
Parallel Suffix Array Construction for Shared

Memory Architectures�

Vitaly Osipov

Karlsruhe Institute of Technology, Germany
osipov@kit.edu

Abstract. We present the design of the algorithm for constructing the
suffix array of a string using manycore GPUs. Despite of the wide us-
age in text processing and extensive research over two decades there was
a lack of efficient algorithms that were able to exploit shared memory
parallelism (as multicore CPUs as manycore GPUs) in practice. To the
best of our knowledge we developed the first approach exposing shared
memory parallelism that significantly outperforms the state-of-the-art
existing implementations for sufficiently large inputs. We reduced the
suffix array construction problem to a number of parallel primitives
such as prefix-sum, radix sorting, random gather and scatter from/to
the memory. Thus, the performance of the algorithm merely depends on
the performance of these primitives on the particular shared memory
architecture. We demonstrate its performance on manycore GPUs, but
the method can also be applied for other parallel architectures, such as
multicores, CELL or Intel MIC.

1 Introduction

The suffix tree of a string is a compact trie of all its suffixes. It is a powerful and
widely used data structure with large variety of applications in such fields as
stringology, computational biology and text search. The suffix array and meth-
ods for constructing it were proposed by Manber and Myers in 1990 [9] as a
simple and space efficient alternative to suffix trees. It is simply the lexicograph-
ically sorted array of the suffixes of a string. Suffix tree and methods for its
construction were involved in hundreds of papers over the last two decades.

There are three basic techniques for constructing suffix arrays [13] that we
informally denote by prefix-doubling, induced copying and recursion. In short,
prefix-doubling approaches iteratively sort the suffixes by their prefixes that dou-
ble in length in each iteration. Induced copying algorithms sort a sample of the
suffixes and use them to induce the order of the non-sample suffixes. Recursion
methods recursively reduce the input string length in each iteration. Thus, the
existing algorithms can be implicitly divided into three classes according to the
technique they exploit. Besides those that can be classified into a single class
there exist hybrid approaches that combine at least two of the basic techniques.

� Partially supported by EU Project No. 248481 (PEPPHER) ICT-2009.3.6 and DFG
grant SA 933/3-2

L. Calderón-Benavides et al. (Eds.): SPIRE 2012, LNCS 7608, pp. 379–384, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



380 V. Osipov

On the theoretical side both the induced copying and the recursion class
contain linear time algorithms. The Ko and Aluru (KA) [5], Kärkkäinen and
Sanders (KS) [4] as well as the recent Nong et al. (SAIS) [12] algorithms can
be referred to the hybrid recursive approaches that use the induced copying
technique. Though, the underlying ideas behind inducing are different. KA and
SAIS use a sample of input-dependent suffixes (SL-inducing), while KS’s choice
of the sample is input-independent and is merely based on the regular suffix
positions in the input string (DC-inducing).

In practice the algorithms based on SL-inducing outperform their DC-inducing
counterparts. Moreover, for real-world instances supralinear O(n2 logn) algo-
rithms are often faster [13]. As long as we are concerned with practical perfor-
mance and do not insist on linearity, the O(n logn) Larsson and Sadakane (LS)
[7] algorithm becomes competitive. LS is based on the original prefix-doubling
Manber and Myers (MM) [9] algorithm with a powerful filtering criterion on top
that makes it significantly (by a factor of 10 or so [13]) faster in practice.

Parallel suffix array construction solutions exist in the distributed [3,6] as well
as parallel external memory settings [1,2]. The most efficient of them are based
on KS algorithm (DC-inducing). As for shared memory parallel SACAs, we see
almost no progress in the area. The main reasons for that are: (1) all the fastest
practical sequential algorithms based on the SL-inducing technique are difficult
to parallelize; (2) the DC-inducing and prefix-doubling techniques involve large
overheads making parallelization using a small number of cores of little (if at
all) use. Thus, we either need better parallalizable approaches involving smaller
overheads, or go beyond commodity multicore machines and design solutions
that would scale well with the number of cores and hence compensate for the
increased overhead.

