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Structure vs. Efficiency of the Cross-Entropy 
Based Population Learning Algorithm  
for Discrete-Continuous Scheduling  
with Continuous Resource Discretisation1 

Piotr Jędrzejowicz and Aleksander Skakovski* 

Abstract. In the chapter, we consider the population learning algorithm (PLA2), 
earlier designed by the authors, and study how the interconnection topology and 
heterogeneity of  the constituent modules influence its efficiency. PLA2 is a popu-
lation-based approach which takes advantage of the features common to the social 
education system rather than to the evolutionary processes. The problem of sche-
duling nonpreemtable tasks on parallel identical machines under constraint on dis-
crete resource and requiring, additionally, renewable continuous resource to  
minimize the schedule length is chosen as the problem to cope with. A continuous 
resource is divisible continuously and is allocated to tasks from given intervals in 
amounts unknown in advance. Task processing rate depends on the allocated 
amount of the continuous resource. To eliminate time consuming optimal conti-
nuous resource allocation, an NP-hard problem ΘZ with continuous resource dis-
cretisation is introduced and sub-optimally solved by PLA2. The PLA2’s island 
design can be easily transferred to an agent system with cooperating agents. 

1   Introduction 

A problem of scheduling jobs on multiple machines under constraint on discrete 
resource and requiring, additionally, renewable continuous resource to minimize 
the schedule length is considered in the chapter. In the problem two types of re-
sources are considered: discrete and continuous. A discrete resource is divisible 
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discretely, for example a set of machines or a set of mechanical or pumping  
machines. A continuous resource is divisible continuously and is allocated to the 
jobs from given intervals in amounts unknown in advance. In practice a conti-
nuous resource may be limited in amount - for example power (electric, pneumat-
ic, hydraulic) supplying a set of machines, limited gas flow intensity supplying 
forge furnaces in a steel plant, or limited fuel flow intensity in refueling terminals.  

The problem of scheduling jobs on multiple machines under constraint on dis-
crete resource and requiring, additionally, renewable continuous resource was in-
tensively explored in [9], [10], [11], [12], and we define the problem in the same 
way. Namely, we consider n independent, nonpreemptable jobs, each of them si-
multaneously requiring for its processing at time t a machine from a set of m  
parallel, identical machines (the discrete resource) and an amount (unknown in 
advance) ui(t) ∈ [0, 1], i = l, 2, . . . , n, of a continuous renewable resource. The 
job model is given in the form: 
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where xi(t) is the state of job i at time t, fi is an increasing continuous function, 
fi(0) = 0, Ci is (unknown in advance) completion time of job i, and ix~  is its 

processing demand (final state). We assume, without loss of generality, that 
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i i tu1 1)(  for every t. The problem is to find a sequence of jobs on machines 

and, simultaneously, a continuous resource allocation that minimizes the given 
scheduling criterion. The problem is computationally complex and is at least as 
hard as the classical RCPSP (Resource Constrained Project Scheduling Problem), 
since the existence of an additional continuous resource cannot make the problem 
any simpler [11], [12]. The defined problem can be decomposed into two interre-
lated sub problems: (i) to find a feasible sequence of jobs on machines, and (ii) to 
allocate the continuous resource among jobs already sequenced. The notion of a 
feasible sequence is of crucial importance. According to [10] a feasible schedule 
can be divided into p ≤ n intervals defined by completion times of consecutive 
jobs. Let Zk denote the combination of jobs processed in parallel in the k-th inter-
val. Thus, in general, a feasible sequence FS of combinations Zk, k = l, 2,..., p, can 
be associated with each feasible schedule. Feasibility of such a sequence requires 
that the number of elements in each combination does not exceed m and that each 
job appears exactly in one or in consecutive combinations in FS (nonpreemptabili-
ty). It has been shown in [9] that for concave job models and the schedule length 
minimization problem, it is sufficient to consider feasible sequences of combina-
tions Zk, k = l, 2,..., n - m + l, composed of exactly m jobs each. For a given feasi-
ble sequence FS of jobs on machines, we can find an optimal continuous resource 
allocation, i.e. an allocation that leads to a schedule minimizing the given criterion 
from among all feasible schedules generated by FS. At this point, a convex ma-
thematical programming problem has to be solved, in the general case (see [9]). 
An optimal schedule for a given feasible sequence (i.e. a schedule resulting  
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from an optimal continuous resource allocation for this sequence) is called a semi-
optimal schedule. In consequence, a globally optimal schedule can be found by 
solving the continuous resource allocation problem optimally for all feasible  
sequences. Unfortunately, in general, the number of feasible sequences grows ex-
ponentially with the number of jobs. Therefore it is justified to apply some  
approximation algorithm or metaheuristic. 

Because finding an optimal allocation of a continuous resource to a feasible 
schedule requires using specialized and time-consuming solver, an idea of conti-
nuous resource discretisation was proposed in [12]. We use the same approach in 
the chapter. Namely, we assume that the number of possible continuous resource 
allocations to a task Ji is Di, i.e. is fixed, and the amount of the continuous re-
source for each li = 1, 2, … , Di is known in advance (in the original problem there 
was infinite number of the continuous resource allocations to a task and the 
amount of the continuous resource to be allocated was not known in advance). Be-
cause a different amount of the continuous resource is allocated to task Ji for each 
li , li  is called a processing mode of task Ji. Such discretisation of the continuous 
resource allows treating it as a discrete resource. 

The problem of scheduling jobs on multiple machines under additional  
continuous resource with continuous resource discretisation is NP-hard [12]. A 
population-learning algorithm (SLA) first proposed in [6] was used to tackle the 
problem, since it was effective in solving other scheduling problems considered in 
[5], [3], [4]. Promising results obtained by the proposed in [8] version of PLA - 
PLA1 proved the approach for solving ΘZ to be effective and caused the design of 
PLA2 proposed in [8]. PLA2 uses four main procedures: a cross-entropy (CE), a 
Tabu Search (TS) procedure, an island-based evolutionary algorithm (IBEA), and a 
population-based evolutionary algorithm (PBEA). All mentioned procedures could 
be viewed as independent and cooperating agents and used to design an agent sys-
tem. Because all the procedures used in PLA2 were thoroughly described in [7]  
and [8] we only briefly remind the procedures in this work in Sections 3.1-3.4  
respectively. 

