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Preface

Agent based systems technology has emerged as a new paradigm for the
conceptualization, design, analysis and implementation of many approaches and
solutions, notably in the area of software systems. Basically, software agents are
sophisticated pieces of software that are meant to autonomously, on behalf of their
users, solve a variety of complex tasks and problems. An important characteristic
feature is that the agents are primarily meant to operate in and across open and dis-
tributed
environments.

A natural implication of a growing complexity of problems to be solved by agents
is that multiple agents are needed that can work together. The concept of a multi-
agent system has been advocated in this respect as an effective and efficient solution.
Basically, the multi-agent system is a loosely coupled network of software agents
that interact in an autonomous, collaborative and possibly synergistic way to solve
problems that are beyond the individual capacities of a single problem solving agent.

It is easy to see that such a multi-agent architecture can have many advantages
over a simplistic single agent approach. To name a few, one quote in this context
the following ones. A multi-agent systems distributes problem solving and compu-
tational resources and capabilities across a network of interconnected agents. Since
it is decentralized and distributed, various problems related to resource and perfor-
mance limitations and bottlenecks, disastrous failures, etc. can be alleviated to a
large extent, somehow even overcome. The setting in which problems are modeled
using the multi-agent systems paradigm is in terms of autonomous interacting com-
ponents which, as research results from many fields suggest, is a natural and more
effective and efficient way of representing and solving many problems, notably re-
lated to the broadly perceived rational decision making in large, and spatially and
temporally distributed systems. Moreover, the multi-agent systems often exhibit an
enhanced performance with respect to computational efficiency, reliability, extensi-
bility, robustness, maintainability, responsiveness, flexibility, and reuse.

Broadly perceived rational decision making is an omnipresent meta-problem in
both science and technology, and even everyday life, because all kinds of human
activities, and also their analogues in inanimate systems, call for taking most advan-
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tage of what is intended and possible to attain. Examples are here innumerable and
range from best individual investment decisions, through all kinds of best design
solutions for products and services to best fulfill societal needs and expectations.

Since it is generally assumed that the solutions of the above mentioned problems
of rational choice is best performed in terms of formal problem formulations and
analyses, decision making and decision analytic models immediately become a nat-
ural choice. Among them a special role is played by optimization and mathematical
programming models in which the problem is naturally set in terms of the max-
imization or minimization of some objective (performance) function under some
constraints conveniently given as a set of equalities and/or inequalities. Needless to
say that such a setting is a clear reflection of quite a natural utility maximization
type of rationality.

This volume is a collection of original research works by leading specialists
focusing on novel and promising approaches in which the multi-agent system
paradigm is used to support, enhance or replace traditional approaches to solv-
ing difficult optimization problems. The editors have invited several well-known
specialists to present their solutions, tools, and models falling under the common
denominator of the agent-based optimization. The book consists of eight chapters
covering examples of application of the multi-agent paradigm and respective cus-
tomized tools to solve difficult optimization problems arising in different areas such
as machine learning, scheduling, transportation and, more generally, distributed and
cooperative problem solving.

The chapter of Ireneusz Czarnowski and Piotr Jędrzejowicz (“Machine Learning
and Multiagent Systems as Interrelated Technologies”) contains a short, yet com-
prehensive account of main applications in which machine learning methods have
been used to support agent learning capabilities. Then, current research results in-
tegrating machine learning and agent technologies are reviewed in a more detailed
manner. Examples of machine learning models proposed by the authors in which
the agent paradigm has been implemented, aimed at finding optimal solutions to
machine learning tasks, are included in the main part of the chapter. A general con-
clusion and message of the chapter is that agent technologies can effectively support
finding good quality solutions to machine learning problems.

Mariusz Boryczka and Wojciech Bura (“Ant Colony Optimization for the Multi-
criteria Vehicle Navigation Problem”) describe a family of multi-agent ant-based
vehicle navigator algorithms dedicated to the solution of a multi-criterion problem
of finding the shortest path between two points on the map. Sequential and paral-
lel versions of the multi-agent ant-based algorithm are presented. The work shows
that the parallel versions of the algorithm can be implemented using the graphics
processing unit (GPU) and the CUDA architecture.

The chapter written by Dariusz Barbucha (“Solving Instances of the Capacitated
Vehicle Routing Problem Using Multi-Agent Non-Distributed and Distributed En-
vironment”) focuses on the design and use of the asynchronous team of agents
(A-Team) implemented using the JADE-Based A-Team middleware environment
(JABAT). The JABAT multi-agent system has been designed for solving computa-
tionally hard optimization problems using the parallel and distributed environment.
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JABAT produces solutions to combinatorial optimization problems using a set of
optimization agents, each representing an improvement algorithm. The chapter fo-
cuses on the ability of JABAT to distribute computation load while system is en-
gaged in solving instances of some difficult optimization problem. The experiments
reported are carried out on instances of the capacitated vehicle routing problem.

Piotr Jędrzejowicz and Aleksander Skakovski (“Structure vs. Efficiency of the
Cross-Entropy Based Population Learning Algorithm for Discrete-Continuous
Scheduling with Continuous Resource Discretisation”) deal with the application of
the population learning algorithm for solving discrete-continuous scheduling prob-
lem with the continuous resource discretization. The population learning algorithm
evolves primary solutions delivered by the cross-entropy method. Different versions
of the population learning algorithm, viewed as an island model, that differ from
each other by their structure and migration scheme, are discussed and evaluated
experimentally. In the approach considered each island can be treated as an inde-
pendent agent cooperating with other agents. The authors provide and answer to the
question whether the topology of learning stages (or islands) might have some effect
on the efficiency of the algorithm.

Another scheduling problem is considered in the chapter by Piotr Jędrzejow-
icz and Ewa Ratajczak-Ropel (“Triple-Action Agents Solving the MRCPSP/max
Problem”). The authors propose an A-Team architecture for solving the multi-mode
resource-constrained project scheduling problem with the minimal and maximal
time lags. A computational experiment involves the performance evaluation of op-
timization agents within the A-Team proposed. The results obtained show that the
A-Team implementation is an effective tool for solving instances of the scheduling
problem considered.

Effects and impact of cooperation between the cooperating A-Teams working
parallel and combined into an architecture designed for solving difficult combina-
torial optimization problems is discussed in the chapter written by Dariusz Bar-
buch, Ireneusz Czarnowski, Piotr Jędrzejowicz, Ewa Ratajczak-Ropel and Izabela
Wierzbowska (“Team of A-Teams - a Study of the Cooperation Between Program
Agents Solving Difficult Optimization Problems”). Several architectures of coop-
eration are compared. Experimental results show that in most cases the integration
of the distributed evolutionary concept, and especially the island based evolutionary
algorithm, with the A-Team paradigm might result in a noticeable improvement of
the quality of the computation results. In conclusion the authors confirm the impor-
tance of choosing an effective and efficient information exchange architecture for
the team of agents solving a particular optimization task.

Kunal Srivastava, Angelia Nedić and Dušan Stipanović (“Distributed Bregman-
Distance Algorithms for Min-Max Optimization”) focuse on a min-max optimiza-
tion problem over a time-varying network of computational agents. To solve the
problem the authors propose distributed subgradient algorithms in which each agent
computes its own estimates of an optimal point based on its own cost function, and
then communicates these estimates to its neighbors in the network. Two algorithms
are discussed, both using the Bregman-distance functions. The applicability of the
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algorithms is demonstrated by considering a power allocation problem in a cellular
network.

In the last chapter, Anand J. Kulkarni and Kang Tai (“A Probability Collectives
Approach for Multi-Agent Distributed and Cooperative Optimization with Toler-
ance for Agent Failure”) consider an inherent ability of the distributed and decen-
tralized agent-based optimization technique, referred to as Probability Collectives
(PC), to accommodate agent failures. It is assumed that complex systems can be
decomposed into smaller subsystems to be further treated in a distributed and de-
centralized way. The PC framework for the optimization of complex systems is pre-
sented. The ability of the PC approach to tolerate instances of agent failures based
on solving of the circle packing problem is presented.

The editors strongly believe that this volume has been an important and timely
initiative. The area of agent based optimization has become a mature field of re-
search with many relevant analytic contribution and, what is particularly impor-
tant, a rapidly increasing flow of implementations in many diverse areas which have
clearly demonstrated the effectiveness and efficiency of the new approach. The ed-
itors have been privileged to collect a representative collection of relevant papers
from leading researchers. They have provided the readers with an account of both
deep and relevant formal and analytic results and an in depth presentation of real
world applications. It is hoped that the presented ideas and results will be of value
to the research community working in the field of artificial intelligence, knowledge
discovery, collective computational intelligence, intelligent transportation systems,
project management and, in particular, agent and multi-agent systems technologies
and applications.

We would like to take this opportunity to thank all authors for their highly valu-
able contributions. We wish to thank all peer reviewers whose invaluable work and
suggestions have helped improve the quality of the chapters. Special thanks are due
to Professor Juan Antonio Rodriguez Aguilar, Dr. Xiafeng Li, Dr. Mahdi Zargay-
ouna and Dr. Rafał Różycki for their multi-faceted help in the difficult process
of preparation of this book. Dr. Tom Ditzinger and Dr. Leontina Di Cecco from
Springer deserve our deep appreciation for a great collaboration and consideration.

Ireneusz Czarnowski
Piotr Jędrzejowicz

Janusz Kacprzyk
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Machine Learning and Multiagent Systems
as Interrelated Technologies

Ireneusz Czarnowski� and Piotr J ↪edrzejowicz

Abstract. The chapter reviews current research results integrating machine learning
and agent technologies. Although complementary solutions from both fields are dis-
cussed the focus is on using agent technology in the field of machine learning with
a particular interest on applying agent-based solutions to supervised learning. The
chapter contains a short review of applications, in which machine learning methods
have been used to support agent learning capabilities. This is followed by a corre-
sponding review of machine learning methods and tools in which agent technology
plays an important role. Final part gives a more detailed description of some exam-
ple machine learning models and solutions where the paradigm of the asynchronous
team of agents has been implemented to support the machine learning methods, and
which have been developed by the authors and their research group. It is argued
that agent technology is particularly useful in case of dealing with the distributed
machine learning problems. As an example of such applications a more detailed
description of the agent-based framework for the consensus-based distributed data
reduction is given in the final part of the chapter.

1 Introduction

Contemporary definition sees machine learning as a discipline that is concerned
with the design and development of algorithms that allow computers to learn behav-
iors based on empirical data. Data can be seen as examples that illustrate relations
between observed objects. A major focus of machine learning research is to auto-
matically learn to recognize complex patterns and make intelligent decisions based
on data.
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Parallel to recent developments in the field of machine learning, mainly as a
result of convergence of many technologies within computer science such as object-
oriented programming, distributed computing and artificial life, the agent technol-
ogy has emerged. An agent is understood here as any piece of software that is
designed to use intelligence to automatically carry out an assigned task, mainly
retrieving and delivering information.

Tweedale and co-authors [80] outline an abridged history of agents as a guide
for the reader to understand the trends and directions of future agent design. This
description includes how agent technologies have developed using increasingly
sophisticated techniques. It also indicates the transition of formal programming
languages into object-oriented programming and how this transition facilitated a
corresponding shift from scripted agents (bots) to agent-oriented designs which is
best exemplified by multiple agent systems (MAS). According to Liau [49], a MAS
tries to solve complex problems with entities called agents, using their collaborative
and autonomous properties. Jennings et al. [44] list the following MAS properties:

- Each agent has partial information or limited capabilities.
- There is no global system control.
- Data in a MAS are decentralized.
- Computation is asynchronous.
- Different agents could be heterogeneous, for example, with respect to knowledge

representation, reasoning model, solution evaluation criteria, goal, architecture or
algorithm for task performance.

During the last decade developments in the fields of machine learning and agent
technologies have, in some respect, become complementary and researchers from
both fields have seen ample opportunities to profit from solutions proposed by each
other. Several agent-based frameworks that utilize machine learning for intelligent
decision support have been recently reported. Learning is increasingly being seen
as a key ability of agents, and researchinto learning agent technology, such as re-
inforcement learning and supervised or unsupervised learning has produced many
valuable applications.

In this chapter the focus is however on using agent technology in the field of
machine learning with a particular interest on applying agent-based solutions to
supervised learning. Supervised learning is the machine learning task of inducing
a function from training data which is a set of training examples. In supervised
learning, each example is a pair consisting of an input object (typically a vector)
and a desired output value (also called the supervisory signal or class label). A
supervised learning algorithm analyzes the training data and produces an induced
function, which is called a classifier if the output is discrete, or a regression function
if the output is continuous. The inferred function should predict the correct output
value for any valid input object. This requires the learning algorithm to generalize
from the training data to unseen situations.
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There are several ways the machine learning algorithm can profit from applying
agent technology. Among them the following will be addressed in this paper:

- There are numerous machine learning techniques where parallelization can
speed-up or even enable learning. Using a set of agents may, in such circum-
stances, increase efficiency of learning.

- Several machine learning techniques directly rely on the collective computational
intelligence paradigm, where a synergetic effect is expected from combining ef-
forts of various program agents.

- There is a class of machine learning problems known as the distributed machine
learning. In the distributed learning a set of agents working in the distributed sites
can be used to produce some local level solutions independently and in parallel.
Later on local level solutions are combined into a global solution.

The chapter is organized as follows. Section 2 contains a short review of applica-
tions, in which machine learning methods have been used to support agent learning
capabilities. Section 3 offers a corresponding review of machine learning methods
and tools in which agent technology plays an important role. Section 4 gives more
detailed description of some example machine learning models and solutions where
the agent paradigm has been implemented and which have been developed by the
author and his research group. Finally, conclusions contain suggestions on future
research and possible deeper integration of machine learning and agent technology.

Content of the chapter integrates and extends two earlier papers of Czarnowski
and Jȩdrzejowicz([41] and [27]) presented, respectively, at the KES-AMSTA Con-
ference, Manchester 2011 and IEEE System, Man, and Cybernetics Conference,
Anchorage 2011.

2 Learning Agents

Probably the most often used approach to provide agents with learning capabili-
ties is the reinforcement learning. An excellent survey of multiagent reinforcement
learning can be found in the paper of Busoniu et al. [13]. As it was pointed out by
Sutton and Barto [74] reinforcement learning is learning what to do - how to map
situations to actions - so as to maximize a numerical reward signal. The learner is
not told which actions to take, as in most forms of machine learning, but instead
must discover which actions yield the most reward. In describing properties of the
reinforcement learning the authors directly refer to the notion of agent. In their view
a learning agent must be able to sense the state of the environment and must be able
to take actions that affect the state. The agent also must have goal or goals relating
to the state of the environment [74].

Theoretical developments in the field of learning agents focus mostly on method-
ologies and requirements for constructing multiagent systems with learning capa-
bilities. Connection of the theory of automata with the multiagent reinforcement
learning is explored in Nowe et al. [58]. Shoham et al. [68] claim that the area of
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learning in multiagent systems is today one of the most fertile grounds for inter-
action between game theory and artificial intelligence. In the paper by Mannor and
Shamma [52]challenges motivated by engineering applications and the potential ap-
peal of multi-agent learning to meetthese challenges are discussed.

Symeonidis et al. [75] present an approach that takes the relevant limitations
and considerations into account and provides a gateway on the way data mining
techniques can be employed in order to augment agent intelligence. This work
demonstrates how the extracted knowledge can be used for the formulation initially,
and the improvement, in the long run, of agent reasoning. Preux et al. [61] present
MAABAC, a generic model for building adaptive agents: they learn new behaviors
by interacting with their environment. Agents adapt their behavior by way of rein-
forcement learning, namely temporal difference methods. The paper by Sardinhaet
et al. [67] presents a systematic approach to introduce machine learning in the de-
sign and implementation phases of a software agent. It also presents an incremental
implementation process for building asynchronous and distributed agents, which
supports the combination of machine learning strategies. Rosaci in [66] proposes a
complete MAS architecture, called connectionist learning and inter-ontology simi-
larities (CILIOS), for supporting agent mutual monitoring.

In the paper of Masoumi and Meybodi [53] the concepts of stigmetry and entropy
are imported into learning automata based multi-agent systems with the purpose of
providing a simple framework for interaction and coordination in multi-agent sys-
tems and speeding up the learning process. Another extension was proposed by
Boylu et al. [11]. The authors suggest a merging, and hence an extension, of two
recent learning methods, utility-based learning and strategic or adversarial learning.
Utility-based learning brings to the forefront the learner’s utility function during
induction. Strategic learning anticipates strategic activity in the induction process
when the instances are intelligent agents such as in classification problems involving
people or organizations. The resulting merged model is called the principal-agent
learning. Loizos [50] argues that when sensing its environment, an agent often re-
ceives information that only partially describes the current state of affairs. The agent
then attempts to predict what it has not sensed, by using other pieces of informa-
tion available through its sensors. Machine learning techniques can naturally aid this
task, by providing the agent with the rules to be used for making these predictions.
For this to happen, however, learning algorithms need to be developed that can deal
with missing information in the learning examples in a principled manner, and with-
out the need for external supervision. It is shown that the Probably Approximately
Correct semantics can be extended to deal with missing information during both the
learning and the evaluation phase.

Numerous reinforcement learning applications have been recently reported in the
literature. Some interesting examples include a proposal of reinforcement learning
for agent-based production scheduling proposed by Wang and Usher [81], and a
case-based reinforcement learning algorithm (CRL) for dynamic inventory control
in a multi-agent supply-chain system of Jiang and Sheng [45]. A comprehensive
survey of multiagent reinforcement learning algorithms, solutions and approaches
is offered in [13]. A reinforcement learning (RL) agent learns by trial-and-error
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interaction with its dynamic environment. At each time step, the agent perceives the
complete state of the environment and takes an action, which causes the environment
to transit into a new state. The agent receives a scalar reward signal that evaluates
the quality of this transition. Well understood and effective algorithms are available
for solving single agent reinforced learning. Much difficult problems are posed by
the multiagent learning case. According to Busoniu et al. [13] main techniques used
to solve multiagent reinforcement learning include temporal difference RL, game
theory and direct policy search. Recent example of the approach based on the first of
the above mentioned techniques is a multi-goal Q-learning algorithm of cooperative
teams proposed by Li et al. [48].

Supervised learning techniques have been also applied to support agent’s learn-
ing capabilities. In the paper of Yu et al. [83], a support vector machine (SVM)
based multiagent ensemble learning approach is proposed for credit risk evaluation.
Different SVM learning paradigms with much dissimilarity are constructed as intel-
ligent agents for credit risk evaluation. Multiple individual SVM agents are trained
using training subsets. In the final stage, all individual results produced by multiple
SVM agents in the previous stage are aggregated into an ensemble result.

An interesting example of integration of the agent and machine learning tech-
nologies was proposed in [76]. The above authors have developed Agent Academy,
an integrated development framework that supports both design and control of
multi-agent systems (MAS), as well as ”agent training”. They define agent training
as the automated incorporation of logic structures generated through data mining
into the agents of the system. The increased flexibility and cooperation primitives of
MAS, augmented with the training and retraining capabilities of Agent Academy,
provide a powerful means for the dynamic exploitation of data mining extracted
knowledge. In their paper, the methodology and tools for agent retraining are pre-
sented. Through experimented results with the Agent Academy platform, it was
demonstrated how the extracted knowledge can be formulated and how retraining
can lead to the improvement - in the long run - of agent intelligence.

3 Agent-Based Machine Learning

Recently, several machine learning solutions and techniques have been reported to
rely on applying agent technologies. Such solutions and techniques belong to the
two broad classes - universal ones and dedicated to particular applications. Solu-
tions and techniques belonging to the first class involve applications of the multi
agent systems, including A-Teams and the population-based methods. This section
contains a review of some recent universal and dedicated solutions with the excep-
tion of those based on the A-Team paradigm. Machine learning solutions using the
A-Team paradigm are discussed in a detailed manner in Section 4.
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3.1 Universal Solutions and Techniques

As it has been observed by Luo et al. [51] industry, science, and commerce fields
often need to analyze very large datasets maintained over geographically distributed
sites by using the computational power of distributed systems. The Grid can play
a significant role in providing an effective computational infrastructure support for
this kind of data mining. Similarly, the advent of multi-agent systems has brought us
a new paradigm for the development of complex distributed applications.Through a
combination of these two techniques an Agent Grid Intelligent Platform and an in-
tegrated toolkit VAStudio used as a testbed were proposed. Using grid platform as a
testbed was also suggested by Raicevic [65]. The author presents a parallel learning
method for agents with an actor-critic architecture based on artificial neural net-
works. The agents have multiple modules, where the modules can learn in parallel
to further increase learning speed. Each module solves a sub-problem and receives
its own separate reward signal with all modules trained concurrently. The method is
used on a grid world navigation task showing that parallel learning can significantly
reduce learning time.

Kitakoshi et al. [46] describe an on-line reinforcement learning system that adapts
to environmental changes using a mixture of Bayesian networks. Machine learning
approaches, such as those using reinforcement learning methods and stochastic mod-
els, have been used to acquire behavior appropriate to environments characterized
by uncertainty. The results of several experiments demonstrated that an agent using
the proposed system can flexibly adapt to various kinds of environmental changes.

Gifford in his Ph.D. dissertation [32] advocates an approach focused on the ef-
fects of sharing knowledge and collaboration of multiple heterogeneous, intelligent
agents (hardware or software) which work together to learn a task. As each agent
employs a different machine learning technique, the system consists of multiple
knowledge sources and their respective heterogeneous knowledge representations.
Experiments have been performed that vary the team composition in terms of ma-
chine learning algorithms and learning strategies employed by the agents. General
findings from these experiments suggest that constructing a team of classifiers using
a heterogeneous mixture of homogeneous teams is preferred.

Quteish et al. at [64] proposed a neural network (NN)-based multi-agent classifier
system (MACS) using the trust, negotiation, and communication (TNC) reasoning
model. The main contribution of this work is that a novel trust measurement method,
based on the recognition and rejection rates, was suggested. Two agent teams are
formed; each consists of three NN learning agents. The first is a fuzzy min-max
(FMM) NN agent team and the second is an ARTMAP a fuzzy adaptive resonance
theory map (FAM) NN agent team. Modifications to the FMM and FAM models are
proposed so that they can be used for trust measurement in the TNC model.

Several important methods can be grouped under the umbrella of the collective
or collaborative learning. In the paper by Hoenl and Tuyls [35] it was shown show
how Evolutionary Dynamics (ED) can be used as a model for Q-learning in stochas-
tic games. Analysis of the evolutionary stable strategies and attractors of the derived
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ED from the Reinforcement Learning (RL) application then predict the desired pa-
rameters for RL in multiagent systems to achieve Nash equilibriums with high util-
ity. Secondly, it was shown how the derived fine tuning of parameter settings from
the ED can support application of the COllective INtelligence (COIN) framework.
COIN is a proved engineering approach for learning of cooperative tasks in MASs.
In their paper Hofmann and Basilico [34] propose a collaborative machine learning
framework to exploit inter-user similarities. More specifically, they present a kernel-
based learning architecture that generalizes the well-known Support Vector Machine
learning approach by enriching content descriptors with inter-user correlations.

Another umbrella covers learning classifier systems introduced by Holland [36]
which use simple agents representing set of rules as a solution to a machine learn-
ing problem. A Pittsburgh-type LCS has a populations of separate rule sets, where
the genetic algorithm recombines and reproduces the best of these rule sets. In a
Michigan-style LCS there is only a single population and the algorithm’s action
focuses on selecting the best classifiers within that ruleset. Analysis of the prop-
erties of LCSs, comparison of several proposed variants and overview of the state
of the art can be found in the papers [6], [7], [12] and [82]. Useful extension of
the LCS concept was proposed by Smith et al. [72]. Their paper introduces a new
variety of learning classifier system (LCS), called MILCS, which utilizes mutual
information as fitness feedback. Unlike most LCSs, MILCS is specifically designed
for supervised learning. Yet another extension introduces a mechanism for recog-
nizing a current situation by determining a boundary between self and others, and
investigates its capability through interaction with an agent [77]. An integration of
several cognitively inspired anticipation and anticipatory learning mechanisms in an
autonomous agent architecture, the Learning Intelligent Distribution Agent (LIDA)
system was proposed by Negatu et al. [55].

Ensemble techniques have proven to be very successful in boosting the perfor-
mance of several types of machine learning methods. In the paper by Bacardit and
Krasnogor [8] authors illustrate usefulness of the ensemble techniques in combi-
nation with GAssist, a Pittsburgh-style Learning Classifier System. Effective and
competitive ensembles constructed from simple agents represented by expression
trees induced using Gene Expression Programming have been proposed in papers
of Jȩdrzejowicz and Jȩdrzejowicz [42] and [43]. Their approach has been tested
using several ensemble constructing techniques including AdaBoost learning, vot-
ing pool of classifiers, incremental learning, cluster based learning, mass functions
based learning and meta-learning.

An effective approach to machine learning is to use some simple agents coop-
erating directly or indirectly during the process of learning. For example, Hong et
al. [37] attempt to propose an Ant Colony System-based framework for fuzzy data
mining. Their idea is to use simple agents (ants) to mine various types of data. In the
framework, the membership functions are first encoded into binary-bits and then fed
into the ACS to search for the optimal set of membership functions. The problem is
then transformed into a multi-stage graph, with each route representing a possible
set of membership functions. When the termination condition is reached, the best
membership function set (with the highest fitness value) can then be used to mine
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fuzzy association rules from a database. Some earlier works on ACS-based rule dis-
covery were proposed by Parpinelli et al. [59] as well as Cordon and Herrera [14],
which proposed the mining of classification rules for fuzzy control systems.

Agent technology seems to be a natural tool for the distributed systems. Com-
bining approaches to distributed learning with agent technology is considered as
the promising and at the same time challenging problem in the distributed learning
research [47]. In the paper by Zhang et al. [85] an agent paradigm was proposed
as a tool for integration of different techniques into an effective strategy of learn-
ing from data. The proposed hybrid learning system integrates basic components of
the learning process. Data pre-processing, selection, transformation and induction
of the learning and post-learning models are carried out by a set of agents coop-
erating during the task execution. Several agent-based architectures have already
been proposed to solve the distributed learning problems. It is usually assumed that
each site can have one or more associated agents, processing the local data and
communicating the results to other agents that control and manage the knowledge
discovery process. Examples include Papyrus [62], MALE [69], ANIMALS [73],
and MALEF [79]. In the paper of Albashiri et al. [3] EMADS, a hybrid peer-to-peer
agent based system comprising a collection of the collaborating agents distributed
across a network, was described.

According to Zhu et al. [86] data mining from distributed sources focuses on:

- Identifying locally significant patterns in individual databases
- Discovering emerging significant patterns after unifying distributed databases in

a single view
- Finding patterns which follow special relationships across different data collec-

tions.

To solve the third problem, the above authors advocate a cross-database pruning
concept and propose a collaborative pattern (CLAP) mining framework with cross-
database pruning mechanisms for distributed pattern mining. In CLAP, distributed
databases collaboratively exchange pattern information between sites so that each
site can leverage information from other sites to gain cross-database pruning. The
proposed framework with distributed sites playing agents roles, allows to carry out
mining activities in a cooperative manner. CLAP allows the distributed sites to com-
municate with each other and exchange messages, so the mining is carried out at
distributed sites without any data integration.

Similar views on close interrelations between agent and machine learning tech-
nologies have been expressed by several other specialists. For example, da Silva et
al. [70] observed in their study of distributed data mining and agents that there exists
a synergy between multiple agent systems and distributed data mining technology.
The above paper provides adetailed literature review of existing distributed clus-
tering algorithms (including privacy-preserving ones). In [70] it was also observed
that scalable analysis of data may require advanced data mining for detecting hidden
patterns, constructing predictive models, and identifying outliers, among others. In
a MAS this knowledge is usually collective. This collective ”intelligence” of a MAS
must be developed by distributed domain knowledge and analysis of distributed data
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observed by different agents. Such distributed data analysis may be a non-trivial
problem when the underlying task is not completely decomposable and computing
resources are constrained by several factors.

3.2 Dedicated Solutions and Techniques

In the machine learning literature numerous applications solving particular machine
learning problem type or task where agent technology have played an important,
even if supporting, role have been recently reported. In this short review the focus
is on some example cases where agent technology has been used in an innovative
manner.

Fan et al. [31] have developed a two-stage model for personalized and intelligent
information routing of online news. At the first stage, persistent user queries are
extracted from rated documents based on Robertson’s Selection Value (RSV). At
the second stage, genetic programming is applied to discover the optimal ranking
function for individual user. Pazzani and Billsus [60] developed a learning informa-
tion agent called Syskill&Webert which could learn a user profile for the identifi-
cation of interesting web documents. A separate user profile was created for each
individual information topic. Web documents were represented as Boolean feature
vectors, and each feature had a binary value indicating if a particular keyword ap-
peared in the document or not. Feature selection was conducted based on Expected
Information Gain which tends to select words appearing more frequently in positive
documents. The classification mechanism of Syskill&Webertwas based on a naı̈ve
Bayesian classifier. The paper of Arevian et al. [4] focuses on symbolic transducers
and recurrent neural preference machines to support the task of mining and classi-
fying textual information. These encoding symbolic transducers and learning neural
preference machines can be seen as independent agents, each one tackling the same
task in a different manner.

Jansen [39] discusses various ways in which mobile agents could be applied to
problem of detecting and responding to intrusions. Abraham et al. [1] proposed a
distributed Intrusion Detection System (IDS) consisting of several IDS over a large
network, all of which communicate with each other, or with a central server that
facilitates advanced network monitoring. In a distributed environment, system is
implemented using co-operative intelligent agents distributed across the network.
To detect intrusions in a network three fuzzy rule based classifiers are constructed.
Moskovitch et al. [54] conducted a comprehensive experiment for testing the feasi-
bility of detecting unknown computer worms, employing several computer config-
urations, background applications, and user activities. During the experiments 323
computer features were monitored by the proposed agent. Four feature selection
methods were used to reduce the number of features and four learning algorithms
were applied on the resulting feature subsets.

In the paper of Jiang and Sheng [45] a case-based reinforcement learning algo-
rithm (CRL) for dynamic inventory control in a multi-agent supply-chain system
was proposed. In the paper of Gifford and Agah [33] authors utilize multi-agent
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machine learning and classifier combination to learn rock facies sequences from wire
line well log data. The paper focuses on how to construct a successful set of classi-
fiers, which periodically collaborate, to increase the classification accuracy. Utilizing
multiple, heterogeneous collaborative learning agents is shown to be successful for
this classification problem. Solving the pursuit problem with heterogeneous multia-
gent system using reinforcement learning was investigated by Ishiwaka [38].

Zhang and Zhang [84] present, a multiagent data warehousing (MADWH) and
multiagent data mining (MADM) approach for brain modeling. An algorithm named
Neighbor-Miner is proposed for MADWH and MADM. The algorithm is defined
in an evolving dynamic environment with semiautonomous neurofuzzy agents. In-
stead of mining frequent itemsets from customer transactions, the new algorithm
discovers new neurofuzzy agents and mines agent associations in first-order logic
for coordination that was once considered impossible in traditional data mining.

One of the application areas where agent technology integrated with data min-
ing solutions was used is e-learning. In the paper of Acampora et al. [2] the au-
thors report an attempt to provide efficient and intelligent tools to be able to analyze
learner’s needs and preferences by exploiting an ontological representation of learn-
ing environment and an adaptive memetic approach, integrated into a cooperative
multi-agent framework. In particular, a collection of agents analyzes learner pref-
erences and generate high-quality learning presentations by executing, in a parallel
way, different cooperating optimization strategies. This cooperation is performed
by jointly exploiting data mining via fuzzy decision trees, together with a decision-
making framework exploiting fuzzy methodologies.

Another example of the dedicated, agent-based data mining solution is a multi-
agent framework for data mining in electromyography proposed by Balter et al. [9].
The aim is to extract medical information using data mining algorithms and to sup-
ply a knowledge base with pertinent information. The multi-agent platform gives the
possibility to distribute the data management process between several autonomous
entities. This framework provides a parallel and flexible data manipulation.

4 Machine Learning with A-Teams

Paradigms of the population-based methods and multiple agent systems have been
during early nineties integrated within the concept of the asynchronous team of
agents (A-Team). According to Talukdar et al. [78] an asynchronous team is a
collection of software agents that cooperate to solve a problem by dynamically
evolving a population of solutions. Current implementations of the A-Team con-
cept are characterized by a high level of accessibility, scalability and portability. A
review of the A-Team solutions and implementations can be found in the review
by Jȩdrzejowicz [40]. All the machine learning solutions reviewed in this section
are the A-Team implementations built using the JADE-Based A-Team middleware
environment (JABAT) proposed by Barbucha et al. [10].

Two early applications of the A-Team paradigm to machine learning due to
Czarnowski and Jȩdrzejowicz include training the cascade correlation learning
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architecture [19] and training the feed-forward artificial neural networks proposed
in [20]. Recent solutions, described later on,are focused on data reduction and dis-
tributed learning.

Data reduction in the supervised machine learning aims at deciding which in-
stances and which features from the original training set should be retained for
further use during the learning process. Data reduction is considered as an impor-
tant step towards increasing effectiveness of the learning process when the avail-
able training sets are large or distributed and when the access to data is limited and
costly. Data reduction performed without losing extractable information can result
in increased capabilities and generalization properties of the learning model. It is ob-
vious that removing some instances from the training set reduces time and memory
complexity of the learning process. The data reduction algorithms can be divided
into two categories: prototype selection and prototype extraction. Prototype selec-
tion is a technique of choosing a subset of reference vectors from the original set,
also by reduction of attributes, whereas prototype extraction means the construction
of an entirely new set of instances, smaller, in respect to its dimensionality, than the
original dataset. Prototype extraction can also include the process of feature con-
struction, where decreasing the number of attributes is carried-out by creating new
features onthe basis of some transformation of the original attributes. The perfor-
mance criteria used in data reduction may include the accuracy of classification, the
complexity of the hypothesis the classification costs and many other criteria.

The idea of applying agent technology to data reduction has been proposed in
several papers of Czarnowski and Jȩdrzejowicz [16], [18], [21], [22], [25], [27]. In
the above papers several architectures, models and strategies for the A-Team based
data reduction have been proposed. Using them usually improves quality of the re-
spective supervised machine learning. Most competitive results have been obtained
by A-Teams producing clusters of instances from the training set and then selecting
instances from these clusters.

Although a variety of methods could be used to produce clusters, using the simi-
larity coefficient proposed in papers of Czarnowski and Jȩdrzejowicz [18] and [21]as
the clustering criterion, have produced better than satisfactory results.

To solve the data reduction problem, several types of optimizing agents carrying
out improvement procedures including tabu search, simulated annealing and variety
of simple local search algorithms have been used. Basic assumptions behind the
proposed approach are as follows:

- A solution is represented by a string consisting of two parts. The first contains
numbers of instances selected as prototypes and the second - numbers of at-
tributes chosen to represent the dataset.

- Prototype instances and attributes are selected from clusters through the
population-based search carried out by the optimizing agents.

- Initially, potential solutions are generated by random selection of a single in-
stance from each cluster and by random selection of the attribute numbers. At-
tributes are later adjusted by the attribute manager agent with a view to find the
best combination and, at the same time, to unify the set of selected attributes at a
global level (only in case of the distributed data reduction).
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The solution manager is responsible for organizing the data reduction process
through managing the population of solutions called individuals and updating them
when appropriate. During the data reduction process the solution manager contin-
ues reading individuals (solutions) from the common memory and storing them back
after attempted improvement until a stopping criterion is met. During this process
the solution manager keeps sending randomly drawn individuals (solutions) from
the common memory to optimizing agents. Each optimizing agent tries to improve
the quality of the received solution and afterwards sends back the improved solu-
tion to the solution manager, which, in turn, updates common memory, replacing a
randomly selected individual with the improved one. In each of the above cases the
modified solution replaces the current one if it is evaluated as a better one. Evaluation
of the solution is carried out by estimating classification accuracy of the classifier,
which is constructed taking into account the instances and the attributes as indicated
by the solution. Since the computational complexity of the above search procedures
is linear, the computational complexity of the fitness evaluation is not greater than
the complexity of the classifier induction. In case of the distributed data reduction
an additional agent called attribute manager is used. Its role is to coordinate the
attribute selection. The attribute manager agent is also responsible for the final in-
tegration of attributes selected locally by optimizing agents. The attribute manager
actions include receiving candidate attributes form solution mangers, and deciding
on the common set of attributes to be used at both the local and the global levels.

The idea of applying A-Team paradigm to solving the distributed learning prob-
lem has been evolving since a couple of years. Different solutions were presented in
several papers of Czarnowski and Jȩdrzejowicz [15], [17], [23], [26] and [28]. The
proposed approach, denoted as LCDD (Learning Classifiers from Distributed Data),
involves two stages, both based on the collaboration between agents:

- Local, in which the selection of prototypes from the distributed data takes place
(A-Teams are used to select prototypes by instance selection and/or removing
irrelevant attributes).

- Global, consisting of pooling of the selected prototypes and producing the global
learning model.

At the local level, that is, at the distributed data sources,agent-based population
learning data reduction algorithms are executed in parallel. Instance and attribute
reduction are integrated with the classifier learning process. An important feature of
the LCDD approach is A-Teams ability to select instances and attributes in coop-
eration between agents, thus assuring a homogenous set of prototypes at the global
level. In this case, the instance selection is carried out independently at each site
through applying the agent-based population search but the attribute selection is
managed and coordinated through the process of interaction and collaboration be-
tween agents. All the required steps of the proposed approach are carried out by
program agents of the four following types:

- Global level manager - agent responsible for managing the process of the dis-
tributed learning.

- Optimizing agent - agent executing a solution improvement algorithms.
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- Solution manager - agent responsible for managing the population of solutions.
- Attribute manager - agent responsible for the attribute selection coordination.

The parallel process of data reduction at sites is managed by the global level man-
ager. Its role is to manage all stages of the learning process. As the first step the
global manager identifies the distributed learning task that is to be coordinated and
allocates optimizing agents to the local sites using the available agent migration pro-
cedure. Then the global manager initializes parallel execution of all subtasks, that is
data reduction processes at local sites. When all the subtasks have been completed,
solutions from the local levels are used to produce the global solution. Producing it
requires that the global manager is equipped with skills needed to induce the global
classifier. When the prototypes obtained from local sites are homogenous then the
local prototypes are integrated and the global manager creates the global classifier
(meta-classifier), using some machine learning algorithm. When the local level so-
lutions are represented by heterogeneous set of prototypes then the global classifier
can be induced by applying one of the meta-classifier strategies like, for example,
bagging, AdaBoost, majority voting or some hybrid strategy.

Recently, Czarnowski and Jȩdrzejowicz [27] proposed to solve the distributed
learning problem through replacing sampling by a data reduction process which can
be carried-out at separate sites. The overall objective of data reduction is to pro-
cess training data with a view to finding prototypes, which can replace the original
training set during further steps of the supervised learning. Unfortunately, the above
outlined process of learning from the distributed data can easily become more com-
plicated. Main reasons for this are possible differences among the selected attributes
of the distributed datasets introduced during the data reduction process carried out
by simultaneously reducing datasets at each local site, since these are reduced in two
dimensions, i.e. instance and attribute. The approach was an extension of the idea
introduced in the paper of Czarnowski and Jȩdrzejowicz [26] where the instance
selection is carried out independently at each site but the attribute selection is coor-
dinated through the process of interaction and collaboration between agents based
on a specialized strategy for agents collaborating and deciding on the winning set of
attributes.

