
Efficient Data Structures for the Factor
Periodicity Problem

Tomasz Kociumaka1, Jakub Radoszewski1,�,
Wojciech Rytter1,2,��, and Tomasz Waleń3,1

1 Faculty of Mathematics, Informatics and Mechanics,
University of Warsaw, Warsaw, Poland

{kociumaka,jrad,rytter,walen}@mimuw.edu.pl
2 Faculty of Mathematics and Computer Science,

Copernicus University, Toruń, Poland
3 Laboratory of Bioinformatics and Protein Engineering,

International Institute of Molecular and Cell Biology in Warsaw, Poland

Abstract. We present several efficient data structures for answering
queries related to periods in words. For a given word w of length n the
Period Query given a factor of w (represented by an interval) returns
its shortest period and a compact representation of all periods. Several
algorithmic solutions are proposed that balance the data structure space
(ranging from O(n) to O(n log n)), and the query time complexity (rang-
ing from O(log1+ε n) to O(log n)).

1 Introduction

Computation of different types of periodicities is one of the central parts of
algorithmics on words. In this paper we consider periods of factors of words.
More precisely, we show a data structure that allows to find the smallest period
and a compact representation of all periods of a factor given by an interval of
positions. By a compact representation we mean a logarithmic number of integers
representing a small set of arithmetic progressions.

A similar type of queries (for tiling periodicity) was studied in [7]. Also a
few results for primitivity queries were known (testing if a factor is primitive):
O(log n) time for queries with O(n logε n) space, see [2], and O(1)-time queries
with O(n log n) space, see [7].

We consider words over an integer alphabet Σ. For a word w = a1a2 . . . an
denote by w[l, r] the factor alal+1 . . . ar. We say that an integer p is a period of
w if ai = ai+p holds for all 1 ≤ i ≤ n− p. Denote by MinPer(l, r) = per(w[l, r])
the smallest period of the word w[l, r], and by AllPer(l, r) denote the set of all
periods of w[l, r]. It is a known fact that the set AllPer(l, r) can be represented
as a union of a logarithmic number of pairwise disjoint sets, each set forming an
arithmetic progression (a proof of this fact can also be inferred from our paper),
see Fig. 1. We present a series of algorithms for the following problem.
� The author is supported by grant no. N206 568540 of the National Science Centre.

�� The author is supported by grant no. N206 566740 of the National Science Centre.

L. Calderón-Benavides et al. (Eds.): SPIRE 2012, LNCS 7608, pp. 284–294, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Efficient Data Structures for the Factor Periodicity Problem 285

Input: Store a word w of size n;
Queries: Given 1 ≤ l < r ≤ n compute:

MinPer(l, r) – the smallest period of w[l, r] and
AllPer(l, r) – a logarithmic size representation of all periods of w[l, r].

� �

�

��

��

��

��

��

��

Fig. 1. A word w = w[1, 29] together with its periods. We have MinPer(1, 29) = 9
and AllPer(1, 29) can be decomposed into a union of three arithmetic progressions:
{9, 18}∪{22}∪{26, 27, 28, 29}. We also have AllPer(1, 3) = {1, 2, 3} and AllPer(1, 7) =
{4, 5, 6, 7}.

Our results are presented in the following table, we obtain a kind of trade-off
between data structure space and query time.

Data structure space Query time
O(n) O(log1+ε n)
O(n log log n) O(log n(log logn)2)
O(n logε n) O(log n log logn)
O(n logn) O(log n)

In different algorithms we use the classical textual data structures: the Dic-
tionary of Basic Factors (DBF) and the suffix tree [1,3,6].

Given a word w of length n, the basic factors of w are its factors of lengths
which are powers of two. The DBF assigns integer identifiers from the range
[1, n] to all basic factors, so that different basic factors of the same length receive
different identifiers. The DBF uses O(n log n) time and space to construct.

The suffix tree of w, denoted here as T (w), is a compacted trie representing
all factors of w. Each factor of w corresponds to an explicit or implicit node
of T (w). For any explicit node v of T (w), by val(v) we denote the factor of w
corresponding to this node. If w is extended with an end-marker then each leaf
of T (w) corresponds to a suffix of w, hence we can store an array leaf [i] that
assigns, to each suffix w[i, n], the leaf it corresponds to. Recall that T (w) has
size O(n) and can be constructed in O(n) time [1,3,4,6].

