action strings in our example, to generate
instances and counterexamples. The size of input domain determines the total
number of generated test cases. Then, we come up with the question of choosing
an appropriate size for generating test cases that achieve reasonable coverage.
Although testers can specify a large input domain and get millions of test cases
for a trivial property with respect to the coverage, it is not always the case. The
testers need to specify the input size based on practical test requirements1.

For example, we specify the following input domain to test Property 2.

run P2_pos for
exactly 1 Resolver, exactly 2 actionStr,
exactly 2 Str, exactly 2 Intent,
exactly 2 Filter

run P2_negDeny for
exactly 1 Resolver, exactly 2 actionStr,
exactly 2 Str, exactly 2 Intent,
exactly 2 Filter

run P2_negAccept for
exactly 1 Resolver, exactly 2 actionStr,
exactly 2 Str, exactly 2 Intent,
exactly 2 Filter

Figure 3 depicts a positive test case generated by Alloy Analyzer for Prop-
erty 2. Both Intent and Filter0 have the same action. Thus, Resolver allows
the interaction between them. Figure 4 and Figure 5 depict two negative test
cases. In Figure 4, Resolver unexpectedly denies Intent from accessing Filter1
(marked by (f) and (i)). In Figure 5, Resolver unexpectedly accepts Intent
and Filter1 (marked by (f) and (i)), which have different actions.

Behavior Testing. After each property has been tested independently, we can
further check behaviors of the intent resolution module. Here, we give a more
complex scenario to test all modeled intent filter properties. Based on the afore-
mentioned properties, we instruct Alloy Analyzer to enumerate all assignments,
simulating inter-component communications.

To test if a system always properly delivers the intent to correct recipients,
we need positive test cases that are composed of matched pairs of intents and
intent filters. In our model, it implies the set of iif relation should not be empty.
Therefore, we have the following specification:

pred Positive(r: Resolver){
#r.IIF>0 }

1 The testers should balance the coverage and the input size, which are normally
obtained from subject matter experts and prior testing results.
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Fig. 4. Abstract Test Cases for Property Testing: Negative Deny

On the contrary, negative test cases are those without paired intents and
intent filters. We simply set the size of iif to zero.

pred Negative(r: Resolver){
#r.IIF=0 }

Figure 6 depicts a positive test case for behavioral testing. In this example,
two successful intent deliveries can be identified from the arrows labeled with
“IIF[Intent]”: Intent0→Filter0, Intent1→Filter1.

In addition, the test case generation can be optimized to avoid generating
isomorphic test cases by adopting the approach proposed in [8]. Finally, each
abstract test case is exported to an independent file which contains the test
conditions and variables for further processing. Because we are using Alloy An-
alyzer, one of the available choices is to export test cases to DOT files, which
store test cases as hierarchical drawings of direct graphs. This is a perfect choice
for visualizing abstract test cases. Another choice is to export test cases into
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Fig. 6. A Positive Test Case for Behavior Testing

lightweight XML files, which are easy to parse with existing tools. We adopt the
latter for generating executable test cases.

3.3 Test Case Translation

Except for requirements, Android SDKD also provides guidelines of Android
testing framework and testing Android applications. Android CDD and Com-
patibility Test Suite (CTS) [1] provides additional guidelines for testing Android.
Android test suites are based on JUnit [18] and Android’s JUnit extensions. The
extensions provide component-specific test classes and helper methods to help
creating mock objects and controlling lifecycle of a component. In addition, CTS
is shipped with an automated test harness. Testers can choose to use the test
harness of Android CTS, use a third-party test harness, or write their own test
runner based on the APIs provided by Android testing framework.
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Abstract test cases generated by Alloy Analyzer in our approach cannot be
directly integrated into test suites for execution as they are at different abstrac-
tion levels. Thus, an additional step is required to translate abstract test cases
encoded in XML to executable test cases, involving information extraction and
source code construction.

Extraction. We employ a Python script to parse XML and regroup essential
information fields with cElementTree [4]. cElementTree is a Python package for
efficiently managing XML files.

In order to construct an executable test case for testing intent resolution, we
need to know all the variables, attributes and their assigned values. In our case,
the variables are intents and intent filters, and the attributes are component
name, action, category, data, URI and type. An XML-encoded abstract test
case is composed of several fields and tuples. Each field stands for an attribute.
And each field consists of some tuples, which store a variable and the value of
the attribute of that variable. Hence, information extraction can be achieved by
enumerating tuples and fields and reorganizing them.

Suppose we have a fragment of an XML-encoded abstract test case as shown
below:

<field label="action" ID="13" parentID="11">
<tuple> <atom label="Intent$2"/>

<atom label="actionStr$0"/> </tuple>
</field>
<field label="category" ID="14" parentID="11">

<tuple> <atom label="Intent$2"/>
<atom label="categoryStr$0"/> </tuple>

<tuple> <atom label="Intent$2"/>
<atom label="categoryStr$1"/> </tuple>

</field>

From this fragment we can identify an Intent object Intent2. Its action is as-
signed toactionStr0, its category is assigned to{categoryStr0, categoryStr1}.

Code Construction. The extracted information fields are utilized for a test
case template and Java code fragments for Android Compatibility Test Suite
(CTS). Our template is strictly complied with the format and syntax of test
cases defined in Android CTS.

The sample code shipped with Android CTS offers practical examples of how
to write executable test cases. We give a code template for testing Android ICC.

IntentFilter filter = new Match(
String[] actions, String[] categories,
String[] dataTypes, String[] uriSchemes,
String[] uriAuthoroties, String[] uriPorts);

checkMatches(filter, new MatchCondition[] {
new MatchCondition(
int expectedResult,
String action, String[] categories,
String dataType, String dataURI); }

With the extracted information in the template, we get several Java code
fragments at the end of this step.

3.4 Test Case Execution

After integrating the code fragments into existing test suites or a new test suite,
executable test cases are derived by compiling fragments. Such test suites are
run by a test runner that loads the test cases, runs and tears down each test.
We use Android’s Instrumentation Test Runner [3], which is a set of control
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methods and hooks in Android platform, to run our generated test cases. For
each executable test case, the results are generated accordingly as we discussed
in our framework. Finally, a report is presented in an HTML page including test
results.

4 Implementation and Evaluation

In this section, we give a brief introduction of our tool set, which constitutes a
tool chain for model-based conformance testing. As depicted in Figure 7, our tool
chain consists of three tools: Alloy Analyzer, the Translator and the Android In-
strumentation Test Runner. The formal representation of models and properties
are fed into Alloy Analyzer for automatically generating test cases. Alloy Ana-
lyzer exports the generated abstract test cases to intermediate XML files. Then,
our translator parses XML and constructs Java code fragments. The output of
test case translation is an Android application package containing compiled JU-
nit test cases. Finally, Android Instrumentation Test Runner executes test suite
and generates the test report.

Translator

Android 
Instrumentation 

Test Runner
Test Result 

Report

Abstract 
Test Cases

Alloy Analyzer

Property 
Specification

Parameter 
Specification

Executable 
Test Cases

Fig. 7. A tool chain that supports MCTF

We provide a contrastive analysis between Android CTS and our generated
test cases to demonstrate effectiveness of our framework in this section. For
property testing, every property of the three tests need to be rigorously checked.
We identified that Android CTS fails to check some properties from positive or
negative aspects. Table 1 shows a comparison between Android CTS and the
test cases generated by our approach. The table shows that Android CTS test
suites are not offering sufficient test coverage. And our approach could achieve
better coverage than that of Android CTS.

To evaluate the efficiency of our approach, we also examined two core pro-
cesses, test case generation and test case translation, in our implementation.

Figure 8(a) shows that the increase of the total number of generated test
cases is proportional to the number of intents and intent filters. Figure 8(b)
shows that the processing time taken for test case generation and translation
increases linearly with the increase of the number of the test cases, indicating
that our approach provides a feasible and promising solution to facilitate and
enhance conformance testing for Android platform.
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(a) Amount of Generated Test Cases (b) Processing Time

Fig. 8. Performance Evaluation

Table 1. Conformance testing achieved by Android CTS and our approach

Property Positive/Negative
Android CTS MCTF

Covered #Test cases Covered #Test cases

Property 1
Positive × 0

√
16

Negative × 0
√

18

Property 2
Positive

√
3

√
24

Negative
√

2
√

14

Property 3
Positive

√
2

√
24

Negative × 0
√

10

Property 4
Positive

√
4

√
26

Negative
√

4
√

10

Property 5
Positive

√
2

√
26

Negative × 0
√

12

Property 6
Positive

√
2

√
31

Negative
√

2
√

18

Property 7
Positive

√
1

√
31

Negative
√

3
√

20

Property 8
Positive

√
1

√
31

Negative × 0
√

20

Property 9
Positive × 0

√
31

Negative
√

2
√

26

5 Related Work

Most recent work related to software testing in Android addresses automated
GUI testing for Android applications. Amalfitano et al. [6] proposed a crawling-
based approach to generate GUI test cases. They designed a tool to simulate
events on the user interfaces, generate event transition tree by capturing appli-
cation responses, and predict future events at runtime. In contrast, our approach
is the first attempt to explore rigorous conformance testing for Android. In par-
ticular, we adopt a model-based approach to automatically generate test cases.

Model-based approaches have been widely used for testing in various fields.
Several researchers proposed automated frameworks for testing Java programs,
such as Korat [8] and TestEra [21]. Korat constructs Java predicates and gener-
ates all non-isomorphic inputs for which the predicates return true, by searching
and enumerating a given bounded input space. TestEra works in a similar way
as Korat, but using a first-order relational language and existing SAT solvers.
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Both approaches use structural invariants on the input data to automatically
generate test cases and then test the output against a set of predicates. How-
ever, the generated test cases are abstract and need to perform the translation
task to generate the actual code. In our work, we attempt to extend model-based
approaches to testing Android platforms. We also demonstrate how test cases
can be integrated to perform conformance testing effectively.

Security for mobile devices and applications is a growing concern recently.
TaintDroid [14] monitors and controls access to sensitive data by dynamic taint-
based information flow tracking. Stowaway [16] identifies vulnerabilities in ap-
plications by static analysis on application packages, manifests and bytecodes.
Chaudhuri [9] proposed a formal language to describe applications and reason
about information flows and the consistency of security specifications.

6 Conclusion

While several automated testing frameworks have been proposed and developed
for smartphone platforms, developers still need systematic approaches and cor-
responding tools to generate test cases for conformance testing efficiently and
effectively. To address this issue, we have proposed a novel framework to enable
rigorous conformance testing for the Android platform. Our framework adopted
a model-based approach which utilizes formal verification techniques to auto-
matically generate test cases. In addition, we have demonstrated the feasibility
of our approach with Android ICC.

In our current framework, testers need to manually derive the model from
requirements. As part of our future work, we would explore an approach for
directly constructing model from the requirements, leveraging the capability of
NLP techniques [22]. Moreover, we would apply our approach to other Android
modules, such as Activity Manager and Package Manager.
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Abstract. Edwards curves have efficient scalar multiplication algo-
rithms, and their application to pairing-based cryptography has been
studied. In particular, if a pairing-friendly curve used in a pairing-based
protocol is isomorphic to an Edwards curve, all the scalar multiplication
appearing in the protocol can be computed efficiently. In this paper, we
extend this idea to pairing-friendly curves not isomorphic but isogenous
to Edwards curves, and add to pairing-friendly curves to which Edwards
curves can be applied. Above all, pairing-friendly curves with smaller
ρ-values provide more efficient pairing computation. Therefore, we in-
vestigate whether pairing-friendly curves with the minimal ρ-values are
isogenous to Edwards curves for embedding degree up to 50. Based on
the investigation, we present parameters of pairing-friendly curves with
160-bit and 256-bit security level at embedding degree 16 and 24, respec-
tively. These curves have the minimal ρ-values and are not isomorphic
but isogenous to Edwards curves, and thus our proposed method is ef-
fective for these curves.

Keywords: Pairing-friendly curves, Edwards curves, embedding degree.

1 Introduction

Many pairing-based protocols use not only pairing computations but also scalar
multiplications (e.g., [11,40,23,41]). It is known that Edwards curves [18] provide
a model of the groups of rational points of elliptic curves that have efficient scalar
multiplication algorithms [10]. Therefore, the application of Edwards curves to
pairing-based cryptography has been investigated in several studies [1,16,26].

The choice of pairing-friendly curves with efficient arithmetic is an important
factor in efficient pairing computation. The parameter ρ-value defined on an el-
liptic curve is related to the efficiency of arithmetic on the elliptic curve. In gen-
eral, elliptic curves with small ρ-values are desirable for speeding up arithmetic
on the elliptic curves. Moreover, if the curves are isomorphic to an Edwards
curve, their scalar multiplication can be computed more efficiently. However,
not every curve can be transformed into an Edwards curve. In this paper, we
propose how to apply pairing-friendly curves not isomorphic but isogenous to
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Edwards curves to pairing-based cryptography. In our proposed method, if a
pairing-friendly curve E is not isomorphic but isogenous to an Edwards curve,
its scalar multiplication is computed on the Edwards curve. On the other hand,
its pairing is computed on E if E has a more efficient pairing algorithm than
the Edwards curve. Thus, our proposed method changes two curves according
to scalar multiplication or pairing. In addition, we investigate whether pairing-
friendly curves with the minimal ρ-values are isogenous to Edwards curves. In
fact, we list the minimal ρ-values of pairing-friendly curves isogenous to Edwards
curves for embedding degree up to 50. Among the constructible pairing-friendly
curves, those with minimal ρ-values and embedding degrees less than or equal to
50 have been summarized by Freeman et al. [20]. We compare their results with
ours, and we compute the embedding degrees (less than or equal to 50) at which
the constructible pairing-friendly curves with minimal ρ-values is isogenous to
Edwards curves.

The efficiency of pairing computation on elliptic curves has been improved
as a result of numerous studies. (e.g., [5,24,28,8,37,35]). Several approaches to
efficient pairing computation on elliptic curves utilize coordinates (affine, projec-
tive, Jacobian etc.) in the Weierstrass form. For example, pairing-friendly curves
with quartic or sextic twists have efficient pairing computation [24], and this
computation requires coordinates in the Weierstrass form. On the other hand,
there exist examples of pairing-friendly curves with quartic or sextic twists and
with the minimal ρ-values at embedding degree 16 and 24. Our investigation
shows that these curves are not isomorphic but isogenous to Edwards curves.
the pairing-friendly curves with the minimal ρ-values are isogenous to Edwards
curves. For these curves, our proposed method is effective. In Appendix B, we
give parameters of these curves with 160-bit and 256-bit security level .

2 Edwards Curves

In this section, we review Edwards curves, their transformation into elliptic
curves in the Weierstrass form and their scalar multiplication.

Let Fp be a finite field of order p, where p is a prime greater than 3. An
Edwards curve is a quartic curve over Fp, defined by

Edd : x2 + y2 = 1 + dx2y2 (d ∈ Fp\{0, 1}).

Moreover, a twisted Edwards curve over Fp is defined by the quartic equation

Eda,d : ax2 + y2 = 1 + dx2y2 (a, d ∈ F×
p ),

as an extension of an Edwards curve. Hereafter, Edd and Eda,d also represent
the sets of F-rational points of Edd and Eda,d, respectively. The sum of two
points (x1, y1) and (x2, y2) on the twisted Edwards curve Eda,d is

(x1, y1) + (x2, y2) =

(
x1y2 + y1x2

1 + dx1x2y1y2
,
y1y2 − ax1x2

1− dx1x2y1y1

)
.



Application of Scalar Multiplication of Edwards Curves 21

Addition on the Edwards curve Edd is given by that of Ed1,d. The point (0, 1)
is the unit of the addition law. The point (0,−1) has order 2. The points (1, 0)
and (−1, 0) have order 4. The inverse of a point (x, y) on Eda,d is (−x, y). The
addition law is strongly unified, i.e., it can also be used to double a point. In
[10] (where a = 1), and later in [9], it was proved that if a is a square and d
is a non-square in Fp then the addition law of Eda,d is complete: it works for
all pairs of inputs. The following two propositions show the relation between
twisted Edwards curves and elliptic curves.

Proposition 1 ([10,9]).

1. Over Fp, the twisted Edwards curve Eda,d is birationally equivalent to a
Montgomery curve,

Ea,d :
4

a− d
y2 = x3 +

2(a+ d)

a− d
x2 + x.

2. Moreover, if Eda,d is complete, then the birational map induces an isomor-
phism between Eda,d and Ea,d(Fp) as groups.

Proposition 2 ([9]).

1. Let E be an elliptic curve over Fp. The group E(Fp) has an element of order
4 if and only if E is birationally equivalent to an Edwards curve Edd over Fp.
If E(Fp) has an element of order 4, E is defined by a Weierstrass equation,

Y 2 = X3 + a2X
2 + a4X (a2, a4 ∈ Fp), (1)

and if P = (x4, y4) is an element in E(Fp) of order 4, then d is given by
1− 4x3

4/y
2
4.

2. Moreover, if Eda,d is complete, then the birational map induces an isomor-
phism between Edd and E(Fp) as groups.

Let E0 be an elliptic curve over Fp defined by a short Weierstrass equation

Y 2 = X3 + aX + b (a, b ∈ Fp). (2)

Assume that E0(Fp) has an element of order 4; then, (2) is expressed as

Y 2 = (X − x2)(X
2 + CX +D) (3)

for some x2, C,D ∈ Fp. By changingX−x2 into X in (3), E0 can be transformed
into an elliptic curve E′ of the form (1). Let P = (x4, y4) be an element in E′(Fp)
of order 4 and d0 = 1− 4x3

4/y
2
4. This algorithm is described as follows:

Input: An elliptic curve E : Y 2 = f(X) over Fp such that E(Fp) has an
element of order 4, and l = E(Fp).

Output: d ∈ K× such that the Edwards curve Ed: x
2 + y2 = 1 + dx2y2 is

birationally equivalent to E over Fp.
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1. Compute an element P2 = (x2, y2) in E(Fp) of order 2. (P2 can be calculated
because x2 satisfies f(x2) = 0, and y2 = 0.)

2. Define a polynomial fx2(X) = f(x + x2) and an elliptic curve Ex2 : Y 2 =
fx2(X) over Fp.

3. Compute an element P4 = (x4, y4) in Ex2(Fp) such that 2P4 = (0, 0) (see the
remark below). If P4 does not exist, then return to Step 1 and choose another
P2. (P4 (and its existence) can be calculated because x4 satisfies P(x4) = 0
for P(X) = X2−D when fx0(X) is factorized as fx0(X) = X(X2+CX+D).)

4. d← 1− 4x3
4/y

2
4.

The birational maps between E0 and EdD0 can be described explicitly as follows;

– M : Edd0 → E0

M([X,Y, Z]) = [x4X(Z + Y ) + x2X(Z − Y ), y4Z(Z + Y ), X(Z − Y )].

– M−1 : E0 → Edd0

M−1([U, V,W ])

= [2(U−x2W )(U+(x4−x2)W ), cV (U−(x4+x2)W ), cV (U+(x4−x2)W )],

where c = 2x4/y4 ∈ Fp.

Here, the Weierstrass curve and Edwards curve both are expressed by projective
coordinates. If Edd is complete,M orM−1 becomes a group isomorphism. How-
ever, even though Edd is non-complete, under the restriction of the subgroup
of elements with odd order of Edd, M and M−1 become group isomorphisms
[10,25]. Bernstein et al. compared the efficiency of addition, doubling, etc., of
several coordinates of elliptic curves: projective, (modified, Chudnovsky) Jacobi,
Doche/Icart/Kohel 2,3, Jacobi quartic, Edwards etc. [10]. Among these, the Ed-
wards curve coordinates recorded top performance in many cases. In general,
a twisted Edwards curve with a = −1 over Fp has more efficient scalar multi-
plication than an Edwards curve over Fp. Hisil et al. introduced the extended
Edwards coordinates and proposed efficient scalar multiplication of an Edwards
curve by mixing the extended Edwards coordinates and the projective Edwards
coordinates [25]. In particular, this scalar multiplication is more efficient than
that using a mixture of modified and Chudnovsky Jacobi coordinates.

3 Pairing-Friendly Curves

Pairing-based cryptography uses the following pairing:

ω : G1 ×G2 → F×
pk .

Here, k is the embedding degree of ω, and G1,G2 are subgroups with order r of
E(Fp) and E(Fpk). If E has a pairing with embedding degree k such that r ≥ √p
and k < log2 r/8, E is called a pairing-friendly curve [20]. It is known that
among whole elliptic curves, pairing-friendly curves are very rare [4]. Therefore,
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it is necessary to construct pairing-friendly curves. In this paper, we treat only
ordinary pairing-friendly curves.

3.1 Construction of Pairing-Friendly Curves

Several methods have been proposed for the construction of pairing-friendly
curves. The fundamental steps of these methods are similar:

Step 1. Construct a pairing-friendly parameter (t, r, p).
Step 2. From (t, r, p), construct an elliptic curve E (in the Weierstrass form)

over Fp by the CM method of Atkin-Morain [2].

The elliptic curve E constructed by these steps is defined over Fp, the order of
its maximal subgroup with prime order of E is r, and t is the Frobenius trace of
E. Here, a pairing-friendly parameter is defined as follows.

Definition 1. The triplet (t, r, p) of integers is called a pairing-friendly param-
eter of embedding degree k if the following conditions are satisfied:
1. r, p are prime,
2. r | p+ 1− t,
3. |t| < 2

√
p.

4. r|pk − 1, and for 1 ≤ i < k, r � pi − 1D

The known methods for constructing pairing-friendly parameters are as fol-
lows [20]: Cocks-Pinch [14], DEM [17], MNT [30], GMV [22], Freeman curve
[19], Scott-Barreto [34], Brezing-Weng [13], Barreto-Naehrig curve [7], Kachisa-
Schefer-Scott [27], Barreto-Lynn-Scott [6].

Definition 2. For a pairing-friendly parameter (t, r, p), the ρ-value of (t, r, p)
(or the elliptic curve E constructed from (t, r, p) as above) is defined by ρ =
ρ(t, r, p) := log(p)/ log(r).

From conditions (2), (3) in Definition 1, the minimal ρ-value is almost 1. r is
an important parameter related to the security of pairing-based cryptography.
When r is constant, a small ρ-value means that Fp is small. If Fp is small,
the calculation cost of arithmetic on the elliptic curve is low. Therefore, it is
necessary to generate pairing-friendly curves with small ρ-values in order to
speed up arithmetic on the elliptic curves. Freeman et al. listed the minimal ρ-
values of pairing-friendly curves constructed by the methods mentioned above,
up to 50 [20].

3.2 Families of Pairing-Friendly Parameters

Several methods for constructing pairing-friendly parameters make use of a
triplet (t(x), r(x), p(x)) of polynomials overQ, which generates (maybe infinitely)
many pairing-friendly parameters by substituting integers.
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Definition 3 ([20]).

1. Let k be a positive integer, and D, a positive square-free integer. We say
that a triplet (t(x), r(x), p(x)) of polynomials with rational coefficients is a
(pairing-friendly) family with embedding degree k and discriminant D if the
following conditions are satisfied:
(a) p(x) represents primes, i.e.,

– p(x) is non-constant,
– p(x) has a positive leading coefficient,
– p(x) is irreducible,
– p(a) ∈ Z for some a ∈ Z,
– gcd({p(x) : x, f(x) ∈ Z}) = 1.

(b) r(x) is non-constant, irreducible, integer-valued, and has a positive lead-
ing coefficient.

(c) r(x) divides p(x) + 1− t(x).
(d) r(x) divides Φk(t(x)− 1), where Φk is the k-th cyclotomic polynomial.
(e) The equation Dy2 = 4p(x) − t(x)2 has infinitely many integer solutions

(x, y).
2. The ρ-value of a family (t(x), r(x), p(x)) is defined by deg p(x)/deg r(x).

MNT [30], GMV [22], Freeman curve [19], Scott-Barreto [34], Brezing-Weng
[13], Barreto-Naehrig curve [7], and Kachisa-Schefer-Scott [27] output pairing-
friendly families. The ρ-value of a family (t(x), r(x), p(x)) coincides with the
limit of log p(a)/ log r(a), the ρ-value of the elliptic curve by the CM method of
Atkin-Morain from (t(a), r(a), p(a)), as a→∞. Therefore, the definition of the
ρ-value of a family is natural.

4 Pairing-Friendly Edwards Curves

In order to utilize an Edwards curve in pairing-based protocols, we have to con-
struct a pairing-friendly Edwards curve. However, from Proposition 2 not every
pairing-friendly curve can be transformed into an Edwards curve. In this sec-
tion, we investigate the following: (1) methods for constructing a pairing-friendly
Edwards curve, and (2) transformability of constructible pairing-friendly curves
with minimal ρ-values listed in [20]. With regard to (1), we explain how to mod-
ify any method for constructing general pairing-friendly curves using pairing-
friendly parameters so as to output pairing-friendly Edwards curves. We obtain
the list of minimal ρ-values of constructible pairing-friendly Edwards curves us-
ing (1). By comparing this list with that of minimal ρ-values of constructible
pairing-friendly curves in [20], we can investigate (2).

4.1 Constructing Pairing-Friendly Edwards Curves

From Proposition 2, an elliptic curve E is birationally equivalent to an Edwards
curve over Fp if and only if E(Fp) has an element of order 4. If E(Fp) has an
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element of order 4 then 
E(Fp) is divisible by 4. The opposite is not always true;
however, if 
E(Fp) is divisible by 8, then E(Fp) has an element of order 4 because
the number of 2-torsion points of E(Fp) is less than or equal to 3. Therefore, the
following procedure constructs a pairing-friendly Edwards curve:

Step 1. Construct a pairing-friendly parameter (t, r, p) such that 8 | p+ 1− t.
Step 2. From (t, r, p), construct an elliptic curve (in the Weierstrass form) over

Fp by the CM method of Atkin-Morain [2].
Step 3. Transform the elliptic curve in Step 2 into an Edwards curve.

The algorithm for Step 3 has been described in §2. There are several methods
for constructing pairing-friendly parameter, as explained in §3.1.

By using 2-isogeny, the above procedure can be modified. We will explain this
modification in the following subsection.

4.2 Constructing Pairing-Friendly Complete Edwards Curves

Morain showed the following fact.

Proposition 3 ([31]). Assume that a prime p is expressed as p = 1
4 (t

2 +Dy2)
for some positive integer D and integers t, y. Let E be an elliptic curve over Fp

with the trace of Frobenius t, which is constructed by the CM method of Atkin-
Morain. Moreover, assume that either of the following is satisfied.
(1) D is odd,
(2) D, y both are even.
Then, E is not birationally equivalent to any complete Edwards curve over Fp.

This proposition implies that in many cases, Edwards curves constructed by the
CM method are not complete. The method for constructing complete Edwards
curves using 2-isogenies has been discussed by Aréne et al. [1]. (A 2-isogeny
means an isogeny whose kernel consists of 2 elements.) The algorithm is described
as follows:

Step 1. Construct a pairing-friendly parameter (t, r, p) such that 4 | p+ 1− t.
Step 2. From (t, r, p), construct an elliptic curve E (in the Weierstrass form)

over Fp by the CM method of Atkin-Morain [2].
Step 3. Find an elliptic curve E′ that can be transformed into a complete Ed-

wards curve by compositions of 2-isogenies from E.
Step 4. Transform the elliptic curve E′ in Step 2 into a complete Edwards

curve.

This algorithm is an improved version of the algorithm in §4.1 because the
condition of (t, r, p) in Step 1 becomes weaker and the output Edwards curve is
always complete.

We need to explain Step 3. 2-isogenies of elliptic curves can be described
explicitly using Vélu’s classical formula in finite fields [39].
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Proposition 4 ([31] Prop. 6). Assume that E : Y 2 = X3 + a2X
2 + a4X + a6

has a rational point of order 2, denoted by P = (x2, 0). Put s = 3x2
2+2a2x2+a4

and w = x2s. Then, E is 2-isogenous to the elliptic curve E1 : Y 2
1 = X3

1+A2X
2
1+

A4X1 + A6 where A2 = a2, A4 = a4 − 5s, A6 = a6 − 4a2s − 7w. Moreover, the
2-isogeny ψ : E → E1 whose kernel is generated by P sends [X ;Y ;Z] to

[X1;Y1, Z1] = [(X − x2)
2X + (X − x2)s;Y ((X − x2)

2 − s); (X − x2)
2].

Here, the points of the elliptic curves are described by projective coordinates.

We write 2-Isog(E,P ) for E1 in the above proposition. If E(Fp) in Step 2 has
an element of order 4, Step 3 can be omitted from Proposition 2. Assume that
E(Fp) does not have an element of order 4. Since 4 | p+ 1− t, E(Fp) must have
three 2-torsion points. The following is an algorithm for Step 3. It is essentially
a special case of FindDescendingPath of [21] when l = 2, which can input an
elliptic curve of j-invariant 0 or 1728.

Input An elliptic curve E that has three rational 2-torsion points.
Output An elliptic curve E′ transformable into a complete Edwards curve.
1. F ← {2-Isog(E,Pi) | i = 1, 2, 3} where P1, P2, P3 are the three rational 2-

torsion points of E.
2. For i = 1 to 3, do

(a) G[i]← E; G′[i]← F [i].
(b) If G′[i] has a unique rational 2-torsion point, then i0 ← i and goto 5,

else S[i] ← {2-Isog(G′[i], Pi) | i = 1, 2, 3} where P1, P2, P3 are the three
rational 2-torsion points of G′[i].

3. i0 = −1.
4. while i0 = −1 do

For i = 1 to 3, do
If S[i] = ∅, then use next i,
else
(a) If (j(S[i][1])) = j(G[i]), then G[i]← G′[i]; G′[i]← S[i][2],
else G[i]← G′[i]; G′[i]← S[i][1].

(b) If G′[i] has unique rational 2-torsion point, then i0 ← i,
else S[i]← {2-Isog(G′[i], Pi) | i = 1, 2, 3} where P1, P2, P3 are
the three rational 2-torsion points of G′[i].

5. Return G′[i0].

From the volcano theory of isogenies [29,21], it is known that the number of
loops of 4 is bounded.

4.3 Families of Pairing-Friendly Edwards Parameters

In this subsection, we investigate pairing-friendly families that yield pairing-
friendly Edwards curves by the algorithm for constructing pairing-friendly Ed-
wards curves in the last subsection.

Let a triplet (t(x), r(x), p(x)) of polynomials be a pairing-friendly family con-
structed by the Brezing-Weng method, the MNT method, etc. We can determine
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whether the family (t(x), r(x), p(x)) yields (infinitely) many pairing-friendly pa-
rameters (t, r, p) such that 4 | p + 1 − t. In general, the following algorithm de-
termines the condition of integers x0 satisfying 4 | p(x0) + 1− t(x0).

Input: A pairing-friendly family (t(x), r(x), p(x)).
Output A set of integers modulo 4m, where m is the common denominator of

the coefficients of p(x) and t(x).
1. S ← {}.
2. For i = 0 to 4m− 1, do

(a) If p(i) + 1− t(i) is an integer and 4 | p(i) + 1− t(i), then S ← S ∪ {i}.
3. Return S.

For an integer x0, p(x0) + 1 − t(x0) is an integer and 4 | p(x0) + 1 − t(x0) if
and only if x0 mod 4m belongs to the output set S of the above algorithm. In
particular, if S is empty, the family (t(x), r(x), p(x)) yields no pairing-friendly
parameter (t, r, p) such that 4 | p + 1 − t, or no pairing-friendly Edwards curve
by the algorithm for constructing pairing-friendly Edwards curves in the last
subsection. We say that (t(x), r(x), p(x)) is a (pairing-friendly) Edwards family
if S is not empty. There exist families that are not Edwards families. For example,
the family of Barreto-Naehrig curves [7] is not an Edwards family.

4.4 Minimal ρ-values of Pairing-Friendly Edwards Curves

We compute the minimal ρ-values of pairing-friendly Edwards curves at embed-
ding degrees up to 50, which are constructible using the algorithm described
in §4.2. In order to construct pairing-friendly parameters, we consider Cocks-
Pinch [14], DEM [17], MNT [30], GMV [22], Freeman curve [19], Scott-Barreto
[34], Brezing-Weng [13], Barreto-Naehrig curve [7], Kachisa-Schefer-Scott [27],
Barreto-Lynn-Scott [6], and the method in [20].

The ρ-values of (t, r, p) constructed by Cocks-Pinch and DEM method are al-
most 2. The remaining methods output pairing-friendly families (t(x), r(x), p(x))
whose ρ-values are less than 2. From these and the observation in §4.3, it is suf-
ficient to investigate only pairing-friendly Edwards families in order to obtain
the minimal ρ-values of constructible pairing-friendly Edwards curves. For any
method, except for the Brezing-Weng method, the number of output families
(t(x), r(x), p(x)) is finite. On the other hand, if the degree of r(x) is bounded,
the number of Brezing-Weng families of fixed embedding degree is finite. By using
an argument similar to that in §8 in [20], if degree of r(x) is more than 100, the
expected number of pairing-friendly parameters with a security level less than
1000 bits generated by (t(x), r(x), p(x)) is less than 0.03. Therefore, we impose
the assumption that the degree of r(x) is less than 100. The column “Edwards
PF curve” in Table 1 lists the minimal ρ-values of families (t(x), r(x), p(x)) with
embedding degree up to 50, which construct pairing-friendly Edwards curves, un-
der the condition that the degree of r(x) is less than 100. Table 8.2 in [20] lists
the minimal ρ-values of general constructible pairing-friendly curves. For com-
parison, we list the result in the column “General PF curve”. The embedding
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degrees in boldface implies that the minimal ρ-values of general constructible
pairing-friendly curves and constructible pairing-friendly Edwards curves coin-
cide at the embedding degree.

Table 1. Comparison of ρ-values of Constructible Pairing-friendly Curves and Con-
structible Pairing-friendly Edwards Curves

General PF curve Edwards PF curve
k ρ D type ρ D type

3 1.000 some MNT 1.000 some GMV
4 1.000 some MNT 1.000 some GMV
5 1.500 3 BW 1.833 7 (19) BW
6 1.000 some MNT 1.000 some GMV
7 1.333 3 mod 4 FST 1.667 7 (3) BW
8 1.250 3 BW 1.500 1 FST
9 1.333 3 BW 1.333 3 BW
10 1.000 some F 1.500 1 BW
11 1.200 3 mod 4 FST 1.400 3 BW
12 1.000 3 BN 1.167 3 FST
13 1.167 3 BW 1.333 3 BW
14 1.333 3 BW 1.500 1 BW
15 1.500 3 BW 1.500 3 BW
16 1.250 1 KSS 1.250 1 KSS
17 1.125 3 BW 1.250 3 BW
18 1.333 3 KSS 1.583 2 BW
19 1.111 3 BW 1.222 3 BW
20 1.375 3 BW 1.500 1 BW
21 1.333 3 BW 1.333 3 BW
22 1.300 1 BW 1.300 1 BW
23 1.091 3 mod 4 FST 1.182 3 BW
24 1.250 3 BW 1.250 3 BW
25 1.300 3 BW 1.400 3 BW
26 1.167 3 BW 1.250 1 BW

General PF curve Edwards PF curve
k ρ D type ρ D type

27 1.111 3 BW 1.111 3 BW
28 1.333 1 BW 1.333 1 BW
29 1.071 3 BW 1.143 3 BW
30 1.500 3 BW 1.500 3 BW
31 1.067 3 mod 4 FST 1.133 3 BW
32 1.063 3 BW 1.125 1 KSS
33 1.200 3 BW 1.200 3 BW
34 1.188 1 BW 1.188 1 BW
35 1.500 3 mod 4 FST 1.583 3 BW
36 1.167 3 KSS 1.167 3 KSS
37 1.056 3 BW 1.111 3 BW
38 1.111 3 BW 1.167 1 BW
39 1.167 3 BW 1.167 3 BW
40 1.375 1 KSS 1.375 1 KSS
41 1.050 3 BW 1.100 3 BW
42 1.333 3 BW 1.333 3 BW
43 1.048 3 mod 4 FST 1.095 3 BW
44 1.150 3 BW 1.200 1 BW
45 1.333 3 BW 1.333 3 BW
46 1.136 1 BW 1.136 1 BW
47 1.043 3 BW 1.087 3 BW
48 1.125 3 BW 1.125 3 BW
49 1.190 3 BW 1.238 3 BW
50 1.300 3 BW 1.350 1 BW

BW: Brezing-Weng, MNT: MNT, GMV: GMV, F: Freeman curveC BN:
Barreto-Naehrig curve, KSS: Kachisa-Schefer-Scott, FST: [20].

4.5 An Example of Brezing-Weng families

Let k be a positive integer divisible by 3, but not divisible by 18. Polynomials
t1(x), r1(x), p1(x) over Q are defined as follows:

(1) k ≡ 3 mod 6, (2) k ≡ 0 mod 6 ([20] Construction 6.6),
t1(x) = x+ 1, t1(x) = x+ 1,
r1(x) = Φk(x), r1(x) = Φk(x),

p1(x) =
1
3
(x−1)2(x2k/3+xk/3+1)+x, p1(x) =

1
3
(x−1)2(xk/3−xk/6+1)+x.

The above family has embedding degree k and discriminant D = 3. The ρ-value
is equal to (2k/3 + 2)/φ(k) if k ≡ 3 mod 6, and (k/3 + 2)/φ(k) if k ≡ 0 mod 6.

Remark 1. If k is divisible by 18, p1(x) has a factor x2 + x + 1; therefore, it is
not irreducible.
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Table 2. ρ-value of (t1(x), r1(x), p1(x)) and minimal ρ-value of constructible pairing-
friendly curves

emb. deg. 3 6 9 12 15 21 24

ρ-value 2.000 2.000 1.333 1.500 1.500 1.333 1.250

minimal ρ 1.000 1.000 1.333 1.000 1.500 1.333 1.250

emb. deg. 27 30 33 39 42 45 48

ρ-value 1.111 1.500 1.200 1.167 1.333 1.333 1.125

minimal ρ 1.111 1.500 1.200 1.167 1.333 1.333 1.125

Lemma 1. If x ≡ 1 mod 6, then t1(x), r1(x), p1(x) all represent integers, and
p1(x)+1−t1(x) is divisible by 4. Moreover, if x ≡ 1 mod12, then p1(x)+1−t1(x)
is divisible by 16.

Proof. If x ≡ 1 mod 6, p1(x) represents an integer because x− 1 is divisible by
3. For both cases (1) and (2), p1(x) + 1− t1(x) is divisible by (x − 1)2/3. Since
x− 1 is divisible by 2, p1(x) + 1− t1(x) is divisible by 4. If x ≡ 1 mod 12, x− 1
is divisible by 4; thus, p1(x) + 1− t1(x) is divisible by 16.

Table 2 shows that for many embedding degrees, the ρ-value of (t1(x), r1(x),
p1(x)) is minimal among those of the constructible pairing-friendly curves.

5 Application of Pairing-Friendly Edwards Curves

In this section, we propose how to apply the construction algorithm of complete
Edwards curve in § 4.2 and the list in § 4.3 to pairing-based cryptography.

For embedding degree kwritten in boldface in Table 1, there is a pairing-friendly
curveE in the Weierstrass form over Fp with a minimal ρ-value listed in Table 8.2
in [20], a complete Edwards curveEdd over Fp and a birational map φ : Edd → E
whose restriction of the subgroup of rational points with order r becomes a group
isomorphism. (We remark that φ need not induce a group isomorphism between
Edd and E(Fp).) In fact, these factors all are obtained in the algorithm construct-
ing a complete Edwards curve in § 4.2. The pairing-friendly curveE is constructed
by Step 1 and 2 , and the birational map φ is obtained by the composite of the
2-isogenies in Step 3 and the transformation in Step 4. (The 2-isogenies and the
transformation are described concretely by Proposition 1, 2 and 4. ) Then we have
the Edwards curveEdd as the output of the algorithm. In this situation, we assume
that E has an efficient pairing ω : G1 × G2 → F×

pk , where G1,G2 are subgroups

with order r of E(Fp) and E(Fpk). Then we propose that in a pairing-based pro-
tocol, scalar multiplication and pairing are computed as follows:

1. Scalar multiplication.
All scalar multiplications are calculated on the Edwards curve Edd. These
scalar multiplications are more efficient than those on the curve E(Fp) in
the Weierstrass form.



30 T. Yasuda, T. Takagi, and K. Sakurai

2. Pairing computation.
ω′ = ω ◦ (φ×φ) defines a pairing on φ−1(G1)×φ−1(G2). (We remark that φ
defines a group isomorphism from the subgroup of elements with odd order
of Edd to that of E(Fpk) cf. [25, Th. 1].) We use ω′ as a pairing in the
protocol. In fact, the pairing ω′(P,Q) for P ∈ φ−1(G1), Q ∈ φ−1(G2) is
calculated by ω′(P,Q) = ω(φ(P ), φ(Q)).

One advantage of our proposal is that we can use the most efficient pairing
implemented on an elliptic curve in the Weierstrass form because the ρ-value
of the elliptic curve is minimal among constructible pairing-friendly curves by
the assumption. Since the scalar multiplication described above is faster than
that on the elliptic curve in the Weierstrass form, our proposal is faster than the
protocol implemented on the elliptic curve in the Weierstrass form.

One achievement of our proposal is that we need not choose φ such that it
induces a group isomorphism between Edd and E(Fp). This implies that the
pairing-friendly elliptic curve used in a protocol need not to be transformed into
an Edwards curve. Therefore, Edwards curves can be applied for more pairing-
friendly curves. For example, let E be a pairing-friendly curve with order divisible
by 4, but not by 8, and with sextic or quartic twists. Since E has sextic or
quartic twists, E has an efficient pairing ω [24]. On the other hand, E can not
be transformed into an Edwards curve because E has no element of order 4 and
by Proposition 2. However, there is an Edwards curve Edd birational to E by
the algorithm constructing a complete Edwards curve in § 4.2. In our proposal,
we can use both the efficient pairing ω on E and the scalar multiplication on
Edd, although Edd and E(Fp) are not isomorphic.

Example 2 and 3 in Appendix A are examples of pairing-friendly curves with
order divisible by 4, but not by 8, and with sextic or quartic twists at embedding
degrees 16 and 24. These curves have the security level recommended in [36].
Therefore, our proposal is effective for these curves. In these cases, the overhead
of each transformation between pairing-friendly curves and Edwards curves is
less than or equal to 10 field multiplications.

6 Conclusion

We investigate pairing-friendly curves isogenous to Edwards curves. Accordingly,
we listed the minimal ρ-values of pairing-friendly curves isogenous to Edwards
curves which are constructed by GMV, Brezing-Weng, Kachisa-Schefer-Scott
method, etc., up to embedding degree 50. We compared these and the minimal
ρ-values of known constructible pairing-friendly curves, and we determined the
embedding degree (less than or equal to 50) such that these two types of min-
imal ρ-values coincide. For these embedding degrees, the scalar multiplication
of pairing-friendly curves with the minimal ρ-values can be computed on Ed-
wards curves efficiently. In fact, we propose a method to make use of the scalar
multiplication on Edwards curves which is not isomorphic but isogenous to the
pairing-friendly curves. We also present examples of pairing-friendly curves to
which our method is applicable at embedding degree 16, 24.
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A Concrete Parameters of Pairing-Friendly Curves

In this section, we present some parameters of pairing-friendly curves with em-
bedding degree 6, 16, 24, which can be transformed into Edwards curves and
achieve the minimal ρ-values among the constructible pairing-friendly curves.
We also present the parameters of Edwards curves associated with the pairing-
friendly curves and their birational maps.

Example 1 (embedding degree 6). We present concrete parameters of a
pairing-friendly curve of minimal ρ-value by the GMV method [22] for k = 6
and discriminant D = 128083. The GMV method uses a family (t(x), r(x), p(x))
with ρ-value 1, where t(x) is the trace of Frobenius, r(x) is the prime order of
the maximal subgroup, and p(x) is the prime of the base field. When k = 6, we
can choose parameters of 80-bit security level [20,36], and thus, r(x) must be
larger than 160 bits. The following pairing-friendly parameter is obtained from
a prime r(x) of r(x) ≥ 2159 and the corresponding t(x) and p(x).

t = −5124435467773721846179552,
r = 2019987604875175648454545408192574280537212419951 (161-bit),

p = 8079950419500702593818176508334829348427003500251 (163-bit).

From this (t, r, p), using the algorithm in §4.2, we obtain the following elliptic
curve,

E : y2 =x3 + 1998898220505475498985523800218737638994117359471x

+ 1485504696264522858267183942852126541062537134957,
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over Fp. The order of E(Fp) is 4r and thus the ρ-value of this curve is log(p)/
log(r) = 1.012. From the algorithm in §2, E is birationally equivalent to the
complete Edwards curve,

Edd : x2 + y2 = 1 + dx2y2,

d = 5447142112983792947243789310208468523057475861758

over Fp. The birational map is given byM (orM−1) in §2 for

x2 = 3657207110027107395510706995842511528822735475634,

x4 = 1585104739241067019245770351764733165593020279937,

y4 = 7654609595387770473489409319104778065105857892185.

M (orM−1) induces a group isomorphism between E(Fp) and Edd.

Example 2 (embedding degree 16). We present concrete parameters of a
pairing-friendly curve for k = 16 andD = 1 by using a family of Kachisa-Schefer-
Scott in [27] Example 4.3:

t(x) =
1

35
(2x5 + 41x+ 35),

r(x) = x8 + 48x4 + 625,

p(x) =
1

980
(x10 + 2x9 + 5x8 + 48x6 + 152x5 + 240x4 + 625x2 + 2398x+ 3125).

The ρ-value of this family is 1.250, which is minimal. We choose parameters of
160-bit security level, and thus, r(x) is 321(� 320) bits. We have a parameter
(t, r, p) from this family:

t =94214916718141455091342235761227844718201546014893892748927714,

r =2292694845382374047698454660181934086354941621399707011613780070//

697827842713365290625541067244113 (321-bit),

p =27738907913157391241888841689555045766744968140788405824011445844//

78218136859751438675039143383901154081701677760538397710213 (411-bit).

From the CM method [2], we obtain the pairing-friendly elliptic curve E over
Fp,

E : y2 = x3 − 4x.

The ρ-value of E is 1.276. E has quartic twists, but it cannot be transformed
into an Edwards curve from Proposition 3. E is 2-isogenous to

E′ : y2 = x3 − 44x+ 112.
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The 2-isogeny E′ → E is given by ψ in Proposition 4 for

x2 = 4, s = 4.

E′ can be transformed into the complete Edwards curve

Edd : x2 + y2 = 1 + 1/2x2y2.

The birational map is given byM (orM−1) in §2 for

x2 = 4, x4 = 2, y4 = −8.

For a pairing on E(Fp), we can apply a technique using quartic twists. There is
a homomorphism φ : Edd → E(Fp), which is an isomorphism on the restriction
of the subgroup of order r. Therefore, scalar multiplication on the subgroup of
order r of E(Fp) can be calculated on the Edwards curve Edd.

Example 3 (embedding degree 24). We present concrete parameters of a
pairing-friendly curve for k = 24 and D = 3 by using a Brezing-Weng family
(t1(x), r1(x), p1(x)) of Example 1 in §4.5. The ρ-value of this family is 1.250,
which is minimal. When k = 24, we can choose parameters of 256-bit security
level [20,36], and thus, r(x) must be larger than 512 bits. Substituting x =
−(264 + 224 + 222 + 210 + 1) for (t1(x), r1(x), p1(x)), we obtain

t =− 18446744073730524160,

r =13407807930064546362398767933349089388959380713288989663936765586//

88701320601174041435552889229362679203517575956740970726902979324//

6184473071987234380451841 (513-bit),

p =152081353922468889962790843420904031625424479881985282688074652856//

610570318692570382493154523793535418373709640919538412058543771270//

4220257629680018237751669098514588024364272654859516960052907 (639-bit).

From the CM method [2], we obtain the pairing-friendly elliptic curve E over
Fp,

E : y2 = x3 + 1.

The ρ-value of E is 1.247. E has sextic twists, but it cannot be transformed into
an Edwards curve from Proposition 3. E is 2-isogenous to

E′ : y2 = x3 + ax+ b,

a =1520813539224688899627908434209040316254244798819852826880746528566//

1057031869257038249315452379353541837370964091953841205854377127042//

20257629680018237751669098514588024364272654859516960052892,

b =22.
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The 2-isogeny E′ → E is given by ψ in Proposition 4 for

x2 = 2,

s =15208135392246888996279084342090403162542447988198528268807465285//

66105703186925703824931545237935354183737096409195384120585437712//

704220257629680018237751669098514588024364272654859516960052904.

E′ can be transformed into the complete Edwards curve,

Edd : x2 + y2 = 1 + dx2y2,

d =24733040147563529679719615563444037470778085395385057049701717401//

39186163689714776227485799390309958095455324067311822030840188850//

97987375326171330463386220128191502251811849.

The birational map is given byM (orM−1) in §2 for

x2 = 2,

x4 =1520813539224688899133247631257769722659852487550972077465184820//

65840456219289135579709431249999239893823993653113339250149437289//

9241855851461642248041776918446171927097591832398476512456429210,

y4 =1439579929504291398537074291550210142396830273010578182575807827//

90663845733639244785551826824274608314781592647947400376411849623//

8061991118351646877302172673318935899261195624617883858500777743.

For a pairing on E(Fp), we can apply a technique using sextic twists. There is
a homomorphism φ : Edd → E(Fp), which is an isomorphism on the restriction
of the subgroup of order r. Therefore, scalar multiplication on the subgroup of
order r of E(Fp) can be calculated on the Edwards curve Edd.
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Abstract. In this work, we implement all three digital signature schemes
specified in Digital Signature Standard (FIPS 186-3), including DSA and
RSA (based on modular exponentiation) as well as ECDSA (based on el-
liptic curve point multiplication), on an ultra-constrained 4-bit MCU of
the EPSON S1C63 family. Myriads of 4-bit MCUs are widely deployed in
legacy devices, and some in security applications due to their ultra low-
power consumption. However, public-key cryptography, especially digital
signature, on 4-bit MCU is usually neglected and even regarded as infea-
sible. Our highly energy-efficient implementation can give rise to a variety
of security functionalities for these ultra-constrained devices.
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1 Introduction

In recent years, the area footprint of hardware implementations of standardized
algorithms has been continuously brought down to a level, where it is hard to
yield any further gain, e.g. for AES [29] from 5,400 GE [34] down to 2400 GE [28].
In the meantime, a great deal of research work has been spent on the design of
new lightweight cryptographic primitives. Notably examples for block ciphers
and hash functions include KLEIN [11], KATAN [5], LED [13], PICCOLO [40] and
PRESENT [4] for the former, and QUARK [1], PHOTON[12] and SPONGENT[3] for the
latter, amongst many others. A major optimization goal for those lightweight
algorithms is to reduce the area footprint in silicon in order to reduce the cost and
the power consumption. The recent adoption of PRESENT as an ISO standard [16]
shows the maturity of the field, and, hence, it is no wonder that state-of-the-art
lightweight algorithms require close to the theoretical optimal area [12].
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At the same time, there is a surprising lack of improvements on the software
side. 8-bit microcontrollers (MCUs) have been long used as the platform of choice
to evaluate the efficiency of cryptographic algorithms in embedded devices. How-
ever, one of the simplest, cheapest and most-abundant computing platforms is
4-bit MCUs that are embedded in a wide variety of everyday items. Applications
range from watches and toys to security sensitive applications such as remote
access and control systems, car immobilizers, one-time password generators, and
all sorts of sensors. The ultra low power consumption of a few micro ampere [37]
makes it a fitting choice for passive RFID-tags and a reasonable choice for active
RFID-tags as well.

Previous works on 4-bit MCUs are mostly on symmetric crypto, i.e. block ci-
pher implementations using a legacy device from ATMEL. PRESENT is reported
in [41], HUMMINGBIRD [8] in [9], and AES in [17,20]. [17] also reports the first
implementations of the hash function, SHA-1 [31], and the public key primitive,
ECC. In this work we partially build on the results of [17] and combine for the
first time SHA-1 and ECC to ECDSA on a 4-bit MCU. We also present the first
implementations of DSA, RSA, and Rabin cryptosystem on a 4-bit MCU and com-
pare the results. Our implementations provide functionalities of digital signature
on 4-bit MCU for applications that are not timing critical, e.g., legally binding
sensor/meter readings and secure firmware updates.

The remainder of this work is organized as follows. In Section 2 the target
platform and the design flow are briefly introduced. Section 3 discusses modular
exponentiation and in particular the Montgomery multiplication. Subsequently,
DSA is treated in Section 4, before Section 5 describes our ECDSA implementation.
Finally, we conclude this paper in Section 6.

2 Target Platform and Design Flow

The Epson S1C63 family of MCUs was introduced in 2011 and is one of the
most recent 4-bit low-power architectures. All members of the S1C63 family
have a 4-bit core along with ROM, RAM, LCD drivers, and I/O ports. It also
has a two-stage pipeline (fetch and execute) and a maximum of 15 and 63 hard-
ware and software interrupt vectors respectively, depending on the model being
used. The MCUs differ mainly in the memory size and on-board components,
such as UART or hardware multiplier [36]. In this work, due to the extensive
space requirement for public-key cryptography, we use S1C63016, which has
26kB (16k*13 bits) of code ROM, 1kB (2k*4 bits) of RAM and 2kB (4k*4 bits)
of data ROM as well as an integer multiplier/divider communicated through
memory I/O.

The S1C63 MCU core supports a wide instruction set with a linear address-
ing space without pages. It has two 4-bit data registers A and B; a 4-bit flag
register F consisting of extension E, interrupt I, carry C and zero flag Z; two
16-bit index registers X and Y supporting post increment instructions; two stack
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pointers, SP1 for address and SP2 for data. Table 1 gives a list of some frequently
used instructions and their instruction cycles. One instruction cycle is equal to
2 clock cycles1.

Table 1. Frequently used instruction list [36] of S1C63 family MCU

Mnemonic∗ Cycles

LD [%ir]+,%r LD %r,[%ir]+ ADC %r,[%ir] ADC %r,[%ir]+ 1

CMP %r,%[ir]+ CMP [%ir]+,%r AND %r,imm4 OR %r,imm4 1

JR sign8 JRNC sign8 CALR imm8 RET 1

LDB %EXT,%BA LDB %rr,imm8 ADD %ir,%BA ADD %ir,sign8 1

LD [%ir]+,[%ir]+ LDB [%X]+,%BA ADC [%ir]+,%r 2

INC [addr6] DEC [addr6] XOR [%ir]+,%r EX %r,[%ir]+ 2
∗ir = index register (X or Y); r = data register (A or B); rr = XL, XH, YL, YH;

imm4 = 4-bit immediate data; imm8 = 8-bit immediate data;
sign8 = signed 8-bit digit; addr6 = 6-bit absolute data address.

Details of the design flow of this MCU can be found in [39]. For debugging
we use a software simulator on PC (Fig. 1(a)) and a FPGA-based hardware em-
ulation board, called In-Circuit Emulator (ICE) (Fig. 1(b)) [38]. The code will
be tested first on the software simulator or on the ICE and then burned on the
target board (Fig. 1(c)). The advantage of using the ICE over the software sim-
ulator is to ensure the proper operation of the system before burning it on the
target board. The software simulator is also used to get the cycle count and code
size of our implementations, which are the two most common performance met-
rics for embedded platforms. Furthermore, energy consumptions are estimated
based on datasheets.

3 Modular Exponentiation

Modular exponentiation is widely used in public-key cryptosystems, like RSA [33]
and DSA [30]. It is the most time consuming operation in these cryptosystems and
determines their performance. This section presents our implementation of 512-
bit and 1024-bit modular exponentiation on the EPSON 4-bit MCU, S1C63016.

The computation of modular exponentiation can be divided into two parts:
modular multiplication of multi-precision integers at the bottom and exponen-
tiation evaluation on the top. In our implementation, modular multiplication is
realized by using the Montgomery multiplication [27] to avoid expensive modular
operations, and exponentiation is evaluated by the binary left-to-right exponen-
tiation algorithm. The implementation details of these two parts are provided in
Sec. 3.1 and Sec. 3.2.

1 In the remainder of the paper we refer to instruction cycles as cycles.
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(a) Software simulator (b) In-circuit emulator

(c) Target board

Fig. 1. S1C63 family development tools [38]

3.1 Montgomery Multiplication

Montgomery multiplication introduced by Peter Montgomery is commonly used
in modular arithmetic. It computes (A×B×2−nt mod M) instead of (A×B mod M)
to avoid expensive modular operations (divisions). Figure 2 provides the typi-
cal Montgomery multiplication, where A and B are the two operands, M is the
modulus, A[], B[], M[] are their (2t)-ary representation, m′ = (−M[0])−1 mod
2t, and 0 ≤ A, B, M < 2nt as well as 0 ≤ A[i], B[i], M[i] ≤ 2t − 1 for all
0 ≤ i ≤ n− 1.

Input: A[], B[], M[]

Output: R[] = MontMul(A[],B[])

01 T[] = 0

02 for i = 0 to n-1
03 T[] = T[] + A[i]B[]
04 u = (T[0] × m′) mod 2t

05 T[] = (T[] + u×M[])/2t

06 output R[] = T[] or R[] = T[] - M[]

Fig. 2. Montgomery multiplication algorithm
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In a näıve implementation, the inputs and the result of the Montgomery mul-
tiplication will satisfy 0 ≤ A, B, R < M. It needs to check if T ≥ M and optionally
performs a subtraction T − M before outputting the result. The check and the
optional subtraction will cause the execution time to depend on the operands.
In addition, the downward scanning in the check is less efficient in both com-
putational time and code size because the EPSON 4-bit MCU only supports
post-increment instructions.

C. Walter [42] as well as G. Hachez and J.-J. Quisquater [15] proposed some
techniques to eliminate the check and the subtraction, in order to have a constant
run-time. In their methods, the parameters will satisfy A, B, R < 2M as well as
2M < 2(n

′−1)t or M < 2(n
′−1)t. However, in order to satisfy the extra condition

for the modulus, we will have n′ = n+ 1 or n+ 2 for an nt-bit modulus, which
will cause a large overhead on ultra-constrained devices. When n is replaced
by n′ = n + 1, the Montgomery multiplication will require 2(n + 1)2 + 1 t-bit
multiplications instead of 2n2 +1 multiplications. In addition, since n is usually
of 2’s power, replacing n by n′ = n + 1 might also cause some extra costs in
memory management.

In order to avoid either the slow check or the extra cost of extending M to 2M,
our implementation only keeps the inputs and the result within 0 ≤ A, B, R < 2nt

(i.e., A, B, and R might be greater than M). The temporary result after each
iteration (lines 02–05 in Fig.2) will satisfy T ≤ 2nt + M − 1. After the whole n
iterations, we only check if T ≥ 2nt, which is much easier than checking T ≥ M,
and a final subtraction T − M is required when T ≥ 2nt. To achieve a constant
time implementation, the optional final subtraction can be evaluated by

T[i] = T[i]− (mask AND M[i])− c

from i = 0 to n− 1, where c is the carry (borrow) flag and mask = (−T[n] mod
2t) = 0 or 2t − 1.

Our implementation achieves the constant execution time of 242,916 and
960,944 cycles for a 512-bit and 1024-bit Montgomery multiplication, respec-
tively. Detailed results are provided in Table 2.

3.2 Exponentiation Computation

We implement the binary left-to-right exponentiation algorithm. In order to
use the Montgomery multiplication, some additional computations are required
before and after the exponentiation. When computing XE mod M, the base num-
ber X will be converted to X′ = (X × 2nt mod M) before exponentiation. After
exponentiation, one extra Montgomery multiplication R = MontMul(R′, 1) =
R′ × 2−nt mod M is required to get the final result. Although the Montgomery
multiplication in our implementation only ensures its output being smaller than
2nt (i.e., might be greater than the modulus M), the output of MontMul(R′, 1) will
always be smaller than M when R′ �= M and M > 2nt−1 (i.e., M is nt-bit).

Table 2 provides the implementation results including the code size2 and the
execution time. The execution time of the exponentiation with a full-length

2 Each instruction takes 13 bits, and we provide the code size in byte (8 bits).
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exponent is the average value by assuming the Hamming weight of exponent is
equal to half of its bit length.

Table 2. Implementation results of Montgomery multiplication and exponentiation.

Operation
Code Size Cycles [million] Energy [mJ] @3V
[bytes] 512-bit 1024-bit 512-bit 1024-bit

Montgomery multiplication 260 0.243 0.961 0.0801 0.317

Exponentiation (full exponent) 499 187.1 1,476 61.74 487.08

Exponentiation (exponent = 216 + 1) 463 5.156 19.15 1.70 6.31

It is clear that exponentiation with a full length exponent (e.g, RSA signature
generation) is impracticality for this ultra-constrained MCU. However, exponen-
tiation with a short exponent (e.g., RSA signature verification with public key
e = 216 + 1) might still be practical. For Rabin cryptosystem [32], only one
modular squaring is required for signature verification. The computation can
be further reduced to one Montgomery multiplication (i.e., without pre- and
post-computation) by using a modified signature S′ = S× 2nt/2 mod M.

4 Digital Signature Algorithm

The digital signature standard was announced by the US National Institute of
Standards and Technology (NIST) in 1991, of which the latest specification can
be found in FIPS 186-3 [30]. It includes the secure hash algorithm (SHA) specified
in FIPS 180-4 [31], and the digital signature algorithm (DSA). In this section, we
combine the SHA-1 implementation in [17] and the modular exponentiation in
the previous section and then implement DSA with domain parameters L = 1024
bits and N = 160 bits (i.e., 1024-bit modulus and 160-bit exponent in modular
exponentiation).

4.1 SHA-1 Implementation

SHA-1 is a secure hash standard published by NIST in 1995. It processes arbitrary
messages up to a length of 264 bits and produces a 160-bit message digest. There
are two stages of SHA-1 computation, preprocessing and hash computation.

Preprocessing stage of SHA-1 consists of the following three steps.

1. Padding: The message is padded by a bit ‘1’ followed by the necessary num-
ber (0 ∼ 511) of bits ‘0’, and then the bit length of the original message (a
64-bit integer) is appended. The length of the message after padding will be
a multiple of 512 bits.

2. Parsing the padded message: This step divides the padded message into
blocks of 512 bits.
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3. Initialize hash value: The 160-bit starting value is initialized by the five
32-bit words: A = 0x67452301, B = 0xEFCDAB89, C = 0x98BADCFE, D =
0x10325476 and E = 0xC3D2E1F0 in big-endian.

Hash computation: SHA-1 consists of 80 rounds for each block (512 bits) of the
message. A block of message will be divided into 16 32-bit words, M0 ∼ M15. In
each round, Wt = Mt for 0 ≥ t ≥ 15, or Wt = ROTL1(Wt−3 ⊕Wt−8 ⊕Wt−14 ⊕
Wt−16) for 16 ≥ t ≥ 79, where ROTLn() is the n-bit rotate left (circular left
shift) operation. The round function ft(B,C,D), constants Kt, and the round
computations are described in Table 3 and Fig. 3.

Table 3. SHA-1 function ft(B,C,D) and constants Kt.

Round (t) ft(B,C,D) Kt

0 to 19 (B ∧ C)⊕ (¬B ∧ D) 0x5A827999

20 to 39 B⊕ C⊕ D 0x6ED9EBA1

40 to 59 (B ∧ C)⊕ (B ∧ D)⊕ (C ∧ D) 0x8F1BBCDC

60 to 79 B⊕ C⊕ D 0xCA62C1D6

A B C D E 

Addition 
modulo 232 

ft 

ROTL5 

Wt 

Kt 

A B C D E 

ROTL30 

Fig. 3. One round of SHA-1 computation

Details of our SHA-1 implementation can be found in [17]. Table 4 summaries
the results for space (code size) and speed optimization.

Table 4. Implementation results of SHA-1

Optimization Code Size [bytes] Cycles Energy Consumption [μJ] @3V

Space 2,038 108,666 35.85

Speed 2,324 87,788 28.97

4.2 DSA Implementation

The digital signature algorithm provides the capability of generation and veri-
fication of a digital signature. The system parameters include two prime numbers
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p and q, satisfying 21023 < p < 21024, 2159 < q < 2160, and q divides (p − 1), as
well as a base number g ∈ Z∗

p of the order q. Signer’s private key is x, satisfying
0 < x < q, and the public key is y = gx mod p. The signature generation and
verification algorithms are given below:

Signature generation

1. Compute h(m) by using SHA-1.
2. Generate a random ephemeral key k satisfying 0 < k < q.
3. Compute k−1 (mod q).
4. Compute r = (gk mod p) mod q.
5. Compute s =

(
k−1(h(m) + x× r)

)
mod q.

Signature verification

1. Verify the signature (r′, s′) satisfying 0 < r′ < q and 0 < s′ < q.
2. Compute w = (s′)−1 mod q.
3. Compute u1 = (h(m)× w) mod q.
4. Compute u2 = (r′ × w) mod q.
5. Compute v = (gu1 × yu2 mod p) mod q.
6. If v = r′, the signature is valid.

We implement both DSA signature generation and verification. The SHA-1 hash
function has been implemented in [17] and introduced in Sec. 4.1, other atomic
computations are described as follows, and the implementation results are sum-
marized in Table 5.

Modular exponentiation: We employ the exponentiation algorithm described
in Sec. 3.2, which is based on the Montgomery multiplication. The modulus is
the 1024-bit prime p, and the length of the exponents k, u1 and u2 are 160-bit.
We also implement Shamir’s double-exponentiation algorithm [10, section V.B]
for signature verification.

Multiplication and reduction: Except the modular exponentiation, other mul-
tiplications modulo q are achieved by using row-wise multiplication and Barrett
reduction [2]. When reducing a 1024-bit integer by the 160-bit modulus q, seven
reductions are required, starting from MSB of the 1024-bit integer.

Inversion: We employ the binary extended GCD algorithm [21, Ch 4.5.2]
implemented in [17].

5 Elliptic Curve Digital Signature Algorithm

Elliptic curve cryptography (ECC), introduced independently by Neil Koblitz [22]
and Victor Miller [25], is an alternative of public-key cryptography. Similar to
the discrete logarithm problem on modular exponentiation, ECC can be employed
in a variety of applications, like key exchange (e.g., ECDH [35]), digital signature
(e.g., ECDSA [18]). The main advantage of ECC is the small key size. ECC with
much smaller key size can provide the same level of security as RSA or DLP-
based cryptography, e.g., ECC with 160-bit key is as secure as RSA with 1024-bit
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Table 5. Implementation results of DSA

Operation
Code Size Cycles Energy Consumption
[bytes] [million] [mJ] @ 3V

Exponentiation (160-bit exponent) 499 232.68 76.78

Double-exp (160-bit exponents) 655 274.69 90.65

Barrett reduction 425 0.036 0.011

Inversion 703 0.13 0.043

Signature generation 3,951 239.18 78.92

Signature verification 4,154 290.78 95.96

key [14]. The small key size reduces the cost of communication, storage, and
even computation, and makes it particularly suitable for constrained devices.

ECC relies upon group operations in an elliptic curve group, and a group E
over field Fp can be defined by the points (x, y) satisfying the short Weierstrass
form:

E : y2 = x3 + ax+ b, where 4a3 + 27b2 �= 0.

In “Standards for Efficient Cryptography 2” (SEC2) [6], an elliptic curve over
a prime field is specified by a sextuple: (p, a, b, G, n, h), where p is the prime, a
and b are the curve parameters, G is a base point with order n, and h is the
cofactor.

In this section, we combine the SHA-1 and the SEC2 curve secp160r1 imple-
mentation in [17] and then provide the first implementation of the standardized
elliptic curve digital signature, ECDSA, on the 4-bit MCU, S1C63016.

5.1 ECDSA Implementation

ECDSA is one of the standardized digital signature schemes. The system param-
eters of ECDSA include the specification of the underlying curve (secp160r1 for
our implementation), signer’s private key d (0 < d < n) and public key Q = dG.
The signature generation and verification algorithms are described as follows.

ECDSA signature generation

1. Compute h(m) by using SHA-1.
2. Generate a random number k satisfying 0 < k < n.
3. Compute k−1 (mod n).
4. Compute r = x mod n, where (x, y) = kG.
5. Compute s = (k−1(h(m) + d× r)) mod n.

ECDSA signature verification

1. Verify the signature (r′, s′) satisfying 0 < r′ < n and 0 < s′ < n.
2. Compute w = (s′)−1 mod n.
3. Compute u1 = (h(m)× w) mod n.
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4. Compute u2 = (r′ × w) mod n.
5. P = (x, y) = u1G+ u2Q.
6. If r′ = x mod n, the signature is valid.

The computations in ECDSA can be divided into three parts: prime field arith-
metic, point arithmetic, and protocol layer. There are two different types of prime
field arithmetic in ECDSA, where the moduli are the pseudo Mersenne prime p in
the point arithmetic and the curve order n in the protocol layer, respectively.

Prime Field Arithmetic. The curve secp160r1 in SEC2 employs the pseudo
Mersenne prime, p = 2160 − 231 − 1, which makes the modulo operations much
more efficient compared to the Barrett reduction [2] and the Montgomery multi-
plication [27]. The computations modulo the 164-bit curve order n in the protocol
layer are performed by using Barrett reduction. We have implemented the fol-
lowing operations for both moduli p and n, and the results are summarized in
Table 6.

Modular Addition and Subtraction: We further optimize the implementation
in [17] and generalize it for both 160-bit and 164-bit moduli by using two entry
points. The functions for the two moduli share most of the code, but some
additional code is required for processing the 164-bit modulus.

Multiplication (M) and Squaring (S): According to the implementation re-
sult in [17], the row-wise multiplication is more efficient for this MCU than the
column-wise or hybrid multiplication. We separately implement the modular
multiplication for the modulus n because a generalized implementation for both
moduli will cause 10% increase in execution time for the 160-bit multiplication
and this significantly slows down the overall run time (as about 90% run time
of a point multiplication is spent on underlying field multiplications).

Bisection is required only for point arithmetic. For an even number, division
by 2 is a right shift of its binary representation. For an odd number, an extra
addition of the odd prime p is required before the right shift.

Inversion (I) is achieved by the binary extended GCD algorithm [21, Ch 4.5.2],
which requires multi-precision addition/subtraction and bisection. The imple-
mentation in [17] only supports the 160-bit modulus p, and we extend it to
support both 160-bit and 164-bit moduli.

Reduction: Since the prime number of the curve secp160r1 is a pseudo mersenne
prime, the reduction modulo p can be implemented efficiently by using only
shifts and additions. However, the reduction modulo the curve order n requires
the Barrett reduction (BR). Each Barrett reduction requires 2M and some ad-
ditions/subtractions. It also requires some space to store the pre-computed
values.

Point Arithmetic. The major computation in ECC is the point multiplication
nP which can be evaluated through the combination of point doubling 2P and
point addition P1 +P2. Instead of representing points in affine coordinates (A),
we employ Jacobian projective coordinates (J ) to implement point doubling and
addition. A point (x, y) in A can be represented by (x, y, 1) in J , and a point
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Table 6. Implementation results of prime field arithmetic.

Operation
modulo 160-bit p modulo 164-bit n

Code Size [bytes] Cycles Code Size [bytes] Cycles

Modular add/sub 292 340 302 344

Multiplication 318 16,226 333 17,836

Bisection 208 207 299 212

Fast reduction 624 679 - -

Barrett reduction - - 425 36,194

(X,Y, Z) in J is identical to the point (X/Z2, Y/Z3) in A. The following are
the three point operations, and detailed results are summarized in Table 7 and
Table 8.

Point Doubling (D): We implement point doubling in Jacobian coordinates
(2J → J ). It requires 4M and 4S as well as some minor field operations, or
alternatively 3M and 5S by using the trick αβ = 1

2

(
(α+ β)2 − α2 − β2

)
[23].

Point Addition/Subtraction (A): Point addition in mixed coordinates (J+A →
J ) takes 8M and 3S, or 7M and 4S by using the trick described above. Point
subtraction is similar to point addition but has an extra subtraction to calculate
the y-coordinate.

Point Multiplication (PM): As shown in [17], we have implemented various scalar
multiplication algorithms, including the basic binary left-to-rightmethod, the left-
to-right NAF recoding [19], and some side-channel countermeasures3 [7,24]. For
signature verification, we also need double point multiplication (d-PM). Employing
NAF recoding in either Shamir’s double-exponentiation algorithm [10] or Möller’s
interleaving algorithm [26] can achieve the average complexity of 1.55 log2 n or
1.66 log2 n, respectively. However, recoding both scalars into NAF will cause huge
overhead in code size on this MCU. We only implement Shamir’s method with
binary scalars which achieves the average complexity of 1.75 log2 n.

Table 7. Implementation results of ECC point arithmetic

Operation Description Code Size [bytes] Cycles

Point doubling 4M + 4S 900 128,453
2J → J 3M + 5S 940 123,781

Point addition 8M + 3S 1,700 178,956
J +A → J 7M + 4S 1,748 176,601

Protocol Layer. We implement the ECDSA signature generation and verifica-
tion. Besides hash computation, for signature generation, we need 2M164+I+2BR
(modulo 164-bit n) and one PM. For signature verification, we need 2M164+I+2BR
and one d-PM. Table 9 shows the implementation results using a 160-bit message
m (including one SHA-1 computation).

