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Abstract. We address the problem of extracting pairs of subwords
(m1,m2) from a text string s of length n, such that, given also an inte-
ger constant d in input, m1 and m2 occur in tandem within a maximum
distance of d symbols in s.

The main effort of this work is to eliminate the possible redundancy
from the candidate set of the so found tandem motifs. To this aim, we
first introduce the concept of maximality, characterized by four specific
conditions, that we show to be not deducible by the corresponding notion
of maximality already defined for “simple” (i.e., non tandem) motifs.
Then, we further eliminate the remaining redundancy by defining the
concept of irredundancy for tandem motifs.

We prove that the number of non-overlapping irredundant tandems is
O(d2n) which, considering d as a constant, leads to a linear number of
tandems in the length of the input string. This is an order of magnitude
less than previously developed compact indexes for tandem extraction.
As a further contribution we show an algorithm to extract this compact
irredundant index.

1 Introduction

Extracting pairs (or sets) of subwords that often occur together in an input
string is an important task in different application contexts, such as for example
bioinformatics [15,14] or natural language processing [3]. In the last few years,
several approaches have been proposed (e.g., [8,9,12,13]) dealing with the most
general version of the problem, that is, extracting sets of subwords that occur
(also non exactly) together in a given sequence, within a distance that is fixed in
a finite range. Despite of their flexibility, such techniques do not care of avoiding
redundancy in the output solutions, that can become also very large, especially
when the input string is much repetitive. For the case of solid components in [3]
a compact index was proposed to compute the number of co-occurrence within a
given distance of any pair of substrings of an input string, without interleaving
occurrences, in time and space quadratic in the length of the input. In [5] this
bound was improved to the actual size of the output. In [4] distances other
than beginning-to-beginning were considered. However, these works on compact
indexes considered tandems between (right-)maximal components, and did not
take into consideration the maximality of the tandem itself.
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Our approach addresses the problem of extracting pairs of subwords (m1,m2)
from a text string s of length n, such that, given also two integer constants d and q
in input, m1 andm2 occur in tandem at least q times within a maximum distance
of d symbols (from the beginning of each component) in s. We call tandem
motifs such repeated subword pairs1. Differently from previous work, we aim at
eliminating all the redundancy that can be implicitly contained in the output
generation. In particular, we define a new class of tandem motifs, that we called
irredundant tandem motifs, able to represent in a compact way all the possible
tandem motifs that can be extracted from s. We show that irredundant tandem
motifs cannot be trivially obtained by the companion notions of maximality
and irredundancy already studied for motifs without co-occurrences (see, e.g.,
[2,6,7,10,11,16,17,18,19,20,21]).

Note that tandem motifs as defined in this paper can be also related to the
notion of generalized extensible motifs addressed in [1]. However, tandem motifs
are particularly interesting because of their additional properties (shown in this
paper) that do not hold for the generalized extensible motifs. Furthermore, the
class of extensible motifs can contain some redundancy, differently from the class
of tandem motifs we propose in this work.

The paper is organized as follows. In Section 2 we introduce some preliminary
definitions and some properties that are important for the rest of the analysis.
In Section 3 we show some bounds on the number of tandem motifs that can be
extracted from a string. Section 4 presents a procedure to extract irredundant
tandem motifs. Finally, in Section 5 we draw our conclusive remarks.

2 Properties and Definitions

We now introduce some suitable definitions needed for the formalization of the
problem.

In the following, given in input a string s of n characters on the alphabet Σ,
we denote by s[i] the i-th element in s. Furthermore, we denote by |X | the size
of a set X , and by |y| the length of a subword y. Given two strings y1 and y2
(e.g., two subwords of s), y1y2 indicates the concatenation of y1 and y2.

Definition 1. (Exact occurrence) A string s′ of size n′ (n′ ≤ n) occurs exactly
at the position h in s (h ≤ n− n′) if s[i+ h− 1] = s′[i], for each i = 1 . . . n′.

Definition 2. (Substring) A string s′ = s′1 . . . s
′
n′ (n′ ≤ n) is a substring of s if

there exists a position h of s (h ≤ n− n′) such that s′ occurs exactly at h in s.