The main goal of our research was to find out whether the interconnection to-
pology of a learning stages (or islands), might have some effect on the algorithm’s 
efficiency. For this reason we proposed six versions of PLA2 that differ from each 
other by their structure and migration scheme. We assume that the efficiency of 
the algorithm is its ability to yield “good” quality solutions of a problem within a 
given number of fitness function evaluations. On this basis we have compared all 
proposed versions of PLA2 making them to carry out the same or approximately 
the same number of fitness function evaluations. Assuming such approach it is 
easier to judge on the efficiency of the proposed versions of PLA2 by only com-
paring the quality of the solutions they yielded. A computational experiment, de-
scribed in Section 4, was carried out to test the influence of the interconnection 
topology of the available islands and the possible influence of migration size be-
tween CE-island and IBEA-islands on the quality of the PLA2 found solutions. 
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2   Problem Formulation 

We define a problem ΘZ in the same way as in [12]. Namely, let 
J = {J1, J2, … , Jn} be a set of nonpreemtable tasks, with no precedence relations 
and ready times ri = 0, i = 1, 2, … , n, and P = {P1, P2, … , Pm} be a set of parallel 
and identical machines, and there is one additional renewable discrete resource in 
amount U = 1 available. A task Ji can be processed in one of the modes 
li = 1, 2, … , Di (Di – the number of processing modes of task Ji), for which Ji re-
quires a machine from P and amount of the additional resource known in advance. 
The processing mode of Ji cannot change during the processing. For each task two 

vectors are defined: a processing times vector ],...,,[ 21 iD
iiii ττττ = , where il

iτ  is the 

processing time of task Ji in mode li = 1, 2, … , Di and a vector of additional re-

source quantities allocated in each processing mode ],...,,[ 21 iD
iiii uuuu = . The 

problem is to find processing modes for tasks from J and their sequence on ma-
chines from P such that schedule length Q = max{Ci}, i = 1, ... , n is minimized. 

3   Population Learning Algorithm 

Population learning algorithm proposed in [6] has been inspired by analogies to a 
social phenomenon rather than to evolutionary processes. The population learning 
algorithm takes advantage of features that are common to social education  
systems: 
 
− A generation of individuals enters the system. 
− Individuals learn through organized tuition, interaction, self-study and self-

improvement. 
− Learning process is inherently parallel with different schools, curricula, teach-

ers, etc. 
− Learning process is divided into stages. 
− More advanced and more demanding stages are entered by a diminishing num-

ber of individuals from the initial population (generation). 
− At higher stages more advanced education techniques are used.  
− The final stage can be reached by only a fraction of the initial population. 
 
All individuals (solutions) used in the PLA2 procedure can be characterized in the 
following manner: 
 
− an individual (a solution) is represented by an n-element vector 

S = [ci 1 ≤ i ≤ n], 
− all processing modes of all tasks are numbered consecutively. Thus processing 

mode lb of task Jb has the number b
b
i ib lDc +=  −
=

1
1 , 

− all S representing feasible solutions are potential individuals,  
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− each individual can be transformed into a schedule by applying LSG, which is a 
specially designed list-scheduling algorithm for discrete-continuous scheduling, 

− each schedule produced by the LSG can be directly evaluated in terms of its 
fitness. 

 
The PLA2 model can be also viewed as an island model, were islands are con-
nected to each other according to some topology and exchange individuals in or-
der to collectively find best possible solution to the problem. Such island-based 
design can be easily transferred to an agent system with cooperating agents. We 
used three kinds of learning procedures to design PLA2: cross-entropy (CE), Tabu 
search (TS), and an island-based evolutionary algorithm (IBEA) all combined into 
some structures. As a learning procedure IBEA uses population-based evolutio-
nary algorithm (PBEA) to evolve a population on an island, which is described in 
Section 3.3. PBEA is also used to evolve solutions on an island independently on 
IBEA, for example in case with random solution migration among islands. We 
distinguish two categories of island groups – heterogeneous and homogeneous, 
dependently on the type of the learning procedures carried out on the islands. We 
refer to the group of islands as heterogeneous, if the learning procedures carried 
out on at least one island is different from the learning procedures carried out on 
the rest of the islands in the group. We refer to the group of islands as homogene-
ous, if the same learning procedure is carried out on each island in the group. In 
our work, we will refer to a particular island as heterogeneous (Ht), if CE or TS 
procedure is carried out on it, and homogeneous (Hm), if PBEA is carried out on 
it. We will use the terms a learning procedure and an island interchangeably. The 
main goal of our research was to find out whether a topology of a learning stages 
(or islands), might have some effect on the algorithm’s efficiency. For this reason 
we proposed several versions of PLA2 that differ from each other by their struc-
ture and migration scheme. We will refer to these versions of PLA2 as algorithms, 
and some letter code will be assigned to each of them. In order to distinguish the 
algorithms, we considered two their basic types, each of them having two topolo-
gy schemes. In the first basic type, all islands participate in the solution evolution 
and migration at least once, but only selected islands take part in the cyclic solu-
tion migration among islands (the letter code for this version will contain letter 
“S”). In the second basic type – all islands take part in the cyclic solution migra-
tion among islands (the letter code for this version will contain letter “A”). As it 
was mentioned above, each basic type appears in two topology schemes. In the 
first topology scheme, islands are located on a directed ring and the individuals 
migrate among the islands along the ring (the letter code for this scheme will con-
tain letter “O” and we will refer in the following text to this topology as a ring to-
pology). In the second topology scheme – individuals migrate between randomly 
chosen pairs of the islands (the letter code for this scheme will contain letter “X” 
and we will refer in the following text to this topology as a random topology). 
Moreover, the letter code for the algorithms in which CE procedure sends multiple 
solutions to the island-in-pair during the migration phase will contain letter “m”. 
For the version where CE procedure sends a single solution to the island-in-pair  
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during the migration phase the letter code will contain letter “s”. Therefore, the 
letter code “AO-m” stands for the algorithm in which all islands comprise a di-
rected ring of heterogeneous islands and procedure CE sends multiple solutions to 
the island-in-pair during the migration phase. In our present research, we consider 
six versions of PLA2, namely: SO, SX, AO-m, AO-s, AX-m, and AX-s. Because 
all proposed algorithms are versions of PLA2, they have common phases, which 
are shown in a generalized versions as S- or A-algorithms. The pseudo codes, as 
well as figures illustrating all the proposed algorithms are given below. In a sim-
plified graphic illustration of the algorithms in Figures 1 - 4, solid lines show is-
lands participating in the cyclic solution migration and dash-dot lines show islands 
where learning procedures are carried out only once. 

S-algorithm 
Begin 
Create an initial population P0 of the size x0 - 1 
using procedure cross-entropy (CE). 
Create an individual TSI in which all tasks Ji are to 
be executed in mode li = 1 (a mode characterized by 

minimal quantity of additional resource 1
iu  and max-

imal task processing time 1
iτ , 1 ≤ i ≤ n). 

Improve the individual TSI with the tabu search (TS) 
procedure. 
Create population P1 = P0 + TSI. 
Distribute equally individuals from P1 among all Hm-
islands. 
Carry out the appropriate Learning stage SO or SX 
designed for SO and SX algorithms respectively. 
Output the best solution to the problem. 

End. 

Learning stage SO  
Begin 
Improve individuals on Hm-islands with procedure 
IBEA. 

End. 

Learning stage SX  
Begin 
Improve individuals on each Hm-island with procedure 
PBEA, cyclically exchanging best solutions between 
randomly chosen pairs of Hm-islands. 

End. 

In all proposed algorithms, x0 = K·PS, where K – the number of homogeneous is-
lands and PS – the population size on an island defined in procedure IBEA. 
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Fig. 1 A simplified scheme of SO algorithm 

 

Fig. 2 A simplified scheme of SX algorithm 

A-algorithm 
Begin 
Create an initial population P0 of the size x0 using 
cross-entropy procedure (CE). 
Distribute equally individuals from P0 among all Hm-
islands. 
Create an individual TSI in which all tasks Ji are to 
be executed in mode li = 1 (a mode characterized by 

minimal quantity of additional resource 1
iu  and max-

imal task processing time 1
iτ , 1 ≤ i ≤ n). 

