


Lecture Notes in Artificial Intelligence 7568

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany



Nader H. Bshouty Gilles Stoltz
Nicolas Vayatis Thomas Zeugmann (Eds.)

Algorithmic
Learning Theory
23rd International Conference, ALT 2012
Lyon, France, October 29-31, 2012
Proceedings

13



Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Nader H. Bshouty
Technion, Haifa, Israel
E-mail: bshouty@cs.technion.ac.il

Gilles Stoltz
Ecole Normale Supérieure, CNRS, INRIA, Paris, France
E-mail: gilles.stoltz@ens.fr

Nicolas Vayatis
Ecole Normale Supérieure de Cachan, France
E-mail: vayatis@cmla.ens-cachan.fr

Thomas Zeugmann
Hokkaido University, Sapporo, Japan
E-mail: thomas@ist.hokudai.ac.jp

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-34105-2 e-ISBN 978-3-642-34106-9
DOI 10.1007/978-3-642-34106-9
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012949059

CR Subject Classification (1998): I.2, F.4.1, F.1, F.2, I.2.3, I.2.6

LNCS Sublibrary: SL 7 – Artificial Intelligence

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

This volume contains the papers presented at the 23rd International Conference
on Algorithmic Learning Theory (ALT 2012), which was held in Lyon, France,
October 29–31, 2012. The conference was co-located and held in parallel with
the 15th International Conference on Discovery Science (DS 2012). The technical
program of ALT 2012 contained 23 papers selected from 47 submissions, and
five invited talks. The invited talks were presented in joint sessions of both
conferences.

ALT 2012 was dedicated to the theoretical foundations of machine learn-
ing and took place in the historical building of the Université Lumière Lyon 2
(berges du Rhônes). ALT provides a forum for high-quality talks with a strong
theoretical background and scientific interchange in areas such as inductive infer-
ence, universal prediction, teaching models, grammatical inference, complexity of
learning, online learning, semi-supervised and unsupervised learning, clustering,
statistical learning, regression, bandit problems, Vapnik–Chervonenkis dimen-
sion, probably approximately correct learning, information-based methods, and
applications of algorithmic learning theory.

The present volume contains the texts of the 23 papers presented at ALT
2012, divided into groups of papers on inductive inference, teaching and PAC–
learning, statistical learning theory and classification, relations between models
and data, bandit problems, online learning of individual sequences, and on other
models of online learning. The volume also contains the texts or abstracts of the
invited talks:

– Luc De Raedt (Katholieke Universiteit Leuven, Belgium), “Declarative Mod-
eling for Machine Learning and Data Mining” (joint invited speaker for ALT
2012 and DS 2012)

– Shai Shalev-Shwartz (The Hebrew University of Jerusalem, Israel), “Learn-
ability Beyond Uniform Convergence” (invited speaker for ALT 2012)

– Pascal Massart (Université Paris-Sud, France), “Some Rates of Convergence
for the Selected Lasso Estimator” (tutorial speaker for ALT 2012)

– Toon Calders (Eindhoven University of Technology, The Netherlands), “Re-
cent Developments in Pattern Mining” (invited speaker for DS 2012)

– Gilbert Ritschard (Université de Genève, Switzerland), “Exploring Sequen-
tial Data” (tutorial speaker for DS 2012).

Since 1999, ALT has been awarding the E. M. Gold Award for the most
outstanding student contribution. This year, the award was given to Ziyuan Gao
for his paper “Confident and Consistent Partial Learning of Recursive Functions”
co-authored by Frank Stephan.

ALT 2012 was the 23rd in the ALT conference series, established in Japan
in 1990. The ALT series is supervised by its Steering Committee: Naoki Abe
(IBM Thomas J. Watson Research Center, Yorktown, USA), Shai Ben-David
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(University of Waterloo, Canada), Nader Bshouty (Technion - Israel Institute of
Technology, Israel) Marcus Hutter (Australian National University, Canberra,
Australia), Jyrki Kivinen (University of Helsinki, Finland), Philip M. Long
(Google, Mountain View, USA), Akira Maruoka (Ishinomaki Senshu Univer-
sity, Japan), Takeshi Shinohara (Kyushu Institute of Technology, Iizuka, Japan),
Frank Stephan (National University of Singapore, Republic of Singapore), Gilles
Stoltz (Ecole Normale Supérieure, France), Einoshin Suzuki (Kyushu Univer-
sity, Fukuoka, Japan), Csaba Szepesvári (University of Alberta, Canada), Eiji
Takimoto (Kyushu University, Fukuoka, Japan), Győrgy Turán (University of
Illinois at Chicago, USA and University of Szeged, Hungary), Osamu Watanabe
(Tokyo Institute of Technology, Japan), Thomas Zeugmann (Chair, Hokkaido
University, Japan), and Sandra Zilles (Publicity Chair, University of Regina,
Saskatchewan, Canada).

We would like to thank the many people and institutions who contributed
to the success of the conference. In particular, we want to thank our authors for
contributing to the conference and for coming to Lyon in October 2012. Without
their efforts and their willingness to choose ALT 2012 as a forum to report on
their research, this conference would not have been possible.

ALT 2012 and DS 2012 were organized by the Université Lumière Lyon 2,
France. We are very grateful to the General Chair Djamel Abdelkader Zighed and
the General Local Arrangements Chair Stéphane Lallich. We would like to thank
them and their team for the tremendous amount of work they have dedicated
to making ALT 2012 and DS 2012 a success. We are grateful for the continuous
collaboration with the series Discovery Science. In particular, we would like to
thank the Conference Chair Jean-Gabriel Ganascia and the Program Committee
Chairs Philippe Lenca and Jean-Marc Petit of Discovery Science 2012.

We are also grateful that we could use the excellent conference management
system EasyChair for putting together the program for ALT 2011; EasyChair
was developed mainly by Andrei Voronkov and is hosted at the University of
Manchester. The system is cost-free.

We are grateful to the members of the Program Committee for ALT 2012 and
the subreferees for their hard work in selecting a good program for ALT 2012.
Reviewing papers and checking the correctness of results is demanding in time
and skills and we very much appreciate this contribution to the conference. Last
but not least we thank Springer for their support in preparing and publishing
this volume in the Lecture Notes in Artificial Intelligence series.

August 2012 Nader H. Bshouty
Gilles Stoltz

Nicolas Vayatis
Thomas Zeugmann
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Editors’ Introduction

Nader H. Bshouty, Gilles Stoltz, Nicolas Vayatis, and Thomas Zeugmann

The ALT-conference series is dedicated to studies on learning from an algorith-
mic and mathematical perspective. In the following, the five invited lectures and
the regular contributions are introduced in some more detail.

Invited Talks. It is now a tradition of the co-located conferences ALT and DS
to have a joint invited speaker—namely this year, Luc De Raedt. Since 2006
he is a full research professor at the Department of Computer Science of the
Katholieke Universiteit Leuven (Belgium). His research interests are in artificial
intelligence, machine learning and data mining, as well as their applications. He
is currently working on probabilistic logic learning (sometimes called statisti-
cal relational learning), which combines probabilistic reasoning methods with
logical representations and machine learning, the integration of constraint pro-
gramming with data mining and machine learning principles, the development of
programming languages for machine learning, and analyzing graph and network
data. In his talk Declarative Modeling for Machine Learning and Data Mining he
notes that despite the popularity of machine learning and data mining today, it
remains challenging to develop applications and software that incorporates ma-
chine learning or data mining techniques. This is because machine learning and
data mining have focused on developing high-performance algorithms for solving
particular tasks rather than on developing general principles and techniques. He
thus proposes to alleviate these problems by applying the constraint program-
ming methodology to machine learning and data mining and to specify machine
learning and data mining problems as constraint satisfaction and optimization
problems. The aim is that the user be provided with a way to declaratively spec-
ify what the machine learning or data mining problem is rather than having to
outline how that solution needs to be computed.

Four other invited talks are also given by eminent researchers in their fields,
who present either an introduction to their specific research area or give a lecture
of wide general interest.

Shai Shalev-Shwartz is the ALT invited speaker; since 2009 he is a senior
lecturer at the School of Computer Science and Engineering of The Hebrew
university (Jerusalem, Israel). His research interests include machine learning
and learning theory at broad, with an emphasis on online algorithms, large-scale
learning, information retrieval, and optimization. In his talk Learnability Beyond
Uniform Convergence he discusses the problem of characterizing learnability,
which in his view is the most basic question of statistical learning theory. He
indicates that a fundamental result is that learnability is equivalent to uniform
convergence of the empirical risk to the population risk, and that if a problem
is learnable, it is learnable via empirical risk minimization. However, the equiv-
alence of uniform convergence and learnability was formally established only in

N.H. Bshouty et al. (Eds.): ALT 2012, LNAI 7568, pp. 1–11, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 N.H. Bshouty et al.

the supervised classification and regression setting. He then shows that in (even
slightly) more complex prediction problems learnability does not imply uniform
convergence. He thus presents several alternative attempts to characterize learn-
ability. The results obtained are based on joint researches with Ohad Shamir,
Nati Srebro, Karthik Sridharan, and with Amit Daniely, Sivan Sabato, and Shai
Ben-David, respectively.

Pascal Massart is the ALT tutorial speaker; since 1990 he is a full professor at
the Department of Mathematics of the Université Paris-Sud (Orsay, France). He
dedicated most of his work in the past 20 years to elaborate a non-asymptotic
theory for model selection and made contributions also to related fields, like
the theory of empirical processes, concentration-of-the-measure inequalities, and
non-parametric statistics. He also established connections between model selec-
tion theory and statistical learning theory. His tutorial is based on the paper
Some Rates of Convergence for the Selected Lasso Estimator co-authored with
Caroline Meynet. He illustrates on the example of the Lasso estimator how the
theory of model selection in statistics can shed some light and improve some
results in learning. More precisely he considers the estimation of a function in
some ordered finite or infinite dictionary, that is, in some (non necessarily or-
thonormal) family of elements in a Hilbert space. He focuses on a variant of the
Lasso, the selected Lasso estimator, which he introduced in an earlier paper with
Caroline Meynet. This estimator is an adaptation of the Lasso suited to infinite
dictionaries. He uses the oracle inequality established therein to derive rates of
convergence of this estimator on a wide range of function classes (Besov-type
spaces). The results highlight that the selected Lasso estimator is adaptive to
the smoothness of the function to be estimated, contrary to the classical Lasso
or to other algorithms considered in the literature.

Toon Calders, the invited speaker for DS, received his PhD in Mathematics in
2003 from the University of Antwerp. Since 2006 he is assistant professor in the
Information Systems Group at the Department of Mathematics and Computer
Science of the Eindhoven University of Technology. His lecture Recent Develop-
ments in Pattern Mining gives an overview of the many techniques developed to
solve pattern mining problems. Many methods have been proposed to enumer-
ate all frequent itemsets. The basic difficulty is the pattern explosion problem,
i.e., millions of patterns may be generated. Though this problem is widely rec-
ognized, it still lacks a satisfactory solution. Toon Calders surveys promising
methods based upon the minimal description length principle, information the-
ory, and statistical models, and discusses the advantages and disadvantages of
these new methods. The final part of his lecture addresses more complex patterns
such as sequences and graphs, and concludes with important open problems in
this challenging area.

Gilbert Ritschard, the DS tutorial speaker, graded in econometrics and got
his PhD in Econometrics and Statistics at the University of Geneva in 1979. He
also taught as invited professor in Toronto, Montreal, Lyon, Lausanne and Fri-
bourg and participated as a statistical expert in several large statistical modeling
projects of International Organizations. He is a full professor of statistics at the
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Department of Economics of the University of Geneva, where he is responsible
for the program of statistics and quantitative methods for the social sciences
and runs his researches within the Institute for Demographic and Life Course
Studies and acts as vice-dean of the Faculty of Economics and Social Sciences
since 2007. Several funded applied researches were headed or co-headed by him.
He also published papers in economics as well as on more applied topics in the
field of social sciences, especially in demography, sociology and social science
history. With his team he developed the world wide used TraMineR toolbox for
exploring and analyzing sequence data in R. His present research interests are in
categorical and numerical longitudinal data analysis and their application to life
course analysis. His tutorial Exploring Sequential Data gives an introduction to
sequence analysis as it is practiced for life course analysis. Examples comprise
successive buys of customers, working states of devices, visited web pages, or
professional careers, and addressed topics are the rendering of state and event
sequences, longitudinal characteristics of sequences, measuring pairwise dissim-
ilarities and dissimilarity-based analysis of sequence data such as clustering,
representative sequences, and regression trees. All the methods employed are
available in TraMineR R-package.

We now turn our attention to the regular contributions contained in this
volume.

Inductive Inference. One of the classical areas of algorithmic learning is in-
ductive inference of recursive functions. In this setting the learner is usually
fed augmenting finite sequences f(0), f(1), f(2), . . . of the target function f . For
each finite sequence the learner has to compute a hypothesis, i.e., a natural
number. These numbers are interpreted with respect to a given enumeration of
partial recursive functions comprising the target function. Then the number j
output by the learner is interpreted as a program computing the jth function
enumerated. The sequence of all hypotheses output by the learner has then to
converge (to stabilize) on a program that, under the given correctness crite-
rion, correctly computes the target function. This learning scenario is commonly
called explanatory inference or learning in the limit. Since only finitely many
values of the function have been seen by the learner up to the unknown point
of convergence, some form of learning must have taken place. Usually, the goal
is then to construct a learner that can infer all functions from a given target
class U . Many variations of this model are possible. For finite learning one re-
quires the point of convergence to be decidable. Another variation is to allow the
learner to converge semantically, i.e., instead of stabilizing to a correct program,
the learner is allowed to output infinitely many different programs which, how-
ever, beyond some point, all must correctly compute the target function. This
model is commonly referred to as behaviorally correct learning. In the context
of the first paper introduced below also the notions of confidence and reliability
are of particular interest. A confident learner is required to converge on every
function, even it is not in the target class (but may stabilize to a special sym-
bol “?”). In contrast, a reliable learner must signal its inability to learn a target
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function (which may be again outside the class) by performing infinitely many
mind changes. Thus, if a reliable learner converges then it learns. In this context
it remains to specify what is meant by “outside” the target class. Above all total
functions (including the non-computable ones) are considered. If one allows only
the total recursive functions then the resulting models are called weakly confident
and weakly reliable, respectively.

The problems studied by Sanjay Jain, Timo Kötzing, and Frank Stephan in
their paper Enlarging Learnable Classes are easily described as follows. Suppose
we have already a learner for a target class U1 and another one for a class U2.
Then it is only natural to ask under which circumstances one can obtain a more
powerful learner that simultaneously infers all functions from U1∪U2. A classical
result shows that this is not always possible, even for behaviorally correct learn-
ing. If one can obtain such a more powerful learner then it is also interesting to
ask whether or not it can be done effectively. That is, given programs for learners
M1 and M2 inferring U1 and U2, respectively, one studies the problem whether
or not one can compute from these programs a learner M for the union U1 ∪U2.
Still, it is imaginable that one cannot compute such a learner but show it to
exist (this is the non-effective case). The interesting new modification of this
problem introduced by the authors is to ask which classes U1 have the property
that U1 ∪ U2 is learnable for all classes U2. As shown by Jain et al., if U1 has a
weakly confident and reliable learner then the union U1 ∪ U2 is always explana-
tory learnable and the learner is effective. Moreover, they show the effective case
and the non-effective case separate and a sufficient criterion is shown for the
effective case. A closely related problem is to ask the same questions when the
second class is restricted to be any singleton class. In this case it suffices that
the learner for U1 is weakly confident to obtain the effective case. In contrast,
for finite learning there is no non-empty class U1 satisfying the non-constructive
case for classes and the constructive case for singleton classes. Furthermore, the
authors investigate the problem how much information is needed to enlarge a
learnable class by infinitely many functions while maintaining its learnability. In
this context, two questions that remained open in a paper by Mark Fulk and
John Case in 1999 are completely answered.

The next paper in this section is the Gold Award winning paper Confident and
Consistent Partial Learning of Recursive Functions by Ziyuan Gao and Frank
Stephan for the best paper co-authored by a student, who is Ziyuan Gao. As the
discussion above shows there is no single learner that can infer the whole class
of recursive functions. Therefore, it is interesting to consider further variations.
Osherson, Stob, and Weinstein (1986) considered partial learning, where the
learner is required to output a correct program for the target function infinitely
often and any other hypothesis only finitely often. Gao and Stephan refine this
model by combining it with the confidence demand discussed above and with
consistent learning. A consistent learner has to correctly reflect the information
already obtained, and this demand is posed to all but finitely many of the hy-
potheses output. The resulting models are called confident partial learning and
consistent partial learning, respectively. The paper contains many interesting
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results and masters several complicated proof techniques. In particular, it is
shown that confident partial learning is more powerful than explanatory learn-
ing. On the other hand, the authors show that there are behaviorally correct
learnable classes which are not confidently partially learnable. So, the learning
model is also not trivial in the sense that it can infer every recursive function.
Moreover, confident partial learning has another interesting property, i.e., it is
closed under finite unions. The authors then study confident partial learning
with respect to oracles, and obtain some deep results. That is, in addition to the
successively fed graph of the the target function, the learner has access to an
oracle. The second part of the paper combines partial learning with consistency.
Since a consistent learner is preferable, these results deserve attention. On the
positive site it is shown that every behaviorally correct learnable class is also
is essentially class consistently partially learnable. On the other hand, the set
of all recursive predicates is not essentially class consistently partially learnable.
Finally, it is shown that PA-oracles are sufficient in order to partially learn every
recursive function essentially class consistently.

The paper Automatic Learning from Positive Data and Negative Counterex-
amples by Sanjay Jain and Efim Kinber deals with the inductive inference of
languages. So the target is a formal language and the information given to the
learner may be eventually all strings in the language (positive examples only),
all strings over the underlying alphabet which are then marked with respect to
their containment in the target language, or, as in the present paper, positive
examples and negative counterexamples (but not all). This source of information
is justified by two facts. First, learning from positive examples only is often too
weak, and receiving potentially all strings does not reflect, e.g., natural language
acquisition. Again, one has to study the problem of inferring all languages from
a given target class of languages by one learner. In their paper Jain and Kinber
consider classes of target languages that are required to be automatic ones. That
is, the authors consider classes of regular languages of the form (Li)i∈I such that
{(i, x) | x ∈ Li} and I itself are regular sets. So automatic classes of languages
are a particular type of an automatic structure. In this context it should be noted
that the family of automatic classes which are inferable from positive examples
only is rather restricted. Thus, it is natural to ask under which conditions all au-
tomatic classes are automatically learnable. Here automatically learnable means
that the learner itself must be describable by an automatic structure. The rest of
the model is mutatis mutandis the same as in the inductive inference of recursive
functions. However, since the learner is required to be automatic, it can obvi-
ously not memorize all data. So, the constraint to learn iteratively and/or with a
bounded long term memory is very natural in this context. Here iterative means
that the learner can just store the last example seen. The authors distinguish be-
tween least counterexamples (a shortest possible one), bounded counterexamples
(bounded in the size of the longest positive example seen so far) and arbitrary
counterexamples. The first main result is that all automatic classes are automat-
ically learnable (iteratively and with bounded long term memory, respectively)
from positive examples and arbitrary counterexamples. Furthermore, there are
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automatic classes that cannot be learned from positive examples and bounded
counterexamples. The authors show many more results for which we refer the
reader to the paper.

Christophe Costa Florêncio and Sicco Verwer in Regular Inference as Vertex
Coloring also study a problem that belongs to the inductive inference of formal
languages, i.e., learning the class of all regular languages from complete data
in the limit. The hypothesis space chosen is the set of all deterministic finite
automata (abbr. DFA). In this context it is known that it suffices to output in
each learning step a minimal DFA that is consistent with all the data seen so far.
This is, however, easier said than done, since the problem is known to be NP -
complete. Thus the idea is to reduce the learning problem to satisfiability and
to exploit the enormous progress made for satisfiability solvers. The approach
undertaken previously is to perform this in two steps, i.e., first the learning prob-
lem is translated into a graph coloring problem, and second the graph coloring
problem obtained is translated into a satisfiability problem. Here the first step
included some inequality constraints (requiring the constraint vertices to have
a different color) as well as some equality constraints. So, these constraints had
to be translated into the resulting satisfiability problem. The main contribution
of the present paper is an improvement for the first step that allows for a direct
translation of the inference problem into a graph coloring problem. In this way,
one can also directly use sophisticated solvers for graph coloring.

Teaching and PAC–Learning. Each learning model specifies the learner, the
learning domain, the source of information, the hypothesis space, what back-
ground knowledge is available and how it can be used, and finally, the criterion
of success. While the learner is always an algorithm, it may also be restricted in
one way or another, e.g., by requiring it to be space and/or time efficient.

A significant line of work over the past decade studies combinatorial measures
of the complexity of teaching. In this framework a helpful teacher chooses an in-
formative sequence of labeled examples and provides them to the learner, with
the goal of uniquely specifying the target concept from some a priori concept
class of possible target functions. Several different combinatorial parameters re-
lated to this framework have been defined and studied, including the worst-case
teaching dimension, the average teaching dimension, and the ”recursive teaching
dimension”.

Rahim Samei, Pavel Semukhin, Boting Yang and Sandra Zilles in Sauer’s
Bound for a Notion of Teaching Complexity show that Sauer’s Lemma can be
adjusted to the recursive teaching dimension of the concept. This paper estab-
lishes an upper bound on the size of a concept class with given recursive teaching
dimension. The upper bound coincides with Sauer’s well-known bound on classes
with a fixed VC-dimension. They further introduce and study classes whose size
meets the upper bound and other properties of this measure.

It is well known that the language accepted by an unknown deterministic finite
automata can be efficiently PAC-learnable if membership queries are allowed. It
is also well known that cryptographic lower bounds preclude the efficient PAC
learnability of arbitrary DFAs when membership queries are not allowed and
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learning must be based only on random examples. It is natural to ask about
whether specific restricted types of regular languages are PAC learnable. A shuf-
fle ideal generated by a string u is simply the collection of all strings containing
u as a (discontiguous) subsequence.

The paper On the Learnability of Shuffle Ideals by Dana Angluin, James
Aspnes, and Aryeh Kontorovich shows that shuffle ideal languages are efficiently
learnable from statistical queries under the uniform distribution, but not effi-
ciently PAC-learnable, unless RP = NP.

Statistical Learning Theory and Classification. The simplest setting in
which statistical learning theory takes place is the following. A training set
(Xt, Yt) of samples is given, where the outcomes Yt depend on the instances Xt;
the learner then has to construct some rule to predict new outcomes Y for new
instances X . Often the training set is formed by independent and identically dis-
tributed samples and the new instance–outcome pairs are drawn independently
from the same distribution. The simplest task is (binary) classification, which
corresponds to the case where the outcomes Y are {0, 1}–valued. More abstract
formulations of the learning task can be provided, based on a hypothesis space
(gathering functions h that map instances to outcomes) and on a loss function
(associating with each pair of predicted outcome h(X) and observed outcome Y
a measure of their divergence). We call generalization bounds the bounds on the

expected loss of a prediction function ĥ constructed on the training set and evalu-
ated on a new independent random pair (X,Y ). These bounds are often in terms
of the hypothesis set (and in particular, of its so-called Vapnik-Chervonenkis
dimension or of its Rademacher complexity).

Mehryar Mohri and Andres Muñoz Medina present a New Analysis and Al-
gorithm for Learning with Drifting Distributions, that is, they consider the case
where the distribution of the instance–outcomes pairs evolves with t. Their anal-
ysis relies on the notion of discrepancy, which is a loss-based measure of diver-
gence. They prove performance bounds based on the Rademacher complexity of
the hypothesis set and the discrepancy of distributions; these bounds improve
upon previous ones based on the L1–distances between distributions.

Another twist on the simplest problem described above is formed by domain
adaptation, which corresponds to the case where the test and training data
generating distributions differ. Shai Ben-David and Ruth Urner’s contribution is
On the Hardness of Covariate Shift Learning (and the Utility of Unlabeled Target
Samples); the covariate shift setting refers to the assumption that outcomes Y
are solely determined by instances X , and that the function linking the two
elements is the same in both domains. Algorithms had been proposed in this
setting but often with very few generalization guarantees. The authors show
that, without strong prior knowledge about the training task, such guarantees
are actually unachievable, unless the training set and the set of new instance–
outcomes pairs are prohibitively large. However, the (necessarily large) set of
new elements can be formed rather by mostly unlabeled instances, which are
often much cheaper to obtain than instance–outcome pairs.
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Hal Daumé III, Jeff M. Phillips, Avishek Saha, and Suresh Venkatasubrama-
nian study Efficient Protocols for Distributed Classification and Optimization.
Their contribution takes places within a general model for distributed learning
that bounds the communication required for learning classifiers with ε error on
linearly separable data adversarially distributed across nodes; this model was in-
troduced by the authors in an earlier article and they elaborate on it here. Their
main result is a two-party multiplicative-weight-update based protocol that uses
O
(
d2 log(1/ε)

)
words of communication to ε–optimally classify distributed data

in arbitrary dimension d. This result extends to classification over k nodes with
O
(
kd2 log(1/ε)

)
words of communication. The proposed protocol is simple to

implement and empirical results show its improved efficiency.

Relations between Models and Data. Data is the raw material for learning
and is often handled through a model or a collection of models. But sometimes
the available theoretical models can be partially wrong; or even worse, no such
theoretical models exist and they need to be constructed from the data.

Standard Bayesian inference can behave suboptimally if the model is wrong.
Peter Grünwald presents in his article The Safe Bayesian: Learning the Learning
Rate via the Mixability Gap a modification of Bayesian inference which continues
to achieve good rates with wrong models. The method adapts the Bayesian
learning rate to the data, picking the rate minimizing the cumulative loss of
sequential prediction by posterior randomization.

Clustering (the partition of data into meaningful categories) is one of the most
widely used techniques in statistical data analysis. A recent trend of research in
this field is concerned with so-called perturbation resilience assumptions. Lev
Reyzin defines in Data Stability in Clustering: A Closer Look a new notion of
stability that is implied by perturbation resilience and discusses the implications
of assuming resilience or stability in the data; the strength of this resilience
or stability is measured by a constant α. He shows that for even fairly small
constants α, the data begins to have very strong structural properties, which
makes the clustering task fairly trivial. When α approaches ≈ 5.7, the data
begins to show what is called strict separation, where each point is closer to
points in its own cluster than to points in other clusters.

Bandit Problems. Bandit problems form a model of repeated interaction be-
tween a learner and a stochastic environment. In its simplest formulation the
learner is given a finite number of arms, each associated with an unknown prob-
ability distribution with bounded support. Whenever he pulls an arm he gets
some reward, drawn independently at random according to its associated distri-
bution; his objective is to maximize the obtained cumulative reward. To do so, a
trade-off between testing sufficiently often all the arms (exploration) and pulling
more often the seemingly better arms (exploitation) needs to be performed. A
popular strategy, the UCB strategy, constructs confidence bounds for the ex-
pected reward of each arm and pulls at each round the arm with best upper
confidence bound.
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In their paper Thompson Sampling: An Optimal Finite Time Analysis, Emilie
Kaufmann, Nathaniel Korda, and Rémi Munos study another, older, strategy,
called Thompson sampling; it relies on a Bayesian estimation of the expected
reward. The authors show that in the case of Bernoulli distributions of the
rewards, this strategy is asymptotically optimal.

Ronald Ortner, Daniil Ryabko, Peter Auer, and Rémi Munos consider in their
contribution Regret Bounds for Restless Markov Bandits a more difficult scenario
in which the rewards produced by each arm are not independent and identically
distributed anymore; they are governed by Markov chains, which take transitions
independently of whether the learner pulls this arm or not. They derive O(

√
T )

regret bounds, without formulating any assumption on the distributions of the
Markov chains.

An application of these bandit problems is studied in Minimax Number of
Strata for Online Stratified Sampling given Noisy Samples by Alexandra Car-
pentier and Rémi Munos: how to approximate the integral of a function f given
a finite budget of n noisy evaluations of the function. This is done by resorting to
an online stratified sampling performed by the algorithm Monte-Carlo UCB de-
veloped by the authors in an earlier article. In their contribution to this volume
they show that this algorithm is minimax optimal both in terms of the number
of samples n and in the number of strata K, up to logarithmic factors.

Online Prediction of Individual Sequences. Another setting of repeated
interactions between a learner and an environment is formed by the setting of
online prediction of individual sequences. However, here, the environment may
also use a strategy to pick his actions. At each round, the learner suffers a loss
(or a gain) that only depends on the pair of actions taken by the two players.
The quality of the strategy of the learner is measured through its regret, that
is, the difference between his cumulative loss and the cumulative loss that the
best constant choice of an action would have obtained on the same sequence of
actions of the environment. Simple and efficient strategies exist to control the
regret when the range of the losses is known and the number of actions is not
too large. The first two papers described below relax these requirements. The
three other papers deal with refinements of the basic situation presented above:
the third one studies how sharp regret bounds can be, the fourth one focuses
on a refined notion of regret, and the fifth one considers the case where only a
partial monitoring of the actions taken by the environment is available.

The article Weighted Last-Step Min-Max Algorithm with Improved Sub-Loga-
rithmic Regret by Edward Moroshko and Koby Crammer takes place within
the framework of online linear regression with the square loss. It proposes a
development of Forster’s last-step min-max algorithm for the case where the
range of the choices of the environment is unknown.

Daiki Suehiro, Kohei Hatano, Shuji Kijima, Eiji Takimoto, and Kiyohito
Nagano deal with a case where the set of actions of the learner is large but
bears some structure. More precisely, their contribution Online Prediction un-
der Submodular Constraints focuses on the case of an action set formed by the
vertices of a polyhedron described by a submodular function. Examples of the
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general problem handled there include the cases of k–sets, (truncated) permu-
tahedra, spanning trees, and k–forests.

Another line of research is to study how sharp the regret bounds can be.
Eyal Gofer and Yishay Mansour focus in Lower Bounds on Individual Sequence
Regret on lower bounds on the regret of algorithms only based on the cumulative
losses of the actions, which include popular strategies. They characterize those
with a nonnegative regret; they also show that any such algorithm obtaining
in addition a refined O(

√
Q) upper bound in terms of quadratic variations of

the losses must also suffer an Ω(
√
Q) lower bound for any loss sequence with

quadratic variation Q.
Dmitry Adamskiy, Wouter M. Koolen, Alexey Chernov, and Vladimir Vovk

take A Closer Look at Adaptive Regret, which is a refined notion a regret. It
corresponds to measuring regret only on subintervals of time, that is, to assessing
how well the algorithm approximates the best experts locally. They investigate
two existing intuitive methods to derive algorithms with low adaptive regret, one
based on specialist experts and the other based on restarts; they show that both
methods lead to the same algorithm, namely Fixed Share, which was known for
its tracking regret. They then perform a thorough analysis of the adaptive regret
of Fixed Share and prove the optimality of this strategy in this context.

The setting of Partial Monitoring with Side Information by Gábor Bartók
and Csaba Szepesvári is the following. At every round the learner only receives
a partial feedback about the choice of the action taken by the environment. The
interaction protocol relies on a fixed function f , unknown to the learner: The
action taken by the environment is a vector xt, which is revealed to the learner,
and is then used to draw at random the final action Jt of the environment
according to the distribution f(xt). Simultaneously and based on xt, the learner
chooses his action It. The only feedback he gets is drawn at random according
to a distribution that depends only on It and Jt, but he does not get to see Jt.
The authors define a notion of regret in this setting and show an algorithm to
minimize it.

Other Models of Online Learning. This section gathers the contributions
relative to online learning but that correspond neither to bandit problems nor
to the prediction of individual sequences.

The goal of reinforcement learning is to construct algorithms that learn to
act optimally, or nearly so, in unknown environments. Tor Lattimore and Mar-
cus Hutter focus on finite-state discounted Markov decision processes (MDPs).
More precisely, in PAC Bounds for Discounted MDPs they exhibit matching
(up to logarithmic factors) upper and lower bounds on the sample-complexity of
learning near-optimal behavior. These upper bounds are obtained for a modified
version of algorithm UCRL.

Wouter M. Koolen and Vladimir Vovk present in Buy Low, Sell High a sim-
plified setting of online trading where an investor trades in a single security.
His objective is to get richer when the price of the security exhibits a large up-
crossing without risking bankruptcy. They investigate payoff guarantees that are
expressed in terms of the extremity of the upcrossings and obtain an exact and
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elegant characterization of the guarantees that can be achieved. Moreover, they
derive a simple canonical strategy for each attainable guarantee.

Kernels methods consist of mapping the data points from their original space
to a feature space, where the analysis and prediction are performed more effi-
ciently; the obtained results are then mapped back into the original space. In
their paper Kernelization of Matrix Updates, When and How? Manfred War-
muth, Wojciech Kot�lowski, and Shuisheng Zhou define what it means for a
learning algorithm to be kernelizable in the case where the instances are vectors,
asymmetric matrices, and symmetric matrices, respectively. They characterize
kernelizability in terms of an invariance of the algorithm to certain orthogonal
transformations. They provide a number of examples in the online setting of how
to apply their methods.

The paper Predictive Complexity and Generalized Entropy Rate of Stationary
Ergodic Processes by Mrinalkanti Ghosh and Satyadev Nandakumar takes place
in the framework of online prediction of binary outcomes. They use generalized
entropy to study the loss rate of predictors when these outcomes are drawn ac-
cording to stationary ergodic distributions. They use a game-theoretic viewpoint
and first show that a notion of generalized entropy of a regular game is well-
defined for stationary ergodic distributions. They then study predictive complex-
ity, a generalization of Kolmogorov complexity. More precisely, they prove that
when the predictive complexity of a restricted regular game exists, the average
predictive complexity converges to the generalized entropy of the game almost
everywhere with respect to the stationary ergodic distribution.



Declarative Modeling for Machine Learning

and Data Mining

Luc De Raedt

Department of Computer Science, Katholieke Universiteit Leuven, Belgium

Abstract. Despite the popularity of machine learning and data min-
ing today, it remains challenging to develop applications and software
that incorporates machine learning or data mining techniques. This is
because machine learning and data mining have focussed on develop-
ing high-performance algorithms for solving particular tasks rather than
on developing general principles and techniques. I propose to alleviate
these problems by applying the constraint programming methodology
to machine learning and data mining and to specify machine learning
and data mining problems as constraint satisfaction and optimization
problems. What is essential is that the user be provided with a way to
declaratively specify what the machine learning or data mining problem
is rather than having to outline how that solution needs to be computed.
This corresponds to a model + solver-based approach to machine learn-
ing and data mining, in which the user specifies the problem in a high
level modeling language and the system automatically transforms such
models into a format that can be used by a solver to efficiently generate
a solution. This should be much easier for the user than having to im-
plement or adapt an algorithm that computes a particular solution to a
specific problem. Throughout the talk, I shall use illustrations from our
work on constraint programming for itemset mining and probabilistic
programming.

N.H. Bshouty et al. (Eds.): ALT 2012, LNAI 7568, p. 12, 2012.
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Learnability beyond Uniform Convergence
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Abstract. The problem of characterizing learnability is the most ba-
sic question of statistical learning theory. A fundamental result is that
learnability is equivalent to uniform convergence of the empirical risk to
the population risk, and that if a problem is learnable, it is learnable via
empirical risk minimization. The equivalence of uniform convergence and
learnability was formally established only in the supervised classification
and regression setting. We show that in (even slightly) more complex
prediction problems learnability does not imply uniform convergence.
We discuss several alternative attempts to characterize learnability. This
extended abstract summarizes results published in [5, 3].

The fundamental theorem of learning theory states that for binary classification
learning problems, learnability (in the PAC learning model of Valiant) is equiv-
alent to uniform convergence of the empirical risk to the population risk. The
components of this theorem are described below:

Uniform
Convergence

Learnable
with ERM Learnable

Finite VC

trivialtrivial

NFL (W’96)
VC’71

To be precise, we recall Vapnik’s general setting of learning [6]: Let Z be
a domain, H be a hypothesis class, and � : H × Z → R be a loss function.
Given a distribution D over Z we denote the risk of a hypothesis h by LD(h) =
Ez∼D[�(h, z)]. Given a sample S = (z1, . . . , zm) ∼ Dm we denote the empirical
risk of h by LS(h) = 1

m

∑m
i=1 �(h, zi). The goal of the learner is to use S so

as to find h ∈ H whose risk, LD(h), is close to the minimum possible risk of a
hypothesis in H.

The special case of binary classification can be derived from the genreal setting
by letting Z = X × {0, 1}, for some instance domain X , letting H be a set of
functions from X to {0, 1}, and letting �(h, (x, y)) = 1[h(x) �= y] be the 0 − 1
loss function.

Let us now recall the formal definitions of uniform convergence and learnability.

N.H. Bshouty et al. (Eds.): ALT 2012, LNAI 7568, pp. 13–16, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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– Uniform Convergence with a sample complexity of mUC(ε, δ):
For m ≥ mUC(ε, δ),

∀D, P
S∼Dm

[∀h ∈ H, |LS(h)− LD(h)| ≤ ε] ≥ 1− δ

– Learnable with a sample complexity mPAC(ε, δ):
∃A s.t. for m ≥ mPAC(ε, δ),

∀D, P
S∼Dm

[
LD(A(S)) ≤ min

h∈H
LD(h) + ε

]
≥ 1− δ

– Empirical Risk Minimizer (ERM):
An algorithm that returns A(S) ∈ argminh∈H LS(h)

– Learnable by arbitrary ERM with a rate mERM(ε, δ):
Like “Learnable” but A should be an ERM.

Getting back to the fundamental theorem of learning, it is trivial to see that
uniform convergence with a rate of mUC(ε, δ) yields learnability by ERM with
a rate of mERM(ε, δ) ≤ mUC(ε/2, δ), which yields learnability with a rate of
mPAC(ε, δ) ≤ mERM(ε, δ).

For binary classification problems, the definition of the Vapnik-Chervonenkis
(VC) dimension, together with the well known No-Free-Lunch theorem, yields
that if a hypothesis class is learnable it must have a finite VC dimension. The
seminal theorem of Vapnik and Chervonenkis shows that finite VC dimension
yields learnability and by that we close our equivalence loop.

Since the 70’s, following Vapnik and Chervonenkis’s fundamental work on bi-
nary classification, it was widely believed that excluding trivialities, if a problem
is at all learnable then uniform convergence holds and it is also learnable by every
ERM rule. However, the equivalence between learnability and uniform conver-
gence has been formally derived only for binary classification and for regression
problems [4, 2, 1].

In his book, Vapnik attempted to show that uniform convergence is in fact
necessary for learnability in all cases. However, Vapnik noted that this is simply
not true as there are “trivial” problems which are learnable but for which uni-
form convergence does not hold. Consider for example the case of a “minorizing
function”: Let H′ be a class of binary classifiers with infinite VC dimension, let
H = H′ ∪ {h0}, and let

�(h, (x, y)) =

⎧⎪⎨⎪⎩
1 if h �= h0 ∧ h(x) �= y

1/2 if h �= h0 ∧ h(x) = y

0 if h = h0

Clearly, there is no uniform convergence here (mUC = ∞). However, the problem
is trivially learnable by ERM (mERM = 1). This phenomenon has been illustrated
in Vapnik’s book:
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Vapnik referred to such cases as “trivial” learning problems. He defined a
stronger notion of learnability, called strict consistency, and his “Key Theorem
on Learning Theory” [6, Theorem 3.1] then states that strict consistency of
empirical minimization is equivalent to one-sided1 uniform convergence.

In [5] we have shown that learnability is not equivalent to uniform convergence
even in non trivial learning problems, such as stochastic convex optimization, in
which there is no dominating hypothesis that will always be selected. In fact
some learning problems are learnable, but are not learnable by an ERM rule.

In [3] we have shown that this phenomenon reproduced even in multiclass
learning, which is a supervised learning problem with the very same zero-one loss
that is used in binary classification. We find this result surprising, as multiclass
prediction is very close to binary classification.

These examples indicate that Vapnik’s strict consistency might be too strict,
which (re)rises the fundamental questions of “What problems are learnable?”
and “How to learn?”

In [5] we make a first step and characterize learnability by the existence of an
asymptotically ERM (AERM) algorithm, which is also stable. In [3] we try to
determine the true sample complexity of multiclass learning and the optimal way
to learn. Currently, we still do not have satisfactory answers to these questions.
However, our analysis do give some hints regarding those questions, enabling us
to prove that for the (important) case of symmetric hypothesis class, the sam-
ple complexity is characterized by a combinatorial measure called the Natara-
jan dimension. We conjecture that this result holds for non-symmetric classes
as well.

1 “One-sided” meaning requiring only suph(LD(h) − LS(h)) −→ 0, rather then
suph |LD(h)− FS(h)| −→ 0.
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Abstract. We consider the estimation of a function in some ordered
finite or infinite dictionary. We focus on the selected Lasso estimator in-
troduced by Massart and Meynet (2011) as an adaptation of the Lasso
suited to deal with infinite dictionaries. We use the oracle inequality es-
tablished by Massart and Meynet (2011) to derive rates of convergence
of this estimator on a wide range of function classes described by in-
terpolation spaces such as in Barron et al. (2008). The results highlight
that the selected Lasso estimator is adaptive to the smoothness of the
function to be estimated, contrary to the classical Lasso or the greedy
algorithm considered by Barron et al. (2008). Moreover, we prove that
the rates of convergence of this estimator are optimal in the orthonormal
case.

1 Introduction

We consider the problem of estimating a regression function f belonging to
a Hilbert space H by some finite linear combination f̂ = θ̂.φ :=

∑
j θ̂j φj of

a given dictionary D = {φj}j in H. Here by dictionary we mean any (non

necessarily orthonormal) family of elements in H. We consider a fairly general
Gaussian learning framework which includes the fixed design regression or the
white noise frameworks. The purpose is to construct estimators which enjoy
both good statistical properties and computational performance even for large
or infinite dictionaries.

For high-dimensional dictionaries, direct minimization of the empirical risk
can lead to overfitting and one needs to add a penalty to avoid it. From a purely
abstract view point an appropriate solution would be to use an �0-penalty by
penalizing the number of non-zero coefficients θ̂j of f̂ (see Birgé and Massart,
2001, for instance) so as to produce sparse estimators and interpretable models,
but this minimization problem is non-convex and thus typically computationally
unfeasible when the size of the dictionary becomes too large.

Some computationally efficient algorithms have been proposed during these
last ten years that aim at mimicking �0-penalization. From a mathematical view
point the main issue is to analyze the statistical performance of such procedures.
The paper by Barron et al. (2008) perfectly illustrates the rather intensive re-
search activity that has been performed recently in this direction. It is shown
there that some commonly used greedy algorithms are achieving optimal rates

N.H. Bshouty et al. (Eds.): ALT 2012, LNAI 7568, pp. 17–33, 2012.
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of convergence (up to some logarithmic factors) on some properly defined Besov
type spaces. Another candidate to be considered (at least for a finite dictionary)
is the �1-penalization of least squares that leads to a tractable convex optimiza-
tion problem. It is a natural candidate for at least two reasons: on the one hand
the resulting procedure (the so-called Lasso) has been widely used in the recent
years as surrogate for �0-penalization and on the other hand the main argu-
ment in Barron et al. (2008) consists of comparing the performance of greedy
algorithms with a deterministic Lasso procedure.

In the spirit of Barron et al. (2008) we recently proved in Massart and Meynet
(2011) that provided that the regularization parameter is properly chosen, the
(noisy) Lasso performs almost as well as the deterministic Lasso. Note that this
�1-result requires no assumption neither on the unknown target function nor
on the variables φj of the dictionary (except simple normalization that we can
always assume by considering φj/‖φj‖ instead of φj), contrary to the usual �0-
oracle inequalities in the literature that are valid only under restrictive though
unavoidable conditions (see Bickel et al., 2009, for instance). We derived this
�1-oracle inequality from a fairly general model selection theorem for non linear
models, interpreting �1-regularization as an �1-balls model selection criterion.
Our approach allows to go one step further than the analysis of the Lasso for
finite dictionaries and to deal with infinite dictionaries in various situations,
leading to new procedures that we called selected Lasso because it simply consists
of choosing from the data the size of a finite subdictionary on which the Lasso
procedure is constructed. For an orthonormal dictionary, the resulting procedure
is nothing else than a soft-thresholding with an adaptive threshold. Our purpose
is here to analyze the rates of convergence of the selected Lasso on some properly
defined Besov type spaces and show that it is fully adaptive (without extra
logarithmic factors). This (small) gain as compared to the performance bounds
for greedy algorithms obtained in Barron et al. (2008) comes from the adaptive
choice of the size of the subdictionary. Let us now get in more details into the
presentation of the framework and of the algorithms.

1.1 General Framework and Statistical Problem

Let H be a separable Hilbert space equipped with a scalar product 〈., .〉 and
its associated norm ‖.‖. The statistical problem we consider is to estimate an
unknown target function s in H when observing a process (Y (t))t∈H

defined by

Y (t) = 〈s, t〉+ εW (t), t ∈ H, (1)

where ε > 0 is a fixed parameter and (W (t))t∈H is an isonormal process, that is to
say a centered Gaussian process with covariance given by E[W (u)W (t)] = 〈u, t〉
for all u, t ∈ H.

This framework is convenient to cover both finite-dimensional models and the
infinite-dimensional white noise model as described in the following examples.
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Example 1. [Fixed design Gaussian regression model] Let X be a measur-
able space. One observes n i.i.d. random couples (x1, Y1), . . . , (xn, Yn) of X × R

such that
Yi = s(xi) + σξi, i = 1, . . . , n, (2)

where the covariates x1, . . . , xn are deterministic elements of X , the errors ξi
are i.i.d. N (0, 1), σ > 0 and s : X �→ R is the unknown regression function
to be estimated. If one considers H = R

n equipped with the scalar product
〈u, v〉 =

∑n
i=1 ui vi/n, defines y = (Y1, . . . , Yn), ξ = (ξ1, . . . , ξn) and denotes

t = (t(x1), . . . , t(xn)) for every t : X �→ R, then W (t) :=
√
n 〈ξ, t〉 defines an

isonormal Gaussian process on H and Y (t) := 〈y, t〉 satisfies (1) with ε = σ/
√
n.

In this case,

‖t‖ =

√√√√ 1

n

n∑
i=1

t2(xi) . (3)

Example 2. [The white noise framework] For x ∈ [0, 1], one observes ζ(x)
given by the stochastic differential equation

dζ(x) = s(x) dx + ε dB(x) with ζ(0) = 0,

whereB is a standard Brownian motion, s is a square-integrable function and ε >

0. Define W (t) =
∫ 1

0 t(x) dB(x) for every t ∈ L2([0, 1]). Then, W is an isonormal

process on H = L2([0, 1]), and Y (t) =
∫ 1

0 t(x) dζ(x) obeys to (1) if H is equipped

with its usual scalar product 〈s, t〉 =
∫ 1

0
s(x)t(x) dx. Typically, s is a signal

and dζ(x) represents the noisy signal received at time x. This framework easily
extends to a d-dimensional setting if one considers some multivariate Brownian
sheet B on [0, 1]d and takes H = L2([0, 1]d).

To solve the general statistical problem (1), we introduce a dictionary D, i.e.
a given finite or infinite set of functions φj ∈ H that arise as candidate basis
functions for estimating the target function s, and consider estimators ŝ = α̂.φ :=∑

j, φj∈D α̂j φj in the linear span of D. All the matter is to choose a “good” linear
combination in the following meaning. It makes sense to aim at constructing
an estimator as the best approximating point of s by minimizing ‖s − t‖ or,
equivalently, −2〈s, t〉+‖t‖2. However s is unknown, so one may instead minimize
the empirical least squares criterion

γ(t) := −2Y (t) + ‖t‖2. (4)

But, for high-dimensional data, direct minimization of the empirical least squares
criterion can lead to overfitting. To avoid it, one can rather consider a penalized
risk minimization problem and estimate s by

ŝ ∈ arg min
t

{γ(t) + pen(t)} , (5)

where pen(t) is a positive penalty to be chosen according to the statistical goal.
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Due to computer progress and development of state of the art technologies
such as DNA microarrays, we are faced with high-dimensional data where the
number of variables can be much larger than the sample size. To solve this prob-
lem, the sparsity scenario has been widely studied. It consists in assuming that
there exists a sparse representation of the function s in the dictionary D, that is
to say that most coefficients α̂j can be taken to zero. Then, one could consider
an �0-penalty in (5) in order to penalize the number of non-zero coefficients αj
and favor a sparse estimation of s. But there is no efficient algorithm to solve
this non-convex minimization problem when the size of the dictionary becomes
too large. So, alternative penalizations are to be considered to overcome this
numerical problem. These last years, a great deal of attention has been focused
on �1-penalization and its associated estimator the so-called Lasso (Tibshirani,
1996). This interest has been motivated by the geometric properties of the �1-
norm: �1-penalization tends to produce sparse solutions and can thus be used as
a convex surrogate for the non-convex �0-penalization.

1.2 The Lasso for Finite Dictionaries

For a finite dictionary Dp = {φ1, . . . , φp} of size p, the Lasso estimator of s is
defined by

ŝp := ŝ(λp) = arg min
t∈L1(Dp)

{
γ(t) + λp‖t‖L1(Dp)

}
, (6)

where γ(t) is defined by (4), λp > 0 is a regularization parameter and

‖t‖L1(Dp) := inf

⎧⎨⎩‖α‖1 =

p∑
j=1

|αj | ; α ∈ R
p such that t = α.φ

⎫⎬⎭ (7)

is the �1-norm of any function t in the linear span of Dp. Lots of stud-
ies have been carried out on this estimator. In a sparsity viewpoint,
�0-oracle inequalities have been proved to study the performance of this esti-
mator as a variable selection procedure (Bickel et al., 2009; van de Geer, 2008;
Koltchinskii, 2009). In parallel, a few results on the performance of the Lasso
for its �1-regularization properties have been established (Bartlett et al., 2012;
Huang et al., 2008; Massart and Meynet, 2011; Rigollet and Tsybakov, 2011).
All these results are valid only for a regularization parameter of order

λp �
√

ln p

n
. (8)

1.3 The Selected Lasso Estimator

The results established for the Lasso in finite dictionaries are usually impossible
to extend to infinite dictionaries because there is no longer size p for infinite
dictionaries so that one can no longer calibrate the regularization parameter
as it is done in (8). Therefore, it is difficult to evaluate the theoretical per-
formance of the Lasso for infinite dictionaries. To solve this problem and deal
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with infinite dictionaries, Massart and Meynet (2011) proposed an estimator –
the selected Lasso estimator– which is an adaptation of the Lasso suited to
infinite countable ordered dictionaries. Their idea is the following. Given an infi-
nite countable ordered1 dictionary D = {φj}j∈N� = {φ1, φ2, . . . }, they consider
the dyadic sequence of truncated dictionaries D1 ⊂ · · · ⊂ Dp ⊂ · · · ⊂ D with
Dp = {φ1, . . . , φp} for p ∈ Λ := {2J , J ∈ N}. Given this sequence (Dp)p, they

introduce the associated sequence of Lasso estimators (ŝp)p defined by (6), and
choose

p̂ = arg min
p∈Λ

{
γ(ŝp) + λp‖ŝp‖L1(Dp) + pen(p)

}
(9)

= arg min
p∈Λ

{
arg min
t∈L1(Dp)

{
γ(t) + λp‖t‖L1(Dp)

}
+ pen(p)

}
, (10)

where pen(p) is a penalty to be chosen to penalize the size p of the truncated
dictionary Dp for all p ∈ Λ. Then, they take ŝp̂ as final estimator. This selected
Lasso estimator ŝp̂ is based on an algorithm choosing automatically the level of
truncation of the dictionary D making the best tradeoff between approximation,
�1-regularization and sparsity.

Although introduced for infinite dictionaries, this estimator remains well-
defined for finite dictionaries and it may be profitable to use it rather than
the classical Lasso for such dictionaries. In particular, the definition of ŝp̂ guar-
antees that ŝp̂ makes a better tradeoff between approximation, �1-regularization
and sparsity than the Lasso and that it is always sparser than the Lasso.

From a theoretical point of view, Massart and Meynet (2011) established an
oracle inequality satisfied by this selected Lasso estimator:

Theorem 1. Assume that supj∈N� ‖φj‖ ≤ 1. Set for all p ∈ Λ,

λp = c1ε
(√

ln p+ 1
)
, pen(p) = c2ε

2 ln p, (11)

where c1 ≥ 4 and c2 > c1/
√

ln 2. Let ŝp̂ be the selected Lasso estimator defined
by (10).
Then, there exists an absolute constant C > 0 such that

E
[
‖s− ŝp̂‖2 + λp̂‖ŝp̂‖L1(Dp̂) + pen(p̂)

]
≤ C

[
inf
p∈Λ

{
inf

t∈L1(Dp)

{
‖s− t‖2 + λp‖t‖L1(Dp)

}
+ pen(p)

}
+ ε2

]
. (12)

1.4 Our Contribution

In this article, we use Theorem 1 to derive rates of convergence of the selected
Lasso estimator. First, we restrict to orthonormal dictionaries for a target func-
tion s in the intersection between a weak Lq space and a Besov space. In this

1 Ordering the variables can be more or less difficult according to the problem under
consideration. For some applications, such as decomposition in wavelet dictionaries,
the variables may be naturally ordered.
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case, we establish both an upper bound of the risk of the selected Lasso estima-
tor and a lower bound of the minimax risk to check that the rates of convergence
achieved by this estimator are optimal. Then, we extend our upper bound to the
non-orthonormal case.

The article is organized as follows. We present the rates of convergence estab-
lished for the selected Lasso estimator in Section 2. The proofs are detailed in
Section 3.

2 Some Rates of Convergence for the Selected Lasso
Estimator

We establish rates of convergence for the selected Lasso estimator for a wide
range of function classes described by interpolation spaces. They are derived
from the oracle inequality (12). We consider the framework and notations intro-
duced in Section 1. In particular, we consider a Hilbert space H and an infinite
countable dictionary D = {φj}j∈N� which is a basis of H.

2.1 Orthonormal Dictionaries

Here, we assume that D is an orthonormal basis of H.

Definition of the Spaces. We say that a function u belongs to wLq(R) for
some 1 < q < 2 and R > 0 if u =

∑∞
j=1 αj φj with coefficients αj in the weak

�q-balls of radius R:

sup
η>0

⎛⎝ηq ∞∑
j=1

1{|αj |>η}

⎞⎠ ≤ Rq. (13)

We say that u belongs to the Besov space B r
2,∞(R) with radius R if we have the

following control of the high-level components of u in the orthonormal basis D:

sup
J∈N�

⎛⎝J2r
∞∑
j=J

α2
j

⎞⎠ ≤ R2. (14)

Upper Bound of the Quadratic Risk

Proposition 1. Assume that the dictionary D is an orthonormal basis of the
Hilbert space H. Let 1 < q < 2, r > 0, R > 0 such that Rε−1 ≥ e, and assume
that s ∈ wLq(R)∩B r

2,∞(R). Consider the selected Lasso estimator ŝp̂ defined by
(10) with parameters λp and pen(p) given by (11).
Then, there exists Cq,r > 0 depending only on q and r such that the quadratic
risk of ŝp̂ satisfies

E
[
‖s− ŝp̂‖2

]
≤ Cq,r Rq

(
ε
√

ln (Rε−1)
)2−q

. (15)
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Proof. Page 26.

Remark 1. The assumption Rε−1 ≥ e of Proposition 1 is not restrictive since it
only means that we consider non-degenerate situations where the signal to noise
ratio is large enough, which is the only interesting case to use the selected Lasso
estimator. Indeed, if Rε−1 is too small, then the estimator equal to zero will
always be better than any other non-zero estimators, in particular the selected
Lasso estimator.

The lower bound (15) is to be compared with the rates of convergence achieved
by the Lasso estimator ŝp defined by (6) for any fixed value p. For orthonor-
mal dictionaries, the Lasso estimators are soft-thresholding estimators with a
fixed threshold determined by the level of truncation of the dictionary, while the
selected Lasso estimator is a soft-thresholding estimator with an adaptive thres-
hold automatically chosen by the algorithm constructing this estimator. So, the
bound (15) is to be compared with the rates of convergence achieved by the soft-
thresholding estimators with a fixed threshold when the target function belongs
to wLq(R)∩B r

2,∞(R). From Rivoirard (2006, Theorem 1), the rates achieved by
the soft-thresholding estimators with a fixed threshold strongly depend on the
parameter of smoothness r and are valid only for values of r large enough com-
pared to the level of truncation of the dictionary. On the contrary, Proposition 1
shows that the rates achieved by the selected Lasso estimator are valid whatever
the value of r > 0 and that this smoothness parameter has little effect on the
rates since it only appears through the multiplicative factor Cq,r. Thus, Propo-
sition 1 highlights the major advantage of the selected Lasso estimator over the
classical Lasso estimators which is its adaptability to the unknown parameters
of smoothness q and r of the target function. This adaptability comes from the
fact that the selected Lasso estimator is constructed from an algorithm choosing
an adaptive level of truncation of the dictionary.

Lower Bound of the Minimax Risk. We now establish a lower bound of
the minimax risk over the balls wLq(R) ∩ B r

2,∞(R) to prove that the rates of
convergence (15) are optimal. We even establish a stronger result by providing
the lower bound of the minimax risk over the smaller balls Lq(R) ∩ B r

2,∞(R) ⊂
wLq(R) ∩ B r

2,∞(R), where we denote by Lq(R) the set of functions whose coef-
ficients in the orthonormal basis D = {φj}j∈N� are in the �q-ball of radius R,
that is to say functions

∑∞
j=1 αj φj such that

∑∞
j=1 |αj |q ≤ Rq.

Proposition 2. Assume that the dictionary D is an orthonormal basis of H.
Let 1 < q < 2, 0 < r < 1/q−1/2 and R > 0 such that Rε−1 ≥ max(e2, ς2) where

ς :=
1

r
− q
(

1 +
1

2r

)
> 0. (16)

Then, there exists an absolute constant κ > 0 such that the minimax risk over
Lq(R) ∩ B r

2,∞(R) satisfies
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inf
s̃

sup
s∈Lq(R)∩B r

2,∞(R)

E
[
‖s− s̃‖2

]
≥ κ ς1−

q
2 Rq

(
ε
√

ln (Rε−1)
)2−q

, (17)

where the infimum is taken over all possible estimators s̃.

Proof. Page 29.

Remark 2. The constraint r < 1/q − 1/2 of Proposition 2 is necessary to work
on the intersection between an Lq-ball and a Besov ball. Indeed, assume that
r > 1/q− 1/2. For all R > 0, put R′ = (1− 2rς)1/qR where ς is defined by (16).
Then, it is easy to check that B r

2,∞(R′) ⊂ Lq(R). Thus, B r
2,∞(R′) = Lq(R) ∩

B r
2,∞(R′). Moreover, R′ < R, so B r

2,∞(R′) ⊂ B r
2,∞(R) and Lq(R) ∩ B r

2,∞(R′) ⊂
Lq(R) ∩ B r

2,∞(R). Consequently, B r
2,∞(R′) ⊂ Lq(R) ∩ B r

2,∞(R) ⊂ B r
2,∞(R): the

intersection Lq(R)∩B r
2,∞(R) is no longer a real intersection between an Lq-ball

and a Besov ball but rather a Besov ball itself.

The upper bound (15) and the lower bound (17) match up to a constant. This
proves that the selected Lasso estimator is simultaneously approximately min-
imax over wLq(R) ∩ B r

2,∞(R) for suitable signal to noise ratio Rε−1 in the or-
thonormal case.

2.2 Non-orthonormal Dictionaries

Here, we no longer assume that D is orthonormal. We extend the upper bound
(15) of the quadratic risk of this estimator when assuming that the target func-
tion belongs to some real interpolation spaces that are extensions of the spaces
wLq ∩ B r

2,∞ considered in the orthonormal case.

Definition of the Interpolation Spaces. We introduce a whole range of
interpolation spaces Bq,r that are intermediate spaces between subsets of L1(D)
and the Hilbert space H.

Definition 1. [Spaces L1,r and Bq,r] Let R > 0, r > 0, 1 < q < 2 and
ν = 1/q − 1/2.
We say that u ∈ H belongs to L1,r if there exists C > 0 such that for all p ∈ N�,
there exists up ∈ L1(Dp) such that

‖up‖L1(Dp) ≤ C

and
‖u− up‖ ≤ Cp−r. (18)

The smallest C such that this holds defines a norm ‖u‖L1,r on the space L1,r.
We say that u belongs to Bq,r(R) if, for all δ > 0,
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inf
t∈L1,r

{
‖u− t‖+ δ‖t‖L1,r

}
≤ Rδ2ν . (19)

We say that u ∈ Bq,r if there exists R > 0 such that u ∈ Bq,r(R). In this case,
the smallest R such that u ∈ Bq,r(R) defines a norm on the space Bq,r and is
denoted by ‖u‖Bq,r .

Remark 3. The abstract interpolation spaces Bq,r are in fact natural extensions
of the spaces wLq ∩ B r

2,∞ for non-orthonormal dictionaries. Indeed, if D is an
orthonormal basis of H, then, for all 1 < q < 2 and r > 0, there exists Cq,r > 0
depending only on q and r such that, for all R > 0,

wLq(R) ∩ B r
2,∞(R) ⊂ Bq,r(Cq,r R). (20)

Proof. Page 31.

Upper Bound of the Quadratic Risk

Proposition 3. Assume that supj∈N� ‖φj‖ ≤ 1. Let 1 < q < 2, r > 0, R > 0
such that Rε−1 ≥ e and assume that s ∈ Bq,r(R). Consider the selected Lasso
estimator ŝp̂ defined by (10) with parameters λp and pen(p) given by (11).
Then, there exists Cq,r > 0 depending only on q and r such that the quadratic
risk of ŝp̂ satisfies

E
[
‖s− ŝp̂‖2

]
≤ Cq,r Rq

(
ε
√

ln (Rε−1)
)2−q

. (21)

Proof. Page 31.

Proposition 3 is to be compared with Proposition 1 established in the orthonor-
mal case. Taking into account the inclusion (20) and noting that the upper
bounds of the quadratric risk (15) and (21) are exactly of the same order and
valid under the same assumption on the signal to noise ratio, we can conclude
that Proposition 3 extends the result established in Proposition 1. Yet, we shall
provide an independent proof of Proposition 1 in Appendix 3.1 to see how things
work in the simpler orthonormal case.

Proposition 3 highlights the high performance of the selected Lasso estimator
compared with other existing estimators in the theory of approximation and
learning. In particular, (21) proves that the selected Lasso estimator performs
as well as the greedy algorithms for which Barron et al. (2008) have provided
similar rates of convergence. Besides, since the construction of the selected Lasso
estimator is based on an adaptive truncation of the dictionary, this estimator has
the great advantage of being adaptive to the unknown parameters of smoothness
q and r of the target function, whereas the greedy algorithms achieve their rates
of convergence only for restricted values of the parameter r depending on the
level of truncation of the dictionary (Barron et al., 2008, Corollary 3.7).
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3 Proofs

3.1 Orthonormal Dictionaries

Proof of the Upper Bound: Proposition 1. We know from Theorem 1 that
the quadratic risk of the selected Lasso estimator ŝp̂ is bounded by

E
[
‖s− ŝp̂‖2

]
≤ C

[
inf
p∈Λ

{
inf

t∈L1(Dp)

{
‖s− t‖2 + λp‖t‖L1(Dp)

}
+ pen(p)

}
+ ε2

]
,

(22)
where C is an absolute positive constant. Now, thanks to the following lemma,
we will bound inft∈L1(Dp)

{
‖s− t‖2 + λp‖t‖L1(Dp)

}
for all p ∈ Λ.

Lemma 1. Assume that the dictionary D is an orthonormal basis of the Hilbert
space H and that there exist 1 < q < 2, r > 0 and R > 0 such that s ∈
wLq(R) ∩ B r

2,∞(R). For all p ∈ N� and λ > 0, define

sp,λ := arg min
t∈L1(Dp)

{
‖s− t‖2 + λ‖t‖L1(Dp)

}
.

Then, there exist Cq > 0 depending only on q and Cr > 0 depending only on r
such that for all p ∈ N� and λ > 0,

‖sp,λ‖L1(Dp) ≤ CqRqλ1−q

and
‖s− sp,λ‖2 ≤ CrR2p−2r + CqR

qλ2−q.

The proof of Lemma 1 uses the two following easy calculations.

Lemma 2. For all a = (a1, . . . , ap) ∈ R
p and δ > 0,

p∑
j=1

a2j 1{|aj|≤δ} ≤ 2

p∑
j=1

∫ δ

0

t1{|aj |>t} dt.

Proof.

2

p∑
j=1

∫ δ

0

t1{|aj|>t} dt

= 2

p∑
j=1

[(∫ δ

0

t1{|aj |>t} dt

)
1{|aj|>δ} +

(∫ δ

0

t1{|aj|>t} dt

)
1{|aj|≤δ}

]

= 2

p∑
j=1

[(∫ δ

0

t dt

)
1{|aj|>δ} +

(∫ |aj |

0

t dt

)
1{|aj |≤δ}

]

=

p∑
j=1

(
δ2 1{|aj|>δ} + a2j 1{|aj |≤δ}

)
≥

p∑
j=1

a2j 1{|aj |≤δ}.
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Lemma 3. For all a = (a1, . . . , ap) ∈ R
p and δ > 0,

p∑
j=1

|aj |1{|aj|>δ} = δ

p∑
j=1

1{|aj |>δ} +

p∑
j=1

∫ +∞

δ

1{|aj |>t} dt.

Proof.

p∑
j=1

∫ +∞

δ

1{|aj |>t} dt =

p∑
j=1

(∫ |aj|

δ

dt

)
1{|aj|>δ} =

p∑
j=1

(|aj | − δ)1{|aj|>δ}.

Proof of Lemma 1.
Let us denote by {α∗

j}j∈N� the coefficients of the target function s in the basis
D = {φj}j∈N� , so that s = α∗.φ =

∑
j∈N� α∗

j φj .
For all p ∈ N�, set Ap := {α = (αj)j∈N� ; αj ∈ R, αj = 0 for j ≥ p+ 1} .
Let λ > 0. Since sp,λ ∈ L1(Dp), there exists αp,λ ∈ Ap such that sp,λ = αp,λ.φ.
Moreover, from (7) and the orthonormality of the basis D,

αp,λ = arg min
α∈Ap

{
‖α∗.φ− α.φ‖2 + λ‖α‖1

}
= arg min

α∈Ap

{
‖α∗ − α‖2 + λ‖α‖1

}
.

(23)
By calculating the subdifferential of the function α ∈ R

p �→ ‖α∗ − α‖2 + λ‖α‖1,
we get that the solution of the convex minimization problem (23) is αp,λ =

(αp,λ1 , . . . , αp,λp , 0, . . . , 0, . . . ) where for all j ∈ {1, . . . , p},

αp,λj =

⎧⎨⎩
α∗
j − λ/2 if α∗

j > λ/2,
α∗
j + λ/2 if α∗

j < −λ/2,
0 otherwise.

Then, we have

‖s− sp,λ‖2 = ‖α∗ − αp,λ‖2

=

∞∑
j=1

(
α∗
j − α

p,λ
j

)2
=

∞∑
j=p+1

α∗
j
2 +

p∑
j=1

α∗
j
2
1{|α∗

j |≤λ/2} +

p∑
j=1

λ2

4
1{|α∗

j |>λ/2}

≤
∞∑

j=p+1

α∗
j
2

︸ ︷︷ ︸
(i)

+

p∑
j=1

α∗
j
2
1{|α∗

j |≤λ/2}︸ ︷︷ ︸
(ii)

+
λ

2

p∑
j=1

|α∗
j |1{|α∗

j |>λ/2}︸ ︷︷ ︸
(iii)

, (24)

while

‖sp,λ‖L1(Dp) =

∞∑
j=1

|αp,λj | =

p∑
j=1

(
|α∗
j | −

λ

2

)
1{|α∗

j |>λ/2} ≤
p∑

j=1

|α∗
j |1{|α∗

j |>λ/2}︸ ︷︷ ︸
(iii)

.

(25)
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Now, s is assumed to belong to B r
2,∞(R), so (14) implies that (i) is bounded by

∞∑
j=p+1

α∗
j
2 ≤ R2(p+ 1)−2r ≤ 2−2rR2p−2r. (26)

Let us now bound (ii) and (iii) thanks to the assumption s ∈ wLq(R). By
applying Lemma 2 and Lemma 3 with aj = α∗

j for all j ∈ {1, . . . , p} and δ = λ/2,

and by using the fact that
∑p

j=1 1{|α∗
j |>t} ≤

∑∞
j=1 1{|α∗

j |>t} ≤ R
qt−q for all t > 0

if s ∈ wLq(R), we get that (ii) is bounded by

p∑
j=1

α∗
j
2
1{|α∗

j |≤λ/2} ≤
2q−1

2− q R
qλ2−q, (27)

while (iii) is bounded by

p∑
j=1

|α∗
j |1{|α∗

j |>λ/2} ≤
q 2q−1

q − 1
Rqλ1−q. (28)

Gathering (25) and (28) on the one hand and (24), (26), (27) and (28) on the
other hand, we get that there exists Cq > 0 depending only on q and Cr > 0
depending only on r such that ‖sp,λ‖L1(Dp) ≤ CqR

qλ1−q and ‖s − sp,λ‖2 ≤
CrR

2p−2r + CqR
qλ2−q. �

Proof of Proposition 1.
We deduce from Theorem 1 and Lemma 1 that there exists some constant Cq,r >
0 depending only on q and r such that the quadratic risk of ŝp̂ is bounded by

E
[
‖s− ŝp̂‖2

]
≤ Cq,r

[
inf
p∈Λ

{
R2p−2r +Rq

(
ε
(√

ln p+ 1
))2−q

+ ε2 ln p

}
+ ε2

]
≤ Cq,r inf

p∈Λ\{1}

{
R2p−2r +Rq(ε

√
ln p)2−q + ε2 ln p

}
, (29)

where we use the fact that, for all p ≥ 2,
√

ln p + 1 ≤ (1 + 1/
√

ln 2)
√

ln p and
ε2 ≤ ε2(ln p)/ ln 2. Now, we choose p such that the terms inside the infimum
are of the same order. Denote by �x� the smallest integer greater than x. Define
Jq,r = �(2 − q)(2r)−1 log2(Rε−1)� and pq,r = 2Jq,r . Since we have assumed
Rε−1 ≥ e, then pq,r ∈ Λ \ {1} and we deduce from (29) that

E
[
‖s− ŝp̂‖2

]
≤ Cq,r

(
R2p−2r

q,r +Rq(ε
√

ln pq,r)
2−q + ε2 ln pq,r

)
. (30)

Now, let us give an upper bound of each term of the right-hand side of (30).
From the fact that 2 ≤ e ≤ Rε−1 and by definition of pq,r, on the one hand we
have pq,r ≥ (Rε−1)(2−q)/(2r), while on the other hand we have

ln pq,r ≤ ln 2 +
2− q

2r
ln
(
Rε−1

)
≤
(

1 +
2− q

2r

)
ln
(
Rε−1

)
:= Aq,r ln

(
Rε−1

)
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where Aq,r > 0 depends only on q and r. Thus, we get that

R2p−2r
q,r ≤ R2

(
Rε−1

)q−2
= Rqε2−q (31)

while

Rq
(
ε
√

ln pq,r

)2−q
≤ Aq,r1−

q
2Rq

(
ε
√

ln (Rε−1)
)2−q

(32)

and
ε2 ln pq,r ≤ Aq,r ε2 ln

(
Rε−1

)
. (33)

Now, these three bounds are upper bounded by Cq,rR
q(ε
√

ln(Rε−1))2−q where
Cq,r > 0 depends only on q and r. Indeed, Rε−1 ≥ e and 2 − q > 0, so (31)

is bounded by Rq(ε
√

ln(Rε−1))2−q. Moreover, the right-hand side of (33) can

be written Aq,r
(
g((Rε−1)2)

)q/2
Rq(ε

√
ln(Rε−1))2−q with g : ]0,+∞[�→ R, x �→

ln(x)/(2x). Using the fact that g(x2) ≤ 1/(2x) for all x > 0 and that Rε−1 ≥ e,
we get that (33) is bounded by Aq,r(2e)−q/2Rq(ε

√
ln(Rε−1))2−q.

Then, we deduce from (30) that there exists Cq,r > 0 depending only on q and
r such that

E
[
‖s− ŝp̂‖2

]
≤ Cq,r Rq

(
ε
√

ln (Rε−1)
)2−q

.

�
Proof of the Lower Bound: Proposition 2. Define

M = ε
√
ς ln (Rε−1), J =

⌊
2− q

2r
log2

(
RM−1

)⌋
, K =

⌊
q log2

(
RM−1

)⌋
.

Set p = 2J and d = 2K . Let us first check that M is well-defined and that d ≤ p
under the assumptions of Proposition 2. Under the assumption r < 1/q − 1/2,
we have u > 0, and since Rε−1 ≥ e2 ≥ e, M is well-defined. Moreover, since
r < 1/q − 1/2, we have (2 − q)/(2r) > q, so it only remains to check that
RM−1 ≥ e to prove that d ≤ p. We shall in fact prove the following stronger
result:

Claim. If Rε−1 ≥ max(e2, ς2), then Rε−1/
(
ln(Rε−1)

)
≥ ς .

This result implies that, under the assumption Rε−1 ≥ max(e2, ς2),

RM−1 =
Rε−1√
ς ln (Rε−1)

=
√
Rε−1

√
Rε−1

ς ln (Rε−1)
≥ e× 1 ≥ e.

Let us prove Claim 3.1. Introduce the function g : ]0,+∞[�→ R, x �→ x/ ln(x).
It is easy to check that g(x2) ≥ x for all x > 0 and that g is non-decreasing
on [e,+∞[. Now, assume that Rε−1 ≥ max(e2, ς2). Using the properties of g,
we deduce that, if ς ≥ e then Rε−1 ≥ ς2 ≥ e2 ≥ e and Rε−1/(ln(Rε−1)) =
g(Rε−1) ≥ g(ς2) ≥ ς, while if ς < e then Rε−1 ≥ e2 ≥ e and Rε−1/(ln(Rε−1)) =
g(Rε−1) ≥ g(e2) ≥ e > ς, hence Claim 3.1.
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Now, consider the hypercube A(p, d,M) defined by⎧⎨⎩
∞∑
j=1

αj φj ; (α1, . . . , αp) ∈ [0,M ]p, αj = 0 for j ≥ p+ 1,

p∑
j=1

1{αj 
=0} = d

⎫⎬⎭
=

⎧⎨⎩M
∞∑
j=1

βj φj ; (β1, . . . , βp) ∈ [0, 1]p, βj = 0 for j ≥ p+ 1,

p∑
j=1

1{βj 
=0} = d

⎫⎬⎭ .
The essence of the proof is just to check that A(p, d,M) ⊂ Lq(R) ∩ B r

2,∞(R).
This shall enable us to bound from below the minimax risk over Lq(R)∩B r

2,∞(R)
by the lower bound of the minimax risk over A(p, d,M) provided by
Birgé and Massart (2001).
Let u ∈ A(p, d,M). Write u =

∑∞
j=1 αjφj = M

∑∞
j=1 βjφj .

∞∑
j=1

|αj |q = M q

p∑
j=1

βqj 1{βj 
=0} ≤M q

p∑
j=1

1{βj 
=0} ≤M qd ≤M q
(
RM−1

)q ≤ Rq.
Thus, u ∈ Lq(R).
Let J0 ∈ N�. If J0 > p, then

J2r
0

∞∑
j=J0

α2
j ≤ J2r

0

∞∑
j=p+1

α2
j = 0 ≤ R2.

If J0 ≤ p, then

J2r
0

∞∑
j=J0

α2
j = J2r

0 M
2

p∑
j=J0

β2j1{βj 
=0} ≤ J2r
0 M

2

p∑
j=J0

1{βj 
=0} ≤ p2rM2d ≤ R2.

Thus, u ∈ B r
2,∞(R).

Therefore, A(p, d,M) ⊂ Lq(R) ∩ B r
2,∞(R) and

inf
s̃

sup
s∈Lq(R)∩B r

2,∞(R)

E
[
‖s− s̃‖2

]
≥ inf

s̃
sup

s∈A(p,d,M)

E
[
‖s− s̃‖2

]
. (34)

Now, from Birgé and Massart (2001, Theorem 5), we know that the minimax
risk over A (p, d,M) satisfies

inf
s̃

sup
s∈A(p,d,M)

E
[
‖s− s̃‖2

]
≥ κdmin

{
M2, ε2

(
1 + ln

(p
d

))}
≥ κ
(
RM−1

)q
2

min
{
M2, ε2

(
1 + ln

(p
d

))}
(35)
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where κ > 0 denotes some absolute constant.
Moreover, we have

ε2
(

1 + ln
(p
d

))
≥ ε2

⎛⎝1 + ln

⎡⎣(RM−1
) 2−q

2r

2 (RM−1)
q

⎤⎦⎞⎠
≥ ε2 ln

[(
RM−1

)ς]
= ε2 ln

[(
Rε−1

)ς (
εM−1

)ς]
= M2 + ε2 ln

[(
εM−1

)ς]
= M2 − ς

2
ε2 ln

[
ς ln
(
Rε−1

)]
. (36)

But the assumption Rε−1 ≥ max(e2, ς2) implies that (36) is greater than M2/2.
Indeed, first note that

M2 − ς
2
ε2 ln

[
ς ln
(
Rε−1

)]
≥M2/2 ⇔ Rε−1

ln(Rε−1)
≥ ς, (37)

and then apply Claim 3.1. Thus, we deduce from (34), (35), (36) and (37) that
there exists some κ > 0 such that

inf
s̃

sup
s∈Lq(R)∩B r

2,∞(R)

E
[
‖s− s̃‖2

]
≥ κRqM2−q = κς1−

q
2Rq

(
ε
√

ln(Rε−1)
)2−q

.

�
3.2 Non-orthonormal Dictionaries

Sketch of the proof of Proposition 3.
Proposition 3 is deduced from the oracle inequality (12) in Theorem 1. First,
the proof consists in bounding inft∈L1(Dp)

{
‖s− t‖2 + λp‖t‖L1(Dp)

}
for all p ∈

N�, just as it is done in Lemma 1 in the orthonormal case. This first step is
very similar to Corollary 3.7 in Barron et al. (2008). Then, an additional step
is needed to adapt the truncation of the dictionary according to the unknown
parameters of smoothness q and r of the target function. This second step is
similar to the proof of Proposition 1 in the orthonormal case. We refer the
interested reader to Massart and Meynet (2010, proof of Proposition 5.7) for a
detailed proof of Proposition 3. �

3.3 Interpolation Spaces

Proof of Remark 3.
Assume that the dictionary D is an orthonormal basis of the Hilbert space H and
that there exist 1 < q < 2, r > 0 and R > 0 such that s ∈ wLq(R) ∩ B r

2,∞(R).
For all p ∈ N� and λ > 0, define

sp,λ := arg min
t∈L1(Dp)

{
‖s− t‖2 + λ‖t‖L1(Dp)

}
.
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The proof is divided in two main parts. First, we choose λ such that sp,λ ∈ L1,r.
Secondly, we choose p such that ‖s−sp,λ‖+δ‖sp,λ‖L1,r ≤ Cq,rRδ2ν for all δ > 0,
some Cq,r > 0 and ν = 1/q − 1/2, which means that s ∈ Bq,r(Cq,rR).

Let us first choose λ such that sp,λ ∈ L1,r. From Lemma 1, we have

‖s− sp,λ‖ ≤
√
CrR2p−2r + CqRqλ2−q ≤

√
Cr Rp

−r +
√
Cq R

q/2λ1−q/2.

Now choose λ such that
√
Cr Rp

−r =
√
Cq R

q/2λ1−q/2, that is to say

λp := R

(√
CqC

−1
r pr

)− 2
2−q

. (38)

Then, we have

‖s− sp,λp‖ ≤ 2
√
Cr Rp

−r. (39)

Let us now check that sp,λp ∈ L1,r. Define

Cp := max

{
4
√
Cr R, max

p′∈N�, p′≤p
‖sp′,λp′‖L1(Dp′)

}
. (40)

Let p′ ∈ N�. By definition of sp′,λp′ , we have sp′,λp′ ∈ L1(Dp′). If p′ ≤ p, then
we deduce from (39) and (40) that

‖sp,λp − sp′,λp′‖ ≤ ‖sp,λp − s‖+ ‖s− sp′,λp′ ‖ ≤ 2
√
Cr R

(
p−r + p′−r

)
≤ Cpp′−r,

and we have ‖sp′,λp′‖L1(Dp′) ≤ Cp by definition of Cp. If p′ > p, then L1(Dp) ⊂
L1(Dp′ ) and sp,λp ∈ L1(Dp′) with ‖sp,λp‖L1(Dp′) ≤ ‖sp,λp‖L1(Dp) ≤ Cp and

‖sp,λp − sp,λp‖ = 0 ≤ Cpp′−r. So, sp,λp ∈ L1,r.

Now, it only remains to choose a convenient p ∈ N� to prove that s ∈ Bq,r(Cq,rR)
for some Cq,r.

Let us first give an upper bound of ‖sp,λp‖L1,r for all p ∈ N�. By definition
of ‖sp,λp‖L1,r and the above upper bounds, we have ‖sp,λp‖L1,r ≤ Cp. So, we
just have to bound Cp. Let p′ ∈ N�, p′ ≤ p. From Lemma 1, there exists Cq > 0

depending only on q such that ‖sp′,λp′ ‖L1(Dp′) ≤ CqR
qλ1−qp′ . So, we get from (38)

that

‖sp′,λp′ ‖L1(Dp′) ≤ CqR
(√

CqC
−1
r p′r

) 2(q−1)
2−q

≤ CqR
(√

CqC
−1
r pr

) 2(q−1)
2−q

= C
1

2−q
q C

− (q−1)
2−q

r Rp
2(q−1)r

2−q ,
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and we deduce from (40) that

Cp ≤ max

{
4
√
Cr R,C

1
2−q
q C

− (q−1)
2−q

r Rp
2(q−1)r

2−q

}
≤ Cq,rRp

2(q−1)r
2−q

where Cq,r > 0 depends only on q and r. Thus, we have

‖sp,λp‖L1,r ≤ Cq,rRp
2(q−1)r

2−q . (41)

Then, we deduce from (39) and (41) that for all p ∈ N� and δ > 0,

inf
t∈L1,r

{
‖s− t‖+ δ‖t‖L1,r

}
≤ ‖s− sp,λp‖+ δ‖sp,λp‖L1,r

≤ 2
√
Cr Rp

−r + δCq,rRp
2(q−1)r

2−q . (42)

Now, we choose p such that p−r and δ p
2(q−1)r

2−q are of the same order. More
precisely, set p = 2J where J =

⌈
(2− q)(qr)−1 log2(δ−1)

⌉
. With this value of p,

we get that there exists C′
q,r > 0 depending only on q and r such that (42) is

upper bounded by C′
q,rRδ

(2−q)/q = C′
q,rR δ

2ν . This means that s ∈ Bq,r(C ′
q,rR),

hence (20). �
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Recent Developments in Pattern Mining

Toon Calders

TU Eindhoven, The Netherlands
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Abstract. Pattern Mining is one of the most researched topics in the
data mining community. Literally hundreds of algorithms for efficiently
enumerating all frequent itemsets have been proposed. These exhaus-
tive algorithms, however, all suffer from the pattern explosion problem.
Depending on the minimal support threshold, even for moderately sized
databases, millions of patterns may be generated. Although this problem
is by now well recognized in te pattern mining community, it has not yet
been solved satisfactorily. In my talk I will give an overview of the dif-
ferent approaches that have been proposed to alleviate this problem. As
a first step, constraint-based mining and condensed representations such
as the closed itemsets and the non-derivable itemsets were introduced.
These methods, however, still produce too many and redundant results.
More recently, promising methods based upon the minimal description
length principle, information theory, and statistical models have been in-
troduced. We show the respective advantages and disadvantages of these
approaches and their connections, and illustrate their usefulness on real
life data. After this overview we move from itemsets to more complex
patterns, such as sequences and graphs. Even though these extensions
seem trivial at first, they turn out to be quite challenging. I will end my
talk with an overview of what I consider to be important open questions
in this fascinating research area.
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Abstract. The tutorial is devoted to categorical sequence data describ-
ing for instance the successive buys of customers, working states of de-
vices, visited web pages, or professional careers. Addressed topics include
the rendering of state and event sequences, longitudinal characteristics
of sequences, measuring pairwise dissimilarities and dissimilarity-based
analysis of sequence data such as clustering, representative sequences,
and regression trees. The tutorial also provides a short introduction to
the practice of sequence analysis with the TraMineR R-package.
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Abstract. An early result in inductive inference shows that the class
of Ex-learnable sets is not closed under unions. In this paper we are
interested in the following question: For what classes of functions is the
union with an arbitrary Ex-learnable class again Ex-learnable, either
effectively (in an index for a learner of an Ex-learnable class) or non-
effectively? We show that the effective case and the non-effective case
separate, and we give a sufficient criterion for the effective case. Further-
more, we extend our notions to considering unions with classes of single
functions, as well as to other learning criteria, such as finite learning and
behaviorally correct learning.

Furthermore, we consider the possibility of (effectively) extending
learners to learn (infinitely) more functions. It is known that all Ex-
learners learning a dense set of functions can be effectively extended to
learn infinitely more. It was open whether the learners learning a non-
dense set of functions can be similarly extended. We show that this is
not possible, but we give an alternative split of all possible learners into
two sets such that, for each of the sets, all learners from that set can be
effectively extended. We analyze similar concepts also for other learning
criteria.

1 Introduction

One branch of inductive inference investigates the learnability of functions; the
basic scenario given in the seminal paper by Gold [7] is as follows. Let S be a
class of recursive functions; we say that S is explanatorily learnable iff there is
a learner M which issues conjectures e0, e1, . . . with en being based on the data
f(0)f(1) . . . f(n − 1) such that, for all f ∈ S, almost all of these conjectures
are the same index e explaining f , that is, satisfying ϕe = f with respect to an

� Supported by NUS grants C252-000-087-001 and R252-000-420-112.
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underlying numbering ϕ0, ϕ1, . . . of all partial recursive functions. In this paper,
we consider learnability by partial recursive learners; with Me we refer to the
learner derived from the e-th partial recursive function.

During the course of time, several variants of this basic notion of explanatory
learning (Ex) have been considered; most notably, behaviorally correct learning
(BC) [1], in which the learner has to almost always output a correct index for
the input function (these indices though are not constrained to be the same).

Another variant considered is finite learning (Fin) [7] where the learner out-
puts a special symbol (?) until it makes one conjecture e which is never aban-
doned; this conjecture must of course be correct for a function to be learnt.
Osherson, Stob and Weinstein [10] introduced a generalization of this notion,
namely confident learning (Conf), where the learner can revise the hypothesis
finitely often; it must, however, on each function f , even if it is not in the class
to be learnt, eventually stabilize on one conjecture e. In inductive inference,
one often only needs the weak version of this property where the convergence
criterion only applies to recursive functions while the convergence behavior on
non-recursive ones is not constrained (WConf , [14]).

Minicozzi [9] called a learner reliable iff the learner, on every function, either
converges to a correct index or signals infinitely often that it does not find the
index (by doing a mind change or outputting a question mark). One can combine
the notion of reliability and confidence: A learner is weakly reliable and confident
(WConfRel) iff the learner, for every recursive function f , either converges to
an index e with ϕe = f or almost always outputs ? (in order to signal non-
convergence).

The above crtieria and the relations between them have been extensively
studied, giving the following inclusion relations [2, 5, 6, 7, 9, 10, 14]:

– Fin ⊂ Conf ⊂WConf ⊂ Ex ⊂ BC;
– ConfRel ⊂WConfRel ⊂ Rel ⊂ Ex ⊂ BC;
– Fin �⊂ Rel and Rel �⊂WConf .

Besides inclusion (learnability with respect to which criterion implies learnability
with respect to another criterion), structural questions have also been studied: Is
the union of two learnable classes learnable? Can one extend each learnable class?

Blum and Blum’s Non-Union Theorem [2] (see also [1]) gave a quite strong
answer to the first question: There are two classes S and S ′ of recursive functions
such that each of them is learnable under the criterion Ex but their union is not
learnable even under the more general criterion BC. Indeed, one can even learn
the class S confidently and the class S ′ reliably. Thus, the Non-Union Theorem
gives an interesting contrast to the fact that both confident learning and reliable
learning are effectively closed under union.

Furthermore, it is interesting to ask how effective the union is. That is, if the
union of two classes is learnable, can one effectively construct a learner for the
union, given programs for the learners of the two given classes? The answer is
“No” in general as can be seen directly by the proof of the Non-Union Theorem.

The confidently learnable class S above consists of all the functions f such
that f(0) is an index for f , and the class S ′ consists of all the functions f which
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are almost everywhere 0 (Blum and Blum [2] used slightly different classes S
and S ′ which were {0, 1}-valued; our S and S ′ makes the presentation simpler).
Now consider the union of S ′ with a class Se, where Se contains ϕe in the case
that ϕe is total and ϕe(0) = e; otherwise Se is empty. It is easy to show that, for
each e, the class Se ∪ S ′ is explanatory (Ex) learnable. If this union would be
effective, giving rise to a learnerMh(e) for the class Se∪S ′, then one could make a
learner N for S ∪S ′ as follows: for non-empty sequences σ, N(σ) = Mh(σ(0))(σ);
a contradiction to the non-union theorem.

This example suggests to study four notions of when the unions of a given
class S with another class is Ex-learnable:

1. S is (non-constructively) Ex-unionable iff for every Ex-learnable class S ′,
the class S ∪ S ′ is Ex-learnable;

2. S is constructively Ex-unionable iff one can effectively convert every Ex-
learner for a class S ′ into an Ex-learner for the class S ∪ S ′;

3. S is singleton-Ex-unionable iff for every total computable g, S ∪ {g} is Ex-
learnable.

4. S is constructively singleton-Ex-unionable iff there is a recursive function
which assigns, to every index e, an Ex-learner for the class S ∪ {ϕe} if ϕe is
total and for the class S if ϕe is partial.

The same notions can also be defined for other learning criteria like finite, con-
fident and behaviorally correct learning. We get the following results:

1. If a class S has a weakly confident learner then it is constructively single-
ton-Ex-unionable.

2. If a class S has a weakly confident and reliable learner then it is construc-
tively Ex-unionable.

3. There is a class which is Ex-unionable and BC-unionable but does not
satisfy any of the constructive unionability properties.

4. For finite learning, we show that unionability with classes and constructive
union with singletons fails for all non-empty classes; only non-constructive
unions with singletons is possible in the case that every pointwise limit of
functions in the class is again in the class.

All our results for the cases of purely Ex-learning are summarized in Figure 1.
Forming the union with another class or adding a function are specific methods

to enlarge a class. Thus, it is natural to ask when a learnable class of functions
can be extended at all, without prescribing how to do this. Case and Fulk [4]
addressed this question and showed, for the principal learning criteria Ex and
BC, that one can extend learners to learn infinitely more functions whenever
the learner satisfies a certain quality, say learns a dense class of functions. This
enlargement can be done constructively (under this precondition). Furthermore,
one can non-constructively extend any learnable class for many usual learning
criteria like Fin,Conf ,Rel,ConfRel,WConf ,WConfRel,Ex and BC. Case
and Fulk [4] left open two particular questions:

1. Is there a method to extend constructively every learner Me which does not
Ex-learn a dense class of functions?
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WConfRel

WConf

ConstrSingEx-Unionable

ConstrEx-Unionable

SingEx-Unionable = Ex-learnable

Ex-Unionable

Fig. 1. The inclusion relations for the various unionability notions. It is unknown
whether the dotted arrows might also go in the converse direction. All inclusions are
given by arrows (and possibly reversed dotted arrows) and the concatenations of these.

2. How much nonconstructive information is needed in order to extend every
learnerMe to learn infinitely many more functions? I.e., in how many classes
does one have to split the learners so as to have constructive extension for
each of the classes?

Theorem 25 answers the first question negatively – such a method does not exist.
On the other hand, the answer to the second question is that only a split

into two classes is necessary. This result is not based on the information about
whether the class is dense or not; instead it is based on the information about
whether there exists a σ such that for no extension τ of σ: M(τ)↓ �= M(σ)↓. In
Theorem 27 we show that there is a recursive function h such that Ex(Mh(e,b))
is a proper superclass of Ex(Me) whenever either b = 1 and such a σ exists or
b = 0 and such a σ does not exist.

2 Preliminaries

Let N denote the set of natural numbers. The symbols ⊆,⊂,⊇,⊃ respectively
denote subset, proper subset, superset and proper superset. For strings α and β,
we let α � β denote that α is a prefix of β. We let 〈·, ·〉 denote a fixed computable
pairing function from N×N to N, which is increasing in both its arguments. We
assume that 〈0, 0〉 = 0.

Let ϕ denote a fixed acceptable programming system [12] for the class of all
partial recursive functions. Let ϕi denote the i-th program in this programming
system. Then, i is called the index or program for the partial recursive function
ϕi. LetR denote the set of all total recursive functions and P denote the set of all
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partial recursive functions. Let R0,1 denote the set of all total recursive functions
f with range(f) ⊆ {0, 1}. Let K denote the diagonal halting set {x : ϕx(x)↓}.
For a function η, let η(x)↓ denote that η(x) is defined, and η(x)↑ denote that
η(x) is not defined. We let pad be a 1–1 recursive function such that, for all i, j,
ϕpad(i,j) = ϕi. Please find unexplained recursion theoretic notions in Rogers’
book [12]. We let S range over sets of recursive functions.

Let σ, τ range over finite sequences. We often identify a total function with
its sequence of values, f(0)f(1)f(2) . . .; similarly for finite sequences. Let f [n] =
f(0)f(1) . . . f(n− 1). We use the notation σ � τ to denote that σ is a prefix of
τ (an initial subfunction of τ). Let Λ denote the empty sequence. Let |σ| denote
the length of σ. Let Seq denote the set of all finite sequences.

Let σ · τ denote concatenation of sequences, where σ is finite. When it is
clear from context, we often drop · and just use στ for concatenation. For a
finite sequence σ �= Λ, let σ− be σ with the last element dropped, that is,
σ− · σ(|σ|) = σ. Let [S] = {f [n] | f ∈ S}. Thus, [R] = Seq. For notation
simplification, [f ] = [{f}]. A class S is said to be dense if [S] = [R]. A class S
is everywhere sparse iff for all τ ∈ Seq, there exists a τ ′ � τ such that τ ′ �∈ [S].
A total function f is an accumulation point of S iff there exist pairwise distinct
functions g0, g1, . . . in S such that, for all n ∈ N, f [n] � gn.

A learner is a partial-recursive mapping from finite sequences to N∪ {?}. We
let M , N and P range over learners and let C range over classes of learners. Let
M0,M1, . . . denote an acceptable numbering of all the learners.

We say that M converges on function f to i (written: M(f)↓ = i) iff for all
but finitely many n, M(f [n]) = i. If M(f)↓ = i for some i ∈ N, then we say
that M converges on f (written: M(f)↓). We say that M(f) diverges (written:
M(f)↑) if M(f) does not converge to any i ∈ N. We now describe some of the
learning criteria.

Definition 1. Suppose M is a learner and f is a total function.

(a) [7] We say that M Ex-learns f (written: f ∈ Ex(M)) iff (i) for all s, M(f [s])
is defined, and (ii) there exists an i such that ϕi = f and, for all but finitely
many n, M(f [n]) = i.

(b) [1, 6] We say that M BC-learns f (written: f ∈ BC(M)) iff, (i) for all s,
M(f [s]) is defined, and (ii) for all but finitely many n, ϕM(f [n]) = f .

(c) [1, 6] We say that M Fin-learns f (written: f ∈ Fin(M)) iff (i) for all s,
M(f [s]) is defined, and (ii) there exist n and i such that ϕi = f , for all
m < n, M(f [n]) =?, and for all m ≥ n, M(f [n]) = i.

(d) [6] We say that M Exn-learns f (written: f ∈ Exn(M)) iff (i) M Ex-learns
f and (ii) card({m | ? �= M(f [m]) �= M(f [m+ 1])}) ≤ n.

We say that M makes a mind change at f [m+1] if ? �= M(f [m]) �= M(f [m+1]).

Definition 2. Let I be a learning criterion (defined above or later in this paper):

(a) We say that M I-learns S (written: S ⊆ I(M)) iff M I-learns each f ∈ S.
(b) We say that S is I-learnable iff there exists a learner M which I-learns S.
(c) I = {S | ∃M [S ⊆ I(M)]}.
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Definition 3. (a) [10] We say that M is confident iff (i) M is total and (ii) for
all total f , M(f)↓ or for all but finitely many n, M(f [n]) =?.

(b) We say that M is weakly confident iff (i) M is total and (ii) for all f ∈ R,
M(f)↓ or for all but finitely many n, M(f [n]) =?.

(c) [2, 9] We say that M is reliable iff (i) M is total and (ii) for all total f ,
M(f)↓ implies M Ex-learns f .

(d) We say that M is weakly reliable iff (i) M is total and (ii) for all f ∈ R,
M(f)↓ implies M Ex-learns f .

(e) We say thatM is confident and reliable iffM is total and, eitherM Ex-learns
f or M(f [n]) =? for all but finitely many n.

(f) We say that M is weakly confident and reliable iff M is total and, for all
f ∈ R, either M Ex-learns f or M(f [n]) =? for all but finitely many n.

Definition 4. We say that M Conf -learns S if M Ex-learns S and M is
confident. Similarly, we define Rel, WConf , WRel, ConfRel and WConfRel
learning criteria where we require the learners to be reliable, weakly confi-
dent, weakly reliable, confident and reliable, and weakly confident and reliable
respectively.

For all the learning criteria considered in this paper, one can assume without
loss of generality that the learners are total. In particular, from any learner M ,
one can effectively construct a total learner M ′ such that, for all the learning
criteria I considered in this paper, I(M) ⊆ I(M ′) (this can be shown essentially
using the same proof as for I = Ex used by [10]). We often implicitly assume
such conversion of learners into total learners. The following proposition shows
that learners for unions of confidently learnable classes can be effectively found;
similarly for learners of unions of reliably learnable classes.

Proposition 5 (Blum and Blum [2], Minicozzi [9], Osherson, Stob and
Weinstein [10]). Each criterion I from Conf , WConf , Rel, WRel, ConfRel,
WConfRel is closed effectively under union: there exists a recursive function
hI such that, if Mi I-learns S and Mj I-learns S ′ then MhI(i,j) I-learns S ∪ S ′.

Definition 6. [13] A set S ⊆ R is two-sided classifiable iff there is a machine
M such that, for all f ∈ R,

(i) if f ∈ S, then ∀∞x [M(f [x]) = 1];

(ii) if f �∈ S, then ∀∞x [M(f [x]) = 0].

The next theorem characterizes WConfRel in terms of classification.

Theorem 7. Let S ⊆ R. The following are equivalent:

(a) S is WConfRel-learnable;

(b) A superset of S is Ex-learnable and two-sided classifiable.
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3 Initial Results on Unionability

We start with giving the general definition of unionability.

Definition 8. Let I be a learning criterion and S ⊂ R.

(a) S is I-unionable iff, for all I-learnable classes S ′, S ∪ S ′ is I-learnable.
(b) S is constructively I-unionable iff there is an h ∈ R such that, for all e,

S ∪ I(Me) ⊆ I(Mh(e)).
(c) S is singleton-I-unionable iff, for all f ∈ R, S ∪ {f} is I-learnable.
(d) S is constructively singleton-I-unionable iff there is h ∈ R such that, for all

e, Mh(e) I-learns S ∪ {ϕe} ∩ R.

For the various versions of unionability, in the following sections we will consider
in detail which classes are I-unionable for I being Fin, Ex or BC, starting with
Fin-unionability in this section.

Theorem 9 (Blum and Blum [2]). There are classes S and S ′ such that

(a) S is Fin-learnable (and thus S ∈ Conf and S ∈WConf);
(b) S ′ is Rel-learnable;
(c) S ∪ S ′ �∈ BC.

Thus, both classes S and S ′ are neither Ex-unionable nor BC-unionable. In the
following, we want to characterise Fin-unionability.

Theorem 10. (a) S is Fin-unionable iff S = ∅.
(b) S is constructively Fin-unionable iff S = ∅.
(c) S is constructively singleton-Fin-unionable iff S = ∅.
(d) S is singleton-Fin-unionable iff S is Fin-learnable and S has no recursive

accumulation point.

Proof. (a) and (b) Let S �= ∅ be a set of total computable functions and let
f ∈ S. For all i, let fi be such that fi(i) = f(i)+1 and, for all x �= i, fi(x) = f(x).
Then the class S ′ = {fi | i ∈ N} is Fin-learnable, but S∪S ′ is not Fin-learnable.

(c) We keep S and f and fi as in part (a and b) above. Furthermore, we
consider a recursive function g such that ϕg(e) = fs, if e is enumerated into K in
exactly s steps; ϕg(e) = f , if e is not enumerated into K. Furthermore, let h be
a recursive function such that Mh(e) Fin-learns S ∪ {ϕe} ∩ R. Let k(e) be the
first number found, in some algorithmic search, such that Mh(e)(f [k(e)])↓ �=?.
The function k is total recursive, as, for all e, Mh(e) Fin-learns f . If e is enumer-
ated into K in exactly s steps, then k(g(e)) ≥ s, as otherwise, ϕg(e)[k(g(e))] =
fs[k(g(e))] = f [k(g(e))], and thus Mh(g(e)) cannot Fin-learn both f and ϕg(e).
Hence e is in K iff e is enumerated within k(g(e)) steps into K, a contradiction
to K being undecidable.

(d) Clearly S must be in Fin to be singleton-Fin-unionable.
We first show that Fin-learnable classes with a recursive accumulation point

are not singleton-Fin-unionable. Let S be such that there is a recursive accu-
mulation point f of S. Suppose S ∪ {f} is Fin-learnable, as witnessed by M .
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Let x be such that M(f [x])↓ �=?. Furthermore, let f ′ ∈ S, f �= f ′ be such that
f [x] � f ′. Such an f ′ exists as f is an accumulation point of S. Now M cannot
Fin-learn both f and f ′, as f [x] � f and f [x] � f ′. This is a contradiction to
M Fin-learning S ∪ {f}.

Now suppose S is Fin-learnable as witnessed by M and S has no recursive
accumulation point. Let f ∈ R. We show that S0∪{f} is Fin-learnable. If f ∈ S,
nothing is left to be shown. Suppose f /∈ S; thus, there exists an x such that
f [x] /∈ [S]. Let e be an index for f ; we define N such that, for all σ,

N(σ) =

⎧⎪⎨⎪⎩
?, if σ ≺ f [x];

e, if f [x] � σ;

M(σ), otherwise.

It is easy to verify that N Fin-learns S ∪ {f}.
It is clear that every constructively I-unionable class is I-unionable and ev-
ery constructively singleton-I-unionable class is singleton-I-unionable. The next
proposition gives the third straight-forward inclusion.

Proposition 11. Let I ∈ {Fin,Conf ,WConf ,Ex,BC}. If S is constructively
I-unionable then S is constructively singleton-I-unionable.

Proof. Given e, consider the I-learner Mh(e) which always outputs e; if ϕe
is total, then I(Mh(e)) = {ϕe}, else I(Mh(e)) = ∅. Now, due to the construc-
tive I-unionability of S, the class is also constructively singleton-I-unionable by
forming constructively the union with the class I-learnt by Mh(e).

For the criteria Rel, WRel, ConfRel and WConfRel, one cannot translate an
index e into a learner for ϕe of the given type, as one is not able to test in the limit
whether ϕe is partial or total. This obstacle on the way to prove a hypothetical
implication like “constructively Rel-unionable ⇒ constructively singleton-Rel-
unionable” is real and the conjectured implication does not hold: On the one
hand, every Rel-learnable class is constructively Rel-unionable [9]; on the other
hand, Theorem 17 as well as Blum and Blum’s Non-Union-Theorem exhibit a
Rel-learnable class which is not constructively singleton-Rel-unionable.

4 Ex- and BC-Unionable Classes

Case and Fulk [4] investigated Ex- and BC-unionability and obtained the follow-
ing basic result that one can always add a function to a given class; so in contrast
to finite learning, every Ex-learnable class is non-constructively singleton-Ex-
unionable; the same applies to BC-learning.

Proposition 12 (Case and Fulk [4]). If I is either Ex or BC, f ∈ R and S
is I-learnable, then S ∪ {f} is I-learnable.

Theorem 13. Suppose I is either Ex or BC. Suppose S ∈WConfRel. Then
S is constructively I-unionable.
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Proof. Suppose S ∈WConfRel as witnessed by M ∈ R. Let h be a recursive
function such that Mh(i) behaves as follows.

LetM ′
i be obtained effectively from i such thatM ′

i is total and I(M ′
i) = I(Mi).

If M(σ) =?, then Mh(i)(σ) = M ′
i(σ). Otherwise, Mh(i)(σ) = M(σ). It is easy to

verify that Mh(i) I-learns S ∪ I(Mi).

Theorem 14. Suppose I is either Ex or BC. Suppose S ∈ WConf . Then S
is constructively singleton-I-unionable.

Proof. Let f be a recursive function such that Mf(e) always outputs e on any
input. Then, Mf(e) WConf -learns {ϕe}. LetMi be a WConf-learner for S. Let
hWConf be as from Proposition 5. Then, hWConf (f(e), i) witnesses the theorem.

Corollary 15. Suppose I is either Ex or BC. Let S = {f ∈ R : ϕf(0) = f}.
Then, S is constructively singleton-I-unionable, but not I-unionable.

Theorem 16. There are classes S,S ′ ⊆ R such that

(a) S and S ′ are both Ex-learnable;
(b) S and S ′ are both constructively BC-unionable;
(c) S ∪ S ′ is not Ex-learnable;
(d) S is not constructively singleton-Ex-unionable;
(e) S ′ is constructively singleton-Ex-unionable.

Proof. Kummer and Stephan [8, Theorem 8.1] constructed a uniformly partial-
recursive family ϕg(0), ϕg(1), . . . of functions such that each ϕg(n) is undefined at
most at one place and 1n0 � ϕg(n) for all n. Let S be the set of all total extensions
of functions ϕg(n) which are not total. Let S ′ be set of all total ϕg(n). It is easy
to verify that S and S ′ are both in Ex.

Kummer and Stephan [8] showed that S ∪S ′ is BC-learnable. Actually S ∪S ′

and every subclass of it is constructively BC-unionable. To see this, let patch be
a recursive function such that ϕpatch(i,σ)(x) = σ(x) if x < |σ|; ϕpatch(i,σ)(x) =
ϕi(x) if x ≥ |σ|.

Now, let any total BC-learner M for some class be given. Now, a new BC-
learner N , obtained effectively from M , learning BC(M) ∪ S ∪ S ′ is defined as
follows:

If there is an n such that 1n0 � σ and no x < |σ| satisfies that ϕg(n)(x)
converges within |σ| steps to a value different from σ(x),

Then N(σ) = patch(g(n), σ),
Else N(σ) = M(σ).

Furthermore, Kummer and Stephan [8] showed that S ∪ S ′ is not Ex-learnable,
hence S and S ′ are not Ex-unionable. As S ′ is Fin-learnable, by Theorem 14,
S ′ is also constructively singleton-Ex-unionable.

Furthermore, S is not constructively singleton-Ex-unionable. Suppose by way
of contradiction that h witnesses that S is constructively singleton-Ex-unionable.
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Then, the following learner N witnesses that S ∪ S ′ ∈ Ex: If 1n0 � σ for some
n, then N(σ) = Mh(g(n))(σ), else N(σ) = 0. However, by Kummer and Stephan
[8], such a learner does not exist.

Theorem 17. There is a class S which is Ex-unionable, BC-unionable, but is
not constructively singleton-BC-unionable.

Proof. For each n, we will define function fn below. The class S will consist of
all functions of the form fn(0)fn(1) . . . fn(x)y∞ which start with values of some
fn until a point x and are constant from then onwards.

Without loss of generality assume that learner M0 Ex-learns all eventually
constant functions. The functions fn satisfy the following properties:

(I) fn(0) = n;

(II) Each fn is recursive;

(III) The mapping n, x �→ fn(x) is limit-recursive;

(IV) For each m ≤ n,
either for infinitely many s, (∃x) [ϕMm(fn[s])(x)↓ �= fn(x)],
or there is a σ � fn such that (∀τ) [ϕMm(στ) is a subfunction of στ ].

Note that the above properties imply that Mm does not BC-learn fn, for any
n ≥ m. Thus, in particular, fn is not an eventually constant function.

The construction of fn is done by inductively defining longer and longer initial
segments fn[�n,t] of fn together with the length �n,t. Let �n,0 = 0. In stage t,
�n,t+1 and fn[�n,t+1] are defined as follows: Let m be the remainder of t divided
by n + 1. Search for τ, η, a hypothesis e and an x < �n,t + |τη| such that
ϕMm(fn[�n,t]·τ)(x)↓ �= (fn[�n,t] · τη)(x). If such τ, η, e, x are found then �n,t+1 =
�n,t+|τη|+1 and fn[�n,t+1] = fn[�n,t]·τη ·0 else �n,t+1 = �n,t+1 and fn[�n,t+1] =
fn[�n,t] · 0.

Note that if the search does not succeed in stage t then it does not succeed in
stage t+n+ 1 either, as that stage also deals with the same m and fn[�n,t+n+1]
is an extension of fn[�n,t]. Therefore each fn is recursive. Furthermore, the fn
are uniformly limit-recursive as one can use the oracle for K to decide whether
the extension exists in each specific case. It is clear that property (IV) of fn
mentioned above is also met by the way each fn is constructed.

Now suppose that a total learner Me Ex-learns or BC-learns a class S ′. Thus
the functions fe, fe+1, fe+2, . . . are not learnt by Me and thus not members of
S ′. Now consider the following new learner N for S ∪ S ′. Let fn,t be the t-th
approximation (as a recursive function) to fn; the fn,t converge pointwise to fn.
N , on input σ of length t > 0, is defined as follows:

If σ � fd for some d ∈ {0, 1, . . . , e},
Then N(σ) is an index for fd for the least such d,
Else if σ = fn,t(0)fn,t(1) . . . fn,t(x)yt−x−1 for some n, y and x < t− 1,
Then N(σ) outputs a canonical index for fn,t(0)fn,t(1) . . . fn,t(x)y∞,
Else N(σ) = Me(σ).
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One can easily verify that N Ex-learns f0, f1, . . . , fe and also Ex-learns every
member of S. Furthermore, for each f ∈ S ′ − S − {f0, f1, . . . , fe}, there are
n = f(0), a least x with f(x+1) �= fn(x+1) and a least x′ > x with f(x′ +1) �=
f(x′). If σ � f is long enough, then fn,|σ| equals fn for inputs below x+ 2 and
|σ| > x′ +1 and thus the learner N outputs Me(σ). Hence if Me is an Ex-learner
for S ′ then N is an Ex-learner for S ∪ S ′ and if Me is a BC-learner for S ′ then
N is a BC-learner for S ∪ S ′.

Now assume by way of contradiction that S is constructively singleton-BC-
unionable as witnessed by a recursive function h. We will define a learner N
below. For ease of notation, we define N as running in stages and think of
learners as getting the graph of the whole function as input, and outputting
a sequence of conjectures, all but finitely many of which are programs for the
input function (for BC-learning); for Ex-learning, this sequence of programs
also converges syntactically.

Let f denote the function to be learnt and let n = f(0). Now define a trigger-
event m to be activated iff there is a t > m such that f [m] � fn,t (as defined
above). If f = fn then infinitely many trigger events are eventually activated;
otherwise only finitely many trigger events are eventually activated. On any
input function f , the learner N starts in stage 0.

Stage 〈i, j〉:
In this stage N copies the output of Mh(i) until
(i) the (〈i, j〉+ 1)-th trigger event has been activated and
(ii) there are x, z such that x > j and ϕMh(i)(f [x])(x) ↓�= f(z).

When both events have occurred, the learner N leaves stage 〈i, j〉
and goes to the next stage 〈i, j〉+ 1.

End stage 〈i, j〉

Note that whenever the input function f is from S, then only finitely many
trigger-events are activated and therefore the construction leaves only finitely
many stages. Hence, the learner N eventually follows the learnerMh(i), for some
i, and thus BC-learns f .

Let n be such that Mn = N . Consider the behaviour of N on fn. As, for
each prefix σ of fn, N BC-learns σ0∞, it follows from property (IV) of fn
that there exist infinitely many x such that, for some z, ϕN(fn[x])(z)↓ �= fn(z).
Furthermore, infinitely many trigger events are activated on input function being
fn. Thus, inductively, for each stage 〈i, j〉, ϕMh(i)(fn[x])(z)↓ �= fn(z), for some
x > j. Therefore, for all i, ϕMh(i)(fn[x]) �= fn, for infinitely many x. Thus, for
each i, Mh(i) does not BC-learn fn. However, as there exists an i such that
fn = ϕi, the learner Mh(i) must BC-learn fn. A contradiction. Thus, S is not
constructively singleton-BC-unionable.

Corollary 18. Due to the implications among the criteria of unionability, the
class S from Theorem 17 also fails to be constructively singleton-Ex-unionable,
constructively BC-unionable or constructively Ex-unionable. Furthermore, S is
not WConf -learnable.
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The next proposition shows that Ex and BC-unionable classes are everywhere
sparse.

Proposition 19. Suppose I is Ex or BC. Suppose S is not everywhere sparse.
Then S is neither I-unionable nor constructively singleton-I-unionable.

The following theorem generalises the Non-Union-Theorem.

Theorem 20. Let S ⊆ R be Ex-learnable. Then there are S0 ⊆ R and S1 ⊆ R
such that S ∪ S0 and S ∪ S1 are Ex-learnable but S0 ∪ S1 is not BC-learnable.

5 Extendability

In the previous sections, the question was whether a class S can be extended by
either adding a full class S ′ or just a function ϕe without losing learnability; in
this section we ask whether a class can be extended effectively without prescrib-
ing how this should be done. So on one hand, the task becomes easier as it is
not prescribed what to add, on the other hand the task might also become more
difficult as one has to find functions not yet learnt in order to add them (while
previously, they were given by a learner or an index). Before discussing this in
detail, the next definition should make the notion of extending more precise.

Definition 21. Let C be a set of learners and I a learning criterion.

(a) We say that we can infinitely I-improve learners from C iff, for all M ∈ C,
there is a learner N ∈ P such that I(M) ⊆ I(N) and I(N)\I(M) is infinite.

(b) We say that we can uniformly infinitely I-improve learners from C iff there
is a recursive function h such that, for all e with Me ∈ C, I(Me) ⊆ I(Mh(e))
and I(Mh(e)) \ I(Me) is infinite.

Proposition 22. Let C be a set of learners and I be Ex or BC. Suppose there
is a function g ∈ R such that, for all e with Me ∈ C, {ϕg(e,x) | x ∈ N} is
an infinite I-unionable set disjoint from I(Me). Furthermore, assume that one
can determine with a two-sided classifier effectively obtainable from e, for each
recursive function f , whether f ∈ {ϕg(e,x) | x ∈ N}. Then we can uniformly
infinitely I-improve learners from C.

Lemma 23. Suppose C is a set of learners and σ0 ∈ Seq. Suppose for all e, σ
one can effectively find a sequence τe,σ such that if Me ∈ C and σ0 � σ, then
σ � τe,σ and Me(σ) �= Me(τe,σ). Then we can uniformly infinitely Ex-improve
all learners from C.

Proof. By implicit use of the parametric recursion theorem [12], let g be a
recursive function such that, for all e, x,

ϕg(e,x) =
⋃
s

ϕsg(e,x) where ϕ0
g(e,x) = σ0 · e · x and ϕs+1

g(e,x) = τe,ϕs
g(e,x)

.
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Now, each Me ∈ C fails to Ex-learn every ϕg(e,x), x ∈ N. Furthermore, there is
a two-sided classifier for each of the classes {ϕg(e,x) | x ∈ N}. The theorem now
follows from Proposition 22.