One of such emerging manycore architectures is a GPU. Sun and Ma [16]
attempted to design a SACA for GPUs. They implemented the original MM
algorithm and compared it to its CPU counterpart on random strings. Though
their GPU implementation demonstrated a speedup of up to 10 for sufficiently
large inputs, the significance of the result is questionable since for real world data
MM is proven to be more than an order of magnitude slower than the currently
fastest SACAs [13]. Moreover, random strings having an average longest common
prefix of length 4 are easy instances for MM.

2 Preliminaries

Let x = x1x2 . . . xn be a finite nonempty string of length n, where letters belong
to an indexed alphabet Σ. That is, an alphabet that can be mapped to an integer
alphabet of a limited range. Our goal is to compute a suffix array SAx, or SA
for short, an integer array SA[1 . . . n], where SA[j] = i ⇔ xi . . . xn is the jth
suffix in ascending lexicographical order. For convenience, we denote xi . . . xn as
a suffix i and append the string with a sentinel $, which we assume to be less
than any letter λ ∈ Σ. An inverse suffix array denoted as ISAx, or ISA for short,
is an integer array ISA[1 . . . n], such that ISA[i] = j ⇔ SA[j] = i.



Parallel Suffix Array Construction for Shared Memory Architectures 381

Most SACAs proceed by ordering suffixes by their prefixes of increasing length
h ≥ 1, the process that we call h-sorting. The obtained partial order is denoted
as h-ordering of suffixes into h-order. Suffixes that are equal in h-order are called
h-equal. They have the same h-rank and belong to the same h-group of h-equal
suffixes. If h-sort is stable, then the h-groups for a larger h “refine” the h-groups
for a smaller h. To store a partial h-order, we use an approximate suffix array
denoted as SAh or an approximate inverse suffix array denoted as ISAh.

3 Parallel Algorithm

Due to a lack of parallel approaches exploiting SL-inducing technique, the choice
of the algorithm that would suit a manycore architecture boils down to the prefix-
doubling or DC-inducing based methods. Unfortunately, better asymptotic be-
havior of KS algorithm alone does not guarantee the better performance on real
world data [13]. Moreover, practical implementation of KS algorithm, requires
sorting of large tuples (up to five 32-bit integers) using comparison based sorting
and merging [6,2]. Though there exist efficient comparison based GPU sorting
[8] and merging [14,15] primitives, their performance is still inferior to that of
GPU radix sorting [8,10,14,15]. In contrast to KS, prefix-doubling algorithms
(LS and MM) require radix sorting of (32-bit key, 32-bit value) pairs only.

Nevertheless, each of prefix doubling variants has drawbacks with respect to
parallelization. LS requires simultaneous sorting of a (possibly) large number
of various-size chunks of data that makes load balancing difficult, while MM
induces large overheads by re-sorting suffixes whose final positions in the SA are
already defined.

In our approach we modify MM in a way that requires a single radix sort
of (32-bit key, 64-bit value) pairs, where LS would sort independent chunks of
(32-bit key, 32-bit value) pairs. On the other hand, we use the following filtering
criterion that allows our approach to avoid extensive re-sorting similar to LS.

Observation 1. If in the k-th iteration of the MM algorithm: (1) suffix i =
SA2k [j] forms a singleton 2k-group; (2) i < 2k+1 or suffix i − 2k+1 also forms
a singleton 2k-group, then for all further iterations j > k either i < 2j or suffix
i− 2j forms a singleton 2j-group.

The Algorithm 1 contains a high-level description of our approach. The proce-
dure sorts all suffixes by 4 characters initially and initializes the corresponding
approximate SA4 and ISA4. Further, the algorithm proceeds in phases until all
suffixes get sorted. It generates tuples containing suffix index i−h accompanied
with its h-rank and h-rank of the suffix i. By stable sorting of these tuples by
h-rank of i − h we obtain SA2h. The h-rank of i stored in tuples allows us to
refine h-groups and, thus, get ISA2h. Finally, we filter SA2h using Observation 1
and compact it accordingly.