The idea is based on the assumption that prototypes are selected independently
at each site through applying an agent-based population learning algorithm where
datasets are reduced simultaneously in two dimensions. If the resulting global set
of prototypes obtained through simple integration of the local site results is not
homogenous it is suggested to apply the consensus method seeking to assure that a
common set of attributes to be used at both - the local and the global levels is finally
obtained.

The formal description of the problem of learning from the distributed data can
be stated as follows: Given the distributed datasets D1, . . . ,DK , where examples are
described by the sets of attributes A1, . . . ,AK (where ∀Ai:i=1,...,K = {a1, . . . ,an}, ai is
an attribute and n is the number of attributes), a set of hypotheses H, a performance
criterion F , the learning algorithm L outputs a hypothesis h ∈ H that optimizes F .
The task of the distributed learner L is to output the hypothesis h ∈ H that optimizes
performance criterion F (e.g. function of accuracy of classification, complexity of
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the hypothesis, classification cost or classification error) using data sets D1, . . . ,DK

located in K sites. It should also be noted that when the distributed datasets are ho-
mogenous all attributes are presented at each site. i.e. ∃i, j:i, j=1,...,KAi =A j, otherwise
the datasets are called heterogeneous, i.e. ∃i, j:i, j=1,...,KAi �= A j. For the purpose of
the consensus-based distributed learning it was assumed that the distributed datasets
D1, . . . ,DK are homogenous.

The data reduction process aims at identifying and eliminating irrelevant and re-
dundant information, and finding prototypes or regularities within certain attributes,
allowing to induce the so-called prototypes or reference vectors. Main features of the
data reduction processes, including data reduction for the distributed learning, are
discussed in a detailed manner in [17]. The general definition of the data reduction
problem can be formalized as follows: Given a learning algorithm L, and a dataset
D with attributes described by an attribute set A, the optimal prototype dataset, Sopt ,
is a subset of the dataset D, where each example is described by a set of A′ ⊂ A,
such that the performance criterion of the learning algorithm L is maximized.

It can be easily observed that a good set of prototypes has the following
properties:

- Firstly, the cardinality of the reduced dataset is smaller than the cardinality of the
original, non-reduced dataset.

- Secondly, the reduced dataset assures maximum or acceptable classification qual-
ity with respect to the classifier induced using such a reduced data set. Classifi-
cation quality is measured using a criterion or criteria provided by the user.

When the data reduction is considered with respect to physically distributed reposi-
tories then, at a final stage, datasets D1, . . . ,DK are replaced by the reduced datasets
S1, . . . ,SK of local patterns such that ∀i:i=1,...,KSi ⊂ Di. Thus the goal of data reduc-
tion is to find subset Si from given Di. In such case, the task of the distributed learner
L is to output a hypothesis h ∈ H optimizing F using datasets S1, . . . ,SK , such that
∀i:i=1,...,KSi ⊂ Di.

The process of learning from the distributed data is even more complex when the
reduction is carried out in both dimensions. In such case data reduction can result
in the reduced datasets, which are not necessarily homogenous i.e. ∀i:i=1,...,KA

′
i ⊂ Ai

and it can be true that ∃i, j:i, j=1,...,KA
′
i �= A

′
j. In such case some techniques would

be required to deal with the situation. One possible approach is applying a special
combined strategy which is responsible for combining and integrating a number
of classifiers learned from heterogeneous sets of prototypes available at the global
level (see comparison of various strategies for combining classifiers in [23]). An-
other possible approach is to assure that prototypes obtained at each local site are
homogenous in the discussed sense, i.e., characterized by identical set of attributes.
In this paper it is suggested that applying the consensus method can lead to the de-
sired attribute homogeneity. The consensus method is used to arrive at a common
set of attributes for all the distributed datasets which best represents these datasets.
Based on the consensus, it is possible to build one set of attributes out of many
returned attribute sets from various distributed sites. The resulting homogenous at-
tribute set is called a consensus of the attribute set. An overview of the consensus
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method and a discussion of different criteria for a consensus choice can be found in
papers of Nguyen [56] and [57].

Within the above described setting, learning is carried-out in two stages, both
involving cooperation between agents:

- Local stage, in which the selection of prototypes from the distributed data takes
place. In this case the population-based approach with optimization procedures
implemented as an asynchronous team of agents (A-Team), is used to select pro-
totypes by instance selection and/or removing irrelevant attributes. Within the
A-Team multiple agents achieve an implicit cooperation by sharing a population
of solutions, also called individuals, to the problem to be solved. An A-Team
can also be defined as a set of agents and a set of memories, forming a network
in which every agent remains in a closed loop. All the agents can work asyn-
chronously and in parallel. Agents cooperate to construct, find and improve so-
lutions which are read from the shared, common memory. In our case the shared
memory is used to store a population of solutions to the data reduction problem
encountered at a given local site. Each solution is represented by a set of proto-
types i.e. by the compact representations of the original datasets available at the
considered site. A feasible solution to the data reduction problem at a local site
is encoded as a string consisting of numbers of selected reference instances and
numbers of selected attributes.

- Global stage, consisting of integrating or pooling the selected prototypes and
producing the global learning model.

The approach allows also to deal with several local level data reduction problems
solved in parallel. At the local level, that is, at the distributed data sources, agent-
based population learning data reduction algorithms are executed in parallel. At the
local level the proposed approach provides instance and attribute reduction capa-
bilities integrated with the classifier learning process. It is expected that such an
integration guarantees a high probability of getting the best set of prototypes for
producing the global learning model at the global level. An important feature of the
discussed solution is A-Teams ability to select instances and attributes in cooper-
ation between agents thus assuring a homogenous set of prototypes at the global
level. In this case, the instance selection is carried-out independently at each site
through applying the agent-based population search but the attribute selection is
managed and coordinated through the process of interaction and collaboration be-
tween agents.

The process of solving the data reduction problem is managed by the global man-
ager, which is activated as the first one. The global manager is responsible for man-
aging all stages of the distributed learning. Than the global manager runs in parallel
all subtasks (i.e. data reduction processes) at local sites. When all the subtasks have
been solved, solutions from the local level are used to obtain the global solution.
Thus, the global manager creates the global set of prototypes by integrating local
solutions and finally producing the global classifier, called also the meta-classifier.

The process of solving the data reduction is carried out by optimizing agents
and the solution manager. Each optimizing agent is an implementation of a certain
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improvement algorithm, and the problem of data reduction at local sites is solved by
A-Team, that is a team of optimizing agents possibly of different kinds supervised
by the solution manager. The solution manager, is responsible for organizing the
data reduction process at a local site through managing the population of solutions
called individuals and updating them when appropriate. Each solution manager is
also responsible for selecting the best obtained solution of the supervised local data
reduction problem. During the data reduction process the solution manager contin-
ues reading individuals (solutions) from the common memory and storing them back
after attempted improvement until a stopping criterion is met. During this process
the solution manager keeps sending single individuals (solutions) from the com-
mon memory to optimizing agents. Solutions forwarded to optimizing agents for
improvement are randomly drawn by the solution manager from the common mem-
ory. Each optimizing agent tries to improve quality of the received solution and
afterwards sends it back to the solution manager, which, in turn, updates common
memory by replacing a randomly selected individual with the improved one.

Each solution manager, after having supervised a predefined number of iterations
within the data reduction process at a local site is obliged to send to the attribute
manager a set of the candidate attributes. The attribute manager is responsible for
coordination of the attribute selection while local data reduction problems are being
solved in parallel. The attribute manager is responsible for finding the consensus
solution, that is establishing the common set of attributes for all local data reduc-
tion problems. The attribute manager actions include receiving candidate attributes
from solution mangers, collecting the candidate attributes from all solutions to lo-
cal data reduction problems and finally deciding on the common set of attributes
to be used at both - the local and the global levels. Thus, the attribute manager is
an implementation of the consensus method, where based on answers from all so-
lution managers the consensus set of attributes acceptable to a majority of solution
managers is produced. Such an attribute set is called the winning set of attributes.

A procedure for determining the winning set of attributes is activated just after
all local data reduction problems have been solved. Once the winning set of at-
tributes have been chosen the attribute manager passes the outcome of its decision
to all solution managers, whose role now is to update the respective individuals by
correcting accordingly numbers of attributes in strings representing solutions in the
current population. After this, the best solutions from each site are forwarded to the
global level and merged into the global dataset by the global manager.

Another agent - the attribute manager is responsible for selecting the wining set of
attributes. The process is again carried out in two stages. At the first stage candidate
attribute sets from local sites are collected. The process is carried-out iteratively.
At each iteration the candidate attribute sets are forwarded and collected by the
attribute manager. Each candidate set received by the attribute manager is a list of
the selected attributes representing the current best local solution and the fitness
value of this solution. The fitness value is the estimated classification accuracy of
the classifier induced from the reduced dataset calculated over the original training
set. At the second stage a decision by consensus about the winning set of attribute
is made.



Machine Learning and Multiagent Systems as Interrelated Technologies 17

The number of iterations at the first stage which is set by the user, determines the
number of the candidate attribute sets received by the attribute manager. At the sec-
ond stage selection of representatives amongst the received candidate sets is done
for each local site independently. The selection is based on the fitness value of so-
lutions from the received candidate sets. Candidate attribute sets are ordered from
the best one to the worst forming a list. In case two or more candidate sets have the
same fitness value, the value of the Hamming distance between each of them and
the predecessor candidate attribute set on the list is calculated. The candidate set for
which the above distance is greater is placed before the other one(s) at the ordered
list of candidates. In case two or more of this way calculated Hamming distances are
identical, only one randomly selected candidate stays on the list and the rest is re-
moved. The algorithm for ordering candidate attribute sets is shown as Algorithm 1.

Algorithm 1: Evaluation and ordering of the candidate sets of attributes

Input: A
′(1)
1 , . . . ,A

′(m)
i - candidate attribute sets provided by i-th solution manager,

m is the number of the received candidate sets; M - predefined number of iterations,
that is the number of candidate sets from each local site to be considered at the sec-
ond stage.
Output: Xi- the matrix of bits corresponding to M candidate attribute sets. The di-
mension of the matrix is M × n, where n is the number of attributes in the original
non-reduced set of attributes. The matrix denotes whether or not an attribute has
been included in the respective candidate attribute set induced at the local level (1 -
yes, 0- no).
1. Set Xi := /0.
2. Create a list L of candidate sets of attributes A

′( j)
i (where j = 1, . . . ,m) by ordering

them according to values of their fitness. In case two or more candidate sets have the
same fitness, the Hamming distance to the predecessor candidate attribute set on the
list is calculated. The one with a greater distance is placed before the others. In case
two or more of thus calculated Hamming distances are identical, only one randomly
selected candidate stays on the list and the rest is removed.
3. For M first elements of L
4. Set rows of Xi according to attributes described by A

′( j)
i (set an element of row to

1 if corresponding number of attribute is present in A
′( j)
i , otherwise set an element

of row to 0).
5. End For.

At the second stage the winning set of attributes is selected through calculating the
consensus solutions. According to Danilowicz and Nguyen [29] the consensus prob-
lem for solving inconsistency of the replicated data can be formulated as follows:
given a set of versions of such data, one should select one version best representing
the whole set. The selected version is called a consensus. In our case a consen-
sus solution is produced from data stored in matrices Xi:i=1,...,K . The idea of the
proposed approach adopted from the paper of Sliwko and Nguyen [71] is to evalu-
ate the weight of all candidate set of attributes on the basis of their frequency and
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positions within the respective matrices Xi:i=1,...,K . A consensus-based procedure for
selection of the winning set of attributes is shown as Algorithm 2 given below. This
algorithm guarantees that the winning set of attributes has the following properties:

- It is most similar to all other considered candidate attribute sets.
- It does not much differ from all other considered candidate sets.
- The differences between the consensus (the winning set of attributes) and all

other considered candidate sets are as small as possible.

It should be noted that the winning set of attributes may contain only selected at-
tributes from the consensus solution. In the proposed approach the number of at-
tributes selected to the winning set of attributes depends on the acceptance level,
which determines how many attributes from the original set of attributes should be
accepted.

Algorithm 2: A consensus-based procedure for selection of the winning set of attributes

Input: X1, . . . ,XK -matrices containing elements of candidate sets of attributes; where K is
the number of distributed datasets and the number of solution managers; α - a value of the
acceptance level set by the user.
Output: A

′′
- the winning set of attributes.

1. Set A
′′

:= /0.
2. Set C := [a1, . . . ,an], which is a vector representing the consensus solution, where n is the
number of attributes.
3. Set X := X1 ∪X2 ∪ . . .∪XK , which has the size equal to (M ·K)×n.

4. Set the vector x := [x1, . . . ,xn], where ∀i:i=1,...,nxi =
∑M·K

k=1 xik
M·K , xik ∈ X and each xi corre-

sponds to ai.
5. Sort elements in x in descending order. Sort elements in C accordingly to x.
6. For all xi ∈ x do
7. If xi ≥ α then add ai ∈C to A

′′
(α should not be greater than the average value in x).

8. End For.
The approach has been validated by means of computational experiment. The goal
of the experiment was to evaluate how the proposed consensus method used to se-
lect a common set of attributes can influence the performance of the global classi-
fier induced from the set of prototypes selected from the separate distributed sites.
Classification accuracy of the global classifiers obtained using the above described
approach to selecting the winning set of attributes have been compared with:

- Results obtained by pooling together all instances from the distributed databases,
without data reduction, into the centralized database,

- Results obtained by pooling together all instances selected from distributed
databases through the instance reduction procedure only,

- Results obtained by applying the static attribute selection procedure for dis-
tributed attribute selection proposed by Czarnowski and Jȩdrzejowicz [26].

Generalization accuracy has been used as the performance criterion. The learning
tool used was C4.5 algorithm [63].The experiment involved four datasets - customer
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(24000 instances, 36 attributes, 2 classes), adult (30162, 14, 2), waveform (30000,
21, 2) and shuttle (58000, 9, 7). For the first two datasets the reported classifica-
tion accuracies are respectively 75.53% and 84.46% [30]. The above datasets have
been obtained from UCI Machine Learning Repository [5] and EUNITE [30]. The
reported computational experiment was based on the ten cross validation approach.
At first, the available datasets have been randomly divided into the training and
test sets in approximately 9/10 and 1/10 proportions. The second step involved the
random partition of the previously generated training sets into the training subsets
each representing a different dataset placed in the separate location. Next, each of
the obtained datasets has been reduced. The reduced subsets have been then used
to compute the global classifier using the proposed strategies. The above scheme
was repeated ten times, using a different dataset partition as the test set for each
trial.The original data set was randomly partitioned into, respectively, the 2, 3, 4
and 5 multi-databases of approximately similar size.

Table 1 Computational experiment results (average accuracy - in %, obtained by the C4.5
classifier)

Number of the distributed data sources
Problem 2 3 4 5

Selection of reference instances at the local level only
customer 68.45(+/-0.98) 70.4(+/-0.76) 74.67(+/-2.12) 75.21(+/-0.7)
adult 86.2(+/-0.67) 87.2(+/-0.45) 86.81(+/-0.51) 87.1(+/-0.32)
waveform 75.52(+/-0.72) 77.61(+/-0.87) 78.32(+/-0.45) 80.67(+/-0.7)
shuttle 99.95(+/-0.02) 99.92(+/-0.02) 99.98(+/-0.01) 99.96(+/-0.02)
average 82.53 83.78 84.95 85.74

Static attributes election strategy
customer 70.12(+/-1.28) 71.22(+/-1.46) 72.1(+/-1.1) 73.21(+/-0.7)
adult 86(+/-1.02) 85.3(+/-1.15) 87.1(+/-0.9) 87(+/-0.9)
waveform 76.12(+/-0.94) 78.2(+/-0.91) 78.32(+/-1) 80.37(+/-1.1)
shuttle 97.54(+/-1.2) 98.3(+/-1.1) 99.1(+/-1) 98.41(+/-1.1)
average 82.45 83.26 84.16 84.75

Consensus-based attributes election
customer 70.89(+/-0.61) 73.65(+/-0.84) 72.81(+/-1.02) 76.14(+/-0.62)
adult 87.04(+/-0.84) 86.5(+/-0.77) 88.62(+/-0.67) 88.04(+/-0.7)
waveform 74.58(+/-0.7) 80.02(+/-1.21) 81.51(+/-1.1) 80.54(+/-1.21)
shuttle 97.43(+/-0.41) 98.32(+/-0.97) 99.1(+/-0.8) 99.32(+/-0.72)
average 82.49 84.62 85.51 86.01

Source: [27].

The experiment results are shown in Table 1. These results have been averaged
over ten cross validation runs. For the proposed approach the value of the acceptance
level has been set to x̃

2 , where x̃ is the average value in x (see Algorithm 2). The
number of candidate sets to be stored for further consideration from each solution
managers corresponding to the number of iterations in the procedure of ordering the
candidate attribute sets, has been set to 10.
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Generally, it should be noted that data reduction in two dimensions (selection of
reference instances and attributes) assures better results in comparison to data re-
duction only in one dimension i.e. instance dimension. It has been also confirmed
that learning classifiers from distributed data and performing data reduction at the
local level produces reasonable to very good results in comparison with the case
in which all instances from distributed datasets are pooled together.For example,
pooling all instances from the distributed datasets assures classification accuracy
of 73.32%(+/-1.42), 82.43%(+/-1.03), 71.01%(+/-0.8) and 99.9%(+/-0.03) for cus-
tomer, adult, waveform and shuttle datasets respectively. On the other hand, the
global classifier based on instance selection only assures classification accuracy of
75.21%, 87.1%, 80.67% and 99.96%. These results can still be considerably im-
proved using the consensus-based approach to attribute selection, assuring clas-
sification accuracy of 76.14%, 88.04%, 88.54% and 99.32% respectively for the
investigated datasets. These results also show that the consensus-based approach to
attribute selection is competitive as compared with an earlier approach based on the
static attribute selection strategy [26].

5 Conclusions

Main focus of this review is using agent technology in the field of machine learning
with a particular interest on applying agent-based solutions to supervised learning.
Some references are also made with respect to applying machine learning solutions
to support agent learning. The review allows to formulate the following observa-
tions:

- Machine learning and agent technology are becoming more and more interelated
bringing an important advantages to both fields.

- Machine learning can be seen as a prime supplier of learning capabilities for
agent and multiagent systems.

- Agent technology have brought to machine learning several capabilities includ-
ing parallel computation, scalability and interoperability.

- Agent-based solutions and techniques when applied to machine learning have
proven to produce a synergetic effect originating from the collective intelli-
gence of agents and a power of cooperative solutions generated through agent
interactions.

Summary of the reviewed approaches to learning agents and machine learning with
agents ideas and solutions is shown in Tables 2-3.

In Table 4 several applications of the A-Team technology to machine learning are
summarized.

Future research should help to further integrate both fields - agent technology
and machine learning. Agent based solutions could be used to develop more flexible
and adaptive machine learning tools. Collective computational intelligence tech-
niques can be used to effectively solve computationally hard optimization and deci-
sion problems inherent to many supervised learning techniques and data reduction
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Table 2 Summary of the reviewed approaches to learning agents

Field Scope Example solutions/ideas

Learning agents Techniques Multiagent reinforcement learning - Busoniu et al. [13]
Connection of the theory of automata with the multia-
gent reinforcement learning - Nowe et al. [58]
Learning in multiagent systems and game theory -
Shoham et al. [68]
Data mining techniques supporting agents intelligence
- Symeonidis et al. [75]
Generic model for building adaptive agents using tem-
poral difference methods - Preux et al. [61]
Designing agents with machine learning capabilities -
Sardinha et al. [67]
MAS architecture based on connectionist learning -
Rosaci [66]
Stigmetry and entropy in learning automata based mul-
tiagent systems - Masoumi and Meybodi [53]
Utility-based learning and strategic learning - Boylu et
al. [11], Loizos [50]
Probably Approximately Correct semantics to deal
with missing information during the learning phase -
Loizos [50]
Multi-goal Q-learning algorithm for cooperative teams
- Li et al. [48]

Applications Engineering applications and multiagent learning -
Mannor and Shamma [52]
Reinforcement learning for agent-based production
scheduling - Wang and Usher [81]
Case-based reinforcement learning algorithm for dy-
namic inventory control in a multi-agent supply-chain
system - Jiang and Sheng [45]
Support vector machine based multiagent ensemble
learning for credit risk evaluation - Yu et al. [83]
Agent Academy, an integrated development framework
supporting design and control of multi-agent systems -
Symeonidis et al. [76]

problems. Most promising direction for future research seems integration of ma-
chine learning and agent technology with a view to obtain effective solutions
to the distributed learning problems. On the other hand more compact and reli-
able machine learning techniques are needed to equip agents with better learning
capabilities.
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Table 3 Summary of the reviewed approaches to machine learning with agents

Field Scope Example solutions/ideas

Machine learning Techniques On-line reinforcement learning system using a mixture of
Bayesian networks - Kitakoshi et al. [46]
Multiple heterogeneous, intelligent agents employing a dif-
ferent machine learning technique - Gifford [32]
Neural network-based multi-agent classifier system -
Quteishat et al. [64]
Evolutionary Dynamics as a model for Q-learning in
stochastic games - Hoenl and Tuyls [35]
Collaborative machine learning framework - Hofmann and
Basilico [34]
Learning classifier systems (LCS) - Holland [36]
Analysis of the properties of LCSs and extensions -
[6], [7], [12] and [82]
Mutual information LCS - Smith et al. [72]
GAssist, a Pittsburgh-style Learning Classifier System -
Bacardit and Krasnogor [8]
Ensembles constructed from simple agents represented by
expression trees induced using Gene Expression Program-
ming - Jȩdrzejowicz and Jȩdrzejowicz [42] and [43]
Ant Colony System-based framework for fuzzy data min-
ing - Hong et al. [37], Parpinelli et al. [59], Cordon and
Herrera [14]
An agent paradigm as a tool for integration of different
techniques into an effective strategy of learning from data
- Zhang et al. [85]

Applications Agent Grid Intelligent Platform - Raicevic [65]
Learning Intelligent Distribution Agent - Negatu et al. [55]
Agent-based architectures for solving the distributed learn-
ing problems - Papyrus [62], MALE [69], ANIMALS [73],
MALEF [79], EMADS [3]
Personalized and intelligent information routing of online
news - Fan et al. [31]
Learning information agent for the identification of web
documents - Pazzani and Billsus [60]
Symbolic transducers and recurrent neural preference ma-
chines to support mining and classifying textual informa-
tion - Arevian et al. [4]
Detecting and responding to intrusions - Abraham et al. [1],
Jansen [39], Moskovitch et al. [54]
Case-based reinforcement learning algorithm (CRL) for
dynamic inventory control in a multi-agent supply-chain
system - Jiang and Sheng [45]
Heterogeneous multiagent system for solving the pursuit
problem - Ishiwaka [38]
Multiagent machine learning and classifier combination to
learn rock facies sequences - Gifford and Agah [33]
Multiagent data mining approach for brain modeling -
Zhang and Zhang [84]
Agent technology integrated with data mining for e-
learning - Acampora et al. [2]
Multi-agent framework for data mining in electromyog-
raphy - multi-agent framework for data mining in elec-
tromyography
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Table 4 Summary of the reviewed approaches to machine learning with agents

ML area Example solutions/ideas

Framework/environment JADE-Based A-Team middleware environment (JABAT) - Bar-
bucha et al. [10]

Supervised learning Cascade correlation learning architecture - Czarnowski and
Jȩdrzejowicz [19]

Training the feed-forward artificial neural networks -
Czarnowski and Jȩdrzejowicz [20]

Data reduction Architectures, models and strategies for the A-
Team based data reduction - Czarnowski and
Jȩdrzejowicz [18], [21], [22], [16], [25]

Cosensus-based distributed data reduction - Czarnowski and
Jȩdrzejowicz [27]

Clustering Similarity coefficient approach - Czarnowski and
Jȩdrzejowicz [18], [21]

Distributed learning Learning Classifiers from Distributed Data - Czarnowski and
Jȩdrzejowicz [15], [17], [23], [26] and [28]

Instance selection Selection through agents collaboration - Czarnowski and
Jȩdrzejowicz [26]
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Ant Colony Optimization for the Multi-criteria
Vehicle Navigation Problem

Mariusz Boryczka� and Wojciech Bura

Abstract. The chapter describes the multi-agent ant-based vehicle navigation al-
gorithms, which find multi-criteria optimal route between two points on the map.
Presented are various versions of the algorithm, sequential and parallel, includ-
ing GPU one. Various experiments performed on data of different size show the
ability of presented algorithms to find good (near optimal) solutions for large real
map. In turn, the parallel AVN algorithm is able to produce even better results in
shorter time. Finally, we show that the presented approach may be adapted to run
on GPUs and the algorithm’s performance scales very well with growing number of
multiprocessors.

1 Introduction

In recent years we witness the rapid growth in popularity and development of vehicle
navigation systems. This is primarily due to the increasing availability of portable
electronic devices equipped with a GPS module, which may be used for this pur-
pose. One of the problems which is usually faced when dealing with navigation
system is finding the optimal route between two selected points on the map. It does
not mean that this route should be the shortest one. It should be optimal or quasi-
optimal in term of user preferences.

The problem is known from the literature as Multi-criteria Shortest Path Problem,
and it is proven to be NP-complete [13]. For multi-criteria combinatorial problems
a single solution will very seldom be able to minimize (or maximize) all criteria,
but rather there will be a set of compromise solutions. These solutions are called
efficient non-dominated ones and are also referred to as Pareto optimal set.
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This chapter describes the ant-based vehicle navigation algorithm. The algorithm
finds the optimal (or nearly optimal) route between two points on the map, tak-
ing into consideration user preferences for distance, traffic load, road width, risk of
collision, quality and number of intersections. Parameterization of the algorithm is
performed by setting the corresponding coefficients for the different criteria of opti-
mality. Time of departure is also taken into account due to the fact that the weight of
the individual segment of the route may have assigned different values at different
times of day or night. It is important that the algorithm is able to propose a set of
good solutions. We show that the ant-based approach can manage to solve such a
problem.

Ant algorithms, in general, take inspiration from the behavior of real ant colonies
to solve combinatorial optimization problems. They are based on a colony of ar-
tificial ants (agents) that work cooperatively and communicate through artificial
pheromone trails. The artificial ant in turn is a simple, computational agent that tries
to build feasible solutions to the problem tackled exploiting the available pheromone
trails and heuristic information.

From the beginning of the researches on the ant algorithms scientists tried to
parallelize them to achieve better results in quality and computation time. Most
parallel implementations of ant algorithms are just parallelization of their standard
form [2, 3, 8, 23, 28]. They differ only in whether the computations for the new
pheromone matrix are done locally in all colonies or centrally by a master proces-
sor. Some authors also consider multi-colony algorithms [3, 16, 17, 18]. Different
approaches for parallel ant algorithms are also described in [14]. Unfortunately, the
obtained speedup values for different problems (especially TSP) and using 8-15 pro-
cessors ranges from value less then 1 (which means parallel execution is worse than
serial execution) up to about 3. Recently the promising results gave the application
of the CUDA approach, where the ant algorithm was specifically adjusted to this
architecture, and speedup of running time of algorithm for TSP implemented on
GPU was about 20 [30]. This inspired us to use this idea for the parallel version of
AVN. This new algorithm produced better results than its sequential predecessor,
and high performance of this algorithm is very important because of its potential
use in the on-line mode. It is significant that the latest mobile devices are equipped
with a GPU capable of general calculations (for example PowerVR SGX Series5XT
in iPhone and iPad). Therefore, the parallel version of the proposed algorithm also
exploits OpenCL language, so it is able to leverage modern CUDA architecture.

Later in the chapter the experiments with the real data are presented. The data
were collected from the OpenStreetMap system [20]. The results of the experiments
show that the sequential ant based navigation algorithm is able to find good (near
optimal) solutions for a large real map. It was also interesting, that the solution pro-
duced by the algorithm was regarded by many people as the best route. Experiments
with various parallel versions of the ant colony vehicle navigation algorithm indicate
its good susceptibility for parallelization.
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The work is organized as follows. Section 2 shortly describes ant systems. Sec-
tions 3 and 4 present the original, sequential AVN algorithm and its improved ver-
sion (NAVN), more efficient and capable of use for the real-word data. Section 5
describes various parallel processing approaches to ant colony optimization known
from literature. Section 6 presents the basic parallel version of NAVN — PAVN,
which runs in shared memory model. In section 7 the OpenCL version of PAVN
algorithm is described (OCLAVN) and some algorithmic and programming issues
that had to be solved during implementation are presented. Section 8 presents results
of experiments with various versions of the AVN algorithm. Most of the conducted
experiments where done using real data. Section 9 summarizes the work.

2 Ant Algorithms

Ant algorithms take inspiration from the behavior of real ant colonies to solve com-
binatorial optimization problems. They are based on a colony of artificial ants, that
is, simple computational agents that work cooperatively and communicate through
artificial pheromone trails [7]. The artificial ant is a simple, computational agent
that tries to build feasible solutions to the problem tackled exploiting the available
pheromone trails and heuristic information. It has some characteristic properties.
It searches minimum cost feasible solutions for the problem being solved. It has
a memory storing information about the path followed until that moment. It starts
in the initial state and moves towards feasible states, building its associated solu-
tion incrementally. The movement is made by applying a transition rule, which is
a function of the locally available pheromone trails and heuristic values, the ant’s
private memory and the problem constraints. During the construction procedure, an
ant moves, it can update the pheromone trail associated to the edge. The construc-
tion procedure ends when any termination condition is satisfied, usually when an
objective state is reached. Once the solution has been built, the ant can retrace the
traveled path and update the pheromone trails on the visited edges.

In the ant colony optimization system (ACO) a virtual ant, being in a particular
moment of time and at a certain stage of building the solution to the problem, selects
the next step based on a specific transition rule. For this purpose it generates a ran-
dom number q, 0 ≤ q ≤ 1. If q ≤ q0 (q0 — given algorithm’s parameter), “the best”
available decision is taken (deterministic — exploitation), otherwise the decision
is taken at random (exploration), taking into account the probabilities calculated in
accordance to formula (1) [11].

j =

{
argmax

r∈Jk
i

{[τi,r(t)] · [ηi,r]
β}, if q ≤ q0 (exploitation)

S, otherwise (exploration),
(1)
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where:
τi, j – value of the prize, the degree of usefulness of the decision,
ηi,r – heuristically estimated value of the quality of the transition from state i to

state j, (for example, for the TSP problem it is the visibility of the city j from the
city i)

β – importance level of ηi,r,
S – the next step (decision) drawn with probabilities:

pk
i, j(t) =

⎧⎪⎨⎪⎩
τi, j(t)·[ηi, j ]

β

∑
r∈Jk

i

τi,r(t)·[ηi,r ]β
, if j ∈ Jk

i

0, otherwise,

where Jk
i is a set of decisions, which ant k can decide being in state i.

After each step, a virtual ant updates pheromone trail locally on the edge of their
choice (the on-line step-by-step pheromone trail update). This procedure is also
associated with its partial evaporation (instead of this, the pheromone evaporation
may be performed after each cycle). It is done according to the formula (2).

τi, j(t + 1) = (1−ρ) · τi, j(t)+ρ · τ0 (2)

where:
ρ — pheromone evaporation coefficient, 0 ≤ ρ ≤ 1,
τ0 — initial pheromone trail value.

At the same time, the currently selected node (which leads to the chosen edge) is
added to the TABU list (ant memory), which contains a list of nodes already visited
by an ant in a given cycle.

After completing the full cycle the pheromone trail is updated globally on the
edges which belong to the best solution found and pheromone level is changed (the
on-line delayed pheromone trail update) using the following formula (3).

τi, j(t + n) = (1− γ) · τi, j(t)+ γ · 1
L+

(3)

where transition decisions from i to j belong to the best solution, γ is the pheromone
evaporation rate (if the evaporation is present here), and L+ is length of the route.

Procedure ACOProc presents the structure of a generic ACO algorithm [9, 10].
The first step involves the initialization of the parameter values of the algorithm

(e.g. the initial pheromone trail value associated to each transition of A, the number
of ants in the colony, the weights in the probabilistic transition rule). The main pro-
cedure of the ACO manages the operation of the artificial ants, and the pheromone
evaporation. It takes into consideration an ant memory L (TABU list), a set of con-
straints R defined for the problem and the parameters of the algorithm.
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Procedure. ACOProc
begin

Parameter-initialization;
while termination-criterion-not-satisfied do

foreach ant do /* maybe in parallel */
Initialize-ant;
L = Update-ant-memory;
while current-state �= target-state do

P = Compute-transition-probabilities( A, L );
next-state = Apply-ant-decision-policy( R );
Move-to-next-state(next-state);
if on-line-step-by-step-pheromone-update then

Deposit-pheromone-on-the-visited-edge;

L = Update-internal-state;

if on-line-delayed-pheromone-update then
foreach visited-edge do

Deposit-pheromone-on-the-visited-edge;

Release-ant-resources;

Pheromone-evaporation;

3 AVN Algorithm and Its Modifications

There were proposed several systems for optimum route selection for car navigation
systems, e.g. genetic algorithms [1, 15] or fuzzy logic [21, 29]. Another one is AVN
— an ant-based algorithm approach to vehicle navigation [25, 26, 27]. This algo-
rithm is based on the ant algorithm [7, 11]. It finds the optimal (or nearly optimal)
routes between two points on the map, using user preferences for distance, traffic
load, road width, risk of collision, quality and number of intersections. During cal-
culations, also the time of departure is taken into account due to the fact that the
weight of the individual segment of the route may have assigned different values at
different time of day or night. It is important that we search for an algorithm which
is able to propose not only the best (optimal) route, but a set of good solutions. Thus,
it is possible to choose the alternative route when the unforeseeable situation (traffic
jam, temporarily closed road etc.) occurs.

3.1 Problem Description

Finding the optimal path between two points on a map is a multicriterial problem
of finding the shortest path in the graph, known in literature as an MSSP (Multiob-
jective Shortest Path Problem). Formally, this problem can be formulated as follows
[22]:
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Given a directed graph G=(V,E), where V is set of vertices (nodes) and E the set
of edges (arcs) with cardinality |V | = n and |E| = m and a d-dimensional function
vector c : E → [R+]d . Each edge e ∈ E is associated with a cost vector c(e). A
source vertex s and a sink vertex t are identified. A path p is a sequence of vertices
and arcs from s to t. The cost vector C(p) for linear functions of path p is the sum
of the cost vectors of its edges, that is C(p) = ∑e∈p c(e). Given the two vertices s
and t, let P(s, t) denote the set of all paths from s to t in G. If all objectives are to be
minimized, a path p ∈ P(s, t) dominates a path q ∈ P(s, t) if ∀i∈dCi(p) ≤Ci(q) and
we write p � q. A path p is Pareto-optimal if it is not dominated by any other path
and the set of nondominated solutions (paths) is called the Pareto-optimal set. The
objective of the MSPP is to compute the set of nondominated solutions that is the
Paretooptimal set P ∈ P(s, t) with respect to c.

This problem belongs to the class of NP-complete problems [12, 13] which en-
courages to use a heuristic methods that work quickly, but do not guarantee that the
optimal solution is found. The Ant Colony Optimization algorithms are an example
of such a methods.

3.2 Original AVN Algorithm

The Ant-based Vehicle Navigation algorithm (AVN) proposed by H.Salehinejad et
al. [25, 26, 27] finds optimal route, which best fits preferences desired by the user.
The set of user parameters consists of coefficients controlling the importance level
of distance, width, number of intersections, traffic, risk and quality of the proposed
route. It is based on the ant system introduced by Dorigo, Maniezzo and Colorni [6].
Steps of the AVN algorithm are as shows procedure AVNProc. Below we shortly
describe the elements of mentioned algorithm.

First, initial setup of algorithm parameters is performed. Then ants are located
at the starting point. Each ant is active until it reaches the destination point and is
not blocked at the intersection. An ant is blocked when there is no way to choose
to continue the travel. In the next step, the probability of each possible next direct
route is calculated based on the cost function calculated for each active ant. The
probability of the move from node i to node j for ant k is calculated as:

pk
i j =

⎧⎪⎨⎪⎩
τα

i j ∏l∈parameters ξ−2αl
i jl

∑h/∈tabuk
τα

ih ∏l∈parameters ξ−2αl
ihl

if j ∈ tabuk

0 otherwise

(4)

where:

τi j — value of pheromone trail on edge from i to j,
α — coefficient that controls importance level of τi j ,
tabuk — a set of unavailable nodes, already visited by the ant k,
ξi j l — value of cost functions for parameter l for edge i j,
αl — coefficient controlling the importance level of parameter l,
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Procedure. AVNProc
begin

Initialize;
foreach loop do

Locate Ants;
foreach iteration do

foreach ant do
if ant is active then

Construct Probability;
Select Route;
Update TABU List;
Kill blocked ant;

Value Ants;
Award Winner Ants;
Punish Loser Ants;
Evaporate Pheromone;

Select Best Optimized Direction;

and cost functions for all parameters for edge ij are: ξi jdistance , ξi jwidth , ξi jtra f f ic , ξi jrisk

and ξi jquality .
Based on the calculated probability ant k selects a route to go. To do this, a

random value q in range 〈0.1〉 is compared with parameter Q ∈ 〈0.1〉, to choose an
exploitation or an exploration:

j =

{
argmax

h∈Jk
i

{pk
ih} if q ≤ Q (exploitation)

S otherwise (exploration)
(5)

In next steps the node selected by the ant is added to its TABU list and if ant k
arrives the destination or is blocked at the certain node, it is deleted from the active
ant list. For each ant that reached the destination the complete cost ψ of the whole
route is calculated and for all calculated costs ψ the average cost χ is worked out.
If ψk < χ then ant is added to AWA (Award Winner Ants) list, otherwise it is added
to PLA (Punish Loser Ants) list. In addition, for an ant (if any) with cost ψ lower
then the cost of the global best solution then new best solution is remembered.

At the end of every loop updating of pheromone trail takes place. The pheromone
trail on edge i j for ant k is updated as follows:

τi j(t) =

{
τi j(t − 1)+ av

ψi j
if k ∈ AWA

τi j(t − 1) · pv if k ∈ PLA
(6)

where av is the awarding coefficient, av > 1, and pv is the punishment coefficient,
0 < pv < 1.
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Then the global evaporation of the pheromone trail is performed as:

τi j(t) = ρ · τi j(t − 1) (7)

where ρ — evaporation coefficient, 0 < ρ < 1. After the assumed number of repe-
titions of the algorithm the global best solution is returned as the result.

3.3 Improved AVN Algorithm

On the basis of the AVN algorithm we prepared its slightly improved version
(CAVN). The main change was a normalization procedure of each element of the
cost function and the way of parameterization of user preferences. In the original
algorithm particular α coefficients work the same way as user preferences and they
play a role of the normalization. Thus, proper set-up of these parameters is not an
easy task, and what is even more important, it is not comfortable for the user.

