
The Longest Common Subsequence Problem
with Crossing-Free Arc-Annotated Sequences

Guillaume Blin1, Minghui Jiang2, and Stéphane Vialette1

1 Université Paris-Est, LIGM - UMR CNRS 8049, France
{gblin,vialette}@univ-mlv.fr

2 Department of Computer Science, Utah State University, USA
mjiang@cc.usu.edu

Abstract. An arc-annotated sequence is a sequence, over a given alphabet, with
additional structure described by a set of arcs, each arc joining a pair of posi-
tions in the sequence. As a natural extension of the longest common subsequence
problem, Evans introduced the LONGEST ARC-PRESERVING COMMON SUB-
SEQUENCE (LAPCS) problem as a framework for studying the similarity of
arc-annotated sequences. This problem has been studied extensively in the lit-
erature due to its potential application for RNA structure comparison, but also
because it has a compact definition. In this paper, we focus on the nested case
where no two arcs are allowed to cross because it is widely considered the most
important variant in practice. Our contributions are three folds: (i) we revisit the
nice NP-hardness proof of Lin et al. for LAPCS(NESTED, NESTED), (ii) we im-
prove the running time of the FPT algorithm of Alber et al. from O(3.31k1+k2n)
to O(3k1+k2n), where resp. k1 and k2 deletions from resp. the first and second
sequence are needed to obtain an arc-preserving common subsequence, and (iii)
we show that LAPCS(STEM, STEM) is NP-complete for constant alphabet size.

1 Introduction

Structure comparison for RNA has become a central computational problem bearing
many computer science challenging questions. Indeed, RNA secondary structure com-
parison is essential for (i) identification of highly conserved structures during evolution
(which cannot always be detected in the primary sequence, since it is often unpreserved)
which suggest a significant common function for the studied RNA molecules, (ii) RNA
classification of various species (phylogeny), (iii) RNA folding prediction by consider-
ing a set of already known secondary structures, and (iv) identification of a consensus
structure and consequently of a common role for molecules. From an algorithmic point
of view, RNA structure comparison was first considered in the framework of ordered
trees [12] and, later on, in the one of arc-annotated sequences [5]. An arc-annotated
sequence over some fixed alphabetΣ is a pair (S, P), where S (the sequence) is a string
of Σ∗ and P (the annotation) is a set of arcs {(i, j) : 1 ≤ i < j ≤ |S|}. In the context
of RNA structures, S is a sequence of RNA bases and P represents hydrogen bonds be-
tween pairs of elements of S. From a purely combinatorial point of view, arc-annotated
sequences are a natural extension of simple sequences. However, using arcs for model-
ing non-sequential information together with restrictions on the relative positioning of

L. Calderón-Benavides et al. (Eds.): SPIRE 2012, LNCS 7608, pp. 130–142, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

The Longest Common Subsequence Problem 131

arcs allow for varying restrictions on the structure of arc-annotated sequences. Observe
that a (plain) sequence without any arc can be viewed as an arc-annotated sequence
with an empty arc set.

Different pattern matching and motif search problems have been considered in the
context of arc-annotated sequences among which we can mention finding a longest arc-
annotated subsequence, finding an arc-preserving subsequence, finding a maximum arc-
preserving common subsequence, and computing the edit distance for arc-annotated
sequences. Refer to [3] and [2] for overview references.

In an arc-annotated sequence (S, P), two arcs (i1, j1) and (i2, j2) are crossing if
i1 < i2 < j1 < j2 or i2 < i1 < j2 < j1. An arc (i1, j1) is nested into an arc (i2, j2)
if i2 < i1 < j1 < j2. In her pioneering work [4], Evans has introduced a five level
hierarchy 1 for arc-annotated sequences that is described as follows: UNLIMITED: no
restriction at all, CROSSING: each base is incident to at most one arc, NESTED: each
base is incident to at most one arc and no two arcs are crossing, STEM: each base is
incident to at most one arc, and given any two arcs one is nested into the other, and
PLAIN: there is no arc. This hierarchy is clearly organized according to the following
chain of inclusions: PLAIN ⊂ STEM ⊂ NESTED ⊂ CROSSING ⊂ UNLIMITED.

Let (S1, P1) and (S2, P2) be two arc-annotated sequences. If S1[i] = S2[j] for some
pair of integers i and j (1 ≤ i ≤ |S1| and 1 ≤ j ≤ |S2|), we refer to 〈i, j〉 as a base-
match. If S1[i] = S2[j] and S1[k] = S2[l] with (i, k) ∈ P1 and (j, l) ∈ P2, we refer
to the pair (〈i, k〉〉, 〈j, l〉) as an arc-match. A common subsequence T of S1 and S2 can
be viewed as a set of pairwise disjoint base-matches M = {〈ik, jk〉 : 1 ≤ k ≤ |T |, 1 ≤
ik ≤ |S1|, 1 ≤ jk ≤ |S2|} such that ∀1 ≤ k1 < k2 ≤ |T |, ik1 < ik2 and jk1 < jk2

(i.e. preserving order). The common subsequence T is said to be arc-preserving if
the arcs induced by M are preserved, i.e., for any distinct 〈ik1 , jk1〉, 〈ik2 , jk2〉 ∈ M ,
(ik1 , ik2) ∈ P1 if and only if (jk1 , jk2) ∈ P2. Among the many paradigms refer-
ring to arc-annotated sequences we focus here on the most natural extension of the
longest common subsequence problem, the so-called LONGEST ARC-PRESERVING

COMMON SUBSEQUENCE (LAPCS) problem which is defined as follows [4]: Given
two arc-annotated sequences (S1, P1) and (S2, P2), find the longest common subse-
quence of S1 and S2 that is arc-preserving. It is well-known that the LAPCS problem
is NP-complete [4].