Send TSI to the Tabu Search (TS) procedure. 
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Carry out the appropriate Learning stage AO or AX 
designed for AO and AX algorithms respectively. 
Output the best solution to the problem. 

End. 

 

Fig. 3 A simplified scheme of AO algorithm 

Learning stage AO 
Begin 
Create a directed ring of all available islands as 
follows:  
Hm1, Ht1(TS), Hm2, Hm3, Ht2(CE), … , HmK, where K • 3. 
Improve individuals on the islands with the assigned 
to the islands procedures cyclically sending best 
solution from each island along the ring. 

End. 

Learning stage AX 
Begin 
Improve individuals on all available islands with 
the assigned to the islands procedures cyclically 
exchanging best solution between randomly chosen 
pairs of islands. 

End. 

In the AO algorithm, CE procedure receives multiple solutions from the homoge-
neous islands Hm1, Hm2 and Hm3, and sends a single solution to Hm4 (or Hm1, 
when K = 3) in AO-s algorithm, or multiple solutions in AO-m algorithm. In AX 
algorithm CE procedure also receives multiple solutions from Hm1, Hm2 and Hm3, 
and sends to the randomly chosen island a single solution in AX-s algorithm, or 
multiple solutions in AX-m algorithm. On all homogeneous islands Hmi, 
i =1, 2, … , K we used PBEA procedure. 
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Fig. 4 A simplified scheme of AX algorithm 

3.1   A Cross-Entropy Algorithm 

In PLA2 the proposed CE procedure is perceived as the procedure preparing some 
solution basis for further improvement by procedure IBEA. In CE procedure a 
cross-entropy (CE) method first proposed in [13] is used since it was effective in 
solving various difficult combinatorial optimization problems [1]. It follows from 
the definition of the solution vector S that a number ci in S unequivocally identi-
fies a task and the task processing mode. In order to use CE method, we would 
like to know the probability of locating a task Ji on a particular place j in the vec-
tor. For this reason we introduce two success probability vectors jp̂  and jip′ˆ  re-

lated to each task Ji and its place j in solution S. Vector ]1  [ˆ nipp jij ≤≤= , 

1 ≤ j ≤ n contains pji values, which is the probability that on the place j there will 
be located a task i. Vector ]1  [ˆ ijilji Dlpp ≤≤=′ , 1 ≤ j ≤ n, 1 ≤ i ≤ n contains pjil 

values, which is the probability that on place j task i will be executed in mode l. A 
procedure CE using cross-entropy method for combinatorial optimization de-
scribed in [1] and modified for solving ΘZ problem is shown in the following 
pseudo code: 
 

Procedure CE 
Begin 
Set ic = 1 (ic - iteration counter), icstop – maximal 
number of iterations, a:= 1. 

Set .1 , ]1 1[ˆ njninpp jij ≤≤≤≤==  

Set .1 ,1 , ]1 1[ˆ ninjDlDpp iijilji ≤≤≤≤≤≤==′  
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While ic ≤ icstop do 
Generate a sample S1, S2, … , Ss, … , SN of solutions 
with success probability vectors jp̂  and jip′ˆ . 

Order S1, S2, … , Ss, … , SN by values of their fit-
ness function non-decreasingly. 

Set   1) (0, , ∈⋅= ρργ N . 

Set 

 1 
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ˆ 1
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1 ≤ j ≤ n, I(Ss(j) = i) = 1, I(Ss(j) • i) = 0, where 
Ss(j) – number of the task located on j-th place in 
s-th solution S. 
Set 
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1 ≤ j ≤ n, 1 ≤ i ≤ n, I(Ss(ji) = l) = 1, 
I(Ss(ji) ≠ l) = 0, where Ss(ji) – an execution mode 
of task i located on j-th place in s-th solution S. 

Save the first h = K·PS / icstop best solutions from 
the ordered sample into P0 under address a. Set 
a:= a + h. 
Set ic:= ic + 1. 

EndWhile. 
EndProcedure. 

In the presented pseudo code, a parameter N is the number of solutions in a sample 
generated in each iteration. A parameter ρ determines the percentage of the best 
solutions in the current sample that are used to calculate new values for the vectors 

jp̂  and jip′ˆ . The both parameters were determined empirically and set N = 1000 

and ρ = 0,2. Parameters K – the number of islands and PS – the population size are 
defined in procedure IBEA and PBEA respectively.  

3.2   Tabu Search 

Tabu search is another metaheuristic used in the considered versions of PLA (see 
[4]). To present general idea of the present implementation of the tabu search pro-
cedure we introduce the neighborhoods Nt and Nmd of a solution S. Nt is a set of 
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solutions generated from S by moving a task Ji ∈ S from place i to the rest n – 1 
places. Thus we yield Nt  = n⋅(n - 1) neighbors. Nmd is a set of solutions generat-
ed from S by assigning to task Ji ∈ S one by one in a row all of its D modes, as-
suming that all tasks can be executed in D modes. Thus we yield another 
Nmd  = n⋅(D - 1) neighbors. The considered tabu search procedure is shown in 
the following pseudo code:  

Procedure TS 
Begin 
Set S0 = initial solution TSI (li = 1, 1 • i • n). 
Set the best solution Sbest = S0. 

Set Tabu List TL = ∅. 

Set Nt = {S0} and Nmd = ∅. 
Set nit = 7 (determined empirically). 
Repeat the following max_number_of_iterations times: 
Find the best legal neighbour Sbln of S0, i.e. the 
best across Nt and Nmd neighbour which is not on TL. 
Set S0 = Sbln. 
If Sbln is more fit than Sbest then Sbest = Sbln.  
Put Sbln on the Tabu list. 
If the fitness of S0 has not improved after nit num-
ber of iterations construct a new solution by mov-
ing a task Ji in S0 to one of the chosen randomly 
less frequently visited places on the task list and 
assigning to it one of the chosen randomly less 
frequently assigned execution modes. 

EndRepeat. 
End. 

 
The size of the Tabu List (TL) was determined empirically and set to 500  
solutions. 

3.3   An Island-Based Evolutionary Algorithm 

The following pseudo-code shows main stages of the IBEA algorithm: 

Procedure IBEA 
Begin 

Set the number of islands K, the number of popula-
tions PN to be evolved on each island. 

While no stopping criteria is met do 

For each island Ik do 

Evolve PN generations using procedure PBEA.  
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Send the best solution to I(k mod K) + 1.  

Incorporate the best solution from  
I((K+k -2) mod K) + 1 instead of the best one.  

EndFor 

EndWhile 

Find the best solution across all islands and save it 
as the final one.  

End. 

3.4   A Population-Based Evolutionary Algorithm 

Population-based evolutionary algorithm (PBEA) proposed in [7] as a part of 
IBEA for solving discrete-continuous scheduling problem is used as a learning 
procedure to evolve solutions on homogeneous islands in all considered versions 
of PLA2. PBEA algorithm is shown in the following pseudo-code: 

Procedure PBEA 
Begin 
Set population size PS. 
Set ic:= 0; (ic - iteration counter).  
While no stopping criteria is met do 
Set ic:= ic + 1, 
Calculate fitness factor for each individual in 
PPic-1 using LSG, 
Form new population PPic:  

Select randomly a quarter of PS of individuals 
from PPic-1 (probability of selection depends on 
fitness of an individual). 
Produce a quarter of PS of individuals by apply-
ing crossover operator to previously selected in-
dividuals from PPic-1. 
Produce a quarter of PS of individuals by apply-
ing mutation operators to previously selected in-
dividuals from PPic-1. 
Generate half of a quarter of PS of individuals 
from set of potential individuals (random task 
processing mode and task order). 
Generate half of a quarter of PS of individuals 
from set of potential individuals (random task 
processing mode and ascending order of the task 
numbers). 