In the CAVN algorithm, the normalization coefficients are initially calculated at
the beginning and they are then used during calculations of the cost function and
probabilities. These values depend on the map only, so that they may be prepared
before algorithm starts. Procedure CAVNProc presents steps of this algorithm. Be-
low we describe new and modified elements of the CAVN algorithm (underlined in
pseudo-code).

Procedure. CAVNProc
begin

Prepare Normalization;
Initialize;
foreach loop do

Locate Ants;
foreach iteration do

foreach ant do
if ant is active then

Construct Probability;
Select Route;
Update TABU List;

Value Ants;
Award Winner Ants;
Punish Loser Ants;
Evaporate Pheromone;
Update Q;

Select Best Optimized Direction;
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Prepare Normalization. In this step for each element of the cost function (distance,
width, traffic, risk, quality and intersections) normalization coefficient ηl is calcu-
lated. Therefore user preference parameters have values in range 〈0,1〉 and there is
no need to adjust them to particular data on the map.

For calculations of the cost function maximum and minimum values of the user
preferences are assigned to variables: maxdistance, maxwidth, maxtra f f ic, maxrisk,
maxquality, and

maxall = max{maxdistance,maxwidth,maxtra f f ic,maxrisk,maxquality} (8)

calculated. Then particular coefficients are calculated as follows:

ηdistance =
maxall

maxdistance
(9)

ηwidth =
maxall

maxwidth /minwidth
(10)

ηtra f f ic =
maxall

maxtra f f ic
(11)

ηrisk =
maxall

maxrisk
(12)

ηquality =
maxall

maxquality /minquality
(13)

ηintersection = max
all

(14)

Construct Probability. Here, normalization coefficients ηl are calculated (they are
exploited in calculations of probabilities):

ξi jdistance = d(i, j) ·ηdistance (15)

ξi jwidth =
maxwidth

w(i, j)
·ηwidth (16)

ξi jtra f f ic = tf (i, j, t) ·ηtraffic (17)

ξi jrisk = r(i, j, t) ·ηrisk (18)

ξi jquality =
maxquality

q(i, j)
·ηquality (19)

Value Ants. Normalization coefficients are finally used in the complete cost
calculation:

ξ k
intersection = sizeof(tabuk) ·ηintersection (20)
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Award Winner Ants. In this step usage of parameter av was slightly modified:

τi j(t) =

{
τi j(t − 1) ·av if k ∈ AWA
τi j(t − 1) · pv if k ∈ PLA

(21)

where av is the awarding coefficient, av > 1, and pv is the punishment coefficient,
0 < pv < 1.

Update Q. In this step parameter Q is decreased by coefficient ϕ (ϕ ∈ 〈0,1〉)
which is an algorithm’s parameter:

Q(new) = Q(old) ·ϕ (22)

This way in each loop we gradually reduce exploration on behalf of exploitation.

4 New Version of AVN — The Backtracking Algorithm

Running original (AVN) and improved (CAVN) algorithms on bigger datasets some-
times they did not bring any solution. The removal of blocked ants has proven to be
too rigorous, and none of ants has reached the destination. As a result of our research
a new ant algorithm (NAVN) has been constructed [4]. This algorithm is more simi-
lar to classical form of ACO algorithms. Results of computational experiments show
that this algorithm is much more efficient and capable of use for the real-word data.

In the NAVN algorithm, killing the blocked ants is replaced by their returns from
dead ends. Pheromone trail is updated both locally (when an ant is traveling on the
map) and globally (after every loop) on the paths from the best solution. Addition-
ally, while moving back a blocked ant highly reduces pheromone trial on the edge
which led it to a node without a way out. This considerably reduces the probability
of selecting this edge by other ants. Procedure NAVNProc presents the algorithm
and below we describe its main steps:

Initialize. Setting the parameters of the algorithm. The initial amount of pheromone
on edges is set to value τ0.

Construct Probability. Calculation of the components of the probabilities is more
similar to the classical ant algorithm and is expressed by the formula:

pk
i j =

⎧⎪⎪⎨⎪⎪⎩
τi j ·

(
1

ψi j

)β

∑h/∈tabuk
τih·

(
1

ψih

)β if j ∈ tabuk

0 otherwise

(23)

where: τi j — value of pheromone trail on the edge from i to j, β — coefficient
controlling importance of the cost, ψi j — the cost of the edge from i to j calculated
as follows:

ψi j = ∑
l∈parameters

ξi jl ·αl (24)
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Procedure. NAVNProc
begin

Prepare Normalization;
Initialize;
foreach loop do

Locate Ants;
foreach iteration do

foreach ant do
if ant is active then

Construct Probability;
if ant has no move then Move Back;
else

Select Route;
Update TABU List;

Value Ants;
Award Best Solution;
Punish Loser Ants;
Modify Q;

Select Best Optimized Direction;

where ξi jl is the value of the cost function for parameter l and edge (i, j), calcu-
lated as in the CAVN algorithm, and αl is the coefficient controlling importance of
parameter l and is assigned by the user (0 < αl < 1).

Move Back. If ant k is locked (there is no edge it can travel), it makes one step
back. The edge used to go back is added to the list called blindEdgeskk, which
contains the list of forbidden edges which will be no more chosen by ant k in current
loop. The pheromone trail on the edge is updated as follows:

τi j(new) = τi j(old) ·bv (25)

where bv is the blind edge pheromone change parameter.
Select Route. Choosing an edge is performed the same way as in previous algo-

rithms but after selecting the edge an ant updates a pheromone trail according to the
formula:

τi j(new) = (1−ρ) · τi j(old)+ρ · τ0 (26)

where: ρ is the trail evaporation coefficient (0 ≤ ρ ≤ 1).
Value Ants. Solutions found by the ants are evaluated. If there is a solution bet-

ter than the best one already found, it is saved as the new best solution. As in
the previous algorithms, total cost includes the cost connected with the number of
intersections:

ξ k
intersection = sizeof(tabuk) ·ηintersection (27)
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AwardBestSolution. The best solution is rewarded through the global pheromone
trail updating rule according to the principle expressed by the formula:

τi j(new) = (1−ρ) · τi j(old)+ γ ·ρ · θbest

ψbest
(28)

where: θbest — number of edges belonging to the best solution’s path, ψbest — the
cost of the best solution, and γ — the parameter reinforcing the award for the best
solution.

PunishNonActiveAnts. In this step, ants which failed to find a solution within
a assumed number of iterations are punished — the pheromone trail on the edges
belonging to their routes is decreased with the punishment coefficient pv ∈ (0,1):

τi j(new) = pv · τi j(old) (29)

5 The Parallel ACO Approaches

Intuition suggests that multi-agent systems have great potential for paralleliza-
tion. In the literature there are many well-known proposals of parallel versions of
ACO algorithms. It is possible to specify certain characteristics common to most
approaches [14]:

• Building solutions (including an evaluation of its quality) by an ant does not run
on multiple processors — it is usually done on a single processor — because:

– The process of design solutions usually proceeds sequentially, and it can not
be divided into sections performed independently (assessment of quality of
solutions can be time consuming and this process can be run in parallel).

– This process is the smallest “executive” element of ACO, which must be exe-
cuted sequentially (except in the case of hardware oriented ACO).

– Sometimes it puts a lot of ants on a single processor treating them as a colony
of cooperating ants.

• When assessing the quality of solutions, they are compared with the solutions
obtained by the standard versions of the ACO, which are run independently on
different processors, perhaps with different parameter values.

We can distinguish basic types of parallel ACO version [14]:

• Parallelization of standard version of ACO, or create a new version, taking into
account the parallelism (e.g. exchanging information between processors less
than after each iteration, which by the way causes the colonies to search different
regions of the solution space).
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• Centralized or decentralized approach to a pheromone matrix:

– With a centralized approach — selected processor collects information about
the solution or pheromone from other processors, updates and distributes
pheromone tables to other processors (master-slave principle).

– In a distributed approach — each processor has its own pheromone matrix,
which is updated based on information obtained from other processors.

– Synchronous or asynchronous communication between processors.
– The use of uniform or heterogeneous processing units (distributed processing

on multiple computers) — usual multi colony approach.
– Hardware oriented ACO approaches (Figure 1 and Figure 2):

· R-Mesh-ACO,
· FPGA-ACO.

Fig. 1 R-Mesh-ACO

Fig. 2 FPGA-ACO

Most of the parallel implementations of the ACO known from the literature are
only parallelization of standard ACO [14]. They differ only in details (e.g. number
of ants served by a single processor) and the centralization or decentralization of the
pheromone matrix (there are some exceptions — usually in multi-colony systems,
where there are many colonies of ants, which have their own pheromone matrices
and where each matrix may vary for different colonies). Very often, authors do not
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discuss in detail the results of calculations — they are probably not too good. The
results obtained in the case of the deployment of individual ants on processors and
the use of a central pheromone matrix show small performance gain due to the high
cost of communication (about 12% time gain, 25%, 57% at 3, 5, 15 processors [28]).
Some solutions even result in increased computing time [24]). The most vulnerable
to parallelization are multi-colony systems.

6 The Parallel NAVN — PAVN

The usefulness of the NAVN algorithm has encouraged us to improve its perfor-
mance by its parallelization [5]. Main features of the parallel version of NAVN
(PAVN) are:

• the PAVN algorithm exploits many threads,
• the part of the NAVN algorithm performed in parallel is the same as in the se-

quential version (walking through the graph) and is performed by a simple thread,
• one thread may support any number of ants,
• threads use the common memory both for the problem description and the

pheromone,
• the synchronization of threads is held after each cycle.

The pseudo-code of the PAVN algorithm presents procedure PAVNProc.

Procedure. PAVNProc
begin

PrepareNormalization;
Initialize;
foreach loop do

foreach worker do
LocateAnts;
foreach thread do

RunWorker;

while anyWorkerRunning do
Wait;

ValueAnts;
AwardBestSolution;
PunishLoserAnts;
Modify q0;

SelectBestOptimizedDirection;

Procedure. RunWorker
begin

foreach iteration do
foreach ant do

if antIsActive then
ConstructProbability;
if antHasNoMove then

MoveBack;

else
SelectRoute;
UpdateTabuList;

7 OpenCL Ant Vehicle Navigation Algorithm

Our further improvement of the PAVN algorithm was performed exploiting the com-
putational potential of modern GPUs — devices equipped with the CUDA architec-
ture (Compute Unified Device Architecture) from nVIDIA [19].
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7.1 The CUDA Architecture

CUDA is an universal architecture, developed by nVIDIA, for parallel computing
on graphics processing units (GPUs) and on dedicated accelerators (e.g. Tesla). This
makes it possible to use GPUs for general computing performed so far only on CPUs
(fig. 3). In contrast to the CPU, GPU’s architecture requires the allocation of tasks
to multiple threads which are executed relatively slowly, but globally offering a
solution faster than traditional, general purpose, sequential processors. Such GPU
devices are ideally suited for computations that can be run in parallel.

Fig. 3 Processing flow on CUDA

In order to be able to run our software on hardware from other manufacturers in
the future, we decided to use an OpenCL programming interface. OpenCL (Open
Computing Language) is a low-level API for heterogeneous computers, which may
include the use of the CUDA architecture. Exploiting OpenCL, developers can cre-
ate programs that run on the GPU device using programming language based on the
C99 standard.

7.2 Adaptation of the NAVN Algorithm for CUDA and OpenCL

To be able to run the NAVN algorithm on GPU it was necessary to introduce various
modifications to take into account the specificities of the target hardware architec-
ture (CUDA) and the OpenCL programming interface as well. This resulted in the
new version of the PAVN algorithm — OCLAVN. Below we present the basic char-
acteristic of this approach.

Optimization of data transfer between host and device. Computations in CUDA
architecture are performed on heterogeneous environment. The user application is
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divided into two parts: a host system code, and a GPU code, and both have to com-
municate each other. In OpenCL, data must be transferred from the host to the
device, and vice verse. These transfers can decrease overall performance so they
should be minimized. Data should be kept on the device as long as possible. The
OpenCL version of PAVN meets these considerations. Almost all operations are
performed by various kernels on GPU with data kept in device’s memory.

Global memory usage minimization. The OpenCL specification describes three
kinds of memory: global, local and private. They differ in term of scope, capacity
and access time. Global memory has highest capacity and is accessible by every
thread, but is significantly the slowest. Local memory is shared across threads in the
same group, and private memory is private to a thread and is not visible to another
threads. In many places we had to change the logic of PAVN to minimize the need
of access to global memory. For example, ants’ status data and solutions build by
the ants are all located in local memory to improve performance.

Eliminating the need for synchronization. During calculations there are moments
when two (or more) concurrent threads need to update the same global memory lo-
cation. To solve these kind of issues the various methods of synchronization may be
used. For example, atomic update operations or semaphore scheme can be used to
avid the conflicts. OpenCL supports integer atomic operations on global memory.
Therefore, it is possible to implement semaphores and use them to avoid simulta-
neous access to the same memory points by various threads. Unfortunately, atomic
operations involving global memory slow down the execution of entire kernel, so
we have decided to change the PAVN algorithm so that there is no synchronization.
There are two major sources of memory conflicts in PAVN: on-line pheromone trail
update in procedure SelectRoute and whole procedure PunishNonActiveAnts. They
have been excluded from the final OCLAVN algorithm version, and the pheromone
trail is now updated in procedures AntMoveBack and AwardBestSolution.

Code optimizations for the SIMD architecture. For best performance threads
should be running in groups of at least 32 elements (warp size), with total number of
threads of thousands. Branches in the program code do not impact performance sig-
nificantly, providing the way that each of 32 threads takes the same execution path
(the Single Instruction Multiple Data execution model). In various places we have
changed the PAVN algorithm to achieve as much as possible the same execution
path of all threads in the same group.

Other considerations. OCLAVN uses single-precision floats because they pro-
vide the best performance on CUDA GPUs. For the same reason native runtime
math operations are used. Functions using native functionName map directly to the
hardware level. They are faster but provide somewhat lower accuracy, yet enough
good for our application.

The OCLAVN algorithm may be described as shows procedure OCLAVNProc
(procedure RunAnts is invoked for kernel calculations):
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Procedure. OCLAVNProc
begin

PrepareNormalization;
Initialize;
Init MemoryOnDevices;
foreach device do

Write SearchMap;

foreach loop do
foreach device do

InvokeKernel RunAnts for
antCount ∗ warpSize threads in
antCount groups;

foreach device do
Read AntSolutions;

foreach device do
ValueAnts;

Modify q0;
foreach device do

Write ChangedParams;

if BestSolutionIsChanged then
foreach device do

Write BestSolution;

foreach device do
InvokeKernel AwardBestSolution
for bestSolutionStepCount
threads;

FreeMemoryOnDevices;
SelectBestOptimizedDirection;

Procedure. RunAnts
begin

threadId = GetLocalThreadId;
antNum = GetGroupId;
if threadId == 0 then

CopyGlobalParamsToLocalMemory;
InitializeLocalAnt;

Barrier;
InitializeTabuList;
foreach iteration do

if antIsActive then
ConstructProbability;
if threadId == 0 then

if antHasNoMove then
MoveBack;

else
SelectRoute;
UpdateTabuList;

Barrier;

CopyLocalAntToGlobalMemory;

In the OCLAVN algorithm’s pseudo-code special comment should be provided
for keywords Write, Read and InvokeKernel:

Write realizes memory transfer from host to global memory on device,
Read — memory transfer from global memory on device to host memory, and
InvokeKernel runs given procedure on device by given number of threads (work
items) divided into groups (work groups).

8 Computational Experiments

To demonstrate the proper operation of the proposed algorithms, several experi-
ments have been carried out. The main objective was to obtain feasible solutions on
the real world map in a satisfactory time. In the case of parallel versions of the algo-
rithm the main goal was to proof that the runtime of the algorithms scale well with
growing number of computing resources (number of CPU, CUDA cores in case of
GPU).
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Table 1 Preferences of parameters

αd αw αt αr αq αi Preference

Kerman1 1.0 0.45 0.45 0.25 0.25 0.3 from [1]
Kerman2 1.0 0.75 0.60 0.75 0.50 0.50 from [1]
Distance 1.0 0.1 0.1 0.1 0.1 0.1 distance
Width 0.5 1.0 0.1 0.1 0.1 0.1 width
Traffic 0.1 0.1 1.0 0.1 0.1 0.1 traffic
Risk 0.1 0.1 0.1 1.0 0.1 0.1 risk
Quality 0.1 0.1 0.1 0.1 1.0 0.1 quality
Inter 0.1 0.1 0.1 0.1 0.1 1.0 intersection

8.1 Experiments with Original and Improved Versions of AVN
Algorithm

Experiments were conducted on different data sets: (a) original data used in the
experiment ,,Kerman” [25], (b) crafted data corresponding to the project ,,London”
[26] and (c) large real data from the system Open Street Map (http://www.o-
penstreetmap.org/).

Experiments were performed on the following computer system: processor:
AMD Athlon 64 1.8 GHz 3000+, RAM: 1 GB, OS: Windows XP SP2, JDK: 1.6.
During the experiments the following algorithms have been used for comparison:
AVN, CAVN, NAVN and Dijkstra’s classic algorithm. Dijkstra’s one was used for
comparison purposes only. It is not able to find a set of solutions, and therefore this
algorithm is not interesting in scope of multi-criteria optimization.

The algorithms were run with different settings of preferences (tab.1) and with
their parameters, including those for the ant algorithm, defined in tab.2 (m is the
number of ants and Nmax — loop count). The values of parameters of the ant algo-
rithm were, as usual, set as a result of preliminary experiments.

8.1.1 Experiments on Data from the Project “Kerman” and “London”

Data for the experiments were obtained from the authors of the AVN algorithm
[25, 26, 27]. Graph consists of 27 nodes and 67 edges, and represent partial map of
the city of Kerman fig.4. The average number of edges (incoming and outgoing) per
node is 2.48. The route was sought from point 8 to 22. Time of departure was 17:30
and average speed — 40 km/h.

Table 2 Parameters of the algorithms

Parameter α β av pv bv ρ Q ϕ τ0 m Nmax

AVN 2 – 950 0.9 – 0.9 0.9 – – 10 50
CAVN 2 – 1.05 0.9 – 0.9 0.9 0.99 – 10 50
NAVN – 2.5 – 0.9 0.1 0.2 0.9 0.99 1/6000 10 50
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Fig. 4 Fragment of Kerman city map used in the experiments [1]

Algorithms were searching for a solution with the lowest possible cost. All algo-
rithms, except AVN, found optimal solutions. Execution time of ant algorithms was
greater than execution time of the deterministic algorithms.

Data for the experiment “London” were prepared so that the number of nodes was
comparable with the data described in [26] (the original data were not available).
Map consisted of 54 nodes and 184 edges. The average number of edges (incoming
and outgoing) per node was 3.4. The route was sought from point 1 to 54. Time of
departure was 17:30 and average speed — 40 km/h.

In this experiment the NAVN algorithm found the optimal solution, the same one
as the deterministic one. Both AVN and CAVN algorithms did not find this solution,
but CAVN produced better results. Dijkstra’s algorithm was working at the non-
measurable time. The overall results of experiments are presented in tab.3 (time is
expressed in milliseconds).

8.1.2 Experiments on the Real Data

The data for this experiment were collected from the system Open Street Map
(OSM) for the area of the city of Katowice (fig.5). Map size used in this exper-
iment exceeds several times the size of the maps used in the projects “Kerman”
and “London”. This map consists of 31044 nodes and 68934 edges. The average

Table 3 Results of experiments with data of “Kerman” and “London”

Kerman London
Algorithm Time Cost Route Time Cost Route

AVN 156 6290 8,2,5,4,6,7,3, 266 1185 1,3,6,7,8,9,11,28,30,31,29,32,34,33,40,
24,22 44,45,46,51,54

CAVN 79 5425 8,2,20,1,26,22 188 880 1,4,7,8,10,14,15,19,39,43,47,52,53,54

Dijkstra ≈0 5425 8,2,20,1,26,22 ≈0 860 1,3,6,13,14,15,19,39,43,47,52,53,54
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Fig. 5 Map used in experiments on real data

number of edges (incoming and outgoing) per node is 2.2. In this experiment only
the preferences of the distance and width were used, other values were constant.
This is due to the limited scope of information available in the OSM system. The
start node was OSM id.: 383783583 (suburbs of Katowice) and end node id. was
384912139 (downtown of Katowice). The time of departure was 17:30 and travel
speed: 40 km/h.

Table 4 Results of experiments with data of “Katowice”

Distance Width
Time Cost Distance Time Cost Distance

NAVN 9531 38705 15466 11984 298984 19180

Dijkstra 2515 27144 13495 2531 212459 14317

During the preliminary experiments we found that the original algorithm AVN
and its improved version (CAVN) were unable to find any solution, so they are omit-
ted from presented results. Therefore the NAVN algorithm was compared only with
the classical Dijkstra’s algorithm. Results of experiments for the project “Katowice”
presents tab.4.

The results show, that the NAVN algorithm can find good (although not optimal)
solutions for large real map. This is important information considering the fact that the
original algorithms AVN and CAVN do not give any solutions for such large data. An-
other important observation is that the execution time of the NAVN algorithm starts to
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be comparable to Dijkstra’s algorithm. During some experiments this time was even
shorter. Observing the trend of the execution time of both algorithms, we can risk
the hypothesis that with further increasing the complexity of the maps, the NAVN
algorithm may be faster than Dijkstra, of course, assuming a certain acceptable inac-
curacy of solutions found. Especially interesting seems to be the result of the NAVN
algorithm for preferences of width. The solution is regarded by many people (driving
between the mentioned points of Katowice) as the best route, based mainly on the ex-
pressways (one of the authors uses the same one). The Dijkstra’s algorithm, although
it calculates the cost in exactly the same way, suggests a different route.

8.2 Experiments with the Parallel Version of AVN — PAVN

Tab. 6 presents selected results of experiments with NAVN and PAVN algorithms.
All the versions were implemented in Java language and run on machine equipped
with quad core processor (Intel Core2 Quad 2.4 GHz). This map consists of 64K
nodes and 144K edges and is based on data collected from the system Open Street
Map (OSM) for the area of the city of Katowice. The start node OSM id was
262831991 (city of Gliwice, Akademicka street) and end node id was 297573921
(city of Oświȩcim, Zatorska street). The time of departure was 17:30 and travel
speed: 40 km/h.

Table 5 NAVN and PAVN algorithm’s parameters used during computations

Algorithm α β Pv Bv ρ Q ϕ τ0

NAVN/PAVN 1.0 3.0 0.95 0.15 0.2 0.9 0.995 0.000025

Table 6 Selected results of experiments with NAVN i PAVN

Algorithm Threads Cycles Ants Time [ms] Cost Distance [m]

NAVN 1 50 16 20611 2290931 67055

NAVN 1 50 32 36723 2205954 68531

NAVN 1 100 32 49597 2277718 69556

PAVN 16 50 16 22033 2352790 81289

PAVN 8 50 16 13626 2426367 66374

PAVN 8 100 16 7766 2668998 83915

PAVN 8 50 32 13470 2737325 68416

PAVN 8 100 32 14673 2410930 81990

In experiment only the preferences of the distance were used, other values were
constant. This is due to the limited scope of information available in the OSM
system. Tab. 5 shows parameters’ values, common to both algorithms used during
experiments.
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The results obtained by the PAVN algorithm in comparison with the sequential
version of the algorithm (NAVN) were:

• The PAVN algorithm with the same number of cycles produced a little bit better
results and the performance time was shorter (about 50%) for PAVN.

• Increasing the number of cycles led to further improvement of the results (with
the performance time similar to the sequential version).

• Increasing the number of threads (the number of processor cores were constant)
as well as the number of ants made both the computation time and the quality of
results worse.

8.3 Experiments with CUDA Approach

Data for the experiments were also collected from the system Open Street Map
(OSM) in the area of the city of Katowice. The map used in experiments consists of
31044 nodes and 68934 edges. The average number of edges (incoming and outgo-
ing) per node is 2.2. The detailed data for the experiments were (other parameters of
the OCLAVN are presented in Tab. 7): OSM start node id: 383783583 (suburbs of
Katowice), OSM end node id: 384912139 (downtown of Katowice), departure time:
17:30, and speed: 40 km/h.

Table 7 OCLAVN algorithm’s parameters used during computations

Algorithm α β Pv Bv ρ Q ϕ τ0 m (no. of ants) Nmax

NAVN 1.0 2.0 0.9 0.1 0.2 0.9 0.995 1/44500 30 50

OCLAVN 0.1 1.0 0.9 0.1 0.1 0.9 0.995 1/44500 30 50

In experiments (as in previous ones) only the preferences of the distance were
used, other values were constant. Tab. 7 shows parameters’ values, common to both
algorithms used during experiments. Changes in the logic of the original NAVN
algorithm forced the usage of different parameters’ values for sequential NAVN and
parallel OCLAVN. These values have been discovered during preliminary runs of
algorithms. Experiments were carried out on Microsoft Windows XP and, in case
of GF GTX 295, on Windows 7. All the applications were compiled by Visual C++
2008. OpenCL version of the algorithm was build with libraries from nVIDIA GPU
Computing Toolkit 3.2. Sequential NAVN also uses single-precision floats, so that
the experimental results were more reliable.

OpenCL version of the algorithm was run on various CUDA capable GPUs form
nVIDIA, which are described in Tab. 8. The experiments allowed us to observe how
hardware capabilities influence the results of the experiments. In case of GF GTX
295 only one device available on GPU was used.

Tab. 9 presents selected results of experiments on different platforms. The results
shown are average values from 10 runs. Quality of each result (in term of lower cost
value) is very similar. The OCLAVN run on GF GTX 295 has the best time perfor-
mance, better than results obtained by sequential NAVN (in fact, the performance
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Table 8 Parameters of selected nVIDIA GPUs

GPU Multiprocessors CUDA Cores Compute Capability

GF 8400 GS 1 8 1.1
GF 9500 GT 4 32 1.1
Quadro NVS 320M 4 32 1.1
GF GTX 295 2x30 2x240 1.3

Table 9 Selected results of experiments with OCLAVN

CPU GPU Algorithm Cost Time (ms)

Intel Core2 Quad 2.4 GHz GF 8400 GS OCLNAVN 15702 39842
Intel Core2 Quad 2.4 GHz GF 9500 GT OCLNAVN 15152 18618
Intel Core2 Duo 2.5 GHz Quadro NVS 320M OCLNAVN 14939 15270
Intel Core I5 2.67 GHz GF GTX 295 OCLNAVN 15538 5232
Intel Core I5 2.67 GHz - NAVN 15651 6424

Fig. 6 OCLAVN algorithm runtime on different GPUs

on the CPU was only for the comparison of the quality of results, because features
of the CPUs and GPUs for the sequential computations are incomparable). Fig. 6
presents the execution time of OCLAVN on different GPUs and it shows that the
algorithm’s performance scales with growing number of multiprocessors. It is not
a linear speedup, because the base AVN is not a completely data parallel algorithm
but it shows that the OCLAVN algorithm is well designed for the use of GPUs. The
search space is located in global memory on GPU, so that the performance limita-
tion of that kind of memory was the most important challenge for our algorithm’s
tuning attempts. Influence of the global memory performance limitations on overall
algorithm performance can be decreased in the latest and future releases of GPUs.
The promising example is new GPU architecture from nVIDIA called Fermi. One
of the many improvements of the new architecture is significant speedup of global
memory access.
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9 Conclusions

The presented results of work on multi-agent ACO algorithms in car navigation
shows that this is a promising line of research.

Ant colony optimization algorithms have a natural ability to solve problems of
determining the optimal path in the graph, not only in case of single objective ver-
sion, but also for multi-criteria problems.

Particularly noteworthy is the fact that the presented approach is able to construct
a set of routes, not only “the best” one. This feature of the algorithm is particulary
important for solving multi-criteria optimization problems, where the task is to find
Pareto optimal set of solutions.

The presented parallel versions of the algorithm show high susceptibility of the
sequential version of the algorithm to parallelization, which is important at the cur-
rent trends in the development of the modern computing architectures.
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Solving Instances of the Capacitated Vehicle
Routing Problem Using Multi-agent
Non-distributed and Distributed Environment

Dariusz Barbucha

Abstract. Applying metaheuristics to solve large scale instances of computation-
ally difficult optimization problems often requires using a considerable computa-
tional effort in order to reach the satisfactory results in reasonable amount of time.
Parallel/distributed computation may improve performance of such approaches. It is
expected that parallel metaheuristics will outperform their sequential counterparts in
terms of quality of the generated solutions as well as reducing the computation time.
Last years, an agent paradigm has emerged as an interesting direction for effective
solving different problems. The chapter focuses on multi-agent system JABAT, ded-
icated for solving computationally hard optimization problems using parallel and
distributed environment. Two models of computations used by JABAT, where all
software agents are running on the one container and where selected software agents
are distributed (moved or cloned) over available additional containers (nodes), are
presented in the chapter. The influence on the above models on quality of the results
and the computation time has been investigated by computational experiment, which
has been carried out on selected instances of capacitated vehicle routing problem.

1 Introduction

Solving large scale instances of computationally difficult optimization problems of-
ten require using a considerable computational effort in order to reach the satis-
factory results in reasonable amount of time. The nature of metaheuristics used for
solving such problems as well as some specific features of the problems give the
possibility of using parallel computation. Parallel/distributed computing is a form
of computation in which different processes work simultaneously on several pro-
cessors/machines solving a given problem instance. Parallelism thus follows from
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a decomposition of the total computational load and the distribution of the result-
ing tasks to available processors. As Crainic and Nourredine [9] report, in case of
metaheuristic methods such decomposition may concern the algorithm (functional
parallelism), or the problem-instance data (data parallelism or domain decomposi-
tion). In functional parallelism, different tasks are allocated to different processors
and run in parallel, possibly working on the same data and/or exchanging infor-
mation. Data parallelism (or domain decomposition) refers to the case where the
problem domain (or the associated search space), is decomposed and particular so-
lution methods are used to address the problem on each of the resulting components
of the search space.

The main reason for using parallel and distributed computing in the design and
implementation of metaheuristics is to speed up the search. Reducing the search
time is specially important in case of methods which are proposed to be used for
solving complex optimization problems where the search time is critical (for ex-
ample dynamic problems), or for solving large-scale instances of these problems.
Very important feature of parallel implementations of metaheuristics is also ability
to improve the quality of solutions obtained by these methods in comparison to the
sequential implementations. Parallel metaheuristics may be also more robust than
their sequential counterparts in terms of solving different optimization problems
and different instances of a given problem in an more effective manner [29].

In the recent years, technological advances enabled development of various par-
allel and distributed versions of metaheuristics based on the multi-agent paradigm
and using the agent technology. The term agent (or software agent), has found its
way into a number of technologies and has been widely used, for example, in ar-
tificial intelligence and distributed computing areas. Although, as Jennings et al.
[16] point out, there is no real agreement what an agent is, many authors involved
in agent research have offered a variety of definitions, in which they explain their
understanding of term ’agent’ and emphasize its main features. For example, Jen-
nings et al. [16] define agent as a computer system, situated in some environment,
that is capable of flexible autonomous action in order to meet its design objectives
[16]. According to definition of Russel and Norvig [26], an agent is anything that
can be viewed as perceiving its environment through sensors and acting upon that
environment through effectors. Another definition says that autonomous agents are
computational systems that inhabit some complex dynamic environment, sense and
act autonomously in this environment. By doing so they realize a set of goals or
tasks for which they are designed [20]. And finally, definition provided by IBM
says that intelligent agents are software entities that carry out some set of operations
on behalf of a user or another program, with some degree of independence or auton-
omy, and in so doing, employ some knowledge or representation of the user’s goals
or desires [14].

Several interesting features possessing by agents (some of them occur in the
above definitions) decide about the still growing interest in the exploration of the
agent technology and application it to various fields. First, an agent is autonomous,
because it operates without the direct intervention of humans or others and has con-
trol over its actions and internal state. An agent is social, because it cooperates with
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humans or other agents in order to achieve its tasks. An agent is reactive, because it
perceives its environment and responds in a timely fashion to changes that occur in
the environment. An agent is proactive, because it does not simply act in response
to its environment but is able to exhibit goal-directed behavior by taking initiative
[7]. Moreover, if necessary a software agent can be mobile, which means that it has
ability to migrate or clone in the computer network [24] [31]. Mobile agents can be
effectively used in various areas, including improvements in latency and bandwidth
of client-server applications as well as reducing vulnerability to network disconnec-
tion. By using mobile agents the system allows for decentralization of computation
processes and balancing of the load. This results in a more effective use of the avail-
able resources and reduction of the computation time.

Despite the above important agent’s features, using a single agent in complex
real-life applications is often not effective, so multi-agent systems (MAS) composed
of multiple autonomous components (agents) are used [16]. Such multi-agent sys-
tems can model complex systems and introduce the possibility of agents having
common or conflicting goals. Moreover, these agents may interact with each other
both indirectly (by acting on the environment) or directly (via communication and
negotiation). Also, agents may decide to cooperate for mutual benefit or may com-
pete to serve their own interests [7].

Nowadays agent technology is used to solve real-world problems in a range of
industrial and commercial applications. In a number of such approaches, the agent
technology is integrated with different search paradigms, like for example meta-
heuristics. One example of such an approach is a concept of the asynchronous team
(A-Team) [30], which integrates paradigms of the population-based methods, co-
operative problem solving, parallel/distributed computing and multi-agent systems.
Generally, A-Team can be characterized as a collection of software agents which
cooperate to solve a problem by dynamically evolving the population of solutions
stored in the common memory.

One of the approach based on the concept of A-Team, is a middleware called
JABAT (JADE-Based A-Team) [3], dedicated for solving computationally hard op-
timization problems, which has been developed as a team work, with contribution
of the author of this chapter. This chapter focuses on JABAT ability to distribute
computation load while system is solving instances of given optimization problem.
The main goal is to investigate the influence of the distribution of the computa-
tion process, where selected software agents are distributed (moved or cloned) over
available platforms (nodes), on quality of the results and the computation time. The
reported investigation has been carried out using several selected instances of Ca-
pacitated Vehicle Routing Problem.

The rest of the chapter is organized as follows. Section 2 addresses the paral-
lel metaheuristic methods, presents their classification and overview of their im-
plementations for vehicle routing problem. Section 3 presents an overview of the
JABAT system, its features, elements of architecture, and implementation details.
A goal, assumptions, and results of the computational experiment are included in
Section 4. And finally, Section 5 presents concluding remarks, and highlights direc-
tions for future research.
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2 Parallel Metaheuristics

The most exhaustive classification of parallel strategies for metaheuristics, in the
opinion of the author, has been proposed by Crainic and Nourredine [8], which next
has been adopted and extended by Crainic and Toulouse [9]. Three dimensions of
the classification have been distinguished.

The first dimension (Search Control Cardinality) indicate how the global problem
solving process is controlled. It may be controlled by a single process or by several
processes that may collaborate or not. These two alternatives are identified as 1-
control (1C) and p-control (pC), respectively.

The second dimension (Search Control and Communications) addresses the is-
sue of information exchanges. In parallel computing, one generally refers to syn-
chronous and asynchronous communications. In the first form of communication,
all processes stop and engage in some form of communication and information ex-
change at moments determined by a features of algorithms or by master process
(number of iterations, time intervals, specified algorithmic stages, etc.). On the other
hand, in asynchronous communication, each process is in charge of its own search,
it often decides about establishing communications with other processes, and the
global search terminates once each individual search stops. To reflect more ade-
quately the quantity and quality of the information exchanged and shared, as well
as the additional knowledge derived from these exchanges (if any) four classes are
defined: Rigid (RS) and Knowledge Synchronization (KS) and, symmetrically, Col-
legial (C), and Knowledge Collegial (KC).

The third dimension (Search Differentiation) reflects the fact of starting the
search threads from the same or different solutions and making use of the same
or different search strategies. The four cases are considered here: Same initial
Point/Population, Same search Strategy (SPSS), Same initial Point/Population, Dif-
ferent search Strategies (SPDS), Multiple initial Points/Populations, Same search
Strategies (MPSS), and Multiple initial Points/Populations, Different search Strate-
gies (MPDS).

Basing on the above classification and the sources of parallelism in meta-heuristics,
Crainic and Toulouse [9] identified four groups of the parallel meta-heuristic strate-
gies: 1-control strategies, strategies based on explicit domain decomposition, inde-
pendent multi-search strategies, and cooperative multi-search strategies.

The first group of strategies (1-control strategies), exploits the intrinsic parallelism
offered by the basic, inner-loop, computations of metaheuristics, and are usually
implemented according to the classical master-slave parallel programming model.
Whereas a master program executes the 1-control metaheuristic, computation-
intensive tasks are dispatched to slave programs in order to being executed in parallel
by them. Taking into account the above taxonomy, they belong to the 1C/RS class. An
example of using this strategy is a tabu search implementation of Garcia et al. [13]
for the Vehicle Routing Problem with Time Windows. In their parallel synchronous
algorithm many different neighborhoods of the current solution are considered, and
next manny modifications to the current solution are applied. Another example of
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implementation of this strategy is a parallel ant colony approach of Doerner et al.
[10] for Capacitated Vehicle Routing Problem. Tasks, including one or several ants,
is built by master process and next are solved by slave processes.

Domain (or search-space) decomposition is based on the idea of dividing the
whole search space into smaller (usually disjoint) subspaces, solving the resulting
subproblems (operating on these subspaces) by applying the sequential metaheuris-
tic on each of them, collecting the respective partial solutions, and building the
complete solution from these partial solutions. This strategy is usually represented
by 1C/KS schemes, with a MPSS or MPDS search differentiation strategy. In case
of Vehicle Routing Problems, a set of customer may be initially clustered (a depot
is included in each cluster), and next, several subproblems, may be solved indepen-
dently by separated search threads running in parallel. Next, a final solution is a
composition of these partial solutions which come from subproblems. An approach
for Vehicle Routing Problem which belongs to this group is, for example [27], where
a set of subproblems were solved by tabu-search metaheuristic.

Independent multi-search consists in performing several searches simultaneously
on the entire search space, starting from the same or from different initial solutions,
and selecting at the end the best among the best solutions obtained by all searches.
Independent multi-search methods belong to the pC/RS class. Doerner et al. [11]
studied different parallel implementations of the Savings based Ant System algo-
rithm developed for solving the Vehicle Routing Problem. They analyze the effects
of different form of parallelization (low-level parallelization, multiple search strate-
gies and domain decomposition approaches). In case of multiple search strategies
they investigated different information exchange schemes.

Cooperative multi-search methods, similar to the independent multi-search ones,
initiate several simultaneous independent search threads, each defining a trajectory
in the search space from a possibly different initial point or population by using a
possibly different methods or search strategy. Hovewer, they implement also the in-
formation sharing cooperation mechanism specifying how these independent meth-
ods interact within the global search behavior of the cooperative parallel metaheuris-
tic emerging from the local interactions among them. They belong to the pC/KS
or pC/C or pC/KC groups of strategies. As an example of using coperative ap-
proaches for Vehicle Routing Problem one can list those proposed by Le Bouthillier
et al. [18] and Meignan et al. [21]. Le Bouthillier et al. [18] proposed the frame-
work for a guided parallel cooperative search for the Vehicle Routing Problem with
Time Windows based on the central memory multi-thread cooperative search con-
cept. Meignan et al. [21] proposed a coalition-based metaheuristic (CBM), merging
some of the evolutionary algorithm concepts into a context of distributed control
and agent-based learning.