3 Please refer to [17, Sec. 5.2] for the security-efficiency trade-off on 4-bit MCU.
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Table 8. Implementation results of ECC point multiplication

Point Multiplication Algorithm
Code Size Cycles Side-channel
[bytes] [millions] Immunity

Left-to-right PM 5,724 34.37 -

Left-to-right PM with left-to-right NAF 8,127 29 -

Double-and-add-always 6,562 48.04 SPA

BRIP 7,681 49 SPA,RPA,ZPA,DPA

Randomization of scalar (20-bit) 8,215 32.21 DPA

Randomization of scalar (64-bit) 8,342 42.04 DPA

Randomized projective coordinates 8,093 30.50 DPA

Randomization of scalar (20-bit) &
8,312 32.52 DPA

Randomized projective coordinates

Table 9. Implementation results of ECDSA

Operation∗ Code Size Cycles Energy Consumption
[Bytes] [Million] [mJ] @ 3V

Signature generation 8,546 35.28 11.64

Signature verification 8,611 41.9 13.87

* Using Left-to-Right PM or d-PM

6 Conclusion

In this work, we implement the three standardized signature schemes, RSA (512-
and 1024-bit), DSA (1024-bit) and ECDSA (160-bit) on a 4-bit MCU. Our imple-
mentation results show that ECDSA is the most practical signature scheme for
ultra-constrained devices, and when only signature verification is required, RSA
with small public key is also practical. Through this work, we show that public-
key cryptography is possible on constrained devices. Future work includes the
investigation of side-channel immunity of our implementations.
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Abstract. A lot of improvements and optimizations for the hardware
implementation of AES algorithm have been reported. These reports
often use, instead of arithmetic operations in the AES original F28 , those
in its isomorphic tower field F((22)2)2 and F(24)2 . This paper focuses on
F(24)2 which provides higher–speed arithmetic operations than F((22)2)2 .
In the case of adopting F(24)2 , not only high–speed arithmetic operations
in F(24)2 but also high–speed basis conversion matrices from the F28 to
F(24)2 should be used. Thus, this paper improves arithmetic operations
in F(24)2 with Redundantly Represented Basis (RRB), and provides basis
conversion matrices with More Miscellaneously Mixed Bases (MMMB).

Keywords: AES, SubBytes, MixColumns, type–I optimal normal basis,
mixed bases.

1 Introduction

Since NIST published Advanced Encryption Standard (AES), namely a special
class of Rijndael [1], many hardware implementations of AES algorithm have
been reported [5,6,7,8,9,10,11]. Thus, this paper also proposes approaches for
more efficient hardware implementaions, where the “efficient ” is, in this paper,
meant as primarily “high–speed ”, and secondly “compact ”.

In the encryption procedure of AES algorithm, 4 steps such as SubBytes,
ShiftRows, MixColumns and AddRoundKey [2] are iterated in sequence. On the
other hand, in the decryption procedure of AES algorithm, 4 steps such as In-
vSubBytes, InvShiftRows, InvMixColumns, AddRoundKey [2] are iterated in se-
quence. For software implementations, SubBytes and InvSubBytes are often im-
plemented with the lookup–table [1]. On the other hand, for hardware implemen-
tations, SubBytes and InvSubBytes are often implemented with some arithmetic
operation circuits in octic binary extension field (Galois field) F28 . In SubBytes
and InvSubBytes, an inversion in F28 is carried out, and it plays a important
role to prevent linear cryptanalysis [3]. Additionally, it is the most complex
among the arithmetic operations. On the other hand, in the case of hardware
implementations, not only SubBytes and InvSubBytes but also MixColumns and
InvMixColumns should be efficient. In MixColumns and InvMixColumns, some mul-
tiplications in F28 are carried out. Thus, this paper first considers to implement

G. Hanaoka and T. Yamauchi (Eds.): IWSEC 2012, LNCS 7631, pp. 51–68, 2012.
© Springer-Verlag Berlin Heidelberg 2012
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more efficient arithmetic operation circuits in F28 by using only some logic gates
such as AND, XOR, and XNOR gates.

In the case of the original AES algorithm [1], an element in F28 is represented
by the polynomial basis, whose modular polynomial is the octic irreducible poly-
nomial t8+ t4+ t3+ t+1 over F2. Therefore, originally, SubBytes and InvSubBytes
implementations require inversion circuits in the F28 . However, by adopting in-
version circuits in towering fields (composite fields [4]) isomorphic to the F28 ,
some researchers have been provided faster and more compact SubBytes and
InvSubBytes circuits. At the beginning, Rudra et al. have shown such implemen-
tation with a certain F(24)2 as the isomorphic towering field [5]. On the other
hand, Satoh and Morioka et al. have shown that with a certain F((22)2)2 [6,7].
After those, some implementations with the other F(24)2 and F((22)2)2 have been
reported [8,9,10,11]. To the authors’ knowledge, the implementations with F(24)2

[5,11] can provide faster inversion circuits than those with F((22)2)2 [6,7,8,9,10].
Thus, this paper focuses on F(24)2 , and proposes Redundantly Represented Ba-
sis (RRB) which can provide faster inversion circuits in F(24)2 than the bases
adopted by [5,11]. Then, this paper also considers multiplication circuits in the
F(24)2 with RRB. By adopting RRB, an inversion in F(24)2 can be carried out
in 4TAND + 7TXOR, where TAND and TXOR respectively denote the critical path
delays of AND and XOR gates.

On the other hand, in the case that arithmetic operations in towering field
isomorphic to the F28 are adopted for the encryption and decryption procedures
of AES algorithm, not only arithmetic operations in an isomorphic towering field
but also basis conversion from the F28 to the isomorphic towering field should
be efficient. However, when many kinds of basis conversion matrices can not be
prepared, it is quite difficult to select some efficient conversion matrices. In order
to prepare more kinds of basis conversion matrices, Nogami et al. have proposed
Mixed Bases (MB) technique [10]; however, when using RRB, MB is not enough
to provide efficient matrices. Thus, this paper proposes More Miscellaneously
Mixed Bases (MMMB), and then shows how to find efficient conversion matrices.

This paper has the following proposals.

PR1: To make arithmetic operations in F(24)2 more efficient
PR2: To find more efficient basis conversion matrices

As described above, the former proposal is achieved by RRB, and the latter
proposal is achieved by MMMB. With RRB and MMMB, this paper theoretically
shows that the encryption and decryption circuits of AES can be provided by
the critical path delay 4TAND + 13TXOR.

2 AES Algorithm Applied Basis Conversion

In encryption and decryption procedures of AES algorithm, a plaintext is split
into 128–bit blocks. Every block is described as the following 4×4 matrix, whose
each element is dealt with as an element in the F28 .
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⎡⎢⎢⎣
H0,0 H0,0 H0,2 H0,3

H1,0 H1,1 H1,2 H1,3

H2,0 H2,1 H2,2 H2,3

H3,0 H3,1 H3,2 H3,3

⎤⎥⎥⎦ (Hj,l ∈ F28). (1)

The original AES algorithm [1] represents an element in F28 with the polynomial
basis {1, α, α2, . . . , α6, α7}, where α is a zero of the irreducible polynomial f0(t) =
t8+ t4+ t2+ t + 1 over F2. Let H denote an element in the F28 , then this paper
arbitrarily represents H as Table 1.

This section introduces the encryption and decryption procedures of AES
algorithm applied basis conversion from the F28 to its isomorphic towering field.
Although the paper fundamentally follows the approach in [5], some parts of the
procedures are improved. In what follows, the improved parts are clarified.

Table 1. Representation styles of an element in the F28

Style Representation (hj ∈ {0, 1})
basis in F28 h0 + h1α + h2α

2 + · · · + h6α
6 + h7α

7

vector [ h0 h1 h2 · · · h6 h7 ]

integer ‘h’ (h = h0 + h12 + h22
2 + · · · + h62

6 + h72
7)

2.1 Encryption Procedure Applied Basis Conversion

0–th Round: Only AddRoundKey is carried out. Then, each element of the 4×4
matrix is processed as

C0,j,l =
(
Hj,l + K0,j,l

)
B (0 ≤ j, l < 4), (2)

where K0,j,l is the j–th row and l–th column element of the 0–th round key (4×4
matrix), and B denotes a basis conversion matrix from the F28 to its isomorphic
towering field. C0,j,l in Eq. (2) becomes an element in the isomorphic towering
field. From there to the last round, each element of the 4×4 matrix is dealt with
as an element in the isomorphic towering field.

From 1–st to 2–nd Last Round: First, SubBytes is carried out. Then, each
element of the 4 × 4 matrix is processed as

Gr,j,l =
(
Cr−1,j,l

)−1

B̄AB (0 ≤ j, l < 4), (3)

where r is the ordinal number of the round, B̄ denotes the inverse matrix of
B, and A denotes the Affine transformation matrix [2]. B̄AB in Eq. (3) can
be preliminarily calculated. Additionally, (Cr−1,j,l)−1 in Eq. (3) is the inverse
element in the isomorphic towering field, and it should be efficiently calculated.
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Next, ShiftRows, MixColumns, and AddRoundKey are carried out. In order to
perform these steps faster, this paper applies a new approach different from that
in [5]. Actually, each element of the 4 × 4 matrix can be processed as Eq. (4a)
or (4b).

Cr,j,l =

((
Gr,〈j+1〉,〈l+j〉 + Gr,〈j+2〉,〈l+j〉

)
+
(
Gr,〈j+3〉,〈l+j〉 + (Kr,j,l + L)B

))

+

(
(‘2’B)

(
Gr,j,〈l+j〉 + Gr,〈j+1〉,〈l+j〉

))
(0 ≤ j, l < 4), (4a)

Cr,j,l =

((
Gr,j,〈l+j〉 + Gr,〈j+2〉,〈l+j〉

)
+
(
Gr,〈j+3〉,〈l+j〉 + (Kr,j,l + L)B

))

+

(
(‘3’B)

(
Gr,j,〈l+j〉 + Gr,〈j+1〉,〈l+j〉

))
(0 ≤ j, l < 4), (4b)

where 〈j〉 means “j mod 4”, Kr,j,l is the j–th row and l–th column element of
the r–th round key (4×4 matrix), and L denotes the Affine transformation vector
[2]. In Eq. (4), ‘02’B and ‘03’B can be preliminarily calculated, and (Kr,j,l+L)B
can be calculated when the round key is generated.

Last Round: First, SubBytes is carried out. Then, each element of the 4 × 4
matrix is processed as Eq. (3).

Next, ShiftRows and AddRoundKey are carried out. Then, each element of the
4 × 4 matrix is processed as

C̃j,l = Gr,j,〈l+j〉B̄ + (Kr,j,l + L) (0 ≤ j, l < 4). (5)

Kr,j,l + L in Eq. (5) can be calculated when the round key is generated. C̃j,l in
Eq. (5) is dealt with in the same way as Hj,l, namely as an element in the F28 .
The 4 × 4 matrix which consists of C̃j,l in Eq. (5) forms a 128–bit block of the
cipher text. This 128–bit block is the same of that not applied basis conversion,
namely that in the original AES algorithm.

2.2 Decryption Procedure Applied Basis Conversion

0–th Round: Only AddRoundKey is carried out. Then, each element of the 4×4
matrix is processed as

Cr−1,j,l =
(
C̃j,l + (Kr,j,l + L)

)
B (0 ≤ j, l < 4). (6)

Kr,j,l +L in Eq. (6) can be calculated when the round key is generated. Cr−1,j,l

in Eq. (6) is an element in the isomorphic towering field. From there to the
last round, each element of the 4 × 4 matrix is dealt with as an element in the
isomorphic towering field.
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From 1–st to 2–nd Last Round: First, InvShiftRows and InvSubBytes are
carried out. Then, each element of the 4 × 4 matrix is processed as

Gr,j,l =
(
Cr,j,〈l−j〉B̄ĀB

)−1

(0 ≤ j, l < 4), (7)

where Ā denotes the inverse Affine transformation matrix [2]. B̄ĀB in Eq. (7)
is preliminarily calculated. Additionally, (Cr,j,lB̄ĀB)−1 in Eq. (7) is the inverse
element in the isomorphic towering field, and it should be efficiently calculated.

Next, AddRoundKey and InvMixColumns are carried out. In order to perform
these steps faster, this paper applies a new approach different from that in [5].
For example, each element of the 4 × 4 matrix can be processed as

Cr−1,j,l =

(
(‘14’B)Gr,j,l + (‘11’B)Gr,〈j+1〉,l

)

+

(
(‘13’)BGr,〈j+2〉,l +

(
(‘9’B)Gr,〈j+3〉,l + Jr,j,l

))
, (8a)

Jr,j,l = (‘14’Kr,j,l + ‘11’Kr,〈j+1〉,l + ‘13’Kr,〈j+2〉,l + ‘9’Kr,〈j+3〉,l + L)B, (8b)

where ‘14’B, ‘11’B, ‘13’B, and ‘9’B can be preliminarily calculated, and Jr,j,l

can be calculated when the round key is generated.

Last Round: First, InvShiftRows and InvSubBytes are carried out. Then, each
element of the 4 × 4 matrix is processed as Eq. (7).

Next, AddRoundKey is carried out. Then, each element of the 4 × 4 matrix is
processed as

Hj,l = G1,j,lB̄ + K0,j,l (0 ≤ j, l < 4). (9)

3 Arithmetic Operations in Towering Field F(24)2

In the AES algorithm applied basis conversion from the F28 to F(24)2 , inversions
and multiplications in F(24)2 are required as described in Eqs. (3), (4), (7) and
(8). Thus, this section introduces how to prepare F(24)2 and its subfield F24 , and
efficient arithmetic operations in these extension fields.

In the case of F(24)2 , first construct F24 , then 2–nd tower over the F24 . Most
of researchers [5,6,7,8,9,10,11] use normal bases and polynomial bases to pre-
pare extension fields and towering fields. This paper also adopts normal bases to
achieve 2–nd towering over F24 . On the other hand, this paper adopts an inno-
vative basis to construct F24 . This section introduces the detail of the adopted
bases and the arithmetic operations.

3.1 Quartic Extension Field F24

Irreducible Polynomial and an Innovative Basis: There exist 3 kinds of
quartic irreducible polynomials over F2 as

f1(t) = t4+t+1, f2(t) = t4+t3+1, f3(t) = t4+t3+t2+t+1. (10)
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Normal bases and polynomial bases in F24 can be distinguished from a zero of
these polynomials. For a zero β of f1(t), the set {β, β2, β22

, β23} does not form
normal bases; however, {1, β, β2, β3} forms a polynomial basis. Rudra et al. [5]
and Joen et al. [11] have shown that the polynomial basis efficiently carries out
arithmetic operations, especially inversion, in F24 .

On the other hand, for a zero β of f3(t), the sets {β, β2, β22
, β23} and {1, β, β2,

β3} respectively form a normal basis and a polynomial basis. The normal basis
is especially called type–I optimal normal basis (ONB) [12], and it carries out
arithmetic operations in F24 as efficiently as in Rudra et al.’s and Jeon et al.’s
implementations. However, this paper adopts an innovative basis instead of type–
I ONB and the polynomial basis. The basis is the union {β, β2, β22

, β23
, 1} of type–

I ONB {β, β2, β22
, β23} and {1}, and it can provide faster arithmetic operations

than the type–I ONB and the polynomial basis. This paper especially calls it
Redundantly Represented Basis (RRB). In what follows, the properties of RRB
is described.

β which is a zero of f3(t) has the following relations.

f3(β) = β4+ β3+ β2+ β + 1 = 0,⇔ f3(β) = β + β2+ β22
+ β23

+ 1 = 0, (11a)

∵ (β + 1)f3(β) + 1 = β5 = 1. (11b)

According to Eq. (11b), type–I ONB {β, β2, β22
, β23} is described as

{β, β2, β22
, β23} = {β, β2, β3, β4}. (12)

Because β, β2, β22
, β23

are conjugate zeros of f3(t), 4 kinds of polynomial bases
are considered according to Eq. (11b) as

{1, β, β2, β3} = {1, β, β2, β3 }, (13a)

{1, β2, (β2)2, (β2)3} = {1, β, β2, β4}, (13b)

{1, β22
, (β22

)2, (β22
)3} = {1, β2, β3, β4}, (13c)

{1, β23
, (β23

)2, (β23
)3} = {1, β, β3, β4}. (13d)

According to Eqs. (12), (13), a basis is obtained by removing some one ele-
ment from the set {1, β, β2, β3, β4}. On the other hand, RRB {β, β2, β22

, β23
, 1}=

{1, β, β2, β3, β4} uses all. Thus, the conversion from RRB to the bases in Eqs.
(12), (13) can be easily achieved from Eq. (11a).

Let D denote an element in F24 , then D is represented with RRB as Eq. (14a).

D = d0β + d1β
2+ d2β

22
+ d3β

23
+ d4 (dj ∈F2). (14a)

= (d0 + d4)β + (d1 + d4)β2+ (d2 + d4)β22
+ (d3 + d4)β23

(14b)

= (d4 + d2) + (d0 + d2)β + (d1 + d2)β2+ (d3 + d2)β3. (14c)
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As described above, according to Eq. (11a), D represented with RRB can be
easily converted to that represented with type–I ONB and the polynomial bases
in Eqs. (12), (13a) as Eqs. (14b), (14c).

In principle, RRB in F24 can not uniquely represent an element in F24 . For
example, D = β + β2 is also described as D = β22

+ β23
+ 1 according to Eq.

(11a). However, D is uniquely represented when the Hamming weight of D is
restricted to be equal to or less than 2. On the other hand, the Hamming weight
of D can be easily reduced to be equal to or less than 2 according to Eq. (11a)
when it is more than 2.

Arithmetic Operations: Let E denote an element in F24 , then E is repre-
sented with RRB as

E = e0β + e1β
2+ e2β

22
+ e3β

23
+ e4 (ej ∈F2). (15)

A multiplication M = D × E is given as follows. Note that it is derived from
type–I Cyclic Vector Multiplication Algorithm (CVMA) [13] and Eq. (14).

M = m0β + m1β
2+ m2β

22
+ m3β

23
+ m4 (mj ∈F2)

= (d4e0+d2e1+d1e2+d3e3+d0e4)β + (d0e0+d4e1+d3e2+d2e3+d1e4)β2

+ (d3e0+d1e1+d4e2+d0e3+d2e4)β22
+ (d1e0+d0e1+d2e2+d4e3+d3e4)β23

+ (d2e0+d3e1+d0e2+d1e3+d4e4) (16a)

= (a1,2b1,2+a0,4b0,4)β + (a2,3b2,3+a1,4b1,4)β2 + (a0,3b0,3+a2,4b2,4)β22

+ (a0,1b0,1+a3,4b3,4)β23
+ (a0,2b0,2+a1,3b1,3), (16b)

aj,l = dj + dl, bj,l = ej + el (0 ≤ j < l ≤ 4). (16c)

The critical path delay of the multiplication circuit given by Eq. (16b) is 1TAND+
2TXOR. On the other hand, that given by Eq. (16a) is 1TAND + 3TXOR. Thus, in
principle, a multiplication in F24 should be calculated as Eq. (16b) (Fig. 2).

From here on, suppose that E is a non–zero constant element in F24 , then
this subsection considers a multiplication by the constant element E. When the
Hamming weight of E is restricted to be equal to or less than 2, namely 1 or 2, E
can be classified as Table 2. According to Eq. (16a), a multiplication N = D×E
can be carried out with theoretically no delay when E belongs to the class (I)
of Table 2, that is, the Hamming weight of E is 1. On the other hand, it can be
calculated with 1TXOR when E belongs to the class (II) of Table 2, that is, the
Hamming weight of E is 2. For example, multiplications N0 = D × (1, 0, 0, 0, 0)
and N1 = D × (1, 1, 0, 0, 0) are respectively given from Eq. (16a) as

N0 = d4β + d0β
2+ d3β

22
+ d1β

23
+ d2, (17a)

N1 = (d2 + d4)β + (d0 + d4)β2+ (d3 + d1)β22
+ (d0 + d1)β23

+ (d2 + d3). (17b)

A squaring S = D2 can be carried out with theoretically no delay as

S = d3β + d0β
2+ d1β

22
+ d2β

23
+ d4. (18)
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Table 2. Classification of non–zero elements in F24

Class (I) (II)

(1, 0, 0, 0, 0) (1, 1, 0, 0, 0), (1, 0, 1, 0, 0)

(0, 1, 0, 0, 0) (0, 1, 1, 0, 0), (0, 1, 0, 1, 0)

element in F∗
24

† (0, 0, 1, 0, 0) (0, 0, 1, 1, 0), (0, 0, 1, 0, 1)

(0, 0, 0, 1, 0) (0, 0, 0, 1, 1), (1, 0, 0, 1, 0)

(0, 0, 0, 0, 1) (1, 0, 0, 0, 1), (0, 1, 0, 0, 1)

Hamming weight 1 2
† (e0, e1, e2, e3, e4) denotes an element E in Eq. (15).

Table 3. The critical path delay of each arithmetic operation circuit in F24

Multiplication Multiplication
Implementation Multiplication Squaring Inversion by the class (I) by the class (II)

element element

Rudra al.’s [5]
(1, 3)† (0, 1)† — —

Jeon al.’s [11] (2, 2)†

With RRB (1, 2)† (0, 0)† (0, 0)† (0, 1)†

† (j, l) means jTAND + lTXOR.
‡ The delay when TAND≥TXOR is shown. That when TAND≤TXOR is given as (1, 3).

From here on, suppose that D is a non–zero element in F24 , then an inversion
I = D−1 is given as follows (Fig. 3). See Appendix A about how to derive it.

I = i0β + i1β
2+ i2β

22
+ i3β

23
+ i4 (ij ∈F2)

= (a2,4+a0,4a1,4a1,3)β + (a3,4+a1,4a2,4a0,2)β2 + (a0,4+a2,4a3,4a1,3)β22

+ (a1,4+a3,4a0,4a0,2)β23
+ (a0,4a2,4a1,3+a1,4a3,4a0,2), (19a)

aj,l = (dj + dl) (0 ≤ j < l ≤ 4), (19b)

where d (d ∈ F2) means “NOT d”.
The critical path delay of each arithmetic operation circuit with RRB is given

as Table 3. As shown in Table 3, compared to Rudra et al.’s [5] and Jeon
et al.’s [11] implementations , RRB can reduce each critical path delay of a
multiplication circuit and a squaring circuit in F24 by 1TXOR.

3.2 2–nd Towering Field F(24)2

Irreducible Polynomial and Normal Basis: In the same way as Sec. 3.1,
this subsection first considers the setting of irreducible polynomial. Let a quadr-
atic polynomial over F24 be described as

g(t) = t2 + μt + ν (μ, ν ∈ (F24 − {0})). (20)
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In order that g(t) is irreducible over F24 , g(t) needs to satisfy that μ2/ν �∈ F22 .
Suppose that γ is a zero of g(t), then the sets {γ, γ16} and {1, γ} respectively
form a normal basis and a polynomial basis in F(24)2 . Among these bases, this
subsection focuses on the normal basis only.

Arithmetic Operations: Let C denote an element in F(24)2 , B denote a basis
conversion matrix from the F28 to its isomorphic towering field F(24)2 , and ‘j’
(0 ≤ j < 256) denote an element in F28 described by the integer style of Table
1. Then, C and ‘j’B is represented with the normal basis {γ, γ16} as

C = Dγ + Eγ16 (D, E ∈ F24), ‘j’B = Qjγ + Rjγ
16 (Qj , Rj ∈ F24), (21)

where D, E, Qj , and Rj are represented with RRB in F24 . Then, a multiplication
W = C × ‘j’B is given as follows. See Appendix A about how to derive it.

W = Y γ + Zγ16 (Y, Z ∈ F24) = {Dδj + Eεj}γ + {Dεj + Eηj}γ16, (22a)

δj = Qj(μ +
ν

μ
) + Rj · ν

μ
, εj = (Qj + Rj)· ν

μ
, ηj = Qj · ν

μ
+ Rj(μ +

ν

μ
), (22b)

where δj , εj , and ηj can be preliminarily calculated. According to Tables 2, 3,
the critical path delay of the multiplication circuit given by Eq. (22a) is at most
2TXOR even if δj , εj , and ηj are assigned with arbitrary elements.

From here on, suppose that C is a non–zero element in F(24)2 , then with Itoh–
Tsujii inversion Algorithm (ITA) [14], an inversion X =C−1 =(C ·C16)−1C16 is
given as follows (Fig. 6(a)). Note that it is derived by generalizing the approach
in [9], in detail, by appending a μ2–multiplication in F24 .

X = Y γ + Zγ16 (Y, Z ∈ F24) = {Eγ + Dγ16}/{DEμ2 + (D+E)2ν}, (23)

where each multiplication by μ2 and ν can be carried out with theoretically no
delay according to Table 3 when the following condition is satisfied.

Condition 1 Both μ2 and ν belong to the class (I) of Table 1.

Thus, this paper considers that both μ2 and ν are assigned with the class (I)
elements. Then, there exist 20 irreducible polynomials over F24 which satisfies
Cond. 1, and the critical path delay of the inversion circuit in F(24)2 is given as
4TAND + 7TXOR from Table 3 and Fig. 6(a). As shown in Table 4, the circuit
of this work can carry out an inversion in the towering field isomorphic to the
F28 faster than those of the others. On the other hand, the circuit size is given
as Table 5 (before downsizing). As shown in Table 5, the inversion circuit in
F(24)2 of this work (before downsizing) uses more XOR gates than that of Jeon
et al. Thus, the next subsection considers how to downsize the inversion circuit
in F(24)2 .

3.3 Theoretically Downsizing the Inversion Circuit in F(24)2

Focus on Fig. 6(a), then it is seeable that the wire (i) directly connects to
the multiplication circuit (I) and (II), the wire (ii) connects through the μ2–
multiplication circuit to the multiplication circuit (I) and directly connects to
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the multiplication circuit (III), and the wire (iii) directly connects to the multi-
plication circuit (II) and (III). Thus, for the inversion circuit in F(24)2 , a part,
namely 1–st part shown in Fig. 2(a), of each multiplication circuit in F24 can
be shared with each other as Fig. 6(b). Then, the circuit size can be reduced by
30XOR gates according to Table 5. As a result, the inversion circuit in F(24)2

of this work (after downsizing) uses less logic gates than that of Jeon et al.

Table 4. The critical path delay of an inversion circuit in towering field

Towering field Implementation Critical path delay

Satoh and Morioka et al.’s [6,7]
4TAND + 17TXOR

F((22)2)2
Mentens’s et al. [8]

Canright’s [9] 4TAND + 15TXOR

Nogami et al.’s [10] 4TAND + 14TXOR

Rudra et al.’s [5]
4TAND + 10TXOR

F(24)2 Jeon et al.’s [11]
This work 4TAND + 7TXOR

Table 5. The number of logic gates for an inversion circuit in F(24)2

Implementation Before downsizing After downsizing

Rudra et al.’s [5] 60AND + 72XOR

Jeon et al.’s [11] 58AND + 67XOR + 2OR

This work 42AND + 98XOR + 2XNOR 42AND + 68XOR + 2XNOR

4 Basis Conversion between F28 and F(24)2

This section evaluates the calculation efficiencies given by basis conversion ma-
trices for Eq. (3) (namely, SubBytes), Eq. (4) (namely, ShiftRows, MixColumns,
and AddRoundKey), Eq. (7) (namely, InvShiftRows and InvSubBytes), and Eq. (8)
(namely, InvMixColumns and AddRoundKey).

4.1 Calculation Efficiency of Eqs. (3) and (7)

This subsection considers each multiplication by B̄AB and B̄ĀB in Eqs. (3)
and (7), where B, B̄, A, and Ā respectively denote a basis conversion matrix
from the F28 to its isomorphic towering field F(24)2 , its inverse matrix, Affine
transformation matrix, and the inverse Affine transformation matrix. In the
case of adopting RRB described in Sec. 3.1, both conversion matrices B̄AB
and B̄ĀB from F(24)2 over the F24 constructed by RRB to the same F(24)2 are
required. Actually, these conversion matrices are given by a basis conversion
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matrix B from the F28 to F(24)2 over the F24 constructed by type–I ONB of Eq.
(12) or the polynomial bases of Eq. (13) according to Eq. (14).

In order to show an example, suppose an extension field F24 constructed by
type–I ONB {β, β2, β22

, β23}, a field F(24)2 which 2–nd towers over the F24 with
the normal basis {γ, γ16}, and a basis conversion matrix B from the F28 to the
F(24)2 . Then, B̄AB in Eq. (3) is represented as the left–hand equation in Eq. (24),
and an example of the B̄AB is given as the right–hand equation in Eq. (24).

B̄AB=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u0,0 u0,1 u0,2 . . . u0,6 u0,7

...
. . .

...

u3,0 u3,1 u3,2 · · · u3,6 u3,7

v0,0 v0,1 v0,2 . . . v0,6 v0,7

...
. . .

...

v3,0 v3,1 v3,2 · · · v3,6 v3,7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, B̄AB=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1
0 1 0 1 1 1 1 1
0 0 0 1 0 1 1 0
0 0 0 0 0 1 0 0
0 0 1 0 1 0 1 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(24)
Let Cr−1,j,l in Eq. (3) be corresponding to a non–zero element C =Dγ + Eγ16

(D, E ∈ F24) which is the input of the inversion circuit of Fig. 6(b), and let
(Cr−1,j,l)−1 in Eq. (3) be corresponding to X =C−1 =Y γ + Zγ16 (Y, Z ∈ F24)
which is the output of the inversion circuit of Fig. 6(b). In the case that the
elements Y and Z in F24 are represented with RRB as shown in Fig. 6(b), con-
verting the representations from RRB to type–I ONB is easy from Eq. (11a) as

Y = y0β + y1β
2+ y2β

22
+ y3β

23
+ y4

= (y0 + y4)β + (y1 + y4)β2+ (y2 + y4)β22
+ (y3 + y4)β23

, (25a)

Z = z0β + z1β
2+ z2β

22
+ z3β

23
+ z4

= (z0 + z4)β + (z1 + z4)β2+ (z2 + z4)β22
+ (z3 + z4)β23

. (25b)

Then, a multiplication by B̄AB is given as Eq. (26), and the circuits of Eq. (26)
is drawn as Fig. 1.

XB̄AB=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0 + y4

y0 + y1

(y0 + y4) + (z0 + z4)
(y0 + y1) + (y2 + y4)
(y0 + y1) + (z0 + z4)
(y0 + y1) + (y2 + y3)(
(y0 + y1) + (y2 + y4)

)
+ (z0 + z4)

(y0 + y1) + (z0 + z1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

. (26)
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Fig. 1. Example images of circuits for Eq. (26)

According to the above consideration, a conversion matrix B̄AB from the F(24)2

over the F24 constructed by RRB to the same F(24)2 over the F24 constructed by
RRB (actually, type–I ONB) is obtained.

A row of B̄AB can be represented with the following 2 vectors from Eq. (24).

Uj = [ uj,0 uj,1 uj,2 uj,3 ]T , Vj = [ vj,0 vj,1 vj,2 vj,3 ]T . (27)

Let Hw(U) denote the number of “1” in the vector U , namely the Hamming
weight of U . According to Eq. (26) and Fig. 1, the critical path delay of the
circuit multiplying B̄AB is equal to or less than 2TXOR when all vectors Uj and
Vj (0 ≤ j < 8) satisfy that Hw(Uj) :Hw(Vj) �= 3:1, 1:3, and Hw(Uj)+Hw(Vj) ≤
4; otherwise, it is 3TXOR. The probability when all column vectors of B̄AB
satisfy that Hw(Uj) :Hw(Vj) �= 3:1, 1:3, and Hw(Uj) + Hw(Vj) ≤ 4 is given as

(8C0+8C1+8C2+8C3+4C4 · 4C0+4C2 · 4C2+4C0 · 4C4)8/28×8 ≈ 0.47%. (28)

Note that the above probability is not strictly accurate because a basis conversion
matrix must be a regular matrix.

On the other hand , the above consideration of a multiplication by B̄AB in
Eq. (3) is also available for a multiplication by B̄ĀB in Eq. (7).

4.2 Calculation Efficiency of Eqs. (4) and (8)

The calculation circuit of Eq. (4a) is shown in Fig. 4. Naturally, the calculation
circuit of Eq. (4b) can be drawn in the same way as Fig. 4. According to Fig. 4,
the calculation efficiency of Eq. (4) depends on the element ‘2’B or ‘3’B in F(24)2 .
In more detail, when a multiplication by either ‘2’B or ‘3’B can be carried out
in 1TXOR, the critical path delay of the calculation circuit of Eq. (4) is 3TXOR;
otherwise, it is 4TXOR since each multiplication by ‘2’B and ‘3’B needs at most
2TXOR according to Sec. 3.2.

On the other hand, the calculation efficiency of Eq. (8) depends on the ele-
ments ‘14’B, ‘11’B, ‘13’B, and ‘9’B in F(24)2 . This paper proposes how to find
the B such that the critical path delay of the calculation circuit of Eq. (8) is
4TXOR. In order to achieve the above proposal, according to Eq. (22a), both an
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element among δ14, δ11, δ13, δ9, ε14, ε11, ε13 and ε9 of Eq. (22b), and an element
among ε14, ε11, ε13, ε9, η14, η11, η13 and η9 of Eq. (22b) must be a zero element
or the class (I) element of Table 2. For example, when ε9 is a zero element or the
class (I) element, the calculation of Eq. (8) can be carried out as Fig. 5, where
Dj,l and Ej,l denote elements in F24 which satisfy that Gr,j,l = Dj,lγ + Ej,lγ

16,
Yj,l and Zj,l denote elements in F24 which satisfy that Cr−1,j,l = Yj,lγ + Zj,lγ

16,
and Uj,l and Vj,l denote elements in F24 which satisfy that Jr,j,l = Uj,lγ+Vj,lγ

16.

4.3 More Miscellaneously Mixed Basis (MMMB)

This paper tries for the following goals.

Goal 1: Each multiplication by B̄AB and B̄ĀB in Eqs. (3) and (7) is carried
out in 2TXOR.

Goal 2: The calculation of either Eq. (4a) or Eq. (4b) is carried out in 3TXOR.
Goal 3: The calculation of Eq. (8) is carried out in 4TXOR.

In order to achieve the above goals, it is important that an efficient basis conver-
sion matrix B among a lot of prepared basis conversion matrices Bs is selectable.
As an efficient technique to prepare more Bs, Nogami et al. have proposed Mixed
Bases (MB) [10], which is applied to an implementation with F((22)2)2 in [10].
This subsection first considers to apply MB to an implementation with F(24)2 .

For a multiplication in F(24)2 in Eq. (8), consider the following multiplication
instead of Eq. (22a). See Appendix A about how to derive it.

W = Y + Zγ (Y, Z ∈ F24) = {Dδj + Eεj}γ + {Dζj + Eηj}γ16, (29a)

δj = (Qj + Rj)ν, εj = Qjν + Rj(μ2 + ν), ζj = Qjμ, ηj = Rjμ, (29b)

where δj , εj, ζj , and ηj can be preliminarily calculated. In Eq. (29a), the normal
basis {γ, γ16} is adopted for the input in the same way of Eq. (22a). On the
other hand, the polynomial basis {1, γ} is adopted for the output instead of the
normal basis {γ, γ16}. The critical path delay of this multiplication circuit in
F(24)2 is considered in the same way of that of Eq. (22a) (See Sec. 4.2). This
multiplication circuit in F(24)2 can provide conversion matrices B̄ĀBs from F(24)2

2–nd towering with not only the normal basis {γ, γ16} but also the polynomial
basis {1, γ}. However, the number of B̄ĀBs prepared by this technique is not
enough to perfectly achieve the above goals. Thus, this paper improves MB.

As described in Sec. 4.1, in the case that F24 is constructed by RRB, the basis
conversion matrices Bs when F24 are constructed by type–I ONB of Eq. (12) and
the polynomial bases of Eq. (13) are available. In more detail, a combination
of two bases among the bases of Eqs. (12), (13) can be used to represent an
element in F(24)2 . Let C denote an element in F(24)2 . For example, consider
the combination of the normal basis {β, β2, β22

, β23} and the polynomial basis
{1, β, β2, β3}, then C is represented with the combination as

C = (d0β+d1β
2+d2β

22
+d3β

23
)γ+(e0+e1β+e2β

2+e3β
3)γ16 (dj , ej ∈F2). (30)
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By only adopting the combinations as above, 20× 5× 5× 5× 5 = 12,500 kinds
of B̄ABs and B̄ĀBs can be respectively prepared. In this paper, the technique
to adopt different bases for the input and output of arithmetic operation in
F(24)2 and to use a combination of different bases in F24 is especially called More
Miscellaneously Mixed Bases (MMMB).

Actually, by using MMMB, some B̄ABs and B̄ĀBs to achieve Goal 1, and
some Bs to achieve Goal 3 can be found; however, no ‘2’Bs and ‘3’Bs to
achieve Goal 2 can be found. Thus, in this case, the calculation delay of Eq. (4)
becomes 4TXOR, not 3TXOR. This issue will be kept as a future work.

By adopting RRB and MMMB as described in this paper, the critical path
delays of the encryption and decryption procedures of AES algorithm are shown
as Tables 6, 7. Then, each round of the encryption procedure can be carried out
in 4TAND+13TXOR. On the other hand, each round of the decryption procedure
also can be carried out in 4TAND + 13TXOR.

Table 6. The critical path delay of the encryption procedure of AES

Implementaion SubBytes MixColumns AddRoundKey
Inversion Others

Rudra et al.’s [5] (4, 10)† no data
Satoh and Morioka et al.’s [6,7] (4, 17)† (0, 7)† (0, 1)†

Jeon et al.’s [11] (4, 10)† (0, 11)†

This work (4, 7)† (0, 2)† (0,4)†

† (j, l) means jTAND + lTXOR.

Table 7. The critical path delay of the decryption procedure of AES

Implementaion SubBytes
MixColumns AddRoundKey

Inversion Others

Jeon et al.’s [11] (4, 10)† (0, 10)† (0, 7)† (0, 1)†

This work (4,7)† (0,2)† (0, 4)†

† (j, l) means jTAND + lTXOR.

5 Conclusion and Future Works

This paper proposed RRB to make arithmetic operations in towering field F(24)2

isomorphic to the AES original F28 more efficient, and MMMB to provide ef-
ficient basis conversion matrix from the F28 to F(24)2 . As a result, this paper
theoretically showed that both of the encryption and decryption procedures of
AES algorithm can be carried out in the critical path delay 4TAND + 13TXOR.
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On the other hand, the authors hold a lot of agendas, for example, as

FW1: An acceleration of a multiplication by either ‘2’B or ‘3’B
FW2: An implementaion of key expansion as described in [6]
FW3: An actual hardware implementation of this paper’s approach
FW4: To report the evaluations of the above implementation such as the

hardware size, the memory requirement, the power consumption and the
security vulnerabilities

FW5: Countermeasures for side–channel attacks such as applying masking [15]
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A Derivation of Eqs. (19), (22), and (29)

Eq. (19) is derived with ITA [14] as

I = D−1 = (D · D4)−1D4 = (D · D22
)−1D22

= {(d0β + d1β
2+ d2β

22
+ d3β

23
+ d4)(d2β + d3β

2+ d0β
22

+ d1β
23

+ d4)}2

× (d2β + d3β
2+ d0β

22
+ d1β

23
+ d4) (∵ Eq. (18), D ·D22 ∈ F22)

= {(d1d2+d2d0+d0d3+d3d4+d4d1)(β+β22
)

+ (d0d1+d1d3+d3d2+d2d4+d4d0)(β2+β23
) + (d0+d1+d2+d3+d4)}

× (d2β + d3β
2+ d0β

22
+ d1β

23
+ d4) (∵ Eqs. (16a), (18))

= (a2,4+a0,4a1,4a1,3)β + (a3,4+a1,4a2,4a0,2)β2 + (a0,4+a2,4a3,4a1,3)β22

+ (a1,4+a3,4a0,4a0,2)β23
+ (a0,4a2,4a1,3+a1,4a3,4a0,2) (∵ Eqs. (16a)), (31a)

aj,l = (dj + dl) (0 ≤ j < l ≤ 4), (31b)

On the other hand, because γ and γ16 in Eq. (22a) are zeros of g(t) in Eq. (20),
the following relations are obtained with the Vieta’s formulas.

γ + γ16 = μ, γ · γ16 = ν =
ν

μ
·(γ + γ16). (32)

Thus, Eq. (22) is derived as

W = C × ‘j’B = (Dγ + Eγ16)(Qjγ + Rjγ
16)

= (D + E)(Qj + Rj)(γ · γ16) + DQj(γ + γ16)γ + ERj(γ + γ16)γ16

= (D + E)(Qj + Rj)· ν
μ
·(γ + γ16) + DQj ·μ·γ + ERj ·μ·γ16 (∵ Eq. (32))

= {Dδj + Eεj}γ + {Dεj + Eηj}γ16, (33a)

δj = Qj(μ +
ν

μ
) + Rj · ν

μ
, εj = (Qj + Rj)· ν

μ
, ηj = Qj · ν

μ
+ Rj(μ +

ν

μ
). (33b)

On the other hand, Eq. (29) is derived in the same way.
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Abstract. Forward secrecy (FS) is a central security requirement of authenti-
cated key exchange (AKE). Especially, strong FS (sFS) is desirable because it
can guarantee security against a very realistic attack scenario that an adversary is
allowed to be active in the target session. However, most of AKE schemes can-
not achieve sFS, and currently known schemes with sFS are only proved in the
random oracle model. In this paper, we propose a generic construction of AKE
protocol with sFS in the standard model against a constrained adversary. The
constraint is that session-specific intermediate computation results (i.e., session
state) cannot be revealed to the adversary for achieving sFS, that is shown to be
inevitable by Boyd and González Nieto. However, our scheme maintains weak FS
(wFS) if session state is available to the adversary. Thus, our scheme satisfies one
of strongest security definitions, the CK+ model, which includes wFS and ses-
sion state reveal. The main idea to achieve sFS is to use signcryption KEM while
the previous CK+ secure construction uses ordinary KEM. We show a possible
instantiation of our construction from Diffie-Hellman problems.

Keywords: authenticated key exchange, strong forward secrecy, signcryption.

1 Introduction

1.1 Background

Authenticated key exchange (AKE) is one of most important cryptographic protocols in
the real world applications. The goal of standard two-party AKE is to provide a common
secret session key between two-parties with mutual authentication. Each party publishes
long-term public information (called a static public key), and keeps corresponding se-
cret information (called a static secret key). The static public key is expected to be
certified with a party’s identity through an infrastructure such as PKI. When a party
wants to establish a session key with a peer, the party initiates a key exchange ses-
sion, sends some message (called ephemeral public key) generated from corresponding
temporary secret information (called ephemeral secret key) to the peer, and computes
an intermediate information (called session state) from static public keys, static secret
keys, ephemeral public keys and ephemeral secret keys. Note that the session state con-
tains the ephemeral secret key. Both parties then derive a session key from these keys

G. Hanaoka and T. Yamauchi (Eds.): IWSEC 2012, LNCS 7631, pp. 69–86, 2012.
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and session states with a function called the key derivation function. If a party does not
have the correct static secret key corresponding to the certified static public key, any
information of the session key is not leaked. AKE is practically used to establish secure
channels (e.g., the handshake protocol in SSL/TLS).

Various security properties are required for AKE schemes such as impersonation
resilience, known key security, secret key exposure resilience, etc. Forward secrecy
(FS) [1] is one of such basic security properties. FS implies that an adversary cannot
recover a session key of a completed session (i.e., a session in which the session key was
already established) even if static secret keys are compromised. There are two strength
criteria of FS: perfect or non-perfect, and weak or strong.

– perfect vs. non-perfect. We say that an AKE scheme is with perfect FS (PFS) if
FS is satisfied even when both static secret keys of the initiator and the responder
are compromised. Conversely, we say that an AKE scheme satisfies non-perfect FS
if FS is satisfied even only when the static secret key of either the initiator or the
responder is compromised. PFS guarantees very strong secrecy in future because
ephemeral secret keys are removed after completion of the session and there is no
problem against leakage of all static secret keys.

– weak vs. strong. We say that an AKE scheme is with strong FS (sFS) if FS is
satisfied even when the adversary is active in the target session. ‘Active’ means that
the adversary is allowed to modify messages to the owner of the target session.
Conversely, we say that an AKE scheme is with weak FS (wFS) if FS is satisfied
when the adversary must be passive in the target session. sFS is exactly desirable
in real world applications because the adversary should be allowed to be active in
any session.

Thus, the strongest and most desirable level of FS is strong perfect FS (sPFS).

1.2 Motivating Problem

Provable security [2–7] for AKE has been actively discussed for two decades. Many
two-pass MQV-type AKE schemes [8, 9, 4, 5, 10–14, 6, 15, 16, 7] achieve provable se-
curity. However, most of such AKE schemes do not satisfy sFS (some of such schemes
only satisfy wPFS). Krawczyk [4] gives an intuitive reason of difficulty to achieve sFS
with two-pass protocols by showing the following generic attack; An adversary gen-
erates an ephemeral public and secret key pair, and sends the ephemeral public key to
the owner (UA) of the target session. After completion of the session, the adversary
obtains the static secret key of the peer (UB) of the session. Then, the adversary can
derive the session key because all secret information to generate the session key is ob-
tained. Recently, Boyd and González Nieto [17] show rigorous impossibility to achieve
sFS with one-round protocols when leakage of an ephemeral secret key of UB in any
session occurs. One-round protocols mean that the initiator and the responder can send
their messages independently and simultaneously in two-pass protocols. On the other
hand, they also show that secure one-round scheme with sFS is possible in a constrained
model in which the reveal of ephemeral secret keys of UB in any session is not allowed.
For example, some schemes [9, 18, 17, 19, 16, 20] satisfy sFS with one-round proto-
cols against the constrained adversary. However, two [9, 18] of such schemes do not
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satisfy even wFS against an ephemeral secret key exposure attack. The scheme in [17]
is not proved to be secure against maximal exposure attacks (MEX) (i.e., an adversary
can reveal any pair of secret static keys and ephemeral secret keys of the initiator and
the responder in any session except for both the static and ephemeral secret keys of the
initiator or the responder) due to the security model. The other schemes [19, 16, 20]
satisfies both sPFS and resistance to MEX; but, they are proved in the random oracle
(RO) model and a special signature scheme is necessary to construct them. Thus, for the
construction of a one-round AKE scheme with sFS without ROs (i.e., in the standard
model (StdM)) is an unresolved open problem.

1.3 Our Contribution

We achieve the first one-round AKE scheme with sPFS in the StdM against the con-
strained adversary. Specifically, we give a generic construction of AKE, and it can be
instantiated with Diffie-Hellman (DH) type assumptions. Our construction also satis-
fies one of the ‘strongest’ models, CK+ model [4, 7], for AKE as well as sPFS. The
CK+ model contains all known security properties of AKE except sFS as follows: Even
though an adversary can reveal any non-trivial1 combination of ephemeral secret keys
and static secret keys, any information of the session key is not leaked. For example,
if static secret keys of parties in the target session are revealed, the situation corre-
sponds to wPFS. Our scheme is based on the two-pass generic construction [7] (FSXY
construction) that is a CK+ secure AKE scheme. An intuitive protocol of the FSXY con-
struction is as follows: An initiator and a responder exchange ciphertexts of a chosen
ciphertext secure (IND-CCA) KEM. Also, the initiator sends a session-specific public
key of a semantically secure (IND-CPA) KEM, and the responder computes and sends
a ciphertext with the public key. Then, they share three KEM keys, and derive a session
key with a strong randomness extractor, and a pseudo-random function (PRF).

The main idea of our construction is using a signcryption KEM. Signcryption [21]
provides the combined functionality of signatures and encryption with higher efficiency
than simply combining signature and encryption. While the FSXY construction uses a
IND-CCA KEM, a IND-CPA KEM, a strong randomness extractor, and a PRF as build-
ing blocks, we use an insider chosen ciphertext secure in the dynamic multi-user model
(dM-IND-iCCA) and strong unforgeability against insider chosen message attacks in
the dynamic multi-user model (dM-sUF-iCMA) signcryption KEM instead of the IND-
CCA KEM. Intuitively, signcryption KEM can prevent an adversary from modifying
ciphertexts in the target session; thus, we can achieve FS even if the adversary is active
in the target session. A subtle point is that signcryption KEM must be secure against
insider attacks (i.e., an adversary can use sender’s secret for attacking confidentiality
and receiver’s secret for attacking unforgeability) because the security model of AKE
allows an adversary to obtain static secret keys of each party. Also, security in the dy-
namic multi-user model is necessary because each party may execute multiple sessions
with different parties. The existence of an efficient dM-IND-iCCA and dM-sUF-iCMA
signcryption KEM has been proposed from the DH assumptions [22].

1 If both the static key and the ephemeral key of a party in the target session are revealed, the
adversary trivially obtains the session key for any protocol. Thus, the CK+ model prohibits
such a reveal.
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Moreover, we introduce a new notion named KEM with public-key-independent-
ciphertext (PKIC-KEM). We say a KEM scheme is PKIC-KEM if the ciphertext is
independent of the public key. A typical example is the ElGamal KEM; ciphertext gr

can be generated independently with public key ga (though the generation of KEM key
gra still needs the public key). In the FSXY construction, an initiator sends a session-
specific public key of the IND-CPA KEM, and a responder computes a ciphertext and a
KEM key with the public key and sends the ciphertext. Thus, unfortunately, it is not one-
round protocol because the responder cannot generate the ciphertext of the IND-CPA
KEM until receiving the public key sent by the initiator. We can resolve this problem
with PKIC-KEM. We use an IND-CPA secure PKIC-KEM instead of the IND-CPA
KEM.

To the best of our knowledge, our generic construction provides a first CK+ secure
one-round AKE protocol with sFS in the StdM even against the constrained adversary.

We also extend the CK+ model to a model which guarantees the CK+ security with
sPFS, for proving security. We call the extended model CK+-sFSNSR model. The mod-
ification is minor; that is, the case of sPFS is added to adversary’s behavior. We must
constrain the adversary to obtain ephemeral secret keys of the peer of the target session
in any session due to impossibility of [17]. The sPFS part of the CK+-sFSNSR model
is same as the model in [17]. Therefore, this model satisfies all security requirements
of the CK+ model without the constraint. Also, sPFS is guaranteed if session states are
protected. This is very reasonable in reality; that is, when the system requires a high
level security (including sFS), session states will be stored in some tamper-proof area
of storages.

2 Security Model

In this section, we define the CK+-sFSNSR model that adds sFS against the constrained
adversary to the CK+ model [7]. The difference between these models is in the case that
an adversary is active in the test session and obtains the static secret key of the peer of
the test session after the completion of the test session. In the CK+ model, security is not
guaranteed in this situation (i.e., no guarantee of sFS). Conversely, in the CK+-sFSNSR

model, security is guaranteed in this situation. Note that we show a model specified to
one-round protocols for simplicity. It can be trivially extended to any round protocol.

We denote a party by Ui, and party Ui and other parties are modeled as probabilistic
polynomial-time (PPT) Turing machines w.r.t. security parameter κ. For party Ui, we
denote static secret (public) key by si (S i) and ephemeral secret (public) key by xi (Xi).
Party Ui generates its own keys, si and S i, and the static public key S i is linked with
Ui’s identity in some systems like PKI.

Session. An invocation of a protocol is called a session. Session activation is done by
an incoming message of the forms (Π,I,UA,UB) or (Π,R,UB,UA), where we equate
Π with a protocol identifier, I and R with role identifiers, and UA and UB with user
identifiers. If UA is activated with (Π,I,UA,UB), then UA is called the session initia-
tor. If UB is activated with (Π,R,UB,UA), then UB is called the session responder. The
initiator UA outputs XA, receives an incoming message of the form (Π,I,UA,UB, XB)
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from the responder UB, and computes the session key S K. On the contrary, the respon-
der UB outputs XB, receives an incoming message of the form (Π,R,UB,UA, XA) from
the initiator UA, and computes the session key S K.

If UA is the initiator of a session, the session is identified by sid = (Π,I,UA,UB, XA)
or sid = (Π,I,UA,UB, XA, XB). If UB is the responder of a session, the session is iden-
tified by sid = (Π,R,UB,UA, XB) or sid = (Π,R,UB,UA, XA, XB). We say that UA is
the owner of session sid, if the third coordinate of session sid is UA. We say that UA

is the peer of session sid, if the fourth coordinate of session sid is UA. We say that a
session is completed if its owner computes the session key. The matching session of
(Π,I,UA,UB, XA, XB) is session (Π,R,UB,UA, XA, XB) and vice versa.

Adversary. The adversary A, which is modeled as a probabilistic polynomial-time
(PPT) Turing machine, controls all communications between parties including session
activation by performing the following adversary query.

– Send(message): The message has one of the following forms: (Π,I,UA,UB), (Π,R,
UB,UA), (Π,I,UA,UB, XB), or (Π,R,UB,UA, XA). The adversaryA obtains the re-
sponse from the party.

To capture leakage of secret information, the adversary A is allowed to issue the fol-
lowing queries.

– KeyReveal(sid): The adversaryA obtains the session key S K for the session sid if
the session is completed.

– StateReveal(sid): The adversary A obtains the session state of the owner of ses-
sion sid if the session is not completed (the session key is not established yet).
The session state includes all ephemeral secret keys and intermediate computation
results except for immediately erased information but does not include the static
secret key.

– Corrupt(Ui): This query allows the adversary A to obtain all static secret keys of
the party Ui. If a party is corrupted by a Corrupt(Ui) query issued by the adversary
A, then we call the party Ui dishonest. If not, we call the party honest.

Freshness. For the security definition, we need the notion of freshness.

Definition 1 (Freshness). Let sid∗ = (Π,I,UA,UB, XA, XB) or (Π,R,UA,UB, XB, XA)
be a completed session between honest users UA and UB. If the matching session exists,
then let sid∗ be the matching session of sid∗. We say session sid∗ is fresh if none of the
following conditions hold:

1. The adversaryA issues KeyReveal(sid∗), or KeyReveal(sid∗) if sid∗ exists,
2. sid∗ exists and the adversaryA makes either of the following queries

– StateReveal(sid∗) or StateReveal(sid∗),
3. sid∗ does not exist and the adversaryA makes the following query

– StateReveal(sid∗).
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Security Experiment. For the security definition, we consider the following security
experiment. Initially, the adversary A is given a set of honest users and makes any
sequence of the queries described above. During the experiment, the adversaryAmakes
the following query.

– Test(sid∗): Here, sid∗ must be a fresh session. Select random bit b ∈U {0, 1}, and
return the session key held by sid∗ if b = 0, and return a random key if b = 1.

The experiment continues until the adversary A makes a guess b′. The adversary A
wins the game if the test session sid∗ is still fresh and if the guess of the adversaryA is
correct, i.e., b′ = b. The advantage of the adversaryA in the AKE experiment with the
PKI-based AKE protocol Π is defined as AdvAKE

Π (A) = Pr[A wins] − 1
2 . We define the

security as follows.

Definition 2 (Security). We say that a PKI-based AKE protocol Π is secure in the
CK+-sFSNSR model if the following conditions hold:

1. If two honest parties complete matching sessions, then, except with negligible prob-
ability, they both compute the same session key.

2. For any PPT bounded adversaryA, AdvAKE
Π (A) is negligible in security parameter

κ for the test session sid∗,
(a) if sid∗ does not exist, and the static secret key of the owner of sid∗ is given toA.

Also, the static secret key of the peer of sid∗ is given to A after completion of
sid∗. The adversary is not allowed StateReveal query to any session between
the owner and the peer of sid∗.2

(b) if sid∗ does not exist, and the static secret key of the owner of sid∗ is given to
A.

(c) if sid∗ does not exist, and the ephemeral secret key of sid∗ is given toA.
(d) if sid∗ exists, and the static secret key of the owner of sid∗ and the ephemeral

secret key of sid∗ are given toA.
(e) if sid∗ exists, and the ephemeral secret key of sid∗ and the ephemeral secret key

of sid∗ are given toA.
(f) if sid∗ exists, and the static secret key of the owner of sid∗ and the static secret

key of the peer of sid∗ are given toA.
(g) if sid∗ exists, and the ephemeral secret key of sid∗ and the static secret key of

the peer of sid∗ are given toA.

The definition is identical to the CK+ model except item 2.a. Thus, security properties
included in the CK+ model are also included in the CK+-sFSNSR model. Specifically,
items 2.d and 2.g correspond to resistance to KCI (i.e., given a static secret key an
adversary cannot impersonate some honest party in order to fool the owner of the leaked
secret key), item 2.f corresponds to wPFS, and items 2.b, 2.c and 2.e correspond to
resistance to MEX. Item 2.a is newly considered, and corresponds to sPFS against the
constrained adversary.

2 This constraint is due to impossibility in [17] and is the same as the model in [17].
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3 Generic AKE Construction with sPFS from Signcryption KEM

In this section, we propose a generic construction GC-sFS of CK+-sFSNSR-secure one-
round AKE.

3.1 Preliminaries

Security Notions of KEM with Public-Key-Independent-Ciphertext. Here, we in-
troduce syntax of PKIC-KEM schemes. Then, we show the definition of IND-CPA
security for PKIC-KEM, and min-entropy of KEM keys as follows.

Definition 3 (Syntax of PKIC-KEM). A PKIC-KEM scheme consists of the following
4-tuple (KeyGen, EnCapC,EnCapK, DeCap):

(ek, dk) ← KeyGen(1κ; rg) : a key generation algorithm which on inputs 1κ, where
κ is the security parameter and rg is randomness in space RSG, outputs a pair of
keys (ek, dk).

CT ← EnCapC(re) : a ciphertext generation algorithm which outputs ciphertext
CT ∈ CS on inputs public parameters, where re is randomness in space RSE, and
CS is a ciphertext space.

K ← EnCapKek(CT, re) : an encryption algorithm which takes as inputs encapsula-
tion key ek, ciphertext CT , and randomness re, outputs KEM key K ∈ KS, where
re is randomness used in EnCapC, andKS is a KEM key space.

K ← DeCapdk(CT ) : a decryption algorithm which takes as inputs decapsulation key
dk and ciphertext CT ∈ CS, and outputs KEM key K ∈ KS.

Definition 4 (IND-CPA Security). A PKIC-KEM scheme is IND-CPA-secure if the fol-
lowing property holds for security parameter κ; For any PPT adversaryA = (A1,A2),
Advind−cpa = | Pr[rg ← RSG; (ek, dk) ← KeyGen(1κ; rg); state ← A1(ek); b ← {0, 1};
re ← RSE ; CT ∗0 ← EnCapC(re); K∗0 ← EnCapKek(CT ∗0 , re); K∗1 ← KS; b′ ← A2(ek,
(K∗b ,CT ∗0), state); b′ = b] − 1/2| ≤ negl, where state is state information thatA wants
to preserve fromA1 toA2.

Definition 5 (Min-Entropy of KEM Key). We say a PKIC-KEM scheme is k-min-
entropy PKIC-KEM if for any ek, for distribution DKS of variable K defined by CT ←
EnCapC(re), K ← EnCapKek(CT, re), and random re ∈ RSE, H∞(DKS) ≥ k holds,
where H∞ denotes min-entropy.

Security Notions of Signcryption KEM. Here, we recall the definition of dM-IND-
iCCA and dM-sUF-iCMA security for signcryption KEM, and min-entropy of KEM
keys as follows.

Definition 6 (Syntax of Signcryption KEM). A signcryption KEM scheme consists of
the following 4-tuple (SKeyGen,RKeyGen, SC, USC):

(pkS , skS ) ← SKeyGen(1κ; rS ) : a key generation algorithm for sender US which on
inputs 1κ, where κ is the security parameter and rS is randomness in space RSS G,
outputs a pair of keys (pkS , skS ).
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(pkR, skR)← RKeyGen(1κ; rR) : a key generation algorithm for receiver UR which on
inputs 1κ, where κ is the security parameter and rR is randomness in space RSRG,
outputs a pair of keys (pkR, skR).

(K,CT )← SCskS ,pkR (m; re) : a signcryption algorithm which takes as inputs sender’s
secret key skS , receiver’s public key pkR, and message m, outputs KEM key K ∈ KS
and ciphertext CT ∈ CS, where re is randomness in space RSS E , KS is a KEM
key space, and CS is a ciphertext space.

K/⊥ ← USCskR,pkS (m,CT ) : an unsigncryption algorithm which takes as inputs re-
ceiver’s secret key skR, sender’s public key pkS , message m, and ciphertext CT ∈
CS, and outputs KEM key K ∈ KS or reject symbol ⊥.

Definition 7 (dM-IND-iCCA Security for Signcryption KEM). A signcryption KEM
scheme is dM-IND-iCCA secure if the following property holds for security parameter
κ; For any PPT adversary S = (S1,S2), Advdm−ind−icca = | Pr[rR ← RSRG; (pkR, skR)←
RKeyGen(1κ, rR); (m∗, pk∗S , sk∗S , state)← SUO(skR,·,·,·)

1 (pkR); b← {0, 1}; re ← RSS E ; (K∗0 ,
CT ∗0 ) ← SCsk∗S ,pkR (m∗; re); K∗1 ← KS; b′ ← SUO(skR ,·,·,·)

2 (pk∗S , sk∗S , pkR, K∗b ,CT ∗0 , m∗,
state); b′ = b] − 1/2| ≤ negl, whereUO is the unsigncryption oracle who outputs K on
input (pkS ,m,CT ) with respect to skR,KS is the KEM key space and state is state infor-
mation thatSwants to preserve fromS1 toS2.A cannot submit the ciphertext CT = CT ∗0
toUO.

Definition 8 (dM-UF-iCMA Security for Signcryption KEM). A signcryption KEM
scheme is dM-sUF-iCMA secure if the following property holds for security param-
eter κ; For any PPT adversary F , Advdm−suf−icma = Pr[rS ← RSS G; (pkS , skS ) ←
SKeyGen(1κ, rS ); (pk∗R, sk∗R,m

∗,CT ∗)← FSO(skS ,·,·)(pkS ); K∗ ←USCsk∗R,pkS (m∗,CT ∗)∧
K∗(� ⊥) ∈ KS] ≤ negl, where SO is the signcryption oracle who outputs (K,CT )
on input (pkR,m) with respect to skS , KS is the KEM key space. F cannot output
(pk∗R,m

∗,CT ∗) such that CT ∗ is the output of SO on input (pk∗R,m
∗).

Definition 9 (Min-Entropy of Signcryption KEM Key). A signcryption KEM scheme
is k-min-entropy signcryption KEM if for any (skS , pkR), for distribution DKS of vari-
able K defined by (K,CT ) ← SCskS ,pkR (m, re) and random re ∈ RSS E, H∞(DKS) ≥ k
holds, where H∞ denotes min-entropy.

Security Notions of Randomness Extractor and Pseudo-Random Function. Let
Ext : S × X → Y be a function with finite seed space S , finite domain X, and finite
range Y.

Definition 10 (Strong Randomness Extractor [7]). We say that function Ext is a
strong randomness extractor, if for any distribution DX over X with H∞(DX) ≥ k, Δ((US ,
Ext(US , DX)), (US ,UY )) ≤ negl holds, where both US in (US ,Ext(US ,DX)) denotes the
same random variable, Δ denotes statistical distance, US ,UX ,UY denotes uniform dis-
tribution over S , X, Y respectively, |X| = n ≥ k, |Y | = k, and |S | = d.

Let κ be a security parameter and F = {Fκ : Domκ × FSκ → Rngκ}κ be a function
family with a family of domains {Domκ}κ, a family of key spaces {F Sκ}κ and a family
of ranges {Rngκ}κ.
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Definition 11 (Pseudo-Random Function [7]). We say that function family F = {Fκ}κ
is the PRF family, if for any PPT distinguisherD, Advprf = | Pr[DFκ (·)→ 1] − Pr[DRFκ(·)
→ 1]| ≤ negl, where RFκ : Domκ → Rngκ is a truly random function.

3.2 Construction

Here, we propose a new generic construction of PKI-based AKE, which is secure in the
CK+-sFSNSR model in the standard model.

Design Principle. Our construction is an extension of the FSXY construction which is
based on an IND-CCA secure KEM, an IND-CPA secure KEM, PRFs, and strong ran-
domness extractors. Their construction achieves the CK+ security with two techniques:
twisted PRF trick and session-specific key generation.

The twisted PRF trick is effective for achieving resistance to MEX. Two PRFs (F, F′)
with reversing keys are used; that is, we choose two ephemeral keys (r, r′) and compute
Fσ(r)⊕F′r′(σ), where σ is the static secret key. It is especially effective in the following
two scenarios: leakage of both ephemeral secret keys of the initiator and the respon-
der, and leakage of the static secret key of the initiator and the ephemeral secret key
of the responder (i.e., corresponding to KCI). If (r, r′) is leaked, Fσ(r) cannot be com-
puted without knowing σ. Similarly, if σ is leaked, F′r′(σ) cannot be computed without
knowing r′. In their construction, the output of the twisted PRF is used as randomness
for the encapsulation algorithm.

Also, generation of session-specific decapsulation and encapsulation keys are effec-
tive for achieving wPFS. The initiator sends the temporary encapsulation key to the
responder, the responder encapsulates a KEM key with the temporary encapsulation
key, and the initiator decapsulates the ciphertext. Since this procedure does not depend
on the static secret keys, the KEM key is hidden even if both static secret keys of the
initiator and the responder are leaked.

A problem on the FSXY construction is that it is not one-round protocol (i.e, the
responder cannot send a message until receiving the message from the initiator). If we
use an IND-CPA secure PKIC-KEM instead of the IND-CPA secure KEM for session-
specific key generation, the responder can generate the ephemeral public key without
knowing the public key in the ephemeral public key of the initiator. Thus, our construc-
tion achieves one-round protocol.

The other problem is that, if an adversary is active in the test session (i.e., a situation
according to sFS), the FSXY construction is insecure as follows; First, the adversary
encapsulates a KEM key with the encapsulation keys of the owner of the test session
and sends ciphertexts as impersonating the peer. Next, the adversary obtains the de-
capsulation key of the peer after completion of the test session and decapsulates the
ciphertext sent from the owner. Then, the adversary obtains all KEM keys and easily
derives the session key. Thus, the FSXY construction does not satisfy the CK+-sFSNSR

security.
The main idea to achieve CK+-sFSNSR security is to use a dM-IND-iCCA and dM-

sUF-iCMA secure signcryption KEM instead of an IND-CCA secure KEM. Security
against insider attacks is necessary because we must consider cases that an adversary
obtains static secret keys of parties in the test session (i.e., 2.a, 2.b, 2.d, and 2.g in
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Definition 2). Also, the multi-user setting is necessary to prove security because each
party may send ciphertexts with different public keys under a secret key, and we must
simulate such a situation in the security proof. In our construction, parties signcrypt the
public key or the ciphertext of PKIC-KEM, and exchange ciphertexts of signcryption
KEM. If an adversary tries to modify ciphertexts as impersonating the peer of the test
session like the above attack to the FSXY construction, ciphertexts is rejected by the
owner of the test session because of dM-sUF-iCMA security. Also, the adversary cannot
obtain the secret key of the peer before completion of the test session. Thus, there is no
way to modify ciphertexts even if the adversary is active in the test session.

Generic Construction GC-sFS. The protocol of GC-sFS from signcryption KEM
(SKeyGen,RKeyGen, SC, USC) and PKIC-KEM (KeyGen, EnCapC,EnCapK,
DeCap) is as follows.

Public Parameters. Let κ be the security parameter, F : {0, 1}∗ × FS → RSE , F′ :
{0, 1}∗×FS → RSE , and G : {0, 1}∗×FS → {0, 1}κ be pseudo-random functions, where
FS is the key space of PRFs (|F S| = κ), RSE is the randomness space of SC, and RSG

is the randomness space of SKeyGen and RKeyGen, and let Ext : SS × KS → FS
be a strong randomness extractor with randomly chosen seed s ∈ SS, where SS is the
seed space and KS is the KEM key space. These are provided as some of the public
parameters.

Secret and Public Keys. Party UI randomly selects σI ∈ FS, rIS ∈ RSS G and rIR ∈
RSRG, and runs the key generation algorithms (pkIS , skIS ) ← SKeyGen(1κ, rIS ) and
(pkIR, skIR) ← RKeyGen(1κ, rIR), where RSS G is the randomness space of SKeyGen
and RSRG is the randomness space of RKeyGen. Party UI’s static secret and public
keys are ((skIS , skIR, σI), (pkIS , pkIR)).

Key Exchange. Party UA with secret and public keys ((skAS , skAR, σA), (pkAS , pkAR)),
and who is the initiator, and party UB with secret and public keys ((skBS , skBR, σB),
(pkBS , pkBR)), and who is the responder, perform the following two-pass key exchange
protocol.

1. Party UA randomly chooses ephemeral secret keys rA,1, r′A,1 ∈ FS and rA,2 ∈ RSG.
Party UA computes (ekA, dkA)← KeyGen(1κ, rA,2) and (CTA, KA)← SCskAS ,pkBR (ekA;
FσA (rA,1) ⊕ F′r′A,1 (σA)), and sends (UA,UB,CTA, ekA) to party UB.

2. party UB randomly chooses ephemeral secret keys rB,1, r′B,1 ∈ FS and rB,2 ∈ RSE .
Party UB computes CTB,2 ← EnCapC(rB,2) and (CTB,1, KB,1) ← SCskBS ,pkAR (CTB,2;
FσB (rB,1) ⊕ F′r′B,1 (σB)) and, sends (UA,UB,CTB,1, CTB,2) to party UA.

3. Upon receiving (UA,UB,CTB,1,CTB,2), party UA computes KB,1 ←
USCskAR,pkBS (CTB,2, CTB,1), KB,2 ← DeCapdkA

(CTB,2), K′1 ← Ext(s,KA),
K′2 ← Ext(s,KB,1) and K′3 ← Ext(s,KB,2), sets the session transcript ST =
(UA,UB, pkAS , pkAR, pkBS , pkBR, ekA, CTA, CTB,1, CTB,2) and the session key
SK = GK′1 (ST) ⊕ GK′2 (ST) ⊕ GK′3 (ST), completes the session, and erases all session
states.
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4. Upon receiving (UA,UB,CTA, ekA), party UB computes KA ← USCskBR,pkAS (ekA,
CTA), KB,2 ← EnCapKekA

(CTB,2, rB,2), K′1 ← Ext(s,KA), K′2 ← Ext(s, KB,1) and
K′3 ← Ext(s,KB,2), sets the session transcript ST = (UA,UB, pkAS , pkAR, pkBS , pkBR,
ekA, CTA, CTB,1, CTB,2) and the session key SK = GK′1 (ST) ⊕ GK′2 (ST) ⊕ GK′3 (ST),
completes the session, and erases all session states.

The session state of a session owned by UA contains ephemeral secret keys (rA,1, r′A,1,
rA,2), KEM keys (KA,KB,1,KB,2), outputs of the extractor (K′1,K

′
2,K

′
3) and outputs of

PRFs (i.e., FσA (rA,1), F′r′A,1 (σA),GK′1(ST),GK′2(ST), and GK′3 (ST)). Similarly, the session

state of a session owned by UB contains ephemeral secret keys (rB,1, r′B,1, rB,2), decap-
sulated KEM keys (KA,KB,1,KB,2), outputs of the extractor (K′1,K

′
2,K

′
3) and outputs of

PRFs (i.e., FσB (rB,1), F′r′B,1 (σB),GK′1(ST),GK′2 (ST), and GK′3 (ST)).

Security. We show the following theorem.

Theorem 1. If (SKeyGen,RKeyGen, SC, USC) is dM-IND-iCCA and dM-sUF-iCMA
secure signcryption KEM and is κ-min-entropy signcryption KEM, (KeyGen,EnCapC,
EnCapK, DeCap) is IND-CPA secure PKIC-KEM and is κ-min-entropy PKIC-KEM,
F, F′ and G are PRFs, and Ext is a strong randomness extractor, then AKE scheme
GC-sFS is CK+-sFSNSR-secure.

First, we give an overview of the security proof for the case that the test session has a
non-matching session.

We have to consider the following six leakage patterns in the CK+-sFSNSR security
model:

1. The owner of sid∗ is the initiator, and the static secret key of the initiator is leaked.
Also, the static secret key of the peer is leaked after completion of sid∗.

2. The owner of sid∗ is the responder, and the static secret key of the initiator is leaked.
Also, the static secret key of the peer is leaked after completion of sid∗.

3. The owner of sid∗ is the initiator, and the static secret keys of the initiator is leaked.
4. The owner of sid∗ is the responder, and the static secret keys of the responder is

leaked.
5. The owner of sid∗ is the initiator, and the ephemeral secret keys of sid∗ is leaked.
6. The owner of sid∗ is the responder, and the ephemeral secret keys of sid∗ is leaked.

The proof outline is similar to that in [7] except events 1 and 2. Thus, we show the
proof sketch of event 1. (Event 2 is almost same as event 1.) We suppose that party UA

is the owner of sid∗ and UA believes that the peer of sid∗ is UB. Note that the adversary
obtains (skAS , skAR, σA), but (skBS , skBR, σB) is not leaked before starting sid∗. Also, the
adversary is not allowed StateReveal query to any session between UA and UB.

We transform the CK+-sFSNSR security game into the game that the session key in the
test session is randomly distributed. First, we change the game as the adversary wins
if a forgery event with respect to CTB,1 occurs. This event occurs only with negligi-
ble probability from the dM-sUF-iCMA security of (SKeyGen,RKeyGen, SC, USC).
Though the adversary may forward (CTB,1,CTB,2) in a session between UA and UB other
than sid∗, KB,2 is not leaked from IND-CPA security of (KeyGen,EnCapC,EnCapK,
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DeCap) because StateReveal query to such sessions is not allowed. Thus, the ad-
versary cannot obtain KB,2 after this transformation. Second, we change the output
of EnCapKekA

(CTB,2, rB,2) into a random key; therefore, the input of Ext is randomly
distributed and has sufficient min-entropy. Third, we change the output of Ext into ran-
domly chosen values; therefore, the key of one of the PRFs (corresponding to the output
of EnCapKekA

(CTB,2, rB,2)) is randomly distributed. Finally, we change this PRF into a
random function. Therefore, the session key in the test session is randomly distributed;
thus, there is no advantage to the adversary.

Proof. In the experiment of CK+-sFSNSR security, we suppose that sid∗ is the session
identity for the test session, and that there are N users and at most � sessions are acti-
vated. Let κ be the security parameter, and letA be a PPT (in κ) bounded adversary. S uc
denotes the event thatA wins. We consider the following events that cover all cases of
the behavior ofA.

– Let E1 be the event that the test session sid∗ has no matching session sid∗, the owner
of sid∗ is the initiator, and the static secret key of the initiator is given to A. Also,
the static secret key of the peer of sid∗ is given to A after completion of sid∗. The
adversary is not allowed StateReveal query to any session between the owner and
the peer of sid∗.

– Let E2 be the event that the test session sid∗ has no matching session sid∗, the
owner of sid∗ is the responder, and the static secret key of the responder is given to
A. Also, the static secret key of the peer of sid∗ is given to A after completion of
sid∗. The adversary is not allowed StateReveal query to any session between the
owner and the peer of sid∗.