EndWhile 
End. 
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LSG algorithm used within PBEA is carried out in three steps as follows: 

Procedure LSG 
Begin 
Construct a list of tasks from the code representing 
individuals. Set loop over tasks on the list.  
Within the loop, allocate current task to a machine 
considering the amount of a continuous resource al-
lotted to the task, and minimizing the beginning time 
of its processing. Continue with tasks until all have 
been allocated.  
Calculate the fitness of the individual S as 
Qu = max{Ci}, i = 1, ... , n.  
End. 

4   Computational Experiments 

The proposed six versions of the cross-entropy based population learning algo-
rithm for solving discrete-continuous scheduling problems with continuous re-
source discretisation were implemented and tested. The efficiencies of all six algo-
rithms were compared to each other, as well as to the tabu search (TS) procedure, 
used within each of the algorithms which was run in addition as an independent 
algorithm. In the procedure CE, as it was mentioned earlier, parameters ρ and N 
were determined empirically and set N = 1000 and ρ = 0,2. The size of the Tabu 
List (TL) was determined empirically as well, and set to 500 solutions. For testing 
purposes three combinations of n x m were considered (n – the number of tasks 
and m – the number of machines): 10x2, 10x3, and 20x2. For each combination 
n x m 100 instances of a problem ΘZ were generated and three discretisation levels 
D were considered: 10, 20, and 50. This way we considered nine sizes of the prob-
lem: 10x2x10, 10x2x20, 10x2x50, 10x3x10, … , 20x2x50, which makes 900 in-
stances of the problem in total. In all problem instances, we have used the same as 
in [12] the task processing rate function calculated according to the formula: 

},2 ,1{,/1 ∈= i
l
i

l
i

iii uf αα  (4)

where αi could take the values 1 and 2 with the same probability. The values of the 
task processing times were calculated according to the formula: 

. ,  ,2 ,1  ,
~

ni
f

x
i

i

l
i

il
i ==τ  (5)

The continuous resource was discretised uniformly according to the formula: 
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Each of the considered algorithms carried out about 720000 fitness function eval-
uations to yield one solution for the instance of the problem. Each instance was 
tested 43 times by all the proposed algorithms. Mean time required by the consi-
dered algorithms to find a solution for the problem sizes 10x2 and 10x3 for all 
discretisation levels on Pentium (R) 4 CPU 3.00GHz compiled with aid of Bor-
land Delphi Personal v.7.0 was approximately 4 - 7s, and for the problem size 
20x2 for all discretisation levels approximately 8 – 13s. 

In order to evaluate the efficiency of the proposed algorithms we used such pa-
rameters as relative errors (minimum, average, maximum) of the solutions yielded 
by the algorithms, as well as percentage of the best found solutions of the same 
quality as the best-known solutions. Relative errors (RE) of the solutions com-
pared to the best-known solutions were calculated according to the formulae 
RE = (QPLA2 − Qbest−known)/Qbest−known, where Q – the quality of a considered solu-
tion. The set of the best-known solutions was determined by the authors while us-
ing all designed by them procedures and algorithms, namely PBEA, IBEA, TS, 
PLA1, PLA2, AX-m, AX-s, SX, SO, AO-m, AO-s, for solving problem ΘZ. We 
have determined REmin and REmax for every size of the considered problem as a 
minimum or respectively maximum RE across 4300 REs calculated while solving 
each of the 100 instances 43 times. We have also determined REavg as a mean val-
ue of 4300 REs obtained within 43 runs of 100 instances of the considered prob-
lem. The values of REmin, REavg and REmax of the solutions found by all proposed 
algorithms for all problem sizes are presented in Tables 1 - 9. The values of REs 
in Tables 1 - 9 show how much schedules yielded by the proposed algorithms 
were longer than the best known schedule for the same case. For example, in Ta-
ble 1 for the case 10x2x10 for SO algorithm, REavg = 3.28% means that the sche-
dule length of all schedules yielded by SO algorithm was on average 3.28% longer 
than the best-known. For the same case, REmax = 9.76% means that the longest 
schedule among all schedules yielded by SO algorithm was 9.76% longer than the 
best-known. To make it easier to evaluate their efficiency, in Tables 1 - 9 below, 
we have ordered the algorithms according to their REs non-decreasingly. 

Table 1 The algorithms ordered non-decreasingly according to their REmin, REavg and  
REmax for the size 10x2x10 of the problem Θz 

Nr Algm REmin  Algm REavg  Algm REmax 

1 SX 0,01%  SO 3,28%  SO 9,76% 

2 AO-m 0,01%  SX 3,31%  TS 9,91% 

3 AO-s 0,01%  TS 3,49%  SX 10,00% 

4 AX-m 0,01%  AX-m 3,54%  AX-s 11,39% 

5 AX-s 0,01%  AX-s 3,58%  AX-m 12,33% 

6 TS 0,01%  AO-m 6,30%  AO-m 14,68% 

7 SO 0,19%  AO-s 6,30%  AO-s 16,53% 
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For the problem size 10x2x10, according to the values of the REmin in Table 1, 
SO algorithm has the largest REmin, however quite close to the REs of the other 
algorithms. On the other hand, considering REavg, SO algorithm has the lowest 
REavg, and this way, is the leader in a group of the algorithms: SO, SX, TS, AX-m, 
AX-s, with similar REavg values. The algorithms AO-m, AO-s make another group 
of the same REavg values, where REavg is about twice higher than in the first group. 
Considering REmax, it is also possible to classify the algorithms into two groups: 
with low REmax: SO, TS, SX, and with high REmax: AX-s, AX-m, AO-m, AO-s. In 
the first group the algorithms differ from 9,76% to 10,00%, while in the second – 
from 11,39% to 16,53%. For the problem size 10x2x10, REmin ∈ [0,01%, 0,19%], 
REavg ∈ [3,28%, 6,30%], REmax ∈ [9,76%, 16,53%]. Generally, according to Ta-
ble 1, the algorithms exploiting the directed ring migration scheme (the ring to-
pology) or random migration scheme (the random topology), built exclusively on 
homogeneous islands, as well as scheme built on all islands with the random to-
pology perform better, than the algorithms exploiting the ring topology built on all 
islands - both homogeneous and heterogeneous. This way, for the size 10x2x10 – 
SO, SX and AX-s perform better than the rest of the algorithms. 