The LAPCS problem is traditionally parameterized by the arc-structure of the
two input arc-annotated sequences. We focus on the nested case because it is
widely considered the most important variant in practice [10,11,1]. We denote by
LAPCS(NESTED, NESTED) (resp. LAPCS(STEM, STEM) the LAPCS problem
where both arc-annotated sequences are NESTED (resp. STEM). It has been shown in
[9] that the LAPCS(NESTED, NESTED) problem is NP-complete, even for an unary
alphabet. This result has been extended in [8] where it is shown that the LAPCS(STEM,
STEM) problem is NP-complete. Alber et al. [1] presented two FPT algorithm for
the LAPCS(NESTED,NESTED) problem. Given two arc-annotated sequences of max-
imum length n, their first algorithm decides in O((3|Σ|)� �n) time whether the two
sequences have an arc-preserving common subsequence of length �, and their second

1 Our presentation actually replaces the original CHAIN level with the STEM level due to its
importance for practical issues [7].

132 G. Blin, M. Jiang, and S. Vialette

algorithm decides in O(3.31k1+k2n) time whether an arc-preserving common subse-
quence can be obtained by deleting k1 letters from the first sequence and k2 letters
from the second sequence. Improving the exponential running times of the two algo-
rithms was left as an immediate open question. Moreover, Alber et al. [1] noted that
their second algorithm relies on a breadth-first search that is very space-consuming, and
asked whether it can be replaced by a simple depth-first search. Our paper makes the
following contributions. First, we revisit the nice NP-hardness proof of Lin et al. [11]
for the LAPCS(NESTED, NESTED) problem. We point out a problem and provide a
simple solution. Second, we improve the running time of the (second) FPT algorithm of
Alber et al. [1] from O(3.31k1+k2n) to O(3k1+k2n). Our algorithm uses the bounded
search tree technique, and can be implemented using a simple depth-first search. Third,
we show that the LAPCS(STEM, STEM) problem is NP-complete for constant alpha-
bet size. The proof is by a tricky modification of [8].

2 LAPCS(NESTED , NESTED) Is NP-complete

In this section we prove that the LAPCS(NESTED, NESTED) problem is NP-complete
even if both arc-annotated sequences are unary. We actually point out a problem in a
previous proof by Lin et al. [11] for the same result, and give a simple solution for
the correctness of the proof. Our proof is for a large part the same as the proof of Lin
et al. [11]. The only difference is that we use larger barriers of length Ω(n) each.

4

1 2 3 4

G

A

AtA1

...
1 12 3 4 4 1 2 3

Fig. 1. The counter-example graph G.

Our counter-example graph for the proof of Lin et al. [11] is presented Figure 1. The
graph A has 4 vertices v1, v2, v3 and v4. The graph G has n = 4t vertices, and consists
of t copies A1, A2, . . . , At of the graph A linked into a circular “list” (for convenience
let A0 = At and At+1 = A1) by one additional edge from the vertex v1 of each Ai to
the vertex v4 of Ai−1. One can easily verified that G is cubic, planar, bridgeless, and
connected. Moreover, G has a natural two-page book embedding such that each vertex
is incident to at least 1 and at most 2 edges on each page, as illustrated in Figure 1. We
have the following lemma about the graph G.

Lemma 1. The maximum cardinality k∗ of an independent set in the graph G is
⌊
3
8 n

⌋
.

The Longest Common Subsequence Problem 133

1 432

Ai

Fig. 2. The two arc-annotated sequences P1 and P2 for the graph G. The separating blocks, each
of length 8, are illustrated by large dots.

We now turn to pointing out the problem in the proof of Lin et al. [11]. Refer to Figure 2
for the construction of the two arc-annotated sequences P1 and P2 based on the graphG
according to the reduction of Lin et al. [11]. As illustrated by the dotted lines between
the two sequences, the two arc-annotated sequences (S1, P1) and (S2, P2) has an arc-
preserving common subsequence of length � = 8n+ 3+2

2 n − 6 = 10n+ 1
2n− 6. Lin

et al. [11] claimed that every LAPCS can be transformed into a good LAPCS (of the
same length). We show that this claim is wrong. Following their proof, the graph G has
an independent set of cardinality k if and only if (S1, P1) and (S2, P2) have a good
LAPCS of length 8(n+1)+2n+ k = 10n+ k+8. Then, by Lemma 1, the maximum
length of a good LAPCS of (S1, P1) and (S2, P2) is at most �good = 10n+

⌊
3
8n

⌋
+ 8.