– Let E3 be the event that the test session sid∗ has no matching session sid∗, the owner
of sid∗ is the initiator and the static secret key of the initiator is given toA.

– Let E4 be the event that the test session sid∗ has no matching session sid∗, the owner
of sid∗ is the initiator and the ephemeral secret key of sid∗ is given toA.

– Let E5 be the event that the test session sid∗ has no matching session sid∗, the owner
of sid∗ is the responder and the static secret key of the responder is given toA.

– Let E6 be the event that the test session sid∗ has no matching session sid∗, the owner
of sid∗ is the responder and the ephemeral secret key of sid∗ is given toA.

– Let E7 be the event that the test session sid∗ has matching session sid∗, and both
static secret keys of the initiator and the responder are given toA.

– Let E8 be the event that the test session sid∗ has matching session sid∗, and both
ephemeral secret keys of sid∗ and sid∗ are given toA.

– Let E9 be the event that the test session sid∗ has matching session sid∗, and the
static secret key of the owner of sid∗ and the ephemeral secret key of sid∗ are given
toA.

– Let E10 be the event that the test session sid∗ has matching session sid∗, and the
ephemeral secret key of sid∗ and the static secret key of the owner of sid∗ are given
toA.

To finish the proof, we investigate events Ei ∧ S uc (i = 1, . . . , 10) that cover all cases of
event S uc.
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Due to space limitations we only show the proof of the event E1 ∧ S uc because this
event and event E2 ∧ S uc contain significant difference with the proof of the FSXY
construction [7]. Proofs of E1 ∧ S uc and E2 ∧ S uc are essentially same.

We change the interface of oracle queries and the computation of the session key.
These instances are gradually changed over hybrid experiments, depending on specific
sub-cases. In the last hybrid experiment, the session key in the test session does not con-
tain information of the bit b. Thus, the adversary clearly only output a random guess.
We denote these hybrid experiments by H0, . . . ,H6 and the advantage of the adversary
A when participating in experiment Hi by Adv(A,Hi).

Hybrid Experiment H0: This experiment denotes the real experiment for CK+-sFSNSR

security and in this experiment the environment for A is as defined in the protocol.
Thus, Adv(A,H0) is the same as the advantage of the real experiment.

Hybrid Experiment H1: In this experiment, if session identities in two sessions are
identical, the experiment halts.

When two ciphertexts from different randomness are identical and two public keys
from different randomness are identical, session identities in two sessions are also iden-
tical. In the dM-IND-iCCA secure signcryption KEM, such an event occurs with negli-
gible probability. Thus, |Adv(A,H1) − Adv(A,H0)| ≤ negl.

Hybrid Experiment H2: In this experiment, the experiment selects party UA and inte-
ger i ∈ [1, �] randomly in advance. IfA poses Test query to a session except i-th session
of UA, the experiment halts.

Since guess of the test session matches with A’s choice with probability 1/N2�,
Adv(A,H2) ≥ 1/N2� · Adv(A,H1).

Hybrid Experiment H3: In this experiment, we consider a forgery event EF , and
if EF occurs, we regard the adversary successful and the experiment aborts. EF occurs
if A sends CT ′1 and CT ′2 as part of an ephemeral public key of UB in the test session
such that

– K′ ← USCskAR,pkBS (CT ′2,CT ′1) and K′ � ⊥,
– (CT ′1,CT ′2) was not contained in any output by previous Send(Π,R,UB,UA)

queries, and
– UA completes the test session.

Since A cannot obtain skAR before completion of the test session, the only way EF

occurs is to forge (CT ′1,CT ′2). Thus, from the Difference Lemma | Pr[E3∧S uc]−Pr[E2∧
S uc]| ≤ Pr[EF] and |Adv(A,H3) − Adv(A,H2)| ≤ Pr[EF].

We construct a dM-sUF-iCMA forger F from A such that EF occurs with non-
negligible probability. F performs the following steps.

Init. F receives pk∗S as a challenge.

Setup. F chooses pseudo-random functions F : {0, 1}∗ × FS → RSE , F′ : {0, 1}∗ ×
FS → RSE and G : {0, 1}∗ × FS → {0, 1}k, where FS is the key space of PRFs,
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and a strong randomness extractor Ext : SS × KS → FS with a randomly chosen
seed s ∈ SS. These are provided as a part of the public parameters. Also, F sets all
N users’ static secret and public keys except UB. F selects σI ∈ FS, rIS ∈ RSS G,
and rIR ∈ RSRG randomly, and runs the key generation algorithms (pkIS , skIS ) ←
SKeyGen(1κ, rIS ) and (pkIR, skIR)← RKeyGen(1κ, rIR) and UI’s static secret and pub-
lic keys are ((skIS , skIRσI), (pkIS , pkIR). For UB, F sets pkBS := pk∗S . skBR and pkBR are
legitimately generated.

Simulation. F maintains the list LS K that contains queries and answers of KeyReveal.
F simulates oracle queries byA as follows.

1. Send(Π,I,UP,UP̄): F computes the ephemeral public key (CTP, ekP) obeying the
protocol, returns it and records (Π,I,UP,UP̄, (CTP, ekP)).

2. Send(Π,R,UP̄,UP): If P̄ = B, F computes CTB,2, poses (pkPR,CTB) to sign-
cryption oracle SO, obtains (KB,1,CTB,1). Then, F sets the ephemeral public key
(CTB,1,CTB,2), returns the ephemeral public key, and records (Π,R,UB,UP, (CTB,1,
CTB,2)). Otherwise, F computes the ephemeral public key (CTP̄,1,CTP̄,2), returns
the ephemeral public key, and records (Π,R, UP̄, UP, (CTP̄,1, CTP̄,2)).

3. Send(Π,I,UP,UP̄, (CTP̄,1, CTP̄,2)): If P = A, P̄ = B, the session is i-th ses-
sion of A, KB,1 ← USCskAR,pkBS (CTB,2,CTB,1) and KB,1 � ⊥, and (CTB,1,CTB,2)
was not contained in any output by previous Send(Π,R,UB,UA) queries, then F
outputs (pkAR,CTB,2,CTB,1) as a forgery. Else if (Π,I,UP,UP̄, (CTP, ekP)) is not
recorded, F records the session (Π,I,UP,UP̄, (CTP, ekP), (CTP̄,1, CTP̄,2)) is not
completed. Otherwise, F computes the session key S K obeying the protocol, and
records (Π,I,UP,UP̄, (CTP, ekP), (CTP̄,1,CTP̄,2)) as the completed session and S K
in the list LS K .

4. Send(Π,R,UP̄,UP, (CTP, ekP)): If (Π,R, UP̄, UP, (CTP̄,1, CTP̄,2)) is not recorded,
F records the session (Π,R,UP̄,UP, (CTP, ekP), (CTP̄,1, CTP̄,2)) is not completed.
Otherwise, F computes the session key S K obeying the protocol, and records
(Π,R,UP̄,UP, (CTP, ekP), (CTP̄,1, CTP̄,2)) as the completed session and S K in the
list LS K .

5. KeyReveal(sid):
(a) If the session sid is not completed, F returns an error message.
(b) Otherwise, F returns the recorded value S K.

6. StateReveal(sid): F responds the ephemeral secret key and intermediate compu-
tation results of sid as the definition.

7. Corrupt(UP): F responds the static secret key of UP as the definition.
8. Test(sid): F responds to the query as the definition.
9. IfA outputs a guess b′, F aborts.

Analysis. If EF occurs with non-negligible probability, a successful forgery
(CTB,1,CTB,2) is contained in a Send(Π,I,UP,UP̄, (CTP̄,1, CTP̄,2) query with non-
negligible probability. Thus,F can also output a successful forgery (pkAR,CTB,2,CTB,1)
with non-negligible probability. If the advantage of F is negligible, then EF occurs with
negligible probability, and |Adv(A,H3) − Adv(A,H2)| ≤ Pr[EF ] = negl.
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Hybrid Experiment H4: In this experiment, the computation of K∗B,2 in the test ses-
sion is changed. Instead of computing K∗B,2 ← EnCapKekA

(CT ∗B,2, r
∗
B,2)), it is changed

as choosing K∗B,2 ← KS randomly, where we suppose that UB is the intended partner
of UA in the test session.

We construct an IND-CPA adversary S for (KeyGen,EnCapC, EnCapK, DeCap)
fromA in H3 or H4. S performs the following steps.

Init. S receives the public key ek∗ as a challenge. Also, S receives the challenge
(K∗,CT ∗) for the IND-CPA game.

Setup. S chooses pseudo-random functions F : {0, 1}∗ × FS → RSE , F′ : {0, 1}∗ ×
FS → RSE and G : {0, 1}∗ × FS → {0, 1}k, where FS is the key space of PRFs, and a
strong randomness extractor Ext : SS × KS → FS with a randomly chosen seed s ∈
SS. These are provided as a part of the public parameters. Also,S sets all N users’ static
secret and public keys. F selects σI ∈ FS, rIS ∈ RSS G, and rIR ∈ RSRG randomly, and
runs the key generation algorithms (pkIS , skIS )← SKeyGen(1κ, rIS ) and (pkIR, skIR)←
RKeyGen(1κ, rIR) and UI’s static secret and public keys are ((skIS , skIRσI), (pkIS , pkIR).

Simulation. S maintains the list LS K that contains queries and answers of KeyReveal.
S simulates oracle queries byA as follows.

1. Send(Π,I,UP,UP̄): If P = A and P̄ = B, the session is i-th session of A, then
S sets ekA := ek∗, computes CTA, and returns (UA,UB,CTA, ekA) and records
(Π,I,UA,UB, (CTA, ekA)). Otherwise, S computes the ephemeral public key (CTP,
ekP) obeying the protocol, returns it and records (Π,I,UP,UP̄, (CTP, ekP)).

2. Send(Π,R,UP̄,UP): If P = A and P̄ = B, the session is i-th session of A, then S
sets CTB,2 := CT ∗, computes CTB,1, and returns (UB,UA,CTB,1,CTB,2) and records
(Π,R,UB,UA, (CTB,1,CTB,2)). Otherwise, S computes the ephemeral public key
(CTP̄,1,CTP̄,2), returns the ephemeral public key, and records (Π,R,UP̄,UP, (CTP̄,1,
CTP̄,2)).

3. Send(Π,I,UP,UP̄, (CTP̄,1, CTP̄,2)): If P = A and P̄ = B, the session is i-th ses-
sion of A, then S sets KB,2 := K∗, computes the session key S K∗ obeying the
protocol, and records (Π,I,UA,UB, (CTA, ekA), (CTB,1, CTB,2)) as the completed
session and S K∗ in the list LS K . Else if (Π,I,UP,UP̄, (CTP, ekP)) is not recorded,
S records the session (Π,I,UP,UP̄, (CTP, ekP), (CTP̄,1, CTP̄,2)) is not completed.
Otherwise, S computes the session key S K obeying the protocol, and records
(Π,I,UP,UP̄, (CTP, ekP), (CTP̄,1, CTP̄,2)) as the completed session and S K in the
list LS K .

4. Send(Π,R,UP̄,UP, (CTP, ekP)): If (Π,R, UP̄, UP, (CTP̄,1, CTP̄,2)) is not recorded,
F records the session (Π,R,UP̄,UP, (CTP, ekP), (CTP̄,1, CTP̄,2)) is not completed.
Otherwise, F computes the session key S K obeying the protocol, and records
(Π,R,UP̄,UP, (CTP, ekP), (CTP̄,1, CTP̄,2)) as the completed session and S K in the
list LS K .

5. KeyReveal(sid):
(a) If the session sid is not completed, S returns an error message.
(b) Otherwise, S returns the recorded value S K.
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6. StateReveal(sid): S responds the ephemeral secret key and intermediate computa-
tion results of sid as the definition. Note that the StateReveal query is not posed to
the test session from the freshness definition.

7. Corrupt(UP): S responds the static secret key of UP as the definition.
8. Test(sid): S responds to the query as the definition.
9. IfA outputs a guess b′, S outputs b′.

Analysis. ForA, the simulation by S is same as the experiment H3 if the challenge is
(K∗0 ,CT ∗0). Otherwise, the simulation byS is same as the experiment H4. Also, both K∗B,2
in two experiments have κ-min-entropy because (KeyGen,EnCapC,EnCapK,DeCap)
is κ-min-entropy PKIC-KEM. Thus, if the advantage ofS is negligible, then |Adv(A,H4)
−Adv(A,H3)| ≤ negl.

Hybrid Experiment H5: In this experiment, the computation of K′∗3 in the test ses-
sion is changed. Instead of computing K′∗3 ← Ext(s,K∗B,2), it is changed as choosing
K′∗3 ∈ FS randomly.

Since K∗B,2 is randomly chosen in H4, it has sufficient min-entropy. Thus, by the def-
inition of the strong randomness extractor, |Adv(A,H5) − Adv(A,H4)| ≤ negl.

Hybrid Experiment H6: In this experiment, the computation of S K in the test session
is changed. Instead of computing S K = GK′1 (ST) ⊕ GK′2 (ST) ⊕ GK′3 (ST), it is changed
as S K = GK′1 (ST) ⊕GK′2 (ST) ⊕ x where x ∈ {0, 1}κ is chosen randomly and we suppose
that UB is the intended partner of UA in the test session.

We construct a distinguisherD′ between PRF F∗ : {0, 1}∗ × FS → {0, 1}k and a ran-
dom function RF fromA in H5 or H6. The construction and analysis ofD′ is similar to
that in the proof in [7]. Thus, we omit it due to space limitations, and if the advantage
ofD′ is negligible, then |Adv(A,H6) − Adv(A,H5)| ≤ negl.

In H6, the session key in the test session is perfectly randomized. Thus, A cannot
obtain any advantage from Test query.

Therefore, Adv(A,H6) = 0 and Pr[E1 ∧ S uc] is negligible.
��

3.3 Instantiation

We can achieve the first DH-based AKE schemes from the generic construction GC-sFS
in Section 3. For example, we can apply an efficient dM-IND-iCCA and dM-sUF-iCMA
secure signcryption KEM [22] from the decisional bilinear DH assumption and the q-
strong DH assumption. The ciphertext overhead of the best scheme in [22] is only 4|p|,
where |p| is the length of a group element. The computational cost is 4 regular expo-
nentiations for signcryption, and 1 regular exponentiation, 1 multi-exponentiation and 2
paring computations for unsigncryption. Also, IND-CPA secure PKIC-KEM is instan-
tiated with the ElGamal KEM under the decisional DH assumption. Communication
complexity (for two parties) of this instantiation is 10|p|, where |p| is the length of
a group element. Computational complexity (for two parties) of this instantiation is 4
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Table 1. Comparison of previous schemes and an instantiation of our scheme

Model Resource Assumption Computation Communication
(#parings+#[multi,regular]-exp, ) complexity

HMQV [4] CK+ ROM GDH & KEA1 0 + [2, 2] 2|p| 512
FSXY [7] CK+ StdM DDH 0 + [4, 12] 8|p| 2048

MAC(NAXOS) [17] CK & sFS† ROM GDH 0 + [0, 8] 3|p| 768
SIG(NAXOS) [20] eCK & sFS‡ ROM GDH & CDH 4 + [0, 10] 4|p| 1024

Ours CK+-sFSNSR StdM DDH & DBDH & q-SDH 4 + [2, 14] 10|p| 2560
† against the constrained adversary
‡ against a constrained but more powerful adversary than MAC(NAXOS)

CDH means the Computational Diffie-Hellman assumption. DDH means the Decisional Diffie-Hellman assump-
tion. GDH means the Gap Diffie-Hellman assumption. DBDH means the Decisional Bilinear Diffie-Hellman
assumption. q-SDH means the q-strong Diffie-Hellman assumption. KEA1 means the Knowledge-of-Exponent
assumption. For concreteness the expected ciphertext overhead for a 128-bit implementation is also given. Note
that computational costs are estimated without any pre-computation technique.

parings, 2 multi-exponentiations and 14 regular exponentiations (all symmetric opera-
tions such as hash function/KDF/PRF/MAC and multiplications are ignored). We show
a comparison between this instantiation and previous schemes in Table 1. Note that
we use the GDH signature [23] as a deterministic and strongly unforgeable signature
scheme in the instantiation of SIG(NAXOS) [20].

We can easily show that these schemes are κ-min-entropy signcryption KEM. The
signcryption scheme in [22] uses tag-based KEM version of the Boyen-Mei-Waters
PKE [24]. Thus, The KEM key consists of e(g1, g2)αr ∈ GT , where GT is a finite cyclic
group of order prime p with bilinear pairing, e(g1, g2)α is part of public keys, and r is
uniformly chosen randomness, and |r| is 2κ. Thus, e(g1, g2)αr has min-entropy larger
than κ.
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12. Boyd, C., Cliff, Y., González Nieto, J.M., Paterson, K.G.: One-round key exchange in the
standard model. IJACT 1(3), 181–199 (2009)
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Abstract. Increasingly wider deployment of encryption schemes call
for schemes possessing additional properties such as randomness re-use,
compactness and ciphertext verifiability. While novel approaches such as
stateful encryption schemes contributes for randomness re-use (to save
computational efforts), the requirements such as ciphertext verifiabil-
ity leads to increase in the size of ciphertext. Thus, it is interesting
and challenging to design stateful encryption schemes that offer cipher-
text verifiability and result in compact ciphertexts. We propose two new
stateful public key encryption schemes with ciphertext verifiability. Our
schemes offer more compact ciphertexts when compared to all existing
stateful public key encryption schemes with ciphertext verifiability. Our
first scheme is based on the SDH assumption and the second scheme is
based on the CDH assumption. We have proved both the schemes in the
random oracle model.

Keywords: Stateful Public Key Encryption, Adaptive Chosen Cipher-
text Security (CCA), Compact Ciphertext with Ciphertext Verification,
Random Oracle model.

1 Introduction

For any public key encryption scheme, the difference between the size of the
ciphertext and the size of the message is referred to as its Ciphertext Overhead.
An encryption scheme is said to generate compact ciphertext if the overhead is
utmost the size of one element in the underlying group. Needless to say, compact
ciphertexts are very useful in bandwidth-critical environments [3,4]. In general,
when we design encryption schemes with stronger security properties, we tend
to loose compactness and often arrive at ciphertexts that have large overheads.
However, in the recent past, several researchers have successfully designed CCA
secure encryption schemes (stronger notion of security for encryption schemes)
that result in compact ciphertexts [13,6,7,3,4]. While these schemes yield com-
pact ciphertexts, they lack an important property which we refer as Ciphertext
Verifiability. We briefly describe about this property and its importance below.

G. Hanaoka and T. Yamauchi (Eds.): IWSEC 2012, LNCS 7631, pp. 87–104, 2012.
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For the public key encryption schemes that are used in important applica-
tions such as key transport, electronic auction etc, the encryption scheme must
provide a guarantee that the ciphertext (and thus the message contained in the
ciphertext) was not altered during transit. If such a guarantee is not available,
it may lead to unacceptable situations. For example, suppose a user A wishes to
safely send a key value key to user B and use key as ephemeral/session key for
some further interaction with B. A may use the public key of B and encrypt key
and send the ciphertext c to B. If no verification mechanism is available and if c
is altered to c′ (by the adversary or by transmission error) and if c′ is decrypted
to key′, B would simply assume that key′ is the key that A wished to send to
him. This would cause further interactions between A and B impossible and
this is clearly undesirable. A similar scenario can be imagined in a KEM/DEM
scheme if modified ciphertexts are used to recover keys. It is not hard to imag-
ine the possibility of change of bid values in e-auctions/e-tendering, where the
altered ciphertext getting decrypted to a value different from the value actually
meant by the sender.

Hence, it is important that the encryption schemes provide ‘ciphertext ver-
ifiability’ in addition to all the other desirable properties such as compactness
and CCA security. By ciphertext verifiability we mean a testing process that is
integrated in the decryption algorithm which identifies if the received ciphertext
is a tweaked one or not. If the test fails, the receiver infers that the ciphertext
is corrupted during transmission and rejects it. If the test passes, the receiver
considers the message constructed by the decryption algorithm as a valid mes-
sage. The ability to distinguish a tweaked ciphertext from a genuine ciphertext
is an important property for decryption algorithm and see [15] by Pass et al. for
a formal and rigorous treatment of the same.

One of the effective strategies to save computational effort needed for encryp-
tion is to re-use the randomness used for encryption between the same pair of
(sender, receiver) across different messages. For this purpose, we consider the
encryption process happening in a session where a session consists of sending
some fixed number of messages (say one million). All messages in the same ses-
sion will use the same random value and this saves efforts related to random
number generation and computations involving only those random numbers in
each encryption. For different sessions, we of course use different random value.
A session is recognized by the state. Thus, the concept of stateful encryption,
introduced by Bellare et al. [5] is very useful in the contexts where low power
devises are involved. There are only two stateful PKI based encryption schemes
available in the literature [5], [4]. Wile the scheme in [5] offers cipher text ver-
ification implicitly, it is not compact and the scheme in [4] is compact but not
ciphertext verifiable. Thus, we have addressed the interesting question that asks
to design a stateful encryption scheme that is compact and supporting ciphertext
verifiability in the PKI model.

Related Work: There are several CCA secure encryption schemes available
in the literature. Some of them are customized designs [1,6], some are based
on transforming a CPA secure system to a CCA secure system [10,9,12], some
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are based on KEM/DEM (Key Encapsulation Mechanism/Data Encapsulation
Mechanism) [8,11,13] and some are based on Tag-KEM/DEM framework [2].
However, none of them produced compact ciphertext and this prompted re-
searchers to design afresh CCA secure encryption schemes outputting compact
ciphertexts. Several new and interesting ideas emerged in the past, resulting in
schemes reported in [13,6,7,3,4]. Though these schemes output compact cipher-
text and CCA security, none of them offer ciphertext verifiability.

Our Contribution: There are two contributions in this paper. First, we design
a new PKI based stateful public key encryption scheme (N − SPKE1), whose
security is based on the SDH problem. Our second contribution is a stateful
public key encryption scheme (N − SPKE2), whose security is based on CDH
problem but with the same ciphertext overhead as (N − SPKE1). The cipher-
text overhead of these two schemes are slightly higher than that of the SPKE
scheme proposed in [4]. The ciphertext overhead of the SPKE scheme in [4] is
one group element and another element with λ bits, where λ is greater than 128-
bits. In our schemes we include an integer value called as encryption-count

which represents the encryption number. That is, we index each encryption per-
formed during a session using an integer counter. At the start of each session,
the value of encryption-count is initialized to 1 and incremented each time
an encryption is performed during the session. If we consider that one million
encryption operations are to be done in a session, the encryption-count ranges
from 1-bit to 20-bits utmost. This also contributes to the ciphertext overhead of
the scheme. Thus, the ciphertext overhead of our scheme is one group element,
one element of size 128-bits and an encryption-count. With this overhead, it
is possible to offer ciphertext verifiability and this is the highlighting difference
of our scheme. The sender has to just increment the index after each encryption
and store only the incremented value (utmost 20-bits) and does not need to re-
member the indices that are used previously in the session. Thus, this will not
lead to big storage overhead. It is possible to use the folkloric construction of
appending 80-bits of known value (usually 80-bits of 0’s) to the plaintext while
encrypting it and checking whether the decryption of the ciphertext produces a
message with those 80-bits at the end to ensure ciphertext verifiability. However,
the size of this value is lower bound by 80-bits, where as in our construction, the
index is upper bound by 20-bits (for 220 encryption) and hence can take a value
starting from 1−bit, which is a considerable reduction for resource constrained
devices. This makes our construction more attractive.

2 Preliminaries, Frameworks and Security Models

We use Computational Diffie Hellman Problem (CDH) and Strong Diffie Hellman
Problem (SDH) [3] to establish the security of the schemes.

Definition 1. (Computational Diffie Hellman Problem (CDH)): Let κ
be the security parameter and G be a multiplicative group of order q, where
|q| = κ. Given (g, ga, gb) ∈R G4, the computational Diffie Hellman problem is to
compute gab ∈ G.
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The advantage of an adversary A in solving the computational Diffie Hellman
problem is defined as the probability with which A solves the above computa-
tional Diffie Hellman problem.

AdvCDH
A = Pr[A(g, ga, gb) = gab]

The computational Diffie Hellman assumption holds in G if for all polynomial
time adversaries A, the advantage AdvCDH

A is negligible.

Definition 2. (Strong Diffie Hellman Problem (SDH) as given in [3]):
Let κ be the security parameter and G be a multiplicative group of order q, where
|q| = κ. Given (g, ga, gb) ∈R G3 and access to a Decision Diffie Hellman (DDH)
oracle DDHg,a(., .) which on input gb and gc outputs True if and only if gab = gc,
the strong Diffie Hellman problem is to compute gab ∈ G.

The advantage of an adversary A in solving the strong Diffie Hellman problem is
defined as the probability with which A solves the above strong Diffie Hellman
problem.

AdvSDH
A = Pr[A(g, ga, gb) = gab|DDHg,a(., .)]

The strong Diffie Hellman assumption holds in G if for all polynomial time
adversaries A, the advantage AdvSDH

A is negligible.
Note: In pairing groups (also known as gap groups), the DDH oracle can be
efficiently instantiated and hence the strong Diffie Hellman problem is equivalent
to the Gap Diffie Hellman problem [14].

Definition 3. Stateful Public Key Encryption (SPKE):
A stateful public key encryption scheme SPKE is a tuple of five polynomial time
algorithms Setup, Key Generation, New State, Encryption and Decryption

(all are randomized algorithms except the last) such that:

Setup: This algorithm is run by an authority to generate the system parameters
params.

Key Generation: This algorithm takes the system parameters params as input
and outputs a pair of keys (sk, pk), namely the private key and the public key.
This algorithm can be denoted as (sk, pk)← Key Generation(params).

New State: This algorithm is run by any one who wants to encrypt the message,
to generate a fresh state information st by taking params as input.

Encryption: As mentioned before, when a sender wants to send several messages
to a receiver, he schedules the encryption in to sessions. In each session, a sender
may wish to send some specific number of messages and this count is maintained
by a variable called encryption-count. Each session has an associated state
and each encryption in a session has an associated encryption-count. The
encryption-count value is incremented by one for each encryption done in a
session where the index is initiated to 1 at the beginning of each session. The
index number is also sent as a component of the ciphertext. Thus, the extended
form of encryption algorithm may be specified as (c, encryption-count) ←
Encryption(params, st, pk,m, encryption-count).
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Decryption: This algorithm takes the private key sk and a ciphertext c as input

and executes two sub-algorithms Decryption and Verify.

– Execute m← Decryption(params, sk, c) and obtain the message m.
– Using m and c, perform {True, False} ← Verify(c,m).
– If the output of the Verify algorithm is True, output m as the message. If

it outputs False, reject the ciphertext.

Note that in order to capture the notion of ciphertext verifiability, we have split
the decryption algorithm into these two sub-algorithms.

Remark: We omit the Public Key Check algorithm in our paper and hence
our framework has one less algorithm from the actual definition in [5]. This is
because public key check is concerned with all Public Key Infrastructure (PKI)
based encryption schemes. It is mandatory for a sender to perform this check
in order to verify whether the components of public keys are elements of the
underlying group and they comply with the system. Few checks like this are
sometimes required for the security of standard schemes.

Definition 4. Game for CCA Security of Stateful PKE (SPKECCA
A (κ)):

The game for CCA security of a stateful public key encryption scheme is between
a challenger C and an adversary A. Note that with out loss of generality we
accept only the public keys that are valid, in the game. Public keys those are not
well-formed will be rejected by public key check algorithm which we do not make
explicit in our proofs. The game follows:

Setup: C generates the system parameters params, generates a key pair
(sk, pk) ← Key Generation(κ) and prams, pk are given to A. (It should be
noted that since A knows params, A could generate any number of private key
/ public key pairs but A does not know sk which is the private key corresponding
to pk).

Phase I: A is given oracle access to the following oracles:

– Encryption(params, sti,mj): A can make encryption queries for a message
mj in the state sti, where (j = 1 to m̂), (i = 1 to n̂) and m̂, n̂ are the upper
bounds for the number of messages that can be encrypted in a state and
total number of states respectively. Note that encryption with respect to the
public keys those are valid and passes the public key validity check alone are
allowed.

– Decryption(params, sk, c): Decryption for any ciphertext c can be queried
by A, irrespective of the state information, C should be able to provide the
decryption.

Challenge: A gives C two messages m0 and m1 of the same length. C chooses a
random bit β ← {0, 1} and generates the challenge ciphertext c∗ ← Encryption

(params, st∗, pk,mβ) and gives it to A.
Phase II: A continues to get oracle access to all ciphertexts for any message
including m0 and m1 for the state information st∗ through the encryption or-
acle Encryption(params, st∗, pk,mj), where j ≤ m̂. A also gets access to the
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Decryption oracle, where it is allowed to query the decryption of any ciphertext
c �= c∗.
Guess: A outputs a bit β′ finally.
C outputs 1, if β = β′ and 0 otherwise. A stateful public key encryption scheme
SPKE has indistinguishable encryption under adaptive chosen ciphertext at-
tack (CCA) if for all probabilistic polynomial time adversaries A, there exists a
negligible function negl(.) such that:

Pr[SPKECCA
A (κ)→ 1] ≤ 1

2
+ negl(κ)

3 Stateful Public Key Encryption Scheme (N − SPKE1)

In this section, we propose a compact CCA secure public key encryption scheme
which provides shorter ciphertext and is stateful, in the sense that the same
randomness can be used across a session that typically comprises encrypting dif-
ferent messages to the same receiver during the session. The ciphertext overhead
of our scheme is slightly higher than the recent stateful public key encryption
scheme reported in [4] with the added advantage that the ciphertext is verifiable
after the decryption process. The main thing to be noticed is that this ciphertext
verifiability property comes with almost the same computational complexity as
the scheme in [4] and one more exponentiation for decryption which is strictly
due to the additional verifiability property of our scheme. The description of the
new stateful public key encryption scheme with verifiable ciphertext follows:

Setup(κ): Let κ be the security parameter and G be a group of prime order q.

Choose a generator g ∈R G. Let F : G→ {0, 1}λ, G : G×G×{0, 1}lm×{0, 1}μ→
{0, 1}λ and H : G × G × {0, 1}λ × {0, 1}μ → {0, 1}lm be three cryptographic
hash functions, where lm represents the size of the message and μ is the size of
the encryption-count used in the scheme. Here λ is a parameter such that any
computation involving 2λ or more steps is considered in-feasible in practice and
the hash functions G and F offers collision resistance, first and second pre-image
resistance with a range of λ-bits. Typically encryption-countmay be a number
from 1 to 220 (this supports one million encryption per session) and hence the
size of encryption-count will be utmost 20-bits. Set the system parameters as
params = 〈κ, q, g,G, F,G,H, 〉.
Key Generation(params): Choose x ∈R Zq and compute h = gx. The private
key of the user is sk = x and the public keys are pk = 〈g, h〉.
New State(params): Let i represent the index of the current state and hence the
current state will be referred as sti. The sender generates the state information
as follows:

– Choose ri ∈R Zq

– Compute ui = F (gri)
– Compute si = riui

– Compute vi = gsi
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The state information sti = 〈ui, vi, si〉.
Encryption(params, sti, pk,m): Let encryption-count be a number which

represents the invocation number of the encryption algorithm in the ith session.
So during the start of each session, the value of encryption-count is initialized
to 1 and incremented each time an encryption is performed during the session.
The sender generates the ciphertext with params, state information, public key
and the message as follows:

– Set c1 = vi
– Compute w = hsi

– Compute c2 = G(c1, w,m, encryption-count)⊕ ui

– Compute c3 = H(c1, w, c2, encryption-count)⊕m

The ciphertext c = 〈c1, c2, c3, encryption-count〉. We emphasize that the max-
imum number of encryption to be performed in a session will be determined
by the sender. Thus, encryption-count is a user determined integer value and
to perform one million encryption operations in a session, the value of index
may be utmost 220. Hence, encryption-count may typically be a value from
1 ≤ encryption-count≤ 220 and thus of size less than 20-bits.

Decryption(params, sk, c): The receiver decrypts the ciphertext with the pri-
vate key by performing the following:

Decryption(params, sk, c) :

– Compute w′ = csk1
– Compute m′ = c3 ⊕H(c1, w

′, c2, encryption-count)

Verify(c,m′) :

– Compute u′ = c2 ⊕G(c1, w
′,m′, encryption-count)

– Check whether u′ ?
= F (c

(u′)−1

1 ).

If the Verify algorithm outputs True, return m′, else return ⊥.
Correctness: We have to show that the u′ computed by the decryption algorithm

passes the verification test u′ ?
= F (c

(u′)−1

1 ), if u′ = ui = F (gri).

RHS = F (c
(u′)−1

1 )= F (v
(u′)−1

i ) = F (gsi(u
′)−1

) = F (griui(u
′)−1

)
= F (gri) (If u′ = ui = F (gri))
= u′ = LHS

Thus, the decryption will hold if u′ = ui = F (gri).

Theorem 1. The compact stateful public key encryption scheme N − SPKE1
is IND-CCA secure in the random oracle model if the SDH problem is hard in G.
More specifically, if G is a (t, ε)− SDH group of order q then the N − SPKE1
scheme is (t′, qD, qH , qG, ε

′)-secure against IND-CCA adversary where ε′ ≥ ε and

t′ ≤ t− CG(qH + qG + 3qE + 3qD)
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Proof: Let κ be the security parameter and G be a multiplicative group of order
q, where |q| = κ. The challenger C is challenged with an instance of the SDH
problem, say (g, ga, gb) ∈R G3 and access to a DDH oracle DDHg,a(., .) which on
input gb and gc outputs True if and only if gab = gc. Consider an adversary A,
who is capable of breaking the IND-CCA security of the scheme N − SPKE1.
C can make use of A to compute gab, by playing the following interactive game
with A.
Setup: C begins the game by setting up the system parameters as in the
N − SPKE1 scheme by performing the following:

– Sets the public key h = ga (where ga is taken from the SDH instance).
– Hence, the private key is a implicitly.

C gives A the public keys pk = 〈g, h〉 and C also designs the three cryptographic
hash functions F , G and H as random oracles OF , OG and OH . C maintains
three lists LF , LG and LH in order to consistently respond to the queries to the
random oracles OF , OG and OH respectively. A typical entry in list Lĥ will have

the input parameters of hash functions ĥ (for ĥ = F,G and H) followed by the
corresponding hash value returned as the response to the hash oracle query. In
order to generate stateful encryption, C generates n̂ tuple of state information
and stores them in a state list Lst. Each tuple in the list corresponds to a state
information. This is done as follows.

– For i = 1 to n̂, C performs the following:
• Choose ri ∈R Zq, compute ki = gri , choose ui ∈R Zq and adds the tuple
〈ki, ui〉 in the list LF , compute si = riui and compute vi = gsi .
• The state information sti = 〈ui, vi, si, encryption-counti = 1〉.
• Store the tuple sti in list Lst.

The game proceeds as per the SPKECCA
A (κ) game.

Phase I: A performs a series of queries to the oracles provided by C. The
descriptions of the oracles and the responses given by C to the corresponding
oracle queries by A are described below:

OF (k ∈ G): To respond to this query, C checks whether a tuple of the form 〈k, u〉
exists in the list LF . If a tuple of this form exists, C returns the corresponding
u, else chooses u ∈R Zq, adds the tuple 〈k, u〉 to the list LF and returns u to A.
OG(c1 ∈ G, w ∈ G,m ∈ {0, 1}lm, encryption-count ∈ {0, 1}μ): To respond to
this query, C checks whether a tuple of the form 〈c1, w,m, encryption-count, h1〉
exists in the list LG. If a tuple of this form exists, C returns the corresponding
h1, else chooses h1 ∈R {0, 1}λ, adds the tuple 〈c1, w,m, encryption-count, h1〉
to the list LG and returns h1 to A.
OH(c1 ∈ G, w ∈ G, c2 ∈ {0, 1}λ, encryption-count ∈ {0, 1}μ): To respond to
this query, C checks whether a tuple of the form 〈c1, w, c2, encryption-count, h2〉
exists in the list LH . If a tuple of this form exists, C returns the corresponding
h2, else chooses h2 ∈R {0, 1}lm , adds the tuple 〈c1, w, c2, encryption-count, h2〉
to the list LH and returns h2 to A.
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OEncryption(sti,mj): A may perform encryption with respect to any state infor-
mation sti, chosen by C. C performs the following to encrypt the message mj

with respect to the state information sti, where i = 1 to n̂, where n̂ is bound by
the total number of states and j = 1 to m̂ is bound by the number of messages
that can be encrypted in one session:

– C retrieves the tuple sti of the form 〈ui, vi, si, encryption-counti〉 from Lst,
sets c1 = vi, computes w = hsi .

– Chooses h1 ∈R {0, 1}λ, adds the tuple 〈c1, w,mj , encryption-counti, h1〉
to the list LG and computes c2 = h1 ⊕ ui.

– Chooses h2 ∈R {0, 1}lm, adds the tuple 〈c1, w, c2, encryption-counti, h2〉
to the list LH and computes c3 = h2 ⊕mj .

– Returns c = 〈c1, c2, c3〉 as the ciphertext, increments encryption-counti
and updates the state information sti.

ODecryption(c): C does the following to decrypt c=〈c1, c2, c3, encryption-count〉:

– Retrieve the tuple 〈c1, w, c2, encryption-count, h2〉 from list LH such that
the output of the DDH oracle query DDHg,a(w, c1) is True and compute
m′ = c3 ⊕ h2.

– Check whether a tuple of the form 〈c1, w,m, encryption-count, h1〉, where
w is the same as the w value retrieved from the tuple in the list LH and m
is equal to m′ computed in the above step appears in the list LG. If such a
tuple appears, retrieve h1 and compute u′ = c2 ⊕ h1.

– Check whether a tuple of the form 〈k, u〉, where k = cu
′−1

1 and u = u′ appears
in list LF ,

– If any of the required tuples did not appear in the lists LF , LG or LH

return ⊥.

Challenge: At the end of Phase I , A produces two messages m0 and m1 of
equal length. C randomly chooses a bit β ∈R {0, 1} and computes a ciphertext
c∗ by performing the following steps:

– Choose u ∈R {0, 1}λ and add the tuple 〈gb, u〉 to the list LF .
– Set encryption-count∗ = 1 and compute c∗1 = gbu.
– Choose h1 ∈R {0, 1}λ, add the tuple 〈c∗1,−,mβ, encryption-count

∗, h1〉 in
the list LG and compute c∗2 = h1 ⊕ u.

– Choose h2 ∈R {0, 1}lm, add the tuple 〈c∗1,−, c2, encryption-count∗, h2〉 in
the list LH . and compute c∗3 = h2 ⊕mβ .

– The state information st∗ = 〈u∗ = u, v∗ = gbu, s∗ = −, encryption-count∗〉

Now, c∗ = 〈c∗1, c∗2, c∗3, encryption-count∗〉 is sent to A as the challenge cipher-
text.

Phase II: A performs the second phase of interaction, where it makes polyno-
mial number of queries to the oracles provided by C with the following condition:

– A should not query the ODecryption oracle with c∗ as input.
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– A continues to get oracle access to all the oracles. It can also get the en-
cryption for any message including m0 and m1 for the state information st∗

through the encryption oracle Encryption(params, st∗, pk,mj).

The simulation of the OG, OH , OEncryption and ODecryption oracles are not same
as in Phase I and hence we provide the details below:

OG(c1 ∈ G, w ∈ G,m ∈ {0, 1}lm, encryption-count ∈ {0, 1}μ): To respond to
this query, C performs the following:

– Check whether a tuple of the form 〈c1, w,m, encryption-count, h1〉 exists
in the list LG. If a tuple of this form exists, return the corresponding h1,
else,
• If c1 = c∗1 then check with the DDH oracle whether DDHg,a(w, c1) is

True. If the output is True, return wu∗−1

as the solution to the SDH
problem instance.
• Else, choose h1 ∈R {0, 1}λ, add the tuple 〈c1, w,m, encryption-count,
h1〉 to the list LG and return h1 to A.

OH(c1 ∈ G, w ∈ G, c2 ∈ {0, 1}λ, encryption-count ∈ {0, 1}μ): To respond to
this query, C performs the following:

– Check whether a tuple of the form 〈c1, w, c2, encryption-count, h2〉 exists
in the list LH . If a tuple of this form exists, C returns the corresponding h2,
else,
• If c1 = c∗1 then check with the DDH oracle whether DDHg,a(w, c1) is

True. If the output is True, return wu∗−1

as the solution to the SDH
problem instance.
• Else, choose h2 ∈R {0, 1}lm, add the tuple 〈w, c2, encryption-count, h2〉
to the list LH and return h2 to A.

OEncryption(sti,mj): A may perform encryption with respect to any state infor-
mation sti including st∗, chosen by C. C performs the following to encrypt the
message mj with respect to the state information sti:

– If sti �= st∗ then encryption is done as in Phase I
– If sti = st∗ then perform the following:
• Retrieve the tuple st∗ of the form st∗ = 〈u∗ = u, v∗ = gbu, s∗ =
−, encryption-count∗〉 from Lst and set c1 = v∗.
• Choose h1 ∈R {0, 1}λ, add the tuple 〈c1,−,mj, encryption-count

∗, h1〉
to the list LG and compute c2 = h1 ⊕ u∗.
• Choose h2 ∈R {0, 1}lm, add the tuple 〈c1,−, c2, encryption-count∗, h2〉
to the list LH and compute c3 = h2 ⊕mj .
• Return c = 〈c1, c2, c3〉 as the ciphertext, increment encryption-count∗

and update the state information st∗.

ODecryption(c): C does the following to decrypt c=〈c1, c2, c3, encryption-count〉:
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If c1 �= c∗1 then decryption is done as in Phase - I.
If c1 = c∗1 then perform the following:

– Retrieve the tuple of the form 〈c1, w, c2, encryption-count, h2〉 from list
LH , such that the output of the DDH oracle query, DDHg,a(w, c1) is True.
If the retrieved tuple is of the form 〈c1,−, c2, encryption-count, h2〉 then it
was the tuple generated by C during an encryption oracle query in the phase
II. Note that C can even work consistently with the tuple of this form. In this
case, C chooses the value h2 without consulting the DDH oracle. Compute
m′ = c3 ⊕ h2.

– Check whether a tuple of the form 〈c1, w,m, encryption-count, h1〉, where
w is the same as the w value retrieved from the tuple in the list LH and m is
equal to m′ computed in the above step appears in the list LG. If such a tuple
appears, retrieve h1 and compute u′ = c2⊕h1. (Note that even in this case C
works consistently with the tuple of the form 〈c1,−,m, encryption-count,
h1〉)

– Check whether a tuple of the form 〈k, u〉, where k = cu
′−1

1 and u = u′ appears
in list LF ,

– If any of the required tuples did not appear in the lists LF , LG or LH return
⊥.

– If in the process a tuple of the form 〈c1, w, c2, encryption-count, h2〉 ap-
peared in the list LG and a tuple of the form 〈c1, w,m, encryption-count, h1〉
appeared in the list LH with DDHg,a(w, c1) is True, then output w as the
output to the SDH problem.

Lemma 1. The decryption oracle responds correctly to well-formed ciphertexts
and rejects invalid ciphertexts.

Proof: Let us consider c = 〈c1, c2, c3, encryption-count〉 is a well-formed ci-
phertext. In order to construct c, A should have done the following:

– Chosen r ∈R Zq and queried the OF oracle with k = gr. Thus a tuple of the
form 〈k, u〉 should appear in LF .

– A should have computed c1 = gru, w = hru and queried the OG oracle with
〈c1, w,m, encryption-count〉 as input and received h1 corresponding to this
input.

– A should have computed c2 = h1 ⊕ u and queried the OH oracle with
〈c1, w, c2, encryption-count〉 as input and received h2 corresponding to this
input.

During the decryption, C retrieves the corresponding tuples, one from the lists
LG and LH for which both the w values are same and checks whether the output
of the DDH oracle query, DDHg,a(w, c1) is True. For a well formed ciphertext,
this check holds because,

c1 = gru (1)

w = hru = garu (2)
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From equations (1) and (2) it is clear that for a well formed ciphertext, this
check holds and working with the corresponding h1 and h2 will properly yield
the message during decryption. Else, the ciphertext will be rejected. �
Guess: At the end of Phase II , A produces a bit β′ to C, but C ignores the
response and performs the following to output the solution for the SDH problem
instance.

– When a query to the OG oracle, with (c1, w,m, encryption-count) as input

is made, C computes g′ = wu∗−1

= gab and checks whether DDHg,a(g
′, gb) ?

=
True. Alternatively, C can also perform the same with OH oracle queries.

– Outputs the corresponding g′ value for which the above check holds as the
solution for the SDH problem instance.

Since there is no Abort during the simulation, C obtains the solution to the
SDH problem with almost the same advantage of A in the IND-CCA game.
Let qG be the number of OG oracle queries, qH be the number of OH oracle
queries, qE be the number of OEncryption oracle queries and qD the number of
ODecryption oracle queries. The maximum number of queries that are made to
OG oracle and OH oracle is qG+qE+qD and qH+qE+qD respectively. The total
number of queries made to the OG, OH , OEncryption and ODecryption oracle is
[qG + qE + qD] + [qH + qE + qD] + [qE ] + [qD] = qG + qH + 3qE + 3qD. Thus, if
there exists an algorithm A that (t′, qD, qH , qG, ε

′)-breaks the IND-CCA security
of N − SPKE1 scheme, then there exists an algorithm C that (t, ε)-breaks the
SDH problem in G, where ε′ ≥ ε and

t′ ≤ t− CG(qG + qH + 3qE + 3qD)

CG is a constant that depends on the group G. �

4 Stateful Public Key Encryption Scheme (N − SPKE2)

In this section, we propose a compact CCA secure public key encryption scheme
whose security is based on the CDH problem.

Setup(κ): Same as the Setup(.) algorithm of N − SPKE1.
Key Generation(params): Choose x, y ∈R Zq, compute g1 = gx and g2 = gy.
The private key of the user is sk = 〈x, y〉 and the public keys are pk = 〈g, g1, g2〉.
New State(params): Same as the New State(.) algorithm of N − SPKE1.
Encryption(params, sti, pk,m): Let encryption-countbe a number as defined
in N − SPKE1. The sender generates the ciphertext as follows:

– Set c1 = vi, compute w1 = gsi1 and w2 = gsi2
– Compute c2 = G(c1, w1,m, encryption-count)⊕ ui

– Compute c3 = H(c1, w2, c2, encryption-count)⊕m

The ciphertext c = 〈c1, c2, c3, encryption-count〉.
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Decryption(params, sk, c): The receiver decrypts the ciphertext with the pri-
vate key by performing the following:
Decryption(params, sk, c) : Compute w′

1 = cx1 , w′
2 = cy1 and m′ = c3 ⊕

H(c1, w
′
2, c2, encryption-count)

Verify(c,m′) : Compute u′ = c2 ⊕G(c1, w
′
1,m

′, encryption-count) and check

whether u′ ?
= F (c

(u′)−1

1 ).

If the Verify algorithm outputs True, return m′, else return ⊥.
Theorem 2. The compact stateful public key encryption scheme N − SPKE2
is IND-CCA secure in the random oracle model if the CDH problem is hard in G.
More specifically, if G is a (t, ε)−CDH group of order q then the N − SPKE2
scheme is (t′, qD, qH , qG, ε

′)-secure against IND-CCA adversary where ε′ ≥ ε and

t′ ≤ t− CG(qH + qG + 3qE + 3qD)

Let κ be the security parameter and G be a multiplicative group of order q, where
|q| = κ. The challenger C is challenged with an instance of the CDH problem,
say (g, ga, gb) ∈R G3. Consider an adversary A, who is capable of breaking the
IND-CCA security of the scheme N − SPKE2. C can make use of A to compute
gab, by playing the following interactive game with A. The proof revolves around
the technique of [7].

Setup: C chooses z1, z2 ∈R Zq, sets the public key g1 = ga (where ga is taken
from the CDH instance) and computes g2 = gz1/gaz2. Therefore, the private keys
are a and (z1 − az2) implicitly. C gives A the public keys pk = 〈g, g1, g2〉 and
designs the three cryptographic hash functions F , G and H as random oracles
OF , OG and OH as in Theorem 1. In order to generate stateful encryption, C
generates n̂ tuples of state information and stores them in a state list Lst as in
Theorem 1. The game proceeds as per the SPKECCA

A (κ) game.

Phase I: A performs a series of queries to the oracles provided by C. The
descriptions of the hash oracles and the responses given by C to the corresponding
queries by A are similar to the simulation in Theorem 1.
OEncryption(sti,mj): Similar to the simulation in Theorem 1.

ODecryption(c): C does the following to decrypt c=〈c1, c2, c3, encryption-count〉:

– Retrieve the tuples of the form 〈c1, w1,m, encryption-count, h1〉 from the
list LG. Consider that there are n̂G such tuples. Choose the corresponding
(w1i, h1i) values, for i = 1 to n̂G.

– Retrieve the tuples of the form 〈c1, w2, c2, encryption-count, h2〉 from the
list LH . Consider that there are n̂H such tuples. Choose the corresponding
(w2j , h2j) values, for j = 1 to n̂H .

– For i = 1 to n̂G

• For j = 1 to n̂H

∗ Check whether w2j
?
= cz11 /wz2

1i .

∗ If the check holds for some index î and ĵ, choose the corresponding
h1̂i and h2ĵ . If the check does not hold for any tuple then reject the
ciphertext c.
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– Compute m′ = c3 ⊕ h2ĵ .
– Retrieve the value m from the tuple 〈c1, w1̂i,m, encryption-count, h1̂i〉 in

the list LG.
– If (m = m′), then compute u′ = c2 ⊕ h1̂i, else reject the ciphertext c..

– Check whether a tuple of the form 〈k, u〉, where k = cu
′−1

1 and u = u′ appears
in list LF . If it appears accept m

′ and return it as the message.
– If any of the required tuples did not appear in LF , LG or LH , return ⊥.

The proof for consistency of the decryption oracle is given in the full version.

Challenge: At the end of Phase I , A produces two messages m0 and m1 of
equal length. C randomly chooses a bit β ∈R {0, 1} and computes a ciphertext
c∗ by performing the following steps:

– Choose u ∈R {0, 1}λ and add the tuple 〈gb, u〉 to the list LF .
– Set encryption-count∗ = 1 and compute c∗1 = gbu

– Choose h1 ∈R {0, 1}λ, add the tuple 〈c∗1,−,mβ, encryption-count
∗, h1〉 in

the list LG and compute c∗2 = h1 ⊕ u.
– Choose h2 ∈R {0, 1}lm, add the tuple 〈c∗1,−, c2, encryption-count∗, h2〉 in

the list LH and compute c∗3 = h2 ⊕mβ .
– The state information st∗ = 〈u∗ = u, v∗ = gbu, s∗ = −, encryption-count∗〉

Now, c∗ = 〈c∗1, c∗2, c∗3, encryption-count∗〉 is sent to A as the challenge cipher-
text.

Phase II: A performs the second phase of interaction, where it makes polyno-
mial number of queries to the oracles provided by C with the following condition:

– A should not query the ODecryption oracle with c∗ as input.
– A continues to get oracle access to all the oracles. It can also get the en-

cryption for any message including m0 and m1 for the state information st∗

through the encryption oracle Encryption(params, st∗, pk,mj).

The simulation of the OG, OH , OEncryption and ODecryption oracles are not same
as in Phase I and hence we provide the details below:

OG(c1 ∈ G, w1 ∈ G,m ∈ {0, 1}lm , encryption-count ∈ {0, 1}μ): To respond to
this query, C performs the following:

– If c1 �= c∗1 then
• If a tuple of the form 〈c1, w1,m, encryption-count, h1〉 exists in the list
LG, return the corresponding h1.
• Else, choose h1 ∈R {0, 1}λ, add the tuple 〈c1, w1,m, encryption-count,
h1〉 to the list LG and return h1 to A.

– If c1 = c∗1 then
• If a tuple of the form 〈c1, w2, c2, encryption-count, h2〉 exists in the list

LH , check whether w2
?
= cz11 /wz2

1 . If the check holds then return wu∗−1

1

as the solution to the CDH problem instance.
• If a tuple of the form 〈c1, w2, c2, encryption-count, h2〉 does not exist
in the list LH perform the following:
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∗ Choose h1 ∈R {0, 1}λ.
∗ Add the tuple 〈c1, w1,m, encryption-count, h1〉 to the list LG.
∗ Return h1 to A.

OH(c1 ∈ G, w2 ∈ G, c2 ∈ {0, 1}λ, encryption-count ∈ {0, 1}μ): To respond to
this query, C performs the following:

– If c1 �= c∗1 then

• If a tuple of the form 〈c1, w2, c2, encryption-count, h2〉 exists in the list
LH , return the corresponding h2.

• Else, choose h2 ∈R {0, 1}lm, add the tuple 〈c1, w2, c2, encryption-count,
h2〉 to the list LH and return h2 to A.

– If c1 = c∗1 then

• If a tuple of the form 〈c1, w1,m, encryption-count, h1〉 exists in the list

LG, check whether w2
?
= cz11 /wz2

1 . If the check holds then return wu∗−1

1

as the solution to the CDH problem instance.

• If a tuple of the form 〈c1, w1,m, encryption-count, h2〉 does not exist
in the list LG perform the following:

∗ Choose h2 ∈R {0, 1}lm.
∗ Add the tuple 〈c1, w2, c2, encryption-count, h2〉 to the list LH .
∗ Return h2 to A.

OEncryption(sti,mj): Similar to the simulation in Theorem 1. ODecryption(c): In
the case where (c1 �= c∗1), C responds as in phase I. If (c1 = c∗1), C performs the
following to decrypt the ciphertext c = 〈c1, c2, c3, encryption-count〉:

– Retrieve the tuples of the form 〈c1, w1,m, encryption-count, h1〉 from the
list LG. Consider that there are n̂G such tuples. Choose the correspond-
ing (w1i, h1i) values, for i = 1 to n̂G. (If the retrieved tuple is of the form
〈c1,−,m, encryption-count, h1〉 then it was the tuple generated by C dur-
ing an encryption oracle query in phase II. Note that C can even work con-
sistently with the tuple of this form without performing the test mentioned
below. Further note that for a fixed c1 and encryption-count, there will be
only one such tuple in the list LG.)

– Retrieve the tuples of the form 〈c1, w2, c2, encryption-count, h2〉 from the
list LH . Consider that there are n̂H such tuples. Choose the corresponding
(w2j , h2j) values, for j = 1 to n̂H . (Even in this case, if the retrieved tuple is
of the form 〈c1,−, c2, encryption-count, h2〉, the tuple was generated by C
during an encryption oracle query in phase II. C can even work consistently
with the tuple of this form without performing the test mentioned below.
This is because for a fixed c1, c2 and encryption-count there will be only
one tuple of this form available in the list LH .)

– For i = 1 to n̂G

• For j = 1 to n̂H

∗ Check whether w2j
?
= cz11 /wz2

1i .
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∗ If the check holds for some index î and ĵ, choose the corresponding
h1̂i and h2ĵ and return wu∗−1

1̂i
as the solution to the CDH problem

instance. If the check does not hold for any tuple then reject the
ciphertext c.

– Compute m′ = c3 ⊕ h2ĵ .
– Retrieve m from the tuple of the form 〈c1, w1̂i,m, encryption-count, h1̂i〉

available in list LG.
– If (m = m′), then compute u′ = c2 ⊕ h1̂i, else reject the ciphertext c.

– Check whether a tuple of the form 〈k, u〉, where k = cu
′−1

1 and u = u′ appears
in list LF . If it appears accept m

′ and return it as the message corresponding
to c.

– If any of the required tuples did not appear in the lists LF , LG or LH

return ⊥.

Guess: At the end of Phase II , A produces a bit β′ to C, but C ignores the
response and performs the following to output the solution for the CDH problem
instance.

– Retrieves the tuples of the form 〈c∗1, w1,m, encryption-count〉 from the list
LG and checks whether a tuple of the form 〈c∗1, w2, c

∗
2, encryption-count, h2〉

is available in list LH . If a tuple of this form exists in the list LH , C checks

whether w2
?
= cz11 /wz2

1 . If the check holds, compute g′ = wu∗−1

1 as the solu-
tion to the CDH problem.

– Alternatively, retrieves the tuples of the form 〈c∗1, w2, c
∗
2, encryption-count〉

and checks whether a tuple of the form 〈c∗1, w1,mβ, encryption-count, h1〉
is available in list LG. If a tuple of this form exists in the list LG, C checks

whether w2
?
= cz11 /wz2

1 . If the check holds, compute g′ = wu∗−1

1 = gab as the
solution to the CDH problem. (The correctness is given in the full version
of the paper.)

Thus, C obtains the solution to the CDH problem with almost the same advantage
of A in the IND-CCA game. The argument is similar to Theorem 1. �

5 Comparison with Existing Schemes

In this section, we compare the new stateful public key encryption scheme
(N − SPKE1), proposed in section 3 with the existing schemes related to them
respectively. The legends are E - Exponentiation, B - Bilinear Pairing, H - Hash
computation, |G| - Cardinality of the group G, ||G|| = log|G| - Size of one group
element, MAC - MAC Computation, |MAC| - Size of a MAC value, |R| - Size
of a random string usually λ, CBDH - Computational Bilinear Diffie Hellman
Problem, GBDH - Gap Bilinear Diffie Hellman Problem, GDH - Gap Diffie
Hellman Problem and SDH - Strong Diffie Hellman Problem.

This table summarizes the computation complexity and ciphertext overhead
of the stateful public key encryption schemes by Bellare et al. (BKSst [5]), Baek
et al. (BCZst [4]), N − SPKE1 and N − SPKE2. Here, μ is the size of the
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Table 1. Stateful Public Key Encryption Schemes with Short Ciphertext

Scheme Encryption Decryption Ciphertext Assumption Ciphertext
Cost Cost Expansion Verifiability

BKSst [5] 1H + 1MAC 1E + 1H+ ||G|| + |MAC|+ GDH YES
1MAC |R|

BCZst [4] 2H 1E + 2H ||G|| + λ GDH NO

N − SPKE1 2H 2E + 2H ||G||+ λ+ μ SDH YES

N − SPKE2 2H 3E + 2H ||G||+ λ+ μ CDH YES

index used in our scheme. To ensure ciphertext verifiability, it is possible to
append 80-bits of known value (usually 80-bits of 0’s) to the plaintext while
encrypting and checking whether decryption produces those 80-bits at the end
of the message. If this technique is used in the BCZst scheme, the ciphertext
expansion will be ||G||+λ+‘80−bits’. However, in the new schemes N − SPKE1
and N − SPKE2, the size of the encryption-count (μ), is upper bound by
20-bits and hence can take a value starting from 1−bit, which is a considerable
reduction for resource constrained devices like sensors, PDAs and mobile devices.
The ciphertext overhead is also smaller than that of the BKSst scheme, that offers
ciphertext verifiability.

6 Conclusion

Two new stateful public key encryption schemes with ciphertext verifiability were
proposed and the security of these schemes were supported by a formal proof.
Our first stateful public key encryption scheme is proved to be secure assuming
the SDH problem and the second assuming the CDH problem. However, the
ciphertext overhead of both the schemes turns out to be the same. We have
proved both the schemes in the random oracle model. An interesting open issue
that can be looked at is designing a public key encryption scheme which offers
compact ciphertext (ciphertext overhead of one group element) with ciphertext
verifiability.
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Abstract. We investigate the problem of privately searching encrypted
data that is structured in the form of knowledge. Our rationale in such an
investigation lies on the potential emergence of knowledge-based search
using natural language, which makes content searches more effective
and is context-aware when compared with existing keyword searches.
With knowledge-based search, indexes and databases will consist of data
stored using knowledge representation techniques such as description
logics and conceptual graphs. This leads naturally to the issue of how
to privately search this data, especially when most existing searchable
encryption schemes are keyword-based. We propose the first construc-
tion with CQA2-security for searching encrypted knowledge, where the
knowledge is represented in a well-established formalism known as ba-
sic conceptual graphs. Our proposals are based on structured encryption
schemes of Chase and Kamara [8].

1 Introduction

Most existing search techniques query data based on keywords, but searches
based on natural language would be more effective in providing context-aware
results from documents. One way to realise natural language searches is to rep-
resent the underlying data in a form of knowledge with knowledge retrieval capa-
bilities, so that a computing device may process and understand them. Knowl-
edge, in this case, is traditionally defined as “justified true belief or true opinion
combined with reason”. Models to capture these beliefs is known as knowledge
representation and reasoning [9,14]. One of the main representations is concep-
tual graphs (CGs) [9], in which a sentence in a document is structured in a graph
format with the edges representing “relations” between the words. Query meth-
ods are defined for CGs using graph homomorphism. We discuss CG in more
details in Section 3.1.

In this scenario the database contains documents represented as CGs. When
such knowledge database is stored in the cloud, we would want it to be en-
crypted while at the same time searchable without the cloud provider being able
to access the searched knowledge. There are many existing schemes for search-
ing encrypted data but most of them are constructed to address keyword-based
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search on text documents only [1,2,4,5,10,12,16,18], except for the recent struc-
tured encryption schemes proposed by Chase and Kamara [8]. The schemes by
Chase and Kamara generalise symmetric searchable encryption (SSE) to also
work for arbitrarily structured data. Practical applications mentioned that can
utilise their schemes include social network and labeled web graphs.

None of these schemes, however, examines searchable encryption on data rep-
resented as knowledge. We propose such schemes by adapting Chase and Ka-
mara’s schemes and taking CGs as the knowledge representation models. We
note that CGs is a reasonable choice for knowledge representation, given its
well-established nature as discussed in [9,19,20].

Our Results. In the following we summarize our contributions.

1. We introduce searchable encryption for data represented as knowledge. In
particular, we extend applications of structured encryption [8] to include
knowledge represented in CGs.

2. We propose a main construction called a Message Query (MeQ) scheme. It
queries an encrypted document database and retrieves encrypted document
matching the query. The query is a CG. In other words, given a phrase (or
a sentence) structured as a CG as the query, the scheme returns multiple
documents that contain the query, phrases and sentences related to the query.
This is performed by having the phrases and sentences in the documents
represented as CGs as well. We prove security of the scheme by utilising the
CQA2-security definition and proof methods of structured encryption [8].

3. We describe the possibility of constructing other more flexible schemes, such
as queries based on concepts (or group of neighbouring concepts) in CG.

2 Related Work

Symmetric Searchable Encryption (SSE) was first proposed by Song, Wag-
ner and Perrig [18]. Their schemes contain encryption methods specifically de-
signed to allow for encryptions and searches of words in a document. The queries
can be performed via sequential scanning or indexes. The sequential scan is in-
efficient since the server needs to scan through all documents while the indexes
is incomplete as discussed in Goh [12]. Due to this, Goh proposed a data struc-
ture formally known as secure indexes. The technique, which is based on Bloom
filters, improves on search efficiency. Building on Goh’s proposal, Chang and
Mitzenmacher [7] suggests stronger security model based on their observations
of information leakage in Goh’s secure indexes. However, this comes with a trade-
off on computation efficiency. Improved security notions on symmetric search-
able encryption schemes is then proposed by Curtmola et al. in [10]. The main
contribution is the notion of non-adaptive and adaptive chosen-keyword attacks.
Following from this, Chase and Kamara [8] proposed the generalisation of all the
above constructs, in particular of secure indexes. Their proposal, called struc-
tured encryption, extends the setting of searchable encryption on keyword-based
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data to arbitrarily-structured data. Our proposals fall into this category and are
based on structured encryption. In addition, recently Cao et al. [6] proposed
a searchable encryption scheme for graph-based data. Their scheme is efficient
and it allows computation of inner product in the encrypted domain but their
scheme induces false positives and security claims are heuristic. We further note
that works on oblivious RAMs first examined by Goldreich and Ostrovsky [13],
with a recent proposal in [17], can also provide searchable encryption. However,
these are not as practical as the above discussed constructs.

Public Key based Searchable Encryption was first proposed by Boneh,
Di Crescenzo, Ostrovsky and Persiano [4]. It is known as Public Key Encryp-
tion with keyword Search (PEKS) and the constructions are based on bilinear
maps and trapdoor permutation. This proposal was extended in [1], which fur-
ther refine the consistency properties of PEKS and its relations to anonymous
identity-based encryption (IBE). Schemes based on the concept known as Pri-
vate Information Retrieval (PIR) was also proposed in [5]. This scheme provides
full concealment of encrypted search, unlike the previous PEKS schemes that
leak access patterns. Other schemes of interests include schemes for multi-user
settings in [3] and wildcarded identity-based encryption [2] that can be used for
wildcarded searchable encryption. Recently, fully homomorphic encryption [11]
has become one of the main techniques to provide searchable encryption due to
its capability to execute arbitrary operations on encrypted data.

3 Preliminaries

3.1 Conceptual Graphs

Conceptual graph as a knowledge representation model was proposed by Sowa
in [19]. It is defined as a graph representation for logic, which is based on the se-
mantic networks of Artificial Intelligence (AI) and existential graphs [20]. Chein
and Mugnier [9] further enhanced Sowa’s proposal by formalising the model as a
family of formalisms. One of them is basic conceptual graphs (BGs), which is cen-
tral to the construction of graph-based knowledge representation. It is common
in the literature to just denote BGs as conceptual graphs (CGs). We follow this
notation. From an application viewpoint, a sentence can be constructed using
a CG. A text document can be represented by a set of CGs. Figure 1 shows a
simple example of CG of the sentence “A boy named Bob possesses a toy and
he plays with the toy”. Formally, CGs require a vocabulary, which serves as the
basis for CGs [9].

Vocabulary, V. A CG is constructed under two kinds of nodes, concept and
relation. Concept nodes represent the entities in an application domain while
relation nodes represent the relationships between these entities. The set of con-
cepts is denoted as TC and the set of relations as TR. There are also items
known as individual markers, I. For example, Boy is an entity of a concept type
while Bob is an individual marker to the concept Boy, as shown in Figure 1.
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Boy:Bob ToyplayWith

possess

1 2

21

Fig. 1. An Example: A CG

There is also a generic marker ∗, which denotes an unspecified entity. For exam-
ple, Boy:* denotes any Boy. The sets of concepts, relations, I and {∗} compose
the vocabulary.

CG. Formally, a basic conceptual graph CG defined over V = (TC , TR, I) is a
quadruple G = (C,R, E , ζ) satisfying the following conditions [9]:

– (C,R, E) is a finite, undirected and bipartite multigraph called the underlying
graph of G, denoted as graph(G). C is the set of concept nodes, R is the set
of relation nodes, and E is the family of edges.

– ζ is a labeling function of the nodes and edges of graph(G) that satisfies:
• A concept node c is labeled by a pair type(c),marker (c) where type(c) ∈
TC and marker(c) ∈ I ∪ {∗},
• A relation node r is labeled by type(r) ∈ TR,
• The degree of a relation node r is equal to the arity of type(r),
• Edges incident to a relation node r are totally ordered and they are
labeled from 1 to arity(type(r)).

In our scheme the CGs, sets of concepts, relations and individual markers may
serve as keywords (or queries) to retrieve CGs and messages matching CGs.

CG Homomorphisms. Homomorphism is the fundamental notion for CG rea-
soning. Informally, we may say that it is a mechanism to compare two CGs, G
and H , and returns whether they are “similar” or not. This represents the cen-
tral mean of querying database that contains CGs. We note that while deciding
whether a graph is homomorphic to another is NP-complete, there are practi-
cal homomorphism algorithms for CG based on backtrack algorithms [9], under
certain rules and constraints of the underlying application domains. It is im-
plemented in Cogitant [21], a software package for constructing and querying
CGs. Figure 2 shows an example of a graph homomorphism from g1 to g2. In
an application scenario, we envisage sentences in documents being represented
as CGs. Graph homomorphism is then performed on these CGs, allowing a user
to categorise CGs that are related (or homomorphic) to one another.

3.2 Structured Encryption Schemes

Proposed by Chase and Kamara [8], structured encryption schemes generalise
keyword-based SSE schemes to work on arbitrarily structured data such as web
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Boy:Bob ToyplayWith

possess

1 2

21
g2

Person Objectact1 2

g1

Fig. 2. An Example: A Homomorphism from g1 to g2

graph. Our constructions extend the applications of structured encryption to
include knowledge represented in CGs. In the following we provide notation,
building blocks and security definition as per defined by Chase and Kamara.

Notation. We denote the set of binary strings with length n as {0, 1}n and the
set of all finite binary strings as {0, 1}∗. The set of integers {1, . . . , n} is denoted
as [n] and its power set is P [n]. The empty set is ∅ or ⊥. An algorithm A with
an output x is denoted as x← A. We use |S| to refer to the cardinality of a set
S, and |s| to refer to its bit length when s is a string. We further use K to denote
the key space, M to denote the message space and C to denote the ciphertext
space. Given v as a sequence of n elements, we denote vi as its i

th element.

Data Types. We consider a data type T in the form of sets, labels and dic-
tionaries, which support query operations but not update operations. As in
the original proposal of structured encryption, these data types have a single
Query operation with a universe U = {Uk}k∈N, where Query: U × Q → O, with
Q = {Qk}k∈N being the query space, O = {Ok}k∈N being the output space. It
is also assumed that U is a totally ordered set and there is the element ⊥ that
denotes failure in O. We remark that CGs are partially ordered. For example,
with reference to Figure 2, given a ≤ relation in CGs, we have boy ≤ Person, but
boy � Object. Due to this at first glance the structured encryption schemes may
require fundamental changes since it operates under a totally ordered universe
U . However, as long as we restructure the representation of CGs such that the
concepts and relations contained in the CGs are totally ordered, we can directly
adopt and extend the schemes. One such technique is to build an index table (or
labeling) “linking” all the related CGs, as what we propose in our constructions.

Symmetric Primitives. A CPA-secure symmetric encryption scheme Π =
(Gen, Enc, Dec) is required, where Gen is a probabilistic key generation algorithm,
Enc a probabilistic encryption algorithm and Dec a deterministic decryption
algorithm. Other primitives required include pseudo-random functions (PRF)
and permutations (PRP). Formal definitions can be found in [15].

Induced Permutation. This permutation is performed in order to hide the
locations of the items in a message sequence m = (m1, · · · ,mn) for mi ∈M. It
means given the locations of the items in the ciphertext sequence c = (c1, · · · , cn)
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for ci ∈ C, it is infeasible to deduce the original locations of the items inm. We let
π be the induced permutation such that for all i ∈ [n], mi := Dec(K, cπ(i)), and
π−1 as its inverse. We note that, however, access patterns are still leaked because
for a server to retrieve the number of items matching the query {mi : i ∈ I},
the server must be given I, where I ⊆ [1, n] is the set of integer pointers to the
data items in a message sequence m.

Associativity and Chainability. These are properties that allow basic struc-
tured encryption schemes to be combined to construct more interesting schemes.
A structured encryption scheme is said to be associative if the input message
is defined as M = ((m, v)) = ((m1, v1), . . . , (mn, vn)), where mi is a message
to be encrypted and vi a semi-private data. A semi-private data is data that
can be revealed given a matching query. In other words, the query operation in
addition of returning the query results also returns the strings (vi)i∈I related to
the data items. Chainability, on the other hand, allows simpler structures to be
“chained” to form a more complex structure using the associativity property. A
possible chaining is to assign tokens on queries or encrypted message items of
a simple structure as the semi-private data. These two properties are used to
chain the basic label schemes in [8] to construct our main scheme.

Definition of Structured Encryption Schemes. An associative symmet-
ric structured encryption scheme is a tuple of five polynomial-time algorithms
Σ = (Gen, Enc, Token, Query, Dec) where Gen is a probabilistic algorithm that
generates a key K with input 1k; Enc is a probabilistic algorithm that takes as
input K, a data structure δ and a sequence of private and semi-private data
M and outputs an encrypted data structure γ and a sequence of ciphertexts c;
Token is a (possibly probabilistic) algorithm that takes as input K and a query
q and outputs a search token τ ; Query is a deterministic algorithm that takes
as input an encrypted data structure γ and a search token τ and outputs a set
of pointers J ⊆ [n] and a sequence of semi-private data vI = (vi)i∈I , where
I = π−1[J ]; Dec is a deterministic algorithm that takes as input K and a cipher-
text cj and outputs a message mj. Detailed and exact definition of the scheme
can be found in [8].

4 Security Model

Our security model follows directly from that of a structured encryption scheme,
where the aim is to provide confidentiality of stored data by preventing an ad-
versary, which can be the storage provider, from reading the data. The adversary
does have information on the access and query patterns. Specifically, the adver-
sary has access to the following [8]:

– Encrypted data (γ, c), where γ is the encrypted data structure containing
indexes that map to the messages, while c is a sequence of ciphertexts.

– Tokens τ , where τ is an encrypted query used to retrieve the required items
from the encrypted data structure.
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– Query results (J,vI), where J is a set of pointers to the messages and vI

the semi-private data.
– Query pattern QP(qt), where qt ∈ q and q, a non-empty sequence of queries,

is a binary vector of length t with a value 1 at location i if qt = qi, and a
value 0 otherwise. This allows an adversary to build a pattern of queries
when queries are repeated, such as how frequent an identical query is made.

– Intersection pattern IP(qt), where qt ∈ q and q, a non-empty sequence of
queries, is a sequence of length t with f [I] at location t, where f is a fixed
random permutation over [n] and I := Query(δ, qt). This means the access
patterns are revealed when the same items are queried. However, the ex-
act items are not revealed since every item in the message sequence m is
permuted using the induced permutation π.

(L1, L2)-security. A structured encryption scheme further defines two stateful
leakage functions, L1 and L2. In general the L1 leakage function captures the
leakage of size and length of the data items, that is, the information leaked by
the encrypted data (γ, c). On the other hand, L2 captures the leakage from the
query and intersection patterns, by the token τ and query q. The actual form of
leakage depends on the definition of (L1, L2) of a concrete scheme.

Adaptive Chosen Queries Attack (CQA2) and CQA2-Security. Under
this attack model the adversary is allowed to make a sequence of queries to
the challenger. In return the adversary will be given the corresponding tokens.
The adversary then makes the queries based on the tokens it obtained from all
previous queries in such a way that it will be able to derive more information
regarding the stored encrypted data. Formal definition is given in Appendix A.