Last years, a few agent-based approaches have been also proposed which imple-
ment metaheuristics procedures possibly to be executed in parallel. One of them
is, for example, a coalition-based metaheuristic suggested by Meignan et al. [21]
and mentioned above. Another, worth mentioning in this context, is a multi-agent
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architecture for metaheuristics MAGMA proposed by Milano and Roli [22]. A
JABAT-based approach, considered in this chapter, also belongs to a group of ap-
proaches combining metaheuristic, cooperative problem solving and multi-agent
paradigms. According to the taxonomy of Crainic and Toulouse [9], it may belong
to pC/C or KC/SPDS or DPDS classes.

3 JADE-Based A-Team

A middleware called JABAT (JADE-Based A-Team), supporting design and im-
plementation of multi-agent parallel architectures for solving difficult optimiza-
tion problems is based on the concept of the asynchronous team (A-Team) [30].
A-Team is a collection of software agents (each of them encapsulates a particular
problem-solving method) which collectively work and cooperate to solve a problem
by dynamically evolving the population of solutions stored in the common memory.
Within an A-Team, agents are autonomous and asynchronous, and each agent en-
capsulates a particular problem-solving method, which usually is inspired by natural
phenomena like, for example, evolutionary processes or particle swarm optimiza-
tion, as well as local search techniques. The ground principle of asynchronous teams
rests on combining algorithms, which alone could be inept for the task, into effec-
tive problem-solving organizations, possibly creating a synergetic effect, in which
the combined effect of cooperation between agents is greater than the sum of their
separate effects.

JABAT is built using JAVA programming language and JADE agent platform
(Java Agent Development Framework) - a software framework proposed by TILAB
[15] for the development and run-time execution of peer-to-peer applications.

JADE is based on the agents paradigm in compliance with the FIPA (Foundation
for Intelligent Physical Agents) [12] specifications and provides a comprehensive
set of system services and agents necessary to implement distributed peer-to peer
applications in the fixed and mobile environment. It includes both the libraries re-
quired to develop application agents and the run-time environment that provides the
basic services and that must be running on the device before agents can be activated.

JADE also manages the whole agent life cycle, provides the transport mechanism
and interface to send/receive messages to/from other agents and supports debugging,
management and monitoring phases with using dedicated graphical tools. Moreover,
it also supports agents migration, complex interaction protocols, messages content
creation and management including XML and RDF [7].

Till now, several different versions of the JABAT system have been implemented:
A-Team implementation [3], Web-based A-Team implementation [4], and island-
based A-Team implementation [5]. Here, taking into account the goal of the chapter,
only a short overview of the main part of these implementation is given, since the
reader can find further details of them in the above papers.
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3.1 Overview of JABAT

Main functionality of the proposed environment is organizing and conducting the
process of search for the best solution. The search process includes initialization and
improvement steps. At first, the initial population of solutions is generated. Next,
individuals forming the initial population are improved by independently acting au-
tonomous optimization agents. And finally, after reaching the stopping criterion, the
best solution from the population is taken as the result.

Main components of the system include:

• three kinds of agents directly engaged in search (Task Manager, Solution Man-
ager, and a set of Optimizing Agents),

• three kinds of agents which role is to monitor the process the search (Solution
Monitor, Error Monitor, and Platform Manager),

• population of individuals,
• communication between them.

3.1.1 Agents Directly Engaged in the Process of Search

Task Manager agent runs first. It is responsible for reading all needed global system
parameters stored in the configuration file. When TaskManager finds a request to
solve an instance of the problem its role is also to create Solution Manager and
Optimizing Agents, designated to this particular task instance. One of the important
role of the Task Manager is also to administer several searches conducted in parallel,
which are allowed in the proposed system.

Solution Manager and a set of Optimizing Agents are mainly engaged in organiz-
ing and conducting the process of search for the best solution. Each SolutionMan-
ager is responsible for generation of the initial pool of solutions, sending periodi-
cally solutions to the Optimizing Agents taken from the pool of solutions, merging
improved solutions with the population and deciding when the whole process of
searching for the best solution should be terminated.

Each Optimizing Agent is a single autonomous and improvement algorithm. Dur-
ing its functioning it communicates with Solution Manager by sending out the mes-
sages. At the beginning of the cycle, it sends a message about its readiness to work.
In response the Solution Manager sends the details of the task and a solution to im-
prove. The Optimizing Agent improves it and sends back the improved solution to
the Solution Manager. The process iterates, until some stopping criterion is met.

3.1.2 Agents Monitoring the Process of Search

The main role of the Solution Monitor is to record computation results during the
whole process of search. Such results include information about the solutions im-
proved by Optimizing Agents, computation time, average fitness of the population,
etc.

The second monitoring agent - Error Monitor monitors and reports unexpected
behavior of the system during the whole process of search.
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And the third agent belonging to this group - Platform Manager is engaged in
organizing and conducting several parallel searches, which can be performed on a
single computer or on multiple computers. In the former case, if JABAT is activated
on a single computer with main container, then all agents are placed and running on
this one computer. The latter case is made possible due to the functionality of JADE
[7], which allows agents to migrate or clone to containers on other computers that
have joined the main platform (the role of Platform Manager agent is organizing
the process of agents migrations between different platforms).

Platform Manager, in the course of its life, monitors the number of running Opti-
mizing Agents, periodically checks the number of available containers, evaluate the
utilization of the available containers by Optimizing Agents and, if desired, in order
to load balance on the available containers it moves agents to other locations.

3.2 Models of Computations

Two models of computations performed on a single container (node) or with using
additional containers, available in JABAT, are presented in Fig. 1.

If JABAT is activated on a single computer (or node) with main container, then
all agents are placed and running on this one computer. If JABAT has been activated
on multiple computers (with additional nodes), with main container placed on one
computer and the remote joined containers placed on other computers (nodes), then
the main container hosts the managing agents including the Task Manager, Solu-
tion Manager, and Platform Manager, monitoring agents (Solution Monitor, Error
Monitor) while Optimizing Agents are moved from the main container to available
additional containers (nodes) to distribute the workload evenly.

4 Computational Experiment

The goal of the experiment was to compare two models of computations (with and
without distribution of software agents) of the multi-agent system JABAT. Two mea-
sures have been chosen in order to evaluate the performance of the system: mean
relative error (in %) from the optimal or best known solution and computation time
(in sec.) used by the system in order to obtained the (sub-)optimal solution.

The reported experiment has been carried out on instances of the Capacitated
Vehicle Routing Problem (CVRP). CVRP is the network optimization problem, in
which a set of customers is to be served by the fleet of vehicles in order to minimize
the service cost and satisfy several customers and vehicles constraints: each route
starts and ends at the depot, each customer is serviced exactly once by a single
vehicle, and the total load on any vehicle associated with a given route does not
exceed vehicle capacity [17].

Elements, which should be defined in order to use the JABAT for solving CVRP
(representation of an individual, size of the population and method of its creation,
methods of management of population of solutions, optimizing agents representing
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Fig. 1 Two models of computations on a single container or on multiple additional containers,
respectively, available in JABAT

solution methods, and stopping criterion) have been adapted from [6], where the
reader can find more details about them.

Path representation (a permutation of N numbers representing customers, where
the order of numbers reflects the order in which customers are visited) known from
Traveling Salesman Problem (TSP) has been adapted as representation of individ-
ual. Additionally, procedure of splitting the individual on segments (routes) has been
implemented.
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Four local search heuristics have been implemented in the proposed system as
optimization agents. They have been divided into two groups operating on one
(intra-route) or two (inter-routes) routes and include: modified implementations of
3-opt procedure [19] and λ -interchange local optimization method [23] (λ = 2), and
two dedicated local search methods, based on moving/exchanging selected nodes or
edges between routes (see [6]).

Three operations constituting the process of management of the population of in-
dividuals: selection, acceptance, and updating have been set as follows. A randomly
chosen individual is forwarded to the Optimizing Agents for improvement. After
improvement phase, if the solution currently received from optimization agent has
been improved, it is accepted and replaces the worst solution from current popu-
lation. Additionally, if last consecutive five solutions received from the optimiza-
tion agents did not improve existing solutions in population, the worst solution is
removed from the population and a newly generated one is added to the pool of
individuals.

Moreover, basing on the results presented in [6], the population size has been set
to 30, and Polar/Cheapest method of creating an initial population has been adapted
here. Also, an adaptive stopping criterion, where the system stops when the gap
between current time and the time, where system improved the current best solution
last time exceeded 3 minutes, has been utilized.

Twelve capacity constrained instances of VRP proposed by Taillard [28] with 75,
100 and 150 customers have been used in the experiment.

All computations have been carried out on the cluster Holk of the Tricity Aca-
demic Computer Network (TASK) including 34 nodes and built of 256 2xDual Core
Itanium 2 1.4 GHz with 12 MB L3 cache processors with Mellanox InfiniBand in-
terconnections with 10 Gb/s bandwidth.

The number of nodes used in the experiment has been set to 1, 2, 4, and 8, and
the number of copies of each kind of Optimizing Agent to 1, 2, 4, 8, and 16. Thus
the following two configurations have been used in the experiment:

1. All agents (including agents directly engaged in the search process and monitor-
ing agents) were running on the same single node,

2. All agents (except Optimizing Agents) were running on the same single node,
Optimizing Agents (nc copies of each, where nc = 1,2,4,8,16) were running on
available additional nn nodes, where nn = 2, 4, 8.

Table 1 summarizes the above configurations and additionally presents total number
of Optimizing Agents running in the system and the number of Optimizing Agents
running on a single node.

Computational results are presented in Tables 2-6, separately for each team con-
sisting of 1, 2, 4, 8, and 16 copies of each Optimizing Agent, respectively. The
columns of each table include: instance name, mean relative error (separately for
each number of nodes used in the experiment) and computation time (also sepa-
rately for each number of nodes used in the experiment). Moreover, average values
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Table 1 Tested cases including the number of Optimizing Agents engaged in search process
and the number of nodes used by these agents

Number of copies Number of nodes Total number Number of agents
of each Optimizing Agent used of running agents running on single node

1

1 4 4
2 4 2
4 4 1
8 4 1

2

1 8 8
2 8 4
4 8 2
8 8 1

4

1 16 16
2 16 8
4 16 4
8 16 2

8

1 32 32
2 32 16
4 32 8
8 32 4

16

1 64 64
2 64 32
4 64 16
8 64 8

Table 2 Mean relative error from the best known solution and computation time calculated
for all instances and all considered number of nodes used by Optimizing Agents (1 copy of
each agent)

Instance
Mean relative error [%] Computation time [s]

1 2 4 8 1 2 4 8
tai75a 1.01 0.71 0.46 0.65 326.22 203.61 204.82 306.37
tai75b 0.79 0.52 1.00 0.85 245.13 214.60 167.85 256.58
tai75c 0.89 1.23 0.98 0.94 288.74 181.10 145.65 143.09
tai75d 0.34 0.65 0.45 0.47 273.96 191.74 215.93 238.81
Average(tai75) 0.76 0.78 0.72 0.73 283.51 197.76 183.56 236.21
tai100a 2.70 2.78 2.69 2.90 483.61 340.68 394.16 438.06
tai100b 0.72 0.68 0.77 0.67 452.33 291.52 293.82 353.16
tai100c 0.97 1.17 1.30 1.34 413.80 273.50 338.22 416.05
tai100d 2.34 2.07 2.36 2.09 391.11 350.43 286.93 474.65
Average(tai100) 1.68 1.67 1.78 1.75 435.21 314.03 328.29 420.48
tai150a 3.36 3.91 3.06 3.48 1066.82 682.84 690.40 955.13
tai150b 5.41 4.92 5.00 5.14 1190.98 969.33 960.64 912.98
tai150c 3.17 3.09 2.92 3.68 846.49 868.14 706.98 811.42
tai150d 2.76 2.29 2.65 2.55 977.85 825.06 873.99 970.27
Average(tai150) 3.68 3.55 3.41 3.71 1020.53 836.34 808.00 912.45
AVERAGE 2.04 2.00 1.97 2.06 579.75 449.38 439.95 523.05
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Table 3 Mean relative error from the best known solution and computation time calculated
for all instances and all considered number of nodes used by Optimizing Agents (2 copies of
each agent)

Instance
Mean relative error [%] Computation time [s]
1 2 4 8 1 2 4 8

tai75a 1.16 0.81 0.89 0.66 346.58 203.53 154.71 150.40
tai75b 0.74 0.94 1.01 1.01 389.48 206.35 108.08 117.67
tai75c 1.21 0.75 0.70 0.73 281.47 164.74 161.67 145.15
tai75d 0.83 0.77 0.40 0.22 289.99 194.85 163.49 125.97
Average(tai75) 0.98 0.82 0.75 0.65 326.88 192.37 146.99 134.80
tai100a 2.58 2.70 2.81 2.85 459.87 332.46 175.56 285.33
tai100b 1.17 0.91 1.16 0.92 397.72 259.85 217.48 168.56
tai100c 1.31 1.02 1.09 1.20 593.93 365.24 189.98 207.20
tai100d 2.22 2.23 2.17 2.88 425.85 243.68 185.20 205.41
Average(tai100) 1.82 1.72 1.81 1.96 469.34 300.31 192.05 216.63
tai150a 2.70 3.53 3.36 2.87 1273.08 637.64 718.49 592.66
tai150b 4.57 4.83 4.91 5.54 1289.73 945.36 618.35 638.50
tai150c 2.69 3.47 3.35 2.99 1111.04 840.65 563.10 676.52
tai150d 2.22 2.41 2.23 2.54 1008.18 727.49 635.06 556.46
Average(tai150) 3.04 3.56 3.46 3.48 1170.51 787.79 633.75 616.04
AVERAGE 1.95 2.03 2.01 2.03 655.58 426.82 324.26 322.49

Table 4 Mean relative error from the best known solution and computation time calculated
for all instances and all considered number of nodes used by Optimizing Agents (4 copies of
each agent)

Instance
Mean relative error [%] Computation time [s]

1 2 4 8 1 2 4 8
tai75a 0.62 1.05 1.01 0.72 396.90 256.81 91.97 69.00
tai75b 0.91 1.08 0.78 0.57 353.36 265.50 164.15 98.48
tai75c 0.77 1.24 1.02 1.10 244.86 231.58 114.38 73.17
tai75d 0.36 0.49 0.55 0.48 354.70 259.74 125.45 111.55
Average(tai75) 0.67 0.96 0.84 0.72 337.46 253.41 123.99 88.05
tai100a 2.89 2.37 2.75 2.39 702.46 398.37 180.59 248.27
tai100b 0.61 0.71 1.21 0.72 504.38 377.80 160.36 126.64
tai100c 1.01 1.25 1.12 1.20 809.19 383.07 174.48 206.31
tai100d 2.19 2.27 1.59 1.88 568.71 382.53 222.00 152.17
Average(tai100) 1.67 1.65 1.67 1.55 646.18 385.44 184.36 183.35
tai150a 2.81 2.48 3.02 3.20 1513.23 941.66 586.11 346.34
tai150b 5.48 4.82 5.11 4.41 1446.19 1040.92 787.54 539.09
tai150c 2.94 2.74 2.45 3.13 1583.21 890.72 433.58 491.27
tai150d 2.65 2.55 2.01 2.36 1248.41 923.72 612.73 455.80
Average(tai150) 3.47 3.15 3.15 3.28 1447.76 949.26 604.99 458.12
AVERAGE 1.94 1.92 1.89 1.85 810.47 529.37 304.45 243.17
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Table 5 Mean relative error from the best known solution and computation time calculated
for all instances and all considered number of nodes used by Optimizing Agents (8 copies of
each agent)

Instance
Mean relative error [%] Computation time [s]

1 2 4 8 1 2 4 8
tai75a 0.60 0.54 0.78 0.87 402.31 334.92 162.81 78.33
tai75b 0.42 0.71 0.67 0.78 457.44 303.15 146.46 147.98
tai75c 0.92 0.50 0.93 1.35 447.01 285.29 111.23 51.57
tai75d 0.69 0.34 0.52 0.21 410.32 221.65 155.25 75.57
Average(tai75) 0.66 0.52 0.72 0.80 429.27 286.25 143.93 88.36
tai100a 2.46 2.25 2.10 2.15 698.35 502.40 256.74 165.88
tai100b 0.78 0.86 0.95 0.91 628.66 459.20 244.18 124.91
tai100c 0.94 0.95 1.25 1.03 651.16 389.67 222.09 99.64
tai100d 2.06 1.68 1.85 2.06 540.45 463.96 175.38 130.75
Average(tai100) 1.56 1.44 1.54 1.54 629.66 453.81 224.60 130.29
tai150a 2.47 2.65 2.60 2.95 1481.72 1057.69 608.44 400.62
tai150b 4.28 4.28 4.08 4.75 1651.00 1326.58 732.96 424.42
tai150c 2.95 2.93 2.92 2.60 1942.52 1270.65 625.73 472.78
tai150d 2.37 2.21 2.12 2.16 1535.63 1059.16 796.28 440.96
Average(tai150) 3.02 3.02 2.93 3.12 1652.72 1178.52 690.85 434.69
AVERAGE 1.75 1.66 1.73 1.82 903.88 639.53 353.13 217.78

Table 6 Mean relative error from the best known solution and computation time calculated
for all instances and all considered number of nodes used by Optimizing Agents (16 copies of
each agent)

Instance
Mean relative error [%] Computation time [s]
1 2 4 8 1 2 4 8

tai75a 0.51 0.36 0.57 0.65 574.90 367.98 226.30 135.26
tai75b 0.67 0.36 0.50 0.38 560.28 404.51 188.73 180.85
tai75c 0.51 0.76 0.49 0.62 521.16 289.24 192.09 211.11
tai75d 0.22 0.14 0.41 0.07 520.23 401.76 222.18 149.62
Average(tai75) 0.48 0.40 0.49 0.43 544.14 365.87 207.33 169.21
tai100a 2.44 2.11 2.38 1.88 972.65 558.84 266.22 251.93
tai100b 0.43 0.25 0.95 0.60 712.14 647.55 334.10 158.34
tai100c 1.07 0.97 0.77 0.83 924.91 632.12 328.57 213.78
tai100d 1.77 1.67 1.66 1.72 949.81 563.30 373.92 184.99
Average(tai100) 1.43 1.25 1.44 1.26 889.88 600.45 325.70 202.26
tai150a 2.49 2.22 1.73 2.14 1990.61 1584.44 1027.63 618.60
tai150b 4.70 4.72 4.61 4.74 2746.97 1627.59 1102.50 555.33
tai150c 2.57 3.05 2.41 2.82 2096.15 1594.07 919.62 494.97
tai150d 2.30 1.94 1.93 2.07 2006.49 1366.15 966.80 615.60
Average(tai150) 3.01 2.98 2.67 2.94 2210.06 1543.06 1004.14 571.13
AVERAGE 1.64 1.55 1.53 1.54 1214.69 836.46 512.39 314.20
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Fig. 2 Comparison of mean relative errors from the best known solution calculated for all
instances, all considered number of nodes used by Optimizing Agents, and all cases where
different number of copies of each agent were used

Fig. 3 Comparison of computation time calculated for all instances, all considered number
of nodes used by Optimizing Agents, and all cases where different number of copies of each
agent were used

of the observed measures have been added after each group of instances including
75, 100, and 150 customers, and the overall average to the last rows of each table.
In order to improve the readability and analysis the obtained results, they are also
graphically presented in Figures 2 and 3.

Analysis of the results presented in Tables 2-6 and in Figures 2 and 3 allow
one to draw several interesting observations. The first general observation is that
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the presented approach produces good results while solving CVRP instances. Mean
relative error varies from 0% to 5% for almost all instances. Definitely, the better
results have been observed for instances including 75 customers than for larger ones.
The differences between the obtained results for instances with 75 customers and
the best known solutions very rarely exceed 1%. Also, a small mean relative error,
not exceeding 2-3%, has been observed for instances, where 100 customers are to be
served by a fleet of the available vehicles. Only the largest instances (150 customers)
have been solved with final results worse than best known one by at most 5-6%.

By focusing observation on computation time, one can unfortunately conclude,
that solving instances of the given problem sometimes requires a high computa-
tional effort measured as a time needed to reach satisfactory results. Moreover, if
the problem size has increased, an increasing of the computation time has been also
observed.

Results presented in the above tables and figures provide additional conclusions
directly related to performance of the presented approach with a distributed compu-
tations. The smallest value of mean relative error averaged over all tested instances
has been found for computations performed on the number of nodes greater than
one. It seems to be true for almost all teams with different number of copies of each
agent, although the difference does not seem to be significant. On the other hand,
one can also conclude that if the number of copies of each agent grows, then mean
relative errors decrease, regardless of the number of nodes. The teams consisting of
8 and 16 agents generally solve instances of the problem in most effective way.

Considering computation times, it can be observed that the time needed by the
system while solving instances of the problem increases when the size of the team
of agents is higher. On the other hand, it decreases when additional nodes are added
to the main container. It is more evident in cases where the number of copies of each
agent is greater than one.

In order to evaluate the level of acceleration of computation, apart from the above
traditional approaches to evaluate the performances of parallel metaheuristics, also
the speedup factor (sm) belongs to the most commonly used. It compares the serial
against the parallel time to solve a particular problem instance and is defined as
sm = T1/Tm, where T1 is execution time on one processor, and Tm is the execution
time for an algorithm using m processors. Also, the effciency (em = sm/m), which is
a normalization of the speedup [1], [2], has been used in this context.

Unfortunately, although these measures are adequate for exact methods, they
are more difficult to use when heuristic methods are engaged in search process.
Such methods do not guarantee obtaining optimal solution, and they often stop be-
fore optimal solution is reached. Thus, in order to normalize obtained results for
speedup and efficiency calculations, it has been decided to compare computational
time needed to reach the solution with mean relative error equal to 5%, for all teams
consisting of 1, 2, 4, 8 and 16 copies of each agent, respectively, and distributing
over 1, 2, 4, and 8 nodes. The resulting values of speedup and efficiency factors are
illustrated in Figure 4.
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Fig. 4 Speedup (upper graph) and efficiency (lower graph) of computation time calculated for
all instances, all considered number of nodes used by Optimizing Agents, and all cases where
different number of copies of each agent were used (mean relative error equal to 5%)

Although the speedup of computation is observed for all cases with different
number of agent’s copies working together within a team, the recorded level of
speedup is different in these cases. It is easy to see, that computation time is prac-
tically the same for the team consisting of one instance of each agent, regardless of
the number of containers used for calculations. On the other hand, the significant
decrease of the computation time is observed when the number of agent’s copies are
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increased to 2, and next, to 4. Further increase of the speedup, when the number of
nodes increases to 8, is observed only for teams, where 4 or 8 copies of each agent
are engaged in search process. In the remaining teams, change of speedup factor is
not significant.

In order to verify the above conclusions, the final part of computational experi-
ment analysis includes the results of two non-parametric Friedman tests (for mean
relative error and computation time, respectively) based on data presented in the
Tables 2-6. Two hypothesis have been defined:

• H0: performance of the proposed multi-agent system is statistically the same (in
terms of mean relative error or computation time) regardless of the number of
containers (nodes) used by teams of Optimizing Agents, while solving instances
of CVRP,

• HA: performance of the proposed multi-agent system differs (in terms of mean
relative error or computation time) regardless of the number of containers (nodes)
used by teams of Optimizing Agents, while solving instances of CVRP.

The significance level α has been set 0.05. Four treatments (different number of
nodes considered in the experiment) and twelve blocks (instances) have been dis-
tinguished in the test. Four point scale, required by the test, has been used to assign
weights to the results produced by the system for given instance and for each num-
ber of nodes used by system (one point has been set to the worst case, four to the best
one). The value of χ2 distribution with three degrees of freedom is equal to 7.81473.
The Friedman test has been performed separately for each number of copies of each
agent working within a team. The calculated values of the χ2 statistics with four
different number of nodes and twelve instances are presented in Table 7, separately
for results measured as mean relative error and computation time.

It is easy to see, that for mean relative error, the test does not confirmed statisti-
cally differences between obtained results. In case of computation time, hypothesis
about statistically identical performance of the system for all number of nodes con-
sidered in the experiment should be rejected for all teams with different copies of
each software agent working within a team. Figures 5 and 6 present comparison of
overall total of weights for both measures - mean relative error and computation
time, separately.

Table 7 Results of Friedman test

Number of copies Mean relative error Time χ2 critical
of each Optimizing Agent χ2 statistics Decision H0 χ2 statistics Decision H0 ststistics

1 0.7 Accept 18.7 Reject

7.81473
2 0.4 Accept 30.7 Reject
4 1.1 Accept 33.3 Reject
8 1.9 Accept 34.9 Reject

16 4.5 Accept 34.9 Reject
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Fig. 5 Results of Friedman test: overall total of weights for each each number of copies of
each agent and for each number of additional nodes used by these agents (mean relative error
case)

Fig. 6 Results of Friedman test: overall total of weights for each each number of copies of
each agent and for each number of additional nodes used by these agents (computation time
case)

5 Conclusions

Solving large scale instances of the computationally difficult optimization problems
often requires using a considerable computational effort in order to reach the sat-
isfactory results in a reasonable amount of time. The nature of metaheuristics used
for solving such problems or specific features of the problems give the possibil-
ity of using parallel computation, understand as a form of computation in which
different processes working simultaneously on several processors/machines solve a
given problem instance. It is expected that parallel metaheuristics will outperform
their sequential counterparts in terms of quality of the generated solutions as well
as reducing the computation time. Another expected result in case of using parallel
heuristics is their robustness, understand as an ability to solve different instances of
the problem with the same effectiveness.
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Last years, an agent paradigm has emerged as an interesting alternative for ef-
fectively solving different problems. Such specific features of software agents, like
autonomy, reactiveness, mobility, or ability to work in teams, provide a powerful
and promising tool for solving real-world problems in a range of industrial and
commercial applications.

The chapter focuses on JABAT system, dedicated for (parallel/distributed) solv-
ing hard optimization problems. The main goal of the chapter was to evaluate to
what extent a distribution of computation by moving Optimizing Agents engaged
in the search process in JABAT system over available containers (nodes) can influ-
ence computational results measured by mean relative error and computation time.
The experiment, carried out on selected instances of Capacitated Vehicle Routing
Problem, has confirmed the existence of dependence of both observed factors on
number of containers (nodes) used in experiment and the number of copies of each
Optimizing Agent.

Among interesting direction of the planned future work of the author is con-
centrating on implementation of another form of parallelization of computation in
JABAT. One possibility is to provide ability of moving other agents (not only Opti-
mizing Agents) or the teams of agents to additional containers. The second one may
focus on specific features of the problem, for example in case of vehicle routing
problems, a set of customer may be initially clustered, and next, several subprob-
lems, may be solved independently by separated search threads running in parallel.
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Structure vs. Efficiency of the Cross-Entropy 
Based Population Learning Algorithm  
for Discrete-Continuous Scheduling  
with Continuous Resource Discretisation1 

Piotr Jędrzejowicz and Aleksander Skakovski* 

Abstract. In the chapter, we consider the population learning algorithm (PLA2), 
earlier designed by the authors, and study how the interconnection topology and 
heterogeneity of  the constituent modules influence its efficiency. PLA2 is a popu-
lation-based approach which takes advantage of the features common to the social 
education system rather than to the evolutionary processes. The problem of sche-
duling nonpreemtable tasks on parallel identical machines under constraint on dis-
crete resource and requiring, additionally, renewable continuous resource to  
minimize the schedule length is chosen as the problem to cope with. A continuous 
resource is divisible continuously and is allocated to tasks from given intervals in 
amounts unknown in advance. Task processing rate depends on the allocated 
amount of the continuous resource. To eliminate time consuming optimal conti-
nuous resource allocation, an NP-hard problem ΘZ with continuous resource dis-
cretisation is introduced and sub-optimally solved by PLA2. The PLA2’s island 
design can be easily transferred to an agent system with cooperating agents. 

1   Introduction 

A problem of scheduling jobs on multiple machines under constraint on discrete 
resource and requiring, additionally, renewable continuous resource to minimize 
the schedule length is considered in the chapter. In the problem two types of re-
sources are considered: discrete and continuous. A discrete resource is divisible 
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discretely, for example a set of machines or a set of mechanical or pumping  
machines. A continuous resource is divisible continuously and is allocated to the 
jobs from given intervals in amounts unknown in advance. In practice a conti-
nuous resource may be limited in amount - for example power (electric, pneumat-
ic, hydraulic) supplying a set of machines, limited gas flow intensity supplying 
forge furnaces in a steel plant, or limited fuel flow intensity in refueling terminals.  

The problem of scheduling jobs on multiple machines under constraint on dis-
crete resource and requiring, additionally, renewable continuous resource was in-
tensively explored in [9], [10], [11], [12], and we define the problem in the same 
way. Namely, we consider n independent, nonpreemptable jobs, each of them si-
multaneously requiring for its processing at time t a machine from a set of m  
parallel, identical machines (the discrete resource) and an amount (unknown in 
advance) ui(t) ∈ [0, 1], i = l, 2, . . . , n, of a continuous renewable resource. The 
job model is given in the form: 
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where xi(t) is the state of job i at time t, fi is an increasing continuous function, 
fi(0) = 0, Ci is (unknown in advance) completion time of job i, and ix~  is its 

processing demand (final state). We assume, without loss of generality, that 
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i i tu1 1)(  for every t. The problem is to find a sequence of jobs on machines 

and, simultaneously, a continuous resource allocation that minimizes the given 
scheduling criterion. The problem is computationally complex and is at least as 
hard as the classical RCPSP (Resource Constrained Project Scheduling Problem), 
since the existence of an additional continuous resource cannot make the problem 
any simpler [11], [12]. The defined problem can be decomposed into two interre-
lated sub problems: (i) to find a feasible sequence of jobs on machines, and (ii) to 
allocate the continuous resource among jobs already sequenced. The notion of a 
feasible sequence is of crucial importance. According to [10] a feasible schedule 
can be divided into p ≤ n intervals defined by completion times of consecutive 
jobs. Let Zk denote the combination of jobs processed in parallel in the k-th inter-
val. Thus, in general, a feasible sequence FS of combinations Zk, k = l, 2,..., p, can 
be associated with each feasible schedule. Feasibility of such a sequence requires 
that the number of elements in each combination does not exceed m and that each 
job appears exactly in one or in consecutive combinations in FS (nonpreemptabili-
ty). It has been shown in [9] that for concave job models and the schedule length 
minimization problem, it is sufficient to consider feasible sequences of combina-
tions Zk, k = l, 2,..., n - m + l, composed of exactly m jobs each. For a given feasi-
ble sequence FS of jobs on machines, we can find an optimal continuous resource 
allocation, i.e. an allocation that leads to a schedule minimizing the given criterion 
from among all feasible schedules generated by FS. At this point, a convex ma-
thematical programming problem has to be solved, in the general case (see [9]). 
An optimal schedule for a given feasible sequence (i.e. a schedule resulting  
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from an optimal continuous resource allocation for this sequence) is called a semi-
optimal schedule. In consequence, a globally optimal schedule can be found by 
solving the continuous resource allocation problem optimally for all feasible  
sequences. Unfortunately, in general, the number of feasible sequences grows ex-
ponentially with the number of jobs. Therefore it is justified to apply some  
approximation algorithm or metaheuristic. 

Because finding an optimal allocation of a continuous resource to a feasible 
schedule requires using specialized and time-consuming solver, an idea of conti-
nuous resource discretisation was proposed in [12]. We use the same approach in 
the chapter. Namely, we assume that the number of possible continuous resource 
allocations to a task Ji is Di, i.e. is fixed, and the amount of the continuous re-
source for each li = 1, 2, … , Di is known in advance (in the original problem there 
was infinite number of the continuous resource allocations to a task and the 
amount of the continuous resource to be allocated was not known in advance). Be-
cause a different amount of the continuous resource is allocated to task Ji for each 
li , li  is called a processing mode of task Ji. Such discretisation of the continuous 
resource allows treating it as a discrete resource. 

The problem of scheduling jobs on multiple machines under additional  
continuous resource with continuous resource discretisation is NP-hard [12]. A 
population-learning algorithm (SLA) first proposed in [6] was used to tackle the 
problem, since it was effective in solving other scheduling problems considered in 
[5], [3], [4]. Promising results obtained by the proposed in [8] version of PLA - 
PLA1 proved the approach for solving ΘZ to be effective and caused the design of 
PLA2 proposed in [8]. PLA2 uses four main procedures: a cross-entropy (CE), a 
Tabu Search (TS) procedure, an island-based evolutionary algorithm (IBEA), and a 
population-based evolutionary algorithm (PBEA). All mentioned procedures could 
be viewed as independent and cooperating agents and used to design an agent sys-
tem. Because all the procedures used in PLA2 were thoroughly described in [7]  
and [8] we only briefly remind the procedures in this work in Sections 3.1-3.4  
respectively. 

The main goal of our research was to find out whether the interconnection to-
pology of a learning stages (or islands), might have some effect on the algorithm’s 
efficiency. For this reason we proposed six versions of PLA2 that differ from each 
other by their structure and migration scheme. We assume that the efficiency of 
the algorithm is its ability to yield “good” quality solutions of a problem within a 
given number of fitness function evaluations. On this basis we have compared all 
proposed versions of PLA2 making them to carry out the same or approximately 
the same number of fitness function evaluations. Assuming such approach it is 
easier to judge on the efficiency of the proposed versions of PLA2 by only com-
paring the quality of the solutions they yielded. A computational experiment, de-
scribed in Section 4, was carried out to test the influence of the interconnection 
topology of the available islands and the possible influence of migration size be-
tween CE-island and IBEA-islands on the quality of the PLA2 found solutions. 
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2   Problem Formulation 

We define a problem ΘZ in the same way as in [12]. Namely, let 
J = {J1, J2, … , Jn} be a set of nonpreemtable tasks, with no precedence relations 
and ready times ri = 0, i = 1, 2, … , n, and P = {P1, P2, … , Pm} be a set of parallel 
and identical machines, and there is one additional renewable discrete resource in 
amount U = 1 available. A task Ji can be processed in one of the modes 
li = 1, 2, … , Di (Di – the number of processing modes of task Ji), for which Ji re-
quires a machine from P and amount of the additional resource known in advance. 
The processing mode of Ji cannot change during the processing. For each task two 

vectors are defined: a processing times vector ],...,,[ 21 iD
iiii ττττ = , where il

iτ  is the 

processing time of task Ji in mode li = 1, 2, … , Di and a vector of additional re-

source quantities allocated in each processing mode ],...,,[ 21 iD
iiii uuuu = . The 

problem is to find processing modes for tasks from J and their sequence on ma-
chines from P such that schedule length Q = max{Ci}, i = 1, ... , n is minimized. 

3   Population Learning Algorithm 

Population learning algorithm proposed in [6] has been inspired by analogies to a 
social phenomenon rather than to evolutionary processes. The population learning 
algorithm takes advantage of features that are common to social education  
systems: 
 
− A generation of individuals enters the system. 
− Individuals learn through organized tuition, interaction, self-study and self-

improvement. 
− Learning process is inherently parallel with different schools, curricula, teach-

ers, etc. 
− Learning process is divided into stages. 
− More advanced and more demanding stages are entered by a diminishing num-

ber of individuals from the initial population (generation). 
− At higher stages more advanced education techniques are used.  
− The final stage can be reached by only a fraction of the initial population. 
 
All individuals (solutions) used in the PLA2 procedure can be characterized in the 
following manner: 
 
− an individual (a solution) is represented by an n-element vector 

S = [ci 1 ≤ i ≤ n], 
− all processing modes of all tasks are numbered consecutively. Thus processing 

mode lb of task Jb has the number b
b
i ib lDc +=  −
=

1
1 , 

− all S representing feasible solutions are potential individuals,  
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− each individual can be transformed into a schedule by applying LSG, which is a 
specially designed list-scheduling algorithm for discrete-continuous scheduling, 

− each schedule produced by the LSG can be directly evaluated in terms of its 
fitness. 

 
The PLA2 model can be also viewed as an island model, were islands are con-
nected to each other according to some topology and exchange individuals in or-
der to collectively find best possible solution to the problem. Such island-based 
design can be easily transferred to an agent system with cooperating agents. We 
used three kinds of learning procedures to design PLA2: cross-entropy (CE), Tabu 
search (TS), and an island-based evolutionary algorithm (IBEA) all combined into 
some structures. As a learning procedure IBEA uses population-based evolutio-
nary algorithm (PBEA) to evolve a population on an island, which is described in 
Section 3.3. PBEA is also used to evolve solutions on an island independently on 
IBEA, for example in case with random solution migration among islands. We 
distinguish two categories of island groups – heterogeneous and homogeneous, 
dependently on the type of the learning procedures carried out on the islands. We 
refer to the group of islands as heterogeneous, if the learning procedures carried 
out on at least one island is different from the learning procedures carried out on 
the rest of the islands in the group. We refer to the group of islands as homogene-
ous, if the same learning procedure is carried out on each island in the group. In 
our work, we will refer to a particular island as heterogeneous (Ht), if CE or TS 
procedure is carried out on it, and homogeneous (Hm), if PBEA is carried out on 
it. We will use the terms a learning procedure and an island interchangeably. The 
main goal of our research was to find out whether a topology of a learning stages 
(or islands), might have some effect on the algorithm’s efficiency. For this reason 
we proposed several versions of PLA2 that differ from each other by their struc-
ture and migration scheme. We will refer to these versions of PLA2 as algorithms, 
and some letter code will be assigned to each of them. In order to distinguish the 
algorithms, we considered two their basic types, each of them having two topolo-
gy schemes. In the first basic type, all islands participate in the solution evolution 
and migration at least once, but only selected islands take part in the cyclic solu-
tion migration among islands (the letter code for this version will contain letter 
“S”). In the second basic type – all islands take part in the cyclic solution migra-
tion among islands (the letter code for this version will contain letter “A”). As it 
was mentioned above, each basic type appears in two topology schemes. In the 
first topology scheme, islands are located on a directed ring and the individuals 
migrate among the islands along the ring (the letter code for this scheme will con-
tain letter “O” and we will refer in the following text to this topology as a ring to-
pology). In the second topology scheme – individuals migrate between randomly 
chosen pairs of the islands (the letter code for this scheme will contain letter “X” 
and we will refer in the following text to this topology as a random topology). 
Moreover, the letter code for the algorithms in which CE procedure sends multiple 
solutions to the island-in-pair during the migration phase will contain letter “m”. 
For the version where CE procedure sends a single solution to the island-in-pair  
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during the migration phase the letter code will contain letter “s”. Therefore, the 
letter code “AO-m” stands for the algorithm in which all islands comprise a di-
rected ring of heterogeneous islands and procedure CE sends multiple solutions to 
the island-in-pair during the migration phase. In our present research, we consider 
six versions of PLA2, namely: SO, SX, AO-m, AO-s, AX-m, and AX-s. Because 
all proposed algorithms are versions of PLA2, they have common phases, which 
are shown in a generalized versions as S- or A-algorithms. The pseudo codes, as 
well as figures illustrating all the proposed algorithms are given below. In a sim-
plified graphic illustration of the algorithms in Figures 1 - 4, solid lines show is-
lands participating in the cyclic solution migration and dash-dot lines show islands 
where learning procedures are carried out only once. 