Case and Fulk [4] showed that every Ex-learner can be infinitely extended.
Furthermore, for the subclass of learners learning a dense set of functions, an ef-
fective procedure is implicitly given for turning any such learner into an infinitely
more successful one.

Theorem 24 (Case and Fulk [4]). We can infinitely Ex-improve every learn-
er. Furthermore, we can uniformly infinitely Ex-improve all learners M where
Ex(M) is dense.

As an open question, Case and Fulk [4] asked whether there is another effective
procedure for the complement, that is, for learners that are not dense.

The next theorem answers this question in the negative by showing that there
is no computable function turning any given (index for an) Ex-learner which is
not successful on a dense set into an (index for a) strictly more successful learner
– not even by a single additional function.

Theorem 25. For every recursive function h there is a learner Me such that
[Ex(Me)] �= [R] and Ex(Mh(e)) is not a strict superset of Ex(Me).

Proof. It suffices to show that for every recursive h, there is an index e with
[Ex(Me)] �= [R] and either Ex(Mh(e)) �⊇ Ex(Me) or Ex(Mh(e)) \ Ex(Me) con-
tains at most one function. (As if, for some recursive function h′, for every e,
Mh′(e) is such that Ex(Mh′(e)) exceeds Ex(Me) by at least one function, then
Ex(Mh′(h′(e))) would exceed Ex(Me) by at least two functions).

Suppose, by way of contradiction, that there is a recursive function h such
that, for all e with [Ex(Me)] �= [R], Ex(Mh(e)) contains Ex(Me) and exceeds it
by at least two functions.

We define a recursive function g implicitly by inductively defining, for any
e ∈ N, a (possibly finite) �-increasing sequence of sequences (σei )i∈N and a
recursive function g by

σe0 = Λ;

∀i [σei+1 is the first σ " σei found such that Mh(e)(σ)↓ �= Mh(e)(σ
e
i )↓];

ϕg(e) =
⋃
i∈N

σei .

We let k be a recursive function such that, for all e, τ , k(e, τ) is the maximum
i such that σei is defined within |τ | steps. By Kleene’s recursion theorem, there
is a program e such that, for all τ ,

Me(τ) =

⎧⎪⎨⎪⎩
g(e), if ∃i [τ � σei ];

pad(Mh(e)(τ), k(e, τ)), if ∃i [σei ∪ τ is not single-valued];

↑, otherwise.
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Now if Me does not learn a dense set of functions, then Ex(Mh(e)) must exceed
Ex(Me) by at least two more functions.

Case 1: ϕg(e) is total.
Then Me Ex-learns only ϕg(e); thus, Mh(e) Ex-learns ϕg(e) by supposition. How-
ever, by construction of σei and g(e), Mh(e) on ϕg(e) makes infinitely many mind
changes, a contradiction.

Case 2: σei is defined only for finitely many i.
Let i be the maximum such that σei is defined. Thus, Me is undefined on any
extension of σei , and, hence, does not learn a dense set. Suppose f ∈ R does not
extend σei . For all j large enough, we now have M(f [j]) = pad(Mh(e)(f [j]), i).
Thus, for large enough j,M(f [j]) is semantically equivalent toMh(e)(f [j]). Thus,
any function that is not an extension of σei , is Ex-learned by Mh(e) iff it is
Ex-learned by Me. Thus, as Mh(e) never changes its mind beyond σei , on any
extension of σei , it can Ex-learn at most one more function than Me, a contra-
diction.

As an immediate corollary, we get that we cannot constructively find initial
segments where a given learner does not learn any extension.

Corollary 26. There is no function g ∈ P such that, for all e with Ex(Me) not
dense, we have that g(e) is a finite sequence with g(e) /∈ [Ex(Me)].

Case and Fulk [4] ask whether there is any partitioning of all learners into two
(or at least finitely many) sets such that, for each of the sets, all learners from
that set can be uniformly extended. From Theorem 25 we know that this par-
titioning cannot be according to whether the set of learned functions is dense.
The following theorem answers the open problem by giving a different split of
all possible learners into two different classes.

Theorem 27. Let C be the set of all total learners M such that M changes its
mind on a dense set of sequences. Then we can uniformly infinitely Ex-improve
all learners from C and from R \ C.

Proof. It follows from Lemma 23, that we can uniformly infinitely Ex-improve
learners from C. We now consider the case of extending learners from R \ C.
For any given e and t, let τe,t denote the length-lexicographically first sequence
found such that Me does not change its mind on the first t extensions of τe,t.
For any sequence σ and any b we let g(σ, b) denote an index for σb∞. Let h ∈ R
be such that, for all e and σ,

Mh(e)(σ) =

{
g(τe,|σ|, b), if there is b with σ � τe,|σ|b∞;

Me(σ), otherwise.

For all e with Me ∈ R\C, we have that the sequence τe,0, τe,1, . . . converges to a
τe such that Me does not make any mind changes on any extension of τe. Now,
Mh(e) learns Ex(Me) ∪ {τe · b∞ | b ∈ N}. Note that Me can Ex-learn at most
one function extending τe. The theorem follows.
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As one can effectively convert any partial learner to a total learner with the same
(or more) learning capacity, the above result also applies for partial learners.

For Fin-learning, extending learners is much easier: any learner that learns
anything at all can be infinitely extended.

Theorem 28. Let I be one of Exm or Conf . There is a function h such that, for
all e with I(Me) �= ∅, I(Mh(e)) infinitely extends I(Me). Here Mh(e) is confident,
if Me is confident.

Similarly for reliable learning, one can always extend a learner infinitely.

Theorem 29. There is a recursive function h such that, for e with Me reliable,
Mh(e) is reliable and Ex(Mh(e)) infinitely extends Ex(Me).
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Abstract. Partial learning is a criterion where the learner infinitely of-
ten outputs one correct conjecture while every other hypothesis is issued
only finitely often. This paper addresses two variants of partial learning
in the setting of inductive inference of functions: first, confident partial
learning requires that the learner also on those functions which it does
not learn, singles out exactly one hypothesis which is output infinitely of-
ten; second, essentially class consistent partial learning is partial learning
with the additional constraint that on the functions to be learnt, almost
all hypotheses issued are consistent with all the data seen so far. The
results of the present work are that confident partial learning is more
general than explanatory learning, incomparable with behaviourally cor-
rect learning and closed under union; essentially class consistent partial
learning is more general than behaviourally correct learning and incom-
parable with confident partial learning. Furthermore, it is investigated
which oracles permit to learn all recursive functions under these crite-
ria: for confident partial learning, some non-high oracles are omniscient;
for essentially class consistent partial learning, all PA-complete and all
oracles of hyperimmune Turing degree are omniscient.

1 Introduction

Gold [6] initiated the study of inductive inference, which investigates various
forms of learning recursive functions and r.e. sets in the limit. Gold originally con-
sidered learners which syntactically converge to the correct conjecture;
Osherson, Stob and Weinstein [14] generalised learning to partial learning, where
a recursive learner which receives piecewise information about the graph of an
unknown recursive function, presented in the natural ordering of the input val-
ues. At each stage, the learner is required to output a conjecture based on a
pre-assigned hypothesis space - usually taken to be a fixed acceptable number-
ing of all partial-recursive functions - and is judged to have successfully learnt
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a target function if it outputs exactly one correct identification of the function
infinitely often and outputs any other conjecture only finitely often.

On one hand, many natural examples of classes of recursive functions fail
to be identifiable in the limit by any recursive learner, even in the broadest
sense of semantic convergence [1]; this deficiency has spurred various alternative
approaches to learnability in the inductive inference literature. Feldman [4], for
example, showed that a decidable rewriting system (drs) is always learnable
from positive information sequences in a certain restricted sense. On the other
hand, Osherson, Stob and Weinstein [14] discovered that the whole class REC
of recursive functions is partially learnable and partial learnability is much more
general than even behaviourally correct learnability. Subsequently, researchers
thought that this is too general and studied what happens when partial learning
is combined with more restrictive constraints, most notably consistency which
was introduced by Bārzdiņš [1]. Indeed, consistent partial learners can easily be
shown to fail the class of all recursive functions. Wiehagen and Zeugmann [17]
and later Grieser [7] and Jain and Stephan [10] studied consistent learning and
partial consistent learning. Other constraints of partial learning were neglected,
mostly as the corresponding notions coincided with partial learning itself.

The present work wants to fill this gap and starts with carrying over the notion
of partial confident learning which was introduced in a language learning setting
by Gao, Stephan, Wu and Yamamoto [5]. Confidence in partial learning enforces
that the learner must issue exactly one hypothesis infinitely often on the text
for any total function. In the case of language learning, the notion turned out
to be restrictive [5]: even the class of all cofinite sets is not confidently partially
learnable.

On the other hand, confident partial learning has some regularity properties.
In the here investigated case of function learning, one can show that the union
of confidently partially learnable classes is confidently partially learnable (this is
parallel to the corresponding result for confidently explanatory learning of classes
of functions); furthermore, this notion is more general than Gold’s original notion
of explanatory learning [3, 6] and incomparable to the more general notion of
behaviourally correct learning [1].

Consistency, whilst a fairly stringent learning criterion, may be quite a de-
sirable quality of learners, especially when the inductive inference paradigm is
viewed as a model for scientific discovery. It is conceivable that a scientific theory
with any epitemic value must be developed in accordance with empirical data,
and, while allowing for a certain margin of error due to experimental inaccura-
cies, should possess a set of potential falsifiers that determine the consistency
or non-consistency of its fundamental assumptions under the conditions of a
controlled experiment [12]. Briefly, the falsificationist methodological rule ex-
pounded by Popper [15] states that a scientific theory is to be rejected if it is
inconsistent with some basic statement unanimously accepted by the scientific
community. In view of this benchmark by which science progresses, one may
argue that consistency with empirical data is an essential characteristic of the
hypotheses issued by scientists modelled as recursive learners.
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Jain and Stephan [10] showed that the class REC of all recursive functions
can be consistently partially learnt relative to an oracle A if and only if A has
hyperimmune degree. In the present paper, we show that by weakening this
learning constraint to essential consistency, under which a recursive learner is
only required to be consistent on cofinitely many segments of a text input, REC
can be partially inferred relative to any PA-complete oracle. Thus, by the result
of Jockusch and Soare [11] that there are hyperimmune-free PA-complete sets,
one can conclude that there is a strictly larger family of oracles relative to which
REC is essentially class consistently partially learnable. The main result for this
notion is that it is still more general than behaviourally correct learning; this is
a surpising result as usually the generalisations of behaviourally correct learning
are either obtained by varying the concept of semantic convergence (for example,
by augmenting it with errors) or by taking a notion which is already learning
the full class REC. Further results on essentially class consistent learning in the
present work are that this notion is neither closed under union nor comparable
to confident partial learning.

2 Notation

The notation and terminology from recursion theory adopted in this paper fol-
lows the book of Rogers [16] in the main. Background on inductive inference
can be found in [9]. N denotes the set of natural numbers. Let ϕ0, ϕ1, ϕ2, . . .
denote a fixed acceptable numbering of all partial-recursive functions. Given
a set S, S denotes the complement of S, and S∗ denotes the set of all finite
sequences in S. Let W0,W1,W2, . . . be a universal numbering of all r.e. sets,
where We is the domain of ϕe. 〈x, y〉 denotes Cantor’s pairing function, given by
〈x, y〉 = 1

2 (x+ y)(x+ y+ 1) + y. We,s is an approximation to We; without loss of
generality,We,s ⊆ {0, 1, . . . , s}∩We,s+1 and the set {〈e, x, s〉 : x ∈ We,s} is primi-
tive recursive. ϕe(x) ↑means that ϕe(x) remains undefined; ϕe,s(x) ↓means that
ϕe(x) is defined, and that the computation of ϕe(x) halts within s steps. Turing
reducibility is denoted by ≤T ; A ≤T B holds if A can be computed via a ma-
chine which knows B, that is, for any given x, it gives information on whether
or not x belongs to B. A ≡T B means that A ≤T B and B ≤T A both hold, and
{A : A ≡T B} is called the Turing degree ofB. The class of all recursive functions
is denoted by REC; the class of all {0, 1}-valued recursive functions is denoted
by REC0,1. For any two partial-recursive functions f and g, f =∗ g denotes that
for cofinitely many x, f(x) ↓= g(x) ↓. The symbol K denotes the diagonal halt-
ing problem. The jump of a set A is denoted by A′ and denotes the relativised
halting problem A′ = {e : ϕAe (e) ↓}. For any two sets A and B, A ⊕ B = {2x :
x ∈ A} ∪ {2y + 1 : y ∈ B}. Analogously, A⊕ B ⊕ C = {3x : x ∈ A} ∪ {3y + 1 :
y ∈ B} ∪ {3z + 2 : z ∈ C}.

For any σ, τ ∈ (N∪{#})∗, σ � τ if and only if σ = τ or τ is an extension of σ,
σ ≺ τ if and only if σ is a proper prefix of τ , and σ(n) denotes the element in the
nth position of σ, starting from n = 0. Given a number a and some fixed n ≥ 1,
denote by an the finite sequence a . . . a, where a occurs n times. a0 denotes the
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empty string. |σ| is the length of σ. The concatenation of two strings σ and τ
shall be denoted by στ and occasionally by σ ◦ τ .

Jockusch and Soare [11], as well as Hanf [8], established that the class of

degrees of members of a given
∏0

1 class coincides with the class of degrees of
complete extensions of some finitely axiomatizable first-order theory; a set which
falls within the latter class is called PA-complete. In this paper, we adopt the
following equivalent definition of PA-completeness.

Definition 1. A set A is PA-complete if and only if, given any partial-recursive
and {0, 1}-valued function ψ, one can compute relative to A a total extension Ψ
of ψ. A set A is low if and only if its jump is Turing equivalent to the halting
problem: A′ ≡T K. For any m, a set A is m-generic if for every Σ0

m set W ⊆
{0, 1}∗ there is an n such that either A(0)◦A(1)◦ . . .◦A(n) ∈ W or no extension
of A(0) ◦A(1) ◦ . . .◦A(n) belongs to W . gA denotes that g is computed using A.

3 Learnability

Let C be a class of recursive functions. Throughout this paper, the mode of data
presentation is that of a canonical text, by which is meant an infinite sequence
whose ith term is 〈i, f(i)〉, where f is some total function. Formally, the canonical
text Tf for some f in C is the map Tf : N→ N such that Tf(n) = f(n) for all n.
Tf [n] denotes the string Tf (0) ◦ Tf(1) ◦ . . . ◦ Tf(n). The main learning criteria
studied in this paper are partial learning, explanatory learning and behaviourally
correct learning. The learning success criteria are defined below with respect to
learning from canonical texts and M is supposed to be recursive.

i. Osherson, Stob and Weinstein [14] defined that M partially (Part) learns C
if, for each f in C, there is exactly one index e such that M(Tf [k]) = e for
infinitely many k; this index e also satisfies f = ϕe.

ii. Gold [6] defined that M explanatorily (Ex) learns C if, for each f in C, there
is a number n for which f = ϕM(Tf [n]) and, for any j ≥ n, M(Tf [j]) =
M(Tf [n]).

iii. Bārzdiņš [1] defined that M behaviourally correctly (BC) learns C if, for each
f in C, there is a number n for which f = ϕM(Tf [j]) whenever j ≥ n.

The next two definitions impose additional constraints on the learner.

Definition 2. i. [5] A recursive learner M is said to confidently partially learn
C if it partially learns C from canonical text and outputs on every infinite
sequence exactly one index infinitely often.

ii. A recursive learnerM is said to essentially class consistently partially learn C
if it partially learns C from canonical text and, for each f in C, ϕM(Tf [n])(m) ↓
= f(m) holds whenever m ≤ n for cofinitely many n.

Blum and Blum [3] introduced the notion of a locking sequence for explanatory
learning, whose existence is a necessary criterion for a learner to successfully
identify the recursive function generating the text seen. With a slight modifica-
tion, one can adapt this concept to the partial learning model.
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Definition 3. Let M be a recursive learner and f be a recursive function par-
tially learnt by M . Then there is a finite sequence σ = f(0) ◦ f(1) ◦ . . . ◦ f(n)
such that

– ϕM(σ) = f ;
– For all k > n, there is a l > k such that M(f(0)◦f(1)◦ . . .◦f(k)◦ . . .◦f(l)) =
M(σ).

This σ shall be called a locking sequence for f .

4 Confident Partial Learning

The first learning constraint proposed here as a means of sharpening partial
learnability is that of confidence. Osherson, Stob and Weinstein [14] introduced
confidence for explanatory and other learning notions by defining that a confident
learner provides on each function a hypothesis with respect to the given learning
criterion and this hypothesis has to be correct on all functions in the class to
be learnt. It is known that confidence is a real restriction for finite, explanatory
and behaviourally correct learning compared to the non-confident versions of the
respective learning criteria. The following result shows that confidence is also
restrictive for partial learning; there is, in fact, a class which is behaviourally
correctly learnable but not confidently partially learnable.

Theorem 4. There is a behaviourally correctly learnable class of recursive func-
tions which is not confidently partially learnable.

Proof. Consider the class C = {f : f is recursive and {0, 1}-valued ∧ ∃e[|W e| <
∞ ∧ f(e + 1) = 1 ∧ ∀x ≤ e[f(x) = 0] ∧ f =∗ ϕe]}. A behaviourally correct
learner M outputs a default index 0 until it witnesses the first number e such
that f(x) = 0 for all x ≤ e and f(e + 1) = 1; subsequently, on the input
σ = 0e ◦ 1 ◦ f(e+ 2) ◦ . . . ◦ f(e+ k), it conjectures an index i with ϕi(x) = σ(x)
if x < |σ|, and ϕi(x) = ϕe(x) otherwise.

Assume by way of contradiction that one may define a recursive confident
partial learner N of the class C. It shall be shown that this implies the existence
of a K′-recursive procedure for deciding whether d ∈ {e : We is cofinite} for any
given d, contradicting the known fact that the latter set is Σ0

3 -complete. First,
let g be a recursive function for which ϕg(d) is defined in stages as follows:

– Set ϕg(d),0(x) ↑ for all x. Initialise the markers a0, a1, a2, . . . by setting
ai,0 = 〈i, 0〉+ d+ 1 for i ∈ N.

– At stage t+ 1, consider the markers a0,t, a1,t, a2,t, . . . , at,t with
ai,t = 〈i, r〉 + d + 1, and perform the following: if neither ϕg(d),t nor ϕi,t
is defined on the input 〈i, j〉 + d + 1 for j ∈ {0, 1, . . . , t + 1} − {r}, set
ϕg(d)(〈i, j〉+d+1) = 0; if ϕi,t(〈i, r〉+d+1) is defined but ϕg(d)(〈i, r〉+d+1)
is not defined, then set ϕg(d)(〈i, r〉 + d+ 1) = 1− ϕi,t(〈i, r〉+ d+ 1).
Furthermore, update ai,t+1 = 〈i, t + 1〉 + d + 1 if and only if r ≤ t and
|{0, 1, . . . , r} −Wd,t| < i.
Let ϕg(d),t+1(x) = ϕg(d),t(x) for all x with ϕg(d),t(x) ↓.
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It shall be shown that the partial-recursive function ϕg(d) as defined above pos-
sesses the following properties:

1. If Wd is cofinite, then there is an i0 for which the markers ai,t move infinitely
often if and only if i ≥ i0, so that Wg(d) is also cofinite.

2. If Wd is coinfinite, then the markers ai,t move only finitely often, and there
is no total recursive function extending ϕg(d).

Item 1. follows because ifWd is cofinite, and |W d| = k, then for all i > k and each
r, there is a t large enough so that |{0, 1, . . . , r}−Wd,t| < i. This means that for
all i > k, the markers ai,t move infinitely often. Moreover, this implies thatWg(d)

is cofinite, for each stage ensures that ϕg(d) is defined on all inputs 〈i, j〉+ d+ 1
for which j < r, and since ai,t is shifted to 〈i, r〉+d+1 for arbitrarily large values
of r for all i > k, ϕg(d) eventually becomes defined on all inputs 〈i, j〉 + d + 1
for i > k and j ∈ N. For i ≤ k, suppose that the markers a0, a1, . . . , ak settle
down permanently on the values 〈0, r0〉+ d+ 1, 〈1, r1〉+ d+ 1, . . . , 〈k, rk〉+ d+ 1
respectively; by the algorithm, while ϕg(d) might remain undefined on some of
these inputs, ϕg(d) is, however, defined for all 〈i, j〉+d+1 with i ≤ k and j > ri.
Thus Wg(d) is indeed cofinite.

On the other hand, if Wd is coinfinite, then for each fixed i there are r, t
sufficiently large so that |{0, 1, . . . , r} −Wd,t| ≥ i. At stage t + 1, each marker
ai = 〈i, r〉 + d + 1 is updated to a new value 〈i, t + 1〉 + d + 1 with t + 1 > r
if |{0, 1, . . . , r} −Wd,t| < i; for this reason, there will eventually be a stage s at
which |{0, 1, . . . , u}−Wd,s| ≥ i, when ai,s = 〈i, u〉+d+1, and the inequality would
continue to hold at all subsequent stages, in turn implying that the value of ai
will be permanently fixed as this value. Furthermore, if ϕi is a total function, then
there will be a stage s′ at which ϕi,s′ (〈i, u〉+d+ 1) is defined, and the algorithm
would secure that ϕg(d)(〈i, u〉+d+1) differs from the value of ϕi,s′ (〈i, u〉+d+1).
Therefore there cannot be a total recursive function extending ϕg(d).

Now let A be a PA-complete set which is low, that is, every partial-recursive
{0, 1}-valued function may be extended to an A-recursive function, and, in addi-
tion, A′′ ≡T K′. Jockusch and Soare [11] give a construction of such a set A. Fur-
thermore, let ϕAf(d) be a uniformly A-recursive extension of the partial-recursive

function ϕg(d) such that ϕAf(d) is {0, 1}-valued. There is a further recursive func-

tion h for which WA
h(d,e) = {n : N outputs e at least n times on the text 0g(d)

◦ 1 ◦ ϕAf(d)(g(d) + 2) ◦ ϕAf(d)(g(d) + 3) ◦ . . .}. Owing to the confidence of N ,

one can determine by means of the oracle A′′ the unique e such that WA
h(d,e) is

infinite.
IfWd is cofinite, then, as was shown above, ϕg(d) is also cofinite, and so ϕAf(d) is

a total recursive extension of ϕg(d), that is, ϕg(d) =∗ ϕAf(d). ThereforeN learns the

recursive function generating the text 0g(d)◦1◦ϕAf(d)(g(d)+2)◦ϕAf(d)(g(d)+3)◦. . .,
and consequently ϕe(x) = ϕAf(d)(x) for all x ≥ g(d) + 2.

However, if Wd is coinfinite, it follows from the construction of ϕg(d) that
there is no total recursive function extending ϕg(d), giving that ϕe �= ϕAf(d), or
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more specifically, there is an x ≥ g(d) + 2 such that either ϕe(x) ↑ or ϕe(x) ↓�=
ϕAf(d)(x) ↓.

Hence Wd is cofinite if and only if for all x ≥ g(d)+2, ϕe(x) ↓= ϕAf(d)(x) ↓. As

this condition may be checked using the oracle A′′, and A′′ is Turing equivalent
to K′, it may be concluded that {d : Wd is cofinite} ≡T K′, which is the desired
contradiction. Therefore the class C cannot be confidently partially learnt.

The following theorem formulates a criterion that may appear at first sight to
be less stringent than confident partial learnability, but is in fact equivalent
to it. The proof illustrates a padding technique, dependent on the underlying
hypothesis space of the learner, that is often applied throughout this work to
construct confident partial learners.

Theorem 5. A class C of recursive functions is confidently partially learnable
if and only if there is a recursive learner M such that

– M outputs on each text exactly one index infinitely often;
– if T is the canonical text for a recursive function f in C and d is the index

output by M infinitely often on T , then there is an index e of f with e ≤ d.

Proof. Suppose that there is a recursive learner M of C which satisfies the
learning criteria laid out in the statement of the theorem. Let pad(e, d) be a
two-place recursive function such that ϕpad(e,d) = ϕe and pad(e, d) �= pad(e′, d′)
if (e, d) �= (e′, d′) for all numbers e, d, e′, d′. One may define a learner N which
confidently partially learns C as follows: on the input text T = f(0) ◦ f(1) ◦
. . . ◦ f(n) ◦ . . ., N outputs pad(e, d) at least n times if N has output d many
indices of the form pad(e′, d′) with e′ < e among its first n hypotheses and either
ϕe(x) ↓= f(x) for all x < n or M has output e at least n times.

For the verification, assume that e is the least index such that either M
outputs e infinitely often or f = ϕe. Consider e′ < e and the least de′ such
that ϕe′(x) differs from f(x) for some x < de′ and M does not output e′ de′
times. Then N will also at most de′ times output an index of the form pad(e′, d′).
Furthermore, let d be the number of times an index of the form pad(e′, d′) with
e′ < e∧d′ ∈ N is output by N . Then N will output pad(e, d) infinitely often and
that is the only index output infinitely often by N when processing f .

For the converse direction, any given confident partial learner of C clearly
satisfies the conditions on M given in the statement of this theorem.

Definition 6. A class is Ex1-learnable iff there is a learner M which converges
on the text of a function f in this class to an index e such that, for all but at
most one x, ϕe(x)↓= f(x).

Theorem 7. Every Ex1-learnable class is confidently partially learnable.

Proof. Assume that M is an Ex1-learner for a class S, where, without loss of
generality, M(σ ◦ τ) ≥ M(σ) for all σ, τ . Furthermore let patch be a recursive
function with ϕpatch(e,x,y)(x) = y and ϕpatch(e,x,y)(z) = ϕe(z) for all z �= x;
without loss of generality, patch is a one-one function. Now one constructs a
new confident partial learner N as follows:
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– N outputs patch(e, x, f(x)) at least n times if M has at least n times output
the index e and ϕe(x) does not output f(x) within n steps while ϕe(z) is
defined and equal to f(z) for all z < x;

– N outputs patch(e, 0, f(0)) at least n times if M has at least n times output
the index e and ϕe(z) is defined and equal to f(z) for all z < n;

– N outputs patch(0, 0, 0) at least n times if M makes on f at least n mind
changes.

One can see the following: If M diverges on f then N outputs the hypothesis
patch(0, 0, 0) infinitely often and all other hypotheses only finitely often. If M
converges to a correct index e on f then N outputs patch(e, 0, f(0)) infinitely
often and all other indices only finitely often. If M converges on f to an index
e which differs on at least one value from f by either being undefined or be-
ing wrong then N outputs patch(e, x, f(x)) infinitely often where x is the least
number where ϕe is either undefined or different from f . This shows that N is
a confident partial learner for the given class.

Remark 8. The preceding result is a generalisation of the statement that ev-
ery explanatorily learnable class is confidently learnable. Indeed, note that the
class C = {f : f(0) is an index for f which is correct at all but at most one
inputs} is Ex1-learnable and behaviourally correctly learnable but not explana-
torily learnable. One could easily generalise the result such that one shows that
every Exa-learnable class where the learner converges to an index with at most a
errors is confidently partially learnable where a ∈ {0, 1, 2, . . .} is a fixed constant.
The more general criterion of Ex∗-learnable classes is not covered by confident
partial learning as the class from Theorem 4 shows.

It is quite a curious feature of confident learning under various success criteria
that it is closed under finite unions. In particular, it is known that the union of
finitely many confidently vacillatorily learnable classes is also confidently vacilla-
torily learnable; the analogous result for confident behaviourally correct learning
also holds true. The next theorem states that this property of confident learning
even extends to partial learnability. That is to say, if C1 and C2 are confidently
partially learnable classes of recursive functions, then C1 ∪ C2 is also confidently
partially learnable.

Theorem 9. Confident partial learning is closed under finite unions; that is, if
C1 and C2 are confidently partially learnable classes, then C1 ∪ C2 is confidently
partially learnable.

Proof. Let M and N be confident partial learners of the classes C1 and C2
respectively. Now using Theorem 5, one can consturct a new learner R which
outputs 〈i, j〉 at least n times iff M outputs i and N outputs j at least n times.
It is directly obvious that on every text of a function, the learner R outputs
exactly one index 〈i, j〉 infinitely often; this index is an upper bound of an index
e of the function to be learnt whenever i ≥ e ∨ j ≥ e. Hence R is a confident
partial learner (in the sense of Theorem 5) of C1 ∪ C2.
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Corollary 10. There is a confidently partially learnable class which is not be-
haviourally correctly learnble.

Proof. Blum and Blum’s Non-Union Theorem [3] provides classes C1 and C2
which are explanatory learnable while their union is not behaviourally correctly
learnable. By Theorem 7 the two classes are confidently partially learnable and
by Theorem 9 their union C1 ∪ C2 is confidently partially learnable as well.

Theorem 4 demonstrates that the class of all total recursive functions is not
confidently partially learnable. Nonetheless, there is a less restrictive notion of
confident partial learning, somewhat analogous to a blend of behaviourally cor-
rect learning and partial learning, that permits the class of all recursive functions
to be learnt. This notion of learning is spelt out in the following theorem.

Theorem 11. There is a recursive learner M such that on every function f
there is exactly one partial-recursive function Ψ for which M outputs an index
infinitely often, and f = Ψ whenever f is recursive.

Proof. The learner M works in stages n which are executed in parallel (as some
simulations might provide additional indices which have to be taken into account
on a stage):M first searches for the first en found such that for allm < n it holds
that en ≥ em and ϕen(x) ↓= f(x) for all x < n. From then onwards, the learner
searches all d ≤ en with ∀x < n [ϕd(x) ↓= f(x)]; for each such d it outputs the
index d itself and a further index h(d, n, f(n)) where ϕh(d,n,f(n)) = ϕc for the
first c ≤ d found such that ∀x ≤ n [ϕc(x) ↓= f(x)]; if such a c does not exist
then ϕh(d,n,f(n)) is everywhere undefined.

In the case that e is the least index of f , it follows thatM outputs only finitely
often an index of the type d or h(d, n, f(n)) with d < e. M will infnitely often
output e. Furthermore, for almost all n, each index of the form h(d, n, f(n))
output by M satisfies that d ≥ e and that therefore ϕh(d,n,f(n)) = ϕc for some
ϕc extending f(0) ◦ f(1) ◦ . . . ◦ f(n). Also, the indices of the form d with d �= e
issued at stage n satisfy that ϕd coincides with f strictly below n. Therefore,
the learner issues for each partial function different from f only finitely often an
index.

In the case that f is not recursive, then the sequence e0, e1, . . . is increasing
and unbounded. For each em there is a maximal n > m such that M outputs an
index h(d, n, f(n)) with d ≤ em. Then ϕh(d,n,f(n)) is the everywhere undefined
function, as there is no ϕc with c ≤ n such that ϕc extends f(0)◦f(1)◦ . . .◦f(n).
Hence M outputs infinitely often an index of the everywhere undefined function.
Furthermore, there is no other partial function for which M infinitely often
outputs an index: whenever M outputs an index for it at stage n then the
corresponding partial function is defined and equal to f(x) at every input x < n;
as no partial-recursive function coincides with f , M only finitely often outputs
an index of that partial function. This completes the proof.

The remainder of the present section is devoted to the study of confident partial
learning relative to oracles. As a first step towards characterising the Turing
degrees of oracles relative to which all recursive functions can be confidently
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partially learnt, one may observe that the proof of Theorem 4 produces the
following corollary.

Theorem 12. There is a behaviourally correctly learnable class C ⊆ REC0,1

such that C is confidently partially learnable relative to B only if B′′ ≥T K′′.

The next lemma, in whose proof the padding property of the default hypothesis
space {ϕ0, ϕ1, ϕ2, . . .} is pivotal, will be applied in the subsequent theorem.

Lemma 13. For every A′′-recursive function FA′′
, there is an A-recursive func-

tion fA such that for all numbers d, if FA′′
(d) = e, then there is a unique number

e′ for which there are infinitely many t with fA(d, t) = e′ and ϕe = ϕe′ .

Proof. Given that FA′′ ≤T A
′′, there exists a sequence of A-recursive approx-

imations {fi,j}i,j∈N such that for all numbers e, ∃i∀i′ ≥ i∃j∀j′ ≥ j[fi,j(e) =

FA′′
(e)] holds. One may define an A-recursive function G which satisfies G(e, t)

= pad(e′, 〈i, s〉) for for some i, s and infinitely many t iff FA′′
(e) = e′.

First, let ae,0, ae,1, ae,2, . . . be an A-recursive sequence in which pad(d, i) oc-
curs at least n times if and only if for all i′ ∈ {i, i + 1, . . . , i + n}, there are n
numbers j′ such that fi′,j′(e) = d. This condition ensures that pad(d, i) occurs in

ae,0, ae,1, ae,2, . . . infinitely often for some i if and only if d = FA′′
(e); however,

the i is not unique and there might be i′ > i such that also pad(d, i′) also occurs
infinitely often in the sequence.

Second, let a′e,0, a
′
e,1, a

′
e,2, . . . be a further A′-recursive sequence in which

pad(d, 〈i, s〉) occurs n times if and only if there is a stage t ≥ s such that
there are n numbers u ≤ s with ae,u = pad(d, i) and s is the least number with
pad(d, i′) /∈ {ae,s, ae,s+1, . . . , ae,t} for all i′ < i.

Subsequently, one may produce the two-valued A-recursive function G by
setting G(e, t) = a′e,t for all such sequences a′e,0, a

′
e,1, a

′
e,2, . . . constructed for each

e. By the above construction, the A-recursive function G satisfies the condition
that for all e, there is exactly one index e′ with G(e, t) = e′ for infinitely many
t and this e′ is of the form pad(FA′′

(e), 〈i, s〉) for some i, s. This establishes the
lemma.

Having established a necessary condition on the computational power of con-
fident learners that can learn REC, one may hope for an analogous sufficient
condition. By means of the above lemma, the theorem below proposes several
oracle conditions that, when taken together, enable REC to be confidently par-
tially learnt.

Theorem 14. If B is low, PA-complete and A ≥T B, A
′′ ≥T K′′, then there is

an A-recursive confident partial learner for REC.

Proof. The class of all recursive {0, 1}-valued functions, REC0,1, is explanato-
rily learnable by a learner M which outputs B-recursive indices. First, one may
construct a numbering {ϕBh(0), ϕBh(1), . . .} of {0, 1}-valued B-recursive functions

such that REC0,1 ⊂ {ϕBh(0), ϕBh(1), . . .}, and for all e and each input x,

ϕBh(e)(x) =

{
0 if ϕe(x) ↓= 0;
1 if ϕe(x) ↓> 0;
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as B is PA-complete, there is a B-recursive function g such that each partial B-
recursive function ϕBh(e) may be extended to a total {0, 1}-valued function ϕBg(e).

Without loss of generality, assume that g(dk) ≥ dk. There is an explanatory
learner which conjectures on the input f(0) ◦ f(1) ◦ . . . ◦ f(n) the index g(e) for
the least e with ϕBg(e)(x) = f(x) for all x ≤ n; let M be an equivalent B-recursive

confident partial learner and let g(d0), g(d1), g(d2), . . . be the hypotheses issued
by M when it is learning some f ∈ REC0,1. Define the B′′′-recursive function

FB′′′
by

FB′′′
(g(dk)) =

{
e if e is the minimal index with ϕe = ϕBg(dk);

0 if there is no index e with ϕe = ϕBg(dk).

Furthermore, since B′′′ ≤T A′′ by assumption, it follows that FB′′′
= FA′′

.
One can now define a confident partial A-recursive learner N : by Lemma 13,
there is an A-recursive function fA(d, t) such fA(d, t) outputs a unique in-
dex e′ with ϕe′ = ϕFA′′ (d) for infinitely many t. N is then set to output

pad(fA(g(dk), t), g(dk)) if and only if M outputs g(dk) for the t-th time.
One can further generalise this result to construct a learner P that confidently

partially learnsREC relative to A: This learner P would translate a text of f into
a text of the graph of f and then simulate the learner for REC0,1 and retranslate
every hypothesis for a graph into a hypothesis for the function itself.

The condition that the double jump of the oracle be Turing above K′′ is not, how-
ever, sufficient for confidently partially learning REC, as the following theorem
demonstrates.

Theorem 15. There is a set A with A′′ ≥T K′′ such that A is 2-generic and
REC0,1 is not confidently partially learnable relative to A.

5 Essentially Consistent Partial Learning

The present section considers a weakened form of consistency in partial learning,
namely, essential class consistency. Under this learning requirement, the learner
is permitted to be inconsistent on finitely many segments of the canonical text for
some recursive function in the class to be learnt. Before developing this notion,
we shall first review the more restrictive type of consistent learning, and attempt
to compare it with confident partial learning.

Definition 16 (Bārzdiņš [2]). A recursive learner M is said to be consistent
on a text T if and only if for all n ∈ N, M(T [n]) ↓ and ϕM(T [n])(x) ↓= T (x)
whenever x ≤ n. A learner is said to be consistent on a function f just if it
is consistent on the canonical text for f . A learner is said to class consistently
partially learn C if and only if it partially learns C and is consistent on each f
in C.

Whilst class consistency may appear to be a fairly restrictive learning constraint,
the following theorem implies that it cannot in general guarantee that a class of
recursive functions is confidently partially learnable.
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Theorem 17. There is a class of recursive functions which is class consistently
partially learnable but not confidently partially learnable.

Proof. The following example essentially modifies the construction of the pro-
gramme g(d) in Theorem 4 so that a subclass of C may be class consistently
partially learnable. For each number d, let g(d) be a programme for a partial-
recursive function ϕg(d) which is defined as follows.

– Set ϕg(d),s(0) = d for all s.
– Initialize the markers a0, a1, a2, . . . by setting ai,0 = 〈i, 0〉+ 1 for i ∈ N.
– At stage s+ 1, consider each marker ai,s = 〈i, r〉+ 1 such that ai,s ≤ s+ 1,

and execute the following instructions in succession. Set ϕg(d),s+1(x) = 0 for
all x = 〈i, j〉+1 ≤ s+1 such that j �= r if ϕg(d),s is not already defined on x.
Next, check whether ϕi,s+1(ai,s) ↓∈ {0, 1} holds; if so, let ϕg(d),s+1(ai,s) =
1−ϕi,s+1(ai,s) if ϕg(d) is not already defined on the input ai,s. Now, for each i
such that 〈i,m〉+1 ≤ s+1 for somem, let u = max({m : 〈i,m〉+1 ≤ s+1}).
Associate the marker ai,s+1 with 〈i, u+ 1〉+ 1 if at least one of the following
two conditions applies; otherwise, let ai,s+1 = ai,s.
1. There is a j < i with 〈j,m〉+1 ≤ s+1 for somem such that aj,s+1 �= aj,s.
2. If ai,s = 〈i, r〉+ 1, then the inequality |{0, 1, . . . , r} −Wd,s+1| < i holds.

Let C = {f : Wd is cofinite ∧ f is a total recursive extension of ϕg(d)}. One
may prove that C is class consistently partially learnable, and an argument ex-
actly analogous to that in Theorem 4 shows that it is not confidently partially
learnable.

Essentially class-consistent learners can finitely often be inconsistent with the
input text; in partial learning, this consistency requirement is still a proper
restriction. The following result establishes a connection between the learning
success criteria of semantic convergence in the limit and essentially class con-
sistent partial convergence; it suggests that there may be ample examples of
essentially class consistently partially learnable classes of recursive functions.

Theorem 18. Every behaviourally correctly learnable class of recursive func-
tions is essentially class consistently partially learnable.

Remark 19. Jain and Stephan [10, Theorem 15] constructed a consistently par-
tially learnable class of recursive functions which is not behaviourally correctly
learnable. It follows that the converse of the preceding theorem does not hold in
general. Furthermore, they showed [10, Theorem 19] that there are classes which
are explanatorily learnable with at most one mind change as well as class con-
sistently explanatorily learnable by a partial-recursive learner, but nonetheless
cannot be class consistently partially learnt on canonical text. Consequently,
Theorem 18 is no longer true if one replaces essential class consistency with
general class consistency in the conclusion, and so this watered-down variant of
consistency is indeed a more general learning notion than ordinary consistency.

To ascertain that essential class consistency constitutes a real learning constraint,
one can show that the class of all {0, 1}-valued recursive functions is not partially
learnable under this criterion.
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Theorem 20. The class REC0,1 is not essentially class consistently partially
learnable.

One can take the above result one step further and construct an example of a
confidently partially learnable class of recursive functions which is not essentially
class consistently partially learnable.

Theorem 21. There is a class of recursive functions which is confidently par-
tially learnable but not essentially class consistently partially learnable.

Proof. Let M0,M1,M2, . . . be a recursive enumeration of all partial-recursive
learners.

For each Me define a function ϕg(e) by starting with σe,0 = e and taking
σe,k+1 to be the first extension of σe,k found such that Me(σe,k+1) outputs an
index d with ϕd(x) ↓�= σe,k+1(x) for some x < |σe,k+1|. ϕg(e)(x) takes as value
σe,k(x) for the first k found where this is defined.

Furthermore, for each e, k where σe,k is defined, let ϕh(e,k) be the partial
recursive function ψ extending σe,k such that for all x ≥ |σe,k|, ψ(x) is the least a
such that either Me(ψ(0)ψ(1) . . . ψ(x−1)a) > x orMe(ψ(0)ψ(1) . . . ψ(x−1)a) =
Me(ψ(0)ψ(1) . . . ψ(x− 1)b) for some b < a.

Let C1 contain all those ϕg(e) which are total and C2 contain all ϕh(e,k) where
Me is total and ϕg(e) = σe,k, that is, the construction got stuck at stage k. The
class C1 is obviously explanatorily learnable; for the class C2, an explanatory
learner identifies first the e and then simulates the construction of ϕg(e) and
updates the hypothesis always to h(e, k) for the largest k such that σe,k has
already been found. Hence both classes are explanatorily learnable, hence their
union C is confidently partially learnable.

However C is not essentially class consistently partially learnable, as it is now
shown. So consider a total learner Me. If ϕg(e) is total then Me is inconsistent
on this function infinitely often and so Me does not essentially class consistently
partially learn C. So consider the k with ϕg(e) = σe,k. Note that the inductive
definition of ϕh(e,k) results in a total function. IfMe outputs on ϕh(e,k) each index
only finitely often, then Me does not partially learn ϕh(e,k). If Me outputs an
index d infinitely often, then for all sufficiently long τa � ϕh(e,k) withMe(τa) = d
it holds that there is a b < a with M(τb) = d as well. By assumption, σe,k+1

does not exist and can be neither τa nor τb. Hence τa is not extended by ϕd and
so Me outputs an inconsistent index for almost all times where it conjectures d;
again Me does not essentially class consistently partially learn C.

As a consequence of the preceding theorem, one has the corollary that essentially
class consistent partial learning is not closed under finite unions.

Corollary 22. Essentially class consistent learning is not closed under finite
unions; that is, there are essentially class consistently partially learnable classes
C1, C2, such that C1 ∪ C2 is not essentially class consistently partially learnable.

A complete characterisation of the classes of recursive functions which are consis-
tently partially learnable relative to an oracle A, classified according to whether
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A has hyperimmune or hyperimmune-free Turing degree, was obtained in [10].
The theorem below asserts that a recursive learner with access to a PA-complete
oracle may essentially class consistently partially learn REC. Since the class of
hyperimmune-free, PA-complete degrees is nonempty, as demonstrated in [11],
one may conclude that for partial learning, essential class consistency is indeed a
weaker criterion than general consistency, even when learning with oracles. The
proof utilises the fact that there is a one-one numbering of all recursive functions
plus all functions of finite domain.

Theorem 23. If A is a PA-complete set, then REC is essentially class consis-
tently partially learnable using A as an oracle.

Proof. Let ψ0, ψ1, ψ2, . . . be a one-one numbering of the recursive functions
plus the functions with finite domain. For example, Kummer [13] provides such
a numbering. Let g be a recursive function such that ψe = ϕg(e) for all e. There
is a recursive sequence (e0, x0, y0), (e1, x1, y1), . . . of pairwise distinct triples such
that ψe(x) ↓= y iff the triple (e, x, y) appears in this sequence.

On input σ = f(0)◦f(1)◦ . . .◦f(n), the learner M searches for the first s ≥ n
such that for all t ≤ s either et �= es or xt > n or yt = f(xt); that is, s is the first
stage where ψes — to the extent it can be judged from the triples enumerated
until stage s — is consistent with σ. Then M determines using the PA-complete
oracle an d ≤ es such that either ψd extends σ or there is no c ≤ es such that
ψc extends σ; note that in that second case the oracle can provide “any false d”
below e. The learner conjectures then g(d) for the index d determined this way.

If now e is the unique ψ-index of the function f to be learnt, then for all
sufficiently long inputs σ, the above es satisfies es ≥ e as for each d < e either
there are only finitely many triples having d in the first component with all of
them appearing before n or there is a t ≤ n with et = d ∧ xt ≤ n ∧ yt �= f(xt).
Hence, the s selected satisfies es ≥ e and therefore the d provided satisfies that
ψd extends σ. Furthermore, there are infinitely many n with en = e and for
those the choice is s = n and, if n is sufficiently large, d = e. Hence the learner
outputs infinitely often g(e) and almost always an index g(d) with ϕg(d) being
consistent with the input seen so far.

6 Conclusion

In conclusion, confident partial learning appears to be a fairly robust learning
notion that is neither too restrictive nor too powerful. Essentially class con-
sistent partial learning may be a more balanced criterion compared to global
consistency, for there is quite a rich collection of essentially class consistently
partially learnable classes of recursive functions, which includes all classes that
are behaviourally correctly learnable. Though the results on these two notions
are quite complete, there is still potential for further work on characterising the
omniscient degrees of inference for confident partial learning and essentially class
consistent partial learning.
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Abstract. We introduce and study a model for learning in the limit by
finite automata from positive data and negative counterexamples. The
focus is on learning classes of languages with a membership problem
computable by finite automata (so-called automatic classes). We show
that, within the framework of our model, finite automata (automatic
learners) can learn all automatic classes when memory of a learner is
restricted by the size of the longest datum seen so far. We also study
capabilities of automatic learners in our model with other restrictions on
the memory and how the choice of negative counterexamples (arbitrary,
or least, or the ones whose size is bounded by the longest positive datum
seen so far) can impact automatic learnability.

1 Introduction

In the paper [JLS10], the authors introduced an “automatic” variant of the well-
known Gold’s model for learning in the limit from positive data: the family of
target languages is computable by a finite automaton (automatic family), and
a learner is a finite automaton itself (automatic learning). More specifically, a
family of target languages is defined by a regular index set, and the membership
problem in these languages is regular in the sense that one finite automaton
recognizes a combination (so called “convolution”) of an index and a word if and
only if the word is in the language defined by the index. They also considered
three different natural types of limits on the size of the (long-term) memory
available to the learner before outputting the next conjecture: (a) memory is
bounded by the size of the longest positive input datum seen so far (plus a
constant); (b) memory is bounded by the size of the current hypothesis (plus a
constant); (c) the learner can store in the memory the last hypothesis only.

The authors of [JLS10] established that automatic learners are much weaker
than unrestricted recursive learners — even when learning automatic classes.
In particular, not every automatic class is automatically learnable. Moreover,
they showed the following modification of D. Angluin’s result from [Ang80]:

� Supported in part by NUS grant number C-252-000-087-001.

N.H. Bshouty et al. (Eds.): ALT 2012, LNAI 7568, pp. 66–80, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Automatic Learning with Negative Counterexamples 67

An automatic class is learnable by a recursive learner iff it satisfies Angluin’s
tell-tale condition. The authors of [JLS10] also obtained a number of interesting
results showing differences between automatic learners on automatic classes with
different limitations on the memory mentioned above, as well as impact on the
learners of the requirement of consistency — when every conjecture must be
consistent with the input seen so far.

Since automatic learners are not able to learn many automatic classes from
positive data alone, it is natural to ask: under which conditions all automatic
classes of languages are automatically learnable? In [JK08], the authors intro-
duced and motivated a notion of learning languages in the limit from full positive
data and a finite number of negative counterexamples provided to the learner
whenever it’s hypothesis contains data that is not a part of the target lan-
guage. This approach to learning in the limit arguably is more natural than
learning just from positive examples — for instance, children learning languages
get corrected when using wrong words [HPTS84] (yet, as is probably the case
in natural learning processes, in this model of learning, the learner does not
get all negative examples). In a sense, this model combines two different and
popular approaches to learning in the limit — learning languages from positive
data and learning concepts from subset queries and counterexamples ([Ang88]),
whereas none of these two approaches by itself adequately represents the process
of language acquisition. In [JK08], the authors considered three different types
of negative counterexamples provided to the learner: (a) arbitrary, (b) least, and
(c) bounded by the size of the largest positive datum seen so far (the latter
type is motivated by possible computational limitations on the “teacher” pro-
viding counterexamples). In this paper, we adapt the notion of learning with
negative counterexamples to automatic learning of automatic classes. Our ma-
jor result (Theorem 8) is that such automatic learners, even when required to
be iterative (that is, whose memory stores just the last hypothesis), can learn
every automatic class! On the other hand, interestingly, we have not been able
to make such learners consistent with data seen so far. Yet, Theorem 9 shows
that consistency can be achieved if the learners always receive the least negative
counterexamples. On the other hand, as it follows from a result in [JLS10], there
are automatic classes that cannot be learned even by non-automatic learners if
the size of counterexamples is bounded by the size of the longest positive input
datum seen so far (Theorem 11). Still, with this bound on the size of coun-
terexamples, automatic learners with memory limited by the size of the longest
positive input datum seen so far can learn automatic classes consisting only of
infinite languages (Theorem 10).

We also show that some automatic classes cannot be learned automatically
using bounded negative counterexamples with memory limited by the size of the
current hypothesis (and, thus, when only the last hypothesis can be stored in
the memory) — see Theorem 13, but can be learned automatically with memory
limited by size of the longest positive datum seen so far even without negative
counterexamples.
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Theorem 14 shows the advantage of negative counterexamples, even for auto-
matic iterative learners, compared to not having negative counterexamples, even
for unrestricted recursive learners. Our last result (Theorem 15) shows that not
every automatic class can be learned automatically and monotonically — that
is, when every next conjecture includes the positive data covered by the previous
one — even if the least negative counterexamples are provided.

A number of related problems remain open. In particular, we do not know
whether every automatic family can be consistently learnt using arbitrary neg-
ative counterexamples. We also do not know whether iterative automatic learn-
ers or automatic learners with memory bounded by hypothesis size, receiving
bounded negative counterexamples, can learn all automatic classes having only
infinite languages. Some relations between various memory bounds on automatic
learners using bounded negative counterexamples are also open.

2 Preliminaries

The set of natural numbers is denoted by N . Let Σ denote a finite alphabet.
The set of all strings over the alphabet Σ is denoted by Σ∗. The empty string is
denoted by ε. A string of length n is treated as a function from {0, 1, . . . , n−1} to
Σ. Thus, x = x(0)x(1), . . . , x(n− 1), where x is a string of length n. The length
of a string x is denoted by |x|. We say that a string w is length-lexicographically
smaller than string w′ (written w <ll w

′) iff |w| < |w′| or |w| = |w′| and w is
lexicographically below w′ (where we assume some canonical ordering of elements
of Σ). We let w ≤ll w

′ denote that either w = w′ or w <ll w
′. We let succS(w)

denote the least w′ such that w <ll w
′, and w′ ∈ S (if there is no such string,

then we let succS(w) to be undefined).
We let ∅,⊆ and ⊂ respectively denote emptyset, subset and proper subset.

We let card(S) denote the cardinality of set S. When considering sets of natural
numbers, we let max(S),min(S) respectively denote the maximum and minimum
of a set S, where max(∅) = 0 and min(∅) = ∞. When we are considering sets
of strings S, we let max(S) and min(S) be the length-lexicographically largest
and smallest string in S respectively, where if S = ∅, then we take max(S) = #
(where # is a special pause symbol, see below).

Convolution of two strings x = x(0)x(1) . . . x(n−1) and y = y(0)y(1) . . . y(m−
1), denoted conv(x, y), is defined as follows. Let x′, y′ be strings such that x′(i) =
x(i) for i < n, x′(i) = # for n ≤ i < max({m,n}), y′(i) = y(i) for i < m, and
y′(i) = # for m ≤ i < max({m,n}), where # �∈ Σ∗ is a special padding
symbol. Thus, x′, y′ are obtained from x, y by padding the smaller string with
#’s. Then, conv(x, y) = z, where |z| = max({m,n}) and z(i) = (x′(i), y′(i)), for
i < max({m,n}). Note that z is a string over the alphabet (Σ∪{#})×(Σ∪{#}).
Similarly, one can define convolution of more than two strings. Intuitively, giving
a convolution of two strings to a machine means giving two strings in parallel,
with the shorter string being padded with #s.

We say that an n-ary relation R is automatic, if {conv(x1, x2, . . . , xn) :
(x1, x2, . . . , xn) ∈ R} is regular. Similarly, an n-ary function f is automatic
if {conv(x1, x2, . . . , xn, y) : f(x1, x2, . . . , xn) = y} is regular.



Automatic Learning with Negative Counterexamples 69

A family of languages, (Lα)α∈I is said to be an automatic family if the index
set I is regular and the set {conv(α, x) : α ∈ I, x ∈ Lα} is regular. Here the sets
Lα are sets of strings over some finite alphabet. We often identify an automatic
family (Lα)α∈I with the class L = {Lα : α ∈ I}, where the indexing is implicit.
We say that the automatic family (Lα)α∈I is 1–1 (or the indexing is 1–1), if for
all α, β ∈ I, Lα = Lβ implies α = β.

It can be shown that any family, relation or function that is first order defin-
able using other automatic relations or functions is itself automatic.

Lemma 1 ([BG00], [KN95]). Any relation that is first-order definable from
existing automatic relations is automatic.

We often implicitly use the above fact in our proofs. The present work consid-
ers learnability of automatic families in the presence of counterexamples. For
this, let us consider a definition of a learner. This definition is given in a form
slightly different from the one traditional in inductive inference. When there are
no memory restrictions, this definition turns out to be essentially the same as
the traditional definition. We use a different form to make it easier to consider
automatic learners.

A text T is a mapping fromN to Σ∗∪{#}. Here # �∈ Σ∗ denotes pauses in the
presentation of data. We let T [n] denote the initial sequence of T of length n, that
is, T [n] = T (0)T (1) . . . T (n− 1). The content of a text T , denoted content(T ), is
{T (i) : i ∈ N}− {#}. Similarly, content(T [n]) = {T (i) : i < n} − {#}. We let σ
range over initial sequences of texts. We let Λ denote the empty sequence. We let
SEQ(S) denote the set of all finite sequences σ such that content(σ) ⊆ S. We
let σ'τ denote the concatenation of two sequences σ and τ . By abusing notation,
for x ∈ Σ∗∪{#}, we use σ'x to denote the concatenation of σ with the sequence
containing just one element x.

Definition 2. Suppose Σ, Δ are finite alphabets used for languages and mem-
ory of learners respectively, where # �∈ Σ∗. Suppose J is a regular index set
(over some finite alphabet) for the hypothesis space used by the learner. Below ?
is a special symbol not in J , which stands for “repeat the previous conjecture.”

(a) A learner is a mapping from Δ∗ × (Σ∗ ∪ {#}) to Δ∗ × (J ∪ {?}). A learner
has an initial memory mem0 ∈ Δ∗, and initial hypothesis hyp0 ∈ J ∪ {?}.

(b) Suppose a learner M with initial memory mem0 and initial hypothesis hyp0
is given. Below, σ is a sequence over Σ∗∪{#} and x ∈ Σ∗∪{#}. We extend
the definition of M to sequences by inductively defining
M(Λ) = (mem0, hyp0);
M(σ'x) = M(mem, x), where M(σ) = (mem, hyp), for some hyp ∈ J ∪{?}.
Additionally, for |σ| ≥ 1, we inductively define M(mem, σ'x) = M(mem′, x),
where M(mem, σ) = (mem′, hyp′), for some hyp′ ∈ J ∪ {?}.

(c) We say that M converges on a text T to a hypothesis β (written: M(T )↓hyp =
β) iff there exists a t such that,
(i) M(T [t]) ∈ Δ∗ × {β}, and
(ii) for all t′ ≥ t, M(T [t]) ∈ Δ∗ × {β, ?}.
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Intuitively, M(σ) = (mem, hyp) means that the memory and hypothesis of the
learner M after having seen the sequence σ are mem and hyp respectively. We
can think of a learner as receiving a text T for the language L, one element at
a time. At each input, the learner updates its previous memory, and outputs a
new conjecture (hypothesis), where ? denotes repeating the previous hypothesis.
If the sequence of hypotheses converges to a grammar for L, then we say that
the learner TxtEx-learns the language L from the text T (here Ex denotes
“explains”, and Txt denotes learning from text). Now we define learnability
formally.

Definition 3. (Based on Gold [Gol67])
Suppose L = {Lα : α ∈ I} is a target class, and H = {Hβ : β ∈ J} is a

hypothesis space, where both L and H are automatic families of languages.

(a) We say that M TxtEx-learns the language L (using hypothesis space H)
from a text T iff M(T )↓hyp = β such that Hβ = L.

(b) We say that M TxtEx-learns a language L (using hypothesis space H) iff
M TxtEx-learns L from all texts for the language L (using hypothesis space
H).

(c) We say that M TxtEx-learns L (using hypothesis space H) iff M TxtEx-
learns all languages in L (using hypothesis space H).

(d) TxtEx = {L : (∃M)[M TxtEx-learns L using some hypothesis space]}.

We drop the reference to “using hypothesis space H”, when the hypothesis space
is clear from the context. A hypothesis space H is said to be class preserving
[LZ93] for learning a class L if L = H. A hypothesis space H is said to be class
comprising [LZ93] for learning a class L if L ⊆ H.

Definition 4. Suppose a learner M using an automatic family H = {Hβ : β ∈
J} as the hypothesis space is given.

(a) [JLS10] A learner M is called an automatic learner iff its graph is auto-
matic. That is, {conv(mem, x,mem′, hyp′) : M(mem, x) = (mem′, hyp′)} is
regular.

(b) [Wie76] M is said to be iterative iff, for all finite sequences σ, M(σ) =
(mem, hyp) implies mem = hyp.
M is said to be word-size memory bounded iff there exists a constant c
such that for all finite sequences σ, M(σ) = (mem, hyp) implies |mem| ≤
max({|w| : w ∈ content(σ)}) + c.
M is said to be hypothesis-size memory bounded iff there exists a constant
c such that for all finite sequences σ, M(σ) = (mem, hyp) implies |mem| ≤
|hyp|+ c.
(Note that if a learner is iterative then its memory is hypothesis-size bounded,
but hypothesis-size bound on the memory does not imply that a learner is
iterative.)

(c) [Bār74] M is said to be consistent iff, for all finite sequences σ, if M(σ) =
(mem, hyp) with hyp �=?, then content(σ) ⊆ Hhyp.
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(d) [Wie90] M is said to be monotonic iff for all texts T , for all t < t′, if
M(T [t]) = (mem, hyp),M(T [t′]) = (mem′, hyp′), hyp �=?, hyp′ �=?, then
content(T ) ∩Hhyp ⊆ content(T ) ∩Hhyp′ .

Note that the above constraints are required even on texts for languages outside
the class L. Note that when a learner gets positive data only, then a learner’s
conjecture may contain data that is not in the target language. In this situation,
the learner may not be able to know that it went “beyond” the target language,
as it does not receive any negative data. To address this issue, Jain and Kin-
ber [JK08] considered the notion of learning with negative counterexamples. In
this, for every hypothesis, a learner receives as input a negative counterexample,
if there exists any. Thus, intuitively, the learner gets two input texts: one for
positive data as above, and another for negative counterexamples.

Definition 5 (Based on [JK08]). Suppose Σ, Δ are finite alphabets used for
languages and memory of learners respectively, where # �∈ Σ∗. Suppose J is a
regular index set for the hypothesis space used by the learner.

(a) A learner learning using negative examples is a mapping from Δ∗ × (Σ∗ ∪
{#})× (Σ∗ ∪ {#}) to Δ∗ × (J ∪ {?}).
A learner has an initial memory mem0 ∈ Δ∗, and initial hypothesis hyp0 ∈
J ∪ {?}.

(b) Suppose a learner M with initial memory mem0 and initial hypothesis hyp0
is given. We extend the definition of M to sequences as follows. Below, σ, τ
are sequences over Σ∗ ∪ {#} with |σ| = |τ |, and x, y ∈ Σ∗ ∪ {#}.
M(Λ,Λ) = (mem0, hyp0);

M(σ'x, τ'y) = M(mem, x, y), where M(σ, τ) = (mem, hyp), for some hyp ∈
J ∪ {?}.
Additionally, for |σ| = |τ | ≥ 1, we inductively define M(mem, σ'x, τ'y) =
M(mem′, x, y), where M(mem, σ, τ) = (mem′, hyp′), for some hyp′ ∈ J ∪
{?}.

(c) We say that M converges on text T with negative counterexample text T ′

to a hypothesis β (written: M(T, T ′)↓hyp = β) iff there exists a t such that

(i) M(T [t], T ′[t]) ∈ Δ∗ × {β}, and
(ii) for all t′ ≥ t, M(T [t], T ′[t]) ∈ Δ∗ × {β, ?}.

Intuitively, M(σ, τ) = (mem, hyp) means that the memory and the hypothesis of
the learner M after having seen the sequence σ and the negative counterexample
sequence τ is mem and hyp, respectively. Below, NC in the criteria names
denotes learning from negative counterexample. B and L in BNC,LNC, denote
“bounded” and “least”.

Definition 6 (Based on [JK08]). Suppose L = {Lα : α ∈ I} is a target class,
and H = {Hβ : β ∈ J} is a hypothesis space, where both L and H are automatic
families of languages over an alphabet Σ. Below, for ease of notation, we take
H? = ∅.
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(a) (i) We say that T ′ is a counterexample text for M on an input text T for a
language L iff for all n, where M(T [n], T ′[n]) = (mem, hyp),

if Hhyp ⊆ L, then T ′(n) = #, and

if Hhyp �⊆ L, then T ′(n) ∈ Hhyp − L.

(ii) We say that T ′ is a least-counterexample text for M on an input text T
for a language L iff for all n, where M(T [n], T ′[n]) = (mem, hyp),

if Hhyp ⊆ L, then T ′(n) = #, and

if Hhyp �⊆ L, then T ′(n) = min(Hhyp − L).

(iii) We say that T ′ is a bounded counterexample text for M on an input text
T for a language L iff for all n, where M(T [n], T ′[n]) = (mem, hyp),

if Hhyp ∩ {x ∈ Σ∗ : x ≤ max(content(T [n]))} ⊆ L, then T ′(n) = #, and

if Hhyp ∩ {x ∈ Σ∗ : x ≤ max(content(T [n]))} �⊆ L, then T ′(n) ∈ Hhyp ∩
{x ∈ Σ∗ : x ≤ max(content(T [n]))} − L.

(That is, the size of a counterexample is bounded by the size of the
longest positive datum seen so far; consequently, if the size of the least
counterexample to the current conjecture exceeds this bound, no coun-
terexample is provided.)

(b) We say that M NCEx-learns the language L (using hypothesis space H) iff
for all texts T for L, for all counterexample texts T ′ for M on input text T ,
M(T, T ′)↓hyp = β such that Hβ = L.

(c) We say that M NCEx-learns L (using hypothesis space H) if it NCEx-
learns all languages in L (using hypothesis space H).

(d) NCEx = {L : (∃M)[M NCEx-learns L using some hypothesis space ]}.
One can similarly define learnability criteria LNCEx and BNCEx for learn-
ing from least-counterexample or bounded counterexamples.

Furthermore, automatic, consistent, monotonic learning and various memory
restricted learning criteria can be similarly defined for learning from counterex-
amples. Here for word-size memory constraint, we bound the memory by the
largest word seen in either the text (for positive data) or the counterexample
text. Also, for consistency we require that the learner is consistent with positive
examples as well as negative counterexamples, that is, for any text T and corre-
sponding negative counterexample text T ′, if M(T [t], T ′[t]) = (mem, hyp) with
hyp �=?, then content(T [t]) ⊆ Hhyp and content(T ′[t]) ∩Hhyp = ∅.

We use “Auto” in the name of the learning criteria to denote that we
require the learners to be automatic. For example, AutoTxtEx denotes TxtEx-
learning by an automatic learner. Similarly, we use Cons and Mon in the name
of the learning criteria to denote that the learners are consistent and monotonic,
respectively. Similarly, we use Word and Hyp in the name of the learning cri-
teria to denote that the memory of the learners is appropriately bounded. For
It memory restriction, as is common in the literature, we replace the term “Ex”
in the name of the criterion by “It”.

For example, AutoWordNCEx denotes NCEx learnability by a learner
which is automatic and word memory size bounded. AutoMonNCIt denotes
NCEx learnability by a learner which is automatic, monotonic and iterative.
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3 Results

We begin with an easily provable useful technical proposition.

Proposition 7 Suppose L = {Lα : α ∈ I} is an automatic family, where the
indexing is 1–1. Then, there exists a constant c such that the following hold.

(a) [JOPS11] For all α ∈ I such that Lα is finite, |α| ≤ c + max({|x| : x ∈
Lα}).

(b) For all α ∈ I, u ∈ Σ∗, let ProbExt(α, u) = {β : Lα ⊂ Lβ ⊆ Lα∪{x : x ≤ll

u}}. Then, for all α ∈ I, u ∈ Σ∗ and β ∈ ProbExt(α, u), |β| ≤ max({|α|, |u|})+
c.

(c) For all α ∈ I, for all u ∈ Σ∗, there exists a β ∈ I such that |β| ≤ |u|+ c
and Lβ ∩ {x : |x| ≤ |u|} = Lα ∩ {x : |x| ≤ |u|}.

Intuitively, part (a) of the above proposition says that the indices for finite sets
are not too big in an automatic family. Part (b) of the proposition says that if
Lα and Lβ differ only on strings ≤ll u, then the index for β is not much bigger
than max({|α|, |u|}). Part (c) of the above proposition says that for any index α
and string u, there exists a short β such that Lβ is consistent with Lα for strings
below u.

Our first major result shows that automatic NCEx-learners with word-size
memory limit can learn any automatic class.

Theorem 8. Let L = {Lα : α ∈ I} be an automatic family. Then,
(a) L ∈ AutoNCIt. The learner uses a class preserving hypothesis space.
(b) L ∈ AutoWordNCEx. The learner uses the hypothesis space (Hα)α∈I ,

where Hα = Lα.

Proof. Due to space restrictions, we only show part (a). Part (b) can be proven
in a way similar to Theorem 10.

Without loss of generality assume that the indexing (Lα)α∈I is 1–1 (other-
wise, we can ignore the non-minimal indices of I, which can be automatically
determined as (non) minimal indices can be expressed as a first order formula
using automatic relations (see Lemma 1)). Furthermore, assume that I is infinite
(otherwise, the theorem is trivial). Let c be as in Proposition 7 (for L).

Let i0 be a special symbol which we take to be length-lexicographically smaller
than all members of I. This is for ease of presentation of the proof.

Suppose L is the target language. The aim of the learner M is to find an
α such that Lα ⊆ L and L ⊆ Lα. The learner can check if Lα ⊆ L using the
counterexamples. However, the learner may not easily be able to check if L ⊆ Lα,
as it may have forgotten some past data. To overcome this problem is the main
aim of the construction.

The learner keeps memory of the form conv(α, u, β, b), where α ∈ I ∪ {i0},
β ∈ I, u ∈ Σ∗ ∪ {#}, and b ∈ {0, 1}. In case α = i0 in the memory, then we will
have b = 1 (that is, the memory will never be of the form conv(i0, u, β, 0)).

The hypothesis of the learner is directly linked to its memory: If, [b = 1
or [b = 0 and |β| ≤ max({|α|, |u|}) + c]], then Hconv(α,u,β,b) = Lβ; otherwise,
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Hconv(α,u,β,b) = Lα (note that the above implicitly gives the hypothesis space
used by the learner, which is class preserving as α = i0 implies b = 1).

Intuitively, α (when α �= i0) is the index for which the learner is currently
testing (or last tested) whether Lα = L (in case the learner finds Lα �= L, it
may continue to keep the same α for some time until it finds an appropriate
replacement for it). The α used by the learner will always have the property
that Lα ⊆ L. Thus the learner then needs to check if L ⊆ Lα. Though the
learner can check for any future elements seen in the input whether they belong
to Lα (this is kept track of by using the parameter b in the memory), the learner
may not be able to check whether the past data belonged to Lα, as it may
have forgotten them. For this purpose, learner keeps track of a parameter u
which length-lexicographically bounds any elements in the past which may be
in L − Lα (how the learner keeps track of u will be clearer later). The learner
uses the parameter β to search for any potential index such that Lα ⊂ Lβ ⊆ L.
If such a β exists, then the learner replaces α above by β, and continues the
process. In case such a β does not exist, then α would be the only possible index
for L. The learner uses Proposition 7(b) to bound the search for such β in case
the learner, since it has started testing for Lα, has not seen an element in L−Lα.

We now proceed formally. Let T be a text for the input language L and T ′

be a sequence of counterexamples. Suppose M(T [n], T ′[n]) = (memn, hypn),
where memn = conv(αn, un, βn, bn). We will always have hypn = memn. Thus,
the learner is iterative. The invariants maintained by the learner related to the
memory are as follows. For ease of notation below, we take Li0 = ∅. For all n:

(I1) αn ≤ll αn+1 ≤ll βn ≤ll βn+1.
(I2) Lαn ⊆ Lαn+1 ⊆ L.
(I3) For all α′ <ll βn such that α′ �= αn and α′ ∈ I, Lα′ �= L.
(I4) max(content(T [n])− Lαn) ≤ll un. Furthermore un ≤ll un+1.

Let m be the least number such that αm = αn.
(I5) bn = 0 iff αn �= i0 and {T (s) : m ≤ s < n} ⊆ Lαn .
(I6) If bn = 0, then un = um; otherwise un = max({um} ∪ {T (s) : m ≤ s <

n} − Lαn).
(I7) If m < n then, βn−1 = βn iff [bn−1 = 0 and |βn−1| > max({|αn|, |un|})+c].

We now specify how the learner computes αn, un, βn, bn. Initially, α0 = i0, β0
is the length-lexicographically least element of I, b0 = 1 and u0 is the length-
lexicographically least element of Σ∗. We now describe how the memory of the
learner is updated after receiving input T (n), T ′(n) (where the previous memory
is conv(αn, un, βn, bn)).

Let un+1 = un, if T (n) = # or [αn �= i0 and T (n) ∈ Lαn ]; otherwise, un+1 =
max({un, T (n)}). For defining, αn+1, βn+1, bn+1, consider the following cases.

Case 1: [bn = 1 or [bn = 0 and |βn| ≤ max({|αn|, |un|}) + c]].
In this case Hhypn = Lβn .

Case 1a: [αn = i0 or Lαn ⊂ Lβn ] and T ′(n) = #.
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In this case, Lβn ⊆ L and either αn = i0 or Lαn ⊂ Lβn . Thus, αn is not
a correct index for L (note that i0 �∈ I).
Let αn+1 = βn+1 = βn and bn+1 = 0.

Case 1b: [αn �= i0 and ¬[Lαn ⊂ Lβn ]] or T ′(n) �= #.
In this case, either αn = βn or Lβn �= L (note that (Lα)α∈I is 1–1).
Let αn+1 = αn, βn+1 = succI(βn).
Let bn+1 = 1, if bn = 1 or T (n) �∈ Lαn ; otherwise bn+1 = 0.

Case 2: Not Case 1.
In this case Hhypn = Lαn .
Let αn+1 = αn, βn+1 = βn.
Let bn+1 = 1, if bn = 1 or T (n) �∈ Lαn ; otherwise bn+1 = 0.

It is now easy to verify that the learner is automatic and word size memory
bounded. Definition of α0, β0, b0, u0 clearly maintain the invariants. We now show
that the construction maintains the invariants while defining αn+1, βn+1, un+1,
bn+1. Note that in Case 1a, αn �= βn = αn+1, which is the only case which
changes value of αn. (I1) is clearly maintained by both cases (βn+1 ≥ll βn in
both cases, and αn+1 is either αn or βn). (I2) is maintained as the only time
αn+1 �= αn is via Case 1a, where Lαn ⊆ Lβn ⊆ L holds. (I3) is maintained as
in Case 1a, Lβn ⊆ L and either αn = i0 or Lαn ⊂ Lβn ; in Case 1b, Lβn �= L or
βn = αn, and in Case 2 αn+1 = αn and βn+1 = βn. (I4), (I5) and (I6) are also
maintained by definition of un+1 and bn+1 in both cases. Note that in Case 1a,
Lαn ⊆ Lβn = Lαn+1. (I7) is trivially maintained by Case 1a; Case 1b and Case
2 also maintain (I7) as Case 1b makes βn+1 �= βn and Case 2 makes βn+1 = βn
(note the conditions for Cases 1 and 2).

Now, suppose L ∈ L. By invariants (I1) and (I3), αn ≤ll α
′, for α′ such that

Lα′ = L. It follows using (I1) that limn→∞ αn converges, to say α. Here, note
that α �= i0, as eventually by Case 1b, a βn would be chosen such that Lβn ⊆ L,
making αn+1 = βn via Case 1a. If Lα = L, then clearly by (I5), limn→∞ bn also
converges; If Lα �= L, then by (I1) and (I3), limn→∞ βn converges, (since βn is
then bounded by the index for L) and thus by (I7) limn→∞ bn converges. Thus,
in either case limn→∞ bn converges, to say b. If Lα �= L, then using (I1) and (I3),
we have that limn→∞ βn converges; if Lαn = L, then by (I5) limn→∞ bn = 0,
and thus by (I6) limn→∞ un converges, and thus by (I7) limn→∞ βn converges.
Hence, in both cases we have that limn→∞ βn converges, to say β. Thus, by
(I4), (I7) we have that limn→∞ un converges, to say u. Thus, the memory of
the learner converges to conv(α, u, β, b). By (I2) we have that Lα ⊆ L. By, (I7)
we have that |β| > max({|α|, |u|}) + c and b = 0. Thus, Hconv(α,u,β,b) = Lα.
Furthermore, using the invariants (I3), (I4) and Proposition 7(b), we have that
Lα = L.

Thus, M NCIt-learns L.

Hypotheses of the learner in the above theorem are not consistent with the data
seen so far. We can make the learner consistent if it receives least counterex-
amples whenever it’s hypothesis contains data that is not a part of the target
language.
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Theorem 9 (Frank Stephan, personal communication). Let L be an au-
tomatic class. Then, L ∈ AutoWordConsLNCEx as witnessed by a learner
using a class comprising hypothesis space.

Now we turn to automatic BNCEx-learning with word-size memory limit.

Theorem 10. Let L = {Lα : α ∈ I} be an automatic family which consists
only of infinite languages. Then, L ∈ AutoWordBNCEx. The learner uses
the hypothesis space (Hα)α∈I , where Hα = Lα.

Proof. Without loss of generality assume that the indexing (Lα)α∈I is 1–1 (oth-
erwise, we can ignore the non-minimal indices of I, which can be automatically
determined). Furthermore, assume that I is infinite (otherwise, the theorem is
trivial). Let c be as in Proposition 7 (for L).

For ease of presentation, the size of the memory of the learner is word size
bounded only for the case when the input language is in the class L. One can eas-
ily convert such a learner to always having word-size memory bound by remem-
bering the length-lexicographically largest word seen in the text/counterexample
text, and if the memory tries to exceed the appropriate bound (relevant constant
plus the size of the remembered largest word), then abandoning the learning
process.

The learner M has memory of the form: (α,w, u, β), where α, β ∈ I, w, u ∈
Σ∗ ∪ {#}. Let T be a text for the input language L and T ′ be a sequence
of counterexamples. Suppose M(T [n], T ′[n]) = (memn, hypn), where memn =
(αn, wn, un, βn).

Intuitively, αn is the index for which the learner is currently testing if Lαn = L.
The length-lexicographically largest element seen in the input T [n] is denoted
by wn. The length-lexicographically largest element seen in the text T before
the learner starts testing for αn is denoted by un.

If Lαn �⊆ L, L ∈ L and M conjectures Lαn infinitely often then the learner
will eventually get a counterexample for it as every language in L is infinite.
For the elements received after the learner starts testing for αn, the learner can
check if they belong to Lαn as the elements are received. However, the learner
may have forgotten the elements it had seen before it starts testing for Lαn (note
that all the forgotten elements would be ≤ll un, though we do not exactly know
which). For testing whether such elements are in L − Lαn , the learner checks
if there is some β ∈ I which satisfies: Lαn ⊂ Lβ ⊆ Lαn ∪ {x : x ≤ll un} and
Lβ ∩ {x : x ≤ll un} ⊆ L. Such β’s (satisfying Lαn ⊂ Lβ ⊆ Lαn ∪ {x : x ≤ll un})
are finite in number and can be determined using Proposition 7(b).

We proceed formally now. The invariants maintained by the learner related
to the memory are as follows. For all n:

(I1) wn = max(content(T [n])).
(I2) αn ≤ll αn+1.
(I3) For all α′ <ll αn with α′ ∈ I, Lα′ �= L, where content(T ′[n]) ∩ Lα′ �= ∅ or

there exists an x ≤ll wn, x ∈ L− Lα′ .

Let m be the least number such that αm = αn.
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(I4) un = max(content(T [m])).
(I5) If n = m, then βn = αn.
(I6) (i) content(T [n])− {x : x ≤ll un} ⊆ Lαn ,

(ii) for all β such that αn <ll β <ll βn, if Lαn ⊂ Lβ ⊆ Lαn ∪{x : x ≤ll un},
then Lβ �⊆ L, and

(iii) if m < n and |βn−1| ≤ max({|αn|, |un|}) + c, then βn−1 <ll βn.
(iv) if m < n and |βn−1| > max({|αn|, |un|}) + c, then βn−1 = βn.

The hypothesis of the learner is directly obtainable from memory as follows. If
|βn| ≤ max({|αn|, |un|}) + c, then hypn = βn; otherwise, hypn = αn. Thus, it is
enough to specify how the learner computes αn, wn, un, βn.

Initially, α0 = β0 =<ll-least element of I, w0 = u0 = #. We now describe
how memory of the learner is updated after receiving input T (n), T ′(n) (where
the previous memory is (αn, wn, un, βn)).

Case 1: T (n) �∈ Lαn ∪ {#} or T ′(n) ∈ Lαn or [T ′(n) = #, |βn| ≤
max({|αn|, |un|}) + c and Lαn ⊂ Lβn ⊆ Lαn ∪ {x : x ≤ll un}].
This case implies that Lαn �= L as either T (n) ∈ L−Lαn or T ′(n) ∈ Lαn−L
or [Lβn ∩ {x : x ≤ll un} ⊆ Lβn ∩ {x : x ≤ll wn} ⊆ L and Lβn ∩ {x : x ≤ll

un} �⊆ Lαn ]. Furthemore, note that either Lαn ∩ content(T ′[n + 1]) �= ∅, or
there exists a x ≤ll wn+1 such that x ∈ L− Lαn .
Let αn+1 = βn+1 = succI(αn). Let wn+1 = un+1 = max(content(T [n+ 1])).
Note that wn+1, un+1 can be computed using wn and T (n).

Case 2: Not Case 1 and |βn| ≤ max({|αn|, |un|}) + c
Note that in this case hypn = βn. Furthermore, either Lβn �⊆ L (when,
T ′(n) �= #) or ¬[Lαn ⊂ Lβn ⊆ Lαn ∪ {x : x ≤ll un}] (as Case 1 does not
hold).
Let αn+1 = αn, un+1 = un, wn+1 = max(content(T [n + 1])), βn+1 =
succI(βn).

Case 3: Not Case 1 and |βn| > max({|αn|, |un|}) + c
Note that in this case hypn = αn. Furthermore, T (n) ∈ Lαn and T ′(n) = #.
Let αn+1 = αn, βn+1 = βn, un+1 = un, and wn+1 = max(content(T [n+1])).

Clearly, the learner M is automatic.
The invariants (I1), (I2), (I4), (I5), (I6)(iii), (iv) are clearly maintained by

the construction. For (I3) note that Case 1 is the only case where αn+1 �= αn,
and in this case Lαn �= L. For (I6)(i), note that if T (n) is not in Lαn , then
by Case 1, αn+1 �= αn; thus, using (I4), (I6)(i) holds. For (I6)(ii), note that
in Case 1, βn+1 = αn+1, in Case 3 βn+1 = βn and in Case 2, Lβn �⊆ L or
¬[Lαn ⊂ Lβn ⊆ Lαn ∪ {x : x ≤ll un}]; thus, (I6)(ii) is maintained in all the
cases.

By (I5), (I6)(iii), (iv), we have that length of β is at most a constant more than
max({|αn|, |wn|}). Furthermore, by (I1), (I3) and Proposition 7(c), we have that
|αn| is bounded in length by a constant plus max(content(T [n])∪content(T ′[n])).
Thus, M is word-size memory bounded.

Now, for L = Lα′ , α′ ∈ I, by invariant (I3), αn ≤ll α
′. Thus, by (I2)

limn→∞ αn converges, to say α. Thus, by (I4), limn→∞ un converges, to say u.
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Furthermore, using the invariants (I5) and (I6)(iii), we have that, for all but
finitely many n, |βn| > max({|αn|, |un|}) + c. Thus, by (I3), (I6)(i), (I6)(ii), and
Proposition 7(b), we have that either, Lα �⊆ L or Lα = L. Furthermore, by
definition of hypn, for all but finitely many n, hypn = α. Thus, if Lα �⊆ L, then
by cardinality of L being infinite, we must have T ′(n) ∈ Lα (and thus Case 1
holding) for large enough n, a contradiction.

It follows that Lα = L. Thus, the learner M NCEx-learns L.

Yet a result from [JK08] can be used to show that some automatic classes cannot
be BNCEx-learned (even by a non-automatic learner).

Theorem 11. [JK08] Let L = {Σ∗}∪{Lx : x ∈ Σ∗}, where Lx = {y : y ≤ll x}.
Then, L is an automatic family and L �∈ BNCEx.

The following corollary shows that, for the unrestricted automatic learnability,
as well as automatic learnability with all types of memory restrictions, there are
automatic classes that are NCEx-learnable, but not BNCEx-learnable.

Corollary 12. (a) AutoNCIt−AutoBNCIt �= ∅.
(b) AutoHypNCEx−AutoHypBNCEx �= ∅.
(c) AutoWordNCEx−AutoWordBNCEx �= ∅.
(d) AutoNCEx−AutoBNCEx �= ∅.

Our next result shows that some automatic class, while not HypBNCEx-
learnable, can be automatically learned with word-size memory without negative
counterexamples.

Theorem 13. AutoWordTxtEx−HypBNCEx �= ∅.

Let Σ = {0}. Let L0 = {02n : n ≥ 0}.
Let L1i = {02n : n ≤ i} ∪ {02i+1}. Let L(2i,3j) = L1i ∪ {02j}.
Let L = {Lα : α ∈ I}, where I = {0, 1i, (2i, 3j) : i, j ∈ N}.
Then L witnesses Theorem 13. We omit the detailed proof.
The next theorem shows that automatic iterative learners using negative coun-

terexamples still can sometimes learn automatic classes that cannot be learned
using positive data alone.

Theorem 14. (AutoWordNCEx ∩ AutoWordBNCEx ∩ AutoNCIt ∩
AutoBNCIt)−TxtEx �= ∅.

Let Σ = {a}. Let Lε = a∗, and Lw = L0 − {w}, for w ∈ a+. Let L = {Lw : w ∈
a∗}. Then L witnesses Theorem 14. We omit the detailed proof.

Our last result shows that monotonic (even non-automatic) learners cannot
learn some automatic classes, even using least counterexamples.

Theorem 15. There exists an automatic class L = {Lα : α ∈ I} such that
L �∈MonLNCEx.
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Proof. Let Σ = {0}. Let L0 = 0∗, L1j = {0i : i ≤ j}, Lconv(1j ,2k) = {0i : i ≤
j} ∪ {0k}. Let I = {0, 1j, conv(1j, 2k) : j, k ∈ N}, and L = {Lα : α ∈ I}.

Clearly, L is an automatic family. Suppose, by way of contradiction, that
M is a monotonic learner which LNCEx-learns L. Consider the shortest σ
such that M(σ,#|σ|) is for an infinite language. Note that there exists such
a σ as M learns L0. Now consider a text T extending σ for L1j , where j =
max(content(σ) ∪

⋃
s<|σ| LM(σ[s],#s)). Let T ′ be the least-counterexample text

for M on the text T . Then M(T, T ′) must converge to a grammar g for L1j .
Thus, content(T ′) is finite. Let x ∈ LM(σ,#|σ|) − (content(T ) ∪ content(T ′)).
Let m be such that content(T ) = content(T [m]), content(T ′) = content(T ′[m]),
σ ⊆ T [m], and M(T [m], T ′[m]) = g. Then M is not monotonic on T [m]'x, where
counterexamples provided are least counterexamples.

4 Conclusions

In this paper we considered learning automatic families by automatic learners
which receive negative counterexamples. Various versions of memory restriction
and counterexamples were considered. Table 1 gives a summary of results re-
garding learning all classes of a particular type for various criteria.

Table 1. Summary of results on when all classes of particular type are learnable

Learning Criterion Aut. Classes of All Automatic Consistent Learning
Infinite Languages Classes for All Aut. Classes

Auto(Word,Hyp)NCEx yes yes open
AutoNCIt

Auto(Word)LNCEx yes yes yes

Auto(Word)BNCEx yes no no

AutoHypBNCEx open no no
AutoBNCIt

We showed that there is an automatic class which is in AutoWordBNCEx−
AutoHypBNCEx, though at this point we do not know if AutoWordBNCEx
properly contains AutoHypBNCEx. It is also open whether AutoBNCEx ⊆
AutoWordBNCEx. Note that the corresponding problems in AutoTxtEx
learning (without using negative counterexample) are also open [JLS10]. Re-
garding monotonic learning, we showed that there are automatic families which
cannot be LNCEx-learnt by any monotonic (even non-automatic) learners.

Acknowledgements. We thank the anonymous referees for several helpful
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pointing out Theorem 9, which strengthened an earlier version of this theorem.
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Abstract. This paper is concerned with the problem of supervised learn-
ing of deterministic finite state automata, in the technical sense of iden-
tification in the limit from complete data, by finding a minimal DFA
consistent with the data (regular inference).

We solve this problem by translating it in its entirety to a vertex
coloring problem. Essentially, such a problem consists of two types of
constraints that restrict the hypothesis space: inequality and equality
constraints.

Inequality constraints translate to the vertex coloring problem in a
very natural way. Equality constraints however greatly complicate the
translation to vertex coloring. In previous coloring-based translations,
these were therefore encoded either dynamically by modifying the ver-
tex coloring instance on-the-fly, or by encoding them as satisfiability
problems. We provide the first translation that encodes both types of
constraints together in a pure vertex coloring instance. This offers many
opportunities for applying insights from combinatorial optimization and
graph theory to regular inference. We immediately obtain new complex-
ity bounds, as well as a family of new learning algorithms which can be
used to obtain both exact hypotheses, as well as fast approximations.

1 Introduction

The regular inference problem consists of learning (finding) a smallest determin-
istic finite state automaton (DFA) that is consistent with a given set of labeled
strings, rejecting the negative strings and accepting the positive strings. The de-
cision version of finding a DFA with a given upper bound on its size (number of
states) was shown to be NP-complete in [3, 18], and an inapproximability result
was demonstrated in [24]. In spite of these hardness results, quite a few DFA
identification algorithms exist, see [11]. In particular, a recently proposed algo-
rithm based on a translation of the regular inference problem into satisfiability
(SAT) has shown promising results [16].

The translation in [16] is based on an earlier translation of regular inference
to graph coloring in [10]. Graph coloring is the problem of assigning a color to
every node in a given graph such that nodes with the same color do not share
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an edge. Determining whether there exists a coloring that uses at most k ≥ 3
colors is a well-known NP-complete problem, see, e.g., [13]. The main idea of
this translation into graph coloring is to use a distinct color for every state of
the learned DFA. The nodes in the graph coloring instance represent the labeled
strings and share an edge if one of them is positive and the other negative. The
graph coloring problem thus ensures that pairs of positive and negative examples
cannot obtain the same color, and therefore cannot end in the same state, making
the resulting DFA consistent. The size of this DFA is determined by the amount
of colors used in the graph coloring problem. Finding the minimum is done by
iterating over this amount.

The above mentioned reduction from [10], however, was not purely based
on graph coloring. In addition to the inequality constraints, denoting that two
vertices cannot be assigned the same color, so-called equality constraints are
needed to model regular inference. These constraints denote that two vertices
should be assigned the same color if two other vertices are assigned the same
color. Together, the equality and inequality constraints can efficiently encode
the regular inference problem. Unfortunately, however, it has remained unknown
how to encode such constraints in a graph coloring problem instance. In [10],
they were encoded dynamically by creating new graph coloring instances that
satisfied them on-the-fly. In [16], they were encoded directly into satisfiability
instead of in the intermediary graph coloring instance. In this paper, we develop
the first construction that encodes them directly into graph coloring.

In terms of complexity (size), our encoding of the equality constraints is com-
parable to the encoding to satisfiability described in [16]: they both require
O(|C|2 · |V |) additional clauses or vertices, where C is the set of colors and
V is the size of the data set (the APTA, see Section 2). The inequality con-
straints, however, are much easier to encode in graph coloring, requiring only
a single edge for every constraint compared to the O(|C|2) (or O(|C|) for some
that can be encoded more efficiently, see [16]) clauses that are needed for every
such constraint in a satisfiability instance. In addition, using our encoding we
can make use of sophisticated solvers for graph coloring, including techniques
for symmetry-breaking, many local-search based approaches, cutting-plane al-
gorithms, etc. see, e.g., [21].

2 Background and Notation

2.1 Regular Inference

A deterministic finite state automaton (DFA) is one of the basic and most com-
monly used finite state machines. Below, we provide a concise description of
DFAs, the reader is referred to [25] for a more elaborate overview. A DFA
A = 〈Q, T,Σ, q0, F 〉 is a directed graph consisting of a set of states Q (nodes)
and labeled transitions T (directed edges). The start state q0 ∈ Q is a specific
state of the DFA and any state can be an accepting state (final state) in F ⊆ Q.
The labels of transitions are all members of a given alphabet Σ. A DFA A can be
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used to generate or accept sequences of symbols (strings) using a process called
DFA computation. This process begins in q0, and iteratively activates (or fires)
an outgoing transition ti = 〈qi−1, qi, li〉 ∈ T with label li ∈ Σ from the source
state it is in, qi−1, moving the process to the target state qi pointed to by ti. A
computation q0t1q1t2q2 . . . tnqn is accepting if the state it ends in (its last state)
is an accepting state, i.e., qn ∈ F , otherwise it is rejecting. The labels of the
activated transitions form a string l1 . . . ln. A DFA accepts exactly those strings
formed by the labels of accepting computations, it rejects all others. A DFA is
deterministic, which means that for every state q and every label l there exists at
most one outgoing transition from q with label l. The set of all strings accepted
by a DFA A is called the language L(A) of A.

Given a pair of finite sets of positive example strings S+ and negative example
strings S−, called the input sample, the goal of regular inference (or DFA iden-
tification/learning) is to find a (non-unique) smallest DFA A that is consistent
with S = {S+, S−}, i.e., such that every string in S+ is accepted by A, and every
string in S− is rejected by A. Typically, the size of a DFA is measured by the
number of states it contains. Seeking this DFA is an active research topic in the
grammatical inference community, see, e.g., [11].

For many years, the state-of-the-art in DFA identification has been the
evidence-driven state-merging (EDSM) algorithm [20]. State-merging is a com-
mon technique from grammatical inference for learning a small language model
by combining (merging) the states of a large initial DFA model, see, e.g., [11].
Essentially, EDSM is a greedy method that tries to find a good local optimum
efficiently. In addition, an earlier state-merging method called RPNI has been
shown to converge efficiently (from polynomial time and data) to the global op-
timum in the limit [23]. EDSM participated in and won (in a tie) the Abbadingo
DFA learning competition in 1997 [20].

Since our method is based on the simple yet effective state-merging approach,
we now briefly explain this approach. For more information, the reader is referred
to [11]. The key idea of state-merging is to first construct a tree-shaped DFA
A from the input sample S, and then to merge (combine) the states of A. This
initial DFA A is called an augmented prefix tree acceptor (APTA). An example
is shown in Figure 1.

Definition 1. The APTA A = (〈Q, T,Σ, q0, F 〉 , R) for an input sample
{S+, S−} consists of a DFA 〈Q, T,Σ, q0, F 〉 and a set of rejecting states R, where
Σ is the alphabet of S+ ∪S−, q0 = ε (the empty word), Q = {a ∈ Σ∗ | ∃b ∈ Σ∗ :
ab ∈ (S+ ∪ S−)}, T = {〈a, a′, l〉 ∈ Q×Q×Σ | a′ = al}, F = S+, and R = S−.

A merge of two states q and q′ combines the states into one: it creates a new
state q∗ that has the incoming and outgoing transitions of both q and q′, which
are subsequently removed from A. Such a merge is only allowed if the states are
consistent, i.e., it is not the case that q is accepting while q′ is rejecting or vice
versa. When a merge introduces a non-deterministic choice, i.e., q∗ is the source
of two transitions with the same label l, the target states of these transitions q1
and q2 are merged as well. This is called the merging for determinization process
and is continued until there are no non-deterministic choices left. However, if this
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Fig. 1. An augmented prefix tree acceptor for S = (S+ = {a, abaa, bb}, S− = {abb, b}).
The start state is the state with an arrow pointing to it from nowhere.

process at some point merges two inconsistent states, the original states q and q′

are also considered inconsistent and the merge will fail. The result of a successful
merge is a new DFA that is smaller than before, and still consistent with the
input sample S. A state-merging algorithm iteratively applies this state merging
process until no more consistent merges are possible.

In the grammatical inference community, there has been some research into
developing advanced and efficient search techniques based on the EDSM heuris-
tic. The idea is to increase the quality of a solution by searching other paths
in addition to the path determined by the greedy EDSM heuristic. Examples of
such advanced techniques are dependency-directed backtracking [22], using mu-
tually (in)compatible merges [1], and searching most-constrained nodes first [19].
A comparison of different search techniques for EDSM can be found in [8]. Re-
cently, instead of wrapping a search technique around EDSM, a translation of
the regular inference problem into satisfiability (SAT) was proposed in order
to use a state-of-the-art SAT-solver to search for an optimal solution [16]. The
main advantage of such an approach is that it makes use directly of advanced
search techniques such as conflict analysis, intelligent back-jumping, and clause
learning, see, e.g., [5]. The winning contribution to the 2010 Stamina DFA learn-
ing competition was a combination of this SAT-based approach and EDSM with
a modified heuristic [26]. Other recently proposed improvements are the paral-
lelization of the algorithm [2], and the use of ensembles of learned DFAs [12].

2.2 Translating Regular Inference

The idea of translating the regular inference problem to other computational
problems for which dedicated solvers exist is not new. In fact, one of the earli-
est regular inference algorithms due to Biermann [6] is of this type. Biermann
proposed to solve the regular inference problem by mapping it to constraint sat-
isfaction. In this translation, every state is represented by a natural number,
constraints on the possible values of states are added that enforce consistency,
and the aim is to minimize the range of these numbers, which translates back to
minimizing the number of states in the resulting DFA. More recently, Grinchtein
et al. [15] adapted this translation in order to map regular inference to satisfi-
ability (SAT) instead of constraint satisfaction. The numeric constraints from
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Fig. 2. The consistency graph corresponding to the APTA of Figure 1. Some states in
the consistency graph are not directly inconsistent, but inconsistent due to determiniza-
tion. For instance states 2 and 6 are inconsistent because the strings abb (negative) and
bb (positive) would end in the same state if these states were merged.

the constraint satisfaction problem are encoded using either a unary or a binary
scheme into clauses and literals for the satisfiability problem.

Another type of translation is that of Coste [10], who maps regular inference
to graph coloring based on the state-merging approach. The main idea of this
translation is to use a distinct color for every state of the identified DFA. Every
node in the graph coloring problem corresponds to a distinct state in the APTA.
Two vertices v and w in this graph are connected by an edge (cannot be assigned
the same color), if merging v and w results in an inconsistency in the original
regular inference problem:

Definition 2. The consistency graph Gc = (V,Ec) for an APTA
(〈Q, T,Σ, q0, F 〉 , R) consists of a set of vertices V and edges Ec such that V = Q,
and Ec = {{a, a′} ∈ Σ∗ ×Σ∗ | ∃b ∈ Σ∗ : ab ∈ F and a′b ∈ R}.

The edges in this graph are called inequality constraints. Figure 2 shows an
example of such a graph. In addition to these inequality constraints, equality
constraints are required: if the parents of two states (in the APTA) with the
same incoming transition label are merged, then these states must be merged
too (encoding the merging for determinization procedure).

Definition 3. The set of equality constraints Ee for an APTA A =
(〈Q, T,Σ, q0, F 〉 , R) is the set of pairs of paired states 〈(a, b), (al, bl)〉 ⊂ Q2×Q2

with a, b ∈ Σ∗ and l ∈ Σ.

For graph coloring problem, these equality constraints encode that two parent
states a and b can get the same color only if their child states al and bl get the
same color. Until now it has been unclear how to encode such constraints in a
graph coloring problem instance. In [10], these were encoded by modifying the
graph according to the consequences of these constraints. This implies that a
new graph coloring instance has to be solved every time an equality constraint is
used. This is clearly not very efficient. Thirteen years later, this graph coloring
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encoding in [10] was used by Heule and Verwer as a basis for a more efficient
translation to satisfiability [16], which encodes the equality constraints directly.

In the following, we develop a novel construction that encodes the equality
constraints directly into graph coloring.

2.3 Graph Coloring

We briefly discuss graph coloring in this subsection, and assume that the reader
is familiar with the more basic concepts from graph theory.

A coloring of a graph is a function from its vertices to colors (or color classes).
The term colors is due to historical reasons; it was originally studied in the
context of coloring maps. In the remainder, we will simply use natural numbers
as names for these colors.

A coloring is called proper for graph G if no two connected vertices in G have
the same color, and optimal for G if it is both proper and assigns the smallest
possible number of colors to the vertices of G. This number is known as the
chromatic number of G, denoted by χ(G). We will write color(x) = c when
vertex x is labeled with color c. We write x =c y to indicate that vertices x, y
are members of the same color class.

When we call an optimal coloring unique, this is taken to mean unique up to
recoloring. Recoloring can be understood as renaming, i.e., applying a substitu-
tion σ to the color labels of G such that, whenever for any two vertices x, y from
G, x =c y, then σ[x] =c σ[y], and when x �=c y, then σ[x] �=c σ[y]. Note that for
every recoloring, its inverse exists.

3 Encoding Equality Constraints into the Graph

In this section we will show how equality constraints can either be encoded into
the graph, or can be reduced to simple checks after a coloring has been generated.

3.1 Graphs with Chromatic Number ≤ 2

The 1-colorable graphs are obviously exactly the edgeless graphs. Since all ver-
tices of the graph are members of the same color class, the issue of equality
constraints is irrelevant in this case.1

Also note that a target automaton with just one state always generates Σ∗;
for any sample for such a language, S− = ∅.

It is a well-known fact that the 2-colorable graphs are exactly the bipartite
graphs. For this class, a coloring can be found in polynomial time with a parity-
based algorithm: pick an arbitrary vertex v and label all vertices in the graph
with their distance to v (this can be done with depth-first search). We obtain a

1 As an aside, it should be noted that χ(Gc(S)) = 1 does not imply that the target
automaton consists of just one state. This can be easily seen by considering any
sample with S− = ∅. This implies the complete absence of conflicts, but this may
simply be due to a sample not being representative for the target language.
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bipartite graph, one partition of which consists of all vertices at even distance
from v, and the other partition of which consists of all vertices at odd distance
from v. Each partition can then be regarded as a color class. Two vertices obvi-
ously have the same color if and only if they are members of the same partition.

Equality constraints can be ignored when both of the pairs of vertices involved
in such a constraint are from the same connected component of the bipartite
graph. It suffices to check that the constraint is not violated after the coloring
has been assigned to the consistency graph.2

However, in the case that Gc consists of multiple connected components,
equality constraints may block certain merges, resulting in χ(Ge) > 2.

3.2 Graphs with Chromatic Number ≥ 3

When the chromatic number of the consistency graph is three or more, equality
constraints have to be taken into account. This requires the conbstruction of a
graph that, for each equality constraint, includes a gadget as seen in Figure 3.

u x′′

v y′′

Clique1

x′

y′

Clique2

x

y

Clique3

Fig. 3. This gadget encodes equality constraints into a graph. A thick line represents
a set of edges that connect a vertex (circle) to all vertices in a clique (ellipse).

This construction is formally defined as follows:

Definition 4. Given a consistency graph Gc = Gc(S) = (V,E), let χ = χ(Gc),
and let Clique1, Clique2 and Clique3 be three disjoint cliques of size χ− 2.

Let Ee be the set of equality constraints for APTA(S), and let Ge = (V ∪
V ′, E ∪ E′) be the smallest graph such that, for each equality constraint e =
〈(u, v), (x, y)〉 ∈ Ee,
1. Clique1, Clique2 and Clique3 are in the graph;
2. vertices x′, x′′, y′, y′′ are in the graph;
3. v, x′′, y′′ are connected to all vertices in Clique1;
4. x′, y′′, y′ are connected to all vertices in Clique2;
5. y′, x, y are connected to all vertices in Clique3;
6. u is connected to x′′, x′′to x′, v to y′′, y′′ to y′, x to x′, and y to y′.

We are now in the position to state a lemma which will play a key role in the
remainder of this paper:

2 Technically speaking, even this check is not necessary: a violation can only occur if
the sample is inconsistent, and such a case is excluded by definition.
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u x′

v y′

Clique

Fig. 4. The subgraph discussed in Lemma 1

Lemma 1. Given a graph G, let χ = χ(G)(≥ 3), and let G′ be an induced
subgraph of G which is isomorphic to G′′[u, v, x′, y′], where G′′ is the graph from
Figure 4, with its clique of size χ− 2.

Then, given any optimal coloring for G′:

1. either x′ =c v, or x
′ =c y

′;
2. if it is the case that u =c v, then we also have x′ =c y

′.

Proof. Let C be the set of all colors used in some optimal coloring of G, and let
C1 be the colors assigned to the subgraph Clique . Since Clique is of size χ− 2,
χ(Clique) = χ− 2, thus |C − C1| = 2.

Because v is connected to all vertices in Clique, it has to be assigned a color
cv from C − C1. Since y′ is connected to v and to all vertices in Clique , it has
the color C − C1 − cv.

Vertex x′ is connected to all vertices in Clique, so it has a color from C −C1.
Since this set contains just 2 colors, either x′ =c v, or x′ =c y

′. Since x′ is con-
nected to u, it has a color from C − C1 − cu. If u =c v, this set is a singleton
and contains just the color assigned to y′. �

We are now in a position to prove correctness of our construction.

Proposition 1. Let Gc = Gc(S), and χ(Gc) ≥ 3. Let Ge = Ge(Gc) (as given
in Definition 4).

Then, given an optimal coloring for Ge, for any equality constraint e =
〈(u, v), (x, y)〉 ∈ E(Gc), if the vertices corresponding to u and v are in the same
color class, then so are x and y.

Proof. Given an equality constraint which states that merging u and v requires
merging x and y, we show the following:

1. in our construction, if vertices u and v are in the same color class, then x
and y aree members of the same color class, for any minimal coloring;

2. if vertices u and v are not in the same color class, then x and y can be in
the same color class, but not necessarily;

3. we show that our construction is correct for any combination of 3 colors;
4. we show that it remains correct for any combination of more than 3 colors.
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Demonstrating these four points together proves the proposition. First, let
C(G) = {c1, . . . cχ} be the set of all colors used in any optimal coloring of
graph G (χ = χ(G)).

Point 1 can be demonstrated by applying Lemma 1 three times: if u =c v,
then x′′ =c y

′′; if x′′ =c y
′′, then x′ =c y

′; if x′ =c y
′, then x =c y.

Thus u =c v implies x =c y.
We now proceed to demonstrate point 2 using the same method: if u �=c v,

then by Lemma 1 an optimal coloring exists with x′′ �=c y
′′; similarly for x′ �=c y

′;
and thus x �=c y. If u �=c v, then by Lemma 1 an optimal coloring exists with
x′′ =c y

′′; therefore x′ =c y
′; and thus x =c y.

Point 3 can best be demonstrated by case analysis, i.e., simply enumerating
all possible colorings (up to recoloring). As the reader may check, Figure 5
exhaustively enumerates all possible cases for χ = 3. i.e. all unique colorings.

We conclude by demonstrating point 4:
Points 1 and 2 hold for any χ ≥ 3, so it suffices to generalize point 3 to cases

where χ ≥ 4. Let Gχ be a gadget as in Definition 4, for some χ ≥ 4, and G3 the
same for χ = 3. It is clear that G3 is an induced subgraph of Gχ. To be more
precise, Gχ can be obtained from G3 by adding i − 3 distinct new vertices to
each of its three central cliques and connecting them in the obvious way.

It is easy to see that, in the case that x =c y and u =c v, we can obtain
an optimal coloring for Gχ by picking (a recoloring of) one of the lowest three
colorings from Figure 5. This colors a subgraph isomorphic to G3, the colors for
the vertices not in this subgraph are the ‘new’ ones added to each of the central
cliques Cliquei are obtained simply by non-deterministically assigning them from
C−C(Clique i)−C(N(Clique i)) (where C(G) yields the colors assigned to vertices
in G, and N(G) yields the union of neighborhoods of all vertices in G).

In the case that x =c y and u �=c v, colorings can be obtained from the
middle three colorings from Figure 5. The top left vertex, u, can be assigned
any color as long as u �=c v, since it’s not connected to any of the cliques. It
is connected only to x′′, and we have x′′ =c v. If v gets assigned a color such
that color(v) > 3, we get v �=c y

′′, so we get a proper coloring when no vertex
in Clique1 is assigned color(v) or color(y′′) (which is 1 or 2 in the figure). The
same line of reasoning can be applied to x and y: If x and y get assigned a color
such that color(x) > 3, we obtain an admissible coloring just when no vertex in
Clique3 is assigned color(x) or color(x′′) (which is 1 or 2 in the figure).

For the case that x �=c y, consider the top three colorings from Figure 5.
A complicating factor is that the lower right vertex, y, has multiple options for
coloring; for a gadget for χ colors, there are χ−1 options. It is easy to see though
that the only restriction on color(y) is that y �=c y

′, which implies y �=c x, since
y′ =c x for all three gadgets. So, if color(y) > 3, the other of the χ − 1 options
can be assigned to vertices in Clique3 and an admissible coloring is obtained.
For vertices x, u, v, reasoning from the previous paragraphs applies.

We have thus demonstrated the validity of all four points, which concludes
the proof. �
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Fig. 5. Possible colorings for the χ(Gc) = 3 construction

4 More Efficient Equality Constraints

The translation described above encodes the equality constraints from the regu-
lar inference problem, but unfortunately it is not very efficient: in the worst case
it can require up to O(‖S‖2) cliques of size χ − 2. Since S (the input sample)
can get very large, this quadratic relation is highly undesirable. In [16], a simi-
lar problem was observed for a translation of regular inference to satisfiability.
There, it was solved by introducing additional variables that encode the equality
constraints globally, i.e., for the resulting automaton model instead of per pair
of APTA states. Below, we show that such a global encoding is also possible for
our translation to graph coloring and that it reduces this quadratic relation to
a linear one.
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Fig. 6. This gadget encodes equality constraints into a graph more efficiently than the
gadget from Figure 3. There exists one node qi for every color i, and one node ti,l for
every color i and symbol l from the alphabet. The gadget is repeated for every possible
color i, and the qi nodes connected to each other in a clique of their own. Although the
number of gadgets required per equality constraint is increased, the resulting encoding
is more efficient due to the overlap in the created subgraphs: every pair of nodes (v, y)
or (u, x) needs to be connected only once to every (qi, ti,l).

The key idea is to introduce two additional sets of nodes that encode
the states of the resulting automaton model and the transitions between them.
The first set contains a clique of χ vertices, one for every state of the automaton.
The second set contains χ · |Σ| pairwise non-connected vertices, one for every
possible transition of the automaton. We denote the vertices from the first set
using qi (state i in the resulting automaton), and those from the second set using
ti,l (the target of the transition from state i with label a). We now replace the v
and y vertices from the gadget in Figure 3 by the qi and ti,l vertices shown in Fig-
ure 6. This construction is identical to the previous one, except that it connects
every pair of vertices (u, x) that is used in an equality constraint 〈u, v, x, y〉 ∈ Ee
for a label l (v = ul) to (qi, ti,l) for all 0 ≤ i < χ. If two pairs of vertices (u, x)
and (v, y) were connected by the gadget in Figure 3 in the translation described
in the previous section, they are now connected through the vertices (qi, ti,l)
from the two gadgets in Figure 6.

As shown below, this is sufficient to correctly encode every equality constraint.

Proposition 2. By replacing every occurrence of v by qi and y by ti,l for all
0 ≤ i < χ in Definition 4, we obtain the construction in Figure 6. Let Ge be the
graph resulting from this construction. Then, given a minimal coloring for Ge,
for any equality constraint 〈(u, v), (x, y)〉 ∈ Ee, if the vertices corresponding to
u and v are in the same color class, then so are x and y. Furthermore, no other
constraints are encoded by the gadget in Figure 6.

Proof. Due to the clique connecting the nodes qi, there exists an qi in C for any
color class C. Thus, if u and v are in the same color class C, then there exists
a qi that is in this class as well. By Proposition 1, there exists in Ge a gadget
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that forces ti,l to be in the same color class C′ as x since u and qi are both in
C. Similarly, there exists a gadget that forces ti,l to be in the same color class
as y. Clearly, this is only possible if y is also in C′.

It is also straightforward to see that this new gadget does not impose any
constraints other than equality. If u and v are in a different class, then they are
in the same class with different qi and qj , and thus x and y are in the same class
as different ti,l and tj,l, which can belong to different color classes. Furthermore,
since the gadget connects (u, x) with (qi, ti,l) for all i only if there is a transition
from u to x in the APTA with label l, no constraints are constructed for pairs
of states (u, x) and (v, y) with differently labeled transitions between (u, x) and
(v, y). ()

The size of the resulting translation is significantly smaller than before since
every pair of nodes (u, x) that occurs on one side of an equality constraint for
label l now connects through the gadget from Figure 3 to all pairs of nodes
(qi, ti,l) for 0 ≤ i < χ, resulting in O(‖S‖ · χ) gadgets instead of O(‖S‖2).

5 Learning Algorithm

Definition 5. Let LEARN(S) be the following algorithm:

Require: Sample S = (S+, S−), CHROM NR(), COLOR()
A := APTA (S+, S−)
Gc(= (Vc, Ec)) := Gc(A) {consistency graph for A}
upp bound := |Vc|
χ := CHROM NR(Gc)
for i = χ to upp bound do
Ge := Ge(APTA(S), i) {consistency graph with equality constraints for A
assuming i colors}
C = COLOR(Ge, i) {proper coloring for Ge with i colors}
if C defined then

BREAK
end if

end for
for all c in C do

MERGE all states in A that correspond to vertices in c
end for
compute normal form A′ of A {only observable part, no ‘reject’ labels}
return A′

Here, CHROM NR and COLOR are user-specified algorithms for determining
chromatic number and computing a vertex coloring, respectively. Note that
χ(Gc) may be underestimated without affecting correctness so simply the con-
stant 1 would be acceptable as CHROM NR.

It was shown in [14] that an algorithm that enumerates all DFAs with mono-
tonically increasing size until it finds one consistent with a sample, identifies
all DFAs in the limit. Thus, if we assume CHROM NR(Gc) ≤ χ(Ge), and we
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choose the APTA-generating algorithm and COLOR() so that they yield the
first automaton in such an enumeration consistent with the sample, we obtain:

Theorem 1. The algorithm given in Definition 5 solves the regular inference
problem, that is, it finds a minimal automaton consistent with given positive and
negative data.

Proof. It is clear that COLOR finds a optimal coloring for Ge. Since there is
a one-to-one correspondence between color classes of Ge and states in the hy-
pothesized automaton, the hypothesis is always an automaton of minimal size
(w.r.t. the sample). Since Gc is an induced subgraph of Ge, the hypothesis does
not violate any inequality constraints and thus accepts all of S+ and rejects all
of S−. By Proposition 1, the resulting automaton also respects all equality con-
straints. Thus the hypothesis is always an automaton of minimal size consistent
with given positive and negative data. �

Corollary 1. The algorithm given in Definition 5 identifies in the limit from
positive and negative data the class of all deterministic finite state automata.

It should be clear that our algorithm is consistent, order-independent and set-
driven. We leave open the questions of conservative learning and the possibility
of an incremental learning algorithm.

6 Bounds

Recall that we established an upper bound on the number of equality constraints
of ‖S‖·χ (Section 4). Since the gadget consists of 4+3(χ−2) vertices, in the case
that χ ≥ 3, we obtain an upper bound of s·χ·(4+3(χ−2))+s = s·(3χ2+2χ+1)
vertices in Ge, where s = ‖S‖ and χ = χ(Gc).

Note that this does not necessarily imply that our learning algorithm has
quadratic space requirements. Depending on the choice of algorithm for COLOR,
it may not be necessary to explicitly representGe with, for example, an adjacency
matrix. Instead, a representation of Gc could be used, and the additional edges
and vertices necessary for representing equality constraints could be computed
on the fly just when the coloring algorithm requires them. It will in general be
necessary to keep track of the colors assigned to the additional vertices, but for
the cliques in the equality subgraphs a representation can be used that requires,
for every such clique, only as many bits as χ(Ge).

The fastest known (exact) vertex coloring algorithm has a time bound of
O(2vv) ([7], v being the number of vertices in Ge), and, given graphs of chromatic
number 3 or 4, the tighter bounds of O(1.3289v) ([4]) and O(1.7504v) ([9]),
respectively. Combined with our bound for the size of Ge, assuming that the
algorithm has to iterate from 1 to χ, and assuming CHROM NR simply yields
1, we obtain the following time bounds (s = ‖S‖ and χ = |A|):
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1. target automaton has 1 or 2 states: f(s), with f some polynomial function;
2. target automaton has exactly 3 states: O(1.328922s);
3. target automaton has exactly 4 states: O(1.328922s + 1.750441s);
4. target automaton has 5 or more states:
O((χ − 2) · 2s·(3χ2+2χ+1) · (3χ2 + 2χ+ 1)).

7 Discussion

Algorithms based on semidefinite programming techniques are known that find
optimal colorings for perfect graphs in polynomial time. These can often also be
used to find approximate colorings for non-perfect graphs in polynomial time.
The algorithm discussed in [17], for example, has a hyperparameter which allows
the user to obtain solutions anywhere on the spectrum between solutions that
use few colors but are not necessarily proper, and proper colorings that may be
far removed from a optimal coloring.

The former corresponds with an automaton inconsistent with the sample, the
latter with an automaton with more states than the target automaton. This
makes a learning algorithm based on such an approach flexible; the user can
decide which trade-off is appropriate for the problem at hand by setting the
value of this hyperparameter on a case-by-case basis.
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Abstract. This paper establishes an upper bound on the size of a
concept class with given recursive teaching dimension (RTD, a teaching
complexity parameter.) The upper bound coincides with Sauer’s well-
known bound on classes with a fixed VC-dimension. Our result thus
supports the recently emerging conjecture that the combinatorics of VC-
dimension and those of teaching complexity are intrinsically interlinked.

We further introduce and study RTD-maximum classes (whose size
meets the upper bound) and RTD-maximal classes (whose RTD increases
if a concept is added to them), showing similarities but also differences
to the corresponding notions for VC-dimension.

Another contribution is a set of new results on maximal classes of a
given VC-dimension.

