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Abstract. This paper is concerned with the problem of supervised learn-
ing of deterministic finite state automata, in the technical sense of iden-
tification in the limit from complete data, by finding a minimal DFA
consistent with the data (regular inference).

We solve this problem by translating it in its entirety to a vertex
coloring problem. Essentially, such a problem consists of two types of
constraints that restrict the hypothesis space: inequality and equality
constraints.

Inequality constraints translate to the vertex coloring problem in a
very natural way. Equality constraints however greatly complicate the
translation to vertex coloring. In previous coloring-based translations,
these were therefore encoded either dynamically by modifying the ver-
tex coloring instance on-the-fly, or by encoding them as satisfiability
problems. We provide the first translation that encodes both types of
constraints together in a pure vertex coloring instance. This offers many
opportunities for applying insights from combinatorial optimization and
graph theory to regular inference. We immediately obtain new complex-
ity bounds, as well as a family of new learning algorithms which can be
used to obtain both exact hypotheses, as well as fast approximations.

1 Introduction

The regular inference problem consists of learning (finding) a smallest determin-
istic finite state automaton (DFA) that is consistent with a given set of labeled
strings, rejecting the negative strings and accepting the positive strings. The de-
cision version of finding a DFA with a given upper bound on its size (number of
states) was shown to be NP-complete in [3, 18], and an inapproximability result
was demonstrated in [24]. In spite of these hardness results, quite a few DFA
identification algorithms exist, see [11]. In particular, a recently proposed algo-
rithm based on a translation of the regular inference problem into satisfiability
(SAT) has shown promising results [16].

The translation in [16] is based on an earlier translation of regular inference
to graph coloring in [10]. Graph coloring is the problem of assigning a color to
every node in a given graph such that nodes with the same color do not share
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an edge. Determining whether there exists a coloring that uses at most k ≥ 3
colors is a well-known NP-complete problem, see, e.g., [13]. The main idea of
this translation into graph coloring is to use a distinct color for every state of
the learned DFA. The nodes in the graph coloring instance represent the labeled
strings and share an edge if one of them is positive and the other negative. The
graph coloring problem thus ensures that pairs of positive and negative examples
cannot obtain the same color, and therefore cannot end in the same state, making
the resulting DFA consistent. The size of this DFA is determined by the amount
of colors used in the graph coloring problem. Finding the minimum is done by
iterating over this amount.

The above mentioned reduction from [10], however, was not purely based
on graph coloring. In addition to the inequality constraints, denoting that two
vertices cannot be assigned the same color, so-called equality constraints are
needed to model regular inference. These constraints denote that two vertices
should be assigned the same color if two other vertices are assigned the same
color. Together, the equality and inequality constraints can efficiently encode
the regular inference problem. Unfortunately, however, it has remained unknown
how to encode such constraints in a graph coloring problem instance. In [10],
they were encoded dynamically by creating new graph coloring instances that
satisfied them on-the-fly. In [16], they were encoded directly into satisfiability
instead of in the intermediary graph coloring instance. In this paper, we develop
the first construction that encodes them directly into graph coloring.

In terms of complexity (size), our encoding of the equality constraints is com-
parable to the encoding to satisfiability described in [16]: they both require
O(|C|2 · |V |) additional clauses or vertices, where C is the set of colors and
V is the size of the data set (the APTA, see Section 2). The inequality con-
straints, however, are much easier to encode in graph coloring, requiring only
a single edge for every constraint compared to the O(|C|2) (or O(|C|) for some
that can be encoded more efficiently, see [16]) clauses that are needed for every
such constraint in a satisfiability instance. In addition, using our encoding we
can make use of sophisticated solvers for graph coloring, including techniques
for symmetry-breaking, many local-search based approaches, cutting-plane al-
gorithms, etc. see, e.g., [21].