1 In [3,5] the notion of tandem implies that between two substrings there are no inter-
leaving occurrences of one or the other. Here we do not impose such a constraint.
In [8,12,13] the term structured motif refer to a similar kind of motif. However, the
distance between components is measured differently. For this reason we prefer to
use the term tandem motif as in [3,5] where the distance was measured the same
way as in this present work. It is also worth noting, to avoid confusion, that tandem
motifs are unrelated to tandem repeats.
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Definition 3. (Tandem, Occurrence) Let d be a positive integer (aka distance)
such that d ≤ n, and m1 and m2 be two substrings of s. The pair t = 〈m1,m2〉
is a tandem with components m1 and m2 if there exist two positions i and j of
s such that 1 ≤ j − i ≤ d and m1 and m2 occur exactly at i and j, respectively.
In this case we say that the tandem t occurs at � = (i, j) in s.

Note that taking as distance d the number of characters between the beginning of
the first component and the beginning of the second component allows to easily
intercept also tandem occurrences where the two components overlap. However,
special cases such as tandems whose components never overlap can be managed
as well, as will be discussed later in the paper.

Definition 4. (Sub-tandem) Let t′ = 〈m′
1,m

′
2〉 and t′′ = 〈m′′

1 ,m
′′
2〉 be two

tandems w.r.t. the same distance d. The tandem t′ is a sub-tandem of t′′ (t′ � t′′)
if and only if m′

1 and m′
2 are substrings of m′′

1 and m′′
2 , respectively.

Definition 5. (Tandem q-motif, Location list) Let q be a positive integer (aka
quorum) such that q ≤ n, and t = 〈m1,m2〉 be a tandem. The tandem t is a
tandem q-motif of s with location list Lt = {�1, �2, . . . , �p}, if all the following
hold:

1. t occurs at �i for each �i ∈ Lt;
2. p ≥ q;
3. there is no pair � �= �h, 1 ≤ h ≤ p such that t occurs at � in s (the location

list is of maximal size).

Whenever the value of q is clear from the context, we call a tandem q-motif
tandem motif. In this paper, we focus on the case of q = 2.

Definition 6. (Maximal tandem motif) A tandem motif t = 〈m1,m2〉 with
location list Lt is maximal if and only if there is no tandem motif t′ = 〈m′

1,m
′
2〉

with location list Lt′ such that both m1 and m2 are equal to or are substrings
of m′

1 and m′
2, respectively, and |Lt| = |Lt′ |.

Due to the composite nature of a tandem motif, both the components concur to
its maximality. A first question is if there is some relation between the maximality
of each of the two components2 and the maximality of the corresponding tandem
motif. Intuitively, the maximality of a tandem motif cannot be deduced by the
(possible) maximality of its components, as shown by the example below. For
maximality of a component m we mean that there does not exist any substring
m′ in s such that m is a substring of m′ and the number of occurrences of m is
equal to that of m′.

Example 1. Let:

a b b a a d a b b c d a a b a b b a c a a b a c c c c c a a d a
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

2 See [16,18] for a formal definition of (non tandem) maximal motifs.
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be the input string s and d = 4 be the allowed distance. Consider the tandem
t = 〈bb, aa〉, occurring at (2, 4), (8, 12) and (16, 20) in s. It is easy to see that t
is maximal, although its first component is not. Indeed, bb is a substring of abb,
and both bb and abb occur exactly three times in s, but 〈abb, aa〉 has only one
occurrence satisfying the distance constraint d = 4 (i.e., (1, 4)). Analogously, not
all the maximal substrings in s necessarily concur to be part of a tandem motif:
as an example, aada is maximal but it is not followed by (and it does not follow)
any other substring which can represent a suitable component for a candidate
tandem motif.

The example above confirms that the “tandem-maximality” cannot be checked
by a simple analysis of each single component alone. However, the following
four different conditions allow to discriminate if a tandem motif t = 〈m1,m2〉 is
maximal. All these conditions have to be handled properly in order to extract
maximal tandem motifs, as will be detailed in Section 4.

1. Right maximality of the second component (RMSC). This condition means
that the second component cannot be extended by adding any character on
the right without loosing some occurrence in Lt. In other words, there is no
substring m′

2 such that |m2| < |m′
2|, m2[i] = m′

2[i] for i = 1, . . . , |m2| and
|Lt| = |Lt′ | if t′ = 〈m1,m

′
2〉.