2 Combinatorics of Periods, Borders and Prefix-Suffixes

The word u is a border of the word w if u is both a prefix and a suffix of w. The
following well-known observation connects the notions of a border and a period,
see [1,3].

286 T. Kociumaka et al.

Observation 1. The word w has a period p if and only if w has a border of
length |w| − p.

Due to this observation, in the Period Queries we will actually compute
MaxBorder(l, r), the length of the longest border of w[l, r], and AllBorders(l, r), a
representation of the set of lengths of all borders of w[l, r] as a union of a logarith-
mic number of arithmetic progressions, instead of MinPer(l, r) and AllPer(l, r)
respectively.

If there is no ambiguity we sometimes write u, AllBorders(u), instead of w[l, r],
and AllBorders(l, r), where u = w[l, r].

Throughout the paper we use the following classical fact related to periods.

Fact 1 (Periodicity lemma [1,3,5]). If a word of length n has two periods p
and q, such that p+ q ≤ n+gcd(p, q), then gcd(p, q) is also a period of the word.

Denote by BordersLarger (u,M) the set of elements of AllBorders(u) larger than
M . The periodicity lemma easily implies the following fact.

Lemma 1. If M ≥ |u|/2 then BordersLarger (u,M) is a single arithmetic pro-
gression.

Proof. Any border of u from the set BordersLarger(u,M) corresponds, by Ob-
servation 1, to a period of u smaller than |u|/2. By the periodicity lemma, all
such periods are multiples of per(u), hence they form an arithmetic progression,
hence the elements of BordersLarger (u,M) form a single arithmetic progression.

��
Denote by BF(w) the set of basic factors of w, recall that these are the factors
of lengths which are powers of two.

A prefix-suffix of a pair of words (x, y) is a word z which is a prefix of x and a
suffix of y (see Fig. 2). If x = y then the notion of a prefix-suffix corresponds to
that of the border of a word. Assume that |x| = |y|. A prefix-suffix z of (x, y) is

� � � � � � � � � � �

z

z′

x�

� � � � � � � � � � �

z

z′

y�

Fig. 2. Two example prefix-suffixes z, z′ of a pair of words (x, y). Here only z′ is a
large prefix-suffix.

large if |z| > 1
2 |x|. For any two factors x, y ∈ BF(w) of the same length denote

by LargePS(x, y) the set of all lengths of large prefix-suffixes of (x, y).

Efficient Data Structures for the Factor Periodicity Problem 287

Lemma 2. Assume x, y ∈ BF(w), |x| = |y|. Then LargePS(x, y) forms a single
arithmetic progression.

Proof. Let M = maxLargePS(x, y). Let u be the suffix of y of length M . Then
LargePS(x, y) = BordersLarger (u, |x|/2). The conclusion follows directly from
Lemma 1. ��

3 Main Algorithm

We show how Period Queries can be reduced to simpler queries that we in-
troduced in the previous section: LargePS and BordersLarger queries. In the
following sections we discuss data structures for answering these queries.

Denote Max2Power(k) = 2i, where 2i is the largest power of two not exceeding
k. For a set of integers X and an integer k denote

k �X = {k − x : x ∈ X}, k ⊕X = {k + x : x ∈ X}.
We break the Period Queries into a series of smaller queries of the form
LargePS(xi, yi) related to basic factors xi, yi.

Algorithm MAIN(l, r) {computes AllPer(l, r)}

– Borders := ∅; u := w[l, r]
– for each (xi, yi) ∈ I(u) do

Borders := Borders∪ LargePS(xi, yi)
– Borders := Borders∪ BordersLarger (u,Max2Power(|u|))
– return |u| � Borders

In the algorithm I(u) denotes a set of pairs of a prefix and a suffix of u of lengths
which are increasing powers of two (i.e. prefixes and suffixes of u which are basic
factors), see Fig. 3.

w[l, r]

x1 y1
x2 y2
x3 y3
x4 y4
x5

y5

Fig. 3. I(w[l, r]). For each i we have xi, yi ∈ BF(w).