Table 2 The algorithms ordered non-decreasingly according to their REmin, REavg and  
REmax for the size 10x3x10 of the problem Θz 

Nr Algm REmin  Algm REavg  Algm REmax 

1 AX-s 0,00%  SO 4,67%  SO 15,92% 

2 SO 0,00%  AX-m 4,68%  AX-m 16,07% 

3 AX-m 0,00%  SX 4,69%  TS 17,72% 

4 SX 0,01%  AX-s 4,74%  SX 18,39% 

5 TS 0,07%  TS 5,36%  AX-s 19,33% 

6 AO-m 0,10%  AO-m 8,66%  AO-s 25,67% 

7 AO-s 0,28%  AO-s 8,71%  AO-m 26,06% 

 
For the problem size 10x3x10, according to the values of the REmin in Table 2, 

algorithms AX-s, SO, AX-m were able to find the best-known solutions, and algo-
rithms: SX, TS, AO-m, AO-s could not. However, REmin values of the latter group 
do not differ significantly from the best-known solutions, namely, from 0,01% to 
0,28%. Considering REavg, SO algorithm has the lowest REavg, and this way, is the 
leader in a group of the algorithms: SO, AX-m, SX, AX-s with REavg values dif-
fering from 4,67% to 4,74%. TS algorithm is in-between the first group and the 
third, made of AO-m and AO-s algorithms, whose REavg values are considerably 
higher than in the first group, i.e. 8,66% and 8,71% respectively. Speaking about 
REmax, it is also possible to classify the algorithms into two groups of similar val-
ues of REmax: SO, AX-m, TS, SX, from 15,92% to 18,39%, and a group of high 
REmax: AX-s, AO-s, AO-m, from 19,33% to 26,06%. For the problem size 
10x3x10, we also give the intervals to which belong the values of the considered 
parameters, i.e. REmin ∈ [0,00%, 0,28%], REavg ∈ [4,67%, 8,71%], and finally,  
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REmax ∈ [15,92%, 26,06%]. As it could be seen, the REavg and REmax of all algo-
rithms have increased while scheduling 10 tasks on 3 machines compared to sche-
duling 10 tasks on 2 machines. In this case again, homogeneous ring topology, as 
well as random topology for both homogeneous and heterogeneous structures pre-
formed better than other algorithms. In addition, it can be noticed, that the algo-
rithms where CE procedure sends multiple solutions during the migration phase 
perform better, than when it sends a single solution. To finalize, for the size 
10x3x10 – SO, AX-m and SX perform better, than the other algorithms. 

For the problem size 20x2x10, according to the values of the REmin in Table 3, 
only algorithm AX-m was able to find the best-known solutions, and the rest of 
the algorithms - could not. According to REmin, the algorithms: AX-s, SX, SO, TS 
make a middle group with the values from 0,26% to 0,68%. The algorithms AO-m 
and AO-s make the third group with REmin values from 1,12% to 1,16%, and are 
nearly twice as high as in the middle group. Considering REavg, AX-m algorithm 
has the lowest REavg, and is the leader in a group of the algorithms: AX-m, AX-s, 
SO, SX, TS with REavg values differing from 4,76% to 6,26%. The algorithms 
AO-s, AO-m make the third group of the similar REavg values, where REavg is 
from 9,19% to 9,31% which are considerably higher than in the middle group. 
Considering REmax, it is also possible to classify the algorithms into two groups: 
with low REmax: SO, SX, AX-m, TS, AX-s, with the values from 11,47% to 
12,54%, and another group: AO-m, AO-s, with high REmax values from 16,71% to 
18,19%. For the problem size 20x2x10, the intervals of the REs are as follow: 
REmin ∈ [0,00%, 1,16%], REavg ∈ [4,76%, 9,31%], REmax ∈ [11,47%, 18,19%]. 
For this problem size, our observations on the topology point at the random topol-
ogy of both heterogeneous and homogeneous structures, as well as homogeneous 
ring topology as most efficient ones. Here, CE procedure sending multiple solu-
tions during the migration phase, perform better than when it sends only a  
single solution. For the size 20x2x10, AX-m, SO and AX-s are the most efficient 
algorithms. 

Table 3 The algorithms ordered non-decreasingly according to their REmin, REavg and  
REmax the size 20x2x10 of the problem Θz 

Nr Algm REmin  Algm REavg  Algm REmax 

1 AX-m 0,00%  AX-m 4,76%  SO 11,47% 

2 AX-s 0,26%  AX-s 4,86%  SX 11,74% 

3 SX 0,40%  SO 5,46%  AX-m 11,81% 

4 SO 0,51%  SX 5,56%  TS 12,09% 

5 TS 0,68%  TS 6,26%  AX-s 12,54% 

6 AO-m 1,12%  AO-s 9,19%  AO-m 16,71% 

7 AO-s 1,16%  AO-m 9,31%  AO-s 18,19% 
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Table 4 The algorithms ordered non-decreasingly according to their REmin, REavg and  
REmax for the size 10x2x20 of the problem Θz 

Nr Algm REmin  Algm REavg  Algm REmax 

1 SX 0,00%  SO 2,05%  SO 6,67% 

2 AO-m 0,00%  SX 2,07%  SX 7,04% 

3 AO-s 0,00%  AX-m 2,27%  TS 7,66% 

4 AX-m 0,00%  AX-s 2,33%  AX-m 9,14% 

5 AX-s 0,00%  TS 2,36%  AX-s 12,40% 

6 TS 0,00%  AO-m 4,99%  AO-m 17,18% 

7 SO 0,00%  AO-s 5,01%  AO-s 17,60% 

 
For the problem size 10x2x20, according to the values of the REmin in Table 4, 

all algorithms were able to find the best-known solutions. Here, REmin = 0,00%, 
REavg ∈ [2,05%, 5,01%], REmax ∈ [6,67%, 17,60%]. The algorithms implementing 
ring or random topologies realized on homogeneous islands, as well as random to-
pology realized on all islands have considerably lower REavg and REmax in compar-
ison with the algorithms exploiting the ring topology built on all islands. Thus, 
SO, SX and AX-m algorithms outperform the other algorithms while solving the 
problem of the size 10x2x20. 

Table 5 The algorithms ordered non-decreasingly according to their REmin, REavg and  
REmax for the size 10x3x20 of the problem Θz 

Nr Algm REmin  Algm REavg  Algm REmax 

1 AX-m 0,00%  AX-m 3,61%  AX-m 14,71% 

2 SX 0,00%  AX-s 3,73%  SO 15,18% 

3 AX-s 0,00%  SO 3,87%  AX-s 15,89% 

4 TS 0,00%  SX 4,06%  SX 16,66% 

5 SO 0,00%  TS 4,95%  TS 18,28% 

6 AO-m 0,00%  AO-s 8,13%  AO-m 24,24% 

7 AO-s 0,08%  AO-m 8,13%  AO-s 26,03% 

 
For the problem size 10x3x20, according to the values of the REmin in Table 5, 

all algorithms, except for AO-s, were able to find the best-known solutions. Here, 
REmin ∈ [0,00%, 0,08%], REavg ∈ [3,61%, 8,13%], REmax ∈ [14,71%, 26,03%]. 
The overall results for the size 10x3x20 are nearly the same as for 10x2x20, i.e. 
the algorithms implementing random or ring topologies realized on homogeneous 
islands, as well as random topology realized on all islands have considerably low-
er REavg and REmax in comparison with the algorithms exploiting the ring topology 
built on all islands. However, for this size of the problem AX-m algorithm has 
lower REavg and REmax than SO. Thus, AX-m, SO and AX-s algorithms outper-
form the other algorithms while solving the problem of the size 10x3x20. 
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Table 6 The algorithms ordered non-decreasingly according to their REmin, REavg and  
REmax for the size 20x2x20 of the problem Θz 