2. Right maximality of the first component (RMFC). In this case, the first
component cannot be extended by adding any character on the right with-
out loosing some occurrence in Lt. Thus, there is no substring m′

1 such
that |m1| < |m′

1|, m1[i] = m′
1[i] for i = 1, . . . , |m1| and |Lt| = |Lt′ | if

t′ = 〈m′
1,m2〉.

3. Left tandem maximality of the second component (LMSC). The second com-
ponent is left maximal if there is no substring m′

2 such that |m2| < |m′
2|,

m2[i] = m′
2[i + h] for i = 1, . . . , |m2| where h = |m′2| − |m2|, t′ = 〈m1,m

′
2〉

is a tandem motif, and |Lt| = |Lt′ |.
4. Left tandem maximality of the first component (LMFC). The first component

is left maximal if there are no substrings m′
1 and m′

2 such that: (i) |m1| <
|m′

1| and |m2| ≤ |m′
2|, (ii) m1[i] = m′

1[i + h] for i = 1, . . . , |m1|, (iii) h =
|m′

1|−|m1|, (iv) m′
2 = x·m2, where the symbol · represents the concatenation

between strings, and x is a substring in s such that t′ = 〈m′
1,m

′
2〉 is a tandem

motif (i.e., the constraint on the distance between m′
1 and m′

2 is satisfied;
note that x can also coincide with the empty string), and (v) |Lt| = |Lt′ |.

We anticipate that, as better pointed out in Section 4, LMFC has operatively to
be handled after LMSC. Figure 1 shows an example for each type of maximality.
Although the concept of maximality allows us to consistently reduce the size
of the output set, without any information loss, there is still some residual re-
dundancy that is related to the occurrences of the tandem motifs, rather than
to their structural composition. Indeed, different maximal tandem motifs could
cover overlapping regions of the input string.

Let t = 〈m1,m2〉 be a tandem motif with location list L={(i1, j1), . . . , (ip, jp)}
and f and g be two shifting integers. We call shifted location list
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Fig. 1. Examples of maximalities: (a) Right-maximality of the second component z:
whenever an occurrence of the second component z falls within distance d from an
occurrence of y to its left, z is always followed by a string z′. The maximal tandem
is 〈y, zz′〉. (b) Right-maximality of the first component y: whenever an occurrence of
the second component z falls within distance d from an occurrence of y to its left, y
is always followed by a string y′. The maximal tandem is 〈yy′, z〉. (c) Left-maximality
of the second component z: whenever an occurrence of the second component z falls
within distance d from an occurrence of y to its left, z is always preceded by a string z′.
The distance between y and z must be always positive to be valid. The maximal tandem
is 〈y, z′z〉. (d) Left-maximality of the first component y: whenever an occurrence of the
second component z falls within distance d from an occurrence of y to its left, y is
always preceded by a string y′. The distance between y′ and z is always less than or
equal to d. The maximal tandem is 〈y′y, z〉.

Ls = {(i1 + f, j1 + g), . . . , (ip + f, jp + g)} the list of locations obtained by
adding f to each occurrence of the first component and g to each occurrence of
the second component, respectively.

The following definition is useful to discard those maximal tandem motifs that
are not essential, and that can be deduced by other maximal tandem motifs.

Definition 7. (Irredundant tandem motif) A maximal tandem motif t =
〈m1,m2〉 with location list L = {�1, �2, . . . , �p} is redundant if and only if there
exist k tandem motifs t1, . . . , tk with location lists L1, . . . ,Lk, respectively, and
two sets F = {f1, . . . , fk} and G = {g1, . . . , gk} of proper shifting integers such
that:

– t is a sub-tandem of each th (1 ≤ h ≤ k),
– L = {Ls

1 ∪ . . .∪Ls
k}, where each Ls

h is the shifted location list of th obtained
by exploiting fh and gh as shifting integers.