Note that for t > 28 and correspondingly n = 4t > 112, we have � > �good. This
disproves their claim. For a correct proof, we increase the length of each separating
block in the reduction from 8 to s = 4n. Then, following their proof, the length of an
LAPCS is at least s(n+1)+ 2n+ k∗. If a common subsequence has a far match 〈i, j〉
such that |j − i| ≥ n, then in each sequence there must be at least n unmatched bases
on each side of the match. It follows that the length of the common subsequence is at
most s(n+1)+4n−2n, which is less than s(n+1)+2n+k∗. Therefore every match
〈i, j〉 of an LAPCS must be near, i.e., |j − i| < n. By the same argument, an LAPCS
must include at least one arc from each separating block in each sequence, because
otherwise a separating block with no arcs in the LAPCS would have at least 4n/2 = 2n
unmatched bases. Since all matches must be near, any arc (i1, i2) in the LAPCS that
comes from a separating block in P1 must match an arc (j1, j2) from the corresponding
separating block in P2 such that either i1 ≤ j1 ≤ j2 ≤ i2 or j1 ≤ i1 ≤ i2 ≤ j2. Then a
simple replacement argument shows that all separating blocks are matched completely,
and consequently any LAPCS can be transformed into a good LAPCS of the same
length.

134 G. Blin, M. Jiang, and S. Vialette

3 A Faster Algorithm for the LAPCS(NESTED , NESTED) Problem

Theorem 1. There is an O(3k1+k2n)-time algorithm for LAPCS(NESTED,NESTED)
that decides whether an arc-preserving common subsequence of two arc-annotated se-
quences of maximum length n can be obtained by deleting k1 letters from the first se-
quence and k2 letters from the second sequence.

We first observe that the two parameters k1 and k2 are not independent. Let n1 and n2

be the lengths of the two sequences. Then the problem admits a valid solution only if
n1−k1 = n2−k2. Without loss of generality, we use a single parameter k = k1+k2 for
the total number of letters deleted from the two arc-annotated sequences. The running
time of our algorithm is thus O(3kn). For an arc-annotated sequence S and an index
i, define buddy(S, i) = j if S[i] is connected to S[j] by an arc, and buddy(S, i) = 0
otherwise. For an arc-annotated sequence S of length n and two indices i ≤ j, denote
by S[i, j] the subsequence obtained from S by deleting letters S[1], S[2], . . . , S[i − 1]
and S[j + 1], S[j + 2], . . . , S[n] together with the incident arcs. For an arc-annotated
sequence S and three indices i ≤ j ≤ k, denote by S[i, j, k] the subsequence obtained
from S[i, k] by deleting S[j] and its incident arc (if any).

Algorithm lapcs(S, T, k)
Input: Two arc-annotated sequences S and T , an integer k.
Output: returns k∗ – the minimum number of letters that must be deleted from S and
T to obtain an arc-preserving common subsequence – if k∗ ≤ k; ∞ otherwise.

The algorithm is recursive. For the base case, the algorithm returns 0 if S = T and
k ≥ 0, and returns ∞ if S
= T and k ≤ 0. For the inductive case, the algorithm tries all
applicable following cases and returns the minimum value. Let s and t be the lengths of
the two sequences S and T , respectively. Put i = buddy(S, 1) and j = buddy(T, 1).

Case 1. S[1]
= T [1].

– Delete S[1], then return lapcs(S[2, s], T, k − 1) + 1.
– Delete T [1], then return lapcs(S, T [2, t], k − 1) + 1.

Case 2.1. S[1] = T [1], i = j = 0.

– Match S[1] ∼ T [1], then return lapcs(S[2, s], T [2, t], k).

Case 2.2. S[1] = T [1], i > 0 and j = 0.

– Delete S[1], then return lapcs(S[2, s], T, k − 1) + 1.
– Delete T [1], then return lapcs(S, T [2, t], k − 1) + 1.
– Delete S[i], match S[1] ∼ T [1], then return lapcs(S[2, i, s], T [2, t], k − 1) + 1.

Case 2.3. S[1] = T [1], i = 0 and j > 0.

– Delete S[1], then return lapcs(S[2, s], T, k − 1) + 1.
– Delete T [1], then return lapcs(S, T [2, t], k − 1) + 1.
– Delete T [j], match S[1] ∼ T [1], then return lapcs(S[2, s], T [2, j, t], k − 1) + 1.

The Longest Common Subsequence Problem 135

Case 2.4. S[1] = T [1], i > 0 and j > 0, S[i]
= T [j].

– Delete S[1], then return lapcs(S[2, s], T, k − 1) + 1.
– Delete T [1], then return lapcs(S, T [2, t], k − 1) + 1.
– Delete S[i] and T [j], match S[1] ∼ T [1], then return lapcs(S[2, i, s], T [2, j, t], k−
2) + 2.