5 Our Constructions

Two Approaches. There are two possible approaches in constructing struc-
tured encryption schemes for knowledge represented in CGs. The first approach
is to pre-compute an index table as the data structure whereby all CGs homo-
morphic to a CG (which can be the query) is indexed. The table thus contains
every CG linked to pointers pointing to other CGs homomorphic to it. In an
application scenario, this means a user constructs CGs for all the documents
to be stored, and performs graph homomorphism as described in Section 3.1
on these CGs to build the index table. We then construct various structured
encryption schemes around the index table. The benefit of this approach is that
query is efficient, without involving retrieval through graph homomorphism. The
main limitation is the requirement for the user to pre-process all possible queries
on his or her data. We note that similar pre-computation was also required for
different data representation in the original structured encryption schemes.

The second approach is to perform graph homomorphism in the storage. This
will give more flexibility to a user when constructing a query CG, whereby the
query can be some new CGs not previously stored in the encrypted storage, yet
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allows the structured encryption scheme to retrieve related CGs and documents.
A first thought would be to encrypt the concepts, relations and individual mark-
ers in a CG, but treat the CG’s graph structure as a semi-private data so that
it is possible to perform graph homomorphism between the query CG and the
encrypted CGs in the storage. However this will not be secure since the specific
graph structure of the query and the encrypted CGs are leaked, and this allows
an adversary to distinguish between queries and between the returned results.
To avoid such an issue, we would perform graph homomorphism in the encrypted
domain through the underlying backtrack algorithm for graph homomorphism
in CGs [9]. Our preliminary examination makes us to believe that it might not
be possible to use an index-based scheme directly likes the first approach. Ei-
ther a trusted third party must be involved or other approaches such as using
fully homomorphic encryption schemes are required. This will lead to less ef-
ficient schemes compared to the first approach since graph homomorphisms in
encrypted CGs have to be performed in real-time instead of pre-computed in the
first approach, and with addition of trusted third party or using a fully homo-
morphic encryption scheme, computational workloads increase. In this paper we
follow the first approach and reserve the second approach as our future work.

5.1 CG Query: CK-LabelCGQ

W first construct a basic structured encryption scheme for CG to CG queries.
The aim is to allow a user to query and retrieve CGs from an encrypted CGs
database. This can be achieved by adapting directly the structured encryption
scheme for labeled data as proposed by Chase and Kamara [8]. The main differ-
ence is in the preparation of the data being queried. Here we term the scheme
as CK-LabelCGQ. It will later be used to construct our main scheme (Section 5.2).

The scheme pre-processes a data structure known as a labeling δL. It is a data
structure having a universe U containing the set of all binary relations between
[n] and the CGs. It supports a Search : U × G → P [n] operation with δL and
g ∈ G as inputs and returns the set δL(g) = {i ∈ [n] : (i, g) ∈ δL}, where g
denotes a CG and G the set of all possible CGs.

As a small hypothetical example, Figure 3 shows a query CG and the answers
to the query, assuming the answers are retrieved from a set of CGs using CG
homomorphism (where in practice CG can be represented in XML format and
queried through implementation using Cogitant [21]). Given the query and an-
swers, an index database can be prepared as shown in Table 1. Then the Search
operation for labeling δL(g1), for example, will return {2, 3, 4}.

Table 1. An index database for query g1 and the answers

Index CGs query answers

1 g1 g2,g3,g4
2 g2 g3
: : :

n gn . . .



Structured Encryption for Conceptual Graphs 113

Boy:Bob ToyplayWith

possess

1 2

21
g4

Boy ToyplayWith1 2

A query CG, g1

Boy:Charlie ToyCarplayWith1 2

Boy ToyCarplayWith1 2

g3

g2

Anwsers to the query CG, g1

Fig. 3. An Example: A Query CG and the Possible Answers

The scheme also requires a data structure known as a dictionary T , which is a
data structure constructed based on the content of δL. It contains pairs of (a, b),
which are normally encrypted values, in such a way when given a, the value b
can be retrieved efficiently. Given both δL and T , and let l, ω be integers, we
define our message to be encrypted as MG = (cg,v) for cg = g1, . . . , gn, |gi| ≤ l
representing the sequence of CGs, and v = v1, . . . , vn, |vi| = ω representing
the sequence of semi-private data. We further denote gq as the query CG. We
also required a CPA-secure symmetric encryption scheme Π, and two PRFs

F : {0, 1}k×G → {0, 1}max(δL)·(logn+ω) and H : {0, 1}k×G → {0, 1}k. The full
algorithm is described in Figure 4.

As an illustration, we run the CK-LabelCGQ algorithm for δL(g1) = {2, 3, 4}
following Figure 3 and Table 1. In this case MG = (cg,v) for cg = (g1, g2, g3, g4)
and v = (0, 0, 0, 0) since no semi-private data is required. We further assume the
permutation π = (2, 1, 4, 3). Executing the encryption function Enc produces
〈(2, 0), (1, 0), (4, 0), (3, 0)〉 ⊕ FK1(g1) and HK2(g1). cg is then permuted using
π, resulting in cg∗ = (g2, g1, g4, g3). Elements in cg∗ are then padded so that
all of them have the same length. Finally each elements in cg∗ are encrypted
as c = (c1, c2, c3, c4) using the symmetric encryption scheme Π. The encrypted
structure γ is:

[〈(2, 0), (1, 0), (4, 0), (3, 0)〉 ⊕ FK1(g1), HK2(g1)] (1)

The resulting (γ, c) can be queried for g1 by executing Token and Search.
First, Token returns τ := (FK1(g1), HK2(g1)) when g1 is input as gq. Search
then uses HK2(g1) in τ as a search key to retrieve (1) from γ. Next Search

XORs 〈(2, 0), (1, 0), (4, 0), (3, 0)〉⊕FK1(g1) with FK1(g1), resulting in the output
J = (2, 1, 4, 3) and vI = (0, 0, 0, 0). Using J = (2, 1, 4, 3) as pointers, c =
(c1, c2, c3, c4) is retrieved and the Dec algorithm decrypts c2 = g1, c1 = g2,
c4 = g3 and c3 = g4.



114 G.S. Poh, M.S. Mohamad, and M.R. Z’aba

CK-LabelCGQ = (Gen, Enc, Token, Search, Dec)

K ← Gen(1k):

1. Generate two random binary sequence of length k, K1 and K2.
2. Generate K3 ← Π.Gen(1k).
3. Set K := (K1,K2, K3).

(γ, c) ← Enc(K, δL, MG):

1. Parse MG as cg and v.
2. Choose a random permutation π : [n] → [n].

3. For each g ∈ G such that δL(g) 	= ∅, compute FK1(g), HK2(g),
〈
(π(i), vi)i∈δL(g)

〉
,

and pad the strings
〈
(π(i), vi)i∈δL(g)

〉
so that all of them have the same length.

Then

store
〈
(π(i), vi)i∈δL(g)

〉
⊕ FK1(g) in T with search key HK2(g).

where T denotes a dictionary.
4. Permute the elements in cg∗ using π, where cg∗ is the sequence that results from

padding the elements of cg∗ such that all of them have the same length.
5. For 1 ≤ j ≤ n compute cj ← Π.Enc(K3, g

∗
j ).

6. Output γ := T and c = (c1, . . . , cn).

τ ← Token(K, gq):

1. Output τ := (FK1(gq),HK2(gq))

(J,vI) := Search(γ, τ ):

1. Compute γ(HK2(gq))⊕FK1(gq), where γ(HK2(gq)) denotes the entry stored in γ
with search key HK2(gq).

2. If HK2(gq) is not in γ then return J = ∅ and vI = ⊥, else return J = (j1, . . . , jt)
and vI = (vi1 , . . . , vit).

gπ−1(j) := Dec(K, cj): output gπ−1(j) := Π.Dec(K3, cj).

Fig. 4. CG Query: CK-LabelCGQ (following the labeled scheme in [8])

Assuming CK-LabelCGQ is an exact instantiation of the labeled data scheme
in [8], we say that CK-LabelCGQ is (L1, L2)-secure under CQA2 following The-
orem 5.2 in [8].

5.2 CG-Message Query: MeQ

We now present a query to message (or document) structured encryption scheme
by using CK-LabelCGQ as the building block. The aim of the scheme is to extend
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the previous scheme to retrieve messages that contain the query CG and all
CGs homomorphic to the query CG. The algorithmic description of the scheme
is presented in Figure 5. Conceptually the scheme works on two encrypted data
structures and chains them through the semi-private data to provide query to
message retrieval. The data to be encrypted in this case consists of CGs (as in the
previous scheme) withMG = (cg,vg), and messages containing CGs withMM =
(m,vm). We thus need to pre-process two labelings, δgL for CG to CGs structured
encryption, and δmL for CG to messages structured encryption. These labelings
are used to produce the encrypted structures and the ciphertext sequences by
using CK-LabelCGQ separately for δgL with cg and δmL with m. The resulting
outputs are (γg, cg) and (γm, cm). Each of the constructions will provide query
to retrieve CGs, and query to retrieve messages respectively. We denote the
scheme for CG query as CK-LabelgCGQ and for message query as CK-LabelmCGQ.

In the following we describe a simple example to illustrate the scheme. Using
the same query and answers instance in Figure 3, we first assume, in addition to
Table 1, there is a pre-processed index database that stores CG and messages
containing CGs. Table 2 shows a hypothetical database.

Table 2. An index database for CGs and messages containing the CGs

Index CGs Messages

1 g1 m1,m4,m5

2 g2 m1, m2

3 g3 m3

4 g4 m4

: : :

n n . . .

Given Table 2, the Search operation for labeling δmL (g1), for example, will
return {1, 4, 5}. Similarly δmL (g2) will return {1, 2} and so on. In order to execute
the MeQ scheme, we need both δgL(g1) (as presented in the previous section) and
δmL (g). We shall work on δgL(g1) = {2, 3, 4} and δmL (g1) = {(1, 4, 5} up to Lm(g4)
= {4}. Also, we assume MM = (m,vm) for m = (m1,m2,m3,m4,m5) and
vm = (0, 0, 0, 0, 0) as no semi-private data is required, while MG = (cg,v)
for cg = (g1, g2, g3, g4) and vg = (0, 0, 0, 0). We further assume permutations
πG = (2, 1, 4, 3) for CG queries and πM = (2, 5, 1, 4, 3) for message queries.

The encryption Enc consists of three stages. First with input δmL (g1) = {1, 4, 5}
up to Lm(g4) = {4} and m = (m1,m2,m3,m4,m5), CK-Label

m
CGQ.Enc produces,

with permutation πM , γm as:

〈((2, 0), (4, 0), (3, 0))||pad〉 ⊕ FK11
(g1), HK12

(g1),
〈((2, 0), (5, 0))||pad〉 ⊕ FK11

(g2), HK12
(g2),

〈((1, 0))||pad〉 ⊕ FK11
(g3), HK12

(g3),
〈((4, 0))||pad〉 ⊕ FK11

(g4), HK12
(g4).

(2)

where || denotes concatenation, K11 ,K12 denotes the key for PRFs F and H
respectively for CK-LabelmCGQ, and pad denotes padding to the same length. m is
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also permuted using πM resulting m∗ = (m2,m5,m1,m4,m3). Elements in m∗

are padded so that all of them have the same length. Finally each elements in
m∗ are encrypted as cm = (cm1 , cm2 , cm3 , cm4 , cm5 ).

In the second stage, search tokens τm1 = (FK11
(g1), HK12

(g1)), . . . , τm4 =
(FK11

(g4), HK12
(g4)) are generated by running CK-LabelmCGQ.Token on g1 to g4.

These tokens are set as the semi-private data for cg, as vg = (τm1 , τm2 , τm3 , τm4 ).
Lastly, the third stage in the encryption involves computing the encrypted struc-
ture for MG by executing CK-Label

g
CGQ.Enc with permutation πG to produce γg:

[
〈(2, τm1 ), (1, τm2 ), (4, τm3 ), (3, τm4 )〉 ⊕ FK21

(g1), HK22
(g1)
]

(3)

We note that for easier explanation we have only considered encryption for
g1 as in the previous section. The cg sequence is then padded and permuted,
resulting in cg∗ and each element in cg∗ is then encrypted to generate a
ciphertext sequence cg = (cg1, c

g
2, c

g
3, c

g
4). The final output of the encryption

function is (γm, γg, cm, cg). The encrypted output can now be queried. Us-
ing g1 as the query, Token returns τg1 := (FK21

(g1), HK22
(g1)). Given this

token, Search is conducted in two stages. Firstly, τg1 is used to search γg

through CK-Label
g
CGQ.Search by using HK22

(g1) as a search key to retrieve
(3). Next CK-Label

g
CGQ.Search XORs (3) with FK21

(g1) to retrieve the point-
ers J = (2, 1, 4, 3) and semi-private data vI = (τm1 , τm2 , τm3 , τm4 ). The second
stage involves (τm1 , τm2 , τm3 , τm4 ) as inputs to CK-LabelmCGQ.Search for retrieving
all messages containing the CGs from γm. The searching and XORing follows
the same steps as in CK-Label

g
CGQ.Search. For example, τm1 will allow for the

retrieval of the pointers (2, 4, 3). In the end (Jm
j )j∈Jg = ((2, 4, 3), (2, 5), (1), (4))

are retrieved. These pointers point to cm = (cm1 , cm2 , cm3 , cm4 , cm5 ), which are then
decrypted as cm2 = m1, c

m
5 = m2, c

m
1 = m3, c

m
4 = m4 and cm3 = m5 using the

CK-LabelmCGQ.Dec algorithm. The MeQ scheme is effectively a scheme that chains
two CK-LabelCGQ constructions and therefore we consider its security through
leak of information by the two constructions. Following the security notion for
associative and chain-based construction for labeled web graph in [8], we say

Theorem 1. MeQ is (L1, L2)-secure under CQA2, if CK-LabelmCGQ is (Lm1 , Lm2 )-
secure under CQA2 and if CK-LabelgCGQ is (Lg1, L

g
2)-secure under CQA2, where

L1(δmL , δgL,m, cg) = (Lm1 (δmL ,m),Lg1(δ
g
L, cg)) and

L2(δmL , δgL, gq) =
(
Lm2 (δmL , gq),Lg2(δ

g
L, gq), (Lm2 (δmL , gi))i∈δm

L(g)

)
.

In particular, let |δL| denote the number of query CGs such that δL(g) is
nonempty and let max(δL) be the size of the largest set δL(g), we have
L1(δmL , δgL,m, cg) = (|δL|,max(δL), n, l) since we can use padding so that |δmL | =
|δgL| = |δL|. Similarly we can arrive at the same conclusion for number of items
n and length of the item l. We also have

L2(δmL , δgL, gq) =
(
QP(gq), IP(gq), (QP(gi), IP(gi))i∈δm

L(g)
, |δmL (gq)|, |δgL(gq)|

)
.

This is by assumption that CK-LabelmCGQ and CK-Label
g
CGQ are constructed from

CK-LabelCGQ.
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MeQ = (Gen, Enc, Token, Search, Dec)

Let CK-LabelmCGQ = (Gen, Enc, Token, Search, Dec) and CK-Label
g
CGQ = (Gen, Enc, Token,

Search, Dec) be associative structured encryption schemes for CGs.
K ← Gen(1k):

1. Generate K1 ← CK-LabelmCGQ.Gen(1
k).

2. Generate K2 ← CK-Label
g
CGQ.Gen(1

k).
3. Set K = (K1,K2).

(γm, γg, cm, cg) ← Enc(K, δmL , δgL, MM , MG):

1. Compute (γm, cm) ← CK-LabelmCGQ.Enc(K1, δ
m
L ,MM ).

2. For 1 ≤ i ≤ n,

(a) compute τm
i ← CK-LabelmCGQ.Token(K1, gi).

(b) add τm
i to vgi , where vgi is the semi-private data of MG = (cg,vg), with δgL

the labeling generated from all the CGs in cg.

3. Compute (γg, cg) ← CK-Label
g
CGQ.Enc(K2, δ

g
L,MG).

4. Output (γm, γg , cm, cg).

τ g
q ← Token(K, gq):

1. Compute τ g
q ← CK-Label

g
CGQ.Token(K2, gq).

2. Output τ g
q .

(Jm
j )j∈Jg := Search(γg , γm, τ g

q ):

1. Compute (Jg,vg
I ) := CK-Label

g
CGQ.Search(γ

g , τ g
q ).

2. Retrieve (τm
j )j from vg

I .
3. For all j ∈ Jg, compute Jm

j := CK-LabelmCGQ.Search(γ
m, τm

j ).
4. Output (Jm

j )j∈Jg .

mπ−1(j) := Dec(K, cmj ):

1. Output mπ−1(j) := CK-LabelmCGQ.Dec(K1, c
m
j ).

Fig. 5. Message Query - MeQ

Proof Sketch. By assumption there exists a simulator SCGQ such thatRealCGQ,A(k)
and IdealCGQ,A,SCGQ

(k) are indistinguishable. Given such a simulator, define the
simulator S as follows:

1. It computes (γm, cm)← Sm(Lm1 ) and (γg, cg)← Sg(Lg1) using the informa-
tion from L1(δmL , δgL,m, cg) and,

2. computes τmj ← Sm(Lm2,j), j ∈ [n] using the information from L2(δmL , δgL, gq),
3. outputs (τmq )← Sm(Lm2 ) and (τgq )← Sg(L

g
2,v

g) where vg = (τmj )j∈[n] using
the information from L2(δmL , δgL, gq),

where Sm and Sg are simulators under CQA2-security by CK-LabelCGQ.
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Given CK-LabelCGQ secure under CQA2, we show that for all probabilistic
polynomial time (PPT) adversary A, the RealΣ,A(k) and IdealΣ,A,S(k) experi-
ments (Appendix A) is negligible by supposing the existence of a PPT adversary
A that can differentiate the two experiments with non-negligible probability un-
der simulation of both CK-LabelmCGQ and CK-Label

g
CGQ schemes. The results fol-

low directly that in such a case there exists a PPT adversary B that breaks
the CQA2-security of CK-LabelCGQ. We show this by the following sequence of
games, under similar arguments as in [8]:

Game0: This represents the execution of the RealΣ,A(k) experiment. The
challenger generates key K = (K1,K2) and the adversary A generates (δmL ,
δgL, MM , MG). Next the challenger computes MeQ.Enc(K, δmL , δgL, MM ,
MG) and gives the outputs (γm, γg, cm, cg) to A. The adversary A makes
polynomially many adaptive queries and for each query gq the challenger
returns token (τmq , τgq ) ← MeQ.Token(K, gq). Finally A outputs a bit b as
the experiment result.

Game1: In this game the call to CK-Label
g
CGQ.Enc(K2, δ

g
L,MG) in Step 3 is

replaced by calls to the simulator Sg(Lg1). The game begins with the chal-
lenger generating key K = (K1,K2) and the adversary A generating (δmL ,
δgL, MM , MG). Given this generated data, the challenger computes (γm, cm)
= CK-LabelmCGQ.Enc(K1, δ

m
L ,MM ) and generates the semi-private data vg in

γg from (τmi )i∈δm
L(g)

= CK-LabelmCGQ.Token(K1, gi). The simulator Sg is given

Lg1(δ
g
L, c

g) and generates (γg, cg). The adversary A is given (γm, γg, cm, cg)
and makes polynomially many adaptive queries. For each query gq, the chal-
lenger generates token (τmq , τgq ) using the algorithm CK-LabelmCGQ.Token(K1,
gq) and the simulator Sg(Lg2,vg). Token (τmq , τgq ) is returned to A. Finally
A outputs a bit b as the experiment result.

We say that if there exists an adversary A that can distinguish Game0 and
Game1 with non-negligible probability then there exists an adversary B that
breaks the CQA2-security of CK-LabelgCGQ. First we assume there exists such an
adversary A. We define B as the adversary who plays the Real(k) and Ideal(k)
games while interacting with A to use the adaptive queries of A:

1. B generates key K1 ← CK-LabelmCGQ.Gen(1
k) and simulates A.

2. Upon receiving (δmL , δgL, MM , MG) from A, B passes this information to the
challenger and receives (γg, cg) from either the Real(k) or Ideal(k) game.

3. B gives the complete encrypted data (γm, γg, cm, cg) to A.
4. For each query gq received fromA, B submits gq to the challenger and obtains

τgq from either the Real(k) or Ideal(k) game.
5. B forwards the complete token (τmq , τgq ) to A.
6. B outputs the experiment result of A.

Since B uses the adaptive queries of A, which distinguishes between Game0 and
Game1 with non-negligible probability, then the games Real(k) or Ideal(k) are
also distinguishable. This breaks the CQA2-security of CK-LabelgCGQ.
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Game2: This is the same as Game1 except that we compute τmi only when
they are needed. Let Sg and Sm be as in Game1. The challenger generates
key K = (K1,K2) and the adversary A generates (δmL , δgL, MM , MG). The
challenger computes MeQ.Enc(K, δmL , δgL, MM , MG), except that it omits
the computation of CK-LabelmCGQ.Token(K1, gi) in Step 2a. Next for each
query gq submitted by the adversary, the challenger computes (τmq , τgq ) using
CK-LabelmCGQ.Token(K1, gq) and Sg(Lg2,vg), where vg = (τmi )i∈Lm(g). The
resulted tokens (τmq , τgq ) are given to the adversary. The adversary outputs
a bit b as the experiment result.
Game3: This represents the simulation of Game2 by replacing the outputs
from CK-LabelmCGQ.Enc(K1, δ

m
L ,MM ) in Step 1 of the encryption algorithm

with the simulation results from Sm(Lm1 ) and each token τmi is replaced
with the output from Sm(Lm2 ). Similarly the challenger generates key K =
(K1,K2) and the adversary A generates (δmL , δgL, MM , MG). The challenger
computes MeQ.Enc(K, δmL , δgL,MM ,MG), with the changes mentioned above
and for each query gq submitted by the adversary, the challenger computes
(τmq , τgq ) using Sm(Lm2 ) and Sg(Lg2,vg), where vg = (τmi )i∈Lm(g). Similarly
in the end the adversary returns the experiment result.

As above with similar arguments for CK-LabelgCGQ, by assuming there exists such
an adversary A, there exists an adversary B that breaks the CQA2-security of
CK-Label

g
CGQ, and since B uses the adaptive queries of A, which distinguishes

between Game2 and Game3 with non-negligible probability, then the games
Real(k) or Ideal(k) are also distinguishable. This breaks the CQA2-security of
CK-LabelmCGQ.

Game4: This is the same as Game3 except that both CK-Label
g
CGQ and

CK-LabelmCGQ are simulated, whereLm1 (δmL ,m),Lg1(δ
g
L, cg), and for every query

CG gq, Lm2 (δmL , gq), Lg2(δ
g
L, gq) and (Lm2 (δmL , gi))i∈δm

L(g)
are provided by an or-

acle. In other words, we execute the Ideal(k) experiment with simulator S.

By similar arguments, given B uses the adaptive queries of A, Game3 and
Game4 are distinguishable with non-negligible probability. This breaks the
CQA2-security of CK-LabelmCGQ.

Given these games, as CK-LabelCGQ is secure under CQA2, and CK-Label
g
CGQ

and CK-LabelmCGQ are exact instantiation of CK-LabelCGQ, the MeQ scheme is also
secure under CQA2.

6 Other Constructions

In this section we discuss the possibility of constructing more flexible schemes
to query CGs, extending the proposed MeQ scheme and the CK-LabelCGQ scheme.

Keyword-CG Query. We first consider representing concepts in the CGs as
the keywords and search the CGs based on keywords. While this approach seems
to fall back to keyword search, concepts, as defined in Section 3.1, can be con-
nected under the relationship of ≤ that can be represented as a tree. In such a
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case we can perform a neighbour search to first retrieve other keywords related
to the query keyword. For example, a concept Child is at the higher level to
the concept Boy, or Boy ≤ Child, while an individual marker Bob is related to
the concept Boy. Therefore when a Boy query is presented, we may retrieve all
messages containing the words Child and Bob. By constructing such a scheme we
can generalise the CK-LabelCGQ scheme to return more general results. This can
be achieved by first constructing an index table contains of a concept and other
concepts related to it. The semi-private data in this case will contain search
tokens of concepts for CGs. The search tokens thus chain the concepts to the
related CGs, allowing the query keyword (which is a concept) to not just retrieve
the related concepts but also CGs containing these concepts.

Keyword-CG-Message Query. Given the keyword-based scheme, we may
combine it with the MeQ scheme to allow for a query of messages through a
group of related keywords. In other words, given a keyword (i.e. a concept), the
scheme first searches for other keywords related to the query keyword, and then
the query and retrieved keywords are used to retrieve the related CGs, which in
turns are used to retrieve the messages. In order to construct such a scheme, we
define the semi-private data of the keyword (or concept) index table to contain
the search tokens of concepts for CGs, and subsequently the semi-private data
for the CGs’ index table to contain the search tokens of CGs for the messages.
The search tokens represent the two-level chaining from the keywords to the CGs
and then to the messages, as opposed to the one chaining in the MeQ scheme and
the Keyword-CG Query scheme.

7 Conclusions and Future Work

We propose structured encryption scheme for knowledge represented in concep-
tual graphs using the label scheme of Chase and Kamara [8]. As far as we know,
this is the first structured encryption construction for knowledge-based database,
in which one of the potential future applications being privacy-preserving natural
language searches. Our next work following from this is to define and construct
searchable encryption schemes for performing CGs graph homomorphisms in the
encrypted form, which will allow for more flexible searches and reduce the re-
quired pre-processing in the current proposed scheme. It will also be interesting
to examine schemes for knowledge represented in other representation models.

Acknowledgements. The authors thank AbdurashidMamadolimov for fruitful
discussions on conceptual graph and the anonymous referees for helpful comments.

References

1. Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T., Malone-
Lee, J., Neven, G., Paillier, P., Shi, H.: Searchable Encryption Revisited: Con-
sistency Properties, Relation to Anonymous IBE, and Extensions. Journal of
Cryptology 21, 350–391 (2008)



Structured Encryption for Conceptual Graphs 121

2. Abdalla, M., Birkett, J., Catalano, D., Dent, A., Malone-Lee, J., Neven, G.,
Schuldt, J., Smart, N.: Wildcarded Identity-Based Encryption. Journal of Cryp-
tology, 1–41 (2010)

3. Bao, F., Deng, R.H., Ding, X., Yang, Y.: Private Query on Encrypted Data in
Multi-user Settings. In: Chen, L., Mu, Y., Susilo, W. (eds.) ISPEC 2008. LNCS,
vol. 4991, pp. 71–85. Springer, Heidelberg (2008)

4. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public Key Encryption
with Keyword Search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

5. Boneh, D., Kushilevitz, E., Ostrovsky, R., Skeith III, W.E.: Public Key Encryption
That Allows PIR Queries. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622,
pp. 50–67. Springer, Heidelberg (2007)

6. Cao, N., Yang, Z., Wang, C., Ren, K., Lou, W.: Privacy-Preserving Query over
Encrypted Graph-Structured Data in Cloud Computing. In: 31st International
Conference on Distributed Computing Systems (ICDCS 2011), pp. 393–402 (2011)

7. Chang, Y.-C., Mitzenmacher, M.: Privacy Preserving Keyword Searches on Remote
Encrypted Data. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005.
LNCS, vol. 3531, pp. 442–455. Springer, Heidelberg (2005)

8. Chase, M., Kamara, S.: Structured Encryption and Controlled Disclosure. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 577–594. Springer, Heidelberg
(2010)

9. Chein, M., Mugnier, M.-L.: Graph-based Knowledge Representation: Computa-
tional Foundations of Conceptual Graphs. Advanced Information and Knowledge
Processing Series. Springer-Verlag London Limited (2009)

10. Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable Symmetric En-
cryption: Improved Definitions and Efficient Constructions. In: Juels, A., Wright,
R.N., di Vimercati, S.D.C. (eds.) ACM Conference on Computer and Communi-
cations Security, CCS 2006, pp. 79–88. ACM (2006)

11. Gentry, C.: A Fully Homomorphic Encryption Scheme. PhD thesis, Stanford Uni-
versity (2009)

12. Goh, E.-J.: Secure indexes. Cryptology ePrint Archive, Report 2003/216 (2003),
http://eprint.iacr.org/2003/216/

13. Goldreich, O., Ostrovsky, R.: Software Protection and Simulation on Oblivious
RAMs. Journal of the ACM 43(3), 431–473 (1996)

14. Hilpinen, R.: Knowing that one knows and the classical definition of knowledge.
Synthese 21, 109–132 (1970), doi:10.1007/BF00413541

15. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman &
Hall/CRC (2007)

16. Li, J., Wang, Q., Wang, C., Cao, N., Ren, K., Lou, W.: Fuzzy keyword search over
encrypted data in cloud computing. In: INFOCOM 2010: Proceedings of the 29th
Conference on Information Communications, pp. 441–445. IEEE Press (2010)

17. Shi, E., Chan, T.-H.H., Stefanov, E., Li, M.: Oblivious RAM with O((log N)3)
Worst-Case Cost. In: Lee, D.H. (ed.) ASIACRYPT 2011. LNCS, vol. 7073, pp.
197–214. Springer, Heidelberg (2011)

18. Song, D.X., Wagner, D., Perrig, A.: Practical Techniques for Searches on Encrypted
Data. In: SP 2000: Proceedings of the 2000 IEEE Symposium on Security and
Privacy, p. 44. IEEE Computer Society (2000)

19. Sowa, J.F.: Conceptual Graphs for a Data Base Interface. IBM Journal of Research
and Development 20, 336–357 (1976)

http://eprint.iacr.org/2003/216/


122 G.S. Poh, M.S. Mohamad, and M.R. Z’aba

20. Sowa, J.F.: Conceptual Graphs. In: Handbook of Knowledge Representation, pp.
213–237 (2008)

21. LIRMM RCR team and LERIA ICLN team. Cogitant: A Conceptual Graph Li-
brary, http://cogitant.sourceforge.net/

A CQA2-Security

Definition 4.2 [8]. Given an associative private-key structured encryption
scheme Σ = (Gen, Enc, Token, Query, Dec) for data type T that supports op-
eration Query : U × Q → P [n] for n ∈ N, S a simulator and L1 and L2 the
stateful leakage functions, an adversary A performs two games:

RealΣ,A(k):
A generates a tuple (δ,M), where M = (m,v) for m = (m1,m2, . . . ,mn)
and v = (v1, v2, . . . , vn). The challenger is given the tuple (δ,M) and runs
Gen(1k) to generate a key K. Then the challenger runs Enc(K, δ,M) to out-
put the encrypted data (γ, c), where c = (c1, c2, . . . , cn). The encrypted data
(γ, c) is given to A. Next A chooses a query q0 and submit to the challenger
and the challenger returns the corresponding token τ0 = Token(K, q0). For
t = 1, . . . , p(k) where p(.) is a polynomial, A chooses a query qt based on
observation of previous queries and the challenger returns the corresponding
token τt = Token(K, qt). After t many queries, A gives γ, c, (q0, . . . , qp(k)),
(τ0, . . . , τp(k)) to distinguisherD andD(γ, c, (q0, . . . , qp(k)), (τ0, . . . , τp(k))) re-
turns a bit b. Finally A outputs b.

IdealΣ,A,S(k):
A generates a tuple (δ,M), where M = (m,v) for m = (m1,m2, . . . ,mn)
and v = (v1, v2, . . . , vn). The simulator S is given L1(δ,M) and S gener-
ates encrypted data (γ, c) and gives this to A. Then A chooses a query
q0 and for this query S is given (L2(δ, q0),vI0 ). S returns a token τ0. For
t = 1, . . . , p(k) where p(.) is a polynomial, A chooses a query qt based on
observation of previous queries. S is given (L2(δ, qt),vIt) and returns token
τt. A gives γ, c, (q0, . . . , qp(k)), (τ0, . . . , τp(k)) to the distinguisher D and
D(γ, c, (q0, . . . , qp(k)), (τ0, . . . , τp(k))) returns a bit b. Finally A outputs b.

Σ is (L1,L2)-secure under CQA2 if for all probabilistic polynomial-time adver-
saries A, there exists a probabilistic polynomial-time simulator S such that

|Pr[RealΣ,A(k) = 1]− Pr[IdealΣ,A,S(k)| ≤ negl(k)

where negl(k) is a negligible function.

http://cogitant.sourceforge.net/
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Abstract. A standard notion of non-malleability is that an adversary
cannot forge a ciphertext c′ from a single valid ciphertext c for which a
plaintext m′ of c′ is meaningfully related to a plaintext m of c. The multi-
ciphertext non-malleability is a stronger notion; an adversary is allowed
to obtain multiple ciphertexts c1, c2, ... in order to forge c′. We provide an
efficient symmetric-key encryption scheme with an information-theoretic
version of the multi-ciphertext non-malleability in this paper by using
	-wise almost independent permutations of Kaplan, Naor, and Reingold.

Keywords: symmetric-key encryption, information-theoretic security,
non-malleability.

1 Introduction

Non-malleability is one of the most important security notions in modern cryp-
tography and was introduced by Dolev, Dwork, and Naor [2]: Given a sample
of ciphertext c, no adversary can generate another ciphertext c′ of which a cor-
responding message m′ is meaningfully related to the original message m of c.
This notion has been studied extensively in a computational setting for security
against computationally bounded adversaries. This notion is being extended to
an information-theoretic setting for security against computationally unbounded
adversaries. Hanaoka, Shikata, Hanaoka, and Imai [5] formalized the information-
theoretic version of the non-malleability for the first time, and then McAven,
Safavi-Naini, and Yung [9] extended the notion. See a comprehensive survey by
Hanaoka [4] for more details of the information-theoretic non-malleability.

In the first formalization of the non-malleability, they considered a situation
that an adversary is only given a single ciphertext c to generate a forged cipher-
text c′. Considering general attacks of adversaries, it would be more natural for
adversaries to deal with multiple ciphertexts c1, c2, ... to forge another ciphertext
c′. For example, Pass, Shelat, and Vaikuntanathan [10] considered several versions
of non-malleability, including the model in which an adversary can obtainmultiple
ciphertexts, in a computational setting, and compare strength among the versions.
Hereafter, we refer to this strong notion of the non-malleability as multiple-
ciphertext non-malleability. Even in an information-theoretic setting, Kawachi,
Portmann, and Tanaka [8] extended the original definition of Hanaoka et al. [5] to

G. Hanaoka and T. Yamauchi (Eds.): IWSEC 2012, LNCS 7631, pp. 123–137, 2012.
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a multiple-ciphertext version of the non-malleability, and showed an equivalence
between a naturally extended version of secrecy and the non-malleability.

While the multiple-ciphertext non-malleability has been discussed already even
in the information-theoretic setting, there was no known scheme satisfying the
information-theoreticmultiple-ciphertext non-malleability so far. In this paper,we
construct a symmetric-key encryption scheme satisfying the security notion.

In a single-ciphertext setting, namely, the original definition of the
information-theoretic non-malleability, Hanaoka [4] provided a simple construc-
tion of a symmetric-key encryption scheme satisfying the single-ciphertext non-
malleability from authentic codes. As pointed out in [8], his construction has
a structure of pairwise independent hash functions, and they conjectured that
�-wise ones provide (�− 1)-ciphertext non-malleability.

Hanaoka’s construction in [4] is simple. The encryption function is defined as
c = am + b for a ciphertext c ∈ GF(2n) and a message m ∈ GF(2n), where
(a, b) ∈ GF(2n) \ {0} ×GF(2n) is a secret key. It is easy to extend this function
to the following one with the �-wise independence: c = a�−1m

�−1 + a�−2m
�−2 +

· · ·+ a1m+ a0 for a secret key (a0, ..., a�−1).
The �-wise independence is indeed important for the non-malleability, but it

is not enough. We need the invertibility with a secret key for decryption. In the
naive extension mentioned above, we cannot uniquely decrypt the ciphertext c
into the message m. We can uniquely decrypt only in the case of the function
c = am+ b since it is a pairwise independent permutation.

In general, it is difficult to efficiently construct �-wise independent permuta-
tions. Actually, pairwise and 3-wise independent permutations are only known so
far [11,14,13] and there is no known efficient constructions ofmore than 3-wise ones.

However, by relaxing the notion of the independence, we can obtain a useful
permutation for our purpose. There exist several constructions of �-wise almost
independent permutations (See a comprehensive survey in [7] for history of the
constructions).

Recently, Kaplan, Naor, and Reingold [7] provided an efficient construction
for a family of �-wise almost independent permutations on a wide range of the
parameter �. They apply the derandomizing-composition method to the simple
3-bit permutations such as [3,6,1], and get a family of �-wise almost independent
permutations with a short description length. In our scheme, we directly make
use of their construction to provide the multiple-ciphertext non-malleable en-
cryption scheme. As a result, our scheme satisfies approximate non-malleability
(already formalized in [8]), while Hanaoka’s construction [4] satisfies perfect non-
malleability. This relaxation does not hurt the security of our scheme significantly
since we can make the gap from the perfect non-malleability arbitrarily small
with reasonable overheads by the property of the almost independent permuta-
tions, as seen in the construction of the symmetric-key encryption.

We also observe that our scheme satisfies another security notion by the prop-
erties of the almost independent permutations. The multi-message secrecy is
a security notion that even if we encrypt multiple different messages with a
single secret-key no adversary can obtain information on these messages from
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corresponding ciphertexts. It is easy to see that the one-time pad has 1-message
secrecy but not 2-message secrecy. Kawachi et al. [8] proved 2-message secrecy is
equivalent to 1-ciphertext non-malleability, and thus Hanaoka’s construction [4]
provides not only a non-malleable encryption schemebut also 2-message secret one.
They also showed a gap between approximate versions of the multiple-ciphertext
non-malleability andmultiple-message secrecy, and thus we cannot construct such
a scheme in general directly fromour schemewithmultiple-ciphertext approximate
non-malleability.However, the strong primitive, �-wise almost independent permu-
tations, can provide multiple-message approximate secrecy.

The remaining part of this paper is organized as follows. We give notation
and definitions of the security notions in Section 2. In Section 3, we first review
the result of the �-wise almost independent permutations by Kaplan et al. [7],
We then describe the symmetric-key encryption scheme, and prove it satisfies
multiple-ciphertext approximate non-malleability and multiple-message approx-
imate secrecy.

2 Definitions

We basically follow definitions given in [8] for notation and notions.

Notation. Calligraphic letters mean sets of some elements. Lowercase and up-
percase letters mean elements and random variables, respectively. For a set X ,
we denote |X | as the number of elements in X . We denote by PX(x) the proba-
bility that the random variable X equals an element x, i.e., PX(x) = Pr[X = x].
Analogously, for two random variables X and Y , we denote by PXY (x, y) the
probability associated with their joint probability, i.e., PXY (x, y) = Pr[X =
x ∧ Y = y] and by PX|Y (x|y) the conditional probability, i.e., PX|Y (x|y) =
Pr[X = x|Y = y]. X · Y means a random variable according to the probability
PX·Y (x, y) := PX(x)PY (y). Thus, it holds that PX·Y (x, y) = PXY (x, y) if and
only if X and Y are independent.

For a set X and a random variable X distributed over X , we define X[�]

as a sequence of � random variables X1, . . . , X� on sets X1, . . . ,X� respectively,
and for any x ∈ X1 × · · · × X�, we denote by xi the i-th element of �-tuple
x = (x1, . . . , x�). Furthermore, we define

X×�
diff := {(x1, . . . , x�) ∈ X×� : ∀i, j ∈ {1, . . . , �}, i �= j ⇒ xi �= xj},

namely, a subset of X×� in which all the coordinates are different from the others.

Symmetric-key Encryption. A goal in this paper is to construct a symmetric-
key encryption scheme (satisfying some security notions). We give the formal
definition of the symmetric-key encryption scheme below.

Definition 1 (Symmetric-Key Encryption). A symmetric-key encryption
scheme consists of three algorithms (Key-Generation, Encryption, Decryption).
Key-Generation picks a key k from a key set K according to a probability distri-
bution PK(k) over K. Encryption applies an encryption function fk to a message
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m with a key k, and then outputs the ciphertext c = fk(m). Decryption applies a
decryption function f−1

k to a ciphertext c, and then outputs m = f−1
k (c) if such

a unique m exists, and ⊥ otherwise.

Throughout this paper, we denote messages, ciphertexts, and keys by random
variables M , C, and K respectively. If C is determined by M with a key k ∈ K,
we write C = fk(M), or C = f(M) simply.

Entropy and Statistical Distance. For discussions on information-theoretic
security, we will use several variants of the Shannon entropy. The base of loga-
rithms is 2 throughout this paper.

Definition 2 (Entropy). For two random variables X over X and Y over Y,
we denote the entropy of X and the joint entropy of X and Y by

H(X) := −
∑
x∈X

PX(x) logPX(x) and

H(XY ) := −
∑

x∈X ,y∈Y
PXY (x, y) logPXY (x, y),

respectively. We also denote the entropy conditioned on Y = y by

H(X |Y = y) := −
∑
x∈X

PX|Y (x|y) logPX|Y (x|y),

and the conditional entropy of X on Y by

H(X |Y ) :=
∑
y∈Y

PY (y)H(X |Y = y) = H(XY )−H(Y ),

respectively. In addition, we denote by

I(X ;Y ) := H(X) +H(Y )−H(XY )

the mutual information between X and Y .

Also, we will measure the distance between two random variables by variants of
the statistical distance for definitions of security notions.

Definition 3 (Statistical Distance). Let X,Y be random variables over X .
The statistical distance between X and Y is defined as

d(X,Y ) :=
1

2

∑
x∈X
|PX(x)− PY (x)| .

For another random variable Z over Z, a variant of the statistical distance we
call the statistical distance between X and Y conditioned on Z = z for z ∈ Z is
defined as

d(X,Y |Z = z) :=
1

2

∑
x∈X

∣∣PX|Z(x|z)− PY |Z(x|z)
∣∣ .
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Further, we define the conditional statistical distance as

d(X,Y |Z) :=
∑
z∈Z

PZ(z)d(X,Y |Z = z).

The conditional statistical distance (called the expected variational distance in
[8]) is an “average-case” version of the statistical distance conditioned on Z = z
in some sense. As we will seen later, the approximate non-malleability in [8]
is defined by this average-case version. In contrast, the scheme we propose in
this paper is based on the statistical distance conditioned on the “worst-case”
message z ∈ Z.

2.1 Security Notions

In this section, we define security notions of secrecy and non-malleability. These
definitions have been already formalized in the literature such as [5,9,4,8]. As
stated above, our formalization basically follows [8].

Secrecy. First, we define secrecy of encryption schemes. Since ciphertexts are
sent over an insecure channel, an adversary can intercept them and try to get
information on messages from them. Thus, an encryption scheme must satisfy
(perfect) secrecy. We review the notion of information-theoretic secrecy defined
by Shannon [15].

Definition 4 (Perfect Secrecy [15]). We say that an encryption scheme sat-
isfies perfect secrecy (PS) if for all the message random variables M on X inde-
pendent from the key random variable K (i.e., I(M ;K) = 0), it holds that

H(M |C) = H(M), or I(M ;C) = 0. (1)

We also define the approximate secrecy by relaxing the perfect one. In the ap-
proximate secrecy, a ciphertext is almost independent from the message. We
formalize this notion via the statistical distance as in, e.g., [8].

Definition 5 (Approximate Secrecy [8]). We say that an encryption scheme
satisfies ε-secrecy (ε-S) if for all message random variables M on X independent
from the key random variable K (i.e. I(M ;K) = 0), it holds that

d(MC,M · C) ≤ ε, (2)

where C := fK(M) is a random variable of the resulting ciphertext.

Note that this notion coincides with the perfect secrecy if ε = 0. The above
secrecy is naturally extended to the multiple-message secrecy, as defined in [8],
which guarantees the approximate secrecy even if the same key is used for en-
cryption repeatedly.

Definition 6 (�-message Approximate Secrecy [8]). We say that an en-
cryption scheme satisfies �-message ε-secrecy (ε-S�) if for all �-tuples of different
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message random variables M[�] on X×�
diff independent from the key random vari-

able K (i.e. I(M[�];K) = 0), it holds that

d(M[�]C[�],M[�] · C[�]) ≤ ε, (3)

where the Ci are random variables of the resulting ciphertexts. If ε = 0, we then
say that the scheme satisfies �-message perfect secrecy (PS�).

Non-malleability. Second, we define non-malleability of encryption schemes.
We first review an intuitive explanation in [8] on information-theoretic non-
malleability. Informally, an encryption scheme is said to be non-malleable if any
adversary cannot do meaningfully related modification of the ciphertext. In order
to explain the notion of malleability, we consider the one-time pad as an example.
If an adversary flips the first bit of a ciphertext c1 of a message m1 encrypted by
the one-time pad, then the first bit of the resulting decrypted message m2 are
also flipped. Therefore the adversary can easily modify the resulting message m2

even without knowing the original message m1, and m2 is meaningfully related
to m1; the first bit of m1 is opposite to that of m2. In this case, if given the
original messagem1 after modifying the original c1 to c2, the adversary can easily
get m2. Thus it can be considered that (m1, c1, c2) have more information about
m2 than (m1, c1). In the terminology of the entropy, we can express this fact as
H(M2|M1C1C2) < H(M2|M1C1). Therefore, if the encryption scheme is non-
malleable, it should satisfy H(M2|M1C1C2) = H(M2|M1C1), and equivalently
I(M2;C2|M1C1) = 0. This formalization was proposed by Hanaoka et al. [5].
The criterion means given the original message M1 and the original ciphertext
C1, the resulting message M2 and the resulting ciphertext C2 are independent.

For simplicity, we assume that the message and ciphertext sets have the same
size.

Definition 7 (Perfect Non-malleability [5]). We say that an encryption
scheme satisfies perfect non-malleability (PNM) if for all message random vari-
ables M1 on X independent from the key random variable K (i.e. I(M1;K) = 0),
and all ciphertext random variables C2 on Y different from C1 and independent
from K given M1C1 (i.e. Pr[C1 = C2] = 0 and I(C2;K|M1C1) = 0), it holds
that

I(M2;C2|M1C1) = 0,

where M2 := f−1
K (C2) is a message random variable obtained by decrypting C2

with K.

Notice that the condition Pr[C1 �= C2] = 0 is necessary for the definition of non-
malleability. If it is not posed, an adversary can easily break the non-malleability
by simply copying C1 to C2 since a trivial relation M1 = M2 holds then. So, we
require the condition to exclude such a trivial attack.

In [8], the above non-malleability is extended to the following approximate
version.
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Definition 8 (Approximate Non-malleability [8]). We say that an encryp-
tion scheme satisfies ε-non-malleability (ε-NM) if for all message random vari-
able M1 independent from the key random variable K, and all ciphertext random
variables C2 on Y different from C1 and independent from K given M1C1 (i.e.
Pr[C1 = C2] = 0 and I(C2;K|M1C1) = 0), it holds that

d(M2C2,M2 · C2|M1C1) ≤ ε,

where M2 := f−1
K (C2) is a message random variable obtained by decrypting C2

with K.

Note that this coincides with the perfect non-malleability if ε = 0.
We further extend the approximate non-malleability to a version that an ad-

versary can get multiple ciphertexts for modification in a natural way. Specif-
ically, we define �-ciphertext approximate non-malleability which measures the
independence of M�+1 and C�+1 when M[�] and C[�] are given.

Definition 9 (�-ciphertext Approximate Non-malleability). We say that
an encryption scheme satisfies �-ciphertext ε-non-malleability (ε-NM�) if for all
tuples of message random variables M1, . . . ,M� ∈ X×�

diff independent from the key
random variable K, and all ciphertext random variables C�+1 on Y different from
Ci for all i ∈ {1, . . . , �} and independent from K given M[�]C[�] (i.e. Pr[Ci =
C�+1] = 0 for all i ∈ {1, . . . , �} and I(C�+1;K|M[�]C[�]) = 0), it holds that

d(M�+1C�+1,M�+1 · C�+1|M[�]C[�]) ≤ ε,

where M�+1 := f−1
K (C�+1) is a message random variable obtained by decrypt-

ing C�+1 with K. If ε = 0, we then call this notion �-ciphertext perfect non-
malleability (PNM�).

2.2 A Variant of Non-malleability

In the above multi-ciphertext non-malleability, we took � messages chosen by
a sender as random variables M1, ...,M� and bounded the statistical distance
on average over the random variables. We now introduce a variant of the non-
malleability on the “worst-case” messages. Our variant does not need to have
message random variables for messages chosen by a sender, and thus, it only
needs to deal with M�+1 given by attack of an adversary as a message random
variable, which simplifies the notion of the multi-ciphertext non-malleability.

Definition 10. We say that an encryption scheme satisfies �-ciphertext worst-
case ε-non-malleability (ε-NM�

∗) if all tuples of messages (m1, . . . ,m�) on X×�
diff

which are independent from the key random variable K, all tuples of ciphertexts
(c1, . . . , c�) ∈ Y×�

diff , and all ciphertext random variables C�+1 on Y \{c1, . . . , c�},
it holds that
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d(M�+1C�+1,M�+1 · C�+1|M[�] = (m1, ...,m�), C[�] = (c1, ..., c�))

=
1

2

∑
m�+1∈X ′,
c�+1∈Y′

∣∣PM�+1C�+1
(m�+1, c�+1)− PM�+1

(m�+1)PC�+1
(c�+1)

∣∣
≤ ε,

where X ′ := X \{m1, . . . ,m�}, Y ′ := Y\{c1, . . . , c�}, and M�+1, which is defined
on X \ {m1, . . . ,m�}, is the message of c�+1 under the key random variable K,
i.e., M�+1 := f−1

K (c�+1).

While we formulate ε-NM�
∗ as the “worst-case” version of the non-malleability,

we can prove that ε-NM�∗ is equivalent to ε-NM�, and thus, we only discuss the
worst-case approximate non-malleability ε-NM�

∗ in the remaining part of this
paper.

Proposition 1. If a symmetric-key encryption scheme satisfies ε-NM�, it also
satisfies ε-NM�

∗, and vice versa.

Proof. For simplicity, we consider only the case � = 1. This proof can be applied
to the case � > 1 in a similar way.

First, we prove that ε-NM1 implies ε-NM1
∗. This directly follows from the

definitions by fixing the message random variableM1 and the ciphertext random
variable C1 to the distributions that output any fixed messagem1 and ciphertext
c1 respectively with probability 1.

Second, we prove the converse direction. We define M̃2 := (M2|M1 = m1, C1 =
c1) and C̃2 := (C2|M1 = m1, C1 = c1). We then have

d(M2C2,M2 · C2|M1C1)

=
∑
m1,c1

PM1C1(m1, c1) ·
1

2

∑
m2,c2

∣∣PM̃2C̃2
(m2, c2)− PM̃2

(m2)PC̃2
(c2)
∣∣

=
∑
m1,c1

PM1C1(m1, c1) · d(M2C2,M2 · C2|M1 = m1, C1 = c1) ≤ ε,

where the last inequality follows by the definition of ε-NM1∗. ��

3 Encryption Scheme and Its Security

In this section, we construct a symmetric-key encryption scheme based on �-
wise almost independent permutations. Moreover, we show that our scheme
satisfies multi-message approximate secrecy and multi-ciphertext approximate
non-malleability. While our scheme works well with any family of �-wise (almost)
independent permutations, we choose Kaplan, Naor, and Reingold’s construction
[7] since no explicit construction of �-wise perfectly independent permutations
is known in the case that � ≥ 4 and their construction is the most efficient for
general almost independent permutations.
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We now formally define �-wise ε-dependent permutations as follows.

Definition 11 (�-wise ε-dependent permutation). Let F = {f : X → X}
be a family of permutations and ε > 0. The family F is �-wise ε-dependent if for
every �-tuple of distinct elements (x1, . . . , x�) ∈ X×�

diff , the statistical distance be-
tween the distribution (f(x1), . . . , f(x�)) where f is chosen uniformly at random
and the uniform distribution on X×�

diff is at most ε. That is,

1

2

∑
(y1,...,y�)∈X×�

diff

∣∣∣∣∣Prf [f(x1) = y1 ∧ · · · ∧ f(x�) = y�]−
1∣∣X×�
diff

∣∣
∣∣∣∣∣ ≤ ε, (4)

where f is chosen uniformly at random from F. If ε = 0, then the family F is
said to be �-wise independent.

As already mentioned, Kaplan et al. provided a general efficient construction of
�-wise ε-dependent permutations.

Theorem 1 ([7]). There exists a family F = {f : {0, 1}n → {0, 1}n}n of �-wise
ε-dependent permutations such that every f ∈ F is representable by a binary
string of length O(n�+log(ε−1)), and there exist algorithms F and F−1 that run
in polynomial time in n, � and log(ε−1), and F (x) = f(x) and F−1(f(x)) = x
for every x ∈ {0, 1}n.

The construction of Kaplan et al. is based on a random composition of some
simple permutations. Although it was shown that such a composition provides
nice almost independent permutations [1], we then require a long seed to describe
a fully random composition of the simple permutations. The main idea of their
construction is to use the pseudorandom-walk generator, which was originally
developed for derandomization of space-limited computation [12]. Derandomiz-
ing the random composition by the generator, they obtained a family of �-wise
ε-dependent permutations with a short description length.

Our scheme can be directly obtained from the above construction of Kaplan
et al..

– Key-Generation: Let F = {f1, f2, ...} be the family of �-wise ε-dependent
permutations of Kaplan et al.. Sample k ← {1, . . . , |F|} uniformly at random.
The secret key is k.

– Encryption: For a message m, compute c = fk(m).
– Decryption: For a ciphertext c, compute m = f−1

k (c).

We drop the subscript k from fk below if the key k is obvious. Note that the
size of message set is equal to that of ciphertext set, i.e., |X | = |Y|, since f is a
permutation.

One can immediately see that the key length of the scheme coincides with the
description length O(n�+log(ε−1)) of the permutation given in Theorem 1 from
the construction. Therefore, the overhead of the key length is reasonable even if
we set ε to be very small, for example, ε := 1/|X |c for a constant c.
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3.1 Security Proofs

We next show that the above scheme satisfies �-message approximate secrecy
and (� − 1)-ciphertext approximate non-malleability for � ≥ 2.

�-message approximate secrecy. First, we show that the scheme satisfies
multi-message approximate secrecy.

Theorem 2. The above scheme satisfies �-message 2ε-secrecy.

Proof. We consider only the case � = 2 for simplicity. This proof can be applied
to the case � > 2 in a similar way.

The theorem can be proved from the following two claims.

Claim 1. Let

α1 := max
m1,m2

{
1

2

∑
c1,c2

∣∣∣∣∣PC1C2|M1M2
(c1, c2|m1,m2)−

1∣∣Y×2
diff

∣∣
∣∣∣∣∣
}
,

α2 :=
1

2

∑
c1,c2

∣∣∣∣∣ 1∣∣Y×2
diff

∣∣ − PC1C2(c1, c2)

∣∣∣∣∣ .
For all M[2] on X×2

diff , it holds d(M2C2,M2 · C2|M1C1) ≤ α1 + α2.

Claim 2. We have α2 ≤ α1.

From these claims, we have d(M2C2,M2 · C2|M1C1) ≤ 2α1. By rewriting the
probability PC1C2|M1M2

(c1, c2|m1,m2) with the encryption function f , we have
PC1C2|M1M2

(c1, c2|m1,m2) = Prf [f(m1) = c1 ∧ f(m2) = c2]. Then, it immedi-
ately follows that α1 ≤ ε from the definition of pairwise ε-dependent permuta-
tions, and thus, d(M2C2,M2 ·C2|M1C1) ≤ 2α1 ≤ 2ε. We give the proofs of these
claims as follows.

Proof (Claim 1). By the triangle inequality, we have

d(M2C2,M2 · C2|M1C1)

=
1

2

∑
m1,m2,c1,c2

|PM1M2C1C2(m1,m2, c1, c2)− PM1M2(m1,m2)PC1C2(c1, c2)|

=
1

2

∑
m1,m2

PM1M2(m1,m2)
∑
c1,c2

∣∣PC1C2|M1M2
(c1, c2|m1,m2)− PC1C2(c1, c2)

∣∣
≤ max

m1,m2

{
1

2

∑
c1,c2

∣∣PC1C2|M1M2
(c1, c2|m1,m2)− PC1C2(c1, c2)

∣∣}

≤ max
m1,m2

{
1

2

∑
c1,c2

∣∣∣∣∣PC1C2|M1M2
(c1, c2|m1,m2)−

1∣∣Y×2
diff

∣∣
∣∣∣∣∣
}

+
1

2

∑
c1,c2

∣∣∣∣∣ 1∣∣Y×2
diff

∣∣ − PC1C2(c1, c2)

∣∣∣∣∣ = α1 + α2.

��
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Proof (Claim 2). Note that

PC1C2(c1, c2) =
∑

m′
1,m

′
2

PM1M2(m
′
1,m

′
2)PC1C2|M1M2

(c1, c2|m′
1,m

′
2)

from the definition. We then obtain by the triangle inequality

α2 =
1

2

∑
c1,c2

∣∣∣∣∣∣ 1∣∣Y×2
diff

∣∣ − ∑
m′

1,m
′
2

PM1M2(m
′
1,m

′
2)PC1C2|M1M2

(c1, c2|m′
1,m

′
2)

∣∣∣∣∣∣
≤ 1

2

∑
c1,c2

∑
m′

1,m
′
2

PM1M2(m
′
1,m

′
2)

∣∣∣∣∣ 1∣∣Y×2
diff

∣∣ − PC1C2|M1M2
(c1, c2|m′

1,m
′
2)

∣∣∣∣∣
≤ max

m′
1,m

′
2

1

2

∑
c1,c2

∣∣∣∣∣ 1∣∣Y×2
diff

∣∣ − PC1C2|M1M2
(c1, c2|m′

1,m
′
2)

∣∣∣∣∣ = α1.

��

This completes the proof of Theorem 2. ��

(�−1)-ciphertext approximate non-malleability. Second, we show that the
scheme satisfies multi-ciphertext approximate non-malleability.

Theorem 3. Assume |Y| ≥ 2 and 0 ≤ ε < 1/2|Y|. The above scheme satisfies
(�− 1)-ciphertext O(|Y|�−1)ε-non-malleability.

Proof. By Proposition 1, it is sufficient to prove that the scheme satisfies
O(|Y|�−1)ε-NM�−1∗ . As in the proof of Theorem 2, we consider only the case
� = 2 for simplicity. This proof can be applied to the case � > 2 in a similar way.

We can take the same strategy as the proof of Theorem 2 at some technical
parts. We consider the following two claims.

Claim 3. Let

β1(m1, c1, C2) :=
1

2

∑
m2,c2

PM2(m2)

∣∣∣∣PC2|M2
(c2|m2)−

1

|Y| − 1

∣∣∣∣ ,
β2(m1, c1, C2) :=

1

2

∑
m2,c2

PM2(m2)

∣∣∣∣ 1

|Y| − 1
− PC2(c2)

∣∣∣∣ .
Then, it holds d(M2C2,M2 · C2|M1 = m1, C1 = c1) ≤ β1(m1, c1, C2) +
β2(m1, c1, C2) for all m1, c1, and C2.

Claim 4. We have β2(m1, c1, C2) ≤ β1(m1, c1, C2) for all m1, c1, and C2.

We will give the proofs of the two claims later. From these claims, it is sufficient
to bound β1(m1, c1, C2) as in the proof of Theorem 2.

The most different part is to estimate a bound of β1(m1, c1, C2) (The bound
of α1 was immediate from the definition of pairwise almost independent permu-
tations). Assuming the two claims hold, we give the bound as the main lemma.
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Lemma 1. For all m1, c1, and C2, it holds that

1

2

∑
m2,c2

PM2(m2)

∣∣∣∣PC2|M2
(c2|m2)−

1

|Y| − 1

∣∣∣∣ < 4 |Y| ε.

Since we have β1(m1, c1, C2) ≤ 4|Y|ε from this lemma, it follows that
d(M2C2,M2 · C2|M1 = m1, C1 = c1) ≤ 2β1(m1, c1, C2) ≤ 8|Y|ε for all m1, c1,
and C2.

Proof (Lemma 1). We define

ε(c1, c2,m1,m2) :=
1

2

(
Pr[f(m1) = c1] · PC2|M2

(c2|m2)−
1∣∣Y×2
diff

∣∣
)
,

δ(m1, c1) := Pr[f(m1) = c1]−
1

|Y| .

Since |δ(m1, c1)| ≤ ε < 1
2|Y| from the definition of pairwise ε-dependent permu-

tations, it holds Pr[f(m1) = c1] �= 0. We therefore have

PC2|M2
(c2|m2)−

1

|Y| − 1

=
1

1 + |Y| δ(m1, c1)

(
−|Y| δ(m1, c1)

|Y| − 1
+ 2 |Y| ε(c1, c2,m1,m2)

)
.

Since PC2|M2
(c2|m2) = Prf [f(m2) = c2|f(m1) = c1 ∧ M2 = m2], we have∑

c1,c2
|ε(c1, c2,m1,m2)| ≤ ε for all (m1,m2) from the definition of pairwise

ε-dependent permutations. Also from the assumption that |Y| ≥ 2, we have∣∣∣∣PC2|M2
(c2|m2)−

1

|Y| − 1

∣∣∣∣
≤ 1

1− |Y||δ(m1, c1)|

(
|Y||δ(m1, c1)|
|Y| − 1

+ 2 |Y| |ε(c1, c2,m1,m2)|
)

≤ 1

1− |Y| ε (2 |δ(m1, c1)|+ 2 |Y| |ε(c1, c2,m1,m2)|)

≤ (1 + |Y| ε) (2ε+ 2 |Y| |ε(c1, c2,m1,m2)|)
≤ 4ε+ 4 |Y| |ε(c1, c2,m1,m2)| .

It then follows that

1

2

∑
m2,c2

PM2 (m2)

∣∣∣∣PC2|M2
(c2|m2)−

1

|Y| − 1

∣∣∣∣
≤ 1

2

∑
m2,c2

PM2 (m2) · (4ε+ 4 |Y| |ε(c1, c2,m1,m2)|)

=
∑
m2

PM2(m2)
∑
c2

2ε+
∑
m2

PM2(m2)
∑
c1,c2

2 |Y| |ε(c1, c2,m1,m2)|

< 4 |Y| ε.
This completes the proof of Lemma 1. ��
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Finally, we give the proofs of Claims 3 and 4.

Proof (Claim 3). For all m1, c1, and C2, we have by the triangle inequality

d(M2C2,M2 · C2|M1 = m1, C1 = c1)

=
1

2

∑
m2,c2

|PM2C2(m2, c2)− PM2(m2)PC2(c2)|

=
1

2

∑
m2,c2

PM2(m2)
∣∣PC2|M2

(c2|m2)− PC2(c2)
∣∣

≤ 1

2

∑
m2,c2

PM2(m2)

∣∣∣∣PC2|M2
(c2|m2)−

1

|Y| − 1

∣∣∣∣
+
1

2

∑
m2,c2

PM2(m2)

∣∣∣∣ 1

|Y| − 1
− PC2(c2)

∣∣∣∣
= β1(m1, c1, C2) + β2(m1, c1, C2).

��

Proof (Claim 4). Note that PC2(c2) =
∑

m′
2
PM2(m

′
2)PC2|M2

(c2|m′
2). We then

have

1

2

∑
m2,c2

PM2(m2)

∣∣∣∣ 1

|Y| − 1
− PC2(c2)

∣∣∣∣
=

1

2

∑
m2,c2

PM2(m2)

∣∣∣∣∣∣ 1

|Y| − 1
−
∑
m′

2

PM2(m
′
2)PC2|M2

(c2|m′
2)

∣∣∣∣∣∣
=

1

2

∑
m2,c2

PM2(m2)

∣∣∣∣∣∣
∑
m′

2

{
PM2(m

′
2)

(
1

|Y| − 1
− PC2|M2

(c2|m′
2)

)}∣∣∣∣∣∣
≤ 1

2

∑
m2,c2

PM2(m2)

⎛⎝∑
m′

2

PM2(m
′
2)

∣∣∣∣ 1

|Y| − 1
− PC2|M2

(c2|m′
2)

∣∣∣∣
⎞⎠

=
1

2

∑
m′

2,c2

PM2(m
′
2)

∣∣∣∣ 1

|Y| − 1
− PC2|M2

(c2|m′
2)

∣∣∣∣ .
��

This completes the proof of Theorem 3. ��

4 Concluding Remarks

We have constructed a symmetric-key encryption scheme satisfying �-
message 2ε-approximate secrecy and (�− 1)-ciphertext O(|Y|�−1)ε-approximate
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non-malleability from a family of �-wise ε-dependent permutations. In order to
achieve �-ciphertext ε′-approximate non-malleability from Kaplan, Naor, and
Reingold’s construction, one can easily see that the bit length of the keys is
O(n� + log(ε′)−1) from Theorem 1.

Kawachi et al. [8] proved the matching lower bound of key length for 1-
ciphertext perfect non-malleability and consequently Hanaoka’s construction [4]
is optimal on the key length. A major open problem is to extend their lower
bound to the general non-malleability, namely, whether the key length given
from our result is optimal for the multi-ciphertext approximate non-malleability.
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Abstract. In this paper, we analyze a slide property of RAKAPOSHI
stream cipher. To begin, we show that any Key-IV pair has a corre-
sponding slide Key-IV pair that generates an n-bit shifted keystream
with probability of 2−2n. Then we exploit this property in order to de-
velop a key recovery attack on RAKAPOSHI in the related key setting.
Our attack is able to recover a 128-bit key with time complexity of 241

and 238 chosen IVs. The result reveals that RAKAPOSHI is vulnerable to
the related key attack. After that, we consider a variant of the slide prop-
erty, called partial slide property. It enables us to construct a method
for speeding up the brute force attack by a factor of 2 in the single key
setting. Finally, we consider a slide property of K2 v2.0 stream cipher,
and discuss the possibility of an attack exploiting the slide property.

Keywords: stream cipher, slide attack, related-key attack,
RAKAPOSHI, K2 v2.0, initialization process.

1 Introduction

In recent years, with the large deployment of low resource devices such as
RFID tags and sensor nodes, the demand for security in resource-constrained
environments has been dramatically increased. As a result, lightweight cryptog-
raphy is attracting attention of the cryptographic community. In fact, a num-
ber of lightweight primitives are proposed, e.g., block ciphers : PRESENT [6],
KATAN [8], LED [14] and Piccolo [23], and hash functions : Quark [3], PHO-
TON [13] and SPONGENT [5]. As for lightweight stream ciphers, Grain v1 [16],
Trivium [7] and MICKY2.0 [4] are selected by eSTREAM project for hardware
applications with highly restricted resources [12]. In spite of considerable efforts
in a multi-years project, it is still debatable that design and analysis of stream
ciphers are mature enough. Indeed, after the end of this project in 2008, F-
FCSR-H [2], which is initially contained in the final portfolio, and the 128-bit
version of Grain are broken [15,11].

G. Hanaoka and T. Yamauchi (Eds.): IWSEC 2012, LNCS 7631, pp. 138–155, 2012.
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Due to these facts, Cid et al. proposed a lightweight stream cipher RAKA-
POSHI [10] after the eSTREAM project. RAKAPOSHI is a stream cipher sup-
porting a 128-bit key and a 192-bit IV, and employs a bit-oriented Dynamic
Linear Feedback Shift Register. This structure is also adopted in K2 v2.0 [19],
which is recently selected in ISO standard stream ciphers [1] and currently dis-
cussed for inclusion into CRYPTREC [17]. RAKAPOSHI is considered as a vari-
ant of the K2 v2.0 for the low-cost hardware implementation. Its performance
properties in hardware are comparable to stream ciphers selected in eSTREAM,
e.g., the circuit size of RAKAPOSHI is estimated as about 3K gate. In addition,
RAKAPOSHI can provide a 128 bit security while Grain and Trivium have only
a 80-bit security. Thus, designers claim that RAKAPOSHI can complement the
eSTREAM portfolio, and increase the choice of secure lightweight stream ci-
phers. Although RAKAPOSHI is an attractive lightweight stream cipher having
notable features of design and implementations, there exist only designers’ self
evaluations, i.e., no external cryptanalysis has been published so far.

Our Contributions. In this paper, we analyze a slide property of RAKA-
POSHI stream cipher. This property mainly exploits a weakness of an initializa-
tion algorithm, and has been applied to Grain v1 stream cipher [20,9]. Though
designers claims that RAKAPOSHI is secure against attacks based on the weak-
ness of the initialization algorithm, we demonstrate that a slide cryptanalysis is
applicable to RAKAPOSHI.

To begin, by exploiting the self-similarity of the initialization algorithm of
RAKAPOSHI, we show that any Key-IV pair has a corresponding slide Key-
IV pair that generates an n-bit shifted keystream with probability of 2−2n. For
n = 1, a Key-IV pair has a corresponding Key-IV pair that generates a only 1-bit
shifted keystream with probability of 2−2, which is greatly high probability com-
pared with an ideal stream cipher that generates a random keystream by Key-IV
pair. Then we utilize this property in order to construct a related-key attack on
RAKAPOSHI. Our attack can recover a 128-bit key with time complexity of 241

and 238 chosen IVs. This result reveals that RAKAPOSHI is vulnerable to the
related key attack based on the slide property.

After that, we consider a variant of the slide property, which is called partial
slide property, that occurs with higher probability than the basic slide property.
Using this variant of the slide property, we give a method for speeding up the
brute force attack in the single key setting by a factor of 2.

Finally, we consider a slide property of K2 v2.0, and discuss the possibility
of an attack exploiting this property. Then, we show that K2 v2.0 has enough
immunity against slide-type attacks.

Outline of the Paper. This paper is organized as follows. Brief descriptions
of RAKAPOSHI and K2 v2.0 are given in Section 2. In Section 3, we introduce
a slide property of stream ciphers, and we analyze a slide property of RAKA-
POSHI stream cipher in Section 4. Then, related-Key attacks and a method
for a speeding up a keysearch on RAKAPOSHI are given in Section 5 and 6,
respectively. Section 7 consider a slide property of K2 v2.0. Finally, I conclude
in Section 8.
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2 Target Stream Ciphers

In this section, we give brief descriptions of RAKAPOSHI and K2 v2.0 stream
ciphers.

2.1 Description of RAKAPOSHI

RAKAPOSHI is a stream cipher supporting a 128-bit key and a 192-bit IV. At
time t, RAKAPOSHI consists of a 128-bit Non-linear Feedback Shift Register
(NFSR) : At = {at, at+1, . . . , at+127} (at ∈ {0, 1}), a 192-bit Linear Feedback
Shift Register (LFSR) : Bt = {bt, bt+1, . . . , bt+191} (bt ∈ {0, 1}) and an 8-to-1
nonlinear function v (see Fig. 1). Since RAKAPOSHI employs the bit-oriented
Dynamic Linear Feedback Shift Register (DLFSR), two bits of the register A
are used for dynamically updating the feedback function of the register B.

The NFSR At and the LFSR Bt are updated as follows:

at+128 = g(at, at+6, at+7, at+11, at+16, at+28, at+36, at+45, at+55, at+62)

= 1⊕ at ⊕ at+6 ⊕ at+7 ⊕ at+11 ⊕ at+16 ⊕ at+28 ⊕ at+36 ⊕ at+45

⊕at+55 ⊕ at+62 ⊕ at+7at+45 ⊕ at+11at+55 ⊕ at+7at+28

⊕at+28at+55 ⊕ at+6at+45at+62 ⊕ at+6at+11at+62,

bt+192 = f(bt, bt+14, bt+37, bt+41, bt+49, bt+51, bt+93, bt+107, bt+120, bt+134,

bt+136, bt+155, bt+158, bt+176, c0, c1)

= bt ⊕ bt+14 ⊕ bt+37 ⊕ bt+41 ⊕ bt+49 ⊕ bt+51 ⊕ bt+93

⊕c0 · c1 · bt+107 ⊕ c0 · c1 · bt+120 ⊕ c0 · c1 · bt+134 ⊕ c0 · c1 · bt+136

⊕c0 · bt+155 ⊕ c0 · bt+158 ⊕ bt+176,

where ⊕ is a bit-wise XOR, x is complement of x, and c0 and c1 are at+41 and
at+89, respectively. The 8-to-1 nonlinear function v is expressed as

st = v(at+67, at+127, bt+23, bt+53, bt+77, bt+81, bt+103, bt+128).

The details of the function v is given in Appendix A.

Initialization Process. A 128-bit key K = {k0, k1, . . . , k127} (ki ∈ {0, 1}) and
an initialization vector IV = {iv0, iv1, . . . , iv191} (ivi ∈ {0, 1}) are loaded into
the register A and B as follows:

ai = ki (0 ≤ i ≤ 127), bi = ivi (0 ≤ i ≤ 191).

The initialization process updates the state 448 times without the keystream
generation. It consists of a stage 1 (320 cycles) and a stage 2 (128 cycles). The
difference of these stages is that st is XORed with bt+192 in the stage 1 and
at+128 in the stage 2, respectively. After the initialization process, the state
S448 = ({A448, B448}) is obtained.
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Fig. 1. RAKAPOSHI Stream Cipher

Keystream Generation. For t ≥ 448, an internal state St = (At, Bt) gener-
ates a keystream bit zt−448 such that zt−448 = bt ⊕ at ⊕ st with updating the
internal state. Note that the fixed key and IV pair must be changed after 264

keystream bits are generated.

2.2 Description of K2 v2.0

K2 v2.0 is a stream cipher supporting three key lengths: 128, 192, and 256 bits.
The length of IV is 128 bits. K2 v2.0 consists of a 160-bit LFSR :
At = {At, At+1, . . . , At+4} (At ∈ {0, 1}32), a 352-bit LFSR : Bt = {Bt, Bt+1, . . . ,
Bt+10} (Bt ∈ {0, 1}32), and a non-linear function with four internal registers :
M t = {R1t, R2t, L1t, L2t} (R1t, R2t, L1t, L2t ∈ {0, 1}32). Since K2 v2.0 also
employs the DLFSR, the LFSR A and B are updated as follows:

At+5 = α0At ⊕At+3, (1)

Bt+11 = α12
cl1tBt ⊕Bt+1 ⊕Bt+6 ⊕ α3

cl2tBt+8, (2)

where α12
cl1t = α1

cl1t + α2
1−cl1t − 1 and α0, α1, α2, α3 are 32-to-32 bit substi-

tutions. Clock control bits cl1t and cl2t are described as,

cl1t = At+2[30] ∈ {0, 1}, cl2t = At+2[31] ∈ {0, 1},

where At[y] is the y-th bit of At. The non-linear function is expressed as

R1t+1 = Sub(L2t �Bt+9), R2t+1 = Sub(R1t), (3)

L1t+1 = Sub(R2t �Bt+4), L2t+1 = Sub(L1t), (4)

where Sub(·) is a 32-to-32 bit substitution and � denotes 32-bit addition. For
the details of the function, see [19].
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Initialization Process. The initialization process of K2 v2.0 consists of two
steps, a key loading step and an internal state initialization step.