Nr Algm REmin  Algm REavg  Algm REmax 

1 SX 0,00%  AX-m 2,05%  AX-m 9,08% 

2 AX-m 0,00%  SO 2,43%  SO 9,76% 

3 AX-s 0,00%  AX-s 2,53%  AX-s 9,90% 

4 SO 0,00%  AO-m 2,60%  TS 10,81% 

5 AO-m 0,00%  AO-s 2,72%  SX 11,00% 

6 AO-s 0,00%  SX 2,84%  AO-m 15,19% 

7 TS 0,53%  TS 5,09%  AO-s 15,61% 
 

For the problem size 20x2x20, according to the values of the REmin in Table 6, 
all island-based algorithms were able to find the best-known solutions. Here, RE-
min ∈ [0,00%, 0,53%], REavg ∈ [2,05%, 5,09%], REmax ∈ [9,08%, 15,61%]. The 
overall results for the size 20x2x20 are much alike as for 10x2x20, i.e. the algo-
rithms implementing random or ring topologies realized on homogeneous islands, 
as well as random topology realized on all islands have considerably lower REavg 
and REmax in comparison with the algorithms exploiting the ring topology built on 
all islands. Again, AX-m algorithm has lower REavg and REmax than SO for this 
size of the problem. Thus, AX-m, SO and AX-s algorithms outperform the other 
algorithms while solving the problem of the size 20x2x20. 

Table 7 The algorithms ordered non-decreasingly according to their REmin, REavg and  
REmax for the size 10x2x50 of the problem Θz 

Nr Algm REmin  Algm REavg  Algm REmax 

1 TS 0,00%  AX-m 2,47%  SO 8,69% 

2 SX 0,00%  AX-s 2,53%  TS 8,79% 

3 AX-m 0,00%  SO 2,77%  SX 9,23% 

4 AX-s 0,00%  SX 2,79%  AX-m 11,02% 

5 SO 0,00%  TS 3,09%  AX-s 11,19% 

6 AO-m 0,00%  AO-m 5,77%  AO-s 15,41% 

7 AO-s 0,03%  AO-s 5,78%  AO-m 16,61% 

 
For the problem size 10x2x50, according to the values of the REmin in Table 7, 

all island-based algorithms, except for AO-s, were able to find the best-known so-
lutions. Here, REmin ∈ [0,00%, 0,03%], REavg ∈ [2,47%, 5,78%], and finally RE-
max ∈ [8,69%, 16,61%]. The overall results for the size 10x2x50 show that the al-
gorithms implementing random or ring topologies realized on homogeneous 
islands, as well as random topology realized on all islands have considerably low-
er REavg and REmax in comparison with the algorithms exploiting the ring topology 
built on all islands. For the size 10x2x50 the result do not allow to unequivocally 
determine the most efficient algorithm, thus we distinguish AX-m, SO, SX and 
AX-s algorithms as more efficient than AO-m and AO-s algorithms. 
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For the problem size 10x3x50, according to the values of the REmin in Table 8, 
all algorithms were able to find the best-known solutions. Here, RE-
min ∈ [0,00%, 0,06%], REavg ∈ [3,31%, 5,91%], REmax ∈ [14,66%, 36,35%]. The 
overall results for the size 10x3x50 show that the algorithms implementing ran-
dom or ring topologies realized on homogeneous islands, as well as random topol-
ogy realized on all islands have considerably lower REavg and REmax in compari-
son with the algorithms exploiting the ring topology built on all islands. For this 
size of the problem, AX-m, AX-s and SX algorithms outperform the other algo-
rithms while solving the problem. 

Table 8 The algorithms ordered non-decreasingly according to their REmin, REavg and  
REmax for the size 10x3x50 of the problem Θz 

Nr Algm REmin  Algm REavg  Algm REmax 

1 AX-s 0,00%  AX-m 3,31%  AX-m 14,66% 

2 SX 0,00%  AX-s 3,46%  AX-s 16,59% 

3 AO-s 0,00%  SO 3,86%  SX 17,34% 

4 AX-m 0,00%  SX 4,18%  TS 18,16% 

5 SO 0,00%  TS 5,72%  AO-s 25,24% 

6 AO-m 0,00%  AO-s 5,86%  AO-m 27,02% 

7 TS 0,06%  AO-m 5,91%  SO 36,35% 

Table 9 The algorithms ordered non-decreasingly according to their REmin, REavg and  
REmax for the size 20x2x50 of the problem Θz 

Nr Algm REmin  Algm REavg  Algm REmax 

1 SO 0,00%  AX-m 3,84%  SX 11,31% 

2 SX 0,00%  AX-s 3,95%  SO 11,77% 

3 AX-m 0,00%  SO 5,18%  AX-m 12,44% 

4 AX-s 0,00%  SX 5,33%  AX-s 12,49% 

5 AO-m 0,87%  TS 6,19%  TS 12,65% 

6 AO-s 0,96%  AO-s 7,73%  AO-s 17,45% 

7 TS 1,05%  AO-m 7,80%  AO-m 18,76% 

 
For the problem size 20x2x50, according to the values of the REmin in Table 9, all 

algorithms, except for AO-m and AO-s, were able to find the best-known solutions. 
Here, we give the intervals of the REs’ values: REmin ∈ [0,00%, 0,96%], 
REavg ∈ [3,84%, 7,80%], REmax ∈ [11,31%, 18,76%]. The overall results for the size 
20x2x50 show that the algorithms implementing random or ring topologies realized 
on homogeneous islands, as well as random topology realized on all islands have 
considerably lower REavg and REmax in comparison with the algorithms exploiting 
the ring topology built on all islands. For the size 20x2x50 the result do not allow to 
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unequivocally determine the most efficient algorithm, thus we distinguish AX-m, 
SO, SX and AX-s algorithms as more efficient than AO-m and AO-s algorithms. 

In order to determine the percentages of the best found solutions for a particular 
problem size that are of the same quality as the best-known solutions, we had de-
termined the best solutions found within 43 runs of the algorithm for each of 100 
problem instances. Next, we counted how many solutions out of obtained 100 had 
the same quality as the best known for the same problem size and gave this num-
ber in percents. The percentages of the best solutions found by the proposed  
algorithms of the same quality as the best-known solutions are given in 
Tables 10 - 12.The results in the Tables 10 – 12 confirm unequivocally the pre-
vious conclusion, that the algorithms implementing random or ring topologies rea-
lized on homogeneous islands, as well as random topology realized on all islands 
are more efficient that the algorithms exploiting the ring topology built on all isl-
ands. Similarly as for REs, AX-m, AX-s and SX prevail other algorithms with 
clear dominance of AX-m and AX-s, i.e. the algorithms that implement the  
random topology realized on all islands.  