2 Background and Notation

2.1 Regular Inference

A deterministic finite state automaton (DFA) is one of the basic and most com-
monly used finite state machines. Below, we provide a concise description of
DFAs, the reader is referred to [25] for a more elaborate overview. A DFA
A = 〈Q, T,Σ, q0, F 〉 is a directed graph consisting of a set of states Q (nodes)
and labeled transitions T (directed edges). The start state q0 ∈ Q is a specific
state of the DFA and any state can be an accepting state (final state) in F ⊆ Q.
The labels of transitions are all members of a given alphabet Σ. A DFA A can be
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used to generate or accept sequences of symbols (strings) using a process called
DFA computation. This process begins in q0, and iteratively activates (or fires)
an outgoing transition ti = 〈qi−1, qi, li〉 ∈ T with label li ∈ Σ from the source
state it is in, qi−1, moving the process to the target state qi pointed to by ti. A
computation q0t1q1t2q2 . . . tnqn is accepting if the state it ends in (its last state)
is an accepting state, i.e., qn ∈ F , otherwise it is rejecting. The labels of the
activated transitions form a string l1 . . . ln. A DFA accepts exactly those strings
formed by the labels of accepting computations, it rejects all others. A DFA is
deterministic, which means that for every state q and every label l there exists at
most one outgoing transition from q with label l. The set of all strings accepted
by a DFA A is called the language L(A) of A.

Given a pair of finite sets of positive example strings S+ and negative example
strings S−, called the input sample, the goal of regular inference (or DFA iden-
tification/learning) is to find a (non-unique) smallest DFA A that is consistent
with S = {S+, S−}, i.e., such that every string in S+ is accepted by A, and every
string in S− is rejected by A. Typically, the size of a DFA is measured by the
number of states it contains. Seeking this DFA is an active research topic in the
grammatical inference community, see, e.g., [11].

For many years, the state-of-the-art in DFA identification has been the
evidence-driven state-merging (EDSM) algorithm [20]. State-merging is a com-
mon technique from grammatical inference for learning a small language model
by combining (merging) the states of a large initial DFA model, see, e.g., [11].
Essentially, EDSM is a greedy method that tries to find a good local optimum
efficiently. In addition, an earlier state-merging method called RPNI has been
shown to converge efficiently (from polynomial time and data) to the global op-
timum in the limit [23]. EDSM participated in and won (in a tie) the Abbadingo
DFA learning competition in 1997 [20].

Since our method is based on the simple yet effective state-merging approach,
we now briefly explain this approach. For more information, the reader is referred
to [11]. The key idea of state-merging is to first construct a tree-shaped DFA
A from the input sample S, and then to merge (combine) the states of A. This
initial DFA A is called an augmented prefix tree acceptor (APTA). An example
is shown in Figure 1.

Definition 1. The APTA A = (〈Q, T,Σ, q0, F 〉 , R) for an input sample
{S+, S−} consists of a DFA 〈Q, T,Σ, q0, F 〉 and a set of rejecting states R, where
Σ is the alphabet of S+ ∪S−, q0 = ε (the empty word), Q = {a ∈ Σ∗ | ∃b ∈ Σ∗ :
ab ∈ (S+ ∪ S−)}, T = {〈a, a′, l〉 ∈ Q×Q×Σ | a′ = al}, F = S+, and R = S−.

A merge of two states q and q′ combines the states into one: it creates a new
state q∗ that has the incoming and outgoing transitions of both q and q′, which
are subsequently removed from A. Such a merge is only allowed if the states are
consistent, i.e., it is not the case that q is accepting while q′ is rejecting or vice
versa. When a merge introduces a non-deterministic choice, i.e., q∗ is the source
of two transitions with the same label l, the target states of these transitions q1
and q2 are merged as well. This is called the merging for determinization process
and is continued until there are no non-deterministic choices left. However, if this
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Fig. 1. An augmented prefix tree acceptor for S = (S+ = {a, abaa, bb}, S− = {abb, b}).
The start state is the state with an arrow pointing to it from nowhere.

process at some point merges two inconsistent states, the original states q and q′

are also considered inconsistent and the merge will fail. The result of a successful
merge is a new DFA that is smaller than before, and still consistent with the
input sample S. A state-merging algorithm iteratively applies this state merging
process until no more consistent merges are possible.

In the grammatical inference community, there has been some research into
developing advanced and efficient search techniques based on the EDSM heuris-
tic. The idea is to increase the quality of a solution by searching other paths
in addition to the path determined by the greedy EDSM heuristic. Examples of
such advanced techniques are dependency-directed backtracking [22], using mu-
tually (in)compatible merges [1], and searching most-constrained nodes first [19].
A comparison of different search techniques for EDSM can be found in [8]. Re-
cently, instead of wrapping a search technique around EDSM, a translation of
the regular inference problem into satisfiability (SAT) was proposed in order
to use a state-of-the-art SAT-solver to search for an optimal solution [16]. The
main advantage of such an approach is that it makes use directly of advanced
search techniques such as conflict analysis, intelligent back-jumping, and clause
learning, see, e.g., [5]. The winning contribution to the 2010 Stamina DFA learn-
ing competition was a combination of this SAT-based approach and EDSM with
a modified heuristic [26]. Other recently proposed improvements are the paral-
lelization of the algorithm [2], and the use of ensembles of learned DFAs [12].