Lemma 3. A Period Query for AllPer(l, r) and MinPer(l, r) can be answered
using a logarithmic number of queries of the type LargePS(x, y) for x, y ∈
BF(w), |x| = |y|, and single query of the type BordersLarger(u,M) for M =
Max2Power(|u|).

288 T. Kociumaka et al.

4 Implementation of LargePS and BordersLarger

For a given word w, its factor v = w[l, r] ∈ BF(w) (given by pair (l, r)) and
number i, we introduce the following type of query:

SUCC (i, v) (PRED(i, v)): find the minimal (maximal) index j in range
[i, i+ |v|] ([i− |v|, i]) such that w[j, j + |v| − 1] = v

We will show how to implement LargePS and BordersLarger using a small
number of SUCC and PRED queries. First we introduce one more combinatorial
tool.

Denote by Occ(v, w) the set of starting positions of all occurrences of the
word v within the word w. The following fact is a folklore consequence of the
periodicity lemma.

Fact 2. Consider two non-empty words x, y such that |y| ≤ 2·|x|. Then Occ(x, y)
forms a single arithmetic progression. If, moreover, |Occ(x, y)| ≥ 3, the differ-
ence of this progression equals per(x).

A straightforward application of this fact is the computation of the representa-
tions of the Occ sets using SUCC and PRED queries.

Lemma 4. If x, y are factors of w such that |y| ≤ 2·|x| then a constant-size rep-
resentation of the set Occ(x, y) (as an arithmetic progression) can be computed
using O(1) SUCC/PRED queries in w.

Proof. Let y = w[i, j]. First we perform two SUCC queries: SUCC (i, x) = p
and SUCC (p, x) = q. If p or q does not exist, we are done. By Fact 2, Occ(x, y)
is an arithmetic progression. From p and q we obtain the first element and the
difference of this progression. Finally, we use a PRED(j − |x| + 1, x) query to
find the last element of the progression. ��

We proceed with the implementation of LargePS(x, y). For this we provide a
more detailed characterization of this set which turns out to be crucial for the
construction of an efficient algorithm.

x y

zz

x1 x2 y2 y1

x1y1

d d d d

l l

l − d 2d− l

Fig. 4. A pair (x, y) has a large prefix-suffix z of length l if and only if y1 and x1 occur
at certain positions in x and y, respectively

Efficient Data Structures for the Factor Periodicity Problem 289

Lemma 5. Let x, y ∈ BF(w) and |x| = |y| > 1. Also let x = x1x2 and y = y2y1,
where |x1| = |x2| = |y1| = |y2| = d. Then:

LargePS(x, y) = ((2d+ 1) � Occ(x1, y)) ∩ ((d− 1) ⊕ Occ(y1, x)) \ {d}. (1)

Proof. Note that if l > d, then l ∈ LargePS(x, y) if and only if l − d + 1 ∈
Occ(y1, x) and 2d− l + 1 ∈ Occ(x1, y), see Fig. 4. ��
Below we show one additional property, see Fig. 5, of the sets considered in
Lemma 5 that we use in an algorithm computing LargePS(x, y). This property
is used for constant-time computation of intersection of related arithmetic pro-
gressions.

Lemma 6. Assume x, y ∈ BF(w), |x| = |y| > 1 and x = x1x2 and y = y2y1,
|x1| = |x2| = |y1| = |y2|. If |Occ(x1, y)| ≥ 3 and |Occ(y1, x)| ≥ 3 then per(x1) =
per(y1), that is, the arithmetic progressions Occ(x1, y) and Occ(y1, x) have the
same difference.

Proof. Let p = per(x1) and p′ = per(y1). Assume to the contrary that p > p′. Let
l = maxOcc(x1, y). The size of Occ(x1, y) implies that the length of the overlap
of this occurrence of x1 and y1 is at least 2p. This overlap corresponds to a suffix
of x1 having periods p and p′, hence, by the periodicity lemma, having period
d = gcd(p, p′). This concludes that x1 has period d < p, a contradiction. The
case of p < p′ can be treated similarly, by considering the leftmost occurrence of
y1 within x. ��
Observation 2. Assume we have compact representations (as integer triples:
the first and the last element and the difference) of two arithmetic progressions
with the same difference (up to absolute value). Then we can compute a compact
representation of their intersection in constant time.