Case 2.5.1. S[1] = T [1], i > 0 and j > 0, S[i] = T [j], S[2, i− 1] = T [2, j − 1].

– Match S[1, i] ∼ T [1, j], then return lapcs(S[i+ 1, s], T [j + 1, t], k).

Case 2.5.2. S[1] = T [1], i > 0 and j > 0, S[i] = T [j], S[i+ 1, s] = T [j + 1, t].

– Match S[1] ∼ T [1] and S[i, s] ∼ T [j, t], then return lapcs(S[2, i−1], T [2, j−1], k).

Case 2.5.3 S[1] = T [1], i > 0 and j > 0, S[i] = T [j], ∃a : S[2, a, i− 1] = T [2, j− 1].

– Delete S[1], then return lapcs(S[2, s], T, k − 1) + 1.
– Delete T [1], then return lapcs(S, T [2, t], k − 1) + 1.
– Delete S[a], match S[1, a, i] ∼ T [1, j], then return lapcs(S[i+1, s], T [j+1, t], k−
1) + 1.

Case 2.5.4 S[1] = T [1], i > 0 and j > 0, S[i] = T [j], ∃b : S[2, i− 1] = T [2, b, j − 1].

– Delete S[1], then return lapcs(S[2, s], T, k − 1) + 1.
– Delete T [1], then return lapcs(S, T [2, t], k − 1) + 1.
– Delete T [b], match S[1, i] ∼ T [1, b, j], then return lapcs(S[i+1, s], T [j+1, t], k−
1) + 1.

Case 2.5.5 S[1] = T [1], i > 0 and j > 0, S[i] = T [j], ∃a : S[i+1, a, s] = T [j +1, t].

– Delete S[1], then return lapcs(S[2, s], T, k − 1) + 1.
– Delete T [1], then return lapcs(S, T [2, t], k − 1) + 1.
– Delete S[a], match S[1] ∼ T [1] and S[i, a, s] ∼ T [j, t], then return lapcs(S[2, i−
1], T [2, j − 1], k − 1) + 1.

Case 2.5.6 S[1] = T [1], i > 0 and j > 0, S[i] = T [j], ∃b : S[i+ 1, s] = T [j + 1, b, t].

– Delete S[1], then return lapcs(S[2, s], T, k − 1) + 1.
– Delete T [1], then return lapcs(S, T [2, t], k − 1) + 1.
– Delete T [b], match S[1] ∼ T [1] and S[i, s] ∼ T [j, b, t], then return lapcs(S[2, i −
1], T [2, j − 1], k − 1) + 1.

Case 2.5.7 S[1] = T [1], i > 0 and j > 0, S[i] = T [j], S[2, i − 1]
= T [2, j − 1],
S[i+1, s]
= T [j+1, t], ∀a : S[2, a, i−1]
= T [2, j−1], ∀a : S[i+1, a, s]
= T [j+1, t],
∀b : S[2, i− 1]
= T [2, b, j − 1], ∀b : S[i+ 1, s]
= T [j + 1, b, t].

– Delete S[1], then return lapcs(S[2, s], T, k − 1) + 1.
– Delete T [1], then return lapcs(S, T [2, t], k − 1) + 1.
– Delete S[i] and T [j], match S[1] ∼ T [1], then return lapcs(S[2, i, s], T [2, j, t], k−
2) + 2.

136 G. Blin, M. Jiang, and S. Vialette

– Match S[1] ∼ T [1] and S[i] ∼ T [j], compute k′ = lapcs(S[2, i − 1], T [2, j −
1], k − 2) + lapcs(S[i+ 1, s], T [j + 1, t], k − 2),, then return k′ if k′ ≤ k, or ∞ if
k′ > k.

The correctness of the algorithm is self-evident for the cases from 1 to 2.5.2. To justify
the four cases from 2.5.3 and 2.5.6, we have the following easy lemma.

Lemma 2. For each case from 2.5.3 to 2.5.6, if the condition of the case is met, then
there is an optimal solution that corresponds to one of the three branches for that case.

Finally, the condition for case 2.5.7 ensures that at least two deletions are necessary in
each of the two subproblems for (S[2, i− 1], T [2, j − 1]) and (S[i+ 1, s], T [j + 1, t]).
Thus in the last branch of this case, it is sufficient to set the third parameter to k−2 in the
two recursions. In terms of time complexity, the seven cases 2.2, 2.3, and 2.5.3–2.5.7 are
the worst cases. The six cases 2.2, 2.3, and 2.5.3–2.5.4 correspond to the characteristic
polynomial equation 1 = x−1 + x−1 + x−1; the last case 2.5.7 corresponds to the
characteristic polynomial equation 1 = x−1+x−1+x−2+(x−2+x−2). Both equations
have a unique positive real root x0 = 3.