2.2 Translating Regular Inference

The idea of translating the regular inference problem to other computational
problems for which dedicated solvers exist is not new. In fact, one of the earli-
est regular inference algorithms due to Biermann [6] is of this type. Biermann
proposed to solve the regular inference problem by mapping it to constraint sat-
isfaction. In this translation, every state is represented by a natural number,
constraints on the possible values of states are added that enforce consistency,
and the aim is to minimize the range of these numbers, which translates back to
minimizing the number of states in the resulting DFA. More recently, Grinchtein
et al. [15] adapted this translation in order to map regular inference to satisfi-
ability (SAT) instead of constraint satisfaction. The numeric constraints from
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Fig. 2. The consistency graph corresponding to the APTA of Figure 1. Some states in
the consistency graph are not directly inconsistent, but inconsistent due to determiniza-
tion. For instance states 2 and 6 are inconsistent because the strings abb (negative) and
bb (positive) would end in the same state if these states were merged.

the constraint satisfaction problem are encoded using either a unary or a binary
scheme into clauses and literals for the satisfiability problem.

Another type of translation is that of Coste [10], who maps regular inference
to graph coloring based on the state-merging approach. The main idea of this
translation is to use a distinct color for every state of the identified DFA. Every
node in the graph coloring problem corresponds to a distinct state in the APTA.
Two vertices v and w in this graph are connected by an edge (cannot be assigned
the same color), if merging v and w results in an inconsistency in the original
regular inference problem:

Definition 2. The consistency graph Gc = (V,Ec) for an APTA
(〈Q, T,Σ, q0, F 〉 , R) consists of a set of vertices V and edges Ec such that V = Q,
and Ec = {{a, a′} ∈ Σ∗ ×Σ∗ | ∃b ∈ Σ∗ : ab ∈ F and a′b ∈ R}.

The edges in this graph are called inequality constraints. Figure 2 shows an
example of such a graph. In addition to these inequality constraints, equality
constraints are required: if the parents of two states (in the APTA) with the
same incoming transition label are merged, then these states must be merged
too (encoding the merging for determinization procedure).

Definition 3. The set of equality constraints Ee for an APTA A =
(〈Q, T,Σ, q0, F 〉 , R) is the set of pairs of paired states 〈(a, b), (al, bl)〉 ⊂ Q2×Q2

with a, b ∈ Σ∗ and l ∈ Σ.

For graph coloring problem, these equality constraints encode that two parent
states a and b can get the same color only if their child states al and bl get the
same color. Until now it has been unclear how to encode such constraints in a
graph coloring problem instance. In [10], these were encoded by modifying the
graph according to the consequences of these constraints. This implies that a
new graph coloring instance has to be solved every time an equality constraint is
used. This is clearly not very efficient. Thirteen years later, this graph coloring
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encoding in [10] was used by Heule and Verwer as a basis for a more efficient
translation to satisfiability [16], which encodes the equality constraints directly.

In the following, we develop a novel construction that encodes the equality
constraints directly into graph coloring.

2.3 Graph Coloring

We briefly discuss graph coloring in this subsection, and assume that the reader
is familiar with the more basic concepts from graph theory.

A coloring of a graph is a function from its vertices to colors (or color classes).
The term colors is due to historical reasons; it was originally studied in the
context of coloring maps. In the remainder, we will simply use natural numbers
as names for these colors.

A coloring is called proper for graph G if no two connected vertices in G have
the same color, and optimal for G if it is both proper and assigns the smallest
possible number of colors to the vertices of G. This number is known as the
chromatic number of G, denoted by χ(G). We will write color(x) = c when
vertex x is labeled with color c. We write x =c y to indicate that vertices x, y
are members of the same color class.

When we call an optimal coloring unique, this is taken to mean unique up to
recoloring. Recoloring can be understood as renaming, i.e., applying a substitu-
tion σ to the color labels of G such that, whenever for any two vertices x, y from
G, x =c y, then σ[x] =c σ[y], and when x 
=c y, then σ[x] 
=c σ[y]. Note that for
every recoloring, its inverse exists.