In the key loading step, when the key size is 128 bits, a 384-bit extended
key K = {K0,K1, . . . ,K11} (Ki ∈ {0, 1}32) is generated from a key IK =
{IK0, IK1, . . . , IK3} (IKi ∈ {0, 1}32) and IV = {IV0, IV1, . . . , IV3} (IVi ∈
{0, 1}32) as follows:

Ki =

⎧⎨⎩
IKi (0 ≤ i ≤ 3),
Ki−4 ⊕ Sub(Ki−1 ≪ 8)⊕Rcon[i/4− 1] (i = 4n),
Ki−4 ⊕Ki−1 (i �= 4n),

(5)

where i is a positive integer 0 ≤ i ≤ 11, n is a positive integer, and ≪ j denotes
j bits left rotation. Rcon[j] denotes (xj mod x8+x4+x3+x+1, 0x00, 0x00, 0x00)
and x is 0x02. For a 192-bit key, K is obtained as,

Ki =

⎧⎨⎩
IKi (0 ≤ i ≤ 5),
Ki−6 ⊕ Sub(Ki−1 ≪ 8)⊕Rcon[i/6− 1] (i = 6),
Ki−6 ⊕Ki−1 (7 ≤ i ≤ 11).

(6)

For a 256-bit key, K is obtained as,

Ki =

⎧⎨⎩
IKi (0 ≤ i ≤ 7),
Ki−8 ⊕ Sub(Ki−1 ≪ 8)⊕Rcon[i/8− 1] (i = 8),
Ki−8 ⊕Ki−1 (9 ≤ i ≤ 11).

(7)

Then, the internal state is initialized with K and IV as follows:

Am = K4−m (m = 0, 1, . . . , 4), B0 = K10, B1 = K11, B2 = IV0, B3 = IV1,

B4 = K8, B5 = K9, B6 = IV2, B7 = IV3, B8 = K7, B9 = K5, B10 = K6.

R10 = R20 = L10 = L20 = 0.

In the internal state initialization step, the internal state is updated 24 times
(t = 0, 1, . . . , 23) without the keystream generation. The internal state At+5 and
Bt+11 are obtained as follows:

At+5 = α0At ⊕At+3 ⊕ zLt−24, (8)

Bt+11 = α12
cl1tBt ⊕Bt+1 ⊕Bt+6 ⊕ αcl2t

3 Bt+8 ⊕ zHt−24. (9)

At the same time, the internal register Mt is updated by eqs. (3) and (4).

Keystream Generation. For t ≥ 24, an internal state St = (At, Bt,M t)
generates a 64-bit keystream zt−24 = {zLt−24, z

H
t−24} as follows:

zLt−24 = (Bt �R2t)⊕R1t ⊕At+4,

zHt−24 = (Bt+10 � L2t)⊕ L1t ⊕At.

The fixed key and IV pair must be changed after 264 keystream bits are
generated.
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3 Slide Property of Stream Cipher

If two different keys always convert same plaintexts into same ciphertexts, such
a key pair is called equivalent key in terms of that these keys are functionally
equivalent. Since stream ciphers additionally use IV for generating a keystream,
equivalent Key-IV pairs can also be defined. Here, a ciphertext is obtained by
XORing a plaintext with a keystream in stream ciphers. Thus, an equivalent Key-
IV pair essentially means the pair generating same keystreams. The existence of
these pairs indicates that effective (K, IV ) space is smaller than the expected
value which is the sum of the K and IV size. Also it may be exploited for a key
recovery attack such as attacks in [24,18].

In stream ciphers, a variant of equivalent (K, IV ) called slide Key-IV pairs is
also defined in [20,9]. A slide Key-IV pair generates same keystream but w ·n-bit
shifted, where w is the size of keystream zt, e.g., RAKAPOSHI is w = 1 and
K2 v2.0 is w = 64. Though the existence of this pair does not directly affect
the effective (K, IV ) space unlike the case of equivalent Key-IV pairs, it has the
following interesting property.

Let (K ′
(n), IV

′
(n)) be w · n-bit slide Key-IV pair of (K, IV ). In other words,

(K ′
(n), IV

′
(n)) generates the w · n-bit shifted keystream with respected to that of

(K, IV ) such that z′t = zt+n for 0 < t. Suppose that plaintextsP = {p0, p1, . . . , pL}
and P ′ = {p′0, p′1, . . . , p′L} are encrypted with (K, IV ) and (K ′

(n), IV
′
(n)), respec-

tively. Then, ciphertexts C = {c0, c1, . . . , cL} and C′ = {c′0, c′1, . . . , c′L} are as
follows:

C = {c0, c1, . . . , cL} = {p0 ⊕ z0, p1 ⊕ z1, . . . , pL ⊕ zL},
C′ = {c′0, c′1, . . . , c′L} = {p′0 ⊕ z′0, p

′
1 ⊕ z′1, . . . , p

′
L ⊕ z′L}

= {p′0 ⊕ zn, p
′
1 ⊕ zn+1, . . . , p

′
L ⊕ zn+L}.

If an attacker can gets above ciphertexts which are generated from w ·n-bit slide
Key-IV pairs, he can obtain information of plaintexts from only ciphertexts
without knowledge of keys by XORing w · n-bit shifted C to C′ as follows:

cn+t ⊕ c′t = pn+t ⊕ zn+t ⊕ p′t ⊕ zn+t

= pn+t ⊕ p′t.

At first glance, this assumption seems to be very strong. However, it corresponds
to the related-key and chosen IV setting for some classes of stream ciphers1. Be-
side, a slide Key-IV pair can be used not only for exposing plaintext information
but also for related-key key recovery attacks [20,9]. Moreover, it may be able to
utilize for a speed-up key search in the single key setting [9].

Therefore, the slide property is a very useful tool of analyses and evaluations
of the security of stream ciphers.

4 Slide Property of RAKAPOSHI

In this section, we analyze a slide property of RAKAPHOSHI stream cipher.

1 It highly depends on structures and algorithms of target stream ciphers.
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Fig. 2. n-bit slide pair of RAKAPOSHI

4.1 Conditions of Slide Pairs

For RAKAPOSHI, a (K, IV ) pair has a corresponding n-bit slide pair
(K ′

(n), IV
′
(n)) that generates an n-bit shifted keystream for 0 ≤ n < 320, if

these pairs satisfy following conditions:

Condition 1 : Sn(= {An, Bn}) = S′0(= {A′0, B′0}),
Condition 2 : s320+i = 0 (0 ≤ i < n),
Condition 3 : s448+i = 0 (0 ≤ i < n),

where S′t is a state generated from (K ′
(n), IV

′
(n)) at time t. Figure 2 illustrates

these conditions for an n-bit slide pair.
Assume that the condition 1 holds, S320(= {A320, B320}) and S′320−n(=

{A′320−n, B′320−n}) are identical, because Sn and S′0 are updated in the same
manner during the stage 1.

However, S320 and S′320−n are updated by different update processes in the
stage 1 and 2, respectively. As mentioned in Section 2.1, the difference of these
stages is only usage of st, i.e., st is XORed with bt+192 in the stage 1 while it
is XORed with at+128 in the stage 2. When the condition 2 holds, the relation
of s320+i = s′320−n+i = 0 is obtained for 0 ≤ i < n. It allows us to omit these
differences of the stage 1 and 2, and then S320+n(= {A320+n, B320+n}) = S′320(=
{A′320, B′320}). After that, since these states are updated in the same manner
during the stage 2, S448(= {A448, B448}) and S′448−n(= {A′448−n, B′448−n}) are
surely identical.

In the keystream generation, st is used for generating a keystream bits, and
does not affect the state updating. Therefore, the condition 3 ensures that
S448+n(= {A448+n, B448+n}) and S′448(= {A′448, B′448}) are identical. It means
that (K ′, IV ′) produces n-bit sliding keystream with respect to (K, IV ). In other
words, the following equations holds, zi = z′i−n (n ≤ i < 264).
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4.2 Evaluation

Let us estimate how many n -bit slide pair exist in RAKAPOSHI stream cipher.
The condition 1 is expressed as

An = {kn, kn+1, . . . , k127, x0, . . . , xn−1} = {k′0, k′1, . . . , k′127} = A′0,
Bn = {ivn, ivn+1, . . . , iv191, y0, . . . , yn−1} = {iv′0, iv′1, . . . , iv′191} = B′0,

where xt = g(at, at+6, at+7, at+11, at+16, at+28, at+36, at+46, at+55, at+62) and yt =
f(bt, bt+14, bt+37, bt+41, bt+49, bt+51, bt+93, bt+107, bt+120, bt+134, bt+136, bt+155,
bt+158, bt+176, at+41, at+89) ⊕ st. Since the state size and the sum of K and IV
size are same, a (K, IV ) pair surely has one pair of (K ′

n, IV
′
n) satisfying the

condition 1 regardless of the value of n.
On the other hand, conditions 2 and 3 depend on the value of n. The proba-

bility that a (K, IV ) pair satisfies the conditions 2 and 3 is 2−2n(= 2−n× 2−n).
Therefore, any (K, IV ) pair theoretically has an n-bit slide pair (K ′

(n), IV
′
(n))

that generates an n-bit shifted keystream with probability of 2−2n. We have
confirmed the correctness of this theoretical values by testing 224 random cho-
sen (K, IV ) pairs for n = 0, . . . , 10. Table 1 gives examples of 1 and 10 bits slide
pairs. In addition, we can say that a (K, IV ) pair having (K ′

(n), IV
′
(n)) pairs also

has (K ′
(1), IV

′
(1)) . . . (K

′
(n−1), IV

′
(n−1)) pairs.

For n = 1, a (K, IV ) pair has (K ′
(1), IV

′
(1)) that generates a only 1-bit shifted

keystream with probability of 2−2, which is greatly high probability compared
to an ideal stream cipher that generates a random keystream by (K, IV ). If
an attacker can access to stream ciphers using such a slide pair, it is easy to
distinguish keystreams from random streams. Also, the ciphertext-only attack
mentioned in Section 3 is feasible.

Table 1. Examples of slide pairs

1-bit slide pair

K IV K′
(1) IV ′

(1)

4bdf973abdd66263x 49cba4aa656336ebx 97bf2e757bacc4c7x 93974954cac66dd7x
d4ef3bfb30609c57x be0b3db8cc516480x a9de77f660c138afx 7c167b7198a2c901x

95b8910812c5c95bx 2b712210258b92b7x
keystream keystream

001000110011010100110101100110112 010001100110101001101011001101112
101000101111111001111001000010002 010001011111110011110010000100012

10-bit slide pair

K IV K′
(10) IV ′

(10)

d048119b66a37d84x 8b75aad54c32a2b6x 20466d9a8df61354x d6ab5530ca8adbc4x
d51287aef2f796d1x f118a4764dd0560ax 4a1ebbcbde5b4738x 6291d93741582a23x

88fc32827bc213ccx f0ca09ef084f334bx
keystream keystream

001000101000101001000101100101112 001010010001011001011110011100102
100111001001001010011100110101112 010010100111001101011101010010012
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5 Related-Key Attack on RAKAPOSHI

In this section, we exploit the slide property of RAKAPOSHI in order to con-
struct a related-key attack on RAKAPOSHI. To begin, we give a method for
determining a part of key bits by utilizing the 1-bit slide property. After that,
we generalize it and propose a related-key attack on RAKAPOSHI based on the
n-bit slide property.

5.1 Related-Key Attacks Using 1-Bit Slide Pair

Define the related key K∗
(1) of this attack as 2

K∗
(1) = {k∗0 , k∗1 , . . . , k∗127} = {k1, k2, . . . , k127, x0}

where

x0 = g(a0, a6, a7, a11, a16, a28, a36, a46, a55, a62),

= g(k0, k6, k7, k11, k16, k28, k36, k46, k55, k62).

Since x0 includes only key bits and does not depends on the value of IV , a related
key K∗ is determined if K is given. In the related key setting, an attacker knows
that a pair of (K,K∗

(1)) holds this relation, though actual values of those are
unknown.

This attack uses chosen IV pairs (IV , IV ∗
(1)) satisfying following relation,

IV = {iv1, iv2, . . . , iv191, y0}
= {iv∗0 , iv∗1 , . . . , iv∗191} = IV ∗

(1),

where

y0 = f(b0, b14, b37, b41, b49, b51, b93, b107, b120, b134, b136, b155,

b158, b176, a41, a89)⊕ v(a67, a127, b23, b53, b77, b81, b103, b128)

= f(iv0, iv14, iv37, iv41, iv49, iv51, iv93, iv107, iv120, iv134, iv136, iv155,

iv158, iv176, k41, k89)⊕ v(k67, k127, iv23, iv53, iv77, iv81, iv103, iv128).

In the chosen-IV setting, an attacker is able to choose the values of IV freely.
Given IV , we can determined IV ∗

(1) except iv
∗
191 (= y0), because y0 includes four

key bits, {k41, k89, k67, k127}, which are secret values even if in the related-key
setting.

If the value of iv∗191 is correctly guessed, (K, IV ) and (K∗
(1), IV

∗
(1)) satisfy the

condition 1 regarding the 1-bit slide pair. Then, (K∗
(1), IV

∗
(1)) generates a 1-bit

shifted keystream of (K, IV ) with probability of 2−2. Since the probability that
iv∗191 is correctly guessed is 2−1, we expect to obtain one 1-bit sliding keystream
pair after testing 23 (IV, IV ∗

(1)) pairs. Once such a (IV, IV ∗
(1)) pair is found,

2 This type of related keys has been utilized in attacks of Grain family [20,9].
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we can confirm that iv∗191(= y0) is correctly guessed. Then, a 1-bit equation of
y0, which includes 4 bit key bits of {k41, k89, k67, k127}, is obtained. Using four
equations, {k41, k89, k67, k127} can be determined with high probability.

The details of the attack procedure are given as follows:

1. Choose one pair of (IV , IV ∗
(1)), where iv∗191 is guessed.

2. Obtain two keystreams of (K, IV ) and (K∗
(1), IV

∗
(1)).

3. If these keystreams is the 1-bit sliding pair, then store the 1-bit equation of
{k41, k89, k67, k127} corresponding to iv∗191.

4. Repeat step 1-3 until 4 equations are obtained.
5. Determine the key bits of {k41, k89, k67, k127} by using four equations.
6. Obtain other 124 bits of the key in the brute force manner.

One equation can be obtained with probability of 2−3. Thus, it is expected to
repeat step 1-4 in 25 (= 4× 23) times. The time complexity of the step 1-4 is 26

(= 2 × 25) initialization process, and the number of required chosen IVs is 26.
In the step 5, we search {k41, k89, k67, k127} by checking obtained equations. The
time complexity of the step 5 is estimated as about less than 24 initialization
process even if all these values are tested by four equations. Therefore, the whole
time complexity is estimated as 2124(≈ 24+26+2124) initialization process. This
related key attack recovers a key with time complexity of 2124, 26 chosen IVs
and one related key.

5.2 Related-Key Attacks Using n-Bit Slide Pair

We extend the attack exploiting the 1-bit slide pair to an attack based on the
n-bit slide pair. The related key K∗

(n) and chosen IV pair are defined as,

K∗
(n) = {k∗0 , k∗1 , . . . , k∗127} = {kn, kn+1, . . . , k127, x0, . . . , xn−1},
IV = {ivn, ivn+1, . . . , iv191, y0, . . . , yn−1}

= {iv∗0 , iv∗1 , . . . , iv∗191} = IV ∗
(n),

assuming that the values of n is less than 127. Table 2 shows involved key bits
of each yt for 0 ≤ t ≤ 10.

If the values of {y0, . . . , yn−1} are correctly guessed with probability of 2−n,
(K∗, IV ∗) generate an n-bit sliding keystream of (K, IV ) with probability of
2−2n. Once we find such pairs, n equations regarding each value of {y0, . . . , yn−1}
are obtained. If yt includes m bits of the key, m independent equations of yt are
needed for determining m bits of the key.

As an example, let us consider the attack using a 4-bit slide pair. {y0, . . . , y3}
includes 4, 13, 13 and 13 key bits, respectively, and in total these involve inde-
pendent 41 key bits. If 13 independent equations regarding each y are obtained3,
we can determine key bits included in each equation. It implies that this attack
requires 13 pairs of (IV, IV ∗) causing a 4-bit sliding keystream. These pairs are

3 For y0, 4 independent equations are enough.
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Table 2. Included key bits in each yt

yt Included key bits

y0 41, 67, 89, 127

y1 42, 68, 90, (0, 6, 7, 11, 16, 28, 36, 45, 55, 62)

y2 43, 69, 91, (1, 7, 8, 12, 17, 29, 37, 46, 56, 63)

y3 44, 70, 92, (2, 8, 9, 13, 18, 30, 38, 47, 57, 64)

y4 45, 71, 93, (3, 9, 10, 14, 19, 31, 39, 48, 58, 65)

y5 46, 72, 94, (4, 10, 11, 15, 20, 32, 40, 49, 59, 66)

y6 47, 73, 95, (5, 11, 12, 16, 21, 33, 41, 50, 60, 67)

y7 48, 74, 96, (6, 12, 13, 17, 22, 34, 42, 51, 61, 68)

y8 49, 75, 97, (7, 13, 14, 18, 23, 35, 43, 52, 62, 69)

y9 50, 76, 98, (8, 14, 15, 19, 24, 36, 44, 53, 63, 70)

y10 51, 77, 99, (9, 15, 16, 20, 25, 37, 45, 54, 64, 71)

obtained with time complexity of 217 (= 13× 2× 23·4) and 217( = 13× 2× 23·4)
chosen IVs. Then, 41 bits of the key can be determined with complexity of
215(= 4 + 213 + 213 + 213) by exhaustively checking obtained equations. There-
fore, the whole time complexity is estimated as 287(= 287+215+217) initialization
process. This related attack recovers the key with time complexity of 287 and
217 chosen IV .

Using 11-bit slide pairs, each values of {y0, . . . , y11} includes 13 bits of the
key except y0 and in total these involve independent 88 key bits. 13 pairs of
(IV, IV ∗) causing a 10-bit sliding keystream are obtained with time complexity
238 (= 13× 2× 23·11) and 238( = 13× 2× 23·10) chosen IV. Then, in total 88 bits
of the key are determined with complexity of 217(= 4+213×10) by exhaustively
checking obtained equations. Therefore, the whole time complexity is estimated
as 241(= 240 + 217 + 238) initialization process. This related attack recovers the
key with time complexity of 241 and 238 chosen IV .

Therefore, this result reveals that RAKAPOSHI is vulnerable to the related
key attack.

6 Speed-Up Keysearch on RAKAPOSHI

In this section, we give a method for speeding up a keysearch in the single key
setting. To begin, we consider a variant of the slide property, which is called
partial slide pair. Then, this variant is utilized in order to construct a method
for speeding up the brute force attack by a factor of 2.

6.1 Partial Slide Property of RAKAPOSHI

Recall that conditions 1-3 in Section 3.1 ensure that a (K, IV ) pair has an n-bit
slide pair (K ′

(n), IV
′
(n)) that produces an n-bit sliding keystream of (K, IV ). If

the condition 3 does not holds, it is not ensured that a448+128+i and a′448+128+i+n

are identical for 0 ≤ i < n, due to the difference of usage of s. However, these
differences do no affect generations of zn+1(= z′1), . . . , z60(= z′60−n). Thus, if
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only the conditions 1 and 2 holds, we can obtain the keystream pairs in which
{zn+1, . . . , z60} and {z′1, . . . , z′60−n} are identical. We call such pair n-bit partial
slide pair.

Therefore, a (K, IV ) pair has an n-bit partial slide pair (K ′′
(n), IV

′′
(n)) that

generates an n-bit partial sliding keystream with probability of 2−n, that occurs
with higher probability than the basic slide property. For n = 1, a (K, IV ) pair
has a 1-bit partial slide pair (K ′′

(1), IV
′′
(1)) with probability of 2−1, where 59 bits

of {z2, . . . , z60} and {z′1, . . . , z′59} are identical.

6.2 Speed-Up Keysearch Exploiting Partial Slide Pair

In order to improve the naive brute force attack, we exploit partial slide pairs.
In particular, we utilize the observation that if the condition 2 regarding n-
bit partial slide pairs holds, we can check n keys without recalculations of the
initialization process.

Assume that an attacker aims to find Ktarget in the brute-force style search,
i.e., test all keys with the keystream of (Ktarget, IV target). Let us consider that
a candidate pair of (K, IV ) is set for the test. In the initialization process of
(K, IV ), if s320+i = 0 (condition 2) holds for 0 ≤ i < n, then (K, IV ) surely has
1, . . . , n bit partial slide pairs such that {(K1, IV1), . . . (Kn, IVn)} = {(A1, B1),
. . . (An, Bn)}.

Then we can simultaneously verify n keys with only initialization call of
(K, IV ) by using additional keystreams of {(Ktarget, IV1), . . . (K

target, IVn)}.
Note that n bits of IVn, namely y0, . . . , yn, are uncontrollable and can not be
fixed, while other (192− n) bits of IVn is determined from IV target. Thus, this
attack requires a set of keystreams generated from 1 + 21 + 22. . . .+ 2n chosen
IVs.

The detailed algorithm is as follows:

1. Set K = 0 and IV = IV target

2. Perform the initialization process and generate keystream bits (z0 . . . z60).
3. For t = 0 to [smallest 0 ≤ n < 60 for which s320+n+1 = 1],

check (zt . . . z60) match the keystream of (KTarget, IVt).
– if matching, output Ktarget = At

4. Updating K = At+1, and Return step 2 only if K �= 0.

As estimated in [9], this algorithm will eventually reach K = 0 again, because K
is updated in the invertible way. Then, it is expected that this code check 2127

key values. The expected number of checked values of K in the step 3 for each
loop of step 2-4 is 2 (≈ 1 + 1 · 1/4 + 2 · 1/8 + . . .). Thus, the complexity of this
algorithm is estimated as 2126 initialization processes of the step 2. If we can not
find the target key, the algorithm can be repeated with different starting values
which have a different cycle.

In order to estimate of the actual cost of the attack, we consider the case
where 1−10 bits partial slide pairs are used in this algorithm. Since the expected
number of checked values of K in the step 3 is 2 (≈ 1 + 1 · 1/4 + 2 · 1/8 + . . .+
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10 ·1/1024), time complexity for searching 2127 key values is estimate 2126. After
that, to cover all key space, we will check another cycle with same complexity.
The while complexity is given as 2127 initialization processes. The number of the
set of IV used for the attack is 211 (≈ 1 + 2 + 22 + . . .+ 210).

Therefore, we can speed up keysearch by a factor two. In the Grain v1 at-
tack [9], this type attack seems applicable in the case of that IV are all 1. Unlike
the attack on Grain v1, our attack on RAKAPOSHI can be done for any IV
while a set of chosen IVs are needed. This shows that RAKAPOSHI has a 127-
bit security instead of 128 bits. However, this attack is a marginal improvement
compared to the brute force attack. Thus, we do not claim this to be real attack
based on algorithmic weakness.

7 Discussion : Slide Property of K2 v2.0

In this section, we analyze a slide property of K2 v2.0, and discuss the possibility
of an attack exploiting the slide property.

7.1 Conditions of Slide pairs

For K2 v2.0, a (IK ′
(n), IV

′
(n)) pair produces a 64n-bit sliding keystream with

respect to (IK, IV ) if these pairs satisfy following conditions:

Condition 4: Sn(= {An, Bn,Mn}) = S′0(= {A′0, B′0,M ′0}),
Condition 5: zL24+i = zH24+i = 0, (0 ≤ i < n).

Suppose that the condition 4 holds, S24 (= {A24, B24,M24}) and S′24−n (=
{A′24−n, B′24−n,M ′24−n}) are identical, because Sn and S′0 are updated in same
manner during the initialization process.

Though states of S24+i and S′24−n+i (0 ≤ i < n) are updated by using differ-
ent update processes, the condition 3 ensures S24+n(= {A24+n, B24+n,M24+n})
and S′24(= {A′24, B′24}) are identical for (0 ≤ i < n). Then, (IK ′

(n), IV
′
(n))

produces 64n-bit sliding keystream with respect to (IK, IV ).

7.2 Analysis of 64-Bit Slide Pair

At first, we discuss a probability that a (IK, IV ) pair has a 64-bit slide pair
(IK ′

(1), IV
′
(1)) that produces a 64-bit shifted keystream. According to the condi-

tion 4, the internal register must satisfy M1 = M ′0. To achieve it, R2′0 and R21
need to be identical, which is a partial condition of M1 = M ′0. However, these
values are always fixed asR2′0 = 0 and R21 = Sub(R10) = Sub(0) = 0x63636363.
Thus, the condition 4 regarding 64-bit slide pair cannot be satisfied for any
(K, IV ). Table 3 shows a part of the values of input and output for function
Sub(·). Therefore, there does not exist the 64-bit slide pair (IK ′

(1), IV
′
(1)) for the

128, 192 and 256-bit key size.
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Table 3. Relations between input x and output y of a function y = Sub(x)

y x

0x00000000 0x52525252

0x52525252 0x48484848

0x63636363 0x00000000

7.3 Analysis of 128-Bit Slide Pair

Here, we discuss a probability of that a (IK, IV ) pair has a 128-bit slide pair
(IK ′

(2), IV
′
(2)), which produces 128-bit shifted keystream.

Details of Condition of 128-bit Slide Pair : According the condition 4, the
internal register must satisfy M2 = M ′0 as follows:

R12(= Sub(Sub(0)�K6)) = R1′0(= 0),

R22(= Sub(Sub(K5)) = R2′0(= 0),

L12(= Sub(0)�K9) = L1′0(= 0),

L22(= Sub(Sub(K8)) = L2′0(= 0).

From Table 3, above conditions are rewritten as follows:

K5 = 0x48484848, K6 = 0xEEEEEEEF, (10)

K8 = 0x48484848, K9 = 0xEEEEEEEF. (11)

In addition, the LFSR-A and LFSR-B must satisfy A2 = A′0 and B2 = B′0 as
follows:

A2 = {A2, A3, A4, α0A0 ⊕A3 ⊕ zL−24, α0A1 ⊕A4 ⊕ zL−23}
= {A′

0, A
′
1, A

′
2, A

′
3, A

′
4} = A′0,

B2 = {B2, B3, B4, B5, B6, B7, B8, B9, B10,

α12
cl10B0 ⊕B1 ⊕B6 ⊕ αcl20

3 B8 ⊕ zH−24,

α12
cl11B1 ⊕B2 ⊕B7 ⊕ αcl21

3 B9 ⊕ zH−23}
= {B′

0, B
′
1, B

′
2, B

′
3, B

′
4, B

′
5, B

′
6, B

′
7, B

′
8, B

′
9, B

′
10} = B′0,

where

zL−24 = (B0 �R20)⊕R10 ⊕A4 = K10 ⊕K0,

zL−23 = (B1 �R21)⊕R11 ⊕A5

= (K11 � Sub(0))⊕ Sub(K5)⊕ α0K4 ⊕K1 ⊕K10 ⊕K0,

zH−24 = (B10 � L20)⊕ L10 ⊕A0 = K6 ⊕K4,

zH−23 = (B11 � L21)⊕ L11 ⊕A1

= ((α12
cl10K10 ⊕K11 ⊕ IV2 ⊕ α3

cl20K7 ⊕K6 ⊕K4)� Sub(0))⊕
Sub(K8)⊕K3.
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Above conditions are rewritten as follows:

K ′
0 = α0K3 ⊕ (K11 � Sub(0))⊕ Sub(K5)⊕ α0K4 ⊕K1 ⊕K10, (12)

K ′
1 = α0K4 ⊕K1 ⊕K10 ⊕K0, K ′

2 = K0, K ′
3 = K1, K ′

4 = K2, (13)

K ′
5 = α12

cl10K10 ⊕K11 ⊕ IV2 ⊕ α3
cl20K7 ⊕K6 ⊕K4, (14)

K ′
6 = α12

cl11K11 ⊕ IV0 ⊕ IV3 ⊕ α3
cl21K5 ⊕

((α12
cl10K10 ⊕K11 ⊕ IV2 ⊕ α3

cl20K7 ⊕K6 ⊕K4)� Sub(0))⊕
Sub(K8)⊕K3, (15)

K ′
7 = K6, (16)

K ′
8 = IV2, K ′

9 = IV3, K ′
10 = IV0, K ′

11 = IV1, (17)

IV ′
0 = K8, IV ′

1 = K9, IV ′
2 = K7, IV ′

3 = K5. (18)

According to the condition 5, the relation of zL0 = zH0 = zL1 = zH1 = 0 is given.
The probability of that this condition holds is 1/2128.

128-bit key: For a 128-bit key, the relation of K9 = K5⊕K8 always holds from
eq. (5). This equation are not satisfied in conjunction with eqs. (10) and (11).
Hence, there does not exist any 128-bit slide pair (IK ′

(2), IV
′
(2)) for the 128-bit

key size.

192-bit key: For a 192-bit key, from eqs. (6), (10), (11), and Table 3, four
conditions of IK0 = 0xBDBCBCBD, IK1 ⊕ IK2 = 0xA6A6A6A7, IK3 =
0xA6A6A6A7, and IK5 = 0x48484848 are obtained. This 128-bit condition re-
duces a key space of IK to 264 from 2192.

Assume that (IK, IV ) pair satisfy eqs. (10) and (11), there is one candidate
of (IK ′

(2), IV
′
(2)), which satisfy relations eqs. (12)–(14) and (18), because these

are fully controlled by the values of (IK ′
(2), IV

′
(2)). The remaining six conditions

of eqs. (15)–(17) hold with probability of 1/2192. Therefore, a probability that a
(IK, IV ) pair satisfying eqs. (10) and (11) has (IK ′

(2), IV
′
(2)) is 1/2

320 (=1/2192 ·
1/2128). Since the number of all candidates of (IK, IV ) that satisfy eqs. (10)
and (11) is 2192, the expected number of slide Key-IV pairs for 192-bit key on
all Key-IV space is 1/2128. It is negligibly-small. Therefore, it can be said that
there does not exist any 128-bit slide pair (IK ′

(2), IV
′
(2)) for the 192-bit key size.

256-bit key: For a 256-bit key, from eqs. (7), (10), (11), and Table 3, four
conditions of IK0⊕Sub(IK7 ≪ 8) = 0x49484848, IK1 = 0xA6A6A6A7, IK5 =
0x48484848, and IK6 = 0xEEEEEEEF are obtained. This 128-bit condition
reduces a key space of IK to 2128 from 2256. Assume that (IK, IV ) pair satisfy
eqs. (10) and (11), there is one candidate of (IK ′

(2), IV
′
(2)), which satisfy relations

eqs. (12)–(16) and (18). The remaining four relations (17) hold with probability
of 1/2128. Therefore, a probability that the (IK, IV ) pair satisfying eqs. (10)
and (11) has (IK ′

(2), IV
′
(2)) is 1/2

256(= 1/2128 · 1/2128). Since the number of all
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candidates of (IK, IV ) that satisfy eqs. (10) and (11) is 2256, the expected value
of number of slide Key-IV pairs for 256-bit key on all Key-IV space is only one.
We think the number of this slide Key-IV pairs is not enough to execute key
recovery attack. It is also negligibly-small. Therefore, it can be said that there
does not exist any 128-bit slide pair (IK ′

(2), IV
′
(2)) for the 256-bit key size.

For 64n-bit slide pair n ≥ 3, the probability of existence of it is obviously
smaller than that of 128-bit slide pair. As a result, it seems to be difficult
to construct attacks based on slide property to K2 v2.0 stream cipher in our
evaluations.

8 Conclusion

This paper has investigated slide properties of RAKAPOSHI and K2 v2.0 stream
ciphers.

Firstly, we have shown that for RAKAPOSHI, any Key-IV pair has a cor-
responding slide Key-IV pair that generates a n-bit shifted keystream with
probability of 2−2n. Then we exploited this property in order to construct the
related-key attack on RAKAPOSHI. In this attack, we can recover a 128-bit key
with time complexity of 241 and 238 chosen IVs. After that, we gave the variant
of the slide property to construct the method for speeding up the brute force
attack by a factor of 2 in the single key setting.

These results mainly exploit the self-similarity of the state update function of
RAKAPOSHI. If the self-similarity is destroyed, this type attack can be avoided.
For example, inserting a round constant or a counter value in each step is effective
for preventing the attack presented in this paper.

Finally, we considered a slide property of K2 v2.0, and discuss the possibility
of an attack exploiting the slide property. As a result, we have shown that K2
v2.0 has enough immunity against slide-type attacks. These are first evaluations
with respect to slide properties of K2 v2.0. We believe that these results are
meaningful for the accurate security evaluation of K2 v2.0.
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Appendix

A Rakaposhi Non-Linear Function

The non-linear function v is given as follows.

v(x0, x1, x2, x3, x4, x5, x6, x7) =

x0x1x2x3x4x5x6 + x0x1x2x3x4x5 + x0x1x2x3x4x6 + x0x1x2x3x5x6x7 +

x0x1x2x3x5x6 + x0x1x2x3x5x7 + x0x1x2x3x5 + x0x1x2x3x6x7 +

x0x1x2x4x5x6 + x0x1x2x4 + x0x1x2x5x6 + x0x1x2x5x7 + x0x1x2x7 +

x0x1x2 + x0x1x3x4x5x6x7 + x0x1x3x4x5x7 + x0x1x3x4x5 + x0x1x3x4x7 +

x0x1x3x4 + x0x1x3x6 + x0x1x4x5x6x7 + x0x1x4x5x6 + x0x1x4x5x7 +

x0x1x4x6x7 + x0x1x4x7 + x0x1x5x6x7 + x0x1x5x6 + x0x1x5 + x0x1x6 +

x0x1 + x0x2x3x4x5x6 + x0x2x3x4x5x7 + x0x2x3x4 + x0x2x3x5x6x7 +

x0x2x3x5x6 + x0x2x3x5x7 + x0x2x3x6 + x0x2x4x5x6x7 + x0x2x5x6 +

x0x2x5 + x0x2x6x7 + x0x2x7 + x0x3x4x5x6x7 + x0x3x4x5x6 + x0x3x4x5x7 +

x0x3x4x5 + x0x3x4x7 + x0x3x5x6x7 + x0x3x5 + x0x3x6 + x0x3 + x0x4x5x6 +

x0x4x6x7 + x0x5x6 + x0x6 + x0 + x1x2x3x4 + x1x2x3x5x6 + x1x2x3x5x7 +

x1x2x3x5 + x1x2x3 + x1x2x4x5x6 + x1x2x4x6 + x1x2x4 + x1x2x5 + x1x2 +

x1x3x4x5x6x7 + x1x3x4x5x7 + x1x3x4x6x7 + x1x3x4x6 + x1x3x4 +

x1x3x5x6 + x1x3x5 + x1x3x6 + x1x3x7 + x1x4x5x6x7 + x1x4x5x7 +

x1x5x6 + x1x5x7 + x1x5 + x1x6x7 + x1x6 + x1 + x2x3x4x5x6 + x2x3x4x5x7 +

x2x3x4x5 + x2x3x4x6x7 + x2x3x4 + x2x3x5x7 + x2x3x6x7 + x2x3x6 +

x2x4x5x6 + x2x4x5x7 + x2x4x5 + x2x4x6x7 + x2x4x6 + x2x4x7 + x2x4 +

x2x5x6x7 + x2x6x7 + x2x6 + x2x7 + x3x4x5x6x7 + x3x4x5 + x3x4x6x7 +

x3x4x6 + x3x4x7 + x3x5x6x7 + x3x6x7 + x3x6 + x3x7 + x4x5x6 + x4x5 +

x5x6x7 + x5x6 + x5 + x6 + x7.
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Abstract. This paper studies a boomerang-attack-based distinguisher
against full steps of the compression function of HAS-160, which is the
hash function standard in Korea. The attack produces a second-order
collision for the full steps of the compression function with a complexity
of 276.06, which is faster than the currently best-known generic attack
with a complexity of 280. Previously Dunkelman et al. in 2009 applied
a boomerang-based key-recovery attack on the internal block cipher of
HAS-160. Because the goal of their attack is different from ours, the at-
tack on the compression function has been reconstructed and optimized
from scratch. As a result of the exhaustive search of the message dif-
ference, we found that the same message difference as theirs is the best
choice for the first subcipher. We then propose some improvement to
construct a differential characteristic from the message difference, which
the probability of the characteristic increases from 2−47 to 2−44. Thus
our new characteristic also improves their key-recovery attack on the
internal block cipher of HAS-160.

Keywords: HAS-160, hash function, 4-sum, second-order collision,
boomerang attack.

1 Introduction

Hash functions are important cryptographic primitives. They are used for various
purposes all over the world, so their security deserves to be carefully analyzed,
especially since they are practically used. Hash functions are required to satisfy
several fundamental properties such as preimage resistance, second-preimage
resistance, and collision resistance. Recently, researchers have also investigated
other weaker properties, e.g. distinguishers on the compression function and key
recovery attacks on the internal block cipher.

HAS-160 is a hash function developed in Korea, and was standardized by the
Korean government in 2000 [1]. The first cryptanalysis on HAS-160 was presented
by Yun et al. [2] in 2005. They found that a collision for HAS-160 reduced to
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45 steps out of 80 steps could be generated in a very small complexity. This was
improved by Cho et al. [3] in 2006, which reported that a collision attack could
be theoretically applied until 53 steps. This was further improved by Mendel
and Rijmen [4] in 2007, where a real collision until 53 steps was generated and
a differential characteristic yielding a 59-step collision was reported. After that,
a preimage attack on 52 steps was proposed by Sasaki and Aoki in 2008 [5], and
this was extended up to 68 steps by Hong et al. [6] in 2009. In 2009, Dunkelman
et al. [7] proposed another cryptanalysis, which was a key recovery attack against
the internal block cipher of HAS-160 with the related-key rectangle approach.
This recovers a secret-key with 2155 chosen plaintexts and 2377.5 computations
by using 4 simple relations in the key. So far, no attack has been known for the
full steps of the hash function, compression function, or internal block-cipher
with a complexity below 2160.

In this paper, boomerang type differential properties are discussed. The
boomerang attack was first proposed by Wagner for analyzing block ciphers [8].
It divides the cipherE(·) into two subpartsE0 andE1 such thatE(·) = E1 ◦E0(·).
Let the probabilities of differential paths for E0 and E1 be p and q, respectively.
The boomerang attack exploits the fact that a second-order differential property
with a probability p2q2 exists for the entire cipher E. Aumasson et al. [9] applied
the boomerang attack to the internal cipher of the hash function Skein. However,
the goal of the attack is still recovering the secret key. After that, Biryukov et al.
[10] and Lamberger and Mendel [11] independently applied this property on the
compression function so as to mount distinguishers. Then, Sasaki [12] showed the
application of the framework of [10,11] to theMD4-family (using the single-branch
structure) consisting of up to 5 rounds.Recently, Sasaki andWang [13] have applied
the framework to double-branch hash functions RIPEMD-128 and RIPEMD-160.

Our Results

In this paper, we propose a boomerang-attack-based distinguisher against full
steps of the compression function of HAS-160. In our attack, the property which
is required to the differential characteristic is different compared to the previous
related-key rectangle attack for the internal block-cipher [7]. In general, for the
block cipher analysis, maximizing the probability of the entire characteristic is
important. On the other hand, for the hash function analysis, the internal chain-
ing variable values are known to the attacker, and moreover a part of them can
even be chosen by the attacker. Hence, a part of the characteristic can be satisfied
very easily with the message modification technique [14]. Therefore, it is impor-
tant to locate the low probability part of the characteristic to the step positions
where the message modification cannot be applied. Due to this fact, the attack
on the compression function needs to be reconstructed from scratch. In this pa-
per, we firstly search for message differences suitable for our attack. As a result
of the search, for the first half of the characteristic, we choose the same message
difference as the previous work [7]. For the last half of the characteristic, we
use a new message difference. Secondly, the message difference is propagated to
chaining variables i.e., the differential characteristic is constructed. At this stage,
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we introduce some improvement into the first half of the differential character-
istic. A new differential characteristic with higher probability by a factor of 23

is derived, which improves the data complexity of the previous key-recovery at-
tack on the internal block-cipher [7] by a factor of 23. Finally, we show that a
second-order collision can be found for the full steps of the compression function
with a complexity of 276.06 computations, which is faster than currently best-
known generic attack with a complexity of 280. Note that, a second-order collision
[15,11] on a function F (·) with n-bit outputs is a set of two non-zero difference
and an input {Δ,∇, Y } satisfying F (Y +Δ+∇)−F (Y +Δ)−F (Y +∇)+F (Y ) =
0. The attack is implemented for a reduced-round version and an example of the
second-order collision up to the last 75 steps is presented in Table 7. The sum-
mary of our attack results is given in Table 1. Note that the complexity of the
second-order collision attack against the last 77 steps is smaller than the in-
formation theoretic bound, which is the query complexity for finding the same
property against an ideal function. Hence, the last 77 steps of the compression
function can be concluded as non-ideal.

We admit that the practical impact of our distinguisher to HAS-160 is not
clear at the current stage, but our distinguisher leads to a better understanding
of the security margin of HAS-160, and might inspire further extensive attacks
in the future.

Table 1. Comparison of Attacks on HAS-160

Attack Target #Steps Information Complexity Reference
Theoretic Bound Time Data

Collision Hash 45 280 212 [2]
Collision Hash 53 280 255 [3]
Collision Hash 59 280 255 [4]
Preimage Compress 52 2160 2144 [5]
Preimage Hash 52 2160 2153 [5]
Preimage Compress 68† 2160 2150.7 [6]

Preimage Hash 68† 2160 2156.3 [6]
Key Recovery Internal BC 80 (full) 2512 2377.5 2155 [7]

4-sum Compress 75† 240 233.83 Ours

4-sum Compress 77† 253.3 251‡ Ours
2nd-order Coll Compress 77† 253.3 251 Ours

2nd-order Coll Compress 80 (Full) 253.3 276.06‡ Ours
Key Recovery Internal BC 80 (full) 2512 2377.5 2152 Ours

†: the attack target is from a middle step to the last step.
‡: the generic attack complexities to find 4-sums and second-order collisions are 253.3

and 280, respectively.
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Paper Outline

The organization of this paper is as follows. In Section 2, the specification of
HAS-160 is described. In Section 3, related work is summarized. In Section 4,
our distinguisher on the full step compression function is explained. Finally, we
conclude this paper in Section 5.

2 Description of HAS-160

HAS-160 [1] is a hash function that produces 160-bit hash values. It adopts the
Merkle-Damg̊ard structure, and uses 160-bit (5-word) chaining variables and a
512-bit (16-word) message block to compute a compression function. First, an
input message M is processed to be a multiple of 512 bits. Then, the padded
message is separated into 512-bit message blocks (M0,M1, . . . ,MN−1). Let CF :
{0, 1}160 × {0, 1}512 → {0, 1}160 be the compression function of HAS-160. Let
Hi be a 160-bit value and IV be the initial value defined in the specification.
A hash value HN is computed as follows. 1) IV is loaded into H0, 2) Compute
Hi+1 ← CF (Hi,Mi) for i = 0, 1, . . . , N − 1,

The compression function of HAS-160 iterates a step function 80 times to
compute a hash value. Steps 0-19, 20-39, 40-59, and 60-79 are called the first,
second, third, and fourth rounds, respectively.

Mi is divided into sixteen 32-bit message-words m0, . . . ,m15. The message
expansion of HAS-160 is a permutation of 20 message words in each round, which
consists of m0, . . . ,m15 and four additional messages m16, . . . ,m19 computed
from m0, . . . ,m15. The computation of m16, . . . ,m19 is shown in Table 2. Let
X0, X1, . . . , X79 be the message word used in each step. The messagemj assigned
to each Xj is also shown in Table 2.

The output of the compression function Hi+1 is computed as follows.

1. p0 ← Hi.
2. pj+1 ← Rj(pj , Xj) for j = 0, 1, . . . , 79,
3. Output Hi+1 = (p80 +Hi), where “+” denotes 32-bit word-wise addition.

Table 2. Message Expansion of HAS-160

Computation of m16 to m19 in each round

Round 1 Round 2 Round 3 Round 4

m16 m[0, 1, 2, 3] m[3, 6, 9, 12] m[12, 5, 14, 7] m[7, 2, 13, 8]

m17 m[4, 5, 6, 7] m[15, 2, 5, 8] m[0, 9, 2, 11] m[3, 14, 9, 4]

m18 m[8, 9, 10, 11] m[11, 14, 1, 4] m[4, 13, 6, 15] m[15, 10, 5, 0]

m19 m[12, 13, 14, 15] m[7, 10, 13, 0] m[8, 1, 10, 3] m[11, 6, 1, 12]

m[i, j, k, l] denotes mi ⊕mj ⊕mk ⊕ml.

Message order in each step

Round 1: X0, X1, . . . , X19 18 0 1 2 3 19 4 5 6 7 16 8 9 10 11 17 12 13 14 15

Round 2: X20, X21, . . . , X39 18 3 6 9 12 19 15 2 5 8 16 11 14 1 4 17 7 10 13 0

Round 3: X40, X41, . . . , X59 18 12 5 14 7 19 0 9 2 11 16 4 13 6 15 17 8 1 10 3

Round 4: X60, X61, . . . , X79 18 7 2 13 8 19 3 14 9 4 16 15 10 5 0 17 11 6 1 12
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Table 3. Function f , Constant k, and Rotations s1 and s2 of HAS-160

Round Function fj(X,Y, Z) Constant kj Rotation s2j
Round 1 (X ∧ Y ) ∨ (¬X ∧ Z) 0x00000000 10
Round 2 Z ⊕ Y ⊕ Z 0x5a827999 17
Round 3 Y ⊕ (X ∨ ¬Z) 0x6ed9eba1 25
Round 4 X ⊕ Y ⊕ Z 0x8f1bbcdc 30

Rotation s1j
j mod 20 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

s1j 5 11 7 15 6 13 8 14 7 12 9 11 8 15 6 12 9 14 5 13

Rj is the step function for Step j. Let aj , bj, cj , dj , ej be 32-bit values that satisfy
pj = (aj‖bj‖cj‖dj‖ej). Rj(pj , Xj) computes pj+1 as follows:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

aj+1 = (aj ≪ s1j) + fj(bj , cj , dj) + ej +Xj + kj ,
bj+1 = aj,
cj+1 = bj ≪ s2j,
dj+1 = cj,
ej+1 = dj ,
pj+1 = aj+1‖bj+1‖cj+1‖dj+1‖ej+1

where fj, kj , and ≪ s2j represent bitwise Boolean function, constant number,
and s2j-bit left rotation defined in each round, and ≪ s1j represents s1j-bit left
rotation depending on the value of j mod 20. These values are shown in Table 3.

We show a figure of the step function in Fig. 1. Note that R−1
j (pj+1, Xj) can

be computed in the same complexity as that of Rj .

aj bj cj dj ej

aj+1 bj+1 cj+1 dj+1 ej+1

<<< s2j

<<< s1j

Xj

kj

fj

Fig. 1. Step function of HAS-160

3 Related work

3.1 4-sum and Second-order Collision

In this section, we explain two properties to be distinguished and query complex-
ity to find each property against ideal primitives. There are two types of query
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complexity; information theoretic bound and generic attack complexity based on
the current knowledge. The information theoretic bound only gives a bound. It
does not imply that there would exist an attack with the same complexity as the
bound. Therefore, discussing the generic attack complexity is also meaningful as
well as the information theoretic bound.

A 4-sum on a function F (·) with n-bit outputs is a set of four distinct inputs
(Y0, Y1, Y2, Y3) satisfying

F (Y0)⊕ F (Y1)⊕ F (Y2)⊕ F (Y3) = 0.

If F (·) is an ideal compression function, it needs at least 2n/4 queries to find a
4-sum, where we mean by ideal that the output is uniformly distributed for each
input. Therefore, if the 4-sum is obtained faster than 2n/4 computations, F (·) is
regarded as non-ideal. On the other hand, apart from the information theoretic
bound (2n/4), the current best generic attack to find a 4-sum is a generalized
birthday attack [16], which requires 2n/3 computations and 2n/3 memory. Hence,
if 4-sums are generated with a complexity lower than 2n/3, F (·) is said to be
weak because the same property cannot be detected on other functions with the
current knowledge. Note that finding 4-sum quartets is interesting only if F (·)
is a one-way function, and our attack target, HAS-160 compression function, is
indeed a one-way function.

A second-order collision [15,11] on a function F (·) with n-bit outputs is a set
of two non-zero difference and an input {Δ,∇, Y } satisfying

F (Y +Δ+∇)− F (Y +Δ)− F (Y +∇) + F (Y ) = 0.

Second-order collision is a special form, in other words, a subset of the 4-sum,
and can be viewed as limiting the form of input values on the 4-sum property.
Previous work [15,11] showed that the information theoretic bound is 3 · 2n/3
because the problem is essentially finding three parameters Δ,∇, Y with an n-
bit relation. On the other hand, the current best generic attack requires 2n/2.
Similarly, if a second-order collision is obtained faster than 2n/3 computations,
F (·) is regarded as non-ideal. Also if a second-order collision is obtained with a
complexity lower than 2n/2, F (·) is said to be weak because the same property
cannot be detected on other functions with the current knowledge.

3.2 Boomerang Attack on Internal Cipher of HAS-160

Dunkelman et al. analyzed the encryption mode of the HAS-160 compression
function [7]. They applied the related-key rectangle attack for the internal block
cipher, and recovered the secret key with 2155 chosen plaintexts and 2377.5 com-
putations by using 4 simple relations in the key.

Our attack is related to [7] very closely because both attacks are based on the
boomerang style attacks that build second-order differential characteristics on
the attack target. In the following, we list differences of two researches in order
to clarify contributions of this paper.
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– For the secret-key recovery attack [7], the differential characteristic is con-
structed so that the probability for the entire characteristic can be optimized.
On the other hand, for the attack on the compression function, the attack
can choose the key values (messages) so that some part of the characteristic
can be satisfied with a probability of 1. Hence, the differential character-
istic needs to be reconstructed from scratch for attacking the compression
function.

– In the encryption mode, the key size is 512 bits, and thus the key recovery
attack can spend up to 2512 HAS-160 computations. On the other hand,
all the properties discussed in our attack for the compression function will
take at most 280 HAS-160 computations, which is much smaller than the
key-recovery attack.

– The first halves of the two attacks’ differential characteristics share the
same message differences. But we find a new differential characteristic with
a higher probability, which also improves previous key-recovery attack on
encryption mode.

4 Boomerang Distinguisher for Full HAS-160

To construct a boomerang distinguisher, we divide the internal cipher of HAS-160
into two subciphers denoted as E0 and E1. Since HAS-160 consists of four rounds,
it seems natural to let E0 consist of the first and second rounds and to let E1 con-
sist of the third and fourth rounds. Then, we adopt the start-from-the-middle
approach to search for the second-order collision by following previous work
[15,11,12].

More precisely, we start with fixing a quartet of the internal states between
E0 and E1, and try to satisfy the differential characteristic of E0 in backward
direction and of E1 in forward direction. Note that such a start-from-the-middle
approach can also be seen in a series of rebound attacks, e.g., [17,18]. The differ-
ential characteristic on E0 is divided into inside path and outside path. The inside
path refers to the part of the differential characteristic, which can be satisfied by
the message modification technique. And the outside path refers to the remain-
ing part. The same notations are also used for the differential characteristic on
E1. After the inside path is satisfied, we try to satisfy the outside paths on E0

and E1 probabilistically. The search for the outside paths is performed by using
freedom degrees in the message words that do not appear in the inside path.
Hence, once the inside path is satisfied, we never change the message words that
relate to the inside path. Therefore, the attack complexity only depends on the
search for the outside paths on E0 and E1. Let p and q be the probabilities of
the outside paths on E0 and E1 respectively. Then, the complexity is written by

1
p2q2 . In order to minimize the complexity, the probabilities of the outside paths
should be maximized. At the same time, the inside paths on E0 and E1 must
not contradict. Otherwise, the boomerang attack cannot work.
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4.1 Searching for the Message Differences

We mark each of m0, . . . ,m15 by a single bit: 1 stands for a non-zero difference
and 0 for no difference. m16, m17, m18 and m19 in each round are marked by a
single bit computed by XORing the mark bits of message words used to compute
them. For example, in the first round, m16 is computed by XORing m0, m1, m2

and m3. The mark bit of m16 in the first round is computed by XORing the
mark bits of these four words.

Adopting above approach, there are 216 candidates for message differences.
For E0 (resp. E1), we search for message differences, which locate at the very
beginning stage in the first (resp. third) round, and at the very late stage in
the second (resp. fourth) round. At the same time, we also pay attention to the
absorption property of Boolean functions. Note that the Boolean function in the
second round has no absorption property. Thus we intend to keep the inside
path on E0 short in order to avoid contradictions with the inside path on E1

in advance. By exhaustively examining all the candidates, we decide to use the
following message differences.

– On E0: Δm0 = 0x80000000; Δm10 = 0x80000000; Δmi = 0 for i �= 0, 10;
– On E1: ∇m6 = 0x80000000; ∇m12 = 0x80000000; ∇mi = 0 for i �= 6, 12;

The reason of using the difference value 0x80000000 is to maximize the probabil-
ity of the outside paths because a difference at MSB causes carries in fewer bits.
A graphical view of the locations of the message differences is given in Table 4.

Table 4. Positions of Message Differences and Directions of Differential Propagations

round message-word index for each round

1 18© 0© 1 2 3 19 4 5 6 7 16© 8 9 10© 11 17 12 13 14 15
Outside path (OP) ← Δ constant

2 18 3 6 9 12 19 15 2 5 8 16 11 14 1 4 17 7 10© 13 0©
constant Δ → IP

3 18© 12© 5 14 7 19 0 9 2 11 16© 4 13 6© 15 17 8 1 10 3
Inside path (IP) ← ∇ constant

4 18 7 2 13 8 19 3 14 9 4 16 15 10 5 0 17 11 6© 1 12©
constant ∇ → OP

4.2 Constructing Differential Characteristic

Our strategy of constructing the differential characteristic for E0 is propagating
the differences introduced by Δm0 in backwards from internal states p14 to p0 in
the first round as the outside path, and Δm10 in forwards from p38 to p40 in the
second round as the inside path. Similarly our strategy for E1 is propagating the
difference introduced by ∇m6 in backwards from p54 to p40 in the third round
as the inside path and ∇m12 in forwards from p78 to p80 in the fourth round as
the outside path. An overview is given in Table 4.

For inside paths on E0 and E1, we should make sure that no contradiction
occurs. A typical contradiction is that two inside paths set a joint internal state
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bit to different values at the same time. In our approach, we firstly fix the inside
path on E0 since f function in the second round has no absorption property and
the inside path on E0 covers only three steps. We also derive the conditions,
which are c40,16 = d40,16 and b40,4 = a40,17. We secondly search for an inside
path on E1 backwards in the third round. Since the inside path on E0 only has
two conditions, we can easily get an inside path on E1 not contradicting with it.
The two inside paths we found are detailed in Tables 5 and 6.

For the outside path on E0, we search for a differential characteristic with a
high probability in order to lower the complexity of the attack. Firstly we simplify
the step function by a linearization, mainly replacing the addition with XOR. At
the same time we also consider the candidates with a limited number of bit carries
caused by addition. Secondly launch a program to search for characteristics with
low Hamming weight. The outside path on E0 with a low Hamming weight is
described in Table 5, which has in total 42 conditions. The outside path on E1

covers only three steps, and thus can be easily constructed. An outside path on
E1 is given in Table 6.

Amplified Probability. Following previous works [11,12,13], we also consider
the amplified probability of the outside paths, which is a sum of the probabil-
ities of the multi-paths leading to a target property. For the outside path on
E0, we experimentally verified that the amplified probability of steps 3 to 1 is
2−19.06, and thus the amplified probability of the whole outside path on E0 is
2−19.06−27∗2 = 2−73.06. For outside path on E1, we experimentally verified that
its amplified probability is 2−1.

4.3 Searching for a Second-Order Collision

We adopt a start-from-the-middle approach. Firstly choose a quartet of internal
states at step 40 satisfying the differential characteristic. Secondly apply message
modification technique to choose a corresponding quartet of message words used
in the involved steps, which satisfy the inside paths. Finally exploit the freedom
of the other undetermined message words to search for a quartet of messages
which can satisfy the outside paths. A detailed search procedure is given below.

Initialization Phase. Set a random value to p
(1)
40 (=a

(1)
40 ||b

(1)
40 ||c

(1)
40 ||d

(1)
40 ||e

(1)
40 ),

which satisfies the conditions in Tables 5 and 6. And compute p
(2)
40 , p

(3)
40 and

p
(4)
40 such that both (p

(1)
40 , p

(2)
40 ) and (p

(3)
40 , p

(4)
40 ) satisfy the difference at step 40

of the differential characteristic on E0, and both (p
(1)
40 , p

(3)
40 ) and (p

(2)
40 , p

(4)
40 )

satisfy the difference at step 40 of the differential characteristic on E1.

– p
(2)
40 : a

(2)
40 = a

(1)
40 ⊕ 0x00020000, b

(2)
40 = b

(1)
40 ⊕ 0x00000010, c

(2)
40 = c

(1)
40 ⊕

0x00010000, d
(2)
40 = d

(1)
40 , and e

(2)
40 = e

(1)
40 ;

– p
(3)
40 : a

(3)
40 = a

(1)
40 ⊕ 0x00102000, b

(3)
40 = b

(1)
40 ⊕ 0x02008000, c

(2)
40 = c

(1)
40 ⊕

0x08102040, d
(3)
40 = d

(1)
40 ⊕ 0x80040110, and e

(3)
40 = e

(1)
40 ⊕ 0x08102040;

– p
(4)
40 : a

(4)
40 = a

(1)
40 ⊕ 0x00122000, b

(4)
40 = b

(1)
40 ⊕ 0x00102010, c

(4)
40 = c

(1)
40 ⊕

0x08112040, d
(4)
40 = d

(1)
40 ⊕ 0x80040110, and e

(4)
40 = e

(1)
40 ⊕ 0x08102040.
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Table 5. Differential Characteristic on E0

Outside Path

Step j Δpj ΔXj Conditions

1 Δa0 = 0x00002000; 0x80000000; e0,18 	= a0,13; c0,30 = d0,30; b0,18 = 0; b0,25 = 0;
Δb0 = 0x40000000; b0,31 = 0; b0,11 = 1;
Δc0 = 0x02040000;
Δd0 = 0x80000800;
Δe0 = 0x00040000;
Δa1 = 0x00000000;

2 Δa2 = 0x00000800; 0x80000000; c1,13 = d1,13; b1,8 = 0; b1,18 = 1; b1,25 = 1; e1,11 = a2,11;

3 Δa3 = 0x06000000; b2,23 = 0; b2,8 = 1; e2,18 	= a2,11; e2,25 	= a3,25;

4 Δa4 = 0x00000000; c3,11 = d3,11; b3,23 = 0; e3,8 = a3,25;

5 Δa5 = 0x00800000; b4,21 = 0; c4,25 = d4,25; c4,26 = d4,26; e4,23 = a5,23;

6 Δa6 = 0x00000000; b5,3 = 0; b5,21 = 1; b5,4 = 1; b5,4 	= a5,23;

7 Δa7 = 0x00200000; c6,23 = d6,23; b6,3 = 1; d6,4 = 1; e6,21 = a7,21;

8 Δa8 = 0x00000000; b7,1 = 0; a7,21 = e7,3; a7,21 = e7,4;

9 Δa9 = 0x00200000; b8,1 = 1; c8,21 	= d8,21;
(b8,21 ∧ c8,21) ∨ (¬b8,21 ∧ d8,21) = a9,21;

10 Δa10 = 0x00000000; b9,31 = 0; e9,5 	= a9,21;

11 Δa11 = 0x00000000; 0x80000000; c10,21 = d10,21; b10,31 = 1;

12 Δa12 = 0x00000000; b11,31 = 1;

13 Δa13 = 0x00000000; b12,31 = 1;

14 Δa14 = 0x00000000; 0x80000000;

Inside Path

38 Δp37 = 0; 0x80000000;
Δa38 = 0x80000000;

39 Δa39 = 0x00000010; a38,31 = a37,31;

40 Δa40 = 0x00020000; 0x80000000; a39,4 = a40,17;

Inside Path Phase. Note that both (p
(1)
40 , p

(2)
40 ) and (p

(3)
40 , p

(4)
40 ) can satisfy the

inside path on E0 for any message word values. We mainly focus on the
inside path on E1. For j = 41 to 54 (except 51), we choose a random value

for the internal state value p
(1)
j but satisfies the conditions in Table 6, and

then compute the corresponding value of the message wordX
(1)
j . We then set

X
(3)
j be equal to X

(1)
j , and compute p

(3)
j . We check whether p

(3)
j satisfies the

conditions in Table 6. If not, the procedure is repeated with another random

value for p
(1)
j . At step 51, m16 has been determined by m12⊕m5⊕m14⊕m7

after step 45. At this step, the search can go back to step 50, and re-choose

another random value for p
(1)
50 . It may be possible to further optimize the

above procedure, but the complexity of the inside path phase is negligible
compared with that of the outside path phase.

After the inside path phase, message words m8, m1, m10 and m3 are not
determined yet. However, these 4 words are restricted by a 32-bit condition
because m18 = m8⊕m1⊕m10⊕m3 in the third round is already fixed. Thus,
296 freedom degrees are remaining for the outside paths, which is enough to
satisfy them.
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Table 6. Differential Characteristic on E1

Inside Path
Step j ∇pj ∇Xj Conditions
41 ∇a40 = 0x00102000; 0x80000000; a40,20 �= a41,25; a40,20 = a41,26; b40,18 = 0;

∇b40 = 0x02008000; c40,18 ⊕ ¬d40,18 �= a40,13; d40,15 = 0;
∇c40 = 0x08102040; d40,25 = 0; b40,4 = 1; b40,8 = 1; b40,31 = 0;
∇d40 = 0x80040110; (b40,6 ∨ ¬d40,6) ⊕ c40,6 �= e40,6 ;
∇e40 = 0x08102040; (b40,13 ∨ ¬d40,13) ⊕ c40,13 �= e40,13 ;
∇a41 = 0x06000000; (b40,20 ∨ ¬d40,20) ⊕ c40,20 �= e40,20 ;

(b40,27 ∨ ¬d40,27) ⊕ c40,27 �= e40,27 ;
42 ∇a42 = 0x00102000; 0x80000000; e41,4 = a41,25; b41,20 �= d41,20; d41,13 = 1;

b41,13 ⊕ c41,13 = a42,13; b41,6 = 1; b41,13 = 1;
b41,27 = 1; (b41,8 ∨ ¬d41,8) ⊕ c41,8 �= e41,8;
(b41,18 ∨ ¬d41,18) ⊕ c41,18 �= e41,18 ;

43 ∇a43 = 0x00200000; a42,13 �= e42,20; a42,20 �=42,27 ; d42,26 = 0;
d42,25 = 1; b42,25 ⊕ c42,25 = a43,25 ;
(b42,6 ∨ ¬d42,6) ⊕ c42,6 �= e42,6 ;
(b42,13 ∨ ¬d42,13) ⊕ c42,13 �= e42,13 ;
b42,8 = 1; b42,18 = 1;

44 ∇a44 = 0x00102000; a43,25 �= e43,8; d43,13 �= b43,13; d43,20 = 1;
b43,20 ⊕ c43,20 = a43,20; b43,6 = 1;
(b43,18 ∨ ¬d43,18) ⊕ c43,18 �= e43,18 ;
(b43,19 ∨ ¬d43,19) ⊕ c43,19 �= e43,19 ;
(b43,13 ∨ ¬d43,13) ⊕ c43,13 = a44,13;

45 ∇a45 = 0x00200000; d44,25 = 1; b44,18 = 1; b44,18 = 1; b44,19 = 0;
b44,25 ⊕ c44,25 �= a44,20;
c44,19 ⊕ ¬d44,19 �= a44,13;
(b44,13 ∨ ¬d44,13) ⊕ c44,13 �= e44,13 ;
(b44,6 ∨ ¬d44,6) ⊕ c44,6 �= e44,6 ;

46 ∇a46 = 0x00000000; b45,13 = d45,13; d45,20 = 0;
b45,6 = 0; c45,6 ⊕ ¬d45,6 �= a45,25 ;
(b45,18 ∨ ¬d45,18) ⊕ c45,18 = e45,18 ;
(b45,18 ∨ ¬d45,18) ⊕ c45,18 �= e45,19 ;

47 ∇a47 = 0x00000000; d46,25 = 0; b46,18 = 1;
(b46,6 ∨ ¬d46,6) ⊕ c46,6 �= e46,6 ;
(b46,13 ∨ ¬d46,13) ⊕ c46,13 �= e46,13 ;

48 ∇a48 = 0x00000040; b47,13 = 1; b47,6 = 0; c47,6 ⊕ ¬d47,6 = a48,6;
(b47,18 ∨ ¬d47,18) ⊕ c47,18 �= e47,18 ;

49 ∇a49 = 0x00000040; b48,18 = 1; e48,13 �= a48,6; e48,6 = a49,6;
50 ∇a50 = 0x00000000; d49,6 = 0; a49,6 �= e49,18;
51 ∇a51 = 0x00000000; 0x80000000; d50,6 = 0;
52 ∇a52 = 0x00000000; b51,31 = 0;
53 ∇a53 = 0x00000000; b52,31 = 0;
54 ∇a53 = 0x00000000; 0x80000000;

Outside Path
78 ∇p77 = 0; 0x80000000;

∇a78 = 0x80000000;
79 ∇a79 = 0x00000010; a78,31 = a79,4;
80 ∇a80 = 0x00020000; 0x80000000; d79,31 = 1; a80,17 = a79,4;

Outside Path Phase. Randomly choose the values for message words m
(1)
1 ,

m
(1)
8 and m

(1)
10 , which determines the whole message quartet. Check whether

the message quartet leads to a second-order collision on HAS-160. If not,

repeat this procedure with another value for m
(1)
1 , m

(1)
8 and m

(1)
10 .

The Complexity. The outside path phase dominates the complexity. And in
total 273.06 × 21 quartets of messages need to be checked to produce a second-
order collision. Thus the complexity is 273.06+1+2 = 276.06.
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4.4 Summary of Distinguishers on HAS-160 Compression Function
and Experiment Verification

This section summarizes the results of our boomerang-based attacks on HAS-160
with respect to the properties of 4-sum and second-order collision. Besides the
full steps of HAS-160, we also evaluate step-reduced versions. In the following,
t-step HAS-160 refers to the last t steps.

4-sum property. On 75-step HAS-160, a 4-sum can be obtained with a com-
plexity of 233.83, which is faster than 240(=160/4). Thus up to 75 steps,
HAS-160 is non-ideal with respect to the notion of the 4-sum property. Note
that up to 77 steps, a 4-sum can be obtained with a complexity of 251, which
is faster than the generalized birthday attack, 253.3(=160/3).

2nd-order collision property. On 77-step HAS-160, a second-order collision
is obtained with a complexity of 251, which is faster than 253.3(=160/3).
Thus up to 77 steps, HAS-160 is non-ideal with respect to the notion of
second-order collision property. As mentioned in Section 4.3, on full steps of
HAS-160, it takes 276.06 to produce a second-order collision, which is faster
than the currently best-known generic attack with a complexity of 280.

In order to show the validity of our attack, we implemented the attack on the
last 75 steps on a PC. We show a generated example of the 4-sum in Table 7.

4.5 Comparison with the Previous Characteristic [7]

Our attack target is a public function, which gives us the control of the internal
state. Thus we select characteristics with short and simple sub-paths at the very
beginning and at the very last steps of HAS-160. Differently from our attacks,
Dunkelman et al. attacked the keyed block cipher of HAS-160 [7]. They selected
characteristics with an overall minimum number of conditions. Regarding E0,
our characteristic shares the same message difference with theirs, but our char-
acteristic has even fewer conditions, which is reduced to 44 from 47. Thus by
adopting our characteristic on E0, the data complexity of their related-key rect-
angle attack on the block cipher can be improved1. Let x be the number of input
pairs with a specific difference Δ. It is known that the condition of x to form a
rectangle quartet is written as follows:

x > 2n/2 × 1

p
× 1

q
, (1)

where, n is the block-size of the cipher, which is 160 for the internal cipher
of HAS-160. Therefore, the improvement by a factor of 23 for p results in the
improvement of x by a factor of 23. Because the previous work [7] required 2155

chosen plaintexts, our attack requires 2152 chosen plaintexts.

1 In rectangle attacks, the attack model is a chosen-plaintext attack, where attackers
do not have to access the decryption oracle. This is different from boomerang attacks,
where the attack model is an adoptively chosen-ciphertext attack.
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Table 7. An Example of 4-sum on HAS-160 Reduced to the Last 75 steps

p
(1)
5 0x3c3fc642 0x7d021a93 0x189a5355 0xde513fb9 0x60a3b089

M
(1)
i 0x6f63d7e0 0xa931ea99 0xec9d5b8d 0xaa8a0aaa 0x1d2cc5ff

0xda4ccf0f 0x9e2c11ba 0x9d14d81c 0x5fc94c41 0x30ee45ac
0x8b5842b9 0xa0f14fa3 0x7bc50c4a 0x4fcf6a46 0x5101b564
0xb702a1f8

p
(1)
80 0x614dac1b 0xddf182b4 0x5f145d90 0x5ec72ad6 0x91bfb7ef

p
(2)
5 0x3c9fc642 0x7d221293 0x98ba5355 0x3ed13fb9 0xe023a87d

M
(2)
i 0xef63d7e0 0xa931ea99 0xec9d5b8d 0xaa8a0aaa 0x1d2cc5ff

0xda4ccf0f 0x9e2c11ba 0x9d14d81c 0x5fc94c41 0x30ee45ac
0x0b5842b9 0xa0f14fa3 0x7bc50c4a 0x4fcf6a46 0x5101b564
0xb702a1f8

p
(2)
80 0xa18577da 0xf58af24a 0x0c694920 0x9bb82689 0xe65d0b4c

p
(3)
5 0x5a259438 0xb9465d59 0x298dd564 0x640d2efa 0xfd396387

M
(3)
i 0x6f63d7e0 0xa931ea99 0xec9d5b8d 0xaa8a0aaa 0x1d2cc5ff

0xda4ccf0f 0x1e2c11ba 0x9d14d81c 0x5fc94c41 0x30ee45ac
0x8b5842b9 0xa0f14fa3 0xfbc50c4a 0x4fcf6a46 0x5101b564
0xb702a1f8

p
(3)
80 0x614fac1b 0xddf182c4 0x7f145d90 0x5ec72ad6 0x91bfb7ef

p
(4)
5 0x5a859438 0xb9665559 0xa9add564 0xc48d2efa 0x7cb95b7b

M
(4)
i 0xef63d7e0 0xa931ea99 0xec9d5b8d 0xaa8a0aaa 0x1d2cc5ff

0xda4ccf0f 0x1e2c11ba 0x9d14d81c 0x5fc94c41 0x30ee45ac
0x0b5842b9 0xa0f14fa3 0xfbc50c4a 0x4fcf6a46 0x5101b564
0xb702a1f8

p
(4)
80 0xa18777da 0xf58af25a 0x2c694920 0x9bb82689 0xe65d0b4c

4-sum 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

We emphasize that generating 4-sums with the current best generic attack requires
253.3 computations and memory, which seem infeasible.

5 Conclusion

This paper has evaluated the security of HAS-160 compression function adopt-
ing boomerang attack framework. We successfully found a second-order collision
attack faster than the currently best-known generic attack. While the impact of
distinguishers might be unclear, our work has the contributions to a better un-
derstanding of the security margin of HAS-160, and hope that our distinguisher
will lead to more powerful attacks on HAS-160 in the future.
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Abstract. This paper evaluates a block cipher mode, whose round func-
tions of both the key schedule and the encryption process are independent
of the round indexes. Previously related-key attack has been applied to
such block cipher mode, and it can work no matter how many rounds are
iterated in the cipher. This paper presents an accelerated key-recovery
attack on this block cipher mode in the single-key setting. Similarly, our
attack can also work no matter how many rounds are iterated in the ci-
pher. More interestingly, the effectiveness of our attack, e.g. the relative
advantage, increases with the number of rounds.

3D is a dedicated block cipher following the target mode. We ap-
ply the key-recovery attack to 3D cipher, and extend it to collision and
preimage attacks on 3D-based hash functions. For a l-round instance of
3D (l is recommended as 22 by the designer), the complexity of recov-
ering the secret key is 2512/

√
l/2 data, 2512/

√
l/2 offline computation,

and 2512/
√

l/2 memory requirement. And the success probability is 0.63.
Thus compared with the brute-force attack, the complexity is accelerated
by a factor of 0.315 ∗√l/2 in the sense of total computations (including
both online and offline computations) under the same success probability
0.63. The total computations of finding collision and preimage on 3D-
based hash functions are 2257/l and 2513/l, namely accelerated by a factor
of l/2 in the sense of total computations under the same success prob-
ability. Moreover, differently from the key-recovery attack, the collision
and preimage attacks don’t need to increase the memory requirement
compared with the brute-force attack.

Finally we stress that all our attacks are polynomial-advantage
attacks.

Keywords: 3D, key-recovery, collision, preimage, polynomial-advantage.