Methodologically, our contribution is the successful application of al-
gebraic techniques, which we use to obtain a purely algebraic characteri-
zation of teaching sets (sample sets that uniquely identify a concept in a
given concept class) and to prove our analog of Sauer’s bound for RTD.

Keywords: VC-dimension, teaching, Sauer’s bound, maximum classes.

1 Introduction

An important combinatorial result, proven by Sauer [7] and independently by
Shelah [8], states that the size of any concept class of Vapnik-Chervonenkis

dimension (VC-dimension, [11]) d is at most
∑d

i=0

(
m
i

)
, where m is the number

of instances the concept class is defined over.
In Computational Learning Theory, this bound (typically called Sauer’s

bound) has proven helpful—if not essential—for a variety of studies, most no-
tably for the definition and analysis of maximum classes. A concept class of
VC-dimension d over a finite instance space X is maximum, if its size meets
Sauer’s bound.1 Maximum classes exhibit a number of interesting structural
properties, e.g., their complements as well as their restrictions to subsets of the
instance space are maximum [6, 12]. These structural properties have remark-
able implications. For example, maximum classes form one of the few general
cases of concept classes known to have labeled and unlabeled sample compression

1 In this paper, we restrict ourselves to finite instance spaces.
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schemes of the size of their VC-dimension [3, 5]. Moreover, the recursive teaching
dimension (RTD, a complexity parameter of the recently introduced recursive
teaching model [13]) of any maximum class equals its VC-dimension [2].

Recent work [2] indicates connections between the VC-dimension and the
RTD; besides maximum classes, several other types of concept classes are shown
to have an RTD upper-bounded by their VC-dimension. An open question is
whether or not the RTD has an upper bound linear in the VC-dimension. Thus
recursive teaching is the only model known so far that could potentially establish
a close connection between the complexity of learning from a teacher and the
complexity of learning from randomly chosen examples (the VC-dimension being
an essential complexity parameter for the latter).

This paper establishes a further connection between RTD and VC-dimension:
its main result is an analog of Sauer’s bound for RTD. We prove that the size
of any concept class of RTD r is at most

∑r
i=0

(
m
i

)
, where m is the size of the

instance space. This new evidence of a strong connection between learning from
a teacher and learning from randomly chosen examples suggests that the study
of the recursive teaching dimension deserves more attention. Our result is proven
using algebraic methods, which first provide us with a purely algebraic charac-
terization of teaching sets. A teaching set for a concept c in a concept class C
is a set of labeled examples that is consistent with c but with no other concept
in C; thus it uniquely identifies c in C. Our algebraic characterization of teach-
ing sets, a second highlight of this paper, is the main ingredient of our proof of
Sauer’s bound for RTD, but it may be of independent interest. In particular,
the algebraic techniques applied here may provide new proof ideas for combina-
torial studies in Computational Learning Theory, e.g., we give an example for
an alternative proof to Kuzmin and Warmuth’s result that maximum classes are
shortest-path-closed [5]. Previously, methods from algebra yielded an alternative
proof of Sauer’s bound for the VC-dimension [10].

Our Sauer-type bound for RTD naturally allows us to define and study the
concept of RTD-maximum classes—classes whose size meets the upper bound.
To distinguish RTD-maximum classes from maximum classes in the original
sense, we refer to the latter as VCD-maximum classes. Although every VCD-
maximum class is shown to be RTD-maximum, RTD-maximum classes turn
out to exhibit slightly different properties. For example, their complements are
not necessarily RTD-maximum. We further study RTD-maximal classes—classes
whose RTD increases if any new concept is added to them. Such classes are not
necessarily RTD-maximum.

In studying RTD-maximum and RTD-maximal classes, we discover some new
interesting properties of VCD-maximal classes. In particular, we provide bounds
on the size of VCD-maximal classes, shown in the appendix.

2 Preliminaries

Let X be a finite set, called instance space. Elements of X are called instances.
A concept on X is a subset of X . Each concept c is identified with a function
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c(x) defined as follows: c(x) = 1 if x ∈ c and c(x) = 0 if x /∈ c. For � ∈ {0, 1}, �̄
is defined as �̄ = 1− �.

A concept class C on X is a set of concepts on X , that is, C ⊆ 2X . C
denotes the complement of C. For Y ⊆ X , let C|Y denote the restriction of C
to Y , that is, C|Y = {c ∩ Y : c ∈ C}. Similarly, c|Y means c ∩ Y . To simplify
notation, the restriction C|X\{x} will be also denoted as C − x, and c|X\{x} will
be denoted as c−x. The reduction of C to Y is defined as CY = {c ⊆ Y : c∪c′ ∈
C for all c′ ⊆ X\Y }. In other words, c ∈ CY if and only if all possible extensions
of the concept c from Y to X belong to C. If X1 and X2 are two disjoint instance
spaces, C1 ⊆ 2X1 and C2 ⊆ 2X2 , then the direct product of C1 and C2 is a concept
class on X1 ∪X2 defined as C1 × C2 = {c1 ∪ c2 : c1 ∈ C1 and c2 ∈ C2}. If the
class C1 contains only a single concept and C2 = 2X2 , then the class C1 ×C2 is
called a cube. If |X2| = d, then such a cube is called a d-dimensional cube (or
d-cube for short).

A set S ⊆ X is shattered by the class C if C|S = 2S. The VC-dimension
of a class C is defined as VCD(C) = max{|S| : S is shattered by C} [11]. Let

Φd(m) =
∑d

i=0

(
m
i

)
. Sauer’s lemma states that if VCD(C) = d, then |C| ≤

Φd(|X |) [7, 8]. Let VCD(C) = d; then C is called VCD-maximum if |C| =
Φd(|X |), that is, if the size of C matches the upper bound from Sauer’s lemma
(cf. [12]). A class is called maximal with respect to VC-dimension (or VCD-
maximal) if adding any new concept to the class increases its VC-dimension.

A labeled example is a pair (x, �), where x ∈ X and � ∈ {0, 1}. For a set S of
labeled examples, X(S) denotes X(S) = {x ∈ X : (x, �) ∈ S for some �}. A set
S of labeled examples is a teaching set for a concept c in a class C, if c is the
only concept from C which is consistent with S. For simplicity, we then also call
X(S) a teaching set since the labels of examples from S are uniquely determined
by X(S) and c. The collection of all teaching sets for c in C is denoted TS(c, C).

The teaching dimension of c in C is TD(c, C) = min{|S| : S ∈ TS(c, C)}. The
teaching dimension of C is defined as TD(C) = maxc∈C TD(c, C) [4, 9]. We will
also refer to the minimal teaching dimension TDmin(C) = minc∈C TD(c, C).

The following definitions are based on [2, 13]. A teaching plan for a concept
class C is a sequence P = ((c1, S1), . . . , (cn, Sn)), where C = {c1, . . . , cn} and
Si ∈ TS(ci, {ci, . . . , cn}) for all i = 1, . . . , n. The order of the teaching plan P is
ord(P ) = maxi=1,...,n |Si|. The recursive teaching dimension of C is

RTD(C) = min{ord(P ) : P is a teaching plan for C}.

For a teaching plan P = ((c1, S1), . . . , (cn, Sn)) of C whose order is equal to
RTD(C), the set Si is called a recursive teaching set for ci in C with respect
to the plan P , and |Si| is called the recursive teaching dimension of ci in C
with respect to the plan P , denoted RTD(ci, C). The words “with respect to the
plan P” may be omitted if there is no ambiguity. We will also use the notation
RTD∗(C) = maxX′⊆X RTD(C|X′ ).

The RTD has the following properties [2, 13]:

– RTD is monotonic, i.e, RTD(C′) ≤ RTD(C) whenever C′ ⊆ C.
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– RTD equals the order of any canonical teaching plan, i.e., a teaching plan
((c1, S1), . . . , (cn, Sn)) with |Si| = TDmin({ci, . . . , cn}) for all i = 1, . . . , n.

– RTD(C) = maxC′⊆C TDmin(C′).

3 Algebraic Characterization of Teaching Sets

In this section we give an algebraic characterization of the teaching sets for a
concept c in a concept class C. Let X = {x1, . . . , xm} be a finite instance space,
and let C = {c1, . . . , cn} be a concept class on X . Consider a vector space Fn

2 of
dimension n over the field F2 (i.e., the field consisting of 2 elements). For each
polynomial f(x1, . . . , xm) with variables from X and coefficients from F2, we
define a vector f = (f1, . . . , fn) from Fn

2 as follows

fi = f(ci(x1), . . . , ci(xm)) for i = 1, . . . , n.

Note that we use the same notation for a polynomial and a vector. We also asso-
ciate each concept ci ∈ C with the ith standard basis vector ci = (0, . . . , 1, . . . , 0)
of Fn

2 . Again, we are using the same notation for a concept and a vector. This
should not cause confusion as the exact meaning of such notation will be clear
from the context. For instance, by “the vector x1x2” we mean the vector in Fn

2

that corresponds to the polynomial x1x2. Similarly, an equality like c = f(x1, x2)
should be interpreted as the equality between two vectors, the one corresponding
to the concept c and the one corresponding to the polynomial f(x1, x2).

To illustrate these notations, let us consider the following concept class:

x1 x2 x3
c1 0 1 0
c2 1 0 1
c3 0 1 1

In this class, x1 = (0, 1, 0), x2 = (1, 0, 1), x3 = (0, 1, 1), 0 = (0, 0, 0) and 1 =
(1, 1, 1). In our notations, c1 = (1, 0, 0), c2 = (0, 1, 0) and c3 = (0, 0, 1). So we
have x1 + x2 = 1, x1x2 = 0, c1 = x3 + 1, x2x3 = (0, 0, 1) and hence c3 = x2x3.

The following theorem provides an algebraic description of teaching sets.

Theorem 1. Let C = {c1, . . . , cn} ⊆ 2X. A set of instances {z1, . . . , zk} ⊆ X
is a teaching set for a concept ci if and only if ci = f(z1, . . . , zk) for some
polynomial f over F2.

Proof. Suppose {z1, . . . , zk} is a teaching set for ci. It is not hard to see that in
this case ci = p1 · · · pk, where pt = zt if ci(zt) = 1 and pt = zt + 1 if ci(zt) = 0.

To prove the other implication, consider ci ∈ C and assume that ci =
f(z1, . . . , zk) but {z1, . . . , zk} is not a teaching set for ci. Hence there is an-
other concept cj �= ci from C which coincides with ci on {z1, . . . , zk}, that is,
ci(zt) = cj(zt) for all t = 1, . . . , k. Thus the following equalities hold

fi = f(ci(z1), . . . , ci(zk)) = f(cj(z1), . . . , cj(zk)) = fj .
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So, the ith and jth coordinates of the vector f(z1, . . . , zk) are equal. By defini-
tion, ci corresponds to the standard basis vector (0, . . . , 1, . . . , 0) which has only
one coordinate equal to 1, namely, the ith coordinate. Since we assumed that
ci = f(z1, . . . , zk) and showed that fi = fj , the vector f(z1, . . . , zk) must have
at least two coordinates equal to 1, namely, the ith and jth coordinates. This
contradicts the assumption that ci = f(z1, . . . , zk). ()

4 RTD-Maximum Classes

The next theorem is the main result of our paper. It provides a Sauer-type bound
on the size of a concept class with a given RTD.

Theorem 2. Let C ⊆ 2X and |X | = m. If RTD(C) = r then |C| ≤ Φr(m).

Proof. Let P r
m be the collection of monomials over F2 of the form xi1 · · ·xik ,

where 0 ≤ k ≤ r and 1 ≤ i1 < · · · < ik ≤ m. In case when k = 0 we let the
corresponding monomial be equal to the constant 1. Note that |P r

m| = Φr(m).
Let c1, c2, . . . , cn be all the concepts from C listed in the same order as they

appear in some teaching plan for C of order r. In particular, for every s =
1, . . . , n, we have TD(cs, {cs, . . . , cn}) ≤ r.

We will show that the vector space Fn
2 is spanned by the vectors that corre-

spond to the monomials from P r
m. The theorem then follows from a well-known

linear algebra fact that the size of a spanning set cannot be smaller than the
dimension of the vector space.

We will show by induction that each cs lies in the span of P r
m. Since TD(c1, C)

≤ r, by Theorem 1, c1 is equal to a polynomial of the form pi1 · · · pik for some
k ≤ r, where each pt is equal to xt or xt+1. It is not hard to see that the product
pi1 · · · pik lies in the span of P r

m, e.g., (x1 + 1)(x2 + 1) = x1x2 + x1 + x2 + 1, etc.
Now suppose that c1, . . . , cs are in the span of P r

m. Let Fs,0
2 be the subspace of

Fn
2 consisting of the vectors whose the last n−s coordinates are zeros. Similarly,

let F0,n−s
2 be the subspace of Fn

2 consisting of the vectors whose the first s
coordinates are zeros. Also, let (v)s,0 and (v)0,n−s be the projections of a vector

v ∈ Fn
2 to the subspaces Fs,0

2 and F0,n−s
2 , respectively. In particular, we have

v = (v)s,0 + (v)0,n−s.
Since TD(cs+1, {cs+1, . . . , cn}) ≤ r, applying Theorem 1 to {cs+1, . . . , cn}

and cs+1 yields that (cs+1)0,n−s = (pi1 · · · pik)0,n−s for some k ≤ r and some
i1, · · · , ik, where each pt is equal to xt or xt + 1. In other words, (cs+1 −
pi1 · · · pik)0,n−s = 0, which means that cs+1 − pi1 · · · pik belongs to the sub-

space Fs,0
2 . As before, the product pi1 · · · pik lies in the span of P r

m. Moreover,
by the induction hypothesis, the vectors c1, . . . , cs are in the span of P r

m, and
hence the subspace Fs,0

2 is contained in the span of P r
m. Hence cs+1 lies in the

span of P r
m. ()

The Sauer-type bound in Theorem 2 is tight for any r and m, in particular,
it is met by all VCD-maximum classes of VC-dimension r. This suggests the
following definition.
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Definition 1. Let C ⊆ 2X , |X | = m, and RTD(C) = r. C is called RTD-
maximum if |C| = Φr(m), and C is called RTD-maximal if RTD(C ∪ {c}) > r
for any concept c /∈ C.

RTD-maximum classes have the following properties.

Proposition 1. (i) Every VCD-maximum class C is also RTD-maximum with
RTD(C) = VCD(C).

(ii) There are RTD-maximum classes that are not VCD-maximum.
(iii) There is a class C for which both C and C are RTD-maximum, but neither

C nor C is VCD-maximum.
(iv) There are RTD-maximum classes whose restrictions are not RTD-max-

imum. Furthermore, there is an RTD-maximum class C that has an RTD-
maximum restriction C′ such that RTD(C′) > RTD(C).

Proof. (i) For every VCD-maximum class C, RTD(C) = VCD(C) [2]. It follows
from Theorem 2 and Definition 1 that C is RTD-maximum.

(ii) If an RTD-maximum class C is not VCD-maximum, then RTD(C) <
VCD(C). Table 1 shows an RTD-maximum class C1 with RTD(C1) = 2 and
VCD(C1) = 3.

(iii) C1 in Table 1 is RTD-maximum with RTD(C1) = 2, and C1 is RTD-
maximum with RTD(C1) = 1. As VCD(C1) = 3 and VCD(C1) = 2, neither C1

nor C1 is VCD-maximum.
(iv) C2 in Table 1 is RTD-maximum and RTD(C2) = 1, however, RTD(C2 −

x4) = 2 and C2 − x4 is not RTD-maximum. Furthermore, consider the RTD-
maximum class C1 in Table 1. Clearly, C1−x4 is RTD-maximum and RTD(C1) =
2 < RTD(C1 − x4) = 3. ()

A consequence of the proof of Theorem 2 is that, for RTD-maximum classes, all
instance sets of size RTD(C) are used as recursive teaching sets.

Table 1. C1 and C1 are RTD-maximum but neither C1 nor C1 is VCD-maximum. C2

is RTD-maximum but C2 − x4 is not.

ci ∈ C1 x1 x2 x3 x4

c1 0 0 0 0

c2 1 0 0 0

c3 0 1 0 0

c4 0 0 1 0

c5 0 0 0 1

c6 1 1 0 0

c7 1 0 1 0

c8 0 1 1 0

c9 0 1 0 1

c10 0 0 1 1

c11 1 1 1 1

ci ∈ C1 x1 x2 x3 x4

c1 1 0 0 1

c2 1 1 1 0

c3 1 1 0 1

c4 1 0 1 1

c5 0 1 1 1

ci ∈ C2 x1 x2 x3 x4

c1 0 0 0 0

c2 1 0 0 0

c3 0 1 0 0

c4 0 0 1 0

c5 0 1 1 1
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Corollary 1. Let C ⊆ 2X be RTD-maximum, |X | = m, and RTD(C) = r. Let
X ′ ⊆ X be any subset of size r. Then for any teaching plan P for C of order r,
there is a concept c ∈ C and a recursive teaching set S for c with respect to P ,
such that X(S) = X ′.

Proof. Let X ′ = {xi1 , . . . , xir}, and P be a teaching plan for C of order r such
that c1, c2, . . . , cn are all concepts from C listed in the same order as they appear
in P . Assume that X ′ does not appear as a recursive teaching set in the plan
P . Then, in the proof of Theorem 2 we can always represent the concept cs+1

inside the class {cs+1, . . . , cn} as a polynomial f(z1, . . . , zr) over F2 such that
{z1, . . . , zr} �= {xi1 , . . . , xir}. (This follows from Theorem 1 and the fact that X ′

is not used as a recursive teaching set.) As a consequence, we can span Fn
2 without

using the monomial xi1 · · ·xir , which implies that |C| = dim(Fn
2 ) ≤ Φr(m) − 1.

Hence C is not RTD-maximum. This is a contradiction. ()

Another corollary of Theorem 2 is that for an RTD-maximum class, teaching
sets of size 1 cannot be used too early in any teaching plan.

Corollary 2. Let C ⊆ 2X be RTD-maximum, |X | = m, and RTD(C) = r.
For an arbitrary teaching plan for C, let (c1, c2, . . . , cn) be the sequence of all
concepts of C listed in the plan. Then for any positive integer i < Φr−1(m− 1),
we have TD(ci, {ci, . . . , cn}) > 1.

Proof. Assume there is a teaching plan for C such that TD(ci, {ci, . . . , cn}) = 1
for some i < Φr−1(m− 1). Let (x, �) ∈ TS(ci, {ci, . . . , cn}) for some x ∈ X and
� ∈ {0, 1}. Then for any c ∈ {ci+1, . . . , cn}, c(x) = �̄. So, |{ci+1, . . . , cn}| =
|{ci+1, . . . , cn}|X\{x}|. Consequently,

|C| = |{c1, . . . , ci}|+ |{ci+1, . . . , cn}| = i+ |{ci+1, . . . , cn}|
= i+ |{ci+1, . . . , cn}|X\{x}| ≤ i+ Φr(m− 1), by Theorem 2

< Φr−1(m− 1) + Φr(m− 1) = Φr(m).

Thus C is not RTD-maximum. This is a contradiction. ()

As mentioned in Section 1, the complement of any VCD-maximum class is VCD-
maximum. RTD-maximum classes do not possess this property.

Proposition 2. There is an RTD-maximum class whose complement is not
RTD-maximum.

Proof. Consider the RTD-maximum class C with RTD(C) = 3 in Table 2. C is
not RTD-maximum because RTD(C) = 2 and 6 < Φ2(5). ()

Still, the complement of an RTD-maximum class of RTD 1 is RTD-maximum.

Proposition 3. Let C be an RTD-maximum class over X with |X | ≥ 2. If
RTD(C) = 1, then C is RTD-maximum and RTD(C) = |X | − 2.
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Table 2. C is RTD-maximum (recursive teaching sets are underlined), but C is not

ci ∈ C x1 x2 x3 x4 x5

c1 1 1 1 1 1

c2 1 1 0 1 1

c3 1 1 0 1 0

c4 1 1 0 0 1

c5 0 1 1 1 1

c6 1 0 1 1 1

c7 0 0 1 1 1

c8 1 1 0 0 0

c9 1 0 1 0 1

c10 1 0 0 0 1

c11 0 1 1 1 0

c12 0 1 0 1 0

c13 0 1 1 0 1

ci ∈ C x1 x2 x3 x4 x5

c14 0 1 0 0 1

c15 1 0 1 1 0

c16 1 0 0 1 0

c17 0 1 1 0 0

c18 0 1 0 0 0

c19 0 0 1 1 0

c20 0 0 0 1 0

c21 1 0 1 0 0

c22 1 0 0 0 0

c23 0 0 1 0 1

c24 0 0 1 0 0

c25 0 0 0 0 1

c26 0 0 0 0 0

ci ∈ C x1 x2 x3 x4 x5

c1 0 0 0 1 1

c2 0 1 0 1 1

c3 1 0 0 1 1

c4 1 1 1 0 0

c5 1 1 1 0 1

c6 1 1 1 1 0

Proof. By induction on |X |. For |X | = 2 the proof is trivial. Suppose that for
|X | < m the statement of the theorem is true. Now consider the case |X | = m >
2. Let c1 ∈ C with TD(c1, C) = 1, and w.l.o.g., let {(x1, 1)} be a teaching set
for c1 in C. Then we can write C as a disjoint union of {c1} and {0}×C1, where
C1 = (C \ {c1})− x1 is a maximum class of RTD(C1) = 1 on X \ {x1}. So, the
complement of C is equal to the disjoint union C = ({0} × C1) ∪ ({1} × C2),
where C2 = 2X\{x1} \ {c1 − x1} is a class of size 2m−1 − 1 on X \ {x1}.

By the induction hypothesis, there is a teaching plan of order m − 3 for C1.
Take such a plan and extend every recursive teaching set S from this plan to
S ∪{(x1, 0)}. As a result, we obtain a teaching plan for {0}×C1 of order m− 2,
which we call P1. Note that C2 is a VCD-maximum class with VCD(C2) = |X \
{x1}|−1 = m−2, and hence RTD(C2) = m−2. Since RTD({1}×C2) = RTD(C2),
there is a teaching plan of order m− 2 for {1} × C2, which we call P2.

Every recursive teaching set from P1 contains (x1, 0), which distinguishes the
concepts in {0} × C1 from those in {1} × C2. So, P1 and P2 can be merged to
a teaching plan for C of order m − 2. Thus RTD(C) ≤ m − 2. Further, |C| =
2m − |C| = 2m − (m+ 1) = Φm−2(m). Hence, by Theorem 2, RTD(C) = m− 2,
and C is RTD-maximum. ()

The RTD-maximum class C in the proof of Proposition 2 fulfills RTD(C) +
RTD(C) = |X |. In contrast to this, note that a class C is VCD-maximum if and
only if VCD(C) + VCD(C) = |X | − 1. Necessity of the condition was proven
by Rubinstein et al. [6]. Sufficiency is easy to see, as was pointed out by an
anonymous reviewer of this paper: Suppose C with VCD(C) = d is not VCD-
maximum. Then |C| < Φd(|X |) and thus |C| > 2|X|−Φd(|X |) = Φ|X|−d−1(|X |),
which implies VCD(C) > |X | − d − 1. The same reasoning implies that the
condition is sufficient as well when VCD is replaced by RTD throughout.

Proposition 4. Let C ⊆ 2X and |X | = m. If RTD(C) + RTD(C) = m − 1,
then C is RTD-maximum.
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Recall that RTD∗(C) = maxX′⊆X RTD(C|X′). We obtain the following property.

Proposition 5. Let C ⊆ 2X and |X | = m. If RTD∗(C) ≤ r, then |C| ≤ Φr(m).
The inverse statement is not true in general.

Proof. Since RTD∗(C) ≤ r, RTD(C) ≤ r and by Theorem 2, |C| ≤ Φr(m). An
example2 for a class C with |C| ≤ Φr(m) and RTD∗(C) > RTD(C) = r is the
class C = {∅, {x2, x3}, {x1, x3}, {x1, x2, x3}}, for which |C| = 4, RTD(C) = 1
and RTD∗(C) = 2. ()

5 RTD-Maximal Classes

In this section we present some properties of RTD-maximal classes. We first show
that an RTD-maximal class shatters each subset of the instance space whose size
is equal to RTD.

Proposition 6. Let C ⊆ 2X be RTD-maximal with RTD(C) = r. Then, for
any subset X ′ ⊆ X with |X ′| = r, C shatters X ′.

Proof. Assume that X ′ is not shattered by C. Then |C|X′ | < 2|X
′| and we can

add a new concept cnew to C such that cnew |X′ /∈ C|X′ . Thus, TD(cnew, C ∪
{cnew}) ≤ r. Since RTD(C) = r, C has a teaching plan of order r. So, C∪{cnew}
also has a teaching plan of order r, which starts with cnew and then continues
with any teaching plan for C of order r. Therefore, RTD(C ∪ {cnew}) ≤ r and
C is not RTD-maximal. ()

As a corollary we obtain that for an RTD-maximal class, the minimal and the
recursive teaching dimensions coincide.

Corollary 3. For any RTD-maximal class C ⊆ 2X, TDmin(C) = RTD(C).

Proof. TDmin(C) ≤ RTD(C) is easy to see. Assume TDmin(C) < RTD(C).
Then, there is a concept c ∈ C for which {xi1 , . . . , xik} is a teaching set, for
some k < RTD(C). Consider any subset X ′ ⊆ X such that |X ′| = RTD(C)
and {xi1 , . . . , xik} ⊂ X ′. Then C does not shatter X ′, since otherwise there
would exist at least one more concept c′ ∈ C with c′|{xi1 ,...,xik

} = c|{xi1 ,...,xik
}.

This is impossible because {xi1 , . . . , xik} is a teaching set for c in C. Hence, by
Proposition 6, C cannot be RTD-maximal. This is a contradiction. ()

It is not hard to see that VCD-maximal classes of VC-dimension 1 are VCD-
maximum. We now show that the same holds for RTD-maximal classes.

Proposition 7. Let C ⊆ 2X be RTD-maximal. If RTD(C) = 1, then C is RTD-
maximum.

2 This example also provides a simpler proof of the second part of Proposition 1(iv).
The latter in turn implies that the inverse of Proposition 5 is not true in general.
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Proof. By induction on the size of X . For |X | = 1 there is only one RTD-
maximal class with two concepts which is clearly RTD-maximum. Suppose that
the theorem holds when |X | = m. Now we consider the case that |X | = m+1 and
C is an RTD-maximal class on X with RTD(C) = 1. Since RTD(C) = 1, there is
a concept c ∈ C such that TD(c, C) = 1. Let (x, �) be a teaching set for c. Then,
for any c′ ∈ C \{c}, (x, �) /∈ c′ or equivalently, (x, �̄) ∈ c′, which implies that
|C\{c}| = |(C\{c})−x|. Clearly, (C\{c})−x is RTD-maximal, otherwise C would
not be RTD-maximal. So, by the induction hypothesis, |(C\{c})− x| = Φ1(m).
Therefore, |C| = Φ1(m) + 1 = Φ1(m+ 1) and C is RTD-maximum. ()

Surprisingly, not all RTD-maximal classes are RTD-maximum.

Proposition 8. (Doliwa [1]) There is an RTD-maximal class that is not RTD-
maximum.

Proof. Consider the RTD-maximal class C in Table 3. Since RTD(C) = 3 and
|C| = 40 < Φ3(6), C is not RTD-maximum. ()

Table 3. RTD-maximal class that is not RTD-maximum

ci x1 x2 x3 x4 x5 x6 ci x1 x2 x3 x4 x5 x6 ci x1 x2 x3 x4 x5 x6 ci x1 x2 x3 x4 x5 x6

c1 0 1 0 1 1 0 c11 1 0 1 1 1 1 c21 0 1 0 0 1 0 c31 0 0 0 0 0 0
c2 0 1 1 1 0 1 c12 0 0 1 0 0 0 c22 1 1 0 1 1 0 c32 1 1 0 1 0 1
c3 1 0 0 0 0 0 c13 1 1 1 0 0 1 c23 1 0 0 0 1 0 c33 0 0 0 1 0 0
c4 1 0 0 1 1 1 c14 0 1 1 0 1 0 c24 1 1 0 1 1 1 c34 0 0 0 0 1 0
c5 0 0 1 1 0 0 c15 1 0 1 0 1 1 c25 1 1 0 0 1 1 c35 1 1 0 0 0 0
c6 1 0 0 1 1 0 c16 0 0 1 1 0 1 c26 0 1 0 0 0 0 c36 1 0 1 0 1 0
c7 0 0 1 0 1 1 c17 1 1 1 1 0 0 c27 1 0 0 0 0 1 c37 0 1 0 0 0 1
c8 1 1 1 0 1 0 c18 1 1 1 0 1 1 c28 0 1 0 1 0 1 c38 1 1 1 1 1 0
c9 0 1 1 0 0 1 c19 0 0 1 1 1 0 c29 0 1 1 1 1 0 c39 1 1 1 1 0 1
c10 1 0 1 0 0 0 c20 1 1 1 1 1 1 c30 1 1 0 0 1 0 c40 0 1 1 0 0 0

6 Algebraic Proof of Shortest-Path-Closedness of
VCD-Maximum Classes

In this section, we give an example of how the algebraic techniques applied to
obtain our main result can also yield more elegant and insightful proofs for
already known results. Our example is the proof showing that VCD-maximum
classes are shortest-path-closed.

A shortest-path-closed class is a class C in which any two concepts c, c′ are
Hamming-connected, i.e., there are pairwise distinct instances x1, . . . , xk and
c1, . . . , ck−1 ∈ C such that, with c0 = c and ck = c′, the concepts ci−1 and ci
differ only in xi, for 1 ≤ i ≤ k. It is known that VCD-maximum classes are
shortest-path-closed [5], but algebraic methods provide an elegant alternative
proof.

For Z ⊆ X = {x1, . . . , xm} and t ≤ m, let P t
m(Z) be the collection of mono-

mials over F2 of the form xi1 · · ·xik such that 0 ≤ k ≤ t, 1 ≤ i1 < · · · < ik ≤ m
and {xi1 , . . . , xik} ⊆ Z.
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Lemma 1. Let |X | = m, C ⊆ 2X , and VCD(C) = d. A set of instances Z ⊆ X
is a teaching set for c ∈ C if and only if c is in the span of P d

m(Z).

Proof. Suppose Z ⊆ X is a teaching set for c ∈ C. Then, by Theorem 1, c = f
for some polynomial f over F2 whose variables are in the set Z. Each such
polynomial is equal to a linear combination of monomials from P t

m(Z), where
t = |Z|. For instance, (x1 + 1)(x2 + 1)x3 = x1x2x3 + x1x3 + x2x3 + x3, etc.

We show that, for every t ≤ m and Z ⊆ X , the monomials from P t
m(Z) are

in the span of P d
m(Z). This in turn implies that f is in the span of P d

m(Z).
As in [10], we use induction on t: If t ≤ d, there is nothing to prove. Suppose

t > d and every monomial from P t−1
m (Z) is in the span of P d

m(Z). Consider
a monomial xi1 · · ·xit from P t

m(Z). Since t > d, the set {xi1 , . . . , xit} is not
shattered by C. Let (a1, . . . , at) be a concept that is not in C|{xi1 ,...,xit} and
consider a polynomial p(xi1 , . . . , xit) = (xi1 +a1+1)(xi2 +a2+1) · · · (xit +at+1).

As a vector in F
|C|
2 , p has zero coordinates because p(c(xi1), . . . , c(xit)) = 0 for

all c ∈ C as at least one of the factors of p will be zero. Hence p = 0 and xi1 · · ·xit
can be expressed as a linear combination of monomials of smaller degree with
coefficients from {xi1 , . . . , xit} ⊆ Z, that is, the ones from P t−1

m (Z). To see this,
consider, e.g., (x1+1)(x2+1)x3 = 0; then we have x1x2x3 = x1x3+x2x3+x3. By
the inductive hypothesis, P t−1

m (Z) is in the span of P d
m(Z), and hence xi1 · · ·xit

is in the span of P d
m(Z). So P t

m(Z) is in the span of P d
m(Z).

The implication in the other direction follows from Theorem 1. ()
Theorem 3. If C is a VCD-maximum class, then C is shortest-path-closed.

Proof. In this proof, we use the symbol * to denote symmetric difference.
Let C ⊆ 2X be a VCD-maximum class with |X | = m and VCD(C) = d, and

let I(c) denote the set {x ∈ X | there exists a c′ ∈ C such that c*c′ = {x}}. We
first show that, for every c ∈ C, I(c) is a teaching set for c. By Theorem 1, the

monomials from P d
m(X) span the vector space F

|C|
2 . Since |P d

m(X)| = Φd(m) =

|C|, the set P d
m(X) is a basis for F

|C|
2 .

Let c ∈ C and let S ⊆ X be a minimal teaching set for c in the sense that no
proper subset of S is a teaching set for c. Suppose I(c) �= S and let x ∈ S \ I(c).
By Lemma 1, there is a linear combination f1 of monomials from P d

m(S) such
that c = f1. Note that X \ {x} is also a teaching set for c, since otherwise
x ∈ I(c). Thus, there is a linear combination f2 of monomials from P d

m(X \ {x})
with c = f2. Since P d

m(X) is a basis for F
|C|
2 , we have f1 = f2. As f2 does not

depend on x, f1 does not depend on x either. Thus f1 depends only on variables
from S \ {x}. By Lemma 1, S \ {x} is a teaching set for c, which contradicts the
minimality of S. Therefore S = I(c), and thus I(c) is a teaching set for c.

Finally, we prove that any two concepts c1 and c2 in C are Hamming-
connected, by induction on |c1*c2|. For |c1*c2| = 1 the proof is obvious.
Suppose |c1*c2| = n and any two concepts c, c′ with |c*c′| < n are Hamming-
connected. Since I(c1) is a teaching set for c1, it cannot be disjoint from c1*c2.
Hence there is an x ∈ I(c1) ∩ (c1*c2). Let c′ be the concept from C such that
c1*c′ = {x}. Then |c′*c2| = n − 1 and by the inductive hypothesis c′ and c2
are Hamming-connected. Therefore, c1 and c2 are Hamming-connected. ()
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7 Conclusions

Our analog of Sauer’s bound for RTD establishes a new connection between
teaching complexity and VC-dimension. A main contribution besides obtaining
this result is the successful application of algebraic proof techniques. The charac-
terization of teaching sets obtained this way is of potential use for future studies
not only in the context of the combinatorial questions we asked in this paper.

Our results on RTD-maximum and RTD-maximal classes provide deep in-
sights into structural properties that affect the complexity of teaching a con-
cept class. As a byproduct of our studies, we proved several new results on
VCD-maximal classes. Altogether, our results might be helpful in solving the
long-standing sample compression conjecture [3] and in establishing further con-
nections between learning from a teacher and learning from randomly chosen
examples. In particular, we hope that methods from algebra will turn out to be
of further use in these contexts.
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Appendix: VCD-Maximal Classes

This appendix contains some new interesting properties of VCD-maximal classes.
For instance, the next theorem provides a way of constructing an infinite series
of equal-sized maximal classes starting from a given maximal class.

Theorem 4. Let C be a class of VC-dimension d on a set of m instances X =
{x1, . . . , xm}.
(1) If C is a maximal class and for some instance x ∈ X we have |C−x| = |C|,

then C + x is also maximal, where

C + x = {c ∈ 2X∪{xm+1} : c ∩X ∈ C and c(xm+1) = c(x)}.

This process can be continued to obtain a series of maximal classes C + x,
(C + x) + x, ((C + x) + x) + x, etc.

(2) If |C − x| < |C|, then C + x is not a maximal class.

Proof. (1) Note that VCD(C) = VCD((C+x)−x) and VCD(C) = VCD(C+x).
These equalities follow from the fact that C is equivalent to (C + x) − x, and
that if C + x shatters a set S, then S cannot contain both x and xm+1.

Suppose C is maximal and |C − x| = |C| for some x ∈ X . Consider any
c ∈ 2X∪{xm+1} such that c /∈ C + x and let c− xm+1 = c ∩X . We need to show
that VCD(C+x∪{c}) > VCD(C+x). First, suppose c−xm+1 /∈ C. Then, since C
is maximal, VCD(C+x∪{c}) ≥ VCD(C∪{c−xm+1}) > VCD(C) = VCD(C+x).

Now suppose c − xm+1 ∈ C. In this case c(x) �= c(xm+1) since otherwise
c ∈ C + x. Also note that the concept c − x = c ∩ (X ∪ {xm+1} − x) does not
belong to (C + x) − x. Indeed, suppose c − x ∈ (C + x) − x and let c′ ∈ C be
the image of c− x under the equivalence transformation from (C + x)− x to C.
We then have that C contains two concepts, namely c−xm+1 and c′, that differ
only on x since (c− xm+1)(x) = c(x) �= c(xm+1) = (c − x)(xm+1) = c′(x). This
contradicts the assumption that |C−x| = |C|. Therefore, c−x /∈ (C+x)−x and
we have that VCD(C+x∪{c}) ≥ VCD((C+x)−x∪{c−x}) >VCD((C+x)−x) =
VCD(C) = VCD(C + x). Hence C + x is a maximal class.

(2) If |C − x| < |C| then there are two concepts c1 and c2 in C that differ
only in x. Consider a concept c /∈ C + x defined as c = c1 ∪ {(xm+1, �)} where
� is chosen so that c(x) �= c(xm+1). Since c coincides with c1 on X , we have
(C + x ∪ {c})− xm+1 = C. Furthermore, c coincides with the extension of c2 in
C+x on the instances from (X∪{xm+1})−x. Hence (C+x∪{c})−x = (C+x)−x,
which is, of course, equivalent to C.

Let VCD(C + x) = d and suppose that C + x ∪ {c} shatters a set S of size
d + 1. Note that S cannot contain both x and xm+1 since the restriction of
C+x∪{c} to these two instances can contain only one of the two concepts (0, 1)
and (1, 0). If S does not contain xm+1, then we have VCD(C + x) = VCD(C) =
VCD((C + x ∪ {c})− xm+1) ≥ d+ 1. On the other hand, if S does not contain
x, we have VCD(C+x) = VCD((C+x)−x) = VCD((C+x∪{c})−x) ≥ d+ 1.
These contradictions show that in fact VCD(C + x ∪ {c}) = VCD(C + x), and
hence C + x is not a maximal class. ()
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The following proposition by Rubinstein et al. [6] follows immediately from the
definition of VC-dimension.

Proposition 9. VCD(C) ≤ d if and only if C contains at least one (m−d−1)-

cube for each subset of (m− d− 1) instances, i.e., C
S �= ∅ for every subset S of

m− d− 1 instances.

We now establish a non-trivial lower bound for the size of VCD-maximal classes
and show that this bound can be met when both VCD and |X | are large.

Theorem 5. Let C ⊆ 2X be a VCD-maximal class over a set X with |X | = m.
If VCD(C) = d, then

|C| ≥ 2m − 2m−d−1

(
m

d+ 1

)
.

Equivalently, if VCD(C) = m− d, then

|C| ≥ 2m − 2d−1

(
m

d− 1

)
.

This lower bound can be met when m+ d, that is, when |X |−VCD(C) is small
compared to |X |.
Proof. We prove the second inequality. Suppose VCD(C) = m − d and |C| <
2m−2d−1

(
m
d−1

)
. In this case, we have that |C| > 2d−1

(
m
d−1

)
. By Proposition 9, C

must contain at least one (d−1)-cube for each subset of d−1 instances. Consider a
union of (d−1)-cubes from C taking exactly one cube for each subset of instances
of size d − 1. Then the size of this union will be at most 2d−1

(
m
d−1

)
. Therefore,

C must contain at least one concept c that does not belong to the above union
of (d− 1)-cubes. Hence, due to Proposition 9, we can add this concept c to the
class C without increasing its VC-dimension, which contradicts the fact that C
is maximal.

To show that the lower bound is exact for large m, we need to construct a
disjoint union of (d− 1)-cubes which consists of exactly one cube for each choice
of d − 1 instances; then the complement of such union will be a maximal class
C with VCD(C) = m − d and |C| = 2m − 2d−1

(
m
d−1

)
. To do this, let us split

the instance space X into disjoint blocks of size 2d and let {c1, . . . , cN} be the
concepts that are equal to unions of such blocks. Note that N = 2�m/2d� and
|ci*cj | ≥ 2d for i �= j. Now to each subset S ⊆ X of size d − 1, we assign a
concept cS from the above list such that cS �= cS′ for S �= S′. This can be done
since for m + d, N = 2�m/2d� is greater than

(
m
d−1

)
, the number of all subsets

of size d− 1.
For each S ⊆ X of size d − 1, define a (d − 1)-cube C(S) based on cS , that

is, C(S) = 2S × {cS |X\S}. Note that for S �= S′, the cubes C(S) and C(S′) are
disjoint because, by construction, |cS*cS′ | ≥ 2d. Therefore, the class C, defined
as

C = 2X \
⋃

S⊆X: |S|=d−1

C(S),

is a maximal class of VC-dimension m− d and size 2m − 2d−1
(
m
d−1

)
. ()
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As a corollary we obtain that for a maximal class C with VCD(C) = |X |−O(1),
the sum VCD(C) + VCD(C) is bounded by |X |+O(log2 |X |).

Theorem 6. Let |X | = m. If C ⊆ 2X is a maximal class and VCD(C) = m−d,
then

VCD(C) + VCD(C) ≤ m− 1 + (d− 1) log2m.

Proof. Since C is maximal, we have, by Theorem 5, that |C| ≥ 2m− 2d−1
(
m
d−1

)
.

Therefore, |C| ≤ 2d−1
(
m
d−1

)
and hence VCD(C) ≤ log2 |C| ≤ d− 1 + log2

(
m
d−1

)
.

Taking into account that
(
m
d−1

)
≤ md−1, we obtain VCD(C) ≤ d− 1 + (d −

1) log2m. Since VCD(C) = m − d, it follows that VCD(C) + VCD(C) ≤ m −
1 + (d− 1) log2m. ()

Another property of VCD-maximal classes is that they are indecomposable in
the sense that they cannot be formed by a direct product of non-trivial smaller
classes.

Theorem 7. Let C0 ⊆ 2X0 and C1 ⊆ 2X1 be nonempty concept classes with

(a) VCD(C0) > 0 or VCD(C1) > 0 and
(b) C0 × C1 �= 2X0∪X1 .

Then C0 × C1 is not a maximal class.

We will need to prove the following lemma first.

Lemma 2. Let C0 ⊆ 2X0 and C1 ⊆ 2X1 be nonempty concept classes and let
c0 ∈ 2X0 and c1 ∈ 2X1 be any two concepts with the property that for each
i ∈ {0, 1}, if VCD(Ci) = 0 then VCD(C1−i ∪ {c1−i}) = VCD(C1−i). Then
VCD((C0 × C1) ∪ {c0c1}) = VCD(C0 × C1) = VCD(C0) + VCD(C1).

Proof. Let di = VCD(Ci), for i ∈ {0, 1}, and suppose that (C0 × C1) ∪ {c0c1}
shatters a set S ⊆ X0∪X1 of size d0+d1+1. Let Si = S∩Xi and assume w.l.o.g.
that |S0| = d0+1 and |S1| = d1. Therefore, VCD(C0∪{c0}) = d0+1 > VCD(C0),
and by the assumption we have that d1 > 0. So, on the one hand, we have that
(C0×C1)∪{c0c1} must contain at least 2d1 > 1 concepts that extend c0|S0 . But,
on the other hand, (C0 × C1) ∪ {c0c1} contains only one such concept, namely
c0c1, since c0|S0 /∈ C0|S0 . This contradiction proves the lemma. ()

Proof (of Theorem 7). If VCD(C0) > 0 and VCD(C1) > 0, then by Lemma 2
for any concept c /∈ C0 × C1 (which exists by our assumption), we have that
VCD((C0 × C1) ∪ {c}) = VCD(C0 × C1). Hence C0 × C1 is not maximal.

Consider the case VCD(C0) = 0 and VCD(C1) > 0 (the other case is similar).
Let c0 /∈ C0 and c1 ∈ 2X1 be such that VCD(C1 ∪ {c1}) = VCD(C1) (e.g., any
c1 ∈ C1). By Lemma 2, we have that VCD((C0×C1)∪{c0c1}) = VCD(C0×C1).
Since c0c1 /∈ C0 × C1, this proves that the class C0 × C1 is not maximal. ()
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Abstract. Although PAC learning unrestricted regular languages is long
known to be a very difficult problem, one might suppose the existence
(and even an abundance) of natural efficiently learnable sub-families.
When our literature search for a natural efficiently learnable regular
family came up empty, we proposed the shuffle ideals as a prime can-
didate. A shuffle ideal generated by a string u is simply the collection
of all strings containing u as a (discontiguous) subsequence. This fun-
damental language family is of theoretical interest in its own right and
also provides the building blocks for other important language families.
Somewhat surprisingly, we discovered that even a class as simple as the
shuffle ideals is not properly PAC learnable, unless RP=NP. In the posi-
tive direction, we give an efficient algorithm for properly learning shuffle
ideals in the statistical query (and therefore also PAC) model under the
uniform distribution.

1 Introduction

Inferring regular languages from examples is a classic problem in learning theory.
A brief sampling of areas where various automata show up as the underlying for-
malism include natural language processing (speech recognition, morphological
analysis), computational linguistics, robotics and control systems, computational
biology (phylogeny, structural pattern recognition), data mining, time series and
music [10, 23, 25–28, 35, 40]. Thus, developing efficient formal-language learning
techniques and understanding their limitations is of a broad and direct relevance
in the digital realm.

Perhaps the most widely currently studied notion of learning is Valiant’s PAC
model [41], which allows for a clean, elegant theory while retaining a decent mea-
sure of empirical plausibility. Since PAC learnability is characterized by finite VC-
dimension and the concept class of n-state Deterministic Finite-state Automata
(DFA) has VC-dimension Θ(n log n) [13], the PAC learning problem is solved,
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in an information-theoretic sense, by constructing a DFA on n states consistent
with a given labeled sample. Unfortunately, as shown in the works of Angluin [1],
Gold [12] and Pitt and Warmuth [34], under standard complexity assumptions,
finding small consistent automata is a computationally intractable task. Fur-
thermore, attempts to circumvent the combinatorial search over automata by
learning with a different representation class are thwarted by cryptographic hard-
ness results. The papers of Pitt and Warmuth [33] and Kearns and Valiant [16]
prove the existence of small automata and “hard” distributions over {0, 1}n so
that any efficient learning algorithm that achieves a polynomial advantage over
random guessing will break various cryptographic hardness assumptions.

In a modified model of PAC, and with additional structural assumptions, a
class of probabilistic finite state automata was shown in [8, 30] to be learnable;
see also the literature review therein. If the target automaton and sampling
distribution are assumed to be “simple”, efficient probably exact learning is pos-
sible [31]. When the learner is allowed to make membership queries, it follows
from [3] that DFAs are learnable in this augmented PAC model.

The prevailing paradigm in formal language learning has been to make struc-
tural regularity assumptions about the family of languages and/or the sampling
distribution in question and to employ a state-merging heuristic. Indeed, over
the years a number of clever and sophisticated combinatorial approaches have
been proposed for learning DFAs. Typically, an initial automaton or prefix tree
consistent with the sample is first created. Then, starting with the trivial par-
tition with one state per equivalence class, classes are merged while preserving
an invariant congruence property. The automaton learned is obtained by merg-
ing states according to the resulting classes. Thus, the choice of the congru-
ence determines the algorithm and generalization bounds are obtained from the
structural regularity assumptions. This rough summary broadly characterizes
the techniques of [2, 8, 29–31, 36] and, until recently, this appears to have been
the only general-purpose technique available for learning finite automata.

More recently, Cortes et al. [9, 19, 20] proposed a substantial departure from
the state-merging paradigm. Their approach was to embed a specific family of
regular languages (the piecewise-testable ones) in a Hilbert space via a kernel and
to identify languages with hyperplanes. A unifying feature of this methodology
is that rather than building an automaton, the learning algorithm outputs a
classifier defined as a weighted sum of simple automata. In a follow-up work
[21], this approach was extended to learning general discrete concepts. These
results, however, provided only margin-based generalization guarantees, which
are weaker than true PAC bounds.

Perhaps somewhat embarrassingly, there does not appear to be any known
natural PAC-learnable family of regular languages. Let us qualify this statement
to rule out the obvious objections. Many concept classes are known to be learn-
able over the boolean cube {0, 1}n — conjunctions, disjunctions, decision lists,
etc. [17]. Another way to claim trivial results is by importing learning problems
from continuous domains. For example, the concept class of axis-aligned rect-
angles in R

2 is known to be PAC-learnable [17], so certainly these rectangles
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are also learnable over the rational plane Q2. Now we may identify Q2 with
{0, 1}∗ via some bijection, thereby identifying rectangles over Q2 with languages
L ⊂ {0, 1}∗ (we thank Kobbi Nissim for this example). It is a simple matter
to construct a bijection φ : Q2 → {0, 1}∗ that maps rectangles to regular lan-
guages and vice versa. Observe, however, that we cannot a priori bound the size
of the hypothesis automaton, since higher-precision rectangles will correspond
to automata with more states. An even more basic reason to disqualify these
examples is that it would be quite a stretch to call them “natural” families of
regular languages.

What we mean by a PAC-learnable family of regular languages is, informally,
the following. Fix some alphabet Σ. For n ≥ 1, let Ln be a collection of regular
languages, each of which is recognized by a DFA on n states or fewer. To avoid
computational trivialities, let us rule out |Ln| = O(poly(n)) — this way, brute-
force search is infeasible. Since, as we mentioned above and will see in more
detail below, the information-theoretic aspects of the learning problem are well-
understood, we focus here exclusively on the algorithmic ones. We say that
L =

⋃
n Ln is properly PAC learnable if there is an algorithm that takes

a labeled sample of size m and finds a consistent hypothesis in L̂ ∈ Ln, in
time O(poly(m,n)). We say that L is improperly PAC learnable if there
is an algorithm that takes a labeled sample of size m and finds a consistent
hypothesis with description length O(poly(n)), in time O(poly(m,n)). A formal
definition is given in Section 2.

Main results. Our main results concern the PAC-learnability of shuffle ideals.
A shuffle ideal generated by a string u is simply the collection of all strings
containing u as a (discontiguous) subsequence (see Figure 1 for an illustration).
Despite being a particularly simple subfamily of the regular languages, shuffle
ideals play a prominent role in formal language theory. Their boolean closure
forms the important family known as piecewise-testable languages, defined and
characterized by Simon in 1975 [39]. The rich structure of this language family
has made it an object of intensive study, with deep connections to computability,
complexity theory, and semigroups (see [18, 24] and the references therein). On
a more applied front, the shuffle ideals capture some rudimentary phenomena
in human-language morphology [22]. In Section 3 we show that shuffle ideals of
known length are exactly [5,7] learnable in the statistical query model under the
uniform distribution, though not efficiently. Permitting approximate learning,
the algorithm can be made efficient; this in turn yields efficient proper PAC
learning under the uniform distribution. On the other hand, in Section 4 we show
that the shuffle ideals are not properly PAC-learnable under general distributions
unless RP=NP. Whether the shuffle ideals can be improperly PAC learned under
general distributions remains an open question.

2 Preliminaries

Notation. Throughout this paper, we consider a fixed finite alphabet Σ, whose
size will be denoted by s. We assume s ≥ 2. The elements of Σ∗ will be referred
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to as strings with their length denoted by |·|; the empty string is λ. Define the
binary relation , on Σ∗ as follows: u , v holds if there is a witness i = (i1 <
i2 < . . . < i|u|) such that vij = uj for all j ∈ [|u|]. When there are several
witnesses for u , v, we may partially order them coordinate-wise, referring to
the unique minimal element as the leftmost embedding. We will write Iu�v to
denote the position of the last symbol of u in its leftmost embedding in v (if the
latter exists; otherwise, Iu�v = ∞).

0 1 2 3
a a b

b,c b,c a,c a,b,c

Fig. 1. The canonical DFA for recognizing the shuffle ideal of u = aab over Σ =
{a, b, c}, which accepts precisely those strings that contain u as a subsequence

Formally, the (principal) shuffle ideal generated by u ∈ Σ� is the regular
language

�(u) = {x ∈ Σ∗ : u , x} = Σ∗u1Σ∗u2Σ∗ . . . Σ∗u�Σ∗

(an example is given in Figure 1). The term shuffle ideal comes from algebra
[24, 32] and dates back to [11].

We use the standard O(·), o(·) notation to denote orders of magnitude. The
following simple observation will be useful in the sequel.

Lemma 1. Evaluating the relation u , x is feasible in time O(|x|).

Proof. If u = λ, then u is certainly a subsequence of x. If u = au′ where a ∈ Σ,
we search for the leftmost occurrence of a in x. If there is no such occurrence,
then u is certainly not a subsequence of x. Otherwise, we write x = yax′, where
y contains no occurrence of a; then u is a subsequence of x if and only if u′ is a
subsequence of x′, so we continue recursively with u′ and x′. The total time for
this algorithm is O(|x|). ()

Learnability. We assume a familiarity with the basics of the PAC learning model
[17]. To recap, consider the instance space X = Σ∗, concept class C ⊆ 2X , and
hypothesis class H ⊆ 2X . An algorithm L is given access to a labeled sample
S = (Xi, Yi)

m
i=1, where the Xi are drawn iid from some unknown distribution

P over X and Yi = f(Xi) for some unknown target f ∈ C, and produces a
hypothesis h ∈ H. We say that L efficiently PAC-learns C if for any ε, δ > 0 there
is an m0 ∈ N such that for all f ∈ C and all distributions P , the hypothesis hm
generated by L based on a sample of size m ≥ m0 satisfies

Pm[P ({x ∈ X : hm(x) �= f(x)}) > ε] < δ;
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moreover, we require that both m0 and L’s runtime be at most polynomial in
ε−1, δ−1. The learning is said to be proper if H = C and improper otherwise.

Most learning problems can be cleanly decomposed into a computational and
an information-theoretic component. The information-theoretic aspects of learn-
ing automata are well-understood. As mentioned above, the VC-dimension of a
collection of DFAs grows polynomially with maximal number of states, and so
any small DFA consistent with the training sample will, with high probability,
have small generalization error. For shuffle ideals, an even simpler bound can be
derived. If n is an upper bound on the length of the string u ∈ Σ∗ generating
the target shuffle ideal, then our concept class contains exactly

n∑
�=0

|Σ|� = O(|Σ|n)

members. Thus, with probability at least 1− δ, any shuffle ideal consistent with
a sample of size m will achieve a generalization error of

O

(
n log |Σ| − log δ

m

)
. (1)

Hence, the problem of properly PAC-learning shuffle ideals has been reduced to
finding one that is consistent with a given sample. (This justifies our informal
problem statement in the introduction, where the requirements are purely algo-
rithmic and no mention of ε, δ is made.) This will turn out to be computationally
hard under adversarial distributions (Theorem 4), but feasible under the uniform
one (Theorem 3). Actually, our positive result is somewhat stronger: since we
show learnability in the statistical query (SQ) model of Kearns [15], this implies
a noise-tolerant PAC-result.

3 SQ Learning under the Uniform Distribution

The main result of this section is that shuffle ideals are efficiently PAC-learnable
under the uniform distribution. To be more precise, we are dealing with the
instance space X = Σn endowed with the uniform distribution, which assigns a
weight of |Σ|−n to each element of X . Our learning algorithm is most naturally
expressed in the language of statistical queries [15,17]. In the original definition, a
statistical query χ is a binary predicate of a random instance-label pair, and the
oracle returns the value Eχ, additively perturbed by some amount not exceeding
a specified tolerance parameter. We will consider a somewhat richer class of
queries.

3.1 Constructing and Analyzing the Queries

For u ∈ Σ≤n and a ∈ Σ, we define the query χu,a(·, ·) by

χu,a(x, y) =

⎧⎪⎨⎪⎩
0, u �, x
�{σ=a} − �{σ 
=a}/(s− 1), u , x, y = +1

�{σ 
=a}/(s− 1)− �{σ=a}, u , x, y = −1

, (2)
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where σ is the symbol in x following the leftmost embedding of u (formally,
σ = xIx�u+1) and �{π} represents the 0-1 truth value of the predicate π (recall
that s = |Σ|). Our definition of the query χu,a is legitimate because (i) it can be
efficiently evaluated (Lemma 1) and (ii) it can be expressed as a linear combi-
nation of O(1) standard binary queries (also efficiently computable). In words,
the function χu,a computes the mapping (x, y) �→ R as follows. If u is not a
subsequence of x, χu,a(x, y) = 0. Otherwise, χu,a checks whether the symbol σ
in x following the leftmost embedding of u is equal to a, and, if x is a positive
example (y = +1), returns 1 if σ = a, or −1/(s− 1) if σ �= a. If x is a negative
example (y = −1) then the signs of the values returned are inverted.

Suppose for now that the length L = |ū| of the target shuffle ideal ū is known.
Our learning algorithm uses statistical queries to recover ū ∈ ΣL one symbol at
a time. It starts with the empty string u = λ. Having recovered u = ū1, . . . , ū�,
� < L, we infer ū�+1 as follows. For each a ∈ Σ, the SQ oracle is called with the
query χu,a and a tolerance 0 < τ < 1 to be specified later. Our key technical
observation is that the value of Eχu,a effectively selects the next symbol of ū:

Lemma 2.

Eχu,a =

{
+ 2
sP (L, n, s), a = ū�+1

− 2
s(s−1)P (L, n, s), a �= ū�+1

where

P (L, n, s) =

(
n− 1

L− 1

)(
1

s

)L−1(
1− 1

s

)n−L
. (3)

Proof. Fix an unknown string ū of length L ≥ 1; by assumption, we have re-
covered in u = u1 . . . u� = ū1 . . . ū� the first � symbols of ū. Let u′ = ū0∞ be
the extension of ū obtained by padding it on the right with infinitely many 0
symbols (we assume 0 ∈ Σ).

Let X be a random variable representing the uniformly-chosen sample string
x. Let T be the largest value for which u′1 . . . u′T is a subsequence of X . Let
ξ = �{T≥L} be the indicator for the event that X is a positive instance, i.e.,
that ū1 . . . ūL = u′1 . . . u

′
L is a subsequence of X .

Observe that T has a binomial distribution:

T ∼ Binom(n, 1/s); (4)

indeed, as we sweep acrossX , each positionXi has a 1/s chance of being the next
unused symbol of u′. An immediate consequence of this fact is that Pr[ξ = 1] is
exactly

∑n
k=L

(
n
k

)
(1/s)k(1− 1/s)n−k.

Now fix � < L. Let I� = Iu�X be the position of u� in the leftmost embedding
of u1 . . . u� in X (0 if � = 0), or n− 1 if u1 . . . u� is not a subsequence of X . Then
I� + 1 is the position of σ as defined in (2), or n if u1 . . . u� �, X1 . . .Xn−1.

Define T� to be the number of symbols of a leftmost embedding of u′ in X
excluding XI�+1:

T� = max {t : u′1...u
′
t , X1...XI�XI�+2...Xn} .
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Like T , T� also has a binomial distribution, but now

T� ∼ Binom(n− 1, 1/s). (5)

The reason is that we always omit one position in X (the one following u� if u�
appears before Xn or Xn if it does not), and for each other position, there is
still an independent 1/s chance that it is the next symbol in u′.

An important fact is that T� is independent of XI�+1. This is not immediately
obvious: whether XI�+1 equals u′�+1 or not affects the interpretation of later
symbols in X . However, the probability that each symbol XI�+2 . . . is the next
unused symbol in u′ is still an independent 1/s whetherXI�+1 consumes a symbol
of u′ or not. So the distribution of T� is not affected.

We now compute Eχu,a by averaging over all choices of T�. If T� < �, then
u1 . . . u� �, X1 . . .Xn−1 and χu,a = 0. If � ≤ T� ≤ L − 2, then X is a negative
example. Each symbol in Σ contributes 1 to the mean with probability 1/s and
− 1
s−1 with probability s−1

s ; the net contribution is 0. Similarly, if T� ≥ L, X is
a positive example, and the probability-(1/s) gain of 1 is exactly offset by the
probability-

(
s−1
s

)
loss of 1

s−1 .
This leaves the case T� = L−1. Now X is positive if and only if XI�+1 = ū�+1,

which occurs if σ = ū�+1. So the conditional expectation is 1·Pr[σ = ū�+1]+
1

s−1 ·
Pr[σ �= ū�+1] = 1

s + 1
s−1 ·

s−1
s = 2/s. For a �= ū�+1, the conditional expectation is

is − 2
s(s−1) . This can be computed directly by considering cases, or by observing

that the change to
∑

a∈Σ χu,a(x) = 0 always, and that all a �= ū�+1 induce same
expectation by symmetry.

Since the only case that produces a nonzero conditional expectation is T� =
L− 1, we have

Eχu,ū�+1
= +

2

s
Pr[T� = L− 1], (6)

and for each a �= ū�+1,

Eχu,a = − 2

s(s− 1)
Pr[T� = L− 1]. (7)

The claim follows since T� ∼ Binom(n− 1, 1/s) by (5). ()

3.2 Specifying the Query Tolerance τ

The analysis in Lemma 2 suggests that inferring ū ∈ ΣL amounts to distinguish-
ing the two possible values of Eχu,a. If we set the query tolerance to half the
larger value

τ =
1

s
Pr[T� = L− 1] (8)

then s statistical queries for each prefix of ū suffices to learn ū exactly.

Theorem 1. When the length L of the target string ū is known, ū is exactly
identifiable with O(Ls) statistical queries at tolerance τ = 1

sP (L, n, s).
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In the above SQ algorithm there is no need for a precision parameter ε because
the learning is exact, that is, ε = 0. Nor is there a need for a confidence parameter
δ because each statistical query is guaranteed to return an answer within the
specified tolerance, in contrast to the PAC setting where the parameter δ protects
the learner against an “unlucky” sample.

However, if the relationship between n and L is such that P (L, n, s) is very
small, then the tolerance τ will be very small, and this first SQ algorithm cannot
be considered efficient. If we allow an approximately correct hypothesis (ε > 0),
we can modify the above algorithm to use a polynomially bounded tolerance.

Theorem 2. When the length L of the target string ū is known, ū is approx-
imately identifiable to within ε > 0 with O(Ls) statistical queries at tolerance
τ = ε/(3sn).

Proof. We modify the SQ algorithm to make an initial statistical query with
tolerance ε/3 to estimate Pr[ξ = 1], the probability that x is a positive example. If
the answer is ≤ 2ε/3, then Pr[ξ = 1] ≤ ε and the algorithm outputs a hypothesis
that classifies all examples as negative. If the answer is ≥ 1− 2ε/3, then Pr[ξ =
1] ≥ 1− ε and the algorithm outputs a hypothesis that classifies all examples as
positive.

Otherwise, Pr[ξ = 1] is between ε/3 and 1 − ε/3, and the first SQ algo-
rithm is used. We now show that P (L, n, s) ≥ ε/(3n), establishing the bound on

the tolerance. Let Q(L, n, s) =
(
n
L

) (
1
s

)L (
1− 1

s

)n−L
and note that Q(L, n, s) =

(n/Ls)P (L, n, s). If L ≤ n/s then Q(L, n, s) is at least as large as every term in
the sum

Pr[ξ = 0] =

L−1∑
k=0

(
n

k

)(
1

s

)k (
1− 1

s

)n−k
and therefore Q(L, n, s) ≥ ε/(3L) and P (L, n, s) ≥ ε/(3n). If L > n/s then
Q(L, n, s) is at least as large as every term in the sum

Pr[ξ = 1] =

n∑
k=L

(
n

k

)(
1

s

)k (
1− 1

s

)n−k
and therefore P (L, n, s) ≥ Q(L, n, s) ≥ ε/(3n). ()

3.3 PAC Learning

The main result of this section is now obtained by a standard transformation of
an SQ algorithm to a PAC algorithm.

Theorem 3. The concept class C =
{
�(u) : u ∈ Σ≤n} is efficiently properly

PAC learnable under the uniform distribution.

Proof. We assume that the algorithm receives as inputs n, L, ε and δ. Because
there are only n + 1 choices of L, a standard method may be used to iterate
through them. We simulate the modified SQ algorithm by drawing a sample of
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labeled examples and using them to estimate the answers to the O(Ls) calls
to the SQ oracle with queries at tolerance τ = ε/(3sn), as described in [15].
According to [15, Theorem 1],

O

(
1

τ2
log

|C|
δ

)
= O

(
s2n2

ε2
(n log s− log δ)

)
examples suffice to determine correct answers to all the queries at the desired
tolerance, with probability at least 1− δ.

()

Remark 1. Our learning algorithm and analysis are rather strongly tied to the
uniform distribution. If this assumption is omitted, it might now happen that
Pr[T� = m− 1] is small even though positive and negative examples are mostly
balanced, or there might be intractable correlations between σ and T�. It seems
that genuinely new ideas will be required to handle nonuniform distributions.

4 Proper PAC Learning under General Distributions Is
Hard Unless NP=RP

Our hardness result will follow the standard paradigm, exemplified in [17]. We
will show that the problem of deciding whether a given labeled sample admits
a consistent shuffle ideal is NP-complete. A standard argument then shows that
any proper PAC learner for shuffle ideals can be efficiently manipulated into solv-
ing the decision problem, yielding an algorithm in RP. Thus, assuming RP �=NP,
there is no polynomial-time algorithm that properly learns shuffle ideals.

Theorem 4. Given two disjoint sets of strings S, T ⊂ Σ∗, the problem of de-
termining whether there exists a string w such that w , x for each x ∈ S and
w �, x for each x ∈ T is NP-complete.

Proof. To see that this problem is in NP, note that if S is empty, then any string
of length longer than the longest string in T satisfies the necessary requirements,
so that the answer in this case is necessarily “yes.” If S is nonempty, then no
string longer than the shortest string in S can be a subsequence of every string
in S, so we need only guess a string w whose length is bounded by that of the
shortest string in S and check whether w is a subsequence of every string in S
and of no string in T , which takes time proportional to the sum of the lengths
of all the input strings (Lemma 1).

To see that this problem is complete in NP, we reduce satisfiability of 3-CNF
formulas to this question. Given a formula φ containing n clauses Ci, where
each clause contains three literals �i,1, �i,2 and �i,3, the question of whether φ is
satisfiable is equivalent to the question of whether we can select exactly one literal
from each clause in such a way that no two selected literals are complements of
each other.
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The heart of the construction is a three-way choice of one part of a subsequence
for each clause of the formula. Consider the strings x1 = aba and x2 = baab.
The strings that are subsequences of both of these strings are precisely

{λ, a, b, aa, ab, ba}.

Thus if we were to specify positive strings x1 and x2, and negative strings a and b,
there are exactly three strings that are subsequences of both the positive strings
and not subsequences of either of the negative strings, namely, {aa, ab, ba}. We
use n copies of this three-way choice to represent the choice of one literal from
each of the n clauses.

We define S to contain the two positive strings:

u1 = (x1d)
n

u2 = (x2d)
n

where the symbol d acts to delimit the region of each string corresponding to
each clause.

Our first group of negative strings, T1, contains the n strings obtained from
u1 by deleting one occurrence of d. A string w that is a subsequence of u1
and not a subsequence of any string in T1 must have exactly n occurrences of
d. The occurrences of d divide w into regions corresponding to the successive
occurrences of x1 in u1 and x2 in u2.

Our second group of negative strings, T2, contains the 2n strings obtained
from u1 by selecting a region i and replacing the x1 in that region of u1 by a
or b. We precisely characterize the set of strings w that are subsequences of u1
and u2 but not of any string in T1 or T2 as the strings described by the regular
expression ((y1 + y2 + y3)d)n, where y1 = aa, y2 = ab, and y3 = ba. In region i
we associate the choice of string yr with choosing the literal �i,r.

Finally, our third group of negative strings, T3, contains a string for each
pair of complementary literals (say �i,r and �j,s) obtained from u1 as follows. In
region i we substitute yr for x1, and in region j we substitute ys for x1. This
negative string means that a consistent string w cannot make a choice of strings
corresponding to the complementary literals �i,r and �j,s.

Then there is a string w that is a subsequence of every string in the positive
set S and of no string in the negative set T = T1 ∪ T2 ∪ T3 if and only if the
original formula φ is satisfiable, concluding the NP-completeness proof. ()

5 The Difficulty of Learning Unions of Shuffle Ideals

In this section we note that the problem of learning a monotone DNF formula
is efficiently reducible to the problem of learning a union of shuffle ideals. Let φ
be a monotone DNF formula over variables {xi} for i = 1, . . . , n. We consider
an ordered alphabet {x1, . . . , xn} and a union h of shuffle ideals obtained from
φ as follows. Each term, e.g., x6x14x22, of φ is mapped to a shuffle ideal consist-
ing of the symbols (in order) corresponding to the variables in the term, e.g.,
�(x6x14x22). Then h is the union of the shuffle ideals obtained in this way.
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If we map each assignment to the variables {xi} to the substring of

x1x2 · · ·xn

obtained by omitting the symbols corresponding to variables assigned 0, then
the assignments satisfying φ are precisely the substrings of x1x2 · · ·xn that are
in the union of shuffle ideals h. Thus an efficient method of learning unions
of shuffle ideals would yield an efficient method of learning for monotone DNF
formulas, which so far is only known in special cases [4, 6, 14, 37, 38].

6 Discussion

We have shown that even a family of regular languages as simple as the shuffle
ideals is not efficiently properly PAC learnable if RP �=NP. Thus, the search for
a nontrivial (in the sense described in the introduction) properly PAC-learnable
family of languages continues. On the other hand, even with classification noise,
efficient proper PAC learning of shuffle ideals is possible under the uniform dis-
tribution. The major unresolved question is whether it is possible to improperly
learn shuffle ideals under general distributions; this is the subject of ongoing
research. Also open is the question of whether the alphabet size in Theorem 4
can be reduced to 2.

Acknowledgments. We thank Sarah Eisenstat for the construction reducing
the alphabet size to 3 in the proof of Theorem 4 and the anonymous referees for
their helpful comments.
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Abstract. We present a new analysis of the problem of learning with drifting
distributions in the batch setting using the notion of discrepancy. We prove learn-
ing bounds based on the Rademacher complexity of the hypothesis set and the
discrepancy of distributions both for a drifting PAC scenario and a tracking sce-
nario. Our bounds are always tighter and in some cases substantially improve
upon previous ones based on the L1 distance. We also present a generalization
of the standard on-line to batch conversion to the drifting scenario in terms of
the discrepancy and arbitrary convex combinations of hypotheses. We introduce
a new algorithm exploiting these learning guarantees, which we show can be for-
mulated as a simple QP. Finally, we report the results of preliminary experiments
demonstrating the benefits of this algorithm.

Keywords: Drifting environment, generalization bound, domain adaptation.

1 Introduction

In the standard PAC model [1] and other similar theoretical models of learning [2], the
distribution according to which training and test points are drawn is fixed over time.
However, for many tasks such as spam detection, political sentiment analysis, financial
market prediction under mildly fluctuating economic conditions, or news stories, the
learning environment is not stationary and there is a continuous drift of its parameters
over time.

There is a large body of literature devoted to the study of related problems both in
the on-line and the batch learning scenarios. In the on-line scenario, the target function
is typically assumed to be fixed but no distributional assumption is made, thus input
points may be chosen adversarially [3]. Variants of this model where the target is al-
lowed to change a fixed number of times have also been studied [3, 4, 5, 6]. In the
batch scenario, the case of a fixed input distribution with a drifting target was originally
studied by Helmbold and Long [7]. A more general scenario was introduced by Bartlett
[8] where the joint distribution over the input and labels could drift over time under
the assumption that the L1 distance between the distributions in two consecutive time
steps was bounded. Both generalization bounds and lower bounds have been given for
this scenario [9, 10]. In particular, Long [9] showed that if the L1 distance between
two consecutive distributions is at most Δ, then a generalization error of O((dΔ)1/3)
is achievable and Barve and Long [10] proved this bound to be tight. Further improve-
ments were presented by Freund and Mansour [11] under the assumption of a constant
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rate of change for drifting. Other settings allowing arbitrary but infrequent changes of
the target have also been studied [12]. An intermediate model of drift based on a near
relationship was also recently introduced and analyzed by [13] where consecutive dis-
tributions may change arbitrarily, modulo the restriction that the region of disagreement
between nearby functions would only be assigned limited distribution mass at any time.

This paper deals with the analysis of learning in the presence of drifting distributions
in the batch setting. We consider both the general drift model introduced by [8] and a
related drifting PAC model that we will later describe. We present new generalization
bounds for both models (Sections 3 and 4). Unlike the L1 distance used by previous
authors to measure the distance between distributions, our bounds are based on a notion
of discrepancy between distributions generalizing the definition originally introduced
by [14] in the context of domain adaptation. The L1 distance used in previous analyses
admits several drawbacks: in general, it can be very large, even in favorable learning
scenarios; it ignores the loss function and the hypothesis set used; and it cannot be
accurately and efficiently estimated from finite samples (see for example lower bounds
on the sample complexity of testing closeness by [15]). In contrast, the discrepancy
takes into consideration both the loss function and the hypothesis set.

The learning bounds we present in Sections 3 and 4 are tighter than previous bounds
both because they are given in terms of the discrepancy which lower bounds the L1 dis-
tance, and because they are given in terms of the Rademacher complexity instead of the
VC-dimension. Additionally, our proofs are often simpler and more concise. We also
present a generalization of the standard on-line to batch conversion to the scenario of
drifting distributions in terms of the discrepancy measure (Section 5). Our guarantees
hold for convex combinations of the hypotheses generated by an on-line learning algo-
rithm. These bounds lead to the definition of a natural meta-algorithm which consists of
selecting the convex combination of weights in order to minimize the discrepancy-based
learning bound (Section 6). We show that this optimization problem can be formulated
as a simple QP and report the results of preliminary experiments demonstrating its ben-
efits. Finally we will discuss the practicality of our algorithm in some natural scenarios.

2 Preliminaries

In this section, we introduce some preliminary notation and key definitions, including
that of the discrepancy between distributions, and describe the learning scenarios we
consider.

Let X denote the input space and Y the output space. We consider a loss function
L : Y×Y → R+ bounded by some constantM > 0. For any two functions h, h′ : X →
Y and any distributionD over X × Y , we denote by LD(h) the expected loss of h and
by LD(h, h′) the expected loss of h with respect to h′:

LD(h) = E
(x,y)∼D

[L(h(x), y)] and LD(h, h′) = E
x∼D1

[L(h(x), h′(x))], (1)

where D1 is the marginal distribution over X derived from D. We adopt the standard
definition of the empirical Rademacher complexity, but we will need the following se-
quential definition of a Rademacher complexity, which is related to that of [16].
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Definition 1. Let G be a family of functions mapping from a set Z to R and S =
(z1, . . . , zT ) a fixed sample of size T with elements in Z . The empirical Rademacher
complexity of G for the sample S is defined by:

R̂S(G) = E
σ

[
sup
g∈G

1

T

T∑
t=1

σtg(zt)

]
, (2)

where σ = (σ1, . . . , σT )�, with σts independent uniform random variables taking
values in {−1,+1}. The Rademacher complexity of G is the expectation of R̂S(G)
over all samples S = (z1, . . . , zT ) of size T drawn according to the product distribution
D =

⊗T
t=1Dt:

RT (G) = E
S∼D

[R̂S(G)]. (3)

Note that this coincides with the standard Rademacher complexity when the distribu-
tionsDt, t ∈ [1, T ], all coincide.

A key question for the analysis of learning with a drifting scenario is a measure of the
difference between two distributionsD and D′. The distance used by previous authors
is the L1 distance. However, the L1 distance is not helpful in this context since it can
be large even in some rather favorable situations. Moreover, the L1 distance cannot be
accurately and efficiently estimated from finite samples and it ignores the loss function
used. Thus, we will adopt instead the discrepancy, which provides a measure of the
dissimilarity of two distributions that takes into consideration both the loss function
and the hypothesis set used, and that is suitable to the specific scenario of drifting.

Our definition of discrepancy is a generalization to the drifting context of the one
introduced by [14] for the analysis of domain adaptation. Observe that for a fixed hy-
pothesis h ∈ H , the quantity of interest with drifting distributions is the difference of
the expected losses LD′(h)−LD(h) for two consecutive distributionsD andD′. A nat-
ural distance between distributions in this context is thus one based on the supremum
of this quantity over all h ∈ H .

Definition 2. Given a hypothesis setH and a loss function L, the Y-discrepancy discY
between two distributionsD andD′ over X × Y is defined by:

discY(D,D′) = sup
h∈H

∣∣LD′(h)− LD(h)
∣∣. (4)

In a deterministic learning scenario with a labeling function f , the previous definition
becomes

discY(D,D′) = sup
h∈H

∣∣LD′1(f, h)− LD1(f, h)
∣∣, (5)

where D′1 and D1 are the marginal distributions associated to D and D′ defined over
X . The target function f is unknown and could match any hypothesis h′. This leads to
the following definition [14].

Definition 3. Given a hypothesis set H and a loss function L, the discrepancy disc
between two distributionsD andD′ over X × Y is defined by:

disc(D,D′) = sup
h,h′∈H

∣∣LD′1(h′, h)− LD1(h′, h)
∣∣. (6)
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An important advantage of this last definition of discrepancy, in addition to those al-
ready mentioned, is that it can be accurately estimated from finite samples drawn from
D′1 andD1 when the loss is bounded and the Rademacher complexity of the family of
functions LH = {x �→ L(h′(x), h(x)) : h, h′ ∈ H} is in O(1/

√
T ), where T is the

sample size; in particular when LH has a finite pseudo-dimension [14]. The discrep-
ancy is by definition symmetric and verifies the triangle inequality for any loss function
L. In general, it does not define a distance since we may have disc(D,D′) = 0 for
D′ �= D. However, in some cases, for example for kernel-based hypothesis sets based
on a Gaussian kernel, the discrepancy has been shown to be a distance [17].

We will present our learning guarantees in terms of the Y-discrepancy discY , that
is the most general definition since guarantees in terms of the discrepancy disc can be
straightforwardly derived from them. The advantage of the latter bounds is the fact that
the discrepancy can be estimated in that case from unlabeled finite samples.

We will consider two different scenarios for the analysis of learning with drifting
distributions: the drifting PAC scenario and the drifting tracking scenario.

The drifting PAC scenario is a natural extension of the PAC scenario, where the ob-
jective is to select a hypothesis h out of a hypothesis set H with a small expected loss
according to the distribution DT+1 after receiving a sample of T ≥ 1 instances drawn
from the product distribution

⊗T
t=1Dt. Thus, the focus in this scenario is the perfor-

mance of the hypothesis h with respect to the environment distribution after receiving
the training sample.

The drifting tracking scenario we consider is based on the scenario originally intro-
duced by [8] for the zero-one loss and is used to measure the performance of an algo-
rithm A (as opposed to any hypothesis h). In that learning model, the performance of
an algorithm is determined based on its average predictions at each time for a sequence
of distributions. We will generalize its definition by using the notion of discrepancy
and extending it to other loss functions. The following definitions are the key concepts
defining this model.

Definition 4. For any sample S = (xt, yt)
T
t=1 of size T , we denote by hT−1 ∈ H the

hypothesis returned by an algorithm A after receiving the first T − 1 examples and by
M̂T its loss or mistake on xT : M̂T = L(hT−1(xT ), yT ). For a product distribution
D =

⊗T
t=1Dt on (X × Y)T we denote byMT (D) the expected mistake ofA:

MT (D) = E
S∼D

[M̂T ] = E
S∼D

[L(hT−1(xT ), yT )].

Definition 5. Let Δ > 0 and let M̃T be the supremum ofMT (D) over all distribution
sequencesD = (Dt), with discY(Dt, Dt+1) < Δ. Algorithm A is said to (Δ, ε)-track
H if there exists t0 such that for T > t0 we have M̃T < infh∈H LDT (h) + ε.

An analysis of the tracking scenario with theL1 distance used to measure the divergence
of distributions instead of the discrepancy was carried out by Long [9] and Barve and
Long [10], including both upper and lower bounds for M̃T in terms ofΔ. Their analysis
makes use of an algorithm very similar to empirical risk minimization, which we will
also use in our theoretical analysis of both scenarios.
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3 Drifting PAC Scenario

In this section, we present guarantees for the drifting PAC scenario in terms of the
discrepancies of Dt and DT+1 , t ∈ [1, T ], and the Rademacher complexity of the
hypothesis set. We start with a generalization bound in this scenario and then present a
bound for the agnostic learning setting.

Let us emphasize that learning bounds in the drifting scenario should of course not
be expected to converge to zero as a function of the sample size but depend instead on
the divergence between distributions.

Theorem 1. Assume that the loss function L is bounded by M . Let D1, . . . , DT+1 be
a sequence of distributions and let HL = {(x, y) �→ L(h(x), y) : h ∈ H}. Then, for
any δ > 0, with probability at least 1− δ, the following holds for all h ∈ H:

LDT+1(h) ≤ 1

T

T∑
t=1

L(h(xt), yt)+2RT (HL)+
1

T

T∑
t=1

discY(Dt, DT+1)+M

√
log 1

δ

2T
.

Proof. We denote byD the product distribution
⊗T

t=1Dt. LetΦ be the function defined
over any sample S = ((x1, y1), . . . , (xT , yT )) ∈ (X × Y)T by

Φ(S) = sup
h∈H

LDT+1(h)− 1

T

T∑
t=1

L(h(xt), yt).

Let S and S′ be two samples differing by one labeled point, say (xt, yt) in S and (x′t, y
′
t)

in S′, then:

Φ(S′)− Φ(S) ≤ sup
h∈H

1

T

[
L(h(x′t), y

′
t)− L(h(xt), yt)

]
≤ M

T
.

Thus, by McDiarmid’s inequality, the following holds:1

Pr
S∼D

[
Φ(S)− E

S∼D
[Φ(S)] > ε

]
≤ exp(−2T ε2/M2).

We now bound ES∼D[Φ(S)] by first rewriting it, as follows:

E
[

sup
h∈H

LDT+1(h)− 1

T

T∑
t=1

LDt(h) +
1

T

T∑
t=1

LDt(h)− 1

T

T∑
t=1

L(h(xt), yt)
]

≤E
[

sup
h∈H

LDT+1(h)− 1

T

T∑
t=1

LDt(h)
]
+E
[

sup
h∈H

1

T

T∑
t=1

LDt(h)− 1

T

T∑
t=1

L(h(xt), yt)
]

≤E
[ 1

T

T∑
t=1

sup
h∈H

(
LDT+1(h)− LDt(h)

)
+ sup
h∈H

1

T

T∑
t=1

(
LDt(h)− L(h(xt), yt)

)]
≤ 1

T

T∑
t=1

discY(Dt, DT+1) + E
[

sup
h∈H

1

T

T∑
t=1

(
LDt(h)− L(h(xt), yt)

)]
.

1 Note that McDiarmid’s inequality does not require points to be drawn according to the same
distribution but only that they would be drawn independently.



Learning with Drifting Distributions 129

It is not hard to see, using a symmetrization argument as in the non-sequential case, that
the second term can be bounded by 2RT (HL). ()

For many commonly used loss functions, the empirical Rademacher complexity
RT (HL) can be upper bounded in terms of that of the function class H . In particu-
lar, for the zero-one loss it is known that RT (HL) = RT (H)/2 and when L is the Lq
loss for some q ≥ 1, that is L(y, y′) = |y′ − y|q for all y, y′ ∈ Y , then RT (HL) ≤
qM q−1RT (H). Indeed, since x �→ |x|q is qM q−1-Lipschitz over [−M,+M ], by Tala-
grand’s contraction lemma, RT (HL) is bounded by qM q−1R̂T (G) with
G = {(x, y) �→ (h(x)−y) : h ∈ H}. Furthermore, R̂T (G) can be analyzed as follows:

R̂T (G) =
1

T
E
σ

[
sup
h∈H

T∑
t=1

σt(h(xt)− yt)
]

=
1

T
E
σ

[
sup
h∈H

T∑
t=1

σth(xt)

]
+

1

T
E
σ

[ T∑
t=1

−σtyt
]

= R̂T (H),

since Eσ[
∑T

t=1−σtyt] = 0. Taking the expectation of both sides yields a similar in-
equality for Rademacher complexities. Thus, in the statement of the previous theorem,
RT (HL) can be replaced with qM q−1RT (H) when L is the Lq loss.

Observe that the bound of Theorem 1 is tight as a function of the divergence measure
(discrepancy) we are using. Consider for example the case whereD1 = . . . = DT , then
a standard Rademacher complexity generalization bound holds for all h ∈ H :

LDT (h) ≤ 1

T

T∑
t=1

L(h(xt), yt) + 2RT (HL) +O(1/
√
T ).

Now, our generalization bound for LDT+1(h) includes only the additive term
discY(Dt, DT+1), but by definition of the discrepancy, for any ε > 0, there exists
h ∈ H such that the inequality |LDT+1(h)− LDT (h)| < discY(Dt, DT+1) + ε holds.

Next, we present PAC learning bounds for empirical risk minimization. Let h∗T be
a best-in class hypothesis in H , that is one with the best expected loss. By a similar
reasoning as in theorem 1, we can show that with probability 1− δ

2 we have

1

T

T∑
t=1

L(h∗T (xt), yt)≤LDT+1(h∗T )+2RT (HL)+
1

T

T∑
t=1

discY(Dt, DT+1)+2M

√
log 2

δ

2T
.

Let hT be a hypothesis returned by empirical risk minimization (ERM). Combining this
inequality with the bound of theorem 1 while using the definition of hT and using the
union bound, we obtain that with probability 1− δ the following holds:

LDT+1(hT )−LDT+1(h∗T ) ≤ 4RT (HL)+
2

T

T∑
t=1

discY(Dt, DT+1)+2M

√
log 2

δ

2T
. (7)

This learning bound indicates a trade-off: larger values of the sample size T guarantee
smaller first and third terms; however, as T increases, the average discrepancy term is
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likely to grow as well, thereby making learning increasingly challenging. This suggests
an algorithm similar to empirical risk minimization but limited to the last m examples
instead of the whole sample with m < T . This algorithm was previously used in [10]
for the study of the tracking scenario. We will use it here to prove several theoretical
guarantees in the PAC learning model.

Proposition 1. Let Δ ≥ 0. Assume that (Dt)t≥0 is a sequence of distributions such
that discY(Dt, Dt+1) ≤ Δ for all t ≥ 0. Fix m ≥ 1 and let hT denote the hypothesis
returned by the algorithmA that minimizes

∑T
t=T−m L(h(xt), yt) after receiving T >

m examples. Then, for any δ > 0, with probability at least 1− δ, the following learning
bound holds:

LDT+1(hT )− inf
h∈H

LDT+1(h) ≤ 4Rm(HL) + (m+ 1)Δ+ 2M

√
log 2

δ

2m
. (8)

Proof. The proof is straightforward. Notice that the algorithm discards the first T −m
examples and considers exactlym instances. Thus, as in inequality 7, we have:

LDT+1(hT )−LDT+1(h∗T ) ≤ 4Rm(HL) +
2

m

T∑
t=T−m

disc(Dt, DT+1) + 2M

√
log 2

δ

2m
.

Now, we can use the triangle inequality to bound disc(Dt, DT+1) by (T + 1 −m)Δ.
Thus, the sum of the discrepancy terms can be bounded by (m+ 1)Δ. ()

To obtain the best learning guarantee, we can select m to minimize the bound just pre-
sented. This requires the expression of the Rademacher complexity in terms ofm. The
following is the result obtained when using a VC-dimension upper bound ofO(

√
d/m)

for the Rademacher complexity.

Corollary 1. Fix Δ > 0. Let H be a hypothesis set with VC-dimension d such that

for all m ≥ 1, Rm(HL) ≤ C
4

√
d
m for some constant C > 0. Assume that (Dt)t>0

is a sequence of distributions such that discY(Dt, Dt+1) ≤ Δ for all t ≥ 0. Then,
there exists an algorithm A such that for any δ > 0, the hypothesis hT it returns

after receiving T >
[
C+C′

2

] 2
3

( d
Δ2 )

1
3 instances, where C′ = 2M

√
log( 2

δ )

2d , satisfies the

following with probability at least 1− δ:

LDT+1(hT )− inf
h∈H

LDT+1(h) ≤ 3

[
C + C ′

2

]2/3
(dΔ)1/3 +Δ. (9)

Proof: Fix δ > 0. Replacing Rm(HL) by the upper bound C
4

√
d
m in (8) yields

LDT+1(hT )− inf
h∈H

LDT+1(h) ≤ (C + C′)

√
d

m
+ (m+ 1)Δ.

Choosingm = (C+C′
2 )

2
3 ( d

Δ2 )
1
3 to minimize the right-hand side gives exactly (9). ()
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When H has finite VC-dimension d, it is known that Rm(HL) can be bounded by
C
√
d/m for some constant C > 0, by using a chaining argument [18, 19, 20]. Thus,

the assumption of the corollary holds for many loss functions L, when H has finite
VC-dimension.

4 Drifting Tracking Scenario

In this section, we present a simpler proof of the bounds given by [9] for the agnostic
case demonstrating that using the discrepancy as a measure of the divergence between
distributions leads to tighter and more informative bounds than using the L1 distance.

Proposition 2. Let Δ > 0 and let (Dt)t≥0 be a sequence of distributions such that
discY(Dt, Dt+1) ≤ Δ for all t ≥ 0. Letm > 1 and let hT be as in proposition 1. Then,

E
D

[M̂T+1]− inf
h
LDT+1(h) ≤ 4Rm(HL) + 2M

√
π

m
+ (m+ 1)Δ. (10)

Proof. Let D =
⊗T+1

t=1 Dt andD′ =
⊗T

t=1Dt. By Fubini’s theorem we can write:

E
D

[M̂T+1]− inf
h
LDT+1(h) = E

D′

[
LDT+1(hT )− inf

h
LDT+1(h)

]
. (11)

Now, let φ−1(δ) = 4Rm(HL) + (m + 1)Δ + 2M

√
log 2

δ

2m , then, by (8), for
β > 4Rm(h) + (m+ 1)Δ, the following holds:

Pr
D′

[LDT+1(hT )− inf
h
LDT+1(h) > β] < φ(β).

Thus, the expectation on the right-hand side of (11) can be bounded as follows:

E
D′

[
LDT+1(hT )−inf

h
LDT+1(h)

]
≤ 4Rm(HL)+(m+1)Δ+

∫ ∞

4Rm(HL)+(m+1)Δ

φ(β)dβ.

The last integral can be rewritten as 2M
∫ 2

0
dδ√

m log 2
δ

= 2M
√

π
m using the change of

variable δ = φ(β). This concludes the proof. ()

The following corollary can be shown using the same proof as that of corollary 1.

Corollary 2. Fix Δ > 0. Let H be a hypothesis set with VC-dimension d such that

for all m > 1, 4Rm(HL) ≤ C
√

d
m . Let (Dt)t>0 be a sequence of distributions over

X × Y such that discY(Dt, Dt+1) ≤ Δ. Let C′ = 2M
√

π
d and K = 3

[
C+C′

2

]2/3
.

Then, for T >
[
C+C′

2

] 2
3 ( d

Δ2 )
1
3 , the following inequality holds:

E
D

[M̂T+1]− inf
h
LDT+1(h) < K(dΔ)1/3 +Δ.
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In terms of definition 5, this corollary shows that algorithm A (Δ,K(dΔ)1/3 + Δ)-
tracks H . This result is similar to a result of [9] which states that given ε > 0 if Δ =
O(dε3) thenA (Δ, ε)-tracksH . However, in [9],Δ is an upper bound on theL1 distance
and not the discrepancy. Our result provides thus a tighter and more general guarantee
than that of [9], the latter because this result is applicable to any loss function and
not only the zero-one loss, the former because our bound is based on the Rademacher
complexity instead of the VC-dimension and more importantly because it is based on
the discrepancy, which is a finer measure of the divergence between distributions than
the L1 distance. Indeed, for any t ∈ [1, T ],

discY(Dt, Dt+1) = sup
h∈H

∣∣LDt(h)− LDt+1(h)
∣∣

= sup
h∈H

∣∣∑
x,y

(Dt(x, y)−Dt+1(x, y))L(h(x), y)
∣∣∣∣

≤M sup
h∈H

∑
x,y

|Dt(x, y)−Dt+1(x, y)| = ML1(Dt, Dt+1).

Furthermore, when the target function f is in H , then the Y-discrepancies can be
bounded by the discrepancies disc(Dt, DT+1), which, unlike the L1 distance, can be
accurately estimated from finite samples.

It is important to emphasize that even though our analysis was based on a particular
algorithm, that of “truncated” empirical risk minimization, the bounds obtained here
cannot be improved upon in the general scenario of drifting distributions, as shown by
[10] in the case of binary classification.

We now illustrate the difference between the guarantees we present and those based
on the L1 distance by presenting a simple example for the zero-one loss where the L1

distance can be made arbitrarily close to 2 while the discrepancy is 0. In that case, our
bounds state that the learning problem is as favorable as in the absence of any drift-
ing, while a learning bound with the L1 distance would be uninformative. Consider

Fig. 1. Figure depicting the difference between the L1 distance and the discrepancy. In the left
figure, the L1 distance is given by twice the area of the green rectangle. In the right figure,
P (h(x) �= h′(x)) is equal to the area of the blue rectangle and Q(h(x) �= h′(x)) is the area of
the red rectangle. The two areas are equal, thus disc(P,Q) = 0.
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measures P and Q in R
2. Where P is uniform in the rectangle R1 defined by the ver-

tices (−1, R), (1, R), (1,−1), (−1,−1) andQ is uniform in the rectangleR2 spanned
by (−1,−R), (1,−R), (−1, 1), (1, 1). The measures are depicted in figure 1. The L1

distance of these probability measures is given by twice the difference of measure in
the green rectangle, i.e, |P − Q| = 2 (R−1)

R+1 this distance goes to 2 as R → ∞. On
the other hand consider the zero-one loss and the hypothesis set consisting of thresh-
old functions on the first coordinate, i.e. h(x, y) = 1 iff h < x. For any two hy-
potheses h < h′ the area of disagreement of this two hypotheses is given by the stripe
S = {x : h < x < h′}. But it is trivial to see that P (S) = P (S ∩ R1) = (h − h′)/2,
but also Q(S) = Q(S ∩R2) = (h− h′)/2, since this is true for any pair of hypotheses
we conclude that disc(P,Q) = 0. This example shows that the learning bounds we
presented can be dramatically more favorable than those given in the past using the L1

distance.
Although this may be viewed as a trivial illustrative example, the discrepancy and

the L1 distance can greatly differ in more complex but realistic cases.

5 On-line to Batch Conversion

In this section, we present learning guarantees for drifting distributions in terms of the
regret of an on-line learning algorithm A. The algorithm processes a sample (xt)t≥1

sequentially by receiving a sample point xt ∈ X , generating a hypothesis ht, and in-
curring a loss L(h(xt), yt), with yt ∈ Y . We denote by RT the regret of algorithm A
after processing T ≥ 1 sample points:

RT =

T∑
t=1

L(h(xt), yt)− inf
h∈H

T∑
t=1

L(h(xt), yt).

The standard setting of on-line learning assumes an adversarial scenario with no dis-
tributional assumption. Nevertheless, when the data is generated according to some
distribution, the hypotheses returned by an on-line algorithmA can be combined to de-
fine a hypothesis with strong learning guarantees in the distributional setting when the
regret RT is in O(

√
T ) (which is attainable by several regret minimization algorithms)

[21, 22]. Here, we extend these results to the drifting scenario and the case of a convex
combination of the hypotheses generated by the algorithm. The following lemma will
be needed for the proof of our main result.

Lemma 1. Let S = (xt, yt)
T
t=1 be a sample drawn from the distribution D =

⊗
Dt

and let (ht)
T
t=1 be the sequence of hypotheses returned by an on-line algorithm se-

quentially processing S. Let w = (w1, . . . , wt)
� be a vector of non-negative weights

verifying
∑T

t=1 wt = 1. If the loss function L is bounded by M then, for any δ > 0,
with probability at least 1− δ, each of the following inequalities hold:

T∑
t=1

wtLDT+1(ht) ≤
T∑
t=1

wtL(ht(xt), yt) + Δ̄(w, T ) +M‖w‖2
√

2 log
1

δ

T∑
t=1

wtL(ht(xt), yt) ≤
T∑
t=1

wtLDT+1(ht) + Δ̄(w, T ) +M‖w‖2
√

2 log
1

δ
,
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where Δ̄(w, T ) denotes the average discrepancy
∑T

t=1 wtdiscY(Dt, DT+1).

Proof. Consider the random process: Zt = wtL(ht(xt), yt) − wtL(ht) and let Ft
denote the filtration associated to the sample process. We have: |Zt| ≤Mwt and

E
D

[Zt|Ft−1] = E
D

[wtL(ht(xt), yt)|Ft−1]− E
Dt

[wtL(ht(xt), yt)] = 0

The second equality holds because ht is determined at time t−1 and xt, yt are indepen-
dent of Ft−1. Thus, by Azuma-Hoeffding’s inequality, for any δ > 0, with probability
at least 1− δ the following holds:

T∑
t=1

wtLDt(ht) ≤
T∑
t=1

wtL(h(xt), yt) +M‖w‖2
√

2 log
1

δ
. (12)

By definition of the discrepancy, the following inequality holds for any t ∈ [1, T ]:

LDT+1(ht) ≤ LDt(ht) + discY(Dt, DT+1).

Summing up these inequalities and using (12) to bound
∑T

t=1 wtLDt(ht) proves the
first statement. The second statement can be proven in a similar way. ()
The following theorem is the main result of this section.

Theorem 2. Assume that L is bounded by M and convex with respect to its first ar-
gument. Let h1, . . . , hT be the hypotheses returned by A when sequentially processing
(xt, yt)

T
t=1 and let h be the hypothesis defined by h =

∑T
t=1 wtht, where w1, . . . , wT

are arbitrary non-negative weights verifying
∑T

t=1 wt = 1. Then, for any δ > 0, with
probability at least 1− δ, h satisfies each of the following learning guarantees:

LDT+1(h) ≤
T∑
t=1

wtL(ht(xt), yt) + Δ̄(w, T ) +M‖w‖2
√

2 log
1

δ

LDT+1(h) ≤ inf
h∈H

L(h) +
RT
T

+ Δ̄(w, T ) +M‖w− u0‖1 + 2M‖w‖2
√

2 log
2

δ
,

where w = (w1, . . . , wT )�, Δ̄(w, T ) =
∑T

t=1 wtdiscY(Dt, DT+1), and u0 ∈ R
T is

the vector with all its components equal to 1/T .

Observe that when all weights are all equal to 1
T , the result we obtain is similar to the

learning guarantee obtained in theorem 1 when the Rademacher complexity of HL is
O( 1√

T
). Also, if the learning scenario is i.i.d., then the first sum of the bound vanishes

and it can be seen straightforwardly that to minimize the RHS of the inequality we
need to set wt = 1

T , which results in the known i.i.d. guarantees for on-line to batch
conversion [21, 22].

Proof. Since L is convex with respect to its first argument, by Jensen’s inequality, we
have LDT+1(

∑T
t=1 wtht) ≤

∑T
t=1 wtLDT+1(ht). Thus, by Lemma 1, for any δ > 0,

the following holds with probability at least 1− δ:

LDT+1

(
T∑
t=1

wtht

)
≤

T∑
t=1

wtL(ht(xt), yt) + Δ̄(w, T ) +M‖w‖2
√

2 log
1

δ
. (13)
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This proves the first statement of the theorem. To prove the second claim, we will
bound the empirical error in terms of the regret. For any h∗ ∈ H , we can write
using infh∈H 1

T

∑T
t=1 L(h(xt), yt) ≤ 1

T

∑T
t=1 L(h∗(xt), yt):

T∑
t=1

wtL(ht(xt), yt)−
T∑
t=1

wtL(h∗(xt), yt)

=

T∑
t=1

(
wt−

1

T

)
[L(ht(xt), yt)−L(h∗(xt), yt)]+

1

T

T∑
t=1

[L(ht(xt), yt)−L(h∗(xt), yt)]

≤M‖w− u0‖1 +
1

T

T∑
t=1

L(ht(xt), yt)− inf
h

1

T

T∑
t=1

L(h(xt), yt)

≤M‖w− u0‖1 +
RT
T
.

Now, by definition of the infimum, for any ε > 0, there exists h∗ ∈ H such that
LDT+1(h∗) ≤ infh∈H LDT+1(h) + ε. For that choice of h∗, in view of (13), with
probability at least 1− δ/2, the following holds:

LDT+1(h) ≤
T∑
t=1

wtL(h∗(xt), yt)+M‖w−u0‖1+
RT
T

+Δ̄(w, T )+M‖w‖2
√

2 log
2

δ
.

By the second statement of Lemma 1, for any δ > 0, with probability at least 1− δ/2,

T∑
t=1

wtL(h∗(xt), yt) ≤ LDT+1(h∗) + Δ̄(w, T ) +M‖w‖2
√

2 log
2

δ
.

Combining these last two inequalities, by the union bound, with probability at least

1− δ, the following holds with B(w, δ) = M‖w−u0‖1 + RT

T + 2M‖w‖2
√

2 log 2
δ :

LDT+1(h) ≤ LDT+1(h∗) + 2Δ̄(w, T ) +B(w, δ)

≤ inf
h∈H

LDT+1(h) + ε + 2Δ̄(w, T ) +B(w, δ).

The last inequality holds for all ε > 0, therefore also for ε = 0 by taking the limit. ()

6 Algorithm

The results of the previous section suggest a natural algorithm based on the values of the
discrepancy between distributions. Let (ht)

T
t=1 be the sequence of hypotheses generated

by an on-line algorithm. Theorem 2 provides a learning guarantee for any convex com-
bination of these hypotheses. The convex combination based on the weight vector w
minimizing the bound of Theorem 2 benefits from the most favorable guarantee. This
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leads to an algorithm for determining w based on the following convex optimization
problem:

min
w

λ‖w‖22 +

T∑
t=1

wt (discY(Dt, DT+1) + L(ht(xt), yt)) (14)

subject to:
( T∑
t=1

wt = 1
)
∧ (∀t ∈ [1, T ], wt ≥ 0),

where λ ≥ 0 is a regularization parameter. This is a standard QP problem that can be
efficiently solved using a variety of techniques and available software.

In practice, the discrepancy values discY(Dt, DT+1) are not available since they
require labeled samples. But, in the deterministic scenario where the labeling function
f is inH , we have discY(Dt, DT+1) ≤ disc(Dt, DT+1). Thus, the discrepancy values
disc(Dt, DT+1) can be used instead in our learning bounds and in the optimization
(14). This also holds approximately when f is not in H but is close to some h ∈ H .

As shown in [14], given two (unlabeled) samples of size n from Dt and DT+1,
the discrepancy disc(Dt, DT+1) can be estimated within O(1/

√
n), when Rn(HL) =

O(1/
√
n). In many realistic settings, for tasks such as spam filtering, the distributionDt

does not change within a day. This gives us the opportunity to collect an independent
unlabeled sample of size n from each distribution Dt. If we choose n + T , by the
union bound, with high probability, all of our estimated discrepancies will be within
O(1/

√
T ) of their exact counterparts disc(Dt, DT+1).

Additionally, in many cases, the distributionsDt remain unchanged over some longer
periods (cycles) which may be known to us. This in fact typically holds for some tasks
such as spam filtering, political sentiment analysis, some financial market prediction
problems, and other problems. For example, in the absence of any major political event
such as a debate, speech, or a prominent measure, we can expect the political senti-
ment to remain stable. In such scenarios, it should be even easier to collect an unlabeled
sample from each distribution. More crucially, we do not need then to estimate the
discrepancy for all t ∈ [1, T ] but only once for each cycle.

6.1 Experiments

Here, we report the results of preliminary experiments demonstrating the performance
of our algorithm. We tested our algorithm on synthetic data in a regression setting. The
testing and training data were created as follows: instances were sampled from a two-
dimensional Gaussian random variables N (μt, 1). The objective function at each time
was given by yt = wt ·xt. The weight vectors wt and mean vectors μt were selected as
follows: μt = μt−1 + U and wt = Rθwt−1, where U is the uniform random variable
over [−.1,+.1]2 and Rθ a rotation of magnitude θ distributed uniformly over (−1, 1).
We used the Widrow-Hoff algorithm [23] as our base on-line algorithm to determine ht.
After receiving T examples, we tested our final hypothesis on 100 points taken from the
same Gaussian distribution N (μT+1, 1). We ran the experiment 50 times for different
amounts of sample points and took the average performance of our classifier. For these
experiments, we are considering the ideal situation where the discrepancy values are
given.
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Fig. 2. Comparison of the performance of three algorithms as a function of the sample size T .
Weighted stands for the algorithm described in this paper, Regular for an algorithm that
averages over all the hypotheses, and Fixed for the algorithm that averages only over the last
100 hypotheses.

We compared the performance of our algorithm with that of the algorithm that (uni-
formly) averages all of the hypotheses and with that of the algorithm that averages
only the last 100 hypotheses generated by the perceptron algorithm. Figure 2 shows
the results of our experiments in the first setting. Observe that the error increases with
the sample size. While the analysis of Section 3 could provide an explanation of this
phenomenon in the case of the uniform averaging algorithm, in principle, it does not
explain why the error also increases in the case of our algorithm. The answer to this
can be found in the setting of the experiment. Notice that the Gaussians considered are
moving their center and that the squared loss grows proportional to the radius of the
smallest sphere containing the sample. Thus, as the number of points increases, so does
the maximum value of the loss function in the test set. Finally, keep in mind that the
accuracy of our algorithm can drastically change of course depending on the choice of
the online algorithm used.

7 Conclusion

We presented a theoretical analysis of the problem of learning with drifting distributions
in the batch setting. Our learning guarantees improve upon previous ones based on the
L1 distance, in some cases substantially, and our proofs are simpler and concise. These
bounds benefit from the notion of discrepancy which seems to be the natural measure
of the divergence between distributions in a drifting scenario. This work motivates a
number of related studies, in particular a discrepancy-based analysis of the scenario in-
troduced by [13] and further improvements of the algorithm we presented, in particular
by exploiting the specific on-line learning algorithm used.
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Abstract. The Domain Adaptation problem in machine learning oc-
curs when the test and training data generating distributions differ. We
consider the covariate shift setting, where the labeling function is the
same in both domains. Many works have proposed algorithms for Do-
main Adaptation in this setting. However, there are only very few gener-
alization guarantees for these algorithms. We show that, without strong
prior knowledge about the training task, such guarantees are actually
unachievable (unless the training samples are prohibitively large). The
contributions of this paper are two-fold: On the one hand we show that
Domain Adaptation in this setup is hard. Even under very strong as-
sumptions about the relationship between source and target distribution
and, on top of that, a realizability assumption for the target task with
respect to a small class, the required total sample sizes grow unbound-
edly with the domain size. On the other hand, we present settings where
we achieve almost matching upper bounds on the sum of the sizes of the
two samples. Moreover, the (necessarily large) samples can be mostly un-
labeled (target) samples, which are often much cheaper to obtain than
labels. The size of the labeled (source) sample shrinks back to standard
dependence on the VC-dimension of the concept class. This implies that
unlabeled target-generated data is provably beneficial for DA learning.

Keywords: Statistical Learning Theory, Domain Adaptation, Sample
Complexity, Unlabeled Data.

1 Introduction

Much of the theoretical analysis of machine learning focuses on a model where
the training and test data are generated by the same underlying distribution.
While this may sometimes be a good approximation of reality, in many practical
tasks this assumption cannot be justified - it is often the case that the data
used for training the learner is generated by a different probability distribution
than the one generating the test (target) data. The data generating distribution
might change over time, or one may wish to apply classifiers trained on some
available training data to other domains for which there is no labeled training
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data available. E.g., in natural language processing one might only have labeled
documents of a certain type available, say legal documents, but needs to build
a classifier to label documents of a different type, say medical documents This
scenario is referred to as Domain Adaption (DA). Domain Adaptation occurs in
many practical situations and is frequently addressed in experimental research.

Obviously, the success of Domain Adaptation learning depends on the re-
lationship between the process generating the training data to the one that
generates the target (test) data. Much of the Domain Adaptation research ad-
dresses learning under the covariate shift assumption, where both the training
data generating distribution and the test data generating distribution share the
same labeling function (and differ only in their marginals). Several algorithmic
paradigms have been proposed for Domain Adaptation learning in this setup.
Discrepancy Minimization [1], Importance Weighting [2], [3], Density Ratio Es-
timation [4], and more. However, there are very few satisfying theoretical guar-
antees on the success of these paradigms.

In this work, we show that, in contrast to the impression that one may get
from these proposed methods, without strong prior knowledge about the training
task, guarantees on the success of Domain Adaptation learning under covariate
shift are impossible (unless the training samples are prohibitively large).

To allow a more concrete description of our results, we now outline the mod-
eling assumptions that underly our work.

The Input Data Available to the Learner: In this work, we consider a model
in which the learner has access to source-generated random labeled samples and
to unlabeled samples generated by the distribution governing the target domain.
The focus of this paper is analyzing the sample complexity of DA learning with
respect to each of these types of samples.

The Relationship between the Source and Target Data-Generating
Distributions: Besides the covariate shift assumption, we consider several
measures for the relationship between the marginals of the source and target
distributions. Mainly, we employ a bound on the ratio of weights of sets in a
prescribed collection of domain subsets.

The Learner’s Prior Knowledge about the Task: Prior knowledge about
a learning task is necessary for any guarantees of success (this is the “no-free-
lunch” principle). Since the goal of the learner is to come up with a low-error
predictor for the target task, prior knowledge about that task is required to guar-
antee its success. However, interestingly, the few papers that do provide error
bounds guarantees for DA learning also assume that the learner has rather strong
prior knowledge about the source task. In particular, both [5] and [1] assumed
that the learner has knowledge of a hypothesis class, that bridges the discrepan-
cies between source and target tasks, a class that has good approximation error
with respect to both tasks.

The other studies cited above, that address DA learning in the covariate shift
setup and do not assume such prior knowledge, also lack satisfying error bound
guarantees. Is this just a coincidence? To answer this question, we focus on DA
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learning when the prior knowledge available to the learner is about just the
target task. We assume that the learner has prior knowledge of a class that
contains a function with zero classification error on the target distribution, but
we do not make assumptions on the behavior of that class with respect to the
source distribution. It turns out that under such conditions DA learning cannot
be guaranteed to succeed as long as the training sample sizes are not excessively
large.

Summary of Our Results: The first contribution of this paper is a rather
strong negative result. We show, in Section 3, that even under strong assump-
tions, namely, covariate shift, a bound on the point-wise weight-ratio between
the marginal distributions and realizability of the target distribution by a class
of VC-dimension 1, the number of needed training examples (the sum of the
number source-generated labeled examples and the number of target-generated
unlabeled examples) may need to grow to infinity with the size of the domain
set. In other words, even when learning from task-generated labeled examples is
trivial, learning based on a sample generated by a closely-related source distri-
bution and unlabeled data yields very high sample complexity. As an aside, our
lower bound in that section employs a reduction from a novel probabilistic task
that may find further applications in machine learning theory. We also prove
a similar sample complexity lower bound, for the case of a Euclidean domain,
assuming that the labeling function is known to be Lipschitz. The bound is ex-
ponential in the Euclidean dimension of the domain. These lower bounds apply
regardless of any choice of a learning algorithm.

Our lower bounds almost match an upper bound by [6] on the size of the
labeled source-generated training for DA learning, achieved by a simple nearest
neighbor algorithm. However, in many practical DA learning tasks, unlabeled
examples, even from the target domain, are easier to come by than labeled
source examples. A natural followup question concerns the possibility of trading
source-generated labeled examples against target-generated unlabeled data.

In Section 4, we present two scenarios in which we show that DA learning is
indeed possible on the basis of (large) unlabeled samples together with a labeled
sample whose size is basically determined by the VC-dimension of the concept
class (as well as the discrepancy between the two marginal distributions and
the usual accuracy and confidence parameters, ε and δ, but not depending on
the domain size). In the first scenario we assume that the learner has the prior
knowledge of a concept class relative to which the target distribution is realizable
with margins. In the second scenario we assume finiteness of the domain, (but
no margin- or Lipschitz-assumptions on the involved labeling functions).

Combining the lower and upper bounds described above, we conclude that
when the size of the source-generated labeled sample is small (e.g., indepen-
dent of the domain size) then, without strong prior knowledge about the source
distribution, successful DA is possible only by adaptive algorithms (algorithms
that make use of target generated data, such as ours). In other words, in that
setup, unlabeled target-generated data is provably necessary and beneficial for
DA learning.
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Related Work. Here, we discuss some of the learning paradigms that have been
proposed to facilitate successful DA under the covariate shift assumption.

Much of the work on Domain Adaptation addresses DA under the covariate
shift assumption, where the conditional (label) distributions of the target and
source data are identical. Under this assumption, source and target data distri-
bution only differ in their marginals. Therefore, a natural approach for covariate
shift DA learning is to reweigh the training sample to make it as similar as pos-
sible to a sample generated by the target distribution (e.g., [7] and [8]). Clearly,
such reweighing, when implemented precisely, turns the distribution over source-
generated training samples into a distribution close to that over target-generated
samples, thus overcoming the source-target discrepancy. Similar ideas underly
the methods of Discrepancy Minimization [1], Importance Weighting [2], [3] and
Density Ratio estimation [4].

However, our sample complexity lower bound, Theorem 1, implies that in
order to obtain such reliable reweighing the learner needs access to huge samples,
of sizes that go to infinity with the size of the underlying domain.

A weight ratio assumption has previously been considered by [2]. They pro-
pose a Domain Adaptation paradigm with provable success rates, assuming the
learner can access the values of the point-wise weight ratio. They also acknowl-
edge the excessive strength of an assumption that bounds the point-wise weight
ratio and discuss some relaxations of this. The apparent contradiction between
their sample complexity upper bounds and our lower bounds is due the the sam-
ple complexity of estimating the weight ratio (that their analysis assumes is given
to the learner). To address the sample complexity of estimating the weight-ratio
function, [2] refer to [9]. However, the sample complexity analysis of [9] assumes
that all the points of the labeled source sample S occur also in the unlabeled
target sample T . When S and T are sampled independently, as is the case in the
covariate shift DA learning setting, the size of T required to guarantee hitting
every member in S grows unboundedly with the size of the support of the target
distribution.

Distribution independent error bounds for Domain Adaptation learning were
shown in an analysis of the problem with respect to a given “bridging” hy-
potheses class H – a class that is assumed to provide good approximation to
both the source and the target distributions. [5] propose to measure the relat-
edness of the two distributions by two parameters that depend on the class H ;
the discrepancy between the marginal distributions by the so-called dA distance
(as introduced by [10]), and a notion of a “joint approximation error” of the
class with respect to source and target. The paper provides upper bounds, in
terms of these parameters, on the error of the simplest conservative Domain
Adaptation algorithm—the empirical risk minimization (ERM) over the train-
ing data. A follow-up paper, [1], extends the dA distance to real-valued function
classes and loss functions other than the 0-1 loss. In addition, they propose a
non-conservative learning paradigm— a certain reweighing procedure aimed to
minimize the discrepancy between the source and target input samples. This is
further extended to regression problems in [11].
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Lower bounds for DA learning under covatiate shift are also presented in [12].
They prove worst case lower bounds on the sample complexity of reweighing
paradigms for DA learning in the setup of a bridging hypothesis class. Both that
paper and our lower bound consider the covariate shift setup and, on top of that,
assume that the marginals of the training and test data are “similar”. However,
the notion of the distributions’ similarity in [12] is weaker - having small dA
distance. The lower bound in that paper takes advantage of the looseness of the
discrepancy dA and constructs a scenario in which, although the marginals look
similar w.r.t. that distance, the target distribution is supported on regions that
have zero weight in the training distribution. It is no surprise that under such
circumstances DA may fail (the training sample misses significant chunks of the
target distribution). In our work, we consider the strong assumption that the
point-wise density ratio between the two distributions is bounded from below by
0.5 (implying that no region that is significant w.r.t. the target is missed by the
source distribution). Just the same, we show that any DA algorithm may fail,
even if it just has to decide between the all-zero and the all-one predictors for
the target. The failure of DA in this a setting is quite surprising and requires a
novel proof technique.