Table 10 The percentage of the best solutions (PBFS), ordered non-increasingly, found by 
the proposed algorithms that have the same quality as the best-known solutions for the dis-
cretisation level D = 10 

10x2x10 PBFS  10x3x10 PBFS  20x2x10 PBFS 

AX-m 69%  AX-s 52%  AX-s 47% 

SX 68%  AX-m 49%  AX-m 28% 

AX-s 66%  SX 46%  SX 11% 

SO 50%  SO 33%  SO 10% 

TS 44%  TS 22%  AO-s 2% 

AO-s 16%  AO-m 8%  TS 2% 

AO-m 8%  AO-s 3%  AO-m 0% 

Table 11 The percentage of the best solutions (PBFS), ordered non-increasingly, found by 
the proposed algorithms that have the same quality as the best-known solutions for the dis-
cretisation level D = 20 

10x2x20 PBFS  10x3x20 PBFS  20x2x20 PBFS 

AX-m 36%  AX-m 53%  SX 32% 

AX-s 36%  AX-s 37%  AX-m 32% 

SX 35%  SX 27%  AX-s 25% 

SO 31%  SO 17%  SO 12% 

TS 16%  AO-m 9%  AO-m 4% 

AO-m 10%  AO-s 9%  AO-s 2% 

AO-s 8%  TS 6%  TS 0% 
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Table 12 The percentage of the best solutions (PBFS), ordered non-increasingly, found by 
the proposed algorithms that have the same quality as the best-known solutions for the dis-
cretisation level D = 50 

10x2x50 PBFS  10x3x50 PBFS  20x2x50 PBFS 

AX-m 42%  AX-m 37%  AX-m 47% 

AX-s 30%  AX-s 27%  AX-s 40% 

SO 18%  SX 17%  SX 9% 

SX 18%  AO-s 12%  SO 3% 

TS 4%  SO 10%  TS 1% 

AO-m 3%  AO-m 6%  AO-m 0% 

AO-s 1%  TS 0%  AO-s 0% 

 
Although, it was possible to determine several most efficient algorithms for 

each conducted test, we still can’t distinguish the most efficient one. In order to do 
so, we need some universal measure, that could be applied for evaluation of the 
proposed algorithms. For this reason, we need to transform, or more precisely - 
normalize REmin, REavg, REmax and PBFS in a such way, that it would be possible 
to obtain some estimates that could be aggregated into one estimate, this way 
enabling the choice of the most efficient algorithm. Because RE and PBFS have 
opposite evaluation meaning, i.e. the lower RE – the better performance of the al-
gorithm, the lower PBFS – the worse performance of the algorithm, we introduce 
a new parameter NB = 1 – PBFS instead of PBFS. Thus, let 

max

min

x

xx
nep

−=  (7)

be the formula which we apply to REmin, REavg, REmax and NB within a paricular 
problem size in order to obtain a normalized estimate ne. In the Equation (7), p –
 one of the considered parameters, i.e. REmin, REavg, REmax or NB, x – the value of 
the considered parameter of the particular algorithm, xmin, xmax – the minimum or 
respectively maximum value of the considered parameter within the same problem 
size among all considered algorithms. After calculating ne values for all parame-
ters of all algorithms for all problem sizes, the values obtained for each algorithm 
were summed into an aggregated estimate. The values of the aggregated estimates 
were used to make a ranking of the considered algorithms, which is shown in Ta-
ble 13. As it could be seen in Table 13, the ranking implies the superiority of the 
algorithms implementing random topology realized on both heterogeneous and 
homogeneous islands over the algorithms implementing the ring topology.  
Thus, according to the ranking AX-m algorithm is the most efficient among all 
considered algorithms.  
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Table 13 A ranking of the considered algorithms according to the aggregated estimate  
values 

Alg-m Aggregated 
estimate 

Ranking 

AX-m 0,83 1 

AX-s 2,05 2 

SX 3,06 3 

SO 4,94 4 

TS 9,61 5 

AO-m 13,68 6 

AO-s 16,50 7 

Table 14 The ranges and deltas of REavg and REmax values for the considered problem sizes 
ordered by ΔREavg and ΔREmax non-decreasingly 

prbl. size REavg range ΔREavg  prbl. size REmax range ΔREmax 

20x2x20 2,05% - 5,09% 2,59%  20x2x20 9,08% - 15,61% 6,53% 

10x3x50 3,31% - 5,91% 2,60%  20x2x10 11,47% - 18,19% 6,72% 

10x2x20 2,05% - 5,01% 2,96%  10x2x10 9,76% - 16,53% 6,77% 

10x2x10 3,28% - 6,30% 3,02%  20x2x50 11,31% - 18,76% 7,45% 

10x2x50 2,47% - 5,78% 3,31%  10x2x50 8,69% - 16,61% 7,92% 

20x2x50 3,84% - 7,80% 3,96%  10x3x10 15,92% - 26,06% 10,14% 

10x3x10 4,67% - 8,71% 4,04%  10x2x20 6,67% - 17,60% 10,93% 

10x3x20 3,61% - 8,13% 4,52%  10x3x20 14,71% - 26,03% 11,32% 

20x2x10 4,76% - 9,31% 4,64%  10x3x50 14,66% - 36,35% 21,69% 

Table 15 The range and delta of PBFS values for the considered problem sizes ordered by 
ΔPBFS non-decreasingly 

prbl. size PBFS range ΔPBFS 

10x2x20 8% - 36% 28% 

20x2x20 2% - 32% 30% 

10x3x50 6% - 37% 31% 

10x2x50 1% - 42% 41% 

10x3x20 9% - 53% 44% 

20x2x10 0% - 47% 47% 

20x2x50 0% - 47% 47% 

10x3x10 3% - 52% 49% 

10x2x10 8% - 69% 61% 
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As it could be seen from the experimental results described above, it is possible 
to reduce the REs of the solutions found by the considered algorithms just by 
changing the interconnection topology of the constituent islands. The Table 14 
shows that by changing the interconnection topology REavg can be reduced by 
2,59% - 4,64% and REmax by 6,53% - 21,69% dependently on the problem size. 
The REavg and REmax ranges were taken from the Tables 1 – 9. Similarly, the Ta-
ble 15 shows that the percentage of the best found solutions that have the same 
quality as the best-known solutions can be increased by 28% - 61% dependently 
on the problem size. The PBFS ranges were taken from the Tables 10 – 12. 

Finally, in Tables 16 – 17, we observe the influence of the level of the conti-
nuous resource discretisation D on the REs of the found solutions. In Table 16, for 
the problem size 10x2xD, D ∈ {10, 20, 50}, for almost all algorithms except for 
AO-s, both REmin and REavg have the lowest values when D = 20. Thus, the influ-
ence of D on the REs for the considered problem size could generalized by the  
following relations: REmin/avg(D = 20) < REmin/avg(D = 50) < REmin/avg(D = 10). For 
the REmax, the results are mixed and it’s impossible to derive one clear rule for all 
algorithms. The influence of the discretisation level D on the REs of the solutions 
found by the considered algorithms for the problem size 10x3xD, 
D ∈ {10, 20, 50}, according to the Table 17 could be described generally by the 
following relations: REmin(D = 20) ≤ REmin(D = 50) < REmin(D = 10), except for 
AO-s, and REavg(D = 50) < REavg(D = 20) < REavg(D = 10), except for SX and TS. 
For the REmax, the results are mixed and it’s impossible to derive one clear rule for 
all algorithms. The influence of the discretisation level D on the REs of the solu-
tions found by the considered algorithms for the problem size 20x2xD, 
D ∈ {10, 20, 50}, according to the Table 18 could be described generally by the 
following relations: REmin(D = 20) ≤ REmin(D = 50) < REmin(D = 10) except for 
TS, and REavg(D = 20) < REavg(D = 50) < REavg(D = 10). For the REmax, the results 
are mixed and it’s impossible to derive one clear rule for all algorithms. Below we 
tabularise the obtained relations together in Table 19: 