1 Introduction

Block cipher plays an important role in modern cryptography. It has been widely
used for message encryptions and message authentications. Most block ciphers
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Fig. 1. Block Cipher Mode EK(·)

are constructed by a cascade of small round functions. See Fig. 1 for a graphical
view. The number of rounds is l. The secret key K is expanded by a key schedule
consisting of small round functions g1(·), g2(·), . . ., and gl(·). The expanded
round keys are denoted as (K1,K2, . . . ,Kl). The encryption process consists of
small round functions f1(K1, ·), f2(K2, ·), . . ., and fl(Kl, ·). All fi(Ki, ·)s are
permutations for decryption. Without loss of generality, we also assume that all
gi(·)s are also permutations.

The effectiveness of most cryptanalysis techniques decreases with the increase
of the number of rounds. So a simple countermeasure for modern block cipher is

enlarging the value of l to resist short-cut attacks.

Thus typically a cascaded block cipher relies its security on the sufficient number
of rounds.

However, this countermeasure may not resist all the cryptanalysis techniques if
the block cipher mode has some weak property.Related-key [1] and slide attack [4]
are two attacks such that once they are applicable, the block cipher will be bro-
ken no matter how many rounds are used.1 Particularly, related-key attack can
work on a block cipher mode depicted in Fig. 2, whose round functions gi and fi
are independent from round indexes, and thus denoted as g and f respectively.
Similar related-key attack has also been applied to stream cipher [6]. Here we
will omit the description of related attacks, and refer the details to [1]. Slide
attack needs the block cipher mode has periodic round keys, e.g. identical round
keys, so slide attack cannot be applied to the block cipher mode in Fig. 2 with
an overwhelming probability.

Our Contributions

This paper presents an accelerated key-recovery attack on the block cipher mode
in Fig. 2, which is in the single-key setting, and can always work no matter how
many rounds are iterated.

1 Here related attack is referred to as the approach on the block cipher mode described
in Fig. 2 [1]. However, the related-key setting has been introduced to other attack
approaches, such as differential attack, which are usually limited by the number of
rounds.
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Fig. 2. Our Target Block Cipher Mode

Our attack is from the following observation. Select two random values x0 and
y0 with suitable bit sizes. Then compute a sequence of (xi, yi) with i = 1, 2, . . . , t
as below

xi = g(xi−1), and yi = f(xi, yi−1).

And derive triples (xi−l, yi−l, yi) with i = l, l + 1, . . . , t. There are in total t −
l + 1 triples. A triple (xi−l, yi−l, yl) implies that Exi−l

(yi−l) = yi, which gives a
plaintext-ciphertext pair encrypted by a key value xi−l. If t � l, a triple (key,
plaintext, ciphertext) is obtained with a complexity of one g(·) and one f(·, ·)
computations on average. For the brute-force key-recovery attack, a plaintext-
ciphertext pair encrypted by a guessed key value is obtained with a complexity
of one execution of the entire block cipher, which consists of l computations of
g(·) and l computations of f(·, ·). Thus we can accelerate the brute-force attack,
which leads to a polynomial-advantage attack.

Finally the complexity of recovering the secret key is listed as below. Denote
the bit sizes of the key and the block as k and n respectively.

– k = n case: the complexity is O( 2
n√
l
);

– k > n case: the complexity is O(2x + k
n × 2k−n + 2k+n−x

l ), where �log2 k
n� ≤

x ≤ n,

where we stress the unit of complexity is one execution of the entire block cipher,
which consists of l computations of f(·, ·) and l computations of g(·). Moreover,
our attack can be transformed to accelerate collision and preimage attacks on
a block-cipher-based hash function. And the complexity of our attack is 1

l of
the complexity of the brute-force attacks. We have to point out that the advan-
tage of our key-recovery attack is gained with a significant increase of memory
requirement. On the other hand, collision and preimage attacks don’t need to
increase the memory requirement.

3D cipher [12], which has a block size 512 bits and a key size 512 bits, falls into
the block cipher mode in Fig. 2. Thus our attack can be applied to 3D cipher.
Moreover we extend the attack to collision and preimage attack on 3D-based hash
functions. For a l-round instance of 3D (l is recommended as 22 by the designer),
the complexity of recovering the secret key is 2512/

√
l/2 data, 2512/

√
l/2 offline

computation, and 2512/
√
l/2 memory requirement. And the success probability
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is 0.63. Thus compared with the brute-force attack, the complexity is acceler-
ated by a factor of 0.315 ∗

√
l/2 in the sense of total computations (combining

both online and offline computations) under the same success probability 0.63.
The total computations of finding collision and preimage are 2257/l and 2513/l,
namely accelerated by a factor of l/2 in the sense of total computation under
the same success probability.

Roadmap of the Paper

Section 2 describes notations and backgrounds. Section 3 illustrates our attack.
Section 4 applies our attack to 3D and 3D-based hash functions. Section 5 con-
cludes the paper.

2 Notations and Backgrounds

2.1 Notations

This section defines the notations used in this paper. See Fig. 2. Denote the block
cipher as EK(·), which consists of a key schedule and an encryption process. De-
note the round function in the key schedule as g(·), and let g(·) be a permutation
without loss of generality. Denote the round function in the encryption process
as f(·, ·). Denote the secret key as K, and the i-th round key as Ki. Denote the
key bit size as k. Denote plaintext as P , and ciphertext as C. Denote the output
internal state value of f(·, ·) at i-th round as Si. Denote the block bit size as n.

2.2 Cryptanalysis Techniques on Block Ciphers

The security of block ciphers are usually evaluated by how faster the key is
recovered compared with the brute-force attack. The brute-force key search on
EK(·) is as below.

(1) Obtain a valid plaintext-ciphertext pair (P,C).
(2) for K = 0 to 2k − 1
(3) Compute EK(P ) and match it to C. If there is a match, output K.

With the development of cryptanalysis techniques for block ciphers, many attack
approaches are proposed, including differential cryptanalysis [3], linear crypt-
analysis [18], truncated differential cryptanalysis [14], higher-order differential
cryptanalysis [14,17], impossible differential cryptanalysis [2,15], boomerang at-
tack [21], biclique attack [5] etc. Moreover, recently cryptanalysts also pay atten-
tions to the security of block ciphers in the known-key model. Several known-key
distinguishing attacks on block ciphers are proposed, including rebound attack
[19] and super-sbox attack [10], etc. These short-cut attacks can be classified
into two categories [20]: exponential-advantage attack and polynomial-advantage
attack, compared with the brute-force attack.
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Exponential-advantage attacks aim to reduce the number of repetitions,
namely an acceleration of part (2). Most cryptanalysis techniques are exponential-
advantage attacks. On the other hand, recently polynomial-advantage attack
techniques also become popular, which aim to reduce the computational cost
of one execution of EK(P ), namely an acceleration of part (3). Biclique attack
on AES [5] is a typical polynomial-advantage attack. Also in order to enlarge
the number of the attacked rounds, recently cryptanalysts introduce polynomial-
advantage techniques to traditional exponential-advantage attacks. Such attacks
should be regarded as polynomial-advantage attacks because the polynomial-
advantage attack part dominates the overall complexity.

Here we stress that our attack is a polynomial-advantage attack. People may
suspect the significance of polynomial-advantage attacks considering that the
gained complexity advantage is marginal. However, we stress that polynomial-
advantage attacks contribute to a better understanding of the exact security
bounds of block ciphers.

2.3 Cycles in a Permutation

We focus on g(·) in key schedule function of EK(·), which is usually a per-
mutation: {0, 1}k → {0, 1}k. By cycle, we mean a set of k-bit distinct values
(x1, x2, . . . , xt) such that xi = g(xi−1) with i = 2, 3, . . . , t and x1 = g(xt). De-
note the value of t as the length of this cycle. For most permutations, there
are several inside cycles with a Poisson distribution [11]. The expectation of the
cycle length is 2k−1 [8].

We stress that the cycle distributions in the permutation g(·) will not influence
the complexity of our attack, but may cause an increase of memory cost. For the
details, refer to Section 3.

3 Our Attack on the Block Cipher Mode

This section describes our attack in detail on the block cipher mode in Fig. 2.
For the simplicity of the description, we first focus on the case that k = n and
that there is only one cycle inside g(·) with a length 2n. Later we will discuss the
impact of the key length and that of the cycle distributions in g(·) in Sections
3.1 and 3.2 respectively.

Denote f(g(x), y) by f ||g(x, y) for simplicity. The cipher can be regarded as
iterating f ||g(·, ·) l times on (K,P ). Interestingly, select a random starting point
(x0, y0), iteratively compute a long sequence of (x1, y1)← f ||g(x0, y0), (x2, y2)←
f ||g(x1, y1), . . ., and derive the triples (xi, yi, yi+l). Such a triple (xi, yi, yi+l)
implies yi+l = Exi(yi), which is a plaintext-ciphertext pair encrypted by a key
xi. On average, with one execution of f ||g(·, ·), namely 1

l computation of the
entire EK(·), a plaintext-ciphertext pair of E(·)(·) is produced under a guessed
key value at offline. Such a property leads to our attack, which is faster than the
brute-force key search.

See Fig. 3 for an illustration. The main attack strategy is to recover the
value of K by a match between the plaintext-ciphertext pairs encrypted by the
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real key K, which are obtained by queries at online phase, and the plaintext-
ciphertext pairs encrypted by different guessed keys, which are computed at
offline phase. If a match between (xi, yi, yi+l) and (Pj , Cj) is found, namely
(yi, yi+l) is equal to (Pj , Cj), it is with an overwhelming probability that xi

is equal to K. And for the negligible number of noisy matched pairs, we can
easily erase them by a confirming computation using another queried plaintext-
ciphertext pair. The main complexity advantage is gained from that a plaintext-
ciphertext pair encrypted by a guessed key value is obtained with a complexity
of 1

l on average.

Attack procedure. The attack consists of the following steps.

1. Query � 2n√
l
� different plaintexts to EK(·), and store plaintext-ciphertext pairs

in a table T .
2. Select a random plaintext y0 and a random key vaue x0.
3. for i = 1 until l

(a) Compute (xi, yi)← f ||g(xi−1, yi−1);
(b) Match yi to {Cj} in T .
(c) If it is matched with a Cj , then check whether xi is the round key Kl.

And if xi is equal to Kl, then compute the value of K and output it.

4. for i = l + 1 until �
√
l ∗ 2n�

(a) Compute (xi, yi)← f ||g(xi−1, yi−1).
(b) Match (yi−l, yi) to {(Pj , Cj)} in T .

Fig. 3. Overview of Our Attack
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(c) If it is matched with a (Pj , Cj), then check whether xi−l is the real key
K by matching Exi−l

(Pj′ ) to Cj′ , where (Pj′ , Cj′) is another plaintext-
ciphertext pair in T . If xi−l is the real key K, output it.

Complexity evaluation. The number of queries in total is � 2n√
l
�. The offline

computation is �
√
l∗2n∗ 1l �. The total complexity is 2∗2n√

l
. The memory is 2n√

l
. Note

at steps 3 and 4, we only need to memorize l pairs: (xi−l, yi−l), (xi−l+1, yi−l+1),
. . ., (xi, yi), which is negligible compared with the memory cost at step 1. Thus
the dominant memory consumption is at step 1, which is 2n√

l
.

Success evaluation. The success probability is 1− 1
e ≈ 0.63 for the collision be-

tween the plaintext-ciphertext pairs queried at online phase and those computed
at offline phase.

3.1 Impact of the Key Length

Some block cipher uses a key size larger than its block size. For the case k > n,
our attack provides a variable tradeoff between data complexity and the offline
complexity. Let the number of online queries be 2x, where x ≤ n. Note that the
value of 2x should be at least � kn� for identifying K. The offline complexity is
2k+n−x

l for producing the expected collision with a probability 1− 1
e ≈ 0.63. There

are around 2k−n noisy collisions, and it needs at most � kn�× 2k−n computations

to erase them. Thus the total complexity is 2x + � kn� × 2k−n + 2k+n−x

l , where

�log2 k
n� ≤ x ≤ n. If x is equal to n, it implies that the attack procedure uses

the entire codebook.
As a comparison between our attack and the brute-force key search, we give

one example. Let k be 2n. So the complexity of the brute-force key search is

22n. Select x as n− 1. And the complexity of our attack is 2n−1 +2n+1 + 22n+1

l ,
which is faster than the brute-force key search as long as l is larger than 2.

3.2 Impact of the Cycle Distribution in g(·)
Usually there are more than one cycles in g(·). In order to recover the value of
K, the chosen value of x0 of our attack procedure must locate in the same cycle
with K. So we modify the attack procedure to choose a series of values for x0 to
cover all the cycles in g(·). The modified procedure of the offline computations
is briefly described as below. Denote the number of online queries as 2x, where
�log2 k

n� ≤ x ≤ n.

1. Choose a value for x0. Carry out the attack procedure, and memorize the
values of x1, x2, . . . , xt1 , where xt1 is equal to x0. The cycle length is t1.
For this cycle, iterate f ||g(·, ·) t1× 2k−x times at offline. If the value of K is
recovered, output it.
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2. Choose another value for x0, which is not included in the cycle at step 1.
Namely search K in another cycle of g(·). Denote the length of the second
cycle as t2. Iterate f ||g(·, ·) t2 × 2k−x times at offline. If the value of K is
recovered, output it.

3. Similarly with step 2, choose a series of values for x0 until all the cycles in
g(·) are covered.

The complexity of iterating f ||g(·, ·) is 1
l ×2k−x× (t1+ t2+ · · · ) = 2k+n−x

l , which
is the same with the case of only one cycle. So the total complexity remains the

same, which is 2x+ � kn�× 2k−n+ 2k+n−x

l . The success probability is 1− 1
e ≈ 0.63

due to the expected collision in the cycle where K locates. The memory may be
increased, in the worst case 2n, for storing the cycles in g(·).

4 Application on 3D Block Cipher and 3D-Based
Compression Functions

4.1 3D Block Cipher

Nakahara Jr. proposed a block cipher 3D at CANS 2008 [12]. 3D follows the
design framework of AES [7], but enlarges the block size and the key size. Both
the block size and the key size of 3D are 512 bits. It seems an interesting re-
search motivation: how to enhance AES considering the future development of
computation power such that a 128-bit or even a 256-bit key becomes weak to
resist the brute-force attack. Moreover, as also pointed out by Nakahara Jr. [12],
such a AES-style block cipher with a large size is a suitable building block for
hash functions, stream ciphers, etc. Here we briefly sketch the structure of 3D.
For a completed specification, we refer to [12].

Encryption process. The i-th encryption round function is described as

τi(·) = π ◦ θimod 2 ◦ γ ◦ κ(·).
And each transformation is detailed below.

– κ: bitwise XOR with a round key;
– γ: a byte-wise S-box transformation;
– θ1, θ2: two different byte-position shift transformations;
– π: a matrix multiplication transformation applied to columns of the state.

Similarly with AES, the last round function of encryption process does not
include π operation but includes an extra key-whitening, which becomes κ ◦
θimod2+1 ◦ γ ◦ κ(·).

Key schedule. The i-th round key is generated as2

π ◦ θimod2+1 ◦ γ ◦ κ′(·).
And new transformation is explained below.

2 Encryption round function and key schedule round function use different γ. Here
we omit the description.
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– κ′: bitwise XOR with a constant. The value of the constant depends on the
number of rounds, namely the value of l, in order to resist the related-cipher
attack [22]. We stress that κ′ in each round of key schedule uses the same
constant in a concrete 3D instance because the value of l is fixed.

The designer recommends that the number of rounds in 3D, namely l, is 22.

4.2 Previous Attacks on 3D

In [12], Nakahara Jr. proposed a key-recovery attack on 3D with 6 rounds. After
that, he extended the number of the attacked round to 10 [13]. In [9], Dong et
al. analyzed 3D in the known-key attack model, and found a distinguisher on
15-round 3D. Recently Koyama et al. proposed improved key-recovery attacks
on 13-round 3D [16].

As a summary, all these previous attacks follow attack approaches includ-
ing truncated differential cryptanalysis and impossible differential cryptanalysis,
whose effectiveness decreases with the increase of the round numbers. So far, the
best numbers of the attacked rounds on 3D are 13 in the secret-key attack model
and 15 in the known-key attack model.

4.3 Application of Our Attack on 3D

This section applies our attack to 3D. Mainly we show the small functions f(·, ·)
in the encryption process and g(·) in the key schedule, which are irrespective
to the round indexes. And then the attack procedure in Section 3 can be easily
applied.

f(·, ·) and g(·) in 3D. Only the byte position shift transformation θ is related
to the round indexes. In the encryption process, θ1 is used in the odd round, and
θ2 in the even round. In the key schedule, θ1 is used in the even round, and θ2
in the odd round. Regard two rounds in the encryption process as f(·, ·). More
precisely, combine the first and second rounds, third and fourth rounds, and so
on. f(·, ·) is irrespective to the round indexes. Similarly by regarding two rounds
in the key schedule as g(·), g(·) is also irrespective to the round indexes.

Thus our attack can be applied. Note that the last round function in the
encryption process is different from other round functions. It does not influence
the applicability of our attack. We just need to compute a y′i+1 by an extra XOR
during computing (xi, yi) ← f ||g(xi−1, yi−1), and use (xi−l/2, yi−l/2, y

′
i) for the

matching with online queried plaintext-ciphertext pairs. Since an extra XOR
is negligible compared with f ||g(·, ·), we will omit it. Finally the complexity is
2513√
l/2

. The success probability is 0.63. And the memory requirement is 2512√
l/2

.

Remark. For the recommended instance 22-round 3D, our attack is slightly
better than the brute-force attack. We stress that our attack can be applied to
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all the instances of 3D. More interestingly, if l becomes larger, the effectiveness
of our attack, e.g. the relative advantage compared with the brute-force attack,
increases, while that most other short-cut attacks including truncated differential
attacks, impossible differential attacks and so on decreases.

4.4 Collision and Preimage Attacks on 3D-Based Compression
Function

Our attacks can also accelerate collision and preimage attacks on 3D-based com-
pression functions. We use Davies-Meyer mode as an example. The compression
function is 3Dm(h)⊕ h, where the message block m is as the key, and the hash
chaining value h as the plaintext. The collision attack procedure is as below.
Without the loss of generality, let l be an even integer. For simplicity, we assume
the last round function in the encryption process is the same with other round
functions.

1. Select a random h0 and m0.
2. Initialize table T to empty.
3. for i = 1 to l/2, compute (mi, hi)← f ||g(mi−1, hi−1);
4. for i = l/2 + 1 to 2256,

(a) Compute (mi, hi)← f ||g(mi−1, hi−1);
(b) Compute hi ⊕ hi−l/2;
(c) Match it to stored triples in T .
(d) If it matches to z in a triple (x, y, z) in T , output (hi−l/2,mi−l/2) and

(x, y) as a collision.
(e) Otherwise, store (hi−l/2,mi−l/2, hi ⊕ hi−l/2) in T .

The complexity is 2257

l computation. And the success probability is the same

with the brute-force birthday attack. Thus our attack is about l
2 times faster

than the brute-force attack. Similarly we can launch a preimage attack. And the

complexity is 2513

l , and is about l
2 times faster than the brute-force attack. The

procedure is as below. Denote the target hash value as h.

1. Select a random h0 and m0.
2. Initialize table T to empty.
3. for i = 1 to l/2, compute (mi, hi) ← f ||g(mi−1, hi−1) and store (mi, hi)

to T ;
4. for i = l/2 + 1 to 2512,

(a) Compute (mi, hi)← f ||g(mi−1, hi−1);
(b) Compute hi ⊕ hi−l/2;
(c) Match it to h.
(d) If it matches, output (mi−l/2, hi−l/2) as a preimage.
(e) Otherwise, erase (mi−l/2, hi−l/2) from T , and store (mi, hi) to T .

Finally we point out that these attacks can also be regarded as a distinguishing
attack on 3D in the chosen-key model.
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5 Conclusion

This paper has proposed a polynomial-advantage attack, which is applicable to
a block cipher mode whose round functions in both the encryption process and
the key schedule are independent of the round indexes. We also applied the new
attack to 3D and 3D-based hash functions.
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Abstract. Spectra attacks proposed recently are more data efficient
than algebraic attacks against stream cipher. They are also time-and-
space efficient. A measurement of the security of a stream cipher against
spectra attacks is spectral immunity, the lowest spectral weight of the
annihilator of the key stream. We study both the annihilator and the
spectral immunity. We obtain a necessary and sufficient condition for the
existence of low spectral weight annihilator and find it is more difficult
to decide the (non)existence of the low weight annihilator for spectra
attacks than for algebraic attacks. We also give some basic properties
of annihilators and find the probability of a periodic sequence to be the
annihilator of another sequence of the same period is low. Finally we
prove that the spectral immunity is upper bounded by half of the period
of the key stream. As a result, to recover any key stream, the least amount
of bits required by spectra attacks is at most half of its period.

Keywords: stream cipher, spectra attacks, spectral immunity,
annihilator.

1 Introduction

Stream ciphers are popular for their efficiency in a wide range of applications in-
cluding real-time encryptions and security applications for constrained
environments.

Algebraic attacks have been successful on stream ciphers in recent years[1–4].
They recover key streams of a stream cipher by solving an overdefined algebraic
equation system. They are efficient if low degree annihilators of Boolean functions
are found[6]. Fast algebraic attacks[5] generalizes that; fast algebraic attacks are
efficient if low degree relations of Boolean functions are found.

Fast discrete Fourier spectra attacks on stream ciphers[8] are algebraic attacks
solving equations on spectra of key streams. They are parallel to fast algebraic
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attacks; they are efficient if low spectral weight relations of periodic sequences are
found. But they can be more efficient than algebraic attacks and fast algebraic
attacks, especially when the stream cipher uses an algebraic-immune Boolean
function[12]. And they are generally applicable to any periodic sequence.

In fast discrete Fourier spectra attacks, the existence of low spectral weight
relation of periodic sequences is required. A specialized case, the existence of
low spectral weight sequence annihilator also fulfills the requirement. However,
neither the sequence annihilator nor the more generalized relation has received
extensive study.

The only few results are about the sequence annihilator. [8] proposes the con-
cept of spectral immunity, which is the minimum spectral weight of annihilators
of a periodic sequence; it also shows that the upper bound of spectral immu-
nity will be greater than the smaller value between the weight of a periodic
sequence and its complement. [10] generalizes the concept of spectral immunity
and shows an upper bound of the spectral immunity in the algebraic immunity
of the Boolean function when the underlying key stream is generated by a filter
generator.

This paper also focuses on the sequence annihilator. We show that a sequence
has a low spectral weight annihilator if and only if it allows a special matrix
to be not of full column rank. We analyze the annihilator set with respect to
a specific period of a sequence. We find that as the period associated with the
annihilator set increases, the cardinality of the set grows but the ratio between
that cardinality and the number of all sequences with that period approaches
to zero. Finally, we prove that the spectral immunity of a periodic sequence is
upper bounded by approximately half of its period. It is the first time that the
upper bound of spectral immunity is expressed by one of the design parameters
of a stream cipher.

The rest of the paper is organized as follows. Section 2 gives necessary defi-
nitions and notations for this paper. Section 3 shows how spectral attacks may
exploit the properties of annihilators to gain efficiency. In Section 4 we provide
a necessary and sufficient condition for a sequence to have low spectral weight
annihilators. In Section 5 we discuss properties of annihilator sets. In Section 6
we give upper bounds of spectral immunity and show how that will affect the
design criteria of a stream cipher. Section 6 concludes the paper.

2 Preliminaries

In this section we give some necessary definitions and notations about binary
sequences and their discrete fourier transform over finite fields. See[9][11] for a
thorough discussion.

For a positive integer T , suppose T |2n−1 for some integer n. Let s be a binary
sequence of period T and s0, s1, . . . , sT−1 be the terms of s in its first period.
Let α be an element in F2n of order T . Then the discrete fourier transform of
the sequence is defined by
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Sr =

T−1∑
t=0

stα
−tr, r = 0, 1, . . . , T − 1.

The result of the transform S0, S1, . . . , ST−1 is called the discrete fourier spectra
of the sequence s.

The inverse discrete fourier transform is

st =
T−1∑
r=0

Srα
rt, t = 0, 1, . . . , T − 1.

Let Γ2(T ) be the set of the leaders of the cyclotomic coset modulo T (with
respect to 2) and ng be the size of the coset led by a leader g ∈ Γ2(T ). If we
partition the set of integers {0, 1, . . . , T − 1} into the cyclotomic cosets modulo
T the inverse discrete fourier transform is also

st =
∑

g∈Γ2(T )

Tr
ng

1 (Sgα
gt), t = 0, 1, . . . , T − 1

with Try1(x) being the trace function from F2y to F2. This inverse transform
formula is also referred to as the trace representation of the sequence s.

If a sequence s has w nonzero terms in one period we say its weight with
respect to (its period) T is w. If a sequence s has v nonzero terms in its discrete
fourier spectra we say its spectral weight is v. Let l(s) be the linear complexity
of s. Then l(s) = v. In the rest of the paper, we use the linear complexity l(s) to
refer to the spectral weight sometimes in order to be consistent with the symbol
in [8].

Note that despite the dependency of the discrete fourier transform on the
period of a sequence, no matter which one of the periods is used to do the
transform the number of nonzero terms in the spectra of a sequence remains
the same.

For the positive integer T , we denote the set of all sequences of period T
by ΩT . We define operations for sequences as termwise. In detail, if s is the
sequence s0, s1, . . . and z is the sequence z0, z1, . . . then the sum s + z is taken
to be the sequence s0 + z0, s1 + z1, . . . and the product s · z is the sequence
s0 · z0, s1 · z1, . . .. Under these definitions of addition and multiplication, the set
ΩT is a ring. Its additive identity is the sequence 0, 0, . . . denoted by 0 and its
multiplicative identity is the sequence 1, 1, . . . denoted by 1.

For the convenience of statement, we define the operator “concatenation” || for
vectors. Let col0 and col1 be two vectors. Let col0 = (col0,0, col0,1, . . . , col0,n0)

T

and col1 = (col1,0, col1,1, . . . , col1,n1)
T . Then col0||col1 = (col0,0, col0,1, . . . ,

col0,n0 , col1,0, col1,1, . . . , col1,n1)
T . The concatenation of more than two vectors

is defined similarly.

3 Fast Discrete Fourier Spectra Attacks: Revisited

In [8], fast discrete Fourier spectra attacks are described under the assumption
that low spectral weight relations exist. The aim of this section is to show how
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the assumption of low spectral weight relation is related to that of low spectral
weight annihilator and why this paper focuses on the latter in studying fast
discrete Fourier spectra attacks. In the rest of the paper, the term “fast discrete
Fourier spectra attacks” is shortened to “spectra attacks” for convenience.

Recall the assumption of low spectral weight relation in the spectra attack
algorithm. Let s be the periodic sequence to be attacked; let l(·) the spectral
weight of a sequence.

Assumption. Let a be the shifted sequence of s. Assume that there exists
two periodic sequences c,d such that ac = d and l(c) + l(d) < l(a).

The attack algorithm makes use of this assumption as follows. Let β be the
shift difference between sequences a and s. Let b,u be the shifted sequences of
c,d with the same shift difference β. Then sb = u. This is an equation of variable
β; given the spectra of a, c and d, β can be solved and s will be recovered.

Naturally this assumption has two sub-assumptions:

Sub-assumption S1. ac = d,d �= 0 and l(c) + l(d) < l(a),

Sub-assumption S2. ae = 0 and l(e) < l(a),

where c,d, e are just some periodic sequences but a is the shifted sequence of
s. The complexity results of spectra attacks can be separated for attacks under
the two disjoint assumptions.

Table 1. Complexity Results of Spectra Attacks under Disjoint Assumptions

S1. ac = d �= 0 S2. ae = 0

data complexity l(c) + l(d) l(e)

time complexity O(l(d)[n(log n)2 0
(pre-computation) +(log(l(d)))3 + η(n)a ])

time complexity O(l(c) log(l(c))η(l(c)) O(l(e) log(l(e))η(l(e))
(computation) +4|Nc|b η(n− 1)) +4|Ne|η(n− 1))

a η(n) = n log2 n log2 log2 n.
b Nc is the set of coset leaders such that the spectrum on that coset leader
for the sequence c is nonzero.

The assumption of low spectra weight annihilator is actually Sub-assumption
S2. Spectra attacks under S2 performs better than spectra attacks under S1
when l(c) ≈ l(e), eliminating pre-computation and using fewer data bits. If we
can find such a low spectral weight annihilator that l(e) l(a), spectra attacks
under Sub-assumption S2 will be efficient.

More importantly, as the low spectral weight annihilator can be constructed
from a low spectral weight relation, we find that spectra attacks using the con-
structed low spectral weight annihilators require less data complexity than spec-
tra attacks using the original low spectral weight relations.
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Let ac = d be a low spectral weight relation that satisfies Sub-assumption
S1. Then as

(a + 1) · d = a · ac+ ac = 0,

it produces an annihilator that satisfies Sub-assumption S2 except that the an-
nihilator d is an annihilator of the sequence a + 1. The attacker can use this
annihilator to recover the sequence s+1 and then recover the sequence s. There-
fore both are feasible assumptions in recovering the sequence s.

However their data complexity is different. The data complexity of spectra
attacks under the constructed low spectral weight annihilator is l(d) while that
of spectra attacks under the original low spectral weight relation is l(c) + l(d).
This lead to a fact that the least data complexity that spectra attacks could
achieve must occur at when the low spectral annihilator is used as assumption.

Therefore the annihilator is important for spectra attacks to fulfill its assump-
tion and to profile its data complexity. This paper is going to show some results
of annihilator in both aspects.

4 Annihilator

This section discusses the concept of an annihilator and the condition for a
sequence to have a low spectral weight annihilator. [8] mentions annihilators in
its definition of spectral immunity but it does not use the term “annihilator”.
No formal definition of annihilator has been given yet. We must formulate one
in order to investigate its properties.

Definition 1. For a binary sequence s of period T , a binary sequence a �= 0
also of period T satisfying a · s = 0 under termwise multiplication is called an
annihilator of s.

The period is not necessary in the definition of an annihilator. As long as a
and s are periodic sequences they always share some common period such as a
common multiple of their minimal periods. Nevertheless the definition is more
consistent with that of spectral immunity in [8] if the period is referred to. If a
specific common period T is required for the sequence and the annihilator, the
latter will be called an annihilator with respect to (the common period) T .

Let V be the spectral weight of annihilator reasonably low for performance
of fast discrete fourier spectra attacks. In the rest of this section, the low spec-
tral weight annihilator means the annihilator with spectral weight no greater
than V .

The existence of such annihilator can be decided by a special matrix which is
defined as follows. For any integer g, define a row vector

uT (g; t) = (Tr
ng

1 (αg·0 · αgt),Tr
ng

1 (αg·1 · αgt)), . . . ,Tr
ng

1 (αg·(ng−1) · αgt).

And for a set of integers G = {g0, g1, . . . , gm−1}, where m = |G|, define a row
vector
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uT (G; t) = uT (g0; t)||uT (g1; t)|| · · · ||uT (gm−1; t).

Then for this set of integers G, define a matrix

U(G; 1s) = (u(G; t0),u(G; t1), . . . ,u(G; t|1s|−1))
T

where 1s = {t0, t1, . . . , t|1s|−1} = {t|st = 1}. We find that the existence of
low spectral weight annihilator is equivalent to the matrix U(G; 1s) for some
particular G to be not of full column rank.

Proposition 1. Let s be a sequence of period T . Let Γ2(T ) denote the set of
all coset leaders of cyclotomic cosets modulo T . Then the sequence s has a
low weight annihilator of period T if and only if a set of coset leaders G =
{g0, g1, . . . , gm−1} ⊆ Γ2(T ) exists such that v =

∑m−1
i=0 ngi ≤ V and that the

rank of the matrix U(G; 1s) is less than v.

Proof. First consider the necessary condition. Let s have a low spectral weight
annihilator of period T . Let a = a0, a1, . . . be this annihilator. Then the spectral
weight of a is no greater than V .

For the spectra of a, {A0, A1, . . . , AT−1}, we have:

{A0, A1, . . . , AT−1}

=
⋃

g∈Γ2(T )

{Ag·2j |0 ≤ j ≤ ng − 1}

=
⋃

g∈Γ2(T )

{(Ag)
2j |0 ≤ j ≤ ng − 1}

where the first equality follows the definition of cyclotomic cosets and the second
equality follows from the fact that Ag·2j = (Ag)

2j [9]. Let G be the set of coset

leaders {g|Ag �= 0, g ∈ Γ2(T )}. It follows that (Ag)
2j �= 0 for any 0 ≤ j ≤ ng− 1.

Therefore the spectral weight of the annihilator a is: v =
∑

g∈G ng and it is no
greater than V .

The trace representation of the annihilator a is:

at =
∑

g∈Γ2(T )

Tr
ng

1 (Agα
gt)

=
∑
g∈G

Tr
ng

1 (Agα
gt)

where α is an element in Fn
2 of order T , ng is the size of coset led by g. As Ag·2j =

(Ag)
2j , Ag = (Ag)

2ng
. then Ag is in Fng

2 . Since αg is primitive in Fng

2 , Ag can be
expressed as a linear combination over F2 of the basis αg·0, αg·1, . . . , αg·(ng−1)

in Fng

2 : Ag =
∑ng−1

j=0 eg,jα
g·j where the coefficients {eg,j|0 ≤ j ≤ ng − 1} are

elements in F2. Let e(g) be the vector (eg,0, eg,1, . . . , eg,ng−1)
T , then
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Agα
gt =(

ng−1∑
j=0

egjα
gj) · αgt

=

ng−1∑
j=0

egj (α
gjαgt)

=uT (g; t) · e(g).

LetG = {g0, g1, . . . , gm−1} and let e(G) be the vector e(g0)||e(g1)|| . . . ||e(gm−1).
Then:

at = uT (G; t) · e(G).

Since at = 0 whenever st = 1, we have the following equation system for un-
knowns

⋃
g∈G{eg,j|0 ≤ j ≤ ng − 1}:⎧⎪⎪⎪⎨⎪⎪⎪⎩

uT (G; t0) · e(G) = 0

uT (G; t1) · e(G) = 0

· · ·
uT (G; t|1s|−1) · e(G) = 0

. (1)

Note if e(G) = 0 then a = 0. Therefore as the annihilator a �= 0, this equation
system must have nonzero solutions. Since the system is equivalent to

U(G; 1s) · e(G) = 0,

the rank of the v × |1s| matrix U(G; 1s) must be less than v.
On the other hand, if there exists a set of coset leaders G such that the rank

of of (U(G; 1s)) is less than v, then the equation system (1) will have nonzero
solutions, which in turn gives an annihilator of the sequence s which has spectral
weight no greater than V . ��

There is a similar result for the annihilators of Boolean function in [7]. How-
ever, the necessary and sufficient condition for the Boolean function annihilators
shows that the test of the rank of one matrix is sufficient to decide the the
(non)existence of annihilators while that for the sequence annihilators requires
much much more matrices to be considered. It shows that spectral attacks are
more flexible than algebraic attacks (as one sequence has potentially much more
annihilators) and designers may find more difficulties to defend spectral attacks
(as the number of matrices to be tested is much greater).

5 Properties of Annihilator Set

This section defines the concept of annihilator set. It discusses the equivalence
between two sub-assumptions of spectra attacks and also the possibility of a
random periodic sequence being an annihilator for a specified sequence.
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For a sequence s of period T , its annihilator is a sequence of period T of
which the termwise product with s is 0. This concept of an annihilator implies
that the annihilator of a sequence with minimal period Tmin may have period
Tmin, 2Tmin, 3Tmin, . . .. When we discuss the annihilator set, it is better to spec-
ify the period of an annihilator to avoid confusion. Thus the annihilator set is
defined with respect to a specific T as follows.

AnnSetT (s) = {a|a ∈ ΩT , s · a = 0, a �= 0}

where ΩT is the set of all sequences of period T . Then the whole annihilator set,
which is the set of all possible annihilators, is a union of AnnSetT (s):

AnnSet(s) = {a|s · a = 0, a �= 0} =
⋃

Tmin|T
AnnSetT (s).

We find the annihilator set with respect to T has the following two properties.

Property 1. Let s be a sequence with minimal period Tmin. Let w be its weight
with respect to Tmin. For a positive integer T such that Tmin|T , its annihilator
set AnnSetT (s) is a principal ideal generated by s+ 1 in the ring ΩT .

Property 2. The cardinality of the set is |AnnSetT (s)| = 2T−wT/Tmin .

Proof. Under termwise addition and multiplication, for any a0, a1 ∈ AnnSetT (s),
we have (a0 + a1) · s = a0 · s+ a1 · s = 0 and for any a ∈ AnnSetT (s), z ∈ ΩT ,
we have z · a · s = a · z · s = 0. Thus AnnSetT (s) is an ideal in the ring ΩT .
Moreover for any z ∈ ΩT , we have z · (s+1) ·s = 0 and for any a ∈ AnnSetT (s),
we have a = a + a · s = a(1 + s); thus the set AnnSetT (s) is a principal ideal
generated by s+ 1.

The number of zeroes of the sequence s in time span T is T −w · T/Tmin. Thus
there are 2T−wT/Tmin possibilities for a sequence of period T to be an annihilator of
s. The cardinality of the annihilator set is then |AnnSetT (s)| = 2T−wT/Tmin . ��

In the proof of Property 1, we show that an annihilator a of the sequence s gives
the relation a = a(s + 1). Let l(a) be the spectral weight of a. For the sub-
assumption S1 of low spectral weight relation, it is required that l(a) + l(a) <
l(s+ 1); for the sub-assumption S2 of low spectral annihilators, it is required that
l(a) < l(s). Since O(l(a)) = O(2l(a)) and |l(s)−l(s+ 1)| = 1, if a sufficiently low
spectral weight annihilator exists, then a sufficiently low spectral weight relation
also exists.

In turn, by Property 1, for a spectral weight relation zs = a for some a and
z, a is found as an annihilator of s+ 1. Using the relation in sub-assumption S1
requires that l(a) + l(z) < l(s) while using the annihilator in Sub-assumption
S2 requires only l(a) < l(s). Thus if a low spectral weight relation exists, a low
spectral weight annihilator must exist.

Therefore the existence of low spectral weight relation is equivalent to that
of low spectral weight annihilator. When deciding if key streams of a stream
cipher can fulfill the assumption of the spectra attack, it is sufficient to decide
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the existence of just one of them. For spectra attacks, Sub-assumption S1 can
be reduced to Sub-assumption S2 without loss of efficiency.

By Property 2, the cardinality of the annihilator set with respect to T grows
with the period T , but the ratio |AnnSetl·Tmin(s)|/|Ωl·Tmin | = 2−wT/Tmin shrinks.
Thus we are more unlikely to find an annihilator if we look for it in the set of
sequences with larger multiple of period T .

Proposition 2. Let s be a sequence with minimal period Tmin. The probability
of any sequence of period l · Tmin being an annihilator of s approaches to zero
when the positive integer l approaches to infinity.

6 Upper Bound of Spectral Immunity

Spectral immunity is of great importance in describing the difficulty of recovering
the key stream by spectra attacks. The complexity of spectra attacks grows with
the spectral weight of the annihilator of the key stream. Spectral immunity
is defined as the lowest spectral weight of all the annihilators. As a result, it
determines the least complexity that spectra attacks need to recover the key
stream. Thus we use spectral immunity to measure the security level of a stream
cipher against spectra attacks.

This section studies spectral immunity and mainly its upper bound. This
general upper bound gives a general security level that a stream cipher, in defense
to spectra attacks, at most could achieve. The upper bound is given in period
of the key stream, one of the design parameters for a stream cipher. As a result,
according to this upper bound, in order to defend spectra attacks, a stream
cipher should have each of its key streams get a minimal period greater than
2128.

The spectral immunity is first proposed in [8] and is generalized in [10]. These
two definitions of spectral immunity are given here for reference and both have
been adapted in order to be consistent with the symbols and definitions in this
paper.

Definition 2. For a periodic sequence s, spectral immunity (SI) is the lowest
spectral weight of all annihilators of s and all annihilators of s + 1. Namely,
SI(s) = mina∈AnnSet(s)

⋃
AnnSet(s+1) l(a).

Definition 3. For a periodic sequence s, let T be one of its period value. Then
spectral immunity with respect to T (SIT ) is the lowest spectral weight of all
annihilators of period T of the sequence s and all annihilators of period T of the
sequence s+ 1. Namely, SIT (s) = mina∈AnnSetT (s)

⋃
AnnSetT (s+1) l(a).

The term “spectral immunity” here refers to the least spectral weight of all
annihilators. As there is no known result for the relationship between the spectral
weight of a sequence and the period of it, it is better to call the general definition
that includes annihilators of all possible periods to be “spectral immunity” and
to call the other “spectral immunity with respect to T ”. Obviously, these two
kinds of spectral immunity have such relationship that
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SI(s) = min
Tmin|T

SIT (s)

where Tmin is the minimal period of the sequence s. In the rest of this section,
the term “spectral immunity” will always refer to Definition 2.

In order to assess the spectral immunity, we need a way to calculate the
spectral weight of periodic sequence. In the proof of Proposition 1, we have
shown that for any sequence a of period T , {A0, A1, . . . , AT−1} is its spectra
and its spectral weight is v =

∑
g∈G ng where the set G of integers is G =

{g|Ag �= 0, g ∈ Γ2(T )}.
Since any spectrum Ag can be uniquely represented by Ag =

∑ng−1
j=0 eg,jα

g,j

where coefficients the {eg,j |0 ≤ j ≤ ng − 1} are in F2 and {αgj |0 ≤ j ≤ ng − 1}
is a basis of Fng

2 (we have shown that in the proof of Proposition 1), Ag = 0 if
and only if {eg,j|0 ≤ j ≤ ng − 1} are all 0.

Then the set G of integers is

G = {g|Ag �= 0, g ∈ Γ2(T )}

= {g|
ng−1∏
j=0

(1 + eg,j) �= 0, g ∈ Γ2(T )}.

It follows that the spectral weight of the periodic sequence a is

v =
∑
g∈G

ng

=
∑

g∈Γ2(T )

ng(1 +

ng−1∏
j=0

(1 + eg,j)).

We represent the periodic sequence a by all those coefficients
⋃

g∈Γ2(T ){eg,0
, eg,1, . . . , eg,ng−1} involved in the calculation of spectral weight of a. Let ug,j,t =

Tr
ng

1 (αgj · αgt). Substitute Ag by
∑ng−1

j=0 eg,jα
g,j and then the trace representa-

tion of a equals to

at =
∑

g∈Γ2(T )

Tr
ng

1 (Agα
gt)

=
∑

g∈Γ2(T )

Tr
ng

1 (

ng−1∑
j=0

eg,jα
g·jαgt),

=
∑

g∈Γ2(T )

ng−1∑
j=0

eg,j Tr
ng

1 (αg·jαgt), t = 0, 1, . . . , T − 1

=
∑

g∈Γ2(T )

ng−1∑
j=0

eg,jug,j,t, t = 0, 1, . . . , T − 1

(2)
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Let ug,j be the sequence ug,j,0, ug,j,1, ug,j,2, . . .. Then a is a linear combination
of sequences in the set U =

⋃
g∈Γ2(T ){ug,0,ug,1, . . . ,ug,ng−1} with coefficients⋃

g∈Γ2(T ){eg,0, eg,1, . . . , eg,ng−1}.
Note that the last equality of Equation (2) is actually a unique representation

of a. Let ΩT be the linear space which contains all sequences of period T under
termwise addition and scalar multiplication. Rank(ΩT ) = T = |U | where the
second equality results from the definition of cyclotomic cosets modulo T . Since
any sequence of period T can be expressed in sequences from the set U , U
is a basis of ΩT . Therefore the coefficients

⋃
g∈Γ2(T ){eg,0, eg,1, . . . , eg,ng−1} are

uniquely determined by the periodic sequence a without the necessity to do the
discrete Fourier transform and so is the spectral weight of a.

Lemma 1. Let ug,j,t = Tr
ng

1 (αgj ·αgt) where g is a coset leader of a cyclotomic
coset modulo T and ng is the size of the coset led by the leader g, 0 ≤ j ≤ ng−1.
Let ug,j be the sequence ug,j,0, ug,j,1, ug,j,2, . . ..

Then any sequence a of period T can be expressed as a linear combination of
sequences in the set U =

⋃
g∈Γ2(T ){ug,0,ug,1, . . . ,ug,ng−1}:

a =
∑

g∈Γ2(T )

ng−1∑
j=0

eg,jug,j

where the coefficients
⋃

g∈Γ2(T ){eg,0, eg,1, . . . , eg,ng−1} ∈ FT
2 . By those coeffi-

cients, the spectral weight of the sequence a is

v =
∑

g∈Γ2(T )

ng(1 +

ng−1∏
j=0

(1 + eg,j)).

Now that we are able to calculate the spectral weight of any sequence of period
T , we are going to study the spectral immunity with respect to T first and then
applies it to the more general spectral immunity.

Suppose the period T satisfies that T |2n − 1 for some odd n. Let A∗ and B∗

be two subsets of U :

A∗ =
⋃

h∈Γ2(T ),

1≤wt2(hR)≤n−1
2

{uh,0,uh,1, . . . ,uh,nh−1}

B∗ =
⋃

h∈Γ2(T ),
n+1
2 ≤wt2(hR)≤n−1

{uh,0,uh,1, . . . ,uh,nh−1}

we are going to show that for any sequence of period T , one of its annihilators
is either a linear combination of sequences in A∗∪{u0,0} or that of sequences in
B∗ ∪ {u0,0}. And thus the spectral immunity with respect to T is at most the
spectral weight of this annihilator.

Before that, we are going to find some properties of the two sets A∗ and B∗

in order to calculate the spectral weight of this annihilator.
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Property 3. A∗ ∪ B∗ = U∗ = U\{u0,0} and |A∗| = |B∗| = (|U | − 1)/2 =
(T − 1)/2 where R = (2n − 1)/T and wt2(·) denotes the Hamming weight of an
integer.

Proof. For an integer g ∈ Γ2(T )andg �= 0, (2n − 1)/T ≤ gR ≤ (2n − 1)− (2n −
1)/T < 2n − 1; the Hamming weight of gR satisfies that 1 ≤ wt2(gR) ≤ n− 1.
Thus U∗ =

⋃
0�=g∈Γ2(T ){ug,0,ug,1, . . . ,ug,ng−1} = A∗ ∪B∗.

The number of elements in A∗ is

|A∗| =
∑

h∈Γ2(T ),

1≤wt2(hR)≤n−1
2

nh.

Let ΔA be the set of integers

ΔA = {h|1 ≤ wt2(hR) ≤ n− 1

2
and 1 ≤ h ≤ T − 1}.

For any positive integer h ≤ T −1, wt2(hR) = wt2(2hR mod 2n−1) = wt2((2h
mod T )R). It follows that ΔA is equivalent to the union of cyclotomic cosets of
which leaders are of certain Hamming weight:

ΔA =
⋃

h∈Γ2(T ),

1≤wt2(hR)≤n−1
2

{h, 2h, . . . , 2nh−1h}

where the product in ΔA is taken modulo T . The number of elements in ΔA is
equal to that of elements in |A∗|:

|ΔA| =
∑

h∈Γ2(T ),

1≤wt2(hR)≤n−1
2

nh = |A∗|.

Similarly, let ΔB be the set of integers

ΔB = {h|n− 1

2
≤ wt2(hR) ≤ n− 1 and 1 ≤ h ≤ T − 1}

and then the number of elements in ΔB is also equal to that of elements in |B∗|:
|ΔB| = |B∗|.

There is a one-to-one correspondence between ΔA and ΔB. Let i be an integer
and i = T−h, h ∈ ΔA. Then i ∈ ΔB as wt2(iR) = wt2((T−h)R) = n−wt2(hR).
Similarly for any integer h ∈ ΔB, T − h ∈ ΔA. Therefore, |ΔA| = |ΔB |.

Then |A∗| = |B∗|. And as A∗ ∪ B∗ = U∗, |A∗| = |B∗| = (|U | − 1)/2 =
(T − 1)/2. ��
Let A be the set A∗ ∪ {u0,0} and let B be the set B∗ ∪ {u0,0}. For the set A,
by Lemma 1, the linear combination of its members has spectral weight vA at
most (T + 1)/2:

vA ≤ n0 +
∑

h∈Γ2(T ),

1≤wt2(hR)≤n−1
2

nh · 1 = 1 + |A∗| = (T + 1)/2.
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Similarly, for the set B, the linear combination of its members has spectral weight
vB also at most (T + 1)/2:

vB ≤ n0 +
∑

h∈Γ2(T ),
n+1
2 ≤wt2(hR)≤n−1

nh · 1 = 1 + |B∗| = (T + 1)/2.

Since we have found an upper-bound of the spectral weight of the linear com-
bination of sequences in A or that in B, we are going to show the upper-bound
of the spectral immunity with respect to T . Our result is summarized in the
following theorem, of which the proof shows how to find an annihilator for any
sequence to be a linear combination of sequences in either A or that of sequences
in B.

Theorem 1. For some odd integer n, let T be an integer such that T |2n−1. The
spectral immunity with respect to T of a sequence s of period T is upper-bounded
by (T + 1)/2.

Proof. Consider two sets A and B · s = {bs|b ∈ B}.
If |B · s| < |B| = (T + 1)/2, then there exists two sequences b1,b2 in B such

that b1s = b2s. (b1 + b2)s = 0 and b1 + b2 is therefore an annihilator of the
sequence s.

If A ∩ B · s �= ∅, there exists two sequences a1 ∈ A and b1 ∈ B such that
a1 = b1s. Since a1s = b1s · s = b1s, a1 is an annihilator of the sequence s+ 1.

If both conditions do not hold, i.e., |B · s| = (T +1)/2 and A∩B · s = ∅, then
A∪B · s contains T +1 different elements. Since the rank of ΩT is T , there must
exist a sum of N ≤ T sequences in A ∪ B · s, which is equal to 0. At least one
of those N sequences is in B · s; otherwise the linear dependency exists among
sequences of A, a contradiction. Then suppose

(a1 + a2 + · · ·+ ap) + (b1s+ b2s+ · · ·+ bqs) = 0, 1 ≤ p, q ≤ (T + 1)/2

or (b1s+ b2s+ · · ·+ bqs) = 0, 1 ≤ p, q ≤ (T + 1)/2.
(3)

Let a =
∑p

i=0 ai and let b =
∑q

i=0 bi. The equation is reduced to a + bs = 0
or bs = 0. Then either the sequence a is an annihilator of the sequence s+ 1 or
the sequence b is an annihilator of the sequence s.

Now that s must have an annihilator which is a linear combination of se-
quences in A or that of sequences in B, its spectral immunity is upper-bounded
by the spectral weight of that annihilator. Since that spectral weight is at most
(T + 1)/2, the spectral immunity with respect to T of the sequence s is upper-
bounded by (T + 1)/2. ��

Corollary 1. For some even integer n, let T be a positive integer satisfying
T |2n− 1. Then the spectral immunity with respect to T of a sequence s of period
T is upper-bounded by

∑
h∈Γ2(T ),

0≤wt2(hR)≤n
2

nh.

In particular, if no integer h, 1 ≤ h ≤ T −1 satisfies wt2(hR mod (2n−1)) =
n/2 then the spectral immunity is upper-bounded by T/2.
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Corollary 2. For some odd integer n, if the minimal period Tmin of a sequence
s satisfies Tmin|2n − 1, then the spectral immunity of s is upper-bounded by
(Tmin + 1)/2.

Proof. The spectral immunity SI(s) = minTmin|T SIT (s) ≤ SITmin(s) ≤ (Tmin+
1)/2. ��
The results above show that to recover any periodic sequence, fast discrete fourier
spectra attacks need data bits of a number no more than half of the period of
the sequence. Those key streams with small period or small minimal period are
vulnerable to fast discrete fourier spectra attacks. Therefore a sufficiently large
lower bound of the minimal periods of key streams is important in the future
design of a stream cipher in order to resist fast discrete fourier spectra attacks.

The proof of Theorem 1 also shows that if the periodic sequence s satisfies
|B · s| < |B| = (T + 1)/2 then it must have an annihilator of spectral weight no
greater than 2n and that the periodic sequence s satisfies A ∩B · s �= ∅, then it
must have an annihilator of spectral weight no greater than n.

7 Conclusion

In this paper we find that low spectral weight annihilators are essential for fast
discrete Fourier spectra attacks as they does not only fulfill the assumption of
those attacks but also profile the least data complexity of those attacks against
stream ciphers. We give a formal definition of annihilator and get a necessary
and sufficient condition to decide the (non)existence of annihilator for a periodic
sequence. We study the properties of annihilators and notice that the existence
of low spectral weight annihilator is equivalent to the existence of low spectral
weight relation, the general assumption of fast discrete Fourier spectra attacks.
Finally we give an upper bound of spectral immunity for any periodic sequence
and a general method to find annihilators for any periodic sequence. This general
method can give low spectral weight annihilators when the periodic sequence
satisfies some condition.

Two questions on annihilators of fast discrete Fourier spectra attacks are left
open here. One is how to decide the (non)existence of low spectral weight anni-
hilator efficiently for a sequence. It appears to be difficult to have an algorithm
to fully decide the (non)existence, which both show the flexibility of fast dis-
crete Fourier attacks for attackers and the difficulty to defend those attacks for
designers. The other is the probability of any sequence to have a low spectral
weight annihilator. It is essential for the resistance of a stream cipher to fast
discrete Fourier spectra attacks in general but it seems to be a much harder
problem than the first one.
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additional whitening operations at both ends. Camellia became a CRYPTREC e-
government recommended cipher [8] in 2002, a NESSIE selected block cipher [25]
in 2003, and was adopted as an ISO international standard [16] in 2005. In this
work, we consider the version of Camellia that has the FL/FL−1 functions, and
for simplicity, we denote by Camellia-128/192/256 the three versions of Camellia
that use 128, 192 and 256 key bits, respectively.

The security of Camellia has been analysed against a variety of cryptana-
lytic techniques, including differential cryptanalysis [5], truncated differential
cryptanalysis [17], higher-order differential cryptanalysis [17, 20], linear crypt-
analysis [24], integral cryptanalysis [9, 15, 19], boomerang attack [27], rectangle
attack [4], collision attack [26] and impossible differential cryptanalysis [3, 18];
and many cryptanalytic results on Camellia have been published, of which im-
possible differential cryptanalysis is the most efficient technique (in terms of
the numbers of attacked rounds), that broke 11-round Camellia-128, 12-round
Camellia-192 and 14-round Camellia-256 [2,21], presented most recently at FSE
2012 and ISPEC 2012.1

The meet-in-the-middle (MitM) attack was introduced in 1977 by Diffie and
Hellman [11]. It usually treats a block cipher E : {0, 1}n × {0, 1}k → {0, 1}n
as a cascade of two sub-ciphers E = Ea ◦ Eb. Given a guess for the subkeys
used in Ea and Eb, if a plaintext produces just after Ea the same value as the
corresponding ciphertext produces just before Eb, then this guess for the subkeys
is likely to be correct; otherwise, this guess must be incorrect. Thus, we can find
the correct subkey, given a sufficient number of matching plaintext-ciphertext
pairs in a known-plaintext attack scenario. In a chosen-plaintext attack scenario,
things may get better, and as in [10], by choosing a set of plaintexts with a
particular property we may be able to express the concerned value-in-the-middle
as a function of plaintext and a smaller number of unknown constants than the
number of unknown constants (of the same length) from the subkey involved.

In 2011 Lu et al. [23] proposed an extension of the MitM attack, known as the
higher-order MitM (HO-MitM) attack, which is based on using multiple plain-
texts to cancel some key-dependent component(s) or parameter(s) when con-
structing a basic unit of “value-in-the-middle”. The HO-MitM attack technique
can lead to some better cryptanalytic results than the MitM attack technique
in certain circumstances. In particular, Lu et al. found some 5 and 6-round HO-
MitM properties of Camellia that were used to break 10-round Camellia-128,
11-round Camellia-192 and 12-round Camellia-256, but the corresponding 5 and
6-round MitM properties can enable us to break only 12-round Camellia-256.

In this paper, we analyse the security of Camellia (with the FL/FL−1 func-
tions) against the MitM attack in detail, following the work in [23]. In all those 5
and 6-round (higher-order) MitM properties of Camellia owing to Lu et al. [23],
the basic unit of value-in-the-middle is one byte long. Nevertheless, we observe

1 When the earlier version of our work was completed, the best previously published
results on Camellia with FL/FL−1 functions were square attack on 9-round Camellia-
128 [12], impossible differential attack on 10-round Camellia-192 [7], and higher-order
differential and impossible differential attacks on 11-round Camellia-256 [7,13].
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Table 1. Main cryptanalytic results on Camellia with FL/FL−1 functions

Cipher Attack Type RoundsData Memory Time Source

Camellia- Square 9 248CP 253Bytes 2122Enc. [12]

128 Impossible differential 10 2118CP 293Bytes 2118Enc. [22]

11 2120.5CP2115.5Bytes 2123.8Enc. [2]§

11† 2122CP 2102Bytes 2122Enc. [21]§

HO-MitM (256 inputs) 10 293CP 2109Bytes 2118.6Enc. [23]

(2 inputs) 10 256CP 290Bytes 2121.5Enc. Sect. 4.2

MitM 10 256CP 2105Bytes 2121.5Enc. Sect. 3.2

Camellia- Impossible differential 10 2121CP 2155.2Bytes 2144Enc. [7]

192 10† 2121CP 2155.2Bytes 2175.3Enc. [7]

11 2118CP 2141Bytes 2163.1Enc. [22]

12 2120.6CP2171.6Bytes 2171.4Enc. [2]§

12† 2123CP 2160Bytes 2187.2Enc. [21]§

HO-MitM (256 inputs) 11 294CP 2174Bytes 2180.2Enc. [23]

(2 inputs) 11† 256CP 2165Bytes 2173.4Enc. Sect. 4.3

MitM 11 280CP 2105Bytes 2189.4Enc. Sect. 3.3

11† 256CP 2185Bytes 2185.2Enc. Sect. 3.4

Camellia- Higher-order differential 11‡ 293CP 298Bytes 2255.6Enc. [13,22]

256 Impossible differential 11† 2121CP 2166Bytes 2206.8Enc. [7]

13† 2123CP 2208Bytes 2251.1Enc. [21]§

14 2121.2CP2180.2Bytes 2238.3Enc. [2]§

14 2120CC 2125Bytes 2250.5Enc. [21]§

HO-MitM (256 inputs) 12 294CP 2174Bytes 2237.3Enc. [23]

(2 inputs) 12† 219CP 2221Bytes 2223.2Enc. [6]§,Sect. 4
(2 inputs) 12† 256CP 2165Bytes 2237.9Enc. Sect. 4.4

MitM 12 256CP 2185Bytes 2219.9Enc. Sect. 3.5

12† 256CP 2185Bytes 2239.9Enc. Sect. 3.6

§: Newly emerging results; †: Include whitening operations; ‡: Can include whitening
operations by making use of an equivalent structure of Camellia.

that if we consider only a smaller number of bits of the concerned byte, instead
of the whole 8 bits, a few 5 and 6-round MitM properties with a smaller number
of unknown 1-bit constant parameters can be obtained. This is owing to the
fact that an output bit of the FL−1 function only relies on a small fraction of
the bits of the subkey used in the FL−1 function (as well as a few input bits to
FL−1), thus reducing the number of unknown 1-bit constant parameters when
we consider a fraction of the bits of the concerned byte. As a consequence, the
5 and 6-round MitM properties can be used to conduct MitM attacks on 10-
round Camellia-128 with only FL/FL−1 functions, 11-round Camellia-192 with
FL/FL−1 and whitening functions and 12-round Camellia-256 with FL/FL−1

and whitening functions. At last, we brief 5 and 6-round HO-MitM properties
obtained from the 5 and 6-round MitM properties by taking XOR under two
plaintexts to cancel several 1-bit constant parameters, which can be used to
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conduct HO-MitM attacks on the same numbers of rounds as the MitM attacks.
Table 1 summarises previous, our and the newly emerging main cryptanalytic
results on Camellia, where CP and CC refer respectively to the numbers of cho-
sen plaintexts and chosen ciphertexts, and Enc. refers to the required number of
encryption operations of the relevant reduced version of Camellia.

The remainder of the paper is organised as follows. In the next section, we
describe the notation and the Camellia block cipher. We present our MitM results
on Camellia in Section 3, and give our HO-MitM results on Camellia in Section
4. Concluding remarks are given in Section 5.

2 Preliminaries

In this section we give the notation used throughout this paper, and then briefly
describe the Camellia block cipher.

2.1 Notation

The bits of a value are numbered from left to right, starting with 1. We use the
following notation throughout this paper.

⊕ bitwise logical exclusive OR (XOR) of two bit strings of the same
length

∩ bitwise logical AND of two bit strings of the same length
∪ bitwise logical OR of two bit strings of the same length
≪ left rotation of a bit string
|| bit string concatenation
◦ functional composition. When composing functions X and Y, X ◦Y

denotes the function obtained by first applying X and then Y

X bitwise logical complement of a bit string X
X [i1,· · ·, ij]the j-bit string of bits (i1, · · · , ij) of a bit string X

2.2 The Camellia Block Cipher

Camellia [1] has a Feistel structure, a 128-bit block length, and a user key length
of 128, 192 or 256 bits. It uses the following five functions:

– S : {0, 1}64 → {0, 1}64 is a non-linear substitution constructed by applying
eight 8×8-bit S-boxes S1, S2, S3, S4, S5, S6, S7 and S8 in parallel to the input.

– P : GF (28)8 → GF (28)8 is a linear permutation which is equivalent to pre-
multiplication by a 8 × 8 byte matrix P; the matrix P and its reverse P−1

are as follows.

P =

⎛⎜⎜⎜⎜⎝
1 0 1 1 0 1 1 1
1 1 0 1 1 0 1 1
1 1 1 0 1 1 0 1
0 1 1 1 1 1 1 0
1 1 0 0 0 1 1 1
0 1 1 0 1 0 1 1
0 0 1 1 1 1 0 1
1 0 0 1 1 1 1 0

⎞⎟⎟⎟⎟⎠ , P
−1 =

⎛⎜⎜⎜⎜⎝
0 1 1 1 0 1 1 1
1 0 1 1 1 0 1 1
1 1 0 1 1 1 0 1
1 1 1 0 1 1 1 0
1 1 0 0 1 0 1 1
0 1 1 0 1 1 0 1
0 0 1 1 1 1 1 0
1 0 0 1 0 1 1 1

⎞⎟⎟⎟⎟⎠ .
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– F : {0, 1}64×{0, 1}64 → {0, 1}64 is a Feistel function. If X and Y are 64-bit
blocks, F(X,Y ) = P(S(X ⊕ Y )).

– FL/FL−1 : {0, 1}64×{0, 1}64 → {0, 1}64 are key-dependent linear functions.
If X = (XL||XR) and Y = (YL||YR) are 64-bit blocks, then FL(X,Y ) =
((((XL ∩ YL) ≪ 1 ⊕ XR) ∪ YR) ⊕ XL)||((XL ∩ YL) ≪ 1 ⊕ XR), and
FL−1(X,Y ) = (XL ⊕ (XR ∪ YR))||(((XL ⊕ (XR ∪ YR)) ∩ YL) ≪ 1⊕XR).

Camellia uses a total of four 64-bit whitening subkeys KWj, 2"Nr−6
6 # 64-bit

subkeys KIl for the FL and FL−1 functions, and Nr 64-bit round subkeys Ki,
(1 � j � 4, 1 � l � 2"Nr−6

6 #, 1 � i � Nr), all derived from a Nk-bit key K,
where Nr is 18 for Camellia-128, and 24 for Camellia-192/256, Nk is 128 for
Camellia-128, 192 for Camellia-192, and 256 for Camellia-256. The key schedule
is as follows. First, generate two 128-bit strings KL and KR from K in the
following way: For Camellia-128, KL is the 128-bit key K, and KR is zero; for
Camellia-192, KL is the left 128 bits of K, and KR is the concatenation of the
right 64 bits ofK and the complement of the right 64 bits ofK; and for Camellia-
256, KL is the left 128 bits of K, and KR is the right 128 bits of K. Second,
depending on the key size, generate one or two 128-bit strings KA and KB from
(KL,KR) by a non-linear transformation (see [1] for its detail). Finally, the
subkeys are as follows.2

– For Camellia-128: K2 = (KA ≪ 0)[65 ∼ 128],K3 = (KL ≪ 15)[1 ∼
64],K9 = (KA ≪ 45)[1 ∼ 64],K10 = (KL ≪ 60)[65 ∼ 128],K11 = (KA ≪
60)[1 ∼ 64], · · ·.

– For Camellia-192/256: K7 = (KB ≪ 30)[1 ∼ 64],K8 = (KB ≪ 30)[65 ∼
128],K13 = (KR ≪ 60)[1 ∼ 64],K14 = (KR ≪ 60)[65 ∼ 128],K15 =
(KB ≪ 60)[1 ∼ 64],K16 = (KB ≪ 60)[65 ∼ 128],K17 = (KL ≪ 77)[1 ∼
64],K18 = (KL ≪ 77)[65 ∼ 128],K21 = (KA ≪ 94)[1 ∼ 64],K22 =
(KA ≪ 94)[65 ∼ 128],K23 = (KL ≪ 111)[1 ∼ 64], · · ·.

Below is the encryption procedure Camellia, where P is a 128-bit plaintext,
represented as 16 bytes, and L0, R0, Li, Ri, L̂i and R̂i are 64-bit variables.

1. L0||R0 = P ⊕ (KW1||KW2)
2. For i = 1 to Nr:

if i = 6 or 12 (or 18 for Camellia-192/256),

L̂i = F(Li−1,Ki)⊕Ri−1, R̂i = Li−1;

Li = FL(L̂i,KI i
3−1), Ri = FL−1(R̂i,KI i

3
);

else

Li = F(Li−1,Ki)⊕Ri−1, Ri = Li−1;

3. Ciphertext C = (RNr ⊕KW3)||(LNr ⊕KW4).

We refer to the ith iteration of Step 2 in the above description as Round i, and
write Ki,j for the j-th byte of Ki, (1 � j � 8).

2 Here we give only the subkeys concerned in this paper, (KA ≪ 0)[65 ∼ 128] repre-
sents bits (65, 66, · · · , 128) of (KA ≪ 0), and so on.
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Fig. 1. 5 and 6-round Camellia with FL/FL−1 functions and an equivalent structure
of 11-round Camellia with whitening operations

3 MitM Attacks on 10-Round Camellia-128, 11-Round
Camellia-192 and 12-Round Camellia-256

In this section we first give the 5 and 6-round MitM properties and then present
our MitM attacks on Camellia with FL/FL−1 functions.

3.1 MitM Properties for 5 and 6-Round Camellia

We assume the 5-round Camellia is from Rounds 4 to 8, and the 6-round Camellia
is from Rounds 3 to 8; see Fig. 1-(a). The MitM properties are as follows, and
their proof is given in the Appendix.

Proposition 1. Suppose a set of 256 sixteen-byte values X(i) = (X
(i)
L ||X

(i)
R ) =

(m1,m2,m3,m4,m5,m6,m7,m8, x
(i),m9,m10,m11,m12,m13,m14,m15) with x(i)

taking all the possible values in {0, 1}8 and the other 15 bytes m1,m2, · · · ,m15

fixed to arbitrary values, (i = 1, · · · , 256). Then:
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1. If Z(i) = (Z
(i)
L ||Z

(i)
R ) is the result of encrypting X(i) using Rounds 4 to 8

with the FL/FL−1 functions between Rounds 6 and 7, then P−1(Z
(i)
R )[49 ∼

(49 + ω)] can be expressed with a function of x(i) and 100+ 15× ω constant
1-bit parameters c1, c2, · · · , c100+15×ω, written Θc1,c2,···,c100+15×ω (x

(i)), where
0 � ω � 6.

2. If Z(i) = (Z
(i)
L ||Z

(i)
R ) is the result of encrypting X(i) using Rounds 3 to 8

with the FL/FL−1 functions between Rounds 6 and 7, then P−1(Z
(i)
R )[41 ∼

(41 + ω)] can be expressed with a function of x(i) and 164+ 15× ω constant
1-bit parameters c′1, c

′
2, · · · , c′164+15×ω, written Υc′1,c

′
2,···,c′164+15×ω

(x(i)), where
0 � ω � 6.

3.2 Attacking 10-Round Camellia-128 without Whitening Functions

A simple analysis on the key schedule of Camellia-128 reveals the following
property.

Property 1. For Camellia-128, given a value of (K2,1,K2,2,K2,3,K2,5,K2,8,
K3,1) there are only 60 unknown bits of (K9,7,K10,3,K10,4,K10,5,K10,6,K10,8,
K11).

The 5-round MitM property given in Proposition 1-1 allows us to break 10-round
Camellia-128 with FL/FL−1 functions, but without the whitening functions.
Below is the procedure for attacking Rounds 2 to 11, where the 5-round MitM
property with ω = 0 is used from Rounds 4 to 8, and the approach used to
choose plaintexts with δ was introduced in [22].

1. For each of 2100 possible values of the 100 one-bit parameters c1, c2, · · · , c100,
precompute Θc1,c2,···,c100(z) sequentially for z = 0, 1, · · · , 255. Store the 2100

256-bit sequences in a hash table LΘ.
2. Randomly choose six 8-bit constants γ1, γ2, · · · , γ6, and define a secret pa-

rameter δ to be δ = S4(γ1⊕K2,4)⊕S6(γ2⊕K2,6)⊕S7(γ3⊕K2,7)⊕γ4⊕γ5⊕γ6.
3. Guess a value for (K2,1,K2,2,K2,3,K2,5,K2,8,K3,1, δ), and we denote the

guessed value by (K∗
2,1,K

∗
2,2,K

∗
2,3,K

∗
2,5,K

∗
2,8,K

∗
3,1, δ

∗). Then for x = 0, 1, · · · ,
255, choose plaintext P (x) = (P

(x)
L , P

(x)
R ) in the following way, where α1, α2,

· · · , α5, β1, β2, · · · , β7 are randomly chosen 8-bit constants:

P
(x)
L =

⎛⎜⎜⎜⎜⎜⎝
S1(x⊕ K∗

3,1) ⊕ α1

S1(x⊕ K∗
3,1) ⊕ α2

S1(x⊕ K∗
3,1) ⊕ α3

γ1

S1(x⊕ K∗
3,1) ⊕ α4

γ2

γ3

S1(x⊕ K∗
3,1) ⊕ α5

⎞⎟⎟⎟⎟⎟⎠

T

,

P
(x)
R = P

⎛⎜⎜⎜⎜⎜⎝
S1(S1(x ⊕ K∗

3,1) ⊕ α1 ⊕ K∗
2,1)

S2(S1(x ⊕ K∗
3,1) ⊕ α2 ⊕ K∗

2,2)
S3(S1(x ⊕ K∗

3,1) ⊕ α3 ⊕ K∗
2,3)

γ4

S5(S1(x ⊕ K∗
3,1) ⊕ α4 ⊕ K∗

2,5)
γ5

γ6

S8(S1(x ⊕ K∗
3,1) ⊕ α5 ⊕ K∗

2,8)

⎞⎟⎟⎟⎟⎟⎠

T

⊕

⎛⎜⎜⎜⎜⎝
x ⊕ δ∗

β1

β2

β3

β4

β5

β6

β7

⎞⎟⎟⎟⎟⎠
T

.
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In a chosen-plaintext attack scenario, obtain the ciphertexts for the plain-
texts; we denote by C(x) the ciphertext for plaintext P (x).

4. Guess a value for (K9,7,K10,3,K10,4,K10,5,K10,6,K10,8,K11), and we denote
the guessed value by (K∗

9,7,K
∗
10,3,K

∗
10,4,K

∗
10,5,K

∗
10,6,K

∗
10,8,K

∗
11). Then, par-

tially decrypt every ciphertext C(x) with (K∗
10,3,K

∗
10,4,K

∗
10,5,K

∗
10,6,K

∗
10,8,

K∗
11) to get the corresponding value for bytes (1, 2, · · · , 8, 15) just before

Round 10, and we denote it by (L
(x)
9 , R

(x)
9,7); compute T (x) = P−1(L

(x)
9 )[49]⊕

S7(R
(x)
9,7⊕K∗

9,7)[49]. Next, check whether the sequence (T (0), T (1), · · · , T (255))
matches a sequence in LΘ; if yes, record the guessed value (K∗

2,1,K
∗
2,2,K

∗
2,3,

K∗
2,5,K

∗
2,8, K

∗
3,1,K

∗
9,7,K

∗
10,3,K

∗
10,4,K

∗
10,5,K

∗
10,6,K

∗
10,8,K

∗
11) and execute Step

5; otherwise, repeat Step 1 with another subkey guess (if all the subkey pos-
sibilities are tested in Step 4, repeat Step 3 with another subkey guess).

5. For every recorded value for (K10,3,K10,4,K10,5,K10,6,K10,8), exhaustively
search the remaining 11 key bytes.

The attack requires 256 chosen plaintexts. The one-off precomputation requires a
memory of 2100×256× 1

8 = 2105 bytes, and has a time complexity of 2100×256×
2× 1

10 ≈ 2109.7 10-round Camellia-128 encryptions under the rough estimate that
a computation of Θc1,c2,···,c100(z) equals 2 one-round Camellia-128 encryptions in
terms of time. If the guessed value (K∗

2,1,K
∗
2,2,K

∗
2,3,K

∗
2,5,K

∗
2,8, K

∗
3,1, δ

∗) is cor-
rect, the input to Round 4 must have the form (m1,m2,m3,m4,m5, m6,m7,m8,
x,m9,m10,m11,m12,m13,m14,m15), where m1, · · · ,m15 are indeterminate
constants.