Algorithm Compute LargePS(x, y) {x, y ∈ BF(w), |x| = |y|}

– if |x| = 1 then just check if x = y

– let x = x1x2, y = y2y1 be such that |x1| = |x2| = |y1| = |y2| = d

– compute (using Lemma 4)

S1 = (2d+ 1)� Occ(x1, y) and S2 = (d− 1)⊕ Occ(y1, x)

– if |S1| ≤ 2 or |S2| ≤ 2 then (non-periodic case)
compute S1 ∩ S2 by checking all elements of the smaller set

– else (periodic case, apply Lemma 6)
compute S1 ∩ S2 in O(1) time as an intersection of two

arithmetic progressions with the same difference

– return (S1 ∩ S2) \ {d}

290 T. Kociumaka et al.

a b a c a b a c a b a c a b a c a b a c a b a c a b a c a b b ax:

y1
y1

y1
y1

x1 x2

LargePS(x, y)

a b a c a b a c a b a c a b a c a b a c a b a c a b a c aaaay:

y2 y1

x1
x1

x1
x1

LargePS(x, y)

Fig. 5. LargePS(x, y) = {17, 21, 25, 29} is an arithmetic progression determined by
Occ(x1, y) = {4, 8, 12, 16} and Occ(y1, x) = {2, 6, 10, 14}. Both progressions have the
same difference.

The SUCC/PRED queries are used only to compute compact representations
of the Occ sets. We conclude with the following lemma.

Lemma 7. Assume x, y ∈ BF(w), |x| = |y|. Then LargePS(x, y) can be com-
puted using O(1) SUCC/PRED queries and O(1) additional operations.

Finally we show how to implement BordersLarger (u,M) queries required in the
MAIN algorithm.

Lemma 8. For each factor u of word w and M = Max2Power(|u|), the set
BordersLarger (u,M) can be computed (as a single arithmetic progression) by a
constant number of SUCC/PRED queries.

Proof. By the proof of Lemma 1, all the elements of the set BordersLarger (u,M)
correspond to multiples of the smallest period of u and that this set can be non-
empty only if per(u) < |u| −M , which is not greater than 1

2 |u|.
Let x be the prefix of u of length M . Its first occurrence in u is an occurrence

as a prefix. Using SUCC query we locate the second occurrence. If there is
none, the result is empty. Otherwise, let d be the difference between the starting
positions of these occurrences.

Then d is the only candidate for the smallest period of u smaller than |u|−M ,
if there is any. Indeed, if p = per(u) < d then x would occur earlier, at the
position p. If d < p ≤ |u| −M then the prefix of u of length d+M would have
the periods d and p, hence, by the periodicity lemma, the period d′ = gcd(d, p),
which concludes that d′ < p would be a period of u, which is not possible.

Efficient Data Structures for the Factor Periodicity Problem 291

We need to check if d is a period of u, we know that it is a period of x. It
suffices to check a similar condition to the previous one, but from the end of u
and using a PRED query. Let y be a suffix of u of length M . With a PRED
query we find the previous occurrence of y as a factor of u. If this occurrence
exists and the difference between these occurrences equals d, then d is a period
of y and, since x and y cover u, d is a period of u. Otherwise d cannot be a
period of u.

In conclusion, we either obtain an empty set BordersLarger(u,M) or a pro-
gression with difference d. ��

Now it suffices to show how to implement the SUCC/PRED queries efficiently.
Two ways to do this are described in the following section. Here we set up some
intuition by giving an O(n log n) space and O(log n) query time solution.

We will use the Dictionary of Basic Factors. For each basic factor we store an
array of its occurrences in ascending order. These arrays are accessed by factors’
length and DBF identifier, e.g. A[k][id(v)] is an array for a factor v of length 2k

with identifier id(v). Clearly, the total size of these arrays is O(n log n) and they
can be constructed in O(n logn) time from the DBF. To compute SUCC (i, v),
we perform a binary search in the array corresponding to v in order to find the
first occurrence of v that is not less than i. The PRED queries are answered
analogously. Hence, we obtain O(log n) query time.