A maximal tandem motif that is not redundant is called irredundant.
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Example 2. Let:

a b b a a d a b b c d a a a a b b a c a a a a c b b c a a d a
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

be the input string and d = 5 be the allowed distance. Consider the three
maximal tandem motifs t′ = 〈bb, aa〉, t′′ = 〈abb, aaaa〉, t′′′ = 〈bb, aada〉, with
location lists L′ = {(2, 4), (8, 12), (16, 20), (25, 28)}, L′′ = {(7, 12), (15, 20)} and
L′′′ = {(2, 4), (25, 28)}, respectively. Then, L′ = {(7 + 1, 12), (15 + 1, 20)} ∪
{(2, 4), (25, 28)}, that is, there exist F = {1, 0} and G = {0, 0} such that the
definition above is satisfied thus t′ is redundant. It is easy to see that both t′′

and t′′′ are irredundant.

Definition 8. (Exposed occurrence) A position (i, j) of s is an exposed occur-
rence of the maximal tandem motif t′ if t′ occurs at (i, j), and there does not
exist any other maximal tandem motif t′′ such that t′ � t′′ and t′′ occurs at
(i− f, j − g) (f, g ≥ 0), with f and g proper shifting integers.

3 The Number of Tandem Motifs

We now discuss the size of the special classes of motifs that we introduced in this
work. An important problem is to understand how many irredundant tandem
motifs can be extracted from the input string. To this aim, it is worth to point
out that the set of irredundant motifs is contained in the set of maximal motifs,
by Definition 7.

Theorem 1. A maximal tandem t of a string s is irredundant if and only if it
has at least one exposed occurrence in s.

Proof. Let (i, j) be an exposed occurrence of t, and suppose that t is redundant.
Then, there exist k tandem motifs t1, . . . , tk such that t is a sub-tandem of each
th (1 ≤ h ≤ k) and its occurrence list L is equal to the union of their occurrence
lists, unless some displacements. This means that each occurrence of t has to be
covered by another occurrence of some th (1 ≤ h ≤ k). Thus, some th occurs at
(i− f, j − g) (f, g ≥ 0) and t � th, that is, a contradiction.

Now we prove the converse. Suppose that t is irredundant and that no one
of its occurrences is exposed. Thus, at each (i, j) where t occurs, there occurs
(unless some proper displacements) also some maximal motif t′ such that t � t′.
The union of the occurrences lists of all such t′ gives the occurrence list of t.
This means that t is redundant, that is, a contradiction. 
�

3.1 Number of Candidate Tandems

We recall that the number of substrings made of only solid symbols of s is O(n2),
thus there are O(n4) pairs of subwords. If we consider a fixed maximum distance
d, the possible pairs become O(dn3), as proved in the following lemma.
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Lemma 1. Given a string s of length n and a distance d > 0, the number of
possible pairs of solid substrings at (head-to-head) distance at most d is O(dn3).

Proof. In a string of length n there are O(n2) substrings, each of which can be
followed by at most dn components. Hence the total number of tandem motifs
is O(dn3).


�

Lemma 1 provides a bound for the number of possible tandem motifs that can be
extracted from the input string s. In [3] the authors show also how it is possible
to build an O(n2) index that stores the co-occurrences of all the pairs of strings
that correspond to the node of the suffix tree (i.e right-maximal), and gives the
co-occurrence count for any pair.

We now consider the special class of irredundant tandem motifs, with solid
components.

3.2 Number of Irredundant Tandems

Let t = 〈m1,m2〉 be a tandem motif in s. We say that m1 and m2 are non-
overlapping components if there is no occurrence of t in s where m1 and m2

overlap. We say that m1 and m2 are overlapping components otherwise. The
case of overlapping components can be reduced to the search for longer single
words, for which efficient algorithms and data structures already exists, so we
will focus on non-overlapping components.

Theorem 2. Let s be a string of length n on a generic alphabet Σ. Then,
the number of irredundant tandem motifs t = 〈m1,m2〉 in s with m1 and m2

non-overlapping solid components is O(d2n).

Proof. Let T be the set of irredundant tandem motifs with non-overlapping
solid components in s. We recall that, from Theorem 1, each t ∈ T has at least
an exposed occurrence. Given a generic position (i, j) of s, we want to know
the maximum number of motifs in T that can simultaneously have an exposed
occurrence at (i, j).