Table 16 The influence of the level of the continuous resource discretisation D on the REs 
of the found solutions for the problem size 10x2xD, D ∈ {10, 20, 50} 

Algm  REmin    REavg    REmax  

 10 20 50  10 20 50  10 20 50 

AO-m 0,01% 0,00% 0,00%  6,30% 4,99% 5,77%  14,68% 17,18% 16,61% 

AO-s 0,01% 0,00% 0,03%  6,30% 5,01% 5,78%  16,53% 17,60% 15,41% 

AX-m 0,01% 0,00% 0,00%  3,54% 2,27% 2,47%  12,33% 9,14% 11,02% 

AX-s 0,01% 0,00% 0,00%  3,58% 2,33% 2,53%  11,39% 12,40% 11,19% 

SO 0,19% 0,00% 0,00%  3,28% 2,05% 2,77%  9,76% 6,67% 8,69% 

SX 0,01% 0,00% 0,00%  3,31% 2,07% 2,79%  10,00% 7,04% 9,23% 

TS 0,01% 0,00% 0,00%  3,49% 2,36% 3,09%  9,91% 7,66% 8,79% 



100 P. Jędrzejowicz and A. Skakovski
 

Table 17 The influence of the level of the continuous resource discretisation D on the REs 
of the found solutions for the problem size 10x3xD, D ∈ {10, 20, 50} 

Algm  REmin    REavg    REmax  

 10 20 50  10 20 50  10 20 50 

AO-m 0,10% 0,00% 0,00%  8,66% 8,13% 5,91%  26,06% 24,24% 27,02% 

AO-s 0,28% 0,08% 0,00%  8,71% 8,13% 5,86%  25,67% 26,03% 25,24% 

AX-m 0,00% 0,00% 0,00%  4,68% 3,61% 3,31%  16,07% 14,71% 14,66% 

AX-s 0,00% 0,00% 0,00%  4,74% 3,73% 3,46%  19,33% 15,89% 16,59% 

SO 0,00% 0,00% 0,00%  4,67% 3,87% 3,86%  15,92% 15,18% 36,35% 

SX 0,01% 0,00% 0,00%  4,69% 4,06% 4,18%  18,39% 16,66% 17,34% 

TS 0,07% 0,00% 0,06%  5,36% 4,95% 5,72%  17,72% 18,28% 18,16% 

Table 18 The influence of the level of the continuous resource discretisation D on the REs 
of the found solutions for the problem size 20x2xD, D ∈ {10, 20, 50} 

Algm  REmin    REavg    REmax  

 10 20 50  10 20 50  10 20 50 

AO-m 1,12% 0,00% 0,87%  9,31% 2,60% 7,80% 215 16,71% 15,19% 18,76% 

AO-s 1,16% 0,00% 0,96%  9,19% 2,72% 7,73% 251 18,19% 15,61% 17,45% 

AX-m 0,00% 0,00% 0,00%  4,76% 2,05% 3,84% 215 11,81% 9,08% 12,44% 

AX-s 0,26% 0,00% 0,00%  4,86% 2,53% 3,95% 251 12,54% 9,90% 12,49% 

SO 0,51% 0,00% 0,00%  5,46% 2,43% 5,18% 215 11,47% 9,76% 11,77% 

SX 0,40% 0,00% 0,00%  5,56% 2,84% 5,33% 251 11,74% 11,00% 11,31% 

TS 0,68% 0,53% 1,05%  6,26% 5,09% 6,19% 215 12,09% 10,81% 12,65% 

Table 19 The relations among the REs on different discretisation levels D, D ∈ {10, 20, 
50}, for the considered problem sizes 

Prbl.size Relations among the REs on different discretisation levels D, D ∈ {10, 20, 50} 

10x2xD REmin(D = 20) < REmin(D = 50) < REmin(D = 10) 

REavg(D = 20) < REavg(D = 50) < REavg(D = 10) 

REmax – mixed 

10x3xD REmin(D = 20) • REmin(D = 50) < REmin(D = 10), except for AO-s 

REavg(D = 50) < REavg(D = 20) < REavg(D = 10), except for SX and TS 

REmax – mixed 

20x2xD REmin(D = 20) • REmin(D = 50) < REmin(D = 10) except for TS 

REavg(D = 20) < REavg(D = 50) < REavg(D = 10) 

REmax – mixed 
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As it could be seen in Table 19, it’s impossible to determine unequivocally the 
discretisation level on which REs of the found solutions are the lowest. However, 
it could be pointed at the relation REs(D = 20) < REs(D = 50) < REs(D = 10) as 
the most frequent relation. This might impose the conclusion, that the high discre-
tisation level does not ensure the lowest values of the REs and the additional re-
search is needed to identify the most appropriate discretisation of the continuous 
resource. 

5   Conclusion 

In the chapter, we consider the population learning algorithm (PLA2), earlier de-
signed by the authors for solving the problem of scheduling non-preemtable tasks 
on parallel identical machines under constraint on discrete resource and requiring, 
additionally, renewable continuous resource to minimize the schedule length. The 
PLA2 model can be also viewed as an island model, were homogeneous as well as 
heterogeneous islands are connected to each other according to some topology and 
exchange individuals in order to collectively find best possible solution to the 
problem. The PLA2’s island-based design can be easily used to construct an agent 
system with cooperating agents. The main goal of our research was to find out 
whether a topology of a learning stages (or islands), might have some effect on the 
algorithm’s efficiency. For this reason we proposed six versions of PLA2 that dif-
fers from each other by their structure and migration scheme. The most important 
conclusion that can be drawn from the experimental results is that the interconnec-
tion topology of the constituent islands might have a noticeable impact on the 
quality of the solutions yielded by PLA2. It is possible to reduce the relative errors 
of the solutions found by PLA2 by order of 2,59% - 4,64% for REavg and 6,53% - 
21,69% for REmax dependently on the problem size. Similarly, the percentage of 
the best found solutions that have the same quality as the best-known solutions 
can be increased dependently on the problem size by 28% - 61%. The ranking of 
the considered algorithms that was designed to reveal the most efficient intercon-
nection topology implies the superiority of the algorithms implementing random 
topology realized on all available islands, i.e. heterogeneous and homogeneous, or 
exclusively on homogeneous islands, over the algorithms implementing the ring 
topology. However, the algorithm implementing the directed ring topology rea-
lized exclusively on homogeneous islands for some problem sizes yielded solu-
tions that had the lowest REavg and REmax values. It should be mentioned here, that 
all the conclusions are valid for particular implementations of the algorithms used 
in the experiments. The values of some parameters of the algorithms were deter-
mined during their tuning and should be determined on the way of an exhaustive 
experiment. Our further research should concern other parameters and intercon-
nection topologies that might allow to improve the efficiency of the algorithms 
that implement the island-based model. 
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