4 LAPCS(STEM , STEM) for Constant Alphabet Size

The LAPCS(STEM, STEM) problem turns out to be of particular interest for RNA
practical issues [7]. This problem has been shown to be NP-complete for arbitrar-
ily large alphabets [8]. This section is devoted to investigating the LAPCS(STEM,
STEM) problem for constant alphabet size. We first make the easy observation that the
LAPCS(STEM, STEM) problem for an alphabet of size 1 admits a polynomial-time ex-
act algorithm by dynamic programming. Unfortunately, this approach cannot be pushed
too far. Indeed, we now show that the constant alphabet size assumption is not enough
to gain tractability for the LAPCS(STEM,STEM) problem.

Theorem 2. The LAPCS(STEM,STEM) problem is NP-complete for constant alpha-
bet size.

To prove hardness, we propose a reduction from the NP-complete 3-SAT problem [6]
which is defined as follows: Given a collection Cq = {c1, c2, . . . , cq} of q clauses,
where each clause is the disjunction of 3 literals on a finite set of n boolean vari-
ables Vn = {x1, x2, . . . , xn}, determine whether there exists a truth assignment to
the variables so that each clause has at least one true literal. Let (Cq, Vn) be an arbi-
trary instance of the 3-SAT problem. For convenience, let Lj

i denote the j-th literal of
the i-th clause (i.e. ci) of Cq . In the following, given a sequence S over an alphabet
Σ, let occ(i, c, S) denote the i-th occurrence of the letter c in S. We build two arc-
annotated sequences (S1, P1) and (S2, P2) as follows. An illustration of a full example
is given in figures 3 and 4, where n = 4 and q = 3. For readability reasons, the arc-
annotated sequences resulting from the construction have been split into several parts
and a schematic overview of the overall placement of each part is provided.

The Longest Common Subsequence Problem 137

Let S1 and S2 be the two sequences defined as follows:

S1 = C1
q S C1

q−1 . . . C
1
2 S C1

1 S S1
M S P 1

1 S P 1
2 . . . P 1

q−1 S P 1
q

S2 = C2
q S C2

q−1 . . . C
2
2 S C2

1 S S2
M S P 2

1 S P 2
2 . . . P 2

q−1 S P 2
q

where, for all 1 ≤ i ≤ q and 1 ≤ k ≤ n,

– S = 2β

– C1
i = 9δ 6γ 8δ 6γ X1

1 X1
2 . . . X

1
n 6γ 8δ 6γ 7δ with X1

k = 0 sj 1 2α if xk = Lj
i or

xk = Lj
i , with s1 = 3, s2 = 4 and s3 = 5; X1

k = 0 1 2α otherwise;
– P 1

i = 6γ 6γ 9δ X1
n . . . X

1
n
2 +1 8δ X1

n
2
. . . X1

1 7δ 6γ 6γ s.t. X1
k = 1 0 2α;

– C2
i = X2

1 . . . X
2
n 9δ 6γ X2

1 . . . X
2
n
2
8δ X2

n
2 +1 . . . X

2
n 6γ 7δ X2

1 . . . X
2
n s.t. ∀1 ≤

j ≤ 3, occ(j,X2
k , C

2
i) = 1 0 sj 2α (resp. sj 1 0 2α) if xk = Lj

i (resp. xk = Lj
i),

with s1 = 3, s2 = 4 and s3 = 5; occ(j,X2
k , C

2
i) = 1 0 2α otherwise;

– P 2
i = (0 1 2α)n 7δ 6γ (0 1 2α)

n
2 8δ (0 1 2α)

n
2 6γ 9δ (0 1 2α)n.

– S1
M = (0 1 2α)n and S2

M = (1 0 2α)n

Notice that, by construction, there is only one occurrence of each {3, 4, 5} in C1
i and

C2
i . Moreover, let α = 2n+ 1, β = |S1

M |+∑
1≤i≤q(|C1

i |+ |P 1
i |), δ = α(n+ 1) and

γ = 5δ + 4 . Let us now define P1 and P2. Add an arc in P1 between occ(k, 0, S1
M)

(resp. occ(k, 1, S1
M)) and occ(n − k + 1, 0, P 1

1) (resp. occ(n − k + 1, 1, P 1
1)). For

all 1 ≤ i ≤ q − 1, (1) add an arc in P1 between occ(k, 0, C1
i) (resp. occ(k, 1, C1

i))
and occ(n − k + 1, 0, P 1

i+1) (resp. occ(n − k + 1, 1, P 1
i+1)), ∀1 ≤ k ≤ n (see Fig.

3.d and 4.b); for all 1 ≤ i ≤ q, (2) add an arc in P2 between occ(j ∗ k, 0, C2
i) (resp.

occ(j ∗ k, 1, C2
i)) and occ(3n − jk + 1, 0, P 2

i) (resp. occ(3n − jk + 1, 1, P 2
i)),

∀1 ≤ j ≤ 3, 1 ≤ k ≤ n (see Fig. 3.c, 4.a and 4.c); (3) add an arc in P2 between
occ(k, j, C2

i) and occ(δ − k + 1, j, P 2
i), ∀j ∈ {7, 8, 9} and 1 ≤ k ≤ δ (see Fig. 3.c,

4.a and 4.c). Clearly, this construction can be achieved in polynomial-time, and yields
two arc-annotated sequences (S1, P1) and (S2, P2) that are both of type STEM. We now
give an intuitive description of the different elements of this construction. Each clause
ci ∈ Cq is represented by a pair (C1

i , C
2
i) of sequences. The sequence C2

i is composed
of three subsequences representing a selection mechanism of one of the three literals of
ci. The pair (S1