Starting from position i, there are at most d − 1 different subwords that
can concur to be the first component of some motifs in T without intercepting
the second component, that starts at position j of s. For each of such first
components, there is at most one subword starting at position j that can be the
second component of a motif in T with an exposed occurrence at (i, j). Indeed,
let t′ = 〈m′

1,m
′
2〉 and t′′ = 〈m′′

1 ,m
′′
2〉 be two motifs in T both having an exposed

occurrence at (i, j), and suppose for contradiction that m′
1 = m′′

1 but m′
2 �= m′′

2 .
Since both m′

2 and m′′
2 start at position j, one between m′

2 � m′′
2 or m′′

2 � m′
2

necessarily holds. Thus, one between t′ � t′′ or t′′ � t′ necessarily holds as
well. This leads to a contradiction since both t′ and t′′ were assumed to have an
exposed occurrence at (i, j).

Thus, for each position (i, j) of s there are at most O(d) different motifs in
T with an exposed occurrence at (i, j). Since the number of position (i, j) at
distance at most d is O(dn) the claim is proved. 
�
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The following example clarifies Theorem 2.

Example 3. Let:

a a a a b c a b b b b r r r r r r a a a a c c c b b r r r r r r a a c c c b b b b
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

be the input string s and d = 7 be the allowed distance. Consider for example
the location (1, 8) of s. Both the two irredundant tandem motifs t′ = 〈aaaa, bb〉
and t′′ = 〈aa, bbbb〉 occur at such location with an exposed occurrence.

4 Algorithms for Irredundant Tandem Extraction

This section describes a procedure to extract the set of irredundant tandems
motifs in an input string s. For this purpose, we consider a variant of the tandem
trees introduced in [3], and we exploit a three-steps approach: i) build tandem
trees to capture the number of co-occurrences between substrings in s; ii) extend
the candidate components to obtain maximal tandems; iii) eliminate redundancy
from maximal candidates to obtain irredundant tandems.

4.1 Tandem Trees

A tandem tree Dy is a suffix tree, associated with a substring y of s, in which
each node α is annotated with the co-occurrence count between y and z = w(α),
where w(α) is the string spelled out by the path from the root to α.

In [3] a tandem tree is built for any substring y that has a proper locus in the
suffix tree of s. In such a way the number of co-occurrences within distance d
is explicitly computed only between substrings that have a proper locus in the
suffix tree of s. The authors showed that this suffices to represent the number of
co-occurrences between any substring in s. In fact for any pair (y′, z′) that is not
explicitly indexed there is a pair (y, z), with the same number of co-occurrences,
such that: i) y is the string corresponding to the locus of y′; ii) z is the string
that correspond to the locus of z′; the co-occurrence count is stored in Dy, at a
node α s.t. z = w(α).

Let P = {p1 . . . pk} be the occurring positions of a string y corresponding to
a proper locus in the suffix tree of s. Let L(p) be a mapping from each position
p and the leaf corresponding to the suffix that starts at position p. The basic
steps to build the tandem tree Dy of a string y are:

1. assign to all leaves a zero weight;

2. for all p ∈ P mark the positions p + i, 1 ≤ i ≤ d, and for each marked
position m add 1 to L(m);

3. annotate the tree bottom up so that the weight of an internal node is the
sum of the weights of its children.
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For our purposes we first have to modify the algorithm to mark in Dy the leaves
corresponding to the positions p+ |y|+ i, with 1 ≤ i ≤ d− |y|, rather than p+ i
to avoid overlaps.

Then we can safely extract maximal tandem motifs starting from this reduced
O(n2) set of pairs of strings (that can be stored as O(n) tandem trees Dy). In-
deed, as we just discussed, the pairs of strings that are not indexed are surely
not maximal since they co-occur the same number of times (and for the prop-
erties of the suffix tree with the same location list) of a pair that extends both
components up to their locus in the suffix tree.

As discussed in Section 2 when considering tandem motifs we might have the
possibility to further extend the components of this pair to the right and to the
left. We now discuss how we handle all four kinds of extensions to perform the
second step of our approach.