As a conclusion of Lemmas 3, 7 and 8, we get the following result. It is
improved in the next section.

Theorem 1. A word w of length n can be stored in an O(n logn) space data
structure so that the Period Queries can be answered in O(log2 n) time. This
data structure can be constructed in O(n logn) time.

5 Implementation of PRED/SUCC Queries

In this section we present various implementations of the queries PRED and
SUCC . The query time decreases at the cost of an increase in space complexity.

5.1 Improving Query Time Using DBF

Here we show an O(n logn) space data structure with O(1) query time for
PRED/SUCC . It improves the very simple solution described in the end of the
previous section. The data structure remains simple and also uses the Dictionary
of Basic Factors. Combined with Lemmas 3, 7 and 8, this yields an O(n log n)
space data structure for answering Period Queries in O(log n) time.

Lemma 9. A word w of length n can be stored in an O(n log n) space data
structure, so that the queries SUCC (i, v) and PRED(i, v) for v ∈ BF(w) can
be answered in O(1) time. Moreover, this data structure can be constructed in
O(n log n) expected time.

292 T. Kociumaka et al.

Proof. We start by computing DBF identifiers id(v) for all v ∈ BF(w). The set
of occurrences of each v is then divided into

⌈
n
|v|

⌉
sets Occv,0, Occv,1, . . . (some

of them possibly empty). The Occv,j set stores the occurrences of v starting in
the range [j · |v|, (j + 1) · |v|). By Fact 2, each set Occv,j is either empty or can
be represented as an arithmetic progression.

We prepare a perfect hash table H: for each triple (|v|, id(v), j) such that
Occv,j �= ∅ we store an O(1) space representation of the arithmetic progression
formed by Occv,j . The total number of occurrences of factors v ∈ BF(w) in the
word w is O(n log n), therefore H takes O(n log n) space and can be constructed
in O(n logn) expected time.

The SUCC (i, v) queries can be answered in O(1) time by inspecting a constant
number of entries of the hash table. Observe that the range [i, i+ |v|] is covered
by exactly 2 intervals of the form [j · |v|, (j + 1) · |v|). Therefore we find and
return the successor of i among the elements of the corresponding arithmetic
progressions Occv,j , Occv,j+1. The PRED queries are answered similarly. ��
We obtain the aforementioned result.

Theorem 2. A word w of length n can be stored in an O(n logn) space data
structure so that the Period Queries can be answered in O(log n) time. This data
structure can be constructed in O(n log n) expected time.

5.2 Space Reductions Using Range Predecessor Queries

In this section we present another approach to PRED/SUCC queries. It gives
slightly worse query time, but the space usage is significantly better. This method
is based on the results of [9] and [8] instead of the DBF.

Recall that T (w) is the suffix tree of w. Our main tool is the following data
structure described in a recent paper by Nekrich and Navarro [9].

Lemma 10. [Range Predecessor/Successor Queries, page 9 in [9]]
A word w of length n can be stored in an O(f(n)) space data structure so that
for a node v of T (w) and position j within w, the values PRED(j, val(v)) and
SUCC (j, val(v)) can be computed in O(g(n)) time for:

– f(n) = O(n) and g(n) = O(logε n)
– f(n) = O(n log logn) and g(n) = O((log logn)2)
– f(n) = O(n logε n) and g(n) = O(log logn).

The other tool is the following data structure for weighted trees proposed by
Kopelowitz and Lewenstein [8].

Lemma 11. [Weighted Level Ancestor Queries [8]]
Let T be a tree of n nodes with positive integer weights up to O(n) in edges. We
can store T in an O(n) space data structure that can answer the following queries
in O(log logn) time: Given an integer h and a node v such that the distance from
the root to v is greater than h, return the highest ancestor of v whose distance
to the root is at least h.

Efficient Data Structures for the Factor Periodicity Problem 293

As a corollary, we obtain the following theorem.

Theorem 3. A word w of length n can be stored in an O(f(n)) space data
structure, so that the Period Queries can be answered in O(g(n)) time for:

– f(n) = O(n) and g(n) = O(log1+ε n)
– f(n) = O(n log logn) and g(n) = O(log n(log logn)2)
– f(n) = O(n logε n) and g(n) = O(log n log logn).