Another aspect of the current paper - theoretical analysis of the utility of tar-
get generated unlabeled samples for DA learning - has also been addressed in [6].
However, they show such a benefit for the restricted setting of proper DA learn-
ing (where the learner is required to output a classifier from a predefined class),
whereas we prove that unlabeled samples are also beneficial in the general DA
learning framework, when the learner is allowed to output arbitrary predictors.

2 Preliminaries

2.1 Definitions

We consider the following formal setup for Domain Adaptation learning: We let
X denote the domain set and let l : X → {0, 1} denote the labeling function of
our learning task. There are two distributions over X , the source distribution PS
and the target distribution PT . Given a function h : X → {0, 1}, we let ErrlS(h) =
Prx∼PS (h(x) �= l(x)) denote the source error and ErrlT (h) = Prx∼PT (h(x) �=
l(x)) denote the target error of h with respect to l.

A Domain Adaptation learner takes as input a labeled i.i.d. sample S drawn
according to PS and labeled by l and an unlabeled i.i.d. sample T drawn accord-
ing to PT and aims to output a label predictor h : X → {0, 1} with low target
error. Formally, a Domain Adaptation (DA) learner is a function

A :
⋃∞
m=1

⋃∞
n=1(X × {0, 1})m ×Xn → {0, 1}X .

Clearly, guarantees on the success of Domain Adaptation learners are impossi-
ble without assumptions on the relatedness of source and target distribution.
Therefore, we investigate the success of DA learners for specified classes of pairs
of source and target distributions (in standard PAC learning theory, the learner
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is required to succeed for all such pairs, where source and target are exactly the
same). We now set our framework to measure the success of DA-learners:

Definition 1 (DA-learnablity). Let W be a class of triples (PS , PT , l) of
source and target distributions over some domain X and a labeling function,
and let A be a DA learner. We say that A (ε, δ,m, n)-solves DA for the class
W, if, for all triples (PS , PT , l) ∈ W, when given access to a sample S of size
m, generated i.i.d. by PS and labeled by l, and an unlabeled sample T of size
n, generated i.i.d by PT , with probability at least 1 − δ (over the choice of the
samples S and T ) A outputs a function h with ErrlT (h) ≤ ε.

2.2 Relatedness Assumptions

One basic observation about DA learning is that it may become impossible when
the source and target distributions are supported on disjoint domain regions. To
guard against such scenarios, it is common to assume that there is some non-
zero lower bound to the pointwise density ratio between the two distributions.
However, this is often an unrealistic assumption. To overcome this drawback, we
propose the following relaxation of that assumption.

Definition 2 (Weight ratio). Let B ⊆ 2X be a collection of subsets of the
domain X measurable with respect to both PS and PT . We define the weight
ratio of the source distribution and the target distribution with respect to B as

CB(PS , PT ) = inf
b∈B(X )
PT (b) 
=0

PS(b)

PT (b)
,

We denote the weight ratio with respect to the collection of all sets that are PS-
and PT -measurable by C(PS , PT ).

These measures become relevant for Domain Adaptation when bounded away
from zero.

Note that in the case of discrete distributions C(PS , PT ) is equal to the point-
wise weight ratio C(PS , PT ) = C{{x}:x∈X}(PS , PT ). For every B ⊆ 2X we have
C(PS , PT ) ≤ CB(PS , PT ), thus bounding the pointwise weight ratio away from 0
is the strongest restriction. Our lower bounds hold with a bound on the pointwise
weight ratio. For the positive results, we will employ the weight ratio for some
limited collections of subsets of the domain space. Note that if B is a set of finite
VC-dimension, and we take the infimum in Definition 2 only over sets b with
PT (b) ≥ η, for some η > 0, then we can estimate the weight ratio from finite
samples (see Theorem 3.4 and the subsequent discussion of [10]).

In previous work on analysis of DA, the following distance has been employed:

Definition 3 (dHΔH -Distance). Let X be some domain, PS and PT distribu-
tions over X and H a hypothesis class. Then the dHΔH -distance is defined as

dHΔH (PS , PT ) = sup
A∈HΔH

|PT (A)− PS(A)|

where HΔH = {h1Δh2 | h1, h2 ∈ H}, and h1Δh2 = {x ∈ X | h1(x) �= h2(x)}.
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2.3 Prior Knowledge Assumptions

We investigate Domain Adaptation under a realizability assumption for the
target task. While realizability is a strong assumption, that renders standard
learning easy, our lower bound shows that Domain Adaptation remains a chal-
lenging task even under this condition. Formally, for a hypothesis class H ⊆
{0, 1}X we let optlT (H) = min{ErrlT (h)|h ∈ H} denote the target approxima-
tion error of the class. We say that a class H realizes the target distribution with
labeling function l if optlT (H) = 0.

If the domain is a euclidean space, X ⊆ R
d for some dimension d, we denote

the ball of radius r around some domain point x by Br(x) and formalize the
margin assumption as follows:

Definition 4. Let X ⊆ R
d, P a distribution over X and h : X → {0, 1} a

classifier. We say that h is a γ-margin classifier with respect to P if for all
x ∈ X whenever P (Bγ(x)) > 0 then h(y) = h(z) holds for all y, z ∈ Bγ(x).

We say that a class H realizes the distribution with margin γ if the optimal
(zero-error) classifier is a γ-margin classifier. Note that h being a γ-margin clas-
sifier with respect to P is equivalent to h satisfying the Lipschitz-property with
Lipschitz constant 1/2γ on the support of P . We will call the property in Defi-
nition 4 Lipschitzness when making an assumption about the labeling function
and a margin assumption when referring to the optimal classifier.

3 Lower Bounds for Realizable Domain Adaptation

The lower bound in this section shows that no small amount of labeled source
and unlabeled target data suffices for DA under covariate shift. We show that
even in the case where the learner knows that the target is realizable by the
class H1,0 that contains only the all-1 and the all-0 labeling functions, a class of
VC-dimension 1, the sizes of the source sample and the target sample need to
be (roughly) as large as

√
|X | for Domain Adaptation to be possible.

Theorem 1. For every finite domain X , for every ε and δ with ε + δ < 1/2,
no algorithm can (ε, δ, s, t)-solve the DA problem for the class W of triples
(PS , PT , l) with C(PS , PT ) ≥ 1/2, dH1,0ΔH1,0 (PS , PT ) = 0 and optlT (H1,0) = 0 if

s+ t <
√

(1− 2(ε+ δ))|X | − 2.

This hardness result is quite surprising since it applies to a setting in which DA
learning is seemingly as easy as it can get; the prior knowledge about the target
task is so strong that one labeled target example would suffice for finding a zero
error classifier. Furthermore, the source and target distributions share the same
deterministic labeling function, and the marginals of the two distributions are
similar from both the dHΔH -distance and the weight ratio perspectives (namely
the source probability of any domain point is at least half its target probability).

Several conclusions can be drawn from this lower bound:
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1. If one assumes target realizability by a small hypothesis class but does
not assume that there is such a class that has small approximation error with
respect to both the source and the target, the DA sample complexity cannot be
bounded as a function of only on the VC-dimension of the class that realizes
the target distribution. This is in sharp contrast to the sample complexity of
learning without discrepancy between the training and test data.

2. It is necessary to have some data generated by the target distribution
available, if the number of labeled examples is only allowed to depend on the
VC-dimension of the class.

3. Since under the covariate shift assumption having access to the ratio be-
tween a the source and target probability of domain points allows successful DA
learning, our result implies that the sample sizes needed to obtain useful approx-
imations of that ratio, as required, e.g., for importance weighting techniques, are
prohibitively high.

A lower bound in terms of Lipschitzness. Theorem 2 implies a lower bound
for the size of the sample for infinite domains under the additional assumption
that the labeling function satisfies the Lipschitz property for some Lipschitz
constant λ. Again, this lower bound holds under the assumption that the target
is realizable by a two-function-class.

Theorem 2. Let X = [0, 1]d, ε > 0 and δ > 0 be such that ε + δ < 1/2,
let λ > 1 and let Wλ be the set of triples (PS , PT , l) of distributions over X
with optlT (H1,0) = 0, C(PS , PT ) ≥ 1/2, dH1,0ΔH1,0(PS , PT ) = 0 and λ-Lipschitz
labeling functions l. Then no DA-learner can (s, t, ε, δ)-solve the DA-problem for
the class Wλ unless s+ t ≥

√
(λ+ 1)d(1 − 2(ε+ δ))− 2.

Proof. Let G ⊆ X be the points of a grid in [0, 1]d with distance 1/λ. Then
we have |G| = (λ + 1)d. Then the class Wλ contains all triples (PS , PT , l),
where the support of PS and PT is G, optlT (H1,0) = 0, C(PS , PT ) ≥ 1/2,
dH1,0ΔH1,0 (PS , PT ) = 0 and arbitrary labeling functions l : G → {0, 1}, as every
such function is λ-Lipschitz. As G is finite, the bound follows from Theorem 1.

3.1 Proof of Theorem 1

We obtain our lower bound by reducing the following problem to DA:

The Left/Right Problem. We consider the problem of distinguishing two dis-
tributions from finite samples. The Left/Right Problem was introduced in [13]:

Input: Three finite samples, L, R and M of points from some domain set X .

Output: Assuming that L is an an i.i.d. sample from some distribution P over
X , that R is an an i.i.d. sample from some distribution Q over X , and that M
is an i.i.d. sample generated by one of these two probability distributions, was
M generated by P or by Q ?

We first derive a lower bound on the sample size needed to solve the Left/Right
problem in Lemma 1. Then we reduce the Left/Right problem to Domain Adap-
tation under target realizability, thereby obtaining a lower bound on the sample



On the Hardness of Domain Adaptation 147

size needed to solve DA. Intuitively, one can not answer the Left/Right-question
if the sample M intersects neither the sample L nor the sample R. This yields a
lower bound for the Left/Right problem in the order of the square-root of the do-
main size. The idea of the reduction to Domain Adaptation is to define a source
distribution that is a balanced mixture of P and Q with a labeling function that
gives label 1 to points from L (generated by P ) and label 0 to points from R
(generated by Q). The sample M can then be considered an unlabeled sample
from a target distribution that is equal to either P or Q. Thus, predicting label
0 or 1 correctly corresponds to deciding whether M was generated by P or by
Q. Thereby, we obtain a lower bound for Domain Adaptation for the sum of the
sizes of the labeled source sample and the unlabeled target sample, in the order
of the squareroot of the domain size.

Lower bound for the Left/Right problem: We say that a (randomized) algorithm
(δ, l, r,m)-solves the Left/Right problem if, given samples L, R andM of sizes l, r
andm respectively, it gives the correct answer with probability at least 1− δ. We
will now show that for any sample sizes l, r andm and for any γ < 1/2, there exists
a finite domain X = {1, 2, . . . , n} and a finite classWuni

n of triples of distributions
overX such that no algorithm can (γ, l, r,m)-solve the Left/Right problem for this
class. In our class, both the distribution generating L and the distribution gener-
ating R are uniform over half of the points in X , but their supports are disjoint.
Formally, we construct the class as follows: Wuni

n = {(UA, UB, UC) : A ∪ B =
{1, . . . n}, A∩B = ∅, |A| = |B|, and C = A or C = B}, where, for a finite set Y ,
UY denotes the uniform distribution over Y . With this we obtain:

Lemma 1. For any given sample sizes l for L, r for R and m for M and any
0 < γ < 1/2, if k = max{l, r}+m, then for n > (k + 1)2/(1− 2γ) no algorithm
has probability of success greater than 1− γ over the class Wuni

n .

Proof. We employ a method introduced in [14] in the context of deriving a lower
bound on the sample size for a related problem. The proof of this Lemma has
been moved to the appendix for a more focused presentation.

Reducing the Left/Right problem to Domain Adaptation learning: In order to
reduce the Left/Right problem to Domain Adaptation, we define a class of DA
problems that corresponds to the class of triples Wuni

n , for which we have proven
a lower bound on the sample sizes needed for solving the Left/Right problem.
For a number n, let WDA

n be the class of triples (PS , PT , l), where PS is uniform
over some finite set X of size n, PT is uniform over some subset U of X of size
n/2 and l assigns points in U to 1 and points in X \ U to 0 or vice versa. Note
that we have C(PS , PT ) = 1/2 and dH1,0ΔH1,0 (PS , PT ) = 0 for all (PS , PT , l) in
WDA

n . Further, for the class H1,0 that contains only the constant 1 function and
the constant 0 function, we have optlT (H1,0) = 0 for all elements of WDA

n .

Lemma 2. The Left/Right problem reduces to Domain Adaptation. More pre-
cisely, given a number n and an algorithm A that, given the promise that the
target task is realizable by the class H1,0, can (ε, δ, s, t)-solve DA for a class W
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that includes WDA
n , we can construct an algorithm that (ε + δ, s, s, t+ 1)-solves

the Left/Right problem on Wuni
n .

Proof. Assume we are given samples L = {l1, l2, . . . , ls} and R = {r1, r2, . . . , rs}
of size s and a sample M of size t + 1 for the Left/Right problem coming from
a triple (UA, UB, UC) of distributions in Wuni

n . We construct an input to Domain
Adaptation by setting the unlabeled target sample T = M \{p}where p is a point
from M chosen uniformly at random and construct the labeled source sample S
as follows: We select s elements from L × {0} ∪ R × {1} by successively flipping
an unbiased coin, and depending on the output choosing the next element from
L× {0} or R× {1}.

These sets can now be considered as an input to Domain Adaptation generated
from a source distribution PS = UA∪B that is uniform over A ∪ B. The target
distribution PT of this Domain Adaptation instance has marginal equal to UA
or to UB (depending on whether M was a sample from UA or from UB). The
labeling function of this Domain Adaptation instance is l(x) = 0 if x ∈ A and
l(x) = 1 if x ∈ B. Observe that we have C(PS , PT ) = 1/2, optlT (H1,0) = 0, and
(PS , PT , l) ∈ WDA

n . Assume that h is the output of A on input S and T . The
algorithm for the Left/Right problem then outputs UA if h(p) = 0 and UB if
h(p) = 1 and the claim follows as we have Errh(PS) ≤ ε with confidence 1− δ.
Lemma 1 and Lemma 2 show that no algorithm can solve the DA problem for
WDA

n , even under the assumption of realizability by H1,0, if the sample sizes

of the source and target sample satisfy |S| + |T | <
√

(1− 2(ε+ δ))|X |. This
completes the proof of Theorem 1.

4 The Use of Unlabeled Data

In many learning scenarios unlabeled data is abundantly available while la-
beled data is hard to obtain. Thus, it is natural to investigate, whether the
amount of data that is necessary for Domain Adaptation can be covered by un-
labeled target data rather than labeled source data. We start by presenting a
Domain Adaptation algorithm for the case where the labeling function satisfies
the Lipschitz property and the target is realizable with a margin. Note that
[6] also provides a DA algorithm for labeling functions that satisfy the Lips-
chitz property. They show that a Nearest Neighbor algorithm solves the Domain
Adaptation problem successfully, which provides an upper bound corresponding
to the lower bound in Theorem 2 (without using unlabeled data). Here, we show
that one can actually replace the labeled source sample by an unlabeled target
sample if the learner has knowledge of a class that realizes the target distribu-
tion. Hereby, the size of the labeled sample required for success goes from the
Nearest Neighbor sample complexity down to the (much smaller) sample com-
plexity of standard learning under a realizability assumption. For this, we need
the notion of an ε-net:

Definition 5. Let X be some domain, W ⊆ 2X a collection of subsets of X and
P a distribution over X . An ε-net for W with respect to P is a subset N ⊆ X
that intersects every member of W that has P -weight at least ε.
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We relate ε-nets for a source distribution to ε-nets for a target distribution:

Lemma 3. Let X be some domain, W ⊆ 2X a collection of subsets of X , and
PS and PT a source and a target distribution over X with C := CW (PS , PT ) ≥ 0.
Then every (Cε)-net for W with respect to PS is an ε-net for W w.r.t. PT .

Proof. Let N ⊆ X be an (Cε)-net for W with respect to PS . Consider a U ∈
W that has target-weight at least ε, i.e. PT (U) ≥ ε. Then we have PS(U) ≥
CPT (U) ≥ Cε. As N is an (Cε)-net forW with respect to PS , we haveN∩U �= ∅.

4.1 Realizability with a Margin

We propose the following adaptive Domain Adaptation procedure:

Algorithm A

Input An i.i.d. sample S from PS labeled by l, an unlabeled i.i.d. sam-
ple T from PT and a margin parameter γ.

Step 1 Partition the domain [0, 1]d into a collection B of boxes (axis-
aligned rectangles) with sidelength (γ/

√
d).

Step 2 Obtain sample S′ by removing every point in S, which is sitting
in a box that is not hit by T .

Step 3 Output an ERM classifier from H for the sample S′.

The following theorem provides upper bounds on the sizes of the labeled
and the unlabeled sample that suffice for algorithm A to succeed. Note that
the complexity of the labeled sample is comparable to the size of a labeled
sample required in standard learning. It depends only on the VC-dimension, the
accuracy parameters and the weight ratio between source and target.

Theorem 3. Let X = [0, 1]d, γ > 0 a margin parameter, H be a hypothesis
class of finite VC dimension and W be a class of triples (PS , PT , l) of source
distribution, target distribution and labeling function with

– CI(PS , PT ) > 0 for the class I = (HΔH) ( B, where B is a partition of
[0, 1]d into boxes of sidelength γ/

√
d

– PT is realizable by H with margin γ
– the labeling function l is a γ-margin classifier with respect to PT .

Then there is a constant c > 1 such that, for all ε > 0, δ > 0, and all (PS , PT , l) ∈
W, when given an i.i.d. sample S from PS, labeled by l of size

|S| ≥ c
(

VC(H) + log(1/δ)

CI(PS , PT )(1− ε)ε log(
VC(H)

CI(PS , PT )(1 − ε)ε )
)

and an i.i.d. sample T from PT of size |T | ≥ 2(
√
d/γ)d ln(3(

√
d/γ)d/δ)

ε then algorithm

A outputs a classifier h with ErrlT (h) ≤ ε with probability at least 1− δ.
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Proof. Let ε > 0 and δ > 0 be given and set C = CI(PS , PT ). We set ε′ = ε/2
and δ′ = δ/3 and divide the space X up into heavy and light boxes from B,
by defining a box b ∈ B to be light if PT (b) ≤ ε′/|B| = ε′/(

√
d/γ)d and heavy

otherwise. We let X l denote the union of the light boxes and X h the union of the
heavy boxes. Further, we let P h

S and P h
T denote the restrictions of the source and

target distributions to X h, i.e. we have P h
S (U) = PS(U)/PS(X h) and P h

T (U) =
PT (U)/PT (X h) for all U ⊆ X h and P h

S (U) = P h
T (U) = 0 for all U � X h. As

|B| = (
√
d/γ)d, we have PT (X h) ≥ 1− ε′ and thus, PS(X h) ≥ C(1 − ε′).

We will show that

Claim 1. With probability at least 1− δ′ an i.i.d. PT -sample T of size as stated
in the Theorem hits every heavy box.

Claim 2. With probability at least 1− 2δ′ the intersection of S and X h, where
S is an i.i.d. PS-sample of size as stated in the Theorem is an ε′-net for HΔH
with respect to P h

T .

To see that these imply the claim of the theorem, let Sh = S ∩ X h denote
the intersection of the source sample and the union of heavy boxes. By Claim
1, T hits every heavy box with high probability, thus Sh ⊆ S′, where S′ is the
intersection of S with boxes that are hit by T (see the description of the algorithm
A). Therefore, if Sh is an ε′-net for HΔH with respect to P h

T (as guaranteed by
Claim 2) then so is S′. Hence, with probability at least 1 − 3δ′ = 1 − δ the set
S′ is an ε′-net for HΔH with respect to P h

T . Now note that an ε′-net for HΔH
with respect to P h

T is an ε-net with respect to PT as every set of PT -weight at
least ε has P h

T weight at least ε′, by definition of X h and P h
T .

Finally, we need to show that S′ being an ε-net for the set HΔH of symmetric
differences with respect to the target class, suffices for the ERM-classifier from
the target class to have target error at most ε. Let h∗T ∈ H denote the γ-margin
classifier of zero target error. Note that every box in B is labeled homogeneously
with label 1 or label 0 by the labeling function l as l is a γ-margin classifier as
well. Let s ∈ S′ be a sample point and bs ∈ B be the box that contains s. As h∗T
is a γ-margin classifier and PT (bs) > 0 (bs was hit by T by the definition of S′),
bs is labeled homogeneously by h∗T as well and as h∗T has zero target error this
label has to correspond to the labeling by l. Thus h∗T (s) = l(s) for all s ∈ S′,
which means that the empirical error with respect to S′ of h∗T is zero.

Now consider a classifier hε with ErrlT (hε) ≥ ε. Let s ∈ S′ be a sample point in
h∗TΔhε (which exists as S′ is an ε-net). As s ∈ h∗TΔhε, we have hε(s) �= h∗T (s) =
l(s) and thus, hε as an empirical error larger than zero, which implies that no
classifier of error larger than ε can be chosen by ERM on input S′.
Proof of Claim 1: Let b be a heavy box, thus PT (b) ≥ ε′/|B|. Then, when
drawing an i.i.d. sample T from PT , the probability of not hitting b is at most
(1− (ε′/|B|))|T |. Now the union bound implies that the probability that there is
at a box in Bh that does not get hit by the sample T is bounded by

|Bh|(1− (ε′/|B|))|T | ≤ |B|(1− (ε′/|B|))|T | ≤ |B|e−ε′|T |/|B|.

Thus if |T | ≥ |B| ln(|B|/δ′)
ε′ = 2(

√
d/γ)d ln(3(

√
d/γ)d/δ)

ε the sample T hits every heavy
box with probability at least 1− δ′.
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Proof of Claim 2: Let Sh := S ∩ X h. Note that, as S is an i.i.d. PS sample,
we can consider Sh to be an i.i.d. P h

S sample. We have the following bound on
the weight ratio between P h

S and P h
T :

CI(P h
S , P

h
T ) = infp∈I,Ph

T (p)>0
Ph

S (p)

Ph
T (p)

= infp∈I,Ph
T (p)>0

PS(p)
PT (p)

PT (Xh)
PS(Xh)

≥ C PT (Xh)
PS(Xh)

≥ C(1 − ε′),

where the last inequality holds as PT (X h) ≥ (1− ε′) and PS(X h) ≤ 1. Note that
every element in HΔH can be partitioned in to elements from I, therefore we
obtain the same bound on the weight ratio for the symmetric differences of H :
CHΔH(P h

S , P
h
T ) ≥ C(1 − ε′).

It is well known that there is a constant c > 1 such that, conditioned on Sh

having size at leastM := c
(

VC(HΔH)+log(1/δ′)
C(1−ε′)ε′ log(VC(HΔH)

C(1−ε′)ε′ )
)
, with probability

at least 1− δ′ it is a C(1 − ε′)ε′-net with respect to P h
S and thus an ε′-net with

respect to P h
T by Lemma 3 (see, e.g. Corollary 3.8 in [15]).

Thus, it remains to show that with probability at least 1−δ′ we have |Sh| ≥M .
As we have PS(X h) ≥ C(1 − ε′), we can view the sampling of the points of
S and checking whether they hit X h as a Bernoulli variable with mean μ =
PS(X h) ≥ C(1 − ε′). Thus, by Hoeffding’s inequality we have that for all t > 0

Pr(μ|S|− |Sh| ≥ t|S|) ≤ e−2t2|S|. If we set C′ = C(1− ε′), assume |S| ≥ 2M
C′ and

set t = C′/2, we obtain Pr(|Sh| < M) ≤ Pr(μ|S| − |Sh| ≥ C′
2 |S|) ≤ e−

C′2|S|
2 .

Now |S| ≥ 2M
C′ >

2(VC(HΔH)+log(1/δ′))
C2(1−ε′)2ε′ implies that e−

C′2|S|
2 ≤ δ′, thus we have

shown that Sh is an ε′-net of HΔH with probability at least (1− δ′)2 ≥ 1− 2δ′.
Imitating the proof of Claim 1 in [16] one can show that VC(HΔH) ≤

2VC(H) + 1. This completes the proof.

4.2 Finite Domain

The procedure A from the previous section can be modified to work on any
finite domain with arbitrary labeling functions and hypothesis classes of finite
VC-dimension (under the target-realizability assumption). For the modification,
we delete Step 2 and instead of Step 3 the algorithm removes every point from
the labeled source sample S which is not hit by the unlabeled target sample T .
This does not change the size of the source sample S needed for a guarantee of
success, but the size of the target sample now depends on the size of the domain
instead of the labeling function’s Lipschitzness. The proof of the following result
is a simple modification of the proof of Theorem 3 and is left to the reader.

Theorem 4. Let X be some domain, H be a hypothesis class of finite VC di-
mension and W = {(PS , PT , l) | C(PS , PT ) > 0, optlT (H) = 0} be a class of
pairs of source and target distributions with bounded weight ratio where the tar-
get is realizable by H. Then there is a constant c > 1 such that, for all ε > 0,
δ > 0, and all (PS , PT , l) ∈ W, when given an i.i.d. sample S from PS, labeled

by l of size |S| ≥ c
(

VC(H)+log(1/δ)
C(PS ,PT )2(1−ε)2ε log( VC(H)

C(PS ,PT )2(1−ε)2ε)
)
and an i.i.d. sample
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T from PT of size |T | ≥ 2|X | ln(3|X |/δ)
ε then algorithm A outputs a classifier h

with ErrlT (h) ≤ ε with probability at least 1− δ.

Acknowledgements. We thank Shai Shalev-Shwartz for insightful discussions
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A Full Proof of Lemma 1

We employ a method introduced in [14] in the context of deriving a lower bound
on the sample size for a related problem. The authors show that, when testing
so-called permutation invariant properties, i.e. if the property does not change
with permuting the underlying domain, it suffices to consider algorithms that
take only a fingerprint of the sample as input (see precise Definition below).
Note that the Left/Right problem is permutation-invariant, since, whether M is
a sample from P or from Q does not depend on a permutation of X .

Definition 6. Let L, R, M be three multi-sets of sizes at most n each sam-
pled from distributions P or Q over some domain X as in the definition of the
Left/Right problem. We define the fingerprint of this triple of multi sets as the
set {Ci,j,k | 1 ≤ i, j, k ≤ n} where Ci,j,k is the number of elements of X , that
appear exactly i times in L, j times in R and k times in M .

The following lemma allows us to restrict our attention to fingerprints of an
instance of the Left/Right problem as input.

Lemma 4 (Batu et al., [14]). If there exists an algorithm A for testing some
permutation-invariant property of distributions, then there exists an algorithm
for that same task that gets as input only the fingerprints of the samples that A
takes and enjoys the same guarantee on its probability of success.

Proof (Proof sketch). This lemma is proven by showing how to reconstruct the
samples from a fingerprint for some fixed permutation of the distribution. To see
this, note that each element of X contributes to at most one of the Ci,j,k. Thus,
an algorithm can reconstruct a permuted sample from the fingerprint and then
feed this sample as input to A. As the property is permutation-invariant, this
can not change the (distribution over the) output(s).

The following lemma gives a lower bound on the sample size needed to see
repetitions in a sample from a uniform distribution over a finite domain.

Lemma 5 (Shalev Ben-David [17]). Let X be a finite domain of size n. For
every 0 < δ < 1, with probability acceding (1−δ), an i.i.d. sample of size at most√
δn− δ uniformly drawn over X , contains no repeated elements.

Proof of Lemma 1: Set δ = 1− 2γ. By Lemma 5, with probability exceeding
(1− δ) the input to the Left/Right problem over Wuni

n has no repeated elements
and the three input samples are disjoint. Consequently, with probability exceed-
ing (1 − δ), the fingerprint F of the input has C1,0,0 = l, C0,1,0 = r, C0,0,1 = m
and Ci,j,k = 0 for all other combinations of i, j and k independently of whether
the sample M was generated by UA or by UB.

Let A be some algorithm. Let p ∈ [0, 1] be the probability that A outputs
UA on input F . Now, if p ≤ 1/2 we have that A errs with probability larger
than (1 − δ)/2 = γ for all triples where C is equal to B. Otherwise it errs with
probability larger than (1− δ)/2 = γ on all triples where C is equal to A. Thus,
no algorithm can (γ, l, r,m)-solve the Left/Right problem for the class Wuni

n .
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Abstract. A recent paper [1] proposes a general model for distributed learning
that bounds the communication required for learning classifiers with ε error on
linearly separable data adversarially distributed across nodes. In this work, we
develop key improvements and extensions to this basic model. Our first result is
a two-party multiplicative-weight-update based protocol that uses O(d2 log1/ε)
words of communication to classify distributed data in arbitrary dimension d, ε-
optimally. This extends to classification over k nodes with O(kd2 log1/ε) words
of communication. Our proposed protocol is simple to implement and is consid-
erably more efficient than baselines compared, as demonstrated by our empirical
results.

In addition, we show how to solve fixed-dimensional and high-dimensional
linear programming with small communication in a distributed setting where
constraints may be distributed across nodes. Our techniques make use of a novel
connection from multipass streaming, as well as adapting the multiplicative-
weight-update framework more generally to a distributed setting.

1 Introduction

In recent years, distributed learning (learning from data spread across multiple
locations) has witnessed a lot of research interest [2]. One of the major challenges in
distributed learning is to minimize communication overhead between different parties,
each possessing a disjoint subset of the data. Recent work [1] has proposed a distributed
learning model that seeks to minimize communication (in a series of rounds) by care-
fully choosing the most informative data points at each node in each round. The authors
present a number of general sampling based results as well as a specific two-way pro-
tocol that provides a logarithmic error bound on communication for the family of linear
classifiers in R

2. Most of their results pertain to two players but they propose basic (and
as we will see, inefficient) extensions for multi-player scenarios. A distinguishing fea-
ture of this model is that it is adversarial. Except linear separability, no distributional
or other assumptions are made on the data or how it is distributed across nodes.

In this paper, we develop this model substantially with new algorithmic ideas for
solving learning problems. First, we extend the results on linear classification to arbi-
trary dimensions, in the process presenting a more general algorithm that does not rely
on explicit geometric constructions. This approach exploits the multiplicative weight

N.H. Bshouty et al. (Eds.): ALT 2012, LNAI 7568, pp. 154–168, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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update (MWU) framework (specifically its use in boosting) and retains desirable theo-
retical guarantees – data-size-independent communication between nodes in order to
classify data – while being simple to implement. Moreover, it easily extends to k-
players, scaling only linearly in k, improving earlier results in two dimensions by a
factor of k.

Motivated by the insight that MWU can be used to solve distributed learning prob-
lems, we propose approximate solutions for distributed semidefinite programming. In
addition, we show how a generic multipass streaming algorithm for a problem can be
made distributed, and apply this framework to solving linear programming in a dis-
tributed setting both exactly and approximately. Together, these results indicate that
general optimization problems can be solved efficiently in our model. Exploiting the
strong link between learning and optimization will then open the door to deploying
many other learning tasks in the distributed setting with minimal communication.

Related Work. Existing work in distributed learning mainly focuses on either infer-
ring an accurate global classifier from multiple distributed sub-classifiers learned in-
dividually (at respective nodes) or on improving the efficiency of the overall learning
protocol. The first line of work consists of techniques like parameter mixing [3, 4] or
averaging [5] and classifier voting [6]. These approaches do admit convergence results
but lack any useful bounds on the communication. Voting, on the other hand, has been
shown [1] to yield suboptimal results on adversarially partitioned datasets. The goal of
the second line of work is to make distributed algorithms scale to large datasets [7];
many of these works [8, 9] focus on MapReduce. [10] proposed a MapReduce based
improved parallel stochastic gradient descent and more recently [11] improved the time
complexity of γ-margin parallel algorithms from Ω(1/γ2) to O(1/γ).

Surprisingly absent in the above lines of work is the direct study of how to use com-
munication sparingly in learning. And as [1] and this work demonstrates, intelligent
interaction between nodes, communicating key data subsets not just its classification,
can greatly reduce the necessary communication over existing approaches. On large dis-
tributed systems, communication has become a major bottleneck for many real-world
problems; it accounts for a large percentage of total energy costs, and is the main rea-
son that MapReduce algorithms are designed to minimize rounds (of communication).
This strongly motivates the need to incorporate the study of this aspect of an algorithm
directly, as presented and modeled in this paper.

Independently of this work1, research by [12] considers very similar models to those
of [1]. They also consider adversarially distributed data among k parties and provide
algorithms to learn while minimizing the total communication between the parties. Like
[1] the work of [12] presents both agnostic and non-agnostic results for generic settings,
and shows improvements over sampling bounds in several specific settings including the
d-dimensional linear classifier problem we consider here (also drawing inspiration from
boosting). In addition, their work provides total communication bounds for decision
lists and for proper and non-proper learning of parity functions. They also extend the
model so as to preserve differential and distributional privacy while conserving total
communication, as a resource, during the learning process.

1 Preliminary versions of [12] and this work [13] were coordinated to be placed on the arXiv on
the same day.
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In contrast, this work identifies optimization as a key primitive underlying many
learning tasks, and focuses on solving the underlying optimization problems as a way
to provide general communication-friendly distributed learning methods. We introduce
techniques that rely on multiplicative weight updates and multi-pass streaming algo-
rithms. Our main contributions include translating these techniques into this distributed
setting and using them to solve LPs (and SDPs) in addition to solving for d-dimensional
linear separators.

2 Background

Here we revisit the basic model [1].

Model. We assume that there are k parties P1,P2, . . .Pk. Each party Pi possesses a dataset
Di that no other party has access to, and each Di may have both positive and negative
examples. The goal is to classify the full dataset D = ∪iDi correctly. We assume that
there exists a perfect classifier h∗ from a family of classifiers H with associated range
space (D,H) and bounded VC-dimension ν . We are willing to allow ε-classification
error on D so that up to ε|D| points in total are misclassified.

Each word of data (e.g., a single point or vector in R
d counts as O(d) words) passed

between any pair of parties is counted towards the total communication; this measure in
words allows us to examine the cost of extending to d-dimensions, and allows us to con-
sider communication in forms other than example points, but does not hinder us with
precision issues required when counting bits. For instance, a protocol that broadcasts a
message of M words (say M/d points in R

d) from one node to the other k− 1 players
costs O(kM) communication. The goal is to design a protocol with as little communica-
tion as possible. We assume an adversarial model of data distribution; in this setting we
prepare for the worst, and allow some adversary to determine which player gets which
subset of D.

Sampling Bounds. Given D and a family of classifiers with bounded VC-dimension ν ,
a random sample from D of size

sε,ν = O(min{(ν/ε) log(ν/ε),ν/ε2}) (1)

has at most ε-classification error on D with constant probability [14], as long as there
exists a perfect classifier. Throughout this paper we will assume that a perfect classifier
exists. This constant probability of success can be amplified to 1− δ with an extra
O(log(1/δ )) factor of samples.

Randomly Partitioned Distributions. Assume that for all i ∈ [1,k], each party Pi has
a dataset Di drawn from the same distribution. That is, all datasets Di are identically
distributed. This case is much simpler than what the remainder of this paper will con-
sider. Using (1), each Di can be viewed as a sample from the full set D = ∪iDi, and
with no communication each party Pi can faithfully estimate a classifier with error
O((ν/|Di|) log(ν|Di|)) [1].

Henceforth we will focus on adversarially distributed data.

One-Way Protocols. Consider a restricted setting where protocols are only able to send
data from parties Pi (for i ≥ 2) to P1; a restricted form of one-way communication. We



Efficient Protocols for Distributed Classification and Optimization 157

can again use (1) so that all parties Pi send a sample Si of size sε,ν to P1, and then P1

constructs a global classifier on ∪k
i=2Si with ε-classification error ∪k

i=1Di; this requires
O(dksε,ν ) words of communication for points in R

d .
For specific classifiers [1] we can do better. For thresholds and intervals one can learn

a zero-error distributed classifier using constant amount of one-way communication.
The same can be achieved for axis-aligned rectangles with O(kd2) words of communi-
cation. However, those authors show that hyperplanes in R

d , for d ≥ 2, require at least
Ω(k/ε) one-way bits of communication to learn an ε-error distributed classifier.

Two-Way Protocols. Hereafter, we consider two-way protocols where any two players
can communicate back and forth. It has been shown [1] that, in R

2, a protocol can learn
linear classifiers with at most ε-classification error using at most O(k2 log1/ε) commu-
nication. This protocol is deterministic and relies on a complicated pruning argument,
whereby in each round, either an acceptable classifier is found, or a constant fraction
more of some party’s data is ensured to be classified correctly.

3 Improved Random Sampling for k-Players

Our first contribution is an improved two-way k-player sampling-based protocol using
two-way communication and the sampling result in (1). We designate party P1 as a
coordinator. P1 gathers the size of each player’s dataset Di, simulates sampling from
each player completely at random, and then reports back to each player the number of
samples to be drawn by it, in O(k) communication. Then each other party Pi selects
sε,ν |Di|/|D| random points (in expectation), and sends them to the coordinator. The
union of this set satisfies the conditions of the result from (1) over D = ∪iDi and yields
the following result.

Theorem 1. For any hypothesis family with VC-dimension ν for points in R
d, there

exists a two-way k-player protocol using O(kd + d min{(ν/ε) log(ν/ε),ν/ε2}) total
words of communication that achieves ε-classification error, with constant probability.

Using two-way communication, this type of result can be made even more general.
Consider the case where each Pi’s dataset arrives in a continuous stream; this is known
as a distributed data stream [15]. Then applying results of [16], we can continually
maintain a sufficient random sample at the coordinator of size sε (using an generaliza-
tion of reservoir sampling) communicating O((k + sε,ν)d log |D|) words.

Theorem 2. Let each of k parties have a stream of data points Di where D = ∪iDi.
For any hypothesis family with VC-dimension ν for points in R

d, there exists a two-way
k-player protocol using O((k + min{(ν/ε) log(ν/ε),ν/ε2}) d log |D|) total words of
communication that maintains ε-classification error, with constant probability.

4 A Two-Party Protocol

In this section, we consider only two parties and refer to them as A and B. A′s data is
labeled DA and B’s data is labeled DB (|DB| = n). Our protocol, summarized in Algo-
rithm 1, is called WEIGHTEDSAMPLING. In each round, A sends a classifier hA to B
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and B responds back with a set of points RB, constructed by sampling from a weighting
on its points. After T rounds (for T = O(log(1/ε))), we will show that by voting on
the result from the set of T classifiers hA will misclassify at most ε|DB| points from DB

while being perfect on DA, and hence ε|DB|< ε|DB∪DA|= ε|D|, yielding a ε-optimal
classifier as desired.

Algorithm 1. WEIGHTEDSAMPLING

Input: DA,DB, parameters: 0< ε < 1
Output: hAB (classifier with ε-error on DA∪DB)
Init: RB = {}; w0

i = 1 ∀xi ∈ DB;
for t = 1 . . . T = 5log2(1/ε) do

——— A’s move ———
DA = DA∪RB; ht

A := Learn(DA); send ht
A to B;

——— B’s move ———
RB := MWU (DB, ht

A, 0.75, 0.2); send RB to A;
end for
hAB = Majority(h1

A,h
2
A, . . . ,h

T
A);

RB can construct its points in two ways: a random sample and a deterministic sample.
We will focus on the randomized version since it is more practical, although it has
slightly worse bounds in the two-party case. Then we will also mention and analyze the
deterministic version.

It remains to describe how B’s points are weighted and updated, which dictates how
B constructs the sample sent to A. Initially, they are all given a weight w1 = 1. Then
the re-weighting strategy (described in Algorithm 2) is an instance of the multiplicative
weight update framework; with each new classifier hA from A, party B increases all
weights of misclassified points by a (1 + ρ) factor, and does not change the weight for
correctly classified points. We will show ρ = 0.75 is sufficient. Intuitively, this ensures
that consistently misclassified points eventually get weighted high enough that they
are very likely to be chosen as examples to be communicated in future rounds. The
deterministic variant simply replaces Line 7 of Algorithm 2 with the weighted variant
[17] of the deterministic construction of RB [18]; see details below.

Note that this is roughly similar in spirit to the heuristic protocol [1] that exchanged
support points and was called ITERATIVESUPPORTS, which we will experimentally
compare against. But the protocol proposed here is less rigid, and as we will demon-
strate next, this allows for a much less nuanced analysis.

4.1 Analysis

Our analysis is based on the multiplicative weight update framework (and closely re-
sembles boosting). First, we state a key structural lemma. Thereafter, we use this lemma
for our main result. For ease of readability, we defer all proofs to the appendix.

As mentioned above (see (1)), after collecting a random sample Sε of size sε,d =
O(min{(d/ε) log(d/ε),d/ε2}) drawn over the entire dataset D ⊂ R

d , a linear classi-
fier learned on Sε is sufficient to provide ε-classification error on all of D with con-
stant probability. There exist deterministic constructions for these samples Sε still of
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size sε,ν [18] (and sometimes slightly smaller [19]); although they provide at most ε-
classification error with probability 1, they, in general, run in time exponential in ν .
Note that the VC-dimension of linear classifiers in R

d is O(d), and these results still
holds when the points are weighted and the sample is drawn (respectively constructed
[17]) and error measured with respect to this weighting distribution. Thus B could send
sε,d points to A, and we would be done; but this is too expensive. We restate this result
with a constant c, so that at most a c fraction of the weights of points are mis-classified
(later we show that c = 0.2 is sufficient with our framework). Specifically, setting ε = c
and rephrasing the above results yields the following lemma.

Algorithm 2. MWU (DB, ht
A, ρ , c)

1: Input: ht
A,DB, parameters: 0< ρ < 1, 0< c< 1

2: Output: RB (a set of sc,d points)
3: for all (xi ∈ DB) do
4: if(ht

A(xi) �= yi) then wt+1
i = wt

i(1+ ρ);
5: if(ht

A(xi) == yi) then wt+1
i = wt

i;
6: end for
7: randomly sample RB from DB (according to wt+1);

Lemma 1. Let B have a weighted set of points DB with weight function w : DB → R
+.

For any constant c > 0, party B can send a set Sc,d of size O(d) (where the constant
depends on c) such that any linear classifier that correctly classifies all points in Sc,d

will misclassify points in DB with a total weight at most c∑x∈DB
w(x). The set Sc,d can

be constructed deterministically, or a weighted random sample from (DB,w) succeeds
with constant probability.

We first state the bound using the deterministic construction of the set Sc,d , and then
extend it to the more practical (from an implementation perspective) random sampling
result, but with a slightly worse communication bound.

Theorem 3. The deterministic version of two-party two-way WEIGHTEDSAMPLING

for linear separators in R
d misclassifies at most ε|D| points after T = O(log(1/ε))

rounds using O(d2 log(1/ε)) words of communication.

In order to use random sampling, as suggested in Algorithm 2, we need to address the
probability of failure of our protocol. More specifically, the set Sc,d in Lemma 1 is of
size O(d log(1/δ ′)) and a linear classifier with no error on Sc,d misclassifies points in
DB with weight at most c∑x∈DB

w(x), with probability at least 1−δ ′. We want this prob-
ability of failure to be a constant δ over the entire course of the protocol. Setting δ ′ =
δ/T , and applying the union bound implies that the probability of failure at any point
in the protocol is at most ∑T

i=1 δ ′ = ∑T
i=1 δ/T = δ . This increases the communication

cost of each round to O(d2 log(1/δ ′)) = O(d2 log(log(1/ε)/δ )) = O(d2 log log(1/ε))
words, with a constant δ probability of failure. Thus, random sampling in WEIGHTED-
SAMPLING requires a total of O(d2 log(1/ε) log log(1/ε)) words of communication.
We formalize below.
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Theorem 4. The randomized two-party two-way protocol WEIGHTEDSAMPLING for
linear separators in R

d misclassifies at most ε|D| points, with constant probability, after
T = O(log(1/ε)) rounds using O(d2 log(1/ε) log log(1/ε)) words of communication.

5 k-Party Protocol

In Section 3 we described a simple protocol (Theorem 1) to learn a classifier with ε-
error jointly among k parties using O(kd + d min{ν/ε log(ν/ε),ν/ε2}) words of total
communication. We now combine this with the two-party protocol from Section 4 to
obtain a k-player protocol for learning a joint classifier with error ε .

We fix an arbitrary node (say P1) as the coordinator for the k-player protocol of
Theorem 1. Then P1 runs a version of the two-player protocol (from Section 4) from
A’s perspective and where players P2, . . . ,Pk serve jointly as the second player B. To do
so, we follow the distributed sampling approach outlined in Theorem 1. Specifically,
we fix a parameter c (set c = 0.2). Each other node reports the total weight w(Di) of
their data to P1, who then reports back to each node what fraction of the total data
w(Di)/w(D) they own. Then each player sends the coordinator a random sample of
size sc,dw(Di)/w(D). Recall that we require sc,d = O(d loglog(1/ε)) in this case to
account for probability of failure over all rounds. The union of these sets at P1 satisfies
the sampling condition in Lemma 1 for ∪k

i=2Di. P1 computes a classifier on the union
of its data and this joint sample and all previous joint samples, and sends the resulting
classifier back to all the nodes. Sending this classifier to each party requires O(kd)
words of communication. The process repeats for T = log2(1/ε) rounds.

Theorem 5. The randomized k-party protocol for ε-error linear separators in R
d ter-

minates in T = O(log(1/ε)) rounds using O((kd + d2 loglog(1/ε)) log(1/ε)) words of
communication, and has a constant probability of failure.

The random sampling algorithm required a sample of size O(d loglog(1/ε)). However
we can achieve a different communication trade-off using the deterministic construction
where, in each round, each party Pi communicates a deterministically constructed set
Sc,i of size O(d). The coordinator P1 computes a classifier that correctly classifies points
from all of these sets having at most cw(Di) weight of points misclassified in each
Di. The error is at most cw(Di) on each dataset Di and so the error on all sets is at
most c∑k

i=2 w(Di) = cw(D). Again using T = O(log(1/ε)) rounds we can achieve the
following result.

Theorem 6. The deterministic k-party protocol for ε-error linear separators in R
d ter-

minates in T = O(log(1/ε)) rounds using O(kd2 log(1/ε)) words of communication.

6 Experiments

In this section, we compare WEIGHTEDSAMPLING with the following baselines for
2-party and k-party protocols.

– NAIVE: sends all data from (k− 1) nodes to a coordinator node and then learns at
the coordinator.
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– VOTING: trains classifiers at each individual node and sends over the (k− 1) clas-
sifiers to a coordinator node. For any datapoint, the coordinator node predicts the
label by taking a vote over all k classifiers.

– RAND: each of the (k−1) nodes sends a random sample of size sε,d to a coordinator
node and then a classifier is learned at the coordinator node using all of its own data
and the samples received.

– RANDEMP: cheaper version of RAND that uses a random sample of size 9d from
each party each round; this value was chosen to make this baseline technique as
favorable as possible.

– MAXMARG: ITERATIVESUPPORTS that selects informative points heuristically
[1]. We do not compare with MEDIAN [1] as it is not applicable beyond two di-
mensions.

– MWU: WEIGHTEDSAMPLING that randomly samples points based on the distribu-
tion of the weights and runs for 5 log(1/ε) number of rounds (ref. Section 4).

– MWUEMP: a cheaper version of MWU which is terminated early if the training
error has reached ε|D|.

For all these methods, SVM (from libSVM [20] library), with a linear kernel, was used
as the underlying classifier. We report training accuracy and communication cost. The
training accuracy is computed over the combined dataset D with an ε value of 0.05
(where applicable). The communication cost (in words) of all methods are reported
as ratios with reference to MWUEMP as the base method. All numbers reported are
averaged over 10 runs of the experiments; standard deviations are reported where ap-
propriate. For MWU and MWUEMP, we use ρ = 0.75.

Communication Cost Computation. Each example point incurs a cost of d + 1 (d
words to describe its position in R

d and 1 word to describe its sign). Similarly, each
linear classifier requires d + 1 words of communication (d words to describe its direc-
tion and 1 word to describe its offset). Note that given our cost computation, for some
datasets the cost of RAND, RANDEMP and MWU can exceed the cost of NAIVE (see,
for example, Cancer).

Datasets. Six datasets, three each for two-party and four-party case, have been gener-
ated synthetically from mixture of Gaussians. Each Gaussian has been carefully seeded
to generate different data partitions. For Synthetic1, Synthetic2, Synthetic4, Synthetic5,
each node contains 5000 data points (2500 positive and 2500 negative) whereas for Syn-
thetic3 and Synthetic6, each node contains 8500 data points (4250 positive and 4250
negative) and all of these datapoints lie in 50 dimensions. Additionally, we investigate
the performance of our protocols on real-world datasets. We use Cancer and Mush-
room from the LibSVM data repository [20] as these datasets are linearly or almost
linearly separable. This shows that although our protocols were designed for noiseless
data they work well on noisy datasets too. However, when applied on noisy data, we do
not guarantee the accuracy bounds that were claimed for noiseless datasets.

In Tables 1-2, we highlight (in bold) the protocol that performs the best. By best we
mean that the method has the cheapest communication cost as well an accuracy that is
more that (1− ε) times the optimal, i.e., 95% for ε = 0.05. As will be frequently seen
for VOTING, the communication cost is the cheapest but the accuracy is far from the
desired ε-error specified, and in such circumstances we do not deem VOTING as the
best method.
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Table 1. Mean accuracy (Acc) and communication cost (Cost) required for synthetic datasets

Synthetic1 Synthetic2 Synthetic3
Acc Cost Acc Cost Acc Cost

2-party
NAIVE 99.23 (0.0) 49.0 97.91 (0.0) 6.18 97.39 (0.0) 19.1
VOTING 95.00 (0.0) 0.01 60.64 (0.0) 0.01 74.55 (0.0) 0.01
RAND 99.02 (0.0) 29.4 97.72 (0.0) 3.71 97.16 (0.0) 6.74
RANDEMP 96.64 (0.1) 4.41 95.13 (0.1) 0.56 96.03 (0.1) 1.01
MAXMARG 96.39 (0.0) 4.26 93.76 (0.0) 6.18 73.62 (0.0) 19.1
MWU 98.66 (0.1) 49.5 97.59 (0.1) 6.24 97.11 (0.1) 11.3
MWUEMP 95.00 (0.0) 1.00 95.17 (0.1) 1.00 95.25 (0.2) 1.00

Synthetic4 Synthetic5 Synthetic6
4-party

NAIVE 99.26 (0.0) 100 97.97 (0.0) 12.7 97.47 (0.0) 54.8
VOTING 95.00 (0.0) 0.01 65.83 (0.0) 0.01 75.52 (0.0) 0.01
RAND 99.18 (0.0) 60.0 97.83 (0.0) 7.63 97.39 (0.0) 19.4
RANDEMP 97.33 (0.1) 9.00 96.61 (0.1) 1.15 96.67 (0.1) 2.90
MAXMARG 95.95 (0.0) 0.82 93.94 (0.0) 15.2 75.05 (0.0) 80.2
MWU 98.03 (0.2) 34.8 97.30 (0.1) 4.45 96.87 (0.1) 11.2
MWUEMP 95.11 (0.3) 1.00 95.11 (0.2) 1.00 95.45 (0.2) 1.00

6.1 Synthetic Results

Table 1 compares the performance metrics of the aforementioned protocols for
two-parties. As can be seen, VOTING performs the best for Synthetic1 and RANDEMP

performs the best for Synthetic2. For Synthetic3, MWUEMP requires the least amount
of communication to learn an ε-optimal distributed classifier. Note that, for Synthetic2
and Synthetic3, both VOTING and MAXMARG fail to produce a ε-optimal (ε = 0.05)
classifier. MAXMARG exhibits this behavior despite incurring a communication cost
that is as high as NAIVE (i.e., the accumulated cost of the support points become the
same as the cost of NAIVE at which point we stop the algorithm).

In Table 1, most of the two-party results carry over to the multiparty case. VOTING

is the best for Synthetic4 whereas MWUEMP is the best for Synthetic5 and Synthetic6.
As earlier, both VOTING and MAXMARG do not yield 0.05-optimal classifiers for Syn-
thetic5 and Synthetic6.

Figure 1 (for two-party using Synthetic1) shows the communication costs (in log-
scale) with variations in the number of data points per node and the dimension of the
data. Note that we do not report the numbers for MAXMARG since MAXMARG takes
a long time to finish. However, for Synthetic1 the numbers for MAXMARG are similar
to those of RANDEMP and so their traces are similar. Note that in Figure 1, the cost
of NAIVE increases as the number of dimensions increase. This is because the cost is
multiplied by a factor of (d + 1), when expressed in words.

6.2 Real-World Results

Table 2 presents results for two and four-party protocols using real-world datasets.
Other than two-party case for Mushroom, VOTING performs best in all other cases.
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Fig. 1. Communication cost vs Size and Dimensionality for 2-party protocol
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Fig. 2. Communication cost vs Size and Dimensionality for 2-party protocol

However, note that VOTING does not yield a 0.05-optimal distributed classifier for
Mushroom using two-party protocol.

The results for communication cost (in log-scale) versus data size and communica-
tion cost (in log-scale) versus dimensionality are provided in Figure 2 for two-party
protocol using the Mushroom dataset. MWUEMP (denoted by the black line) is compa-
rable to MAXMARG and cheaper than all other baselines (except VOTING).
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Table 2. Results for Cancer (|D|= 683, d = 10) and Mushroom (|D|= 8124, d = 112)

Cancer Mushroom Cancer Mushroom
Acc Cost Acc Cost Acc Cost Acc Cost

2-party 4-party
NAIVE 97.07 (0.0) 3.34 100.00 (0.0) 20.01 97.07 (0.0) 1.00 100.00 (0.0) 28.61

VOTING 97.36 (0.0) 0.01 88.38 (0.0) 0.00 97.36 (0.0) 0.03 95.67 (0.0) 0.01
RAND 97.16 (0.1) 4.52 100.00 (1.1) 36.97 97.19 (0.1) 12.81 100.00 (0.6) 105.70

RANDEMP 96.90 (0.2) 0.88 100.00 (0.0) 4.97 96.99 (0.1) 2.50 99.99 (0.0) 14.20
MAXMARG 96.78 (0.0) 0.22 100.00 (0.0) 1.11 96.78 (0.0) 0.56 100.00 (0.0) 2.34

MWU 97.36 (0.2) 49.51 100.00 (0.0) 24.88 97.00 (0.2) 48.46 100.00 (0.1) 24.65
MWUEMP 96.87 (0.4) 1.00 99.73 (0.5) 1.00 96.97 (0.3) 1.00 98.86 (0.4) 1.00

Remarks. The goal of our experiments was to show that our protocols perform well,
particularly on difficult or adversarially partitioned datasets. For easy datasets, any base-
line technique can perform well. Indeed, VOTING performs the best on Synthetic1 and
Synthetic4 and RANDEMP performs better than others on Synthetic2. For the remain-
ing three cases on synthetic datasets, MWUEMP outperforms the other baselines. On
real world data, VOTING usually performs well. However, as we have seen, for some
datasets VOTING and MAXMARG fail to yield an ε-optimal classifier. In particular for
Mushroom, using the two-party protocol, the accuracy achieved by VOTING is far from
ε-optimal. These results show that there exists scenarios where VOTING and MAX-
MARG perform particularly worse and thus are not safe strategies.

7 Distributed Optimization

Thus far, we have focused on solving the binary classification problem in a distributed
setting. Classification however is merely one kind of learning task, and one might ask
whether other problems can be addressed using the MWU framework we describe. A
useful insight here is that many learning tasks can be formulated as optimization prob-
lems in which the data act as constraints. For example, a simple linear SVM formulation
has for each labeled point (x,y) the constraint y(〈w,x〉+ b)≥ 1.

Thus, a natural way to study a general class of learning tasks via optimization is as
follows. Each player i has a set of constraints Ci = { fi j(x)≥ 0}, and the goal is to solve
the optimization ming(x) subject to the union of constraints ∪iCi. As earlier, our goal
is to solve the above with minimum communication.

7.1 Optimization via Multiplicative Weight Updates

A first observation is that the MWU framework described in previous sections applies
to distributed optimization. Consider the problem of solving a general LP of the form
ming/x, subject to Ax ≥ b, x ∈ P, where P is a set of “soft” constraints (for example,
x ≥ 0) and Ax ≥ b are the “hard” constraints. Let z∗ = ming/x∗ be the optimal value
of the LP, obtained at x∗. Then the multiplicative weight update method can be used to
obtain a solution x̃ such that z∗ = g/x̃ and all (hard) constraints are satisfied approx-
imately, i.e ∀i, Aix̃ ≥ bi− ε , where Aix ≥ bi is one row of the constraint matrix. We
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call such a solution a soft-ε-approximation (to distinguish it from a traditional approx-
imation in which all constraints would be satisfied exactly and the objective would be
approximately achieved).

The standard protocol works as follows [21]. We assume that the optimal z∗ has
been guessed (this can be determined by binary search), and define the set of “soft”
constraints to be P = P∪{x | g/x = z∗}. Typically, it is easy to check for feasibility in
P. We define a width parameter ρ = max{maxi∈[n],x∈P Aix−bi,1}. Initialize mi(0) = 0.
Then we run T = O((ρ2/ε2) lnn) iterations (with t = 1,2, . . . ,T ) of the following: (1)
Set pi(t) = exp(−εmi(t− 1)/2), (2) Find feasible x(t) in P∪{x | ∑i piAix ≥ ∑i pibi},
(3) mi(t) = mi(t−1)+Aix(t)−bi. At the end, we return x = (1/t)∑t x(t) as our soft-ε-
approximation for the LP.

We now describe a two-party distributed protocol for linear programming adapted
from this scheme. The protocol is asymmetric. Player A finds feasible values of x and
player B maintains the weights mi. Specifically, player A constructs a feasible set P
consisting of the original feasible set P and all of its own constraints. As above, B
initializes a weight vector m to all zeros, and then sends over the single constraint
∑i piAix ≥ ∑i pibi to A. Player A then finds a feasible x using this constraint as well
as P (solving a linear program) and then sends the resulting x back to B, who updates
its weight vector m. Each round of communication requires O(d) words, and there are
O((ρ2/ε2) ln n) rounds of communication. Notice that this is exponentially better than
merely sending over all constraints.

Theorem 7. There is a 2-player distributed protocol that uses O((dρ2/ε2) ln n) words
of communication to compute a soft-ε-approximation for a linear program.

A similar result applies for SDP (based on an existing primal MWU-based SDP algo-
rithm [21]) as well as other optimizations for which the MWU applies, such as rank
minimization [22], etc.

7.2 Optimization via Multi-pass Streaming

We now present a different approach to distributed optimization. This approach intro-
duces a novel reduction from multipass streaming to distributed communication. Given
the extensive literature on streaming algorithms[23], this reduction is useful as a de-
sign strategy for algorithms in this model. Specifically, we show how fixed dimensional
linear programming can be solved using this reduction.

A streaming algorithm [23] takes as input a sequence of items x1, . . .xn. The algo-
rithm is allowed working space that is sublinear in n, and is only allowed to look at each
item once as it streams past. In multipass streaming, the algorithm may make more than
one pass over the data, but is still limited to sublinear working space and a single look
at each item in each pass. Lemma 2 shows that any (multipass) streaming algorithm can
be used to build a multiparty distributed protocol.

Lemma 2. A streaming algorithm for problem P that has s words of working storage
and makes r passes over the data can be made into a k-player distributed algorithm for
P that uses krs words of communication.
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Note that streaming algorithms often have s = O(polylogn) and r = O(logn), yield-
ing (sublinear) O(k polylogn) words of communication.

We can apply this lemma to get a distributed algorithm for fixed-dimensional linear
programming2. This relies on an existing result [24]:

Theorem 8 ([24]). For n halfspaces in R
d (d constant), the lowest intersection point

can be computed by a O(1/δ d−1)-pass Las Vegas algorithm that uses O((1/δ O(1))nδ )
space and runs in time O((1/δ O(1))n1+δ ) with high probability, for any constant δ > 0.

Corollary 1. There is a k-player algorithm for solving distributed linear programming
that uses O(k(1/δ d+O(1))nδ ) communication, for any constant δ > 0.

While the above streaming algorithm can be applied as a blackbox in Corollary 1, look-
ing deeper into the streaming algorithm reveals room for improvement. As in the case of
classification, suppose that we are permitted to violate an ε-fraction of the constraints. It
turns out that the above streaming algorithm achieves its bounds by eliminating a fixed
fraction of constraints in each space, and thus requires logr n passes, where r = nΘ (δ ).
If we are allowed to violate an ε-fraction of constraints, we need only run the algorithm
for logr 1/ε passes, where r is now O(1/εΘ (δ )). This allows us to replace n in all terms
by 1/ε , resulting in an algorithm with communication independent of n.

Corollary 2. There is a k-player algorithm for distributed linear programming that vi-
olates at most an ε-fraction of the constraints, and uses O(k(1/δ d+O(1))(1/ε)δ ) com-
munication, for any constant δ > 0.

8 Conclusion

In this work, we have proposed a simple and efficient protocol that learns an ε-optimal
distributed classifier for hyperplanes in arbitrary dimensions. The protocol also grace-
fully extends to k-players. Our proposed technique WEIGHTEDSAMPLING relates to
the MWU-based meta framework and we exploit this connection to extend WEIGHT-
EDSAMPLING for distributed convex optimization problems. This makes our protocol
applicable to a wide variety of distributed learning problems that can be formulated as
a convex optimization task over multiple distributed nodes.
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Appendix

Proof of Theorem 3

Proof. At the start of each round t, let φt be the potential function given by the sum of
weights of all points in that round. Initially, φ1 = ∑xi∈DB

wi = n since by definition for
each point xi ∈DB we have wi = 1.

Then in each round, A constructs a classifier ht
A at B to correctly classify the set

of points that accounts for at least 1− c fraction of the total weight by Lemma 1. All



168 H. Daumé III et al.

other misclassified points are upweighted by (1 + ρ). Hence, for round (t + 1) we have
φ t+1 ≤ φ t ((1− c) + c(1 + ρ)) = φ t (1 + cρ) = n(1 + cρ)t .

Let us consider the weight of the points in the set S⊂DB that have been misclassified
by a majority of the T classifiers (after the protocol ends). This implies every point in S
has been misclassified at least T/2 number of times and at most T number of times. So
the minimum weight of points in S is (1 + ρ)T/2 and the maximum weight is (1 + ρ)T .

Let ni be the number of points in S that has weight (1 + ρ)i where i ∈ [T/2,T ]. The
potential function value of S after T rounds is φT

S = ∑T
i=T/2 ni(1+ρ)i. Our claim is that

∑T
i=1 ni = |S| ≤ εn. Each of these at most |S| points have a weight of at least (1+ρ)T/2.

Hence we have
φT

S =
T

∑
i=T/2

ni(1 + ρ)i ≥ (1 + ρ)T/2
T

∑
i=T/2

ni = (1 + ρ)T/2|S|.

Relating these two inequalities we obtain the following,

|S|(1 + ρ)T/2 ≤ φT
S ≤ φT ≤ n(1 + cρ)T .

Hence (using T = 5log2(1/ε))

|S| ≤ n

(
(1 + cρ)

(1 + ρ)1/2

)5 log2(1/ε)

= n(1/ε)
5 log2

(
(1+cρ)

(1+ρ)1/2

)
. (2)

Setting c = 0.2 and ρ = 0.75 we get 5 log2

(
(1 + cρ)/(1 + ρ)1/2

)
)<−1 and thus |S|<

n(1/ε)−1 < εn, as desired since ε < 1. Thus each round uses O(d) points yielding a
total communication of O(d2 log(1/ε)) words.

Proof of Theorem 5
Proof. The correctness and bound of T = O(log(1/ε)) rounds follows from Theorem
3, since, aside from the total weight gathering step, from party P1’s perspective it ap-
pears to run the protocol with some party B where B represents parties P2,P3, . . . ,Pk.
The communication for P1 to collect the samples from all parties is O(kd + dsc,d) =
O(kd + d2 loglog(1/ε)). And it takes O(dk) communication to return hA to all k− 1
other players. Hence the total communication over T = O(log(1/ε)) rounds is O((kd +
d2 loglog(1/ε)) log(1/ε)) as claimed.

Proof of Lemma 2
Proof. First consider the case when k = 2. Consider a streaming algorithm S satisfying
the conditions above. The simulation works by letting the first player A simulate the first
half of S, and letting the second player B simulate the second half. Specifically, the first
player A simulates the behavior of S on its input. When this simulation of S exhausts
the input at A, A sends over the contents of the working store of S to B. B restarts S on
its input using this working store as S’s current state. When B has finished simulating S
on its input, it sends the contents of the working storage back to A. This completes one
pass of S, and used s words of communication. The process continues for r passes.

If there are k players A1, . . . ,Ak instead of two, then we fix an arbitrary ordering of the
players. The first player simulates S on its input, and at completion passes the contents
of the working store to the next one, and so on. Each pass now requires O(ks) words of
communication, and the result follows.
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Abstract. Standard Bayesian inference can behave suboptimally if the
model is wrong. We present a modification of Bayesian inference which
continues to achieve good rates with wrong models. Our method adapts
the Bayesian learning rate to the data, picking the rate minimizing the
cumulative loss of sequential prediction by posterior randomization. Our
results can also be used to adapt the learning rate in a PAC-Bayesian
context. The results are based on an extension of an inequality due to
T. Zhang and others to dependent random variables.

1 Introduction

Problem 1: Bayes when the Model is Wrong Standard Bayesian inference may
fail if the probability model P under consideration is “wrong yet useful”.
Grünwald and Langford (2007) (GL from now on) exhibit cases in which the
posterior never concentrates, putting substantial weight on many “bad” distri-
butions even in the limit of infinite sample size. As a result, predictions based
on the posterior remain suboptimal forever. This problem can be addressed by
equipping Bayes with a learning rate η as in (Zhang, 2006a). Standard Bayesian
inference corresponds to η = 1; for small enough η, Bayesian inference will be-
come well-behaved again and its predictions will become optimal in the limit.
However, picking η too small may lead to an unnecessarily slow convergence rate.
The appropriate choice for η depends on the true distribution, which is unknown,
and it is unclear how to estimate it from data: GL show that marginalizing out
η (as a Bayesian would prefer) does not solve the problem, and picking the η
that maximizes the Bayesian marginal likelihood of the data Zn = Z1, . . . , Zn
does not help either (see also Example 3, Example 4 and Figure 1, this paper’s
essential picture).

Problem 2: PAC-Bayesian Learning Rates In statistical learning theory, one
consider models Θ of predictors defined relative to some loss function loss,
e.g. Θ may be a set of classifiers and loss may be the 0/1-loss. In relative
PAC-Bayesian bounds (Audibert, 2004, Zhang, 2006b, Catoni, 2007) one proves
frequentist convergence bounds of randomized predictors which depend on some
user-specified “prior” distribution over Θ. The bounds are typically optimized
by setting the randomized predictor equal to a pseudo-Bayesian posterior at
some optimal learning rate η, which once again depends on the unknown true
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distribution. Algorithms for estimating η from the data have been proposed for
special settings (Audibert, 2004), but so far, a general approach has been lacking.

The Safe Bayesian. We address both problems at once by picking the η̂ that max-
imizes the “sequentially randomized” Bayesian marginal log-likelihood, which
for priors with finite support can be reinterpreted as the η̂ minimizing the
cumulative loss of the Hedge(η) algorithm (Freund and Schapire, 1997). We
then predict by the Cesàro average of the Bayesian posteriors at η̂. We extend
this safe Bayesian algorithm to the statistical learning case by defining pseudo-
probabilities pθ(y | x) ∝ e−loss(y,θ(x)) in the usual manner.

In our first result, Theorem 1, we show that for all η smaller than some “crit-
ical” ηcrit, we can expect a small mixability gap, a notion reminiscent of Vovk’s
(1990, 2001) fundamental concept of mixability for individual sequence predic-
tion. In our context a small mixability gap means that the expected cumulative
log-loss one obtains by randomizing according to the posterior is close to the
cumulative log-loss one obtains by mixing the posterior. If the posterior concen-
trates, then the mixability gap is small, and we may think of the η̂ inferred by
our algorithm as estimating the largest rate at which the posterior does concen-
trate. Our main result, Theorem 2 shows that, broadly speaking, the convergence
rates achieved by the safe Bayesian algorithm are optimal for the underlying,
unknown true distribution in several settings. Specifically, if the model is correct
or convex, we perform essentially as well as standard Bayesian inference, which
in this case is among the best methods available. Yet when the model is incor-
rect, in the setting of Grünwald and Langford (2007), unlike standard Bayes, the
safe Bayesian posterior does learn to predict optimally, i.e. as well as the single
distribution in the model that predicts best.

In Section 2 we introduce notation, concepts and present the safe Bayesian
algorithm. Since the algorithm can be applied in a wide variety of contexts
(standard Bayes, statistical learning, Hedge-like) this section is, unfortunately,
long. In Section 3 we introduce ηcrit, which allows us to give a second, detailed
introduction to the results that are to follow. Section 4 gives our first result,
relating randomized (“Gibbs”) to standard Bayesian prediction and gives, in
Figure 1, a crucial picture. Section 5 gives our main result, Theorem 2, showing
that the Safe Bayesian algorithm performs comparably to an algorithm that
knows the critical learning rate in advance. We also compare our results to
Grünwald (2011) who already provided a procedure that adapts to ηcrit in a
much more restricted setting. In Appendix A we prove Theorem 1 and 2. The
latter is built upon Theorem 3, an extension of a PAC-Bayesian style inequality
which is of independent interest. Due to space constraints we omit the proof
of Theorem 3, of the existence of Q in (4), and some additional discussion in
Example 5. This additional material can be found on the author’s web page.

2 Preliminaries; The Algorithm

Statistical Setting. We first present our algorithm in the statistical setting, and
then show how it can be adjusted to decision-theoretic settings. Consider a
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“model” P = {pθ | θ ∈ Θ} of densities on a space Z relative to some fixed
measure μ. The densities may be, but are not necessarily, probability densi-
ties or mass functions: we only require that for all z ∈ Z, pθ(z) ≥ 0, and∫
Z pθdμ < ∞. We extend pθ to sequences zn = z1, . . . , zn of n outcomes by
pθ(z

n) =
∏n

i=1 pθ(zi). There are no restrictions on the structure of Θ; thus P
may very well be a ‘nonparametric’ set such as, say, the set of all Gaussian mix-
tures on Z with a countable number of components. Often we are interested in
estimating a conditional probability density. In that case, Z = X ×Y, and pθ(z)
abbreviates pθ(y | x), the conditional density of y given x, and our requirement
becomes that for all x ∈ X ,

∫
Y pθ(y | x)dμx < ∞ for some underlying measure

μx. The abbreviation z ≡ y | x is unusual, but in our case harmless, and greatly
simplifies notation.

An estimator is a function ν̆ :
⋃∞
n=1Zn → Θ where the function evaluated at

zn is denoted ν̆| zn. If Zn has a distribution P ∗, ν̆ becomes a random variable
and we omit the argument ‘| Zn’ if it is clear from the context. A randomized
estimator is a function W̆ :

⋃∞
n=1Zn → dist(Θ), where dist(Θ) is the set of all

distributions on Θ. We write W̆ | Zn for the estimate for data Zn. Following
Zhang (2006a,b), for any prior Π with density π relative to some underlying
measure ρ, we define the generalized Bayesian posterior, denoted as Π | Zn, η,
as the distribution on Θ with density

π(θ | zn, η) :=
pηθ(zn)π(θ)∫

Θ p
η
θ(zn)π(θ)ρ(dθ)

=
pηθ(zn)π(θ)

Eθ∼Π [pηθ(zn)]
. (1)

Algorithm 1. The Safe Bayesian Algorithm. In the DTOL and statistical
learning interpretation, log-loss in the fifth-to-last line is replaced by the
loss of interest �Π|zi−1,η(zi). The definition of κmax is explained below (8).

Input: data z1, . . . , zn, model {pθ | θ ∈ Θ}, prior Π on Θ.
Output: Distribution on Θ.
κmax := �log2(2

√
n lnV )
 with V as in (3),

Sn := {1, 2−1, 2−2, 2−3, . . . , 2−κmax} ;
for all η ∈ Sn do

sη := 0 ;
for i = 1 . . . n do

Compute generalized Bayes posterior Π(· | zi−1, η) with learning rate η;
Calculate “posterior expected loss” of predicting actual next outcome:
r := Eθ∼Π|zi−1,η [− ln pθ(zi)] [= �Π|zi−1,η(zi)] ; set sη := sη + r;

end

end
Choose η̂ = argminη∈Sn{sη} (if min achieved for several η ∈ Sn, pick largest) ;

Output distribution W̆safe | Zn := ces(Π | η̂;Zn) = n−1
∑n

i=1 Π(· | zi, η̂).

We can think of the generalized Bayesian posterior as a randomized estimator.
For a randomized estimator W̆ and a sample Zn, we define the corresponding
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(randomized) Cesàro-averaged estimator as ces(W̆ ;Zn) := n−1
∑n

i=1 W̆ | Zi. We
are now ready to present the safe Bayesian algorithm.

The algorithm implements a particular randomized estimator: it picks the
η̂ for which the cumulative log-loss of sequentially predicting by randomizing
according to the posterior (“Gibbs sampling”) is minimized (this is different
from standard Bayesian prediction, which mixes rather than randomizes). It then
outputs the corresponding Cesàro estimator. The use of randomization makes η̂
very different from a standard ‘empirical Bayes’ estimate — see Example 4.

DTOL Setting. We consider a variation of the original decision-theoretic online
(DTOL) setting (Freund and Schapire, 1997) along the lines of (Zhang, 2006a). Let
A be a set of actions, where each a ∈ A is identified by its loss �a : Z → R. Thus
the loss of action a on outcome z is �a(z). We letΘ ⊂ A be a subset of actions whose
losses �θ(zi) can be observed at each time point i. As in the original DTOL setting,
the learner may not have access to zi−1 directly. We assume that the learner is
allowed to randomize, i.e. for any distributionW in A, all z ∈ Z we define

�W (z) := Ea∼W [�a(z)], (2)

and we assume that for each such W , the learner is allowed to play an action
aW ∈ A with, for all z ∈ Z, �aW (z) ≤ �W (z). This is achieved either automati-
cally (e.g. with convex loss functions defined on convex A, such that for each W
an aW trivially exists) or by definition; e.g. in the PAC-Bayesian literature, it is
usually assumed that the learner is allowed to play a randomized action W and
is satisfied by evaluating its performance ‘on average’ (Catoni, 2007).

To apply our algorithm in the DTOL setting, we define pseudo-probabilities
pa(z) := exp(−�a(z)) in the usual manner, for each a ∈ A, so that − ln pa(z) =
�a(z), as already indicated in the fifth-to-last-line in Algorithm 1. Readers fa-
miliar with the Hedge-algorithm (Freund and Schapire, 1997, Chaudhuri et al.,
2009) will notice that the safe Bayesian algorithm really just runs Hedge at dif-
ferent learning rates η, picking the η̂ that minimizes cumulative loss with hind-
sight, and then makes a Cesàro-averaged prediction of the n previous Hedge
predictions with this loss. Note however that, while the algorithm employs an
on-line learning method, our aim is to prove bounds on its batch behaviour after
observing zn (Theorem 2).

Statistical Learning Setting. A special case of the decision-theoretic setting is
standard statistical learning in which Z = X ×Y, each θ is a function θ : X → Y ′

and �θ = loss(Y, θ(X)) where loss : Y ×Y ′ → R is some loss function, e.g. the
0/1-loss in the classification setting with Y = Y ′ = {0, 1}, and loss : Y × Y →
{0, 1} given by loss(y, ŷ) := |y − ŷ|.

Condition on P/Θ. Throughout this paper we assume the model P satisfies the
following condition. Let

U(P) := supz∈Z supp,p′∈P
p(z)
p′(z) and V = V (P) = 2U(P). (3)

If P is clear from the context we write V rather than V (P) (the reason for
distinguishing between V and U is just for notational convenience in stating
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our results later; it is due to the factor 2 in (4) below). We always assume
that the ratio in (3) is well-defined for all z ∈ Z and that 1 < V < ∞. We
may think of U(P) as the maximum ratio between the density of z (or y | x)
assigned by different p ∈ P . In the DTOL setting with bounded loss functions
like 0/1-loss, this condition is automatically satisfied with V ≤ exp(Lmax) with
Lmax = supz∈Z,θ,θ′∈Θ(�θ(z) − �θ′(z)). Yet in general density estimation and
unbounded loss settings, this is currently a serious restriction on our results.

3 The Critical ηcrit — Extended Introduction

From now on, we assume the random variables Z and Z1, Z2, . . . , Z
n to be i.i.d. ∼

P ∗, i.e. each outcome Zi has the same distribution as Z. We denote expectation
under P ∗ by E∗. Let P be the learner’s model. Let D(P‖q) denote the KL
divergence between a distribution P and a distribution with density q (possibly
defective, i.e.

∫
Z q(z)dμ �= 1). In the longer version of this paper we show that

that the set of best-approximating densities,

Q := {q : infp∈P D(P ∗‖p) = D(P ∗‖q) , U(P ∪ {q}) ≤ 2U(P)}, (4)

is not empty, although it may not be contained in P but only in its (appropriately
defined) closure (U is as in (3)).

Our Goal. We focus on the statistical setting; for the DTOL setting, see Example
2 below. In case P is a standard probability model (all densities integrate to 1)
and infp∈P D(P ∗‖p) is nonzero, we say that the model P is misspecified (or
simply: “wrong”). Our goal is to show that even in this case, the safe Bayesian
algorithm outputs an estimator W̆safe that “converges” quickly to Q, in a sense
we now make precise. For any two (conditional) densities p and p′, we define the
generalized KL (Kullback-Leibler) divergence (already introduced in the original
Kullback and Leibler (1951)!) relative to P ∗ as

D∗(p′‖p) := E∗
Z [− ln p(Z) + ln p′(Z)] = D(P ∗‖p)−D(P ∗‖p′). (5)

Note that, for a best-approximating q as in (4), D∗(q‖p) ≥ 0 for all p ∈ P .
Theorem 2 below shows that for some q ∈ Q, Eθ∼W̆safe|Zn [D∗(q‖pθ)] converges

to 0 in expectation as n → ∞ at certain rates. Since trivially, for all q, q′ ∈ Q,
all p ∈ P , D∗(q‖p) = D∗(q′‖p), this means that such convergence takes place
simultaneously for all q ∈ Q. Hence, from now on, for ease of exposition, we fix
a particular such q and present all results in terms of that q. Since D∗(q‖pθ) ≥ 0
for all θ ∈ Θ, this convergence implies that, at large n, W̆safe puts nearly all
its mass on Θ with small D∗(q‖pθ); in this sense, Theorem 2 shows that W̆safe

concentrates. To make this precise, we must first define the critical learning rate.

The Critical Learning Rate. In the well-specified case, in which P ∗ has density
p∗ and we must have q = p∗ ∈ Q, we trivially have that, for η = 1, for all p ∈ P :

Aη(q‖p) := E∗
Z

[(
p(Z)

q(Z)

)η]
≤ 1, (6)
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as is seen by writing out the expectation in full and substituting q by p∗.
Classical theorems on two-part MDL inference for the well-specified case
(Barron and Cover, 1991, Zhang, 2006a, Grünwald, 2007) invariably make use
of (6) at some point in the proofs; so do classical results on Bayesian consistency
(Doob, 1949), in which (6) is used to establish that {p(Zn)/q(Zn)}n=1,2... is a
martingale. It can be shown (Li, 1999, Kleijn and van der Vaart, 2006) that (6)
still holds for η = 1 if P is convex (Figure 1 in Section 4 will make clear that
convexity plays a role here). This is the fundamental reason why standard MDL
and Bayesian convergence bounds still hold in that setting. If (6) does not hold
for η = 1 then MDL and Bayes may not converge — see Example 3 below.
Luckily, for many types of P , one can still show that (6) holds for some η < 1. In
that case, the standard MDL and Bayesian convergence proofs still go through
if the standard posterior is replaced by the η-generalized posterior, leading to
results like (11) below. Thus it makes sense to define the critical exponent ηcrit
as the largest value of η such that, for all p ∈ P , (6) holds. It is useful to extend
the idea slightly so that, for u ≥ 0, ηcrit(u) is the “critical exponent with slack
u/n”; ηcrit(0) is just the critical value as defined before:

ηcrit(u) := sup

{
η ≤ 1 : for all p ∈ P , lnE∗

Z

[(
p(Z)

q(Z)

)η]
≤ u

n

}
. (7)

This definition implicitly depends on q and n. Clearly ηcrit(u) is increasing in
u. By differentiation to η as in (Grünwald, 2011) it follows that also for all

0 < η ≤ ηcrit(u), all p ∈ P , lnE∗
Z

[(
p(Z)
q(Z)

)η]
≤ u

n . In case Q is not a singleton,

we define ηcrit(u) as (7) for the q ∈ Q that maximizes it for the given u.
How small can ηcrit become? Let V be as in (3). (Grünwald, 2011, Lemma 1)

shows that, for all P ∗,P , all 0 ≤ u ≤ n,

ηcrit(u) ≥ ηmin(u), where ηmin(u) := 1
2 lnV

√
u
n . (8)

To get good bounds on the behaviour of the Safe Bayesian algorithm as in
Theorem 2 we need to be able to use an η close to ηcrit(u) for a value of u ≥ 0
that optimizes the bound in Theorem 2. It can be seen that restricting u to be
≥ 1 does not seriously affect the bound, which explains why, in the definition
of Sn in the safe Bayesian algorithm, we could safely restrict ourselves to η no
smaller than O(1/(2 lnV

√
n)). In favourable cases though, ηcrit(u) will be larger

than ηmin(u). We shall now see that this leads to faster convergence rates.

Existing Results that we will Extend. We define the generalized Bayesian marginal
distribution as pBayes(z

n | η) := Eθ∼Π [pηθ(Zn)] and the predictive distribution
as pBayes(zi | zi−1, η) := pBayes(z

i | η)/pBayes(z
i−1 | η). For η = 1, these are the

standard Bayesian marginal/predictive distributions. By the familiar Bayesian
telescoping using (1), pBayes can be written as product of the generalized poste-
rior predictive distributions:

pBayes(z
n | η) =

∏n
i=1

pBayes(z
i|η)

pBayes(zi−1|η) =
∏n

i=1 Eθ∼Π|Zi−1,η [pηθ(zi)] . (9)
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We also define the Bayesian redundancy as

bayes-redn(η) := 1
ηE

∗
Zn

[
− ln

pBayes(Z
n|η)

qη(Zn)

]
= 1

ηE
∗
Zn

[
n∑
i=1

− ln
pBayes(Zi|Zi−1η)

qη(Zi)

]
(10)

For η = 1, the Bayes redundancy is the expected codelength difference between
coding (log-loss prediction) by the code induced by pBayes | η and coding by the
code induced by q. This quantity is indeed called the (relative) “redundancy” of
the Bayesian mixture code in information theory, see e.g. (Takeuchi and Barron,
1998). We can also give a precise codelength interpretation for η < 1 via the
‘entropification’ construction as in Grünwald (2011), but because of space con-
straints will not do so here. We now informally summarize a central result
in MDL and PAC-Bayesian inference in terms of bayes-red: for all 0 < η <
ηcrit(u), for some constant Cη depending on η, we have

E∗
ZnEθ∼Π|Zn,η [D∗(q‖pθ)] ≤ Cη

n · bayes-redn(η) +Ru, (11)

where Ru is a remainder term that becomes negligible for small enough u ≥ 0.
In the remainder of this informal section, we assume that we have chosen u small
enough and ignore this term, as well as other precise conditions needed for (11) to
hold (Ru will return in the formal statement of our results). (11) is the generic
formulation of the result. Variations of (11) are presented by, among others,
Zhang (2006a,b), Barron and Cover (1991), Li (1999), Audibert (2004), Catoni
(2007). The importance of (11) is that in practical settings bayes-redn(η) grows
sublinearly and then (11) implies that (a) the generalized posterior concentrates
and (b) leads to asymptotically optimal approximations to q in KL divergence.

Example 1. [MDL formulation] A simple rewriting of the redundancy as in
Zhang (2006b) shows that

bayes-redn(η) = E∗
Zn

[
E

θ∼Π|Zn,η

[
− ln

pθ(Z
n)

q(Zn)

]
+

1

η
D( (Π | Zn, η) ‖ (Π | η) )

]
(12)

where D(W‖V ) =
∫
w(θ) log(w(θ)/v(θ))ρ(dθ) denotes standard KL divergence

between distributions with densitiesW and V respectively. To verify (12), simply
replaceD by its definition and simplify. IfΠ has countable support Θ′ ⊂ Θ then,
irrespective of model correctness, using that for all θ0, all zn, pBayes(z

n | η) =∑
π(θ)pηθ (zn) ≥ π(θ0)pηθ0(zn), we have the familiar

bayes-redn(η) ≤ E∗
Zn

[
minθ∈Θ′

{
− ln pθ(Z

n)
q(Zn) + − lnπ(θ)

η

} ]
. (13)

If q = pθ̃ for some θ̃ ∈ Θ′, this becomes bayes-redn(η) ≤ − lnπ(θ̃)/η, showing
that then prediction by pBayes stays within O(1) of the best-approximating q.

Example 2. [Statistical Learning] Now z = (x, y), �θ(z) = loss(y, θ(x)), we
define risk(θ) to be the expected loss of θ, i.e. risk(θ) := E∗

Z [�θ(Z)], extended
to risk(W ) as in (2). Let riskemp(W ) = n−1

∑n
i=1 �W (Zi) be the empirical
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risk of distribution W . Let θ̃ be any optimal action within Θ, i.e. risk(θ̃) =
minθ∈Θ risk(θ). Then using �θ = − ln pθ, (12) can be further rewritten as

1
nbayes-redn(η) = E∗

Zn [riskemp(Π | Zn, η)]− risk(θ̃) + η−1E∗
Zn [D(·‖·)]

and (11) now expresses that , with R := E∗
Zn [riskemp(Π | Zn, η)]− risk(θ̃),

E∗
Zn [risk(Π | Zn, η)]− risk(θ̃) ≤ C ·R+ C

nηE
∗
Zn [D( (Π | Zn, η) ‖ (Π | η) )],

a familiar equation from the PAC-Bayesian literature: the relative risk is bounded
by the empirical risk difference plus a KL-divergence penalty term. Analogous
results hold in probability rather than in expectation (in many of the PAC-
Bayesian literature, only in-probability results are given; Zhang (2006a, 2006b)
gives both in-probability and in-expectation results).

The bounds that can be obtained via (11) are often minimax optimal. For
example, if the model is correct then ηcrit(0) = 1, so we can take u = 0. For
that case Barron and Cover (1991) already showed that with appropriate choices
of prior bayes-redn(1), (or rather its upper bound (13)) is so small that (11)
leads to the optimal convergence rates in a number of nonparametric settings;
Zhang (2006a) extends this to parametric models P . If we consider 0/1-loss
and a countable set of classifiers Θ, then, as is well-known, the worst-case risk
obtainable by any procedure is O((− ln π(θ̃)/n)1/2) and as shown by Grünwald
(2011), this is indeed the bound we get from (11) if u is chosen appropriately.
Many other examples can be found in (Zhang, 2006a,b).

The key point for us is that (11) only holds for η < ηcrit(u); but ηcrit(u)
depends on the true distribution and it is not clear how to find it. Our Theorem 1
combined with Theorem 2 imply via Corollary 1 that the safe Bayesian algorithm
W̆safe performs at least as well as the Bayesian posterior randomized estimator
Π | η with η = ηcrit(u)/4. Since bayes-redn(η)/n has a bounded nonnegative
derivative (as is straightforward to show), this leads to bounds that are within
a constant factor of the best bound that can be obtained for any η ≤ ηcrit(u).

In fact, Theorem 2 only shows that W̆safe satisfies (11) plus an additional
penalty mix-gapn, which measures how much is lost in terms of cumulative
log-loss by randomizing rather than mixing. Theorem 1 below shows that, for
η ≤ ηcrit(u)/2, this extra penalty is sufficiently small to get the desired bound.

4 First Result: Randomizing vs. Mixing

Define the Gibbs redundancy as

gibbs-redn(η) = E∗
Zn

[∑n
i=1 Eθ∼Π|Zi−1,η

[
− ln pθ(Zi)

q(Zi)

]]
.

and note that, by Jensen’s inequality and (10), we always have bayes-redn(η) ≤
gibbs-redn(η). The following theorem shows that, if η is sufficiently subcritical,
then the reverse essentially holds as well:
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Theorem 1. Let ηcrit(u) be defined as in (7). For 0 < η ≤ ηcrit/2, we have:

gibbs-redn(η) ≤ C2ηbayes-redn(η) + (C2η − 1)uη , (14)

for a constant Cη ≤ 2 + 2η lnV (so C2η ≤ 2 + 4ηV ) with V as in (3).

The theorem thus expresses that, in terms of log-loss, if η ≤ ηcrit(u)/2 then se-
quential prediction by posterior randomization is not much worse in expectation
than sequential prediction by the standard Bayes predictive distribution, i.e. by
mixing rather than randomizing. To explore this further, we define the mixability
gap of a randomized estimator W̆ as

mix-gapn(η, W̆ ) := E∗
Zn

[∑n
i=1 Eθ∼W̆ |Zi−1 [− ln pθ(Zi)] + 1

η ln pBayes(Z
n | η)

]
The mixability gap for the Bayesian posterior can be rewritten as:

mix-gap(η, (Π |η) ) = gibbs-redn(η)− bayes-redn(η) ≥ 0. (15)

In the information-theoretic interpretation, mix-gapn is the expected amount of
additional bits (additional log-loss), normalized relative to η, incurred by predict-
ing by randomizing according to the posterior rather than by pBayes, which first
mixes using the posterior and then predicts using the resulting distribution. With
these definitions, (14) can be rewritten as (mix-gapn(η,Π | η)+bayes-redn(η))
≤ C2η(bayes-redn(η) + (C2η − 1)u/η, i.e.

mix-gapn(η,Π | η) ≤ (C2η − 1)
(
bayes-redn(η) + u

η

)
. (16)

Hence, for η ≤ ηcrit(u)/2, the excess loss of randomizing rather than mixing is
of the same order as the excess loss of mixing rather than predicting with q.

Example 3. [Bayesian misspecification] For simplicity considerΠ with count-
able support. As shown by Grünwald and Langford (2007), if the model is in-
correct, in some cases with ηcrit(0) 1 1, the standard Bayesian posterior (based
on η = 1) puts, P ∗-almost surely, nearly all of its mass on a set of ‘bad’ distri-
butions p′, all with arbitrarily large D∗(q‖p′) at all large n. Yet (13) shows that
the redundancy, and hence the cumulative log-loss risk of standard Bayesian
prediction (with η = 1) must still be small (see Example 5); this is possible
because Bayes then mixes various ‘bad’ but very different p′ ∈ P into a sin-
gle ‘good’ predictive distribution pBayes(Zi | Zi−1, η) �∈ P ; see Figure 1. If this
happens1 for many i between 1 and n, then by definition mix-gapn(η,Π | η)
becomes extremely large. Theorem 1 shows that, if we set η ≤ ηcrit(u)/2, then
this will not happen: the posterior Π | Zn, η will concentrate in the sense that if
we sample from it, we will tend to draw a distribution p with D∗(q‖p) close to
0, for all q ∈ Q. Even if Q is nonsingleton this is fundamentally different from
choosing η = 1 + ηcrit(0)/2, in which case the posterior puts almost all of its
mass on distributions p′ with D∗(q‖p′) large for all q ∈ Q. Example 5 explains
why posterior concentration is so important.

1 In the GL examples, the set of distributions over which the posterior mixes changes
with sample size i, but they always remain ‘bad’, yet the resulting predictive distri-
bution always remains ‘good’, i.e. D∗(q‖pBayes(Zi | Zi−1, η)) remains small.
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Fig. 1. Mixing vs. Randomizing: a mixture (e.g. the Bayes predictive distribution)
that puts substantial mass on the two endpoints of the line segment, is closer to p∗

than q, the best approximation of p∗ within P . This can only happen if q is not in the
convex hull of P . The picture is an idealization: in the GL examples the posterior mixes
not just two but many ‘bad’ (i.e., far from p∗) distributions, P is not 2-dimensional
parametric and the geometry is not Euclidean but determined by the KL divergence.

5 Main Result and Its Applications

We have seen that the learner would like to infer a η̂ from the data that works
at least as well as the unknown ηcrit(u)/2. The following theorem shows that
the safe Bayesian algorithm achieves this. Let Sn be defined as in Algorithm 1,
and let {W̆η} for η ∈ Sn represent a set of randomized estimators for Θ, one
for each η. We let η̂ be the “maximum likelihood” estimate of η, i.e. η̂ | Zn =
arg minη∈Sn

∑n
i=1 Eθ∼W |Zi−1,η [− ln pθ(Zi)].

Theorem 2. Let C2η be as in Theorem 1. For η ∈ Sn with η ≤ ηcrit(u)/2, we
have:

E∗
ZnEθ∼ces(W̆η̂|Zn ;Zn) [D∗(q‖pθ)] ≤

C2η

n E∗
Zn

[
n∑
i=1

Eθ∼W̆η|Zi−1

[
− ln pθ(Zi)

q(Zi)

]
+ u+O(ln lnn)

η

]
=

C2η

n

(
mix-gapn(η, W̆η) + bayes-redn(η) + u+O(ln lnn)

η

)
.

(17)

The theorem works for any W̆η, but to get good bounds the mixability gap of

W̆η must be small. Theorem 1 tells us that it will be small if we use W̆η | Zn :=
(Π | Zn, η), i.e. we randomize according to the posterior. If we plug this choice
into (17) and rewrite the right-hand side using Theorem 1 (see (16)) and the fact
that bayes-redn(η) is decreasing in η and ηcrit(u) ≥ ηmin(u) as in (8), then:

Corollary 1. The Safe Bayesian algorithm satisfies, for η ≤ ηcrit(u)/4:

E∗
ZnE∗

θ∼W̆safe|Zn
[D∗(q‖pθ)] ≤

C2
2η

n

(
bayes-redn(η) + u+O(ln lnn)

η

)
. (18)



The Safe Bayesian 179

Note that C2η has become C2
2η. We got rid of the requirement that η ∈ Sn by

using that bayes-redn(η) is decreasing in η, so that (18) must hold for every η
smaller than the largest ηmax ∈ Sn with ηmax ≤ ηcrit(u)/2. Note that ηmax may
be arbitrarily close to ηcrit(u)/4 rather than ηcrit(u)/2.

While the bound is thus in terms of η ≤ ηcrit(u)/4, it is conceivable that the
algorithm chooses a larger η̂, possibly even with η̂ + ηcrit(u). Thus, to be fully
precise, we cannot claim that we “learn” the optimal learning rate, but only that
we learn to behave as well as if we would know the optimal learning rate. The
second line of (17) indicates that the randomized η-posterior in Algorithm 1
may in principle be replaced by other estimators that approximate pBayes | η
reasonably well, such as e.g. the Bayesian MAP estimator with prior w(θ)1/η .

Example 4. [Safe vs. Empirical Bayes] The Safe Bayesian algorithm chooses η̂
that minimizes a cumulative log-loss and hence maximizes a likelihood2. Indeed,
if we interchanged expectation and logarithm in the definition of r in Algorithm
1, then we would mix rather than randomize and by (9), η̂ would become the
empirical Bayes estimate of η. Now for η > ηcrit(u), we may be in the situation of
Figure 1 where our Bayesian predictive distribution achieves small cumulative
log loss by mixing, at many sample sizes, bad distributions into a good one.
Empirical Bayes will tend to pick such an unwanted η, and indeed, it was already
shown in GL that it does not solve the Bayesian inconsistencies noted there.

Example 5. [Bayesian Misspecification, Cont.] The examples considered by
GL are based on P ∗ and countable P such that 0 < ηcrit(0) 1 1 and a prior
π(q) > 0 on the best-approximating q. Using (13), Corollary 1 thus bounds the
convergence rate of W̆safe as O((ln lnn)/n), only a factor ln lnn worse compared
to (11), which is the best known bound when ηcrit(0) is known in advance.
Thus, the inconsistency for η = 1 goes away. Now one may wonder why one
should not just, given sample Zn, directly use the standard Bayes predictive
distribution pBayes(Zn+1 | Zn, η) with η = 1 to make predictions about Zn+1?
By (10) and (13), the cumulative expected log-loss risk of this procedure should
be bounded by − lnπ(q), indicating a risk smaller than O(1/n) at most n. If
one is only interested in log-loss, this can indeed be done, and there is indeed
no good reason to take η < 1. But in many other cases, there is a very good
reason to take a smaller η̂ so that Corollary 1 holds. We give one reason be-
low; two more reasons can be found in the longer version of this paper.. Note
first that the corollary implies that, for large enough n, the posterior is concen-
trated (see above Example 1), and the phenomenon of Figure 1 cannot occur
(Ex. 3). Now for ‘nonmixable’ loss functions (Vovk, 1990) one cannot mix the
predictors θ in a Bayesian way. For example, the examples of GL also have an
interpretation in terms of 0/1-loss: they show that, in the statistical learning
setting with pθ(y | x) ∝ exp(−loss(y, θ(x))), predicting according to the MAP,
Gibbs or Bayes classifier based on the posterior Π | Zn, η for η = 1 lead to
predictions that never come close to L̃ = infθ∈Θ risk(θ). Yet Corollary 1 implies

2 In fact, η̂ maximizes a “prequential” likelihood, and the algorithm (not its analysis)
is a prime instance of Dawid’s (1984) prequential approach to statistics.
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(see Example 2) that prediction based on W̆safe does converge to L̃ at rate
O((ln lnn)/n). But now, in contrast to the log-loss case, predicting with pBayes | η
for η = 1 is not an option, since — as explained at length by GL07 — its pre-
dictions, which are mixtures over pθ as above, are mixtures of exponentiated
rather than randomized classifiers and hence do not correspond to feasible ac-
tions; rather, they are pseudo-predictions in the sense of Vovk (2001). In that
case, prediction by W̆safe, i.e. using the learning rate η̂, is presumably the best
one can do.

Example 6. [Probabilistic Setting with Correct or Convex Model P]
Corollary 1 implies that safe Bayesian estimation behaves essentially as well
as standard Bayesian estimation if the model is correct, i.e. infp∈P D(P ∗‖p) =
D(P ∗‖q) = 0 and q = p∗. Then ηcrit(0) = 1 and we can take u = 0 and
C2

2η/η = C2
2/1 ≤ (2 + 4 lnV )2 in (18). Zhang (2006a) obtains the same risk

bound as (18) for Π | η for any η < 1, the only difference being that the
factor C2

2/1 on the right is replaced by something smaller, and that there is no
O(ln lnn/ηn) term. The extra factor incurred by W̆safe may be the inevitable
price to pay for not knowing in advance that our model was, in fact, correct,
using a procedure that still leads to good results if it is incorrect.

Related Work. Grünwald (2011) already proposed an adjustment to 2-part
MDL and Bayesian MAP approaches to deal with misspecified (wrong) models.
The learning rate was determined in a completely different manner, roughly by
measuring how much one can additionally compress the data using a code based
on the convex hull of P rather than P . The resulting procedure is computation-
ally much more demanding than the Safe Bayesian algorithm. Also, it can only
be applied to countable P — a severe restriction — whereas the Safe Bayesian
algorithm can be applied to arbitrary P . Finally, the bounds in Grünwald (2011)
—although qualitatively similar to the ones presented here — have much larger
constant factors (O(V ) instead of O(ln V ) with V as in (3) above).

Acknowledgements. Supported in part by the IST Programme of the Euro-
pean Community, under the PASCAL Network of Excellence, IST-2002-506778.
This paper benefited from discussions with A. Barron, S. de Rooij, T. van Erven,
W. Koolen, A.P. Dawid and some insightful remarks by an anonymous referee.

A Proofs

Proof of Theorem 1. Apply Lemma 1 below, with G = Θ, ν(θ) := θ and for
all zi ∈ Zi, fν(θ)(zi | zi−1) := pθ(zi)/q(zi), noting that the Lemma applies for
η ≤ ηcrit(u)/2. Rewriting the left-hand side using the definition of gibbs-red,
the statement is seen to imply Theorem 1.

To prepare for Lemma 1, let Z,Z1, Z2, . . . Zn be i.i.d. random variables relative
to a probability triple (Ω,Σ, P ∗). Let G be a set and, for each ν ∈ G, let fν(· |
·) : Z ×

⋃n−1
i=0 Zi → R

+ be a measurable function such that for i ≤ n, P ∗(fν(Zi |
Zi−1) > 0) = 1. The notation fν(Zi | Zi−1) is suggestive of our applications, in
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which fν represents a ratio of conditional densities. Define fν(Zn) :=
∏n

i=1 f(Zi |
Zi−1). Let Π be a prior distribution on G and let Π | Zi, η be the generalized
posterior defined as in (1), with pηθ replaced by fην .

Lemma 1. Let Cη = 2 + 2η lnV and suppose for all zn ∈ Zn, fν(zi | zi−1) ∈
[1/V, V ]. For all η > 0 such that for all ν ∈ G, lnE∗

Z [f2ην (Z)] ≤ u/n, we have:

E∗
Zn

[∑n−1
i=0 Eν∼Π|Zi,η[− ln fν(Zi+1 | Zi)]

]
≤

C2η

η E∗
Zn [− lnEν∼Πfην (Zn)] +

C2η−1
η u.

(19)

Proof.

E∗
Zn

[∑n−1
i=0 Eν∼Π|Zi [− ln fν(Zi+1 | Zi)]

]
=

η−1
∑n−1

i=0 E∗
ZiEν∼Π|Zi

[
E∗̄
Zi+1

[− ln fην (Z̄i+1 | Zi)]
]
≤(a)

η−1
∑n−1

i=0 E∗
Zi

[
C2η

(
− lnE∗̄

Zi+1
Eν∼Π|Zi [fην (Z̄i+1 | Zi)]

)
+ (C2η − 1)

(
u
n

)]
≤

η−1
∑n−1

i=0 E∗
ZiE∗

Zi+1

[
C2η

(
− lnEν∼Π|Zi [fην (Zi+1 | Zi)]

)
+ (C2η − 1)

(
u
n

)]
=

C2η

η E∗
Zn

[∑n−1
i=0 − lnEν∼Π|Zi [fην (Zi+1 | Zi)]

]
+

C2η−1
η u =(c)

C2η

η E∗
Zn [− lnEν∼Πfην (Zn)] +

C2η−1
η u.

(a) follows from Lemma 2 below, applied with T set to the random vector T =
(ν, Z̄i+1) and g((ν, Z̄i+1)) ≡ fην (Z̄i+1 | Zi). The next line is Jensen’s inequality,
and (c) is the telescoping of the Bayesian predictive distribution as in e.g. (9).
All other equalities are immediate.

Lemma 2. Let T be a random vector taking values in some set T . For all mea-
surable functions g : T → [1/V, V ], all η′ > 0, ε ≥ 0 with lnE[g(T )2η

′
] ≤ ε, all

0 < η ≤ η′: E[− ln g(T )] ≤ C2η

η (− lnE[g(T )η]) +
C2η−1

η ε.

This lemma slightly extends a result by Barron and Li (1999). It is proved as
Proposition 5 in Grünwald (2011) (in different context, but the modification to
our setting is immediate).

Proof of Theorem 2. We apply Theorem 3 below in the form (23), with G set to
Sn in Theorem 2, the deterministic estimator ν̆ set to η̂, and with fν̂|Zn (zi | zi−1)
set to exp(Eθ∼W̆η̂|Zn |zi−1 [η ln(pθ(zi)/q(zi))]. Here η is just a fixed exponent and

η̂ is the meta-estimator in Theorem 2 indexing the learning rate at which the
randomized estimator W̆η of Theorem 2 is applied. Plugging these substitutions
into (23) using that Z1, Z2, . . . are i.i.d., we get

E∗
Zn

[
n∑
i=1

− 1
η lnE∗̄

Zi

[
fν̂|Zn (Z̄i | Zi−1)

]]
≤

E∗
Zn

[
n∑
i=1

Eθ∼Wη̂|Zn |Zi−1

[
− ln pθ(Zi)

q(Zi)

]
+ − lnπ(η̂)

η

]
.
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where we also divided both sides by η. We now move the inner expectation on
the left-hand side outside of the logarithm by applying Lemma 2 with T = Z̄i,
gη(Z̄i) = fν̂|Zn (Z̄i | Zi−1), using our assumption 0 < η < ηcrit(u)/2, which gives

E∗
Zn

[∑n
i=1 E

∗̄
Zi
E∗
θ∼Wη̂|Zn |Zi−1

[
− ln pθ(Z̄i)

q(Z̄i)

]]
≤

C2η

η E∗
Zn

[∑n
i=1− lnE∗̄

Zi

[
fν̂|Zn (Z̄i | Zi−1)

]
+ u

n

]
.

(20)

Combining the previous two equations, dividing by n and recognizing the inner
expectation in the left hand side of (20) to be equal to E∗

θ∼W̆η̂|Zn |Zi−1
D∗(q‖pθ)

gives

1
nE

∗
Zn

[∑n
i=1 E

∗
θ∼W̆η̂|Zn |Zi−1

[D∗(q‖pW̆θ
)]
]
≤

C2η

n E∗
Zn

[∑n
i=1 Eθ∼W̆η̂|Zn |Zi−1

[
− ln pθ(Zi)

q(Zi)

]
+ u−lnπ(η̂|Zn)

η

] (21)

The left side is equal to E∗
Zn

[
D∗(q‖pces(W̆η̂|Zn ;Zn))

]
. We now take π to be the

uniform prior on Sn, so that for all η ∈ Sn, − lnπ(η) = ln ‖Sn‖ = ln ‖κmax+1‖ =
O(ln lnn). The result now follows from (21), noting that the right-hand side
increases if we replace η̂ | Zn by η ∈ Sn.

Towards Theorem 3. We extend an inequality which, in various guises and level
of detail, was proven earlier by M. Seeger (2002), D. McAllester (2003), O.
Catoni (2007), J.Y. Audibert (2004) (in the context of PAC-Bayesian inference;
see Zhang (2006b) for references to additional relevant papers by these authors),
and A. Barron (with T. Cover (1991) and with J. Li (1999)), and T. Zhang
(2006a,b) in the context of MDL-type inference. Our version is a direct extension
of Theorem 2.1. of Zhang (2006b). Let Z1, Z2, . . ., P

∗, fν and G be as above
Lemma 1, except that now we do not require Z1, Z2, . . . to be i.i.d. All earlier
guises of Zhang’s result assumed that Z1, . . . , Zn are i.i.d. both according to the
‘true’ P ∗ and according to all ‘densities’ fν(Zi | zi−1), which were not allowed to
depend on zi−1. Our application of the inequality to prove Theorem 2 requires us
to extend it to non-i.i.d. models (represented below by fν(Zi | zi−1) which vary
with zi−1). As a by-product, we also extend it to non-i.i.d. Zi (in principle this
should allow us to extend the in this paper to some non-i.i.d. misspecification
settings as considered by Shalizi (2009)). The result compares the expectation
of Zi | Zi−1 to its actually observed value, and then takes another expectation
over the values that can actually be observed. To ease readability, we denote the
Zi in the inner expectation as Z̄i.

Theorem 3. [Extended Zhang’s Inequality] For arbitrary G, let Π be a
(“prior”) distribution on G and let W̆ :

⋃
n≥0Zn → G be a randomized estimator.

Then, with D(·‖·) denoting KL divergence, we have:

E∗
ZnEν∼W̆ |Zn

[∑n
i=1− lnE∗̄

Zi|Zi−1 [fν(Z̄i | Zi−1)]
]
≤

E∗
Zn

[
Eν∼W̆ |Zn

[∑n
i=1− ln fν(Zi | Zi−1)

]
+D( (W̆ |Zn) ‖Π)

]
.

(22)
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As a special case, suppose G is countable, π is a probability mass function on G,
and ν̆ is a deterministic estimator. Then

E∗
Zn

[∑n
i=1− lnE∗̄

Zi|Zi−1 [fν̆|Zn(Z̄i | Zi−1)]
]
≤

E∗
Zn

[∑n
i=1[− ln fν̆|Zn(Zi | Zi−1)]− lnπ(ν̆)

]
.

(23)

The proof is in the longer version of this paper.
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Abstract. We consider the model introduced by Bilu and Linial [12],
who study problems for which the optimal clustering does not change
when distances are perturbed. They show that even when a problem
is NP-hard, it is sometimes possible to obtain efficient algorithms for
instances resilient to certain multiplicative perturbations, e.g. on the
order of O(

√
n) for max-cut clustering. Awasthi et al. [6] consider center-

based objectives, and Balcan and Liang [9] analyze the k-median and
min-sum objectives, giving efficient algorithms for instances resilient to
certain constant multiplicative perturbations.

Here, we are motivated by the question of to what extent these as-
sumptions can be relaxed while allowing for efficient algorithms. We show
there is little room to improve these results by giving NP-hardness lower
bounds for both the k-median and min-sum objectives. On the other
hand, we show that multiplicative resilience parameters, even only on the
order of Θ(1), can be so strong as to make the clustering problem trivial,
and we exploit these assumptions to present a simple one-pass stream-
ing algorithm for the k-median objective. We also consider a model of
additive perturbations and give a correspondence between additive and
multiplicative notions of stability. Our results provide a close examina-
tion of the consequences of assuming, even constant, stability in data.

1 Introduction

Clustering is one of the most widely-used techniques in statistical data analy-
sis. The need to partition, or cluster, data into meaningful categories naturally
arises in virtually every domain where data is abundant. Unfortunately, most
of the natural clustering objectives, including k-median, k-means, and min-sum,
are NP-hard to optimize [17,19]. It is, therefore, unsurprising that many of the
clustering algorithms used in practice come with few guarantees.

Motivated by overcoming the hardness results, Bilu and Linial [12] consider a
perturbation resilience assumption that they argue is often implicitly made
when choosing a clustering objective: that the optimum clustering to the desired
objective Φ is preserved under multiplicative perturbations up to a factor α > 1
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to the distances between the points. They reason that if the optimum clustering
to an objective Φ is not resilient, as in, if small perturbations to the distances
can cause the optimum to change, then Φ may have been the wrong objective
to be optimizing in the first place. Bilu and Linial [12] show that for max-
cut clustering, instances resilient to perturbations of α = O(

√
n) have efficient

algorithms for recovering the optimum itself.
Continuing that line of research, Awasthi et al. [6] give a polynomial time

algorithm that finds the optimum clustering for instances resilient to multiplica-
tive perturbations of α = 3 for center-based1 clustering objectives when centers
must come from the data (we call this the proper setting), and α = 2 +

√
3

when when the centers do not need to (we call this the Steiner setting). Their
method relies on a stability property implied by perturbation resilience (see
Section 2). For the Steiner case, they also prove an NP-hardness lower bound
of α = 3. Subsequently, Balcan and Liang [9] consider the proper setting and
improve the constant past α = 3 by giving a new polynomial time algorithm for
the k-median objective for α = 1 +

√
2 ≈ 2.4 stable instances.

1.1 Our Results

Our work further delves into the proper setting, for which no lower bounds have
previously been shown for the stability property. In Section 3 we show that even
in the proper case, where the algorithm is restricted to choosing its centers from
the data, for any ε > 0, it is NP-hard to optimally cluster (2−ε)-stable instances,
both for the k-median and min-sum objectives (Theorems 1 and 2). To prove
this for the min-sum objective, we define a new notion of stability that is implied
by perturbation resilience, a notion that may be of independent interest.

Then in Section 4, we look at the implications of assuming resilience or stabil-
ity in the data, even for a constant perturbation parameter α. We show that for
even fairly small constants, the data begins to have very strong structural prop-
erties, as to make the clustering task fairly trivial. When α approaches ≈ 5.7,
the data begins to show what is called strict separation, where each point is
closer to points in its own cluster than to points in other clusters (Theorem 3).
We show that with strict separation, optimally clustering in the very restrictive
one-pass streaming model becomes possible (Theorem 4).

Finally, in Section 5, we look at whether the picture can be improved for
clustering data that is stable under additive, rather than multiplicative, pertur-
bations. One hope would be that additive stability is a more useful assump-
tion, where a polynomial time algorithm for ε-stable instances might be possible.
Unfortunately, this is not the case. We consider a natural additive model and
show that severe lower bounds hold for the additive notion as well (Theorems 5
and 6). On the positive side, we show via reductions that algorithms for mul-
tiplicatively stable data also work for additively stable data for a different but
related parameter.

1 For center-based clustering objectives, the clustering is defined by a choice of centers,
and the objective is a function of the distances of the points to their closest center.
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Our results demonstrate that on the one hand, it is hard to improve the
algorithms to work for low stability constants, and that on the other hand, higher
stability constants can be quite strong, to the point of trivializing the problem.
Furthermore, switching from a multiplicative to an additive stability assumption
does not help to circumvent the hardness results, and perhaps makes matters
worse. These results, taken together, narrow the range of interesting parameters
for theoretical study and highlight the strong role that the choice of constant
plays in stability assumptions.

One thing to note that there is some difference between the very related
resilience and stability properties (see Section 2), stability being weaker and
more general [6]. Some of our results apply to both notions, and some only
to stability. This still leaves open the possibility of devising polynomial-time
algorithms that, for a much smaller α, work on all the α-perturbation resilient
instances, but not on all α-stable ones.

1.2 Previous Work

The classical approach in theoretical computer science to dealing with the worst-
case NP-hardness of clustering has been to develop efficient approximation
algorithms for the various clustering objectives [3,4,10,13,20,15], and signifi-
cant efforts have been exerted to improve approximation ratios and to prove
lower bounds. In particular, for metric k-median, the best known guarantee
is a (3 + ε)-approximation [4], and the best known lower bound is (1 + 1/e)-
hardness of approximation [17,19]. For metric min-sum, the best known result
is a O(polylog(n))-approximation to the optimum [10].

In contrast, a more recent direction of research has been to characterize un-
der what conditions we can find a desirable clustering efficiently. Perturbation
resilience/stability are such conditions, but they are related to other stabil-
ity notions in clustering. Ostrovsky et al. [23] demonstrate the effectiveness of
Lloyd-type algorithms [21] on instances with the stability property that the
cost of the optimal k-means solution is small compared to the cost of the opti-
mal (k − 1)-means solution, and their guarantees have later been improved by
Awasthi et al. [5].

In a different line of work, Balcan et al. [8] consider what stability properties
of a similarity function, with respect to the ground truth clustering, are sufficient
to cluster well. In a related direction, Balcan et al. [7] argue that, for a given
objective Φ, approximation algorithms are most useful when the clusterings they
produce are structurally close to the optimum originally sought in choosing to
optimize Φ in the first place. They then show that, for many objectives, if one
makes this assumption explicit – that all c-approximations to the objective yield
a clustering that is ε-close to the optimum – then one can recover an ε-close
clustering in polynomial time, even for values of c below the hardness of ap-
proximation constant. The assumptions and algorithms of Balcan et al. [7] have
subsequently been carefully analyzed by Schalekamp et al. [24].

Ackerman and Ben-David [1] also study various notions of stability, and among
their results, introduce a notion where only the positions of cluster centers are
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perturbed. They show that instances stable in this manner will have polynomial
algorithms for finding near-optimal clusterings.

2 Notation and Preliminaries

In a clustering instance, we are given a set S of n points in a finite metric space,
and we denote d : S×S → R≥0 as the distance function. Φ denotes the objective
function over a partition of S into k clusters which we want to optimize over
the metric, i.e. Φ assigns a score to every clustering. The optimal clustering with
respect to Φ is denoted as C = {C1, C2, . . . , Ck}.

The k-median objective requires S to be partitioned into k disjoint subsets
{S1, . . . , Sk} and each subset Si to be assigned a center si ∈ S. The goal is to
minimize Φmed, measured by

φmed(S1, . . . , Sk)
.
=

k∑
i=1

∑
p∈Si

d(p, si).