S-algorithm 
Begin 
Create an initial population P0 of the size x0 - 1 
using procedure cross-entropy (CE). 
Create an individual TSI in which all tasks Ji are to 
be executed in mode li = 1 (a mode characterized by 

minimal quantity of additional resource 1
iu  and max-

imal task processing time 1
iτ , 1 ≤ i ≤ n). 

Improve the individual TSI with the tabu search (TS) 
procedure. 
Create population P1 = P0 + TSI. 
Distribute equally individuals from P1 among all Hm-
islands. 
Carry out the appropriate Learning stage SO or SX 
designed for SO and SX algorithms respectively. 
Output the best solution to the problem. 

End. 

Learning stage SO  
Begin 
Improve individuals on Hm-islands with procedure 
IBEA. 

End. 

Learning stage SX  
Begin 
Improve individuals on each Hm-island with procedure 
PBEA, cyclically exchanging best solutions between 
randomly chosen pairs of Hm-islands. 

End. 

In all proposed algorithms, x0 = K·PS, where K – the number of homogeneous is-
lands and PS – the population size on an island defined in procedure IBEA. 
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Fig. 1 A simplified scheme of SO algorithm 

 

Fig. 2 A simplified scheme of SX algorithm 

A-algorithm 
Begin 
Create an initial population P0 of the size x0 using 
cross-entropy procedure (CE). 
Distribute equally individuals from P0 among all Hm-
islands. 
Create an individual TSI in which all tasks Ji are to 
be executed in mode li = 1 (a mode characterized by 

minimal quantity of additional resource 1
iu  and max-

imal task processing time 1
iτ , 1 ≤ i ≤ n). 

Send TSI to the Tabu Search (TS) procedure. 
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Carry out the appropriate Learning stage AO or AX 
designed for AO and AX algorithms respectively. 
Output the best solution to the problem. 

End. 

 

Fig. 3 A simplified scheme of AO algorithm 

Learning stage AO 
Begin 
Create a directed ring of all available islands as 
follows:  
Hm1, Ht1(TS), Hm2, Hm3, Ht2(CE), … , HmK, where K • 3. 
Improve individuals on the islands with the assigned 
to the islands procedures cyclically sending best 
solution from each island along the ring. 

End. 

Learning stage AX 
Begin 
Improve individuals on all available islands with 
the assigned to the islands procedures cyclically 
exchanging best solution between randomly chosen 
pairs of islands. 

End. 

In the AO algorithm, CE procedure receives multiple solutions from the homoge-
neous islands Hm1, Hm2 and Hm3, and sends a single solution to Hm4 (or Hm1, 
when K = 3) in AO-s algorithm, or multiple solutions in AO-m algorithm. In AX 
algorithm CE procedure also receives multiple solutions from Hm1, Hm2 and Hm3, 
and sends to the randomly chosen island a single solution in AX-s algorithm, or 
multiple solutions in AX-m algorithm. On all homogeneous islands Hmi, 
i =1, 2, … , K we used PBEA procedure. 
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Fig. 4 A simplified scheme of AX algorithm 

3.1   A Cross-Entropy Algorithm 

In PLA2 the proposed CE procedure is perceived as the procedure preparing some 
solution basis for further improvement by procedure IBEA. In CE procedure a 
cross-entropy (CE) method first proposed in [13] is used since it was effective in 
solving various difficult combinatorial optimization problems [1]. It follows from 
the definition of the solution vector S that a number ci in S unequivocally identi-
fies a task and the task processing mode. In order to use CE method, we would 
like to know the probability of locating a task Ji on a particular place j in the vec-
tor. For this reason we introduce two success probability vectors jp̂  and jip′ˆ  re-

lated to each task Ji and its place j in solution S. Vector ]1  [ˆ nipp jij ≤≤= , 

1 ≤ j ≤ n contains pji values, which is the probability that on the place j there will 
be located a task i. Vector ]1  [ˆ ijilji Dlpp ≤≤=′ , 1 ≤ j ≤ n, 1 ≤ i ≤ n contains pjil 

values, which is the probability that on place j task i will be executed in mode l. A 
procedure CE using cross-entropy method for combinatorial optimization de-
scribed in [1] and modified for solving ΘZ problem is shown in the following 
pseudo code: 
 

Procedure CE 
Begin 
Set ic = 1 (ic - iteration counter), icstop – maximal 
number of iterations, a:= 1. 

Set .1 , ]1 1[ˆ njninpp jij ≤≤≤≤==  

Set .1 ,1 , ]1 1[ˆ ninjDlDpp iijilji ≤≤≤≤≤≤==′  
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While ic ≤ icstop do 
Generate a sample S1, S2, … , Ss, … , SN of solutions 
with success probability vectors jp̂  and jip′ˆ . 

Order S1, S2, … , Ss, … , SN by values of their fit-
ness function non-decreasingly. 

Set   1) (0, , ∈⋅= ρργ N . 

Set 

 1 
))((

ˆ 1
















≤≤

=
==  = ni

ijSI
pp s s

jij γ

γ

, (2)

1 ≤ j ≤ n, I(Ss(j) = i) = 1, I(Ss(j) • i) = 0, where 
Ss(j) – number of the task located on j-th place in 
s-th solution S. 
Set 
















≤≤

=
==′  =

i
s s

jilji Dl
ljiSI

pp 1 
))((

ˆ 1

γ

γ

, (3)

1 ≤ j ≤ n, 1 ≤ i ≤ n, I(Ss(ji) = l) = 1, 
I(Ss(ji) ≠ l) = 0, where Ss(ji) – an execution mode 
of task i located on j-th place in s-th solution S. 

Save the first h = K·PS / icstop best solutions from 
the ordered sample into P0 under address a. Set 
a:= a + h. 
Set ic:= ic + 1. 

EndWhile. 
EndProcedure. 

In the presented pseudo code, a parameter N is the number of solutions in a sample 
generated in each iteration. A parameter ρ determines the percentage of the best 
solutions in the current sample that are used to calculate new values for the vectors 

jp̂  and jip′ˆ . The both parameters were determined empirically and set N = 1000 

and ρ = 0,2. Parameters K – the number of islands and PS – the population size are 
defined in procedure IBEA and PBEA respectively.  

3.2   Tabu Search 

Tabu search is another metaheuristic used in the considered versions of PLA (see 
[4]). To present general idea of the present implementation of the tabu search pro-
cedure we introduce the neighborhoods Nt and Nmd of a solution S. Nt is a set of 
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solutions generated from S by moving a task Ji ∈ S from place i to the rest n – 1 
places. Thus we yield Nt  = n⋅(n - 1) neighbors. Nmd is a set of solutions generat-
ed from S by assigning to task Ji ∈ S one by one in a row all of its D modes, as-
suming that all tasks can be executed in D modes. Thus we yield another 
Nmd  = n⋅(D - 1) neighbors. The considered tabu search procedure is shown in 
the following pseudo code:  

Procedure TS 
Begin 
Set S0 = initial solution TSI (li = 1, 1 • i • n). 
Set the best solution Sbest = S0. 

Set Tabu List TL = ∅. 

Set Nt = {S0} and Nmd = ∅. 
Set nit = 7 (determined empirically). 
Repeat the following max_number_of_iterations times: 
Find the best legal neighbour Sbln of S0, i.e. the 
best across Nt and Nmd neighbour which is not on TL. 
Set S0 = Sbln. 
If Sbln is more fit than Sbest then Sbest = Sbln.  
Put Sbln on the Tabu list. 
If the fitness of S0 has not improved after nit num-
ber of iterations construct a new solution by mov-
ing a task Ji in S0 to one of the chosen randomly 
less frequently visited places on the task list and 
assigning to it one of the chosen randomly less 
frequently assigned execution modes. 

EndRepeat. 
End. 

 
The size of the Tabu List (TL) was determined empirically and set to 500  
solutions. 

3.3   An Island-Based Evolutionary Algorithm 

The following pseudo-code shows main stages of the IBEA algorithm: 

Procedure IBEA 
Begin 

Set the number of islands K, the number of popula-
tions PN to be evolved on each island. 

While no stopping criteria is met do 

For each island Ik do 

Evolve PN generations using procedure PBEA.  
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Send the best solution to I(k mod K) + 1.  

Incorporate the best solution from  
I((K+k -2) mod K) + 1 instead of the best one.  

EndFor 

EndWhile 

Find the best solution across all islands and save it 
as the final one.  

End. 

3.4   A Population-Based Evolutionary Algorithm 

Population-based evolutionary algorithm (PBEA) proposed in [7] as a part of 
IBEA for solving discrete-continuous scheduling problem is used as a learning 
procedure to evolve solutions on homogeneous islands in all considered versions 
of PLA2. PBEA algorithm is shown in the following pseudo-code: 

Procedure PBEA 
Begin 
Set population size PS. 
Set ic:= 0; (ic - iteration counter).  
While no stopping criteria is met do 
Set ic:= ic + 1, 
Calculate fitness factor for each individual in 
PPic-1 using LSG, 
Form new population PPic:  

Select randomly a quarter of PS of individuals 
from PPic-1 (probability of selection depends on 
fitness of an individual). 
Produce a quarter of PS of individuals by apply-
ing crossover operator to previously selected in-
dividuals from PPic-1. 
Produce a quarter of PS of individuals by apply-
ing mutation operators to previously selected in-
dividuals from PPic-1. 
Generate half of a quarter of PS of individuals 
from set of potential individuals (random task 
processing mode and task order). 
Generate half of a quarter of PS of individuals 
from set of potential individuals (random task 
processing mode and ascending order of the task 
numbers). 

EndWhile 
End. 
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LSG algorithm used within PBEA is carried out in three steps as follows: 

Procedure LSG 
Begin 
Construct a list of tasks from the code representing 
individuals. Set loop over tasks on the list.  
Within the loop, allocate current task to a machine 
considering the amount of a continuous resource al-
lotted to the task, and minimizing the beginning time 
of its processing. Continue with tasks until all have 
been allocated.  
Calculate the fitness of the individual S as 
Qu = max{Ci}, i = 1, ... , n.  
End. 

4   Computational Experiments 

The proposed six versions of the cross-entropy based population learning algo-
rithm for solving discrete-continuous scheduling problems with continuous re-
source discretisation were implemented and tested. The efficiencies of all six algo-
rithms were compared to each other, as well as to the tabu search (TS) procedure, 
used within each of the algorithms which was run in addition as an independent 
algorithm. In the procedure CE, as it was mentioned earlier, parameters ρ and N 
were determined empirically and set N = 1000 and ρ = 0,2. The size of the Tabu 
List (TL) was determined empirically as well, and set to 500 solutions. For testing 
purposes three combinations of n x m were considered (n – the number of tasks 
and m – the number of machines): 10x2, 10x3, and 20x2. For each combination 
n x m 100 instances of a problem ΘZ were generated and three discretisation levels 
D were considered: 10, 20, and 50. This way we considered nine sizes of the prob-
lem: 10x2x10, 10x2x20, 10x2x50, 10x3x10, … , 20x2x50, which makes 900 in-
stances of the problem in total. In all problem instances, we have used the same as 
in [12] the task processing rate function calculated according to the formula: 

},2 ,1{,/1 ∈= i
l
i

l
i

iii uf αα  (4)

where αi could take the values 1 and 2 with the same probability. The values of the 
task processing times were calculated according to the formula: 
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The continuous resource was discretised uniformly according to the formula: 
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Each of the considered algorithms carried out about 720000 fitness function eval-
uations to yield one solution for the instance of the problem. Each instance was 
tested 43 times by all the proposed algorithms. Mean time required by the consi-
dered algorithms to find a solution for the problem sizes 10x2 and 10x3 for all 
discretisation levels on Pentium (R) 4 CPU 3.00GHz compiled with aid of Bor-
land Delphi Personal v.7.0 was approximately 4 - 7s, and for the problem size 
20x2 for all discretisation levels approximately 8 – 13s. 

In order to evaluate the efficiency of the proposed algorithms we used such pa-
rameters as relative errors (minimum, average, maximum) of the solutions yielded 
by the algorithms, as well as percentage of the best found solutions of the same 
quality as the best-known solutions. Relative errors (RE) of the solutions com-
pared to the best-known solutions were calculated according to the formulae 
RE = (QPLA2 − Qbest−known)/Qbest−known, where Q – the quality of a considered solu-
tion. The set of the best-known solutions was determined by the authors while us-
ing all designed by them procedures and algorithms, namely PBEA, IBEA, TS, 
PLA1, PLA2, AX-m, AX-s, SX, SO, AO-m, AO-s, for solving problem ΘZ. We 
have determined REmin and REmax for every size of the considered problem as a 
minimum or respectively maximum RE across 4300 REs calculated while solving 
each of the 100 instances 43 times. We have also determined REavg as a mean val-
ue of 4300 REs obtained within 43 runs of 100 instances of the considered prob-
lem. The values of REmin, REavg and REmax of the solutions found by all proposed 
algorithms for all problem sizes are presented in Tables 1 - 9. The values of REs 
in Tables 1 - 9 show how much schedules yielded by the proposed algorithms 
were longer than the best known schedule for the same case. For example, in Ta-
ble 1 for the case 10x2x10 for SO algorithm, REavg = 3.28% means that the sche-
dule length of all schedules yielded by SO algorithm was on average 3.28% longer 
than the best-known. For the same case, REmax = 9.76% means that the longest 
schedule among all schedules yielded by SO algorithm was 9.76% longer than the 
best-known. To make it easier to evaluate their efficiency, in Tables 1 - 9 below, 
we have ordered the algorithms according to their REs non-decreasingly. 

Table 1 The algorithms ordered non-decreasingly according to their REmin, REavg and  
REmax for the size 10x2x10 of the problem Θz 

Nr Algm REmin  Algm REavg  Algm REmax 

1 SX 0,01%  SO 3,28%  SO 9,76% 

2 AO-m 0,01%  SX 3,31%  TS 9,91% 

3 AO-s 0,01%  TS 3,49%  SX 10,00% 

4 AX-m 0,01%  AX-m 3,54%  AX-s 11,39% 

5 AX-s 0,01%  AX-s 3,58%  AX-m 12,33% 

6 TS 0,01%  AO-m 6,30%  AO-m 14,68% 

7 SO 0,19%  AO-s 6,30%  AO-s 16,53% 
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For the problem size 10x2x10, according to the values of the REmin in Table 1, 
SO algorithm has the largest REmin, however quite close to the REs of the other 
algorithms. On the other hand, considering REavg, SO algorithm has the lowest 
REavg, and this way, is the leader in a group of the algorithms: SO, SX, TS, AX-m, 
AX-s, with similar REavg values. The algorithms AO-m, AO-s make another group 
of the same REavg values, where REavg is about twice higher than in the first group. 
Considering REmax, it is also possible to classify the algorithms into two groups: 
with low REmax: SO, TS, SX, and with high REmax: AX-s, AX-m, AO-m, AO-s. In 
the first group the algorithms differ from 9,76% to 10,00%, while in the second – 
from 11,39% to 16,53%. For the problem size 10x2x10, REmin ∈ [0,01%, 0,19%], 
REavg ∈ [3,28%, 6,30%], REmax ∈ [9,76%, 16,53%]. Generally, according to Ta-
ble 1, the algorithms exploiting the directed ring migration scheme (the ring to-
pology) or random migration scheme (the random topology), built exclusively on 
homogeneous islands, as well as scheme built on all islands with the random to-
pology perform better, than the algorithms exploiting the ring topology built on all 
islands - both homogeneous and heterogeneous. This way, for the size 10x2x10 – 
SO, SX and AX-s perform better than the rest of the algorithms. 

Table 2 The algorithms ordered non-decreasingly according to their REmin, REavg and  
REmax for the size 10x3x10 of the problem Θz 

Nr Algm REmin  Algm REavg  Algm REmax 

1 AX-s 0,00%  SO 4,67%  SO 15,92% 

2 SO 0,00%  AX-m 4,68%  AX-m 16,07% 

3 AX-m 0,00%  SX 4,69%  TS 17,72% 

4 SX 0,01%  AX-s 4,74%  SX 18,39% 

5 TS 0,07%  TS 5,36%  AX-s 19,33% 

6 AO-m 0,10%  AO-m 8,66%  AO-s 25,67% 

7 AO-s 0,28%  AO-s 8,71%  AO-m 26,06% 

 
For the problem size 10x3x10, according to the values of the REmin in Table 2, 

algorithms AX-s, SO, AX-m were able to find the best-known solutions, and algo-
rithms: SX, TS, AO-m, AO-s could not. However, REmin values of the latter group 
do not differ significantly from the best-known solutions, namely, from 0,01% to 
0,28%. Considering REavg, SO algorithm has the lowest REavg, and this way, is the 
leader in a group of the algorithms: SO, AX-m, SX, AX-s with REavg values dif-
fering from 4,67% to 4,74%. TS algorithm is in-between the first group and the 
third, made of AO-m and AO-s algorithms, whose REavg values are considerably 
higher than in the first group, i.e. 8,66% and 8,71% respectively. Speaking about 
REmax, it is also possible to classify the algorithms into two groups of similar val-
ues of REmax: SO, AX-m, TS, SX, from 15,92% to 18,39%, and a group of high 
REmax: AX-s, AO-s, AO-m, from 19,33% to 26,06%. For the problem size 
10x3x10, we also give the intervals to which belong the values of the considered 
parameters, i.e. REmin ∈ [0,00%, 0,28%], REavg ∈ [4,67%, 8,71%], and finally,  
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REmax ∈ [15,92%, 26,06%]. As it could be seen, the REavg and REmax of all algo-
rithms have increased while scheduling 10 tasks on 3 machines compared to sche-
duling 10 tasks on 2 machines. In this case again, homogeneous ring topology, as 
well as random topology for both homogeneous and heterogeneous structures pre-
formed better than other algorithms. In addition, it can be noticed, that the algo-
rithms where CE procedure sends multiple solutions during the migration phase 
perform better, than when it sends a single solution. To finalize, for the size 
10x3x10 – SO, AX-m and SX perform better, than the other algorithms. 

For the problem size 20x2x10, according to the values of the REmin in Table 3, 
only algorithm AX-m was able to find the best-known solutions, and the rest of 
the algorithms - could not. According to REmin, the algorithms: AX-s, SX, SO, TS 
make a middle group with the values from 0,26% to 0,68%. The algorithms AO-m 
and AO-s make the third group with REmin values from 1,12% to 1,16%, and are 
nearly twice as high as in the middle group. Considering REavg, AX-m algorithm 
has the lowest REavg, and is the leader in a group of the algorithms: AX-m, AX-s, 
SO, SX, TS with REavg values differing from 4,76% to 6,26%. The algorithms 
AO-s, AO-m make the third group of the similar REavg values, where REavg is 
from 9,19% to 9,31% which are considerably higher than in the middle group. 
Considering REmax, it is also possible to classify the algorithms into two groups: 
with low REmax: SO, SX, AX-m, TS, AX-s, with the values from 11,47% to 
12,54%, and another group: AO-m, AO-s, with high REmax values from 16,71% to 
18,19%. For the problem size 20x2x10, the intervals of the REs are as follow: 
REmin ∈ [0,00%, 1,16%], REavg ∈ [4,76%, 9,31%], REmax ∈ [11,47%, 18,19%]. 
For this problem size, our observations on the topology point at the random topol-
ogy of both heterogeneous and homogeneous structures, as well as homogeneous 
ring topology as most efficient ones. Here, CE procedure sending multiple solu-
tions during the migration phase, perform better than when it sends only a  
single solution. For the size 20x2x10, AX-m, SO and AX-s are the most efficient 
algorithms. 

Table 3 The algorithms ordered non-decreasingly according to their REmin, REavg and  
REmax the size 20x2x10 of the problem Θz 

Nr Algm REmin  Algm REavg  Algm REmax 

1 AX-m 0,00%  AX-m 4,76%  SO 11,47% 

2 AX-s 0,26%  AX-s 4,86%  SX 11,74% 

3 SX 0,40%  SO 5,46%  AX-m 11,81% 

4 SO 0,51%  SX 5,56%  TS 12,09% 

5 TS 0,68%  TS 6,26%  AX-s 12,54% 

6 AO-m 1,12%  AO-s 9,19%  AO-m 16,71% 

7 AO-s 1,16%  AO-m 9,31%  AO-s 18,19% 

 



Structure vs. Efficiency of the Cross-Entropy Based PLA2 93
 

Table 4 The algorithms ordered non-decreasingly according to their REmin, REavg and  
REmax for the size 10x2x20 of the problem Θz 

Nr Algm REmin  Algm REavg  Algm REmax 

1 SX 0,00%  SO 2,05%  SO 6,67% 

2 AO-m 0,00%  SX 2,07%  SX 7,04% 

3 AO-s 0,00%  AX-m 2,27%  TS 7,66% 

4 AX-m 0,00%  AX-s 2,33%  AX-m 9,14% 

5 AX-s 0,00%  TS 2,36%  AX-s 12,40% 

6 TS 0,00%  AO-m 4,99%  AO-m 17,18% 

7 SO 0,00%  AO-s 5,01%  AO-s 17,60% 

 
For the problem size 10x2x20, according to the values of the REmin in Table 4, 

all algorithms were able to find the best-known solutions. Here, REmin = 0,00%, 
REavg ∈ [2,05%, 5,01%], REmax ∈ [6,67%, 17,60%]. The algorithms implementing 
ring or random topologies realized on homogeneous islands, as well as random to-
pology realized on all islands have considerably lower REavg and REmax in compar-
ison with the algorithms exploiting the ring topology built on all islands. Thus, 
SO, SX and AX-m algorithms outperform the other algorithms while solving the 
problem of the size 10x2x20. 

Table 5 The algorithms ordered non-decreasingly according to their REmin, REavg and  
REmax for the size 10x3x20 of the problem Θz 

Nr Algm REmin  Algm REavg  Algm REmax 

1 AX-m 0,00%  AX-m 3,61%  AX-m 14,71% 

2 SX 0,00%  AX-s 3,73%  SO 15,18% 

3 AX-s 0,00%  SO 3,87%  AX-s 15,89% 

4 TS 0,00%  SX 4,06%  SX 16,66% 

5 SO 0,00%  TS 4,95%  TS 18,28% 

6 AO-m 0,00%  AO-s 8,13%  AO-m 24,24% 

7 AO-s 0,08%  AO-m 8,13%  AO-s 26,03% 

 
For the problem size 10x3x20, according to the values of the REmin in Table 5, 

all algorithms, except for AO-s, were able to find the best-known solutions. Here, 
REmin ∈ [0,00%, 0,08%], REavg ∈ [3,61%, 8,13%], REmax ∈ [14,71%, 26,03%]. 
The overall results for the size 10x3x20 are nearly the same as for 10x2x20, i.e. 
the algorithms implementing random or ring topologies realized on homogeneous 
islands, as well as random topology realized on all islands have considerably low-
er REavg and REmax in comparison with the algorithms exploiting the ring topology 
built on all islands. However, for this size of the problem AX-m algorithm has 
lower REavg and REmax than SO. Thus, AX-m, SO and AX-s algorithms outper-
form the other algorithms while solving the problem of the size 10x3x20. 



94 P. Jędrzejowicz and A. Skakovski
 

Table 6 The algorithms ordered non-decreasingly according to their REmin, REavg and  
REmax for the size 20x2x20 of the problem Θz 

Nr Algm REmin  Algm REavg  Algm REmax 

1 SX 0,00%  AX-m 2,05%  AX-m 9,08% 

2 AX-m 0,00%  SO 2,43%  SO 9,76% 

3 AX-s 0,00%  AX-s 2,53%  AX-s 9,90% 

4 SO 0,00%  AO-m 2,60%  TS 10,81% 

5 AO-m 0,00%  AO-s 2,72%  SX 11,00% 

6 AO-s 0,00%  SX 2,84%  AO-m 15,19% 

7 TS 0,53%  TS 5,09%  AO-s 15,61% 
 

For the problem size 20x2x20, according to the values of the REmin in Table 6, 
all island-based algorithms were able to find the best-known solutions. Here, RE-
min ∈ [0,00%, 0,53%], REavg ∈ [2,05%, 5,09%], REmax ∈ [9,08%, 15,61%]. The 
overall results for the size 20x2x20 are much alike as for 10x2x20, i.e. the algo-
rithms implementing random or ring topologies realized on homogeneous islands, 
as well as random topology realized on all islands have considerably lower REavg 
and REmax in comparison with the algorithms exploiting the ring topology built on 
all islands. Again, AX-m algorithm has lower REavg and REmax than SO for this 
size of the problem. Thus, AX-m, SO and AX-s algorithms outperform the other 
algorithms while solving the problem of the size 20x2x20. 

Table 7 The algorithms ordered non-decreasingly according to their REmin, REavg and  
REmax for the size 10x2x50 of the problem Θz 

Nr Algm REmin  Algm REavg  Algm REmax 

1 TS 0,00%  AX-m 2,47%  SO 8,69% 

2 SX 0,00%  AX-s 2,53%  TS 8,79% 

3 AX-m 0,00%  SO 2,77%  SX 9,23% 

4 AX-s 0,00%  SX 2,79%  AX-m 11,02% 

5 SO 0,00%  TS 3,09%  AX-s 11,19% 

6 AO-m 0,00%  AO-m 5,77%  AO-s 15,41% 

7 AO-s 0,03%  AO-s 5,78%  AO-m 16,61% 

 
For the problem size 10x2x50, according to the values of the REmin in Table 7, 

all island-based algorithms, except for AO-s, were able to find the best-known so-
lutions. Here, REmin ∈ [0,00%, 0,03%], REavg ∈ [2,47%, 5,78%], and finally RE-
max ∈ [8,69%, 16,61%]. The overall results for the size 10x2x50 show that the al-
gorithms implementing random or ring topologies realized on homogeneous 
islands, as well as random topology realized on all islands have considerably low-
er REavg and REmax in comparison with the algorithms exploiting the ring topology 
built on all islands. For the size 10x2x50 the result do not allow to unequivocally 
determine the most efficient algorithm, thus we distinguish AX-m, SO, SX and 
AX-s algorithms as more efficient than AO-m and AO-s algorithms. 
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For the problem size 10x3x50, according to the values of the REmin in Table 8, 
all algorithms were able to find the best-known solutions. Here, RE-
min ∈ [0,00%, 0,06%], REavg ∈ [3,31%, 5,91%], REmax ∈ [14,66%, 36,35%]. The 
overall results for the size 10x3x50 show that the algorithms implementing ran-
dom or ring topologies realized on homogeneous islands, as well as random topol-
ogy realized on all islands have considerably lower REavg and REmax in compari-
son with the algorithms exploiting the ring topology built on all islands. For this 
size of the problem, AX-m, AX-s and SX algorithms outperform the other algo-
rithms while solving the problem. 

Table 8 The algorithms ordered non-decreasingly according to their REmin, REavg and  
REmax for the size 10x3x50 of the problem Θz 

Nr Algm REmin  Algm REavg  Algm REmax 

1 AX-s 0,00%  AX-m 3,31%  AX-m 14,66% 

2 SX 0,00%  AX-s 3,46%  AX-s 16,59% 

3 AO-s 0,00%  SO 3,86%  SX 17,34% 

4 AX-m 0,00%  SX 4,18%  TS 18,16% 

5 SO 0,00%  TS 5,72%  AO-s 25,24% 

6 AO-m 0,00%  AO-s 5,86%  AO-m 27,02% 

7 TS 0,06%  AO-m 5,91%  SO 36,35% 

Table 9 The algorithms ordered non-decreasingly according to their REmin, REavg and  
REmax for the size 20x2x50 of the problem Θz 

Nr Algm REmin  Algm REavg  Algm REmax 

1 SO 0,00%  AX-m 3,84%  SX 11,31% 

2 SX 0,00%  AX-s 3,95%  SO 11,77% 

3 AX-m 0,00%  SO 5,18%  AX-m 12,44% 

4 AX-s 0,00%  SX 5,33%  AX-s 12,49% 

5 AO-m 0,87%  TS 6,19%  TS 12,65% 

6 AO-s 0,96%  AO-s 7,73%  AO-s 17,45% 

7 TS 1,05%  AO-m 7,80%  AO-m 18,76% 

 
For the problem size 20x2x50, according to the values of the REmin in Table 9, all 

algorithms, except for AO-m and AO-s, were able to find the best-known solutions. 
Here, we give the intervals of the REs’ values: REmin ∈ [0,00%, 0,96%], 
REavg ∈ [3,84%, 7,80%], REmax ∈ [11,31%, 18,76%]. The overall results for the size 
20x2x50 show that the algorithms implementing random or ring topologies realized 
on homogeneous islands, as well as random topology realized on all islands have 
considerably lower REavg and REmax in comparison with the algorithms exploiting 
the ring topology built on all islands. For the size 20x2x50 the result do not allow to 
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unequivocally determine the most efficient algorithm, thus we distinguish AX-m, 
SO, SX and AX-s algorithms as more efficient than AO-m and AO-s algorithms. 

In order to determine the percentages of the best found solutions for a particular 
problem size that are of the same quality as the best-known solutions, we had de-
termined the best solutions found within 43 runs of the algorithm for each of 100 
problem instances. Next, we counted how many solutions out of obtained 100 had 
the same quality as the best known for the same problem size and gave this num-
ber in percents. The percentages of the best solutions found by the proposed  
algorithms of the same quality as the best-known solutions are given in 
Tables 10 - 12.The results in the Tables 10 – 12 confirm unequivocally the pre-
vious conclusion, that the algorithms implementing random or ring topologies rea-
lized on homogeneous islands, as well as random topology realized on all islands 
are more efficient that the algorithms exploiting the ring topology built on all isl-
ands. Similarly as for REs, AX-m, AX-s and SX prevail other algorithms with 
clear dominance of AX-m and AX-s, i.e. the algorithms that implement the  
random topology realized on all islands.  

Table 10 The percentage of the best solutions (PBFS), ordered non-increasingly, found by 
the proposed algorithms that have the same quality as the best-known solutions for the dis-
cretisation level D = 10 

10x2x10 PBFS  10x3x10 PBFS  20x2x10 PBFS 

AX-m 69%  AX-s 52%  AX-s 47% 

SX 68%  AX-m 49%  AX-m 28% 

AX-s 66%  SX 46%  SX 11% 

SO 50%  SO 33%  SO 10% 

TS 44%  TS 22%  AO-s 2% 

AO-s 16%  AO-m 8%  TS 2% 

AO-m 8%  AO-s 3%  AO-m 0% 

Table 11 The percentage of the best solutions (PBFS), ordered non-increasingly, found by 
the proposed algorithms that have the same quality as the best-known solutions for the dis-
cretisation level D = 20 

10x2x20 PBFS  10x3x20 PBFS  20x2x20 PBFS 

AX-m 36%  AX-m 53%  SX 32% 

AX-s 36%  AX-s 37%  AX-m 32% 

SX 35%  SX 27%  AX-s 25% 

SO 31%  SO 17%  SO 12% 

TS 16%  AO-m 9%  AO-m 4% 

AO-m 10%  AO-s 9%  AO-s 2% 

AO-s 8%  TS 6%  TS 0% 
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Table 12 The percentage of the best solutions (PBFS), ordered non-increasingly, found by 
the proposed algorithms that have the same quality as the best-known solutions for the dis-
cretisation level D = 50 

10x2x50 PBFS  10x3x50 PBFS  20x2x50 PBFS 

AX-m 42%  AX-m 37%  AX-m 47% 

AX-s 30%  AX-s 27%  AX-s 40% 

SO 18%  SX 17%  SX 9% 

SX 18%  AO-s 12%  SO 3% 

TS 4%  SO 10%  TS 1% 

AO-m 3%  AO-m 6%  AO-m 0% 

AO-s 1%  TS 0%  AO-s 0% 

 
Although, it was possible to determine several most efficient algorithms for 

each conducted test, we still can’t distinguish the most efficient one. In order to do 
so, we need some universal measure, that could be applied for evaluation of the 
proposed algorithms. For this reason, we need to transform, or more precisely - 
normalize REmin, REavg, REmax and PBFS in a such way, that it would be possible 
to obtain some estimates that could be aggregated into one estimate, this way 
enabling the choice of the most efficient algorithm. Because RE and PBFS have 
opposite evaluation meaning, i.e. the lower RE – the better performance of the al-
gorithm, the lower PBFS – the worse performance of the algorithm, we introduce 
a new parameter NB = 1 – PBFS instead of PBFS. Thus, let 

max

min

x

xx
nep

−=  (7)

be the formula which we apply to REmin, REavg, REmax and NB within a paricular 
problem size in order to obtain a normalized estimate ne. In the Equation (7), p –
 one of the considered parameters, i.e. REmin, REavg, REmax or NB, x – the value of 
the considered parameter of the particular algorithm, xmin, xmax – the minimum or 
respectively maximum value of the considered parameter within the same problem 
size among all considered algorithms. After calculating ne values for all parame-
ters of all algorithms for all problem sizes, the values obtained for each algorithm 
were summed into an aggregated estimate. The values of the aggregated estimates 
were used to make a ranking of the considered algorithms, which is shown in Ta-
ble 13. As it could be seen in Table 13, the ranking implies the superiority of the 
algorithms implementing random topology realized on both heterogeneous and 
homogeneous islands over the algorithms implementing the ring topology.  
Thus, according to the ranking AX-m algorithm is the most efficient among all 
considered algorithms.  
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Table 13 A ranking of the considered algorithms according to the aggregated estimate  
values 

Alg-m Aggregated 
estimate 

Ranking 

AX-m 0,83 1 

AX-s 2,05 2 

SX 3,06 3 

SO 4,94 4 

TS 9,61 5 

AO-m 13,68 6 

AO-s 16,50 7 

Table 14 The ranges and deltas of REavg and REmax values for the considered problem sizes 
ordered by ΔREavg and ΔREmax non-decreasingly 

prbl. size REavg range ΔREavg  prbl. size REmax range ΔREmax 

20x2x20 2,05% - 5,09% 2,59%  20x2x20 9,08% - 15,61% 6,53% 

10x3x50 3,31% - 5,91% 2,60%  20x2x10 11,47% - 18,19% 6,72% 

10x2x20 2,05% - 5,01% 2,96%  10x2x10 9,76% - 16,53% 6,77% 

10x2x10 3,28% - 6,30% 3,02%  20x2x50 11,31% - 18,76% 7,45% 

10x2x50 2,47% - 5,78% 3,31%  10x2x50 8,69% - 16,61% 7,92% 

20x2x50 3,84% - 7,80% 3,96%  10x3x10 15,92% - 26,06% 10,14% 

10x3x10 4,67% - 8,71% 4,04%  10x2x20 6,67% - 17,60% 10,93% 

10x3x20 3,61% - 8,13% 4,52%  10x3x20 14,71% - 26,03% 11,32% 

20x2x10 4,76% - 9,31% 4,64%  10x3x50 14,66% - 36,35% 21,69% 

Table 15 The range and delta of PBFS values for the considered problem sizes ordered by 
ΔPBFS non-decreasingly 

prbl. size PBFS range ΔPBFS 

10x2x20 8% - 36% 28% 

20x2x20 2% - 32% 30% 

10x3x50 6% - 37% 31% 

10x2x50 1% - 42% 41% 

10x3x20 9% - 53% 44% 

20x2x10 0% - 47% 47% 

20x2x50 0% - 47% 47% 

10x3x10 3% - 52% 49% 

10x2x10 8% - 69% 61% 
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As it could be seen from the experimental results described above, it is possible 
to reduce the REs of the solutions found by the considered algorithms just by 
changing the interconnection topology of the constituent islands. The Table 14 
shows that by changing the interconnection topology REavg can be reduced by 
2,59% - 4,64% and REmax by 6,53% - 21,69% dependently on the problem size. 
The REavg and REmax ranges were taken from the Tables 1 – 9. Similarly, the Ta-
ble 15 shows that the percentage of the best found solutions that have the same 
quality as the best-known solutions can be increased by 28% - 61% dependently 
on the problem size. The PBFS ranges were taken from the Tables 10 – 12. 

Finally, in Tables 16 – 17, we observe the influence of the level of the conti-
nuous resource discretisation D on the REs of the found solutions. In Table 16, for 
the problem size 10x2xD, D ∈ {10, 20, 50}, for almost all algorithms except for 
AO-s, both REmin and REavg have the lowest values when D = 20. Thus, the influ-
ence of D on the REs for the considered problem size could generalized by the  
following relations: REmin/avg(D = 20) < REmin/avg(D = 50) < REmin/avg(D = 10). For 
the REmax, the results are mixed and it’s impossible to derive one clear rule for all 
algorithms. The influence of the discretisation level D on the REs of the solutions 
found by the considered algorithms for the problem size 10x3xD, 
D ∈ {10, 20, 50}, according to the Table 17 could be described generally by the 
following relations: REmin(D = 20) ≤ REmin(D = 50) < REmin(D = 10), except for 
AO-s, and REavg(D = 50) < REavg(D = 20) < REavg(D = 10), except for SX and TS. 
For the REmax, the results are mixed and it’s impossible to derive one clear rule for 
all algorithms. The influence of the discretisation level D on the REs of the solu-
tions found by the considered algorithms for the problem size 20x2xD, 
D ∈ {10, 20, 50}, according to the Table 18 could be described generally by the 
following relations: REmin(D = 20) ≤ REmin(D = 50) < REmin(D = 10) except for 
TS, and REavg(D = 20) < REavg(D = 50) < REavg(D = 10). For the REmax, the results 
are mixed and it’s impossible to derive one clear rule for all algorithms. Below we 
tabularise the obtained relations together in Table 19: 

Table 16 The influence of the level of the continuous resource discretisation D on the REs 
of the found solutions for the problem size 10x2xD, D ∈ {10, 20, 50} 

Algm  REmin    REavg    REmax  

 10 20 50  10 20 50  10 20 50 

AO-m 0,01% 0,00% 0,00%  6,30% 4,99% 5,77%  14,68% 17,18% 16,61% 

AO-s 0,01% 0,00% 0,03%  6,30% 5,01% 5,78%  16,53% 17,60% 15,41% 

AX-m 0,01% 0,00% 0,00%  3,54% 2,27% 2,47%  12,33% 9,14% 11,02% 

AX-s 0,01% 0,00% 0,00%  3,58% 2,33% 2,53%  11,39% 12,40% 11,19% 

SO 0,19% 0,00% 0,00%  3,28% 2,05% 2,77%  9,76% 6,67% 8,69% 

SX 0,01% 0,00% 0,00%  3,31% 2,07% 2,79%  10,00% 7,04% 9,23% 

TS 0,01% 0,00% 0,00%  3,49% 2,36% 3,09%  9,91% 7,66% 8,79% 



100 P. Jędrzejowicz and A. Skakovski
 

Table 17 The influence of the level of the continuous resource discretisation D on the REs 
of the found solutions for the problem size 10x3xD, D ∈ {10, 20, 50} 

Algm  REmin    REavg    REmax  

 10 20 50  10 20 50  10 20 50 

AO-m 0,10% 0,00% 0,00%  8,66% 8,13% 5,91%  26,06% 24,24% 27,02% 

AO-s 0,28% 0,08% 0,00%  8,71% 8,13% 5,86%  25,67% 26,03% 25,24% 

AX-m 0,00% 0,00% 0,00%  4,68% 3,61% 3,31%  16,07% 14,71% 14,66% 

AX-s 0,00% 0,00% 0,00%  4,74% 3,73% 3,46%  19,33% 15,89% 16,59% 

SO 0,00% 0,00% 0,00%  4,67% 3,87% 3,86%  15,92% 15,18% 36,35% 

SX 0,01% 0,00% 0,00%  4,69% 4,06% 4,18%  18,39% 16,66% 17,34% 

TS 0,07% 0,00% 0,06%  5,36% 4,95% 5,72%  17,72% 18,28% 18,16% 

Table 18 The influence of the level of the continuous resource discretisation D on the REs 
of the found solutions for the problem size 20x2xD, D ∈ {10, 20, 50} 

Algm  REmin    REavg    REmax  

 10 20 50  10 20 50  10 20 50 

AO-m 1,12% 0,00% 0,87%  9,31% 2,60% 7,80% 215 16,71% 15,19% 18,76% 

AO-s 1,16% 0,00% 0,96%  9,19% 2,72% 7,73% 251 18,19% 15,61% 17,45% 

AX-m 0,00% 0,00% 0,00%  4,76% 2,05% 3,84% 215 11,81% 9,08% 12,44% 

AX-s 0,26% 0,00% 0,00%  4,86% 2,53% 3,95% 251 12,54% 9,90% 12,49% 

SO 0,51% 0,00% 0,00%  5,46% 2,43% 5,18% 215 11,47% 9,76% 11,77% 

SX 0,40% 0,00% 0,00%  5,56% 2,84% 5,33% 251 11,74% 11,00% 11,31% 

TS 0,68% 0,53% 1,05%  6,26% 5,09% 6,19% 215 12,09% 10,81% 12,65% 

Table 19 The relations among the REs on different discretisation levels D, D ∈ {10, 20, 
50}, for the considered problem sizes 

Prbl.size Relations among the REs on different discretisation levels D, D ∈ {10, 20, 50} 

10x2xD REmin(D = 20) < REmin(D = 50) < REmin(D = 10) 

REavg(D = 20) < REavg(D = 50) < REavg(D = 10) 

REmax – mixed 

10x3xD REmin(D = 20) • REmin(D = 50) < REmin(D = 10), except for AO-s 

REavg(D = 50) < REavg(D = 20) < REavg(D = 10), except for SX and TS 

REmax – mixed 

20x2xD REmin(D = 20) • REmin(D = 50) < REmin(D = 10) except for TS 

REavg(D = 20) < REavg(D = 50) < REavg(D = 10) 

REmax – mixed 
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As it could be seen in Table 19, it’s impossible to determine unequivocally the 
discretisation level on which REs of the found solutions are the lowest. However, 
it could be pointed at the relation REs(D = 20) < REs(D = 50) < REs(D = 10) as 
the most frequent relation. This might impose the conclusion, that the high discre-
tisation level does not ensure the lowest values of the REs and the additional re-
search is needed to identify the most appropriate discretisation of the continuous 
resource. 