M , S2
M) of sequences is a control mechanism that will guarantee that a

variable xk cannot be true and false simultaneously. Finally, for each clause ci ∈ Cq , the
pair (P 1

i , P
2
i) of sequences is a propagation mechanism whose aim is to propagate the

selection of the assignment (i.e. true or false) of any literal xk all over Cq . Notice that
all the previous intuitive notions will be detailed and clarified afterwards. In the sequel,
we will refer to any such construction as a snail-construction. In order to complete
the instance of the LAPCS(STEM, STEM) problem, we set k′ = |S1| − ε with ε =
q(2(n+2δ+2γ+1))+nwhere k′ is the desired length of the solution. Let (S1, P1) and
(S2, P2) denote the arc-annotated sequences obtained by a snail-construction. We will
denote Sd the set of symbols deleted in a solution of the LAPCS problem on (S1, P1)
and (S2, P2) (i.e. the symbols that do not belong to the common subsequence). We need
some technical lemmas:

138 G. Blin, M. Jiang, and S. Vialette

F
ig

.3
.C

on
si

de
ri

ng
C

q
=

(x
1
∨
x
2
∨
x
3
)
∧
(x

1
∨
x
2
∨
x
4
)
∧
(x

2
∨
x
3
∨
x
4
).

Fo
r

re
ad

ab
il

it
y,

al
l

th
e

ar
cs

ha
ve

no
t

be
en

dr
aw

n,
co

ns
ec

ut
iv

e
ar

cs
ar

e
re

pr
es

en
ti

ng
by

a
un

iq
ue

ar
c

w
it

h
li

ne
s

fo
r

en
dp

oi
nt

s.
S

ym
bo

ls
ov

er
a

gr
ey

ba
ck

gr
ou

nd
m

ay
be

de
le

te
d

to
ob

ta
in

an
op

ti
m

al
L

A
P

C
S

.a
)

A
sc

he
m

at
ic

vi
ew

of
th

e
ov

er
al

la
rr

an
ge

m
en

to
f

th
e

co
m

po
ne

nt
s

of
th

e
tw

o
se

qu
en

ce
s.

b)
D

es
cr

ip
ti

on
of

S
1 M

,S
2 M

,P
1 1
,P

2 1
an

d
th

e
co

rr
es

po
nd

in
g

ar
cs

in
P
1
.c

)
D

es
cr

ip
ti

on
of

C
1 1
,C

2 1
,P

1 1
,P

2 1
an

d
th

e
co

rr
es

po
nd

in
g

ar
cs

in
P
2
.d

)
D

es
cr

ip
ti

on
of

C
1 1
,C

2 1
,P

1 2
,P

2 2
an

d
th

e
co

rr
es

po
nd

in
g

ar
cs

in
P
1
.

The Longest Common Subsequence Problem 139

F
ig

.4
.C

on
si

de
ri

ng
C

q
=

(x
1
∨
x
2
∨
x
3
)
∧
(x

1
∨
x
2
∨
x
4
)
∧
(x

2
∨
x
3
∨
x
4
).

Fo
r

re
ad

ab
il

it
y

al
l

th
e

ar
cs

ha
ve

no
t

be
en

dr
aw

n,
co

ns
ec

ut
iv

e
ar

cs
ar

e
re

pr
es

en
ti

ng
by

a
un

iq
ue

ar
c

w
it

h
li

ne
s

fo
r

en
dp

oi
nt

s.
S

ym
bo

ls
ov

er
a

gr
ey

ba
ck

gr
ou

nd
m

ay
be

de
le

te
d

to
ob

ta
in

an
op

ti
m

al
L

A
P

C
S

.a
)

D
es

cr
ip

ti
on

of
C

1 2
,C

2 2
,P

1 2
,P

2 2
an

d
th

e
co

rr
es

po
nd

in
g

ar
cs

in
P
2
.c

)
D

es
cr

ip
ti

on
of

C
1 2
,C

2 2
,P

1 3
,P

2 3
an

d
th

e
co

rr
es

po
nd

in
g

ar
cs

in
P
1
.d

)
D

es
cr

ip
ti

on
of

C
1 3
,C

2 3
,P

1 3
,

P
2 3

an
d

th
e

co
rr

es
po

nd
in

g
ar

cs
in

P
2
.

140 G. Blin, M. Jiang, and S. Vialette

Lemma 3. Any optimal solution of the LAPCS(STEM, STEM) problem on (S1, P1)
and (S2, P2) is of length |S1| − ε.

Lemma 4. In any optimal solution of the LAPCS(STEM, STEM) problem on (S1, P1)
and (S2, P2), if occ(k, 1, S1

M) (resp. occ(k, 0, S1
M)) for a given 1 ≤ k ≤ n is deleted

then, ∀1 ≤ j ≤ q, occ(k, 1, C1
j) (resp. occ(k, 0, C1

j)) is deleted.