4.2 Right-Maximality of the Second Component

In a tandem tree this situation can be visualized when, in the annotation of an in-
ternal node, all the contributions come from a single child. The right-maximality
of the second component can be obtained as explained in [5]:

– build Dy with the procedure described in 4.1;
– if node α has a null score, delete α and the subtree rooted at α;
– if there is a path of nodes with a single child, then compact the path in a

unique edge.

The entire procedure can be carried out in time proportional to the size of the
output [5], which is upper bounded by O(n2).

4.3 Right-Maximality of the First Component

A pair (y, z) is not right-maximal w.r.t. the first component if we can find a pair
(yy′, z) with the same number of co-occurrences. Since the right maximality does
not change the starting positions, this equality implies the location lists must
also be the same.

In order to eliminate this kind of not maximal pairs, we traverse the suffix tree
T of s with a depth first visit. For each node ν, with associated string y = w(ν),
we consider its children ν1, ν2, . . . νk with associated strings yy1, yy2, . . . , yyk,
and the corresponding tandem trees Dy, Dyy1 . . .Dyyk

.
We will have that if the weight of some node β, with z = w(β), in the tandem

tree Dyyi is the same as the weight computed for y in Dy, the tandem 〈yyi, z〉
covers 〈y, z〉. The same will obviously hold also for any children of β, so we
can safely remove this node and the subtree rooted at it from Dy. In fact, the
corresponding maximal pairs are indexed in Dyyi . When all the children have
been considered Dy is traversed to merge paths that have been eventually left
with a single child chain.

Each node plays the role of the child only when its father is chosen as ν, so
the overall number of children that we consider is exactly the number of nodes
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in the suffix tree, i.e O(n). Since each time we traverse a tandem tree, taking
O(n) time, the total time complexity of this step is O(n2).

4.4 Left-Maximality of the Second Component

A pair (y, z) is not left-maximal w.r.t. the second component if we can find a
pair (y, z′z) with the same number of occurrences and a location list L whose
elements (i, j) are such that the indexes i are unchanged, and the indexes j can
be smaller but must respect the constraint j − i+ |y| > 0.

To intercept the second components that are not left maximal, we consider
each tandem tree Dy at a time, along with the list of occurrences of y. We
then proceed with an annotation of weights as before, but following a different
procedure. If p is an occurrence of y, for each symbol a ∈ Σ we increment the
weight of the leaves corresponding to the position i ∈ {p + |y| + 2, . . . p + d}
if and only if s[i − 1] = a. For position p + |y| + 1 and p + d + 1 we assign
an ∞ weight. This is because the strings that start immediately after y cannot
be further extended without overlapping |y|. Moreover, the strings that start at
position p+ d+1, if extended with a will start at position p+ d and would then
be counted. However, this would modify the location list, so we need to keep
track of this event. By setting the weight of the co-occurrence to infinity we
are sure that every component with that occurrence will have a weight different
than before the extension. We finally proceed with a bottom-up annotation of
the tandem tree. If the newly computed weight at a node β, with z = ω(β), is
the same as before, the corresponding tandem 〈y, z〉 is covered by 〈y, az〉. We
repeat the procedure for each a ∈ Σ, and finally traverse the tree eliminating all
the nodes that have been marked as covered by one of the tried extensions. Then
Dy is traversed to merge paths that have been eventually left with a single child
chain. Note that since we are interested just in the detection of not maximal
pair, we can limit the extensions to try to one symbol, since this is a sufficient
condition to have a tandem that is not maximal.

The annotation of a tandem tree requires O(n) time and must be repeated for
|Σ| symbols. The number of tandem trees is O(n). Since the size of the alphabet
is constant, the overall complexity is again O(n2).

4.5 Left-Maximality of the First Component

The pair (y, z) is not left-maximal w.r.t. the first component if we can find a
string y′y such that (y′y, z) cover the location list of (y, z). Moving the first
component to the left alters all the distances in the location list of (y, z) so it
might happen that some z falls at a distance bigger than d or that some new
occurrence of z appears immediately after the beginning of y′y.