5   Conclusion 

In the chapter, we consider the population learning algorithm (PLA2), earlier de-
signed by the authors for solving the problem of scheduling non-preemtable tasks 
on parallel identical machines under constraint on discrete resource and requiring, 
additionally, renewable continuous resource to minimize the schedule length. The 
PLA2 model can be also viewed as an island model, were homogeneous as well as 
heterogeneous islands are connected to each other according to some topology and 
exchange individuals in order to collectively find best possible solution to the 
problem. The PLA2’s island-based design can be easily used to construct an agent 
system with cooperating agents. The main goal of our research was to find out 
whether a topology of a learning stages (or islands), might have some effect on the 
algorithm’s efficiency. For this reason we proposed six versions of PLA2 that dif-
fers from each other by their structure and migration scheme. The most important 
conclusion that can be drawn from the experimental results is that the interconnec-
tion topology of the constituent islands might have a noticeable impact on the 
quality of the solutions yielded by PLA2. It is possible to reduce the relative errors 
of the solutions found by PLA2 by order of 2,59% - 4,64% for REavg and 6,53% - 
21,69% for REmax dependently on the problem size. Similarly, the percentage of 
the best found solutions that have the same quality as the best-known solutions 
can be increased dependently on the problem size by 28% - 61%. The ranking of 
the considered algorithms that was designed to reveal the most efficient intercon-
nection topology implies the superiority of the algorithms implementing random 
topology realized on all available islands, i.e. heterogeneous and homogeneous, or 
exclusively on homogeneous islands, over the algorithms implementing the ring 
topology. However, the algorithm implementing the directed ring topology rea-
lized exclusively on homogeneous islands for some problem sizes yielded solu-
tions that had the lowest REavg and REmax values. It should be mentioned here, that 
all the conclusions are valid for particular implementations of the algorithms used 
in the experiments. The values of some parameters of the algorithms were deter-
mined during their tuning and should be determined on the way of an exhaustive 
experiment. Our further research should concern other parameters and intercon-
nection topologies that might allow to improve the efficiency of the algorithms 
that implement the island-based model. 
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Triple-Action Agents Solving the MRCPSP/Max
Problem

Piotr Jędrzejowicz� and Ewa Ratajczak-Ropel

Abstract. In this chapter the A-Team architecture for solving the multi-mode
resource-constrained project scheduling problem with minimal and maximal time
lags (MRCPSP/max) is proposed and experimentally validated. To solve this prob-
lem an asynchronous team of agents implemented using JABAT middleware has
been proposed. Four kinds of optimization agent has been used. Each of them acts in
three ways depending whether the received initial solution is feasible or not. Compu-
tational experiment involves evaluation of optimization agents performance within
the A-Team. The chapter contains the MRCPSP/max problem formulation, descrip-
tion of the proposed architecture for solving the problem instances, description of
optimization algorithms, description of the experiment and the discussion of the
computational experiment results.

1 Introduction

The chapter proposes an agent-based approach to solving instances of the
MRCPSP/max, known also in the literature as the MRCPSP-GPR problem.
MRCPSP stands for the Multi-mode Resource-Constrained Project Scheduling
Problem, max or GPR is used to describe precedence relations as minimal and
maximal time lags, also called Generalized Precedence Relations (GPR) or tem-
poral constraints or time windows. MRCPSP/max has attracted a lot of attention
and many exact and heuristic algorithms have been proposed for solving it (see for
example [20], [9], [10], [18], [3]).

MRCPSP/max is a generalization of the RCPSP/max and thus it is NP-hard [2].
The approaches to solve this problem produce either approximate solutions or can
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be applied for solving instances of the limited size. Hence, searching for more ef-
fective algorithms and solutions to the MRCPSP/max problem is still a lively field
of research. One of the promising directions of such research is to take advantage
of the parallel and distributed computation solutions, which are the feature of the
contemporary multiple-agent systems.

The multiple-agent systems are an important and intensively expanding area of
research and development. There is a number of multiple-agent approaches pro-
posed to solve different types of optimization problems. One of them is the con-
cept of an asynchronous team (A-Team), originally introduced in [21]. The A-Team
paradigm was used to develop the JADE-based environment for solving a variety
of computationally hard optimization problems called E-JABAT [1]. E-JABAT is
a middleware supporting the construction of the dedicated A-Team architectures
based on the population-based approach. The mobile agents used in E-JABAT al-
low for decentralization of computations and use of multiple hardware platforms
in parallel, resulting eventually in more effective use of the available resources and
reduction of the computation time.

In this chapter the E-JABAT-based A-Team architecture for solving the MR-
CPSP/max problem instances is proposed and experimentally validated. A-Team
includes optimization agents which represent heuristic algorithms. The proposed
approach is an extension and improvement of the A-Team described in [13]. A new
kind of optimization agent was added and all agents were redefined in order to act
in three ways depending on feasibility or unfeasibility of the initial solution.

Section 2 of the chapter contains the MRCPSP/max problem formulation. Sec-
tion 4 provides details of the E-JABAT architecture implemented for solving the
MRCPSP/max problem instances. In section 5 the computational experiment is de-
scribed. In section 6 the computational experiment results are presented. Section 7
contains conclusions and suggestions for future research.

2 Problem Formulation

In the multi-mode resource-constrained project scheduling problem with minimal
and maximal time lags (MRCPSP/max) a set of n+2 activitiesV = {0,1, . . . ,n,n+ 1}
is considered. Each activity has to be processed without interruption to complete the
project. The dummy activities 0 and n+1 represent the beginning and the end of the
project. For each activity i ∈V a set Mi = {1, ..., |Mi|} of (execution) modes is avail-
able. Activities 0 and n+1 can be performed in only one mode: M0 = Mn+1 = {1}.
Each activity i ∈ V has to be performed in exactly one mode mi ∈ Mi. The dura-
tion (processing time) of an activity i, i ∈V executed in mi mode is denoted by dimi ,
dimi ∈ Z≥0. The processing times of activity 0 and n+1 equals 0, i.e. d00 = dn+1 0 = 0.

Si and Ci stand for the start time and the completion time (of the performance)
of activity i, respectively. If we define S0 = 0, Sn+1 stands for the project duration.
Provided that activity i starts in mode mi at time Si, it is being executed at each point
in time t ∈ [Si,Si + dimi).
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Between the start time Si of activity i, which is performed in mode mi ∈ Mi,
and the start time S j of activity j (i �= j), which is performed in mode m j ∈ Mj,
a minimum time lag dmin

imi, jmj
∈ Z≥0 or a maximum time lag dmax

imi, jmj
∈ Z≥0 can be

given. Note, that a time lag between activity i and activity j depends on mode mi as
well as on mode m j.

Activities and time lags are represented by an activity-on-node (AoN) network
N = 〈V,E,δ 〉 with node set V , arc set E , and arc weight function δ . Each element
of node set V represents an activity. In the following, we do not distinguish be-
tween an activity and the corresponding node. An arc 〈i, j〉 ∈ E indicates that a time
lag between Si and S j has to be observed. Arc weight function δ assigns to each
arc 〈i, j〉 ∈ E a |Mi| × |Mj| matrix of arc weights as follow: for a minimum time
lag dmin

imi, jmj
we set δimi, jmj = dmin

imi, jmj
, and for a maximum time lag dmax

imi, jmj
we set

δimi, jmj =−dmax
imi, jmj

.

There are the set of renewable resources RR and the set of nonrenewable re-
sources RN considered in this problem, |RR|, |RN | ∈ Z>0. The availability of each
renewable resource type k ∈ RR in each time period is RR

k units. The availability of
each nonrenewable resource type k ∈ RN is RN

k units in total. Provided that activity
i is performed in mode mi, rR

imik
units of renewable resource k ∈ RR are used at each

point in time at which activity i is being executed. Moreover, rN
imik

units of nonre-

newable resource k ∈ RN are consumed in total. For activities 0 and n+ 1 we set
r01k = rn+11k = 0 for k ∈ RR and rN

01k = rN
n+10k = 0 for k ∈ RN .

The solution of the problem is a schedule (M,S) consisting of the mode vector
M and a vector of activities starting times S = [S0, . . . ,Sn+1], where S0 = 0 (project
always begins at time zero). The mode vector assigns to each activity i ∈V exactly
one mode mi ∈ Mi - execution mode of activity i. The start time vector S assigns to
each activity i ∈ V exactly one point in time as start time Si where S0 = 0 (project
always begins at time zero). Precedence relations are described by the following
formula: S.S j − S.Si ≥ δimi , jmj , where 〈i, j〉 ∈ E .

The objective is to find a schedule (M,S) where precedence and resource con-
straints are satisfied, such that the schedule duration T (S) = Sn+1 is minimized. The
detailed description of the problem can be found in [10] or [3]. The MRCPSP/max,
as an extension of the RCPSP and RCPSP/max, belongs to the class of NP-hard
optimization problems [2].

3 E-JABAT Environment

E-JABAT is a middleware allowing to design and implement A-Team architec-
tures for solving various combinatorial optimization problems, such as the resource-
constrained project scheduling problem (RCPSP), the traveling salesman problem
(TSP), the clustering problem (CP), the vehicle routing problem (VRP). It has been
implemented using JADE framework. Detailed information about E-JABAT and its
implementations can be found in [11] and [1]. The problem-solving paradigm on
which the proposed system is based can be best defined as the population-based
approach.
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E-JABAT produces solutions to combinatorial optimization problems using a set
of optimization agents, each representing an improvement algorithm. Each improve-
ment (optimization) algorithm when supplied with a potential solution to the prob-
lem at hand, tries to improve this solution. An initial population of solutions (indi-
viduals) is generated or constructed. Individuals forming an initial population are, at
the following computation stages, improved by independently acting agents. Main
functionality of the proposed environment includes organizing and conducting the
process of search for the best solution.

To perform the above described cycle two main classes of agents are used. The
first class called OptiAgent is a basic class for all optimization agents. The second
class called SolutionManager is used to create agents or classes of agents respon-
sible for maintenance and updating individuals in the common memory. All agents
act in parallel. Each OptiAgent represents a single improvement algorithm (for ex-
ample: local search, simulated annealing, tabu search, genetic algorithm etc.).

Other important classes in E-JABAT include: Task representing an instance or
a set of instances of the problem and Solution representing the solution. To ini-
tialize the agents and maintain the system the TaskManager and PlatformManager
classes are used. Objects of the above classes also act as agents. Up to now the E-
JABAT environment has been used to solve instances of the following problems: the
resource-constrained project scheduling problem (RCPSP), the traveling salesman
problem (TSP), the clustering problem (CP), the vehicle routing problem (VRP).

E-JABAT environment has been designed and implemented using JADE (Java
Agent Development Framework), which is a software framework supporting the
implementation of multi-agent systems. More detailed information about E-JABAT
environment and its implementations can be found in [11] and [1].

4 E-JABAT for Solving the MRCPSP/max Problem

E-JABAT environment was successfully used for solving the RCPSP, MRCPSP and
RCPSP/max problems [12]. In the proposed approach the agents, classes describ-
ing the problem and ontologies have been implemented for solving the discussed
problem. The above forms the package called JABAT.MRCPSPmax.

Classes describing the problem are responsible for reading and preprocessing the
data and generating random instances of the problem. The discussed set includes
the following classes:

• MRCPSPmaxTask inheriting from the Task class and representing the instance
of the problem,

• MRCPSPmaxSolution inheriting from the Solution class and representing the
solution of the problem instance,

• Activity representing the activity of the problem,
• Mode representing the activity mode,
• Resource representing the renewable or nonrenewable resource,
• PredSuccA representing the predecessor or successor of the activity.
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• PredSuccM and PredSuccT representing the matrix of arc weights. The matrix
is needed to describe time lags for all pairs of modes of each two activities con-
nected by the arc in the network N.

The next set includes classes allowing for definition of the vocabulary and semantics
for the content of messages exchange between agents. In the proposed approach
the messages include all data representing the task and solution. The discussed set
includes the following classes:

• MRCPSPmaxTaskOntology inheriting from the TaskOntology class,
• MRCPSPmaxSolutionOntology inheriting from the SolutionOntology class,

The last set includes classes describing the optimization agents. Each of them in-
cludes the implementation of an optimization heuristic used to solve the problem.
All of them are inheriting from OptiAgent class. The set includes:

• optiLSAm denoting Local Search Algorithm (TA_LSAm),
• optiLSAe denoting Local Search Algorithm (TA_LSAe),
• optiTSAe denoting Tabu Search Algorithm (TA_TSAe),
• optiCA denoting Crossover Algorithm (TA_CA),
• optiPRA denoting Path Relinking Algorithm (TA_PRA),

The proposed approach and algorithms are based on the LSA, CA and PRA de-
scribed in [13] and double-action agents DA_LSA, DA_TSA, DA_CA and DA_PRA
described in [14]. However, the above algorithms have been modified, extended and,
in addition, equipped with the ability to undertake the third action as describe later.
The local search algorithm has been implemented in two versions TA_LSAm and
TA_LSAe, which differ in the kind of the move used.

The triple-action optimization agents (TA_) use their algorithms to solve MR-
CPSP/max problem instances. Each optimization agent needs one (in the case of
TA_LSAm, TA_LSAe and TA_TSAe) or two (TA_CA and TA_PRA) initial so-
lutions. In many instances of MRCPSP/max problem it is difficult to generate a
population of feasible solutions or even finding a single feasible solution. On the
other hand the proposed LSAm, LSAe, TSAe, CA and PRA algorithms are seldom
effective when used with unfeasible solutions. There are two main reasons of the
above difficulty: lack of the nonrenewable resources or/and presence of cycles in
the respective AoN network. The proposed triple-action agents deal with the prob-
lem through applying the standard optimization procedure if, at least one feasible
initial solution has been found. If not, the nonrenewable resources are checked and
if there is a lack of them the second action is initiated. If the second action does
not produce a feasible solution the third action is initiated. An agent tries to find a
schedule with the minimal cycle time where cycle time is calculated as the sum of
elements over the diagonal of the longest path matrix. The matrix is calculated using
Floyd-Warshall triple algorithm described in [17].

The objective of the proposed approach is to find the best feasible schedule
(M,S). The procedure of finding a new solution from the schedule (M,S) is based
on the SGSU (Serial Generation Scheme with Unscheduling) described in [17] with
several different priority rules.
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Pseudo-codes of the algorithms are shown in Figures 1, 2, 3, 4, 5, respectively.
In pseudo-codes S denotes the schedule (M,S) with ordered list of activities. The
solution is calculated using procedure based on SGSU. The objective functions used
are as follow:

int objectiveFunctionS(S)

{ return S.Sn+1 }
int objectiveFunctionN(S)

{ return quantities of nonrenewable resources RN used by S }
int objectiveFunctionF(S)

{ return cycles time for S }
In the pseudo-codes S denotes the schedule (M,S) with ordered list of activities. All
presented algorithms can use initial schedules which does not necessarily guarantee
obtaining feasible solutions.

The LSAm (Figure 1) is a local search algorithm which finds local optimum by
moving chosen activity with each possible mode to all possible places in the sched-
ule. For each combination of activities the value of possible solution is calculated.
The best schedule is returned. The parameter iterationNumber means a maximum
number of iterations in which no improvement is found. Two procedures are used
to make the moves. The makeMove(S,pi,p j,mnew

pi ) means moving the activity form
position pi in the schedule (activity list) S to position p j and simultaneously chang-
ing the current activity mode mpi to mnew

pi . The reverseMove(S,pi,p j,mnew
pi ) means

canceling the move i.e. moving the activity from position p j to position pi and si-
multaneously changing the activity mode from mnew

pi to previous one mpi. The activ-
ities positions in the schedule are chosen using step parameter. The best schedule is
remembered and finally returned.

The LSAe (Figure 2) is a local search algorithm which finds local optimum by
exchanging chosen activity with each possible mode with other chosen activity in
the schedule. For each combination of activities the value of possible solution is
calculated. The best schedule is returned. The parameter iterationNumber defines a
maximum number of iterations in which no improvement is found. Two procedures
are used to make the moves. The makeExchange(S,pi,mnew

pi ,p j,mnew
p j ) means ex-

changing the activity form position pi in the schedule (activity list) S with activ-
ity from position p j and simultaneously changing the chosen activity modes mpi

to mnew
pi and mp j to mnew

p j . The reverseExchange(S,pi,nmi,p j,nm j) means can-
celling the exchange. The activities positions in the schedule are chosen using step
parameter. The best schedule is remembered and finally returned.

The TSAe (Figure 3) is an implementation of the tabu search metaheuristic [5],
[6], [7]. In a schedule the pairs of activities and simultaneously modes of these ac-
tivities are changed. The parameter iterationNumber denotes a maximum number
of iterations in which no improvement is found. Two procedures are used to make
the moves. The makeExchange(S,pi,mnew

pi ,p j,mnew
p j ) and reverseExchange

procedures are the same as in the case of LSAe algorithm. The activities in the
schedule are chosen using step parameter. Selected moves are remembered in a
tabu list. For example:
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TA_LSAm(initialSchedule)
{

S = initialSchedule
if(S is not feasible)

if(there is a lack of nonrenewable resources in S)
S =LSAm(S,startActPosN,itNumN,stepN,ob jectiveF unctionN)

if(there are cycles in S)
S =LSAm(S,startActPosF,itNumF,stepF,ob jectiveFunctionF)

bestS =LSAm(S,startActPos,itNum,step,ob jectiveF unctionS)
return bestS

}

LSAm(S,startActivityPosition,iterationNumber,step,ob jectiveF unction)
{

it = iterationNumber
bestS = S
pi = startActivityPosition
while(it>0)
{

bestSit = S
pi =++ pi%(n−2)+1
for(p j = pi+ step; p j < n−1; p j = p j+ step)
{

for(all modes mnew
pi in activity from position pi in S)

{
makeMove(S,pi,p j,mnew

pi )
if(S is better than bestSit due to ob jectiveFunction)

bestSit = S
reverseMove(S,pi,p j,mnew

pi )
}

}
if(bestSit is better than bestS due to ob jectiveFunction)
{

bestS = bestSit
it = iterationNumber

}
else it-

}
return bestS

}
Fig. 1 Pseudo-codes of the TA_LSAm and LSAm algorithms

• Making tabu the exchange move (pi,mpi,mnew
pi ,p j,mp j,mnew

p j ,iterationNumber)
prevents from repeating the same move. It block all moves that exchange activity
from position pi with activity from position p j and simultaneously change their
modes from mpi to mnew

pi and from mp j to mnew
p j for all iterations iterationNumber;

• Making tabu the exchange move (null,null,null,pi,mpi,null,10) block exchanges
of any activity with activity from position pi performed in mode mpi for 10
iterations.
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TA_LSAe(initialSchedule)
{ S = initialSchedule

if(S is not feasible)
if(there is a lack of nonrenewable resources in S)

S =LSAe(S,startActPosN,itNumN,stepN,ob jectiveF unctionN)
if(there are cycles in S)

S =LSAe(S,startActPosF,itNumF,stepF,ob jectiveFunctionF)
bestS =LSAe(S,startActPos,itNum,step,ob jectiveF unctionS)
return bestS

}

LSAe(S,startActivityPosition,iterationNumber,step,ob jectiveF unction)
{

it = iterationNumber
bestS = S
pi = startActivityPosition
while(it>0)
{

bestSit = S
pi =++ pi%(n−2)+1
for(p j = pi+ step; p j < n−1; p j = p j+ step)
{

for(all modes mnew
pi in activity from position pi in S)

for(all modes mnew
p j in activity from position p j in S)

{
makeExchange(S,pi,mnew

pi ,p j,mnew
p j )

if(S is better than bestSit due to ob jectiveFunction)
bestSit = S

reverseExchange(S,pi,mnew
pi ,p j,mnew

p j )
}

}
if(bestSit is better than bestS due to ob jectiveFunction)
{

bestS = bestSit
it = iterationNumber

}
else it-

}
return bestS

}
Fig. 2 Pseudo-codes of the TA_LSAe and LSAe algorithms

The best schedule is remembered and finally returned.
The CA (Figure 4) is an algorithm based on the idea of the one point crossover

operator. For a pair of solutions one point crossover is applied. The step argument
determines the frequency the operation is performed. The makeCrossover(S, S1,
S2, cp) constructs the S schedule using one point crossover operator to two initial
schedules S1 and S2 with crossover point cp. The best schedule is remembered and
finally returned.
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TA_TSAe(initialSchedule)
{

S = initialSchedule
if(S is not feasible)

if(there is a lack of nonrenewable resources in S)
S =TSAe(S,startActPosN,itNumN,stepN,ob jectiveFunctionN)

if(there are cycles in S)
S =TSAe(S,startActPosF,itNumF,stepF,ob jectiveFunctionF)

bestS =TSAe(S,startActPos,itNum,step,ob jectiveFunctionS)
return bestS

}

TSAe(S,startActivityPosition,iterationNumber,step,ob jectiveFunction)
{

TabuList = /0
it = iterationNumber
bestS = S
pi = startActivityPosition
while(it>0)
{

bestSit =null
for(p j = pi+1; pi < n−1; p j = p j+ step)

for(all modes in activity from position pi in S)
for(all modes in activity from position p j in S)
{

move =(S,pi,mnew
pi ,p j,mnew

p j )

if(move is not in TabuList or
is better than bestS due to ob jectiveFunction)

{
makeExchange(move)
if(S is better than bestSit due to ob jectiveFunction)

bestSit = S
reverseExchange(move)

}
}

update TabuList
if(bestSit is not null)
{

if(bestSit is better than bestS due to ob jectiveFunction)
{

bestS = bestSit
it = iterationNumber

}
add moves to TabuList:

(pi,mpi,mnew
pi ,p j,mp j,mnew

p j ,iterationNumber)
(null,null,null,pi,mpi,null,10)
(null,null,null,pi,mnew

pi ,null,10)

(pi,mpi,null,null,null,null,10)
(pi,mnew

pi ,null,null,null,null,10)
(p j,null,null,pi,null,null,iterationNumber/2)

}
else it-
pi = pi%(n−2)+ step

}
return bestS

}

Fig. 3 Pseudo-codes of the TA_TSAe and TSAe algorithms
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TA_CA(initialSchedule1,initialSchedule2,step)
{

S1 = initialSchedule1; S2 = initialSchedule2
bestS = better from S1 and S2 due to ob jectiveF unctionS
if(bestS is not feasible

and there is a lack of nonrenewable resources in it)
{

S =CA(S1,S2,stepN,ob jectiveF unctionN)
if(S is better than worse from S1 and S2 due to ob jectiveF unctionS)

exchange worse from S1 and S2 due to ob jectiveF unctionS for S
}
bestS = better from S1 and S2 due to ob jectiveF unctionS
if(bestS is not feasible)
{

S =CA(S1,S2,stepF,ob jectiveF unctionF)
if(S is better than worse from S1 and S2 due to ob jectiveF unctionS)

exchange worse from S1 and S2 due to ob jectiveF unctionS for S
}
bestS =CA(S1,S2,step,ob jectiveF unctionS)
return bestS

}

CA(S1,S2,step,ob jectiveF unction)
{

bestS = better from S1 and S2 due to ob jectiveF unction
bestS = S
for(cp = 1; cp < n; cp+=step)
{

makeCrossover(S, S1, S2, cp)
for(all modes of activities in crossover point cp

S = best schedule due to ob jectiveF unction
if(S is better than bestS due to ob jectiveF unction) bestS = S

}
return bestS

}

Fig. 4 Pseudo-codes of the TA_CA and CA algorithms

The PRA (Figure 5) is an implementation of the path-relinking algorithm [4],
[8]. For a pair of solutions a path between them is constructed. The path consists of
schedules obtained by carrying out a single move from the preceding schedule. The
move is understood as moving one of the activities to a new position simultaneously
changing its mode. For each schedule in the path the value of the respective solution
is checked. The best schedule is remembered and finally returned. In the PRA the
same makeMove procedure is used as in the case of LSAm algorithm.

All optimization agents co-operate together using the E-JABAT common mem-
ory. The initial population in the common memory is generated randomly with the
exception of a few individuals which are generated by heuristics based on the prior-
ity rules [17] and procedure based on SGSU. Because it is difficult to obtain feasi-
ble solution for some MRCPSP/max problem instances, the random drawing of an
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TA_PRA(initialSchedule1,initialSchedule2)
{

S1 = initialSchedule1; S2 = initialSchedule2
bestS = better from S1 and S2 due to ob jectiveF unctionS
if(bestS is not feasible

and there is a lack of nonrenewable resources in it)
{

S =PRA(S1,S2,ob jectiveFunctionN)
if(S is better than worse from S1 and S2 due to ob jectiveF unctionS)

exchange worse from S1 and S2 due to ob jectiveF unctionS for S
}
bestS = better from S1 and S2 due to ob jectiveF unctionS
if(bestS is not feasible)
{

S =PRA(S1,S2,ob jectiveFunctionF)
if(S is better than worse from S1 and S2 due to ob jectiveF unctionS)

exchange worse from S1 and S2 due to ob jectiveF unctionS for S
}
bestS =PRA(S1,S2,ob jectiveFunctionS)
return bestS

}

PRA(S1,S2,ob jectiveFunction)
{

bestS = better from S1 and S2 due to ob jectiveF unction
S = S1
for(pi = 0; pi < n; pi++)
{

p j = in S find position of activity from position pi in S2
makeMove(S,p j,pi,mp j)
for(all modes of found activity)

S = best schedule due to ob jectiveF unction
if(S is better than bestS due to ob jectiveF unction) bestS = S

}
return bestS

}

Fig. 5 Pseudo-codes of the TA_PRA and PRA algorithms

individual could be repeated several times. If this does not produce enough feasible
solutions the infeasible ones are added to the population in the common memory.
In some instances the initial population consist of the infeasible solutions only. In-
dividuals in the common memory are represented as (M,S). The final solution is
obtained from the schedule by the procedure based on SGSU.

The time and frequency an agent of each kind receives a solution or set of solu-
tions from the common memory with a view to improve its quality is determined
by the strategy. For solving the MRCPSP/max problem instances the strategy with
blocking has been used where individuals forwarded to optimization agents for im-
provement are randomly chosen from the population stored in the common mem-
ory. Such individuals are sent to optimization agents ready to start searching for a
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better solution. After computation the improved individual replaces the one which
was send. Additionally, if some solutions (in this approach 5) are received but the
best solution in the population has not been improved a new one is generated ran-
domly. It replaces the worst one in the population.

5 Computational Experiment

To validate the proposed approach and to evaluate the effectiveness of the optimiza-
tion agents the computational experiment has been carried out using benchmark
instances of MRCPSP/max from PSPLIB [19], [15], [16] - test set mm100 with ac-
tivities carried out in 3, 4 and 5 modes. The set includes 270 problem instances.
The experiment involved computation with the fixed number of optimization agents
representing TA_LSAm, TA_LSAe, TA_TSAe, TA_CA, and TA_PRA algorithms,
fixed population size, and the limited time period allowed for computation. Values
are chosen on the basis of the previous experiments [1], [13], [14].

The discussed results have been obtained using 5 optimization agents - one of
each kind. Population of solutions in the common memory consisted of 5, 10, 15,
20, 25 and 30 individuals. The computation has been stopped after 1, 2 or 3 min-
utes (Stop time) if no better solution is found. The optimization algorithms have
had the fixed and randomly chosen parameter values. For example, in the case of
LSAm and LSAe algorithms the startActivityPosition has been chosen randomly
from the interval [1,step]. The iterationNumber and step parameters in the LSAm
and LSAe algorithms has been fixed to 30 and 1 if the ob jectiveFunctionN and
ob jectiveFunctionF have been used and to 30 and 2 if the ob jectiveFunctionS has
been used. The same parameters in the TSAe algorithm has been fixed to 10 and 1
if the ob jectiveFunctionN and ob jectiveFunctionF have been used and to 10 and 5
if the ob jectiveFunctionS has been used. In the case of CA the step parameter has
been set to 1 or 5 respectively.

Experiment has been carried out using nodes of the cluster Holk of the Tricity
Academic Computer Network built of 256 Intel Itanium 2 Dual Core 1.4 GHz with 12
MB L3 cache processors and with Mellanox InfiniBand interconnections with 10Gb/s
bandwidth. During the computation one node per five to eight agents was used.

6 Computational Experiment Results

During the experiment the following characteristics have been calculated and
recorded: mean relative error (Mean RE) calculated as the deviation from the lower
bound (LB), percent of feasible solutions (% FS), mean computation time required
to find the best solution (Mean CT) and mean total computation time (Mean total
CT). Each instance has been solved five times and the results have been averaged
over these solutions. The results depending on population size are presented in Ta-
ble 1 and Figure 6. The results depending on population size and number of modes
in activities are presented in Table 2 and Figure 7. The computation times and total
computation times related to these results are presented in Tables 3, 4 and 5.
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Table 1 Performance characteristics (Mean RE) of the proposed A-Team depending on the
population size for benchmark test set mm100

Stop time Population size
[min] 5 10 15 20 25 30

1 48.82% 56.22% 81.27% 103.84% 126.29% 118.81%
2 40.61% 41.79% 44.53% 57.40% 76.94% 82.59%
3 35.84% 35.60% 37.84% 44.14% 51.12% 56.05%

Fig. 6 The graphical representation of the results presented in Table 1

Solutions obtained by the proposed agent-based approach are compared with the
results reported in the literature obtained by tabu search algorithm TSDR and heuris-
tic based on multipass priority-rule method with backplanning Prio proposed in [9],
as well as the results obtained by double genetic algorithm proposed in [3]. The
literature reported results are presented in Table 6.

Experiment results show that the proposed JABAT based A-Team for
MRCPSP/max implementation using triple-action agents is effective. The obtained
results are better than in the previous implementations [13], [14] where double-action
agents are used. The feasible solutions are found for 100% of instances. Presented
results are comparable with solutions known from the literature (see Tables 1 and 6).

The results show that the proposed approach is more effective using small popu-
lations of results - less than 10 individuals (Figure 6) and is rather time consuming
(Tables 3 and 4). Considering population sizes, the best results have been obtained
for the longest computations time - 3 minutes, in all cases. Considering computa-
tion times, the best results has been obtained for the smallest number of individuals
- 5, in all cases. It may be caused by two reasons: (1) in the proposed approach the
population management is not effective enough or (2) there are too many infeasible
solutions in a bigger populations resulting in a relatively long period needed to pro-
duce a critical mass of feasible solutions. Probably both these factors influence the
computation times.
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Table 2 Performance characteristics (Mean RE) of the proposed A-Team depending on the
population size and the number of modes in one activity for benchmark test set mm100

Population Stop time Modes number
size [min] 3 4 5

1 24.28% 41.79% 80.39%
5 2 21.99% 39.24% 60.60%

3 20.33% 34.66% 52.53%

1 23.62% 49.22% 95.83%
10 2 21.94% 38.79% 64.65%

3 20.89% 34.71% 51.21%

1 25.58% 68.93% 149.30%
15 2 20.26% 37.80% 75.53%

3 19.04% 35.10% 59.37%

1 29.05% 101.77% 180.70%
20 2 19.87% 44.62% 107.70%

3 18.19% 35.83% 77.68%

1 43.77% 130.17% 204.92%
25 2 21.75% 65.43% 143.64%

3 18.60% 41.16% 93.59%

1 42.72% 120.67% 193.02%
30 2 23.73% 71.58% 152.44%

3 19.55% 45.08% 103.51%

Fig. 7 The graphical representation of the results presented in Table 2
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Table 3 Mean computation time in seconds for the proposed A-Team for benchmark test set
mm100

Stop time Population size
[min] 5 10 15 20 25 30

1 164.6 163.5 122.3 83.0 56.2 56.1
2 242.0 264.9 319.7 284.5 220.0 195.5
3 270.4 300.3 512.1 439.9 425.6 387.2

Table 4 Mean total computation time in seconds for the proposed A-Team for benchmark test
set mm100

Stop time Population size
[min] 5 10 15 20 25 30

1 195.5 194.1 152.7 112.9 86.9 86.5
2 303.4 325.8 380.5 344.8 280.3 255.6
3 362.2 391.4 603.0 530.1 516.9 477.4

Table 5 Mean computation time and total computation time in seconds needed by the pro-
posed A-Team depending on the population size and the number of modes in one activity for
benchmark test set mm100

Population Stop time Modes number
size [min] 3 4 5

1 118.2/149.1 189.7/220.6 185.9/216.9
5 2 140.7/201.9 257.7/319.2 327.7/389.0

3 144.5/236.1 258.3/350.1 408.4/500.4

1 138.0/169.4 188.6/219.4 163.7/193.6
10 2 152.7/214.0 281.1/341.9 361.0/421.4

3 159.9/250.3 289.3/381.1 451.7/542.7

1 164.2/195.2 137.9/168.3 64.9/94.7
15 2 224.5/285.3 367.1/427.8 367.5/428.5

3 311.7/401.7 539.7/631.7 684.9/775.6

1 148.1/178.4 66.8/96.8 34.2/63.5
20 2 276.7/338.0 355.7/416.3 221.2/280.0

3 319.2/409.7 528.9/618.9 471.6/561.6

1 106.0/136.6 36.6/67.5 25.9/56.8
25 2 298.7/359.4 255.1/315.5 106.0/165.9

3 361.9/453.4 536.6/628.1 430.7/521.8

1 101.4/131.8 41.2/71.2 25.6/56.4
30 2 291.7/351.1 206.2/266.0 88.6/149.6

3 390.1/480.5 489.4/579.5 282.2/372.2
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Table 6 Literature reported results for benchmark test set mm100

#Modes Mean RE % FS Mean CT [s]

Literature reported results – TSDR [9]
3 40% 53% 100
4 91% 61% 100
5 164% 67% 100

Literature reported results – Prio [9]
3 63% 100% 100
4 113% 100% 100
5 170% 100% 100

Literature reported results – DGA [3]
3,4 and 5 22.05% 100% 100

A serious disadvantage of the proposed approach is the long computation time.
The data construction method used in the A-Team for MRCPSP/max implementa-
tion could be possibly improved. However, the second factor which is the communi-
cation overhead is quite hard to reduce in case of the multi-agent systems. Holding a
big number of solutions returned by optimization agents are important for the results
quality. It can be however observed that more often agents return solutions the mes-
sage queues in the system become longer. The bottleneck of the proposed system is
the SolutionManager implementation.

Considering the results with respect to the number of modes (Figure 7) it can
be observed that the proposed approach is more effective for projects consisting
of activities with less number of modes. In the case of 5 modes the differences
between results for different stop times are far more noticeable as in the case of 3 or
4 modes. Additionally, these differences are grater for a bigger populations. It could
be probably related to the nature of algorithms proposed to solve the MRCPSP/max
problem instances.

Apart from the performance evaluation measured in terms of mean relative error
defined as deviation from the lower bound and computation times the influence
of each agent performance was evaluated. The observed measure was the average
percent of individuals which were improved by an agent and the average percent
of the current best solutions found by it. Population sizes of 5, 10 ad 15 instances
are considered. The results calculated as the average percent of solutions improved
and the best improved by each agent and percent of non-improved solutions are
presented in Figure 8 and Tables 7 and 8.

It can be observed (Figure 8) that in the proposed approach more effective agents
are LSAe, LSAm and TSAe and less effective ones are CA and PRA. The effective-
ness of all agents increases with an increase of the computation time. The highest
number of solutions have been received from LSAm agent which was the quick-
est one. Unfortunately it has produced quite a big number of non improved solu-
tions. The LSAe and TSAe produce significantly less solutions than LSAm but they
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Fig. 8 Mean numbers of the best improved, improved and non improved solutions produced
by each agent

Table 7 Mean percentage of the improved and best improved solutions related to the number
of solutions received from each agent

Population Stop time
size [min] LSAm LSAe TSAe PRA CA

1 65/13 79/21 85/18 73/16 76/10
5 2 57/10 72/16 81/15 67/13 73/8

3 51/8 65/14 76/14 61/12 70/7
1 67/12 80/19 86/16 73/14 77/9

10 2 59/9 73/15 82/13 68/12 75/8
3 52/8 66/13 76/12 63/11 72/7
1 71/9 83/14 89/12 67/10 72/7

15 2 62/6 75/11 84/10 68/9 76/7
3 57/6 71/10 80/9 66/9 75/6

improve or best improve almost all solutions that they have received. The lowest
number of solutions produced the CA agent. The number of the best improved and
improved solutions returned by CA is the lowest as well.