3 Encoding Equality Constraints into the Graph

In this section we will show how equality constraints can either be encoded into
the graph, or can be reduced to simple checks after a coloring has been generated.

3.1 Graphs with Chromatic Number ≤ 2

The 1-colorable graphs are obviously exactly the edgeless graphs. Since all ver-
tices of the graph are members of the same color class, the issue of equality
constraints is irrelevant in this case.1

Also note that a target automaton with just one state always generates Σ∗;
for any sample for such a language, S− = ∅.

It is a well-known fact that the 2-colorable graphs are exactly the bipartite
graphs. For this class, a coloring can be found in polynomial time with a parity-
based algorithm: pick an arbitrary vertex v and label all vertices in the graph
with their distance to v (this can be done with depth-first search). We obtain a

1 As an aside, it should be noted that χ(Gc(S)) = 1 does not imply that the target
automaton consists of just one state. This can be easily seen by considering any
sample with S− = ∅. This implies the complete absence of conflicts, but this may
simply be due to a sample not being representative for the target language.
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bipartite graph, one partition of which consists of all vertices at even distance
from v, and the other partition of which consists of all vertices at odd distance
from v. Each partition can then be regarded as a color class. Two vertices obvi-
ously have the same color if and only if they are members of the same partition.

Equality constraints can be ignored when both of the pairs of vertices involved
in such a constraint are from the same connected component of the bipartite
graph. It suffices to check that the constraint is not violated after the coloring
has been assigned to the consistency graph.2

However, in the case that Gc consists of multiple connected components,
equality constraints may block certain merges, resulting in χ(Ge) > 2.

3.2 Graphs with Chromatic Number ≥ 3

When the chromatic number of the consistency graph is three or more, equality
constraints have to be taken into account. This requires the conbstruction of a
graph that, for each equality constraint, includes a gadget as seen in Figure 3.

u x′′

v y′′

Clique1

x′

y′

Clique2

x

y

Clique3

Fig. 3. This gadget encodes equality constraints into a graph. A thick line represents
a set of edges that connect a vertex (circle) to all vertices in a clique (ellipse).

This construction is formally defined as follows:

Definition 4. Given a consistency graph Gc = Gc(S) = (V,E), let χ = χ(Gc),
and let Clique1, Clique2 and Clique3 be three disjoint cliques of size χ− 2.

Let Ee be the set of equality constraints for APTA(S), and let Ge = (V ∪
V ′, E ∪ E′) be the smallest graph such that, for each equality constraint e =
〈(u, v), (x, y)〉 ∈ Ee,

1. Clique1, Clique2 and Clique3 are in the graph;
2. vertices x′, x′′, y′, y′′ are in the graph;
3. v, x′′, y′′ are connected to all vertices in Clique1;
4. x′, y′′, y′ are connected to all vertices in Clique2;
5. y′, x, y are connected to all vertices in Clique3;
6. u is connected to x′′, x′′to x′, v to y′′, y′′ to y′, x to x′, and y to y′.

We are now in the position to state a lemma which will play a key role in the
remainder of this paper:

2 Technically speaking, even this check is not necessary: a violation can only occur if
the sample is inconsistent, and such a case is excluded by definition.
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u x′

v y′

Clique

Fig. 4. The subgraph discussed in Lemma 1

Lemma 1. Given a graph G, let χ = χ(G)(≥ 3), and let G′ be an induced
subgraph of G which is isomorphic to G′′[u, v, x′, y′], where G′′ is the graph from
Figure 4, with its clique of size χ− 2.

Then, given any optimal coloring for G′:

1. either x′ =c v, or x′ =c y
′;

2. if it is the case that u =c v, then we also have x′ =c y
′.

Proof. Let C be the set of all colors used in some optimal coloring of G, and let
C1 be the colors assigned to the subgraph Clique . Since Clique is of size χ− 2,
χ(Clique) = χ− 2, thus |C − C1| = 2.

Because v is connected to all vertices in Clique, it has to be assigned a color
cv from C − C1. Since y′ is connected to v and to all vertices in Clique , it has
the color C − C1 − cv.