Proof. Our goal is to obtain the space and query time of SUCC /PRED queries as
in Lemma 10. Then we can complete the proof by using, as previously, Lemmas 3,
7 and 8.

For a factor v = w[l, r] let locus(v) be a node of T (w) such that

Occ(v, w) = Occ(val(locus(v)), w).

If we know locus(v) then the PRED/SUCC queries for v can be replaced by
PRED/SUCC queries for locus(v):

PRED(j, v) = PRED(j, val(locus(v)))
SUCC (j, v) = SUCC (j, val(locus(v))).

By Lemma 10, such queries can be answered efficiently. Therefore it suffices to
show how to find efficiently locus(v), given the interval [l, r] such that v = w[l, r].

Let us introduce edge lengths in T (w) as distances in the underlying trie, i.e.
the lengths of factors of w that have been compactified to the corresponding
edges. Recall that leaf [l] points to the leaf that corresponds to the suffix w[l, n].
Note that locus(v) is the highest ancestor of leaf [l] whose distance to the root is
at least r− l+1. Finding such ancestor of this leaf can be described in terms of
Weighted Level Ancestor Queries, and we can apply Lemma 11. Note that both
the space and the query time of this data structure is dominated by the Range
Predecessor/Successor Queries. This completes the proof. ��

6 Final Remarks

The algorithm that we presented spends most of the time computing very short
borders, that correspond to very large periods. If we are interested in periods
of u = w[l, r] which are smaller than (1 − δ)|u| for some δ > 0, then we need
to consider only a constant number of elements from I(u). Hence, the queries
are faster by a multiplicative O(log n) factor. In particular, for a data structure
of O(n) space the queries work in O(logε n) time and for a data structure of
O(n log n) space the query time is O(1).

Note that this is the case in the problem of primitivity testing, in which we
are to check if a factor w[l, r] has a non-trivial period that divides the length of
the factor. Here δ = 1

2 . We conclude with the following corollary.

Corollary 1. A word w of length n can be stored in an O(n) space data struc-
ture so that the primitivity queries can be answered in O(logε n) time, or in an
O(n log n) space data structure with O(1) query time.

294 T. Kociumaka et al.

References

1. Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on Strings. Cambridge Uni-
versity Press (2007)

2. Crochemore, M., Iliopoulos, C., Kubica, M., Radoszewski, J., Rytter, W., Waleń, T.:
Extracting Powers and Periods in a String from Its Runs Structure. In: Chavez, E.,
Lonardi, S. (eds.) SPIRE 2010. LNCS, vol. 6393, pp. 258–269. Springer, Heidelberg
(2010)

3. Crochemore, M., Rytter, W.: Jewels of Stringology. World Scientific (2003)
4. Farach, M.: Optimal suffix tree construction with large alphabets. In: FOCS, pp.

137–143. IEEE Computer Society (1997)
5. Fine, N.J., Wilf, H.S.: Uniqueness theorems for periodic functions. Proceedings of

the American Mathematical Society 16, 109–114 (1965)
6. Gusfield, D.: Algorithms on Strings, Trees, and Sequences - Computer Science and

Computational Biology. Cambridge University Press (1997)
7. Karhumäki, J., Lifshits, Y., Rytter, W.: Tiling periodicity. Discrete Mathematics &

Theoretical Computer Science 12(2), 237–248 (2010)
8. Kopelowitz, T., Lewenstein, M.: Dynamic weighted ancestors. In: Bansal, N., Pruhs,

K., Stein, C. (eds.) SODA, pp. 565–574. SIAM (2007)
9. Nekrich, Y., Navarro, G.: Sorted Range Reporting. In: Fomin, F.V., Kaski, P. (eds.)

SWAT 2012. LNCS, vol. 7357, pp. 271–282. Springer, Heidelberg (2012)

	Efficient Data Structures for the Factor Periodicity Problem
	Introduction
	Combinatorics of Periods, Borders and Prefix-Suffixes
	Main Algorithm
	Implementation of LargePS and BordersLarger
	Implementation of PRED/SUCC Queries
	Improving Query Time Using DBF
	Space Reductions Using Range Predecessor Queries

	Final Remarks
	References