Considering effectiveness of agents in terms of average percents of improved
and best improved solutions returned to the population by each agent (Table 7), also
most effective ones are the TSAe and LSAe. The TSAe has improved from 76%
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Table 8 Mean percentage of the improved and best improved solutions related to the number
of solutions received from all agents

Population Stop time
size [min] LSAm LSAe TSAe CA PRA

1 18/4 16/4 18/4 13/3 10/1
5 2 16/3 15/3 16/3 11/2 9/1

3 15/2 14/3 15/3 10/2 9/1
1 19/3 16/4 18/3 13/3 10/1

10 2 17/3 15/3 17/3 12/3 10/1
3 15/2 14/3 15/2 11/2 9/2
1 20/2 17/3 19/3 12/2 9/1

15 2 18/2 15/2 17/2 12/2 10/1
3 16/2 15/2 16/2 11/1 10/1

to 89% (mean 82.11%) of solutions that it returned to the population. The LSAe
has improved from 66% to 83% (mean 73.78%) of solutions. In finding the best
solutions the LSAe occurred even better, it has found the best solution for 10% to
21% (mean 14.78%) of solutions that it returned to the population. The TSAe has
found the best solution for 9% to 18% (mean 13.11%) of solutions. The less effective
agents are PRA and CA. The PRA has improved from 61% to 73% (mean 67.33%)
solutions. The CA has improved from 70% to 77% (mean 74.00%) of solutions. In
finding the best solutions the CA is the less effective, it has found the best solution
only for 6% to 10% (mean 7.67%) of solutions. The PRA has found the best solution
for 8% to 14% (mean 11.22%) of solutions.

Evaluating particular agents using the criterion of the numbers of returned im-
proved and best improved solutions in total (Table 8), it can be noted that their
contributions towards improving the current best solution in the population is quite
similar. It varies from 9% to 20% (mean 14.07%) of the improved solutions and
from 1% to 4% (mean 2.33%) of the best improved solutions. From this point of
view the LSAm and TSAe have occurred the most effective agents and again PRA
and CA have been the less effective ones.

7 Conclusions

Experiment results show that the proposed E-JABAT based A-Team implementation
is an effective tool for solving instances of the MRCPSP/max problem. Presented
results are comparable with solutions known from the literature and better than in
the previous implementation. The main disadvantage of the proposed approach is
rather long computation time.

Future research can concentrate on improving the implementation details in order
to shorten the computation time. Also, the role and implementation of the Solution-
Manager should be considered. Dividing the SolutionManager’s tasks into more
agents should effected on significantly better computation times. The other part of
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research can focus on finding the best configuration of the heterogeneous agents
and parameter settings for their algorithms. It is interesting which agents should or
should not be replicated to improve the results. Additionally, testing and adding to
E-JABAT other different optimization agents and improving the existing ones could
be considered. The other possibility is finding and testing different or additional ob-
jective functions for MRCPSP/max problem which could be used in the algorithms.
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Team of A-Teams - A Study of the Cooperation
between Program Agents Solving Difficult
Optimization Problems

Dariusz Barbucha, Ireneusz Czarnowski, Piotr Jędrzejowicz,
Ewa Ratajczak-Ropel, and Izabela Wierzbowska�

Abstract. The chapter investigates effects and impact of cooperation between the co-
operating A-Teams working in parallel and combined into an architecture de-signed
for solving difficult combinatorial optimization problems. Computational experi-
ments carried-out using the available benchmark datasets have confirmed that archi-
tectures enabling some kind of cooperation may be competitive in terms of the quality
of solutions in comparison with architectures that use traditional, non-cooperating,
teams of agents. Also, it has been shown that results may im-prove when cooperating
teams are heterogenous, e.g. each consists of different types of agents.

1 Introduction

As it has been observed in [2] the techniques used to solve difficult combinatorial
optimization problems have evolved from constructive algorithms to local search
techniques, and finally to population-based algorithms.

Since the publication of Goldberg seminal work [11] different classes of
evolutionary algorithms have been developed including genetic algorithms, ge-
netic pro-gramming, evolution strategies, differential evolution, cultural evolution,
coevolu-tion and population learning algorithms. Not much later studies of the so-
cial be-havior of organisms have resulted in development of swarm intelligence sys-
tems including ant colony optimization and particle swarm optimization.

In recent years, technological advances have enabled development of various par-
allel and distributed versions of the population based methods. At the same time,
as a result of convergence of many technologies within computer science such as
object-oriented programming, distributed computing and artificial life, the agent
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technology has emerged. An agent is understood here as any piece of soft-ware that
is designed to use intelligence to automatically carry out an assigned task, mainly
retrieving, processing and delivering information.

Paradigms of the population-based methods and multiple agent systems have
been during mid nineties integrated within the concept of the asynchronous team of
agents (A-Team). A-Team is a multi agent architecture, which has been pro-posed
in several papers of S.N. Talukdar and co-authors [18], [19], [20], [21].

Acording to Talukdar [21] an asynchronous team is a collection of software
agents that cooperate to solve a problem by dynamically evolving a population of
solutions. As Rachlin et al. [17] observed agents cooperate by sharing access to
populations of candidate solutions. Each agent works to create, modify or remove
solutions from a population. The quality of the solutions gradually evolves over
time as improved solutions are added and poor solutions are removed. Cooperation
between agents emerges as one agent works on the solutions produced by another.
Within an A-Team, agents are autonomous and asynchronous. Each agent encapsu-
lates a particular problem-solving method along with the methods to decide when
to work, what to work on and how often to work.

A-Team architecture could be classified as a software multi-agent system that
is used to create software assistant agents. According to Baerentzen [1] an asyn-
chronous team (A-Team) is a network of agents (workers) and memories (reposito-
ries for the results of work). The paper claims that it is possible to design A-Teams
to be effective in solving difficult computational problems. The main design issues
are structure of the network and the complement of agents.

The middleware platforms supporting implementation of A-Teams are repre-
sented by the JADE-Based A-Team environment (JABAT). Its subsequent versions
and extensions were proposed in [3], [9] and [12]. The JABAT middleware was built
with the use of JADE (Java Agent Development Framework), a software frame-
work proposed by TILAB [6]. JABAT complies with the requirements of the next
generation A-Teams which are portable, scalable and in conformity with the FIPA
standards. To solve a single task (i.e. a single problem instance) JABAT uses a pop-
ulation of solutions that are improved by optimizing agents which represent dif-
ferent optimization algorithms. In traditional A-Teams agents work in parallel and
independently and cooperate only indirectly using a common memory containing
population of solutions.

In [14] JABAT environment has been extended through integrating the team of
asynchronous agent paradigm with the island-based genetic algorithm concept first
introduced in [8]. A communication, that is information exchange, between cooper-
ating A-Teams has been introduced. It has been shown that in experiments with the
Euclidean planar travelling salesman problem (EPTSP) a noticeable improvement
in the quality of the computation results has been achieved. In this chapter more
problems are examined.

The chapter extends earlier research reported in [4] and is constructed as follows:
Section 2 describes concept of TA-Teams which is an implementation of a set of
specialized and cooperating A-Teams designed to solve instances of difficult com-
binatorial optimization problems. Section 3 gives details of the experiment settings
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and a discussion of the experiment results with a view to compare models with or
without communication between respective Teams. Section 4 contains description
and results of the experiment carried out to assess models with the heterogenous and
homogenous A-Teams. Finally, in Section 5, some conclusions and suggestions for
future research are drawn.

2 Team of A-Teams - Concept, Implementation and Settings

JABAT middleware environment can be used to implement A-Teams that run in par-
allel and produce solutions to optimization problems using a set of optimizing agents,
each representing an improvement algorithm. Such an algorithm receives a solution
and attempts to improve it. Afterwards, successful or not, the result is send back
to where it came from. The process of solving a single task (that is an instance of
the problem at hand) consists of several steps. At first the initial population of solu-
tions is generated and stored in the common memory. Individuals forming the initial
population are, at the following computation stages, improved by independently act-
ing agents (called optimization agents), each executing an improvement algorithm,
usually problem dependent (Fig. 1). Different improvement algorithms executed by
different agents supposedly increase chances for reaching the global optimum. After
a number of reading, improving and storing back cycles, when the stopping criterion
is met, the best solution in the population is taken as the final result.

A-Team architecture offers several advantages. Its main advantage is ability to
produce good quality solutions to difficult optimization problems. Rachlin et al.
[17] mention modularity, suitability for distributed environments and robustness.
It is also clear that A-Teams demonstrate properties of the collective intelligence
system since the collective of agents can produce better solutions than individual
members of such collective.

A-Teams are based on a starlike topology. According to Zhu [26], in a starlike
topology the activities of the agents are coordinated or administered by some su-
pervisory (or facilitator) agents designated in the assembly. Only agents that have
connections built and specified to the coordinator can interact with each other. An
advantage of starlike topology is its loosely enforced control and coordination.
Though control and coordination limits the boundary of cooperation the agents can
reach, it is desirable when efficiency of cooperation is a main issue that needs to
be ensured. According to Cheyer and Martin [7] the use of facilitators (in our case
Task Managers or Solution Managers) offers both advantages and weaknesses with
respect to scalability and fault tolerance. For example, on the plus side, the grouping
of a facilitator with a collection of client agents provides a natural building block
from which to construct larger systems. On the minus side, there is the potential for
a facilitator to become a communication bottleneck, or a critical point of failure.

A typical JABAT implementation allows for running a number of A-Teams in
parallel providing the required computational resources are available, however the
teams never communicate and produce results independently. The implementation
of Teams of A-Teams allows for a number of A-Teams to solve the same task in
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Fig. 1 JABAT with several A-Teams, each A-Team solving a different task

parallel by exploring different regions of the search space, with the added process
of communication, that makes it possible to exchange some solutions between com-
mon memories maintained by each of the A-Teams with a view to prevent premature
convergence and assure diversity of individuals. Similar idea of carrying out the evo-
lutionary process within subpopulations before migrating some individuals to other
islands and then continuing the process in cycles involving evolutionary processes
and migrations was previously used in, for example, [22] or [25].

In TA-Teams JABAT implementation of the process of communication between
common memories is supervised by a specialized agent called Migration Manager
(Fig. 2) and defined by a number of parameters including:

• Migration size - number of individuals sent between common memories of A-
Teams in a single cycle

• Migration frequency - length of time between migrations
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Fig. 2 Team of A-Teams - communication through cyclically exchanging some solutions

• Migration topology - an architecture in which an A-Team receives communica-
tion from another A-Team and sends communication to some other A-Team. For
the purpose of this chapter one-way ring was applied as the chosen topology.

• Migration policy - a rule determining how the received solution is incorporated
into a common memory of the receiving A-Team.

2.1 Working Strategy

The process of solving a single task in JABAT by an A-Team is controlled by the
agent called Solution Manager that executes and supervises the, so called, working
strategy understood as a set of rules applicable to managing and maintaining the
common memory. Common memory contains a population of solutions called indi-
viduals. All individuals are feasible solutions of the particular problem instance to
be solved.

A-Teams in TA-Teams follow the working strategy known as RB-RE which be-
fore was identified as the approach assuring generation of a good quality solutions
[2]. In this strategy:

• All individuals in the initial population of solutions are generated randomly.
• Selection of individuals for improvement is a random move, however once se-

lected individual (or individuals) can not be selected again until all other individ-
uals have been tried.

• Returning individual replaces the first found worse individual. If a worse individ-
ual can not be found within a certain number of reviews (where review is under-
stood as a search for the worse individual after an improved solution is returned)
then the worst individual in the common memory is replaced by the randomly
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generated one, representing a feasible solution. In all experiments run for the
purpose of this chapter, the number of reviews after which a random solution is
generated equals 5.

• The computation time of a single A-Team is defined by the no improvement time
gap set by the user (in the reported computational experiment 2 minutes time
gap has been used). If in this time gap no improvement of the current best solu-
tion has been achieved, the A-Team stops computations. Then all other A-Teams
solving the same task stop as well, regardless of recent improvements in their
best solutions.

The overall best result from common memories of all A-Teams in TA-Teams is taken
as the final solution found for the task.

3 Team of A-Teams - Computational Experiment Design

3.1 Problems

The experiment aimed at investigating effects of agents’ cooperation within the
TA− Team. It has been decided to implement the TA− Team designed to solve
difficult computational problems through applying the distributed population-based
paradigm. Cooperation effects have been assessed by comparing results obtained
from solving benchmark instances of several well-known combinatorial optimiza-
tion problems by the proposed TA-Teams with the results obtained without cooper-
ation between TA−Team members and the results obtained by a single A-Team.

The following combinatorial optimization problems have been selected to be a
part of the experiment:

• Euclidean planar traveling salesman problem (EPTSP),
• Vehicle routing problem (VRP),
• Clustering problem (CP),
• Resource-constrained project scheduling problem (RCPSP).

The Euclidean planar traveling salesman problem is a particular case of the general
TSP. Given n cities (points) in the plane and their Euclidean distances, the problem is
to find the shortest TSP-tour, i.e. a closed path visiting each of the n cities exactly once.

The vehicle routing problem can be stated as the problem of determining optimal
routes through a given set of locations (customers) and defined on a directed graph
G = (V,E), where V = {0,1, . . . ,N} is the set of nodes and E is the set of edges.
Node 0 is a depot with NV identical vehicles of capacity W . Each other node i ∈
V −{0} denotes a customer with a non-negative demand di. Each link (i, j) ∈ E
denotes the shortest path from customer i to j and is described by the cost ci j of
travel from i to j (i, j = 1, . . . ,N). It is assumed that ci j = c ji. The goal is to find
vehicle routes which minimize total cost of travel (or travel distance) such that each
route starts and ends at the depot, each customer is serviced exactly once by a single
vehicle and the total load on any vehicle associated with a given route does not
exceed vehicle capacity.
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The clustering problem can be defined as follows. Given a set of N data objects,
partition the data set into K clusters, such that similar objects are grouped together
and objects with different features belong to different groups. Clustering arbitrary
data into clusters of similar items presents the difficulty of deciding what similarity
criterion should be used to obtain a good clustering. It can be shown that there
is no absolute "best" criterion which would be independent of the final aim of the
clustering. Euclidean distance and squared Euclidean distance are probably the most
commonly chosen measures of similarity. Partition is understood as providing for
each data object an index or label of the cluster to which it is assigned. The goal is
to find such a partition that minimizes the objective function, which, in our case, is
the sum of squared distances of the data objects to their cluster representatives.

The resource-constrained project scheduling problem consists of a set of n ac-
tivities, where each activity has to be processed without interruption to complete
the project. The dummy activities 1 and n represent the beginning and the end
of the project. The duration of the activity j, j = 1, . . . ,n is denoted by d j where
d1 = dn = 0. There are r renewable resource types. The availability of each resource
type k in each time period is rk units, k = 1, . . . ,r. Each activity j requires r jk units of
resource k during each period of its duration where r1k = rnk = 0,k = 1, . . . ,r. All pa-
rameters are non-negative integers. There are precedence relations of the finish-start
type (FS) with a zero parameter value (i.e. FS= 0) defined between the activities. In
other words, activity i precedes activity j if j cannot start until i has been completed.
The structure of the project can be represented by an activity-on-node network
G = (SV,SA), where SV is the set of activities and SA is the set of precedence rela-
tionships. SS j (SPj) is the set of successors (predecessors) of activity j, j = 1, . . . ,n.
It is further assumed that 1 ∈ SPj, j = 2, ...,n, and n ∈ SS j, j = 1, . . . ,n− 1. The ob-
jective is to find a schedule S of activities starting times [s1, . . . ,sn], where s1 = 0
and resource constraints are satisfied, such that the schedule duration T (S) = sn is
minimized. The above formulated problem is a generalization of the classical job
shop scheduling problem.

3.2 Optimizing Agents

To solve instances of each of the above described problems four specialized TA-
Teams have been designed and implemented:

Instances of the EPTSP are solved with the use of the following optimization
algorithms:

• Simple exchange (Ex2) - deletes two random edges from the input solution thus
breaking the tour under improvement into two disconnected paths and reconnects
them in the other possible way, reversing one of them.

• Recombination1 (R1) - there are two input solutions. A subpath from one of them
is randomly selected. In the next step it is supplemented with edges from the
second solution. If this happens to be impossible to add an edge, as the node has
already been used in the subpath, the procedure constructs an edge connecting
endpoint of the subpath with the closest point in the second input solution not yet
in the resulting tour.
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• Mutation (M) - two randomly selected points from the input solution are directly
connected. This subpath is supplemented with edges from the input solution, as
in R1.

Instances of the VRP are solved with the use of the following optimization
algorithms:

• Opti3Opt - an agent which is an implementation of the 3-opt local search algo-
rithm, in which for all routes first three edges are removed and next remaining
edges are reconnected in all possible ways.

• Opti2Lambda - an implementation of the local search algorithm based on λ - in-
terchange local optimization method [13]. It operates on two selected routes and
is based on the interchange/move of customers between routes. For each pair of
routes from an individual a parts of routes of length less than or equal to λ are
chosen and next these parts are shifted or exchanged, according to the selected
operator. Possible operators are defined as pairs: (v,u), where u,v = 1, . . . ,λ and
denote the lengths of the part of routes which are moved or exchanged. For ex-
ample, operator (2,0) indicates shifting two customers from the first route to the
second route, operator (2,2) indicates an exchange of two customers between
routes. Typically, λ = 2 and such value was used in the reported implementation.

• OptiLSA - an implementation of local search algorithm which operates on two
selected routes. First, a node (customer) situated relatively far from the centroid
of the first route is removed from it and next it is inserted to the second route.

Instances of the CP are solved with the use of the following optimization procedures:

• OptiRLS (Random Local Search) - a simple local search algorithm which finds
the new solution by exchanging two randomly selected objects belonging to dif-
ferent clusters. The new solution replaces the current one if it is an improvement.

• OptiHCLS (Hill-Climbing Local Search) - a simple local search algorithm which
finds the new solution by allocating the randomly selected object, from the ran-
domly chosen cluster, to the cluster with minimal euclidean distance to the mean
vector. The new solution replaces the current one if it is an improvement.

• OptiTS (Tabu Search) - a local search algorithm with tabu active list, which
modifies the current solution by allocating the randomly selected object not on
the tabu list from the randomly chosen cluster, to other randomly selected cluster.
Next, the object is placed on the tabu list and remains there for a given number
of iterations. The new solution replaces the current one if it is an improvement.

Instances of the RCPSP are solved with the use of the following optimization
procedures:

• OptiLSA (Local Search Algorithm) - an implementation of simple local search
algorithm which finds local optimum by moving each activity to all possible
places in the schedule. For each combination of activities the value of possible
solution is calculated. The best schedule is returned.

• OptiCA (Crossing Algorithm) - an algorithm based on using the one point
crossover operator. Two initial solutions are repeatedly crossed until a better
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Table 1 Instances used in the reported experiment

Problem Instance name and dimensions Source

EPTSP pr76 (76 cities), TSPLIB [23]
pr144, (144)
pr299 (299),
pr439 (439),
pr1002 (1002)

VRP vrpnc1 (50 customers), OR-Library [15]
vrpnc2 (75),
vrpnc3 (100),
vrpnc4 (150),
vrpnc5 (199)

CP Ruspini (75 objects, 2 attributes), UCI Machine Learning
Repository [24]Cleveland heart disease (303, 13),

Credit approval (690,15),
Iris (150, 4)

RCPSP j3013_01 (30 activities), PSPLIB [16]
j3029_09 (30),
j6009_02 (60),
j9021_03 (90),
j12016_01 (120)

solution will be found or all crossing points will be checked. The frequency of
crossing is determined by the argument.

• OptiPRA (Path-Relinking Algorithm) - an implementation of the path-relinking
algorithm. For a pair of solutions a path between them is constructed. The path
consists of schedules obtained by carrying out a single move from the preceding
schedule. The move is understood as moving one of the activities to a new posi-
tion. For each schedule in the path the value of the respective solution is checked.
The best schedule is remembered and finally returned.

In the computational experiment each of the four TA-Teams implementations has
been used to solve several instances of the respective combinatorial optimization
problems. All these instances have been taken from several well-known benchmark
datasets libraries, as shown in Table 1.

3.3 Architectures

Each instance chosen for the experiment has been solved with the use of three dif-
ferent architectures:

• A1 - single A-Team,
• A2 - 5 A-Teams without communication nor migration feature,
• A3 - fully functional TA-Teams (with migration) consisting of 5 A-Teams.
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Table 2 Experiment settings

problem EPTSP VRP, CP RCPSP
architecture A1 A2, A3 A1 A2, A3 A1 A2, A3

number of common memories 1 5 1 5 1 5

number of individuals
in one common memory 35 7 50 10 250 50
in total 35 50 250

number of optimizing
agents of each kind

cooperating with one
common memory

5 1 5 1 5 1

in total 5

For the communication within the A3 architecture the following parameter settings
have been used:

• Migration size= 1 (in one cycle one individual is sent from the common memory
of an A-Team to the common memory of another A-Team)

• Migration f requency = 0.3 minute
• Migration topology - we consider a one-way ring architecture, in which each

A-Team receives communication from one adjacent A-Team and sends commu-
nication to another adjacent A-Team.

• Migration policy - best-worst policy, in which the best solution taken from the
source population replaces the worst solution in the target population.

The other settings are shown in Table 2 and guarantee that for each problem the
complexity in all three architectures remains similar: the total number of individual
solutions and agents is the same.

Experiment has been carried out on the cluster Holk of the Tricity Academic
Computer Network built of 256 Intel Itanium 2 Dual Core with 12 MB L3 cache
processors with Mellanox InfiniBand interconnections with 10Gb/s bandwidth.

As it has been mentioned before TA-Teams have been implemented using JABAT
middleware derived from JADE. As a consequence it has been possible to create
agent containers on different machines and connecting them to the main platform.
Then agents may migrate from the main platform to these containers. Each instance
used in the reported experiment was solved with the use of 5 nodes of the cluster -
one for the main platform and four for the optimising agents to migrate to.

For each problem and each architecture there were no less then 30 runs. Computa-
tion errors have been calculated in relation to the best results known for the instances
of the investigated problems. Finally, the results - in terms of relative computation
error - have been averaged.

3.4 Computational Experiment Results

Table 3 shows mean values and standard percentage deviations of the respective
fitness functions calculated for all computational experiment runs as specified in the
experiment design described in the previous section.

The main question addressed by the reported experiment is to decide whether
the choice of the architecture has influence on the quality of solutions obtained by
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Table 3 Mean values and standard percentage deviations of the respective fitness functions
calculated for all computational experiment runs

Architecture
Instance A1 A2 A3

pr76 108904,8 0,8% 108628,1 0,5% 108382,1 0,4%
pr144 58714,8 0,4% 58636,4 0,2% 58606,1 0,2%
pr299 49046,7 0,9% 49481,0 0,8% 48862,7 0,7%
pr439 111860,8 1,5% 111209,5 1,2% 110381,6 1,5%
pr1002 274172,0 1,5% 279592,8 0,6% 273698,2 1,1%

vrpnc1 524,6 0,0% 524,6 0,0% 524,6 0,0%
vrpnc2 851,8 2,0% 853,9 2,2% 851,0 1,9%
vrpnc3 837,1 1,3% 837,8 1,4% 837,8 1,4%
vrpnc4 1064,8 3,5% 1067,5 3,8% 1062,8 3,3%
vrpnc5 1376,0 6,5% 1379,4 6,8% 1367,5 5,9%

Austr. Credit 1923,7 8,7% 1718,4 3,7% 1655,0 3,4%
Cleveland Heart 951,8 14,5% 888,5 4,0% 862,0 3,3%
Iris2 295,4 25,0% 270,3 13,6% 227,3 10,5%
Iris3 157,4 19,5% 141,7 13,0% 121,4 16,5%
Iris4 167,5 9,3% 133,5 17,9% 134,2 17,8%
Ruspini2 3549,8 5,8% 3406,8 2,3% 3369,3 2,4%
Ruspini3 2342,5 7,2% 2317,7 11,4% 2083,0 15,1%
Ruspini4 1752,2 5,9% 1841,6 12,9% 2017,6 18,8%

j30_29_9 98,4 1,0% 98,1 0,9% 98,3 0,9%
j60_9_2 85,2 0,5% 84,7 0,4% 84,9 0,4%
j60_17_4 71,0 0,0% 71,0 0,0% 71,0 0,0%
j90_21_3 129,4 0,6% 128,7 0,6% 128,6 0,6%
j120_16_1 213,0 0,6% 212,3 0,6% 212,3 0,6%

A-Teams? To answer this question the one-way analysis of variance (ANOVA) for
each of the considered instances has been carried out. For the purpose of the analysis
the following hypotheses have been formulated:

• H0 - zero hypothesis: the choice of architecture does not influence the quality of
solutions (mean values of the fitness function are not statistically different).

• H1 - alternative hypothesis: the quality of solutions is not independent from the
architecture used (mean values of the fitness function are statistically different).

The analysis has been carried out at the significance level of 0.05. The results are
shown in Table 4 and allow to observe the following:

• Zero hypothesis stipulating that the choice of architecture does not influence the
quality of solutions (mean values of the fitness function are not statistically dif-
ferent) is accepted in 8 out of 20 considered cases. However, in 2 cases out of 8
(e.g. vrpnc1 and j60_17_4) all three architectures gave exactly the same - optimal
- solutions.
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Table 4 ANOVA test results for considered problems

Problem Instance name and dimensions Source

CP

CreditTrening -
HeartTrening -
Iris2 yes
Iris3 -
Iris4 yes
Ruspini2 yes
Ruspini3 -
Ruspini4 yes

EPTSP

pr76 -
pr144 yes
pr299 -
pr439 -
pr1002 -

VRP

vrpnc1 yes
vrpnc2 -
vrpnc3 -
vrpnc4 -
vrpnc5 -

RCPSP

j30_29_9 yes
j60_17_4 yes
j60_9_2 -
j90_21_3 -
j120_16_1 -

• In 12 out of 20 cases zero hypothesis is rejected in favour of the alternative hy-
pothesis suggesting that the quality of solutions is not independent from the ar-
chitecture used (mean values of the fitness function are statistically different).

Taking into account that the problems under consideration are not homogenous it
has not been possible to carry out analysis of variance with reference to suitability
of particular architecture to particular problem. Instead it has been decided to use the
non-parametric Friedman test in order to obtain the answer to the question whether
particular architectures are equally effective independently of the kind of problem
being solved.

The above test has been based on weights (points) assigned to architectures used
in the experiment: 1, 2 or 3 points for the worse, second worse and best architecture.
The test aimed at deciding among the following hypotheses:

• H0 - zero hypothesis: considered architectures are statistically equally effective
regardless of the kind of problem,

• H1 - alternative hypothesis: not all architectures are equally effective.
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Fig. 3 The Friedman test weights for each problem and each architecture

Fig. 4 The total of Friedman weights for the investigated architectures

The analysis has been carried out at the significance level of 0.05. The respective
value of the χ2 statistics with 3 architectures and 23 instances of the considered
problems is equal to 18 and the value of χ2 distribution is equal to 5.99. Thus it can
be observed that not all architectures are equally effective regardless of the kind of
problem of which instances are being solved.

In Figures 3 and 4 sums of weights obtained by the architectures for each of the
considered problems and overall total of weights for each architecture are, respec-
tively, compared. The highest score in total was obtained by architecture A3. Within
the problems A3 also scored best except of RCPSP problem, where A1 and A2 both
scored the same total. Besides, in Table 5 distribution of points obtained from the
Friedman test by respective architectures is shown.
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Table 5 Distribution of points obtained from the Friedman test by the respective architectures

Points A1 A2 A3

1 13 7 1
2 8 11 7
3 2 4 13

4 Synergetic Effect within A-Teams in TA-Teams

The ground principal of asynchronous teams rests on combining algorithms into
effective problem solving organizations, possibly creating a synergetic effect, in
which the combined effect of cooperation between agents is greater than the sum of
their separate efforts. In [5] and [13] it was shown that joint effort of optimization
agents cooperating within one A-Team may produce such synergetic effect.

In the first series of experiments ([5]) an implementation of JABAT for solving
VRP problem was used. Investigated factors included the number of optimizing
agents and composition of the team. Two criteria were evaluated: mean relative
error and computation time.

It could be observed that in many cases adding a new agent to the team of running
agents brings improvement to the final solution. Indeed, for many instances tested in
the experiment the average value of mean relative error decreases when the number
of optimizing agents used in the process of solving the problem increases. How-
ever, applying more agents may require more computation time, especially when
the agents added are more complex in terms of computational complexity. What is
more, scale-effectiveness (performance improvement with scale) could be observed
only up to a point; adding yet another agent to the team consisting of a certain num-
ber of agents did not improve the solution.

The experiment also showed that there existed synergetic effect from cooperation
of different types of agents, e.g. agents representing different optimizing algorithms.
The strength of synergetic effect strongly depended on the structure of the agents
team and often diversifying composition of the team resulted in producing solutions
of a better quality.

Another experiment was described in [13]. In this case an implementation of JA-
BAT for solving EPTSP was used, with 5 types of relatively low quality optimizing
agents. The experiment involved solving EPTSP tasks with the use of different sizes
of the common population of solutions. The number of individuals in the population
ranged from 2 to 15. A synergetic effect appeared, on average, for all sizes of the
common memory.

For a larger problem instances such an effect to appear required some compu-
tation time lag. However, small size instances could be effectively solved using a
number of homogenous local-search optimizing agents working together for a cer-
tain time, which would be shorter than the time required by a heterogeneous A-Team
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to achieve a comparable quality. All these findings refer to the working strategy used
in the experiment where escaping from the local optima was based on inserting to
the common memory some random solutions from time to time during the computa-
tion process. Unfortunately the experiment results do not allow to draw any general
rules for construction of an A-Team from heterogeneous optimizing agents with a
view to achieving a synergetic effect, even for the specific problem type.

The existence of the synergetic effect was also shown by the experiment de-
scribed in [10]. There, tasks from data reduction problem were solved with the
use of two different agent teams. There were two homogenous teams consisting of
agents implementing simulated annealing and tabu search algorithms respectively,
and eight teams consisting of both types of agents (simulated annealing and tabu
search algorithms), varying by some parameters of the algorithms. It was shown
that the results obtained from heterogenous teams were more accurate. In fact each
heterogenous team gave better results than both homogenous teams.

It was decided to check whether the synergetic effect of optimization agents co-
operating within each A-Team in the fully functional TA-Teams (with migration) still
may be observed. To check the existence and strength of such an effect additional
experiment has been conducted for EPTSP problem.

4.1 Synergetic Effect in TA-Teams - Computational Experiment

The experiment was run for EPTSP problem. The optimising agents and problem
instances were the same as described in Section 3. The architectures were chosen as
follows:

• B1 - 6 heterogenous A-Teams without communication nor migration feature,
• B2 - fully functional TA-Teams (with migration) consisting of 6 homogenous

A-Teams,
• B3 - fully functional TA-Teams (with migration) consisting of 6 heterogenous

A-Teams.

In each heterogenous A-Team there are three different optimising agents: one Ex2,
one R1 and one M. In each homogenous A-Team only agents of the same kind
cooperate: in B2 there are two A-Teams, each consisting of three Ex2 agents, two
A-Teams with three R1 agents, and two with three M agents.

Other settings are the same as in the experiment from Section 3. Again, the set-
tings guarantee that the complexity in all three architectures remains similar: in each
architecture the total number of individual solutions and agents is the same.

Also, the experiment was run in the same environment, on the cluster Holk with
five nodes, four of which were used for the optimizing agents to migrate to.

For each problem and each architecture there were no less then 30 runs. Com-
putation errors have been calculated in relation to the best results known for the
problems. The results - in terms of relative computation error - have been averaged.
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4.2 Computational Experiment Results

Table 6 shows mean values and standard percentage deviations of the respective
fitness functions calculated for all computational experiment runs as specified in the
experiment design described in the previous subsection.

Table 6 Mean values and standard percentage deviations of the respective fitness functions
calculated for all computational experiment runs

Problem B1 B2 B3

pr76 108539,5 0,4% 108748,9 0,5% 108396,3 0,4%
pr144 58636,0 0,1% 58669,5 0,2% 58578,0 0,1%
pr299 49480,9 0,7% 49322,0 1,1% 48874,7 0,7%
pr439 111391,2 1,1% 111750,0 1,9% 109922,6 1,5%
pr1002 284967,5 1,4% 281580,4 1,5% 272905,0 0,7%

Again, the question addressed by the reported experiment is to decide whether
the choice of the architecture has influence on the quality of solutions obtained by
A-Teams? To answer this question the one-way analysis of variance (ANOVA) for
each of the considered problems has been carried out. For the purpose of the analysis
the following hypotheses have been formulated:

• H0 - zero hypothesis: the choice of architecture does not influence the quality of
solutions (mean values of the fitness function are not statistically different).

• H1 - alternative hypothesis: the quality of solutions is not independent from the
architecture used (mean values of the fitness function are statistically different).

The analysis has been carried out at the significance level of 0.05. From Table 7 we
can see that for all considered instances of EPTSP problem the choice of architecture
influences the results.

Table 7 ANOVA test results for considered problems

Problem H0 accepted

pr76 -
pr144 -
pr299 -
pr439 -
pr1002 -

Additionally, to identify differences between architectures, the Tukey test has
been carried out, based on the ANOVA results. This test aimed at comparing pairs
of the architectures with a view to evaluate which pairs are statistically different
and which are not. Architectures that do not statistically differ are shown in Table 8.
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Table 8 Pairs of the architectures showing no statistical differences in the Tukey test (pairs
marked by X)

Problem B1/B2 B2/B3 B1/B3

pr76 x x
pr144 x
pr299 x
pr439 x
pr1002

The following observation may be drawn: architectures B1 and B2 (heterogenous
A-Teams without communication and homogenious TA-Teams) produce results of
the statistically comparable quality, though the results may differ for bigger tasks.

Fig. 5 compares average relative computation errors for all three architectures. It
can be seen that for all data considered the best results (or the smallest average error)
was produced by architecture B3 - fully functional TA-Teams. For bigger instances,
pr299 and pr1002, architecture B2 was worse than architecture B1.

Thus, the above considerations for EPTSP problem allow to draw the conclusion
that the architecture with heterogenous TA-Teams might be recommended as the one
with the highest probability of producing the above average quality result.

Fig. 5 Average relative computation error
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5 Conclusions

The presented research has confirmed that in most cases integrating the distributed
evolutionary concept, and especially the island based evolutionary algorithm with
the A-Team paradigm might result in achieving a noticeable improvement in the
quality of the computation results. Thus, the chapter confirms the importance of
choosing an effective architecture.

In [5] and [13] it has been shown that heterogenous A-Team may give better
results than homogenious A-Teams. This chapter confirms this results for teams
of A-Teams. Thus, heterogeneous A-Teams in the architecture with some kind of
cooperation may be competitive in terms of the quality of solutions in comparison
with both using traditional, non-cooperating, agents or teams of agents or using only
homogenious A-Teams in the same architecture.

The range of parameters used in the experiments is insufficient to draw further
conclusions as to strategy of choosing features of the TA-Teams constructed from
heterogeneous optimizing agents with a view to achieving best results. Future re-
search will focus on evaluating effects of a wider set of parameters and solving
more test data, which might be helpful in identifying more general observations.
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Distributed Bregman-Distance Algorithms
for Min-Max Optimization

Kunal Srivastava, Angelia Nedić�, and Dušan Stipanović

Abstract. We consider a min-max optimization problem over a time-varying net-
work of computational agents, where each agent in the network has its local convex
cost function which is a private knowledge of the agent. The agents want to jointly
minimize the maximum cost incurred by any agent in the network, while main-
taining the privacy of their objective functions. To solve the problem, we consider
subgradient algorithms where each agent computes its own estimates of an opti-
mal point based on its own cost function, and it communicates these estimates to its
neighbors in the network. The algorithms employ techniques from convex optimiza-
tion, stochastic approximation and averaging protocols (typically used to ensure a
proper information diffusion over a network), which allow time-varying network
structure. We discuss two algorithms, one based on exact-penalty approach and
the other based on primal-dual Lagrangian approach, where both approaches uti-
lize Bregman-distance functions. We establish convergence of the algorithms (with
probability one) for a diminishing step-size, and demonstrate the applicability of the
algorithms by considering a power allocation problem in a cellular network.

1 Introduction

This work is motivated by coordinator-free distributed algorithms for optimization
problems originating in [38, 5], which have recently seen a resurgence driven by
wireless network applications. A canonical problem in coordinator-free distributed
setting is the problem of reaching an agreement among the local decision variables
in a network of computational agents [39]. Protocols for achieving an agreement
employ local averaging which is known to be robust to time-varying graph topology
and noisy communication links [18]. These averaging protocols have led to a new
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class of distributed algorithms for parameter estimation [37], distributed optimiza-
tion [29, 25, 23, 19, 21, 35] and control of multi-agent systems [16]. Recent work
in agreement-based distributed optimization has focused on minimizing the sum of
agents’ local cost functions [25, 23, 35, 17, 19, 20, 32], which arises in wide variety
of areas ranging from sensor networks [28] to distributed machine learning [1].

Optimizing the sum of local objective functions is a popular choice for problems
arising in resource allocation and network utility maximization [34], as the objective
function is a measure of fair resource allocation. An alternative notion of fairness
is the min-max criterion [8], where the interest is in determining an optimal deci-
sion variable that minimizes the worst case loss incurred by any agent. However,
the algorithms for solving distributed min-max problems over networks are in their
infancy. To fill out this void, we have recently considered a distributed method for
solving such a problem in [36], where we provided a subgradient algorithm based on
the exact-penalty function approach. Here, we make a further progress in two differ-
ent directions: (1) we present a distributed exact penalty algorithm that uses Breg-
man distances [10] as opposed to the standard Euclidean distance considered in [36];
and (2) we provide an alternative distributed primal-dual algorithm that also uses
Bregman distances. We establish convergence of both algorithms for a diminishing
step-size and time-varying network, under mild conditions on the network connec-
tivity. We allow for stochastic errors in subgradient evaluations, which are assumed
to be zero-mean and with uniformly bounded expected norm, as typically done in
stochastic approximations or stochastic subgradient methods [13, 14, 27, 6, 9, 26].

The min-max optimization aspect addressed in this paper is novel with respect to
the prior work on distributed optimization over a network, which is dealing exclu-
sively with the minimization of the sum of agent objectives [29, 25, 23, 19, 21, 1, 35,
32], except for [36]. The network aspect of this paper sets it apart from the standard
optimization problems with noisy (sub)-gradient evaluations [14, 27, 6, 9, 26].

The advantage of the proposed algorithms is their ability to solve a class min-max
distributed problems for which currently there are no specific algorithms, except
for [36]. The difficulty in developing such algorithms comes from the inherent dis-
tributed knowledge of the problem data in a network of agents. Thus, there is a need
for an algorithm that has ability to ”align” the iterates among the agents while simul-
taneously solving the network problem. Both of our proposed algorithms achieve
this task.