The following theorem proves Theorem 2.

Theorem 3. Given an instance of the problem 3SAT with n variables and q clauses,
there exists a satisfying truth assignment if and only if the LAPCS(STEM, STEM) prob-
lem for (S1, P1) and (S2, P2) is of length k′ = |S1| − ε.

Proof. (⇒) An optimal solution for Cq = (x1∨x2∨x3)∧(x1∨x2∨x4)∧(x2∨x3∨x4)
– i.e. x1 = x3 = true and x2 = x4 = false – is illustrated in figures 3 and 4 where any
symbol over a grey background has to be deleted. Suppose we have a solution for our 3-
SAT instance, that is an assignment of each variable of Vn satisfying each clause of Cq .
Let us first list all the symbols to delete in S1. For all 1 ≤ k ≤ n, if xk = false then
delete, ∀1 ≤ j ≤ q, {occ(k, 0, C1

j), occ(k, 1, P
1
j)} and occ(k, 0, S1

M); otherwise
delete, ∀1 ≤ j ≤ q, {occ(k, 1, C1

j), occ(k, 0, P
1
j)} and occ(k, 1, S1

M).

For each Lj
i satisfying ci with the biggest index j with 1 ≤ i ≤ q,

if (1) j = 1 then from C1
i , delete all the symbols 9, the two first substrings of γ

symbols 6, the first substring of δ symbols 8, symbols 4 and 5. Moreover, from P 1
i

delete all the symbols 7 and 8, the two last substrings of γ symbols 6 (cf Fig. 3.c).
if (2) j = 2 then from C1

i , delete all the symbols 8, the first and the last substrings of
γ symbols 6, symbols 3 and 5. Moreover, from P 1

i delete all the symbols 7 and 9, the
first and the last substrings of γ symbols 6 (cf Fig. 4.a).

if (3) j = 3 then from C1
i , delete all the symbols 7, the two last substrings of γ

symbols 6, the last substring of δ symbols 8, symbols 3 and 4. Moreover, from P 1
i

delete all the symbols 8 and 9, the two first substrings of γ symbols 6.
Let us now list all the symbols in S2 to be deleted. For all 1 ≤ k ≤ n, if xk = false

then delete occ(k, 0, S2
M); otherwise delete occ(k, 1, S2

M). For each Lj
i satisfying ci

with the biggest index j with 1 ≤ i ≤ q,
if (1) j = 1 then, in C2

i , delete all the symbols not in {6, 7, 8} appearing after
occ(1, 9, C2

i) (included). Moreover, if xk = false with 1 ≤ k ≤ n then delete,
occ(k, 0, C2

i), otherwise delete occ(k, 1, C2
i) (cf Fig. 3.c). Moreover, in P 2

i , delete
all the symbols not in {6, 9} appearing before occ(1, 9, P 2

i). Moreover, if xk = false
with 1 ≤ k ≤ n then delete, occ(3n− k + 1, 0, P 2

i), otherwise delete occ(3n− k +
1, 1, P 2

i) (cf Fig. 3.c);
if (2) j = 2 then, in C2

i , delete all the symbols 8 and all the symbols appearing before
occ(1, 9, C2

i) (excluded) or after occ(δ, 7, C2
i) (excluded). Moreover, if xk = false

with 1 ≤ k ≤ n then delete, occ(n + k, 0, C2
i), otherwise delete occ(n + k, 1, C2

i)
(cf Fig. 4.a). Moreover, in P 2

i , delete all the symbols appearing before occ(1, 6, P 2
i)

(excluded) or after occ(2γ, 6, P 2
i) (excluded). Moreover, if xk = false with 1 ≤ k ≤

n then delete, occ(2n−k+1, 0, P 2
i), otherwise delete occ(2n−k+1, 1, P 2

i) (cf Fig.
4.a);

The Longest Common Subsequence Problem 141

if (3) j = 3 then, in C2
i , delete all the symbols not in {6, 8, 9} appearing before

occ(δ, 7, C2
i) (included). Moreover, if xk = false with 1 ≤ k ≤ n then delete,

occ(2n + k, 0, C2
i), otherwise delete occ(2n + k, 1, C2

i) (cf Fig. 4.c). Moreover, in
P 2
i , delete all the symbols not in {6, 7} appearing after occ(1, 7, P 2

i). Moreover, if
xk = false with 1 ≤ k ≤ n then delete, occ(n − k + 1, 0, P 2

i), otherwise delete
occ(n− k + 1, 1, P 2

i) (cf Fig. 4.c);
By construction, the natural order of the symbols of S1 and S2 allows the correspond-

ing set of undeleted symbols to be conserved in a common arc-preserving common sub-
sequence between (S1, P1) and (S2, P2). Let us now prove that the length of this last is
k′. One can easily check that in this solution, in S1, n symbols have been deleted from
S1
M and ∀1 ≤ i ≤ q, 2δ+2γ+n+2 symbols fromC1