The centers in the optimal clustering are denoted as c1, . . . , ck. In an optimal
solution, each point is assigned to its nearest center. For the min-sum objec-
tive, S is partitioned into k disjoint subsets, and the objective is to minimize
Φm−s, measured by

φm−s(S1, . . . , Sk)
.
=

k∑
i=1

∑
p,q∈Si

d(p, q).

Now, we define the perturbation resilience notion introduced by Bilu and
Linial [12].

Definition 1. For α > 1, a clustering instance (S, d) is α-perturbation re-
silient to a given objective Φ if for any function d′ : S × S → R≥0 such that
∀p, q ∈ S,

d(p, q) ≤ d′(p, q) ≤ αd(p, q),

there is a unique optimal clustering C′ for Φ under d′ and this clustering is equal
to the optimal clustering C for Φ under d.

In this paper, we consider the k-median and min-sum objectives, and we thereby
investigate the following definitions of stability, which are implied by perturba-
tion resilience, as shown in Sections 3.1 and 3.2. The following definition is
adapted from Awasthi et al. [6].

Definition 2. A clustering instance (S, d) is α-center stable for the k-median
objective if for any optimal cluster Ci ∈ C with center ci, Cj ∈ C (j �= i) with
center cj, any point p ∈ Ci satisfies αd(p, ci) < d(p, cj).
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Next, we define a new analogous notion of stability for the min-sum objec-
tive, and we show in Section 3.2 that for the min-sum objective, perturbation
resilience implies min-sum stability. To help with exposition for the min-sum
objective, we define the distance from a point p to a set of points A,

d(p,A)
.
=
∑
q∈A

d(p, q).

Definition 3. A clustering instance (S, d) is α-min-sum stable for the min-
sum objective if for all optimal clusters Ci, Cj ∈ C (j �= i), any point p ∈ Ci
satisfies αd(p, Ci) < d(p, Cj).

This is an especially useful generalization because algorithms working under the
perturbation resilience assumption often also work for min-sum stability.

3 Lower Bounds

3.1 The k-Median Objective

Awasthi et al. [6] prove the following connection between perturbation resilience
and stability. Both their algorithms and the algorithms of Balcan and Liang [9]
crucially use this stability assumption.

Lemma 1. Any clustering instance that is α-perturbation resilient for the k-
median objective also satisfies the α-center stability.

Awasthi et al. [6] proved that for α < 3− ε, k-median clustering α-center stable
instances is NP-hard when Steiner points are allowed in the data. Afterwards,
Balcan and Liang [9] circumvented this lower bound and achieved a polynomial
time algorithm for α = 1 +

√
2 by assuming the algorithm must choose cluster

centers from within the data.
In the theorem below, we prove a lower bound for the center stable property

in this more restricted setting, showing there is little hope of progress even for
data where each point is nearly twice closer to its own center than to any other.

Theorem 1. For any ε > 0, the problem of solving (2−ε)-center stable k-median
instances is NP-hard.

Proof. We reduce from the perfect dominating set promise problem, which we
prove to be NP-hard (see Appendix), where we are promised that the input
graph G = (V,E) is such that all of its smallest dominating sets D are perfect,
and we are asked to find a dominating set of size at most d. The reduction is
simple. We take an instance of the NP-hard problem PDS-PP on G = (V,E)
on n vertices and reduce it to an α = 2− ε-center stable instance. Our distance
metric as follows. Every vertex v ∈ V becomes a point in the k-center instance.
For any two vertices (u, v) ∈ E we define d(u, v) = 1/2. When (u, v) /∈ E, we
set d(u, v) = 1. This trivially satisfies the triangle inequality for any graph G,
as the sum of the distances along any two edges is at least 1. We set k = d.
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We observe that a k-median solution of cost (n− k)/2 corresponds to a dom-
inating set of size d in the PDS-PP instance, and is therefore NP-hard to find.
We also observe that because all solutions of size ≤ d in the PDS-PP instance
are perfect, each (non-center) point in the k-median solution has distance 1/2
to exactly one (its own) center, and a distance of 1 to every other center. Hence,
this instance is α = (2− ε)-center stable, completing the proof. �

3.2 The Min-Sum Objective

Analogously to Lemma 1, we can show that α-perturbation resilience implies
our new notion of α-min-sum stability.

Lemma 2. If a clustering instance is α-perturbation resilient, then it is also
α-min-sum stable.

Proof. Assume to the contrary that the instance is α-perturbation resilient but
is not α-min-sum stable. Then, there exist clusters Ci, Cj in the optimal solution
C and a point p ∈ Ci such that αd(p, Ci) ≥ d(p, Cj). We perturb d as follows.
We define d′ such that for all points q ∈ Ci, d′(p, q) = αd(p, q), and for the
remaining distances, d′ = d. Clearly d′ is an α-perturbation of d.

We now note that C is not optimal under d′. Namely, we can create a cheaper
solution C′ that assigns point p to cluster Cj , and leaves the remaining clusters
unchanged, which contradicts optimality of C. This shows that C is not the
optimum under d′ which contradicts the instance being α-perturbation resilient.
Therefore we can conclude that if a clustering instance is α-perturbation resilient,
then must also be α-min-sum stable. �

Moreover, we show (see Appendix) that the min-sum algorithm of Balcan and

Liang [9], which requires α to be bounded from below by 3
(

maxC∈C |C|
minC∈C |C|−1

)
, works

with this more general condition. This further motivates following bound.

Theorem 2. For any ε > 0, the problem of finding an optimal min-sum k
clustering in (2 − ε)-min-sum stable instances is NP-hard.

Proof. Consider the triangle partition problem. Let graph G = (V,E) and
|V | = n = 3k, and let each vertex have maximum degree of d = 4. The problem
of whether the vertices of G can be partitioned into sets V1, V2, . . . , Vk such
that each Vi contains a triangle in G is NP-complete [16], even with the degree
restriction [25].

We reduce the triangle partition problem to an α = (2 − ε)-min-sum stable
clustering instance. The metric is as follows. Every vertex v ∈ V becomes a point
in the min-sum instance. For any two vertices (u, v) ∈ E we define d(u, v) = 1/2.
When (u, v) /∈ E, we set d(u, v) = 1. This satisfies the triangle inequality for any
graph, as the sum of the distances along any two edges is at least 1.

Now we show that we can cluster this instance into k clusters such that the
cost of the min-sum objective is exactly n iff the original instance is a YES
instance of triangle partition. This follows from two facts.
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1. A YES instance of triangle partition maps to a clustering into k = n/3
clusters of size 3 with pairwise distances 1/2, for a total cost of n

2. A cost of n is the best achievable because a balanced clustering with all
minimum pairwise intra-cluster distances is optimal.

In the clustering from our reduction, each point has a sum-of-distances to its own
cluster of 1. Now we examine the sum-of-distances of any point to other clusters.
A point has two distances of 1/2 (edges) to its own cluster, and because d = 4,
it can have at most two more distances of 1/2 (edges) into any other cluster,
leaving the third distance to the other cluster to be 1, yielding a total cost of
≥ 2 into any other cluster. Hence, it is α = (2− ε)-min-sum stable. �

We note that it is tempting to restrict the degree bound to 3 in order to fur-
ther improve the lower bound. Unfortunately, the triangle partition problem on
graphs of maximum degree 3 is polynomial-time solvable [25], and we cannot
improve the factor of 2− ε by restricting to graphs of degree 3 in this reduction.

4 Strong Consequences of Stability

In Section 3, we showed that k-median clustering even (2 − ε)-center stable
instances is NP -hard. In this section we show that even for resilience to constant
multiplicative perturbations of α > 1

2 (5+
√

41) ≈ 5.7, the data obtains a property
referred to as strict separation, where all points are closer to all other points in
their own cluster than to points in any other cluster; this property is known to be
helpful in clustering [8]. Then we show that this property renders center-based
clustering fairly trivial even in the difficult one-pass streaming model.

4.1 Strict Separation

We will make use of the following lemma, whose proof follows directly from the
triangle inequality.

Lemma 3. For any two points p and p′ belonging to different centers ci and cj

in the optimal clustering of an α-center stable instance, d(ci, p
′) > α(α−1)

α+1 d(ci, p).

Now we can prove the following theorem, which shows that even for relatively
small multiplicative constants for α, center stable, and therefore perturbation
resilient, instances exhibit strict separation.

Theorem 3. Let C = {C1, . . . , Ck} be the optimal clustering of a 1
2 (5 +

√
41)-

center stable instance. Let p, p′ ∈ Ci and q ∈ Cj (i �= j), then d(p, q) > d(p, p′).

Proof. Let {c1, . . . , ck} be the centers of clusters {C1, . . . , Ck}. Define

pf
.
= arg max

r∈Ci

d(p, r).
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By Lemma 3 we have

d(ci, q) >
α(α− 1)

α+ 1
d(ci, p) and also d(ci, q) >

α(α − 1)

α+ 1
d(ci, pf).

Adding the two gives us

α(α − 1)

α+ 1
d(ci, p) +

α(α − 1)

α+ 1
d(ci, pf) < 2d(ci, q),

and by the triangle inequality, we get

α(α − 1)

α+ 1
d(p, pf ) < 2d(ci, q). (1)

We also have
d(ci, q) ≤ d(p, ci) + d(p, q). (2)

Combining Equations 1 and 2, and by the definition of pf , we have

α(α − 1)

α+ 1
d(p, pf ) < 2d(p, ci) + 2d(q, p) ≤ 2d(p, pf) + 2d(q, p).

From the RHS and LHS of the above, it follows that

d(p, q) >

(
α(α− 1)

2(α+ 1)
− 1

)
d(p, pf ) ≥

(
α(α− 1)

2(α+ 1)
− 1

)
d(p, p′). (3)

Equation 3 follows from the definitions of pf and p′. Finally, the statement of
the Lemma follows by setting α ≥ 1

2 (5 +
√

41) ≈ 5.7. �

4.2 Clustering in the Streaming Model

Here, we turn to the restrictive one-pass streaming model. In the natural
streaming model for center-based objectives, the learner sees the data p1, p2, . . .
in one pass, and must, using limited memory and time, implicitly cluster the
data by retaining k points to use as centers.

The clustering is then the one induced by placing each point in the cluster to
the closest center produced by the algorithm. We note that a streaming algorithm
can be used for the general batch problem, as one can present the data to the
algorithm in a streaming fashion.

Streaming models have been extensively studied in the context of clustering
objectives [2,14,18,22], where the known approximation guarantees are weaker
than in the standard offline model. We, however, show that an α-center stability
assumption can make the problem of finding the optimum tractable for center-
based objectives, in only one pass. We view this not so much as an advance in
the state-of-the-art in clustering, but rather as an illustration of how powerful
stability assumptions can be, even for constant parameter values.

For our result, we can use Theorem 3 to immediately give us the following.
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Corollary 1. Let C = {C1, . . . , Ck} be the optimal clustering of a 1
2 (5 +

√
41)-

center stable instance. Any algorithm that chooses centers {c′1, . . . , c′k} such that
c′i ∈ Ci induces the partition C when points are assigned to their closest centers.

This leads to an algorithm that easily and efficiently finds the optimal clustering.

Theorem 4. For 1
2 (5+

√
41)-center stable instances, we can recover the optimal

clustering for the k-median objective, even in one pass in the streaming model.

Proof. Consider Algorithm 1. It proceeds as follows: it keeps k centers, and
whenever a new point comes in, it adds it as a center and removes some point
that realizes the argmin distance among the current centers.

Algorithm 1. A streaming algorithm for 1
2 (5 +

√
41)-center stable instances

let p1, p2, . . . be the stream of points
let C be a set of candidate centers, initialized C = {p1, . . . , pk}
while there is more data in stream do

receive point pi
C = C ∪ pi
let p ∈ argmin{pj ,pk}∈C d(pj, pk)
C = C \ p

end while
return C (thereby inducing a clustering C)

The correctness of this algorithm follows from two observations:

1. A pair in any k+ 1 points belong to the same cluster (pigeonhole principle).
2. 2 points in different clusters cannot realize the argmin distance (Theorem 3).

Hence, whenever a point is removed as a candidate center, it has a partner in
the same optimal cluster that remains. Once we see a point from each cluster,
by Corollary 1, we get the optimal partition. �

5 Additive Stability

So far, in this paper our notions of stability were defined with respect to mul-
tiplicative perturbations. Similarly, we can imagine an instance being resilient
with respect to additive perturbations. Consider the following definition.

Definition 4. Let d : S × S → [0, 1], and let 0 < β ≤ 1. A clustering instance
(S, d) is additive β-perturbation resilient to a given objective Φ if for any
function d′ : S × S → R ≥ 0 such that ∀p, q ∈ S, d(p, q) ≤ d′(p, q) ≤ d(p, q) + β,
there is a unique optimal clustering C′ for Φ under d′ and this clustering is equal
to the optimal clustering C for Φ under d.
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We note that in the definition above, we require all pairwise distances between
points to be at most 1. Otherwise, resilience to additive perturbations would be
a very weak notion, as the distances in most instances could be scaled as to be
resilient to arbitrary additive perturbations.

Especially in light of positive results for other additive stability notions [1,11],
one possible hope is that our hardness results might only apply to the multiplica-
tive case, and that we might be able to get polynomial time clustering algorithms
for instances resilient to arbitrarily small additive perturbations. We show that
this is unfortunately not the case – we introduce notions of additive stability,
similar to Definitions 2 and 3, and for the k-median and min-sum objectives, we
show correspondences between multiplicative and additive stability.

5.1 The k-Median Objective

Analogously to Definition 2, we can define a notion of additive β-center stability.

Definition 5. Let d : S × S → [0, 1], and let 0 ≤ β ≤ 1. A clustering instance
(S, d) is additive β-center stable to the k-median objective if for any optimal
cluster Ci ∈ C with center ci, Cj ∈ C (j �= i) with center cj, any point p ∈ Ci
satisfies d(p, ci) + β < d(p, cj).

We can now prove that perturbation resilience implies center stability.

Lemma 4. Any clustering instance satisfying additive β-perturbation resilience
for the k-median objective also satisfies additive β-center stability.

Proof. The proof is similar to that of Lemmas 1 and 2 – see the Appendix. �

We now consider center stability, as in the multiplicative case. We first prove that
additive center stability implies multiplicative center stability, and this gives us

the property that any algorithm for
(

1
1−β
)

-center stable instances will work for

additive β-center stable instances.

Lemma 5. Any additive β-center stable clustering instance for the k-median

objective is also (multiplicative)
(

1
1−β
)
-center stable.

Proof. Let the optimal clustering be C1, . . . , Ck, with centers c1, . . . , ck, of an
additive β-center stabile clustering instance. Let p ∈ Ci and let i �= j. From the
stability property,

d(p, cj) > d(p, ci) + β ≥ β. (4)

We also have d(p, ci) < d(p, cj)− β, from which we can see

1

d(p, cj)− β
<

1

d(p, ci)
.

This gives us
d(p, cj)

d(p, ci)
>

d(p, cj)

d(p, cj)− β
≥ 1

1− β . (5)
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Equation 5 is derived as follows. The middle term, for d(p, cj) ≥ β (which we
have from Equation 4), is monotonically decreasing in d(p, cj). Using d(p, cj) ≤ 1
bounds it from below. Relating the LHS to the RHS of Equation 5 gives us the
needed stability property. �

Now we prove a lower bound that shows that the task of clustering additive
(1/2− ε)-center stable instances w.r.t. the k-median objective remains NP-hard.

Theorem 5. For any ε > 0, the problem of finding an optimal k-median clus-
tering in additive (1/2− ε)-center stable instances is NP-hard.

Proof. We use the reduction in Theorem 1, in which the metric satisfies the
needed property that d : S × S → [0, 1]. We observe that the instances from the
reduction are additive (1/2 − ε)-center stable. Hence, an algorithm for solving
k-median on a (1/2 − ε)-center stable instance can decide whether a PDS-PP
instance contains a dominating set of a given size, completing the proof. �

5.2 The Min-Sum Objective

Here we define additive min-sum stability and prove the analogous theorems for
the min-sum objective.

Definition 6. Let d : S × S → [0, 1], and let 0 ≤ β ≤ 1. A clustering instance
is additive β-min-sum stable for the min-sum objective if for every point p
in any optimal cluster Ci, it holds that d(p, Ci) + β(|Ci| − 1) < d(p, Cj).

Lemma 6. If a clustering instance is additive β-perturbation resilient, then it
is also additive β-min-sum stable.

Proof. The proof appears in the Appendix. �

As we did for the k-median objective, we can also reduce additive stability to
multiplicative stability for the min-sum objective.

Lemma 7. Let t = maxC∈C |C|
minC∈C |C|−1 . Any additive β-min-sum stabile clustering in-

stance for the min-sum objective is also (multiplicative)
(

1
1−β/t

)
-min-sum stable.

Proof. Let the optimal clustering be C1, . . . , Ck and let p ∈ Ci. Let i �= j. From
the stability property, we have

d(p, Cj) > d(p, Ci) + β(|Ci| − 1) ≥ β(|Ci| − 1). (6)

We also have

d(p, Ci) < d(p, Cj)− β(|Ci| − 1).

Taking reciprocals and multiplying by d(p, Cj), we have
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d(p, Cj)

d(p, Ci)
>

d(p, Cj)

d(p, Cj)− β(|Ci| − 1)
≥ |Cj |
|Cj | − β(|Ci| − 1)

(7)

≥ maxC∈C |C|
maxC∈C |Cj | − β(minC∈C |C| − 1)

≥ 1

1− β/t . (8)

The LHS of Equation 7 is derived as follows: the middle term, for d(p, Cj) ≥
β(|Ci| − 1) (which we have from Equation 6), is monotonically decreasing in
d(p, Cj). Using d(p, cj) ≤ |Cj | bounds it from below. Equation 8 gives us the
needed property. �

Finally, as with the k-median objective, we show that additive min-sum stability
exhibits similar lower bounds as in the multiplicative case.

Theorem 6. For any ε > 0, the problem of finding an optimal min-sum clus-
tering in additive (1/2− ε)-min-sum stable instances is NP-hard.

Proof. We use the reduction in Theorem 2, in which the metric satisfies the
property that d : S × S → [0, 1]. The instances from the reduction are additive
(1/2−ε)-min-sum stable. Hence, an algorithm for clustering a (1/2−ε)-min-sum
stable instance can solve the triangle partition problem. �

6 Discussion

Our lower bounds, together with the structural properties implied by fairly small
constants, illustrate the importance parameter settings play in stability assump-
tions. These results make us wonder the degree to which the assumptions studied
herein hold in practice; empirical study of real datasets is warranted.

Another interesting direction is to relax the assumptions. Awasthi et al. [6]
suggest considering stability under random, and not worst-case, perturbations.
Balcan and Liang [9] also study a relaxed version of the assumption, where
perturbations can change the optimal clustering, but not by much. It is open
to what extent, and on what data, any of these approaches will yield practical
improvements.

Acknowledgements. Maria-Florina Balcan and Yingyu Liang for helpful dis-
cussions; Avrim Blum and Santosh Vempala for feedback on the writing; the
anonymous referees for useful pointers.
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A Dominating Set Promise Problem

A dominating set in a unweighted graph G = (V,E) is a subset D ⊆ V of
vertices such that each vertex in V \D has a neighbor in D. A dominating set
is perfect if each vertex in D \ V has exactly one neighbor in D. The problems
of finding the smallest dominating set and smallest perfect dominating set are
NP-hard. Here we introduce a related problem, called the perfect dominating
set promise problem. In this problem we are promised that the input graph
is such that all its dominating sets of size less at most d are perfect, and we are
asked to find a set of cardinality at most d. We first prove the following.

Theorem 7. The perfect dominating set promise problem (PDS-PP) is
NP-hard.

Proof. The 3d matching problem (3DM) is as follows: let X,Y, Z be finite
disjoint sets with m = |X | = |Y | = |Z|. Let T contain triples (x, y, z) with
x ∈ X, y ∈ Y, z ∈ Z with L = |T |. M ⊆ T is a perfect 3d-matching if for any two
triples (x1, y1, z1), (x2, y2, z2) ∈M , we have x1 �= x2, y1 �= y2, z1 �= z2. We notice
that M is a disjoint partition. Determining whether a perfect 3d-matching exists
(YES vs. NO instance) in a 3d-matching instance is known to be NP-complete.

Now we reduce an instance of the 3DM problem to PDS-PP onG = (V,E). For
3DM elements X , Y , and Z we construct vertices VX , VY , and VZ , respectively.
For each triple in T we construct a vertex in set VT . Additionally, we make an
extra vertex v. This gives V = VX ∪ VY ∪ VZ ∪ VT ∪ {v}. We make the edge set
E as follows. Every vertex in VT (which corresponds to a triple) has an edge to
the vertices that it contains in the corresponding 3DM instance (one in each of
VX , VY , and VZ). Every vertex in VT also has an edge to v.

Now we will examine the structure of the smallest dominating set D in the
constructed PDS-PP instance. The vertex v must belong to D so that all vertices
in VT are covered. Then, what remains is to optimally cover the vertices in
VX ∪ VY ∪ VZ – the cheapest solution is to use m vertices from VT , and this
is precisely the 3DM problem, which is NP-hard. Hence, any solution of size
d = m+ 1 for the PDS-PP instance gives a solution to the 3DM instance.

We also observe that such a solution makes a perfect dominating set. Each
vertex in VT \D has one neighbor in D, namely v. Each vertex in VX∪VY ∪VZ has
a unique neighbor in D, namely the vertex in VT corresponding to its respective
set in the 3DM instance. �

B Results for Additive Stability

Proof (of Lemma 4). We prove that for every point p and its center ci in the
optimal clustering of an additive β-perturbation resilient instance, it holds that
d(p, cj) > d(p, ci) + β for any j �= i.

Consider an additive β-perturbation resilient clustering instance. Assume we
blow up all the pairwise distances within cluster Ci by an additive factor of β. As
this is a legitimate perturbation of the distance function, the optimal clustering
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under this perturbation is the same as the original one. Hence, p is still assigned
to the same cluster. Furthermore, since the distances within Ci were all changed
by the same constant factor, ci will remain the center of the cluster. The same
holds for any other optimal clusters. Since the optimal clustering under the
perturbed distances is unique it follows that even in the perturbed distance
function, p prefers ci to cj , which implies the lemma. �
Proof (of Lemma 6). Assume to the contrary that the instance is β-perturbation
resilient but is not β-min-sum stable. Then, there exist clusters Ci, Cj in the
optimal solution C and a point p ∈ Ci such that d(p, Ci)+β(|Ci|−1) ≥ d(p, Cj).
Then, we perturb d as follows. We define d′ such that for all points q ∈ Ci,
d′(p, q) = d(p, q)+β, and for the remaining distances d′ = d. Clearly d′ is a valid
additive β-perturbation of d.

We now note that C is not optimal under d′. Namely, we can create a cheaper
solution C′ that assigns point p to cluster Cj , and leaves the remaining clusters
unchanged, which contradicts optimality of C. This shows that C is not the
optimum under d′ which is contradictory to the fact that the instance is additive
β-perturbation resilient. Therefore we conclude that if a clustering instance is
additive β-perturbation resilient, then it is also additive β-min-sum stable. �

C Average Linkage for Min-Sum Stability

In this appendix, we further support the claim that algorithms designed for α-
perturbation resilient instances w.r.t. the min-sum objective can often be made
to work for data satisfying the more general α-min-sum stability property.

One such algorithm is the Average Linkage algorithm of Balcan and Liang [9].
The algorithm requires the condition in Lemma 8 to hold, which we can prove
indeed holds for α-min-sum stable instances (their proof of the lemma holds for
the more restricted class of perturbation-resilient instances). To state the lemma,
we first define the distance between two point sets, A and B:

d(A,B)
.
=
∑
p∈A

∑
q∈B

d(p, q).

Lemma 8. Assume the optimal clustering is α-min-sum stable. For any two
different clusters C and C′ in C and every A ⊂ C, αd(A, Ā) < d(A,C′).

Proof. From the definition of αd(A, Ā), we have

αd(A, Ā) = α
∑
p∈A

∑
q∈Ā

d(p, q) ≤ α
∑
p∈A

∑
q∈C

d(p, q)

=
∑
p∈A

α
∑
q∈C

d(p, q) <
∑
p∈A

∑
q∈C′

d(p, q) = d(A,C′).

The first inequality comes from Ā ⊂ C and the second by definition of min-sum
stability. �
This, in addition to Lemma 2, can be used to show their algorithm can be
employed for min-sum stable instances.
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Abstract. The question of the optimality of Thompson Sampling for
solving the stochastic multi-armed bandit problem had been open since
1933. In this paper we answer it positively for the case of Bernoulli re-
wards by providing the first finite-time analysis that matches the asymp-
totic rate given in the Lai and Robbins lower bound for the cumulative
regret. The proof is accompanied by a numerical comparison with other
optimal policies, experiments that have been lacking in the literature
until now for the Bernoulli case.

1 Introduction

In a stochastic bandit problem an agent is repeatedly asked to choose one action
from an action set, each of which produces a reward drawn from an underlying,
fixed, but unknown distribution associated with each action. In this paper we
focus on stochastic bandits with Bernoulli rewards, initially proposed by Thomp-
son in his paper of 1933 [14] to model medical allocation problems. Thompson’s
paper also presented the first bandit algorithm, Thompson Sampling. This al-
gorithm has received much attention in the recent literature, and in this paper
we give the first theoretical proof of the asymptotic optimality of this algorithm
in the context of cumulative regret minimisation. Furthermore we achieve this
result by giving a finite time analysis for the algorithm.

Associated with each action, a, is an unknown Bernoulli distribution B (μa),
whose expectation is μa. At each time t the agent chooses to observe an action
At ∈ {1, . . . ,K} and receives a reward Rt drawn from the distribution B (μAt).
A policy, or bandit algorithm, is defined to be a (possibly randomised) method
for choosing At given the past history of observations and actions. The agent’s
goal is to minimize the expected cumulative regret of his policy, which is defined
to be:

R(T ) := Tμ∗ − E

[
T∑
t=1

Rt

]
=
∑
a∈A

(μ∗ − μa)E[Na,t] (1)

where μ∗ = maxa μa denotes the expectation of the best arm1, or optimal action,
and Na,t the number of draws of arm a at the end of round t. Lai and Robbins

1 The words arms and actions are used interchangably.

N.H. Bshouty et al. (Eds.): ALT 2012, LNAI 7568, pp. 199–213, 2012.
© Springer-Verlag Berlin Heidelberg 2012
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proved in [10] that all strongly consistent policies (i.e. policies satisfying R(t) =
o(tα) for all α ∈ (0, 1)) must satisfy, for any suboptimal arm a

lim inf
T→∞

E[Na,T ]

lnT
≥ 1

K(μa, μ∗)
(2)

where K(p, q) denotes the Kullback-Leibler divergence between B (p) and B (q):

K(p, q) := p ln
p

q
+ (1 − p) ln

1− p
1− q .

Their result, which holds for more general classes of reward distributions, moti-
vates defining policies that satisfy (2) with equality to be asymptotically optimal.

In the same paper [10] Lai and Robbins were able to describe an asymptoti-
cally optimal policy, however no finite-time analysis was provided, nor was it an
efficient policy to implement. The UCB1 algorithm by Auer et al. [4] was the
first of a series of efficient policies, like UCB-V [3] or MOSS [2], for which good
regret bounds in finite time were also provided. These policies all use an upper
confidence bound on the empirical mean of past rewards as an optimistic index
for each arm, choosing at each time the action with the highest current index.
However, for each of these algorithms we only have the result that there exists
two constants K1 > 2 and K2 > 0 such that for every suboptimal action a, with
Δa = μ∗ − μa,

E[Na,T ] ≤ K1

Δ2
a

ln(T ) +K2. (3)

This does not imply (2) with equality since by the Pinsker inequality one has
2K(μa, μ

∗) > Δ2
a. On the contrary, recently proposed index policies such as

DMED [8] and KL-UCB [6, 11], which use indices obtained from KL-based con-
fidence regions, have been shown to be asymptotically optimal.

Unlike most of this family of upper confidence bound algorithms that has
been so successful, Thompson Sampling is a policy that uses ideas from Bayesian
modelling and yet it solves the fundamentally frequentist problem of regret min-
imisation. Assume a uniform prior on each parameter μa, let πa,t denote the
posterior distribution for μa after the tth round of the algorithm. Let θa,t denote
a sample from πa,t; we sometimes refer to θa,t as a Thompson sample. Thompson
sampling is the policy which at time t chooses to observe the action with the
highest Thompson sample θa,t, i.e. it chooses action a with the probability that
this action has the highest expected reward under the posterior distribution.

Before Agrawal and Goyal’s recent paper [1] Thompson Sampling had been
investigated in [7] as the Bayesian Learning Automaton, and in [12] where an
optimistic version was also proposed; however these papers only provided weak
theoretical guarantees. In [5] extensive numerical experiments were carried out
for Thompson Sampling beyond the scope of the Bernoulli bandit setting (to
the Generalized Linear Bandit Model) but without any theoretical guarantee
at all. Consequently the first finite-time analysis of Thompson Sampling in [1]
was a major breakthrough, yet the upper bound for the regret that is shown in
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this paper scales like (3) and the question of Thompson Sampling’s asymptotic
optimality was still open.

Meanwhile, there has been a resurgence of interest in Bayesian strategies for
bandit problems (see [9] for a review of them). The Bayes-UCB algorithm, an
upper confidence bound policy which uses an adaptive quantile of πa,t as an
optimistic index, was the first Bayesian algorithm to be proved asymptotically
optimal. In this paper we are able to show that the same is true for a randomised
Bayesian algorithm, Thompson Sampling. Moreover, we refer in our analysis
to the Bayes-UCB index when introducing the deviation between a Thompson
Sample and the corresponding posterior quantile.

Contributions. We provide a finite-time regret bound for Thompson Sampling,
that follows from (1) and the result on suboptimal draws given in Theorem 2:

Theorem 1. For every ε > 0 there exists a problem-dependent constant C(ε, μ1,
. . . , μK) such that the regret of Thompson Sampling satisfies:

R(T ) ≤ (1 + ε)
∑

a∈A:μa 
=μ∗

Δa(ln(T ) + ln ln(T ))

K(μa, μ∗)
+ C(ε, μ1, . . . , μK).

Besides this asymptotically optimal regret bound, we also provide the first nu-
merical experiments that show Thompson Sampling outperforming the current
best optimal policies. The rest of the paper is structured as follows. Section 2
contains notations or results from [1], [6] and [9] that are useful in our finite-time
analysis given in Section 3. Numerical experiments are presented in Section 4.

2 Preliminaries

We gather together here some useful preliminaries such as notations not already
given in the introduction:

– For the rest of this paper, we assume action 1 is the unique optimal ac-
tion. Without loss of generality2, we can assume that the parameter μ =
(μ1, ..., μK) of the problem is such that μ1 > μ2 ≥ ... ≥ μK .

– We shall denote by Sa,t the number of successes observed from action a by
time t, and denote the empirical mean by: μ̂a,t := Sa,t/Na,t.

– In the Bernoulli case, with a uniform prior on the parameters μa of the arms,
the posterior on arm a at time t is explicitly

πa,t = Beta (Sa,t + 1, Na,t − Sa,t + 1) .

– Let FBeta
a,b denote the cdf of a Beta(a, b) distribution and FB

j,μ (resp fBj,μ) the
cdf (resp pdf) of a Binomial(j, μ) distribution. We recall an important link
between Beta and Binomial distribution used in both [1] and [9]:

FBeta
a,b (y) = 1− FB

a+b−1,y(a− 1)

We use this ‘Beta-Binomial trick’ at several stages of our analysis.

2 In Appendix A of [1] the authors show that adding a second optimal arm can only
improve the regret performance of Thompson Sampling.
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– We denote by ua,t (resp. qa,t) the KL-UCB (resp. Bayes-UCB) index at time
t, and define them, with Q(α, π) being the α-quantile of distribution π, by

ua,t : = argmax
x>

Sa,t
Na,t

{
K

(
Sa,t
Na,t

, x

)
≤ ln(t) + ln(ln(T ))

Na,t

}

qa,t : = Q

(
1− 1

t ln(T )
, πa,t

)
.

A special link between these two indices is shown in [9]: qa,t < ua,t.

3 Finite Time Analysis

3.1 Sketch of Analysis

Unlike Agrawal and Goyal’s analysis, which is based on explicit computation of
the expectation E[N2,T ], we are inspired by standard analysis of frequentist index
policies (at each round t, for each arm a these policies compute an index la,t from
the sequence of observed rewards from a by time t, and chooseAt = argmaxala,t).
Such an analysis aims to bound the number of draws of a suboptimal arm, a, by
considering two possible events that might lead to a play of this arm:

– the optimal arm (arm 1) is under-estimated, i.e. l1,t < μ1;
– the optimal arm is not under-estimated and the suboptimal arm a is drawn.

Taking these to be a good description of when the suboptimal arm is drawn
leads to the decomposition

E[Na,T ] ≤
T∑
t=1

P (l1,t < μ1) +
T∑
t=1

P ((la,t ≥ l1,t > μ1) ∩ (At = a))

The analysis of an optimistic algorithm then proceeds by showing that the left
term (the“under-estimation” term) is o (ln(T )) and the right term is of the form

1
K(μa,μ1)

ln(T ) + o (ln(T )) (or at worst 2
Δ2

a
ln(T ) + o (ln(T )) as in the analysis of

UCB1). This style of argument works for example for the KL-UCB algorithm
[6] and also for the Bayesian optimistic algorithm Bayes-UCB [9].

However we cannot directly apply this approach to analyse Thompson Sam-
pling, since the sample θa,t is not an optimistic estimate of μa. Indeed, even
when π1,t is well concentrated and therefore close to a Gaussian distribution
centred at μ1, P (θ1,t < μ1) is close to 1

2 and the under-estimation term is not
o (ln(T )). Hence we will not compare in our proof the sample θa,t to μa, but to

μa −
√

6 ln(t)/Na,t (if Na,t > 0) which is the lower bound of an UCB interval.

We set the convention that if Na,t = 0,
√

6 ln(t)/Na,t = ∞.
As is observed in [1] the main difficulty in a regret analysis for Thompson

Sampling is to control the number of draws of the optimal arm. We provide this
control in the form of Proposition 1 whose proof, given in Section 3.3, explores
in depth the randomised nature of Thompson Sampling.
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Proposition 1. There exists constants b = b(μ1, μ2) ∈ (0, 1) and Cb <∞ such
that ∞∑

t=1

P
(
N1,t ≤ tb

)
≤ Cb.

Remark 1. In general, a result on the regret like E[N1,t] ≥ t−K ln(t) does not
imply a deviation inequality for N1,t (see [13]). Proposition 1 is therefore a strong
result, that enables us to adapt the standard analysis mentioned above.

We can then reduce to analysing the behaviour of the algorithm once it has seen
a reasonable number of draws on arm 1, and thus the posterior distribution is
well concentrated. Using Proposition 1 and the new decomposition yields:

Theorem 2. Let ε > 0. With b as in Proposition 1, for every suboptimal arm
a, there exist constants Dε(μ1, μa), Nε(b, μ1, μa) and N0(b) such that:

E[Na,T ] ≤ (1 + ε)
lnT + ln lnT

K(μa, μ1)
+Dε(μ1, μa) +Nε(b, μ1, μa) +N0(b) + 5 + 2Cb.

The constants are made more explicit in the proofs of Proposition 1 and
Theorem 2. The fact that Theorem 2 holds for every ε > 0 gives us the asymp-
totic optimality of Thompson Sampling.

3.2 Proof of Theorem 2

Step 1: Decomposition First we recall the modified decomposition mentioned
above:

E[Na,T ] ≤
T∑
t=1

P

(
θ1,t ≤ μ1 −

√
6 ln t

N1,t

)
+

T∑
t=1

P

(
θa,t > μ1 −

√
6 ln t

N1,t
, At = a

)

≤
T∑
t=1

P

(
θ1,t ≤ μ1 −

√
6 ln t

N1,t

)

+

T∑
t=1

P

(
θa,t > μ1 −

√
6 ln t

N1,t
, At = a, θa,t < qa,t

)
+

T∑
t=1

P (θa,t > qa,t)

The sample θa,t is not very likely to exceed the quantile of the posterior distri-
bution qa,t we introduced:

T∑
t=1

P (θa,t > qa,t) ≤
T∑
t=1

1

t ln(T )
≤ 1 + ln(T )

ln(T )
≤ 2

where this last inequality follows for T ≥ e. So finally, using that ua,t ≥ qa,t,

E[Na,t] ≤
T∑

t=1

P

(
θ1,t ≤ μ1 −

√
6 ln t

N1,t

)
︸ ︷︷ ︸

A

+

T∑
t=1

P

(
ua,t > μ1 −

√
6 ln t

N1,t
, At = a

)
︸ ︷︷ ︸

B

+2 (4)
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Step 2: Bounding term A To deal with term A we show a new self-normalized
inequality adapted to the randomisation in each round of Thompson Sampling.

Lemma 1. There exists some deterministic constant N0(b) such that

∞∑
t=1

P

(
θ1,t ≤ μ1 −

√
6 ln t

N1,t

)
≤ N0(b) + 3 + Cb <∞

with Cb defined as in Proposition 1.

Proof. Let (Ut) denote a sequence of i.i.d. uniform random variables, and let
Σ1,s be the sum of the first s rewards from arm 1. In the following, we make the
first use of the link between Beta and Binomial distributions:

P

(
θ1,t ≤ μ1 −

√
6 ln t

N1,t

)
= P

(
Ut ≤ FBeta

S1,t+1,N1,t−S1,t+1

(
μ1 −

√
6 ln t

N1,t

))

= P

((
Ut ≤ 1− FB

N1,t+1,μ1−
√

6 ln t
N1,t

(S1,t)

)
∩
(
N1,t ≥ tb

))
+ P

(
N1,t ≤ tb

)
= P

((
FB

N1,t+1,μ1−
√

6 ln t
N1,t

(S1,t) ≤ Ut
)
∩
(
N1,t ≥ tb

))
+ P

(
N1,t ≤ tb

)
≤ P

(
∃s ∈ {tb...t} : FB

s+1,μ1−
√

6 ln t
s

(Σ1,s) ≤ Ut
)

+ P
(
N1,t ≤ tb

)
=

t∑
s=�tb�

P

(
Σ1,s ≤ (FB)−1

s+1,μ1−
√

6 ln t
s

(Ut)

)
+ P

(
N1,t ≤ tb

)
The first term in the final line of this display now deals only with Binomial
random variables with large numbers of trials (greater than tb), and so we can
draw on standard concentration techniques to bound this term. Proposition 1
takes care of the second term.

Note that (FB)−1

s+1,μ1−
√

6 ln t/s
(Ut) ∼ Bin

(
s+ 1, μ1 −

√
6 ln t/s

)
and is inde-

pendent from Σ1,s ∼ Bin (s, μ1). For each s, we define two i.i.d. sequences of
Bernoulli random variables:

(X1,l)l ∼ B
(
μ1 −

√
6 ln t

s

)
and (X2,l)l ∼ B (μ1) ,

and we let Zl := X2,l −X1,l, another i.i.d. sequence, with mean
√

6 ln t
s . Using

these notations,

P

(
Σ1,s ≤ (FB)−1

s+1,μ1−
√

6 ln t
s

(Ut)

)
≤ P

(
s∑

l=1

(
Zl −

√
6 ln t

s

)
≤ −

(√
6s ln t− 1

))
.



Thompson Sampling: An Asymptotically Optimal Finite-Time Analysis 205

Let N0(b) be such that if t ≥ N0(b),
√

6tb ln t− 1 >
√

5tb ln t. For t ≥ N0(b), we
can apply Hoeffding’s inequality to the bounded martingale difference sequence
Z ′
l = Zl −

√
6 ln t/s to get

P

(
Σ1,s < (FB)−1

s+1,μ1−
√

6 ln t
s

(Ut)

)
≤ exp

(
−2

(
√

5s ln t)2

4s

)
= e−

5
2 ln t =

1

t
5
2

.

We conclude that

∞∑
t=1

P

(
θ1(t) < μ1 −

√
6 ln t

N1,t

)
≤ N0(b) +

∞∑
t=1

1

t
3
2

+ Cb ≤ N0(b) + 3 + Cb.

Step 3: Bounding Term B We specifically show that:

Lemma 2. For all a = 2, . . . ,K, for any ε > 0 there exist positive constants
Nε(b, μ1, μa), Dε(μ1, μa) such that for all T > Nε(b, μ1, μa)

(B) ≤ (1 + ε)
ln(T ) + ln ln(T )

K(μa, μ1)
+Dε(μ1, μa).

Proof. First rewrite term B so that we can apply Proposition 1:

(B) ≤
T∑
t=1

P

(
ua,t > μ1 −

√
6 ln t

N1,t
, At = a,N1,t ≥ tb

)
+

T∑
t=1

P
(
N1,t ≤ tb

)
≤

T∑
t=1

P

(
ua,t > μ1 −

√
6 ln t

tb
, At = a

)
+ Cb

For ease of notation we introduce

K+(x, y) := K(x, y)1(x≤y), fT (t) := ln t+ ln(ln(T ))

βt =

√
6 ln t

tb
, and KT,a(ε) = (1 + ε)

ln(T ) + ln ln(T )

K(μa, μ1)
.

Now

(ua,t ≥ α) =
(
N2,tK

+(μ̂2,N2,t , α) ≤ fT (t)
)

and so summing over the values of N2,t and inverting the sums we get

T∑
t=1

P (ua,t > μ1 − βt, At = a) = E

⎡⎢⎢⎣ ∑
s≤KT,a

s≤t

1(sK+(μ̂a,s,μ1−βt)≤fT (t))1(It=a,N2,t=s)

⎤⎥⎥⎦
+ E

⎡⎣ T∑
s=�KT,a�+1

T∑
t=s

1(sK+(μ̂a,s,μ1−βt)≤fT (t))1(At=a,N2,t=s)

⎤⎦ .
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Given that
∑T

t=s 1(At=a,N2,t=s) ≤ 1 for all s, the first term is upper bounded by
Ka,T whereas the second is upper bounded by

E

⎡⎣ T∑
s=�KT,a�+1

1(sK+(μ̂a,s,μ1−βKT,a)≤fT (T ))

⎤⎦ ,
where we use that y �→ K+ (μ̂a,s, y) is increasing and that for t large enough
(t ≥ e1/b) t �→ βt is decreasing, and so the last inequality holds for T such that

KT,a(ε) ≥ e1/b. (5)

Finally, for such T ,

(B) ≤ KT,a +
∑

�KT,a�+1

P

(
K+
(
μ̂a,s, μ1 − βKT,a

)
≤ K(μa, μ1)

1 + ε

)
.

Because K+ (μ̂a,s, .) is convex, we can show that on the above event:

K+(μ̂a,s, μ1) ≤ K+(μ̂a,s, μ1 − βKa,T ) +
2

μ1(1 − μ1)
βKa,T ≤

K(μa, μ1)

1 + ε/2
(6)

where the last inequality holds for large enough T . So there exists some N =
Nε(b, μ1, μa) such that all T > N satisfy both (5) and (6). Hence, for all T ≥ N

(B) ≤ KT,a +
∑

�KT,a�+1

P

(
K+ (μ̂a,s, μ1) ≤ K(μa, μ1)

1 + ε
2

)
.

Since this last sum is bounded above explicitly by some constant Dε(μ1, μa) in

[11] we have proved the lemma. One has Dε(μ1, μa) = (1+ε/2)2

ε2(min(μa(1−μa);μ1(1−μ1)))
2 .

Conclusion: The result now follows from Lemmas 1, 2 and inequality (4).

3.3 Proof of Proposition 1

Since we focus on the number of draws of the optimal arm, let τj be the occurence
of the jth play of the optimal arm (with τ0 := 0). Let ξj := (τj+1 − 1) − τj :
this random variable measures the number of time steps between the jth and

the (j + 1)th play of the optimal arm, and so
∑K

a=2Na,t =
∑N1,t

j=0 ξj . For each

suboptimal arm, a relevant quantity is Ca = 32
(μ1−μa)2

and let C = maxa 
=1 Ca =
32

(μ1−μ2)2
. We also introduce δa = μ1−μa

2 and let δ = δ2.
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Step 1: Initial Decomposition of Summands First we use a union bound on the
summands to extract the tails of the random variables ξj :

P(N1,t ≤ tb) = P

(
K∑
a=2

N2,t ≥ t− tb
)

≤ P
(
∃j ∈

{
0, .., 2tb3

}
: ξj ≥ t1−b − 1

)
≤

�tb�∑
j=0

P(ξj ≥ t1−b − 1) (7)

This means that there exists a time range of length t1−b − 1 during which only
suboptimal arms are played. In the case of two arms this implies that the (unique)

suboptimal arm is played � t1−b−1
2 � times during the first half of this time range.

Thus its posterior becomes well concentrated around its mean with high prob-
ability, and we can use this fact to show that the probability the suboptimal

action is chosen a further � t1−b−1
2 � times in a row is very small.

To generalise this approach we introduce a notion of a saturated, suboptimal
action:

Definition 1. Let t be fixed. For any a �= 1, an action a is said to be saturated
at time s if it has been chosen at least Ca ln(t) times. That is Na,s ≥ Ca ln(t).
We shall say that it is unsaturated otherwise. Furthermore at any time we call
a choice of an unsaturated, suboptimal action an interruption.

We want to study the event Ej = {ξj ≥ t1−b − 1}. We introduce the interval
Ij = {τj , τj+�t1−b−1�} (included in {τj , τj+1} on Ej) and begin by decomposing
it into K subintervals:

Ij,l :=

{
τj +

⌈
(l − 1)(t1−b − 1)

K

⌉
, τj +

⌈
l(t1−b − 1)

K

⌉}
, l = 1, . . . ,K.

Now for each interval Ij,l, we introduce:

– Fj,l: the event that by the end of the interval Ij,l at least l suboptimal actions
are saturated;

– nj,l: the number of interruptions during this interval.

We use the following decomposition to bound the probability of the event Ej :

P(Ej) = P(Ej ∩ Fj,K−1) + P(Ej ∩ F c
j,K−1) (8)

To bound both probabilities, we will need the fact, stated in Lemma 3, that the
probability of θ1,s being smaller than μ2 + δ during a long subinterval of Ij is
small. This follows from the fact that the posterior on the optimal arm is always
Beta(S1,τj + 1, j − S1,τj + 1) on Ij : hence, when conditioned on S1,τj , θ1,s is an
i.i.d. sequence with non-zero support above μ2+δ, and thus is unlikely to remain
below μ2 + δ for a long time period. This idea is also an important tool in the
analysis of Thompson Sampling in [1].
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Lemma 3. ∃λ0 = λ0(μ1, μ2) > 1 such that for λ ∈]1, λ0[, for every (random)
interval J included in Ij, and every positive function f , one has

P (∀s ∈ J , θ1,s ≤ μ2 + δ , |J | ≥ f(t)) ≤ (αμ1,μ2)f(t) + Cλ,μ1,μ2

1

f(t)λ
e−jdλ,μ1,μ2

where Cλ,μ1,μ2 , dλ,μ1,μ2 > 0 and αμ1,μ2 = (1/2)1−μ2−δ.

Due to space limitations we omit the proof of this important lemma which can
be found in the arxiv version of this paper. Another key point in the proof is the
fact that a sample from a saturated suboptimal arm cannot fall too far from its
true mean. The following lemma is easily adapted from Lemma 2 in [1].

Lemma 4

P (∃s ≤ t, ∃a �= 1 : θa,s > μa + δa, Na,s > Ca ln(t)) ≤ 2(K − 1)

t2
.

Step 2: Bounding P(Ej ∩ Fj,K−1) On the event Ej ∩ Fj,K−1, only saturated
suboptimal arms are drawn on the interval Ij,K . Using the concentration results
for samples of these arms in Lemma 4, we get

P(Ej ∩ Fj,K−1) ≤P({∃s ∈ Ij,K , a �= 1 : θa,s > μa + δ} ∩ Ej ∩ Fj,K−1)

+ P({∀s ∈ Ij,K , a �= 1 : θa,s ≤ μa + δa} ∩ Ej ∩ Fj,K−1)

≤P(∃s ≤ t, a �= 1 : θa,s > μa + δa, Na,t > Ca ln(t))

+ P({∀s ∈ Ij,K , a �= 1 : θa,s ≤ μ2 + δ} ∩Ej ∩ Fj,K−1)

≤2(K − 1)

t2
+ P(θ1,s ≤ μ2 + δ, ∀s ∈ Ij,K).

The last inequality comes from the fact that if arm 1 is not drawn, the sample
θ1,s must be smaller than some sample θa,s and therefore smaller than μ2 + δ.

Since Ij,K is an interval in Ij of size
⌈
t1−b−1
K

⌉
we get using Lemma 3, for some

fixed λ ∈]1, λ0[,

P(θ1,s ≤ μ2 + δ, ∀s ∈ Ij,K})

≤ (αμ1,μ2)
t1−b−1

K + Cλ,μ1,μ2

1(
t1−b−1
K

)λ e−jdλ,μ1,μ2 =: g(μ1, μ2, b, j, t). (9)

Hence we have show that

P(Ej ∩ Fj,K−1) ≤ 2(K − 1)

t2
+ g(μ1, μ2, b, j, t), (10)

and choosing b such that b < 1− 1
λ , the following hypothesis on g holds:∑

t≥1

∑
j≤tb

g(μ1, μ2, b, j, t) < +∞.
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Step 3: Bounding P(Ej ∩ F c
j,K−1) We show through an induction that for all

2 ≤ l ≤ K, if t is larger than some deterministic constant Nμ1,μ2,b specified in
the base case,

P(Ej ∩ F c
j,l−1) ≤ (l − 2)

(
2(K − 1)

t2
+ f(μ1, μ2, b, j, t)

)
for some function f such that

∑
t≥1

∑
1≤j≤tb f(μ1, μ2, b, j, t) <∞. For l = K we

get

P(Ej ∩ F c
j,K−1) ≤ (K − 2)

(
2(K − 1)

t2
+ f(μ1, μ2, b, j, t)

)
. (11)

Step 4: The Base Case of the induction Note that on the event Ej only subop-
timal arms are played during Ij,1. Hence at least one suboptimal arm must be

played � t1−b−1
K2 � times.

There exists some deterministic constant Nμ1,μ2,b such that for t ≥ Nμ1,μ2,b,

� t1−b−1
K2 � ≥ C ln(t) (the constant depends only on μ1 and μ2 because C = C2).

So when t ≥ Nμ1,μ2,b, at least one suboptimal arm must be saturated by the end
of Ij,1. Hence, for t ≥ Nμ1,μ2,b

P(Ej ∩ F c
j,1) = 0.

This concludes the base case.

Step 5: The Induction As an inductive hypothesis we assume that for some
2 ≤ l ≤ K − 1 if t ≥ Nμ1,μ2,b then

P(Ej ∩ F c
j,l−1) ≤ (l − 2)

(
2(K − 1)

t2
+ f(μ1, μ2, b, j, t)

)
.

Then, making use of the inductive hypothesis,

P(Ej ∩ F c
j,l) ≤ P(Ej ∩ F c

j,l−1) + P(Ej ∩ F c
j,l ∩ Fj,l−1)

≤ (l − 2)

(
2(K − 1)

t2
+ f(μ1, μ2, b, j, t)

)
+ P(Ej ∩ F c

j,l ∩ Fj,l−1).

To complete the induction we therefore need to show that:

P(Ej ∩ F c
j,l ∩ Fj,l−1) ≤ 2(K − 1)

t2
+ f(μ1, μ2, b, j, t). (12)

On the event (Ej ∩ F c
j,l ∩ Fj,l−1), there are exactly l − 1 saturated arms at the

beginning of interval Ij,l and no new arm is saturated during this interval. As
a result there cannot be more than KC ln(t) interruptions during this interval,
and so we have

P(Ej ∩ F c
j,l ∩ Fj,l−1) ≤ P(Ej ∩ Fj,l−1 ∩ {nj,l ≤ KC ln(t)}).
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Let Sl denote the set of saturated arms at the end of Ij,l and introduce the
following decomposition:

P(Ej ∩ Fj,l−1 ∩ {nj,l ≤ KC ln(t)})
≤ P({∃s ∈ Ij,l, a ∈ Sl−1 : θa,s > μa + δa} ∩Ej ∩ Fj,l−1)︸ ︷︷ ︸

A

+P({∀s ∈ Ij,l, a ∈ Sl−1 : θa,s ≤ μa + δa} ∩Ej ∩ Fj,l−1 ∩ {nj,l ≤ KC ln(t)})︸ ︷︷ ︸
B

.

Clearly, using Lemma 4:

(A) ≤ P (∃s ≤ t, ∃a �= 1 : θa,s > μa + δa, Na,s > Ca ln(t)) ≤ 2(K − 1)

t2
.

To deal with term (B), we introduce for k in {0, . . . , nj,l−1} the random intervals
Jk as the time range between the kth and (k + 1)st interruption in Ij,l. For
k ≥ nj,l we set Jk = ∅. Note that on the event in the probability (B) there is a

subinterval of Ij,l of length
⌈

t1−b−1
CK2 ln(t)

⌉
during which there are no interruptions.

Moreover on this subinterval of Ij,l, for all a �= 1, θa,s ≤ μ2 + δ2. (This holds for
unsaturated arms as well as for saturated arms since their samples are smaller
than the maximum sample of a saturated arm.) Therefore,

(B) ≤ P(
{
∃k ∈ {0, ..., nj,l} : |Jk| ≥ (t1−b − 1)/(CK2 ln(t))

}
∩ {∀s ∈ Ij,l, a ∈ Sl−1 : θa,s ≤ μ2 + δ} ∩ Ej ∩ Fj,l−1)

≤
KC ln(t)∑
k=1

P

({
|Jk| ≥

t1−b − 1

CK2 ln(t)

}
∩ {∀s ∈ Jk, a �= 1 : θa,s ≤ μ2 + δ} ∩ Ej

)

≤
KC ln(t)∑
k=1

P

({
|Jk| ≥

t1−b − 1

CK2 ln(t)

}
∩ {∀s ∈ Jk, θ1,s ≤ μ2 + δ}

)
(13)

Now, we have to bound the probability that θ1,s ≤ μ2 + δ for all s in an interval

of size t1−b−1
CK2 ln(t) in Ij . So we apply Lemma 3 to get:

(B) ≤ CK ln(t)(αμ1,μ2)
t1−b−1

CK2 ln(t) + Cλ,μ1,μ2

CK ln(t)(
t1−b−1

CK2 ln(t)

)λ
e−jdλ,μ1,μ2 := f(μ1, μ2, b, j, t).

Choosing the same b as in (9), we get that
∑

t≥1

∑
1≤j≤tb f(μ1, μ2, b, j, t) < +∞.

It follows that for this value of b, (12) holds and the induction is complete.

Step 8: Conclusion Let b be the constant chosen in Step 2. From the decompo-
sition (8) and the two upper bounds (10) and (11), we get, for t ≥ Nμ1,μ2,b:

P(Ej) ≤ (K − 2)

(
2(K − 1)

t2
+ f(μ1, μ2, b, j, t))

)
+

2(K − 1)

t2
+ g(μ1, μ2, b, j, t).
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Recalling (7), summing over the possible values of j and t we obtain:∑
t≥1

P(N1,t ≤ tb) ≤Nμ1,μ2,b + 2(K − 1)2
∑
t≥1

1

t2−b

+
∑
t≥1

tb∑
j=1

[Kf(μ1, μ2, b, j, t) + g(μ1, μ2, b, j, t)] < Cμ1,μ2,b

for some constant Cμ1,μ2,b <∞.

4 Experiments

We illustrate the performance of Thompson Sampling on numerical experiments
with Bernoulli rewards. First we compare the cumulative regret of Thompson
Sampling to UCB, KL-UCB and Bayes-UCB on two different two-arms problems
up to a horizon T = 10000, one with small and the other with high rewards, with
different gaps between the parameters of the arms. Figure 1 shows Thompson
Sampling always outperforms KL-UCB and also Bayes-UCB eventually. The
three optimal policies are significantly better than UCB, even for small horizons.

Figure 2 displays for several algorithms an estimation of the distribution of
the cumulative regret based on N = 50000 trials, for a horizon T = 20000 in a
10-armed bandit problem with small rewards already studied in [6]. The first two
algorithms are variants of UCB. Of these the UCB-V algorithm is close to the
index policy to which Thompson Sampling is compared in [5] in the Bernoulli
setting, but this policy is not known to be optimal. This algorithm incorporates
an estimation of the variance of the rewards in the index which is defined to be,
for an arm that have produced k rewards in n draws,

k

n
+

√
2 ln(t)

n

k

n

(
1− k

n

)
+

3 ln(t)

n

The other algorithms displayed in Figure 2 have a mean regret closer (sometimes
smaller) than the (asymptotic) lower bound, and among them, Thompson is the
best. It is also the easiest optimal policy to implement, since the optimization
problem solved in KL-UCB and the computation of the quantiles in Bayes-UCB
are more costly than producing one sample from the posterior for each arm.

5 Discussion

This paper provides the first proof of the asymptotic optimality of Thompson
Sampling for Bernoulli bandits. Moreover the proof consists in a finite time
analysis comparable with that of other known optimal policies. We also provide
here simulations showing that Thompson Sampling outperforms currently known
optimal policies.
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Fig. 1. Cumulated regret for the two-arms problems with μ1 = 0.2, μ2 = 0.25 (left)
and μ1 = 0.8, μ2 = 0.9 (right). Regret is estimated as an average over N = 20000 trials.
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Fig. 2. Regret as a function of time (on a log scale). The red dashed line shows the
lower bound, the solid bold curve corresponds to the mean regret while the dark and
light shaded regions show respectively the central 99% and the upper 0.05%.

Our proof of optimality borrows some ideas from [1], such as the notion of
saturated arms. However we make use of these ideas together with our own to
obtain a stronger result, namely control over the tail of N1,t rather than its
expectation. This is a valuable result which justifies the complexity of the proof
of Proposition 2. Control over these tails allows us to give a simpler finite time
analysis for Thompson Sampling which is closer to the arguments for UCB-like
algorithms, and yields the optimal asymptotic rate of Lai and Robbins.

Thanks to the generalisation pointed out in [1], the Bernoulli version of
Thompson Sampling can be applied to bandit problems with bounded rewards,
and is therefore an excellent alternative to UCB policies. It would also be very
natural to generalise Thompson to more complex reward distributions, choosing
a prior appropriate for the assumptions on these distributions. Indeed, even in
complex settings where the prior is not computable, Thompson Sampling only
requires one sample from the posterior, which can be obtained efficiently us-
ing MCMC. Encouraging numerical experiments for reward distributions in the
exponential family using a conjugate prior suggest that a generalisation of the
proof is achievable. However this poses quite a challenge since the proof here is
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often heavily dependent on specific properties of Beta distributions. A natural
generalisation would need a prior-dependent finite-time result controlling the tail
probabilities of posterior distributions as the number of samples increases.
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1 Montanuniversitaet Leoben
2 INRIA Lille-Nord Europe, équipe SequeL
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Abstract. We consider the restless Markov bandit problem, in which
the state of each arm evolves according to a Markov process indepen-
dently of the learner’s actions. We suggest an algorithm that after T
steps achieves Õ(

√
T ) regret with respect to the best policy that knows

the distributions of all arms. No assumptions on the Markov chains are
made except that they are irreducible. In addition, we show that index-
based policies are necessarily suboptimal for the considered problem.

1 Introduction

In the bandit problem the learner has to decide at time steps t = 1, 2, . . . which
of the finitely many available arms to pull. Each arm produces a reward in a
stochastic manner. The goal is to maximize the reward accumulated over time.

Following [1], traditionally it is assumed that the rewards produced by each
given arm are independent and identically distributed (i.i.d.). If the probability
distributions of the rewards of each arm are known, the best strategy is to
only pull the arm with the highest expected reward. Thus, in the i.i.d. bandit
setting the regret is measured with respect to the best arm. An extension of this
setting is to assume that the rewards generated by each arm are not i.i.d., but
are governed by some more complex stochastic process. Markov chains suggest
themselves as an interesting and non-trivial model. In this setting it is often
natural to assume that the stochastic process (Markov chain) governing each
arm does not depend on the actions of the learner. That is, the chain takes
transitions independently of whether the learner pulls that arm or not (giving
the name restless bandit to the problem). The latter property makes the problem
rather challenging: since we are not observing the state of each arm, the problem
becomes a partially observable Markov decision process (POMDP), rather than
being a (special case of) a fully observable MDP, as in the traditional i.i.d.
setting. One of the applications that motivate the restless bandit problem is the
so-called cognitive radio problem (e.g., [2]): Each arm of the bandit is a radio
channel that can be busy or available. The learner (an appliance) can only sense
a certain number of channels (in the basic case only a single one) at a time,
which is equivalent to pulling an arm. It is natural to assume that whether the
channel is busy or not at a given time step depends on the past — so a Markov
chain is the simplest realistic model — but does not depend on which channel
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the appliance is sensing. (See also Example 1 in Section 3 for an illustration of
a simple instance of this problem.)

What makes the restless Markov bandit problem particularly interesting is
that one can do much better than pulling the best arm. This can be seen al-
ready on simple examples with two-state Markov chains (see Section 3 below).
Remarkably, this feature is often overlooked, notably by some early work on
restless bandits, e.g. [3], where the regret is measured with respect to the mean
reward of the best arm. This feature also makes the problem more difficult and
in some sense more general than the non-stochastic bandit problem, in which the
regret usually is measured with respect to the best arm in hindsight [4]. Finally,
it is also this feature that makes the problem principally different from the so-
called rested bandit problem, in which each Markov chain only takes transitions
when the corresponding arm is pulled.

Thus, in the restless Markov bandit problem that we study, the regret should
be measured not with respect to the best arm, but with respect to the best
policy knowing the distribution of all arms. To understand what kind of regret
bounds can be obtained in this setting, it is useful to compare it to the i.i.d.
bandit problem and to the problem of learning an MDP. In the i.i.d. bandit
problem, the minimax regret expressed in terms of the horizon T and the num-
ber of arms only is O(

√
T ), cf. [5]. If we allow problem-dependent constants

into consideration, then the regret becomes of order logT but depends also on
the gap between the expected reward of the best and the second-best arm. In
the problem of learning to behave optimally in an MDP, nontrivial problem-
independent finite-time regret guarantees (that is, regret depending only on T
and the number of states and actions) are not possible to achieve. It is possible to
obtain O(

√
T ) regret bounds that also depend on the diameter of the MDP [6] or

similar related constants, such as the span of the optimal bias vector [7]. Regret
bounds of order logT are only possible if one additionally allows into consid-
eration constants expressed in terms of policies, such as the gap between the
average reward obtained by the best and the second-best policy [6]. The differ-
ence between these constants and constants such as the diameter of an MDP is
that one can try to estimate the latter, while estimating the former is at least as
difficult as solving the original problem — finding the best policy. Turning to our
restless Markov bandit problem, so far, to the best of our knowledge no regret
bounds are available for the general problem. However, several special cases have
been considered. Specifically, O(log T ) bounds have been obtained in [8] and [9].
While the latter considers the two-armed restless bandit case, the results of [8]
are constrained by some ad hoc assumptions on the transition probabilities and
on the structure of the optimal policy of the problem. Also the dependence of
the regret bound on the problem parameters is unclear, while computational
aspects of the algorithm (which alternates exploration and exploitation steps)
are neglected. Finally, while regret bounds for the Exp3.S algorithm [4] could be
applied, these depend on the “hardness” of the reward sequences, which in the
case of reward sequences generated by a Markov chain can be arbitrarily high.
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Here we present an algorithm for which we derive Õ(
√
T ) regret bounds,

making no assumptions on the distribution of the Markov chains. The algorithm
is based on constructing an approximate MDP representation of the POMDP
problem, and then using a modification of the Ucrl2 algorithm of [6] to learn
this approximate MDP. In addition to the horizon T and the number of arms
and states, the regret bound also depends on the diameter and the mixing time
(which can be eliminated however) of the Markov chains of the arms. If the
regret has to be expressed only in these terms, then our lower bound shows that
the dependence on T cannot be significantly improved.

2 Preliminaries

Given are K arms, where underlying each arm j there is an irreducible Markov
chain with state space Sj and transition matrix Pj . For each state s in Sj there
are mean rewards rj(s), which we assume to be bounded in [0, 1]. For the time
being, we will assume that the learner knows the number of states for each
arm and that all Markov chains are aperiodic. In Section 7, we discuss periodic
chains, while in Section 8 we indicate how to deal with unknown state spaces.
In any case, the learner knows neither the transition probabilities nor the mean
rewards.

For each time step t = 1, 2, . . . the learner chooses one of the arms, observes
the current state s of the chosen arm i and receives a random reward with
mean ri(s). After this, the state of each arm j changes according to the transition
matrices Pj . The learner however is not able to observe the current state of the
individual arms. We are interested in competing with the optimal policy π∗ which
knows the mean rewards and transition matrices, yet observes as the learner only
the current state of the chosen arm. Thus, we are looking for algorithms which
after any T steps have small regret with respect to π∗, i.e. minimize

T · ρ∗ −
∑T

t=1 rt,

where rt denotes the (random) reward earned at step t and ρ∗ is the average
reward of the optimal policy π∗. (It will be seen in Section 5 that π∗ and ρ∗ are
indeed well-defined.)

Mixing Times and Diameter. If an arm j is not selected for a large number
of time steps, the distribution over states when selecting j will be close to the
stationary distribution μj of the Markov chain underlying arm j. Let μts be the
distribution after t steps when starting in state s ∈ Sj . Then setting

dj(t) := max
s∈Sj

‖μts − μj‖1 := max
s∈Sj

∑
s′∈Sj

|μts(s′)− μj(s′)|,

we define the ε-mixing time of the Markov chain as

T jmix(ε) := min{t ∈ N | dj(t) ≤ ε}.
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Setting somewhat arbitrarily the mixing time of the chain to T jmix := T jmix(14 ),
one can show (cf. eq. 4.36 in [10]) that

T jmix(ε) ≤
⌈
log2

1
ε

⌉
· T jmix. (1)

Finally, let Tj(s, s
′) be the expected time it takes in arm j to reach s′ when

starting in s. We set the diameter of arm j to be Dj := maxs,s′∈Sj Tj(s, s
′).

3 Examples

Next we present a few examples that give insight into the nature of the problem
and the difficulties in finding solutions. In particular, the examples demonstrate
that (i) the optimal reward can be (much) bigger than the average reward of the
best arm, (ii) the optimal policy does not maximize the immediate reward, (iii)
the optimal policy cannot always be expressed in terms of arm indexes.

Example 1. In this example the average reward of each of the two arms of a
bandit is 1

2 , but the reward of the optimal policy is close to 3
4 . Consider a two-

armed bandit. Each arm has two possible states, 0 and 1, which are also the
rewards. Underlying each of the two arms is a (two-state) Markov chain with

transition matrix

(
1− ε ε
ε 1− ε

)
, where ε is small. Thus, a typical trajectory of

each arm looks like this: 000000000001111111111111111000000000 . . . , and the
average reward for each arm is 1

2 . It is easy to see that the optimal policy starts
with any arm, and then switches the arm whenever the reward is 0, and otherwise
sticks to the same arm. The average reward is close to 3

4 — much larger than
the reward of each arm.

This example has a natural interpretation in terms of cognitive radio: two radio
channels are available, each of which can be either busy (0) or available (1). A
device can only sense (and use) one channel at a time, and one wants to maximize
the amount of time the channel it tries to use is available.

Example 2. Consider the previous example, but with ε close to 1. Thus, a typical
trajectory of each arm is now 01010101001010110 . . . , and the optimal policy
switches arms if the previous reward was 1 and stays otherwise.

Example 3. In this example the optimal policy does not maximize the immediate
reward. Again, consider a two-armed bandit. Arm 1 is as in Example 1, and
arm 2 provides Bernoulli i.i.d. rewards with probability 1

2 of getting reward 1.
The optimal policy (which knows the distributions) will sample arm 1 until it
obtains reward 0, when it switches to arm 2. However, it will sample arm 1 again
after some time t (depending on ε), and only switch back to arm 2 when the
reward on arm 1 is 0. Note that whatever t is, the expected reward for choosing
arm 1 will be strictly smaller than 1

2 , since the last observed reward was 0 and
the limiting probability of observing reward 1 (when t→∞) is 1

2 . At the same
time, the expected reward of the second arm is always 1

2 . Thus, the optimal
policy will sometimes “explore” by pulling the arm with the smaller expected
reward.
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Fig. 1. Example 4. Dashed transitions are with probability 1
2
, others are deterministic

with probability 1. Numbers are rewards in the respective state.

An intuitively appealing idea is to look for an optimal policy in an index form.
That is, for each arm the policy maintains an index which is a function of time,
states, and rewards of this arm only. At each time step, the policy samples the
arm that has maximal index. This seems promising for at least two reasons:
First, the distributions of the arms are assumed independent, so it may seem
reasonable to evaluate them independently as well; second, this works in the
i.i.d. case (e.g., the Gittins index [11] or UCB [12]). This idea also motivates
the setting when just one out of two arms is Markov and the other is i.i.d.,
see e.g. [9]. Index policies for restless Markov bandits were also studied in [13].
Despite their intuitive appeal, in general, index policies are suboptimal.

Theorem 1. For each index-based policy π there is a restless Markov bandit
problem in which π behaves suboptimally.

Proof. Consider the three bandits L (left), C (center), and R (right) in Figure 1,
where C and R start in the 1 reward state. (Arms C and R can easily be made
aperiodic by adding further sufficiently small transition probabilities.) Assume
that C has been observed in the 1

2 reward state one step before, while R has been
observed in the 1 reward state three steps ago. The optimal policy will choose
arm L which gives reward 1

2 with certainty (C gives reward 0 with certainty,
while R gives reward 7

8 with probability 1
2 ) and subsequently arms C and R.

However, if arm C was missing, in the same situation, the optimal policy would
choose R: Although the immediate expected reward is smaller than when choos-
ing L, sampling R gives also information about the current state, which can earn
reward 3

4 a step later. Clearly, no index based policy will behave optimally in
both settings. ()

4 Main Results

Theorem 2. Consider a restless bandit with K aperiodic arms having state
spaces Sj, diameters Dj, and mixing times T jmix (j = 1, . . . ,K). Then with
probability at least 1− δ the regret of Algorithm 2 (presented in Section 5 below)
after T steps is upper bounded by

const · S · T 3/2
mix ·

∏K
j=1(4Dj) ·max

i
log(Di) · log2

(
T
δ

)
·
√
T ,
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where S :=
∑K

j=1 |Sj | is the total number of states and Tmix := maxj T
j
mix the

maximal mixing time. Further, the dependence on Tmix can be eliminated to show
that with probability at least 1− δ the regret is bounded by

O
(
S ·
∏K

j=1(4Dj) ·max
i

log(Di) · log7/2
(
T
δ

)
·
√
T
)
.

Remark 1. For periodic chains the bound of Theorem 2 has worse dependence
on the state space, for details see Remark 5 in Section 7.

Theorem 3. For any algorithm, any K > 1 and any m ≥ 1 there is a K-armed
restless bandit problem with a total number of S := Km states, such that the
regret after T steps is lower bounded by Ω(

√
ST ).

Remark 2. While it is easy to see that lower bounds depend on the total number
of states over all arms, the dependence on other parameters in our upper bound
is not clear. For example, intuitively, while in the general MDP case one wrong
step may cost up to D — the MDP’s diameter [6] — steps to compensate for,
here the Markov chains evolve independently of the learner’s actions, and the
upper bound’s dependence on the diameter may be just an artefact of the proof.

5 Constructing the Algorithm

MDP Representation. We represent the setting as an MDP by recalling for
each arm the last observed state and the number of time steps which have gone
by since this last observation. Thus, each state of the MDP representation is
of the form (sj , nj)

K
j=1 := (s1, n1, s2, n2, . . . , sK , nK) with sj ∈ Sj and nj ∈

N, meaning that each arm j has not been chosen for nj steps when it was in
state sj . More precisely, (sj , nj)

K
j=1 is a state of the considered MDP if and

only if (i) all nj are distinct and (ii) there is a j with nj = 1.1 The action
space of the MDP is {1, 2, . . . ,K}, and the transition probabilities from a state

(sj , nj)
K
j=1 are given by the nj-step transition probabilities p

(nj)
j (s, s′) of the

Markov chain underlying the chosen arm j (these are defined by the matrix
power of the single step transition probability matrix, i.e. P

nj

j ). That is, the

probability for a transition from state (sj , nj)
K
j=1 to (s′j , n

′
j)
K
j=1 under action j is

given by p
(nj)
j (sj , s

′
j) iff (i) n′j = 1, (ii) n′� = n� + 1 and s� = s′� for all � �= j. All

other transition probabilities are 0. Finally, the mean reward for choosing arm j

in state (sj , nj)
K
j=1 is given by

∑
s∈Sj

p
(nj)
j (sj , s)·rj(s). This MDP representation

has already been considered in [8].
Obviously, within T steps any policy can reach only states with nj ≤ T .

Correspondingly, if we are interested in the regret within T steps, it will be
sufficient to consider the finite sub-MDP consisting of states with nj ≤ T . We call
this the T -step representation of the problem, and the regret will be measured
with respect to the optimal policy in this T -step representation.

1 Actually, one would need to add for each arm j with |Sj | > 1 a special state for not
having sampled j so far. However, for the sake of simplicity we assume that in the
beginning each arm is sampled once. The respective regret is negligible.
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Algorithm 1. The colored Ucrl2 algorithm

Input: Confidence parameter δ > 0, aggregation parameter ε > 0, state space S,
action space A, coloring and translation functions, a bound B on the size of the
support of transition probability distributions.

Initialization: Set t := 1, and observe the initial state s1.

for episodes k = 1, 2, . . . do
Initialize episode k:
Set the start time of episode k, tk := t. Let Nk (c) be the number of times a state-
action pair of color c has been visited prior to episode k, and vk(c) the number
of times a state-action pair of color c has been visited in episode k. Compute
estimates r̂k(s, a) and p̂k(s

′′|s, a) for rewards and transition probabilities, using
all samples from state-action pairs of the same color c(s, a), respectively.

Compute policy π̃k:
Let Mk be the set of plausible MDPs with rewards r̃(s, a) and transition proba-
bilities p̃(·|s, a) satisfying∣∣r̃(s, a)− r̂k(s, a)

∣∣ ≤ ε+
√

7 log(2Ctk/δ)
2max{1,Nk(c(s,a))} , (2)∥∥∥p̃(·|s, a)− p̂k(·|s, a)

∥∥∥
1
≤ ε+

√
56B log(4Ctk/δ)

max{1,Nk(c(s,a))} , (3)

where C is the number of distinct colors. Let ρ(π,M) be the average reward of
a policy π : S → A on an MDP M ∈ Mk. Choose (e.g. by extended value
iteration [6]) an optimal policy π̃k and an optimistic M̃k ∈ Mk such that

ρ(π̃k, M̃k) = max{ρ(π,M) |π : S → A, M ∈ Mk}. (4)

Execute policy π̃k:
while vk(c(st, π̃k(st))) < max{1, Nk(c(st, π̃k(st)))} do
� Choose action at = π̃k(st), obtain reward rt, and observe next state st+1.
� Set t := t+ 1.
end while

end for

Structure of the MDP Representation. The MDP representation of our
problem has some special structural properties. In particular, rewards and tran-
sition probabilities for choosing arm j only depend on the state of arm j, i.e.
sj and nj . Moreover, the support for each transition probability distribution is

bounded, and for nj ≥ T jmix(ε) the transition probability distribution will be
close to the stationary distribution of arm j. Thus, one could reduce the T -step
representation further by aggregating states 2 (sj , nj)

K
j=1, (s′j , n

′
j)
K
j=1 whenever

nj , n
′
j ≥ T jmix(ε) and s� = s′�, n� = n′� for � �= j. The rewards and transition

probability distributions of aggregated states are ε-close, so that the error by

2 Aggregation of states s1, . . . , sn means that these states are replaced by a new
state sagg inheriting rewards and transition probabilities from an arbitrary si (or
averaging over all sj). Transitions to this state are set to p(sagg|s, a) :=

∑
j p(sj |s, a).
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Algorithm 2. The restless bandits algorithm

Input: Confidence parameter δ > 0, the number of states Sj and mixing time T j
mix

of each arm j, horizon T .

� Choose ε = 1/
√
T and execute colored Ucrl2 (with confidence parameter δ) on

the ε-structured MDP described in the “coloring” paragraph at the end of Section 5.

aggregation can be bounded by results given in [14]. While this is helpful for
approximating the problem when all parameters are known, it cannot be used
directly when learning, since the observations in the aggregated states do not
correspond to an MDP anymore. Thus, while standard reinforcement learning
algorithms are still applicable, there are no theoretical guarantees for them.

ε-structured MDPs and Colored UCRL2. In the following, we exploit the
special structure of the MDP representation. We generalize some of its structural
properties in the following definition.

Definition 1. An ε-structured MDP is an MDP with finite state space S, fi-
nite action space A, transition probability distributions p(·|s, a), mean rewards
r(s, a) ∈ [0, 1], and a coloring function c : S × A → C, where C is a set
of colors. Further, for each two pairs (s, a), (s′, a′) ∈ S × A with c(s, a) =
c(s′, a′) there is a bijective translation function φs,a,s′,a′ : S → S such that∑

s′′
∣∣p(s′′|s, a)− p(φs,a,s′,a′(s′′)|s′, a′)

∣∣ < ε and |r(s, a) − r(s′, a′)| < ε.
If there are states s, s′ in an ε-structured MDP such that c(s, a) = c(s′, a) for all
actions a and the associated translation function φs,a,s′,a is the identity, we may
aggregate the states (cf. footnote 2). We call the MDP in which all such states
are aggregated the aggregated ε-structured MDP.

For learning in ε-structured MDPs we consider a modification of the Ucrl2
algorithm of [6]. The colored Ucrl2 algorithm is shown in Figure 1. As the origi-
nal Ucrl2 algorithm it maintains confidence intervals for rewards and transition
probabilities which define a set of plausible MDPs Mk. In each episode k, the
algorithm chooses an optimistic MDP M̃k ∈ Mk and an optimal policy which
maximize the average reward, cf. (4). Colored Ucrl2 calculates estimates from
all samples of state-action pairs of the same color, and works with respectively
adapted confidence intervals and a corresponding adapted episode termination
criterion. Basically, an episode ends when for some color c the number of visits
in state-action pairs of color c has doubled.

Coloring the T -Step Representation. Now, we can turn the T -step repre-
sentation into an ε-structured MDP, assigning the same color to state-action
pairs where the chosen arm is in the same state, that is, c((si, ni)

K
i=1, j) =

c((s′i, n
′
i)
K
i=1, j

′) iff j = j′, sj = s′j , and either nj = n′j or nj, n
′
j ≥ T jmix(ε).

The translation functions are chosen accordingly. This ε-structured MDP can
be learned with colored Ucrl2, see Algorithm 2, our restless bandits algorithm.
(The dependence on the horizon T and the mixing times T jmix as input parame-
ters can be eliminated, cf. the proof of Theorem 2 in Section 7.)
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6 Regret Bounds for Colored UCRL2

The following is a generalization of the regret bounds for Ucrl2 to ε-structured
MDPs. The theorem gives improved (with respect to Ucrl2) bounds if there
are only a few parameters to estimate in the MDP to learn. Recall that the
diameter of an MDP is the maximal expected transition time between any two
states (choosing an appropriate policy), cf. [6].

Theorem 4. Let M be an ε-structured MDP with finite state space S, finite ac-
tion space A, transition probability distributions p(·|s, a), mean rewards r(s, a) ∈
[0, 1], coloring function c and associate translation functions. Assume the learner
has complete knowledge of state-action pairs ΨK ⊆ S×A, while the state-action
pairs in ΨU := S × A \ ΨK are unknown and have to be learned. However,
the learner knows c and all associate translation functions as well as an upper
bound B on the size of the support of each transition probability distribution
in ΨU . Then with probability at least 1 − δ, after any T steps colored Ucrl2 3

gives regret upper bounded by

42Dε

√
BCUT log

(
T
δ

)
+ ε(Dε + 2)T,

where CU is the total number of colors for states in ΨU , and Dε is the diameter
of the aggregated ε-structured MDP.

The proof of this theorem is given in the appendix.

Remark 3. For ε = 0, one can also obtain logarithmic bounds analogously to
Theorem 4 of [6]. With no additional information for the learner one gets the
original Ucrl2 bounds (with a slightly larger constant), trivially choosing B to
be the number of states and assigning each state-action pair an individual color.

7 Proofs

We start with bounding the diameter in the aggregated ε-structured MDP.

Lemma 1. For ε ≤ 1/4, the diameter Dε in the aggregated ε-structured MDP

can be upper bounded by 2
⌈

log2(4 maxjDj)
⌉
·Tmix(ε) ·

∏K
j=1(4Dj), where we set

Tmix(ε) := maxj T
j
mix(ε).

Proof. Let μj be the stationary distribution of arm j. It is well-known that
the expected first return time τj(s) in state s satisfies μj(s) = 1/τj(s). Set
τj := maxs τj(s), and τ := maxj τj . Then, τj ≤ 2Dj.

Now consider the following scheme to reach a given state (sj , nj)
K
j=1: First,

order the states (sj , nj) descendingly with respect to nj . Thus, assume that
nj1 > nj2 > . . . > njK = 1. Take Tmix(ε) samples from arm j1. (Then each arm

3 For the sake of simplicity the algorithm was given for the case ΨK = ∅. It is obvious
how to extend the algorithm when some parameters are known.



Regret Bounds for Restless Markov Bandits 223

will be ε-close to the stationary distribution, and the probability of reaching the
right state sji when sampling arm ji afterwards is at least μji(sji) − ε.) Then
sample each arm j2, j3, . . . exactly nji−1 − nji times.

We first show the lemma for ε ≤ μ0 := minj,s μj(s)/2. As observed be-
fore, for each arm ji the probability of reaching the right state sji is at least
μji(sji) − ε ≥ μji(sji)/2. Consequently, the expected number of restarts of
the scheme necessary to reach a particular state (sj , nj)

K
j=1 is upper bounded

by
∏K

j=1 2/μj(sj). As each trial takes at most 2Tmix(ε) steps, recalling that
1/μj(s) = τj(s) ≤ 2Dj proves the bound for ε ≤ μ0.

Now assume that ε > μ0. Since Dε ≤ Dε′ for ε > ε′ we obtain a bound
of 2Tmix(ε′)

∏K
j=1(4Dj) with ε′ := μ0 = 1/2τ . By (1), we have Tmix(ε′) ≤

�log2(1/ε′)�Tmix(1/4) ≤ �log2(4τ)�Tmix(ε), which proves the lemma. ()

Proof of Theorem 2. Note that in each arm j the support of the transi-
tion probability distribution is upper bounded by |Sj |. Hence, Theorem 4 with

CU =
∑K

j=1 |Sj |T
j
mix(ε) and B = maxj |Sj | shows that the regret is bounded

by 42Dε

√
maxi |Si| ·

∑K
j=1|Sj| · T

j
mix(ε) · T log

(
T
δ

)
+ ε(Dε + 2)T with probabil-

ity ≥ 1 − δ. Since ε = 1/
√
T , this proves the first bound by Lemma 1 and

recalling (1).
If the horizon T is not known, guessing T using the doubling trick (i.e., ex-

ecuting the algorithm for T = 2i with confidence parameter δ/2i in rounds
i = 1, 2, . . .) achieves the bound given in Theorem 2 with worse constants.

Similarly, if Tmix is unknown, one can perform the algorithm in rounds i =
1, 2, . . . of length 2i with confidence parameter δ/2i, choosing an increasing
function a(t) to guess an upper bound on Tmix at the beginning t of each
round. This gives a bound of order a(T )3/2

√
T with a corresponding addi-

tive constant. In particular, choosing a(t) = log t the regret is bounded by

O
(
S ·
∏K

j=1(4Dj) ·maxi log(Di) · log7/2(T/δ) ·
√
T
)

with probability ≥ 1− δ. ()

Remark 4. Whereas it is not easy to obtain upper bounds on the mixing time
in general, for reversible Markov chains Tmix can be linearly upper bounded by
the diameter, cf. Lemma 15 in Chapter 4 of [15]. While it is possible to compute
an upper bound on the diameter of a Markov chain from samples of the chain,
we did not succeed in deriving any useful results on the quality of such bounds.

Remark 5. Periodic Markov chains do not converge to a stationary distribution.
However taking into account the period of the arms, one can generalize our
results to the periodic case. Considering in an m-periodic Markov chain the m-
step transition probabilities given by the matrix Pm, one obtains m distinct
aperiodic chains (depending on the initial state) each of which converges to a
stationary distribution with respective mixing times. The maximum over these
mixing times can be considered to be the mixing time of the chain.

Thus, instead of aggregating states (sj , nj), (s′j , n
′
j) with nj , n

′
j ≥ T

j
mix(ε) as

in the case of aperiodic chains, one aggregates them only if additionally nj ≡ n′j
mod mj . If the periods mj are not known to the learner, one can use the least
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common denominator of 1, 2, . . . , |Sj| as period. Since by the prime number the-
orem the latter is exponential in |Sj |, the obtained results for periodic arms show
worse dependence on the number of states. (Concerning the proof of Lemma 1
the sampling scheme has to be slightly adapted so that one samples in the right
period when trying to reach a particular state.)

Proof of Theorem 3. Consider K arms all of which are deterministic cycles
of length m and hence m-periodic. Then the learner faces m distinct learning
problems with K arms, each of which can be made to force regret of order
Ω(
√
KT/m) in the T/m steps the learner deals with the problem [4]. Overall,

this gives the claimed bound of Ω(
√
mKT ) = Ω(

√
ST ). Adding a sufficiently

small probability (with respect to the horizon T ) of staying in some state of each
arm, one obtains the same bounds for aperiodic arms. ()

8 Extensions and Outlook

Unknown State Space. If (the size of) the state space of the individual arms is
unknown, some additional exploration of each arm will sooner or later determine
the state space. Thus, we may execute our algorithm on the known state space
where between two episodes we sample each arm until all known states have been
sampled at least once. The additional exploration is upper bounded by O(log T ),
as there are only O(log T ) many episodes, and the time of each exploration phase
can be bounded with known results. That is, the expected number of exploration
steps needed until all states of an arm j have been observed is upper bounded by
Dj log(3|Sj|) (cf. Theorem 11.2 of [10]), while the deviation from the expectation
can be dealt with by Markov inequality or results from [16]. That way, one
obtains bounds as in Theorem 2 for the case of unknown state space.

Improving the Bounds. All parameters considered, there is still a large gap
between the lower and the upper bound on the regret. As a first step, it would
be interesting to find out whether the dependence on the diameter of the arms
is necessary. Also, the current regret bounds do not make use of the interdepen-
dency of the transition probabilities in the Markov chains and treat n-step and
n′-step transition probabilities independently. Finally, a related open question is
how to obtain estimates and upper bounds on mixing times.

More General Models. After considering bandits with i.i.d. and Markov arms,
the next natural step is to consider more general time-series distributions. Gen-
eralizations are not straightforward: already for the case of Markov chains of
order (or memory) 2 the MDP representation of the problem (Section 5) breaks
down, and so the approach taken here cannot be easily extended. Stationary
ergodic distributions are an interesting more general case, for which the first
question is whether it is possible to obtain asymptotically sublinear regret.
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A Proof of Theorem 4

Splitting into Episodes. We follow the proof of Theorem 2 in [6]. First,
as shown in Section 4.1 of [6], setting Δk :=

∑
s,a vk(s, a)(ρ∗ − r(s, a)) with

probability at least 1− δ
12T 5/4 the regret after T steps can be upper bounded by∑m

k=1Δk +
√

5
8T log

(
8T
δ

)
. (5)

 http://www.stat.berkeley.edu/~aldous/RWG/book.html
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Failing Confidence Intervals. Concerning the regret with respect to the true
MDPM being not contained in the set of plausible MDPsMk, we cannot use the
same argument (that is, Lemma 17 in Appendix C.1) as in [6], since the random
variables we consider for rewards and transition probabilities are independent,
yet not identically distributed.

Instead, fix a state-action pair (s, a), let S(s, a) be the set of states s′ with
p(s′|s, a) > 0 and recall that r̂(s, a) and p̂(·|s, a) are the estimates for rewards
and transition probabilities calculated from all samples of state-action pairs of
the same color c(s, a). Now assume that at step t there have been n > 0 samples
of state-action pairs of color c(s, a) and that in the i-th sample action ai has been
chosen in state si and a transition to state s′i has been observed (i = 1, . . . , n).
Then∥∥∥p̂(·|s, a)− E[p̂(·|s, a)]

∥∥∥
1

=
∑

s′∈S(s,a)

∣∣∣p̂(s′|s, a)− E[p̂(s′|s, a)]
∣∣∣

≤ sup
x∈{0,1}|S(s,a)|

∑
s′∈S(s,a)

(
p̂(s′|s, a)− E[p̂(s′|s, a)]

)
x(s′)

= sup
x∈{0,1}|S(s,a)|

1
n

n∑
i=1

(
x(φsi,ai,s,a(s′i))−

∑
s′
p(s′|si, ai) · x(φsi,ai,s,a(s′))

)
. (6)

For fixed x ∈ {0, 1}|S(s,a)|,Xi := x(φsi,ai,s,a(s′i))−
∑

s′ p(s
′|si, ai)·x(φsi,ai,s,a(s′))

is a martingale difference sequence with |Xi| ≤ 2, so that by Azuma-Hoeffding
inequality (e.g., Lemma 10 in [6]), Pr{

∑n
i=1Xi ≥ θ} ≤ exp(−θ2/8n) and in

particular

Pr
{∑n

i=1Xi ≥
√

56Bn log
(
4tCU

δ

)}
≤
(

δ
4tCU

)7B
< δ

2B20t7CU
.

Recalling that by assumption |S(s, a)| ≤ B, a union bound over all sequences
x ∈ {0, 1}|S(s,a)| then shows from (6) that

Pr
{∥∥∥p̂(·|s, a)− E[p̂(·|s, a)]

∥∥∥
1
≥
√

56B
n log (4CU t/δ)

}
≤ δ

20t7CU
. (7)

Concerning the rewards, as in the proof of Lemma 17 in Appendix C.1 of [6]
— but now using Hoeffding for independent and not necessarily identically dis-
tributed random variables — we have that

Pr
{∣∣r̂(s, a)− E[r̂(s, a)]

∣∣ ≥√ 7
2n log (2CU t/δ)

}
≤ δ

60t7CU
. (8)

A union bound over all t possible values for n and all CU colors of states in ΨU
shows that the confidence intervals in (7) and (8) hold with probability at least
1 − δ

15t6 for the actual counts N(c(s, a)) and all state-action pairs (s, a). (Note
that equations (7) and (8) are the same for state-action pairs of the same color.)

By linearity of expectation, E[r̂(s, a)] can be written as 1
n

∑n
i=1 r(si, ai) for

the sampled state-action pairs (si, ai). Since the (si, ai) are assumed to have the
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same color c(s, a), it holds that |r(si, ai) − r(s, a)| < ε and hence |E[r̂(s, a)] −
r(s, a)| < ε. Similarly,

∥∥E[p̂(·|s, a)] − p(·|s, a)
∥∥
1
< ε. Together with (7) and (8)

this shows that with probability at least 1− δ
15t6 for all state-action pairs (s, a)∣∣r̂(s, a)− r(s, a)∣∣ < ε+
√

7
2n log (2CU t/δ), (9)∥∥∥p̂(·|s, a)− p(·|s, a)∥∥∥

1
< ε+

√
56B
n log (4CU t/δ). (10)

Thus, the true MDP is contained in the set of plausible MDPs M(t) at step t
with probability at least 1− δ

15t6 , just as in Lemma 17 of [6]. The argument that∑m
k=1Δk1M 
∈Mk

≤
√
T (11)

with probability at least 1− δ
12T 5/4 then can be taken without any changes from

Section 4.2 of [6].

Episodes with M ∈ Mk. Now assuming that the true MDP M is in Mk, we
first reconsider extended value iteration. In Section 4.3.1 of [6] it is shown that for
the state values ui(s) in the i-th iteration it holds that maxs ui(s)−mins ui(s) ≤
D, where D is the diameter of the MDP. Now we want to replace D with the
diameter Dε of the aggregated MDP. For this, first note that for any two states
s, s′ which are aggregated we have by definition of the aggregated MDP that
ui(s) = ui(s

′). As it takes at most Dε steps on average to reach any aggregated
state, repeating the argument of Section 4.3.1 of [6] shows that

maxs ui(s)−mins ui(s) ≤ Dε. (12)

Let P̃k :=
(
p̃k(s′|s, π̃k(s))

)
s,s′ be the transition matrix of π̃k on M̃k, and vk :=(

vk
(
s, π̃k(s)

))
s

the row vector of visit counts in episode k for each state and the

corresponding action chosen by π̃k. Then as shown in Sect. 4.3.1 of [6]4

Δk ≤ vk
(
P̃k − I

)
wk +

∑
s,a

vk(s, a)
(
r̃k(s, a)− r(s, a)

)
,

where wk is the normalized state value vector with wk(s) := u(s)− (mins u(s)−
maxs u(s))/2, so that ‖wk‖ ≤ Dε

2 . Now for (s, a) ∈ ΨK we have r̃k(s, a) = r(s, a),
while for (s, a) ∈ ΨU the term r̃k(s, a)− r(s, a) ≤ |r̃k(s, a)− r̂k(s, a)|+ |r(s, a)−
r̂k(s, a)| is bounded according to (2) and (9), as we assume that M̃k,M ∈ Mk.
Summarizing state-action pairs of the same color we get

Δk ≤ vk
(
P̃k − I

)
wk + 2

∑
c∈C(ΨU)

vk(c) ·
(
ε+
√

7 log(2CU tk/δ)
2max{1,Nk(c)}

)
,

where C(ΨU ) is the set of colors of state-action pairs in ΨU . Let Tk be the length
of episode k. Then noting that N ′

k(c) := max{1, Nk(c)} ≤ tk ≤ T we get

Δk ≤ vk
(
P̃k − I

)
wk + 2εTk +

√
14 log

(
2CUT
δ

) ∑
c∈C(ΨU )

vk(c)√
N ′
k(c)

. (13)

4 Here we neglect the error by value iteration explicitly considered in Sect. 4.3.1 of [6].
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The True Transition Matrix. Let Pk :=
(
p(s′|s, π̃k(s))

)
s,s′ be the transition

matrix of π̃k in the true MDP M . We split

vk
(
P̃k − I

)
wk = vk

(
P̃k − Pk

)
wk + vk

(
Pk − I

)
wk. (14)

By assumption M̃k,M ∈ Mk, so that using (3) and (10) the first term in (14)
can be bounded by (cf. Section 4.3.2 of [6])

vk
(
P̃k − Pk

)
wk ≤

∑
s,a

vk
(
s, a
)
·
∥∥p̃k(·|s, a)− p(·|s, a)

∥∥
1
· ‖wk‖∞

≤ 2
∑

c∈C(ΨU)

vk
(
c) ·
(
ε+
√

56B log(4CUT/δ)
N ′

k(c)

)
· Dε

2

≤ εDε Tk +Dε

√
56B log

(
2CUT
δ

) ∑
c∈C(ΨU)

vk(c)√
N ′
k(c)

, (15)

since — as for the rewards — the contribution of state-action pairs in ΨK is 0.
Concerning the second term in (14), as shown in Section 4.3.2 of [6] one has

with probability at least 1− δ
12T 5/4

m∑
k=1

vk (Pk − I)wk1M∈Mk
≤ Dε

√
5
2T log

(
8T
δ

)
+DεCU log2

(
8T
CU

)
, (16)

where m is the number of episodes, and the bound m ≤ CU log2 (8T/CU ) used
to obtain (16) is derived analogously to Appendix C.2 of [6].

Summing over Episodes with M ∈ Mk. To conclude, we sum (13) over
all episodes with M ∈Mk, using (14), (15), and (16), which yields that with
probability at least 1− δ

12T 5/4

m∑
k=1

Δk1M∈Mk
≤ Dε

√
5
2T log

(
8T
δ

)
+DεCU log2

(
8T
CU

)
+ ε(Dε + 2)T

+

(
Dε

√
56B log

(
2CUBT

δ

)
+
√

14 log
(
2CUT
δ

)) m∑
k=1

∑
c∈C(ΨU )

vk(c)√
N ′
k(c)

. (17)

As in Sect. 4.3.3 and Appendix C.3 of [6], one obtains
∑

c∈C(ΨU)

∑
k

vk(c)√
N ′

k(c)
≤(√

2 + 1
)√
CUT . Thus, evaluating (5) by summing Δk over all episodes, by (11)

and (17) the regret is upper bounded with probability ≥ 1− δ
4T 5/4 by

m∑
k=1

Δk1M/∈Mk
+

m∑
k=1

Δk1M∈Mk
+
√

5
8T log

(
8T
δ

)
≤
√

5
8T log

(
8T
δ

)
+
√
T +Dε

√
5
2T log

(
8T
δ

)
+DεCU log2

(
8T
CU

)
+ε(Dε + 2)T + 3

(√
2 + 1

)
Dε

√
14BCUT log

(
2CUBT

δ

)
.

Further simplifications as in Appendix C.4 of [6] finish the proof. ()
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Abstract. We consider the problem of online stratified sampling for
Monte Carlo integration of a function given a finite budget of n noisy
evaluations to the function. More precisely we focus on the problem of
choosing the number of strata K as a function of the numerical budget
n. We provide asymptotic and finite-time results on how an oracle that
knows the smoothness of the function would choose the number of strata
optimally. In addition we prove a lower bound on the learning rate for
the problem of stratified Monte-Carlo. As a result, we are able to state,
by improving the bound on its performance, that algorithm MC-UCB,
defined in [1], is minimax optimal both in terms of the number of sam-
ples n and the number of strata K, up to a log factor. This enables to
deduce a minimax optimal bound on the difference between the perfor-
mance of the estimate output by MC-UCB, and the performance of the
estimate output by the best oracle static strategy, on the class of Hölder
continuous functions, and up to a log factor.

Keywords: Bandit Theory, Online learning, Stratified sampling, Monte
Carlo integration, Regret bounds.

Introduction

The objective of this paper is to provide an efficient strategy for Monte-Carlo
integration of a function f over a domain [0, 1]d. We assume that we can query
the function n times. Querying the function at a time t and at a point xt ∈ [0, 1]d

provides a noisy sample1

f(xt) + s(xt)εt, (1)

where εt is an independent noise drawn from νxt and s ≥ 0 is a function on
[0, 1]d. Here νx is a distribution with mean 0, variance 1 and whose shape may
depend on x. This model is actually very general (see Section 1).

Stratified sampling is a well-known strategy to reduce the variance of the
estimate of the integral of f , when compared to the variance of the estimate
provided by crude Monte-Carlo. The principle is to partition the domain in K

1 It is the usual model for regression in heterocedastic noise. We emphasize the stan-
dard deviation s(x) of the noise at x, in the expression of the noise, since this quantity
is very relevant.

N.H. Bshouty et al. (Eds.): ALT 2012, LNAI 7568, pp. 229–244, 2012.
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subsets called strata and then to sample in each stratum (see [11][Subsection 5.5]
or [6]). If the variances of the samples in the strata are known, there exists an
optimal static allocation strategy which allocates the number of samples in each
stratum proportionally to the measure of the stratum times the standard devi-
ation in the stratum (see Equation 3 for the variance of the resulting estimate).
We refer to this allocation as optimal oracle strategy for a given partition. In
the case that the variations of f and the standard deviation of the noise s are
unknown, it is not possible to adopt this strategy.

Consider first that the partition of the space is fixed. A way around this
problem is to estimate the variations of the function and the amount of noise
on the function in the strata online (exploration) while allocating the samples
according to the estimated optimal oracle strategy (exploitation). This setting
is considered in [3, 8, 1]. In the long version [2] of the last paper, the authors
describe the MC-UCB algorithm which is based on Upper-Confidence-Bounds
(UCB) on the standard deviation. They provide upper bounds for the difference
between the mean-squared error (w.r.t. the integral of f) of the estimate provided
by MC-UCB and the mean-squared error of the estimate provided by the optimal
oracle strategy (optimal oracle variance). The algorithm performs almost as well
as the optimal oracle strategy. However, the authors of [2] do not verify nor
assess the optimality of their algorithm. As a matter of fact, no lower bound
on the rate of convergence (to the oracle optimal strategy) for the problem of
stratified Monte-Carlo exists, to the best of our knowledge. Still in the same
paper [2], the authors do not discuss how to stratify the space. In particular,
they do not pose the problem of what an optimal partition of the space is, and
do not try to answer on whether it is possible or not to achieve this.

The next step is thus to efficiently design the partition. There are some in-
teresting papers on that topic such as [7, 10, 4]. The recent, state of the art,
work of [4] describes a strategy that samples asymptotically almost as efficiently
as the optimal oracle strategy, and at the same time adapts the direction and
number of the strata online. This is a very difficult problem. The authors do not
provide proofs of convergence of their algorithm. However for static allocation
of the samples, they present some properties of the stratified estimate when the
number of strata goes to infinity and provide convergence results under the op-
timal oracle strategy. As a corollary, they prove that the more strata there are,
the smaller the optimal oracle variance is.

Contribution: The more strata, the smaller the variance of the estimate com-
puted when following the optimal oracle strategy. However, the more strata there
are, the more difficult it is to estimate the variance within each of these strata,
and thus the more difficult it is to perform almost as well as the optimal oracle
strategy. Choosing the number of strata is thus crucial and this is the problem
we address in this paper. This defines a trade-off similar to the one in model
selection (such as in e.g. density estimation, regression...): The wider the class of
considered models, i.e. the larger the number of strata, the smaller the distance
between the true model and the best model of the class, i.e. the approximation
error, but the larger the estimation error.
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Paper [4], although proposing no finite time bounds, develops very interesting
ideas for bounding the first term, i.e. the approximation error. As pointed out
in e.g. [1], it is possible to build algorithms that have a small estimation error.
By constructing tight and finite-time bounds for the approximation error, it is
thus possible to select a number of strata that minimizes an upper bound on
the performance. It is however not clear if this choice is really optimal in some
sense. The essential ingredients for choosing efficiently a partition are thus lower
bounds on the estimation error, and on the approximation error.

The objective of this paper is to propose a method for choosing the minimax-
optimal number of strata. Our contributions are the following.

– We first present results on what we call the quality Qn,N of a given partition
N in K strata (i.e., using the previous analogy to model selection, this
would represent the approximation error). Using very mild assumptions we
compute a lower bound on the variance of the estimate given by the optimal
oracle strategy on the optimal oracle partition. Then if the function and
the standard deviation of the noise are α−Hölder, and if the strata also

satisfy some conditions, we prove that Qn,N = O(K
α/d

n ). This bound is also
minimax optimal on the class of α−Hölder functions.

– We then present results on the estimation error for the estimate output by
algorithm MC-UCB of [1] (pseudo-regret in the terminology of [1]). In this
paper, we improve the analysis of the MC-UCB algorithm compared to [1]
in terms of the dependence on K. The problem independent bound on the
pseudo-regret in [1] is of order2 Õ(Kn−4/3), and we tighten this bound in
this paper so that it is of order Õ(K1/3n−4/3).

– We provide the first lower bound (on the pseudo-regret) for the problem of
online Stratified Sampling. The bound Ω(K1/3n−4/3) is tight and matches
the upper-bound of MC-UCB both in terms of the number of strata and the
number of samples up to a

√
log(nK) factor. We believe that the proof

technique for this bound is original.

– Finally, we combine the results on the quality and on the pseudo-regret of
MC-UCB to provide a value on the number of strata leading to a minimax-
optimal trade-off (up to a

√
log(n)) on the class of α−Hölder functions.

The rest of the paper is organized as follows. In Section 1 we formalize the
problem and introduce the notations used throughout the paper. Section 2 states
the results on the quality of a partition. Section 3 improves the analysis of
the MC-UCB algorithm, and establishes the lower bound on the pseudo-regret.
Section 4 reports the best trade-off to choose the number of strata. And in
Section 5, we illustrate how important it is to carefully choose the number of
strata. We finally conclude the paper and suggest future works.

Due to space constraints, we were not able to incorporate complete proofs of
our results in this paper, but they are all available in the Technical Report [12].

2 Here Õ is a O up to poly(log(n)) factor.
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1 Setting

We consider the problem of numerical integration of a function f : [0, 1]d → R

with respect to the uniform (Lebesgue) measure. We have at our disposal a
budget of n queries (samples) to the function, and we can allocate this budget
sequentially. When querying the function at a time t and at a point xt, we receive
a noisy sample X(t) of the form described in Equation 1. We now assume that
the space is stratified in K Lebesgue measurable strata that form a partition N .
We index these strata, calledΩk, with indexes k ∈ {1, . . . ,K}, and write wk their
measure, according to the Lebesgue measure. We write μk = 1

wk

∫
Ωk

Eε∼νx [f(x)+

s(x)ε]dx = 1
wk

∫
Ωk
f(x)dx their mean and σ2k = 1

wk

∫
Ωk

Eε∼νx [(f(x) + s(x)ε −
μk)2]dx their variance. These mean and variance correspond to the mean and
variance of the random variable X(t) when the coordinate x at which the noisy
evaluation of f is observed is chosen uniformly at random on the stratum Ωk.

We denote by A an algorithm that allocates online the budget by selecting
at each time step 1 ≤ t ≤ n the index kt ∈ {1, . . . ,K} of a stratum and then
samples uniformly in the corresponding stratum Ωkt . The objective is to re-
turn the best possible estimate μ̂n of the integral of the function f . We write
Tk,n =

∑
t≤n I {kt = k} the number of samples in stratum Ωk up to time n.

We denote by
(
Xk,t

)
1≤k≤K,1≤t≤Tk,n

the samples in stratum Ωk, and we define

μ̂k,n = 1
Tk,n

∑Tk,n

t=1 Xk,t (the empirical means in the stratum). We estimate the

integral of f by μ̂n =
∑K

k=1 wkμ̂k,n.
If we allocate a deterministic number of samples Tk to each stratum Ωk and

if the samples are independent and chosen uniformly on each stratum Ωk, we
have

E(μ̂n) =
∑
k≤K

wkμk =
∑
k≤K

∫
Ωk

f(u)du =

∫
[0,1]d

f(u)du = μ,

and also

V(μ̂n) =
∑
k≤K

w2
kσ

2
k

Tk
,

where the expectation and the variance are computed according to all the sam-
ples that the algorithm collected.

For a given algorithm A allocating Tk,n samples drawn uniformly within stra-
tum Ωk, we call pseudo-risk the quantity

Ln,N (A) =
∑
k≤K

w2
kσ

2
k

Tk,n
. (2)

Note that if an algorithm A∗ has access the variances σ2k of the strata, it can
choose to allocate the budget in order to minimize the pseudo-risk, i.e., sample
each stratum T ∗

k = wkσk∑
i≤K wiσi

n times (this is the so-called oracle allocation).

These optimal numbers of samples can be non-integer values, in which case the
proposed optimal allocation is not realizable. But we still use it as a benchmark.
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The pseudo-risk for this algorithm (which is also the variance of the estimate
here since the sampling strategy is deterministic) is then

Ln,N (A∗) =

(∑
k≤K wkσk

)2
n

=
Σ2

N
n
, (3)

where ΣN =
∑

k≤K wkσk. We also refer in the sequel as optimal proportion
to λk = wkσk∑

i≤K wiσi
, and to optimal oracle strategy to this allocation strategy.

Although, as already mentioned, the optimal allocations (and thus the optimal
pseudo-risk) might not be realizable, it is still very useful in providing a lower-
bound. No static (even oracle) algorithm has a pseudo-risk lower than Ln,N (A∗)
on partition N .

It is straightforward to see that the more refined the partition N the smaller
Ln,N (A∗) (see e.g. [7]). We thus define the quality of a partition Qn,N as the dif-
ference between the variance Ln,N (A∗) of the estimate provided by the optimal
oracle strategy on partition N , and the infimum of the variance of the optimal
oracle strategy on any partition (optimal oracle partition) (with an arbitrary
number of strata):

Qn,N = Ln,N (A∗)− inf
N ′measurable

Ln,N ′(A∗). (4)

We also define the pseudo-regret of an algorithm A on a given partition N , as
the difference between its pseudo-risk and the variance of the optimal oracle
strategy:

Rn,N (A) = Ln,N (A)− Ln,N (A∗). (5)

We will assess the performance of an algorithm A by comparing its pseudo risk
to the minimum possible variance of an optimal oracle strategy on the optimal
oracle partition:

Ln,N (A)− inf
N ′measurable

Ln,N ′(A∗) = Rn,N (A) +Qn,N . (6)

Using the analogy of model selection mentioned in the Introduction, the quality
Qn,N is similar to the approximation error and the pseudo-risk Rn,N (A) to the
estimation error.

Motivation for the model f(x)+s(x)εt. Assume that a learner can, at each time t,
choose a point x and collect an observation F (x,Wt), whereWt is an independent
noise, that can however depend on x. It is the general model for representing
evaluations of a noisy function. There are many settings where one needs to
integrate accurately a noisy function without wasting too much budget, like for
instance pollution survey. Set f(x) = EWt [F (x,Wt)], and s(x)εt = F (x,Wt) −
f(x). Since by definition εt is of mean 0 and variance 1, we have in fact s(x) =√
EWt [(F (x,Wt)− f(x))2] and εt = F (x,Wt)−f(x)

s(x) . Observing F (x,Wt) is thus

equivalent to observing f(x) + s(x)εt, and this implies that the model that we
choose is also very general.
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There is also an important setting where this model is relevant, and this is for
the integration of a function F in high dimension d∗. Stratifying in dimension d∗

seems hopeless, since the budget n has to be exponential with d∗ if one wants to
stratify in every direction of the domain: this is the curse of dimensionality. It
is necessary to reduce the dimension by choosing a small number of directions
(1, . . . , d) that are particularly relevant, and control/stratify only in these d di-
rections3. Then the control/stratification is only on those d coordinates, so when
sampling at a time t, one chooses x = (x1, . . . , xd), and the other d∗ − d coor-
dinates U(t) = (Ud+1(t), . . . , Ud∗(t)) are uniform random variables on [0, 1]d

∗−d

(without any control). When sampling in x at a time t, we observe F (x, U(t)).
By writing f(x) = EU(t)∼U([0,1]d∗−d)[F (x, U(t))], and s(x)εt = F (x, U(t))−f(x),
we obtain that the model we propose is also valid in this case.

2 The Quality of a Partition: Analysis of the Term Qn,N

In this Section, we focus on the quality of a partition defined in Section 1.

Convergence under very mild assumptions. As mentioned in Section 1, the more
refined the partition N of the space, the smaller Ln,N (A∗), and thus ΣN .
Through this monotony property, we know that infN ΣN is also the limit of
the (ΣNp)p of a sequence of partitions (Np)p such that the diameter of each
stratum goes to 0. We state in the following Proposition that for any such se-
quence, limp→+∞ΣNp =

∫
[0,1]d

s(x)dx. Consequently infN ΣN =
∫
[0,1]d

s(x)dx.

Proposition 1. Let (Np)p = (Ωk,p)k∈{1,...,Kp},p∈{1,...,+∞} be a sequence of mea-
surable partitions (where Kp is the number of strata of partition Np) such that

– AS1: 0 < wk,p ≤ υp, for some sequence (υp)p, where υp → 0 for p→ +∞.
– AS2: The diameters according to the ||.||2 norm on R

d of the strata are such
that Diam(Ωk,p) ≤ D(wk,p), for some real valued function D(·), such that
D(w) → 0 for w → 0.

If the functions m and s are in L2([0, 1]d), then

lim
p→+∞ΣNp = inf

Nmeasurable
ΣN =

∫
[0,1]d

s(x)dx,

which implies that n×Qn,Np → 0 for p→ +∞.

The full proof of this Proposition (omitted due to space constraints) is available
in the Technical Report [12].

In Proposition 1, even though the optimal oracle allocation might not be
realizable (in particular if the number of strata is larger than the budget), we
can still compute the quality of a partition, as defined in Equation 4. It does not
correspond to any reachable pseudo-risk, but rather to a lower bound on any
(even oracle) static allocation.

3 This is actually a very common technique for computing the price of options, see [6].
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When f and s are in L2([0, 1]d), for any appropriate sequence of partitions
(Np)p, ΣNp (which is the principal ingredient of the variance of the optimal
oracle allocation) converges to the smallest possible ΣN for given f and s. Note
however that this condition is not sufficient to obtain a rate of convergence.

Finite-Time analysis under Hölder assumption: We make the following assump-
tion on the functions f and s.

Assumption 1. The functions f and s are (M,α)−Hölder continuous, i.e., for
g ∈ {f, s}, for any x and y ∈ [0, 1]d, |g(x)− g(y)| ≤M ||x− y||α2 .

The Hölder assumption enables us to consider arbitrarily non-smooth functions
(for small α, the function can vary arbitrarily fast), and is thus a fairly general
assumption.

We also consider the following partitions in K hyper-cubes.

Definition 1. We write NK the partition of [0, 1]d in K hyper-cubic strata of
measure wk = w = 1

K and side length ( 1
K )1/d: we assume for simplicity that

there exists an integer l such that K = ld.

The following Proposition holds.

Proposition 2. Under Assumption 1 we have for any partition NK as defined
in Definition 1 that

ΣNK −
∫
[0,1]d

s(x)dx ≤
√

2dMK−α/d, (7)

which implies

Qn,NK ≤
2
√

2dMΣN1

n
K−α/d,

where N1 stands for the “partition” with one stratum.

The full proof of this Proposition (omitted due to space constraints) is available
in the Technical Report [12].

2.1 General Comments

The impact of α and d: The quantity Qn,NK increases with the dimension d,
because the Hölder assumption becomes less constraining when d increases. This
can easily be seen since a squared strata of measure w has a diameter of order
w1/d. Qn,NK decreases with the smoothness α of the function, which is a con-
sequence of the Hölder assumption. Note also that when defining the partitions
NK in Definition 1, we made the crucial assumption that K1/d is an integer.
This is of little importance in small dimension, but matters in high dimensions,
as we will highlight in the last remark of Section 4.
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Minimax optimality of this rate: The rate n−1K−α/d is minimax optimal on
the class of α−Hölder functions since for any n and K one can easily build a
function with Hölder exponent α such that the corresponding ΣNK is at least∫
[0,1]d

s(x)dx + cK−α/d for some constant c.

Discussion of the shape of the strata: Whatever the shape of the strata, as long
as their diameter goes to zero4, ΣNK converges to

∫
[0,1]d s(x)dx. The shape of the

strata have an influence only on the negligible term, i.e. the speed of convergence
to this quantity. This result was already made explicit, in a different setting and
under different assumptions, in [4]. Choosing small strata of same shape and size
is also minimax optimal on the class of Hölder functions. Working on the shape
of the strata could, however, improve the speed of convergence in some specific
cases, e.g. when the noise is very localized. It could also be interesting to consider
strata of varying size, and have this size depend on the specific problem.

The decomposition of the variance: The variance σ2k within each stratum Ωk
comes from two sources. First, σ2k comes from the noise, that contributes to
it by 1

wk

∫
Ωk
s(x)2dx. Second, the mean f is not a constant function, thus its

contribution to σ2k is 1
wk

∫
Ωk

(
f(x)− 1

wk

∫
Ωk
f(u)du

)2
dx. Note that when the size

of Ωk goes to 0, this later contribution vanishes, and the optimal allocation is

thus proportional to
√
wk
∫
Ωk
s(x)2dx+ o(1) =

∫
Ωk
s(x)dx + o(1). This means

that for small strata, the variation in the mean are negligible when compared to
the variation due to the noise.

3 Algorithm MC-UCB and a Matching Lower Bound

3.1 Algorithm MC − UCB

In this Subsection, we describe a slight modification of the algorithm MC −
UCB introduced in [1]. The only difference is that we change the form of the
high-probability upper confidence bound on the standard deviations, in order to
improve the elegance of the proofs, and we refine their analysis. The algorithm
takes as input two parameters b and fmax which are linked to the distribution
in the strata, δ which is a (small) probability, and the partition NK .