Step 3 has a time complexity of about 256 × 256 × 1+5
8×10 ≈ 260.3 10-round

Camellia-128 encryptions. Folllowing Property 1, we learn that the time complex-
ity of Step 4 is approximately 256+60× 256× 8+5+1

8×10 ≈ 2121.5 10-round Camellia-
128 encryptions. In Step 4, if the guessed value (K∗

2,1,K
∗
2,2,K

∗
2,3,K

∗
2,5,K

∗
2,8,K

∗
3,1,

δ∗,K∗
9,7,K

∗
10,3,K

∗
10,4,K

∗
10,5,K

∗
10,6,K

∗
10,8,K

∗
11) is correct, the sequence (T

(0), T (1),

· · · , T (255)) must match a sequence in LΘ; if the guessed value (K∗
2,1,K

∗
2,2,K

∗
2,3,

K∗
2,5,K

∗
2,8,K

∗
3,1, δ

∗,K∗
9,7,K

∗
10,3,K

∗
10,4,K

∗
10,5,K

∗
10,6,K

∗
10,8,K

∗
11) is wrong, the prob-

ability that the sequence (T (0), T (1), · · · , T (255)) matches a sequence in LΘ is

1−
(
2100

0

)
(2−256)0(1−2−256)2

100 ≈ 2−256×2100 = 2−156, (assuming the event has a
binomial distribution). Consequently, it is expected that at most 256+60×2−156 =
2−40 values for (K2,1,K2,2,K2,3,K2,5,K2,8,K3,1,K9,7,K10,3,K10,4,K10,5,K10,6,
K10,8,K11) are recorded in Step 4. Since a total of 40 bits of KL can be known
from the recorded (K10,3,K10,4,K10,5,K10,6,K10,8), Step 5 takes at most 288

10-round Camellia-128 encryptions to find the correct 128-bit user key.
Therefore, the attack has a memory complexity of 2105 bytes and a total time

complexity of approximately 2121.5 10-round Camellia-128 encryptions.
Note that we can also attack Rounds 8 to 17 (without whitening functions)

by applying the 5-round MitM property with ω = 0 from Rounds 10 to 14.
This attack has the same data and memory complexity as the above 10-round
Camellia-128 attack, but has a total time complexity of approximately 256+65×
256× 8+5+1

8×10 ≈ 2126.5 10-round Camellia-128 encryptions.
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3.3 Attacking 11-Round Camellia-192 without Whitening Functions

Both the 5 and 6-round MitM properties given in Proposition 1 can be used to
attack 11-round Camellia-192 with FL/FL−1 functions, excluding the whitening
functions. We first brief an attack on Rounds 13 to 23 using the 5-round MitM
property with ω = 0, where we guess (K13,K14,K15,1,K21,7,K22,3,K22,4,K22,5,
K22,6,K22,8,K23). Note that the following property holds for Camellia-192.

Property 2. For Camellia-192, there is no overlapping bit between (K13,K14,
K15,1) and (K21,7,K22,3,K22,4,K22,5,K22,6,K22,8,K23).

The attack is very similar to the above 10-round Camellia-128 attack, except that
we use a different approach to choose plaintexts: Denote by (K∗

13,K
∗
14,K

∗
15,1)

a guess for (K13,K14,K15,1), and then for x = 0, 1, · · · , 255, choose plaintext

P (x) = (P
(x)
L , P

(x)
R ) as below, where α1, α2, · · · , α8, β1, β2, · · · , β7 are randomly

chosen 8-bit constants.

P
(x)
L = P

⎛⎜⎜⎜⎜⎜⎝
S1(S1(x ⊕ K∗

15,1) ⊕ α1 ⊕ K∗
14,1)

S2(S1(x ⊕ K∗
15,1) ⊕ α2 ⊕ K∗

14,2)
S3(S1(x ⊕ K∗

15,1) ⊕ α3 ⊕ K∗
14,3)

S4(α4 ⊕ K∗
14,4)

S5(S1(x ⊕ K∗
15,1) ⊕ α5 ⊕ K∗

14,5)
S6(α6 ⊕ K∗

14,6)
S7(α7 ⊕ K∗

14,7)
S8(S1(x ⊕ K∗

15,1) ⊕ α8 ⊕ K∗
14,8)

⎞⎟⎟⎟⎟⎟⎠

T

⊕

⎛⎜⎜⎜⎜⎝
x
β1

β2

β3

β4

β5

β6

β7

⎞⎟⎟⎟⎟⎠
T

,

P
(x)
R = F(P

(x)
L ,K∗

13)⊕

⎛⎜⎜⎜⎜⎜⎝
S1(x⊕ K∗

15,1) ⊕ α1

S1(x⊕ K∗
15,1) ⊕ α2

S1(x⊕ K∗
15,1) ⊕ α3

α4

S1(x⊕ K∗
15,1) ⊕ α5

α6

α7

S1(x⊕ K∗
15,1) ⊕ α8

⎞⎟⎟⎟⎟⎟⎠

T

.

There are 264+8 = 272 possible values for (K13,K14,K15,1). Similarly, the attack
requires 256×272 = 280 chosen plaintexts and a memory of 2100×256× 1

8 = 2105

bytes, and has a total time complexity of approximately 2100 × 256× 2 × 1
11 +

272+112 × 256× 8+5+1
8×11 ≈ 2189.4 11-round Camellia-192 encryptions.

We can use the 6-round MitM property to break Rounds 13 to 23. We choose
ω = 0. The attack is similar to the 10-round Camellia-128 attack described in
Section 3.2, except the following two points: (1) There are 164 one-bit parameters
c′1, c

′
2, · · · , c′164 in the off-line precomputation phase; and (2) We append three

rounds (i.e., Rounds 21 to 23) after the 6-round MitM property. There are only
240 possible values for (K13,1,K13,2,K13,3,K13,5, K13,8,K14,1), and thus the at-
tack requires 256×240+8 = 256 chosen plaintexts. After a similar analysis, we get
that the off-line precomputation requires a memory of 2164×256× 1

8 = 2169 bytes
and has a time complexity of 2164× 256× 3× 1

11 ≈ 2170.2 11-round Camellia-192
encryptions under the rough estimate that a computation of Υc′1,c

′
2,···,c′164(·) equals

3 one-round Camellia-192 encryptions in terms of time. The time complexity in
the key-recovery phase is approximately 248+112×256× 8+5+1

8×11 ≈ 2165.4 11-round
Camellia-192 encryptions. We can obtain a data–memory–time tradeoff [14] ver-
sion from this 11-round Camellia-192 attack, which has a data complexity of



206 J. Lu et al.

259.4 chosen plaintexts, a memory complexity of 2167.6 bytes and a total time
complexity of 2169.8 11-round Camellia-192 encryptions.

3.4 Attacking 11-Round Camellia-192 with Whitening Functions

The 6-round MitM property can also be used to mount an MitM attack on
11-round Camellia-192 with FL/FL−1 and whitening functions, by taking ad-
vantage of an equivalent structure of 11-round Camellia as depicted in Fig. 1-(b).
Here we attack the first 11 rounds of Camellia-192, and choose ω = 1.

Define equivalent round subkeys K̂1 = K1 ⊕ KW1, K̂2 = K2 ⊕ KW2, K̂9 =
K9⊕KW4, K̂10 = K10⊕KW3, K̂11 = K11⊕KW4. Below is the attack procedure.

1. For each of 2179 possible values of the 179 one-bit parameters c′1, c
′
2, · · · , c′179,

precompute Υc′1,c
′
2,···,c′179(z) sequentially for z = 0, 1, · · · , 255. Store the 2179

512-bit sequences in a hash table LΥ .
2. Randomly choose six 8-bit constants γ1, γ2, · · · , γ6, and define a secret pa-

rameter δ = KW2[1 ∼ 8]⊕ S4(γ1 ⊕ K̂1,4)⊕ S6(γ2 ⊕ K̂1,6)⊕ S7(γ3 ⊕ K̂1,7)⊕
γ4 ⊕ γ5 ⊕ γ6.

3. Guess a value for (K̂1,1, K̂1,2, K̂1,3, K̂1,5, K̂1,8,K2,1, δ), and we denote the

guessed value by (K̂∗
1,1, K̂

∗
1,2, K̂

∗
1,3, K̂

∗
1,5, K̂

∗
1,8,K

∗
2,1, δ

∗). Then for x = 0, 1, · · · ,
255, choose plaintext P (x) = (P

(x)
L , P

(x)
R ) in the following way, where α1, α2,

· · · , α5, β1, β2, · · · , β7 are randomly chosen 8-bit constants:

P
(x)
L =

⎛⎜⎜⎜⎜⎜⎝
S1(x⊕ K∗

2,1) ⊕ α1

S1(x⊕ K∗
2,1) ⊕ α2

S1(x⊕ K∗
2,1) ⊕ α3

γ1

S1(x⊕ K∗
2,1) ⊕ α4

γ2

γ3

S1(x⊕ K∗
2,1) ⊕ α5

⎞⎟⎟⎟⎟⎟⎠

T

,

P
(x)
R = P

⎛⎜⎜⎜⎜⎜⎜⎝

S1(S1(x ⊕ K∗
2,1) ⊕ α1 ⊕ K̂1,1)

S2(S1(x ⊕ K∗
2,1) ⊕ α2 ⊕ K̂1,2)

S3(S1(x ⊕ K∗
2,1) ⊕ α3 ⊕ K̂1,3)

γ4

S5(S1(x ⊕ K∗
2,1) ⊕ α4 ⊕ K̂1,5)

γ5

γ6

S8(S1(x ⊕ K∗
2,1) ⊕ α5 ⊕ K̂1,8)

⎞⎟⎟⎟⎟⎟⎟⎠

T

⊕

⎛⎜⎜⎜⎜⎝
x ⊕ δ∗

β1

β2

β3

β4

β5

β6

β7

⎞⎟⎟⎟⎟⎠
T

.

In a chosen-plaintext attack scenario, obtain the ciphertexts for the plain-
texts; we denote by C(x) the ciphertext for plaintext P (x).

4. Guess a value for (P−1(KW3)[41 ∼ 42], K̂9,6, K̂10,2, K̂10,3, K̂10,5, K̂10,7, K̂10,8,

K̂11), and we denote the guessed value by (P−1(KW3)
∗[41 ∼ 42], K̂∗

9,6, K̂
∗
10,2,

K̂∗
10,3, K̂

∗
10,5, K̂

∗
10,7, K̂

∗
10,8, K̂

∗
11). Then partially decrypt every ciphertext C(x)

with (K̂∗
10,2, K̂

∗
10,3, K̂

∗
10,5, K̂

∗
10,7, K̂

∗
10,8, K̂

∗
11) to get the corresponding value

for bytes (1, 2, · · · , 8, 14) immediately before Round 10; and we denote it by

(L
(i,x)
9 , R

(i,x)
9,6 ). Next, compute

T (x) = P−1(KW3)
∗[41 ∼ 42]⊕P−1(L

(x)
9 )[41 ∼ 42]⊕S6(R(x)

9,6⊕K∗
9,6)[41 ∼ 42].
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Finally, check whether the sequence (T (0), T (1), · · · , T (255)) matches a se-

quence in LΥ ; if yes, record the guessed value (K̂∗
1,1, K̂

∗
1,2, K̂

∗
1,3, K̂

∗
1,5, K̂

∗
1,8,

K∗
2,1, K̂

∗
9,6, K̂

∗
10,2, K̂

∗
10,3, K̂

∗
10,5, K̂

∗
10,7, K̂

∗
10,8, K̂

∗
11) and execute Step 5; other-

wise, repeat Step 4 with another subkey guess (if all the subkey possibilities
are tested in Step 4, repeat Step 3 with another subkey guess).

5. For every recorded subkey guess, determine the correct user key.

The attack requires 256 chosen plaintexts. The one-off precomputation requires
a memory of 2179 × 256× 2

8 = 2185 bytes, and has a time complexity of 2179 ×
256 × 3 × 1

11 ≈ 2185.2 11-round Camellia-192 encryptions. If the guessed value

(K̂∗
1,1, K̂

∗
1,2, K̂

∗
1,3, K̂

∗
1,5, K̂

∗
1,8,K

∗
2,1, δ

∗) is correct, the input to Round 3 must have
the form (m1,m2,m3,m4,m5,m6,m7,m8, x,m9,m10,m11,m12,m13,m14, m15),
where m1,m2, · · · ,m15 are indeterminate constants.

Step 3 has a time complexity of about 256 × 256 × 1+5
8×11 ≈ 260.2 11-round

Camellia-192 encryptions. Step 4 has a time complexity of approximately 256+114

×256 × 8+5+1
8×11 ≈ 2175.4 11-round Camellia-192 encryptions. In Step 4, for the

correct guess of (P−1(KW3)[41 ∼ 42], δ, K̂1,1, K̂1,2, K̂1,3, K̂1,5, K̂1,8,K2,1, K̂9,6,

K̂10,2, K̂10,3, K̂10,5, K̂10,7, K̂10,8, K̂11), the sequence (T (0), T (1), · · · , T (255)) must

match a sequence in LΥ ; for a wrong guess of (P−1(KW3)[41 ∼ 42], δ, K̂1,1,

K̂1,2, K̂1,3, K̂1,5, K̂1,8,K2,1, K̂9,6, K̂10,2, K̂10,3, K̂10,5, K̂10,7, K̂10,8, K̂11), the prob-
ability that the sequence (T (0), T (1), · · · , T (255)) matches a sequence in LΥ is ap-

proximately 1−
(
2179

0

)
(2−512)0(1− 2−512)2

179 ≈ 2−512× 2179 = 2−333, (assuming
the event has a binomial distribution). Consequently, it is expected that at most

256+114×2−333 = 2−163 values for (P−1(KW3)[41 ∼ 42], δ, K̂1,1, K̂1,2, K̂1,3, K̂1,5,

K̂1,8,K2,1, K̂9,6, K̂10,2, K̂10,3, K̂10,5, K̂10,7, K̂10,8, K̂11) are recorded in Step 4, that
is very likely to be the correct subkey guess. Since 8 bits of KB can be known
from K2,1, we can find out the correct user key with a time complexity of at
most 2120 × 6

11 ≈ 2119.2 11-round Camellia-192 encryptions by using Property
4 from [22] (as well as the obtained relationship about the subkeys). Therefore,
the attack has a memory complexity of 2185 bytes and a total time complexity
of approximately 2185.2 11-round Camellia-192 encryptions.

We can similarly attack two other series of 12-round Camellia-256 with
FL/FL−1 and whitening functions, i.e., Rounds 7 to 17 and Rounds 13 to 23.

3.5 Attacking 12-Round Camellia-256 without Whitening Functions

We can use the 6-round MitM property given in Proposition 1-2 to mount an
MitM attack on 12-round Camellia-256 with FL/FL−1 functions, excluding the
whitening functions. We attack Rounds 7 to 18, and choose ω = 1, where we guess
(K7,1,K7,2,K7,3,K7,5,K7,8,K8,1,K15,6,K16,2,K16,3,K16,5,K16,7,K16,8,K17,K18),
plus a secret 8-bit parameter δ with a similar meaning as the one from the above
10-round Camellia-128 attack. We have the following property for Camellia-256.

Property 3. For Camellia-256, given a value for (K7,1,K7,2,K7,3,K7,5,K7,8,
K8,1) there are only 158 unknown bits for (K15,6,K16,2,K16,3,K16,5,K16,7,K16,8,
K17,K18).
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Similarly, the attack requires 256 chosen plaintexts and a memory of 2179×256×
2
8 = 2185 bytes, and has a total time complexity of 2179×256×3× 1

12 +256+158×
256× 8+8+5+1

8×12 ≈ 2219.9 12-round Camellia-256 encryptions.
It is noteworthy that we can also break two other series of 12-round Camellia-

256 with FL/FL−1 functions, namely Rounds 1 to 12 and Rounds 13 to 24.
Similarly, the attack has the same data and memory complexity as the above
12-round Camellia-256 attack, but has a total time complexity of approximately
256+176 × 256× 8+8+5+1

8×12 ≈ 2237.9 12-round Camellia-256 encryptions.

3.6 Attacking 12-Round Camellia-256 with Whitening Functions

The 6-round MitM property can enable us to conduct an MitM attack on 12-
round Camellia-256 with FL/FL−1 and whitening functions, by making use of
an equivalent structure of 12-round Camellia similar to the 11-round structure
depicted in Fig. 1-(b). Here we attack Rounds 1 to 12, and choose ω = 1.
The attack is basically the version of the 11-round Camellia-192 attack given in
Section 3.4 when one more round is appended at the end. As a result, the attack
requires 256 chosen plaintexts and a memory of 2185 bytes, and has a total time
complexity of at most 256+178 × 256× 8+8+5+1

8×12 ≈ 2239.9 12-round Camellia-256
encryptions.

4 HO-MitM Attacks on 10-Round Camellia-128,
11-Round Camellia-192 and 12-Round Camellia-256

It can be easily seen from the proof of the 5 and 6-round MitM properties that a
few 1-bit constants can be cancelled if we take XOR under two different inputs;
such a resulting attack is termed a HO-MitM attack by definition in [23] (As
mentioned in [23], this type of HO-MitM attacks appeared under the name of
MitM attacks before). In this section we briefly describe certain of these HO-
MitM attacks based on 5 and 6-round HO-MitM properties obtained by taking
XOR under two different inputs in the above 5 and 6-round MitM properties.

4.1 HO-MitM Properties for 5 and 6-Round Camellia

Because A⊕A = 0, (A∩C)⊕ (B ∩C) = (A⊕B)∩C and (A∪C)⊕ (B ∪C) =
(A⊕B)⊕(A⊕B)∩C, where A,B,C are blocks of the same length, from the proof
in the Appendix we learn that: (1) If we take XOR between two inputs from the
5-roundMitM property with ω = 0, then fifteen 1-bit constant parameters can be
cancelled, namelyKI2[42, 49, 50], b1[2], b2[2], b3[1, 2], b4[1], b5[1, 2], b6[1, 2], b7[1, 2],
b8[1]; and (2) If we take XOR between two inputs from the 6-round MitM prop-
erty with ω = 1, then twenty 1-bit constant parameters can be cancelled, namely
ê1[2, 3], ê2[1, 2, 3], ê3[1, 2], ê4[2, 3], ê5[1, 2, 3], ê6[1, 2, 3], ê7[1, 2], ê8[1, 2, 3]. More for-
mally, we have the following 5 and 6-round HO-MitM properties.

Proposition 2. Suppose X(i) is defined as in Proposition 1. Let i1, i2 ∈ {1, 2,· · · ,
256} and i1 �= i2, then:
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1. If Z(i) = (Z
(i)
L ||Z

(i)
R ) is the result of encrypting X(i) using Rounds 4 to 8

with the FL/FL−1 functions between Rounds 6 and 7, then P−1(Z
(i1)
R ⊕

Z
(i2)
R )[49] can be expressed with a function of x(i1), x(i2) and 85 constant

1-bit parameters.

2. If Z(i) = (Z
(i)
L ||Z

(i)
R ) is the result of encrypting X(i) using Rounds 3 to 8

with the FL/FL−1 functions between Rounds 6 and 7, then P−1(Z
(i1)
R ⊕

Z
(i2)
R )[41 ∼ 42] can be expressed with a function of x(i1), x(i2) and 159 con-

stant 1-bit parameters.

4.2 Attacking 10-Round Camellia-128 without Whitening Functions

We can use Proposition 2-1 to make a HO-MitM attack corresponding to the
MitM attack on 10-round Camellia-128 given in Section 3.2, here we fix i1 to a
value and let i2 take all the other 255 values. The HO-MitM attack requires 256

chosen plaintexts and a memory of 285 × 255 × 1
8 ≈ 290 bytes, and has a time

complexity of approximately 285 × 256× 2× 1
10 +256+60× 256× 8+5+1

8×10 ≈ 2121.5

10-round Camellia-128 encryptions.

4.3 Attacking 11-Round Camellia-192 with Whitening Functions

Based on Proposition 2-2, the HO-MitM attack on the first 11 rounds of Camellia-
192 with FL/FL−1 and whitening functions, corresponding to the MitM attack
on 11-round Camellia-192 given in Section 3.4, requires 256 chosen plaintexts and
a memory of 2159× 255× 2

8 ≈ 2165 bytes, and has a time complexity of approxi-
mately 2159×256×3× 1

11+256+112×256× 8+5+1
8×11 ≈ 2173.4 11-round Camellia-192

encryptions. Note that we do not need to guess P−1(KW3)[41 ∼ 42], since it is
cancelled after an XOR operation.

4.4 Attacking 12-Round Camellia-256 with Whitening Functions

Similar to the MitM attack on 12-round Camellia-256 given in Section 3.6,
Proposition 2-2 can also be used to conduct a HO-MitM attack on the first 12
rounds of Camellia-256 with FL/FL−1 and whitening functions, which requires
256 chosen plaintexts and a memory of 2159×255× 2

8 ≈ 2165 bytes, and has a time
complexity of approximately 2159×256×3× 1

12+256+176×256× 8+8+5+1
8×12 ≈ 2237.9

12-round Camellia-256 encryptions.
We notice that recently Chen and Li [6] published an MitM attack on 12-

round Camellia-256 with FL/FL−1 and whitening functions, which is actually a
HO-MitM attack by definition in [23], building on a 7-round property with 224
constant 1-bit parameters. When constructing the 7-round property, Chen and
Li cancelled four 1-bit constant parameters by taking XOR under two different
inputs. Likewise, we observe that eight other 1-bit constant parameters were
cancelled actually, too. Thus, the 7-round property involves 221 constant 1-
bit parameters, and the resulting attack requires 219 chosen plaintexts and a
memory of 2221 bytes and has a time complexity of 2223.2 12-round Camellia-256
encryptions.
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5 Concluding Remarks

In this paper, we have analysed the security of Camellia against the MitM at-
tack in detail, following the work in [23]. We have presented 5 and 6-round
MitM properties of Camellia, that can be used to conduct MitM attacks on 10-
round Camellia-128 with the FL/FL−1 functions, 11-round Camellia-192 with
the FL/FL−1 and whitening functions and 12-round Camellia-256 with the
FL/FL−1 and whitening functions. We have also described 5 and 6-round HO-
MitM properties of Camellia, obtained from the 5 and 6-round MitM properties
by taking XOR under two inputs to cancel some constant parameters, which can
be used to break the same numbers of rounds as the MitM attacks.

Our results show that as far as Camellia is concerned, the semi-advanced MitM
attack technique is more efficient than or at least as efficient as the advanced
cryptanalytic techniques studied, except impossible differential cryptanalysis; in
this latter case the MitM attacks are one or two rounds inferior to the best newly
emerging impossible differential cryptanalysis results from [2, 21].

We attribute these MitM attacks to the fact that the FL−1 function does
not have a good avalanche effect (i.e., an output bit relies on a large number of
the bits of the input and the subkey used). If the FL−1 function were modified
to have a good avalanche effect, then those MitM properties would involve a
large number of unknown 1-bit constant parameters, and the resulting MitM
attacks would be ineffective for the resulting cipher, but nevertheless it does not
necessarily resist the HO-MitM attack technique, for those HO-MitM attacks
described in [23] work as long as that integral property of Camellia holds (can-
celing the FL−1 function). Actually, if the FL/FL−1 functions had had a good
avalanche effect, the Camellia cipher could also have withstood the best currently
known cryptanalytic results that are the newly emerging impossible differential
cryptanalysis results from [2, 21]. In this sense, the FL/FL−1 functions do play
an important role in the security of Camellia.

Acknowledgments. The authors thank the anonymous referees for their com-
ments on this paper.
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Appendix: Proof of Proposition 1

First, we have the following property for the FL/FL−1 functions.

Property 4 (from [23]). Let x1, x2, · · · , x8, y1, y2, · · · , y8 be 8-bit blocks and
KI be a 64-bit subkey.

1. If (y1||y2|| · · · ||y8) = FL(x1||x2|| · · · ||x8,KI), then

y1 = ((((x1[2 ∼ 8]||x2[1]) ∩KI[2 ∼ 9])⊕ x5) ∪KI[33 ∼ 40])⊕ x1,

y2 = ((((x2[2 ∼ 8]||x3[1]) ∩KI[10 ∼ 17])⊕ x6) ∪KI[41 ∼ 48])⊕ x2,

y3 = ((((x3[2 ∼ 8]||x4[1]) ∩KI[18 ∼ 25])⊕ x7) ∪KI[49 ∼ 56])⊕ x3,

y4 = ((((x4[2 ∼ 8]||x1[1]) ∩KI[26 ∼ 32, 1])⊕ x8) ∪KI[57 ∼ 64])⊕ x4,

y5 = ((x1[2 ∼ 8]||x2[1]) ∩KI[2 ∼ 9])⊕ x5,

y6 = ((x2[2 ∼ 8]||x3[1]) ∩KI[10 ∼ 17])⊕ x6,

y7 = ((x3[2 ∼ 8]||x4[1]) ∩KI[18 ∼ 25])⊕ x7,

y8 = ((x4[2 ∼ 8]||x1[1]) ∩KI[26 ∼ 32, 1])⊕ x8.

2. If (y1||y2|| · · · ||y8) = FL−1(x1||x2|| · · · ||x8,KI), then

y1 = (x5 ∪KI[33 ∼ 40])⊕ x1,

y2 = (x6 ∪KI[41 ∼ 48])⊕ x2,

y3 = (x7 ∪KI[49 ∼ 56])⊕ x3,

y4 = (x8 ∪KI[57 ∼ 64])⊕ x4,

y5 = ((((x5[2 ∼ 8]||x6[1]) ∪KI[34 ∼ 41])⊕ (x1[2 ∼ 8]||x2[1])) ∩
KI[2 ∼ 9])⊕ x5,

y6 = ((((x6[2 ∼ 8]||x7[1]) ∪KI[42 ∼ 49])⊕ (x2[2 ∼ 8]||x3[1])) ∩
KI[10 ∼ 17])⊕ x6,

y7 = ((((x7[2 ∼ 8]||x8[1]) ∪KI[50 ∼ 57])⊕ (x3[2 ∼ 8]||x4[1])) ∩
KI[18 ∼ 25])⊕ x7,

y8 = ((((x8[2 ∼ 8]||x5[1]) ∪KI[58 ∼ 64, 33])⊕ (x4[2 ∼ 8]||x1[1])) ∩
KI[26 ∼ 32, 1])⊕ x8.
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When encrypting X(i), we denote by Y
(i)
t the value immediately after the S

operation of Round t, and by W
(i)
t the value immediately after the P operation

of Round t, (3 � t � 8).
We have Eq. (1) for Rounds 4 to 8 and have Eq. (2) for Rounds 3 to 8.

P−1(Z
(i)
R ) = P−1(FL−1(X

(i)
L ⊕W

(i)
5 ,KI2))⊕ Y

(i)
7 . (1)

P−1(Z
(i)
R ) = P−1(FL−1(X

(i)
R ⊕W

(i)
3 ⊕W

(i)
5 ,KI2))⊕ Y

(i)
7 . (2)

We first prove Proposition 1-1, and focus on encrypting X(i) through Rounds 4
to 8 below. The output of Round 4 is as follows, where a1, a2, · · · , a8 are 8-bit
constants completely determined by m1,m2, · · · ,m15 and K4.

L
(i)
4 =(x(i)⊕a1, a2, a3, a4, a5, a6, a7, a8), R(i)

4 =(m1,m2,m3,m4,m5,m6,m7,m8).

The output of Round 5 is as follows, where b, b1, · · · , b8 are 8-bit constants com-
pletely determined by m1,m2, · · · ,m8, a1, a2, · · · , a8 and K5:

L
(i)
5 = (L

(i)
5,1, L

(i)
5,2, L

(i)
5,3, L

(i)
5,4, L

(i)
5,5, L

(i)
5,6, L

(i)
5,7, L

(i)
5,8), R

(i)
5 = (x(i)⊕a1, a2, a3, · · · , a8),

with
L
(i)
5,1 = S1(x

(i) ⊕ b)⊕ b1, L
(i)
5,2 = S1(x

(i) ⊕ b)⊕ b2, L
(i)
5,3 = S1(x

(i) ⊕ b)⊕ b3,

L
(i)
5,4 = b4, L

(i)
5,5 = S1(x

(i) ⊕ b)⊕ b5, L
(i)
5,6 = b6,

L
(i)
5,7 = b7, L

(i)
5,8 = S1(x

(i) ⊕ b)⊕ b8.

The output immediately before the FL/FL−1 functions is as follows, where d1 =
b1 ⊕ K6,1, d2 = b2 ⊕ K6,2, d3 = b3 ⊕ K6,3, d4 = b5 ⊕ K6,5, d5 = b8 ⊕ K6,8; and
e1, e2, · · · , e8 are 8-bit constants completely determined by a1, a2, · · · , a8 and
b1, b2, · · · , b8:

L̂
(i)
6 = (L̂

(i)
6,1, L̂

(i)
6,2, L̂

(i)
6,3, L̂

(i)
6,4, L̂

(i)
6,5, L̂

(i)
6,6, L̂

(i)
6,7, L̂

(i)
6,8), R̂

(i)
6 = (L

(i)
5,1, L

(i)
5,2, · · · , L

(i)
5,8),

with

L̂
(i)
6,1 = S1(S1(x

(i) ⊕ b)⊕ d1)⊕ S3(S1(x
(i) ⊕ b)⊕ d3)⊕ S8(S1(x

(i) ⊕ b)⊕ d5)⊕
x(i) ⊕ e1,

L̂
(i)
6,2 = S1(S1(x

(i) ⊕ b)⊕ d1)⊕ S2(S1(x
(i) ⊕ b)⊕ d2)⊕ S5(S1(x

(i) ⊕ b)⊕ d4)⊕
S8(S1(x

(i) ⊕ b)⊕ d5)⊕ e2,

L̂
(i)
6,3 = S1(S1(x

(i) ⊕ b)⊕ d1)⊕ S2(S1(x
(i) ⊕ b)⊕ d2)⊕ S3(S1(x

(i) ⊕ b)⊕ d3)⊕
S5(S1(x

(i) ⊕ b)⊕ d4)⊕ S8(S1(x
(i) ⊕ b)⊕ d5)⊕ e3,

L̂
(i)
6,4 = S2(S1(x

(i) ⊕ b)⊕ d2)⊕ S3(S1(x
(i) ⊕ b)⊕ d3)⊕ S5(S1(x

(i) ⊕ b)⊕ d4)⊕ e4,

L̂
(i)
6,5 = S1(S1(x

(i) ⊕ b)⊕ d1)⊕ S2(S1(x
(i) ⊕ b)⊕ d2)⊕ S8(S1(x

(i) ⊕ b)⊕ d5)⊕ e5,

L̂
(i)
6,6 = S2(S1(x

(i) ⊕ b)⊕ d2)⊕ S3(S1(x
(i) ⊕ b)⊕ d3)⊕ S5(S1(x

(i) ⊕ b)⊕ d4)⊕
S8(S1(x

(i) ⊕ b)⊕ d5)⊕ e6,

L̂
(i)
6,7 = S3(S1(x

(i) ⊕ b)⊕ d3)⊕ S5(S1(x
(i) ⊕ b)⊕ d4)⊕ S8(S1(x

(i) ⊕ b)⊕ d5)⊕ e7,

L̂
(i)
6,8 = S1(S1(x

(i) ⊕ b)⊕ d1)⊕ S5(S1(x
(i) ⊕ b)⊕ d4)⊕ e8.
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By Property 4-1, we know that FL(L̂
(i)
6 ,KI1)[49 ∼ 56] is determined only by

L̂
(i)
6,3, L̂

(i)
6,4, L̂

(i)
6,7, KI1[18 ∼ 25]. Thus, Y

(i)
7 [49 ∼ (49+ω)] = S7(FL(L̂

(i)
6 ,KI1)[49 ∼

56]⊕K7,7)[49 ∼ (49 + ω)] is determined only by (x(i), b, d1, d2, · · · , d5, e3, e4, l1,
KI1[26 ∼ 32, 1]), where l1 = e7 ⊕K7,7.

Since X
(i)
L ⊕W

(i)
5 = R̂

(i)
6 , by Property 4-2 we know that P−1(FL−1(X

(i)
L ⊕

W
(i)
5 ,KI2))[49 ∼ (49+ω)] = P−1(FL−1(R̂

(i)
6 ,KI2))[49 ∼ (49+ω)] is determined

only by (x(i), b, b1[2 ∼ (2 + ω)], b2[2 ∼ (2 + ω)], b3[1 ∼ (2 + ω)], b4[1 ∼ (1 +
ω)], b5[1 ∼ (2 + ω)], b6[1 ∼ (2 + ω)], b7[1 ∼ (2 + ω)], b8[1 ∼ (1 + ω)],KI2[2 ∼
(2 + ω), 10 ∼ (10 + ω), 18 ∼ (18 + ω), 34 ∼ (34 + ω), 42 ∼ (42 + ω), 49 ∼
(50 + ω), 57 ∼ (57 + ω)]).

So P−1(FL−1(X
(i)
L ⊕ W

(i)
5 ,KI2))[49 ∼ (49 + ω)] ⊕ Y

(i)
7 [49 ∼ (49 + ω)] is

determined by x(i) and b, d1, d2, · · · , d5, e3, e4, l1, b1[2 ∼ (2 + ω)], b2[2 ∼ (2 +
ω)], b3[1 ∼ (2 + ω)], b4[1 ∼ (1 + ω)], b5[1 ∼ (2 + ω)], b6[1 ∼ (2 + ω)], b7[1 ∼
(2 + ω)], b8[1 ∼ (1 + ω)],KI1[26 ∼ 32, 1],KI2[2 ∼ (2 + ω), 10 ∼ (10 + ω), 18 ∼
(18 + ω), 34 ∼ (34 + ω), 42 ∼ (42 + ω), 49 ∼ (50 + ω), 57 ∼ (57 + ω)]), a total of
100 + 15× ω constant 1-bit parameters. Proposition 1-1 follows from Eq. (1).

We next prove Proposition 1-2. The output (L
(i)
3 , R

(i)
3 ) of Round 3 is as fol-

lows, where â1, â2, · · · , â8 are 8-bit constants completely determined by m1,m2,
· · · ,m15 and K3.

L
(i)
3 =(x(i)⊕â1, â2, â3, â4, â5, â6, â7, â8), R(i)

3 =(m1,m2,m3,m4,m5,m6,m7,m8).

The output (L
(i)
4 , R

(i)
4 ) of Round 4 is as follows, where b̂, b̂1, · · · , b̂8 are 8-bit

constants completely determined by m1,m2, · · · ,m8, â1, â2, · · · , â8 and K4:

L
(i)
4 = (L

(i)
4,1, L

(i)
4,2, L

(i)
4,3, L

(i)
4,4, L

(i)
4,5, L

(i)
4,6, L

(i)
4,7, L

(i)
4,8), R

(i)
4 = (x(i)⊕â1, â2, â3, · · · , â8),

with
L
(i)
4,1 = S1(x

(i) ⊕ b̂)⊕ b̂1, L
(i)
4,2 = S1(x

(i) ⊕ b̂)⊕ b̂2, L
(i)
4,3 = S1(x

(i) ⊕ b̂)⊕ b̂3,

L
(i)
4,4 = b̂4, L

(i)
4,5 = S1(x

(i) ⊕ b̂)⊕ b̂5, L
(i)
4,6 = b̂6,

L
(i)
4,7 = b̂7, L

(i)
4,8 = S1(x

(i) ⊕ b̂)⊕ b̂8.

The output (L
(i)
5 , R

(i)
5 ) of Round 5 is as follows, where d̂1, d̂2, · · · , d̂5 are 8-bit

constants completely determined by b̂1, b̂2, · · · , b̂8 and K5; and ê1, ê2, · · · , ê8 are
8-bit constants completely determined by â1, â2, · · · , â8, b̂1, b̂2, · · · , b̂8 and K5:

L
(i)
5 = (L

(i)
5,1, L

(i)
5,2, L

(i)
5,3, L

(i)
5,4, L

(i)
5,5, L

(i)
5,6, L

(i)
5,7, L

(i)
5,8), R

(i)
5 = (L

(i)
4,1, L

(i)
4,2, · · · , L

(i)
4,8),

with

L
(i)
5,1 = S1(S1(x

(i) ⊕ b̂)⊕ d̂1)⊕ S3(S1(x
(i) ⊕ b̂)⊕ d̂3)⊕ S8(S1(x

(i) ⊕ b̂)⊕ d̂5)⊕
x(i) ⊕ ê1,

L
(i)
5,2 = S1(S1(x

(i) ⊕ b̂)⊕ d̂1)⊕ S2(S1(x
(i) ⊕ b̂)⊕ d̂2)⊕ S5(S1(x

(i) ⊕ b̂)⊕ d̂4)⊕

S8(S1(x
(i) ⊕ b̂)⊕ d̂5)⊕ ê2,

L
(i)
5,3 = S1(S1(x

(i) ⊕ b̂)⊕ d̂1)⊕ S2(S1(x
(i) ⊕ b̂)⊕ d̂2)⊕ S3(S1(x

(i) ⊕ b̂)⊕ d̂3)⊕
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S5(S1(x
(i) ⊕ b̂)⊕ d̂4)⊕ S8(S1(x

(i) ⊕ b̂)⊕ d̂5)⊕ ê3,

L
(i)
5,4 = S2(S1(x

(i) ⊕ b̂)⊕ S3(S1(x
(i) ⊕ b̂)⊕ d̂3)⊕ S5(S1(x

(i) ⊕ b̂)⊕ d̂4)⊕ ê4,

L
(i)
5,5 = S1(S1(x

(i) ⊕ b̂)⊕ d̂1)⊕ S2(S1(x
(i) ⊕ b̂)⊕ d̂2)⊕ S8(S1(x

(i) ⊕ b̂)⊕ d̂5)⊕ ê5,

L
(i)
5,6 = S2(S1(x

(i) ⊕ b̂)⊕ d̂2)⊕ S3(S1(x
(i) ⊕ b̂)⊕ d̂3)⊕ S5(S1(x

(i) ⊕ b̂)⊕ d̂4)⊕
S8(S1(x

(i) ⊕ b̂)⊕ d̂5)⊕ ê6,

L
(i)
5,7 = S3(S1(x

(i) ⊕ b̂)⊕ d̂3)⊕ S5(S1(x
(i) ⊕ b̂)⊕ d̂4)⊕ S8(S1(x

(i) ⊕ b̂)⊕ d̂5)⊕ ê7,

L
(i)
5,8 = S1(S1(x

(i) ⊕ b̂)⊕ d̂1)⊕ S5(S1(x
(i) ⊕ b̂)⊕ d̂4)⊕ ê8.

By Property 4-1, we know that FL(L̂
(i)
6 ,KI1)[41 ∼ 48] is determined only by

L̂
(i)
6,2, L̂

(i)
6,3, L̂

(i)
6,6, KI1[10 ∼ 17], where

L̂
(i)
6,2 = S1(L

(i)
5,1 ⊕K6,1)⊕ S2(L

(i)
5,2 ⊕K6,2)⊕ S4(L

(i)
5,4 ⊕K6,4)⊕ S5(L

(i)
5,5 ⊕K6,5)⊕

S7(L
(i)
5,7 ⊕K6,7)⊕ S8(L

(i)
5,8 ⊕K6,8)⊕ S1(x

(i) ⊕ b̂)⊕ b̂2,

L̂
(i)
6,3 = S1(L

(i)
5,1 ⊕K6,1)⊕ S2(L

(i)
5,2 ⊕K6,2)⊕ S3(L

(i)
5,3 ⊕K6,3)⊕ S5(L

(i)
5,5 ⊕K6,5)⊕

S6(L
(i)
5,6 ⊕K6,6)⊕ S8(L

(i)
5,8 ⊕K6,8)⊕ S1(x

(i) ⊕ b̂)⊕ b̂3,

L̂
(i)
6,6 = S2(L

(i)
5,2 ⊕K6,2)⊕ S3(L

(i)
5,3 ⊕K6,3)⊕ S5(L

(i)
5,5 ⊕K6,5)⊕ S7(L

(i)
5,7 ⊕K6,7)⊕

S8(L
(i)
5,8 ⊕K6,8)⊕ b̂6.

Letting n̂l = êl⊕K6,l and ô1 = b̂6⊕K7,6, (l = 1, 2, · · · , 8), then we can learn that

Y
(i,j)
7 [41 ∼ (41 + ω)] is determined only by (x(i), b̂, b̂2, b̂3, ô1, d̂1, d̂2, · · · , d̂5, n̂1,

n̂2, · · · , n̂8,KI1[10 ∼ 17]).

Since FL−1(X
(i)
R ⊕W

(i)
3 ⊕W

(i)
5 ,KI2) = R

(i)
6 , then P−1(FL−1(X

(i)
R ⊕W

(i)
3 ⊕

W
(i)
5 ,KI2))[41 ∼ (41 + ω)] = P−1(FL−1(R̂

(i)
6 ,KI2))[41 ∼ (41 + ω)] is deter-

mined only by (x(i), b̂, d̂1, d̂2, · · · , d̂5, ê1[2 ∼ (2 + ω)], ê2[1 ∼ (2 + ω)], ê3[1 ∼
(1 + ω)], ê4[2 ∼ (2 + ω)], ê5[1 ∼ (2 + ω)], ê6[1 ∼ (2 + ω)], ê7[1 ∼ (1 + ω)], ê8[1 ∼
(2 + ω)],KI2[2 ∼ (2 + ω), 10 ∼ (10 + ω), 26 ∼ (26 + ω), 34 ∼ (34 + ω), 41 ∼
(42 + ω), 49 ∼ (49 + ω), 58 ∼ (58 + ω)]).

Hence, P−1(FL(X
(i)
R ⊕W

(i)
4 ⊕W

(i)
6 ,KI1))[41 ∼ (41+ω)]⊕Y

(i)
7 [41 ∼ (41+ω)]

is determined by x(i) and b̂, b̂2, b̂3, ô1, d̂1, d̂2, · · · , d̂5, ê1[2 ∼ (2 + ω)], ê2[1 ∼ (2 +
ω)], ê3[1 ∼ (1 + ω)], ê4[2 ∼ (2 + ω)], ê5[1 ∼ (2 + ω)], ê6[1 ∼ (2 + ω)], ê7[1 ∼
(1+ω)], ê8[1 ∼ (2+ω)], n̂1, n̂2, · · · , n̂8,KI1[10 ∼ 17],KI2[2 ∼ (2+ω), 10 ∼ (10+
ω), 26 ∼ (26 + ω), 34 ∼ (34 + ω), 41 ∼ (42+ ω), 49 ∼ (49+ ω), 58 ∼ (58 + ω)]), a
total of 164+15×ω constant 1-bit parameters. The result follows from Eq. (2). �
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Abstract. In this paper, we show a concurrent oblivious transfer pro-
tocol in super-polynomial-simulation (SPS) security. Our protocol does
not require any setup and does not assume any independence among
the inputs. In addition, our protocol is efficient since it does not use
any inefficient primitives such as general zero-knowledge proofs for all
NP statements. This is the first concurrent oblivious transfer protocol
that achieves both of these properties simultaneously. The security of our
protocol is based on the decisional Diffie-Hellman (DDH) assumption.

1 Introduction

1.1 Background

Oblivious Transfer. Oblivious transfer protocols [31] have been extensively
studied in cryptography due to their usefulness in protocol constructions. Obliv-
ious transfer protocols1 enable the receiver to receive one of two values from
the sender. The sender cannot know which value the receiver received, whereas
the receiver can learn only one value and cannot learn anything about the other
value. Numerous protocols have been constructed using oblivious transfer pro-
tocols. In fact, oblivious transfer is complete for secure computation, i.e., we can
compute any function securely given an oblivious transfer protocol [17, 18].

Oblivious transfer protocols against malicious adversaries can be obtained
by transforming oblivious transfer protocols against semi-honest adversaries to
protocols against malicious adversaries using the protocol compiler of Goldreich
et al. [13]. However, the protocols obtained in this way are highly inefficient since
they use general zero-knowledge proofs for NP statements. As a result, the task
of constructing efficient oblivious transfer protocols, which are indispensable for
practical purposes, has attracted much attention. Efficient “fully-simulatable”2

1 In this paper, we consider 1-out-of-2 oblivious transfer protocols.
2 If we consider the half-simulation definition [24], there exist many highly-efficient
protocols, e.g., [1, 23].

G. Hanaoka and T. Yamauchi (Eds.): IWSEC 2012, LNCS 7631, pp. 216–232, 2012.
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oblivious transfer protocols are shown in [15, 19, 20]. In addition, there exist
black-box transformations, which do not use general zero-knowledge proofs, from
semi-honest oblivious transfer to malicious oblivious transfer [8, 16, 17, 22, 27].

Concurrent Security. All of the above protocols achieve only stand-alone
security, i.e., they are secure only when a single instance of the protocols is
executed at a time. More realistic and desirable security is concurrent security,
which guarantees that the protocol remains secure even when several instances
of the protocol are executed at the same time in an arbitrary schedule.

Unfortunately, in the standard model (with adaptively-chosen inputs and no
trusted setup), we cannot construct concurrent oblivious transfer protocols with
black-box simulation [21]. As a result, existent concurrent oblivious transfer
protocols have been constructed in other models. For example, as noted in [21],
the concurrent oblivious transfer of [11] circumvents the impossibility result by
considering a model where all the inputs in all the executions are independent of
each other. Universally composable (UC) oblivious transfer protocols [9, 14, 28]
achieve UC security, which implies concurrent security, in models with setups
such as common reference strings (CRS). Although these models are reasonable
in some situations, it is desirable to achieve concurrent security in the standard
model.

Super-Polynomial-Simulation Security. Super-polynomial-simulation (SPS)
security [25,29] enables us to achieve concurrent security in the standard model.
SPS security is a relaxed notion of security in the simulation paradigm. Before
explaining further about SPS security, we introduce the simulation paradigm.

In the simulation paradigm, we define the real world and the ideal world.
In the real world, the parties carry out a task (or functionality) by executing a
protocol. In the ideal world, the parties carry out the task by interacting with an
incorruptible trusted third party called the ideal functionality. Then, the protocol
is said to be secure if for any adversary who can perform some attacks in the real
world there exists an adversary (or simulator) who can perform essentially the
same attacks in the ideal world. In the case of oblivious transfer, we define the
ideal functionality as follows. The ideal functionality F receives m0 and m1 from
the sender and σ ∈ {0, 1} from the receiver. Then, F sends mσ to the receiver.
Clearly, F carries out the task in a perfectly-secure fashion. Then, the security
in the simulation paradigm means that, if some attacks can be performed on the
protocol by the adversary, essentially the same attacks can be performed even
on F by the simulator.

In standard security definitions of the simulation paradigm, we restrict the
running time of the simulator to polynomial time. In SPS security, we relax this
security definition by allowing the simulator to run in super-polynomial time.
Thus, SPS security guarantees that, if the adversary can perform some attacks
in the real world, the simulator can perform essentially the same attacks in
super-polynomial time. Although SPS security is a relaxed notion of security, it
guarantees sufficient security if the ideal functionality is information-theoretically
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secure, i.e., if the ideal functionality is secure against computationally-unbounded
adversaries. Clearly, the above oblivious transfer ideal functionality is
information-theoretically secure.

SPS security was introduced to construct constant-round concurrent zero-
knowledge proofs [25, 26]. SPS security was also used in the UC framework,
and it was shown that there exist protocols that compute any functionality in
the standard model [2, 6, 12, 30]. Hence, using these protocols, we can construct
concurrent oblivious transfer protocols in the standard model. However, the pro-
tocols obtained in this way are inefficient, since they use general zero-knowledge
proofs for all NP statements. Therefore, for practical purposes, we believe that
more work is needed on efficient concurrent oblivious transfer protocols in the
standard model.

1.2 Our Result

In this paper, we present a concurrently-secure oblivious transfer protocol secure
under SPS security. Our protocol does not require any setup and does not assume
any independence among the inputs. In addition, our protocol is efficient since
it does not use any inefficient primitives such as general zero-knowledge proofs
for all NP statements. To the best of our knowledge, our protocol is the first
concurrent oblivious transfer protocol that achieves both of these properties
simultaneously. The security of our protocol is based on the decisional Diffie-
Hellman (DDH) assumption.

Our Technique. Here, we give a brief overview of our protocol.
We construct our protocol and prove its security in the UC-SPS framework

[12,30]. The UC-SPS framework is the same as the UC framework [3] except that
in the UC-SPS framework we allow the simulator to run in super-polynomial
time.

Our protocol is based on the UC oblivious transfer of [28], which is secure in
the CRS model. In the protocol of [28], the CRS is (g0, h0, g1, h1) ∈ G4 for cyclic
group G. The protocol of [28] has the following properties.

– If (g0, h0, g1, h1) is a non-DDH tuple, the sender can break the receiver’s
security with trapdoor (logg0 h0, logg1 h1).

– If (g0, h0, g1, h1) is a DDH tuple, the receiver can break the sender’s security
with trapdoor logg0 g1.

In [28], the simulator is constructed using these two properties.
In our protocol, the receiver chooses group G and its elements g0, h0, g1 ∈ G.

Then, the sender and the receiver execute a coin-toss protocol and generate a
random element h1 ∈ G. Finally, the sender and receiver execute the oblivious
transfer protocol of [28] using (g0, h0, g1, h1) as the CRS. We note that, because
of the security of the coin-toss protocol, (g0, h0, g1, h1) is a non-DDH tuple with
overwhelming probability. Then, our protocol has the following properties.
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– Super-polynomial-time senders can break the receiver’s security by comput-
ing trapdoor (logg0 h0, logg1 h1) in super-polynomial time.

– Super-polynomial-time receivers can let (g0, h0, g1, h1) be a DDH tuple by
cheating in the coin-toss protocol in super-polynomial time. Then, the re-
ceivers can break the sender’s security with trapdoor logg0 g1.

Then, we construct a simulator using these two properties.
Although the idea of our protocol is relatively simple, the security proof is

not so simple. The reason is that the simulator runs in super-polynomial time
whereas we assume only an assumption for polynomial-time adversaries. There-
fore, we cannot use simple reduction to prove the indistinguishability between
the real-world execution (which runs in polynomial time) and the ideal-world
execution (which runs in super-polynomial time). To overcome this problem,
we use the technique of [12]. The idea is that we define a hybrid execution in
which we use rewinding instead of the super-polynomial power. Then, since the
running time of the hybrid execution is polynomial time, we can use the DDH
assumption to prove the indistinguishability between the real execution and the
hybrid execution. In contrast, since we can show the indistinguishability be-
tween the hybrid execution and the ideal execution without any computational
assumption, the super-polynomial-time simulator does not cause any problem.

2 Preliminaries

2.1 Notations

Let N denote the set of all positive integers. For any q ∈ N, let Zq denote the

set {0, . . . , q − 1}. For any set X , let x
U←− X denote that x is an element of

X chosen uniformly at random. For any random variable X , let x
R←− X denote

that x is a value chosen at random according to the probability distribution of
X . For any randomized algorithm Algo, let Algo(x) denote a random variable
for the output of Algo on input x with a uniformly-chosen random tape. For any
random variable X , let Algo(X) denote a random variable for the output of Algo

on input x
R←− X with a uniformly-chosen random tape.

Let λ denote a security parameter. Let ε(λ) denote an arbitrary negligible
function in λ. That is, for any constant c > 0, there exists N ∈ N such that for
any n > N we have ε(n) < 1/nc. For any probability ensembles X = {Xk}k∈N

and Y = {Yk}k∈N, let X
c≈ Y denote that X and Y are computationally in-

distinguishable. That is, we have X c≈ Y if and only if for any probabilistic
polynomial-time distinguisher D we have

|Pr [D(Xλ) = 1]− Pr [D(Yλ) = 1]| < ε(λ)

for a sufficiently large λ.



220 S. Kiyoshima, Y. Manabe, and T. Okamoto

2.2 The Assumption

In this paper, we use the DDH assumption. Let GenG be a probabilistic
polynomial-time algorithm that, on input 1λ, outputs a description of cyclic
group G, its order q, and generator g ∈ G. Then, the DDH assumption on GenG
is defined as follows.

Definition 1 (DDH assumption). We say that the DDH assumption holds
on GenG if for any probabilistic polynomial-time algorithm A we have∣∣∣∣∣∣∣∣∣∣

Pr

[
A(G, q, g, gx, gy, gxy) = 1

∣∣∣∣∣ (G, q, g)
R←− GenG(1λ);

x, y
U←− Zq;

]

−Pr

[
A(G, q, g, gx, gy, gz) = 1

∣∣∣∣∣ (G, q, g)
R←− GenG(1λ);

x, y, z
U←− Zq;

]
∣∣∣∣∣∣∣∣∣∣
< ε(λ).

2.3 UC Framework

In this section, we briefly review the UC framework. For full details, see [3].
The model for protocol execution consists of environment Z, adversary A,

and the parties running protocol π. In the execution of the protocol, the envi-
ronment Z is first invoked on external input z. Environment Z adaptively gives
inputs to the parties and receives outputs from them. In addition, Z communi-
cates freely with A throughout the execution of the protocol. On inputs from Z,
the parties execute π by sending messages to each other. Adversary A sees all
communications between the parties and controls the schedule of the communi-
cations. In addition, adversary A can corrupt some parties. After corruption, A
receives all internal information of the corrupted parties. Moreover, from now
on, A can fully control the corrupted parties. In this paper, we assume that
there exist authenticated communication channels3. Thus, the adversary can-
not change the contents of messages sent by the honest parties. In addition, in
this paper we consider only static adversaries. In other words, we assume that
the adversary corrupts parties only at the beginning of the protocol execution.
The protocol execution ends when Z outputs a bit. Let Execπ,A,Z(λ, z) denote
a random variable for the output of Z on security parameter λ ∈ N and in-
put z ∈ {0, 1}∗ with a uniformly-chosen random tape. Let Execπ,A,Z denote the
ensemble {Execπ,A,Z(λ, z)}λ∈N,z∈{0,1}∗ .

The security of protocol π is defined using the ideal protocol. In the execution
of the ideal protocol, all parties simply hand their inputs to ideal functionality F .
Ideal functionality F carries out the desired task securely and gives outputs to
the parties. The parties simply forward these outputs to Z. Let dummy parties
denote the parties in the ideal protocol. Adversary S in the execution of the
ideal protocol is often called the simulator. Let π(F) denote the ideal protocol
for functionality F . Let IdealF ,S,Z denote the ensemble Execπ(F),S,Z .

3 This is not essential since authentication can be realized by a protocol, given a
standard authentication infrastructure [4].
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Then, the security of π is defined by comparing the execution of π (referred
to as the real world) and the execution of π(F) (referred to as the ideal world).

Definition 2 (UC-realization). Let π be a protocol and F be an ideal func-
tionality. We say that π UC-realizes F if for any adversary A there exists a
simulator S such that for any environment Z we have

Execπ,A,Z
c≈ IdealF ,S,Z .

2.4 UC-SPS Framework

The UC-SPS framework [2,12,30] is the same as the UC framework except that
we allow the simulator to run in super-polynomial time. The running time of
the other machines is implicitly assumed to be polynomial time.

The UC realization is generalized naturally to the UC-SPS framework as
follows.

Definition 3 (UC-SPS-realization). Let π be a protocol and F be an ideal
functionality. We say that π UC-SPS-realizes F if for any adversary A there
exists a super-polynomial-time simulator S such that for any environment Z we
have

Execπ,A,Z
c≈ IdealF ,S,Z .

In general, the UC theorem [3] does not hold in the UC-SPS framework. Thus,
stand-alone security in the UC-SPS framework does not imply concurrent
security.

3 Concurrent Oblivious Transfer Protocol

In this section, we construct a concurrently-secure oblivious transfer protocol in
the UC-SPS framework and prove its security.

As noted in Section 2.4, we cannot use the UC theorem in the UC-SPS frame-
work to prove concurrent security. We therefore prove concurrent security by
defining the concurrent oblivious transfer ideal functionality FcOT and proving
that our protocol UC-SPS-realizes FcOT. The concurrent oblivious transfer ideal
functionality FcOT, which is based on the (stand-alone) oblivious transfer ideal
functionality [5], is shown in Fig. 1 4. Functionality FcOT captures concurrent
security since, with a single run of FcOT, the sender can send several values to
the receiver. Thus, by constructing a protocol that UC-SPS-realizes FcOT, we
obtain a concurrent oblivious transfer protocol. Here, ssid in FcOT is the sub-
session ID, which is used to distinguish among the different subsessions that
take place within a single run of FcOT. We note that FcOT is different from the

4 We say that functionality F generates delayed output v to party P if F first sends to
S a note that it is ready to generate an output to P and, after S replies to the note,
F sends v to P . If the output is private, then v is not mentioned in this note [3].
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Functionality FcOT

FcOT proceeds as follows, running with sender PS, receiver PR, and simulator S .
– Upon receiving input (Send, sid, ssid,m0,m1) from PS, if message

(Send, sid, ssid, . . .) was previously received, then do nothing. Else if sid =
(PS, PR, sid

′) for some sid′ and PR, then record (ssid,m0,m1) and send
(InputS , sid, ssid) to S . Furthermore, if a value (ssid, σ) is recorded, then gen-
erate private delayed output (Output, sid, ssid,mσ) to PR.

– Upon receiving input (Receive, sid, ssid, σ) for σ ∈ {0, 1} from PR, if mes-
sage (Receive, sid, ssid, . . .) was previously received, then do nothing. Else if
sid = (PS , PR, sid

′) for some sid′ and PS, then record (ssid, σ) and send
(InputR, sid, ssid) to S . Furthermore, if a value (ssid,m0,m1) is recorded,
then generate private delayed output (Output, sid, ssid,mσ) to PR.

Fig. 1. The concurrent oblivious transfer functionality FcOT

multi-session oblivious transfer functionality F̂OT [7, 28], with which any party
can concurrently send messages to other parties. Unlike F̂OT, here only a fixed
party PS can interact with FcOT as a sender5, and as a result FcOT does not
capture any kind of non-malleability.

3.1 Protocols

First, we show a challenge-response based extractable commitment scheme 〈C,R〉,
and then we show our concurrent oblivious transfer protocol ΠOT, which uses
〈C,R〉 as a primitive.

Extractable Commitment Scheme 〈C,R〉. Let Com be a non-interactive
perfectly-binding commitment scheme6. Then the extractable commitment
scheme 〈C,R〉, which is used in literature such as [12,27,29], is defined as follows.

Commit Phase. Sender C commits to element a of group G for receiver R as
follows.

(1) C ⇒ R: For each i ∈ {1, 2, . . . , k = ω(logλ)}, C chooses αi
U←− G and

computes A
(0)
i

R←− Com(αi) and A
(1)
i

R←− Com(aα−1
i ). Then C sends these

{(A(0)
i , A

(1)
i )}ki=1 to R.

(2) R⇒ C: Receiver R chooses r1, . . . , rk
U←− {0, 1} and sends them to C.

(3) C ⇒ R: Sender C opens all of {A(ri)
i }ki=1 to R.

5 In this paper, we define FcOT in such a way that only a single sender and a single
receiver can interact with FcOT. Our protocol remains secure even when we modify
FcOT so that (a) a single sender and multiple receivers can interact with FcOT or (b)
multiple senders and a single receiver can interact with FcOT.

6 We can construct an efficient non-interactive perfectly-binding commitment scheme
under the DDH assumption using ElGamal encryption.
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Open Phase. Sender C sends a, and opens all of {(A(0)
i , A

(1)
i )}ki=1 to R.

It is known that 〈C,R〉 is a perfectly-binding commitment scheme [27].

Concurrent Oblivious Transfer Protocol ΠOT. Our concurrent oblivious
transfer protocol ΠOT is described below. Here, we use algorithm GenG described
in Section 2.2.

When the input of the sender is (Send, sid, ssid,m0,m1) and the input of the
receiver is (Receive, sid, ssid, σ), sender PS and receiver PR do the following.
(For simplicity, we assume m0,m1 ∈ {0, 1}. It is easy to modify our protocol so
that the sender can send any m0,m1 ∈ {0, 1}O(logλ). In addition, if there is an

efficiently-decodable encoding scheme from {0, 1}λ to G for any G
R←− GenG(1λ),

the sender can send any m0,m1 ∈ {0, 1}λ.)

(1) PR ⇒ PS : Receiver PR computes (G, q, g0)
R←− GenG(1λ). Next, PR chooses

x, y
U←− Zq and sets h0 := gx0 , g1 := gy0 . Then PR sends (sid, ssid,G, q, g0, h0,

g1) to PS .

(2) PS ⇔ PR: Sender PS chooses a
U←− G. Then PS commits to a for PR using

〈C,R〉. In other words, PS and PR do the following.

(2.1) PS ⇒ PR: For each i ∈ {1, 2, . . . , k = ω(logλ)}, PS chooses αi
U←− G

and computes A
(0)
i

R←− Com(αi) and A
(1)
i

R←− Com(aα−1
i ). Then PS sends

(sid, ssid, (A
(0)
1 , A

(1)
1 ), . . . , (A

(0)
k , A

(1)
k )) to PR.

(2.2) PR ⇒ PS : Receiver PR chooses r1, . . . , rk
U←− {0, 1} and sends (sid, ssid,

r1, . . . , rk) to PS .

(2.3) PS ⇒ PR: Sender PS opens all of {A(ri)
i }ki=1 to PR. If PS fails to open

one of these commitments, PR aborts the protocol.

(3) PR ⇒ PS : Receiver PR chooses b
U←− G and sends (sid, ssid, b) to PS .

(4) PS ⇒ PR: Sender PS opens the commitment of 〈C,R〉 in step (2). If PS fails
to open the commitment, PR aborts the protocol.

(5) PS and PR set h1 := ab.

(6) PR ⇒ PS : Receiver PR chooses r
U←− Zq and sets g := grσ, h := hr

σ. Then PR

sends (sid, ssid, g, h) to PS .

(7) PS ⇒ PR: For each i ∈ {0, 1}, sender PS chooses si, ti
U←− Zq, sets (ui, vi) :=

(gsii hti
i , g

sihti), and sets ci := (ui, vig
mi
0 ). Then, PS sends (sid, ssid, c0, c1)

to PR.
(8) Receiver PR parses cσ as (cσ,0, cσ,1). Next, PR sets m̃σ := 1 if cσ,1/c

r
σ,0 = g0

and sets m̃σ := 0 otherwise. Then, PR outputs (Output, sid, ssid, m̃σ).

3.2 Security Proof

In this section, we prove the following theorem.

Theorem 4. Assume that the DDH assumption holds. Then, protocol ΠOT UC-
SPS-realizes FcOT.
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Proof. We need to show that for any adversaryA there exists a super-polynomial-
time simulator S such that for any environment Z we have

ExecΠOT,A,Z
c≈ IdealFcOT,S,Z . (1)

In the real world, the sender sends several values concurrently using ΠOT. The
schedule of the message delivery is determined by adversary A. In the ideal
world, the sender sends several values using FcOT. A single run of FcOT consists
of several subsessions, where a single value is sent in each subsession.

First, we show the description of simulator S for adversary A. Simulator S
internally invokes A and forwards every message from Z to the internal A. For
each message that internal A outputs to Z, simulator S simply forwards it to
external Z. Furthermore, S internally simulates a real world with A as follows.

Case 1. Corrupted PS and Honest PR. Since internal A behaves as the
sender on behalf of corrupted PS , simulator S needs to interact with A as the
receiver. In addition, S needs to extract both of the sender’s values and send
them to FcOT. Toward this, S does the following for each subsession.

– Simulator S starts the subsession in the same way as honest PR does. That

is, S computes (G, q, g0)
R←− GenG(1λ), chooses x, y

U←− Zq, sets h0 := gx0 ,
g1 := gy0 , and sends (G, q, g0, h0, g1) to internal A.

– Upon receiving {(A(0)
i , A

(1)
i )}ki=1 from A, simulator S chooses r′1, . . . , r

′
k

U←−
{0, 1} and extracts the committed values of {A(r′i)

i }ki=1 by breaking the hiding

property of Com in super-polynomial time. Then, S chooses r1, . . . , rk
U←−

{0, 1} and sends them to A in the same way as honest PR does.
– If A opens the commitments of Com correctly in response to challenge

r1, . . . , rk, simulator S extracts committed value a of 〈C,R〉 by combin-
ing these opened values with the above extracted values7. Then S sends

b := a−1gxy0 to A. Here, if S finds out that commitment {(A(0)
i , A

(1)
i )}ki=1 of

〈C,R〉 is invalid when S tries to extract a, simulator S sends b
U←− G instead.

– When A opens the commitment of 〈C,R〉, simulator S verifies its validity in
the same way as honest PR does.

– Simulator S chooses r
U←− Zq, sets (g, h) := (gr1 , h

r
1), and sends (g, h) to A.

– Upon receiving (c0, c1) = ((c0,0, c0,1), (c1,0, c1,1)) from A, simulator S sets

m̃i := 1 for each i ∈ {0, 1} if ci,1/c
ry1−i

i.0 = g0 and sets m̃i := 0 otherwise.
Then, simulator S sends (Send, sid, ssid, m̃0, m̃1) to FcOT.

In summary, S extracts committed value a of 〈C,R〉 in super-polynomial time
and sets b := a−1gxy0 . This will let h1 := ab = gxy0 . Then, we have

(g, h) = (gr1 , h
r
1) = (gry0 , hry

0 ) .

Simulator S sets m̃i := 1 for each i ∈ {0, 1} if ci,1/cry
1−i

i,0 = g0 and sets m̃i := 0
otherwise. Then, S sends (m̃0, m̃1) to FcOT.

7 Since the probability that (r1, . . . , rk) = (r′1, . . . , r
′
k) holds is negligible, we simply

assume (r1, . . . , rk) 	= (r′1, . . . , r
′
k) in what follows.
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Case 2. Honest PS and Corrupted PR. Since internal A behaves as the
receiver on behalf of corrupted PR, simulator S needs to communicate with A
as the sender knowing only one of the two values that honest PS sent to FcOT.
Toward this, S does the following for each subsession.

Simulator S interacts with A as the honest sender from step (1) to step (6).
Upon receiving (g, h) from A, simulator S checks whether or not (g0, h0, g, h)
is a DDH tuple in super-polynomial time. Next, S sets σ̃ := 0 if (g0, h0, g, h) is
a DDH tuple and sets σ̃ := 1 otherwise. Then, S sends (Receive, sid, ssid, σ̃) to
FcOT. Upon receiving (Output, sid, ssid,m) from FcOT, simulator S carries out

step (7) by letting mσ̃ := m and m1−σ̃
U←− {0, 1}.

Case 3. Honest PS and Honest PR. Simulator S interacts with A both as
the sender and as the receiver. As the sender, S behaves honestly with input
(m0 = 0,m1 = 0). As the receiver, S behaves honestly with input σ = 0.

Next, we show that, if the above simulator S is used, we have (1) for each case.

Analysis of Case 1. We need to show that for any probabilistic polynomial-
time distinguisher D and any polynomial p, we have

|Pr [D(ExecΠOT,A,Z(λ)) = 1]− Pr [D(IdealFcOT,S,Z(λ)) = 1]| < 1

p(λ)
(2)

for a sufficiently large λ.
Let � be an upper bound of the number of subsessions and let δ(λ) := 3� ·p(λ).

We define the indices of the subsessions based on the order in which the messages
of step (2.2) appear in the interaction between PS and PR. That is, the message
of step (2.2) of subsession 1 appears before the message of step (2.2) of subsession
2, and the message of step (2.2) of subsession 2 appears before the message of
step (2.2) of subsession 3, and so on.

To prove that we have (2), we use a hybrid argument by defining machines
B0, . . . , B2�+1. First, we describe the idea behind our argument. In the ideal
world, simulator S extracts committed value a of 〈C,R〉 in step (2) of each
subsession. Let us call this committed value a the trapdoor secret of each subses-
sion. Now, machine B0 internally executes the real-world protocol and machine
B2�+1 internally executes the ideal-world protocol. In the sequence of hybrid
machines, we change B0 into B2�+1 step by step by increasing the number of
subsessions of which the trapdoor secrets are extracted. That is, we will define
B2(i−1) (i = 1, . . . , �) so that the trapdoor secrets of subsession j (j = 1, . . . , i−1)
are extracted and used as in the ideal world. Then, we will define B2i−1 by mod-
ifying B2(i−1) in such a way that the trapdoor secret of subsession i is also
extracted (but not used). Each hybrid machine records these extracted trapdoor
secrets in a list, a-List. We note that the hybrid machines, except B2�+1, are
designed so that they do not use their super-polynomial power to extract the
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trapdoor secrets8. Instead, they use polynomial-time rewinding and extract the
trapdoor secrets using the extractability of 〈C,R〉9.

Now, let us define hybrid machines B0, . . . , B2�+1. First, we introduce some
notations. The hybrid machines, except B2�+1, internally execute the real-world
protocol repeatedly with different randomness. That is, they internally invoke
machines such as Z andA, execute the protocol, rewind all the machines, execute
the protocol again, rewind all the machines again, and so on. We let a thread
denote a single execution of the protocol. A thread begins when internal Z
is invoked, and the thread ends when internal Z outputs a bit. Each hybrid
machine outputs whatever internal Z outputs in the last thread. Let us call this
last thread the main thread of each hybrid machine.

Machine B0. As its main thread, machine B0 internally executes the real-world
protocol by internally invoking Z, A, PS , and PR. Machine B0 simply outputs
whatever the internal Z outputs.

Machine B2i−1 (i = 1, . . . , �). First, B2i−1 runs in the same way as B2(i−1),
but B2i−1 does not output (and does not halt) even after the main thread of
B2(i−1) ends. At the time, the trapdoor secret of subsession j (j = 1, . . . , i − 1)
on the main thread of B2(i−1) is extracted and recorded in the a-List. After the
main thread of B2(i−1), machine B2i−1 rewinds this main thread10 and executes
it δ times with the same randomness except in step (2.2) of subsession i. Let us
call these δ threads the look-ahead threads. In each look-ahead thread, challenge
r1, . . . , rk in step (2.2) of subsession i is chosen fleshly.

In the case that A opens the commitments of Com correctly in step (2.3) of
subsession i in the main thread of B2(i−1) and in at least one of the δ look-
ahead threads, B2i−1 extracts trapdoor secret a of subsession i by combining
the opened values of these two threads. Then, B2i−1 adds a pair (i, a) to the
a-List. If B2i−1 finds out that the commitment of 〈C,R〉 is invalid when it tries
to extract a, then B2i−1 adds (i,⊥) to the a-List instead.

In the case that A does not open the commitments of Com correctly in step
(2.3) of subsession i in all δ look-ahead threads but opens them correctly in the
main thread of B2(i−1), machine B2i−1 outputs ⊥ and halts. Let us call this
event RewindAborti.

After all look-ahead threads end, if RewindAborti does not occur, B2i−1 exe-
cutes the main thread of B2(i−1) once again with exactly the same randomness.
This thread is the main thread ofB2i−1. The output of B2i−1 is whatever internal
Z outputs in this thread.

Remark 5. We note that B2i−1 can execute each look-ahead thread without any
problem such as recursive rewinding. To see this, observe that each look-ahead

8 If hybrid machines are super-polynomial-time machines, it is difficult to show the
indistinguishability between the outputs of hybrid machines based on assumptions
for polynomial-time adversaries.

9 The technique of replacing the super-polynomial power with the polynomial-time
rewinding is used in [6,12].

10 That is, B2i−1 rewinds all the machines such as Z and A.
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thread proceeds in exactly the same way as the main thread of B2(i−1) until step
(2.2) of subsession i. In particular, the message of step (2.1) in subsession j (j =
1, . . . , i−1) in each look-ahead thread is the same as themessage in themain thread
of B2(i−1). This means that the trapdoor secret of subsession j (j = 1, . . . , i − 1)
in each look-ahead thread is the same as the trapdoor secret in the main thread of
B2(i−1). Thus, the values that are extracted and recorded in the a-List before the
rewinding are valid even after the rewinding. Therefore, since B2i−1 can also use
them in the look-ahead threads, there is no recursive rewinding.

Machine B2i (i = 1, . . . , �). B2i runs in the same way as B2i−1 except that, in
step (3) of subsession i in the main thread, internal PR sets b := a−1gxy0 if (i, a)

is recorded in the a-List for a �= ⊥. In the case of a = ⊥, internal PR sets b
U←− G

as in B2i−1.

Machine B2�+1. B2�+1 internally executes the ideal-world protocol by internally
invoking Z, S, the dummy party PS and PR. Machine B2�+1 outputs whatever
the internal Z outputs.

Next, we show the indistinguishability among the outputs of hybrid machines.
Below, we let Execi(λ) denote the random variable for the output of machine Bi.

B2(i−1) and B2i−1 (i = 1, . . . , �). If RewindAborti does not occur in B2i−1, the
output of B2(i−1) and the output of B2i−1 are identical since their main threads
are the same. RewindAborti occurs in B2i−1 if A does not open the commitments
in step (2.3) on subsession i in all δ look-ahead threads but opens them correctly
in the main thread. Since A opens these commitments correctly in each look-
ahead thread with the same probability as in the main thread, we can show
that RewindAborti occurs in B2i−1 with probability at most 1/δ. Thus, for any
probabilistic polynomial-time distinguisher D, we have∣∣Pr [D(Exec2(i−1)(λ)) = 1

]
− Pr [D(Exec2i−1(λ)) = 1]

∣∣ ≤ 1

δ(λ)
. (3)

B2i−1 and B2i (i = 1, . . . , �). B2i is the same as B2i−1 except that B2i sets b :=

a−1gxy0 instead of b
U←− G in step (3) of subsession i on the main thread. Thus,

from the DDH assumption, for any probabilistic polynomial-time distinguisher
D, we have

|Pr [D(Exec2i−1(λ)) = 1]− Pr [D(Exec2i(λ)) = 1]| < ε(λ) . (4)

B2� and B2�+1. In B2�, all the trapdoor secrets are extracted and used as in
B2�+1. Machine B2� uses rewinding to extract the trapdoor secrets, whereas
machine B2�+1 uses its super-polynomial power. In order to show the indis-
tinguishability, it suffices to show that the honest receiver’s outputs and the
computed trapdoor secrets in B2� are the same as the ones in B2�+1.

First, we show the indistinguishability between B2� and B2�+1 under the con-
dition that RewindAborti does not occur in B2� for all i. In this case, in each
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subsession, trapdoor secret a that B2� records in the a-List and trapdoor secret
a that S computes in B2�+1 are identically distributed. To see this, observe that
in both machines we can think that the trapdoor secret a is computed by com-
bining two responses of 〈C,R〉 for two different challenges. In addition, since we
have

(g, h) = (gr1 , h
r
1) = (gry0 , hry

0 ) (since we have h1 = gxy0 )

in B2�+1, the receiver outputs the same value in B2� and B2�+1. Therefore, we
conclude that the view of Z in the main threads of B2� and the view of Z in
B2�+1 are identical if RewindAborti does not occur in B2� for all i.