i and 2δ+2γ+n symbols from P 1
i

have been deleted. Thus, the length of the solution is |S1|− [q(2(n+2δ+2γ+1))+n].
(⇐) Suppose we have an optimal solution – i.e. a set of symbols Sd to delete –

for LAPCS of (S1, P1) and (S2, P2). Let us define the truth assignment of Vn s.t.,
∀1 ≤ i ≤ q, if in C1

i symbol 3 is not deleted, then the first literal of clause ci (i.e.
L1
i) is true; if in C1

i symbol 4 is not deleted, then the second literal of clause ci (i.e.
L2
i) is true; if in C1

i symbol 5 is not deleted, then the third literal of clause ci (i.e.
L3
i) is true. Let us prove that it is a solution for our 3-SAT instance. By construc-

tion, if Lj
i = xk (resp. xk) then in C1

i , symbol 2 + j (i.e. 3, 4 or 5) appears between
occ(k, 0, C1

i) and occ(k, 1, C1
i) whereas in C2

i it appears after occ(k, 1, C2
i) (resp.

before occ(k, 0, C2
i)). Thus, if symbol 2 + j (i.e. 3, 4 or 5) in C1

i is not deleted then
occ(k, 1, C1

i) (resp. occ(k, 0, C1
i)) in C1

i is deleted if Lj
i = xk (resp. xk). Conse-

quently, according to the proof of Lemma 4, if symbol 2 + j (i.e. 3, 4 or 5) in C1
i is

not deleted then occ(k, 1, C1
i′) (resp. occ(k, 0, C1

i′)) in all C1
i′ , with 1 ≤ i′ ≤ q is

deleted if Lj
i = xk (resp. xk). Therefore, we can ensure that one cannot obtain Lj

i and

Lj′
i′ being true whereas Lj

i = Lj′
i′ (that is a variable cannot be simultaneously true and

false). By Lemma 3, we can ensure that for any 1 ≤ i ≤ q exactly one of {3, 4, 5} is
conserved in C1

i . ��

References

1. Alber, J., Gramm, J., Guo, J., Niedermeier, R.: Computing the similarity of two sequences
with nested arc annotations. Theoretical Computer Science 312(2-3), 337–358 (2004)

2. Blin, G., Crochemore, M., Vialette, S.: Algorithmic Aspects of Arc-Annotated Sequences. In:
Algorithms in Computational Molecular Biology: Techniques, Approaches and Applications.
Wiley (2010) (to appear)

3. Blin, G., Denise, A., Dulucq, S., Herrbach, C., Touzet, H.: Alignment of RNA structures.
IEEE/ACM Transactions on Computational Biology and Bioinformatics (2008) (to appear)

4. Evans, P.A.: Algorithms and Complexity for Annotated Sequences Analysis. PhD thesis, Uni-
versity of Victoria (1999)

5. Evans, P.A.: Finding Common Subsequences with Arcs and Pseudoknots. In: Crochemore,
M., Paterson, M. (eds.) CPM 1999. LNCS, vol. 1645, pp. 270–280. Springer, Heidelberg
(1999)

6. Garey, M.R., Johnson, D.S.: Computers and Intractability: A guide to the theory of NP-
completeness. W.H. Freeman, San Francisco (1979)

142 G. Blin, M. Jiang, and S. Vialette

7. Guignon, V., Chauve, C., Hamel, S.: An Edit Distance Between RNA Stem-Loops. In: Con-
sens, M.P., Navarro, G. (eds.) SPIRE 2005. LNCS, vol. 3772, pp. 335–347. Springer, Heidel-
berg (2005)

8. Blin, G., Hamel, S., Vialette, S.: Comparing RNA Structures with Biologically Relevant Op-
erations Cannot Be Done without Strong Combinatorial Restrictions. In: Rahman, M. S., Fu-
jita, S. (eds.) WALCOM 2010. LNCS, vol. 5942, pp. 149–160. Springer, Heidelberg (2010)

9. Jiang, T., Lin, G., Ma, B., Zhang, K.: A general edit distance between RNA structures. Jour-
nal of Computational Biology 9(2), 371–388 (2002)

10. Jiang, T., Lin, G., Ma, B., Zhang, K.: The Longest Common Subsequence Problem for Arc-
Annotated Sequences. In: Giancarlo, R., Sankoff, D. (eds.) CPM 2000. LNCS, vol. 1848, pp.
154–165. Springer, Heidelberg (2000)

11. Lin, G., Chen, Z.-Z., Jiang, T., Wen, J.: The longest common subsequence problem for se-
quences with nested arc annotations. J. of Computer and System Sc. 65, 465–480 (2002)

12. Shasha, D., Zhang, K.: Simple fast algorithms for the editing distance between trees and
related problems. SIAM Journal on Computing 18(6), 1245–1262 (1989)

	The Longest Common Subsequence Problem with Crossing-Free Arc-Annotated Sequences
	Introduction
	LAPCS(Nested, Nested) Is NP-complete
	A Faster Algorithm for the LAPCS(Nested, Nested) Problem
	LAPCS(Stem, Stem) for Constant Alphabet Size
	References