It is not difficult to see that the proposed algorithm allows its reduction to
a number of widely-used parallel primitives. Indeed, steps 1 and 6 involve radix
sorting of integer tuples. Refinement of h-heads and compaction (lines 8 and 11)



382 V. Osipov

1 initialize SA4 by sorting suffixes by their first 4 characters
2 initialize ISA4[i] with the 4-rank of i = head of i’s 4-group in SA4

3 size = n, h = 4
4 while size > 0 do
5 Scan SAh and generate tuples (SAh[j]− h, ISAh[SAh[j] − h], ISAh[SAh[j]])
6 Sort tuples by 2nd component stably /* contains SA2h */

7

8 Refine h-heads of h-groups
9 Update ISAh /* contains ISA2h */

10

11 Filter and Compact SA2h

12 size = size of SA2h

13 h = h ∗ 2
14 end

Algorithm 1: high-level description of the algorithm

can be implemented using prefix-sum operation. While updating and filtering
(lines 9 and 11) involves random gather and scatter from and to the memory.

We should mention that the running time was our primary goal. Therefore,
our implementation is not particular lightweight in memory consumption and
requires for a string of length n a total of 32n byte storage in GPU memory.

4 Performance Evaluation

Our experimental platform is an Intel i7 920 2.67 GHz quad-core machine with
6 GB of memory. We used a commodity NVidia Fermi GTX 480 featuring 15
multiprocessors, each containing 32 scalar processors, for a total of 480 CUDA
cores on chip. The GPU RAM is 1.5 GB. We compiled all implementations
using CUDA 4.1 RC 2 and Microsoft Visual Studio 2010 on 64-bit Windows 7
Enterprise with maximum optimization level.

We do not include the time for transferring the data from host CPU memory
to GPU memory as suffix array construction is often a subroutine in a more
complex algorithm. Therefore, we expect applications to reuse the constructed
data structure for the further processing on GPU.

We performed the performance analysis on widely used benchmark sets of
files including Calgary Corpus, Canterbury Corpus, Large Canterbury Corpus,
Manzini’s Large Corpus, Maximum Compression Test Files, Protein Corpus and
The Gauntlet [11]. Due to the GPU memory capacity and the memory require-
ments of our implementation we include into the benchmark strings of size at
most 45 MB.

In Figure 1 (left) we show the relative speedup of our implementation over
the original LS Algorithm [7]. For instances under 105 characters the GPU per-
formance is inferior to the serial CPU implementation. Such short instances are
not capable to saturate the hardware and efficiently exploit available parallelism.
On the other hand, the CPU is able to realize the full potential of its cache that
fits the whole input.



Parallel Suffix Array Construction for Shared Memory Architectures 383

1/4
1/2

 1
 2
 4
 8

 16
 32

104 105 106 107 108

sp
ee

du
p

string length

 0

 0.5

 1

 1.5

 2

104 105 106 107 108

sp
ee

du
p

string length

 0

 1

 2

 3

 4

 5

 6

104 105 106 107 108

sp
ee

du
p

string length

calgary
manzini

compression
protein

gauntlet
canterbury

large canterbury

Fig. 1. The relative speedup of GPU SACA compared to serial LS algorithm (left),
4-core divsufsort compared to its sequential version (right) and GPU SACA compared
to 4-core divsufsort (bottom)

Though for larger instances our implementation achieves a considerable
speedup of up to 18 over its sequential counterpart. Sufficiently small fluctu-
ations in speedup for approximately equally sized instances suggest that the
behavior of our MM variant is similar to LS, thus showing efficiency of our
filtering criterion.

We also compare the performance of our implementation to Yuta Mori’s highly
tuned, OpenMP assisted CPU implementation divsufsort 2.01 [11] using 4 cores,
see Figure 1 (bottom). Being not a fully parallel algorithm, divsufsort scales
suboptimally with the number of processors, see Figure 1 (right).