Vertex x′ is connected to all vertices in Clique, so it has a color from C −C1.
Since this set contains just 2 colors, either x′ =c v, or x

′ =c y
′. Since x′ is con-

nected to u, it has a color from C − C1 − cu. If u =c v, this set is a singleton
and contains just the color assigned to y′. �

We are now in a position to prove correctness of our construction.

Proposition 1. Let Gc = Gc(S), and χ(Gc) ≥ 3. Let Ge = Ge(Gc) (as given
in Definition 4).

Then, given an optimal coloring for Ge, for any equality constraint e =
〈(u, v), (x, y)〉 ∈ E(Gc), if the vertices corresponding to u and v are in the same
color class, then so are x and y.

Proof. Given an equality constraint which states that merging u and v requires
merging x and y, we show the following:

1. in our construction, if vertices u and v are in the same color class, then x
and y aree members of the same color class, for any minimal coloring;

2. if vertices u and v are not in the same color class, then x and y can be in
the same color class, but not necessarily;

3. we show that our construction is correct for any combination of 3 colors;
4. we show that it remains correct for any combination of more than 3 colors.
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Demonstrating these four points together proves the proposition. First, let
C(G) = {c1, . . . cχ} be the set of all colors used in any optimal coloring of
graph G (χ = χ(G)).

Point 1 can be demonstrated by applying Lemma 1 three times: if u =c v,
then x′′ =c y

′′; if x′′ =c y
′′, then x′ =c y

′; if x′ =c y
′, then x =c y.

Thus u =c v implies x =c y.
We now proceed to demonstrate point 2 using the same method: if u 
=c v,

then by Lemma 1 an optimal coloring exists with x′′ 
=c y
′′; similarly for x′ 
=c y

′;
and thus x 
=c y. If u 
=c v, then by Lemma 1 an optimal coloring exists with
x′′ =c y

′′; therefore x′ =c y
′; and thus x =c y.

Point 3 can best be demonstrated by case analysis, i.e., simply enumerating
all possible colorings (up to recoloring). As the reader may check, Figure 5
exhaustively enumerates all possible cases for χ = 3. i.e. all unique colorings.

We conclude by demonstrating point 4:
Points 1 and 2 hold for any χ ≥ 3, so it suffices to generalize point 3 to cases

where χ ≥ 4. Let Gχ be a gadget as in Definition 4, for some χ ≥ 4, and G3 the
same for χ = 3. It is clear that G3 is an induced subgraph of Gχ. To be more
precise, Gχ can be obtained from G3 by adding i − 3 distinct new vertices to
each of its three central cliques and connecting them in the obvious way.

It is easy to see that, in the case that x =c y and u =c v, we can obtain
an optimal coloring for Gχ by picking (a recoloring of) one of the lowest three
colorings from Figure 5. This colors a subgraph isomorphic to G3, the colors for
the vertices not in this subgraph are the ‘new’ ones added to each of the central
cliques Cliquei are obtained simply by non-deterministically assigning them from
C−C(Clique i)−C(N(Clique i)) (where C(G) yields the colors assigned to vertices
in G, and N(G) yields the union of neighborhoods of all vertices in G).

In the case that x =c y and u 
=c v, colorings can be obtained from the
middle three colorings from Figure 5. The top left vertex, u, can be assigned
any color as long as u 
=c v, since it’s not connected to any of the cliques. It
is connected only to x′′, and we have x′′ =c v. If v gets assigned a color such
that color(v) > 3, we get v 
=c y′′, so we get a proper coloring when no vertex
in Clique1 is assigned color(v) or color(y′′) (which is 1 or 2 in the figure). The
same line of reasoning can be applied to x and y: If x and y get assigned a color
such that color(x) > 3, we obtain an admissible coloring just when no vertex in
Clique3 is assigned color(x) or color(x′′) (which is 1 or 2 in the figure).

For the case that x 
=c y, consider the top three colorings from Figure 5.
A complicating factor is that the lower right vertex, y, has multiple options for
coloring; for a gadget for χ colors, there are χ−1 options. It is easy to see though
that the only restriction on color(y) is that y 
=c y

′, which implies y 
=c x, since
y′ =c x for all three gadgets. So, if color(y) > 3, the other of the χ − 1 options
can be assigned to vertices in Clique3 and an admissible coloring is obtained.
For vertices x, u, v, reasoning from the previous paragraphs applies.