We remind in Figure 1 the algorithm MC − UCB.
The estimates of σ̂2k,t−1 and μ̂k,t−1 are computed according to

σ̂2k,t−1 =
1

Tk,t−1

Tk,t−1∑
i=1

(Xk,i − μ̂k,t−1)2, and μ̂k,t−1 =
1

Tk,t−1

Tk,t−1∑
i=1

Xk,i . (8)

4 And note that in this noisy setting, if the diameter of the strata does not go to 0
on non homogeneous part of m and s, then the standard deviation corresponding to
the allocation is larger than

∫
[0,1]d

s(u)du.
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Input: b, fmax, δ, NK . Set A = 2
√

(1 + 3b + 4f2
max) log(2nK/δ)

Initialize: Sample 2 states in each strata.
for t = 2K + 1, . . . , n do

Compute Bk,t =
wk

Tk,t−1

(
σ̂k,t−1 + A

√
1

Tk,t−1

)
for each stratum k ≤ K

Sample a point in stratum kt ∈ argmax1≤k≤K Bk,t

end for
Output: μ̂n =

∑K
k=1 wkμ̂k,n

Fig. 1. The pseudo-code of the MC-UCB algorithm. The empirical standard deviations
and means σ̂2

k,t and μ̂k,t are computed using Equation 8.

3.2 Upper Bound on the Pseudo-regret of Algorithm MC-UCB

We first state the following Assumption on the noise εt:

Assumption 2. There exist b > 0 such that ∀x ∈ [0, 1]d, ∀t, and ∀λ < 1
b ,

Eνx
[

exp(λεt)
]
≤ exp

( λ2

2(1− λb)

)
, and Eνx

[
exp(λε2t − λ)

]
≤ exp

( λ2

2(1− λb)

)
.

This is a type of sub-Gaussian assumption, satisfied for e.g., Gaussian as well as
bounded distributions. We also state an assumption on f and s.

Assumption 3. The functions f and s are bounded by fmax.

Note that since the functions f and s are defined on [0, 1]d, if Assumption 1 is
satisfied, then Assumption 3 holds with fmax = max(f(0), s(0)) +

√
2dM . We

now prove the following bound on the pseudo-regret. Note that we state it on
partitions NK , but that it in fact holds for any partition in K strata.

Proposition 3. Under Assumptions 2 and 3, on partition NK , when n ≥ 4K,
we have

E[Rn,NK (AMC−UCB)] ≤ CK
1/3

n4/3

√
log(nK) +

14KΣ2
NK

n2
,

where C = 24
√

2ΣNK

√
(1 + 3b+ 4f2max)

(
fmax+4

4

)1/3
.

The proof of this Proposition is close to the one of MC-UCB in [1]. But an
improved analysis leads to a better dependency in terms of number of strata K.
Recall that in [1], the bound is of order Õ(Kn−4/3). This improvement is crucial
here since the larger K is, the closer ΣNK is to

∫
[0,1]d s(x)dx. The full proof of

this Proposition is available in the Technical Report [12]. The next Subsection
states that the rate K1/3Õ(n−4/3) of MC-UCB is optimal both in terms of K
and n.
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3.3 Lower Bound

We now study the minimax rate for the pseudo-regret of any algorithm on a
given partition NK .

Theorem 1. Let K ∈ N. Let inf be the infimum taken over all online strati-
fied sampling algorithms on NK and sup represent the supremum taken over all
environments, then:

inf supE[Rn,NK ] ≥ CK
1/3

n4/3
,

where C is a numerical constant.

Proof (Proof sketch (the full proof of this Theorem is available in the Technical
Report [12])). We consider a partition with 2K strata. On the K first strata,
the samples are drawn from Bernoulli distributions of parameter μk where μk ∈
{μ2 , μ, 3

μ
2 }, and on the K last strata, the samples are drawn from a Bernoulli of

parameter 1/2. We write σ =
√
μ(1 − μ) the standard deviation of a Bernoulli

of parameter μ. We index by υ a set of 2K possible environments, where υ =
(υ1, . . . , υK) ∈ {−1,+1}K, and the K first strata are defined by μk = μ +
υk

μ
2 . Write Pυ the probability under such an environment, also consider Pσ the

probability under which all the K first strata are Bernoulli with mean μ.
We define Ωυ the event on which there are less than K

3 strata not pulled
correctly for environment υ (i.e. for which Tk,n is larger than the optimal allo-
cation corresponding to μ when actually μk = μ

2 , or smaller than the optimal
allocation corresponding to μ when μk = 3μ2 ). See the Appendix D in [12] for a
precise definition of these events. Then, the idea is that there are so many such
environments that any algorithm will be such that for at least one of them we
have Pσ(Ωυ) ≤ exp(−K/72). Then we derive by a variant of Pinsker’s inequality

applied to an event of small probability that Pυ(Ωυ) ≤ KL(Pσ,Pυ)
K = O(σ

3/2n
K ).

Finally, by choosing σ of order (Kn )1/3, we have that Pυ(Ωc
υ) is bigger than a

constant, and on Ωc
υ we know that there are more than K

3 strata not pulled
correctly. This leads to an expected pseudo-regret in environment υ of order

Ω(K
1/3

n4/3 ).

This is the first lower-bound for the problem of online stratified sampling for
Monte-Carlo. Note that this bound is of same order as the upper bound for the
pseudo-regret of algorithm MC-UCB. It means that this algorithm is, up to a
factor

√
log(nK), minimax optimal, both in terms of the number of samples and

in terms of the number of strata. It however holds only on the partitions NK

(we conjecture that a similar result holds for any measurable partition N , but

with a bound of order Ω
(∑

x∈N
w2/3

x

n4/3

)
).
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4 Minimax-Optimal Trade-Off between Qn,NK
and

Rn,NK
(AMC−UCB)

4.1 Minimax-Optimal Trade-Off

We consider in this Section the hyper-cubic partitions NK as defined in Defi-
nition 1, and we want to find the minimax-optimal number of strata Kn as a
function of n. Using the results in Section 2 and Subsection 3.1, it is possible to
deduce an optimal number of strataK to give as parameter to the algorithm MC-
UCB. Note that since the performance of the algorithm is defined as the sum of
the quality of partition NK , i.e. Qn,NK and of the pseudo-regret of the algorithm
MC-UCB, namely Rn,NK (AMC−UCB), one wants to (i) on the one hand take
many strata so that Qn,NK is small but (ii) on the other hand, pay attention to
the impact this number of strata has on the pseudo-regret Rn,NK (AMC−UCB).
A good way to do that is to choose Kn in function of n such that Qn,NKn

and
Rn,NKn

(AMC−UCB) are of the same order.

Theorem 2. Under Assumptions 1 and 2 (since Assumption 1 implies Assump-

tion 3, by setting fmax = X(1)+
√

2dM), with Kn =
(
2(n d

d+3α )1/d3
)d

(≤ n d
d+3α ≤

n), we have

E[Ln(AMC−UCB)]− 1

n

(∫
[0,1]d

s(x)dx
)2

≤ cd
2α
3d

+ 1
2

√
log(n)n− d+4α

d+3α (1 + dαn− α
d+3α ),

where c = 70(1 +M)ΣNK

√
(1 + 3b+ 4(f(0) + s(0) +M)2)

(
(f(0)+s(0)+M)+4

4

)1/3

.

If d1 n, then E[Ln(AMC−UCB)]− 1
n

( ∫
[0,1]d s(x)dx

)2
= Õ(n−

d+4α
d+3α ).

We can also prove a matching (up to
√

log(n)) minimax lower bound using the
results in Theorem 1.

Theorem 3. Let sup represent the supremum taken over all α−Hölder functions
and inf be the infimum taken over all algorithms that partition the space in convex
strata of same shape, then the following holds true:

inf supELn(A)− 1

n

( ∫
[0,1]d

s(x)dx
)2

= Ω(n−
d+4α
d+3α ).

4.2 Discussion

Optimal pseudo-risk. The dominant term in the pseudo-risk of MC-UCB with

the proper number of strata is (infN ΣN )2

n = 1
n

( ∫
[0,1]d s(x)dx

)2
(the other term is

negligible). This means that algorithm MC-UCB is almost as efficient as the op-
timal oracle strategy on the optimal oracle partition. In comparison, the variance

of the estimate given by crude Monte-Carlo is
∫
[0,1]d

(
f(x)−

∫
[0,1]d f(u)du

)2
dx+∫

[0,1]d s(x)2dx. Thus MC-UCB enables to have the term coming from the varia-

tions in the mean vanish, and the noise term decreases (since by Cauchy-Schwarz,( ∫
[0,1]d s(x)dx

)2 ≤ ∫[0,1]d s(x)2dx).
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Minimax-optimal trade-off for algorithm MC-UCB. The optimal trade-off on

the number of strata Kn of order n
d

d+3α depends on the dimension and the
smoothness of the function. The higher the dimension, the more strata are needed
in order to have a decent speed of convergence for ΣNK . The smoother the
function, the fewer strata are needed.

It is yet important to remark that this trade-off is not exact. We provide an
almost minimax-optimal order of magnitude for Kn, in terms of n, so that the
rate of convergence of the algorithm is minimax-optimal up to a

√
log(n) factor.

Link between risk and pseudo-risk. It is important to compare the pseudo-risk

Ln(A) =
∑K

k=1
w2

kσ
2
k

Tk,n
and the true risk E[(μ̂n − μ)2]. Note that these quantities

are in general not equal for an algorithm A that allocates the samples in a
dynamic way: indeed, the quantities Tk,n are in that case stopping times and
the variance of estimate μ̂n is not equal to the pseudo-risk. However, in the
paper [2], the authors highlighted for MC − UCB some links between the risk
and the pseudo-risk. More precisely, they established links between Ln(A) and∑K

k=1 w
2
kE[(μ̂k,n−μk)2]. This step is possible since E[(μ̂k,n−μk)2] ≤ w2

kσ
2
k

T 2
k,n

E[Tk,n],

where T k,n is a lower-bound on the number of pulls Tk,n on a high probability
event. Then they bounded the cross products E[(μ̂k,n − μk)(μ̂p,n − μp)] and
provided some upper bounds on these terms. A tight analysis of these terms as
a function of the number of strata K remains to be investigated.

Knowledge of the Hölder exponent. In order to be able to choose properly the
number of strata to achieve the rate in Theorem 2, it is needed to possess a proper
lower bound on the Hölder exponent of the function: indeed, the rougher the
function is, the more strata are required. On the other hand, such a knowledge
on the function is not always available and an interesting question is whether it
is possible to estimate this exponent fast enough. There are interesting papers
on that subject like [9] where the authors tackle the problem of regression and
prove that it is possible to adapt to the unknown smoothness of the function. The
authors in [5] add to that (in the case of density estimation) and prove that it is
even possible under the assumption that the function attain its Hölder exponent
to have a proper estimation of this exponent and thus adaptive confidence bands.
An idea would be to try to adapt these results in the case of finite sample.

MC-UCB On a noiseless function. Consider the case where s = 0 almost surely,
i.e. the collected samples are noiseless. Proposition 1 ensures that infN ΣN = 0:
it is thus possible in this case to achieve a pseudo-risk that has a faster rate
than O( 1

n ). If the function m is smooth, e.g. Hölder with an exponent α which
is not too small, it is efficient to use low discrepancy methods to integrate the
functions. An idea is to stratify the domain in n hyper-rectangular strata of
minimal diameter, and to pick at random one sample per stratum. The variance
of the resulting estimate is of order O( 1

n1+2α/d ). Algorithm MC-UCB is not as
efficient as a low discrepancy scheme: it needs a number of strata K < n in order
to be able to estimate the variance within each stratum. Its pseudo-risk is then
of order O( 1

nK2α/d ).
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However, this only holds when the samples are noiseless. Otherwise, the vari-
ance of the estimate is of order 1/n, no matter what strategy the learner chooses.

In high dimension. The first bound in Theorem 2 expresses precisely how the
performance of the estimate output by MC-UCB depends on d. The first bound

states that the quantity Ln(A)− 1
n

( ∫
[0,1]d s(x)dx

)2
is negligible when compared

to 1/n when n is exponential in d. This is not surprising since our technique aims
at stratifying equally in every direction. It is not possible to stratify in every
directions of the domain if the function lies in a very high dimensional domain.

This is however not a reason for not using our algorithm in high dimension.
Indeed, stratifying even in a small number of strata already reduces the vari-
ance, and in high dimension, any variance reduction techniques are welcome. As
mentioned at the end of Section 1, the model that we propose for the function
is suitable for modeling d∗ dimensional functions that we only stratify in d < d∗

directions (and d 1 n). A reasonable trade-off for d can also be inferred from
the bound, but we believe that a good choice of d depends heavily on the prob-
lem. We then believe that it is a good idea to select the number of strata in the
minimax way according to our results. Again, having a very high dimensional
function that one stratifies in only a few directions is a very common technique
in financial mathematics, for pricing options (practitioners stratify an infinite
dimensional process in only 1 to 5 carefully chosen dimensions). We illustrate
this in the next Section.

5 Numerical Experiment: Influence of the Number of
Strata in the Pricing of an Asian Option

We consider the pricing problem of an Asian option introduced in [7] and later
considered in [10, 3]. This uses a Black-Scholes model with strike C and maturity
T . Let (W (t))0≤t≤T be a Brownian motion. The discounted payoff of the Asian
option is defined as a function of W , by:

F ((W )0≤t≤T ) = exp(−rT ) max
[ ∫ T

0
S0 exp

(
(r − 1

2s
2
0)t+ s0Wt

)
dt− C, 0

]
,

where S0, r, and s0 are constants.
We want to estimate the price p = EW [F (W )] by Monte-Carlo simulations (by

sampling on W ). In order to reduce the variance of the estimated price, we can
stratify the space of W . [7] suggest to stratify according to a one dimensional
projection of W , i.e., by choosing a time t and stratifying according to the
quantiles ofWt (and simulating the rest of the Brownian according to a Brownian
Bridge, see [10]). They further argue that the best direction for stratification is
to choose t = T , i.e., to stratify according to the last time of T . This choice
of stratification is also intuitive since WT has the highest variance, the largest
exponent in the payoff and thus the highest volatility. We stratify according to
the quantiles ofWT , that is to say the quantiles of a normal distribution N (0, T ).
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When stratifying in K strata, we stratify according to the 1/K-th quantiles (so
that the strata are hyper-cubes of same measure).

We choose the same numerical values as [10]: S0 = 100, r = 0.05, s0 = 0.30,
T = 1 and d = 16. We discretize also, as in [10], the Brownian motion in 16
equidistant times, so that we are able to simulate it. We choose C = 120.

In this paper, we only do experiments for MC-UCB, and exhibit the influence
of the number of strata. For a comparison between MC-UCB and other algo-
rithms, see [1]. By studying the range of the F (W ), we set the parameter of the
algorithm MC-UCB to A = 150 log(n).

For n = 200 and n = 2000, we observe the influence of the number of strata
in Figure 2 (the number of strata varying from 2 to 100). We plot results for
MC-UCB, uniform stratified Monte-Carlo (that allocates a number of samples
in each stratum proportional to the measure of the stratum), and also for crude,
unstratified, Monte-Carlo. We observe the trade-off that we mentioned between
pseudo-regret and quality, in the sense that the mean squared error of the es-
timate output by MC-UCB (when compared to the true integral of f) first
decreases with K and then increases. Note that, without surprise, for a large n
the minimum of mean squared error is reached with more strata. Finally, note
that our technique is never outperformed by uniform stratified Monte-Carlo.
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Fig. 2. Mean squared error for crude Monte-Carlo, uniform stratified sampling and
MC-UCB, for different numbers of strata, for (Left:) n=200 and (Right:) n=2000

6 Conclusion

In this paper we studied the problem of online stratified sampling for the nu-
merical integration of a function given noisy evaluations, and more precisely we
discussed the problem of choosing the minimax-optimal number of strata.

We explained why, to our minds, this is a crucial problem when one wants to
design an efficient algorithm. We highlighted the trade-off between having many
strata (and a good approximation error, i.e. quality of a partition), and not too
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many, in order to perform almost as well as the optimal oracle allocation on a
given partition (small estimation error, i.e. pseudo-regret). When the function
is noisy, the noise is the dominant quantity in the optimal oracle variance on
the optimal oracle partition. Indeed, decreasing the size of the strata does not
diminish the (local) variance of the noise. In this case, the pseudo-risk of algo-
rithm MC-UCB is equal, up to negligible terms, to the mean squared error of the
estimate output by the optimal oracle strategy on the best (oracle) partition,

at a rate of O(n−
d+4α
d+3α ) where α is the Hölder exponent of s and m. This rate

is minimax optimal on the class of α-Hölder functions: it is not possible, to do
better on simultaneously all α-Hölder functions.

There are (at least) three very interesting remaining open questions:

– The first one is to investigate whether it is possible to estimate online the
Hölder exponent fast enough. Indeed, one needs it in order to compute the
proper number of strata for MC-UCB, and the lower bound on the Hölder
exponent appears in the bound. It is thus a crucial parameter.

– The second direction is to build a more efficient algorithm in the noiseless
case. We remarked that MC-UCB is not as efficient in this case as a simple
non-adaptive method. The problem comes from the fact that in the case of a
noiseless function, it is important to sample the space in a way that ensures
that the points are as spread as possible.

– Another question is the relevance of fixing the strata in advance. Although it
is minimax-optimal on the class of α−Hölder functions to have hyper-cubic
strata of same measure, it might in some cases be more interesting to focus
and stratify more finely at places where the function is rough.
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Abstract. In online learning the performance of an algorithm is typically com-
pared to the performance of a fixed function from some class, with a quantity
called regret. Forster [4] proposed a last-step min-max algorithm which was
simpler than the algorithm of Vovk [12], yet with the same regret. In fact the
algorithm he analyzed assumed that the choices of the adversary are bounded,
yielding artificially only the two extreme cases. We fix this problem by weighing
the examples in such a way that the min-max problem will be well defined, and
provide analysis with logarithmic regret that may have better multiplicative fac-
tor than both bounds of Forster [4] and Vovk [12]. We also derive a new bound
that may be sub-logarithmic, as a recent bound of Orabona et.al [9], but may have
better multiplicative factor. Finally, we analyze the algorithm in a weak-type of
non-stationary setting, and show a bound that is sublinear if the non-stationarity
is sub-linear as well.

1 Introduction

We consider the online learning regression problem, in which a learning algorithm tries
to predict real numbers in a sequence of rounds given some side-information or inputs
xt. Real-world example applications for these algorithms are weather or stockmarket
predictions. The goal of the algorithm is to have a small discrepancy between its pre-
dictions and the associated outcomes yt. This discrepancy is measured with a loss func-
tion, such as the square loss. It is common to evaluate algorithms by their regret, the
difference between the cumulative loss of an algorithm with the cumulative loss of any
function taken from some class.

Forster [4] proposed a last-step min-max algorithm for online regression that makes
a prediction assuming it is the last example to be observed, and the goal of the algorithm
is indeed to minimize the regret with respect to linear functions. The resulting optimiza-
tion problem he obtained was convex in both the algorithm’s choice and the adversary’s
choice, which yielded an unbounded problem. Forster circumvented this problem by
assuming a bound Y over the choices of the adversary that should be known to the
algorithm, yet his analysis is for the version with no bound.

We propose a modified last-step min-max algorithm with weights over examples,
that are controled in a way to obtain a concave-convex problem over the adversary’s
choices and the algorithm’s choices. We analyze our algorithm and show a logarithmic-
regret that may have a better multiplicative factor than the analysis of Forster. We derive

N.H. Bshouty et al. (Eds.): ALT 2012, LNAI 7568, pp. 245–259, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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additional analysis that is logarithmic in the loss of the reference function, rather than
the number of rounds T . This behaviour was recently given by Orabona et.al [9] for a
certain online-gradient decent algorithm. Yet, their bound [9] has a similar multiplica-
tive factor to that of Forster [4], while our bound has a potentially better multiplicative
factor and it has the same dependency in the cumulative loss of the reference function as
Orabona et.al [9]. Additionally, our algorithm and analysis are totally free of assuming
the bound Y or knowing its value.

Competing with the best single function might not suffice for some problems. In
many real-world applications, the true target function is not fixed, but may change from
time to time. We bound the performance of our algorithm also in non-stationary envi-
ronment, where we measure the complexity of the non-stationary environment by the
total deviation of a collection of linear functions from some fixed reference point. We
show that our algorithm maintains an average loss close to that of the best sequence of
functions, as long as the total of this deviation is sublinear in the number of rounds T .

2 Problem Setting

We work in the online setting for regression evaluated with the squared loss. Online
algorithms work in rounds or iterations. On each iteration an online algorithm receives
an instance xt ∈ R

d and predicts a real value ŷt ∈ R, it then receives a label yt ∈ R,
possibly chosen by an adversary, suffers loss �t(alg) = � (yt, ŷt) = (ŷt − yt)2, updates
its prediction rule, and proceeds to the next round. The cumulative loss suffered by the
algorithm over T iterations is, LT (alg) =

∑T
t=1 �t(alg). The goal of the algorithm is to

perform well compared to any predictor from some function class.
A common choice is to compare the performance of an algorithm with respect to a

single function, or specifically a single linear function, f(x) = x�u, parameterized by

a vector u ∈ R
d. Denote by �t(u) =

(
x�
t u− yt

)2
the instantaneous loss of a vector u,

and by LT (u) =
∑T

t �t(u). The regret with respect to u is defined to be,

RT (u) =

T∑
t

(yt − ŷt)2 − LT (u) .

A desired goal of the algorithm is to have RT (u) = o(T ), that is, the average loss
suffered by the algorithm will converge to the average loss of the best linear function u.

Below in Sec. 5 we will also consider an extension of this form of regret, and evaluate
the performance of an algorithm against some T -tuple of functions, (u1, . . . ,uT ) ∈(
R
d
)T

,RT (u1, . . . ,uT ) =
∑T

t (yt− ŷt)2−LT (u1, . . . ,uT ) , where LT (u1, . . . ,uT )

=
∑T

t �t(ut). Clearly, with no restriction of the T -tuple, any algorithm may suffer a
regret linear in T , as one can set ut = xt(yt/ ‖xt‖2), and suffer zero quadratic loss in
all rounds. Thus, we restrict below the possible choices of T -tuple either explicitly, or
implicitly via some penalty.

3 A Last Step Min-Max Algorithm

Our algorithm is derived based on a last-step min-max prediction, proposed by Forster
[4] and also Takimoto and Warmuth [10]. An algorithm following this approach outputs
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Fig. 1. An illustration of the minmax objective function G(yT , ŷT ) (5). The black line is the value
of the objective as a function of yT for the optimal predictor ŷT . Left: Forster’s optimization
function (convex in yT ). Center: our optimization function (strictly concave in yT , case 1 in
Thm. 1). Right: our optimization function (invariant to yT , case 2 in Thm. 1).

the min-max prediction assuming the current iteration is the last one. The algorithm we
describe below is based on an extension of this notion. For this purpose we introduce a
weighted cumulative loss using positive input-dependent weights {at}Tt=1,

La
T (u) =

T∑
t=1

at
(
yt − u�xt

)2
, La

T (u1, . . . ,uT ) =
T∑
t=1

at
(
yt − u�

t xt
)2
.

The exact values of the weights at will be defined below.
Our variant of the last step min-max algorithm predicts1

ŷT = arg min
ŷT

max
yT

[
T∑
t=1

(yt − ŷt)2 − inf
u

(
b ‖u‖2 + La

T (u)
)]

, (1)

for some positive constant b > 0. We next compute the actual prediction based on the
optimal last step min-max solution. We start with additional notation,

At = bI +
t∑

s=1

asxsx
�
s ∈ R

d×d (2)

bt =

t∑
s=1

asysxs ∈ R
d . (3)

The solution of the internal infimum over u is summarized in the following lemma,

Lemma 1. For all t ≥ 1, the function f (u) = b ‖u‖2 +
∑t

s=1 as
(
ys − u�xs

)2
is

minimal at a unique point ut given by,

ut = A−1
t bt and f(ut) =

t∑
s=1

asy
2
s − b�

t A
−1
t bt . (4)

1 yT and ŷT serves both as quantifiers (over the min and max operators, respectively), and as
the optimal values over this optimization problem.
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The proof is similar to the proof of Lemma 1 by Forster [4]. Substituting (4) back in (1)
we get the following form of the minmax problem,

min
ŷT

max
yT

G(yT , ŷT ) for G(yT , ŷT ) = α(aT )y2T + 2β(aT , ŷT )yT + ŷ2T , (5)

for some functions α(aT ) and β(aT , ŷT ). Clearly, for this problem to be well defined
the functionG should be convex in ŷT and concave in yT .

A previous choice, proposed by Forster [4], is to have uniform weights and set aT =
1, which for the particular function α(aT ) yields α(aT ) > 0. Thus, G(yT , ŷT ) is a
convex function in yT , implying that the optimal value ofG is not bounded from above.
Forster [4] addressed this problem by restricting yT to belong to a predefined interval
[−Y, Y ], known also to the learner. As a consequence, the adversary optimal prediction
is in fact either yT = Y or yT = −Y , which in turn yields an optimal predictor which
is clipped at this bound, ŷT = clip

(
b�
T−1A

−1
T xT , Y

)
, where for y > 0 we define

clip(x, y) = x if |x| ≤ y and clip(x, y) = y sign(x) otherwise.
This phenomena is illustrated in the left panel of Fig. 1 (best viewed in color). For

the minmax optimization function defined by Forster [4], for a constant value of ŷT ,
the function is convex in yT , and the adversary would achieve a maximal value at the
boundary of the feasible values of yT interval. That is, either yT = Y or yT = −Y , as
indicated by the two magenta lines at yT = ±10. The optimal predictor ŷT is achieved
somewhere along the lines yT = Y or yT = −Y .

We propose an alternative approach to make the minmax optimal solution bounded
by appropriately setting the weight aT such that G(yT , ŷT ) is concave in yT for a con-
stant ŷT . We explicitly consider two cases. First, set aT such that G(yT , ŷT ) is strictly
concave in yT , and thus attains a single maximum with no need to artificially restrict
the value of yT . In this case the optimal predictor ŷT is achieved in the unique sad-
dle point, as illustrated in the center panel of Fig. 1. A second case is to set aT such
that α(aT ) = 0 and the minmax function G(yT , ŷT ) becomes linear in yT . Here, the
optimal prediction is achieved by choosing ŷT such that β(aT , ŷT ) = 0 which turns
G(yT , ŷT ) to be invariant to yT , as illustrated in the right panel of Fig. 1.

Equipped with Lemma 1 we develop the optimal solution of the min-max predictor,
summarized in the following theorem.

Theorem 1. Assume that 1 + aTx
�
TA

−1
T−1xT − aT ≤ 0. Then the optimal prediction

for the last round T is

ŷT = b�
T−1A

−1
T−1xT . (6)

The proof of the theorem makes use of the following technical lemma.

Lemma 2. For all t = 1, 2, . . . , T

a2tx
�
t A

−1
t xt + 1− at =

1 + atx
�
t A

−1
t−1xt − at

1 + atx�
t A

−1
t−1xt

. (7)

The proof is omitted due to lack of space. We now turn to prove the theorem.
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Proof. The adversary can choose any yT , thus the algorithm should predict ŷT such
that the following quantity is minimal,

max
yT

(
T∑
t=1

(yt − ŷt)2 − inf
u∈Rd

(
b ‖u‖2 +

T∑
t=1

at
(
yt − u�xt

)2))
(4)
= max

yT

(
T∑
t=1

(yt − ŷt)2 −
T∑
t=1

aty
2
t + b�

TA
−1
T bT

)
.

That is, we need to solve the following minmax problem

min
ŷT

max
yT

(
T∑
t=1

(yt − ŷt)2 −
T∑
t=1

aty
2
t + b�

TA
−1
T bT

)
We use the following relation to re-write the optimization problem,

b�
TA

−1
T bT = b�

T−1A
−1
T bT−1 + 2aT yTb

�
T−1A

−1
T xT + a2T y

2
Tx

�
TA

−1
T xT . (8)

Omitting all terms that are not depending on yT and ŷT ,

min
ŷT

max
yT

(
(yT − ŷT )

2 − aT y2T + 2aTyTb
�
T−1A

−1
T xT + a2T y

2
Tx

�
TA

−1
T xT

)
We manipulate the last problem to be of form (5) using Lemma 2,

min
ŷT

max
yT

(
1 + aTx

�
TA

−1
T−1xT − aT

1 + aTx�
TA

−1
T−1xT

y2T + 2yT
(
aTb

�
T−1A

−1
T xT − ŷT

)
+ ŷ2T

)
, (9)

where α(aT ) =
1+aTx�

T A−1
T−1xT−aT

1+aTx�
T A−1

T−1xT
and β(aT , ŷT ) = aTb

�
T−1A

−1
T xT − ŷT .

We consider two cases: (1) 1 + aTx
�
TA

−1
T−1xT − aT < 0 (corresponding to the

middle panel of Fig. 1), and (2) 1 + aTx
�
TA

−1
T−1xT − aT = 0 (corresponding to the

right panel of Fig. 1), starting with the first case,

1 + aTx
�
TA

−1
T−1xT − aT < 0 (10)

Denote the inner-maximization problem by, f (yT )=
1+aTx�

T A−1
T−1xT−aT

1+aTx�
T A−1

T−1xT
y2T

+ 2yT
(
aTb

�
T−1A

−1
T xT − ŷT

)
+ ŷ2T . This function is strictly-concave with respect to

yT because of (10). Thus, it has a unique maximal value given by,

fmax(ŷT ) = − aT

1 + aTx�
TA

−1
T−1xT − aT

ŷ2T

+
2aTb

�
T−1A

−1
T xT

(
1 + aTx

�
TA

−1
T−1xT

)
1 + aTx�

TA
−1
T−1xT − aT

ŷT

−
(
aTb

�
T−1A

−1
T xT

)2 (
1 + aTx

�
TA

−1
T−1xT

)
1 + aTx�

TA
−1
T−1xT − aT
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Next, we solve minŷT f
max(ŷT ), which is strictly-convex with respect to ŷT because

of (10). Solving this problem we get the optimal last step minmax predictor,

ŷT = b�
T−1A

−1
T xT

(
1 + aTx

�
TA

−1
T−1xT

)
. (11)

We further derive the last equation. From (2) we have,

A−1
T aTxTx

�
TA

−1
T−1 = A−1

T (AT −AT−1)A−1
T−1 = A−1

T−1 −A−1
T (12)

Substituting (12) in (11) we have the following equality as desired,

ŷT = b�
T−1A

−1
T xT + b�

T−1A
−1
T aTxTx

�
TA

−1
T−1xT = b�

T−1A
−1
T−1xT . (13)

We now move to the second case for which, 1 + aTx
�
TA

−1
T−1xT − aT = 0 , which is

written equivalently as,
aT = 1/

(
1− x�

TA
−1
T−1xT

)
. (14)

Substituting (14) in (9) we get, minŷT maxyT
(
2yT

(
aTb

�
T−1A

−1
T xT − ŷT

)
+ ŷ2T

)
.

For ŷT �= aTb
�
T−1A

−1
T xT , the value of the optimization problem is not-bounded as

the adversary may choose yT = z2
(
aTb

�
T−1A

−1
T xT − ŷT

)
for z → ∞. Thus, the

optimal last step minmax prediction is to set ŷT = aTb
�
T−1A

−1
T xT . Substituting aT =

1 + aTx
�
TA

−1
T−1xT and following the derivation from (11) to (13) above, yields the

desired identity.

We conclude by noting that although we did not restrict the form of the predictor
ŷT , it turns out that it is a linear predictor defined by ŷT = x�

TwT−1 for wT−1 =
A−1
T−1bT−1. In other words, the functional form of the optimal predictor is the same

as the form of the comparison function class - linear functions in our case. We call
the algorithm (defined using (2), (3) and (6)) WEMM for weighted min-max prediction.
WEMM can also be seen as an incremental off-line algorithm [1] or follow-the-leader, on
a weighted sequence. The prediction ŷT = x�

TwT−1 is with a model that is optimal
over a prefix of length T − 1. The prediction of the optimal predictor defined in (4) is
x�
T uT−1 = x�

TA
−1
T−1bT−1 = ŷT , where ŷT was defined in (6).

4 Analysis
We analyze the algorithm in two steps. First, in Thm. 2 we show that the algorithm
suffers a constant regret compared with the optimal weight vector u evaluated using
the weighted loss, La(u). Second, in Thm. 3 and Thm. 4 we show that the difference of
the weighted-loss La(u) to the true loss L(u) is only logarithmic in T or in

∑
t �t(u).

Theorem 2. Assume 1+atx
�
t A

−1
t−1xt−at ≤ 0 for t = 1 . . . T (which is satisfied by our

choice later). Then, the loss of the last-step minmax predictor (6), ŷt = b�
t−1A

−1
t−1xt

for t = 1 . . . T , is upper bounded by,

LT (alg) ≤ inf
u∈Rd

(
b ‖u‖2 + La

T (u)
)
.

Furthermore, if 1+atx
�
t A

−1
t−1xt−at = 0, then the last inequality is in fact an equality.
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Proof Sketch: Long algebraic manipulation given in Sec. A yields,

�t(alg) + inf
u∈Rd

(
b ‖u‖2 + La

t−1(u)
)
− inf

u∈Rd

(
b ‖u‖2 + La

t (u)
)

=
1 + atx

�
t A

−1
t−1xt − at

1 + atx�
t A

−1
t−1xt

(yt − ŷt)2 ≤ 0

Summing over t gives the desired bound.

Next we decompose the weighted loss La
T (u) into a sum of the actual loss LT (u) and

a logarithmic term. We give two bounds - one is logarithmic in T (Thm. 3), and the
second is logarithmic in

∑
t �t(u) (Thm. 4). We use the following notation of the loss

suffered by u over the worst example,

S = S(u) = sup
1≤t≤T

�t(u), (15)

where clearly S depends explicitly in u, which is omitted for simplicity. We now turn
to state our first result,

Theorem 3. Assume ‖xt‖ ≤ 1 for t = 1 . . . T and b > 1. Assume further that at =
1

1−x�
t A−1

t−1xt
for t = 1 . . . T . Then La

T (u) ≤ LT (u) + b
b−1S ln

∣∣ 1
bAT

∣∣ .
The proof follows similar steps to Forster [4]. A detailed proof is given in Sec. B.

Proof Sketch: We decompose the weighted loss,

La
T (u) = LT (u) +

∑
t

(at − 1)�t(u) ≤ LT (u) + S
∑
t

(at − 1) . (16)

From the definition of at we have, at − 1 = a2tx
�
t A

−1
t xt ≤ b

b−1atx
�
t A

−1
t xt (see

(30)). Finally, following similar steps to Forster [4] we have,
∑T

t=1 atx
�
t A

−1
t xt ≤

ln
∣∣ 1
bAT

∣∣.
Next we show a bound that may be sub-logarithmic if the comparison vector u suffers
sub-linear amount of loss. Such a bound was previously proposed by Orabona et.al [9].
We defer the discussion about the bound after providing the proof below.

Theorem 4. Assume ‖xt‖ ≤ 1 for t = 1 . . . T , and b > 1. Assume further that

at =
1

1− x�
t A

−1
t−1xt

(17)

for t = 1 . . . T . Then,

La
T (u) ≤ LT (u) +

b

b− 1
Sd

[
1 + ln

(
1 +

LT (u)

Sd

)]
. (18)

We prove the theorem with a refined bound on the sum
∑

t(at − 1)�t(u) of (16) using
the following two lemmas. In Thm. 3 we bound the loss of all examples with S and
then bound the remaining term. Here, instead we show a relation to a subsequence
“pretending” all examples of it as suffering a loss S, yet with the same cumulative loss,
yielding an effective shorter sequence, which we then bound. In the next lemma we
show how to find this subsequence, and in the following one bound the performance.



252 E. Moroshko and K. Crammer

Lemma 3. Let I ⊂ {1 . . . T } be the indices of the T
′

=
⌈∑T

t=1 �t/S
⌉

largest elements

of at, that is |I| = T ′ and mint∈I at ≥ aτ for all τ ∈ {1 . . . T }/I . Then,

T∑
t=1

�t (u) (at − 1) ≤ S
∑
t∈I

(at − 1) .

Proof. For a vector v ∈ R
T define by I(v) the set of indicies of the T

′
maximal

absolute-valued elements of v, and define f(v) =
∑

t∈I(v) |vt|. The function f(v) is

a norm [3] with a dual norm g(u) = max
{
‖u‖∞, ‖u‖1

T ′

}
. From the property of dual

norms we have v · u ≤ f(v)g(u). Applying this inequality to v = (a1 − 1...aT − 1)

and u = (�1 . . . �T ) we get,
∑T

t=1 �t(u)(at − 1) ≤ max
{
S,

∑T
t=1 �t
T ′

}∑
t∈I(at − 1).

Combining with ST ′ ≥
∑T

t=1 �t, completes the proof.

Note that the quantity
∑

t∈I at is based only on T ′ examples, yet was generated using
all T examples. In fact by running the algorithm with only these T ′ examples the corre-
sponding sum cannot get smaller. Specifically, assume the algorithm is run with inputs
(x1, y1)...(xT , yT ) and generated a corresponding sequence (a1...aT ). Let I be the set
of indices with maximal values of at as before. Assume the algorithm is run with the
subsequence of examples from I (with the same order) and generated α1...αT (where
we set αt = 0 for t /∈ I). Then, αt ≥ at for all t ∈ I . This statement follows from
(2) from which we get that the matrix At is monotonically increasing in t. Thus, by
removing examples we get another smaller matrix which leads to a larger value of αt.

We continue the analysis with a sequence of length T ′ rather than a subsequence of
the original sequence of length T being analyzed. The next lemma upper bounds the

sum
∑T ′

t at over T ′ inputs with another sum of same length, yet using orthonormal set
of vectors of size d.

Lemma 4. Let x1...xτ be any τ inputs with unit-norm. Assume the algorithm is per-
forming updates using (17) for some A0 resulting in a sequence a1...aτ . Let E =
{v1...vd} ⊂ R

d be an eigen-decomposition of A0 with corresponding eigenvalues
λ1...λd. Then there exists a sequence of indices j1...jτ , where ji ∈ {1...d}, such that∑

t at ≤
∑

t αt, where αt are generated using (17) on the sequence vj1 ...vjτ .
Additionally, let ns be the number of times eigenvector vs is used (s = 1...d), that is

ns = |{jt : jt = s}} (and
∑

s ns = τ ), then,

∑
t

αt ≤ τ +

d∑
s=1

ns∑
r=1

1

λs + r − 2
.

Proof. By induction over τ . For τ = 1 we want to upper bound a1 = 1/(1−x�
1 A

−1
0 x1)

which is maximized when x1 = vd the eigenvector with minimal eigenvalue λd, in this
case we have α1 = 1/(1− 1/λd) = 1 + 1/(λd − 1), as desired.
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Table 1. Comparison of regret bounds for online regression

Algorithm Bound on Regret RT (u)

Vovk [13] b ‖u‖2 + dY 2 ln(1 + T/(db))

Forster [4] b ‖u‖2 + dY 2 ln(1 + T/(db))

Orabona et.al. [9] 2 ‖u‖2 + d(U + Y )2 ln
(
1 +

2‖u‖2+∑
t 
t(u)

d(U+Y )2

)
Thm. 3 b ‖u‖2 + Sd b

b−1
ln

(
1 + T

d(b−1)

)
Thm. 4 b ‖u‖2 + Sd b

b−1
ln(1 +

∑
t 
t(u)

Sd
)

Next we assume the lemma holds for some τ − 1 and show it for τ . Let x1 be
the first input, and let {γs} and {us} be the eigen-values and eigen-vectors of A1 =
A0 + a1x1x

�
1 . The assumption of induction implies that

∑τ
t=2 αt ≤ (τ − 1) +∑d

s=1

∑ns

r=1
1

γs+r−2 . From Theorem 8.1.8 of [6] we know that the eigenvalues of A1

satisfy γs = λs +ms for somems ≥ 0 and
∑

sms = 1. We thus conclude that

∑
t

at ≤ 1 + 1/(λd − 1) + (τ − 1) +

d∑
s=1

ns∑
r=1

1

λs +ms + r − 2
.

The last term is convex inm1...md and thus is maximized over a vertex of the simplex,
that is when mu = 1 for some u and zero otherwise. In this case, the eigen-vectors
{us} of A1 are in fact the eigenvectors {vs} of A0, and the proof is completed.

Equipped with these lemmas we now prove Thm. 4.

Proof. Let T
′

=
⌈∑T

t=1 �t/S
⌉

. Our starting point is the equality La
T (u) = LT (u) +∑T

t=1 �t (u) (at − 1) stated in (16). From Lemma 3 we get,

T∑
t=1

�t (u) (at − 1) ≤ S
∑
t∈I

(at − 1) ≤ S
T ′∑
t

(αt − 1) , (19)

where I is the subset of T ′ indices for which at are maximal, and αt are the resulting
coefficients computed with (17) using only the sub-sequence of examples xt with t ∈ I .

By definition A0 = bI and thus from Lemma 4 we further bound (19) with,

T∑
t=1

�t (u) (at − 1) ≤ S
d∑

s=1

ns∑
r=1

1

b+ r − 2
, (20)

for some ns such that
∑

s ns = T ′. The last equation is maximized when all the counts
ns are about (as d may not divide T ′) the same, and thus we further bound (20) with,

T∑
t=1

�t (u) (at − 1) ≤ S
d∑

s=1

�T ′/d�∑
r=1

1

b+ r − 2
≤ Sd

�T ′/d�∑
r=1

b

b− 1

1

r

≤ Sd
b

b− 1

(
1 + ln

(⌈
T ′

d

⌉))
≤ Sd b

b− 1

(
1 + ln

(
1 +

LT (u)

Sd

))
,

which completes the proof.
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It is instructive to compare bounds of similar algorithms, summarized in Table 1. Our
first bound of Thm. 3 is most similar to the bounds of Forster [4] and Vovk [13]. The
bound in the table is obtained by noting that log det is a concave function of the eigen-
values of the matrix, upper bounded when all the eigenvalues are equal (with the same
trace). They have a multiplicative factor Y 2 of the logarithm, while we have the worst-
loss of u over all examples. Thus, our first bound is better on problems that are approx-
imately linear yt ≈ u · xt for t = 1, . . . , T and Y is large, and their bound is better if
Y is small. Note that the analysis of Forster [4] assumes that the labels yt are bounded,
and formally the algorithm should know this bound, while we assume that the inputs
are bounded.

Our second bound of Thm. 4 is similar to the bound of Orabona et.al. [9]. Both
bounds have potentially sub-logarithmic regret as the cumulative loss L(u) may be
sublinear in T . Yet, their bound has a multiplicative factor of (U+Y )2, while our bound
has only the maximal loss S, which, as before, can be much smaller. Additionally, their
analysis assumes that both the inputs xt and the labels yt are bounded, while we only
assume that the inputs are bounded, and furthermore, our algorithm does not need to
assume and know a compact set which contains u (‖u‖ ≤ U ), as opposed to their
algorithm.

5 Learning in Non-stationary Environment

In this section we present a generalization of the last-step min-max predictor for non-
stationary problems given in (1). We define the predictor to be,

ŷT = arg min
ŷT

max
yT

[
T∑
t=1

(yt − ŷt)2 − inf
u1,...,uT ,ū

(
b ‖ū‖2 + cVm + Lã

T (u1, . . . ,uT )
)]

(21)

for Vm =
∑T

t=1 ‖ut − ū‖2 , positive constants b, c > 0 and weights ãt ≥ 1 for
1 ≤ t ≤ T .

As mentioned above, we use an extended notion of function class, using different
vectors ut across time T . We circumvent here the problem mentioned in the end of
Sec. 2, and restrict the adversary from choosing an arbitraryT -tuple (u1, . . . ,uT ) by in-
troducing a reference weight-vector ū. Specifically, indeed we replace the single-weight
cumulative-loss La

T (u) in (1) with a multi-weight cumulative-loss Lã
T (u1, . . . ,uT ) in

(21), yet, we add the term cVm to (21) penalizing a T -tuple (u1, . . . ,uT ) that its el-
ements {ut} are far from some single point ū. Intuitively, Vm serves as a measure of
complexity of the T -tuple by measuring the deviation of its elements from some vector.

The new formulation of (21) clearly subsumes the formulation of (1), as if u1 =
. . .uT = ū = u, then (21) reduces to (1). We now show that in-fact the two notions
of last-step min-max predictors are equivalent. The following lemma characterizes the
solution of the inner infimum of (21) over ū.
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Lemma 5. For any ū ∈ R
d, the function J (u1, . . . ,uT ) = b ‖ū‖2 +

c
∑T

t=1 ‖ut − ū‖2 +
∑T

t=1 ãt
(
yt − u�

t xt
)2

is minimal for ut = ū +
c−1

ã−1
t +c−1‖xt‖2

(
yt − ū�xt

)
xt for t = 1...T . The minimal value of J (u1, . . . ,uT ) is

given by

Jmin = b ‖ū‖2 +

T∑
t=1

1

ã−1
t + c−1 ‖xt‖2

(
yt − ū�xt

)2
. (22)

The proof is omitted due to space constraints, and is obtained by setting the derivative
of the objective to zero. Substituting (22) in (21) we obtain the following form of the
last-step minmax predictor,

ŷT = arg min
ŷT

max
yT

[
T∑
t=1

(yt − ŷt)2−

inf
ū∈Rd

(
b ‖ū‖2 +

T∑
t=1

1

ã−1
t + c−1 ‖xt‖2

(
yt − x�

t ū
)2)]

(23)

Clearly, both equations (23) and (1) are equivalent when identifying,

at = 1/
(
ã−1
t + c−1 ‖xt‖2

)
. (24)

Therefore, we can use the results of the previous sections. Specifically, if 1 +
aTx

�
TA

−1
T−1xT − aT ≤ 0 the optimal predictor developed in Thm. 1 for the station-

ary case is given by, ŷT = b�
T−1A

−1
T−1xT where we replace (2) with At = bI +∑t

s=1 asxsx
�
s = bI +

∑t
s=1

1
ã−1
s +c−1‖xs‖2xsx

�
s and (3) with bt =

∑t
s=1 asysxs =∑t

s=1
1

ã−1
s +c−1‖xs‖2 ysxs. Although most of the analysis above holds for 1 +

atx
�
t A

−1
t−1xt − at ≤ 0 in the end of the day, Thm. 3 assumed that this inequality holds

as equality. Substituting at = 1
1−x�

t A−1
t−1xt

in (24) and solving for ãt we obtain,

ãt = 1/
(

1− x�
t A

−1
t−1xt − c−1 ‖xt‖2

)
. (25)

The last-step minmax predictor (21) is convex if ãt ≥ 0, which holds if, 1/b+1/c ≤ 1 ,

because A−1
t−1 � A−1

0 = (1/b)I and we assume that ‖xt‖2 ≤ 1.
Let us state the analogous statements of Thm. 2 and Thm. 3. Substituting Lemma 5

in Thm. 2 we bound the cumulative loss of the algorithm with the weighted loss of any
T -tuple (u1, . . . ,uT ),

Corollary 1. Assume ‖xt‖ ≤ 1, 1 + atx
�
t A

−1
t−1xt − at ≤ 0 for t = 1 . . . T , and

1/b + 1/c ≤ 1. Then, the loss of the last-step minmax predictor, ŷt = b�
t−1A

−1
t−1xt

for t = 1 . . . T , is upper bounded by, LT (alg) ≤ infu∈Rd

(
b ‖u‖2 + La

T (u)
)

=

infu1,...,uT ,ū

(
b ‖ū‖2 + c

∑T
t=1 ‖ut − ū‖2 + Lã

T (u1, . . . ,uT )
)

. Furthermore, if 1 +

atx
�
t A

−1
t−1xt − at = 0, then the last inequality is in fact an equality.
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Next we relate the weighted cumulative loss Lã
T (u1, . . . ,uT ) to the loss itself

LT (u1, . . . ,uT ),

Corollary 2. Assume ‖xt‖ ≤ 1 for t = 1 . . . T , b > 1 and 1/b + 1/c ≤ 1. Assume
additionally that ãt = 1

1−x�
t A−1

t−1xt−c−1‖xt‖2 as given in (25). Then

Lã
T (u1, . . . ,uT ) ≤LT (u1, . . . ,uT ) +

b

b− 1
S ln

∣∣∣∣1bAT

∣∣∣∣
+ TS

1

c (1− b−1)2 − (1− b−1)

Proof. We start as in the proof of Thm. 3 and decompose the weighted loss,

Lã
T (u1, . . . ,uT ) = LT (u1, . . . ,uT ) +

∑
t

(ãt − 1)�t(ut)

≤ LT (u1, . . . ,uT ) + S
∑
t

(at − 1) + S
∑
t

(ãt − at) . (26)

We bound the sum of the third term,

ãt − at =
1

1− x�
t A

−1
t−1xt − c−1 ‖xt‖2

− 1

1− x�
t A

−1
t−1xt

≤ c−1

(1− b−1 − c−1) (1− b−1)
=

1

c (1− b−1)
2 − (1− b−1)

. (27)

Additionally, as in Thm. 3 the second term is bounded with b
b−1S ln

∣∣1
bAT

∣∣. Substitut-
ing this bound and (27) in (26) completes the proof.

Combining the last two corollaries yields the main result of this section.

Corollary 3. Under the conditions of Cor. 2 the cumulative loss of the last-step minmax
predictor is upper bounded by,

LT (alg) ≤ inf
u1,...,uT ,ū

(
b ‖ū‖2 + cVm + LT (u1, . . . ,uT )

+
Sb

b− 1
ln

∣∣∣∣1bAT

∣∣∣∣+ TS

c (1− b−1)
2 − (1− b−1)

)
,

where Vm is the deviation of {ut} from some fixed weight-vector. Additionally, setting

cV = b
b−1

(
1 +
√

ST
Vm

)
minimizing the above bound over c,

LT (alg) ≤ inf
u1,...,uT ,ū

(
b ‖ū‖2 + LT (u1, . . . ,uT )

+
Sb

b− 1
ln

∣∣∣∣1bAT

∣∣∣∣+ b

b− 1

(
Vm + 2

√
STVm

))
.
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Few comments. First, it is straightforward to verify that cV = b
b−1

(
1 +
√

ST
Vm

)
satisfy

the constraint 1/b + 1/cV ≤ 1. Second, this bound strictly generalizes the bound for
the stationary case, since Cor. 2 reduces to Thm. 3 when all the weight-vectors equal
each other u1 = . . .uT = ū (i.e. Vm = 0). Third, the constant c (or cV ) is not used by
the algorithm, but only in the analysis. So there is no need to know the actual deviation
Vm to tune the algorithm. In other words, the bound applies essentially to the same
last step minmax predictor defined in Thm. 1. Finally, we can obtain a bound for the
non-stationary case based on Thm. 4 instead of Thm. 3 (omitted due to lack of space).

6 Related Work and Summary

The problem of predicting reals in an online manner was studied for more than five
decades. Clearly we cannot cover all previous work here, and the reader is refered to
the encyclopedic book of Cesa-Bianchi and Lugosi [2] for a full survey.

An online version of the ridge regression algorithm in the worst-case setting was
proposed and analyzed by Foster [5]. A related algorithm called the Aggregating Algo-
rithm (AA) was studied by Vovk [12]. The recursive least squares (RLS) [7] is a similar
algorithm proposed for adaptive filtering. Both algorithms make use of second order in-
formation, as they maintain a weight-vector and a covariance-like positive semi-definite
(PSD) matrix used to re-weight the input. The eigenvalues of this covariance-like matrix
grow with time t, a property which is used to prove logarithmic regret bounds. Orabona
et.al. [9] showed that beyond logarithmic regret bound can be achieved when the total
best linear model loss is sublinear in T . We derive a similar bound, with a multiplicative
factor that depends on the worst-loss of u, rather than a bound Y on the labels.

The derivation of our algorithm shares similarities with the work of Forster [4]. Both
algorithms are motivated from the last-step min-max predictor. Yet, the formulation
of Forster [4] yields a convex optimization for which the max operation over yt is not
bounded, and thus he used an artificial clipping operation to avoid unbounded solutions.
With a proper tuning of at and a weighted loss, we are able to obtain a problem that is
convex in ŷt and concave in yt, and thus well defined.

Most recent work is focused in the stationary setting. We also discuss a specific
weak-notion of non-stationary setting, for which the few weight-vectors can be used for
comparison and their total deviation is computed with respect to some single weight-
vector. Recently, Vaits and Crammer [11] proposed an algorithm designed for non-
stationary environments. Herbster and Warmuth [8] discussed general gradient descent
algorithms with projection of the weight-vector using the Bregman divergence, and
Zinkevich [14] developed an algorithm for online convex programming. They all use a
stronger notion of diversity between vectors, as their distance is measured with consec-
utive vectors (that is drift that may end far from the starting point). Thus, the bounds
cannot be compared in general.

Summary: We proposed a modification of the last-step min-max algorithm [4] using
weights over examples, and showed how to choose these weights for the problem to be
well defined – convex – which enabled us to develop the last step min-max predictor,
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without requiring the labels to be bounded. Our analysis bounds the regret with quanti-
ties that depends only on the loss of the competitor, with no need for any knowledge of
the problem. Our prediction algorithm was motivated from the last-step minmax predic-
tor problem for stationary setting, but we showed that the same algorithm can be used
to derive a bound for a class of non-stationary problems as well.

We plan to perform an extensive empirical study comparing the algorithm to other
algorithms. An interesting direction would be to extend the algorithm for general loss
functions rather than the squared loss, or to classification tasks.

Acknowledgements: The research is partially supported by an Israeli Science Foun-
dation grant ISF- 1567/10.

A Proof of Thm. 2

Proof. Using the Woodbury matrix identity we get

A−1
t = A−1

t−1 −
A−1
t−1xtx

�
t A

−1
t−1

1
at

+ x�
t A

−1
t−1xt

(28)

therefore

A−1
t xt = A−1

t−1xt −
A−1
t−1xtx

�
t A

−1
t−1xt

1
at

+ x�
t A

−1
t−1xt

=
A−1
t−1xt

1 + atx�
t A

−1
t−1xt

(29)

For t = 1 . . . T we have

�t(alg) + inf
u∈Rd

(
b ‖u‖2 + La

t−1(u)
)
− inf

u∈Rd

(
b ‖u‖2 + La

t (u)
)

(4)
= (yt − ŷt)2 +

t−1∑
s=1

asy
2
s − b�

t−1A
−1
t−1bt−1 −

t∑
s=1

asy
2
s + b�

t A
−1
t bt

(8)
= (yt − ŷt)2 − aty2t − b�

t−1A
−1
t−1bt−1 + b�

t−1A
−1
t bt−1 + 2atytb

�
t−1A

−1
t xt

+a2ty
2
tx

�
t A

−1
t xt

(12)
= (yt − ŷt)2 − aty2t − b�

t−1A
−1
t atxtx

�
t A

−1
t−1bt−1 + 2atytb

�
t−1A

−1
t xt

+a2ty
2
tx

�
t A

−1
t xt

(29)
= (yt − ŷt)2 − aty2t + at

(
−ŷtb�

t−1 + 2ytb
�
t−1 + aty

2
tx

�
t

) A−1
t−1xt

1 + atx�
t A

−1
t−1xt

= (yt − ŷt)2 − at
(yt − ŷt)2

1 + atx�
t A

−1
t−1xt

=
1 + atx

�
t A

−1
t−1xt − at

1 + atx�
t A

−1
t−1xt

(yt − ŷt)2 ≤ 0

Summing over t ∈ {1, . . . , T } yields LT (alg)− infu∈Rd

(
b ‖u‖2 + La

T (u)
)
≤ 0 .
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B Proof of Thm. 3

Proof. From (28) we see that A−1
t ≺ A−1

t−1 and because A0 = bI we get x�
t A

−1
t xt <

x�
t A

−1
t−1xt < x�

t A
−1
t−2xt < . . . < x�

t A
−1
0 xt = 1

b ‖xt‖
2 ≤ 1

b therefore 1 ≤ at ≤
1

1− 1
b

= b
b−1 . From (29) we have x�

t A
−1
t xt =

x�
t A−1

t−1xt

1+atx�
t A−1

t−1xt
=

1− 1
at

1+at(1− 1
at

)
= at−1

a2
t

so we can bound the term at − 1 as following

at − 1 = a2tx
�
t A

−1
t xt ≤

b

b− 1
atx

�
t A

−1
t xt . (30)

With an argument similar to [4] we have, atx�
t A

−1
t xt ≤ ln |At|

|At−atxtx�
t | =

ln |At|
|At−1| . Summing the last inequality over t and using the initial value ln

∣∣ 1
bA0

∣∣ = 0

we get
∑T

t=1 atx
�
t A

−1
t xt ≤ ln

∣∣1
bAT

∣∣ . Substituting the last equation in (30) we get

the logarithmic bound
∑T

t=1 (at − 1) ≤ b
b−1 ln

∣∣1
bAT

∣∣ , as required.
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Abstract. We consider an online prediction problem of combinatorial
concepts where each combinatorial concept is represented as a vertex of
a polyhedron described by a submodular function (base polyhedron). In
general, there are exponentially many vertices in the base polyhedron. We
propose polynomial time algorithms with regret bounds. In particular, for
cardinality-based submodular functions, we give O(n2)-time algorithms.

1 Introduction

Online learning of combinatorial or structured concepts have gained much atten-
tion these days [9, 2, 13, 17]. Such combinatorial concepts includes shortest paths,
k-sets, spanning trees, permutations, and so on. In typical settings, we assume
a finite set C of combinatorial concepts where each concept can be represented
as a vector in R

n for some fixed n, i.e., C ⊆ R
n . Then we consider the follow-

ing protocol: For each trial t = 1, . . . , T , (i) the player predicts ct ∈ C, (ii) the
adversary returns a loss vector �t ∈ [0, 1]n, and (iii) the player incurs loss ct · �t.
The goal of the player is to minimize the regret:

∑T
t=1 ct ·�t−minc∈C

∑T
t=1 c ·�t.

There are some approaches to attack this type of problems. A naive approach
to minimize the regret in the above problem is to apply Hedge algorithm [6].
Hedge algorithm combines experts predictions, where each expert corresponds to
each concept in C. In general, however, the size of C is exponentially large w.r.t.
n. Therefore, a straightforward implementation of Hedge algorithm is inefficient.
There are some efficient online prediction methods for combinatorial concepts,
for example, PermELearn [9] and Component Hedge [13] and Comband in bandit
setting [2]. These methods consist of abstract subroutines.

Among subroutines, projection and decomposition are important and used
in many online learning algorithms (see, e.g., [19, 9, 13]). Here, the projection
routine, given a point, outputs its projection onto the convex hull of combina-
torial concepts and the decomposition routine, given finds a liner combination
of combinatorial concepts given a point of the convex hull. So far, for partic-
ular combinatorial concepts, we need to design projection and decomposition
subroutines individually.

N.H. Bshouty et al. (Eds.): ALT 2012, LNAI 7568, pp. 260–274, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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In this paper, we investigate a unified and efficient projection and decom-
position algorithms for a wide class of combinatorial concepts. The class we
consider is the set of vertices (extreme points) of a polyhedron described by
a submodular function f . In submodular function literature, the polyhedron is
called (submodular) base polyhedron and denoted as B(f) (we will give the def-
inition later). That is, we consider the situation where C is the set of extreme
points in B(f). The base polyhedron B(f) is defined using 2n linear constraints
and it is known that there are at most n! vertices [7]. Examples of our problems
include experts, k-sets [16], permutahedron [17], spanning trees [2, 13], trun-
cated permutahedron, and k-forest. To the best of our knowledge, the last two
problems are new for the online learning literature.

We propose projection and decomposition algorithms for the base polyhedron
B(f). The running times of the algorithms are both O(n6 + n5EO)), where EO
denotes the unit time to evaluate the submodular function. Furthermore, for
cardinality-based submodular functions, we derive O(n2)-time projection and
decomposition algorithms. Such examples include k-sets and (truncated) per-
mutahedron.

Our projection algorithms are designed for Euclidean distance and unnor-
malized relative entropy. So, we can combine them with Online Gradient De-
scent(OGD) [19] or Hedge [6], respectively. Combined with our projection and
decomposition algorithms for B(f), their regret bounds become O(Deuc

√
nT )

andO(
√
L∗f([n]) lnn+f([n]) lnn), respectively, whereDeuc = maxc,c′∈B(f) ‖c−

c′‖2, and L∗ = minc∈B(f)

∑T
t=1 c · �t.

Our contribution is to provide a unified view and efficient prediction strate-
gies for an online prediction problem with exponentially many candidates by
using rich theory of submodular function. Further, our O(n2)-time algorithms
for cardinality-based submodular functions are non-trivial for submodular opti-
mization as well.

We discuss the relationship between previous and our results. First, we com-
pare Follow the perturbed leader (FPL, [12]) with our algorithms. FPL uses an
algorithm which solves “offline” linear optimization. It is well known that linear
optimization over the base polyhedron is tractable and solved in O(n log n) time
[4, 7]. So, the running time of FPL for our problem is O(n log n) at each trial. On
the other hand, the regret of FPL is O(D1

√
nT ), whereD1 = maxc,c′∈C ‖c−c′‖1,

which is worse than ours.
Next, we consider an algorithm proposed by [11] which converts an offline

linear approximate optimization algorithm into the online one. This algorithm
has an approximate projection subroutine. But the running time of the projection
subroutine is O(Tn logn), which depends on T .

Component Hedge (CH, [13]) is also an efficient algorithm for predicting
among exponentially many combinatorial concepts. CH represents a combinato-
rial concept as a matrix and solves an entropy minimization problem with linear
constraints at each trial. CH has more known applications such as directed span-
ning trees, paths and so on. However, the class of concepts for which CH can
deal with seems incomparable with ours. In an algorithmic sense, our algorithm
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has advantages for some concepts. For example, for permutahedron and its trun-
cated one, it can be shown that CH requires O(n2) memory whereas ours uses
O(n) memory (see [17] for related discussion).

2 Preliminaries

For any fixed positive integer n, we denote by [n] the set {1, . . . , n}. A function
f : 2[n] → R is submodular if for any A,B ⊂ [n], f(A ∪ B) + f(A ∩ B) ≤
f(A) + f(B). For simplicity, we assume that f(∅) = 0. Given a submodular
function f , the base polyhedron is defined as

B(f) =

{
x ∈ R

n |
∑
i∈S

xi ≤ f(S), for any S ⊂ [n], and
n∑
i=1

xi = f([n])

}
.

A point in B(f) is an extreme point if it is not represented as a convex combina-
tion of other two points in B(f). Let C be the set of extreme points in B(f). In
general, there can be exponentially many extreme points in B(f). In this paper,
for any submodular function f , we assume an oracle that returns the value f(S)
for any input S.

2.1 Examples

We illustrate some examples of our problems. In particular, the last two problems
are new applications which are not previously studied.

Experts Problem. The classical expert problem [6] is an example of our problem.
In the expert problem, we are given n experts and the player would like to
predict as well as the best expert in hindsight. Here each expert i is represented
as n-dimensional unit vector ei whose i-th component is 1 and other components
are 0. Then, the corresponding submodular function f is the constant function
f(S) = 1, which is submodular.

k-Sets. The problem of k-sets is a generalization of Experts problem, where each
combinatorial concept corresponds to a set of k experts among n experts. This
problem was first considered by [16]. Each k-set is represented as a sum of k
different unit vectors. Then, C = {x ∈ {0, 1}n |

∑n
i xi = k}. Let f : 2[n] → R

such that f(S) = g(|S|), where g(i) = i, if i ≤ k and g(i) = k, if i > k. This
function is submodular since any concave function of |S| is submodular (see, e.g.,
[7]).

Spanning Trees. Online prediction problems of undirected or directed spanning
trees are studied in [2] and [13]. In this paper, we consider undirected spanning
trees. Let G = (V,E) be an undirected graph. Let f : 2E → R such that f(A) =
|V (A)|−s(A), where V (A) is the set of vertices of the subgraph induced by the set
A of edges, and s(A) is the number of the connected components of the subgraph
[5, 3]. Especially, the base polyhedron is called spanning tree polyhedron and
C = {x ∈ {0, 1}|E| | the set of edges{e | xe = 1} forms a spanning tree of G}.
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Permutahedron. Let C = {(i1, . . . , in) | (i1, . . . , in) is a permutation of {1, . . . ,
n}}. Each permutation corresponds to an element of Sn. The corresponding

submodular function is f(S) =
∑|S|

i=1(n + 1 − i). The base polyhedron B(f) is
called Permutahedron (see, e.g., [18, 7]). This concept class relates to an online
scheduling problem of n jobs with a single processor where the sum of flow time
of each job is to be minimized [17] . A different representation of permutations
and the related problem was also considered by [9].

Truncated Permutahedron. For k < n, let C = {(i1, . . . , in) | (i1, . . . , in) is
a permutation of 1, 2, . . . , n− k,and k (n− k)s}. For example, (2, 2, 2, 1) is a
member of C for n = 4 and k = 2. The corresponding function is f(S) = (n−k)|S|
if |S| ≤ k and f(S) = (n − k)k +

∑|S|
j=k+1(n + 1 − j), otherwise. This concept

class is also related to a generalized version of the online scheduling problem [17]
where the flow times of the first k jobs are neglected.

k-Forest. Let C denote the set of k-forests in a graph G = (V,E), where F ⊂
E is a k-forest if |F | = k and F does not contain a cycle in G. It is known
that C is a bases family of a truncation of a graphic matroid, that is known to
be another matroid. The corresponding function is f(X) = min{k,max{|F | |
F ⊆ X is a forest}}.

2.2 Extreme Points of the Base Polyhedron

In this subsection, we will see the correspondence between the permutations of
[n] and the extreme points of the base polyhedron B(f).

Given a permutation σ = (i1, . . . , in) of [n] = {1, . . . , n}, the greedy algo-
rithm of [4] generates a point cσ ∈ R

n determined by

cσj = f({j′ ∈ [n] : ij′ ≤ ij})− f({j′ ∈ [n] : ij′ < ij}) for each j ∈ [n].

Then cσ is an extreme point of B(f). We will say that cσ is an extreme point
of B(f) generated by σ. Conversely, for each extreme point c of B(f), there is
a permutation that generates c.

2.3 Bregman Divergence

Let Φ : Γ → R be a strictly convex function defined on a closed convex
set Γ ⊆ R

n. The Bregman divergence ΔΦ with respect to Φ is defined as
ΔΦ(p, q) = Φ(p)−Φ(q)−∇Φ(q) ·(p−q). The function Φ is separable if there ex-
ists functions φi : Γi → R for i = 1, 2., . . . , n such that Γ = Γ1×Γ2×· · ·×Γn and
for any x = (x1, x2, . . . , xn) ∈ Γ , Φ(x) =

∑n
i=1 φi(xi). In particular, if all φi’s

are the same, then the function Φ is said to be uniformly separable. In this paper,
we will sometimes consider two particular uniformly separable convex functions,
the 2-norm function: ΦEUC(x) = 1

2‖x‖22 defined on R
n, and the unnormalized

negative entropy function: ΦURE(x) =
∑n

i=1 xi lnxi −
∑n

i=1 xi defined on R
n
>0.
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It is well known that these functions define the Euclidean distance and the un-
normalized relative entropy, respectively. That is, ΔEUC(x, z)

def
= ΔΦEUC(x, z) =

1
2

∑n
i=1(xi − zi)2, and ΔURE(x, z)

def
= ΔΦURE(x, z) =

∑n
i=1 xi ln xi

zi
+
∑n

i=1 zi −∑n
i=1 xi.

3 Algorithm

In this section, we propose an algorithm that predicts extreme points of the base
polyhedron B(f) and prove its regret bounds.

3.1 Main Structure

The main structure of the algorithm we use is shown in Algorithm 1. The algo-
rithm is Regularized Follow the Leader (RFTL) [8], which is a generalization of
Hedge or Online Gradient Decent(OGD, [19]) using Bregman divergence, com-
bined with our subroutines ProjectionΦ and Decomposition.

At each trial t, our version of RFTL runs Decomposition and get ct ∈ C
randomly so that E[ct] = xt. Then, RFTL updates xt to xt+ 1

2
. Finally, RFTL

computes the projection xt+1 of xt+ 1
2

onto the base polyhedron B(f) using the
procedure ProjectionΦ. Using RFTL itself is standard, but we need to design
efficient procedures for projection and decomposition.

Algorithm 1. RFTL with Projection and Decomposition

1. Let x1 be any point in B(f).
2. For t = 1, . . . , T

(a) Run Decomposition(xt) and get ct ∈ C randomly so that E[ct] = xt.
(b) Predict ct and incur a loss ct · �t.
(c) Update xt+ 1

2
as xt+ 1

2
= ∇Φ−1(∇Φ(xt)− η�t).

(d) Run ProjectionΦ(xt+ 1
2
) and get xt+1, the projection of xt+ 1

2
onto the base

polyhedron B(f). That is, xt+1 = arg infx∈B(f) ΔΦ(x,xt+ 1
2
).

The following theorem is known.

Theorem 1 ([6, 19, 8]). Let C be the set of extreme points in B(f).

1. For Φ = ΦEUC, the expected regret of RFTL is O(Deuc

√
nT ) for some η,

where Deuc = maxc,c′∈C ‖c− c′‖2.
2. For Φ = ΦURE, the expected regret of RFTL is O(

√
L∗Dure + Dure) for

some η and x1 ∈ B(f), where Dure = maxc∈C ΔΦURE(c,x1) and L∗ =

minc∈C
∑T

t=1 c · �t.

For particular combinatorial concepts, we summarize their regret bounds in
Table 1.
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Table 1. The regrets of combinatorial concepts obtained using our projection and
decomposition algorithms

problem Hedge OGD

Experts O(
√
L∗ lnn) O(

√
nT )

k-sets O(
√

L∗k ln(n/k) + k ln(n/k)) O(
√
knT )

Spanning Trees O(
√
L∗n lnn+ n lnn) O(n

√
T )

Permutahedron O(n
√
L∗ lnn+ n2 lnn) O(n2

√
T )

Truncated Perm. O(
√

L∗(n2 − k2) lnn+ (n2 − k2) lnn) O((n− k)
√

n(n+ k)T )

k-forest O(
√

L∗k ln(n/k) + k ln(n/k)) O(
√
knT )

To complete our analysis, we specify the procedures ProjectionΦ for separable
strictly convex function Φ and Decomposition, respectively, in the following sub-
sections. We will see that both of the two procedures are no harder than the sub-
modular function minimization problem. For a submodular function f : 2[n] → R

with f(∅) = 0, the submodular function minimization (SFM) is a problem of find-
ing a subset S ⊆ [n] with f(S) minimum. Many combinatorial SFM algorithms
are known (see [10]), and the fastest known strongly polynomial algorithm of [15]
runs in O(n6 + n5EO) time, where EO is the unit time to evaluate the value of
the submodular function. We will show that both of the procedures ProjectionΦ
and Decomposition can be implemented to run in O(n6 + n5EO) time.

3.2 Projection

For any given point z ∈ R
n, the procedure ProjectionΦ in Algorithm 1 computes

the projection of z onto the base polyhedron B(f). We propose an efficient
construction of this procedure. Formally, the projection problem is stated as
follows:

ProjectionΦ(z) = arg inf
x∈B(f)

ΔΦ(x, z)

sub. to:
∑
j∈S

xj ≤ f(S), ∀S ⊂ [n], and
n∑
j=1

xj = f([n]), (1)

where Φ(x) is separable. This convex optimization problem with exponentially
many constraints can be solved efficiently using the parametric submodular al-
gorithm of [14], which is a parametric extension of the SFM algorithm of [15].

Theorem 2 ([14]). There is an algorithm that solves problem (1) for separable
strictly convex functions Φ in time O(n6 + n5EO).

3.3 Decomposition

For any given point x in the base polyhedron B(f) ⊆ R
n, the procedure De-

composition in Algorithm 1 finds extreme points cσ
1

, . . . , cσ
K

in B(f) and

λ1, . . . , λK ∈ R>0 such that
∑K

i=1 λic
σi

= x and λ1 + · · ·+ λK = 1, where
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each cσ
i

is an extreme point of B(f) generated by a permutation σi of [n] via
the greedy algorithm of [4]. In other words, this procedure represents x as a
convex combination of extreme points of B(f). Carathéodory’s Theorem guar-
antees that x ∈ B(f) can be represented as a convex combination of at most n
extreme points of B(f).

To describe the procedure Decomposition, let us briefly review a common
framework of algorithms for SFM. For a submodular function f ′ : 2[n] → R with
f ′(∅) = 0, the result of [4] implies

min
S
{f ′(S) : S ⊆ [n]} = max

z
{

n∑
j=1

min{0, zj} : z ∈ B(f ′)}. (2)

In many combinatorial SFM algorithms, including Orlin’s algorithm ([15]), we
finally obtain a minimizer S∗ ⊆ [n] and a maximizer z∗ ∈ B(f ′) of (2). Moreover,
we obtain z∗ ∈ B(f ′) as a convex combination of at most n extreme points
of B(f ′). By the use of this fact, we can give an efficient construction of the
procedure Decomposition.

For a given point x ∈ B(f), the function fx : 2[n] → R defined by fx(S) =
f(S) −

∑
j∈S xj (S ⊆ [n]) is submodular and satisfies fx(∅) = 0. For each

permutation σ of [n], let cσ be extreme points in B(f) generated by σ, and let
cσx be extreme points in B(fx) generated by σ. Then it holds that cσx = cσ −x.
In view of the definition of the base polyhedron, we have that minS⊆[n] fx(S) = 0
and the n-dimensional zero vector 0n is in B(fx). Therefore, z = 0n is the unique
optimal solution to the right hand side of (2) with f ′ = fx.

Now we describe the procedure Decomposition. Initially, we apply some com-
binatorial SFM algorithm, e. g. Orlin’s algorithm ([15]), to the submodular func-
tion fx. Then we obtain permutations σ1, . . . , σK of [n] and λ1, . . . , λK ∈ R>0

such that
∑K

i=1 λic
σi

x = 0, λ1 + · · · + λK = 1, and K ≤ n. As for the function
f , these permutations σ1, . . . , σK and positive coefficients λ1, . . . , λK generate
another point

∑K
i=1 λic

σi

. For this point, we obtain

K∑
i=1

λic
σi

=
K∑
i=1

λi(c
σi

x + x) =
K∑
i=1

λic
σi

x +
K∑
i=1

λix = x.

Thus we have a required representation of x. This gives the following.

Theorem 3. For any x ∈ B(f), there is an algorithm that gives a convex
combination representation of x using at most n extreme points of B(f) in
O(n6 + n5EO) time.

4 Algorithm for Cardinality-Based Submodular Functions

In this section, we propose more efficient projection and decomposition algo-
rithms when the underlying submodular function f is cardinality-based, i.e.,
f(S) = g(|S|) for some g : N → R. For projection, however, we only consider
the Euclidean distance and the unnormalized relative entropy, rather than any
Bregman divergence ∇Φ for a separable function Φ as in the previous section.
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A cardinality-based submodular function f has the following nice property:
For any point x ∈ B(f) and any i, j ∈ [n], the vector x′ obtained by exchanging
xi and xj in x is also contained in B(f). A submodular function having this
property is said to be exchangeable.

The following lemma says that for any exchangeable submodular function f ,
the projection onto B(f) preserves the order of indices of vector with respect to
the inequality relation.

Lemma 1. Let x∗ be the projection of z in (1) under the Bregman divergence
∇Φ for a strictly convex and uniformly separable function Φ. Assume that the
submodular function f is exchangeable and z1 ≥ · · · ≥ zn. Then, it holds that
x∗1 ≥ x∗2 ≥ · · · ≥ x∗n.

Proof. Suppose on the contrary that x∗i < x
∗
j for some i < j. Let x̂ be the point

obtained by exchanging x∗i and x∗j in x∗. Then, by definition, we have x̂ ∈ B(f).
Furthermore, observe that

ΔΦ(x∗, z)−ΔΦ(x̂, z) =Φ(x∗)− Φ(x̂)−∇Φ(z) · (x∗ − x̂)

=φ(x∗i ) + φ(x∗j )− φ(x∗i )− φ(x∗j )

− (φ′(zi)(x∗i − x∗j )− φ′(zj)(x∗j − x∗i ))

=(x∗j − x∗i ) · (φ′(zi)− φ′(zj)) ≥ 0,

which contradicts the assumption that x∗ is the projection. ()

In the following, we assume that z1 ≥ · · · ≥ zn without loss of generality (this
can be achieved by sorting). Lemma 1 implies that for any S ⊆ [n],

∑
i∈S x

∗
i ≤∑|S|

j=1 x
∗
j , which means that, if the right hand side is bounded by f(S) = g(|S|),

the left hand side is also bounded by g(|S|). Therefore, the projection problem
(1) is equivalent to the following problem with only n constraints:

min
x
ΔΦ(x, z)

sub.to:

j∑
i=1

xi ≤ g(j), (for j = 1, . . . , n− 1), and

n∑
i=1

xi = g(n). (3)

Now we propose an efficient implementation of ProjectionΦ that solves the
problem (3).

4.1 Projection under Euclidean Distance

First we give an algorithm which computes ProjectionΦEUC under Euclidean
distance. We show the algorithm in Algorithm 2. Then we prove the following.
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Algorithm 2. Projection under Euclidean distance

Input: z ∈ R
n satisfying that z1 ≥ z2 ≥ · · · ≥ zn.

Output: projection x of z onto B(f).

1. Let i0 = 0.
2. For t = 1, . . . ,

(a) Let Ct(i) =
g(i)−g(it−1)−

∑i
j=it−1+1 zj

i−it−1
, for i = 1, . . . , n

and it = argmini:it−1+1≤i≤n Ct(i),
if there are multiple minimizers, choose the largest one as it.

(b) Set xi = zi + Ct(it), for it−1 + 1 ≤ i ≤ it.
(c) If it = n, then break.

3. Output x.

Theorem 4. (i) Given z, Algorithm 2 outputs the projection of x onto the base
polyhedron B(f). (ii) The time complexity of Algorithm 2 is O(n2).

Proof. By KKT condition(see, e.g., [1]), x∗ is the solution of the problem (3) if
and only if there exists α1, . . . , αn−1 and η such that

x∗i = zi −
i∑

j=1

αj − η, (for i = 1, . . . , n− 1), and x∗n = zn − η,

n∑
i=1

x∗i = g(n),

αi(

i∑
j=1

x∗j − g(i)) = 0, αi ≥ 0,

i∑
j=1

x∗j ≤ g(i) (for i = 1, . . . , n− 1). (4)

Now we show that there indeed exists α1, . . . , αn−1 such that the output x of
ProjectionΦEUC(z) satisfies the optimality conditions (4), which suffices to prove
the first statement. To do so, first we show that Ct−1(it−1) ≤ Ct(it) for each
iteration t. By the definition of Ct−1(it−1), we have Ct−1(it−1) ≤ Ct−1(it).
Observe that

Ct−1(it) =
g(it)− g(it−2)−

∑it
j=it−2+1 zj

it − it−2

=
g(it)− g(it−1)−

∑it
j=it−1+1 zj + g(it−1)− g(it−2)−

∑it−1

j=it−2+1 zj

(it − it−1) + (it−1 − it−2)

=
(it − it−1)(Ct(it)) + (it−1 − it−2)(Ct−1(it−1))

(it − it−1) + (it−1 − it−2)
.
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Since Ct−1(it−1) ≤ Ct−1(it),

(it − it−1)(C
t−1(it−1))

(it − it−1) + (it−1 − it−2)
≤ (it − it−1)(Ct(it))

(it − it−1) + (it−1 − it−2)
.

By simplifying this, we get Ct−1(it−1) ≤ Ct(it), as desired.
Then we determine each αit so that −αit + Ct+1(it+1) = Ct(it), i.e., αit =

Ct+1(it+1)− Ct(it) and fix η to be CT (n), where T satisfies iT = n. Note that
since Ct(it) ≤ Ct+1(it+1), each αit is strictly positive. For other i /∈ {i1, . . . , iT },
we set αi = 0. Then, each xit can be expressed as

xit = zi+C
t(it) = zi−αit−αit+1−· · ·−αiT −η = zi−αit−αit+1−· · ·−αin−1−η.

Similarity, for other i such that it−1 < i < it, we have

xi = zi+C
t(it) = zi−αit−αit+1−· · ·−αn−1−η = zi−αi−αi+1−· · ·−αn−1−η.

To check if the specified αis and η satisfies the optimality conditions (4), observe
that (i) for each it,

it∑
j=1

xj =

it−1∑
j=1

xj +

it∑
j=it−1+1

(zj + Ct(it)) = g(it−1) + (g(it)− g(it−1)) = g(it)

and αit > 0, and (ii) for each i such that it−1 < i < it,

i∑
j=1

xj =

it−1∑
j=1

xj +

i∑
j=it−1+1

(zj + Ct(it)) ≤
it−1∑
j=1

xj +

i∑
j=it−1+1

(zj + Ct(i))

= g(it−1) + (g(i)− g(it−1)) = g(i)

and αi = 0.
Finally, the algorithm terminates in time O(n2) since the number of iteration

is at most n and each iteration takes O(n) time, which proves the second state-
ment of the lemma. ()

4.2 Projection under Unnormalized Relative Entropy

Next we propose an algorithm for ProjectionΦURE . We construct the projection
algorithm by generalizing the one used for permutahedron [17] . Note that the
algorithm is also a generalization of the capping algorithm in [16]. The algo-
rithm shown in Algorithm 3 outputs the solution which satisfies the optimality
conditions, and following theorem holds.

Theorem 5. (i) Given z, the Algorithm 3 outputs the projection of x onto the
base polyhedron B(f). (ii) The time complexity of Algorithm 3 is O(n2).

The proof is also a generalization of the proof in [17] and omitted due to the
space constraints.
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Algorithm 3. Projection under unnormalized relative entropy

Input: z ∈ R
n satisfying that z1 ≥ z2 ≥ · · · ≥ zn.

Output: projection x of z onto B(f).

1. Let i0 = 0.
2. For t = 1, . . . ,

(a) Let Ct(i) =
g(i)−g(it−1)∑
i
j=it−1+1 zj

, for i = 1, . . . , n

and it = argmini:it−1+1≤i≤n Ct(i),
if there are multiple minimizers, choose the largest one as it.

(b) Set xi = ziC
t(it), for it−1 + 1 ≤ i ≤ it.

(c) If it = n, then break.
3. Output x.

4.3 Decomposition

In this subsection, we describe how to represent a point x ∈ B(f) by a con-
vex combination of extreme points of B(f). More precisely, we are concerned
with the following randomized rounding problem; given a point x ∈ B(f),

output an extreme point X of B(f) with a probability such that E[X ]
def
=∑k

j=1 Pr
[
X = cj

]
· cj = x for an appropriate k > 0.

As a preliminary step, we explain the following Propositions 6, 7, and 8, which
are well-known facts (see e.g., [7]). Let a ∈ R>0 be a constant satisfying a >

g(n−1)−g(n), and we define f̃ : 2[n] → R by f̃(S)
def
= f(S)+a|S| for any S ⊆ [n].

Notice that f̃ is clearly a cardinality based function; let g̃(z)
def
= g(z) + a· z then

f̃(S) = g̃(|S|) holds.

Proposition 6. The function f̃ is cardinality based submodular and monotone
increasing, i.e., g̃(i) < g̃(i + 1) for each i ∈ [n− 1].

Note that f̃(∅) = 0, and f̃(S) > 0 hold for any S (∅ ⊂ S ⊆ [n]).

Proposition 7. A point x is in B(f) if and only if x̃
def
= x + a1 is in B(f̃).

A point c is an extreme point of B(f) if and only if c̃
def
= c + a1 is an extreme

point of B(f̃).

Proposition 8. Suppose x ∈ B(f) satisfies x =
∑k

j=1 λjc
j for λj > 0 (j ∈ [k])

satisfying
∑k

j=1 λj = 1 and cj ∈ B(f) (j ∈ [k]). Then, x̃
def
= x + a1 ∈ B(f̃)

satisfies x̃ =
∑k

j=1 λj c̃
j where c̃j

def
= cj + a1 ∈ B(f̃).

Now, let f̃ : 2[n] → R≥0 be a cardinality based submodular function which is
monotone increasing, then we consider the randomized rounding problem; given
a point x̃ ∈ B(f̃), output an extreme point X of B(f̃) with a probability such

that E[X ]
def
=
∑k

j=1 Pr
[
X = c̃j

]
· c̃j = x̃ for an appropriate k > 0. By Proposi-

tion 8, it is easily transformed into the case from a general cardinality based sub-
modular function. Without loss of generality, we may assume that x̃1 ≥ · · · ≥ x̃n
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in the following. We remark that our randomized rounding algorithm is a gen-
eralization of [17] for the permutahedron, in a sense.

To begin with, we define special points in B(f̃), which we call partially av-
eraged points. Suppose q̃ ∈ B(f̃) satisfies that q̃1 ≥ q̃2 ≥ · · · ≥ q̃n, then, q̃ is

a partially averaged point if
∑i

j=1 q̃j = g̃(i) holds for each i ∈ [n] satisfying
q̃i > q̃i+1. Notice that if q̃i > q̃i+1 = · · · = q̃j > q̃j+1 hold for i, j ∈ [n] then
qi+1 = · · · = qj = (g̃(j) − g̃(i))/(j − i). This means that the partially averaged
point is uniquely determined only by a sequence of equalities(=)/inequalities(>).
We simply say “a partially averaged point of x̃” (x̃ ∈ B(f̃)) as a partially av-
eraged point determined by a sequence of equalities/inequalities derived from
x̃1 ≥ x̃2 ≥ · · · ≥ x̃n of x̃.

Proposition 9. Suppose q̃ ∈ B(f̃) is a partially averaged point satisfying q̃1 ≥
q̃2 ≥ · · · ≥ q̃n. Let Π

def
= {σ ∈ Sym(n) | q̃σ(1) ≥ q̃σ(2) ≥ · · · ≥ q̃σ(n)}, and let

c̃σ = (c̃σ1 , . . . , c̃
σ
n ) for σ ∈ Π denote the extreme point defined by hyperplanes∑i

j=1 c̃
σ
σ(j) = g̃(i) for all i ∈ [n]. Note that σ �= σ′ does not imply c̃σ �= c̃σ

′
in

general. Then, q̃ = 1
|Π|
∑

σ∈Π c̃σ.

Proof. Suppose i ∈ [n− 1] satisfies q̃i > q̃i+1. Since any σ ∈ Π satisfies q̃σ(1) ≥
q̃σ(2) ≥ · · · ≥ q̃σ(n), we see that {σ(1), . . . , σ(i)} = [i] holds for any σ ∈ Π . This

implies that
∑i

j=1 c̃
σ
j =

∑i
j=1 c̃

σ
σ(j) = g̃(i). Since q̃ is a partially averaged point,

remember that
∑i

j=1 q̃j = g̃(i) holds, too.
Next, suppose q̃i > q̃i+1 = · · · = q̃j > q̃j+1 hold for i, j ∈ [n]. From the above

arguments, we see that
∑j

k=i+1 c̃
σ
k = g̃(j) − g̃(i) holds for any σ ∈ Π . For an

arbitrary σ ∈ Π , let σ′ ∈ Sym(n) satisfy σ′(k) = σ(k) for each k (k ≤ i or

k > j), then σ′ is also in Π . Thus, let r̃
def
= 1

|Π|
∑

σ∈Π c̃σ for convenience, then

we see that r̃i+1 = · · · = r̃j = (g̃(j) − g̃(i))/(j − i) hold. Since q̃ is a partially
averaged point, remember that q̃i+1 = · · · = q̃j = (g̃(j) − g̃(i))/(j − i) hold,
too. ()

Proposition 9 and its proof immediately suggest an algorithm for randomized
rounding of a partially averaged point; generate σ ∈ Π uniformly at random,
and output c̃σ. It’s running time is O(n), clearly.

Now, we explain our Algorithm 4, which provides a convex combination of
partially average points representing x̃ ∈ B(f̃), i.e., given x̃ ∈ B(f̃), find par-

tially average points q̃1, . . . , q̃K and λ1, . . . , λK ∈ R>0 such that
∑K

i=1 λiq̃
i = x̃

and
∑K

i=1 λi = 1. Once we obtain such a convex combination, it is clear to obtain
an algorithm for randomized rounding into partially average points. Combining
the above arguments concerning Proposition 9, we obtain a desired algorithm.
We will prove the following lemma on Algorithm 4.

Theorem 10. Algorithm 4 provides a convex combination of at most n partially
averaged points representing an arbitrarily given x̃ ∈ B(f̃). Its running time is
O(n2).

To show Theorem 10, we show the following lemmas.
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Algorithm 4. Decomposition by partially average points

Input: x̃ ∈ B(f̃) satisfying that x̃1 ≥ x̃2 ≥ · · · ≥ x̃n.
Output: Partially average points q̃1, . . . , q̃K and λ1, . . . , λK ∈ R>0 s.t.

∑K
i=1 λiq̃

i =

x̃,
∑K

i=1 λi = 1.

1. Let x̃1 = x̃ and λ = 1.
2. For t = 1, . . . ,

(a) Find a partially averaged point q̃t for x̃t.

(b) Let λt = min

{
λ, min

i∈[n−1]

{
x̃t
i−x̃t

i+1

q̃t
i
−q̃t

i+1
| q̃ti �= q̃ti+1

}}
.

(c) Let x̃t+1 = x̃t − λtq̃
t and let λ = λ− λt.

(d) If λ = 1 then let K = t and break.
3. Output q̃1, . . . q̃K and λ1, . . . , λK .

Lemma 2. At any iteration t in Algorithm 4, x̃t satisfies that x̃ti ≥ x̃ti+1 for
any i ∈ [n− 1].

Proof. We give an inductive proof with respect to t. In case of t = 1, it is clear.
In case of t > 1, we assume x̃t−1

i ≥ x̃t−1
i+1 holds for any i ∈ [n−1]. If x̃t−1

i = x̃t−1
i+1 ,

then q̃t−1
i = q̃t−1

i+1 holds, from the definition of q̃t−1. Thus

x̃ti = x̃t−1
i − λt−1q̃

t−1
i = x̃t−1

i+1 − λt−1q̃
t−1
i+1 = x̃ti+1

and we obtain the claim. If x̃t−1
i > x̃t−1

i+1 , then q̃t−1
i > q̃t−1

i+1 holds, and

x̃t+1
i − x̃t+1

i+1 = x̃ti − x̃ti+1 − λt(q̃ti − q̃ti+1) = (q̃ti − q̃ti+1)

(
x̃ti − x̃ti+1

q̃ti − q̃ti+1

− λt
)
≥ 0

where the last inequality comes from the definition of λt, followed by λt ≤
min

i∈[n−1]

{(
x̃ti+1 − x̃ti

)
/
(
q̃ti+1 − q̃ti

)
| q̃ti+1 �= q̃ti

}
. ()

Lemma 3. In Algorithm 4, x̃K+1 (= x̃K − λK q̃K) = 0 holds.

Proof. Without loss of generality, we may assume that x̃1 ≥ x̃2 ≥ · · · ≥ x̃n, for
simplicity of notations. First we show x̃K+1 ≥ 0. Since Lemma 2, if there exists
j ∈ [n] satisfying that x̃K+1

j < 0, then x̃K+1
n < 0 holds. Thus it is enough to show

x̃K+1
n ≥ 0. Let i∗ = min{j ∈ [n] | x̃Kj = x̃Kn }. Then we have x̃Ki∗ = x̃Ki∗+1 = · · · =

x̃Kn and q̃Ki∗ = q̃Ki∗+1 = · · · = q̃Kn . Hence, we get x̃K+1
i∗ = x̃K+1

i∗+1 = · · · = x̃K+1
n . In

case of i∗ ≥ 2, x̃ti∗−1 > x̃
t
i∗ holds for any t ∈ [K], meaning that q̃ti∗−1 > q̃

t
i∗ holds

for any t ∈ [K]. Thus we can see that
∑n

j=i∗ q̃
t
j = g̃(n)− g̃(i∗ − 1) holds for any

t ∈ [K], from the definition of q̃t. Then we obtain

n∑
j=i∗

K∑
t=1

λtq̃
t
j =

K∑
t=1

λt (g̃(n)− g̃(i∗ − 1)) = g̃(n)− g̃(i∗ − 1) ≤
n∑

j=i∗
x̃j
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where the last inequality is due to constraints of B(f̃)
∑i∗−1

j=1 x̃j ≤ g̃(i∗− 1) and∑n
j=1 x̃j = g̃(n). Thus we obtain that

∑n
j=i∗ x̃

K+1
j =

∑n
j=i∗

(
x̃j −

∑K
t=1 λtq̃

t
j

)
≥

0. As discussed above, x̃K+1
i∗ = x̃K+1

i∗+1 = · · · = x̃K+1
n holds, and we obtain

x̃T+1
n ≥ 0. In case of i∗ = 1, the proof is done in a similar way.

Now we show x̃K+1 = 0. Since x̃ ∈ B(f̃),
∑n

j=1 x̃
K+1
j = g̃(n) holds. In a

similar way as the proof of x̃K+1 ≥ 0,

n∑
j=1

K∑
t=1

λtq̃
t
j =

K∑
t=1

λt

n∑
j=1

q̃tj =

K∑
t=1

λtg̃(n) = g̃(n).

Since xK+1 ≥ 0, x̃K+1 = x̃−
∑K

t=1 λtq̃
t = 0. ()

Lemma 4. The number of iterations K is at most n.

Proof. From the definition of λt, there is at least one i ∈ [n] satisfying that
x̃ti > x̃

t
i+1 and x̃t+1

i = x̃t+1
i+1 . If x̃ti = x̃ti+1, then x̃t+1

i = x̃t+1
i+1 as discussed in the

proof of Lemma 2. Now the claim is clear. ()

Proof of Theorem 10. Since Lemma 3, it is clear that the output
∑K

t=0 λtq̃
t

by Algorithm 4 is equal to an arbitrarily given x̃ ∈ B(f̃). It is not difficult to
see that every lines in Algorithm 4 is done in O(n). Hence, the running time of
Algorithm 4 is O(n2) by Lemma 4. ()

Note that, by modifying Algorithm 4, we can design an algorithm for random-
ized rounding of x ∈ B(f) using only O(n) space, with the same time complexity
ofO(n2). We can also improve the algorithm with a time complexity ofO(n log n)
using a heap, with O(n) space.

5 Conclusion

In this paper, we consider an prediction problem over the base polyhedron de-
fined by a submodular function and propose efficient prediction algorithms. An
open problem is to derive a tight lower bound of the regret of our problem.

Acknowledgements. We thank anonymous reviewers for their helpful com-
ments. This work is supported in part by JSPS Grand-in-Aid for Young Sci-
entists (B) 23700178, JSPS Grand-in-Aid for Scientific Research (B) 23300003,
and Aihara Project, the FIRST program from JSPS.

References

[1] Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press
(2004)

[2] Cesa-Bianchi, N., Lugosi, G.: Combinatorial Bandits. In: Proceedings of the 22nd
Conference on Learning Theory (COLT 2009) (2009)



274 D. Suehiro et al.

[3] Chopra, S.: On the spanning tree polyhedron. Operations Research Letters 8(1),
25–29 (1989)

[4] Edmonds, J.: Submodular functions, matroids, and certain polyhedra. In: Combi-
natorial Structures and Their Applications, pp. 69–87 (1970)

[5] Edmonds, J.: Matroids and the greedy algorithm. Mathematical Program-
ming 1(1), 127–136 (1971)

[6] Freund, Y., Schapire, R.E.: A Decision-Theoretic Generalization of On-Line Learn-
ing and an Application to Boosting. Journal of Computer and System Sci-
ences 55(1), 119–139 (1997)

[7] Fujishige, S.: Submodular functions and optimization, 2nd edn. Elsevier Science
(2005)

[8] Hazan, E.: The convex optimization approach to regret minimization. In: Sra, S.,
Nowozin, S., Wright, S.J. (eds.) Optimization for Machine Learning, ch. 10, pp.
287–304. MIT Press (2011)

[9] Helmbold, D.P., Warmuth, M.K.: Learning Permutations with Exponential
Weights. Journal of Machine Learning Research 10, 1705–1736 (2009)

[10] Iwata, S.: Submodular function minimization. Mathematical Programming, Ser.
B 112, 45–64 (2008)

[11] Kakade, S., Kalai, A.T., Ligett, L.: Playing games with approximation algorithms.
SIAM Journal on Computing 39(3), 1018–1106 (2009)

[12] Kalai, A., Vempala, S.: Efficient algorithms for online decision problems. Journal
of Computer and System Sciences 71(3), 291–307 (2005)

[13] Koolen,W.M.,Warmuth,M.K., Kivinen, J.: Hedging Structured Concepts. In: Pro-
ceedings of the 23rd Conference on Learning Theory (COLT 2010), pp. 93–105
(2010)

[14] Nagano, K.: A faster parametric submodular function minimization algorithm
and applications. Technical Report METR 2007–43, Department of Mathematical
Informatics, Graduate School of Information Science and Technology, University
of Tokyo (2007)

[15] Orlin, J.B.: A Faster Strongly Polynomial Time Algorithm for Submodular Func-
tion Minimization. In: Fischetti, M., Williamson, D.P. (eds.) IPCO 2007. LNCS,
vol. 4513, pp. 240–251. Springer, Heidelberg (2007)

[16] Warmuth, M.K., Kuzmin, D.: Randomized Online PCA Algorithms with Regret
Bounds that are Logarithmic in the Dimension. Journal of Machine Learning
Research 9, 2287–2320 (2008)

[17] Yasutake, S., Hatano, K., Kijima, S., Takimoto, E., Takeda, M.: Online Linear Op-
timization over Permutations. In: Asano, T., Nakano, S.-I., Okamoto, Y., Watan-
abe, O. (eds.) ISAAC 2011. LNCS, vol. 7074, pp. 534–543. Springer, Heidelberg
(2011)

[18] Ziegler, G.M.: Lectures on Polytopes. Graduate Texts in Mathematics, vol. 152.
Springer (1995)

[19] Zinkevich, M.: Online convex programming and generalized infinitesimal gradient
ascent. In: Proceedings of the Twentieth International Conference on Machine
Learning (ICML 2003), pp. 928–936 (2003)



Lower Bounds on Individual Sequence Regret�

Eyal Gofer and Yishay Mansour

Tel Aviv University,
Tel Aviv, Israel

{eyalgofe,mansour}@post.tau.ac.il

Abstract. In this work, we lower bound the individual sequence any-
time regret of a large family of online algorithms. This bound depends
on the quadratic variation of the sequence, QT , and the learning rate.
Nevertheless, we show that any learning rate that guarantees a regret
upper bound of O(

√
QT ) necessarily implies an Ω(

√
QT ) anytime regret

on any sequence with quadratic variation QT .
The algorithms we consider are linear forecasters whose weight vector

at time t+1 is the gradient of a concave potential function of cumulative
losses at time t. We show that these algorithms include all linear Reg-
ularized Follow the Leader algorithms. We prove our result for the case
of potentials with negative definite Hessians, and potentials for the best
expert setting satisfying some natural regularity conditions. In the best
expert setting, we give our result in terms of the translation-invariant
relative quadratic variation. We apply our lower bounds to Randomized
Weighted Majority and to linear cost Online Gradient Descent.

We show that bounds on anytime regret imply a lower bound on the
price of “at the money” call options in an arbitrage-free market. Given
a lower bound Q on the quadratic variation of a stock price, we give
an Ω(

√
Q) lower bound on the option price, for Q < 0.5. This lower

bound has the same asymptotic behavior as the Black-Scholes pricing
and improves a previous Ω(Q) result given in [4].

1 Introduction

For any sequence of losses, it is trivial to tailor an algorithm that has no regret on
that particular sequence. The challenge and the great success of regret minimiza-
tion algorithms lie in achieving low regret for every sequence. This bound may
still depend on a measure of sequence smoothness, such as the quadratic variation
or variance. The optimality of such regret upper bounds may be demonstrated
by proving the existence of some “difficult” loss sequences. Their existence may
be implied, for example, by stochastically generating sequences and proving a
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lower bound on the expected regret of any algorithm (see, e.g., [2]). This type
of argument leaves open the possibility that the difficult sequences are, in some
way, atypical or irrelevant to actual user needs. In this work we address this
question by proving lower bounds on the regret of any individual sequence, in
terms of its quadratic variation.

We first consider the related task of characterizing algorithms that have indi-
vidual sequence non-negative regret. We focus our attention on linear forecast-
ers that determine their next weight vector as a function of current cumulative
losses. More specifically, if Lt ∈ R

N is the cumulative loss vector at time t, and
xt+1 ∈ K is the next weight vector, then xt+1 = g(Lt) for some continuous g.
The algorithm then incurs a loss of xt+1 · lt+1, where lt is the loss vector at
time t. We show that such algorithms have individual sequence non-negative re-
gret if and only if g is the gradient of a concave potential function. We then show
that this characteristic is shared by all linear cost Regularized Follow the Leader
regret minimization algorithms, which include Randomized Weighted Majority
(RWM) and linear cost Online Gradient Descent (OGD).

As our main result, we prove a trade-off between the upper bound on an algo-
rithm’s regret and a lower bound on its anytime regret, namely, its maximal regret
for any prefix of the loss sequence. In particular, if the algorithm has a regret up-
per bound of O(

√
Q) for any sequence with quadratic variation Q, then it must

have an Ω(
√
Q) anytime regret on any sequence with quadratic variation Θ(Q).

We prove our result for two separate classes of continuously twice-differen-
tiable potentials. One class has negative definite Hessians in a neighborhood of
L = 0, and includes OGD. The other comprises potentials for the best expert
setting whose Hessians in a neighborhood of L = 0 have positive off-diagonal
entries; in other words, such potentials increase the weights of experts as their
performance relatively improves, which is a natural property of regret mini-
mization algorithms. For the first class, we use the usual Euclidean quadratic
variation, or

∑T
t=1 ‖lt‖22. For the best expert setting, however, we use the more

appropriate relative quadratic variation,
∑T

t=1(maxi{li,t} −mini{li,t})2.
Our proof is comprised of several steps. We add a learning rate η to any

potential Φ by defining a new potential Φη(L) = (1/η)Φ(ηL). We give an exact
expression for the regret using the Taylor expansion of the potential, and use it
to prove an Ω(min{1/η, ηQ}) lower bound on the anytime regret of any sequence
with quadratic variation Q. In addition, we construct two specific loss sequences
with variation Q, one with an Ω(1/η) regret, and the other with Ω(ηQ) regret.
Thus, we must have η = Θ(1/

√
Q) to ensure a regret ofO(

√
Q) for every sequence

with variationQ, and our lower bound on the anytime regret becomesΩ(
√
Q). We

demonstrate our result on RWM, as an example of a best expert potential, and on
linear cost OGD, as an example of a potential with a negative definite Hessian.

We apply our bounds to the financial problem of pricing at the money call
options.1 In the financial setting, an online best expert algorithm may be applied

1 A call option is a financial instrument that pays its holder at time T the sum of
max{ST − K, 0}, where St is the price of a given stock at time t, and K is a set
price. The option is termed “at the money” if K = S0.
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to decide how to allocate wealth among a set of assets. In the case of call options,
the assets are stock and cash. As observed in [4], an upper bound on the ratio
between the return of an online algorithm and the return of the best asset implies
a lower bound on call option prices in an arbitrage-free market.2 We apply our
anytime regret lower bounds to this problem by modifying RWM to “lock in”
transient regret. (As suggested in [4], regret at any time can be made permanent
by moving all weight to the current best expert.) We then present and utilize a
general result bounding an algorithm’s return in terms of its loss and the relative
quadratic variation. We obtain a price lower bound of exp(0.1

√
Q)− 1 ≈ 0.1

√
Q

for Q < 0.5, where Q is the assumed quadratic variation of the stock’s log price
ratios. This bound has the same asymptotic behavior as the Black-Scholes price,
which is approximately

√
Q/
√

2π ≈ 0.4
√
Q, and improves on a previous result

by [4], who gave a Q/10 lower bound for Q < 1.

Related Work. There are numerous results providing worst case upper bounds
for regret minimization algorithms and showing their optimality (see [2]). In
the best expert setting, RWM has been shown to have an optimal regret of
O(
√
T logN). In the online convex optimization paradigm ([14]), upper bounds

of O(
√
T ) have been shown, along with Ω(

√
T ) lower bounds for linear cost

functions ([8]). In both cases, regret lower bounds are proved by invoking a
stochastic adversary and lower bounding the expected regret. Upper bounds
based on various notions of quadratic variation and variance are given in [3] for
the expert setting, and in [10] for linear cost online convex optimization and the
expert setting in particular.

A trade-off result is given in [5], where it is shown that a best expert algorithm
with O(

√
T ) regret must have a worst case Ω(

√
T ) regret to any fixed average

of experts. To the best of our knowledge, there are no results that lower bound
the regret on loss sequences in terms of their individual quadratic variation.

Outline. The outline of the paper is as follows. In Section 2 we provide notation
and definitions. Section 3 characterizes algorithms with non-negative individual
sequence regret, proves they include linear cost RFTL, and provides basic regret
lower bounds. Section 4 presents our main result on the trade-off between upper
bounds on regret and lower bounds on individual sequence anytime regret. In
Section 5 we apply our bounds to linear cost OGD and to RWM. In Section 6
we show how our results can be used to lower bound the price of at the money
call options. Due to space limitations, some proofs are omitted. (See [6] for a full
version of this paper.)

2 Preliminaries

2.1 Regret Minimization

In the best expert setting, there are N available experts, and at each time step
1 ≤ t ≤ T , an online algorithm A selects a distribution pt over the N experts.

2 In an arbitrage-free market, no algorithm trading in financial assets can guarantee
profit without any risk of losing money.
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After the choice is made, an adversary selects a loss vector lt = (l1,t, . . . , lN,t) ∈
R
N , and the algorithm experiences a loss of lA,t = pt · lt. We denote Li,t =∑t
τ=1 li,τ for the cumulative loss of expert i at time t, Lt = (L1,t, . . . , LN,t), and

LA,t =
∑t

τ=1 lA,τ for the cumulative loss of A at time t. The regret of A at time
T is RA,T = LA,T − minj{Lj,T }. The aim of a regret minimization algorithm
is to achieve small regret regardless of the loss vectors chosen by the adversary.
The anytime regret of A is the maximal regret over time, namely, maxt{RA,t}.
We will sometimes use the notation m(t) = arg mini{Li,t}, where we take the
smallest such index in case of a tie. Similarly, we denote M(t) for the expert
with the maximal loss at time t. We denote also δ(v) = maxi{vi}−mini{vi} for
any v ∈ R

N , so δ(Lt) = LM(t),t − Lm(t),t.
The best expert setting is a special case of the more general setting of linear

forecasting. In this setting, at time t the algorithm chooses a weight vector xt ∈
R
N , and incurs a loss of xt · lt. In this paper we assume that the weight vectors

are chosen from a compact and convex set K. The regret of a linear forecaster
A is then defined as RA,T = LA,T −minu∈K{u ·LT }. The best expert setting is
simply the case where K = ΔN , the probability simplex over N elements.

Quadratic Variation. We define the quadratic variation of the loss sequence
l1, . . . , lT asQT =

∑T
t=1 ‖lt‖22. For the best expert setting, we will use the slightly

different notion of relative quadratic variation, defined as qT =
∑T

t=1 δ(lt)
2. We

denote Q for a known lower bound on QT and q for a known lower bound on qT .

2.2 Convex Functions

We mention here some basic facts about convex and concave functions that we
will need. For more on convex analysis, see [13], [1], and [12], among others.

We will discuss functions defined on R
N . A function f : C → R is convex, if

C is a convex set and if for every λ ∈ [0, 1] and x,y ∈ C, f(λx + (1 − λ)y) ≤
λf(x) + (1 − λ)f(y). f is concave if −f is convex. f is strictly convex if the
inequality is strict for x �= y and λ ∈ (0, 1). f is strongly convex with parameter
α > 0, if for every x,y ∈ C and λ ∈ [0, 1], f(λx + (1 − λ)y) ≤ λf(x) + (1 −
λ)f(y) − (α/2)λ(1 − λ)‖x − y‖22. If f is differentiable on a convex set C, f is
convex iff for every x,y ∈ C, ∇f(y) · (y − x) ≥ f(y) − f(x) ≥ ∇f(x) · (y − x);
f is strictly convex iff the above inequalities are strict for x �= y. If f is twice
differentiable, then it is convex iff its Hessian is positive semi-definite: for every
x ∈ C, ∇2Φ(x) � 0. The convex conjugate of f (defined on domf) is the function
f∗(y) = supx∈domf{x · y − f(x)}, which is convex, and its effective domain is
domf∗ = {y : f∗(y) <∞}.

2.3 Seminorms

A seminorm on R
N is a function ‖ · ‖ : RN → R with the following properties:

– Positive homogeneity: for every a ∈ R, x ∈ R
N , ‖ax‖ = |a|‖x‖.

– Triangle inequality: for every x, x′ ∈ R
N , ‖x + x′‖ ≤ ‖x‖+ ‖x′‖.
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Clearly, every norm is a seminorm. A seminorm satisfies ‖x‖ ≥ 0 for every x,
and ‖0‖ = 0. However, unlike a norm, ‖x‖ = 0 does not imply x = 0. We will not
deal with the trivial all-zero seminorm. Thus, there always exists a vector with
non-zero seminorm, and by homogeneity, there exists a vector with seminorm a
for any a ∈ R

+.

2.4 Miscellaneous Notation

For x,y ∈ R
N , we denote [x,y] for the line segment between x and y, namely,

{ax + (1 − a)y : 0 ≤ a ≤ 1}. We use the notation conv(A) for the convex

hull of a set A ⊆ R
N , that is, conv(A) = {

∑k
i=1 λixi : xi ∈ A, λi ≥ 0, i =

1, . . . , k,
∑k

i=1 λi = 1}.

3 Non-negative Individual Sequence Regret

Our ultimate goal is to prove strictly positive individual sequence regret lower
bounds for a variety of algorithms. In this section, we will characterize algorithms
for which this goal is achievable, and prove some basic regret lower bounds. This
will be done by considering the larger family of algorithms that have non-negative
regret for any loss sequence. This family, it turns out, can be characterized
exactly, and includes the important class of linear cost Regularized Follow the
Leader algorithms.

We focus on linear forecasters whose vector at time t is determined as xt =
g(Lt−1), for 1 ≤ t ≤ T , where g : R

N → K ⊆ R
N is continuous and K is

compact and convex. For such algorithms we can write LA,T =
∑T

t=1 g(Lt−1) ·
(Lt − Lt−1).

A non-negative-regret algorithm satisfies that LA,T ≥ minu∈K{u · (LT −L0)}
for every L0, . . . ,LT ∈ R

N . We point out that we allow both positive and nega-
tive losses. Synonymously, we will also say that g has non-negative regret. Note
that if L0 = LT (a closed cumulative loss path), then for any u ∈ K, it holds

that u · (LT − L0) = 0, and non-negative regret implies that
∑T

t=1 g(Lt−1) ·
(Lt − Lt−1) ≥ 0. The following theorem gives an exact characterization of non-
negative-regret forecasters as the gradients of concave potentials. The proof,
which uses basic properties of concave functions and conservative vector fields,
is given in the appendix of [6].3

Theorem 1. A linear forecaster based on a continuous function g has individual
sequence non-negative regret iff there exists a concave potential function Φ :
R
N → R s.t. g = ∇Φ.

As a by-product of the proof, we get the following:

3 See the closely related Theorem 24.8 in [13] regarding cyclically monotone mappings.
The proof we give is different in that it involves the regret and relates the loss to
the path integral.
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Corollary 1. If algorithm A uses a non-negative-regret function g(L) = ∇Φ(L),
then it holds that RA,T ≥ Φ(LT )− Φ(L0)−minu∈K{u · (LT − L0)} ≥ 0.

If Φ is continuously twice-differentiable, its second order Taylor expansion may
be used to derive a similar lower bound, which now includes a non-negative
quadratic regret term.

Theorem 2. Let A be an algorithm using a non-negative-regret function g =
∇Φ, and let L0, . . . ,LT ∈ R

N . If Φ is continuously twice-differentiable on the
set conv({L0, . . . ,LT }), then

RA,T = Φ(LT )− Φ(L0)−min
u∈K

{u · (LT − L0)} − 1

2

T∑
t=1

l�t ∇2Φ(zt)lt,

where zt ∈ [Lt−1,Lt].

The proof proceeds by expressing Φ(Lt) using the Taylor expansion of Φ around
Lt−1, for every t, and summing up those expressions. The quantities zt arise
from the remainder elements.

Note that the regret is the sum of two non-negative terms. We will sometimes
refer to the first one, Φ(LT )−Φ(L0)−minu∈K{u · (LT −L0)}, as the first order

regret term, and to the second, − 1
2

∑T
t=1 l

�
t ∇2Φ(zt)lt, as the second order regret

term. The second order term is non-negative by the concavity of Φ. These two
terms play a key role in our bounds.

3.1 Relation to Regularized Follow the Leader

The class of concave potential algorithms contains the important class of linear
cost Regularized Follow the Leader (RFTL) algorithms. (For an in-depth dis-
cussion of the RFTL algorithm, see [9].) Following [9], let K ⊆ R

N be compact,
non-empty, and convex. RFTL(η,R) is a linear forecaster with two parame-
ters: the learning rate, η > 0, and a strongly convex and continuously twice-
differentiable regularizing function, R : K → R. RFTL(η,R) determines its
weights according to the rule xt+1 = g(Lt) = arg minx∈K{x · Lt +R(x)/η}.

The next theorem shows that linear RFTL is a concave potential algorithm,
with a potential function that is directly related to the convex conjugate of
the regularizing function. The proof uses standard calculus and is given in the
appendix of [6] for completeness.

Theorem 3. If R : K → R is strongly convex and η > 0, then Φ(L) =
(−1/η)R∗(−ηL) is concave and continuously differentiable on R

N , and for ev-
ery L ∈ R

N , it holds that ∇Φ(L) = arg minx∈K{x · L + R(x)/η} and Φ(L) =
minx∈K{x · L +R(x)/η}.

It is now possible to lower bound the regret of RFTL(η,R) by applying the
lower bounds of Corollary 1 and Theorem 2.
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Theorem 4. The regret of RFTL(η,R) satisfies

RRFTL(η,R),T ≥
1

η
(R(xT+1)−R(x1)) +

(
xT+1 · LT −min

u∈K
{u · LT }

)
≥ 0,

and if R∗ is continuously twice-differentiable on conv({−ηL0, . . . ,−ηLT }), then

RRFTL(η,R),T ≥
1

η
(R(xT+1)−R(x1)) +

(
xT+1 · LT −min

u∈K
{u · LT }

)
+

η

2

T∑
t=1

l�t ∇2R∗(−ηzt)lt ≥ 0,

where zt ∈ [Lt−1,Lt].

Note that the first order regret term is split into two new non-negative terms,
namely, (R(xT+1)−R(x1)) /η, and xT+1 · LT −minu∈K{u · LT }.

The first order regret lower bound given in Theorem 4 may be proved directly
by extending the “follow the leader, be the leader” (FTL-BTL) Lemma ([11],
see also [9]). See the appendix of [6] for the extension and proof.

4 Strictly Positive Individual Sequence Anytime Regret

In this section we give lower bounds on the anytime regret for two classes of
potentials. These are the class of potentials with negative definite Hessians, and
a rich class of best expert potentials that includes RWM.

We start by describing our general argument, which is based on the lower
bounds of Theorem 2 and Corollary 1. Note first that these bounds hold for
any 1 ≤ T ′ ≤ T . Now, let C be some convex set on which Φ is continuously
twice-differentiable. If L0, . . . ,LT ∈ C, then we may lower bound the regret by
the second order term of Theorem 2, and further lower bound that term over
any L0, . . . ,LT ∈ C. Otherwise, there is some 1 ≤ T ′ ≤ T s.t. LT ′ /∈ C, and we
may lower bound the regret at time T ′ by the first order term, using Corollary 1.
We further lower bound that term over any LT ′ /∈ C. The minimum of those two
lower bounds gives a lower bound on the anytime regret. By choosing C properly,
we will be able to prove that these two lower bounds are strictly positive.