We observe, that the relative speedup fluctuates significantly depending on the
instance. This is due to different techniques that are used in the algorithms. For
example, three instances that are simply multiple concatenation of some string
from the Gauntlet set are still faster on a CPU. The reason is, that these are the
most difficult inputs for prefix doubling algorithms. The filtering criterion is also
of little help here, since most of the suffixes get fully sorted only on the last few
iterations of the algorithm. While for the class of induced copying algorithms,
which includes divsufsort, this kind of instances are not particularly hard.



384 V. Osipov

Nevertheless, our implementation achieves a speedup of up to 6 for the ma-
jority of significantly large instances.

References

1. Beckmann, A., Dementiev, R., Singler, J.: Building a parallel pipelined external
memory algorithm library. In: Proc. Int’l Symposium on Parallel & Distributed
Processing (IPDPS), pp. 1–10 (May 2009)

2. Dementiev, R., Kärkkäinen, J., Mehnert, J., Sanders, P.: Better external memory
suffix array construction. J. Exp. Algorithmics 12, 3.4:1–3.4:24 (2008)

3. Futamura, N., Aluru, S., Kurtz, S.: Parallel suffix sorting. Electrical Engineering
and Computer Science, paper 64 (2001)

4. Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear work suffix array construction.
J. ACM 53(6), 918–936 (2006)

5. Ko, P., Aluru, S.: Space Efficient Linear Time Construction of Suffix Arrays. In:
Baeza-Yates, R., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676,
pp. 200–210. Springer, Heidelberg (2003)

6. Kulla, F., Sanders, P.: Scalable parallel suffix array construction. Parallel Comput-
ing 33(9), 605–612 (2007)

7. Larsson, N.J., Sadakane, K.: Faster suffix sorting. Theoretical Computer Sci-
ence 387(3), 258–272 (2007)

8. Leischner, N., Osipov, V., Sanders, P.: GPU sample sort. In: Proc. of the IEEE
Int’l Symposium on Parallel & Distributed Processing (IPDPS), pp. 1–10 (April
2010)

9. Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches. In:
Proc. of the 1st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
Philadelphia, PA, USA, pp. 319–327 (1990)

10. Merrill, D., Grimshaw, A.S.: High performance and scalable radix sorting: a case
study of implementing dynamic parallelism for gpu computing. Parallel Processing
Letters 21(2), 245–272 (2011)

11. Mori, Y.: Suffix array construction algorithms benchmark set,
http://code.google.com/p/libdivsufsort/wiki/SACA_Benchmarks

12. Nong, G., Zhang, S., Chan, W.H.: Linear suffix array construction by almost pure
Induced-Sorting. In: Proc. of Data Compression Conference (DCC), pp. 193–202.
IEEE (March 2009)

13. Puglisi, S.J., Smyth, W.F., Turpin, A.H.: A taxonomy of suffix array construction
algorithms. ACM Computing Surveys 39(2) (July 2007)

14. Satish, N., Harris, M., Garland, M.: Designing efficient sorting algorithms for many-
core gpus. In: Proc. Int’l Symposium on Parallel & Distributed Processing, IPDPS
(2009)

15. Satish, N., Kim, C., Chhugani, J., Nguyen, A.D., Lee, V.W., Kim, D., Dubey, P.:
Fast sort on CPUs and GPUs: a case for bandwidth oblivious SIMD sort. In: Proc.
of the Int’l conference on Management of Data, pp. 351–362. ACM (2010)

16. Sun, W., Ma, Z.: Parallel lexicographic names construction with CUDA. In: Proc. of
the 15th International Conference on Parallel and Distributed Systems (ICPADS),
pp. 913–918 (December 2009)

http://code.google.com/p/libdivsufsort/wiki/SACA_Benchmarks

	Parallel Suffix Array Construction for Shared Memory Architectures*

	Introduction
	Preliminaries
	Parallel Algorithm
	Performance Evaluation
	References