We have thus demonstrated the validity of all four points, which concludes
the proof. �
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Fig. 5. Possible colorings for the χ(Gc) = 3 construction

4 More Efficient Equality Constraints

The translation described above encodes the equality constraints from the regu-
lar inference problem, but unfortunately it is not very efficient: in the worst case
it can require up to O(‖S‖2) cliques of size χ − 2. Since S (the input sample)
can get very large, this quadratic relation is highly undesirable. In [16], a simi-
lar problem was observed for a translation of regular inference to satisfiability.
There, it was solved by introducing additional variables that encode the equality
constraints globally, i.e., for the resulting automaton model instead of per pair
of APTA states. Below, we show that such a global encoding is also possible for
our translation to graph coloring and that it reduces this quadratic relation to
a linear one.
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Clique6

Fig. 6. This gadget encodes equality constraints into a graph more efficiently than the
gadget from Figure 3. There exists one node qi for every color i, and one node ti,l for
every color i and symbol l from the alphabet. The gadget is repeated for every possible
color i, and the qi nodes connected to each other in a clique of their own. Although the
number of gadgets required per equality constraint is increased, the resulting encoding
is more efficient due to the overlap in the created subgraphs: every pair of nodes (v, y)
or (u, x) needs to be connected only once to every (qi, ti,l).

The key idea is to introduce two additional sets of nodes that encode
the states of the resulting automaton model and the transitions between them.
The first set contains a clique of χ vertices, one for every state of the automaton.
The second set contains χ · |Σ| pairwise non-connected vertices, one for every
possible transition of the automaton. We denote the vertices from the first set
using qi (state i in the resulting automaton), and those from the second set using
ti,l (the target of the transition from state i with label a). We now replace the v
and y vertices from the gadget in Figure 3 by the qi and ti,l vertices shown in Fig-
ure 6. This construction is identical to the previous one, except that it connects
every pair of vertices (u, x) that is used in an equality constraint 〈u, v, x, y〉 ∈ Ee

for a label l (v = ul) to (qi, ti,l) for all 0 ≤ i < χ. If two pairs of vertices (u, x)
and (v, y) were connected by the gadget in Figure 3 in the translation described
in the previous section, they are now connected through the vertices (qi, ti,l)
from the two gadgets in Figure 6.

As shown below, this is sufficient to correctly encode every equality constraint.

Proposition 2. By replacing every occurrence of v by qi and y by ti,l for all
0 ≤ i < χ in Definition 4, we obtain the construction in Figure 6. Let Ge be the
graph resulting from this construction. Then, given a minimal coloring for Ge,
for any equality constraint 〈(u, v), (x, y)〉 ∈ Ee, if the vertices corresponding to
u and v are in the same color class, then so are x and y. Furthermore, no other
constraints are encoded by the gadget in Figure 6.

Proof. Due to the clique connecting the nodes qi, there exists an qi in C for any
color class C. Thus, if u and v are in the same color class C, then there exists
a qi that is in this class as well. By Proposition 1, there exists in Ge a gadget
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that forces ti,l to be in the same color class C′ as x since u and qi are both in
C. Similarly, there exists a gadget that forces ti,l to be in the same color class
as y. Clearly, this is only possible if y is also in C′.

It is also straightforward to see that this new gadget does not impose any
constraints other than equality. If u and v are in a different class, then they are
in the same class with different qi and qj , and thus x and y are in the same class
as different ti,l and tj,l, which can belong to different color classes. Furthermore,
since the gadget connects (u, x) with (qi, ti,l) for all i only if there is a transition
from u to x in the APTA with label l, no constraints are constructed for pairs
of states (u, x) and (v, y) with differently labeled transitions between (u, x) and
(v, y). ��
The size of the resulting translation is significantly smaller than before since
every pair of nodes (u, x) that occurs on one side of an equality constraint for
label l now connects through the gadget from Figure 3 to all pairs of nodes
(qi, ti,l) for 0 ≤ i < χ, resulting in O(‖S‖ · χ) gadgets instead of O(‖S‖2).