Next, we compute the probability that RewindAborti occurs in B2� for some
i. From (3) and (4), we have

|Pr [D(Exec0(λ)) = 1]− Pr [D(Exec2�(λ)) = 1]| ≤ �

δ(λ)
+ ε(λ) , (5)

for any probabilistic polynomial-time distinguisher D. Since RewindAborti does
not occur in B0 for all i, we conclude that RewindAborti occurs in B2� for some
i with probability at most �/δ(λ) + ε(λ).

Combining the above, we conclude that for any probabilistic polynomial-time
distinguisher D we have

|Pr [D(Exec2�(λ)) = 1]− Pr [D(Exec2�+1(λ)) = 1]| ≤ �

δ(λ)
+ ε(λ) . (6)

Finishing the Analysis of Case 1. From (5) and (6), for any probabilistic
polynomial-time distinguisher D, we have

|Pr [D(Exec0(λ)) = 1]− Pr [D(Exec2�+1(λ)) = 1]| ≤ 2�

δ(λ)
+ ε(λ) .

By substituting Exec0(λ) = ExecΠOT,A,Z(λ), Exec2�+1(λ) = IdealFcOT,S,Z(λ) and
δ(λ) = 3� · p(λ), we have (2).

Analysis of Case 2. In the real world, honest sender PS interacts with A (via
the corrupted receiver) using m0 and m1, which PS received as an input from Z.
In the ideal world, simulator S interacts with internal A honestly using m0 and
m1, where mσ̃ is received from FcOT and m1−σ̃ is chosen uniformly at random.
Thus, in the view of Z, the only possible difference between the real world and
the ideal world is the value of c1−σ̃ = (u1−σ̃, v1−σ̃g

m1−σ̃

0 ). In what follows, we let
μ := 1− σ̃.

First, we show the indistinguishability under the condition that (g0, h0, g1, h1)
is a non-DDH tuple in each subsession both in the real world and in the ideal
world. In this case, at least one of (g0, h0, g, h) and (g1, h1, g, h) is also a non-DDH
tuple in each subsession. From the definition of σ̃, this means that (gμ, hμ, g, h)
is a non-DDH tuple. That is, there exist α, β, γ ∈ Zq such that (hμ, g, h) =
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(gαμ , g
β
μ, g

γ
μ) and αβ �= γ. Using this, we can show that vμ is uniformly random

for Z. To see this, observe that we have

uμ = gsμμ htμ
μ = g

sμ+αtμ
μ ,

vμ = gsμhtμ = gβsμ+γtμ
μ

for random sμ and tμ, and the expressions sμ + αtμ and βsμ + γtμ are linearly
independent combinations of sμ and tμ when αβ �= γ. Thus, the distribution of
cμ is independent of mμ. Therefore, the view of Z is identically distributed in
the real world and the ideal world.

Next, we compute the probability that (g0, h0, g1, h1) is a DDH tuple in some
subsessions. Below, we show that this probability is negligible in the real world.
In this case, since simulator S interacts with internal A honestly (with uniformly
chosen mμ) and the computation of (g0, h0, g1, h1) is independent of the message
mμ, we conclude that this probability is also negligible in the ideal world.

Then, we show that (g0, h0, g1, h1) is a DDH tuple with negligible probability
in the real world. Let us consider the following experiment ExpBi (λ) for the hiding
property of 〈C,R〉. First, adversaryB sends (a0,0, a0,1, a1,0, a1,1) to the challenger.
Then, the challenger commits to ai,0 and ai,1 for B by invoking 〈C,R〉 sequen-
tially. Finally,B outputs bit i′, which is the output of ExpBi (λ). AdvantageAdvB(λ)
of B is

AdvB(λ) :=
∣∣∣Pr [ExpB0 (λ) = 1

]
− Pr

[
ExpB1 (λ) = 1

]∣∣∣ .

Using the hiding property of 〈C,R〉, we can show that we have AdvB(λ) < ε(λ) for
any B. Below, we show that, if in the real world (g0, h0, g1, h1) is a DDH tuple
in some subsession j∗ with probability 1/λc for some constant c > 0, we can
construct adversary B∗ such that AdvB∗(λ) is non-negligible, which contradicts
the hiding property of 〈C,R〉.

Adversary B∗ chooses j
U←− {1, . . . , �} (here, � is the upper bound of the

number of subsessions), and internally executes the real-world execution until
step (2.1) of subsession j. Let (sid, ssidj,Gj , qj , gj,0, hj,0, gj,1) be the message of

step (1) in subsession j. Then, B∗ chooses a0,0, a0,1, a1,0, a1,1
U←− Gj and sends

them to the challenger. When the challenger starts 〈C,R〉, adversary B∗ forwards
it to the internal execution as step (2) of subsession j. We call this internal
execution exec0. Let (sid, ssidj, b0) be the message of step (3) in subsession j of
exec0. Next, B∗ rewinds exec0 to step (2) of subsession j. Then, B∗ receives the
next commitment of 〈C,R〉 from the challenger and forwards it to the rewound
internal execution as step (2) of subsession j. We call this second execution exec1.
Let (sid, ssidj , b1) be the message of step (3) in subsession j of exec1. Then, B∗

outputs 1 if and only if b0/b1 = a−1
0,0/a

−1
0,1 holds.

Let ρ be a partial transcript such that step (2) of subsession j∗ begins immedi-
ately after ρ in the real execution. Then, from the average argument, it holds that

Pr [(g0, h0, g1, h1) is a DDH tuple in subsession j∗ | ρ occurs] ≥ 1

2λc

with probability at least 1/2λc over the choice of ρ.



230 S. Kiyoshima, Y. Manabe, and T. Okamoto

In B∗, we have j = j∗ with probability 1/�. In addition, in ExpB
∗

0 (λ), we have

Pr
[
b0 = a−1

0,0g
xjyj

j,0

∧
b1 = a−1

0,1g
xjyj

j,0

∣∣∣ j = j∗
]
≥ 1

2λc
·
(

1

2λc

)2

,

where xj := loggj,0 hj,0 and yj := loggj,0 gj,1. Thus, we have Pr
[
ExpB

∗
0 (λ) = 1

]
≥

1/(8�λ3c). On the other hand, since no information about a0,0 and a0,1 is fed into

exec0 and exec1 in ExpB
∗

1 (λ), we have Pr
[
ExpB

∗
1 (λ) = 1

]
≤ 1/|G| < ε(λ). There-

fore, we have AdvB∗(λ) ≥ 1/poly(λ). Since this contradicts the hiding property
of 〈C,R〉, we conclude that the probability that (g0, h0, g1, h1) is a DDH tuple
in some subsession is negligible in the real world.

Combining the above, we conclude that (1) holds in Case 2.

Analysis of Case 3. First, the outputs of the honest receiver in the real world
are the same as in the ideal world. This is because, in each subsession of the real
world, the receiver outputs 1 if and only if it holds that

g0 =
cσ,1
crσ,0

=
vσg

mσ
0

ur
σ

=
gsσhtσgmσ

0

(gsσσ htσ
σ )r

= gmσ
0 .

Thus, to show the indistinguishability, it suffices to show that Z cannot tell
whether it interacts with A in the real world or it interacts with the internal A
(of S) in the ideal world. Toward this, let us consider the following hybrid.

Hybrid H0 is the same as the ideal world except that, in each subsession, sim-
ulator S uses honest parties’ inputs m0, m1, and σ instead of 0. Note that
the view of Z in H0 is the same as in the real world.

Hybrid H1 is the same as H0 except that S sets σ := 1 in each subsession.
The view of Z in H1 is indistinguishable from the one in H0 since, from the
DDH assumption, (g0, h0, g1, h1, g

r
0, h

r
0) and (g0, h0, g1, h1, g

r
1, h

r
1) are indis-

tinguishable for Z.
Hybrid H2 is the same as H1 except that S sets m0 := 0 in each subsession.

The view of Z in H2 is identical with the one in H1 except with negligible
probability since, from the same argument as in Case 2, the distribution of
c0 in each subsession is independent of the value of m0 except with negligible
probability.

Hybrid H3 is the same as H2 except that S sets σ := 0 in each subsession.
From the same argument as in H1, the view of Z in H3 is indistinguishable
from the one in H2.

Hybrid H4 is the same as H3 except that S sets m1 := 0 in each subsession.
From the same argument as in H2, the view of Z in H4 is identical with the
one in H3 except with negligible probability.

Since H4 is the same as the ideal world, it holds that the view of Z in the real
world is indistinguishable from the one in the ideal world. We therefore conclude
that (1) holds in Case 3.
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Since we have (1) for all three cases, we conclude that protocol ΠOT UC-SPS-
realizes FcOT. ��

4 Conclusion

This paper showed a concurrently-secure oblivious transfer protocol in the SPS
security without any setup. Our protocol is efficient since it does not use any
inefficient primitive such as general zero-knowledge proofs for all NP statements.
Therefore, our protocol may be useful for practical purposes.

It should be noted that, unlike many previous studies on SPS security, we
considered only concurrent security and do not considered other security no-
tions such as non-malleability [10] and UC security. Thus, our protocol achieves
somewhat restricted security. However, we believe that concurrent security is
sufficient for various settings such as a network in which one party is a server
and the others are clients. It would be interesting to improve our protocol so
that non-malleability or the UC security is also guaranteed.
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Abstract. Scalar product protocol aims at securely computing the dot
product of two private vectors. As a basic tool, the protocol has been
widely used in privacy preserving distributed collaborative computations.
In this paper, at the expense of disclosing partial sum of some pri-
vate data, we propose a linearly efficient Even-Dimension Scalar Product
Protocol (EDSPP) without employing expensive homomorphic crypto-
system and third party. The correctness and security of EDSPP are
confirmed by theoretical analysis. In comparison with six most frequently-
used schemes of scalar product protocol (to the best of our knowledge),
the new scheme is a much more efficient one, and it has well fairness.
Simulated experiment results intuitively indicate the good performance
of our novel scheme. Consequently, in the situations where divulging
very limited information about private data is acceptable, EDSPP is an
extremely competitive candidate secure primitive to achieve practical
schemes of privacy preserving distributed cooperative computations. We
also present a simple application case of EDSPP.

Keywords: privacy preserving, distributed computation, scalar product
protocol.

1 Introduction

The advances of flexible and ubiquitous transmission mediums, such as wireless
networks and Internet, have triggered tremendous opportunities for collaborative
computations, where independent individuals and organizations could cooperate
with each other to conduct computations on the union of data they each hold.
Unfortunately, the collaborations have been obstructed by security and privacy
concerns. For example, a single hospital might not have enough cases to analyze
some special symptoms and several hospitals need to cooperate with each other
to study their joint database of case samples for the comprehensive analysis
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results. A simple way is that they share respective private database and bring
the data together in one station for analysis. However, despite various shared
benefits, the hospitals may be unwilling to compromise patients’ privacy or vio-
late any relevant law and regulation [1, 2]. Consequently, some techniques [3, 4]
for privacy preserving distributed collaborative computations were introduced
to address the concerns by privacy advocates. Nowadays, a large amount of at-
tention [5–7] has been paid to dealing with the challenges of how to extract
information from distributed data sets owned by independent parties while no
privacy is breached.

Actually, many privacy preserving problems in distributed environments can
essentially be reduced to securely computing the scalar product of two private
vectors. Some recent examples are as follows. Murugesan et al. [8] proposed
privacy preserving protocols to securely detect similar documents between two
parties while documents cannot be publicly disclosed to each other, and the
main process of their schemes, securely computing the cosine similarity between
two private documents, is achieved by scalar product protocol. A privacy pre-
serving hop-distance computation protocol in wireless sensor networks is intro-
duced in [9] and secure scalar product protocol is used to privately compute
the value of

∑
xiyi, where xi and yi are the private coordinates. Then, the dis-

tance S2 =
∑

(xi − yi)
2 =

∑
x2
i − 2 ∗

∑
xiyi +

∑
y2i can be securely obtained.

See [6, 7, 10, 11] for more concrete applications of scalar product protocol.
As secure computation of private vectors is fundamental for many privacy

preserving distributed computing tasks, several schemes [12–16] have been pro-
posed to perform the secure computation. Du and Zhan presented two practical
schemes in [12]: scalar product protocol employing commodity server (denoted
as SPP-CS) and scalar product protocol using random invertible matrix (de-
noted as SPP-RIM). Through algebraic transformation, another scalar product
protocol was introduced in [13] (denoted as ATSPP). Based on homomorphic
encryption, two solutions for securely computing dot product of private vec-
tors are given in [14] (denoted as GLLM-SPP) and [15] (denoted as AE-SPP)
respectively. A polynomial-based scalar product protocol (denoted as PBSPP)
was lately presented by Shaneck and Kim [16]. The computational complexity
of SPP-RIM and ATSPP is O(n2) where n is the dimensionality of private vec-
tors. SPP-CS and PBSPP have good linear complexity, but they employ one
or more semi-trusted third parties, such as the commodity server in SPP-CS.
GLLM-SPP and AE-SPP encrypt the private elements by using expensive ho-
momorphic cryptosystem. As is well known, the public key cryptosystems are
typically computationally expensive and they are far from efficient enough to
be used in practice. The protocols will be vulnerable to unavoidable potential
collusion attacks while employing the semi-trusted third parties. As a result,
previous schemes of scalar product protocol are still far from being practical in
most situations.

In this paper, we focus on the useful secure primitive, scalar product proto-
col [12], and propose a simple and linearly efficient protocol for securely com-
puting the scalar product of two private vectors, even-dimension scalar product



Efficient Secure Primitive for Privacy Preserving Distributed Computations 235

protocol (EDSPP). The novel scheme does not employ homomorphic encryption
system and any auxiliary third party. Theoretical analysis confirms that the
protocol is correct and no private raw data is revealed although it brings about
some limited information disclosure. Simulated experiment results and compari-
son indicate that the new scheme has good fairness and it is much more efficient
than the previous ones. As a result, our new scheme is a competitive secure
candidate to achieve practical schemes of privacy preserving distributed coop-
erative computations while disclosing partial information is acceptable. Similar
to the existing works [12–16], our protocol is also under semi-honest model [17],
where each participant will correctly follow the protocols while trying to find
out potentially confidential information from his legal medium records. It is re-
markable that the semi-honest assumption is reasonable and practicable, as the
participants in reality may strictly follow the protocols to exactly obtain the
profitable outputs.

The rest of the paper is organized as follows. Section 2 proposes the new
solution for scalar product protocol, and then presents the theoretical analysis of
its correctness, security, communication overheads and computation complexity.
The performance comparison and experiment results are displayed in section 3.
At last, section 4 concludes the paper.

2 Even-Dimension Scalar Product Protocol

2.1 Problem Definition and Our Scheme

In scalar product protocol, there are two participants, denoted as Alice and Bob.
Alice privately holds a vector x = (x1, x2, · · · , xn) and Bob has the other private
vector y = (y1, y2, · · · , yn), where n is a positive integer. Their goal is that Alice
receives a confidential number u and Bob obtains his private output v while the
private vector is not disclosed to the other party or anyone else. Here, u and v
meet x · y = u + v. That is, scalar product protocol enables two participants
to securely share the dot product of their confidential vectors in the form of
addition.

As a secure primitive, scalar product protocol [12, 14] has extensive privacy
preserving applications and an efficient scalar product protocol will boost the
practical process of privacy preserving distributed cooperative computation. In
this paper, we consider a special case where n is an even number (suppose n = 2k,
k is a positive integer). Then, at the expense of disclosing partial sum of some
private data, we propose an efficient Even-Dimension Scalar Product Protocol
(EDSPP). In our scheme, the private data is hidden by stochastic transformation,
and each participant obtains a private share of the scalar product of their private
even-dimension vectors at last. The novel scheme has linear complexity and
no third party is employed. Besides, it just needs a secure channel to securely
transmit the data and does not use any public key cryptosystem. The detailed
steps are displayed in protocol 1. In step 1.1 of the scheme, the participants
protect their private numbers through randomization. Then, step 1.2 works out
the secure share of the scalar product of each two dimensions. Finally, they
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privately obtain the expected outcomes in step 2. As can be seen from protocol 1,
the private vectors are handled two by two dimensions, thus, our new scheme
can only compute the dot product of even-dimension vectors.

Protocol 1. Even-Dimension Scalar Product Protocol (EDSPP)

Input: Alice has a private 2k-dimension vector x = (x1, x2, · · · , x2k) and Bob holds
another confidential 2k-dimension vector y = (y1, y2, · · · , y2k). (k ∈ Z+, xi, yi ∈
R, i = 1, 2, · · · , 2k)

Output: Alice obtains private output u and Bob securely gets v which meet

u+ v = x · y =
2k∑
i=1

xiyi.

1: Step 1:
2: for j = 1 to k do
3: Step 1.1: Alice locally generates two random real numbers aj and cj such that

aj + cj 	= 0. Then, she computes pj = aj + cj , x
′
2j−1 = x2j−1 + aj and x′

2j =
x2j + cj , and sends {pj , x′

2j−1, x
′
2j} to Bob by a secure channel. Bob randomly

generates two real numbers bj and dj which meet bj − dj 	= 0, and computes
qj = bj − dj , y

′
2j−1 = bj − y2j−1 and y′

2j = dj − y2j . Then, he securely sends
{qj , y′

2j−1, y
′
2j} to Alice.

4: Step 1.2: Alice locally calculates

uj = y′
2j−1(x2j−1 + 2aj) + y′

2j(x2j + 2cj) + qj(aj + 2cj)

and Bob, by himself, computes

vj = x′
2j−1(2y2j−1 − bj) + x′

2j(2y2j − dj) + pj(dj − 2bj).

5: end for
6: Step 2: Alice obtains u =

∑k
j=1 uj and Bob gets v =

∑k
j=1 vj .

To visually illustrate how our novel scheme works, we give a concrete example
as follows. Alice has a 4-dimension vector x = (2.3,−81.9, 96.7,−27.1), and
Bob’s private vector is y = (−19.5,−78.1, 39.2, 52.8). According to protocol 1,
they, by the following procedures, can obtain the scalar product’s private shares
u and v, which meet u+ v = x · y, respectively.

– Alice generates random numbers: a1 = −53.0 and c1 = 99.8 for the first two
dimensions of x. Then, she computes

p1 = a1 + c1 = 46.8, x′
1 = 2.3 + a1 = −50.7 , x′

2 = −81.9 + c1 = 17.9,
and sends {p1, x′

1, x
′
2} to Bob. At the same time, Bob randomly selects:

b1 = 28.7 and d1 = 11.3 for the first two dimensions of y. Then, he computes
q1 = b1− d1 = 17.4, y′1 = b1 − (−19.5) = 48.2 , y′2 = d1 − (−78.1) = 89.4,

and sends {q1, y′1, y′2} to Alice.
– Analogously, for the latter two dimensions, Alice and Bob generates random

numbers {a2 = −81.1, c2 = −17.5} and {b2 = −56.9, d2 = −31.2}, re-
spectively. Alice computes p2 = −98.6, x′

3 = 15.6 , x′
4 = −44.6, and Bob
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computes q2 = −25.7, y′3 = −96.1 , y′4 = −84.0. Then, they send {p2, x′
3, x

′
4}

and {q2, y′3, y′4} to each other.
– Alice and Bob computes {u1, u2} and {v1, v2}, respectively, by the following

way.

u1 = y′1(x1 + 2a1) + y′2(x2 + 2c1) + q1(a1 + 2c1) = 8074.88

u2 = y′3(x3 + 2a2) + y′4(x4 + 2c2) + q2(a2 + 2c2) = 14494.72

v1 = x′
1(2y1 − b1) + x′

2(2y2 − d1) + p1(d1 − 2b1) = −1723.34
v2 = x′

3(2y3 − b2) + x′
4(2y4 − d2) + p2(d2 − 2b2) = −12134.96

– At last, Alice obtains the secure share u = u1 + u2 = 22569.6, and Bob gets
his private output v = u1 + u2 = −13858.3.

If we directly calculates the dot product of x and y, it is 2.3∗(−19.5)+(−81.9)∗
(−78.1)+96.7 ∗ 39.2+ (−27.1) ∗ 52.8 = 8711.3 which is exactly equal to the sum
of u = 22569.6 and v = −13858.3. It shows the above steps are correct.

2.2 Correctness Analysis

To confirm the correctness of EDSPP, we need to consider,

Theorem 1. After performing EDSPP, Alice’s private output u and Bob’s se-
cret output v meet u+ v = x · y =

∑2k
i=1 xiyi. That is, EDSPP is correct.

Proof. In step 1.1 of EDSPP, there are x′
2j−1 = x2j−1 + aj, x

′
2j = x2j + cj ,

pj = aj + cj , y
′
2j−1 = bj − y2j−1, y

′
2j = dj − y2j and qj = bj − dj . Then,

x′
2j−1(2y2j−1 − bj) = 2x2j−1y2j−1 − bjx2j−1 + 2ajy2j−1 − ajbj,

x′
2j(2y2j − dj) = 2x2jy2j − djx2j + 2cjy2j − cjdj ,

pj(dj − 2bj) = ajdj − 2ajbj + cjdj − 2bjcj ,

y′2j−1(x2j−1 + 2aj) = bjx2j−1 + 2ajbj − x2j−1y2j−1 − 2ajy2j−1,

y′2j(x2j + 2cj) = djx2j−1 + 2cjdj − x2jy2j − 2cjy2j ,

qj(aj + 2cj) = ajbj + 2bjcj − ajdj − 2cjdj .

According to step 1.2, we have uj = y′2j−1(x2j−1+2aj)+y′2j(x2j +2cj)+qj(aj+
2cj) and vj = x′

2j−1(2y2j−1 − bj) + x′
2j(2y2j − dj) + pj(dj − 2bj). Thus,

uj + vj = x2j−1y2j−1 + x2jy2j . (1)

There are u =
∑k

j=1 uj and v =
∑k

j=1 vj in step 2, then, u+v =
∑k

j=1(uj+vj) =∑k
j=1(x2j−1y2j−1 + x2jy2j). Therefore,

u+ v =

2k∑
i=1

xiyi (2)

That is, u+ v = x · y holds at the end of EDSPP, which completes the proof.



238 Y. Zhu, T. Takagi, and L. Huang

2.3 Security Analysis

In this subsection, we will analysis the security of EDSPP under semi-honest
model [17], where each participant correctly follow the protocol while trying
to find out potentially confidential information from his legal medium records.
Generally, we consider the view of each participant in this protocol and whether
some privacy can be deduced from the view.

During the execution of EDSPP, Alice receives y′2j−1, y
′
2j and qj , symmetri-

cally, Bob learns x′
2j−1, x

′
2j and pj.

From y′2j−1 and y′2j , Alice cannot learn any information about y2j−1 and
y2j . While qj is known to her, the sum of −y2j−1 and y2j will be derived by
y2j−y2j−1 = y′2j−1−y′2j− qj , however, Bob’s private numbers y2j−1 and y2j are
still unrevealed. Analogously, Bob can figure out x2j−1 +x2j = x′

2j−1 +x′
2j −pj ,

while he cannot obtain any more information about Alice’s privacy x2j−1 and
x2j . Therefore, each real element of the private vectors of both participants is
not disclosed in EDSPP. If the elements of the vectors are 0 or 1, EDSPP is not
secure. GLLM-SPP [14] is more fit for securely computing the scalar product of
binary vectors.

Quantification of Disclosure Level. Here, we give the quantification of
disclosure level about Alice’s private data x2j−1 and x2j . While EDSPP has
been applied, if T = x′

2j−1 + x′
2j − pj , then, Bob learns that (x2j−1, x2j) is

randomly located at the line T = x2j−1+x2j , the slope of which is exactly equal
to −1.

(1) While x2j−1, x2j ∈ R, that is, before EDSPP being applied, according to
Bob’s view, (x2j−1, x2j) is randomly located at two-dimensional real space R2.
After EDSPP, the distribution space of (x2j−1, x2j) is reduced to a line. However,
as both x2j−1 and x2j are random in Bob’s view, then, he cannot extract the
original private numbers x2j−1 and x2j from their sum T = x′

2j−1 + x′
2j − pj .

(2) While L � x2j−1, x2j � U (L < U), then, before EDSPP, (x2j−1, x2j)
is randomly located at a (U − L) × (U − L)-square area in Bob’s view. At the
end of EDSPP, Bob can figure out T = x′

2j−1 + x′
2j − pj which is equal to

x2j−1 + x2j . Furthermore, x2j−1 = T − x2j and x2j = T − x2j−1, thus, Bob
knows T − U � x2j−1, x2j � T − L. Then, he obtains

max{L, T − U} � x2j−1, x2j � min{U, T − L}.

According to the range of x2j−1 and x2j , it is easy to get 2L � T � 2U .
If 2L � T < L + U , then, max{L, T − U} = L and min{U, T − L} = T − L.

Therefore, Bob can find out L � x2j−1, x2j � T − L.
If L+ U � T � 2U , then, max{L, T − U} = T − U and min{U, T − L} = U .

In Bob’s view, there will be T − U � x2j−1, x2j � U .
In this situation, Bob can obtain a more narrow range about x2j−1 and x2j ,

but he cannot exactly deduce the value of them except the following two extreme
cases: x2j−1 = x2j = L, T = 2L and x2j−1 = x2j = U, T = 2U .

In general, the new scheme sacrifices some security in a certain level, but the
private raw data is still protected especially when the elements of the private
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vectors are real number. Alice and Bob disclose nothing but the sum x2j−1+x2j ,
y2j−1 + y2j to each other in EDSPP. Besides, two participants carry out sym-
metric computations, send and receive symmetrical data, consequently, EDSPP
is quite fair.

2.4 Communication Overheads and Computational Complexity

The following contributes to the computational cost: (1) In step 1.1 of EDSPP,
Alice and Bob respectively generate two random number and perform three ad-
ditions. In step 1.2, each party performs three multiplications and two additions.
All the above operations loop for k times. (2) In step 2, they each carry out k−1
additions.

Therefore, the computational complexity of EDSPP is O(n) in total. Here, n
is the dimension number of their private vectors and n = 2k in the protocol.

The transmitting data contains x′
2j−1, x

′
2j , pj , y

′
2j−1, y

′
2j and qj (j = 1, 2, · · · , k)

in EDSPP. Thus, the total communication overheads are 3nb0 bits (n = 2k).
Here, b0 is the bit length of a message.

2.5 A Simple Application Case

In many privacy-preserving distributed computations [18, 19], a key step is to
securely find out which one of the points holden by one party is nearest to another
point of the other participant. For simplicity, we deal with the problem that Alice
has two private points P1(P11, P12, · · · , P1d) and P2(P21, P22, · · · , P2d), and Bob
privately holds another point Q(Q1, Q2, · · · , Qd). They want to find out which
one of P1 and P2 is closer to Q without disclosing the private coordinates of
each point to each other or anybody else. Here, we use the scalar product of the
coordinates as the distance of two points, that is, |PiQ| =

∑d
j=1 PijQj (i = 1, 2).

In fact, comparison of distances measured by other metrics, such as Euclidean
distance and consine similarity, can be easily transferred into comparison of the
dot products. Based on EDSPP, we present a simple but efficient solution for
the above problem.

– Alice locally generates a random positive real numbers α and d random real
numbers r1, r2, · · · , rd. Then, she sets the 2d-dimensional vectors

P ′
i = (αPi1, r1, αPi2, r2, · · · , αPid, rd), (i = 1, 2).

Bob randomly generates a random positive real numbers β and d random
real numbers R1, R2, · · · , Rd, and computes his private 2d-dimensional vector
by the following way

Q′ = (βQ1, R1, βQ2, R2, · · · , βQd, Rd).

– Alice and Bob collaboratively perform EDSPP such that Alice obtains
U1, U2 and Bob gets his private outputs V1, V2 which meet Ui + Vi = P ′

i ·
Q′ (i = 1, 2).
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– At last, Alice sends δ = U1−U2 to Bob. Then Bob computes Δ = δ+V1−V2

and finds out the closer one by comparing Δ with 0.

In the above scheme, we can obtain

Δ = (U1 + V1)− (U2 + V2) = P ′
1 ·Q′ − P ′

2 ·Q′ = αβ(|P1Q| − |P2Q|).
Thus, if Δ > 0, P2 is closer to Q; otherwise, P1 is closer to Q.

Table 1. Comparison between EDSPP and Existing Schemes

Protocols
Computational Employ

Security Fairness
Complexity Third Party?

GLLM-SPP [14] O(n ∗ H)� No CR-sec�� Very Bad

AE-SPP [15] O(n ∗ H)� No CR-sec�� Good

SPP-RIM [12] O(n2) No L-dis�� Bad

ATSPP [13] O(n2) No L-dis�� Good

SPP-CS [12] O(n) Yes IT-sec�� Good

PBSPP [16] O(n) Yes IT-sec�� Good

EDSPP O(n) No L-dis�� Good

� Suppose the computational complexity of an encryption by homomorphic cryptosys-
tem is O(H). n is the dimension of private vectors.
�� Here, IT-sec denotes “information-theoretically secure”, CR-sec denotes “the secu-
rity based on the intractability of the composite residuosity class problem”, and L-dis
denotes that the scheme will result in limited disclosure about private information
of participants. SPP-CS and PBSPP are vulnerable to collusion attacks, though the
schemes have the security based on information theory.

3 Performance Comparison and Experiment Results

The communication overheads of EDSPP and each previous scheme are O(n),
to demonstrate the special features of EDSPP, we compare it with six most
frequently-used schemes (to the best of our knowledge) in table 1. It indicates
that EDSPP has the best performance in many aspects except for the security.
SPP-CS [12] and PBSPP [16] have the same linear computational complexity as
EDSPP, but SPP-CS and PBSPP employ one or more semi-trusted third par-
ties, which results in that they are extremely vulnerable to unavoidable potential
collusion attacks. While the third party colludes with one party, the other par-
ticipant’s privacy will be seriously breached. The computational complexity of
SPP-RIM [12] and ATSPP [13] are O(n2) which is bigger than that of EDSPP.
GLLM-SPP [14] and AE-SPP [15] use the expensive homomorphic cryptosys-
tem. Additionally, participants execute very similar operations in EDSPP, thus,
the scheme has good fairness. In GLLM-SPP [14] the participant, who generates
the homomorphic encryption system and encrypts each element of his private
vector, will load much more computation and communication than the other
one, thus the fairness of GLLM-SPP is very bad.
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We implement three most computationally efficient schemes, SPP-CS, PBSPP
and EDSPP. In the experiments, each participant is performed on a computer
with Intel Core2 Duo 2.93GHz CPU and 2.0GB memory, and the average ping
time of them is shorter than 1 ms. Figure 1 exhibits the simulated results, which
indicates that all the runtime linearly increase with dimension and EDSPP costs
least time. While the vectors’ dimension are 200 (k = 100), the total running
time of EDSPP is only a little more than 100 ms which is less than one-third of
that of PBSPP and is about one-sixth of the running time cost by SPP-CS.

In summary, the comparative advantages of EDSPP are its simpleness, linear
efficiency, good fairness and it does not employ the expensive homomorphic
cryptosystem and any auxiliary third party. As ideal security is too expensive to
achieve, especially in large-scale systems, and it may be unnecessary in practice,
if disclosing partial information about private data is still acceptable, EDSPP
will be a competitive low-cost candidate secure primitive for privacy preserving
distributed collaborative computations.
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Fig. 1. Running Time of SPP-CS [12], PBSPP [16] and EDSPP (ms = 10−3s, the
private vectors’ dimension n = 2k)

4 Conclusion

In this paper, a linearly efficient scheme for scalar product protocol, EDSPP, has
been proposed. The protocol has no use of expensive homomorphic crypto-system
and third party, which have been employed by existing solutions. Theoretical
analysis and simulated experiment results confirm that the novel scheme is a
competitive candidate for securely computing the scalar product of two private
vectors.
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Abstract. This paper proposes a generic construction of GUC secure
commitment against static corruptions in the KRK (Key Registration
with Knowledge) model. The GUC security is a generalized version of
universally composable security which deals with global setup used by
arbitrary many protocols at the same time. The proposed construction
is the first GUC secure protocol in which the commit phase is non-
interactive (whereas the reveal phase is interactive). Thus, the proposed
construction is suitable for applications where many values are commit-
ted to a few receivers within a short time period. The proposed con-
struction uses simple tools, a public key encryption (PKE) scheme, a
Sigma protocol, a non-interactive authenticated key exchange (NI-AKE)
scheme, a message authentication code (MAC), for which efficient con-
structions have been presented. For the sake of simplicity of the proposed
construction, which uses GUC secure authenticated communication (con-
structed from MAC and NI-AKE), we have not achieve full adaptive se-
curity because GUC secure authenticated communication in the KRK
model is impossible.

Keywords: Commitment, GUC security, KRK, Static adversary.

1 Introduction

Commitment protocols are one of the most important components for crypto-
graphic protocols. Thus, commitment protocols need providing universal com-
posablity like Universally Composable (UC) security [3] and Generalized UC
(GUC) security [6]. UC/GUC-secure protocols guarantee security even when
the protocols are run concurrently with arbitrarily many other protocols. GUC-
secure protocols further guarantee security even when the used setup is a global
one accessed by arbitrary many protocols. For protocols with global setup, GUC
is significantly stronger. In fact, while UC-secure commitment protocols in the
Common Reference String (CRS) model are presented in [2,4,5,8,11,13,14,15],
realizing GUC-secure commitment is provably impossible in the CRS model [6].
A globally available setup that can be used through the system is realistic and
convenient. Thus, alternative and reasonable setup assumptions, called the key
registration with knowledge (KRK) model and the augmented CRS (ACRS)
model, are presented in [6], and on the ACRS model, GUC-secure commitment
protocols are presented in [6,12].
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Table 1. Comparison of the previous GUC secure protocols, Lindell’s UC secure pro-
tocols, and the proposed GUC secure protocol

Security Setup Adaptive Non-inter. Non-inter.
notion assum. security commit reveal

CDPW07 [6] GUC ACRS
√ √

DSW08 [12] GUC ACRS
√ √

Lin11 [14] UC CRS
√ √

Proposed construction GUC KRK
√

The common feature of the previous GUC-secure commitment protocols in
[6,12] is that the commit phase is interactive (whereas the reveal phase is non-
interactive). Thus, the previous constructions are suitable for applications where
many values need revealing within a short time period. Considering a possibil-
ity of applications where commitments rush into a few receivers like e-voting,
commitment protocols with non-interactive commit phase are also needed.

This paper presents the first GUC secure commitment protocol with non-
interactive commit phase. Our approach is to extend an existing UC secure
commitment protocol with non-interactive commit phase to GUC secure one.
In [14], Lindell presented a generic construction of UC-secure commitment with
non-interactive commit phase and its highly-efficient implementations under the
standard DDH assumption. One of the main advantages of Lindell’s construction
is its conceptual simplicity (as mentioned by the author himself). Thus, we aim
to extend Lindell’s UC-secure generic construction while keeping its simplicity.

In both UC and GUC frameworks, proving the security of a protocol in some
setup is to show how to simulate information that could be obtained via a real at-
tack on the protocol. While in the UC framework a simulator can freely generate
the setup information and use its trapdoor information, in the GUC framework a
simulator cannot use the trapdoor since the setup information is given as global
one. Thus, we need to establish a mechanism to simulate the protocol without
the trapdoor. In the security proof of Lindell’s construction, the commit phase
is simulated only with the public parameter (i.e., CRS). However, in the reveal
phase, the simulator uses the trapdoor of the CRS for attacks to impersonate the
receiver without corrupting. Our idea to simulate the reveal phase without the
trapdoor is to add an authentication mechanism in order to detect the imperson-
ation and terminate the execution. Thus, the simulator does not need to use the
trapdoor. As a GUC-secure authentication mechanism, we use the protocol in
the KRK model presented by Dodis et al. in [10], which is constructed from sim-
ple tools, message authentication code (MAC) and non-interactive authenticated
key exchange (NI-AKE) scheme. We note that GUC-secure authenticated com-
munication against adaptive corruptions in the KRK model is impossible [10].

As a result, the proposed generic construction is GUC secure against static
corruptions in the KRK model whereas Lindell’s UC-secure constructions in [14]
and the previous GUC-secure constructions in [6,10] are secure against adap-
tive corruptions. The advantage of the proposed construction is a conceptual
simplicity same as Lindell’s one: only MAC secure against one-time chosen
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message attack and NI-AKE are used in addition to the building blocks of Lin-
dell’s construction, a CCA2-secure public-key encryption scheme, a dual mode
cryptosystem, and a Sigma protocol.

The rest of this paper is organized as follows. This paper uses a simplified
variant of GUC security called Externalized UC (EUC) presented in [6] because
its equivalence is proved. Sect. 2 shows the definitions of GUC/EUC framework
and building blocks used in this paper. Sect. 3 overviews Lindell’s construction
and shows our idea. In Sect. 4, we present a generic construction of EUC secure
commitment protocols and a security proof. Sect. 5 concludes this paper.

2 Definitions

When A is a random variable or distribution, y ← A denotes that y is randomly
selected from A according to its distribution. A function f : N→ R is negligible
in k if for all polynomial q, and all large k, f(k) ≤ 1

q(k) . If f is negligible in k,

we write f ≤ neg(k).

2.1 Generalized Universally Comosable (GUC) Security

Generalized Universally Composable (GUC) security is an extension of UC secu-
rity [6], that considers an execution of a protocol in a setting involving a global
setup modeled by a shared functionality G, that is accessible by an environment
Z, in addition to the honest parties and adversary. As with the definition of
UC security, ideal and real models are considered where the real protocol is run
in the real model and a trusted party carries out the computation in the ideal
model. Here, the trusted party is modeled by an ideal functionality F . In the
ideal model, an ideal protocol IDEALF is run. Parties running IDEALF simply
forward their inputs to F and output any message received from F . The essen-
tial difference of GUC security from UC security is that Z is allowed to invoke
any party of multiple concurrent instances of the challenge protocol and other
protocols. Such an environment is called unconstrained. The unconstrained en-
vironment Z invokes a shared functionality, chooses the inputs for the honest
parties invoked by Z, interacts with the adversary throughout the computation,
and receives the honest parties’ outputs. The adversary A can read all message
sent by the parties and send arbitrary messages to any party. The simulator S
whereas may not interact with the parties, but interacts with F . The environ-

ment Z outputs a single bit when it halts. Let GEXECG
π,A,Z denote the output

of the unconstrained environment Z when Z runs with π and A. Security is
formulated by requiring the existence of an ideal model simulator S so that no
environment Z can distinguish between the case that it runs with A in the real
model and the case that it runs with S in the ideal model.

Definition 1 (GUC-Emulation [6]). Let k be security parameter. Let π and
φ be PPT multi-party protocols. π is said to be GUC-emulating φ if, for any
PPT adversary A, there exists a PPT simulator S, for any unconstrained PPT
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Fig. 1. Overview of EUC framework: The solid lines represent interactions by local
input and output. The dashed box represent that A or S controls interaction between
parties of the protocol.

environment Z, we have |Pr[GEXECφ,S,Z = 1] − Pr[GEXECπ,A,Z = 1]| ≤
neg(k). ��

In this paper, we restrict adversaries to static ones, which are not allowed to
corrupt new parties during protocol execution.

GUC security is formally defined as follows.

Definition 2 (GUC secure realization [6]). Let π be a PPT multi-party
protocol. π is said to be GUC securely realizing an ideal functionality F if π
GUC-emulates IDEALF . ��

2.2 Externalized Universally Composable (EUC) Security

Externalized Universally Composable (EUC) security is a simplified variant of
GUC security [6], that considers only single instance of the challenge protocol,
that is, Z for EUC is only allowed to invoke parties of a single instance of the
challenge protocol. Figure 1 depicts the overview of the EUC framework.

Before showing the definition of EUC security, we show some terminologies
defined in [6]. A protocol instance M is said to be a subroutine of another
instance M ′ if M either receives inputs from M ′, or outputs the message to M ′.
Recursively, M is said to be a sub-party of protocol π if M is a subroutine of a
party running π or a sub-party of π. π is said to be G-subroutine respecting if
none of the sub-parties of an instance of π provides outputs to or receives inputs
from any instance that is not also party/sub-party of that instance of π, except
for communicating with a single instance of G.

Definition 3 (EUC-Emulation [6]). Let k be security parameter. Let π and φ

be PPT multi-party protocols, where π is G-subroutine respecting. Let EXECG
π,A,Z

denote the output of Z when Z runs with π and A. π is said to be G-EUC-
emulating φ if, for any PPT adversary A, there exists a PPT simulator S,
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for any unconstrained PPT environment Z, we have |Pr[EXECG
π,S,Z = 1] −

Pr[REALG
φ,A,Z = 1]| ≤ neg(k). ��

EUC security is formally defined as follows.

Definition 4 (EUC secure realization [6]). Let π be a PPT multi-party
protocol, where π is G-subroutine respecting. π is said to be EUC securely realizing
an ideal functionality F if π G-EUC-emulates IDEALF . ��

The equivalence of GUC and EUC is proved in [6].

Theorem 1 (Equivalence of GUC to EUC [6]). Let π be a PPPT multi-
party protocol, where π is G-subroutine respecting. Then protocol π GUC-emulates
a protocol φ, if and only if π G-EUC-emulates φ. ��
In [6], the following generalized universally composition theorem is proved.

Theorem 2 (Generalized universally composition [6]). Let ρ, π, φ be
PPT multi-party protocols, and such that both φ and π are G-subroutine respect-
ing, and π G-EUC-emulates φ. Let ρπ/φ denote a modified version of ρ that
invokes π instead of φ. Then ρπ/φ GUC-emulates ρ. ��

2.3 Functionalities

In this paper, we present a protocol which GUC securely realizes the multi-
commitment ideal functionality Fmcom in the key registration with knowledge
(KRK) model. We recall the definitions of Fmcom and the KRK model.

Definition 5 (The ideal commitment functionality Fmcom [14]). Fmcom

proceeds as follows, running with parties P1, . . . , Pm, a parameter 1n, and an
adversary S.

– Commit phase: Upon receiving a message (commit, sid, ssid, Pi, Pj , x) from

Pi where x ∈ {0, 1}n log2 n, record the tuple (ssid, Pi, Pj , x) and send the
messages (receipt, sid, ssid, Pi, Pj) to S, and, after a delay, provide the same
output to Pj. Ignore any future commit messages with the same ssid from Pi

to Pj.
– Reveal phase: Upon receiving a message (reveal, sid, ssid) from Pi: If a tu-

ple (ssid, Pi, Pj , x) was previously recorded, then send the message (reveal,
sid, ssid, Pi, Pj , x) to S and, after a delay, provide the same output to Pj.
Otherwise, ignore. ��

In the KRK model, the shared functionality GΠkrk chooses a private and public
key pair for each registered party, and lets all parties know the public key. And

parties can obtain their own secret keys. GΠkrk is defined as follows.

Definition 6 (The Π-key registration with knowledge shared function-

ality GΠkrk [6]). GΠkrk proceeds as follows, given a (deterministic) key generation
function KRK.Gen (with security parameter λ), running with parties P1, . . . , Pn

and an adversary S.
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– Registration: When receiving a message (register) from an honest party Pi

that has not previously registered, sample r ← {0, 1}λ, then compute (PKi,
SKi)← KRK.Genλ(r) and record the tuple (Pi, PKi, SKi).

– Corrupt Registration: When receiving a message (register, r) from a corrupt
party Pi that has not registered, compute (PKi, SKi) ← KRK.Genλ(r) and
record the tuple (Pi, PKi, SKi).

– Public Key Retrieval: When receiving a message (retrieve, Pi) from any party
Pj (where i = j is allowed), if there is a previously recorded tuple of the form
(Pi, PKi, SKi), then return (Pi, PKi) to Pj. Otherwise, return (Pi,⊥) to Pj.

– Secret Key Retrieval: When receiving a message (retrievesecret, Pi) from a
party Pi that is either corrupt or honestly running the protocol code for Π,
if there is a previously recorded tuple of the form (Pi, PKi, SKi) then return
(Pi, PKi, SKi) to Pi. In all other cases, return (Pi,⊥). ��

2.4 Building Blocks

We show the definitions of the building blocks used in this paper.

Definition 7 (Message authentication functionality Fauth [10]). Fauth

proceeds as follows, running with a sender S, a receiver R, and an adversary S.

1. Upon receiving an input (send, sid,m) from S, do: If sid = (S,R, sid0) for
R, then output (sent, sid,m) to the adversary, and, after a delay, provide the
same output to R and halt. Otherwise, ignore the input.

2. Upon receiving (corruptsend, sid,m0) from the adversary, if S is corrupt and
(sent, sid,m) was not yet delivered to R, then output (sent, sid,m0) to R and
halt. ��

In [10], Dodis et al. have presented a protocol which EUC securely realizes Fauth

with the use of GΠkrk. In the protocol, the sender S simply computes a message
authentication code (MAC) tag for the tuple (sid, S,R,m) using the key that he
non-interactively shares with R by non-interactive authenticated key exchange
(NI-AKE), while R verifies the MAC tag using the same key. The definitions of
MAC and NI-AKE and the protocol in [10] are given below.

Definition 8 (Message authentication code (MAC) [1]). A message au-
thentication code (MAC) MAC is a pair of algorithms (MAC.Sign, MAC.Ver).

– σ ← MAC.Signmk(τ)
An algorithm that on input a mac key mk ∈ KMAC and a message τ ∈
{0, 1}∗, outputs a string σ, where KMAC denotes the mac key space.

– b← MAC.Vermk(σ, τ)
An algorithm that verifies that σ is the signature for τ using the mac key
mk, and outputs a boolean b ∈ {0, 1}. ��

We say that (σ, τ) is valid with regard to a mac key mk if σ = MAC.Signmk(τ).
The correctness of MAC requires that for any mk← KMAC and any τ ∈ {0, 1}∗,
MAC.Vermk(MAC.Signmk(τ), τ) = 1.
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Let AMAC be a polynomial-time machine that plays the following game.
[GAME.MAC]
Step 1. mk ← KMAC and τ ← {0, 1}∗.
Step 2. σ ← MAC.Signmk(τ).
Step 3. (σ0, τ0)← AMAC(σ, τ).
In Step 3,AMAC is restricted not to output (σ0, τ0) = (σ, τ). We define εmac,AMAC

= Pr[MAC.Vermk(mk, σ0, τ0) = 1] and εmac = maxAMAC (εmac,AMAC ) where
maximum is taken over all PPT machines. We say that a MAC is secure against
one-time chosen message attack (OT-CMA secure) if εmac is negligible in λ.

Definition 9 (Non-interactive authenticated key exchange (NI-AKE)
[10]). A non-interactive authenticated key exchange (NI-AKE) scheme NI-AKE
consists of two algorithms AKE.Gen and SymExt.

– (pk, sk)← AKE.Gen(1λ)
A probabilistic algorithm that on input the security parameter λ, generates
a pair of public and private keys (pk, sk).

– k = SymExt(ski, pkj)
A deterministic algorithm that computes a shared key k ∈ KAKE, where
KAKE denotes the shared key space. ��

The correctness of NI-AKE requires that for any (pki, ski)← AKE.Gen(1λ), and
any (pkj , skj)← AKE.Gen(1λ), SymExt(ski, pkj) = SymExt(skj , pki).

Let AAKE be a polynomial-time machine that plays the following game.
[GAME.AKE]
Step 1. (pk0, sk0)← AKE.Gen(1λ),

and (pk1, sk1) ← AKE.Gen(1λ).
Step 2. b← {0, 1}.
Step 3. If b = 0, k = SymExt(sk0, pk1).

Otherwise, k ← KAKE .

Step 4. b̃← AAKE(pk0, pk1, k).

We define εake,AAKE = |Pr[b̃ = b] − 1
2 | and εake = maxAAKE (εake,AAKE ) where

maximum is taken over all PPT machines. We say that an NI-AKE is secure if
εake is negligible in λ. The NI-AKE can be implement by using the Diffie Hellman
key exchange scheme[9].

Definition 10 (EUC secure message authentication protocol in [10]).
KRK.Genλ(r)

1. (AKE.pk,AKE.sk)← AKE.Gen(1λ; r).
2. Outputs (AKE.pk,AKE.sk)

The message authentication protocol Φ proceeds as follows.

1. Upon input (send, sid,m), S computes k = SymExt(AKE.skS , AKE.pkR)
and σ = MAC.Signk(m). S sends (sid, S,R,m, σ).

2. Upon receiving (sid, S,R,m′, σ′) from S, R computes k′ = SymExt(AKE.skS ,
AKE.pkR). If MAC.Verk(σ

′,m′) = 1 then R outputs (sent, sid,m′), else R
aborts. ��
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Definition 11 (Public key encryption (PKE) [1]). A public key encryp-
tion (PKE) scheme PKE consists of three algorithms, PKE.Gen, PKE.Enc, and
PKE.Dec.

– (pk, sk)← PKE.Gen(1λ)
A probabilistic algorithm that on input the security parameter λ, generates
public and private keys (pk, sk). The public key defines the message space
M.

– c← PKE.Encpk(m)
A probabilistic algorithm that encrypts a message m ∈ M into a ciphertext
c.

– m← PKE.Decsk(c)
An algorithm that decrypts c. It outputs either m ∈ M or a special symbol
⊥ �∈ M. ��

The correctness of PKE requires that for any (pk, sk) ← PKE.Gen(1λ) and any
m ∈ M, PKE.Decsk(PKE.Encpk(m)) = m.

Let AE be a polynomial-time oracle machine that plays the following game.
By O, we denote the decryption oracle, PKE.Decsk(·)
[GAME.PKE]
Step 1. (pk, sk)← PKE.Gen(1λ).
Step 2. (m0,m1, ρ)← AO

E (pk).
Step 3. b← {0, 1}, c← PKE.Encpk(mb).

Step 4. b̃← AO
E (ρ, c).

In Step 4, AE is restricted not to ask c to O. In addition, m0 and m1 must be of
the same length. We define εpke,AE = |Pr[b̃ = b]− 1

2 | and εpke = maxAE (εpke,AE)
where maximum is taken over all PPT machines. We say that a PKE is CCA-
secure if εpke is negligible in λ. Cramer and Shoup in [7] presented the first truly
practical CCA-secure encryption scheme.

A Sigma protocol is a 3-round honest-verifier zero-knowledge protocol. We
denote the messages sent by a prover P and a verifier V by (a, e, z). We say that
a transcript (a, e, z) is an accepting transcript for x if the protocol instructs V
to accept based on the values (x, a, e, z). A Sigma protocol is formally defined
as follows.

Definition 12 (Sigma protocol [14]). Let k be security parameter. A protocol
is a Σ-protocol for relation R if it is a three-round public-coin protocol and the
following requirements hold.

– Completeness: If P and V follow the protocol on input x and private input
w to P where (x,w) ∈ R, then V always accepts.

– Special soundness: There exists a polynomial-time algorithm A that given
any x and any pair of accepting transcripts (a, e, z), (a, e′, z) for x where
e �= e′, outputs w such that (x,w) ∈ R.

– Special honest verifier zero knowledge: There exists a probabilistic polynomial-
time simulator M , which on input x and e outputs a transcript of the form
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(a, e, z) with the same probability distribution as transcripts between the
honest P and V on common input x. Formally, for every x and w such
that (x,w) ∈ R and every e ∈ {0, 1}t it holds that |Pr[M(x, e) = 1] −
Pr[〈P (x,w), V (x, e)〉]| ≤ neg(k) where M(x, e) denotes the output of simu-
lator M upon input x and e, and 〈P (x,w), V (x, e)〉 denotes the output tran-
script of an execution between P and V , where P has input (x,w), V has
input x, and V ’s challenge is e. ��

A dual mode cryptosystem DUAL has a regular key generation algorithm and
an alternative one. When a regular key is used, it behaves as a standard public
key encryption scheme. On the other hand, when an alternative key is used, it
perfectly hides the encrypted value. The regular and alternative keys are indis-
tinguishable. A simple version of a dual mode cryptosystem is formally defined
as follows.

Definition 13 (Dual mode cryptosystem [16]). A dual mode cryptosystem
DUAL is four algorithms (DUAL.RegGen,DUAL.AlterGen, DUAL.Enc, DUAL.Dec).

– (pk, sk)← DUAL.RegGen(1λ)
A probabilistic algorithm that on input the security parameter λ, generates
regular public and private keys (pk, sk). The public key defines the message
spaceM.

– (pk, sk)← DUAL.AlterGen(1λ)
A probabilistic algorithm that on input the security parameter λ, generates
alternative public and private keys (pk, sk). The public key defines the mes-
sage space M.

– c← DUAL.Encpk(m)
A probabilistic algorithm that encrypts a message m ∈ M into a ciphertext
c.

– m← DUAL.Decsk(c)
An algorithm that decrypts c. It outputs either m ∈ M or a special symbol
⊥ �∈ M. ��

The correctness of DUAL requires that for any (pk, sk) ← DUAL.RegGen(1λ)
and any m ∈ M, DUAL.Decsk(DUAL.Encpk(m)) = m and, for any (pk, sk) ←
DUAL.AlterGen(1λ) and any m ∈ M, DUAL.Decsk(DUAL.Encpk(m)) = m. For
any (pk, sk) ← DUAL.RegGen(1λ) and any m ∈ M, c0 = DUAL.Encpk(m) and
c1 = DUAL.Encpk(m) are indistinguishable without negligible probability. On
the other hand, when (pk, sk) ← DUAL.AlterGen(1λ), c = DUAL.Encpk(m) is
perfectly hiding m.

Let ADUAL be a polynomial-time machine that plays the following game.

[GAME.DUAL]
Step 1. b← {0, 1}.
Step 2. If b = 0, (pk, sk)← DUAL.RegGen(1λ).

Otherwise, (pk, sk)← DUAL.AlterGen(1λ).

Step 3. b̃← ADUAL(pk).
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We define εdual,ADUAL = |Pr[b̃ = b] − 1
2 | and εdual = maxADUAL(εdual,ADUAL)

where maximum is taken over all PPT machines. We say that public keys and
the alternative keys of a DUAL are indistinguishable if εdual is negligible in λ.

3 Overview

As described in [14], a UC-secure commitment protocol must be both extractable
and equivocal without a simulator rewinding the adversary. The extractable
property here means that the simulator can extract the value that a corrupted
party commits to. The equivocal property means that the simulator can generate
commitments that can be opened to any value. Since EUC security is stronger
than UC one [6], a EUC secure protocol must be also both extractable and
equivocal.

In the following, we first overview Lindell’s construction in [14] and then show
our extension for EUC secure commitment. Lindell’s construction assumes the
CRS that consists of a public key of a CCA2-secure PKE scheme PKE and a
public key of a dual mode cryptosystem DUAL. The committer C encrypts a
string x with PKE and sends the ciphertext to the receiver R as a commitment.
In the reveal phase, C sends x with zero-knowledge proof that the commitment is
a ciphertext of x. The proof is based on a Sigma protocol and DUAL: Have R first
commit to its challenge by encrypting it with DUAL; run the Sigma protocol with
R decommitting. We note that the “dual mode” (meaning that DUAL behaves
as a regular public-key encryption scheme when a regular key is generated, but
perfectly hides the encrypted value when an alternative key is generated) plays
an important role to guarantee soundness of this transformation from a Sigma
protocol to a zero-knowledge proof. The soundness can only be proven if the
commitment of challenges is perfect hiding.

In the UC framework, a simulator freely generates the CRS, and knows its
trapdoor (in this case, the secret keys). Thus, Lindell’s construction obviously
satisfies the extractable property since the simulator can decrypt any commit-
ments of x with the secret key of PKE. The equivocal property is satisfied since
the simulator can obtain the challenge before running the Sigma protocol by
decrypting its commitment with the secret key of DUAL. In contrast, in the
EUC framework, a simulator cannot use the trapdoor (except for personalized
ones of corrupted parties) because the setup is given as global one. To satisfy
the extractable property, we use the KRK (i.e., each party’s keys) instead of the
CRS (i.e., the common keys). Specifically, in the commit phase (resp. the reveal
phase), the committer C (resp. the receiver R) uses his own public key of PKE
(resp. DUAL) obtained from the KRK. From the definition of the KRK, when
C is corrupted, the simulator is able to obtain C’s secret key and decrypt any
commitments. Thus, the extractable property is satisfied.

On the other hand, the equivocal property is satisfied if the simulator can ob-
tain a challenge before running the Sigma protocol. In the KRK model of EUC,
if R is corrupted, then the simulator can obtain the challenge by decrypting the
commitment with R’s secret key of DUAL. Even for honest R, if the commit-
ment of challenge is not tampered by the adversary, then in the simulation, a
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challenge is chosen by the simulator simulating R and can be used without any
change. However, in the case that R is honest and a commitment of challenge is
tampered, the simulator cannot obtain the corresponding tampered value from
the security of DUAL. Thus, satisfying the equivocal property in this case is
essentially difficult.

We solve this by avoiding the need to satisfy the equivocal property for the case
that R is honest and R’s commitment is tampered by the adversary. Specifically,
we use EUC secure authenticated communication for detecting tampering and
terminate the execution. Thus, the simulator need not to open the commitment.
We use the ideal message authentication functionality Fauth. In [10], Dodis et
al. prove that realizing EUC secure authentication against adaptive corruptions
in the KRK model is impossible, and present a construction against non-adaptive
corruptions from MAC and NI-AKE. Thus, we prove the EUC security of the
proposed commitment protocol in the presence of static adversaries.

4 Proposed Generic Construction

In this section, we propose an GUC secure commitment protocol Π . Let λ be
security parameter. The proposed protocol Π uses a PKE, a Σ-protocol, DUAL,
and the ideal message authentication functionality Fauth.
KRK.Genλ(r)

1. (PKE.pk, SKE.sk) ← PKE.Gen(1λ; r).
2. (DUAL.pk, DUAL.sk)← DUAL.RegGen(1λ; r).
3. PK = (PKE.pk,DUAL.pk), SK = (PKE.sk,DUAl.sk).
4. Outputs (PK, SK).

Commit phase: Upon input (commit, sid, ssid, Pi, Pj , x) where x ∈ {0, 1}poly(λ).

1. The committer Pi sets m = sid‖ssid‖i‖j‖x, computes a ciphertext c =
PKE.EncPKE.pki(m; rC) as a commitment of x, and sends (sid, ssid, c).

2. Upon receiving a message (sid, ssid, c) from Pi, the receiver Pj outputs
(receipt, sid, ssid, Pi, Pj).

Reveal phase:

1. Upon input (reveal, sid, ssid), Pi reveals the committed value by sending
(sid, ssid, x) to Pj .

2. Let (α, ε, z) be the message of a Σ-protocol for proving that c is an ciphertext
of sid‖ssid‖i‖j‖x using witness rC .
(a) Pj chooses a random challenge ε for the Σ-protocol and a random rR,

sets m′ = sid‖ssid‖ε, and computes c′ = DUAL.EncDUAL.pkj (m
′; rR).

(b) Pj inputs (send, (Pj , Pi, (sid, ssid)),m
′) into Fauth.

(c) If Pi receives (sent, (Pj , Pi, (sid, ssid)),m
′) from Fauth, proceeds the next

step.
(d) Pi sends (sid, ssid, α).
(e) Pj sends (sid, ssid, ε, rR).
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Committer P
i

Receiver P
i

Record (Pi, (Enc.pki, DUAL.pki), (Enc.ski, DUAL.ski))

(Pj, (Enc.pkj, DUAL.pki), (Enc.skj, DUAL.skj))

c = PKE.Enc(Enc.pki, sid||ssidi||i||j||x; rC)

If c
2

≠ DUAL.Enc(DUAL.pkj, sid||ssid||ε; rR)

then compute z

Other wise abort

(sid, ssid, c)

(sid, ssid, x)

(send, (Pj, Pi, (sid, ssid)), c’)

(sid, ssid, α)

(sid, ssid, ε, rR)

(sid, ssid, z)

c’ = DUAL.Enc(DUAL.pkj, sid||ssid||ε; rR)

If (α, ε, z) is accepting transcript 

for x then output

Compute α from x and c’

Commit phase

Reveal phase

Π
���

�

(sent, (Pj, Pi, (sid, ssid)), c’)

����
�

Fig. 2. Overview of the proposed construction

(f) Pi checks that DUAL.EncDUAL.pkj (sid‖ssid‖ε; rR) = c′ and if yes, sends
the reply (sid, ssid, z). Otherwise, Pi aborts.

(g) Pj outputs (reveal, sid, ssid, Pi, Pj , x) if and only if (α, ε, z) is an ac-
cepting transcript.

Theorem 3. Assuming the existence of a CCA2-secure PKE, a Σ-protocol for
relation R = {(c,m)|c = PKE.Encpk(m)}, and a DUAL of which a regular key
and an alternative one are indistinguishable, the proposed protocol Π GUC se-
curely realizes Fmcom in the presence of static adversaries. ��

Proof: We show that the proposed protocol Π GΠkrk-EUC-emulates IDEALF ,
because the proposed protocol Π is GΠkrk-subroutine respecting. We first show

a simulator S for an adversary A, and prove |Pr[EXECG
IDEALF ,S,Z = 1] −

Pr[EXECG
Π,A,Z = 1]| ≤ neg(λ) for any environment Z.

In the commit phase, S encrypts 0 as a commitment instead of x. In the
reveal phase, S reveals x and proves that the commitment is a ciphertext of x by
simulating theΣ-protocol. Let Pi and Pj be committer and receiver, respectively.
For any PPT static adversary A, the simulator S behaves as follows.

– Simulating the communication with Z: S inputs every input value that S
receives from Z to A. S outputs every output value of A.

– S obtains the public keys of Pi and Pj , and the secret key for any corrupted

party from GΠkrk.
– Simulating the commit phase when both Pi and Pj are honest: Upon re-

ceiving (receipt, sid, ssid, Pi, Pj) from Fmcom, S chooses a random rC , sets
m = sid‖ssid‖i‖j‖0, computes a commitment c = PKE.EncPKE.pki(m; rC)
as the committed value x = 0, and hands (sid, ssid, c) to A, as it ex-
pects to receive from Pi. Upon receiving (sid, ssid, c′′) from A, S sends
(receipt, sid, ssid, Pi, Pj) to Fmcom.

– Simulating the reveal phase when both Pi and Pj are honest: Upon receiving
(reveal, sid, ssid, Pi, Pj , x) from Fmcom, S behaves as follows.
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1. S hands (sid, ssid, x) to A, as it expects to receive from Pi.

2. Upon receiving a message (sid, ssid, x′) fromA, S chooses a random chal-
lenge ε, a random rR, computes c′ = DUAL.EncDUAL.pkj (sid‖ssid‖ε; rR),
and hands (sent, (Pj , Pi, (sid, ssid)), c

′) toA, as it expects to receive from
Fauth.

3. S computes a transcript (α, ε, z) from x and ε. When S receives a reply
to Fauth from A, S hands (sid, ssid, α) to A.

4. Upon receiving (sid, ssid, α′) from A, S hands (sid, ssid, ε, rR) to A.
5. Upon receiving (sid, ssid, ε′, r′R) from A, if ε′ = ε and r′R = rR, then S

hands (sid, ssid, z) to A. Otherwise, S simulates Pi aborting the reveal
phase.

6. Upon receiving (sid, ssid, z′) from A, if (α′, ε, z′) is an accepting tran-
script, then S sends (reveal, sid, ssid, Pi, Pj , x) to Fmcom. Otherwise, it
does nothing.

– Simulating the commit phase when Pi is corrupted and Pj is honest: Upon
receiving (sid, ssid, c) from A as it intends to send from Pi to Pj , S de-
crypts c to obtain x. If the result is ⊥, then S sends a dummy commitment
(commit, sid, ssid, Pi, Pj , 0) to Fmcom. Otherwise, S sends (commit, sid,
ssid, Pi, Pj , x) to Fmcom. Upon receiving a message (receipt, sid, ssid, Pi, Pj)
from Fmcom, S sends (receipt, sid, ssid, Pi, Pj) to Fmcom.

– Simulating the reveal phase when Pi is corrupted and Pj is honest: Upon
receiving (reveal, sid, ssid, Pi, Pj , x) from Fmcom, S behaves as follows.

1. Upon receiving (sid, ssid, x) from A, S chooses a random challenge ε
and a random rR. S computes c′ = DUAL.EncDUAL.pkj (sid‖ssid‖ε; rR),
hands (sent, (Pj , Pi, (sid, ssid)), c

′) to A, as it expects to receive from
Fauth.

2. Upon receiving a reply toFauth fromA, S inputs (sent, (Pj , Pi, (sid, ssid)),
c′) to the corrupted committer Pi.

3. Upon receiving (sid, ssid, α) from A, S hands (sid, ssid, ε, rR) to A.
4. Upon receiving (sid, ssid, z) from A, if (α, ε, z) is an accepting tran-

script, then S sends (reveal, sid, ssid, Pi, Pj) to Fmcom. Otherwise, it
does nothing.

– Simulating the commit phase when Pi is honest and Pj is corrupted: Upon
receiving (receipt, sid, ssid, Pi, Pj) from Fmcom, S chooses a random rC ,
computes a commitment c = PKE.EncPKE.pki(0; rC) as x = 0, and hands
(sid, ssid, c) to A, as it expects to receive from Pi. S sends (receipt, sid, ssid,
Pi, Pj) to Fmcom.

– Simulating the reveal phase when Pi is honest and Pj is corrupted: Upon
receiving (reveal, sid, ssid, Pi, Pj , x) from Fmcom, S works as follows.

1. S hands (sid, ssid, x) to A, as it expects to receive from Pi.
2. When the corrupted receiverPj produces an input (sent, (Pj , Pi, (sid, ssid)),

c′) to Fauth, hands (sent, (Pj , Pi, (sid, ssid)), c
′) to A, as it expects to re-

ceive from Fauth.

3. Upon receiving a reply to Fauth from A, S decrypts c′ to obtain ε′ and
proceeds the step 5.
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4. When S receives (corruptsend, (Pj , Pi, (sid, ssid)), c
′) from A, if A did

not send reply to Fauth, S decrypts c′ to obtain ε′ and proceeds the next
step.

5. Let c be as computed by S in the commit phase. S computes a transcript
(α, ε′, z) from x and ε′, and hands (sid, ssid, α) to A.

6. Upon receiving (sid, ssid, ε, rR) from A, if PKE.EncPKE.pkj (ε; rR) = c′,
then S hands (sid, ssid, z) to A. Otherwise, S simulates Pi aborting the
reveal phase.

For the above S, we now show that for any Z, |Pr[EXECG
IDEALF ,S,Z = 1] −

Pr[EXECG
Π,A,Z = 1]| ≤ neg(λ) by a series of hybrid games, HYB-GAME1,

HYB-GAME2, HYB-GAME3. Let HYB-GAMEi
S,Z be the output of Z which

runs with S in HYB-GAMEi.

Hybrid game HYB-GAME1: In this game, the ideal functionality Fmcom gives
the simulator S1 the value x committed to by an honest Pi, in addition to
the message (receipt, sid, ssid, Pi, Pj). S1 behaves in exactly the same way as S
except that when simulating the commit phase when Pi is honest, it computes
c as an encryption of x as an honest Pi would. We show that HYB-GAME1

S1,Z
is indistinguishable from the output of Z in the ideal model by reduction to
CCA2-security of the PKE scheme.

We construct an adversary AE for GAME.PKE as follows. Let pkpke be the

public key given to AE . Then AE simulates an execution of EXECG
IDEALF ,S,Z

with the following differences.

1. Whenever the shared functionality GΠkrk outputs the public key for an honest
Pi, AE hands (pkpke, DUAL.pki) instead of (PKE.pki, DUAL.pki).

2. Whenever an honest Pi commits to a value x, instead of S encrypting 0 (or
S1 encrypting x), AE generates the encryption in the ciphertext by asking
for an encryption challenge of the pair (0, x). The ciphertext c received back
is sent as the commitment.

3. Whenever a corrupted Pi sends a commitment value c and the simulator
needs to decrypt c, AE queries its decryption oracle with c. If c was re-
ceived as a ciphertext challenge then AE has the simulator send a dummy
commitment (commit, sid, ssid, Pi, Pj , 0) to Fmcom.

Finally, AE outputs whatever Z outputs.
If b = 0 in the GAME.PKE, then the commitments c are ciphertexts of 0 when

the committer Pi is honest. Thus, the simulation is exactly like S and the output

of AE is exactly that of IDEALG
F ,S,Z . In contrast, if b = 1, then the commitments

c are ciphertexts of x and the simulation is exactly like S1. Thus, the output ofAE

is exactly that of HYB-GAME1
S1,Z . We conclude that |Pr[HYB-GAME1

S1,Z =

1]−Pr[EXECG
IDEALF ,S,Z = 1]| ≤ neg(λ), by the assumption that PKE is CCA2-

secure.

Hybrid game HYB-GAME2: In this game, the simulator S2 behaves in exactly
the same way as S1, except that when simulating the reveal phase in the case
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that Pi is honest, it computes the messages α and z from x and c as same as
the honest committer. S2 can do this because the commitment c sent in the
commitment phase is the correct value x and so it can play the honest prover.
Therefore, S2 perfectly simulates the proof of the reveal phase. We can show that
HYB-GAME2

S2,Z is exactly the same as HYB-GAME1
S1,Z by the property of the

Σ-protocol, special honest verifier zero knowledge, because S1 can obtain the
challenge of Pj and simulate the Σ-protocol. We therefore have that |Pr[HYB-
GAME2

S2,Z = 1]− Pr[HYB-GAME1
S1,Z = 1]| ≤ neg(λ).

Hybrid game HYB-GAME3: In this game, the simulator S3 behaves in exactly
the same way as S2, except that when simulating the reveal phase in the case
that Pj is honest, it encrypts ε by the alternative key DUAL.pk′ instead of
the regular key DUAL.pkj. We show that the output of Z in HYB-GAME3

is indistinguishable from the output of Z in HYB-GAME2 by reduction to the
indistinguishability of a regular key and an alternative one of DUAL.

We construct an adversary ADUAL for GAME.DUAL as follows. Let pk be the
input given to ADUAL. Then ADUAL simulates an execution of HYB-GAME2

S2,Z
with the following differences.

1. Whenever the shared functionality GΠkrk outputs the public key for an honest
Pj , ADUAL hands (PKE.pkj , pk) instead of (PKE.pkj , DUAL.pkj).

2. When Pj is honest, ADUAL uses pk to encrypt ε in the reveal phase.

Finally, ADUAL outputs whatever Z outputs.
Now, if b = 0 in GAME.DUAL, pk is the regular key. Thus, the simulation

is exactly like S2 and the output of ADUAL is exactly that of HYB-GAME2
S2,Z .

In contrast, if b = 1, pk is the alternative key. Thus, the output of ADUAL

is exactly that of HYB-GAME3
S3,Z . We conclude that |Pr[HYB-GAME2

S2,Z =

1]− Pr[HYB-GAME3
S3,Z = 1]| ≤ neg(λ), by the assumption that a regular key

and an alternative one are indistinguishable.

Completing the proof: It remains to show that the output of Z after an
execution in the real model is indistinguishable from the output of Z in HYB-
GAME3. We show that the outputs of Pj in the reveal phase are identical in
both cases. We observe that the case that the outputs of Pj are different only
occurs when Pi is corrupted and Pj is honest. Specifically, in the real model,
even though Pi committed x in the commit phase, Pj outputs that x0 is com-
mitted. In contrast, Pj in HYB-GAME3 always outputs that x is committed.
However, the zero-knowledge proof in HYB-GAME3 is sound because S3 uses an
alternative key of DUAL. If Pj outputs that x0 is committed with non-negligible
probability, then we can construct an adversary for GAME.DUAL which can
distinguish regular and alternative keys with non-negligible probability. There-
fore, the outputs of Pj in the reveal phase are identical in both cases, that is,

we conclude that |Pr[HYB-GAME3
S3,Z = 1]− Pr[REALG

Π,A,Z = 1]| ≤ neg(λ).

Therefore, for every A and Z, |Pr[EXECG
IDEALF ,S,Z = 1]−Pr[EXECG

Π,A,Z =

1]| ≤ neg(λ). Thus, the proposed protocol Π GΠkrk-EUC-emulates IDEALFmcom .
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By Theorem 1, Π GUC-emulates IDEALFmcom , that is, Π GUC securely realizes
Fmcom. ��

Corollary 1. Let Π be the proposed protocol and Φ be the EUC secure message
authentication protocol proposed in [10]. Let ΠΦ/IDEALFauth denote a modified
version of Π that invokes Φ instead of the ideal protocol for Fauth. Specifically,
ΠΦ/IDEALFauth is as follows.

– KRK.Genλ(r) outputs PK = (PKE.pk,DUAL.pk,AKE.pk) and SK =
(PKE.sk,DUAL.sk,AKE.sk), where (PKE.pk, SKE.sk) ←
PKE.Gen(1λ; r), (DUAL.pk, DUAL.sk) ← DUAL.RegGen(1λ; r), and
(AKE.pk,AKE.sk)← AKE.Gen(1λ; r).

– Steps (b) and (c) in the reveal phase are replaced with following (b’) and
(c’).
(b’) Pj computes k = SymExt(AKE.skj , AKE.pki), and σ = MAC.Signk(c

′).
Pj sends (sid, ssid, c′, σ).

(c’) Upon receiving a message (sid, ssid, c′, σ) from Pj , Pi computes k =
SymExt(AKE.ski, AKE.pkj). If MAC.Verk(σ, c

′) = 1, proceeds the next
step. Otherwise Pi aborts.

Assuming the existence of a CCA2-secure PKE, a Σ-protocol for relation R =
{(c,m)|c = PKE.Encpk(m)}, a DUAL of which a regular key and an alterna-
tive one are indistinguishable, a secure NI-AKE, and an OT-CMA-secure MAC,
ΠΦ/IDEALFauth GUC-emulates Π. ��

This corollary is proved by Theorem 2.

5 Conclusion

In this paper, we have proposed a generic construction of GUC secure commit-
ment in the KRK model which uses a GUC secure authentication protocol, a
CCA2-secure PKE scheme, a dual mode cryptosystem, and a Σ-protocol. We
have showed that the proposed construction is GUC secure in the presence of
static adversaries. The proposed construction is the first GUC secure one in
which the commit phase is non-interactive. A possible future work is to present
a construction with non-interactive commit phase which is GUC secure even in
the presence of adaptive adversaries.
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