We now present our analysis in more detail. Observe that for every η > 0
and concave potential Φ : RN → R, Φη(L) = (1/η)Φ(ηL) is also concave, with
∇Φη(L) = ∇Φ(ηL). Let ‖ · ‖ be a non-trivial seminorm on R

N . In addition, let
a > 0 be such that Φ is continuously twice-differentiable on the set {‖L‖ ≤ a},
and let L0 = 0.

Suppose algorithm A uses Φη and encounters the loss path L0, . . . ,LT . If there
is some T ′ s.t. ‖LT ′‖ > a/η, then applying Corollary 1 to Φη, we get

RA,T ′ ≥ 1

η

(
Φ(ηLT ′ )− Φ(0)−min

u∈K
{u · ηLT ′}

)
.
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Defining ρ1(a) = inf ‖L‖≥a{Φ(L)−Φ(0)−minu∈K{u ·L}}, we have that RA,T ′ ≥
ρ1(a)/η.

We next assume that ‖Lt‖ ≤ a/η for every t. It is easily verified that the
set {‖L‖ ≤ a/η} is convex, and since it contains Lt for every t, it also contains
conv({L0, . . . ,LT }). This means that Φη(L) = (1/η)Φ(ηL) is continuously twice-
differentiable on conv({L0, . . . ,LT }). Applying Theorem 2 to Φη and dropping
the non-negative first order term, we have

RA,T ≥ −
1

2

T∑
t=1

l�t ∇2Φη(zt)lt = −η
2

T∑
t=1

l�t ∇2Φ(ηzt)lt,

where zt ∈ [Lt−1,Lt]. We now define ρ2(a) = inf ‖L‖≤a,‖l‖=1{−l�∇2Φ(L)l}. If
‖lt‖ �= 0, then

−l�t ∇2Φ(ηzt)lt = −(lt/‖lt‖)�∇2Φ(ηzt)(lt/‖lt‖)‖lt‖2 ≥ ρ2(a)‖lt‖2,

where we used the fact that ‖ηzt‖ ≤ a, which holds since zt ∈ conv({L0, . . . ,LT }).
Otherwise, −l�t ∇2Φ(ηzt)lt ≥ 0 = ρ2(a)‖lt‖2, so in any case,

RA,T ≥ −
η

2

T∑
t=1

l�t ∇2Φ(ηzt)lt ≥
η

2

T∑
t=1

ρ2(a)‖lt‖2 =
η

2
ρ2(a)

T∑
t=1

‖lt‖2.

Thus, we have

Lemma 1. If ‖Lt‖ ≤ a/η for every t, then RA,T ≥ η
2ρ2(a)

∑T
t=1 ‖lt‖2. Other-

wise, for any t s.t. ‖Lt‖ > a/η, RA,t ≥ ρ1(a)/η. Therefore,

max
t
{RA,t} ≥ min

{
ρ1(a)

η
,
η

2
ρ2(a)

T∑
t=1

‖lt‖2
}
.

Note that ρ1(a) is non-decreasing, ρ2(a) is non-increasing, and ρ1(a), ρ2(a) ≥ 0.
Lemma 1 therefore highlights a trade-off in the choice of a.

It still remains to bound ρ1 and ρ2 away from zero, and that will be done
in two different ways for the cases of negative definite Hessians and best ex-
pert potentials. Nevertheless, the next technical lemma, which is instrumental
in bounding ρ1 away from zero, still holds in general. Essentially, it says that in
the definition of ρ1(a), it suffices to take the infimum over {‖L‖ = a} instead of
{‖L‖ ≥ a}.

Lemma 2. It holds that ρ1(a) = inf ‖L‖=a{Φ(L)− Φ(0)−minu∈K{u · L}}.

We now present the main result of this section, assuming we have shown ρ1, ρ2 >
0. In what follows we denote QT = QT (l1, . . . , lT ) =

∑T
t=1 ‖lt‖2 for the generic

quadratic variation w.r.t. the seminorm ‖ · ‖ (not to be confused with specific
notions of quadratic variation). We denote Q > 0 for a given lower bound
on QT .
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Theorem 5. Let a > 0 satisfy ρ1(a), ρ2(a) > 0.

(i) For every η > 0, maxt{RA,t} ≥ min{ ρ1(a)η , η2ρ2(a)Q}, and for η =
√

2ρ1(a)
ρ2(a)Q

,

max
t
{RA,t} ≥

√
ρ1(a)ρ2(a)/2 ·

√
Q.

(ii) If for any sequence with quadratic variation QT ≤ Q′ we have RA,T ≤ c
√
Q′,

then for any such sequence,

max
t
{RA,t} ≥

ρ1(a)ρ2(a)

2c
· QT√
Q′ .

In particular, if QT = Θ(Q′), then maxt{RA,t} = Ω(
√
QT ).

Proof. (i) By Lemma 1,

max
t
{RA,t} ≥ min

{
ρ1(a)

η
,
η

2
ρ2(a)

T∑
t=1

‖lt‖2
}
≥ min

{
ρ1(a)

η
,
η

2
ρ2(a)Q

}
.

Picking η =
√

2ρ1(a)
ρ2(a)Q

implies that ρ1(a)
η = η

2ρ2(a)Q =
√

1
2Qρ1(a)ρ2(a).

(ii) Given a and η, let 0 < ε < a/η satisfy that T = Q′/ε2 is an integer. In
addition, let x ∈ R

N be such that ‖x‖ = 1. The loss sequence lt = (−1)t+1εx, for
1 ≤ t ≤ T , satisfies that QT = ε2T = Q′ and that ‖Lt‖ = ‖(1 − (−1)t)εx/2‖ ≤
ε < a/η for every t. Therefore,

c
√
Q′ ≥ RA,T ≥

η

2
ρ2(a)

T∑
t=1

‖lt‖2 =
η

2
ρ2(a)Q′,

where the second inequality is by Lemma 1. This implies that η ≤ 2c
ρ2(a)

√
Q′ .

On the other hand, let T > a2

η2Q′ , define ε =
√
Q′/T , and consider the loss

sequence lt = εx. Then QT = ε2T = Q′, and ‖LT ‖ = εT =
√
Q′T > a/η.

Thus, again using Lemma 1, we have c
√
Q′ ≥ RA,T ≥ ρ1(a)/η, which means

that η ≥ ρ1(a)

c
√
Q′ . Together, we have that ρ1(a)

c
√
Q′ ≤ η ≤ 2c

ρ2(a)
√
Q′ , implying that

c ≥
√
ρ1(a)ρ2(a)/2.4 Given any sequence with QT ≤ Q′, we have that ρ1(a)

η ≥
ρ1(a)ρ2(a)

√
Q′

2c and η
2ρ2(a)QT ≥ ρ1(a)ρ2(a)QT

2c
√
Q′ , so by Lemma 1, maxt{RA,t} ≥

ρ1(a)ρ2(a)
2c · QT√

Q′ , concluding the proof. ()

4.1 Potentials with Negative Definite Hessians

For this case, we pick ‖ · ‖2 as our seminorm. Let a > 0 and let ∇2Φ(L) ≺ 0
for L s.t. ‖L‖2 ≤ a. In this setting, the infimum in the definitions of ρ1(a) and
ρ2(a) is equivalent to a minimum, using continuousness and the compactness of
L2 balls and spheres.

4 Note that this means we cannot guarantee a regret upper bound of c
√
Q′ for c <√

ρ1(a)ρ2(a)/2.



284 E. Gofer and Y. Mansour

Lemma 3. If ‖·‖ = ‖·‖2, then ρ1(a) = min ‖L‖=a{Φ(L)−Φ(0)−minu∈K{u·L}}
and ρ2(a) = min ‖L‖≤a,‖l‖=1{−l�∇2Φ(L)l}.

By Lemma 3, ρ2(a) = min ‖L‖≤a,‖l‖=1{−l�∇2Φ(L)l} > 0, where the inequality
is true since the Hessians are negative definite, so we are taking the minimum
of positive values. In addition, if L �= 0, then Φ(L) − Φ(0) −minu∈K{u · L} >
∇Φ(L) · L − minu∈K{u · L} ≥ 0, since Φ is strictly concave. Thus, again by
Lemma 3, ρ1(a) = min ‖L‖=a{Φ(L)−Φ(0)−minu∈K{u ·L}} > 0. The following
statement is an immediate consequence of Theorem 5:

Theorem 6. If ∇2Φ(L) ≺ 0 for every L s.t. ‖L‖2 ≤ a, for some a > 0, then

(i) For every η > 0, it holds that maxt{RA,t} ≥ min{ ρ1(a)η , η2ρ2(a)Q}, and for

η =
√

2ρ1(a)
ρ2(a)Q

, maxt{RA,t} ≥
√
ρ1(a)ρ2(a)/2 ·

√
Q.

(ii) If for any sequence with quadratic variation QT ≤ Q′ we have RA,T ≤ c
√
Q′,

then for any such sequence, maxt{RA,t} ≥ ρ1(a)ρ2(a)
2c · QT√

Q′ . In particular, if

QT = Θ(Q′), then maxt{RA,t} = Ω(
√
QT ).

4.2 The Best Expert Setting

In the best expert setting, where K = ΔN , potentials can never be strictly
concave, let alone have negative definite Hessians. To see that, let L ∈ R

N ,
c ∈ R, and define L′ = L + c · 1, where 1 is the all-one vector. We will say that
L′ is a uniform translation of L. Then

c = ∇Φ(L) · (L′ − L) ≥ Φ(L′)− Φ(L) ≥ ∇Φ(L′) · (L′ − L) = c,

where we use the concavity of Φ, the fact that ∇Φ is a probability vector, and
the fact that L′−L = c ·1. For a strictly concave Φ, the above inequalities would
be strict if c �= 0, but instead, they are equalities. Thus, the conditions for strict
concavity are not fulfilled at any point L.

We will replace the negative definite assumption with the assumption that

for every i �= j, ∂2Φ
∂Li∂Lj

> 0. This condition is natural for regret minimization

algorithms, because ∂2Φ(L)
∂Li∂Lj

= ∂pi(L)
∂Lj

, where pi is the weight of expert i. Thus,

we simply require that an increase in the cumulative loss of expert j results in
an increase in the weight of every other expert (and hence a decrease in its own

weight). A direct implication of this assumption is that ∂Φ(L)
∂Li

> 0 for every i and

L. To see that, observe that pi(L) = 1−
∑

j 
=i pj(L), so ∂pi(L)
∂Li

= −
∑

j 
=i
∂pj(L)
∂Li

<
0. Since pi(L) ≥ 0 and it is strictly decreasing in Li, it follows that pi(L) > 0,

or ∂Φ(L)
∂Li

> 0.
Using the above assumption we proceed to bound ρ1 and ρ2 away from zero.

We first state some general properties of best expert potentials (proof in the
appendix of [6]).
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Lemma 4. (i) Every row and column of ∇2Φ sum up to zero. (ii) Φ(L)−Φ(0)−
minu∈K{u ·L} is invariant w.r.t. a uniform translation of L. (iii) l�∇2Φ(L)l is
invariant w.r.t. a uniform translation of either l or L.

We now consider ρ1(a) and ρ2(a) where we use the seminorm ‖v‖ = δ(v). (The
fact that δ(v) = maxi{vi} − mini{vi} is a seminorm is easily verified.) Under

this seminorm,
∑T

t=1 ‖lt‖2 becomes qT , the relative quadratic variation. Note
that δ(v) is invariant to uniform translation. In particular, for every v ∈ R

N

we may consider its “normalized” version, v̂ = v −mini{vi} · 1. We have that
δ(v̂) = δ(v), v̂ ∈ [0, δ(v)]N , and there exist entries i and j s.t. v̂i = 0 and
v̂j = δ(v). Denoting N (a) for the set of normalized vectors with seminorm a,
we thus have that N (a) = {v ∈ [0, a]N : ∃i, j s.t. vi = a, vj = 0}. The set N (a)
is bounded and also closed, as a finite union and intersection of closed sets.

Using invariance to uniform translation, we can now show that the infima
in the expressions for ρ1 and ρ2 may be taken over compact sets, and thus be

replaced with minima. Using the requirement that ∂2Φ
∂Li∂Lj

> 0 for every i �= j,

we can then show that the expressions inside the minima are positive. This is
summarized in the next lemma.

Lemma 5. For the best expert setting, it holds that ρ1(a) = min L∈N (a){Φ(L)}−
Φ(0) > 0 and ρ2(a) = min L∈[0,a]N ,l∈N (1){−l�∇2Φ(L)l} > 0.

We can now apply Theorem 5 to the best expert setting.

Theorem 7. If ∂2Φ
∂Li∂Lj

> 0 for every i �= j and every L s.t. δ(L) ≤ a, then

(i) For every η > 0, it holds that maxt{RA,t} ≥ min{ ρ1(a)η , η2ρ2(a)q}, and for

η =
√

2ρ1(a)
ρ2(a)q

, maxt{RA,t} ≥
√
ρ1(a)ρ2(a)/2 · √q.

(ii) If for any sequence with relative quadratic variation qT ≤ q′ we have RA,T ≤
c
√
q′, then for any such sequence, maxt{RA,t} ≥ ρ1(a)ρ2(a)

2c · qT√
q′ . In particu-

lar, if qT = Θ(q′), then maxt{RA,t} = Ω(
√
qT ).

5 Application to Specific Regret Minimization
Algorithms

5.1 Online Gradient Descent with Linear Costs

In this subsection, we deal with the Lazy Projection variant of the OGD algo-
rithm ([14]) with a fixed learning rate η and linear costs. In this setting, for each t,
OGD selects a weight vector according to the rule xt+1 = arg minx∈K{‖x+ηLt‖},
where K ⊆ R

N is compact and convex. As observed in [10] and [9], this al-
gorithm is equivalent to RFTL(η,R), where R(x) = 1

2‖x‖22, namely, setting
xt+1 = arg minx∈K{x · Lt + (1/2η)‖x‖22}. In what follows we will make the
assumption that K ⊇ B(0, a), where B(0, a) is the closed ball with radius a
centered at 0, for some a > 0.
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Note that solving the above minimization problem without the restriction
x ∈ K yields x′

t+1 = −ηLt. However, if ‖Lt‖2 ≤ a/η, then x′
t+1 ∈ K, and then,

in fact, xt+1 = −ηLt. By Theorem 3,

Φη(Lt) = xt+1 · Lt + (1/η)R(xt+1) = −ηLt · Lt + (1/2η)‖ − ηLt‖22
= −(η/2)‖Lt‖22.

Thus, if ‖L‖2 ≤ a, then Φ(L) = −(1/2)‖L‖22 and also ∇2Φ(L) = −I, where I is
the identity matrix. By Lemma 3,

ρ1(a) = min
‖L‖2=a

{−1

2
‖L‖22 −min

u∈K
{u · L}} ≥ min

‖L‖2=a
{−1

2
‖L‖22 − (−L) · L} =

1

2
a2,

where we used the fact that −L ∈ K if ‖L‖2 = a. In addition, by Lemma 3,

ρ2(a) = min ‖L‖2≤a,‖l‖2=1{−l�(−I)l} = 1.

By Theorem 6, we have that maxt{RA,t} ≥ min{a2/(2η), (η/2)Q}, and for η =
a√
Q

, maxt{RA,t} ≥ a
2

√
Q.

5.2 Randomized Weighted Majority

RWM is the most notable regret minimization algorithm for the expert setting.

We have K = ΔN , and the algorithm gives a weight pi,t+1 =
pi,0e

−ηLi,t∑
N
j=1 pj,0e

−ηLj,t
to

expert i at time t+ 1, where the initial weights pi,0 and the learning rate η are
parameters.

It is easy to see that for the potential Φη(L) = −(1/η) ln(
∑N

i=1 pi,0e
−ηLi),

we have that p = (p1, . . . , pN ) = ∇Φη(L). The Hessian ∇2Φη has the following
simple form:

Lemma 6. Let L ∈ R
N and denote p = ∇Φη(L). Then ∇2Φη(L) = η · (pp� −

diag(p)) � 0, where diag(p) is the diagonal matrix with p as its diagonal.

We will assume p1,0 = . . . = pN,0 = 1/N , and write RWM(η) for RWM with pa-

rameters η and the uniform distribution. Thus, Φ(L) = − ln((1/N)
∑N

i=1 e
−Li),

and we have by Lemma 6 that ∂2Φ
∂Li∂Lj

> 0 for every i �= j. Therefore, by Lemma

5, ρ1, ρ2 > 0. We now need to calculate ρ1 and ρ2. This is straightforward in the
case of ρ1, but for ρ2 we give the value only for N = 2 (proof in [6]).

Lemma 7. For any N ≥ 2, ρ1(a) = ln N
N−1+e−a . For N = 2, it holds that

ρ2(a) =
(
ea/2 + e−a/2

)−2
.

Picking a = 1.2, we have by Theorem 7 that

Theorem 8. For N = 2, there exists η s.t.

max
t
{RRWM(η),t} ≥

√
ρ1(a)ρ2(a)q/2 ≥ 0.195

√
q.
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This bound will be used in the next section to lower bound the price of call
options. We comment that using different techniques, we can derive a bound for
any N (proof omitted):

Theorem 9. For any 0 < α < 1 and η > 0, it holds that maxt{RRWM(η),t} ≥
min{ 1

η ln(N(1−α)
N−1 ), 14ηαq}, and for α = 1/(2N) and η =

√
(8N/q) ln 2N−1

2N−2 ,

maxt{RRWM(η),t} ≥
√
q/(4N).

6 Application to Call Option Pricing

6.1 The Investment Setting and Regret Minimization

In an investment setting, we encounter a multiplicative version of the best expert
setting of regret minimization. There are N assets (experts), X1, . . . ,XN , where
the value of Xi at time 0 ≤ t ≤ T is denoted byXi,t, and we assume thatXi,t > 0
for every i and t. We define the single period return of Xi at time 1 ≤ t ≤ T
by ri,t = Xi,t/Xi,t−1 − 1. A trading algorithm invests in the above assets by
allocating on each day t a fraction pi,t of the total assets, Vt−1, to be invested
in Xi. The return of the algorithm on day t is defined as rA,t = Vt/Vt−1 − 1,
and we have, by definition of Vt, that rA,t =

∑
i pi,tri,t. We aim to bound the

quantity VT /maxi{Xi,T } for all possible price paths {ri,t}.
It is natural to translate the multiplicative scenario of regret minimization to

the additive one by taking logarithms. Defining li,t = − ln(1 + ri,t), the cumula-
tive losses of the assets translate directly to minus the logarithms of their total
returns, that is, Li,t =

∑t
τ=1 li,τ = −

∑t
τ=1 ln(Xi,τ/Xi,τ−1) = − ln(Xi,t/Xi,0).

In addition, we have qT =
∑T

t=1 ln2
(

1+maxi{ri,t}
1+mini{ri,t}

)
. However, the loss of an on-

line algorithm does not translate seamlessly. We have that LA,t =
∑t

τ=1 lA,τ =

−
∑t

τ=1

∑N
i=1 pi,τ ln(1 + ri,τ ), whereas

− ln(Vt/V0) = −
t∑

τ=1

ln(V τ/Vτ−1) = −
t∑

τ=1

ln

N∑
i=1

pi,τ (1 + ri,τ )

= −
t∑

τ=1

ln

(
1 +

N∑
i=1

pi,τ ri,τ

)
.

Nevertheless, we can show that up to a factor of qT /8, the multiplicative and
additive notions of the loss of an online algorithm are the same.

Theorem 10. The additive loss and the return satisfy 0 ≤ LA,T + ln(VT /V0) ≤
qT /8.

6.2 Lower Bound on the Price of “at the Money” Call Options

We consider a scenario with two assets, where one is a stock X, and the other is
one unit of cash. A call option C(K,T ) is a security that pays its holder at some
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future time T a sum of max{XT − K, 0}, where K ≥ 0 is the pre-fixed strike
price. The option is said to be “at the money” if K = X0. W.l.o.g., the price of
the stock at time 0 is X0 = 1. We denote C(K,T ) for the price of C(K,T ) at
time 0. We assume the same basic market conditions as [4, 7].5

We may obtain a lower bound on C(K,T ) by showing that an online algorithm
is always dominated by the option, as formalized in the next lemma.

Lemma 8. ([4]) Let A be a trading algorithm with V0 = 1. If for every price
path and some β > 0, VT ≤ βmax{XT ,K}, then C(K,T ) ≥ 1/β −K.

We next use the lower bound on the anytime regret of RWM to lower bound
C(1, T ). Since our assets are stock and cash, q is a lower bound on qT =∑T

t=1 ln2
(

1+maxi{ri,t}
1+mini{ri,t}

)
=
∑T

t=1 ln2 (1 + rt), where rt is the return of the stock

at time t. The proof idea is as follows. First, we note that given a lower bound
on the anytime regret of an algorithm, it may be modified to “lock in” that
regret from the moment the bound is exceeded until time T . (This idea of lock-
ing in regret is suggested in [4].) Modifying RWM this way, we obtain an upper
bound on VT /max{XT , 1} by Theorems 8 and 10. This leads to a lower bound
on C(1, T ) by Lemma 8.

Theorem 11. Assuming that qT ∈ [q, γq], where γ ≥ 1, it holds that

C(1, T ) ≥ exp(0.195
√
q − γq/8)− 1.

If qT = q is assumed, then γ = 1, and we have

Corollary 2. If q < 0.5, then C(1, T ) ≥ exp(0.1
√
q)− 1 ≥ 0.1

√
q.

In comparison, the Black-Scholes pricing has an asymptotic value that corre-
sponds to

√
q/
√

2π ∼ 0.4
√
q for small values of q (see the appendix of [6]). We

comment that our bound allows for a fully adversarial choice of the sequence of
stock returns, while the Black-Scholes model assumes a stochastic setting. For
this reason, it is expected that our lower bound falls below the Black-Scholes
price.
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Abstract. For the prediction with expert advice setting, we consider
methods to construct algorithms that have low adaptive regret. The
adaptive regret of an algorithm on a time interval [t1, t2] is the loss of
the algorithm there minus the loss of the best expert. Adaptive regret
measures how well the algorithm approximates the best expert locally,
and it is therefore somewhere between the classical regret (measured on
all outcomes) and the tracking regret, where the algorithm is compared
to a good sequence of experts.

We investigate two existing intuitive methods to derive algorithms
with low adaptive regret, one based on specialist experts and the other
based on restarts. Quite surprisingly, we show that both methods lead to
the same algorithm, namely Fixed Share, which is known for its tracking
regret. Our main result is a thorough analysis of the adaptive regret of
Fixed Share. We obtain the exact worst-case adaptive regret for Fixed
Share, from which the classical tracking bounds can be derived. We also
prove that Fixed Share is optimal, in the sense that no algorithm can
have a better adaptive regret bound.

Keywords: Online learning, adaptive regret, Fixed Share, specialist
experts.

1 Introduction

This paper deals with the prediction with expert advice setting. Nature generates
outcomes step by step. At every step Learner tries to predict the outcome. Then
the actual outcome is revealed and the quality of Learner’s prediction is measured
by a loss function.

No assumptions are made about the nature of the data. Instead, at every step
Learner is presented with the predictions of a pool of experts and he may base his
predictions on these. The goal of Learner in the classical setting is to guarantee
small regret, that is, to suffer cumulative loss that is not much larger than that
of the best (in hindsight) expert from the pool. Several classical algorithms exist
for this task, including the Aggregating Algorithm [13] and the Exponentially
Weighted Forecaster [3]. In the standard log-loss game the regret incurred by
those algorithms when competing with N experts is at most lnN .

A common extension of the framework takes into account the fact that the best
expert could change with time. In this case we may be interested in competing

N.H. Bshouty et al. (Eds.): ALT 2012, LNAI 7568, pp. 290–304, 2012.
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with the best sequence of experts from the pool. Known algorithms for this task
include Fixed Share [8] and Mixing Past Posteriors [1].

In this paper we focus on the related task of obtaining small adaptive regret,
a notion first considered in [11] and later studied in [7]. The adaptive regret of
an algorithm on a time interval [t1, t2] is the loss of the algorithm there, minus
the loss of the best expert for that interval:

R[t1,t2] := L[t1,t2] −min
j
Lj[t1,t2]

The goal is now to ensure small regret on all intervals simultaneously. Note that
adaptive regret was defined in [7] with a maximum over intervals, but we need
the fine-grained dependence on the endpoint times to be able to prove matching
upper and lower bounds.

Our results. The contribution of our paper is twofold.

1. We study two constructions to get adaptive regret algorithms from exist-
ing classical regret algorithms. The first one is a simple construction which
originates in [5] and [4] and involves so called sleeping (specialist) experts,
and the second one uses restarts, as proposed in [7]. Although conceptu-
ally dissimilar, we show that both constructions reduce to the Fixed Share
algorithm with variable switching rate.

2. We compute the exact adaptive worst-case regret of Fixed Share and show
that no algorithm can have better adaptive regret. We also derive the track-
ing regret bounds from the adaptive regret bounds, showing that the latter
are in fact more fundamental.

Here is a sneak preview of the adaptive bounds we obtain, presented in a slightly
relaxed form for simplicity. The refined statement can be found in Theorem 4
below. In the log-loss game for each of the following adaptive regret bounds there
is an algorithm achieving it, simultaneously for all the intervals [t1, t2]:

lnN + ln t2 , (1a)

lnN + ln t1 + ln ln t2 + 2 , (1b)

lnN + 2 ln t1 + 1 , (1c)

where ln ln 1 is interpreted as 0.

Outline. The structure of the paper is as follows. In Section 2 we give the
description of the protocol and review the standard algorithms. In Section 3 we
study two intuitive ways of obtaining adaptive regret algorithms from classical
algorithms. We show that curiously both these algorithms turn out to be Fixed
Share. In Section 4 we study in detail the adaptive regret of Fixed Share.

2 Setup

We phrase our results in the setting defined in Protocol 1 which, for lack of a
standard name, we call mix loss. We choose this fundamental setting because
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Protocol 1. Mix loss prediction

for t = 1, 2, . . . do
Learner announces probability vector ut ∈ �N

Reality announces loss vector �t ∈ [−∞,∞]N

Learner suffers loss �t := − ln
∑

n un
t e

−
nt

end for

it is universal, in the sense that many other common settings reduce to it. For
example probability forecasting, sequential investment and data compression are
straightforward instances [3]. In addition, mix loss is the baseline for the wider
class of mixable loss functions, which includes e. g. square loss [14]. Classical
regret bounds transfer from mix loss to mixable losses almost by definition, and
the same reasoning extends to adaptive regret bounds. In addition, mix loss
results carry over in the usual modular ways (via Hoeffding and related bounds)
to non-mixable games, which include the Hedge setting [6] and Online Convex
Optimisation [16].

Let us introduce two standard algorithms in this setup. The Aggregating Algo-
rithm [15] is parametrised by a prior distribution u1 on [N ] (where [N ] denotes
the set {1, . . . , N}). It predicts in trial t with

unt :=
un1 e

−∑
s<t �

n
s∑

n u
n
1 e

−∑
s<t �

n
s
, (2a)

which we may also maintain incrementally using the update rule

unt+1 =
unt e

−�nt∑
n u

n
t e

−�nt . (2b)

For this algorithm with uniform prior un1 = 1/N , the classical regret bound
states that for each expert j

T∑
t=1

�t −
T∑
t=1

�jt ≤ lnN.

Note that AA is minimax for classical mix loss regret since ≥ lnN can be
inflicted on any algorithm. The second algorithm, Fixed Share [8], in addition
to a prior u1 requires a sequence of switching rates α2, α3, . . . Intuitively, αt is
the probability of a switch in the sequence of “best-at-the-step” experts before
trial t. The weights are now updated as

unt+1 :=
αt+1

N − 1
+

(
1− N

N − 1
αt+1

)
unt e

−�nt∑
n u

n
t e

−�nt . (3)

(We see that the Aggregating Algorithm is the special case when all αt are 0.)
The tracking regret bound for Fixed Share with uniform prior u1 and constant
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αt = α switching rate states that for any reference sequence j1, . . . , jT of experts
with m blocks (and hence m− 1 switches)

T∑
t=1

�t −
T∑
t=1

�jtt ≤ lnN + (m− 1) ln(N − 1)− (m− 1) lnα− (T −m) ln(1− α).

Having introduced the standard classical and tracking regret algorithms, we now
turn to adaptive regret.

3 Intuitive Algorithms with Low Adaptive Regret

Two methods have been proposed in the literature that can be used to obtain
adaptive regret bounds: specialist experts and restarts. We discuss both and show
that each of them yields Fixed Share with a particular choice of time-dependent
switching rate αt.

3.1 Specialist Experts

One way of getting an adaptive algorithm is the following. We create a pool of
virtual experts. For each real expert n and time t, we include a virtual expert
that mimics Learner’s behaviour for the first t − 1 trials (which is another way
to say that this expert is a specialist [5] that abstains from prediction, or sleeps,
during the first t− 1 trials), and predicts as expert n from trial t onward. Then
the classical regret w.r.t. this virtual expert on [1, T ] is the same as the adaptive
regret w.r.t. the real expert n on [t, T ] because on the first t − 1 steps the loss
of the virtual expert equals Learner’s loss. The natural idea is to feed all those
virtual experts into the existing algorithm capable of obtaining good classical
regret, the AA. For fixed t2, the uniform prior on wake-up time t1 ≤ t2 and
expert n would lead to adaptive regret ln(Nt2). It turns out that the same holds
even without knowledge of t2.

There is a snag, namely that in the prediction step you need to know the
losses of the sleeping virtual specialists which are equal to the yet unknown loss
of the Learner. However, it is possible to find a fixed point prediction which
makes the AA loss exactly the same as if it took into account the sleeping
experts making the same prediction. To avoid dealing with equations involving
an infinite number of sleeping experts let us fix a time horizon T > t. Later we
will see that this time horizon plays no role.

Let us denote by wn,st the probability assigned by the AA in trial t to the
virtual specialist parametrised by real expert n and wake-up time s. Learner

then will predict with weights ut where unt =
∑t

s=1 w
n,s
t

/∑N
j=1

∑t
τ=1 w

j,τ
t .

The desired fixed point property is achieved for this prediction:

�t := − ln

(
N∑
n=1

unt e
−�nt
)

= − ln

(
N∑
n=1

t∑
s=1

wn,st e−�
n
t +

N∑
n=1

T∑
s=t+1

wn,st e−�t
)
.
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That is, the loss �t of the prediction ut in the game with N real experts equals
the loss of the prediction wt in the game with TN virtual specialists, where
specialists that are still asleep are assumed to suffer Learner’s loss �t.

At first glance, it is very inefficient to maintain weights of TN specialists.
However, we do not need to, since we may merge the weights of all awake spe-
cialists associated to the same real expert, resulting in Algorithm 1. To verify
this, denote this merged (unnormalised) weight in trial t by vnt for each real ex-
pert n. The merged (unnormalised) weight vnt+1 of this real expert n in the next
trial t+ 1 consists of the prior weight of the newly awaken virtual specialist plus
vnt , the sum of the old weights, each multiplied by the same factor e(�

t−�nt ) (as
they were all awake). Thus we can update the sum directly, and this is reflected
by our update rule.

Note that for simplicity, we have taken the prior on experts and wake-up times
independent, i. e.

p(n,t) = p(t) .

Also note that there is no need for the priors p(n,t) to normalise.

Algorithm 1. Adaptive Aggregating Algorithm

Input: Prior nonnegative weights p(t), t = 1, 2, . . .
vn1 := p(1), n = 1, . . . , N
for t = 1, 2, . . . do

Play weights un
t :=

vn
t∑N

k=1
vk
t

Read the experts losses �nt , n = 1, . . . , N

Set vnt+1 := p(t+ 1) + vnt
e−�nt∑N

k=1
uk
t e

−�kt
, n = 1, . . . , N

end for

Now we will see that Algorithm 1 turns out to be Fixed Share with variable
switching rate. In the rest of this section we derive this. Let P (t) =

∑t
s=1 p(s).

Fact 1. The update step of Algorithm 1 preserves the following:∑
n

vnt =
∑
n

∑
s≤t
p(s) = NP (t) .

Proof. This follows immediately from expanding the one-step update rule:∑
n

vnt+1 =
∑
n

p(t+ 1) +
∑
n

vnt
e−�

n
t∑

k u
k
t e

−�kt

=
∑
n

p(t+ 1) +
∑
n

vnt
e−�

n
t∑

k
vkt∑
j v

j
t

e−�kt

= Np(t+ 1) +
∑
n

vnt
Induction

= NP (t+ 1) .

()
We now show that Algorithm 1 can be seen as Fixed Share (and vice versa).
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Lemma 2. Say that αt is the probability of a Fixed Share switch before trial
t, and p(t) is the prior weight of specialist waking up in trial t in Algorithm 1.
Then the following conversion preserves behaviour

p(t) =
N

N−1αt∏t
s=2(1− N

N−1αs)
, αt =

N − 1

N

p(t)∑t
s=1 p(s)

,

where we use the convention that α1 = N−1
N .

Proof. Let us rewrite the update step of Algorithm 1 for the normalised weights.

unt+1 =
vnt+1∑
k v

k
t+1

=
p(t+ 1)

NP (t+ 1)
+

1

NP (t+ 1)
vnt

e−�
n
t∑

k u
k
t e

−�kt

=
p(t+ 1)

NP (t+ 1)
+

1

NP (t+ 1)
NP (t)unt

e−�
n
t∑

k u
k
t e

−�kt

=
αt+1

N − 1
+
P (t+ 1)− p(t+ 1)

P (t+ 1)
unt

e−�
n
t∑

k u
k
t e

−�kt

=
αt+1

N − 1
+

(
1− N

N − 1
αt+1

)
unt

e−�
n
t∑

k u
k
t e

−�kt
.

We see that the weight update is the update of the Fixed Share algorithm with
variable switching rate αt. ()

The idea to use specialist experts for obtaining adaptive bounds was introduced
in [5]. There a virtual specialist is created for every interval [t1, t2] which leads
to redundancy and suboptimal bounds. Their adaptive regret bounds sport a
term which exceeds 2 ln t2 whereas our bounds (1) have at most a single ln t2.

3.2 Restarts

A second intuitive method to obtain adaptive regret bounds, called Follow the
Leading History (FLH), was introduced in [7]. One starts with a base algo-
rithm that ensures low classical regret. FLH then obtains low adaptive regret by
restarting a copy of this base algorithm each trial, and aggregating the predic-
tions of these copies. To get low adaptive regret w.r.t. N experts, it is natural
to take the AA as the base algorithm. We now show that FLH with this choice
equals Fixed Share with switching rate αt = N−1

Nt .

For each n, s and t ≥ s, let p
n|s
t denote the weight allocated to expert n by the

copy of the AA started at time s. By definition p
n|s
s = 1/N , and these weights

evolve according to (2b). We denote by pst the weight allocated by FLH in trial
t ≥ s to the copy of AA started at time s. In [7], these weights are defined as
follows. Initially p11 = 1 and subsequently

pst+1 =

(
1− 1

t+ 1

)
pste

−
(
− ln

∑
n p

n|s
t e−�nt

)

∑t
r=1 p

r
te

−
(
− ln

∑
n p

n|r
t e−�nt

) , pt+1
t+1 =

1

t+ 1
.
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Lemma 3. For mix loss, FLH with AA as the base algorithm issues the same
predictions as Fixed Share with learning rate αt = N−1

Nt .

Proof. We prove by induction on t that the FS and FLH weights coincide:

unt =

t∑
s=1

p
n|s
t pst .

The base case t = 1 is obvious. For the induction step we expand

t+1∑
s=1

p
n|s
t+1p

s
t+1 =

t∑
s=1

p
n|s
t+1p

s
t+1 + pt+1

t+1/N

=

(
1− 1

t+ 1

) t∑
s=1

⎛⎝ p
n|s
t e−�

n
t∑

n p
n|s
t e−�nt

pst

(∑
n p

n|s
t e−�

n
t

)
∑t

r=1 p
r
t

(∑
n p

n|r
t e−�nt

)
⎞⎠+

1

N(t+ 1)

=

(
1− 1

t+ 1

) ∑t
s=1 p

s
tp
n|s
t e−�

n
t∑t

r=1

∑
n p

r
tp

n|r
t e−�nt

+
1

N(t+ 1)

Induction
=

(
1− 1

t+ 1

)
unt e

−�nt∑
n u

n
t e

−�nt +
1

N(t+ 1)
= unt+1,

and find the Fixed Share update equation (3) for switching rate αt = N−1
Nt . ()

4 The Adaptive Regret of Fixed Share

We have seen in the previous section that both intuitive approaches to obtain
algorithms with low adaptive regret result in Fixed Share. We take this conver-
gence to mean that Fixed Share is the most fundamental adaptive algorithm.
The tracking regret for Fixed Share is already well-studied. In this section we
thoroughly analyse the adaptive regret of Fixed Share. We obtain the worst-
case adaptive regret for mix loss. This result implies the known tracking regret
bounds.

We also show an information-theoretic lower bound for mix loss that must
hold for any algorithm, and which is tight for Fixed Share. This proves that
Fixed Share is a Pareto-optimal algorithm for the mix loss game, in the sense
that no other algorithm can guarantee essentially better adaptive regret.

4.1 The Exact Worst-Case Adaptive Regret for Mix Loss

In this section we first compute the exact worst-case adaptive regret of Fixed
Share with arbitrary switching rate αt. Then we obtain certain regret bounds of
interest, including the tracking regret bound, for particular choices of αt.
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Theorem 4. The worst-case adaptive regret of Fixed Share with N experts on
interval [t1, t2] equals

− ln

(
αt1
N − 1

t2∏
t=t1+1

(1− αt)
)
. (4)

Proof. The proof consists of two parts. First we claim that the worst-case data for
the interval [t1, t2] in the setting of Protocol 1 is rather simple: on the interval
there is one good expert (all others get infinite losses) and on the single trial
before the interval (if t1 > 1) this expert suffers infinite loss while others do not.
The proof of this can be found in Appendix A.

Now we will compute the regret on this data. The regret of Fixed Share on
the interval [t1, t2] is − ln of the product of the weights put on the good expert
(say, j) on this interval:

RFS
[t1,t2]

= − ln
∏

t1≤t≤t2
ujt .

It is straightforward to derive ujt1 from (3):

ujt1 =
αt1
N − 1

and ujt = 1− αt for t ∈ [t1 + 1, t2]

from which the statement follows. ()

Example 1: Constant Switching Rate. This is the original Fixed Share [8].

Corollary 5. Fixed Share with constant switching rate αt = α for t > 1 (recall
that α1 = N−1

N ) has worst-case adaptive regret equal to

ln(N − 1)− lnα− (t2 − t1) ln
(
1− α

)
for t1 > 1, and

lnN − (t2 − 1) ln
(
1− α

)
for t1 = 1.

A slightly weaker upper bound was obtained in [2]. The clear advantage of our
analysis with equality is that we can obtain the standard Fixed Share tracking
regret bound by summing the above adaptive regret bounds on individual inter-
vals. Comparing with the best sequence of experts S on the interval [1, T ] with
m blocks, we obtain the bound

LFS
[1,T ] − LS[1,T ] ≤ lnN + (m− 1) ln(N − 1)− (m− 1) lnα− (T −m) ln(1− α) ,

which is exactly the Fixed Share standard bound. So we see that the reason
why Fixed Share can effectively compete with switching sequences is that it can,
in fact, effectively compete with an expert on any interval, that is, has small
adaptive regret.
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Example 2: Slowly Decreasing Switching Rate. The idea of slowly decreas-
ing the switching rate was considered in [12] in the context of source coding, and
later analysed for expert switching in [10]; we saw in Section 3.2 that it also
underlies Follow the Leading History of [7]. It results in tracking regret bounds
that are almost as good as the bounds for constant α with optimally tuned α.
These tracking bounds are again implied by the following corresponding adaptive
regret bound.

Corollary 6. Fixed Share with switching rate αt = 1/t (except for α1 = N−1
N )

has worst-case adaptive regret

− ln

(
1

(N − 1)t1

t2∏
t=t1+1

t− 1

t

)
= ln(N − 1) + ln t2 for t1 > 1, and (5a)

− ln

(
1

N

t2∏
t=2

t− 1

t

)
= lnN + ln t2 for t1 = 1. (5b)

Example 3: Quickly Decreasing Switching Rate. The bounds we have
obtained so far depend on t2 either linearly or logarithmically. To get bounds that
depend on t2 sub-logarithmically, or even not at all, one may instead decrease the
switching rate faster than 1/t, as analysed in [12, 9]. To obtain a controlled trade-
off, we consider setting the switching rate to αt = 1

t ln t , except for α1 = N−1
N .

This leads to adaptive regret at most

ln(N − 1) + ln t1 + ln ln t1 −
t2∑

t=t1+1

ln

(
1− 1

t ln t

)
≤ ln(N − 1) + ln t1 + ln ln t2 + 1.28 (6a)

when t1 > 1 and

lnN −
t2∑
t=2

ln

(
1− 1

t ln t

)
≤ lnN + ln ln t2 + 1.65 (6b)

when t1 = 1 (remember that ln ln 1 is understood to be 0). The constant 1.28 in
(6a) is needed because t1 and t2 can take small values; e.g., if we only consider
t1 ≥ 10, we can replace 1.28 by 0.05, and we can replace 1.28 by an arbitrarily
small δ > 0 if we only consider t1 ≥ c for a sufficiently large c.

The dependence on t2 in (6) is extremely mild. We can suppress it completely
by increasing the dependence on t1 just ever so slightly. If we set αt = t−1−ε,
where ε > 0, then the sum of the series

∑∞
t=1 αt is finite and the bound becomes

ln(N − 1) + (1 + ε) ln t1 + cε for t1 > 1, and (7a)

lnN + cε for t1 = 1, (7b)
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where cε = −
∑∞

t=2 ln(1 − t−1−ε). It is clear that the bound (7a) is far from
optimal when t1 is large: cε can be replaced by a quantity that tends to 0 as
O(t−ε1 ) as t1 →∞. In particular, for ε = 1 we have the bound

lnN + 2 ln t1 + ln 2.

An interesting feature of this switching rate is that for the full interval [t1, t2] =
[1, T ] the bound differs from the standard AA bound only by an additive term
less than 1. In words, the overhead for small adaptive regret is negligible.

4.2 Lower Bounds on Adaptive Regret

One may wonder how good this worst-case adaptive regret bound for Fixed
Share is, if we compare to some other algorithm. We now argue that it cannot
be improved. First we show an information-theoretic lower bound on the adaptive
regret of any algorithm. Then we show that Fixed Share meets this bound.

Theorem 7. Let φ(t1, t2, N) be the worst-case adaptive regret of any algorithm.
Then for all T and for all N

T∑
m=1

∑
1=t1<...<tm+1=T+1

N(N − 1)m−1e−
∑m

j=1 φ(tj ,tj+1−1,N) ≤ 1. (8)

Proof. Fix an algorithm, time horizon T and expert count N . For any sequence

e ∈ {1, . . . , N}T we define the loss pattern (�nt )
n∈[N ]
t∈[T ] by

�nt = − ln1{n=et}

(where 1{n=et} = 1 if n = et and 1{n=et} = 0 otherwise). Let L(e) be the loss

of the algorithm on this loss pattern. Define the weight w(e) = e−L(e). Clearly
w is a probability distribution on [N ]T . Now let t2 < . . . < tm enumerate the
internal block start indices

{
t ∈ {2, . . . , T }

∣∣ et−1 �= et
}

, and for the boundary
set t1 = 1 and tm+1 = T + 1. Since φ is the worst-case adaptive regret, and the
loss of the best expert on each block is 0, we must have

L(e) ≤
m∑
j=1

φ(tj , tj+1 − 1, N).

The theorem is obtained by negating and exponentiating this inequality, sum-
ming it over [N ]T , and grouping the contributions of sequences that agree on
their block start indices. ()

This bound is worthwhile because it is tight as we will see momentarily. It is
however somewhat esoteric to interpret. It may be readily relaxed to imply for
example that the bounds in (1) are tight, to a certain accuracy.

We will be interested in the performance guarantees that are separable, i.e., in
upper bounds on φ(t1, t2, N) of the form A(t1)+B(t2) (the number N of experts
is fixed and omitted from our notation).
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Corollary 8. Suppose φ(t1, t2, N) ≤ A(t1) + B(t2) for all t1 and t2. Then for
all T ,

lnN −A(1)−B(T ) +

T∑
t=2

ln
(

1 + (N − 1)e−A(t)−B(t−1)
)
≤ 0. (9)

Proof. Substitute the constraint on φ into (8). ()

The following corollary shows that the stronger form (5) of (1a) is essentially
tight: we cannot improve the right-hand side of (5a) by a constant, even for large
t1 and t2, unless (5b) is relaxed drastically (it is not sufficient to replace lnN by
D and ignore all t2 < T0 for arbitrarily large D and T0).

Corollary 9. Fix the number of experts N , a constant C < ln(N − 1), and
arbitrarily large positive integer constants D and T0. No algorithm has worst-
case adaptive regret

φ(t1, t2, N) ≤ C + ln t2 +∞1{t2<T0} +D1{t1=1} +∞1{1<t1≤T0}. (10)

Proof. Setting

A(t) =

⎧⎪⎨⎪⎩
D if t = 1

0 if t > T0

∞ otherwise

and B(t) =

{
ln t+ C if t ≥ T0
∞ otherwise

on the right-hand side of (9) we obtain

lnN−D− lnT−C+

T∑
t=T0+1

ln

(
1 + (N − 1)

e−C

t− 1

)
≥ − lnT +

N − 1

eC
lnT−O(1)

which tends to ∞ as T → ∞ (the inequality follows from the inequality ln(1 +
x) ≥ x− x2, where x ≥ −1/2). This contradicts (9). ()

Our next corollary is about the tightness of (1b) and its elaboration (6) (see also
the discussion following (6)).

Corollary 10. Fix the number of experts N , a constant C < ln(N − 1), and
positive integer D and T0. No algorithm has worst-case adaptive regret

φ(t1, t2, N) ≤ C+ ln t1 + ln ln t2 +∞1{t2<T0} +D1{t1=1} +∞1{1<t1≤T0}. (11)

Proof. Setting

A(t) =

⎧⎪⎨⎪⎩
D if t = 1

ln t if t > T0

∞ otherwise

and B(t) =

{
ln ln t+ C if t ≥ T0
∞ otherwise
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on the right-hand side of (9) we now have

lnN −D − ln lnT − C +

T∑
t=T0+1

ln

(
1 + (N − 1)

e−C

t ln(t− 1)

)
≥ − ln lnT +

N − 1

eC
ln ln(T − 1)−O(1) →∞ (T →∞). ()

Finally, we explore the tightness of (1c) (and its elaboration given later in the
paper: see (7) and the discussion afterwards).

Corollary 11. Fix the number of experts N , a constant ε > 0, and a constant
a <

∑∞
t=2 ln(1 + t−1−ε). No algorithm has worst-case adaptive regret

φ(t1, t2, N) ≤
{

lnN + a if t1 = 1

ln(N − 1) + (1 + ε) ln t1 otherwise.
(12)

Proof. Setting

A(t) =

{
lnN + a if t = 1

ln(N − 1) + (1 + ε) ln t otherwise

and B(t) = 0 on the right-hand side of (9) now gives

lnN − lnN − a+

T∑
t=2

ln
(

1 + (N − 1)e− ln(N−1)−(1+ε) ln t
)
> 0

for a sufficiently large T . ()

4.3 Fixed Share Has Optimal Adaptive Worst-Case Regret

We now prove that Fixed Share is optimal, in the sense that no algorithm can
have a worst-case adaptive regret that is nowhere worse.

Corollary 12. Fix any switching rate (αt)t≥1, and let φ(t1, t2, N) be the worst-
case adaptive regret of FS. Then (8) holds with equality.

Proof. Plug the worst-case adaptive regret (4) into the sum (8). ()

5 Conclusion

We examined the problem of guaranteeing small adaptive regret for the setting
of prediction with expert advice. In the first part we considered two techniques
to obtain adaptive algorithms: using virtual specialist experts and restarting
classical algorithms. We showed that both can be viewed as Fixed Share with
a variable switching rate. In the second part we computed the exact worst-case
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adaptive regret for Fixed Share, thus tightening the existing upper bounds. So
much, in fact, that by summing these worst-case regrets over a partition of the
interval [1, T ] we recover the standard Fixed Share tracking bound. This formally
establishes the complete congruence between adaptive and tracking performance,
which was intuitive but not apparent from previously obtained adaptive bounds.

We then showed that Fixed Share is Pareto-optimal, in the sense that no algo-
rithm can ensure better adaptive regret. We presented an information-theoretic
lower bound on the worst-case adaptive regret of any algorithm, and showed
that it holds with equality for Fixed Share.

Open problem. Whereas upper bounds readily transfer to mixable losses, ob-
taining adaptive regret lower bounds for mixable losses is much more tricky. It
is fair to call the lower bound argument in [15] for classical regret complicated,
and this would be a special case for adaptive regret lower bounds.
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A Worst-Case Adaptive Regret Data for Fixed Share

In this subsection we prove that the worst-case data for Fixed Share has the
following form. On the interval [t1, t2] we are interested in all but one expert
suffer infinite loss and on the step preceding t1 (if t1 �= 1) this one expert suffers
infinite loss himself. The construction is iterative and we start constructing the
data from the end of the interval.

Lemma 13. For any history prior to the step t2 the adaptive regret Rj[t1,t2] w.r.t.

expert j on the interval [t1, t2] is maximised with �kt2 = ∞ for k �= j.

Proof. Let us differentiate the adaptive regret w.r.t. �kt2 :

∂Rj[t1,t2]

∂�kt2
=

ukt2e
−�kt2∑

uit2e
−�it2

− 1{j=k}

()

We can see that it is positive for all k �= j and becomes zero for k = j when we
plug in �kt2 = ∞ for those.

Lemma 14. Fix an comparator expert j. Let t ∈ [t1, t2]. Suppose that the losses
for steps s = t + 1, . . . , t2 satisfy �ks = ∞ for k �= j. Then the adaptive regret
Rj[t1,t2] is maximised with �kt = ∞ for k �= j.

Proof. Let us start with showing that the if on the steps t + 1 and t + 2 the
data is organised as we want to, that is j-th expert is good and all others suffer
infinite loss, then Learner’s loss on step t+ 2 is not dependent on what happens
at time t and before. This follows immediately from (3), as

�t+2 = − ln (1− αt+2) .
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Now let us differentiate the adaptive regret Rj[t1,t2] w.r.t. �kt assuming that the

future losses are set up as we want. Let us show that the derivatives w.r.t. �kt
where k �= j are all positive. For those,

∂Rj[t1,t2]

∂�kt
=

∂�t

∂�kt
+
∂�t+1

∂�kt

Expanding the second one gives (as before, k �= j):

∂�t+1

∂�kt
=

∂

∂�kt
− ln

(
αt+1

N − 1
+ (1 − N

N − 1
αt+1)ujte

�t−�jt
)

= −
(1− N

N−1αt+1)ujte
�t−�jt ∂

∂�kt
�t

αt+1

N−1 + (1 − N
N−1αt+1)ujte

�t−�jt

So we see that
∂Rj

[t1,t2]

∂�kt
= ∂�t

∂�kt

(
αt+1
N−1

αt+1
N−1 +(1− N

N−1αt+1)u
j
te

�t−�
j
t

)
> 0. So our worst-

case pattern of losses extends one trial backwards. ()

Finally, we need to state the almost obvious fact that in order to maximise the
adaptive regret we need to insert an infinite loss for the comparator expert right
before the start of the interval, thus killing all the previous weight on him.

Lemma 15. Fix a comparator expert j. Suppose that the losses for steps s =
t1, . . . , t2 satisfy �ks = ∞ for k �= j. Then the adaptive regret Rj[t1,t2] is maximised

with �jt−1 = ∞.

Proof. As before, the adaptive regret on steps starting from t1 + 1 does not

depend on �kt1−1. So let us show that
∂Rj

[t1,t2]

∂�jt1−1

> 0. We can reuse the proofs of

previous lemmas for that:

∂Rj[t1,t2]

∂�jt1−1

=
∂�t1

∂�jt1−1

= −
(1− N

N−1αt1)ujt1−1e
�t1−1−�jt1−1

αt1

N−1 + (1− N
N−1αt1)ujt1−1e

�t1−1−�jt1−1

∂
(
�t1−1 − �jt1−1

)
∂�jt1−1

> 0,

since
∂(�t1−1−�jt1−1)

∂�jt1−1

is negative as follows from the proof of Lemma 13. ()
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Abstract. In a partial-monitoring problem in every round a learner
chooses an action, simultaneously an opponent chooses an outcome, then
the learner suffers some loss and receives some feedback. The goal of the
learner is to minimize his (unobserved) cumulative loss. In this paper we
explore a variant of this problem where in every round, before the learner
makes his decision, he receives some side-information. We assume that
the outcomes are generated randomly from a distribution that is influ-
enced by the side-information. We present a “meta” algorithm scheme
that reduces the problem to that of the construction of an algorithm
that is able to estimate the distributions of observations while producing
confidence bounds for these estimates. Two specific examples are shown
for such estimators: One uses linear estimates, the other uses multino-
mial logistic regression. In both cases the resulting algorithm is shown to
achieve Õ(

√
T ) minimax regret for locally observable partial-monitoring

games.

1 Introduction

Partial monitoring is a framework to model online learning games with arbi-
trary feedback structure. In every time step, a learner chooses an action and
simultaneously an opponent chooses an outcome. Then, the learner suffers some
loss and receives some feedback, both of which are deterministic functions of the
action and the outcome. The loss and feedback functions are both known to the
learner and the opponent and together they define the partial monitoring game.
The goal of the learner is to keep his cumulative loss as low as possible. His
performance is measured in terms of the regret : the learner’s excess cumulative
loss compared to that of the best fixed action in hindsight.

Canonical examples of partial-monitoring include product testing and dynamic
pricing. In the case of product testing, the learner has to decide to test or not
test products arriving on a production line. The learner receives feedback about
the quality of the product only if he decided to test the product. On the other
hand, he suffers a constant loss in every time step when either a good product
was tested (unable to sell, e.g., when the test means the destruction of the
product) or a bad product was not tested (complaining costumers). In the case
of dynamic pricing, a vendor (learner/he) sets the price of a product while the
consumer (opponent/she) secretly chooses a maximum price she is willing to
buy the product for. In case the sale price is below the consumer-chosen price,

N.H. Bshouty et al. (Eds.): ALT 2012, LNAI 7568, pp. 305–319, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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the product is sold. The information received by the learner is the single bit
whether this happens. The loss suffered in a round when the product is sold is
the difference between the consumer-chosen prices and the sale price, while in a
round when the product is not sold a fixed storage cost is incurred.

In this paper we extend the basic partial monitoring problem to allow the
learner to use some side information to make a more informed decision. For
example, in product testing, before deciding about whether to use a potentially
destructive testing procedure the learner can take a look at the product. Sim-
ilarly, in dynamic pricing, the learner may use information available about the
customer (gender, age, etc.) for determining a more competitive price. Formally,
the assumption is that in each round the learner receives the so-called side in-
formation (sometimes also called “a context”) before making a decision. The
side information is not subject to any restrictions, but in this paper we assume
that the outcome for the given round is a stochastically function of the side
information shown to the learner. Then, instead of competing with the single
best action, the learner competes with the oracle that knows the mapping that
maps the side information to the outcome distributions and who makes optimal
decisions given this knowledge.

1.1 Related Work

The model of partial monitoring was introduced by Piccolboni and Schindelhauer
[2001]. They designed the algorithm FeedExp and showed for any game, ei-
ther the worst-case expected regret is linear in the time horizon T , or the algo-
rithm achieves expected regret of O(T 3/4) for any outcome sequence. This upper
bound was later improved to O(T 2/3) by Cesa-Bianchi et al. [2006]. In the same
paper, Cesa-Bianchi et al. show that there exists a game whose minimax re-
gret—the worst case regret of the best possible algorithm—scales as Ω(T 2/3).
However, they noted that some games enjoy minimax regret growth rate of
Θ(
√
T ), and posed the problem of determining exactly which games have min-

imax regret rate better than Θ(T 2/3). This problem was solved in the works of
Bartók et al. [2011] against stochastic opponents, while by providing a new algo-
rithm Foster and Rakhlin [2011] showed that the classification of games worked
out by Bartók et al. [2011] continues to hold even against adversarial opponents.
According to the solution, partial-monitoring games with a finite number of ac-
tions and outcomes can be classified into four categories based on the growth
rate of the minimax regret: trivial games with minimax regret 0, easy games
with minimax regret1 of Θ̃(

√
T ), hard games with minimax regret Θ(T 2/3), and

hopeless games with linear minimax regret. The condition that separates easy
games from hard games is the local observability condition (see Definition 2).
In the bandit literature learning with side-information has been considered be-
fore under various conditions, see Auer [2003]; Dud́ık et al. [2011] and references
therein, while Helmbold et al. [2000] considered a special case of our framework
when both the number of actions and outcomes is two, with one action revealing

1 The notations Õ(·) and Θ̃(·) hide polylogarithmic terms.
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the actual outcome, while the other action not yielding any information about
the outcome, the hidden relationship between the side information and hidden
information is deterministic and the loss is the zero-one loss.

2 Problem Definition

An instance of a partial-monitoring game with side-information is described by
the tuple G = (L,H,F), where L ∈ R

N×M is the loss matrix, H ∈ ΣN×M is
the feedback matrix (Σ is the set of feedback symbols), and F ⊆ {f | f : X →
ΔM} is a subset of all functions that map elements from some side-information
set X to the set of outcome distributions. For convenience, we assume that
maxi∈N,j∈M (Li,j) − mini∈N,j∈M (Li,j) ≤ 1, where for a natural number n ∈ N
we used n to denote the set {1, 2, . . . , n}. The partial-monitoring game proceeds
in turns. Before the first turn, both the learner and the opponent is given G
and the opponent secretly chooses a function f ∈ F . In turn t (t = 1, 2, . . .),
first the learner receives the side-information xt ∈ X . Then, the learner chooses
an action It ∈ N , while at the same time the opponent draws an outcome Jt
from the distribution f(xt). No stochastic assumption is made about the side
information sequence, {xt} and, in fact, we also allow xt to be chosen based
on the history Ht−1 = (x1, I1, J1, . . . , xt−1, It−1, Jt−1). After the learner and
the opponent made their decisions, the learner receives the feedback HIt,Jt and
suffers the loss LIt,Jt . It is important to emphasize that the loss is not revealed
to the learner.

The goal of the learner is to minimize his cumulative loss given the knowledge
of the game G. His performance is measured in terms of the regret, defined as
the excess cumulative loss he suffers as compared to the expected cumulative loss
of the oracle that knows f and chooses the action with the smallest expected
loss as a function of the side-information in every round. In other words,

RT =

T∑
t=1

LIt,Jt − min
g∈NX

T∑
t=1

E[Lg(xt),Jt
|Ht−1, xt] .

3 Preliminaries

In this section we introduce the necessary notations and definitions that we will
need. Most of the definitions presented here are taken from Bartók et al. [2011].

Let G = (L,H,F) be a partial-monitoring game. For an action i, the col-
umn vector �i consisting of the elements of the ith row of L is called the loss
vector of action i. Let the probability simplex of dimension n be denoted by
Kn ⊆ R

n. Thus, the set of all outcome distributions is KM . It is easy to see
that the expected loss of action i at time step t given the past and xt equals
E[Li,Jt |Ht−1, xt] = ��i f(xt).

For an action i, let the cell of i be the set of outcome distributions under
which action i is optimal:

Ci = {p ∈ KM | ∀j ∈ N : (�i − �j)�p ≤ 0} .
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It is easy to see that for every i ∈ N , Ci is either empty or a closed convex poly-
tope, with

⋃
i∈N Ci = KM . We call C = {C1, C2, . . . , CN} the cell decomposition

of KM . For clarity of presentation, in this paper we only deal with games that
are non-degenerate: for every action i, Ci is M − 1 dimensional and for i �= j,
Ci �= Cj . We remark that our results generalize to degenerate games, but the
algorithm and its analysis are somewhat more involved.

For an action i ∈ N , we define the signal matrix of i as follows:

Definition 1. For an action i, let α1, α2, . . . , ασi ∈ Σ be the distinct symbols
in the ith row of the feedback matrix H. The signal matrix Si ∈ {0, 1}σi×M is
defined as the incidence matrix of the ith row of the feedback matrix H:

(Si)k,l = I{Hi,l=αk} .

An important property of the signal matrix Si is that if p ∈ KM is the outcome
distribution chosen by the opponent then Sip is the probability distribution over
the set of observations {α1, . . . , αk} induced by p under action i. From now on,
without loss of generality, we assume that the feedback at time step t is presented
as the unit vector corresponding to the received symbol HIt,Jt . We shall denote
this unit vector by Yt.

If for two actions i and j, dim(Ci ∩ Cj) = M − 2 we say that i and j are
neighbors. The set of neighboring action pairs is denoted by N . Now we are
ready to recall the local observability condition from Bartók et al. [2011]:

Definition 2. Let {i, j} ∈ N be two neighboring actions. We say that {i, j}
is locally observable if �i − �j ∈ Im(S�

i ) ⊕ Im(S�
j ). The game is called locally

observable (or we say that it satisfies the local observability condition) if every
neighboring action pair is locally observable. For a pair of distinct action {i, j} ∈
N , a pair of vectors, vi,j , vj,i is called observer vectors for {i, j} if

�i − �j = S�
i vi,j − S�

j vj,i .

If a neighboring action pair is locally observable then the local observability
condition yields the existence of these observer vectors. From now on, for locally
observable neighboring action pairs we shall fix such observer vectors. Note that
the observer vectors are not uniquely defined. We will discuss good choices of
the observer vectors later on.

4 The Algorithm

Bartók et al. [2011] proved that if a game is locally observable then a minimax

regret of Õ(
√
T ) is achievable against a stochastic opponent. Now we extend

their result to partial monitoring with side-information. In particular, we show
that the Õ(

√
T ) regret bound remains true in this richer model.

In this section we describe the algorithm scheme CBP-Side for “Confidence
Bound Partial monitoring with Side-information” that when fed with a method
that estimates the outcome distributions and their uncertainty defines a learning
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strategy. In Section 5 we give a bound on the expected regret as a function of
how fast the uncertainty of the outcome distribution estimates decays. Then,
in Section 6 we present two examples that illustrate how this general bound
translates into actual regret bounds for two different classes of functions F .

The algorithm is a generalization of the algorithm “Confidence Bound Partial
monitoring” (CBP) from Bartók et al. [2012]. Pseudocode for the algorithm is
given in Algorithm 1.

Throughout the algorithm, some statistics S is maintained that is used by the
functions getObsEst and getConfWidth (which are left generic for now).
The statistics might be the whole sequence of observations and actions up to
time step t− 1, or just some average of the observations and maybe the number
of times each action was chosen. After receiving the side-information for time
step t, estimates for the observation probabilities and their confidence widths
are obtained by calling the functions getObsEst and getConfWidth. Then
the algorithm calculates estimates of the loss differences (denoted by Δ̃i,j) for
neighboring action pairs, along with their confidence widths ci,j . If, for some
pair i, j ∈ N the absolute value of the loss-difference estimate is greater than its
confidence width, we know that, with high probability, pt = f(xt) lies in the half
space {p ∈ R

M | sgn(Δ̃i,j)(�i − �j)�p ≥ 0}. Thus, the intersection of all these
half spaces and the probability simplex determines the convex polytope Kt that
pt belongs to (with high probability), giving rise to the set of admissible actions
Q. To compute this set the method getNeighbors computes N (t) = {{i, j} ∈
N : Ci∩Cj ∩ int(Kt) �= ∅}. Then, Q = ∪N (t). Finally, the action It from Q that
has the greatest potential of reducing the confidence width for the next rounds
is chosen and based on the information received the statistics S is updated.

5 Analysis of CBP-Side

In this section we provide an upper bound on the expected regret suffered by
the algorithm on any given game with any plugged-in estimate and confidence
width functions. Note that the upper bound contains the expectation of some
random values that depend on the outcomes drawn randomly at every time step.
In the next sections, we will see how these can be upper-bounded by some (small)
deterministic quantities in some specific cases.

From now on, we use the convention that for any variable v, we denote by
v(t) the value assigned to v in time step t.

Theorem 1. Assume that there exist numbers δ1, δ2, . . . , δT ∈ [0, 1] and a norm
‖ · ‖ such that for every time step t it holds that

P (‖q̂i(t)− Sif(xt)‖ > wi(t)) ≤ δt (1)

for every i ∈ N . Then, the expected regret of CBP-Side on game G = (L,H,F)
can be upper bounded as

E[RT ] ≤
T∑
t=1

Nδt +

T∑
t=1

E [min {4NWItwIt(t), 1}] ,
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Algorithm 1. The algorithm CBP-Side

1: Input: L, H, α
2: Calculate P , N , vi,j , Wk

3: S ←initStatistic() {Some statistics as needed}
4: for t = 1 to T do
5: Receive side information xt

6: for each i ∈ N do
7: q̃i ←getObsEst(S , xt) {Observation distribution estimate}
8: wi ←getConfWidth(S , xt) {Confidence}
9: end for
10: for each {i, j} ∈ N do
11: Δ̃i,j ← v	i,j q̃i − v	j,iq̃j {Loss diff. estimate}
12: ci,j ← ‖vi,j‖∗wi + ‖vj,i‖∗wj {Confidence}
13: if |Δ̃i,j | ≥ ci,j then
14: halfSpace(i, j) ← sgn Δ̃i,j

15: else
16: halfSpace(i, j) ← 0
17: end if
18: end for
19: N (t) ← getNeighbors(P ,N , halfSpace)
20: Q ← ⋃N (t) {Admissible actions}
21: Choose It = argmaxi∈Q(Wiwi) {Wi = maxj ‖vi,j‖∗}
22: Observe Yt

23: S ←updateStatistic(S ,xt, It, Yt)
24: end for

where Wi = maxj ‖vi,j‖∗ with ‖ · ‖∗ being the dual norm of ‖ · ‖.

Proof. For any i, j ∈ N and x ∈ X , letΔi,j(x) denote the expected loss difference

of actions i and j given side-information x, written as Δi,j(x)
�
=(�i − �j)�f(x).

Further, let Δi(x)
�
= maxj Δi,j(x) be the “gap” between the expected loss of

action i and that of an optimal action given side-information x. It is easy
to see that the expected regret of an algorithm can be rewritten as E[RT ] =∑T

t=1 E[ΔIt(xt)]. Let Et be the event that some confidence width fails at time

step t. Then, E[RT ] =
∑T

t=1 E[ΔIt(xt)] ≤
∑T

t=1Nδt +
∑T

t=1 E[ΔIt(xt)I{Ec
t }],

where we used that Δi(x) ≤ 1. Thus, it remains to bound ΔIt(xt) assuming
that for all i ∈ N , ‖q̃i(t)− Sif(xt)‖ ≤ wi(t) holds.

If i and j are in N (t) (that is, they are neighbors at time step t), then Δ̃i,j(t)
is a “good” approximation of Δi,j(xt):

|Δi,j(xt)− Δ̃i,j(t)| =
∣∣(�i − �j)�f(xt)−

(
v�i,j q̃i(t)− v�j,iq̃j(t)

)∣∣
≤ ‖vi,j‖∗ ‖Sif(xt)− q̃i(t)‖+ ‖vj,i‖∗‖Sjf(xt)− q̃j(t)‖
≤ ‖vi,j‖∗ wi(t) + ‖vj,i‖∗ wj(t)
= ci,j(t) . (2)
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We know from line 12 of the algorithm that if {i, j} ∈ N (t) then Δ̃i,j(t) ≤ ci,j .
This together with Equation (2) gives

Δi,j(xt) ≤ 2ci,j . (3)

Let i∗ be an optimal action at time step t (that is, mini �
�
i f(xt) = ��i∗f(xt)).

Then

ΔIt,i∗(t) =

r∑
s=1

Δks−1,ks(t) ,

where It = k0, k1, . . . , kr = i∗ is a sequence of actions such that {ks−1, ks} ∈ N (t)
for all 1 ≤ s ≤ r. This sequence always exists thanks to how the algorithm
constructs the set of admissible actions2. With the help of Equation (3) we get

ΔIt,i∗(t) ≤ 2

r∑
s=1

cks−1,ks(t) = 2

r∑
s=1

(∥∥vks−1,ks

∥∥
q
wks−1(t) +

∥∥vks,ks−1

∥∥
q
wks(t)

)
≤ 4NWItwIt(t) ,

where in the last line we used line 20 of the algorithm and the fact that r ≤ N ,
thus finishing the proof. ()

Remark 1 (On the choice of the observer vectors vi,j .). We mentioned earlier
that the choice of the observer vectors is not unique and thus we have some
freedom in choosing them. Theorem 1 indicates that for different estimators, the
best choice of the observer vectors might differ. In particular, it depends on the
norm the estimate uses: to optimize the bound of Theorem 1, we should choose
the vectors that minimize ‖vi,j‖∗. If the norm used is the 2-norm then there is
a closed form solution for the best vi,j :(

vi,j
−vj,i

)
=
(
S�
i S

�
j

)+
(�i − �j) ,

where A+ denotes the pseudo-inverse of the matrix A.

6 Examples

In this section we demonstrate the power of Theorem 1 through specific examples.

6.1 Linear Side-Information, Least-Squares Estimate

In the first example, the side-information set is the probability simplex Kd of
some dimension d > 0 while the function set F is the set of all linear maps where
the underlying matrix is a stochastic matrix of size M × d. The estimator we

2 For a thorough proof of this statement, we refer the reader to Bartók et al. [2012].
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use is regularized least squares. We introduce the following notations. For every
action i, let θ∗i = SiK ∈ R

σi×d, where K is the matrix underlying the the linear
map f chosen by the opponent (thus, f(x) = Kx). Let ti(s) be the time step
when action i is chosen by the algorithm the sth time. Let ni(t) be the number
of times action i is chosen up to time step t. Then the regularized least squares
estimator is defined by the equation

θ̃i(t) = min
θ∈RM×d

ni(t−1)∑
s=1

(
Yti(s) − θxti(s)

)2
+ λi‖θ‖22 .

For the closed form solution we define the matrices

Xi,t =
(
xti(1) xti(2) · · · xti(ni(t−1))

)
, Yi,t =

(
Yti(1) Yti(2) · · · Yti(ni(t−1))

)
.

Then,

θ̃i(t) = Yi,tX�
i,t

(
λiId +Xi,tX

�
i,t

)−1
,

where Id is the d× d identity matrix. Let Vi,t = λiId +Xi,tX
�
i,t.

For some positive definite matrix S, let ‖ · ‖S denote the S-weighted 2-norm:
‖v‖2S = v�Sv. In the rest of the paper, we will need a number of results, which,
for the sake of completeness, we recite here.

Theorem 2 (Abbasi-Yadkori et al. [2011, Theorem 1]). Let {Ft}∞t=1 a
filtration. Let {ηt}Tt=1 be a real-valued stochastic process such that ηt is Ft-
measurable and ηt is conditionally R-sub-Gaussian for some R ≥ 0. Let {xt}∞t=1

be an R
d-valued stochastic process such that xt is Ft−1-measurable. Let λ > 0.

For any t ≥ 0, define

Vt = λI +

t∑
s=1

xsx
�
s , St =

t∑
s=1

ηsxs .

Then, for any δ > 0, with probability at least 1− δ, for all t ≥ 0,

‖St‖2V −1
t
≤ 2R2 log

(
det(Vt)

1/2 det(λI)−1/2

δ

)
.

Theorem 3 (Abbasi-Yadkori and Szepesvári [2011, Theorem 1]). Let
(x0, Y1), . . . , (xt, Yt+1), xi ∈ R

d, Yi ∈ R
n satisfy the linear model Assumption3 A1

with some L > 0, Θ∗ ∈ R
d×n, tr(Θ�

∗ Θ∗) ≤ S2 and let F = (Ft) be the associated
filtration. Consider the �2-regularized least-squares parameter estimate Θ̂t with
regularization coefficient λ > 0. Let

Vt = λI +

t−1∑
i=0

xix
�
i

3 Reciting this assumption is beyond the scope of this paper. In a nutshell, it says
that xt and Yt are Ft-measurable, E[Yt+1|Ft] = Θ	xt for some matrix Θ, the noise
Yt+1 − E[Yt+1|Ft] is componentwise sub-Gaussian with parameter L.
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be the regularized design matrix underlying the covariates. Define

βt(δ) =

(
nL

√
2 log

det(Vt)1/2 det(λI)−1/2

δ
+ λ1/2S

)2

.

Then, for any 0 < δ < 1 and stopping time N , with probability at least 1− δ,

tr
(

(Θ̂N −Θ∗)�VN (Θ̂N −Θ∗)
)
≤ βN (δ) .

Lemma 1 (Abbasi-Yadkori et al. [2011, Lemma 10]). Let x1, . . . , xt ∈ R
d

be such that for any 1 ≤ s ≤ t, ‖xs‖2 ≤ L. Let Vt = λI +
∑t

s=1 xsx
�
s for some

λ > 0. Then,

det(Vt) ≤ (λ+ tL2/d)d .

In the following lemma z1, z2, . . . ∈ R
d is an arbitrary sequence of d-dimensional

vectors and Vt = λI +
∑t

s=1 zsz
�
s for some λ > 0.

Lemma 2 (Abbasi-Yadkori and Szepesvári [2011, Lemma 10]). The fol-
lowing holds for any t ≥ 1:

t−1∑
k=0

min
(
‖zk‖2V −1

k

, 1)
)
≤ 2 log

det(Vt)

det(λI)
.

Further, when the covariates satisfy ‖zt‖ ≤ cm, t ≥ 0 with some cm > 0 w.p.1
then

log
det(Vt)

det(λI)
≤ (n+ d) log

λ(n+ d) + tc2m
λ(n+ d)

.

With the help of Theorem 1 of Abbasi-Yadkori and Szepesvári [2011] we get that
for any 0 < δt < 1,

tr((θ̃i(t)− θ∗i )Vi,t(θ̃i(t)− θ∗i )�) ≤ d2
(√

2 log
det(Vi,t)1/2

δtλ
d/2
i

+ σiλ
1/2
i

)2

with probability at least 1− δt. Lemma 10 of Abbasi-Yadkori et al. [2011] gives

det(Vi,t) ≤ (λi + ni(t− 1))
d
.

Using the above two inequalities together with tr(A�A) ≥ ‖A‖22 and plugging
in λi = 1 we arrive at

‖(θ̃i(t)− θ∗i )V
1/2
i,t ‖2 ≤ d

(√
d log t+ 2 log(1/δt) + σi

)
.

Now, we are ready to derive the confidence width for the estimate q̃i(t):

‖q̃i(t)− qi(t)‖2 = ‖(θ̃i(t)− θ∗i )xt‖2
≤ ‖(θ̃i(t)− θ∗i )V

1/2
i,t ‖2‖V

−1/2
i,t xt‖2

≤ d
(√

d log t+ 2 log(1/δt) + σi

)
‖xt‖V −1

i,t

�
=wi(t) . (4)

With these definitions we get the following result from Theorem 1:
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Theorem 4. Let G = (L,H,F) be a partial-monitoring game with X = Kd and
F = {x �→ Kx : K ∈ R

M×d,K stochastic}. Then, the regret of CBP-Side run
with the least-squares estimator and confidence widths defined above satisfies

E[RT ] ≤ C1N + C2N
3/2d2

√
T logT

with some G-dependent constants C1, C2 > 0.

Proof. Plugging in the confidence widths from Equation (4) gives

T∑
t=1

min {4NWItwIt(t), 1}

≤ 4N

N∑
i=1

Vi

ni(T )∑
s=1

min {wi(ti(s)), 1} (5)

≤ 4N max
i∈N

Wi

N∑
i=1

√√√√ni(T )

ni(T )∑
s=1

d
(√

d log ti(s) + 2 log(1/δti(s)) + σi

)
min

{
‖xt‖2V −1

i,ti(s)

, 1

}

≤ 4Ndmax
i∈N

Wi

(√
d logT + 2 log(1/δT ) +

N∑
i=1

σi

)
N∑
i=1

√
ni(T )2d logT (6)

≤ 4N3/2d3/2 max
i∈N

Wi

(√
d logT + 2 log(1/δT ) +

N∑
i=1

σi

)√
T 2 logT ,

where in (6) we used Lemma 10 from Abbasi-Yadkori and Szepesvári [2011].
Setting δt = 1/t2 gives the regret bound E[RT ] ≤ C1N + C2N

3/2d2
√
T logT .

()

6.2 Multinomial Logistic Regression

In this section we will consider the case when for any given action the obser-
vations follow a multinomial logit model. A σ-dimensional multinomial logit
model qθ : X → Kσ is defined using a feature map Φ : X → R

σ×D. Here, θ ∈ R
D

is the parameter vector of the model and the dependence of qθk on x is given by

qθk(x) =
exp(ηθk(x))

Nθ(x)
, ηθk(x) = φk(x)�θ , where Nθ(x) =

σ∑
k=1

exp(ηθk(x)) ,

and the feature-vectors (φ�k (x))k=1,...,K are the rows of matrix Φ(x):

Φ(x) =

⎛⎜⎝φ
�
1 (x)

...
φ�K(x)

⎞⎟⎠ .
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The set F is implicitly defined as the set of maps such that the observations, for
all actions, follow some multinomial logit model. More precisely, let Qi be the
set of admissible symbol-distribution models; in this section these will be some
subset of all σi-dimensional multinomial logit models with some feature maps
Φi : X → R

σ×Di . Define Fi = {f : X → KM : Sif ∈ Qi}, where Sif : X → Kσi

is given by (Sif)(x) = Sif(x), x ∈ X . Then, F = ∩i∈NFi. In what follows we
shall assume that F is non-empty. This holds, for example, when the features
underlying all actions correspond to a common underlying discretization of the
side-information set.

As in the previous section, for each action i, the parameters θi of the ith model
are estimated using (constrained) maximum likelihood based on the observation
available for that action. To simplify the presentation of the following develop-
ments, from here on we fix an action i and we will suppress the indexing of the
features, parameters, etc. by the action i. Thus, Φ will denote the feature map
for action i, θ will denote the underlying parameter to be tuned, etc. Thus, the
set of admissible models is Q = {qθ : θ ∈ Θ}, where qθ = (qθk)1≤k≤sn and Θ is
the set of admissible parameters.

The log-likelihood of the data available for the selected action is given by

�t(θ) =

ni(t−1)∑
s=1

σ∑
k=1

Zti(s),k log qθk(xti(s)) , where Zt,k = I{Yt=k}

and ni(·), ti(·) are as in the previous section. To simplify the presentation we
will reindex the variables (Zti(s),k, xti(s), Yti(s)) as (Zτ , xτ , Yτ ; τ = 1, 2, . . .) (e.g.,
Zti(1) is identified with Zτ with τ = 1). Note that the reindexing does not impact
the dependence structure of the variables. In particular, by our assumption, for
any τ > 0 we have Yτ ∼ qθ

∗
k (xτ ) for some θ∗ ∈ Θ. We will also drop the i

subindex of ni(t).
Let us first derive the estimator that we wish to use. A simple calculation

shows that
∂

∂θ
qθk(x) =

σ∑
j=1

{
I{k=j} − pθj (x)

}
φ�j (x).

Using
∑σ

k=1 Zτ,k = 1, from this we get that

∂

∂θ
�t(θ) = Dt − gt(θ), where

Dt =

σ∑
k=1

n(t−1)∑
τ=1

Zτ,kφk(xτ ), gt(θ) =

σ∑
k=1

n(t−1)∑
τ=1

qθk(xτ )φk(xτ ) .

Let θ̂t be the maximum likelihood solution: Dt = gt(θ̂t). We will show below

that θ̂t, the maximizer of the likelihood �t(θ) is uniquely defined. Since θ̂t might
be outside of the set of admissible parameters Θ, we “project it back” to Θ. Our
final estimator θ̂t is defined as the

θ̃t = argminθ∈Θ ‖gt(θ) − gt(θ̂t)‖2V −1
t
.
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Here and in what follows, for a positive definite matrix S " 0. Further,

Vt =

n(t−1)∑
τ=1

σ∑
k=1

φk(xτ )φk(xτ )� .

The role of Vt will become clear in the analysis. Note that in a practical imple-
mentation first one should check θ̂t ∈ Θ because if this holds then θ̃t = θ̂t.

To ensure that Vt is invertible we assume that the algorithm generates Dσ
“virtual data points” (xτ )τ=1,...,Dσ such that

VDσ,k
�
=

Dσ∑
τ=1

φk(xτ )φk(xτ )� � λ0I " 0, 1 ≤ k ≤ σ . (7)

Note that this must be done for each action, independently of each other. The
corresponding observations (Yτ )τ=1,...,Dσ are arbitrarily assigned to one of the
available features. (This initialization allows one to encode prior information
about the models, too.)

In what follows we shall assume that the following holds:

Assumption A1. The following are assumed to hold:

(i) The setΘ is such that for all 1 ≤ k ≤ σ it holds that 0 < infθ∈Θ,x∈X qθk(x) ≤
supθ∈Θ,x∈X qθk(x) < 1.

(ii) The constant CL > 0 is known such that for any x ∈ X , θ, θ′ ∈ Θ, 1 ≤ k ≤
σ, |pθk(x)− pθ′k (x)| ≤ CL‖Φ(x)(θ − θ′)‖, i.e., p·k(x) is CL-Lipschitzian.

Now, we are ready to state our first result:

Lemma 3. Let Assumption A1 hold. Define

ετ,k = Zτ,k − qθ∗k (xτ ), ξt =

n(t−1)∑
τ=1

σ∑
k=1

ετ,kφk(xτ ) .

Then, if (7) holds for some λ0 > 0 then there exists some constant C > 0 such
that for any 1 ≤ j ≤ σ, x ∈ X, t ≥ 1,

|qθ∗j (x) − qθ̃tj (x)| ≤ C‖ξt‖V −1
t

√√√√ σ∑
k=1

‖φk(x)‖2
V −1
t

.

Note that the constant can be computed as a function of the upper and lower
bounds for the logit model values in Assumption A1(i) and λ0.

Proof. We follow the constructions from Filippi et al. [2010]. The Hessian of the
log-likelihood takes the form

Ht(θ)
�
=
∂

∂θ
gt(θ) =

σ∑
j,k=1

n(t−1)∑
τ=1

[
(I{k=j} − qθj (xτ ))qθk(xτ )

]
φk(xτ )φ�j (xτ ) .



Partial Monitoring with Side Information 317

Using (A1)(i), one can prove that there exists some constant CH > 0 such that
for any θ ∈ Θ, Ht(θ) � CHVt � CHVD � CHλ0I " 0 holds. Now define

Ĥt =

∫ 1

0

∂

∂θ
gt
(
uθ∗ + (1 − u)θ̃t

)
du .

Since gt is continuous, by the Fundamental Theorem of Calculus,

gt(θ∗)− gt(θ̃t) = Ĥt(θ∗ − θ̃t). (8)

Now, since Ht(θ) � CHVt " 0, Ĥt is non-singular and in particular

Ĥ−1
t � 1

CH
V −1
t . (9)

By Assumption A1(ii) and (8),

|qθ∗j (x)− qθ̃tj (x)|2 ≤ C2
L

σ∑
k=1

∣∣∣〈φk(x), θ∗ − θ̃t〉
∣∣∣2

≤ C2
L

σ∑
k=1

∣∣∣〈φk(x), Ĥ−1
t (gt(θ∗)− gt(θ̃t))〉

∣∣∣2 .
Applying Cauchy-Schwartz and (9) gives

〈φk(x), Ĥ−1
t (gt(θ∗)− gt(θ̃t))〉 ≤ ‖φk(x)‖Ĥ−1

t
‖gt(θ∗)− gt(θ̃t)‖Ĥ−1

t

≤ 1

CH
‖φk(x)‖V −1

t
‖gt(θ∗)− gt(θ̃t)‖V −1

t
.

Let us now bound the second term on the right-hand side:

‖gt(θ∗)− gt(θ̃t)‖V −1
t
≤ ‖gt(θ∗)− gt(θ̂t)‖V −1

t
+ ‖gt(θ̂t)− gt(θ̃t)‖V −1

t

≤ 2‖gt(θ∗)− gt(θ̂t)‖V −1
t

Here, the second inequality follows from the optimizer property of θ̃t and because
θ∗ ∈ Θ by assumption. Now, it remains to put together the inequalities and to
notice that ξt = gt(θ̂t)− gt(θ∗). ()
Now, we use the result of Lemma 3 to construct the confidence widths wi(t).

First, we upper bound the term ‖ξt‖V −1
t

. Define Vt,k =
∑n(t−1)

τ=1 φk(xτ )φk(xτ )�

to get

‖ξt‖V −1
t
≤

σ∑
k=1

∥∥∥∥∥∥
n(t−1)∑
τ=1

ετ,kφk(xτ )

∥∥∥∥∥∥
V −1
t

≤
Dσ∑
τ=1

σ∑
k=1

‖φk(xτ )‖V −1
Dσ,k

+

σ∑
k=1

∥∥∥∥∥∥
n(t−1)∑
τ=Dσ+1

ετ,kφk(xτ )

∥∥∥∥∥∥
V −1
t,k

.
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Here we separated the terms that are obtained during the initialization as for
those terms ετ,k are arbitrary (they do not posses the martingale property pos-
sesed by ετ,k coming after the initialization phase). Assuming λ0 = 1 and that
the 2-norm of φk(xτ ) for any k and τ is upper bounded by the R > 0, we get

‖ξt‖V −1
t
≤ RDσ2 +

σ∑
k=1

∥∥∥∥∥∥
n(t−1)∑
τ=Dσ+1

ετ,kφk(xτ )

∥∥∥∥∥∥
V −1
t,k

.

Now, Theorem 1 of Abbasi-Yadkori et al. [2011] gives

‖ξt‖V −1
t
≤ RDσ2 +

σ∑
k=1

√
2 log

det(Vt,k)1/2

δn(t−1)

≤ RDσ2 + σ
√

2D(1 + n(t− 1)R2/D) + 2 log(1/δn(t−1)) ,

Thus the confidence width w(t) is defined as

w(t)
�
=C

(√(
2D(1 + n(t− 1)R2/D) + 2 log(1/δn(t−1))

)
+RDσ2

)
·√√√√ σ∑

k=1

‖φk(x)‖2
V −1
t

.

Note that this confidence bound must be computed for each action.
Now we state the regret bound result using Theorem 1.

Theorem 5. With the estimate and confidence function described above, CBP-
Side achieves expected regret

E [RT ] ≤ C3N + C4N
3/2D2

√
T log T ,

where C3, C4 > 0 are some G-dependent constants.

Proof. The proof follows the same steps as that of Theorem 4 and thus it is
omitted. ()

7 Conclusions

In this paper we have considered partial-monitoring problems when the learner
receives side information before he has to make a decision. Our solution shows
that the strategy of Bartók et al. [2012] can be successfully generalized to this
setting. The main idea is to use estimators that estimate the distributions of the
observable symbols for each action given the side information. We have shown
how the knowledge of these distributions (and confidence bounds for these dis-
tributions) can be used to make inferences about the losses of the individual ac-
tions, and thus eliminate suboptimal actions. As this approach does not attempt
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to directly estimate the outcome distribution, building suitable, computation-
ally efficient estimators with good confidence bounds is expected to be less of a
problem than if we attempted to estimate the distribution of the (unobserved)
outcomes. However, estimating this distribution might allow the better use of
information and thus may improve the dependence on the number of arms. It
remains for future work to see if constructing such an estimator is feasible. In gen-
eral, the dependence on the various problem dependent constants in our bounds
is expected to be improvable, too. An interesting (and probably challenging)
problem is to derive an estimator that matches existing lower bounds known for
the bandit case such as given by Auer [2003]. Finally, we note that our results
apply even when the side information is generated in a non-oblivious adversarial
fashion. This is due to the strong pointwise bounds used in the construction of
the confidence bounds.
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PAC Bounds for Discounted MDPs
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Abstract. We study upper and lower bounds on the sample-complexity
of learning near-optimal behaviour in finite-state discounted Markov De-
cision Processes (mdps). We prove a new bound for a modified version of
Upper Confidence Reinforcement Learning (ucrl) with only cubic de-
pendence on the horizon. The bound is unimprovable in all parameters
except the size of the state/action space, where it depends linearly on the
number of non-zero transition probabilities. The lower bound strength-
ens previous work by being both more general (it applies to all policies)
and tighter. The upper and lower bounds match up to logarithmic factors
provided the transition matrix is not too dense.

Keywords: Reinforcement learning, sample-complexity, exploration ex-
ploitation, PAC-MDP, Markov decision processes.

1 Introduction

The goal of reinforcement learning is to construct algorithms that learn to act
optimally, or nearly so, in unknown environments. In this paper we restrict
our attention to finite state discounted mdps with unknown transitions, but
known rewards.1 The performance of reinforcement learning algorithms in this
setting can be measured in a number of ways, for instance by using regret or pac
bounds [Kak03]. We focus on the latter, which is a measure of the number of
time-steps where an algorithm is not near-optimal with high probability. Many
previous algorithms have been shown to be pac with varying bounds [Kak03,
SL05, SLW+06, SLL09, SS10, Aue11].

We construct a new algorithm, ucrlγ, based on Upper Confidence Reinforce-
ment Learning (ucrl) [AJO10] and prove a pac bound of

Õ

(
T

ε2(1− γ)3
log

1

δ

)
.

where T is the number of non-zero transitions in the unknown mdp. Previously,
the best published bound [SS10] is

Õ

(
|S ×A|
ε2(1− γ)6

log
1

δ

)
1 Learning reward distributions is substantially easier than transitions, so is omitted
for clarity as in [SS10].

N.H. Bshouty et al. (Eds.): ALT 2012, LNAI 7568, pp. 320–334, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Our bound is substantially better in terms of the horizon, 1/(1− γ), but can be
worse if the state-space is very large compared to the horizon and the transition
matrix is dense. A bound with quartic dependence on the horizon has been
shown in [Aue11], but this work is still unpublished.

We also present a matching (up to logarithmic factors) lower bound that is
both larger and more general than the previous best given by [SLL09].

2 Notation

Proofs of the type found in this paper tend to use a number of complex magic
constants. Readers will have an easier time if they consult the table of constants
found in the appendix.

General. N = {0, 1, 2, · · · } is the natural numbers. For the indicator function
we write [[x = y]] = 1 if x = y and 0 if x �= y. We use ∧ and ∨ for logical and/or
respectively. If A is a set then |A| is its size and A∗ is the set of all finite ordered
subsets. Unless otherwise mentioned, log represents the natural logarithm. For
random variable X we write EX and VarX for its expectation and variance re-
spectively. We make frequent use of the progression defined recursively by z1 := 0
and zi+1 := max {1, 2zi}. Define a set Z(a) := {zi : 1 ≤ i ≤ arg mini {zi ≥ a}}.
We write Õ (·) for big-O, but where logarithmic multiplicative factors are
dropped.

Markov Decision Process. An mdp is a tuple M = (S,A, p, r, γ) where S
and A are finite sets of states and actions respectively. r : S → [0, 1] is the
reward function. p : S ×A × S → [0, 1] is the transition function and γ ∈ (0, 1)
the discount rate. A stationary policy π is a function π : S → A mapping a
state to an action. We write ps

′
s,a as the probability of moving from state s to s′

when taking action a and ps
′
s,π := ps

′
s,π(s). The value of policy π in M and state

s is V π
M (s) := r(s) + γ

∑
s′∈S p

s′
s,π(s)V

π
M (s′). We view V π

M either as a function

V π
M : S → R or a vector V π

M ∈ R
|S| and similarly ps,a ∈ [0, 1]|S| is a vector.

ps,a · V π
M :=

∑
s′ p

s′
s,aV

π
M (s′) is the scalar product. The optimal policy of M is

defined π∗M := arg maxπ V
π
M . Common mdps are M , M̂ and M̃ , which represent

the true mdp, the estimated mdp using empirical transition probabilities and a
model. We write V := VM , V̂ := V

M̂
and Ṽ := V

M̃
for their values respectively.

Similarly, π̂∗ := π∗
M̂

and in general, variables with an mdp as a subscript will be
written with a hat, tilde or nothing as appropriate and the subscript omitted.

3 Estimation

In the next section we will introduce the new algorithm, but first we give an
intuitive introduction to the type of parameter estimation required to prove
sample-complexity bounds for mdps. The general idea is to use concentration
inequalities to show the empiric estimate of a transition probability approaches
the true probability exponentially fast in the number of samples gathered. There
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are many such inequalities, each catering to a slightly different purpose. We im-
prove on previous work by using a version of Bernstein’s inequality, which takes
variance into account (unlike Hoeffding). The following example demonstrates
the need for a variance dependent concentration inequality when estimating the
value functions of mdps. It also gives insight into the workings of the proof in
the next two sections.

s0
r = 1

s1
r = 0

1− p

p

1− q

q

Consider the mdp on the right with two states and one
action where rewards are shown inside the states and tran-
sition probabilities on the edges. We are only concerned
with how well the value can be approximated. Assume
p > γ, q arbitrarily large (but not 1) and let p̂ be the
empiric estimate of p. By writing out the definition of the
value function one can show that∣∣∣V (s0)− V̂ (s0)

∣∣∣ ≈ |p̂− p|
(1− γ)2

. (1)

Therefore if V − V̂ is to be estimated with ε accuracy, we need |p̂−p| < ε(1−γ)2.
Now suppose we bound |p̂− p| via a standard Hoeffding bound, then with high
probability |p̂ − p| �

√
L/n where n is the number of visits to state s0 and

L = log(1/δ). Therefore to obtain an error less than ε(1 − γ)2 we need n >
L

ε2(1−γ)4 visits to state s0, which is already too many for a bound in terms of

1/(1−γ)3. If Bernstein’s inequality is used instead, then |p̂−p| �
√
Lp(1− p)/n

and so n > Lp(1−p)
ε2(1−γ)4 is required, but Equation (1) depends on p > γ. Therefore

n > L
ε2(1−γ)3 visits are sufficient. If p < γ then Equation (1) can be improved.

4 Upper Confidence Reinforcement Learning Algorithm

ucrl is based on the optimism principle for solving the exploration/exploitation
dilemma. It is model-based in the sense that at each time-step the algorithm acts
according to a model (in this case an mdp, M̃) chosen from a model class. The
idea is to choose the smallest model class guaranteed to contain the true model
with high probability and act according to the most optimistic model within this
class. With a good choice of model class this guarantees a policy that biases its
exploration towards unknown states that may yield good rewards, while avoiding
states that are known to be bad. The approach has been successful in obtaining
uniform sample complexity (or regret) bounds in various domains where the ex-
ploration/exploitation problem is an issue [LR85, SL05, AO07, AJO10, Aue11].
We modify ucrl2 of Auer and Ortner (2010) to a new algorithm, ucrlγ, given
below.

We start our analysis by considering a restricted setting where for each
state/action pair in the true mdp there are at most two possible next-states,
which are known. We will then apply the algorithm and bound in this setting to
solve the general problem.
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Assumption 1. For each (s, a) pair the true unknown mdp satisfies ps
′
s,a = 0

for all but two s′ ∈ S denoted sa+, sa− ∈ S. Note that sa+ and sa− are dependent
on (s, a) and are known to the algorithm.

Algorithm 1. ucrlγ

1: t = 1, k = 1, n(s, a) = n(s, a, s′) = 0 for all s, a, s′ and s1 is the start state.
2: v(s, a) = v(s, a, s′) = 0 for all s, a, s′

3: H := 1
1−γ

log 8|S|
ε(1−γ)

and wmin := ε(1−γ)
4|S|

4: δ1 := δ
2|S×A|

(
log2 |S| log2 1

wmin(1−γ)

)−1

and L1 := log 2
δ1

5: m := 1280L1
ε2(1−γ)2

(
log log 1

1−γ

)2 (
log |S|

ε(1−γ)

)
log 1

ε(1−γ)

6: loop

7: p̂sa
+

s,a := n(s, a, sa+)/max {1, n(s, a)}
8: Mk :=

{
M̃ : |p̃sa+s,a − p̂sa

+

s,a | ≤ ConfidenceInterval(p̃sa
+

s,a , n(s, a)), ∀(s, a)
}

9: M̃ = ExtendedValueIteration(Mk)
10: πk = π̃∗

11: repeat
12: Act
13: until v(st−1, at−1) ≥ max {mwmin, n(st−1, at−1)} and n(st−1, at−1) <

|S|m
1−γ

14: Update(st−1, at−1) and Delay and k = k + 1

15: function Delay
16: for j = 1 → H do
17: Act

18: function Update(s, a)
19: n(s, a) = n(s, a) + v(s, a) and n(s, a, s′) = n(s, a, s′) + v(s, a, s′)∀s′
20: v(s, a) = v(s, a, ·) = 0

21: function Act
22: at = πk(st)
23: st+1 ∼ pst,at � Sample from mdp
24: v(st, at) = v(st, at) + 1 and v(st, at, st+1) = v(st, at, st+1) + 1 and t = t+ 1

25: function ExtendedValueIteration(M)

26: return optimistic M̃ ∈ M such that V ∗
M̃
(s) ≥ V ∗

M̃′(s) for all s ∈ S and M̃ ′ ∈ M.

27: function ConfidenceInterval(p, n)

28: return min

{√
2L1p(1−p)

n
+ 2L1

3n
,
√

L1
2n

}

Extended Value Iteration. The function ExtendedValueIteration is as
used in [SL08]. The only difference is the definition of the confidence intervals,
which are now tighter for small/large values of p̂.

Episodes and Phases. ucrlγ operates in episodes, which are contiguous blocks
of time-steps ending when update is called. The length of each episode is not
fixed, instead, an episode ends when either the number of visits to a state/action
pair reaches mwmin for the first time or has doubled since the end of the last
episode. We often refer to time-step t and episode k and unless there is ambiguity
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we will not define k and just assume it is the episode in which t resides. A
delay phase is the period of H := 1

1−γ log 8|S|
ε(1−γ) contiguous time-steps where

ucrlγ is in the function delay, which happens immediately after an update.
An exploration phase is a period of H time-steps starting at time t that is not
in a delay phase and where Ṽ πk(st)−V πk(st) ≥ ε/2. Exploration phases do not
overlap with each other, but may overlap with delay phases. More formally, the
starts of exploration phases, t1, t2, · · · , are defined inductively with t0 := −H .

ti := min
{
t : t ≥ ti−1 +H ∧ Ṽ πk(st)− V πk(st) ≥ ε/2 ∧ t not in a delay phase

}
Note there need not, and with high probability will not, be infinitely many
such ti. The exploration phases are only used in the analysis, they are not
known to ucrlγ. We will later prove that the maximum number of updates
is Umax := |S ×A| log2

|S|
wmin(1−γ) and that with high probability the number of

exploration phases is bounded by Emax := 4m|S ×A| log2 |S| log2
1

wmin(1−γ) . We

write nt(s, a) to be the value of n(s, a) at time-step t.

5 Upper PAC Bounds

We present two new pac bounds. The first improves on all previous analyses, but
relies on Assumption 1. The second is more general and optimal in all terms ex-
cept the number of states, where it depends on the number of non-zero transition
probabilities, T , rather than |S ×A|. This can be worse than the state-of-the-art
if the transition matrix is dense, but by at most a factor of |S|.

Theorem 1. Let M be the true mdp satisfying Assumption 1 and 0 < ε ≤ 1
and s1:t the sequence of states seen up to time t. Then

P

{ ∞∑
t=1

[[V ∗(st)− V ucrlγ(s1:t) > ε]] > HUmax +HEmax

}
< δ.

where V ucrlγ(s1:t) is the expected discounted value of ucrlγ from s1:t.

If lower order terms are dropped then

HUmax +HEmax ∈ Õ
(
|S ×A|
ε2(1− γ)3

log
1

δ

)
.

Theorem 2. Let T be the unknown number of non-zero transitions in the true
mdp with 0 < ε ≤ 1. Then there exists a modification of ucrlγ (see end of this
section) such that

P

{ ∞∑
t=1

[[V ∗(st)− V ucrlγ(s1:t) > ε]] >
T

|S ×A|H (Umax + Emax)

}
< δ.

If the lower order terms are dropped then the modified pac bound is of order

Õ

(
T

ε2(1− γ)3
log

1

δ

)
.
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Before the proofs, we briefly compare Thereom 2 with the more recent work
on the sample complexity of reinforcement learning when a generative model is
available [AMK12]. In that paper they obtain a bound equal (up to logarithmic
factors) to that of Theorem 2, but where the dependence on the number of states
is linear. The online version of the problem studied in this paper is harder in
two ways. Firstly, access to a generative model allows you to obtain independent
samples from any state/action pair without needing to travel through the model.
Secondly, and more subtly, the difference bounded in [AMK12] is |V ∗(s)− V̂ ∗(s)|
rather than the more usual |V ∗(s)−V π̂∗

(s)|, which is closer to what we require.
Unfortunately, bounding the latter quantity appears to be somewhat more chal-
lenging due to subtle additional dependencies. Note that one can easily translate
from the first type of bound to the second, but a naive method costs a factor of
1/(1 − γ). In fact, it seems there is no clear way to modify the work in either
this paper or theirs to achieve a bound on |V ∗(s) − V π̂∗

(s)| that is both linear
in the state space and cubic in the horizon, although either is possible at the
expense of the other. It may eventually be a surprising fact that learning with
the generative model is no easier than the online case considered in this paper.

Proof Overview. The proof of Theorem 1 borrows components from the work
of [AJO10], [SL08] and [SS10]. It also shares similarities with the proofs in
[AMK12], although these were independently and simultaneously discovered.

1. Bound the number of updates by Õ
(
|S ×A| log 1

ε(1−γ)
)

, which follows from

the algorithm. Since a delay phase only occurs after an update, the number
of delaying phases is also bounded by this quantity.

2. Show that the true Markov Decision Process, M , remains in the model class
Mk for all k with high probability.

3. Use the optimism principle to show that if M ∈ Mk and V ∗ − V ucrlγ > ε
then Ṽ πk − V πk > ε/2. This key fact shows that if ucrlγ is not nearly-
optimal at some time-step t then the true value and model value of πk differ
and so some information is (probably) gained by following this policy.

4. The most complex part of the proof is then to show that the information gain is
sufficiently quick to tightly bound the number of exploration phases by Emax.

5. Note that V ∗(st) − V ucrlγ(s1:t) > ε implies t is in a delay or exploration
phase. Since with high probability there are at most Umax + Emax of these
phases, and both phases are exactly H time-steps long, the number of time-
steps when ucrlγ is not ε-optimal is at most HUmax +HEmax.

Weights and Variances. We define the weight2 of state/action pair (s, a) as
follows.

wπ(s, a|s′) := [[(s′, π(s′)) = (s, a)]] + γ
∑
s′′
ps

′′
s′,π(s′)w

π(s, a|s′′)

wt(s, a) := wπk(s, a|st).
As usual, w̃ and ŵ are defined as above but with p replaced by p̃ and p̂ re-
spectively. Think of wt(s, a) as the expected number of discounted visits to

2 Also called the discounted future state-action distribution in [Kak03].



326 T. Lattimore and M. Hutter

state/action pair (s, a) while following policy πk starting in state st. The im-
portant point is that this value is approximately equal to the expected number
of visits to state/action pair (s, a) within the next H time-steps. We also define
the local variances of the value function. These measure the variability of values
while following policy π.

σπ(s, a)2 := ps,a · V π2

− [ps,a · V π]2 and σ̃π(s, a)2 := p̃s,a · Ṽ π2

− [p̃s,a · Ṽ π]2.

Knownness. We define the knownness index of state s at time t as

κt(s, a) := max

{
zi : zi ≤

nt(s, a)

mwt(s, a)

}
,

where m is as in the preamble of the algorithm above. The idea will be that
if all states are sufficiently well known then ucrlγ will be ε-optimal. What we
will soon show is that states with low weight need not have their transitions
approximated as accurately as those with high weight. Therefore fewer visits to
these states are required. Conversely, states with high weight need very accurate
estimates of their transition probabilities. Fortunately, these states are precisely
those we expect to visit often. By carefully balancing these factors we will show
that all states become known after roughly the same number of exploration
phases.

The Active Set. State/action pairs with very small wt(s, a) cannot influence
the differences in value functions. Thus we define an active set of states where
wt(s, a) is not tiny. At each time-step t define the active set Xt by

Xt :=

{
(s, a) : wt(s, a) >

ε(1− γ)

4|S| =: wmin

}
.

We further partition the active set by knownness and weights.

ιt(s, a) := min

{
zi : zi ≥

wt(s, a)

wmin

}
Xt,κ,ι := {(s, a) : (s, a) ∈ Xt ∧ κt(s, a) = κ ∧ ιt(s, a) = ι}

An easy computation shows that the indices κ and ι are contained in Z(|S|) and
Z( 1

(1−γ)wmin
) respectively. We write the joint index set,

K × I := Z(|S|)×Z(
1

(1 − γ)wmin
).

Analysis. Space does not permit us to provide proofs for all results. Simple
proofs are omitted while time-consuming ones are often only sketched. All details
can be found in the technical report [LH12]. The proof of Theorem 1 follows easily
from three key lemmas.

Lemma 3. The following hold:

1. The total number of updates is bounded by Umax := |S ×A| log2
|S|

wmin(1−γ) .
2. If M ∈ Mk and t is not in a delay phase and V ∗(st)−V ucrlγ(s1:t) > ε then

Ṽ πk(st)− V πk(st) > ε/2.
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Lemma 4. M ∈Mk for all k with probability at least 1− δ/2.

Lemma 5. The number of exploration phases is bounded by Emax with proba-
bility at least 1− δ/2.

The proofs of the lemmas are delayed while we apply them to prove Theorem 1.

Proof of Theorem 1. By Lemma 4, M ∈ Mk for all k with probability
1− δ/2. By Lemma 5 we have that the number of exploration phases is bounded
by Emax with probability 1 − δ/2. Now if t is not in a delaying or exploration
phase and M ∈ Mk then by Lemma 3, ucrlγ is nearly-optimal. Finally note
that the number of updates is bounded by Umax and so the number of time-steps
in delaying phases is at most HUmax. Therefore ucrlγ is nearly-optimal for all
but HUmax +HEmax time-steps with probability 1− δ. �
We now turn our attention to proving Lemmas 3, 4 and 5. Of these, only Lemma
5 presents a substantial challenge.

Proof of Lemma 3. For part 1 we note that no state/action pair is updated
once it has been visited more than |S|m/(1−γ) times. Since updates happen only
when the visit counts would double, and only start when they are at leastmwmin,
the number of updates to pair (s, a) is bounded by log2

|S|
wmin(1−γ) . Therefore the

total number of updates is bounded by Umax := |S ×A| log2
|S|

wmin(1−γ) .
The proof of part 2 is closely related to the approach taken by [SL08]. Re-

call that M̃ is chosen optimistically by extended value iteration. This gener-
ates an mdp, M̃ , such that V ∗

M̃
(s) ≥ V ∗

M̃ ′ (s) for all M̃ ′ ∈ Mk. Since we

have assumed M ∈ Mk we have that Ṽ πk(s) ≡ V ∗
M̃

(s) ≥ V ∗
M (s). Therefore

Ṽ πk(st)−V ucrlγ(s1:t) > ε. Finally note that t is a non-delaying time-step and so
policy of ucrlγ will remain stationary and equal to πk for at least H time-steps.
Using the definition of the horizon, H , we have that |V ucrlγ(s1:t) − V πk(st)| <
ε/2. Therefore Ṽ πk(st)− V πk(st) > ε/2 as required. �

Proof of Lemma 4. In the previous lemma we showed that there are at most
Umax updates where exactly one state/action pair is updated. Therefore we only
need to check M ∈ Mk after each update. For each update let (s, a) be the
updated state/action pair and apply the best of either Bernstein or Hoeffding
inequalities3 to show that |p̂sa+s,a − psa

+

s,a | ≤ ConfidenceInterval(psa
+

s,a , n(s, a)))

with probability 1 − δ1. Setting δ1 := δ
2Umax

and applying the union bound
completes the proof. �
We are now ready to work on the Lemma 5, which gives a high-probability bound
on the number of exploration phases. First we will show that if t is the start of
an exploration phase then there exists a (κ, ι) such that |Xt,κ,ι| > κ. Since Xt,κ,ι

3 The application of these inequalities is somewhat delicate since although the samples
from state action pair (s, a) are independent by the Markov property, they are not
independent given the number of samples from (s, a). For a detailed discussion, and
a proof that using these bounds is theoretically sound, see [SL08].
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consists of active states with similar weights, we expect their visit counts to
increase at approximately the same rate. More formally we show that:

1. If t is the start of an exploration phase then there exists (κ, ι) such that
|Xt,κ,ι| > κ.

2. If |Xt,κ,ι| > κ for sufficiently many t then sufficient information is gained for
an update occur.

3. Combining the results above with the fact that there at most Umax updates
completes the result.

Lemma 6. Let t be a non-delaying time-step and assumeM ∈Mk. If |Xt,κ,ι| ≤
κ for all (κ, ι) then |Ṽ πk(st)− V πk(st)| ≤ ε/2.

The full proof is long, technical and may be found in the associated technical
report [LH12]. We provide a sketch, but first we need some useful results about
mdps and the differences in value functions. The first shows that less accurate
transition probabilities are required for low-weight states than their high-weight
counter parts. The second lemma formalises our intuitions in Section 3, motivates
the use of Bernstein’s inequalities and is the key observation to improve on the
unpublished work in [Aue11], which has quartic dependence on the horizon.

Lemma 7. Let M and M̃ be two Markov decision processes differing only in
transition probabilities and π be a stationary policy then

V π(st)− Ṽ π(st) = γ
∑
s,a

wπ(s, a|st)(ps,a − p̃s,a) · Ṽ π. (2)

Proof sketch. Expand and rearrange the definition of the value functions. �

Lemma 8 (Sobel 1982). For any MDP M̃ , stationary policy π and state s′,∑
s,a

w̃π(s, a|s′)σ̃π(s, a)2 ≤ 1

γ2(1 − γ)2
. (3)

Proof sketch of Lemma 6. For ease of notation we drop references to πk.

We approximate wt(s, a) ≈ w̃t(s, a) and |(ps,a − p̃s,a) · Ṽ | �
√

L1σ̃(s,a)2

nt(s,a)
. Using

Lemma 7

|Ṽ (st)− V (st)| �

∣∣∣∣∣∣
∑

s,a∈Xt

wt(s, a)(ps,a − p̃s,a) · Ṽ

∣∣∣∣∣∣ (4)

�
∑

s,a∈Xt

wt(s, a)

√
L1σ̃(s, a)2

nt(s, a)
�
∑
κ,ι

∑
s,a∈Xt,κ,ι

√
L1w̃t(s, a)σ̃(s, a)2

κm
(5)

≤
∑
κ,ι

√√√√L1|Xt,κ,ι|
κm

∑
s,a∈Xt,κ,ι

w̃t(s, a)σ̃t(s, a)2 ≤

√
L1|K × I|
mγ2(1− γ)2

, (6)

where in Equation (4) we used Lemma 7 and the fact that states not in Xt

are visited very infrequently. In Equation (5) we used the approximations for
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(p − p̃) · Ṽ , the definition of Xt,κ,ι and the approximation w ≈ w̃. In Equation
(6) we used the Cauchy-Schwartz inequality,4 the fact that κ ≥ |Xt,κ,ι| and
Lemma 8. Substituting

m :=
1280L1

ε2(1− γ)2

(
log log

1

1− γ

)2(
log

|S|
ε(1− γ)

)
log

1

ε(1− γ)

completes the proof. The extra terms in m are needed to cover the errors in the
approximations made here. �
The full proof requires formalising the approximations made at the start of the
sketch above. The second approximation is comparatively easy and follows from
the definition of the confidence intervals. Showing that w(s, a) ≈ w̃(s, a) requires
substantial work.

We have shown in Lemma 6 that if the value of ucrlγ is not ε-optimal then
|Xt,κ,ι| must be greater than κ for some (κ, ι). Now we show that this cannot
happen too often except with low probability. This will be sufficient to bound the
number of exploration phases and therefore bound the number of times ucrlγ
is not ε-optimal. Let t be the start of an exploration phase and define νt(s, a) to
be the number of visits to state s within the next H time-steps. Formally,

νt(s, a) :=

t+H−1∑
i=t

[[si = s ∧ πk(si) = a]].

The following lemma captures our intuition that state/action pairs with high
wt(s, a) will, in expectation, be visited more often.

Lemma 9. Let t be the start of an exploration phase and wt(s, a) ≥ wmin then
Eνt(s, a) ≥ wt(s, a)/2.

Proof of Lemma 5. Let N := |S ×A|m, where m is as in the proof of Lemma
6 or the appendix. We proceed in two stages. First we bound the total number
of useful visits before |Xt,κ,ι| ≤ κ. Note that if the knownness, κ, is equal to |S|
then |Xt,κ,ι| ≤ κ is vacuously true because the number of active state/action
pairs is bounded by |S|. We then use this show that the number of exploration
phases is at most Õ (N) with high probability.

Bounding the Number of Useful Visits. A visit to state/action pair (s, a)
in exploration phase starting at time-step t is (κ, ι)-useful if (s, a) ∈ Xt,κ,ι

and |Xt,κ,ι| > κ. Fixing a (κ, ι) we bound the number of (κ, ι)-useful vis-
its to state/action pair (s, a). Suppose t1 < t2 with t1 the start of an ex-
ploration phase and (s, a) ∈ Xt1,κ,ι. Therefore nt1(s, a) < κwιm. Now if
nt2(s, a) − nt1(s, a) ≥ κwιm then an update ocurrs and for every t3 ≥ t2
such that ιt(s, a) = ι, κt(s, a) > κ. Therefore for each (κ, ι) pair there at most
|S ×A|mwικ ≡ Nwικ visits that are (κ, ι)-useful.

Bounding the Number of Exploration Phases. Let t be the start of an
exploration phase. Therefore Ṽ πk(st)−V πk(st) > ε/2 and so by Lemma 6 there
exists a (κ, ι) such that |S| ≥ |Xt,κ,ι| > κ. For each (κ, ι), let Eκ,ι be the number

4 |〈1, v〉| ≤ ‖1‖2 ‖v‖2.
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of exploration phases where |Xt,κ,ι| > κ. We shortly show that P {Eκ,ι > 4N} <
δ1, which allows us to apply the union bound over all (κ, ι) pairs to show there
are at most Emax := 4N |K × I| exploration phases with probability at least
1− δ1|K × I| ≡ 1− |K × I| δ

2Umax
> 1− δ/2.

Bounding P {Eκ,ι > 4N}. Consider the sequence of exploration phases,
t1, t2, · · · , tEκ,ι , such that |Xti,κ,ι| > κ. We make the following observations:

1. {ti} is a (finite with probability 1) sequence of random variables depending
on the mdp and policy.

2. The first part of this proof shows that the sequence necessarily ends after
an exploration phase if the total number of (κ, ι)-useful visits is at least
Nwικ. The sequence may end early for other reasons, such as states becoming
unreachable or being visited while not exploring.

3. Define νi :=
∑

s,a∈Xti,κ,ι
νti(s, a), which is the number of (κ, ι)-useful visits

in exploration phase ti. Since |Xti,κ,ι| > κ and by Lemma 9, we have that
E[νi|ν1 · · · νi−1] ≥ (κ+ 1)wι/2 and Var[νi|ν1 · · · νi−1] ≤ E[νi|ν1 · · · νi−1]H .5

We now wish to show the sequence has length at most 4N with probability at
least 1− δ1. Define auxiliary sequences of length 4N by

ν+i :=

{
νi if i ≤ Eκ,ι
wι(κ+ 1)/2 otherwise

ν̄i :=
ν+i wι(κ+ 1)

2E[ν+i |ν+1 · · · ν+i−1]
,

which are chosen such that Eν̄i = E[ν̄i|ν̄1 · · · ν̄i−1] = wι(κ+ 1)/2. It is straight-

forward to verify that P {Eκ,ι > 4N} ≤ P
{∑4N

i=1 ν̄i ≤ Nwι(κ+ 1)
}

. We now use

the method of bounded differences and the martingale version of Bernstein’s in-
equality [CL06, §6] applied to

∑
ν̄i. Let Bi := E[

∑4N
j=1 ν̄j |ν̄1 · · · ν̄i], which forms

a Doob martingale with B4N =
∑4N

i=1 ν̄i, B0 = 2Nwι(κ+1) and |Bi+1−Bi| ≤ H .