Similarly as before, we just need to prove that we can extend the first com-
ponent of one symbol to the left to prove that the corresponding tandem is not
maximal. Let us consider each tandem tree Dy, and the possible extension ay
for y, with a ∈ Σ. We proceed with a new annotation of Dy according to the
occurrence list of ay. If y occurs at position p, we increment the weight of the
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position i ∈ {p+ |y|+ 1 . . . p+ d − 1} if and only if s[p− 1] = a. The positions
p+ |y| and p+ d are assigned an ∞ weight because they will alter the location
list. We then proceed with the bottom-up annotation, and if the weight of a
node β, with z = w(β), has the same weight as before, then the tandem 〈y, z〉 is
covered by 〈ay, z〉. When all the children have been considered Dy is traversed
to merge paths that have been eventually left with a single child chain.

The annotation of a tandem tree requires O(n) time and must be repeated for
|Σ| symbols. The number of tandem trees is O(n). Since the size of the alphabet
is constant, the overall complexity is O(n2).

4.6 Irredundant Tandem Motif Extraction

From the remaining tandem trees we can delete all the leaves with occurrence
count equal to 1 (note that since we do not pose any constraint we can have that
two occurrences of y are followed by the same occurrence of z within distance d,
thus the value of the leaves is not necessarily 1). For each tandem tree Dy and
each node β in it, with z = w(β), we report in output the pair (y, z).

From this set T we can extract the irredundant tandem motifs as follows. Let
LT be the collection of the location lists of all the tandem motifs in T . For each
LT ∈ LT , if LT = LT1

⋃
LT2 . . .

⋃
LTh

up to some offsets, with T1, . . . , Th ∈ T
and Ti �= T (i = 1, 2, . . . , h), then T is redundant. If, on the other hand, there is
no way to express LT by other location lists in LT , then T is irredundant and we
can add it to the output set. This step is afforded in O(n) time for each list (cf.,
e.g., [11]) by checking whether all occurrences in LT falls into the “footprints”
of some occurrence of some of the other tandem motifs.

Let M be the number of maximal motifs extracted in O(n2) with the exten-
sions described above. The time complexity of the last phase is O(Mn). Since the
number of maximal motifs is upper bounded by O(n2), the overall complexity is
consequently upper bounded by O(n3).

5 Concluding Remarks

In this paper we introduced the concepts of maximality and irredundancy for
the class of motifs that consists of pairs of co-occurring words, i.e. tandems.
We showed that these two properties are not immediately deducible from the
german concepts for single words applied to each component. We proved that
the number of irredundat not overlapping tandems is linear in the length of the
input string, and we gave algorithms to extract such a set.

It is natural to speculate as to whether the present approach can be extended
to r-motifs, that are, motifs consisting of r co-occurring solid words, with r > 2.
To this aim, let t = 〈m1,m2, . . . ,mr〉 be an r-motif, and let d be the maximum
allowed distance occurring between each pair (mi, mi+1) (1 < i < r−1). The no-
tions of occurrence, maximality, irredundancy and exposed occurrence translate
with straightforward interpretation for r-motifs.

Along the line of Theorem 2, the following lemma holds.
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Lemma 2. Let s be a string of length n on a generic alphabet Σ. Then, the
number of irredundant r-motifs t = 〈m1,m2, . . . ,mr〉 with r > 2 non-overlapping
solid components in s is O(d2(r−1)n).

Proof. Given a set of positions I = (i1, i2, . . . , ir) of s, for each ih (1 < h < r−1)
there are at most d − 1 different subwords that can concur to be a component
of some irredundant r-motifs. For each of the O(dr−1) resulting combinations
of co-occurring subwords, there is at most one subword starting at position ir
that can be the r-th component of an irredundant r-motif with an exposed
occurrence at (i1, i2, . . . , ir). Otherwise, the condition of irredundancy would be
contradicted, according to the case r = 2. Since the number of sets of positions
I = (i1, i2, . . . , ir) such that ih+1− ih ≥ d (1 < h < r− 1) is O(dr−1n) the claim
is proved.


�

Finally, being this the first work, to the best of our knowledge, investigating
the properties of maximality and irredundancy for tandems as a whole, several
questions can be raised from this point and be topic for future research. As an
example, the approach presented here can be seen as a first step towards faster
and truly efficient algorithms for tandem motif finding, due to the compactness
of the proposed motif class. Another point worth attention is studying how the
complexity bounds change if we allow the components to have inexact matches
in the input string.
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