5 Learning Algorithm

Definition 5. Let LEARN(S) be the following algorithm:

Require: Sample S = (S+, S−), CHROM NR(), COLOR()
A := APTA (S+, S−)
Gc(= (Vc, Ec)) := Gc(A) {consistency graph for A}
upp bound := |Vc|
χ := CHROM NR(Gc)
for i = χ to upp bound do
Ge := Ge(APTA(S), i) {consistency graph with equality constraints for A
assuming i colors}
C = COLOR(Ge, i) {proper coloring for Ge with i colors}
if C defined then
BREAK

end if
end for
for all c in C do
MERGE all states in A that correspond to vertices in c

end for
compute normal form A′ of A {only observable part, no ‘reject’ labels}
return A′

Here, CHROM NR and COLOR are user-specified algorithms for determining
chromatic number and computing a vertex coloring, respectively. Note that
χ(Gc) may be underestimated without affecting correctness so simply the con-
stant 1 would be acceptable as CHROM NR.

It was shown in [14] that an algorithm that enumerates all DFAs with mono-
tonically increasing size until it finds one consistent with a sample, identifies
all DFAs in the limit. Thus, if we assume CHROM NR(Gc) ≤ χ(Ge), and we
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choose the APTA-generating algorithm and COLOR() so that they yield the
first automaton in such an enumeration consistent with the sample, we obtain:

Theorem 1. The algorithm given in Definition 5 solves the regular inference
problem, that is, it finds a minimal automaton consistent with given positive and
negative data.

Proof. It is clear that COLOR finds a optimal coloring for Ge. Since there is
a one-to-one correspondence between color classes of Ge and states in the hy-
pothesized automaton, the hypothesis is always an automaton of minimal size
(w.r.t. the sample). Since Gc is an induced subgraph of Ge, the hypothesis does
not violate any inequality constraints and thus accepts all of S+ and rejects all
of S−. By Proposition 1, the resulting automaton also respects all equality con-
straints. Thus the hypothesis is always an automaton of minimal size consistent
with given positive and negative data. �

Corollary 1. The algorithm given in Definition 5 identifies in the limit from
positive and negative data the class of all deterministic finite state automata.

It should be clear that our algorithm is consistent, order-independent and set-
driven. We leave open the questions of conservative learning and the possibility
of an incremental learning algorithm.

6 Bounds

Recall that we established an upper bound on the number of equality constraints
of ‖S‖·χ (Section 4). Since the gadget consists of 4+3(χ−2) vertices, in the case
that χ ≥ 3, we obtain an upper bound of s·χ·(4+3(χ−2))+s = s·(3χ2+2χ+1)
vertices in Ge, where s = ‖S‖ and χ = χ(Gc).

Note that this does not necessarily imply that our learning algorithm has
quadratic space requirements. Depending on the choice of algorithm for COLOR,
it may not be necessary to explicitly representGe with, for example, an adjacency
matrix. Instead, a representation of Gc could be used, and the additional edges
and vertices necessary for representing equality constraints could be computed
on the fly just when the coloring algorithm requires them. It will in general be
necessary to keep track of the colors assigned to the additional vertices, but for
the cliques in the equality subgraphs a representation can be used that requires,
for every such clique, only as many bits as χ(Ge).

The fastest known (exact) vertex coloring algorithm has a time bound of
O(2vv) ([7], v being the number of vertices in Ge), and, given graphs of chromatic
number 3 or 4, the tighter bounds of O(1.3289v) ([4]) and O(1.7504v) ([9]),
respectively. Combined with our bound for the size of Ge, assuming that the
algorithm has to iterate from 1 to χ, and assuming CHROM NR simply yields
1, we obtain the following time bounds (s = ‖S‖ and χ = |A|):
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1. target automaton has 1 or 2 states: f(s), with f some polynomial function;
2. target automaton has exactly 3 states: O(1.328922s);
3. target automaton has exactly 4 states: O(1.328922s + 1.750441s);
4. target automaton has 5 or more states:

O((χ − 2) · 2s·(3χ2+2χ+1) · (3χ2 + 2χ+ 1)).

7 Discussion

Algorithms based on semidefinite programming techniques are known that find
optimal colorings for perfect graphs in polynomial time. These can often also be
used to find approximate colorings for non-perfect graphs in polynomial time.
The algorithm discussed in [17], for example, has a hyperparameter which allows
the user to obtain solutions anywhere on the spectrum between solutions that
use few colors but are not necessarily proper, and proper colorings that may be
far removed from a optimal coloring.

The former corresponds with an automaton inconsistent with the sample, the
latter with an automaton with more states than the target automaton. This
makes a learning algorithm based on such an approach flexible; the user can
decide which trade-off is appropriate for the problem at hand by setting the
value of this hyperparameter on a case-by-case basis.
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