Letting σ2 :=
∑4N

i=1 Var[Bi|B1 · · ·Bi−1] ≤ 2NHwι(κ + 1), which follows by the
definitions of B, ν̄ and by point 3 above. Then

P {Eκ,ι > 4N} ≤ P

{
4N∑
i=1

ν̄i ≤ Nwι(κ+ 1)

}
= P {Bn −B0 ≤ −B0/2}

≤ 2 exp

(
−

1
4B

2
0

2σ2 + HB0

3

)
= 2 exp

(
− N2w2

ι (κ+ 1)2

2σ2 + 2HNwι(κ+1)
3

)

≤ 2 exp

(
−Nwι(κ+ 1)

4H + 2H
3

)
.

Setting this equal to δ1, solving for N and noting that wι(κ+ 1) ≥ wmin gives

N ≥ 5H

wmin
log

2

δ1
∈ Õ

(
|S|

ε(1− γ)2
log

1

δ1

)
Since N satisfies this, the result is complete. �
5 If X ∈ [0, H ] then VarX < HEX. νi ∈ [0, H ].
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The result above completes the proof of Theorem 1. We now drop the assumption
on the number of next-states by proving the more general Theorem 2. While it
is possible to do this directly, we use the algorithm above.

s, a

. .
.

1 . . .

. . .

. . . |S|

d = log2 |S|

Proof sketch of Theorem 2. The idea is to aug-
ment each state/action pair of the original mdp with
|S|−2 states in the form of a tree as pictured in the di-
agram below. The intention of the tree is to construct
an mdp, M , that with appropriate transition proba-
bilities is functionally equivalent to the true mdp while
satisfying Assumption 1. If we naively add the states as
described above then we will add an unnecessary num-
ber of addition state/action pairs because the new states need only one action.
This problem is fixed by modifying the definition of an mdp to allow a varying
number of actions for each state. This adds no difficulty to the proof and means
the augmented mdp now has O(|S|2|A|) state-action pairs. The rewards in the
added states are set to zero.

To make the augmented mdp functionally equivalent to the true one we must
also rescale γ. Let d be the depth of the tree then γ must be rescaled to γ̄ such
that γ̄d = γ. The augmented mdp is now functionally equivalent to the original
in the obvious way. Policies and values can easily be translated between the
two and importantly the augmented mdp now satisfies Assumption 1. Before
we apply ucrlγ to M we note that the rescaling of γ has the potential to
damange the bound. This is true, but fortunately the effect is not substantial
since 1

1−γ̄ <
log |S|
1−γ . Therefore the scaling loses at most log3 |S| in the final pac

bound.
Now if we simply apply ucrlγ to M and use Theorem 1 to bound the

number of mistakes then we obtain a pac bound in the general case. Unfor-
tunately, this leads to a bound depending on all the state/action pairs in M ,
which total |S|2|A|. To obtain dependence on the number of non-zero transi-
tions, T , requires a little more justification. Let T (s, a) :=

∑
s′ [[p

s′
s,a > 0]] be

the number of non-zero transitions from state/action pair (s, a). It is easy to
show the number of reachable states in the tree associated with (s, a) is at
most T (s, a) log |S|. Therefore the total number of reachable state/action pairs
is |S ×A| + log |S|

∑
s,a T (s, a) < 2T log |S|. Finally note that by Equation (2)

from Lemma 7, state/action pairs that are not reachable do not contribute to the
error and need no visits. This allows the analysis in Lemma 5 to be tightened,
which completes the proof. �

6 Lower PAC Bound

We now turn our attention to the lower bound. The approach is similar to that
of [SLL09], but we make two refinements to improve the bound to depend on
1/(1−γ)3 and remove the policy restrictions. The first is to add a delaying state
where no information can be gained, but where an algorithm may still fail to be
pac. The second is more subtle and will be described in the proof.
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Theorem 10. Let A be a (possibly non-stationary) policy depending on
S,A, r, γ, ε and δ, then there exists a Markov decision process Mhard such that
V ∗(st)− V A(s1:t) > ε for at least N time-steps with probability at least δ where

N :=
c1|S ×A|
ε2(1− γ)3

log
c2
δ

and c1, c2 > 0 are independent of the policy A as well as all inputs S,A, ε, δ, γ.

The proof is omitted, but we give the counter-example and intuition.

Counter Example. We prove Theorem 10 for a class of mdps where S =
{0, 1,⊕,5} and A = {1, 2, · · · , |A|}. The rewards and transitions for a single
action are depicted in Figure 1 where ε(a∗) = 16ε(1 − γ) for some a∗ ∈ A and
ε(a) = 0 for all other actions. Some remarks:

1. States ⊕ and 5 are almost completely absorbing and confer maxi-
mum/minimum rewards respectively.

2. The transitions are independent of actions for all states except state 1. From
this state, actions lead uniformly to ⊕/5 except for one action, a∗, which
has a slightly higher probability of transitioning to state ⊕ and so a∗ is the
optimal action in state 1.

3. State 0 has an absorption rate such that, on average, a policy will stay there
for 1/(1− γ) time-steps.

1

r = 0



r = 0

⊕
r = 1

0

r = 0

1− p

p := 1/(2− γ)

1
2 − ε(a)

1
2 + ε(a)

q := 2− 1/γ

1− q

q

1− q

Fig. 1. Hard mdp

Intuition. The mdp in Figure 1 is very bandit-
like in the sense that once a policy reaches state
1 it should choose the action most likely to lead
to state ⊕ whereupon it will either be rewarded
or punished (visit state ⊕ or 5). Eventually it
will return to state 1 when the whole process
repeats. This suggests a pac-mdp algorithm can
be used to learn the bandit with p(a) := p⊕1,a.
We then make use of a theorem of Mannor and
Tsitsiklis on bandit sample-complexity [MT04]
to show that with high probability the number
of times a∗ is not selected is at least

Õ

(
|A|

ε2(1− γ)2
log

1

δ

)
. (7)

Improving the bound to depend on 1/(1− γ)3 is intuitively easy, but technically
somewhat annoying. The idea is to consider the value differences in state 0 as
well as state 1. State 0 has the following properties:

1. The absorption rate is sufficiently large that any policy remains in state 0
for around 1/(1− γ) time-steps.

2. The absorption rate is sufficiently small that the difference in values due to
bad actions planned in state 1 still matter while in state 0.

While in state 0 an agent cannot make an error in the sense that V ∗(0) −
Q∗(0, a) = 0 for all a. But we are measuring V ∗(0) − V A(0) and so an agent
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can be penalised if its policy upon reaching state 1 is to make an error. Suppose
the agent is in state 0 at some time-step before moving to state 1 and making
a mistake. On average it will stay in state 0 for roughly 1/(1 − γ) time-steps
during which time it will plan a mistake upon reaching state 1. Thus the bound
in Equation (7) can be multiplied by 1/(1− γ). The proof is harder because an
agent need not plan to make a mistake in all future time-steps when reaching
state 1 before eventually doing so in one time-step. Dependence on |S| can be
added easily by chaining together |S|/4 copies of the counter-example mdp with
arbitrarily low transitions between them. Note that [SLL09] proved their theorem
for a specific class of policies while Theorem 10 holds for all policies.

7 Conclusion

Summary. We presented matching upper and lower bounds on the number of
time-steps when a reinforcement learning algorithm can be nearly-optimal with
high probability. We now compare the bound proven in Theorem 1 with the
current state-of-the-art, mormax [SS10].

Õ

(
T

ε2(1− γ)3
log

1

δ

)
︸ ︷︷ ︸

ucrlγ

Õ

(
|S ×A|
ε2(1 − γ)6

log
1

δ

)
︸ ︷︷ ︸

mormax

The dependence on ε and δ match the lower bound for both algorithms. ucrlγ
is optimal in terms of the horizon where mormax loses by three factors. On
the other hand, mormax has a bound that is linear in the state space where
ucrlγ can depend quadratically. Nevertheless, ucrlγ will be prefered unless
the state/action space is both dense and extremely large relative to the effective
horizon. Importantly, the new upper and lower bounds now match up to loga-
rithmic factors if the mdp has at most |S ×A| log |S ×A| non-zero transitions,
so at least for this class ucrlγ is now unimprovable. Additionally, ucrlγ com-
bined with Theorem 1 is the first demonstration of a pac reinforcement learning
algorithm with cubic dependence on the effective horizon.

Running Time. We did not analyze the running time of ucrlγ, but expect
analysis similar to that of [SL08] can be used to show that ucrlγ can be
approximated to run in polynomial time with no cost to sample-complexity.
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Buy Low, Sell High

Wouter M. Koolen and Vladimir Vovk

Computer Learning Research Centre, Department of Computer Science, Royal
Holloway, University of London, Egham, Surrey, TW20 0EX, United Kingdom

Abstract. We consider online trading in a single security with the
objective of getting rich when its price ever exhibits a large upcross-
ing without risking bankruptcy. We investigate payoff guarantees that
are expressed in terms of the extremity of the upcrossings. We obtain an
exact and elegant characterisation of the guarantees that can be achieved.
Moreover, we derive a simple canonical strategy for each attainable
guarantee.

Keywords: Online investment, worst-case analysis, probability-free
option pricing.

1 Introduction

Initial price ω0 > 0
Starting capital K0 = 1.
For t = 1, 2, . . .
– Investor takes position St ∈ R.
– Market reveals price ωt ≥ 0.
– Kt := Kt−1 + St(ωt − ωt−1)

Fig. 1. Simple trading protocol

We consider the simplest trading setup,
where an investor trades in a single secu-
rity as specified in Figure 1. An intuitive
rule of thumb is to buy when the price is
low, say a, and sell later when the price is
high, say b. Trading successfully in such a
manner exploits the so-called upcrossing
[a, b] and secures payoff b/a. In practice
we do not know in advance when a stiff
upcrossing will occur. Still, we can ask for a strategy whose payoff scales nicely
with the extremity of the upcrossing present. A financial advisor, to express that
her secret strategy approximates this ideal, may publish a function G : R2 → R

and promise that her strategy will

keep our capital above G(a, b) for each upcrossing [a, b]

Before trusting her to manage our capital, we would like to answer the following
questions:

1. Should we believe her? Is it actually possible to guarantee G?
2. Is she ambitious enough? Or can one guarantee strictly more than G?
3. Can we reverse-engineer a strategy to guarantee G ourselves?

The contribution of this paper is a complete resolution of these questions. We
characterise the achievable guarantees, and the admissible (or Pareto optimal,
i.e. not strictly dominated) guarantees. We construct, for each achievable G, a
relatively simple strategy that achieves it.

N.H. Bshouty et al. (Eds.): ALT 2012, LNAI 7568, pp. 335–349, 2012.
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1.1 Related Work

This work is a joint sequel to two lines of work. We think of the first line as a
complete treatment of the goal of selling high (without buying low first), and of
the second line as intuitive strategies for iterated trading. Let us summarise the
material that we will use from each.

Sell High. Guarantees for trading once (selling at the maximum) were com-
pletely characterised in [1]. The results are as follows. We call an increasing
right-continuous function F : [1,∞) → [0,∞) a candidate guarantee. A candidate
guarantee F is an adjuster if there is a strategy that ensures Kt ≥ F (maxs ωs)
for every price evolution ω0, . . . , ωt. An adjuster that is not strictly dominated is
called admissible. The goal is to find adjusters that are close to the unachievable
Fideal(y) := y. What can be achieved is characterised as follows:

Theorem 1 (Characterisation). A candidate guarantee F is an adjuster iff∫ ∞

1

F (y)

y2
dy ≤ 1 (1)

Moreover, it is admissible iff (1) holds with equality.

This elegant characterisation gives a simple test for adjusterhood. We can get
reasonably close to Fideal, for example using the adjusters

F (y) := αy1−α for some 0 < α < 1 or F (y) :=
y2 ln(2)

(1 + y) ln(1 + y)2
.

The following decomposition allows us to reverse engineer a canonical strategy
for each adjuster F . For each price level u ≥ 1, consider the threshold guarantee
Fu(y) := u1{y≥u}, which is an adjuster witnessed by the strategy Su that takes
position 1 until the price first exceeds u and 0 afterwards. With this definition
we have

Theorem 2 (Representation). A candidate guarantee F is an adjuster iff
there is a probability measure P on [1,∞) such that

F (y) ≤
∫
Fu(y) dP (u),

again with equality iff F is admissible.

In other words, we can witness any admissible adjuster F by the strategy SP :=∫
Su dP (u), that is by splitting the initial capital according to the associated

measure P (u) over threshold strategies Su and never rebalancing.

Iterated Trading. Intuitive trading strategies for iterated trading were pro-
posed in [2, 3], and their worst-case performance guarantees were analysed. We
briefly review the construction and guarantees specialised to the case of trading
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twice. The proposed strategies are of the form SQ :=
∫
Sα,β dQ(α, β), where Q is

some bivariate probability measure and Sα,β is the threshold strategy that does
not invest initially, subsequently invests all capital when the price first drops be-
low α, and finally liquidates the position when the price first exceeds β. Clearly
Sα,β witnesses the guarantee

Gα,β(a, b) :=
β

α
1{a ≤ α and b ≥ β},

and so the full strategy SQ witnesses

GQ(a, b) :=

∫
Gα,β(a, b) dQ(α, β). (2)

(We omit the iterated trading bounds and run-time analysis, they are outside
the scope of this paper.)

1.2 Climax

Intuitively, the dual threshold strategies Sα,β are the natural generalisation of
the single threshold strategies Su. Since any univariate admissible adjuster is
a convex combination of threshold guarantees, it is natural to conjecture that
a bivariate candidate guarantee G is an admissible adjuster iff G = GQ for
some Q.

Interestingly however, it turns out that mixture guarantees of the form (2)
are typically strictly dominated! Let us illustrate what goes awry with a simple
example. Consider the mixture-of-thresholds guarantee G defined by

G(a, b) :=
1

2
G1,2(a, b) +

1

2
G 1

2 ,1
(a, b) = 1{a ≤ 1 and b ≥ 2} + 1{a ≤ 1

2 and b ≥ 1}.

(These weights and thresholds are chosen for simplicity and are by no means
essential.) We now argue that G is strictly dominated, by showing that G can be
guaranteed from initial capital 11

12 < 1, and hence that G is strictly dominated
by the adjuster 12

11G.
The smallest initial capital required to satisfy the guarantee G can be found

from the tree of situations shown in Figure 2a. We restrict Market to the seven
price paths that can be obtained by moving starting from the root (the left-most
node labelled by 1) to the right along a branch of the tree to a leaf and reading
off the price labels inside the circles. Formally, we do not allow price ∞, but it
can be replaced by a sufficiently large number. The three intervals mentioned
in the guarantee G and the inclusion relation between them are displayed in
Figure 2c. Figure 2b indicates which price paths upcross which intervals. We
can now compute the capital needed to guarantee G in each situation. First, as
shown in Figure 2a, we assign to each leaf ω the capital necessary to guarantee
G on it, which is by definition

XG(ω) := max
{
G(a, b)

∣∣ a, b s.t. ω upcrosses [a, b]
}

To label the intermediate situations we use backward induction. Let us first
explain a single induction step, which is known as binomial pricing.
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Fig. 2. Toy world

p

K S pu
Ku

pd
Kd

Binomial pricing tutorial. Consider a toy world in which the
current price is p, and the future price is either pu > p in which
case we want to guarantee payoff Ku, or pd < p in which case
we want to guarantee Kd. The minimal initial capital K from
which this is possible and the position S that achieves this are

K =
p− pd
pu − pd

Ku +
pu − p
pu − pd

Kd and S =
Ku −Kd

pu − pd
. (3)

Using binomial pricing, we have labelled each internal situation in 2b by the price
(left) and position (right) obtained in backward fashion. Formally, this argument
only shows that an initial capital of 11

12 is necessary (although intuitively it is
clear that the tree exhausts all possibilities, and so 11

12 is also sufficient). Indeed,
it is now easy to check that an initial capital of 11

12 is sufficient: the strategy that
witnesses G from initial capital 11

12 can be read off Figure 2a. Namely, we take
position 1

3 at time 0 leaving 7
12 in cash. There are two cases:

– If and when the price reaches 1
2 before reaching 2, we invest all our cash.

This will make our position at least 7
6 + 1

3 = 3
2 . If and when the price reaches

1, we cash in 1 dollar leaving a position of at least 1
2 . If and when the price

reaches 2, we cash in another dollar. In all cases, we are left with at least
XG(ω) at the end, where ω is the realized price path.

– Now suppose the price reaches 2 before reaching 1
2 . Cashing in our position,

we get at least 7
12 + 2

3 = 5
4 dollars. If and when the price reaches 1

2 , we take
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a position of 1
2 , which leaves at least 1 dollar in cash. If and when the price

reaches 2, we cash in another dollar. In all cases, we again are left with at
least XG(ω) at the end.

This argument shows that mixture guarantees can be strictly dominated. To get
additional insight into why, let us consider the mixture strategy corresponding
to G, which evenly divides its capital between S1,2 and S 1

2 ,1
. The problem with

this strategy is that it secures payoff 2 on price path ω = (1, 2, 1/2, 1, 0), but
one only needs XG(ω) = 1 to guarantee G there. The reason is that both small
intervals [ 12 , 1] and [1, 2] are upcrossed, but their union [ 12 , 2] is not. In other
words, the mixture strategy gives an additional payoff in certain circumstances
that does not contribute to the guarantee. Since the binomial pricing formulas
are linear in the payoffs, reducing the payoff at any leaf reduces the required
initial capital.

1.3 Overview of Results

The previous section shows that the world is not simple, i.e. the intuitive charac-
terization of guarantees is incorrect. We now present our more subtle results. We
call a function G : (0, 1]× (0,∞) → [0,∞) a candidate guarantee if it is upper
semi-continuous, decreasing in its first argument and increasing in its second
argument. We define the second-argument upper inverse of G by

G−1(a, h) := inf{b ≥ a | G(a, b) ≥ h}. (4)

Theorem 3 (Characterisation). A candidate guarantee G is an adjuster iff∫ ∞

0

1− exp

(∫ 1

0

1

a−G−1(a, h)
da

)
dh ≤ 1. (5)

Moreover, G is admissible iff (5) holds with equality.

We saw in the previous section that a subtle temporal analysis is needed when
reasoning about guarantees. Although this is still true for the proof of this the-
orem, the result itself is elegantly timing-free.

We also have a canonical representation in terms of convex combination of ele-
mentary guarantees. These elementary guarantees are analogous to the threshold
strategies of the univariate case in the sense that they have just two payoff levels.
However, they do have richer geometric structure. A closed set I ⊆ (0, 1]×(0,∞)
is called north-west if (a, b) ∈ I implies (0, a]× [b,∞) ⊆ I. Some example north-
west sets are displayed in Figure 3. We associate to each north-west set its
frontier

fI(a) := inf
{
b ≥ a

∣∣ (a, b) ∈ I
}
.

By the previous theorem, the following guarantee is an admissible adjuster:

GI(a, b) :=
1{fI(a)≤b}

1− exp
(∫ 1

0
1

a′−fI (a′) da′
) .

A family (Ih)h≥0 of north-west sets is called nested if x ≤ y implies Ix ⊇ Iy.
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Fig. 3. Example north-west sets

Theorem 4 (Representation). A candidate guarantee G is an adjuster iff
there are a probability measure Q on [0,∞) and a nested family (Ih)h≥0 of north-
west sets such that

G(a, b) ≤
∫
GIh(a, b) dQ(h),

with equality iff G is admissible.

This theorem gives us a means to construct a canonical strategy for each ad-
juster G. We first decompose G into a probability measure Q and a nested
family of north-west sets (Ih)h≥0. We then find a strategy SIh witnessing GIh

for each h. Finally, we recompose these strategies to obtain the full strategy
SG :=

∫
SIh dQ(h).

These two theorems parallel those of [1] with a twist. Whereas [1] decom-
poses single-argument adjusters in terms of threshold guarantees (which have a
single degree of freedom), our elementary guarantees are parametrised by the
geometrically much richer north-west sets.

1.4 Outline

The paper is structured as follows. In Section 2 we reduce finding guarantees to
a particular instance of probability-free option pricing. The actual option pricing
is done in Section 3. Section 4 then discusses simple example guarantees, and in
particular proposes an efficiently implementable strategy with an approximately
ideal guarantee. The main proofs are delayed to Sections 5 and 6. We discuss
the scope and applications of our results in Section 7, where we sketch the
implications for online probability prediction and hypothesis testing.

2 Reduction to Option Pricing

We will make use of the definitions of probability-free option pricing, which we
briefly review here. We assume that the initial asset price ω0 is one, and that
the investor starts with one unit of cash. Trading proceeds in rounds. In trading
period t, the investor first chooses his position St, and then the new price ωt is
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revealed. After T iterations, the investor has capitalKT = 1+
∑T

t=1 St(ωt−ωt−1).
A trading strategy S assigns to each sequence of past prices ω<t = (ω0, . . . , ωt−1)
a position S(ω<t) ∈ R. Let S∗ω denote the payoff of strategy S on price function
ω. That is

S ∗ ω := 1 +
T∑
t=1

S(ω<t)(ωt − ωt−1).

We denote by S ∗c ω the payoff obtained by executing strategy S from initial
capital c instead of one.

In general, an option X assigns to each price function ω a real value X(ω).
(We have already seen one option, namely the payoff functional ω �→ S ∗ ω.)
The upper price of X , denoted E [X ], is the minimal initial capital necessary to
super-replicate X , i.e.

E [X ] := inf
{
c
∣∣ ∃ strategy S ∀ price function ω : S ∗c ω ≥ X(ω)

}
.

This definition allows us to price options at the start of the game. We may also
wonder about the capital necessary to super-replicate X half-way through the
game, say after some past ω′ = (ω′

0, . . . ω
′
t). This so-called conditional upper price

is given by

E [X |ω′] := inf
{
c
∣∣ ∃ strategy S ∀ price function ω : S ∗c ω ≥ X(ω′

<tω)
}
.

where ω ranges over price functions starting from ω0 = ω′
t the current price.

Note how the strategy only trades on the future ω, whereas the option value
depends on the past ω′.

3 Characterisation of Candidate Guarantees

Suppose we conjure up some desirable candidate guarantee G, and wonder
whether it is an adjuster, and if so, whether it is admissible. To decide this,
we consider the option XG that assigns to each price function ω the minimal
payoff necessary to guarantee G on it:

XG(ω) := sup
[a, b] : ω upcrosses [a, b]

G(a, b) = max
0≤i≤j

1≥ωi≤ωj

G(ωi, ωj) (6)

We now connect adjusters and pricing

Proposition 5. A candidate guarantee G is an adjuster iff E[XG] ≤ 1. More-
over, G is admissible iff E[XG] = 1.

Proof. The first equivalence holds by definition, and E[XG] < 1 clearly implies
inadmissibility. It follows from the pricing Theorem 6 below that a strictly dom-
inated adjuster must have upper price < 1. ()
This result reduces testing for adjusterhood to option pricing. Next we compute
the upper price of XG. Section 5 is dedicated to the proof.

Theorem 6. The upper price of any candidate guarantee G is

E[XG] =

∫ ∞

0

1− exp

(∫ 1

0

1

a−G−1(a, h)
da

)
dh.



342 W.M. Koolen and V. Vovk

4 Example Adjusters

Before we go into proofs, we have a look at the consequences. We first recover
the single-argument adjuster characterisation from the double-argument version.
We then consider guarantees expressed in a single-parameter summary of [a, b].
Finally we really exploit both arguments, and design admissible adjusters that
closely approach the ideal payoff b/a with computationally efficient strategies.

4.1 Selling High: Adjusters Expressed in the Maximum Price

Theorem 6 implies the results of [1] (in particular Theorem 1) as a special case.

Proof (Alternative proof of Theorem 1). Let F : [1,∞) → [0,∞) be an increasing
right-continuous function. Construct the guarantee G(a, b) := F (b)1{b≥1} that
ignores its first argument. By Theorem 6

E[XG] =

∫ ∞

0

1− exp

(∫ 1

0

da

a− inf{b | F (b) ≥ h}

)
dh =

∫ ∞

0

dh

inf{b | F (b) ≥ h} .

Using the variable substitution h = F (y) (for y ≥ 1 and h ≥ F (1)) and integra-
tion by parts, we obtain

E[XG] =

∫ F (1)

0

1

inf{b | F (b) ≥ h} dh+

∫ ∞

F (1)

1

inf{b | F (b) ≥ h} dh

= F (1) +

∫ ∞

1

1

y
dF (y) (7)

= F (1) +
F (y)

y

∣∣∣∣∞
1

+

∫ ∞

1

F (y)

y2
dy

=

∫ ∞

1

F (y)

y2
dy (8)

This derivation assumes that F (∞)/∞ = 0. If F (∞)/∞ exists and is strictly
positive, both (7) and (8) are equal to ∞, and so E[XG] is still equal to (8). And
if F (∞)/∞ does not exist, both (7) and (8) are again equal to ∞: if one or both
of them were finite, F (∞)/∞ would exist as their difference. ()

4.2 Adjusters Expressed in the Size of the Upcrossing

The two natural measures of the size of an upcrossing [a, b] are the length b− a
and the ratio b/a. Let us consider guarantees expressed in each statistic.

Length. Using the tricks from the previous section we see that candidate guar-
antees of the form G(a, b) = F (b − a) have upper price

E [XG] =

∫ ∞

0

F (y)
e−1/y

y2
dy.

This is analogous to (8), but with a twist. In financial terms, the distribution

with density e−1/y

y2 dy is the risk-neutral measure of the largest upcrossed length.

Similarly, y−2 dy from (8) is the risk-neutral measure of the maximum price.
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Ratio. We now show that guarantees of the form G(a, b) = F (b/a) for some
increasing and unbounded F have infinite upper price. Such guarantees are way
too good to be true: they can not be made adjusters even by re-normalisation.
For simplicity assume that F is invertible. Then

G−1(a, h) = aF−1(h),

so that E[XG] = ∞, because∫ 1

0

1

a−G−1(a, h)
da =

∫ 1

0

1

a(1− F−1(h))
da = −∞.

Other impossibility results follow from the same argument. For example, the
intuitively modest candidate G(a, b) = bp/aq has infinite price for any p, q > 0.

4.3 Approximately Ideal Adjusters

Our goal is to secure payoff close to the ideal b/a. The previous section shows
that we cannot simply dampen the ratio b/a itself, but must make essential use
of both arguments. A simple admissible adjuster that approaches the ideal is

G(a, b) =
(b− a)p
aq

(p−qp )p

Γ (1− p)

for any 0 ≤ q < p < 1. The results in Section 5.2 below imply that this guarantee
is witnessed by the strategy that in situation ω with minimum price m takes
position

S(ω) =
(p− q)
m1−p+q Φ

(
m

p−q
p(

XG(ω)Γ (1− p)
)1/p

)

where Φ(x) =
∫

x
0
t−pe−t dt

Γ (1−p) is the cumulative distribution function of the Gamma

distribution (with shape 1 − p and scale 1). This function can be evaluated to
arbitrary precision by many computer mathematics support systems. Note that
XG(ω) andm can be maintained incrementally; when the next price r is revealed

XG(ω, r) = max
{
XG(ω), G(m(ω), r)

}
m(ω, r) = min

{
m(ω), r

}
.

This admissible adjuster is hence extremely attractive. It approximates the ideal
guarantee, and its strategy can implemented efficiently.

5 Proof of Theorem 6

In this section we prove the characterisation theorem. It will be convenient to
prove the following more general statement.



344 W.M. Koolen and V. Vovk

Theorem 7. Fix any candidate guarantee G and situation σ = (ω0, . . . , ωs).
Let us abbreviate the current price to r := ωs, the lowest observed price to m :=
mini=0,...,s ωi, and the minimal capital needed to satisfy G at time s to C :=
XG(σ) (see (6)). The conditional upper price of XG in situation σ is

E[XG|σ] = C +

∫ ∞

C

1− G−1(m,h)− r
G−1(m,h)−m exp

(∫ m

0

da

a−G−1(a, h)

)
dh. (9)

The proof consists of two parts. For the lower bound we construct an adversarial
Market based on random walks. For the upper bound we construct a strategy for
Investor. It is quite surprising that these bounds meet, since these markets are
generally highly incomplete. Our method is similar to that of [4], which derives
option prices assuming continuous price paths. We are not aware of general
probability-free option pricing results that allow discontinuous price processes.

5.1 Lower Bound from Market Strategy

We will find a lower bound on the conditional upper price E[XG|σ] of the option
XG using a finite up/down scheme. For a natural number n, we discretise the
vertical price axis in bins of size 2−n. Consider the following restricted Market
starting from time s+1. At each discrete time step t > s we have ωt = ωt−1±2−n,
where ωs is understood to be R2−n, where R := 2ωs2n3 (rather than the real
ωs). Define the stopping time τ to be least such that ωτ = 0. On run ω, we desire
to superreplicate XG, which can be rewritten as

XG(ω) = max
0≤i≤j≤τ(ω)
1≥ωi≤ωj

G(ωi, ωj)

We desire to lower bound the conditional upper price of XG for the restricted
Market. By binomial pricing, this price will be the expected value under a coin
flip price process (formally, we explained binomial pricing only for finite games,
but the extension to an infinite horizon is easy: consider a game lasting T rounds
after which the price ω is frozen and then let T → ∞). That is, the option’s
price will be at least

EXG

(
ω1, . . . , ωs, 2

−n(R+ ξ1), 2−n(R + ξ1 + ξ2), . . . , 2−n(R+ ξ1 + · · ·+ ξτ )
)
,

where the regular expectation E refers to ξs being independent random variables
taking values ±1 with equal probabilities and the term ξτ should be ignored
when τ = ∞. (We say “at least” since ωs can exceed R2−n.) As a first step,
observe that what is important are the incremental global minima of ω, and
their subsequent maxima. Set M := �m2n�. We have that incremental minima
are reached at the levels k2−n, k = 1, . . . ,M − 1, in decreasing order.

Define ik = ik(ω), k = 1, . . . ,M−1, to be the largest i such that, after hitting
level k2−n at time t > s, ω rises to level (k+i)2−n before hitting level (k−1)2−n.
Define iM = iM (ω) to be the largest i such that, after time s, ω rises to level
(M + i)2−n before hitting level (M − 1)2−n. Now let

Ik := G
(
k2−n, (k + ik)2−n

)
for 1 ≤ k < M,
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IM := G
(
m, (M + iM )2−n

)
and

L := max
k=1,...,M−1

Ik

so that

Ẽ[XG|σ] ≥ E (C ∨ L ∨ IM ) = C + E
(
(L ∨ IM − C)+

)
= C +

∫ ∞

C

P(L ∨ IM ≥ h) dh

= C +

∫ ∞

C

1− P(L < h)P(IM < h) dh, (10)

where Ẽ stands for upper probability under the assumed restrictions on Market.
Upon hitting level k2−n, where k < M , the probability that we rise to level
(k+ i)2−n (or higher) before we hit level (k− 1)2−n equals 1

i+1 . We have P(ik ≤
j) = 1− 1

2+j . Starting from the level R2−n, the probability that we rise to level

(R + i)2−n (or higher) before we hit level (M − 1)2−n (where M ≤ R) equals
R−M+1
R−M+i+1 . We have P(M + iM ≤ R + j) = j+1

R−M+j+2 ; this formula is also true
for M = R+ 1.

Since G(a, b) is right-continuous in b for each a, the infimum in (4) is attained
for each h ≥ 0. We then have G(a, b) < h for all b < G−1(a, h) and G(a, b) ≥ h
for all b ≥ G−1(a, h). And we have G

(
a,G−1(a, h)

)
≥ h, with > if the level h

does not occur at all. Then, for h ≥ C,

P(IM < h) = P
(
G
(
m, (M + iM )2−n

)
< h
)

= P
(
(M + iM )2−n < G−1(m,h)

)
= P

(
M + iM < 2nG−1(m,h)

)
=

1−R+ 2nG−1(m,h)

2−M + 2nG−1(m,h)

and, for k = 1, . . . ,M − 1,

P(Ik < h) = P
(
G
(
k2−n, (k + ik)2−n

)
< h
)

= P
(
(k + ik)2−n < G−1(k2−n, h)

)
= P

(
ik < −k + 2nG−1(k2−n, h)

)
= 1− 1

2− k + 2nG−1(k2−n, h)

Therefore,

lnP(L < h) = ln

M−1∏
k=1

P(Ik < h) = ln

M−1∏
k=1

(
1− 1

2− k + 2nG−1(k2−n, h)

)

=

M−1∑
k=1

ln

(
1− 1

2− k + 2nG−1(k2−n, h)

)
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≤ −
M−1∑
k=1

1

2− k + 2nG−1(k2−n, h)

= − 2−n
M−1∑
k=1

1

G−1(k2−n, h)− k2−n + 2× 2−n

≤ −
M−1∑
k=1

∫ (k+1)2−n

k2−n

da

G−1(a, h)− a+ 3× 2−n

≤ −
∫ M2−n

2−n

da

G−1(a, h)− a+ 3× 2−n

≤ −
∫ m

2−n

da

G−1(a, h)− a+ 3× 2−n
.

Plugging these inequalities into (10) results in the lower bound

C +

∫ ∞

C

1− G−1(m,h)− 2−n(R − 1)

G−1(m,h)− 2−n(M − 2)
exp

(∫ m

2−n

da

a−G−1(a, h)− 3× 2−n

)
dh

for E[XG|σ]. Letting n→∞, we obtain the inequality ≥ in (9). (Notice that we
only need the convergence of the above outer integral to the outer integral in (9)
when the limits of integration C and ∞ are replaced by C∨ε and D ∈ (C∨ε,∞),
respectively, where ε is a positive constant.)

5.2 Upper Bound from Investor Strategy

To prove the inequality ≤ in (9), we consider the strategy that starts with initial
capital equal to the expression in Theorem 6, and then in situation σ takes
position (with m and C as defined in Theorem 7.)

S(σ) :=

∫ ∞

C

1

G−1(m,h)−m exp

(∫ m

0

da

a−G−1(a, h)

)
dh (11)

(this is the derivative of the right-hand side of (9) w.r.t. the current price r). We
are required to show that this strategy’s capital is always equal to or exceeds
the right-hand side of (9). Suppose this condition is satisfied at time t. Since the
right-hand side of (9) is linear in r, this condition will still be satisfied at time
t+ 1 if neither C nor m change. More generally, if the price becomes p at time
t+ 1, the strategy’s capital at time t+ 1 is required to be at least

f(p) := C ∨G(m, p) +

∞∫
C∨G(m,p)

1− G−1(m ∧ p, h)− p
G−1(m ∧ p, h)− (m ∧ p) exp

⎛⎝ m∧p∫
0

da

a−G−1(a, h)

⎞⎠ dh.
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Since the current capital is at least f(r), it suffices to prove that f(p) lies below
our tangent f(r) + S · (p− r) to f(p) at the point p = r. Therefore, it suffices to
prove that f is concave. There are three regimes:

∂2f(p)

∂2p
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
−
∫ ∞

C

exp
(∫ p

0
da

a−G−1(a,h)

)
∂G−1(p,h)

∂p

(p−G−1(p, h))2
dh if p < m

0 if m < p < G−1(m,C)

−
exp
(∫m

0
da

a−G−1(a,G(m,p))

)
∂G(m,p)

∂p

p−m if G−1(m,C) < p

The first case is negative as G−1(p, h) increases in p. The last case is negative
too, as p−m is positive, and G(m, p) increases in p. In the borderline cases p = m
and p = G−1(m,C), the required conditions for concavity on the one-sided first
derivatives of f are easy to check.

6 Proof of Theorem 4

In this section we prove the representation theorem.

6.1 From North-West-Sets to Adjusters

Say (Ih)h≥0 is a nested family of north-west sets, and Q is a probability measure
on [0,∞). We now argue that

G(a, b) :=

∫ ∞

0

GIh(a, b) dQ(h)

is an adjuster. It is a candidate guarantee; it is upper semi-continuous since all
its super-level sets are closed and it is decreasing-increasing since each super-
level set is north-west. It is an adjuster, witnessed by the strategy that splits the
capital according to Q over strategies SIh .

6.2 From Adjusters to North-West-Sets

Say we have an arbitrary adjuster G. We now write it as a convex combination
of nested north-west adjusters. Consider the family of super-level sets

Ih :=
{

(a, b)
∣∣ G(a, b) ≥ h

}
Since G is a candidate guarantee, each Ih is closed and north-west. By Theorem 6

GIh (a, b) =
1{(a,b)∈Ih}

1− exp
(∫ 1

0
1

a−G−1(a,h) da
)
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is an admissible adjuster. Now construct the measure Q on [0,∞) with

Q( dh) :=

(
1− exp

(∫ 1

0

1

a−G−1(a, h)
da

))
dh.

Obviously Q is non-negative. In addition, since G is an admissible adjuster, Q
integrates to 1 and hence is a probability measure. Finally, for each (a, b)∫ ∞

0

GIh(a, b) dQ(u) =

∫ ∞

0

1{(a,b)∈Ih} dh = G(a, b).

7 Discussion/Conclusion

We presented strategies for online trading that guarantee a large payoff when
the price ever exhibits a large upcrossing, without taking any risk. We obtained
an exact and elegant characterisation of the guarantees that can be achieved.
We designed a guarantee that is close to ideal, and obtained an efficient strategy.

7.1 Applications

Our results are phrased in terms of finance. However, as we show in Theorem 4,
a guarantee can always be achieved by a strategy that neither sells short, i.e.
takes a negative position St < 0, or uses leverage, i.e. takes a position St ≥
Kt−1/ωt−1 that is more expensive than the capital. So the fraction of capital
invested Stωt−1/Kt−1 ∈ [0, 1] is a proper probability. We can therefore think of
our strategies as maintaining weights on two experts. If we substitute, in place
of the price, the likelihood ratio between these two experts we obtain online
methods for probability prediction with the log loss function.

One application lies is hierarchical modelling, where we want to aggregate at
each level of detail the predictions of a model of that complexity, and the recur-
sive combination of more refined models. This construction drives for example
the successful data compression method Context Tree Weighting [5].

Another application is hypothesis testing, where a so-called null hypothesis
is compared with an alternative hypothesis. Again, substituting the likelihood
ratio for the price, securing a high payoff translates to amassing evidence against
the null. The presence of a large upcrossing translates back to the existence of
a sub-interval of data on which the null looks particularly fishy. Our strategies
would report a fair and sharp measure of evidence in the presence of any such
anomalous blocks. The advantage of this method is that the loss of evidence (the
adjustment) is expressed in terms of the evidential power of the anomaly and
not in its timing.

7.2 Downcrossings

A natural question is whether we can exploit the fact that a downcrossing [a, b]
occurs, i.e. that the price exceeds b before it drops below a. However, worst-
case price paths for the univariate adjuster case always eventually collapse to 0,
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thus downcrossing any [a, b] for 0 ≤ a ≤ b ≤ maxt ωt. Hence, the presence of a
downcrossing [a, b] only conveys to us the information that the maximum is at
least b, and we find ourselves back in the univariate adjuster case.

7.3 Future Work

In this paper we focus on two-argument guarantees for buying once, then selling
once. We are currently working on a full analysis of multi-argument guarantees
for iterated trading: both for a fixed number of times and for arbitrary references.

Acknowledgments. The first author is supported by NWO Rubicon grant
680-50-1010.
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Abstract. We define what it means for a learning algorithm to be ker-
nelizable in the case when the instances are vectors, asymmetric matrices
and symmetric matrices, respectively. We can characterize kernelizability
in terms of an invariance of the algorithm to certain orthogonal trans-
formations. If we assume that the algorithm’s action relies on a linear
prediction, then we can show that in each case the linear parameter vec-
tor must be a certain linear combination of the instances. We give a
number of examples of how to apply our methods. In particular we show
how to kernelize multiplicative updates for symmetric instance matrices.

Keywords: Kernelization, multiplicative updates, rotational invariance.

1 Introduction

The following kernelization trick was popularized by a paper on support vector
machines [4] and has become one of the most successful methods in machine
learning: Any algorithm that reduces to computing dot products between in-
stance vectors x ∈ R

n can be enhanced by a feature map that maps the instances
x to φ(x) ∈ R

N as long as there is a kernel function available which efficiently
computes the dot products φ(x)′φ(x̃) between expanded instances. The dimen-
sion N of the expanded instance is typically much larger than the dimension n
of the original instances and even may be infinite. Complicated neural nets are
often beaten by simple linear models which are enhanced with a carefully chosen
problem specific feature map or kernel function. The resulting algorithms only
access the expanded instances φ(x) via the kernel function k(x, x̃) = φ(x)′φ(x̃),
i.e. the components of the feature vectors are never accessed.
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In this paper we discuss kernel methods in the matrix domain. We begin by
considering instances that are outer products xy′, where x ∈ R

n and y ∈ R
m

(it is easy to generalize from outer products to asymmetric instance matrices
M ∈ R

n×m). As long as algorithms only rely on dot products between pairs
x, x̃ of left instances and dot products between pairs y, ỹ of right instances,
then we can expand the left instances x via a feature map φ(x) and the right y
instances via a second feature map ψ(y). Note that matrix parameters can model
all interactions between components, and therefore can take second order infor-
mation into account. We also consider a case when the instances are symmetric
products of the form xx′, with a single feature map xx′ �→ φ(x)φ(x)′.

The goal of this paper is to give “if and only if” conditions for kernelizable
algorithms. We do this for three cases: vector instances, asymmetric matrix in-
stances and symmetric matrix instances under the assumption that the algorithm
is linear and produces a unique solution. The vector case has been largely worked
out in [18], but we rephrase it here mainly as a reference for comparison. The
matrix cases are the main contribution of the paper. We define an algorithm
to be kernelizable if its output depends on the data only via the kernel matrix
(matrices) which contains the dot products between the instance vectors. We
next give a simple equivalent characterization in each case in terms of certain
geometric invariance properties of the algorithm1. In the vector case, multiplying
the instance by an orthogonal matrix must essentially keep the algorithm un-
changed. In the asymmetric matrix case, the algorithm must produce the same
output if the instance matrices are left and right multiplied by two orthogonal
matrices. The symmetric matrix case gives the invariance under left and right
multiplication by the same orthogonal matrix.

The main point of the paper is to show that in each case, if the output of the
algorithm is a linear function of the input, then the algorithm is kernelizable iff
the linear parameter vector/matrix is a linear combination of the instances and
remains invariant under an appropriate orthogonal transformation. In particular,
in the vector case the parameter vector w must be a linear combination of the
instance vectors, w =

∑
i cixi. When the instances are asymmetric outer prod-

ucts xiy
′
i, then the parameter matrix must have the form W =

∑
i,j ci,j xiy

′
j .

For the symmetric outer products xix
′
i, the symmetric parameter matrix must

have the form W = cI +
∑

i,j ci,j xix
′
j , where I is the identity matrix in R

n

and ci,j = cj,i. The presence of an additional identity term I in the expansion
for symmetric matrices stems from the existence of a unique element that is
invariant under all orthogonal transformations. Such an element does not exist
for asymmetric matrices.

We then prove versions of the Representer Theorem for both asymmetric
and symmetric outer products. This helps us to develop a number of methods
for building kernelizable algorithms from optimization problems. In particular,
we give methods for kernelizing the matrix versions of various “multiplicative”

1 Although invariance is with respect to orthogonal transformations, we use the term
rotational invariance rather than orthogonal invariance, as the former term is com-
monly used in the literature.
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update algorithms [14,16,9]. This family of algorithms is motivated by using the
quantum relative entropy as a regularization, and methods from online learning
can be used to prove regret bounds that grow logarithmically in the dimensions
of the vectors. The logarithmic dependence lets us use high dimensional feature
spaces. Moreover, we show that if the loss function is negative (i.e., we are maxi-
mizing gains rather than minimizing losses), then the logarithmic dependence on
the dimension can be reduced to the logarithmic dependence on the rank of the
kernel matrix. For outer product instances, this rank is at most the number of
instances T . Multiplicative algorithms learn well when there is a low-rank matrix
that can accurately explain the labels [16]. The kernel method greatly enhances
the applicability of multiplicative algorithms because now we can expand the
instances to outer products of high-dimensional feature vectors and still obtain
efficient algorithms as long as the instance matrices have low total rank.

Relationship to Previous Work: One way to ensure kernelizability in the
vector case is to apply the Representer Theorem [8,11]. It states that whenever
the solution minimizes the trade-off between the square Euclidean distance and
a loss function that only depends on the dot products between the weight vector
and feature vector, then the solution is always a linear combination of the feature
vectors. Representer type theorems have recently been generalized to the case
of outer product instances [1,2]. For instance, it is shown in [1] that as long as
the regularization term is increasing in the spectrum of the parameter matrix
and the loss function only depends on the traces of the product of the parameter
matrix and the outer product instances, then algorithms that minimize a trade-
off between the regularization and the loss can be kernelized. However this is
only a necessary condition.

In contrast we give necessary and sufficient conditions for kernelization. Using
our results we are able to prove a simple Representer Theorem that holds under
conditions incomparable with those from [1]: we only assume that the problem
is rotationally invariant and the solution is unique. Our proofs are elementary
and intuitive. We can also handle the case of symmetric outer product instances,
which is the mainstay of multiplicative updates, but was not considered in [1,2].
In [5] it was also shown that the matrix version of the p-norm perceptron can
be kernelized. Again kernelizability is easily implied by our methods.

We show in this paper for an algorithm to be kernelizable, it must not even be
defined as minimizing the trade-off between a regularization and a loss. Instead
we show that kernelizability is characterized by a geometric invariance property.
We also went through the painstaking exercise of translating our proofs to the
case when instance domains are arbitrary Hilbert spaces instead of real vec-
tor spaces. No new insights were gained from this translation and we therefore
present our results in the notationally simpler case of real vector spaces.

The question of whether multiplicative update algorithms are kernelizable has
been a longstanding open problem in machine learning and we resolve this prob-
lem. In previous work [9], regret bounds were proven for matrix versions of mul-
tiplicative algorithms that grow logarithmically with the feature dimension N .
Our work shows that the total rank of the instance matrices (or, equivalently,
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the rank of the kernel matrix) is the crucial parameter instead of the feature
dimension N . Now the regret bounds are logarithmic in the total rank instead
of the feature dimension N which can be unbounded.

2 Kernalization via Rotational Invariance

Vector Instances: We begin with the case of vector instances x ∈ R
n. Exam-

ples (x, �) are labeled instances where � is in some fixed label domain. A learning
algorithm A is any mapping from example sequences S = {(xt, �t)}Tt=1 followed
by a next instance x to some fixed output range. Informally, the output of the
algorithm is the “action” that A takes after receiving the S and an unlabeled

instance x. We denote with X̂ the matrix with the T + 1 instances as columns

and call X̂
′
X̂, the augmented kernel matrix, where “augmented” hints at the

fact that we included the unlabeled instance x as the (T + 1)st instance. Note

that [X̂
′
X̂]pq is the dot product x′

pxq for 1 ≤ p, q ≤ T + 1.
We define algorithm A for vector instances to be kernelizable if for any two

input sequences S,x and S̃, x̃ with the same labels and the same augmented
kernel matrix, algorithm A maps to the same output, i.e. A(S,x) = A(S̃ , x̃).
We next rewrite this characterization using the following elementary lemma:

Lemma 1. Two matrices A,B ∈ R
n×t are orthogonal transformations of each

other (i.e. there is an orthogonal matrix U , such that B = UA) iff the kernel
matrices A′A and B′B are the same.

For any orthogonal matrix U ∈ R
n×n, let US denote the transformed sequence

{(Uxt, �t)}Tt=1. Note that the labels remain unchanged. The above lemma implies
the following:

Theorem 1. An algorithm A is kernelizable iff for all sequences S, next in-
stance x and orthogonal matrix U , A(S,x) = A(US,Ux).

Proof. The sequences S,x and US,Ux have the same labels and augmented
kernel matrix. Therefore, A kernelizable implies that A(S,x) = A(US,Ux) for
all suitable S, x and U . To prove the contrapositive of the opposite implication
we assume there are two sequences S,x and S̃, x̃ with the same augmented
kernel matrix for which A produces a different output (witnessing that A is not
kernelizable). Then by the above lemma there is an orthogonal matrix U for

which S̃ = US, x̃ = Ux, and therefore A(S,x) �= A(US,Ux). ()

We now make an additional assumption which assures that the algorithm pre-
dicts with a linear combination of the instances: An algorithm A is linear, if
upon receiving input sequence S and an unlabeled instance x, A first computes
a weight vector w ∈ R

n from the input sequence S and then outputs the dot
product w′x. In short, the algorithm learns a linear function. Clearly the pro-
duced w may be nonlinear in S.

Theorem 2. A linear algorithm A is kernelizable iff for every input sequence
S = {(xt, �t)}Tt=1 the weight vector w is a linear combination of the instances of
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S, and the coefficients of the linear combination depend on S only via the kernel
matrix X ′X, where X contains the instances {xt}Tt=1 as columns.

This can be proven by essentially repackaging a theorem given in [18]. The key
contribution of this paper is that we will develop analogous theorems for the
case when the instances are matrices.

Asymmetric Matrix Instances: We first consider the case of asymmetric
matrices. In this case the instances are outer products xy′, where x ∈ R

n and
y ∈ R

m. Examples have the form (xy′, �), where � is from some labeling domain.
A learning algorithm A is again, any mapping from example sequences S =
{(xty′

t, �t)}Tt=1, followed by a next instance xy′ to some fixed output range.2

Now we have two augmented kernel matrices, X̂
′
X̂ and Ŷ

′
Ŷ , where X̂ contains

the T instances {xt}Tt=1 plus x as columns and Ŷ is defined similarly.
Analogous to the vector case, an algorithm A for asymmetric outer product

instances is kernelizable if for any two input sequences S,xy′ and S̃, x̃ỹ′ with
the same labels and the same augmented kernel matrices, algorithm A maps
to the same output, i.e. A(S,xy′) = A(S̃, x̃ỹ′). In the asymmetric case, we
need two orthogonal matrices. For any orthogonal matrices U ∈ R

n×n, and
V ∈ R

m×m, we let USV ′ denote the transformed sequence {(Uxty
′
tV

′, �t)}Tt=1.
By applying Lemma 1 twice (to the left vectors xt and the right vectors yt), it
follows that algorithm A is kernelizable iff for all sequences S, next instances
xy′ and orthogonal matrices U ,V ,

A(S,xy′) = A(USV ′,Uxy′V ′). (1)

The generalization of the linearity of algorithms to the matrix domain is straight-
forward: An algorithm A is linear if A, upon input S,xy′, first computes a
weight matrix W ∈ R

n×m from the input sequence S and then outputs the
trace tr(W ′xy′). As we shall prove now, the linearity of the algorithm has the
consequence that the algorithm maintains a weight vector that is a linear com-
bination of the instances.

Theorem 3. A linear algorithm A is kernelizable iff for every input sequence
S = {(xty′

t, �t)}Tt=1 the weight matrix of A can be written as W = XCY ′,
where X contains the instances {xt}Tt=1 as columns, Y contains the {yt}Tt=1 as
columns, and the coefficient matrix C ∈ R

T×T depends on S only via the kernel
matrices X ′X and Y ′Y .

Note that the expression W = XCY ′ is just a concise way of expressing the
linear combination of instances

∑T
i=1

∑T
j=1 Cij xiy

′
j .

Proof. Let W (S) denote the weight matrix produced by algorithm A from the
sequence S. Since A is kernelizable and outputs the trace tr(W (S)′xy′) we have

tr(W (S)′ xy′) = tr(W (USV ′)′ Uxy′V ′), (2)

2 For conciseness we use outer products xy′ as instances instead of the longer notation
(x,y). Technically this means that the kernel matrices are only determined up to sign
patterns but this is immaterial.
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for all sequences S, orthogonal matrices U ,V of dimensions n× n and m×m,
and instances xy′, for x ∈ R

n and y ∈ R
m. In Part 1, we first show that

(2) implies that for any S, W (S) = XCY ′ for some C ∈ R
T×T . In Part 2, we

show that (2) implies that for any S and orthogonal matrices U ,V of dimensions
n× n and m ×m, respectively, W (USV ′) = UXCY ′V ′. This means that C
is invariant under left and right orthogonal transformations U and V of the
example sequence S, and thus by Lemma 1 this is equivalent to stating that C
depends on S only via the kernel matrices X ′X and Y ′Y .

The opposite direction is easy: Since C depends on S only via the kernel
matrices, C is invariant under orthogonal transformation S �→ USV ′ (which
leaves the kernel matrices unchanged), and thus W (USV ′) = UXCY ′V ′ =
UW (S)V ′. This implies (2) and kernelizability:

tr(W (USV ′)′Uxy′V ′) = tr((UW (S)V ′)′Uxy′V ′) = tr(W (S)′xy′).

Proof of Part 1: Let {x̂i}r1i=1 be an orthonormal basis for Span
(
{xt}Tt=1

)
and

{ŷj}r2j=1 be an orthonormal basis for Span
(
{yt}Tt=1

)
, where r1 and r2 are the

ranks of the corresponding spaces. Complete these two bases to orthonormal
bases for R

m and R
n, respectively, and denote these bases as {x̂i}ni=1 and

{ŷj}mj=1. Since {x̂iŷ′
j | i = 1 . . . n, j = 1 . . .m} is an orthonormal basis for

R
n×m we can rewrite the matrix W (S) ∈ R

n×m as

W (S) =
n∑
i=1

m∑
j=1

ĉi,jx̂iŷ
′
j .

Choose any index r1 < p ≤ n and any index 1 ≤ q ≤ m, and we now show
that ĉp,q = 0 (the case r2 < q ≤ m and 1 ≤ p ≤ n is proven similarly). We
use the notion of transformation invariance (2). We choose x = x̂p and y = ŷq.

Furthermore, choose U as the Hauseholder reflection matrix I−2x̂px̂
′
p and V =

I. Since x̂p ⊥ xt for any t = 1, . . . , T (because p > r1), Uxt = xt−2x̂p(x̂′
pxt) =

xt. Also V yt = Iyt = yt. It thus follows that the transformed sample USV ′

is same as the original sample S, and therefore W (USV ′) = W (S). Thus the
l.h.s. of Equation (2) becomes:

tr(W (S)′xy′)=tr
(
(
∑
i,j

ĉi,jx̂iŷ
′
j)

′x̂pŷ
′
q

)
=
∑
i,j

ĉi,jx̂
′
ix̂pŷ

′
qŷj= ĉp,qx̂

′
px̂pŷ

′
qŷq= ĉp,q.

However since x̂′
px̂p = 1, Ux̂p = x̂p − 2x̂px̂

′
px̂p = −x̂p and therefore the r.h.s.

of Equation (2) has the opposite sign:

tr(W (USV )′Uxy′V ′) = −tr(W (S)′x̂pŷ
′
q) = −ĉp,q.

We conclude that the transformation invariance (2) implies ĉp,q = 0 if p > r1
(and similarly ĉp,q = 0 if q > r2). Since for any p ≤ r1, x̂p is a linear combination
of x1, . . . ,xT , and for any q ≤ r2, ŷq is a linear combination of y1, . . . ,yT , it
follows that



356 M.K. Warmuth, W. Kot�lowski, and S. Zhou

W (S) =

r1∑
i=1

r2∑
j=1

ĉi,jx̂iŷ
′
j =

T∑
i=1

T∑
j=1

Ci,jxiy
′
j ,

for some coefficient matrix C ∈ R
T×T .

Proof of Part 2: By Part 1, W (S) =
∑r1

i=1

∑r2
j=1 ĉi,jx̂iŷ

′
j . By applying Part 1

to the sequence USV ′ we get W (USV ′) =
∑r1

i=1

∑r2
j=1 d̂i,jUx̂iŷ

′
jV

′ for some

coefficients d̂i,j , because if {x̂i}r1i=1 is an orthonormal basis for X , {Ux̂i}r1i=1 is
an orthonormal basis for UX (and similarly for Y and V Y ). To prove the Part

2, it suffices to show that ĉp,q = d̂p,q for any 1 ≤ p ≤ n and 1 ≤ q ≤ m. By (2),

ĉp,q = tr
((∑

i,j

ĉi,jx̂iŷ
′
j

)′
x̂pŷ

′
q

)
= tr(W (S)′x̂pŷ

′
q) = tr(W (USV ′)′Ux̂pŷqV

′)

= tr
((∑

i,j

d̂i,jUx̂iŷ
′
jV

′
)′
Ux̂pŷ

′
qV

′
)

= tr
((∑

i,j

d̂i,jx̂iŷ
′
j

)′
x̂pŷ

′
q

)
= d̂p,q.()

Note that the size of the coefficient matrix C is quadratic in the number of
instances T . Actually r1×r2 non-zero coefficients suffice, where r1, r2 is the rank
of the kernel matrices X,Y , respectively. The reason for the quadratic size is
that transformation invariance for asymmetric matrices involves two orthogonal
matrices U and V . If we viewed the outer products xty

′
t in R

n×m as vectors
in R

nm and assumed rotational invariance with respect to a single orthogonal
matrix of dimension k = nm, then S would have the form

∑
t ct xty

′
t, i.e. only

one coefficient per outer product instance.
There are straightforward generalizations of the above theorem to the case

when the instances are general matrices of a given rank s. Using the SVD de-
composition, the instances then can be written as sums of a fixed number of
outer products. That is, now the instances have the form

Xt
n×s

Y ′
t

s×m
=

s∑
q=1

xqty
q
t
′
.

In other words the vectors {xqt}sq=1 and {yqt}sq=1 are the columns of Xt and
Y t, respectively. The above theorem remains essentially unchanged, but for a
sequence {XtY

′
t}Tt=1 of T instances, the kernel matrix XX ′ is formed by letting

X contain the columns of all Xt, which adds up to sT columns in total. Similarly,
Y contains the sT columns of all Y t and both indices in the sums in the proof
of Theorem 3 range from one to sT .

Symmetric Matrix Instances: Let us now consider the case of symmet-
ric outer product instances. A broad set of applications falls into this frame-
work, including Principal Component Analysis, Fisher Discriminant Function,
or Quantum Information Theory. In this case, the instances are xx′ for x ∈ R

n,
and the learning algorithm A is any mapping from example sequences S =
{(xtx′

t, �t)}Tt=1 followed by a next instance xx′ to some fixed output range. Con-
trary to asymmetric instances, we now have a single augmented kernel matrix

X̂
′
X̂, which contains the T instances {xt}Tt=1 plus x as columns.
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An algorithm A for symmetric outer product instances is kernelizable if for
any two input sequences S,xx′ and S̃, x̃x̃′ with the same labels and the same
augmented kernel matrix, algorithmAmaps to the same output, i.e.A(S,xx′) =

A(S̃, x̃x̃′). By applying Lemma 1 it follows that A is kernelizable iff for all S,
xx′ and orthogonal matrices U ,

A(S,xx′) = A(USU ′,Uxx′U ′).

Note that contrary to the asymmetric case, the same matrix U is applied on
both sides. An algorithm A is linear, if upon input S,xx′, A first computes
a symmetric weight matrix W ∈ R

n×n from the input sequence S and then
outputs the trace tr(W ′xx′).3

Theorem 4. A linear algorithm A is kernelizable iff for every input sequence
S = {(xtx′

t, �t)}Tt=1 the weight matrix of A can be written as W = XCX ′ + cI,
where X contains the instances {xt}Tt=1 as columns, C ∈ R

T×T is a symmetric
coefficient matrix, c is a real number, I is the identity matrix in R

n, and C and
c depend on S only via the kernel matrix X ′X.

Proof. We only show the part of the proof which corresponds to “Part 1” of the
proof of Theorem 3 (the rest of the proof follows closely the proof of Theorem
3). Since A is kernelizable, we have

tr(W (S)′ xx′) = tr(W (USU ′)′ Uxx′U ′), (3)

for all S,U ,xx′. We want to show that (3) implies that for any S, W (S) =
XCX ′ + cI for some symmetric C ∈ R

T×T and c ∈ R. Let {x̂i}ri=1 be an or-
thonormal basis for Span

(
{xt}Tt=1

)
. Complete this basis to an orthonormal basis

{x̂i}ni=1 for R
n, We decompose W (S) =

∑
i,j ĉi,jx̂ix̂

′
j , and due to symmetry of

W (S), ĉi,j = ĉj,i for all i, j.
We need to show that ĉp,q = 0 if p �= q and either p > r or q > r, and that

ĉp,p = ĉ for some constant ĉ, for p > r. We show the former first. Due to the
symmetry of W (S), it suffices to show that that ĉp,q = 0 for any q > r and any

p. Choose x = x̂p + x̂q and U as the Hauseholder reflection I − 2x̂qx̂
′
q, so that

Uxt = xt for 1 ≤ t ≤ T , Ux̂p = x̂p, and Ux̂q = −x̂q. Then, the transformed
sample USU ′ is the same as the original sample S, and W (USU ′) = W (S).
Therefore, the l.h.s. and r.h.s. of (3) become

tr(W (S)′xx′)=
∑
i,j

ĉi,j x̂′
i(x̂p + x̂q)(x̂

′
p + x̂′

q)x̂j= ĉp,p + ĉq,q + ĉp,q + ĉq,p

tr(W (USU)′Uxx′U ′)=
∑
i,j

ĉi,j x̂′
i(x̂p − x̂q)(x̂

′
p − x̂′

q)x̂j= ĉp,p+ĉq,q−ĉp,q−ĉq,p,

which along with ĉp,q = ĉq,p implies ĉp,q = 0.
To show that ĉp,p = ĉ for some constant ĉ, for all p > r, we choose x = x̂p,

and U to be a permutation matrix that swaps the basis vectors x̂p and x̂q for
some q > r, while leaving all other basis vectors unchanged, i.e.:

3 The assumption on the symmetry of W comes without loss of generality: Given any
matrix W , we can always take a symmetrized version W sym = W+W ′

2
, and for any

xx′, it holds tr(W ′
symxx′) = tr(W ′xx′).
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U = I − x̂px̂
′
p − x̂qx̂

′
q + x̂px̂

′
q + x̂qx̂

′
p.

For this choice of U , UU ′ = I, Ux̂p = x̂q, Ux̂q = x̂p, and Uxt = xt for
all 1 ≤ t ≤ T (because p, q > r). Thus, the transformed sample USU ′ is the
same as the original sample S, so that W (USU ′) = W (S). On the other hand,
Uxx′U ′ = Ux̂px̂

′
pU

′ = x̂qx̂
′
q. The l.h.s. and r.h.s. (3) become

tr(W (S)′xx′) =
∑
i,j

ĉi,j x̂
′
ix̂px̂

′
px̂j = ĉp,p

tr(W (USU)′Uxx′U ′) =
∑
i,j

ĉi,j x̂
′
ix̂qx̂

′
qx̂j = ĉq,q,

which implies ĉp,p = ĉq,q. Since q was an arbitrary index such that q > r, we
conclude that ĉp,p = ĉ for some constant ĉ, for all p > r.

We conclude that the transformation invariance (3) implies that

W (S) =
r∑
i=1

r∑
j=1

ĉi,jx̂ix̂
′
j + ĉ

n∑
i=r+1

x̂ix̂
′
i =
∑
i,j

Ci,jxix
′
j + cI = XCX ′ + cI

for some coefficient matrix C and real number c, where the second equality
follows from the fact that {x̂i}ri=1 is an orthonormal basis for Span

(
{xt}Tt=1

)
,

and {x̂i}ni=1 an orthonormal basis for R
n. W.l.o.g. C is symmetric, because if

Ci,j �= Cj,i, then changing both to
Ci,j+Cj,i

2 does not change W (S). ()

Comparing Theorem 4 with Theorem 3, an additional term cI entered the ex-
pansion. The term was absent for asymmetric matrices as there is no identity
matrix in this case. The term cI can easily be dealt with when the instances
are expanded via a feature map x �→ φ(x), as it leads to the expression of the
form tr(cIφ(x)φ(x)′) = c k(x,x). We note that Theorem 4 also generalizes eas-
ily from symmetric outer product instances to symmetric matrix instances with
fixed rank s.

3 Kernelization via a Representer Theorem

The following Representer Theorem for asymmetric outer product instances
was proven in [1]: Given a penalty function Ω(W ) =

∑d
i=1 si(σi(W )), where

{σ1, . . . , σd} is the set of singular values of W in decreasing order, and si are
non-decreasing functions satisfying s(0) = 0, then there exists a solution to the
minimization problem

min
W

Ω(W ) + η
∑
t

losst(tr(W
′xty′

t)), (4)

which can be written as W =
∑

i,j Ci,jxiy
′
j = XCY ′. Using our results, we are

able to prove a version of the Representer Theorem with different, not directly
comparable assumptions:
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Theorem 5. Consider the minimization problem minW L(W ,S), which for all
S has a unique solution and is rotationally invariant, i.e. for any S and any
orthogonal matrices U and V , L(W ,S) = L(UWV ′,USV ′). In this case the
solution W ∗(S) can be written as W ∗(S) = XCY ′ where C depends on S only
via the kernel matrices X ′X, Y ′Y .

Proof. Let algorithm A produce the matrix W (S) := W ∗(S). The algorithm
satisfies our definition of linearity. fIt is also kernelizable, because due to rota-
tional invariance of L and uniqueness of the solution, W ∗(USV ′) = UW ∗(S)V ′

and thus W (USV ′) = UW (S)V ′, so that for any xy′,

tr(W (S)′xy′) = tr(V ′W (USV ′)′Uxy′) = tr(W (USV ′)′UxyV ′).

The theorem now follows from the forward direction of Theorem 3. ()

We also note that with some more effort, it is possible to prove Theorem 5
under the weaker assumption that minW L(W ,S) has a unique solution only
for a particular sequence S, rather than for all sequences S.

The problem (4) is rotationally invariant (because Ω is a function of the singu-
lar values only), so the Theorem 5 applies as long as the solution is unique. Note
that [1] specify different conditions: no uniqueness assumption is needed, rather
some structure of the penalty function is imposed. Therefore our conditions are
not directly comparable with theirs. Our proof of the Representer Theorem is
however much simpler than the proof in [1]. Also, our conditions apply to a
much wider class of algorithms, which does not need be defined as solution to
the optimization problem above. Moreover, using our approach it is straightfor-
ward to generalize the Representer Theorem to the optimization problem with
constraints, as long as the constraints are rotationally invariant and the solution
is unique. Finally, we easily get the version of the Representer Theorem for the
case of symmetric outer products, which has not be considered elsewhere:

Theorem 6. Consider the problem minsym.W L(W ,S), which for all S has a
unique solution and is rotationally invariant, i.e. for any S and any orthogonal
matrix U , L(W ,S) = L(UWU ′,USU ′). In this case the solution W ∗(S) can
be written as W ∗(S) = XCX ′ + cI, where C and c depend on S only via the
kernel matrix X ′X.

4 Example Applications

We provide a few examples of how the arguments given in this paper can shed
light on the kernelization of algorithms for particular learning problems. We
focus on the online setting, i.e. when the instances are revealed sequentially to
the learner. We also give algorithms only for the matrix case (both asymmetric
and symmetric), as the vector case has been much exploited in the last decades,
mostly in connection to support vector machines.

The algorithms of this section require the use of the singular value decompo-
sition of the matrix XCV ′, or the eigenvalue decomposition (in the symmetric
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case) of the symmetric matrix XCX ′. As discussed in the introduction, the di-
mensions n andm of the left instances xi and the right instances yi, respectively,
are typically much larger than the number of instances T . Thus the dimension of
the matrix XCY ′ ∈ R

n×m (or XCX ′ ∈ R
n×n) is too large. The key is to obtain

its decomposition in terms of the smaller kernel matrices X ′X,Y ′Y ∈ R
T×T :

Lemma 2. For any left instance set X ∈ R
n×T , right instance set Y ∈ R

m×T

and square matrix C ∈ R
T×T , if UΣV ′ is a compact SVD of

√
X ′XC

√
Y ′Y ,

where Σ = diag(σ1, · · · , σr), then the compact SVD of XCY ′ is ŨΣṼ with

Ũ = XC
√
Y ′Y V Σ−1 and Ṽ = Y C′√X ′XUΣ−1. Similarly, for any

X ∈ R
n×T and symmetric matrix C ∈ R

T×T , if UΣU ′ is a compact eigende-
composition of

√
X ′XC

√
X ′X, where Σ = diag(σ1, · · · , σr), then the compact

eigendecomposition of XCX ′ is ŨΣŨ
′
with Ũ =XC

√
X ′XUΣ−1.

The proof (omitted) consists of checking the orthogonality of Ũ and Ṽ and
showing that XCY ′ = ŨΣṼ . For symmetric instances, a particularly simple
case is obtained when C = I:

Corollary 1. For any X ∈ R
n×T , if UΣU ′ is a compact eigendecomposition

of X ′X, then XX ′ has the compact eigendecomposition ŨΣŨ
′
, where Ũ =

XUΣ−1/2.

This known fact was key to the kernelization of PCA and Fisher Linear Discrim-
inant Functions [12,10].

Asymmetric Case and Additive Updates: Consider the following online
learning problem: The data {(xty′

t, �t)}Tt=1 is revealed to the learner sequentially.
The learner predicts at trial t with a matrix W t ∈ W from some convex set W ,
and suffers a convex loss denoted as loss(tr(W ′

txty
′
t), �t). The goal of the learner

is to have total loss in trials t = 1, . . . , T not much higher then the total loss of
the best matrix W ∗ ∈ W chosen in hindsight, i.e. to have small regret

Reg(S) =
∑
t

loss(tr(W ′
txty

′
t), �t)− min

W∈W

∑
t

loss(tr(W ′xty′
t), �t).

Assume that W = {W : ‖W‖ ≤ B}, where ‖W‖ is a rotationally invariant
norm, i.e. depends on W only via its singular values. A typical choice, used
e.g. in collaborative filtering, would be the trace norm ‖W ‖1. Let us also as-
sume for simplicity that ‖xt‖2 ≤ 1 and ‖yt‖2 ≤ 1 for all t, where ‖ · ‖2 is the
Euclidean norm. A popular approach to solve the minimization problem is the
online gradient descent (GD) [7]: Let ∂t(W ) denote the subgradient ∂�̂t loss(�̂t, �t)

at �̂t = tr(W ′xty′
t). The GD step can be derived as the solution to the following

optimization problem:

W t+1 = argmin
W∈W

‖W −W t‖2F + η∂t(W t) tr(W ′xty′
t), (5)

where ‖ · ‖F is the Frobenious norm. Solving (5) leads to the additive update:
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W t+1 = proj (W t − η∂t(W t)xty
′
t) ,

where the projection operation is defined as proj(W ) = argmin‖W̃ ‖≤B ‖W −
W̃ ‖2F . Since the norm ‖ · ‖ is rotationally invariant, the projection becomes a
projection on the singular values {σ1, . . . , σmin{n,m}} of W . In particular, for
‖ · ‖ being the trace norm, the projection leads to σi �→ (σi − τ)+, where τ is
the smallest value for which

∑
i(σi − τ)+ ≤ B. When W 1 = 0, one can show

by a simple induction that the problem (5) is rotationally invariant for all t.
Due to the strictly convex objective function, (5) has a unique solution, and we
conclude from Theorem 5 that W t is in the span of the data, i.e. has the form
XCY ′. Thus the algorithm can be kernelized by calculating the SVD of the
matrices XCY ′ i.t.o. of the kernel matrices using Lemma 2. Also the output
tr(XCY ′xy′) = x′XCY ′y only relies on the kernel matrices. For the trace
norm, it can be shown using a standard analysis of GD, that given |∂t(W )| ≤ G,
Reg(S) ≤ BG

√
T , and is independent of the dimension of the feature space4 [13].

Symmetric Case and Multiplicative Updates: In the symmetric case, the
data sequence becomes {(xtx′

t, �t)}Tt=1. Let us assume for simplicity that ‖xt‖2 =
1 for all t. The learner predicts at trial t with the symmetric matrix W t ∈ W , and
suffers loss loss(tr(W ′

txtx
′
t), �t). We focus on the interesting case whenW is a set

of positive-semidefinite matrices with unit trace (density matrices), a generaliza-
tion of the probability simplex to symmetric matrices. A choice of the algorithm
is the Matrix Exponentiated Gradient [14], defined as a trade-off between mini-
mization of the quantum relative entropy and the negative gradient of the loss:

W t+1 = argmin
W∈W

tr (W (logW − logW t)) + η∂t(W t) tr(W ′xtx′
t), (6)

which leads to to the following multiplicative update [14]:

W t+1 =
exp (logW t − η∂t(W t)xtx

′
t)

Zt
, (7)

where Zt = tr (exp (logW t − η∂t(W t)xtx
′
t)) is the normalization factor. When

W 1 = I/n, a simple inductive argument proves rotational invariance of (6) for
all t. Due to the strictly convex objective function, (6) has a unique solution,
and we conclude from Theorem 6 that the algorithm can be kernelized (we
note that the standard representer theorems do not cover this case). The main
challenge in the update (7) is to do the exp operation, but it can be done by
eigendecomposition of logW t− η∂t(W t)xtx

′
t, which by Lemma 2 only requires

to calculate the kernel matrix.
A particularly interesting case is when loss(tr(W ′

txtx
′
t), �t) = −tr(W ′

txtx
′
t).

In other words, the game is the gain game with a linear gain function tr(W txtx
′
t).

Then, the offline solution to the problem W ∗ is a one-dimensional projector to
the subspace that captures the most of the variance of the data, i.e. the subspace

4 In practical applications the choice of B may still depend on the dimension.
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associated with the largest eigenvalue of
∑

t xtx
′
t. This is exactly the problem

of single-component PCA5 [17]. In this case, the EG update (7) simplifies to

W t+1 = Z−1
t exp

(
η
∑t

i=1 xix
′
i

)
, and the eigendecomposition can be handled

using Corollary 1.
By modifying the EG analysis of [17,9], we can show shown that Reg(S) ≤√

2L∗ lnn + lnn, where L∗ is the approximation error, i.e. part of the variance

in the data not captured by W ∗, L∗ = minW∈W
{∑T

t=1(1− tr(W ′xtx′
t))
}

.

Unfortunately, this bound (which essentially appears in [9]) is not satisfactory,
as it depends on the feature space dimension n. When the instances xx′ are
replaced by φ(x)φ(x)′ then the lnn term can become unbounded. Below we
sketch a new method for replacing lnn by ln r, where are is the total rank of the
instances. So for the first time, we obtain a bound for a Matrix EG algorithm
that does not depend on the feature dimension.

We observe that the best density matrix in hindsight W ∗ projects into the
span of the data. If we knew the span in hindsight, we could disregard the other
dimensions and play EG within this subspace, achieving the bound

√
2L∗ ln r+

ln r, where r is the dimension of the subspace, i.e. the rank of the kernel ma-
trix X ′X. This bound is independent on n, as r ≤ T . Of course, the data
span is unknown to the learner, but we can slightly modify the EG algorithm
(let us call the modification EG+) to obtain the bound

√
2L∗ ln r + ln r + 1 ≤√

2L∗ lnT+lnT+1 without any prior knowledge of the span. The EG+ algorithm

is defined by modifying the update (7) to W+
t =

(
Z+
t

)−1
exp+

(
η
∑t−1

i=1 xix
′
i

)
,

where Z+
t = tr

(
exp+

(
η
∑t−1

i=1 xix
′
i

))
, and exp+(A) is a function that expo-

nentiate the positive eigenvalues of A only, and leaves the zero eigenvalues un-
changed.6 In other words if A has a compact eigenvalue decomposition UΣU ′,
then, exp+(A) = U exp(Σ)U ′. To prove the regret bound

√
2L∗ ln r + ln r + 1

for EG+, it suffices to show that given a feature space with dimension n, the
total loss of EG+ (which does not know n) is by at most one larger than the
total loss of EG (which knows n):

Lemma 3. Let W t and W+
t be the matrices produced by the EG and EG+

algorithms, respectively. Then
∑T

t=1−tr(W+
t

′
xtx

′
t)−

∑T
t=1−tr(W ′

txtx
′
t) ≤ 1.

Proof. Fix iteration t and let St−1 :=
∑t−1

i=1 xix
′
i. If xt is a linear combination of

past instances x1, . . . ,xt−1, then the loss incurred by EG+ is smaller than the
loss incurred by EG. Indeed, tr (exp+ (ηSt−1)xtx

′
t) = tr (exp (ηSt−1)xtx

′
t)

(because xt belongs to the subspace associated with non-zero eigenvalues of
St−1), but Z+

t ≤ Zt (because exp+(A) � exp(A) for any positive matrix A).
If xt is linearly independent of x1, . . . ,xt−1, then the loss incurred by EG+ in
any trial t > 1 is larger by at most 1

n (and t = 1 can be handled seperately):

5 By capping the eigenvalues to 1
k
(as done in [17]) we can generalize this algorithm to

k-component PCA where one seeks a k-dimensional subspace with maximal variance.
6 The initial weight matrix W 1 is set arbitrarily.
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−tr(W+
t
′
xtx

′
t) = −(Z+

t )−1tr
(
exp+ (ηSt−1)xtx

′
t

)
≤ −Z−1

t tr
(
exp+ (ηSt−1)xtx

′
t

)
≤ −Z−1

t tr ((exp (ηSt−1)− I)xtx
′
t)

= −tr(W ′
txtx

′
t) + Z−1

t

≤ −tr(W ′
txtx

′
t) + 1/n,

where we used the fact that exp+(A) � exp(A)− I for any positive matrix A,

and that Zt = tr
(
exp

(
η
∑t−1

i=1 xix
′
i

))
≥ tr(I) = n. ()

Note that the EG+ is as easy to kernelize as the EG, because they differ only
in the update of the eigenvalues. We can also easily handle the case when the
instances are positive symmetric matrices of rank at most s. Since the EG bound
does not depend on the sparsity of the instances, we immediately get the same
regret bound

√
2L∗ log r + ln r, where r ≤ Ts.

We finally note that one can also use an additive update (GD) algorithm
in the symmetric case, and obtain the bound

√
T for outer product instances,

and
√
Ts for matrix instances. The bounds for the GD and the EG+ algorithms

are not directly comparable: EG+ has an additional log r factor, but GD scales
worse with the rank s of matrix instances. Moreover, the EG+ bound is especially
useful for low-noise conditions, when the approximation error L∗ is small. There
is no corresponding bound known for the GD in this case.

5 Conclusion

We gave necessary and sufficient conditions for kernelizability for the case of vec-
tor, asymmetric matrix, and symmetric matrix instances, under the assumption
that the algorithm is linear, produces a unique solution and satisfies a certain
rotational invariance. We also proved simple representer theorems for both asym-
metric and symmetric matrix instances, and gave a number of examples of our
methods, including the kernelization of multiplicative updates. In some sense our
approach resembles how the models in Physics are built, where the equations of
motion follow from certain invariance properties of physical laws.

We conclude with a subtle open problem. A new family of so called “Forward”
algorithms was developed [3] whose predictions may depend on the current un-
labeled instance for which the algorithm is to produce a label. In particular in
the case of linear regression [15,6], better regret bounds were proven for the
Forward algorithm than for the standard Ridge Regression algorithm. Therefore
a natural open problem is whether our characterization of kernelizability can
be generalized to algorithms that may predict with linear combinations of the
labeled as well as the last unlabeled instance.
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Abstract. In the online prediction framework, we use generalized en-
tropy to study the loss rate of predictors when outcomes are drawn
according to stationary ergodic distributions over the binary alphabet.
We show that the notion of generalized entropy of a regular game [11]
is well-defined for stationary ergodic distributions. In proving this, we
obtain new game-theoretic proofs of some classical information theoretic
inequalities. Using Birkhoff’s ergodic theorem and convergence proper-
ties of conditional distributions, we prove that a generalization of the
classical Shannon-McMillan-Breiman theorem holds for a restricted class
of regular games, when no computational constraints are imposed on the
prediction strategies.

If a game is mixable, then there is an optimal aggregating strategy
which loses at most an additive constant when compared to any other
lower semicomputable strategy. The loss incurred by this algorithm on
an infinite sequence of outcomes is called its predictive complexity. We
prove that when a restricted regular game has a predictive complexity,
the average predictive complexity converges to the generalized entropy
of the game almost everywhere with respect to the stationary ergodic
distribution.

1 Introduction

We consider the online prediction question studied by Vovk and Watkins [17],
Vyugin and V’yugin [18], Kalnishkan et. al. [11] [10], Fortnow and Lutz [8], in
the setting of a stationary stochastic process. In this setting, we have a sequence
of outcomes x0, x1, . . . from a finite alphabet. A predictor, given the history
up to a certain index, predicts what the next outcome will be. We allow the
predictor to present its prediction as an element of a compact space. The game
proceeds by revealing the next outcome, and then asking for the prediction of
the future outcome. For an overview of this area, see Cesa-Bianchi and Lugosi
[2]. Independently, a related question has been widely studied in information
theory (see for example, Merhav and Feder [14], Feder [5] and Feder et. al. [6]) –
this is the question of universal predictors with respect to Shannon entropy, over
a family of stationary ergodic distributions. It is known that the log-loss game
characterizes Shannon entropy. The present line of work contrasts with this in

N.H. Bshouty et al. (Eds.): ALT 2012, LNAI 7568, pp. 365–379, 2012.
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two ways – first, in considering loss functions besides log-loss, and second, in
considering optimal predictors over given stationary ergodic distributions.

A natural question in this context is how well the predictor is doing as the
game progresses. We measure the discrepancy between the actual outcome and
the predicted one, with a loss function. This helps us to ask whether optimal
predictors exist – those which incur at most the same loss as as any other pre-
dictor on any outcome, ignoring additive constants. Indeed if such an optimal
predictor exists, we can use its loss rate on a particular sequence of outcomes
to define its inherent predictability (see for example, Vovk and Watkins [17],
Vyugin and V’yugin [18]).

Besides competitive advantage above other predictors, we can also charac-
terize the performance of an optimal predictor by examining its expected loss
assuming the outcomes are drawn from a particular distribution. Prior work by
Kalnishkan et al. [11] establishes that if the outcomes are drawn independently
according to a Bernoulli distribution on the alphabet, then the loss rate of an
optimal predictor on almost-every infinite sequence of outcomes is the general-
ized entropy (Grünwald and Dawid [9]) of the loss function. In this paper, we
extend this result to the important setting of stationary ergodic distributions.

The contributions of our paper are threefold.

1. First, we show that the generalized entropy rate of a stationary ergodic
process is well-defined, if the game is regular. We provide “game-theoretic”
proofs of classical information-theoretic inequalities, giving new intuitive
proofs even in the special case of the Shannon entropy. This constitutes
sections 3 and 4 of the paper.

2. Second, under a continuity and an integrability constraint, we show that op-
timal strategies exist for regular games.1 We show that the loss rate incurred
by such a strategy is the generalized entropy rate of the stationary ergodic
process almost-everywhere. This is a Shannon-McMillan-Breiman theorem
for generalized entropy. This result is new, and we provide a proof using
Vitali Convergence. This constitutes section 5 of the paper. The Shannon-
McMillan-Breiman Theorem deals directly with optimal processes on infinite
sequences.

3. Using the above results, we show that when a game has predictive complexity,
an optimal aggregator algorithm attains the entropy rate of the game. This
result deals with limiting loss rate made by an optimal strategy on finite
strings.

The proof that the aggregator incurs at most the entropy rate of loss uses
the Ergodic Theorem.

The proof that the aggregator incurs at least the entropy rate of loss uses
some properties of stationary ergodic processes that we prove in Sections 3
and 4. This constitutes the final section of the paper.

1 There is an independent characterization of games with optimal strategies in terms
of convexity of loss-regions (see Kalnishkan et. al. [10]). We deal with this approach
in the final section of our paper.
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2 Preliminaries

As defined in Kalnishkan et. al.[11], a game G is a triple (Σ,Γ, λ) where Σ is a
finite alphabet space, Γ is the space of predictions and λ : Σ×Γ → [0,∞] is the
loss function, to be defined below. We will only consider the binary alphabet in
this paper, and the sample space is Σ∞, the space of infinite binary sequences.

Intuitively, we model a predictor function which, given the string of outcomes
so far, will predict the next outcome. We consider a slightly general framework
where the predictor is allowed to output a point γ in a compact set Γ . The game
proceeds by revealing the next outcome. Let this outcome be b. The prediction
strategy is said to incur the loss λ(b, γ).

As is customary, we adopt the notation N for the set of natural numbers,
starting from 0. The set of strings of length n is denoted Σn. The set of finite
binary strings is denoted Σ∗ and the set of infinite binary sequences is denoted
Σ∞. For a finite or an infinite sequence x, the notation xji denotes xi . . . xj . If
x is shorter than n bits, xn−1

0 denotes x itself. If x is a finite string, and ω is a
finite string or an infinite sequence, then x ·ω denotes the result of concatenating
ω to x. For each natural number i, let Πi be the class of all functions mapping
i-long strings to Γ .

We call a family of functions ℘ a strategy if ∀i ∈ N, |℘∩Πi| = 1, i.e, there is a
unique function which takes an i-length string as input and produces a prediction
based on the input. We call that function ℘i. Thus the prediction strategy is a
non-uniform family. We impose no computational constraints until the final part
of the paper.

3 Loss Functions

The generalized entropy of a game is defined in terms of loss functions described
above. We define the losses incurred by a strategy on a finite string w of out-
comes, as the cumulative loss that it incurs on each bit of w. This follows the
definition given in Kalnishkan et. al. [11] and [10]. We generalize the notion
slightly to deal with the expected loss that a strategy incurs with respect to a
stationary distribution.

Definition 1. The loss that a prediction strategy ℘ incurs on a finite string w

of outcomes is defined to be Loss(w,℘) =
∑|w|−1

i=0 λ(wi, ℘
i(wi−1

0 )).

In order to study when a strategy is better than another, we study the average
loss it incurs, when outcomes are drawn from a stationary distribution. We
consider the strategy which incurs the minimal expected loss on a particular set,
if such a strategy exists. Let (Σ∞,F , P ) be the probability space where F is the
Borel σ-algebra generated by cylinders Cx = {ω ∈ Σ∞ | x is a prefix of ω} for
all finite strings x, and P : F → [0, 1] is the probability measure.

Let X = (X0, X1, . . . ) be a sequence of random variables on the probability
space – for each i ∈ N, Xi maps Σ∞ to R. For k ≥ 0, let Sk(X) denote the
sequence (Xk, Xk+1, . . . ) – that is, X “shifted left” k times.
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Definition 2. [15] A sequence of random variables X is stationary if the dis-
tributions of SkX and X coincide for every k ≥ 0. That is, for every Borel set
B in the σ-algebra over R

∞, P (X ∈ B) = P (Sk(X) ∈ B).

We could also use the terminology of measure-preserving transformations to cap-
ture stationarity. A transformation T : Ω → Ω is said to be measure-preserving
if for every measurable set A, P (T−1A) = P (A). A measure-preserving trans-
formation is said to be ergodic if T−1(A) = A if and only if P (A) is either 0 or
1. (see, for example, Billingsley [1])

The class of stationary processes corresponds almost exactly to the class of
probability spaces (Ω,F , P, T ), where T : Ω → Ω is a P -measure-preserving
transformation. For k ∈ N, let T k denote the iterated application of T , k times.
It is easy to see that if T is measure preserving and X is a random variable,
then (X,X ◦T,X ◦T 2, . . . ) is a stationary sequence. We also have the converse.
[15] On an alphabet space, we are interested in the coordinate random variables
Xi(ω) = ωi (i ∈ N), and any probability distribution such thatX = (X0, X1, . . . )
is stationary with respect to it, will be called a stationary distribution. A prob-
ability space with respect to which the left-shift transformation is ergodic will
be called an ergodic distribution.

Definition 3. We define the n-step generalized entropy of the game to be Hn =

inf
℘

∑
w∈Σn

P (w)Loss(w,℘), where (Σ∞,F , P ) is a probability space.

In order to avoid degenerate games (for example, games where the least expected
loss is infinity, precluding any incentive to play the game), following Kalnishkan
et al. [11], we restrict the game in the following manner.

– We restrict Γ to be a compact space. For the binary alphabet space, we let
the prediction space be [0, 1].

– The loss function λ is an extended real-valued function on Σ × Γ . For each
bit b, λ(b, .) is a convex function on Γ . We take the discrete topology on
the alphabet and the standard topology on [0, 1]. Then λ is continuous with
respect to their product topology.

– There is a prediction γ ∈ Γ such that for every b ∈ Σ, the inequality
λ(b, γ) < ∞ holds. This property ensures that the n-ary entropy is a finite
quantity.

– If there are γ ∈ Γ such that for some b ∈ Σ, the loss λ(b, γ) = ∞, then there
is a sequence γ1, γ2, · · · → γ such that for each γi, we have λ(b, γi) <∞.

A game which obeys these conditions is said to be regular. The last condition is
necessary (but not sufficient) to ensure that predictive complexity exists for the
game. We need this property crucially in Theorems 18 and 24.

The n step generalized entropy is the least expected loss incurred by any
strategy, on Σn. Since Σn (from the compactness of Σ) and Γ are compact
spaces and λ is continuous in both its arguments, the infimum in the above
expression is attained by some strategy. 2

2 The authors remark in [11] that such a strategy need not exist for Σ∗.
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Example 4. The Log-Loss game: Consider the binary alphabet and let predic-
tions be values in [0,1]. Let p0 and p1 be the probability of the bit 0 and bit 1,
respectively.

Suppose we define the loss function by λ(b, γ) = − log(| (1− b)− γ |), where b
is a bit, and γ ∈ [0, 1]. Then the minimal expected loss over one bit is obtained
at γ = p1, ensuring that H1 is the Shannon entropy of the distribution. ()

Definition 5. The generalized conditional entropy of Σn given Σm is defined
as

Hn|m = inf
℘

∑
w·x∈Σn+m

P (w · x)
m−1∑
i=0

λ
(
xi, ℘

i+m(w · xi−1
0 )
)
.

This is an analogue of the definition of conditional Shannon entropy.
When we generalize the theory to handle arbitrary loss functions, we do lose

some ideal properties that Shannon entropy has. The following theorem states
that Shannon entropy is the unique function having certain ideal properties that
we desire in a measure of information (see Khinchin [12]).

Theorem 6. For each n ∈ N, suppose Fn is a continuous function mapping a
probability vector (p1, . . . , pn) to R having the following properties.

1. For any finite set of disjoint events A and B, F (A,B) = F (A) +F (B|A). 3

2. For any n and probabilities (p1, . . . , pn), F (p1, . . . , pn) is maximal when pi =
1
n , i = 1, . . . , n.

3. For any n and probabilities (p1, . . . , pn), F (p1, . . . , pn, 0) =
F (p1, . . . , pn).

Then there is a positive constant c such that for every n-dimensional probability
vector (p1, . . . , pn), H(p1, p2, . . . , pn) = cF (p1, p2, . . . , pn).

With our definition of the cumulative loss, we can establish the chain rule for
generalized entropy.

Lemma 7. For all positive natural numbers m and n, we have Hm+n = Hm +
Hn|m.

Proof. In Definition 5, ℘i for 0 ≤ i ≤ m does not play any role in the infimum
and likewise in Definition 3, ℘i for i ≥ n does not play any role in the infimum
inf. This observation allows us to deduce that

Hm +Hn|m = inf
℘

( ∑
w∈Σm

P (w)
∑
x∈Σn

P{x|w}
m−1∑
i=0

λ
(
xi, ℘

i+m(w · xi−1
0 )
))

+

inf
℘

∑
w∈Σm

P (w)Loss(w,℘)

= inf
℘

∑
w∈Σm

P (w)

( ∑
x∈Σn

m−1∑
i=0

λ
(
xi, ℘

i+m(w · xi−1
0 )
)

+
∑

w∈Σm

Loss(w,℘)

)
. (1)

3 Khinchin [12]) describes them as “finite schemes”.
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Now,

inf
℘

∑
w∈Σm

P (w)

(
Loss(w,℘) +

∑
x∈Σn

P{x|w}
m−1∑
i=0

λ(xi, ℘
i+m(w · xi−1

0 ))

)

= inf
℘

∑
w∈Σm

P (w)
∑
x∈Σn

P{x|w}
(

Loss(w,℘) +

m−1∑
i=0

λ(xi, ℘
i+m(w · xi−1

0 ))

)
= inf

℘

∑
w∈Σm+n

P (w)Loss(w,℘) = Hm+n.

()

Since λ is non-negative, it is clear that all entropies defined so far are non-
negative. An immediate consequence of this is Hm+n ≥ Hm for all m,n ≥ 0. We
see that this style of proof referring to strategies in games yields new intuitive
proofs of such inequalities.

Any generalization of Shannon entropy will result in violating one of the
conditions of Khinchin’s uniqueness theorem. Comparing with the Khinchin
Uniqueness theorem, we see that in our approach, Lemma 7 does not ensure
that for any finite events A and B, H(A,B) = H(A) + H(B|A) for loss func-
tions besides the log-loss function.

4 Entropy of a Regular Game

The goal of this section is to define the notion of the entropy of a regular game.
Our idea is to define it to be the limiting rate of the n-step generalized entropies
of the game. We now show that if the game is regular and the probability dis-
tribution is stationary, such a limit exists. Thus the notion of the entropy of a
regular game is well-defined. We now prove that the entropy rate of a regular
game is well-defined. First, we need a few technical lemmas that are used in
Theorem 10 proving the existence of the entropy rate.

Lemma 8. [Generalized Shannon Inequality] For any regular game, any sta-
tionary distribution P defined on it, and non-negative integers m and n, we
have Hm|n ≤ Hm.

Proof. The following proof is for m = 1. In this special case H1 = infγ∈Γ
∑

a∈Σ
P (a)λ(a, γ) and

H1|n = inf
f∈Πn

∑
w∈Σn

P (w)
∑
a∈Σ

P{a|w}λ(a, f(w)) =

inf
f∈Πn

∑
a∈Σ

P (a)
∑
w∈Σn

P{w|a}λ(a, f(w))

Now pick the γ ∈ Γ which matches H1. We can do this because the regularity
condition of the game requires Γ to be compact. The loss function is continuous
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in both its arguments ensuring that the expected loss in (3) is a continuous
function on a compact space. Now define f ′ : Σn → {γ}. Clearly, f ′ ∈ Πn. So,

H1|n ≤
∑
a∈Σ

P (a)
∑
w∈Σn

P{w|a}λ(a, f ′(w)) =
∑
a∈Σ

P (a)
∑
w∈Σn

P{w|a}λ(a, γ)

=
∑
a∈Σ

P (a)λ(a, γ) = H1

The general case proceeds by induction by defining f ′i+n(ww′i−1
0 ) =

f i(w′i−1
0 ), where w is an n-long string and 1 ≤ i ≤ m. ()

In the special case of the log-loss game with a Bernoulli distribution on the
finite alphabet, the argument above yields a new argument for the Shannon
inequality. The next lemma demonstrates that the conditional entropy is non-
increasing with the length of the history we consider – this will be relevant in
Theorem 10 to show that the limiting entropy rate exists.

Lemma 9. For any regular game, any stationary distribution P defined on it,
and any positive pair of natural numbers m and n, Hm|n ≥ Hm|n+1.

Proof. We prove the inequality for m = 1. The general case follows from appli-
cation of Lemma 7. We have,

H1|n = inf
f∈Πn

∑
a∈Σ

∑
w∈Σn

P{wa}λ(a, f(w))

and similarly H1|n+1 = inf
f ′∈Fn+1

∑
a∈Σ

∑
w∈Σn+1

P{wa}λ(a, f ′(w)).

We show for each f ∈ Πn we have a f ′ ∈ Fn+1 which matches the inner quantity
on which infimum is taken. Then, by taking infimum over Fn+1,we will have
H1|k ≥ H1|k+1. Fix a f ∈ Πn and consider f ′ ∈ Fn+1 defined as f ′(bw) = f(w)
for all w ∈ Σn, b ∈ Σ. Now,∑

a∈Σ

∑
w∈Σn+1

P{wa}λ(a, f ′(w)) =
∑
a∈Σ

∑
b∈Σ

∑
w′∈Σn

P{bw′a}λ(a, f ′(bw′))

=
∑
a∈Σ

∑
w′∈Σn

∑
b∈Σ

P{bw′a}λ(a, f(w′)) =
∑
a∈Σ

∑
w′∈Σn

P{w′a}λ(a, f(w′))

where the last step follows from stationarity of P (i.e,
∑

b∈Σ P{bw} = P{w} for
all w ∈ Σn). ()

Theorem 10. For any regular game G and stationary (Σ∞,F , P ), lim
n→∞

Hn

n
exists and is finite.

Proof. From the regularity condition, we get H1 is finite. From Lemma 7, it
follows that Hn =

∑n−1
i=0 H1|i.
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By Lemma 9, H1|k ≥ H1|(k+1). Since entropies are non-negative, the sequence
{H1|n} is a bounded, decreasing sequence of reals. Hence, it has a limit which
we denote by H1|∞. It also follows that H1|∞ is at most H1.

So, lim
n→∞

Hn

n
= limn→∞ 1

n

∑n−1
i=0 H1|i = limn→∞H1|n = H1|∞. ()

Definition 11. Let G = (Σ∞, Γ, λ) be a regular game and (Σ∞,F , P ) be a
stationary distribution. Then the generalized entropy of the game is defined as
H = limn→∞ Hn

n .

Thus the notion of entropy rate is well-defined, enabling us to investigate the
existence of a Shannon-McMillan-Breiman Theorem.

5 A Shannon-McMillan-Breiman Theorem

We now show that for regular games with a suitable restriction on the loss
functions, optimal processes exist and they attain the generalized entropy rate
of the stationary ergodic process. Our approach to this result is through uniform
integrability and the Vitali Convergence theorem, which contrasts with the usual
approach using the Dominated Convergence Theorem. First, we define the notion
of a strongly regular game, for which the result holds. 4 We will derive two
consequences of strong regularity, viz.

1. The existence of a limiting function for the loss function, P -almost every-
where.

2. The integrability of this limiting function.

We utilize these in the proof of the Shannon-McMillan-Breiman Theorem. We
conclude with two examples, illustrating that Theorem 18 properly generalizes
the classical Shannon-McMillan-Breiman theorem.

Definition 12. Let (Ω,F , P ) be a probability space. A sequence of functions
{fn}∞n=1 is called uniformly integrable if

lim
α→∞ sup

n

∫
|fn|I[|fn|>α]dP = 0, (2)

where I[|fn|>α] is the indicator function which is 1 at points ω with |fn(ω)| > α
and is 0 otherwise.

In addition to uniform integrability, we also need a continuity requirement over
the space of strategies. We now introduce this. The next lemma characterizes
H1|n in terms of the loss incurred by an optimal strategy on Σn. Lemma 13 lets
us analyse loss incurred by some “optimal” strategy. From Lemma 13, we can see
given w ∈ Σn, optimal loss depends on the conditional probability distribution
(P{0|w}, P{1|w}).
4 Kalnishkan et al. [10] consider the notion of mixable games, which characterize reg-
ular games with optimality. In comparison, our conditions are based on integrability
of the loss function.
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Lemma 13.

H1|n = inf
f∈Πn

∑
w∈Σn

P (w)
∑
a∈Σ

P{a|w}λ(a, f(w))

=
∑
w∈Σn

P (w) inf
f∈Πn

∑
a∈Σ

P{a|w}λ(a, f(w))

Proof. Let n be an arbitrary number. For any string w of length n, P (w) ≥ 0,
thus it follows that

inf
f∈Πn

∑
w∈Σn

∑
a∈Σ

P{wa}λ(a, f(w)) ≥
∑
w∈Σn

P (w) inf
f∈Πn

∑
a∈Σ

P{a|w}λ(a, f(w)),

hence it suffices to prove that that the opposite inequality holds.
For each n-long string w, let fw be the function which attains the infimum

inff∈Πn

∑
a∈Σ P{a|w}λ(a, f(w)).

Thus, the required expectation of infima can be written in terms of these
functions as∑
w∈Σn

P (w) inf
f∈Πn

∑
a∈Σ

P{a|w}λ(a, f(w)) =
∑
w∈Σn

P (w)
∑
a∈Σ

P{a|w}λ(a, fw(w)).

We can now define a function f : Σn → Σ as f(w) = fw(w), w ∈ Σn. It is
clear from the definition of the function that∑

w∈Σn

P (w)
∑
a∈Σ

P{a|w}λ(a, f(w)) =
∑
w∈Σn

P (w)
∑
a∈Σ

P{a|w}λ(a, fw(w)),

which implies the desired inequality. ()

Let s(P{0|w}) be the strategy that gives optimal loss in H1|n.
In the following proof, we will consider two-way infinite sequences. However,

the same theorem holds for one-way sequences as well (see Chapter 13 of Billings-
ley [1]). We briefly mention the formal correspondence.

Let (X,B, μ) be a measure space with T being a measure preserving trans-
form, not necessarily invertible. It is possible to construct a measure preserving
system (X̂ ,B̂, μ̂, T̂ ) such that T̂ is an invertible transform given by T̂−1(x1, · · · )=
(x2, · · · ). Since T is measure preserving, T̂ is also measure preserving. (X̂, B̂, μ̂, T̂ )
is called natural extension of (X,B, μ, T ). It is ergodic iff the original system is
ergodic. For unilateral alphabet system, its natural extension has same entropy.
For details, see Fact 4.3.2 of Downarowicz [4].

Let us define the following functions on the space of two-way infinite sequences.

gk(ω) = λ(ω0, s(P{0|ω−1
−k})) and g(ω) = λ(ω0, s(P{0|ω−1

−∞})).

We now define the notion of strongly regular games, imposing two technical
restrictions. We justify these restrictions by examining their consequences, and
use these to prove the Shannon-McMillan-Breiman theorem.
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Definition 14. A regular game is strongly regular if

1. s is a continuous function of the conditional probability.
2. For each natural number N , define GN : Σ∞ → [0,∞] by GN (ω) =

supk≥N |gk(ω) − g(ω)|. We require that {GN}∞N=1 be a uniformly integrable
sequence.

Chernov et al. [3] show that for a loss function to obey condition (1), it is suffi-
cient for it to be a proper loss function. 5 First, we explain a consequence of con-
dition (1). For a stationary ergodic distribution P , P{0 | ω−1

−k} → P{0 | ω−1
−∞}

as k → ∞, and since gk is a continuous function of the conditional distribution
by condition (1), we have that gk → g as k → ∞, P -almost everywhere. (see
Theorem 11.2 of Billingsley [1])

The requirement (2) is technical, but is necessary to handle the integrability
of a large class of loss functions. We note that if the loss function is bounded as
in square-loss and absolute-loss games, then it satisfies condition 2 trivially (we
show this in Example 16), however it can also handle certain unbounded loss
functions including log-loss.

Example 15. Log-loss Game. The loss function λ : {0, 1} × [0, 1] → [0,∞] is
defined by λ(b, γ) = − log(|(1− b)− γ|). The optimal strategy is given by P{0 |
ω−1
−k}, which is a continuous function of the conditional probability.
We have that for any N ,∫
sup
k≥N

|gk(ω)− g(ω)|dP ≤
∫

sup
n≥1

|gn(ω)− g(ω)|dP ≤
∫

sup
n≥1

|gn(ω)|+
∫
gdP.

Hence to show that the sequence supk≥N |gk(ω)−g(ω)| is uniformly integrable, it
suffices to show that

∫
supn≥1 |gn(ω)|dP is integrable. It is easy to show that for

a stationary distribution P and any r ∈ R, P{ω | supk |gk(ω)| ≥ r} ≤ 2e−r, from
which the integrability of supk gk follows. Thus supk≥N |gk−g|, for N = 1, 2, . . .
forms a uniformly integrable sequence of functions, hence the log-loss game is
strongly regular. ()

Example 16. Square-loss game. The loss function in the square loss game λ :
{0, 1} × [0, 1] → [0, 1] defined by λ(b, γ) = (b− γ)2. The optimal strategy in the
square-loss game is to pick γ = P{1|ω−1

−k}, which is continuous in the conditional
probability.

This loss function is bounded, hence
∫

supk≥1 |gn(ω)− g(ω)| dP ≤
∫

1dP = 1,
ensuring that GN = supk≥N |gk(ω) − g(ω)| is uniformly integrable. Hence the
square-loss game is strongly regular. ()

We now elicit some consequences of our assumption of uniform integrability. For
uniformly integrable sequences of functions, their limit function is integrable
even in the absence of any dominating function. This is known as the Vitali
Convergence Theorem (see, for example, Folland [7]).

5 A loss function λ : P (Σ)×Σ → [0,∞], where P (Σ) is the space of probabilities on
Σ, is called proper if for any two π, π′ ∈ P (Σ), Eπλ(π, ·) ≤ Eπλ(π

′, ·).
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Vitali Convergence Theorem. Let (Ω,F , P ) be a probability space. If {fn}∞n=1

is a sequence of uniformly integrable functions such that fn → f P -almost ev-
erywhere, then f is integrable and limn→∞

∫
|fn − f |dP = 0.

Vitali Convergence of {GN}∞N=1 will be required in the final part of the proof
of Theorem 18. We first show that uniform integrability of {GN}∞N=1 yields the
integrability of the optimal loss. This is crucial in the Theorem that follows, and
yields us a dominating function for the integrability in Theorem 18.

Lemma 17. For a strongly regular game and a stationary distribution P ,

lim
n→∞

∫
gn dP =

∫
lim
n→∞ gn dP =

∫
g dP. (3)

Proof. We know that for each n ∈ N,
∫
|gn| dP =

∫
gndP = H1|n, which exists

for regular games and stationary distributions. Now, for every n,
∫
|gn| dP =∫

|g − gn − g| dP ≥
∫
|g|dP −

∫
|g − gn|dP . Hence we have

H = lim
n→∞

∫
|gn| dP ≥

∫
|g|dP − lim inf

n→∞

∫
|g − gn|dP. (4)

By the uniform integrability of {GN}∞N=1, we have that limn→∞
∫
|g−gn|dP = 0.

Thus, by (4), we have H ≥
∫
|g|dP , ensuring that

∫
g exists. Thus the inter-

change of the limit and the integral in (3) is justified by the Lebesgue dominated
convergence theorem [7]. ()

Using uniform integrability and the notion of continuity, we can introduce the
setting for our Shannon-McMillan-Breiman Theorem.

Theorem 18. For a strongly regular game (Σ,Γ, λ), and stationary ergodic dis-
tribution (Σ∞,F , P ), let H be the generalized entropy of the game. Moreover, let
℘ be a strategy such that for every n, ℘n achieves Hn. Then

lim
n→∞

Loss(ωn−1
0 , ℘n)

n
= H (5)

for P -almost every ω ∈ Σ∞.

We cannot use Birkhoff’s ergodic theorem (see for example, Billingsley [1]) di-
rectly to prove the above theorem, since the summands in the Birkhoff average
on the left of (5) depend in general on n, and are not the same integrable func-
tion. We however can use the convergence in conditional distributions ensured
by a stationary distribution, in conjunction with Birkhoff’s ergodic theorem to
establish our result.

Proof. Recall that gk → g almost everywhere, and
∫
g exists by Lemma 17. We

know Loss(ωn−1
0 , ℘n) =

∑n
k=0 gk(ω).

Since T is measure preserving transformation, by change of variable,∫
gk(ω)dP =

∫
gk(T kω)dP = H1|k. Thus

∫
gdP = limn→∞

∫
gndP =

limn→∞H1|n = H .
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By the Ergodic theorem, we get limn→∞ 1
n

∑n−1
k=0 g(T

kw) =
∫
g(w)dP = H ,

for P -almost every ω ∈ Ω.
Now, 1

n

∑n−1
k=0 gk(T kw) = 1

n

∑n−1
k=0 g(T

kw) + 1
n

∑n−1
k=0 (gk(T kw) − g(T kw)),

where the first term tends to H as n → ∞. If we show second term in the
previous equation tends to 0 a.e. as n→∞, we are done.

Define GN (w) = supk≥N |gk(w) − g(w)|. By the assumption of strong regu-
larity, the sequence of functions {GN}∞N=1 is uniformly integrable. Also, since
gn → g P -a.e., we know that GN → 0 P -almost everywhere as N →∞. By the
Vitali Convergence Theorem, limN→∞

∫
GN dP =

∫
limN→∞GN dP = 0.

Now for each N ,

lim sup
n→∞

∣∣∣∣∣ 1n
n−1∑
k=0

(gk(T kω)− g(T kω)

∣∣∣∣∣ ≤ lim sup
n→∞

1

n

n−1∑
k=0

|gk(T kω)− g(T kω)|

≤ lim sup
n→∞

1

n

n−1∑
k=0

GN (T kω) =

∫
GN (ω)dP

where the last equality follows from Birkhoff Ergodic Theorem. Note that this
holds for all values of N and right side converges to 0 a.e. as N → ∞. Since
the left side is non-negative, it is 0 a.e. So, 1

n

∑n−1
k=0 (gk(T kω)− g(T kω)) → 0 as

n→∞. This concludes the proof. ()

Recall that the generalized entropy of the log-loss game is the Shannon en-
tropy. We have shown previously that the square loss and the log-loss games are
strongly regular, thus establishing that we have a proper generalization of the
classical Shannon-McMillan-Breiman theorem.

6 Predictive Complexity - Main Theorem

We now consider computable prediction strategies. We would like to define the
inherent unpredictability of a string x as the performance of an optimal com-
putable predictor on x. It is not clear that one such predictor exists for any
game. The work of Vovk and Watkins [17] establishes a sufficient condition for
predictive complexity to exist.

Definition 19. A pair of points (s0, s1) ∈ (−∞,∞]2 is called a superscore6 if
there is a prediction γ ∈ Γ such that λ(0, γ) ≤ s0 and λ(1, γ) ≤ s1. We denote
the set of superscores for a regular game G by S.

Definition 20. A prediction strategy ℘ : Σ∗ → (−∞,∞] is called a superloss
process if the following conditions hold.

1. ℘(Λ) = 0, where Λ is the empty string.
2. For every string x, the pair (℘(x0)−℘(x), ℘(x1)−℘(x)) is a superscore with

respect to the game.

6 In Kalnishkan et. al. [11], [10], the concept is called a superprediction.
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3. ℘ is upper semicomputable.

A superloss process K is universal if for any superloss process ℘ there is a
constant C such that for every string x, K(x) ≤ ℘(x) + C. It follows that the
difference in loss between any two universal superloss processes is bounded by a
constant. Hence we may pick a particular universal superloss process K and call
K(x) the predictive complexity of the string x with respect to the game G.

When we consider regular games, it is not necessary that an optimal strategy
exists on Σ∗ which incurs at most an additive loss when compared to any other
prediction process. However, Vovk [16] and Vovk and Watkins [17] introduced
the concept of mixability to ensure that one such universal process exists.

Definition 21. Let β ∈ (0, 1). Consider the homeomorphism hβ : (−∞,∞]2 →
[0,∞)2 specified by hβ(x, y) = (βx, βy). A regular game G with set of superscores
S is called β-mixable if the set hβ(S) is convex. A game G is called mixable if
it is β-mixable for some β ∈ (0, 1).

We call a strategy ζ computable if there is a programM such that for any w ∈ Σ∗

and any m ∈ N, M(w,m) outputs a rational r ∈ Γ and |λ(w, r)− λ(w, ζ(w))| <
1
2m . Similarly, a loss function λ is computable if there is a program L such that
for every m ∈ N, a ∈ Σ and r ∈ Γ ∩ Q, L(a, r,m) outputs a rational r such
that |L(a, r,m)− λ(a, r)| ≤ 2−m. We assume that λ has a computable modulus
of continuity – that is, there is a function hλ : N → N such that h(n) = m
implies that if |x− y| < 2−m, then |λ(b, x) − λ(b, y)| ≤ 2−n. If the loss function
is computable and proper, with a computable modulus of continuity, we call
(Σ∞, Γ, λ) a computable game.

Theorem 22. [17] If a game G with set of superscores S is mixable, then G has
a predictive complexity.

It is known that the logloss and the square loss games are mixable. The coinci-
dence of logloss and Kolmogorov complexity [13] enables us to view predictive
complexity as a generalization of Kolmogorov complexity. Absolute loss game is
known not to be mixable [19].

We mention a loss bound which holds for mixable games. This is used in the
proof of the theorem which follows.

Lemma 23. [11] If K is predictive complexity of a mixable game G, then there
is a positive constant c such that |K(xb) − K(x)| ≤ c lnn for all n = 1, 2, · · · ,
strings x ∈ Σn and bits b.

We can now show that for a strongly regular mixable game G, the predictive com-
plexity rate on an infinite sequence of outcomes attains the generalized entropy
of a computable stationary ergodic distribution P , almost everywhere.

Theorem 24. Let G = (Ω,Γ, λ) be a strongly regular computable mixable game
with predictive complexity K. Let (Ω,F , P ) be the probability space over the out-
comes where P is a stationary ergodic distribution with generalized entropy H.
Then
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lim
n→∞

K(ωn−1
0 )

n
= H, (6)

for P -almost every ω ∈ Ω.

Proof. (A) Upper bound: Let N ∈ N be arbitrary, ε = 1
2N , and let δ = 1

2m

be the modulus of continuity for λ at error ε. Let k ∈ N. For every string w
of length n > k, we consider the “k-window” predictor sNk (w) which outputs a
dyadic rational number r

2m+1 , 0 ≤ r ≤ 2m+1, in Γ depending on wn−1
n−k. Since the

number of such dyadic rationals is finite, and sNk depends only on k bits, there
are only finitely many such predictors. Let this number be M .

Let pNr = 1
M , 0 ≤ r ≤ M − 1. These weights sum to 1, and the family

sNr is finite, hence we can use the aggregating algorithm [17] to produce an
algorithm Ak such that for each 0 ≤ r ≤ M − 1, there is a constant cr such
that for any string w ∈ Σ∗, Loss(w,Ak(w)) ≤ Loss(w, sNk (w)) + cr. Let c be the
maximum of the finite number of constants cr. Then for every w ∈ Σn and sNk ,
Loss(w,Ak(w)) ≤ Loss(w, sNk (w)) + c. Let ℘k be the predictor that attains the
optimal value H1|k. By the choice of δ, we know that one of the predictors sNr (w)
incurs at most ε more error than ℘k on each bit of w. Thus, we have that

Loss(w,Ak(w)) ≤ Loss(w,℘N (w)) + c+ εN,

for every w.
The loss rate incurred by ℘k on N -long prefixes is

1

N − k

N−k−1∑
i=0

λ(ωk+i, ℘k(ωk+i−1
i )) < H1|k + ε,

by the Ergodic Theorem7, for large enough N , and almost every ω. For large
enough k, this quantity is within H + ε by Theorem 10. Thus, we have that for
all large enough k, there is a constant ck such that for almost every ω,

K(ωN−1
0 ) ≤ Loss(ωN−1

0 , Ak(ωN−1
0 )) + ck ≤ NH + 3Nε+O(1).

(B) We now establish the reverse inequality, limn→∞
K(ωn−1

0 )
n > H − ε for ε > 0.

Since
(K(ωn−1

0 · 0)−K(ωn−1
0 ), K(ωn−1

0 · 1)−K(ωn−1
0 ))

is a superscore, we have E(ηn|ωn−1
0 ) ≥ H1|n where ηn = K(ωn0 )−K(ωn−1

0 ).
Now we can apply the martingale strong law of large numbers, Theorem

VII.5.4 of Shiryaev [15] and get

K(ωn−1
0 )

n
= 1

n

∑n−1
i=0 ηi =

1

n

n−1∑
i=0

E(ηi|ωi−1
0 ) + o(1)

≥ 1
n

∑n−1
i=0 H1|n + o(1) = H + o(1),

where the last equality is obtained by Theorem 10. ()
7 Applied on f(ω) = λ(ωk, ℘k(ω

k−1
0 )) with the left-shift transformation.
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Costa Florêncio, Christophe 81
Crammer, Koby 245
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