Regarding the benefits of the proposed algorithms, the exact-penalty algorithm is
simpler for implementation, but in principle it is a distributed subgradient approach
due to the use of non-differentiable penalty functions. The primal-dual approach
requires a larger number of variables than the penalty approach, but it preserves the
smoothness of the problem (provided that the original agent objective functions fi

are smooth). In the presence of stochastic errors in (sub)gradient evaluations, both
algorithms will have overall rate of the order of 1/

√
k in terms of the number of

iterations k, which is typical for stochastic approximations [27, 26].
The rest of the chapter is organized as follows. In Section 2 we state our problem

of interest and suitably reformulate it for the development of distributed algorithms.
In Section 3 we present our distributed Bregman-distance based algorithm which
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utilizes the exact penalty function approach, and we establish the convergence of
the algorithm. In Section 4 we develop an alternative algorithm which builds on the
primal-dual approach of Arrow-Hurwicz-Uzawa [2], and we prove its convergence.
This algorithm paves a way to handling the problems in which the network plays
a min-max game against an exogenous signal, which is discussed in Section 5. In
Section 6 we present an example of min-max power allocation in a cellular network
and provide simulation results for both the exact penalty approach and the primal-
dual approach. We conclude in Section 7.

Notation: The set of real numbers is denoted by R, while non-negative real num-
bers are denoted byR+. All vectors are viewed as columns, where the jth component
of a vector x is denoted by x j. We use the symbol 〈x,y〉 to denote the inner-product
between two vectors x and y. We write 1 for the vector with each component equal
to 1. A vector π is stochastic if πi ≥ 0 for all i and ∑i πi = 1.

For an m×m matrix A, we use Ai j or [A]i j to denote its entry in the ith row and
jth column. An m×m matrix W is stochastic if Wi j ≥ 0 for all i, j, and W1 = 1. A
stochastic matrix W is doubly stochastic if it satisfies 1TW = 1. Given a directed
graph G = (V,E), the link (i, j) ∈ E is to be interpreted as the incoming edge from j
to i. For a bidirectional graph G, we have (i, j) ∈ E if and only if ( j, i) ∈ E . We will
sometimes denote the edge set of a graph G as E (G). We use the terms “agent” and
“node” interchangeably. We say that agent j is a neighbor of agent i if (i, j) ∈ E , and
we denote the set of all neighbors of agent i by Ni. When the edge set is time varying,
we use Ni(t) to denote the neighbors of agent i at time t. Given a logical statement
p(x) that is predicated on a variable x, we use 1{p(x)} to denote the indicator function
which takes value 1 when p(x) is true and value 0 when p(x) is f alse.

2 Problem Formulation

We consider a system of m computational agents, which is viewed as the node set
V = {1, . . . ,m}. We assume that the time is discrete and use k = 0,1, . . . to denote
the time instances. The agents communicate with each other over a time-varying
communication network. At any time k, the communications among the agents are
represented by a directed graph G(k) = (V,E(k)) with an edge-set E(k) that has a
link (i, j) ∈ E(k) if and only if agent i receives information from agent j at time k.

Let each agent i have a cost function fi, which is known only to that agent. Con-
sider a distributed multi-agent optimization problem subject to local agent commu-
nications, where the agents want to cooperatively solve the following problem:

min
x∈X

max
i∈V

fi(x). (1)

Here, each fi : Rn → R is a convex function, representing a local objective function
known only by agent i. The set X ⊆ R

n is a closed and convex set known by all
agents. Throughout the paper, we assume that the problem has a nonempty optimal
set, which is denoted by X∗.



146 K. Srivastava, A. Nedić, and D. Stipanović

We assume that Rn is equipped with some norm ‖ · ‖, with a corresponding dual
norm ‖·‖∗. The goal is to develop a distributed algorithm for solving the constrained
optimization problem in (1), while obeying the network connectivity structure and
local information exchange among the neighboring agents.

The min-max-problem in (1) is a convex problem, as the function f (x) =
maxi∈V fi(x) is convex since point-wise maximum of convex functions preserves
convexity ([4], Proposition 1.2.4, page 30). We are interested in the case when the
agents’ objective functions fi are not necessarily differentiable. We also allow the
local objective functions fi to take the form of the following stochastic optimization:

fi(x) = Eωi [Fi(x,ωi)]+Ωi(x), (2)

where the expectation is taken with respect to the distribution of a random variable
ωi. The term Ωi(x) is a regularization term that may be included to improve the
generalization ability [15], or to enforce sparsity on solutions.

Min-max problem (1) does not lend itself to distributed computations that obey
the local connectivity of the agents in the network. We find it useful to use the
epigraph representation of the problem. In particular, we let η ∈ R and we re-cast
problem (1) in an equivalent form:

minimize η
subject to fi(x)≤ η for all x ∈ X , η ∈R, and i ∈V , (3)

where x and η are variables. We use η∗ to denote the optimal value of problem (3).
To distributedly solve the min-max problem, we provide two algorithms aimed

at solving its epigraph formulation in (3). The first algorithm is based on an ex-
act penalty function approach and the second algorithm is based on a primal-dual
approach, where both algorithms employ Bregman-distance functions.

Before proceeding with the algorithmic development, we provide some basics
of a Bregman-distance function as introduced by Bregman [10] (also, see for
example [11]). Let R

n be equipped with some norm ‖ · ‖, whose dual norm is
‖x‖∗ = sup‖y‖≤1〈y,x〉. Let X ⊆ R

n be a convex set and ω : X → R be a differen-
tiable convex function over X . The function ω is strongly convex with a parameter
σ > 0 (with respect to the norm ‖ · ‖), if it satisfies

ω(y)− [ω(x)+ 〈∇ω(x),y− x〉]≥ σ
2
‖x− y‖2 for all x ∈ X◦ and y ∈ X ,

where X◦ denotes the relative interior of the set X . Alternatively, ω is strongly con-
vex over X with a parameter σ > 0 if there holds:

〈∇ω(x)−∇ω(y),x− y〉 ≥ σ‖x− y‖2 for all x,y ∈ X◦.

Given a strongly convex function ω , we can define the Bregman-distance function
B : X ×X◦ →R+ induced by ω :

B(y,x) = ω(y)− [ω(x)+ 〈∇ω(x),y− x〉] .
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This function is also referred to as the prox-function induced by ω . For the function
B, by the convexity of ω we have

B(y,x)≥ 0 for all y ∈ X and x ∈ X◦.

Furthermore, by the strong convexity of ω , for every x ∈ X◦, the function B(·,x) is
strongly convex over X with the same parameter σ . The Bregman function B(y,x) is
used to define a nonlinear projection operator associated with the given set X , also
known as the prox-operator [26], as follows:

PX(d,x) = argminz∈X {〈d,z− x〉+B(z,x)} .

3 Exact Penalty Function Approach

We further transform the problem in (3) by penalizing the constraints to obtain the
following problem:

min
x∈X ,η∈R

η +
m

∑
i=1

rigi(x,η), (4)

where each gi is a penalty function given by

gi(x,η) = max{0, fi(x)−η}

and ri > 0 is a penalty parameter for violating the constraint fi(x)≤ η . Under certain
conditions [3], the solutions of the penalized problem (4) are also the solutions of
the constrained problem (3). Specifically, these conditions involve the Lagrangian
dual problem associated with problem (3). We introduce the Lagrangian function:

L(x,η ,μ) = η +
m

∑
i=1

μi( fi(x)−η), (5)

where μ = (μ1, . . . ,μm)
′ is the vector of dual variables satisfying μi ≥ 0 for all i∈V .

The dual problem is

max
μ≥0

q(μ) with q(μ) = inf
x∈X ,η∈R

L(x,η ,μ). (6)

It can be verified that the Slater condition is satisfied for problem (3) and, hence,
there is no duality gap between the primal problem (3) and its dual (6). Furthermore,
the set of dual optimal solutions is nonempty and bounded. The bound for the dual
optimal variables can be found by rewriting the Lagrangian function (5) as follows:

L(x,η ,μ) =

(
1−

m

∑
i=1

μi

)
η +

m

∑
i=1

μi fi(x).
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Thus, infη∈R L(x,η ,μ) = −∞ when ∑m
i=1 μi �= 1, implying that q(μ) = −∞ when-

ever ∑m
i=1 μi �= 1. Therefore, the domain of the dual function q is the set of multipliers

μ ≥ 0 such that ∑m
i=1 μi = 1, showing that optimal multipliers μ∗

i must satisfy

m

∑
i=1

μ∗
i = 1. (7)

Hence, according to [3], when the penalty parameters satisfy ri > 1 for all i, then
the problems in (4) and (3) are equivalent.

Penalized problem (4) has a form suitable for distributed computations among the
agents, as its objective can be written as ∑m

i=1(η/m+ rigi(x,η)) and the function
F̃i(x,η) = η/m+ rigi(x,η) can be interpreted as an objective function associated
with agent i. In this setting, agent i is the only agent that knows the function fi and,
therefore, this agent is the only agent that deals with the dual variable μi associated
with the constraint fi(x) ≤ η . Furthermore, observe that there is no need for any
coordination of the penalty values ri among the agents, as each agent just needs to
choose its individual penalty ri > 1.

3.1 Equivalence between Epigraph and Penalty Formulations

We establish an important relation between the optimal solutions of the epigraph
formulation (3) of the min-max problem and its penalized counterpart (4). The proof
of this relation is basically along the lines of the work in [3], but somewhat shorter
as it exploits the special structure of the epigraph formulation (3). Furthermore, the
relation is important in our further development and it is not readily available.

To prove the result, we use the saddle-point theorem characterizing the optimal
solutions of problem (3) and its dual problem (6), as given for example in [4],
Proposition 6.2.4, page 360. The theorem is adjusted to the specific form of our
Lagrangian function.

Theorem 1. The pair (z∗,μ∗) with z∗ = (x∗,η∗) ∈ X ×R and μ∗ ≥ 0 is a saddle-
point of the Lagrangian function L(z,μ) (i.e., primal-dual optimal pair) if and only
if the following relation holds:

L(z∗,μ)≤ L(z∗,μ∗)≤ L(z,μ∗) for all z = (x,η) ∈ X ×R and μ ≥ 0.

Now, we have the following lemma.

Lemma 1. Let η∗ = minx∈X maxi∈V fi(x) and ri > 1 for all i. Then, for gi(x,η) =
max{0, fi(x)−η} we have

m

∑
i=1

rigi(x,η)+η ≥ η∗ for all x ∈ X and η ∈ R.
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Furthermore, the above inequality holds as equality if and only if η = η∗ and
x = x∗ for an optimal solution x∗ of the problem minx∈X maxi fi(x).

Proof. Consider the definition of the Lagrangian in (5). For a given x ∈ X and η ,
let us define the dual variables μi such that μi = ri if fi(x)−η ≥ 0, and μi = 0 if
fi(x)−η < 0, or compactly μi = ri1{ fi(x)≥η}. Then, we have

m

∑
i=1

ri max{ fi(x)−η ,0}+η =
m

∑
i=1

μi( fi(x)−η)+η = L(z,μ).

Furthermore, we have L(z∗,μ∗) = η∗. Thus, we need to prove that L(z,μ) −
L(z∗,μ∗) ≥ 0. For this we use Theorem 1, from which we obtain −L(z∗,μ∗) ≥
−L(z,μ∗), implying

L(z,μ)−L(z∗,μ∗)≥ L(z,μ)−L(z,μ∗) =
m

∑
i=1

(μi − μ∗
i )( fi(x)−η)

=
m

∑
i=1

(ri − μ∗
i )1{ fi(x)≥η}( fi(x)−η)−

m

∑
i=1

μ∗
i 1{ fi(x)<η}( fi(x)−η)≥ 0,

where we have used the decomposition μ∗
i = μ∗

i 1{ fi(x)≥η}+ μ∗
i 1{ fi(x)<η}, and rela-

tions ri > 1 and 1 ≥ μ∗
i ≥ 0 for all i (see (7)).

We next show that the preceding inequality holds as equality if and only if η =η∗
and x = x∗ for some x∗ ∈ X∗. By the definition of min-max solution, if x∗ solves the
problem then we have fi(x∗)≤ η∗ for all i, implying

m

∑
i=1

ri max{ fi(x
∗)−η∗,0}+η∗ = η∗.

Thus, we just need to prove the “only if” part. Assume that for some x̄ ∈ X and η̄ ,

m

∑
i=1

ri max{ fi(x̄)− η̄,0}+ η̄ = η∗. (8)

Since ∑m
i=1 ri max{ fi(x̄)− η̄,0} ≥ 0, it follows η̄ ≤ η∗. Let us assume that η̄ < η∗.

Then, for the equality to hold we must have f j(x̄)> η̄ for some j. Thus, fi∗(x̄)> η̄
for i∗ = argmaxi fi(x̄). By η∗ = minx∈X maxi∈V fi(x) we have fi∗(x̄) ≥ η∗ implying
fi∗(x̄)− η̄ ≥ η∗ − η̄ > 0. Since ri∗ > 1, it follows that ri∗( fi∗(x̄)− η̄) > η∗ − η̄ .
Therefore,

m

∑
i=1

ri max{ fi(x̄)− η̄,0}+ η̄ > η∗,

which contradicts (8). Hence, we must have η̄ = η∗ in (8). This further yields
∑m

i=1 ri max{ fi(x̄)−η∗,0} = 0, which by ri > 0 implies fi(x̄) ≤ η∗ for all i, thus
showing that x̄ is a min-max solution.
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3.2 Penalty-Based Algorithm

Here, we present a distributed multi-agent algorithm for solving the penalty re-
formulation (4) of the min-max problem, where a penalty function gi(x,η) is as-
sociated with an agent i and ri > 1 for all i ∈ V . Let x j

k and η j
k be the decision

variables of agent j at time k, which are agent j estimates of an optimal solution
x∗ and the optimal value η∗ of the problem, respectively. Recall that the agents’
communications at time k are represented with a graph G(k) = (V,E(k)), where
(i, j) ∈ E(k) if agent i receives estimates x j(k) and η j(k) from agent j. To cap-
ture this information exchange, we let Ni(k) denote the set of neighbors of agent
i, i.e., Ni(k) = { j ∈ V | (i, j) ∈ E(k)}. Let us introduce a strongly convex func-
tion ωx : X → R, with a parameter σx > 0. We assume that R is equipped with
square norm, i.e., r �→ 1

2 r2, and we introduce a scalar function ωη : R → R that is
strongly convex with respect to this norm, with a parameter ση > 0. Let us denote
the Bregman-distance functions generated by these strongly convex functions by
Bx(·, ·), and Bη(·, ·) respectively, i.e.,

Bx(y,u) = ωx(y)− [ωx(u)+ 〈∇ωx(u),y− u〉],
Bη(φ ,ζ ) = ωη(φ)− [ωη(ζ )+ω ′

η(ζ )(φ − ζ )],

where ω ′
η(ζ ) denotes the derivative of ωη at ζ . Upon receiving the estimates x j

k

and η j
k from its neighbors, each agent i performs an intermittent adjustment of its

estimates as follows: [
x̃i

k
η̃ i

k

]
= ∑

j∈Ni(k)

wi j(k)

[
x j

k

η j
k

]
, (9)

where wi j(k)≥ 0 is a weight that agent i assigns to its neighbor j ∈ Ni(k).
For a compact representation of relation (9), let wi j(k) = 0 for all j �∈ Ni(k) and

introduce a matrix Wk with entries wi j(k). With this notation, the intermittent adjust-
ment in (9) can be written as follows:

z̃i
k =

[
x̃i

k
η̃ i

k

]
=

m

∑
j=1

[Wk]i j

[
x j

k
η j

k

]
. (10)

After the intermittent adjustment, each agent i takes a step toward minimizing its
own penalty function through an adjustment of the following form: for all i ∈V ,

xi
k+1 = argminy∈X

[
αkri〈∇xgi(z̃

i
k)+ ε i

k,y〉+Bx(y, x̃
i
k)
]
,

η i
k+1 = argmins∈R

[
αk

(
1
m
+ ri∇η gi(z̃

i
k)

)
s+Bη(s, η̃ i

k)

]
, (11)

where ri > 1 and αk > 0 is a step size. The notation ∇xgi(x,η) denotes a subgradient
of g with respect to x, i.e., the term ∇ fi(x)1{ fi(x)≥η} where we use ∇ fi(x) to denote
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a subgradient of fi at x. Similarly, ∇η gi(x,η) denotes the partial derivative of g with
respect to η i.e., ∇η gi(x,η) =−1{ fi(x)≥η}.

If Rn is equipped with the Euclidean norm, and the Bregman distance functions
are chosen as ωx(y) = 1

2‖y‖2 and ωη(ζ ) = 1
2 ζ 2, then algorithm (10)–(11) reduces

to the standard subgradient-projection method:[
xi

k+1
η i

k+1

]
= ΠX×R

[
z̃i

k −αkri

(
∇gi(z̃

i
k)+

[
ε i

k
0

])]
,

where ΠK stands for the Euclidean projection on a set K.
Let us now take a closer look at the first update relation in (11). This update

involves taking a step along an erroneous subgradient of gi at point z̃i
k, i.e., the

direction ∇xgi(z̃i
k)+ε i

k where ε i
k is a subgradient error. The agent i objective function

gi(x,η) = max{ fi(x)−η ,0} is not differentiable at the point (x,η) where fi(x)−
η = 0. At such a point, a subgradient of the function gi at (x,η) exists since each
function fi is assumed to be convex over the entire space ([4], Proposition 4.2.1). A
subgradient of g at such a point is given by

∇gi(x,η) =
[

∇ fi(x)
−1

]
1{ fi(x)≥η}, (12)

where ∇ fi(x) denotes a subgradient of f (x). Thus, the function gi also has a
nonempty subdifferential set at any point (x,η).

The subgradient error ε i
k in algorithm (10)–(11) is assumed to be stochastic in or-

der to address a general form of the objective function, as in (2), where the subgradi-
ent ∇ fi(x) is not readily available to us. We adopt a standard approach in stochastic
optimization by using an unbiased estimate ∇ fi(x)+ ε̄ i

k of the subgradient, where ε̄ i
k

is a zero mean random variable. Thus, in (11) we have

ε i
k = ε̄ i

k1{ fi(x̃i
k)≥η̃ i

k}.

The initial points xi
0 ∈ X and η i

0, for i ∈V , may be selected randomly with a distri-
bution independent of any other sources of randomness in the algorithm.

3.3 Assumptions

Our assumptions on the network are the same as, for example, those in [29, 32].

Assumption 1. For the weight matrices and the communication graphs, we assume
the following:

(a)[Weights Rule] There exists a scalar 0 < γ < 1 such that [Wk]ii ≥ γ for all i and
k, and [Wk]i j ≥ γ whenever [Wk]i j > 0.

(b)[Doubly Stochasticity] The matrix Wk is doubly stochastic for all k, i.e., Wk1 = 1,
and 1′Wk = 1′.
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(c)[Connectedness] There exists an integer Q≥ 1 such that the graph with the vertex

set V and the edge set ∪(k+1)Q−1
τ=kQ E(τ) is strongly connected for every k.

The assumptions ensure that agent’s local variables are properly diffused over time-
varying communication networks.

Next, we impose the following assumptions on the subgradients ∇ fi(x) and the
errors, where we use ∂ fi(x) to denote the set of all subgradients of fi at x.

Assumption 2. Let the following hold:

(a) The subgradients of each fi are bounded over the set X, i.e., there is a scalar
C > 0 such that ‖∇ fi(x)‖∗ ≤C for all ∇ fi(x) ∈ ∂ fi(x), all x ∈ X and all i ∈V.

(b) The subgradient errors ε̄ i
k when conditioned on the point x = x̃i

k of the subgradi-
ent ∇ fi(x) evaluation are zero mean, i.e., E[ε̄ i

k | x̃i
k] = 0 for all i ∈ V and k ≥ 0,

with probability 1.
(c) There is a scalar ν > 0 such that E[‖ε̄ i

k‖2∗ | x̃i
k]≤ ν2 for all i ∈V and k ≥ 0, with

probability 1.

Basically, under Assumptions 2-b and 2-c, the iterations {xi
k}, i∈V , of the algorithm

in (10)–(11) form a Markov process. In what follows, we will use Fk to denote the
past iterates of the algorithm (11), i.e.,

Fk = {xi
t ,η

i
t , i ∈V, t = 0,1, . . . ,k} for k ≥ 0.

Note that, given Fk, the iterates x̃i
k and η̃ i

k in (10) are deterministic. In view of this,
as a consequence of the subgradient norm and subgradient error boundedness (As-
sumptions 2-a and 2-c), it can be seen that with probability 1,

E
[‖∇ fi(x)+ ε̄ i

k‖2
∗ | Fk

]≤ (C+ν)2 for all i ∈V and k ≥ 0.

Also, as a result of Assumption 2-a, we have

‖∇xgi(z̃
i
k)‖∗ = ‖∇ fi(x̃

i
k)‖∗1{ fi(x̃i

k)≥η̃ i
k} ≤C for all i ∈V and k ≥ 0.

This and the zero-mean error assumption (Assumption 2-b) yield

E[ε i
k |Fk] = E[ε̄ i

k1{ fi(x̃i
k)≥η̃ i

k} |Fk] = E
[
ε̄ i

k |Fk
]

1{ fi(x̃i
k)≥η̃ i

k} = 0.

Similarly, as a result of Assumption 2-c we have with probability 1,

E[‖ε i
k‖2

∗ |Fk] = E[‖ε̄ i
k‖2

∗1{ fi(x̃i
k)≥η̃ i

k} |Fk] = E
[‖ε̄ i

k‖2
∗ |Fk

]
1{ fi(x̃i

k)≥η̃ i
k} ≤ ν2.

This, in turn implies that with probability 1 for all i ∈V and k ≥ 0,

E
[‖∇xgi(z̃

i
k)+ ε i

k‖2
∗ | Fk

]≤ (C+ν)2. (13)
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Applying Jensen’s inequality, we find that

E
[‖∇xgi(z̃

i
k)+ ε i

k‖∗ | Fk
]≤C+ν. (14)

By the definition, a Bregman function is convex in its first variable. We further make
the assumption on the choice of Bregman-distance functions that requires convexity
with respect to the second variable. We depend on this assumption when showing
the convergence of our algorithm.

Assumption 3. Both Bregman-distance functions Bx(y,z) and Bη(φ ,ζ ) are convex
in their second arguments z and ζ , respectively, for every fixed y and φ .

3.4 Algorithm Convergence

In this section we prove the convergence of algorithm (10)–(11). We use techniques
from Lyapunov analysis and the following generalization of the supermartingale
convergence theorem, which is also known as the Robbins-Siegmund result as it
originated in the work of Robbins and Siegmund [33].

Theorem 2. Let Ft , t = 0,1,2, . . . , be a filtration such that Ft ⊂ Ft+1 for t ≥ 0. Let
{Xt}, {Yt}, {Zt} and {gt} be sequences of non-negativerandom variables that are
adapted to the filtration Ft . Assume that for each t, we have with probability 1,

E[Yt+1|Ft ]≤ (1+ gt)Yt −Xt +Zt ,

where ∑∞
t=0 Zt < ∞ and ∑∞

t=0 gt < ∞ with probability 1. Then, with probability 1,
∑∞

t=0 Xt < ∞ and the sequence Yt converges to a nonnegative random variable Y .

Our convergence analysis of algorithm (10)–(11) rests on Theorem 2. In order to
use this theorem, we establish two main properties of the algorithm showing that the
conditions of the theorem are satisfied. We develop these properties in forthcoming
Lemmas 4 and 5. In the development, we make use of an alternative representation
of the algorithm that relies on transition matrices, defined as follows:

Φ(k,s) =WkWk−1 · · ·Ws for all k,s with k ≥ s ≥ 0. (15)

We next state a result from [22] (Corollary 1) on the convergence properties of the
matrix Φ(k,s).

Lemma 2. Let Assumptions 1 hold. Then, we have
∣∣[Φ(k,s)]i j − 1

m

∣∣≤ θβ k−s for all

i, j ∈V and all k ≥ s ≥ 0, with θ =
(

1− η
4m2

)−2
and β =

(
1− η

4m2

) 1
Q
.

We will also make use of the following result.
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Lemma 3. Let {γk} be a non-negative scalar sequence such that ∑k γk < ∞. Then,
for any β with 0 < β < 1, we have ∑∞

k=0

(
∑k
�=0 β k−�γ�

)
< ∞.

Proof. Let ∑∞
k=0 γk < ∞. For any integer M ≥ 1, we have ∑M

k=0

(
∑k
�=0 β k−�γ�

)
= ∑M

�=0 γ� ∑M−�
t=0 β t ≤ ∑M

�=0 γ� 1
1−β , implying ∑∞

k=0

(
∑k
�=0 β k−�γ�

) ≤ 1
1−β ∑∞

�=0 γ�
< ∞. �

In our analysis, we use auxiliary points, namely the instantaneous averages of the
iterates xi

k and η i
k over i ∈V , defined by

x̂k =
1
m

m

∑
i=1

xi
k, η̂k =

1
m

m

∑
i=1

η i
k for all k ≥ 0.

We next provide an important result for these averages that we use to assert the
convergence properties of our algorithm.

Lemma 4. Let Assumptions 1 and 2 hold, and let ∑∞
k=0 α2

k <∞. Then, for the iterates
of algorithm (10)–(11) we have ∑∞

k=0 αk‖x̂k−xi
k‖<∞ and ∑∞

k=0 αk|η̂k −η i
k|< ∞ for

all i ∈V, with probability 1.

Proof. Let us denote the noisy subgradient as d̃i
k = ∇xgi(z̃i

k)+ ε i
k. Applying the op-

timality condition for (11), we get

〈αkrid̃
i
k +∇ωx(x

i
k+1)−∇ωx(x̃

i
k),y− xi

k+1〉 ≥ 0 for all y ∈ X .

Since x̃i
k ∈ X , by letting y = x̃i

k we have

〈αkrid̃
i
k +∇ωx(x

i
k+1)−∇ωx(x̃

i
k), x̃

i
k − xi

k+1〉 ≥ 0,

which implies

αkri〈d̃i
k, x̃

i
k − xi

k+1〉 ≥ 〈∇ωx(x̃
i
k)−∇ωx(x

i
k+1), x̃

i
k − xi

k+1〉 ≥ σx‖x̃i
k − xi

k+1‖2,

where the last inequality follows by the strong convexity of ωx. Using Hölder’s
inequality, we obtain

αkri‖d̃i
k‖∗‖x̃i

k − xi
k+1‖ ≥ σx‖x̃i

k − xi
k+1‖2.

Therefore ‖x̃i
k − xi

k+1‖ ≤ αkri
‖d̃i

k‖∗
σx

, and taking the conditional expectation yields

E
[‖x̃i

k − xi
k+1‖|Fk

]≤ αkri
E
[‖d̃i

k‖∗ |Fk
]

σx
≤ αkri

C+ν
σx

, (16)

where the last inequality follows from (14) under Assumptions 2-a and 2-c.
Let us now write the iterates as follows

xi
k+1 = x̃i

k + ei
k with ei

k = xi
k+1 − x̃i

k. (17)
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By (16) and the iterated expectation rule, for ei
k we obtain

E[‖ei
k‖] = E

[
E[‖ei

k‖ | Fk]
]≤ αkri

C+ν
σx

for all i and k. (18)

By taking the average of the relations in (17) over i = 1, . . . ,m and using the doubly
stochastic property of Wk, we can see that for all k,

x̂k+1 = x̂k +
1
m

m

∑
i=1

ei
k. (19)

Now, we note that by (17) and the definition of x̃i
k, we have xi

k+1 =∑m
j=1[Wk]i jx

j
k+ei

k.

We then recursively use this equation to relate xi
k+1 and x j

0 for j ∈ V . We do so by
using the matrices Φ(k,s) defined in (15) to obtain

xi
k+1 =

m

∑
j=1

[Φ(k,0)]i jx
j
0 + ei

k +
k−1

∑
�=0

(
m

∑
j=1

[Φ(k, �+ 1)]i je
j
�

)
. (20)

Similarly, we derive the recursive relation for x̂k+1 as given in (19), and obtain:

x̂k+1 = x̂0 +
1
m

k

∑
�=0

m

∑
j=1

e j
� =

1
m

m

∑
j=1

x j
0 +

1
m

m

∑
j=1

e j
k +

1
m

k−1

∑
�=0

m

∑
j=1

e j
�. (21)

Then, from (20) and (21) we have

‖xi
k+1 − x̂k+1‖ ≤

∥∥∥∥∥ m

∑
j=1

(
[Φ(k,0)]i j − 1

m

)
x j

0

∥∥∥∥∥+
∥∥∥∥∥ei

k −
1
m

m

∑
j=1

e j
k

∥∥∥∥∥
+

∥∥∥∥∥k−1

∑
�=0

m

∑
j=1

(
[Φ(k, �+ 1)]i j − 1

m

)
e j
�

∥∥∥∥∥ .
Therefore, for all j ∈V and all k,

‖xi
k+1 − x̂k+1‖ ≤

m

∑
j=1

∣∣∣∣[Φ(k,0)]i j − 1
m

∣∣∣∣‖x j
0‖+

1
m ∑

j �=i

‖ei
k − e j

k‖

+
k−1

∑
�=0

m

∑
j=1

∣∣∣∣[Φ(k, �+ 1)]i j − 1
m

∣∣∣∣‖e j
�‖.

At this point, we use the rate of convergence result from Lemma 2 to bound∣∣[Φ(k, �)]i j − 1
m

∣∣. By doing so, we obtain

‖xi
k+1 − x̂k+1‖ ≤ θβ k

m

∑
j=1

‖x j
0‖+

1
m ∑

j �=i

‖ei
k − e j

k‖+θ
k−1

∑
�=0

m

∑
j=1

β k−(�+1)‖e j
�‖,
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where β < 1 (see Lemma 2). By taking the expectation and using (18) we find that
for all i and k,

E[‖xi
k+1 − x̂k+1‖] ≤ θβ k

m

∑
j=1

E[‖x j
0‖]+

2(m− 1)c
m

αk +mθc
k−1

∑
�=0

β k−(�+1)α�,

with c= (maxi∈V ri)(C+ν)/σx. Next, we multiply the preceding relation with αk+1

and after using ab ≤ (a2 + b2)/2 for the terms αk+1αk and αk+1α�, we obtain

αk+1E[‖xi
k+1 − x̂k+1‖] ≤ θαk+1β k

m

∑
j=1

E[‖x j
0‖]+

(m− 1)c
m

(α2
k +α2

k+1)

+m
θc
2

k−1

∑
�=0

β k−(�+1)(α2
k+1 +α2

� ),

We observe that by ∑∞
k=0 α2

k < ∞ it follows that αk → 0, and hence αk is bounded.
This and the fact β < 1 imply ∑∞

k=0 αk+1β k < ∞. The sum ∑∞
k=0(α2

k +α2
k+1) is

obviously summable when ∑∞
k=0 α2

k < ∞. For the last term, by β < 1 we have

∞

∑
k=1

k−1

∑
�=0

β k−(�+1)(α2
k+1 +α2

� )≤
∞

∑
k=1

α2
k+1

1−β
+

∞

∑
k=1

k−1

∑
�=0

β k−(�+1)α2
� .

The first sum is finite since ∑∞
k=0 α2

k <∞, while the second sum is finite by Lemma 3.
Thus, ∑∞

k=0 αk+1E[‖xi
k+1 − x̂k+1‖] < ∞ for all i ∈ V and by the monotone conver-

gence theorem [7], it follows E
[
∑∞

k=0 αk+1‖xi
k+1 − x̂k+1‖

]
< ∞. When the expected

value of a positive random variable is finite, then the variable must be finite with
probability 1, so we must have ∑∞

k=0 αk+1‖xi
k+1 − x̂k+1‖ < ∞ for all i ∈ V , with

probability 1.
A similar analysis proves ∑∞

k=0 αk|η̂k − η i
k| < ∞ for all i ∈ V , with

probability 1. �

Lemma 4 provides one important property of the iterates generated by our algorithm.
We next provide another important relation that in a way captures a descent property
of the iterates in terms of the Lyapunov function given by the sum of the Bregman-
distance functions Bx and Bη . For notational convenience, we define

zi
k =

[
xi

k
η i

k

]
, ẑk =

[
x̂k

η̂k

]
for all k ≥ 0. (22)

Also, we introduce the notation Ek[·] = E[· |Fk].
We have the following relation for algorithm (10)–(11), under the assumption that

the Bregman-distance functions Bx and Bη are convex in their second arguments.

Lemma 5. Let Assumptions 1, 2 and 3 hold. Then, for algorithm (10)–(11) we have
with probability 1 for any x∗ ∈ X∗ and all k ≥ 0,
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m

∑
i=1

Ek
[
Bx(x

∗,xi
k+1)+Bη(η∗,η i

k+1)
]≤ m

∑
i=1

(
Bx(x

∗,xi
k)+Bη(η∗,η i

k)
)

−αk

(
m

∑
i=1

rigi(ẑk)+ η̂k −η∗
)
+αkr̄

(
C

m

∑
j=1

‖x̂k − x j
k‖+

m

∑
j=1

|η̂k −η j
k |
)

+α2
k m

(
r̄2(C+ν)2

2σx
+

(
1
m + r̄

)2

2ση

)
,

where r̄ = maxi∈V ri.

Proof. By the definition of the Bregman function Bx, we have

Bx(x
∗,xi

k+1)−Bx(x
∗, x̃i

k) = wx(x̃
i
k)−wx(x

i
k+1)−〈∇wx(x

i
k+1),x

∗ − xi
k+1〉

+ 〈∇wx(x̃
i
k),x

∗ − x̃i
k〉.

Noting that wx(x̃i
k)−wx(xi

k+1) = 〈∇wx(x̃i
k), x̃

i
k − xi

k+1〉−Bx(xi
k+1, x̃

i
k), we obtain

Bx(x
∗,xi

k+1)−Bx(x
∗, x̃i

k) = 〈∇wx(x̃
i
k)−∇wx(x

i
k+1),x

∗ − xi
k+1〉−Bx(x

i
k+1, x̃

i
k).

(23)

Now, using the optimality condition for (11), since x∗ ∈ X , we have 〈αkrid̃i
k +

∇ωx(xi
k+1)−∇ωx(x̃i

k),x
∗ − xi

k+1〉 ≥ 0,where d̃i
k = ∇xgi(z̃i

k)+ ε i
k. This implies

〈∇ωx(x̃
i
k)−∇ωx(x

i
k+1),x

∗ − xi
k+1〉 ≤ αkri〈d̃i

k,x
∗ − xi

k+1〉.

Upon substituting the preceding inequality in (23), we obtain

Bx(x
∗,xi

k+1)−Bx(x
∗, x̃i

k)≤ αkri〈d̃i
k,x

∗ − xi
k+1〉−Bx(x

i
k+1, x̃

i
k)

≤ αkri〈d̃i
k,x

∗ − x̃i
k〉+αkri〈d̃i

k, x̃
i
k − xi

k+1〉−
σx

2
‖xi

k+1 − x̃i
k‖2. (24)

where the last inequality follows from the strong convexity of the Bregman func-
tion, i.e., Bx(xi

k+1, x̃
i
k) ≥ σx

2 ‖xi
k+1 − x̃i

k‖2. Further, by Hölder’s inequality we have
αkri〈d̃i

k, x̃
i
k − xi

k+1〉 ≤ αkri‖d̃i
k‖∗‖x̃i

k − xi
k+1‖. Using this and the scalar inequality

2ab ≤ a2 + b2, we obtain

αkri〈d̃i
k, x̃

i
k − xi

k+1〉 ≤ 2
αkri√

2σx
‖d̃i

k‖∗
√

σx√
2
‖x̃i

k − xi
k+1‖

≤ α2
k r2

i
‖d̃i

k‖2∗
2σx

+
σx

2
‖xi

k+1 − x̃i
k‖2. (25)

Upon combining (25) and (24) we arrive at

Bx(x
∗,xi

k+1)−Bx(x
∗, x̃i

k)≤ αkri〈d̃i
k,x

∗ − x̃i
k〉+α2

k r2
i
‖d̃i

k‖2∗
2σx

.
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Since d̃i
k = ∇xgi(z̃i

k)+ ε i
k, by taking the conditional expectation with respect to the

history Fk, and by using (13) and Ek[d̃i
k] = ∇xgi(vi

k), we obtain

Ek
[
Bx(x

∗,xi
k+1)

]≤ Bx(x
∗, x̃i

k)−αkri〈∇xgi(z̃
i
k), x̃

i
k − x∗〉+α2

k r2
i
(C+ν)2

2σx
. (26)

Proceeding similarly, we can derive the following inequality for the iterates involv-
ing the min-max value estimates η i

k,

Ek
[
Bη(η∗,η i

k+1)
]≤Bη(η∗, η̃ i

k)−αk

(
1
m
+ ri∇η gi(z̃

i
k)

)
(η̃ i

k −η∗)+α2
k

( 1
m + ri

)2

2ση
,

(27)

where we use the fact |∇η gi(z̃i
k)| ≤ 1. By the convexity of gi and the subgradient

property, we have

∇gi(z̃
i
k)

′(z̃i
k − z∗)≥ gi(z̃

i
k)− gi(z

∗) = gi(z̃
i
k).

where the equality follows by gi(z∗) = max{0, fi(x∗)−η∗} and fi(x∗)−η∗ ≤ 0 for
all i ∈V and any optimal point x∗ ∈ X∗. Upon adding the inequalities (26) and (27),
and using the convexity of gi, we obtain for any x∗ ∈ X∗ and all k ≥ 0 and i ∈V ,

Ek
[
Bx(x

∗,xi
k+1)+Bη(η∗,η i

k+1)
]≤ Bx(x

∗, x̃i
k)+Bη(η∗, η̃ i

k)−αk
1
m
(η̃ i

k −η∗)

−αkrigi(z̃
i
k)+α2

k

(
r2

i (C+ν)2

2σx
+

(
1
m + ri

)2

2ση

)
. (28)

Now, by Assumption 3 on the convexity of the Bregman functions Bx and Bη and
the doubly stochasticity of the weight matrix Wk (Assumption 1-b), we have

m

∑
i=1

Bx(x
∗, x̃i

k) =
m

∑
i=1

Bx

(
x∗,

m

∑
j=1

[Wk]i jx
j
k

)
≤

m

∑
i=1

m

∑
j=1

[Wk]i jBx(x
∗,x j

k) =
m

∑
j=1

Bx(x
∗,x j

k).

Similarly, we have ∑m
i=1 Bη(η∗, η̃ i

k)≤ ∑m
j=1 Bη(η∗,η j

k ). Thus, by summing inequal-
ities in (28) over i ∈V we obtain for any x∗ ∈ X∗ and all k ≥ 0,

m

∑
i=1

Ek
[
Bx(x

∗,xi
k+1)+Bη(η∗,η i

k+1)
]≤ m

∑
i=1

(
Bx(x

∗,xi
k)+Bη(η∗,η i

k)
)

−αk
1
m

m

∑
i=1

(η̃ i
k −η∗)−αk

m

∑
i=1

rigi(z̃
i
k)+α2

k m

(
r̄2(C+ν)2

2σx
+

( 1
m + r̄

)2

2ση

)
, (29)

where r̄ = maxi∈V ri.
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From the definition of η̃ i
k and the doubly stochasticity of the matrix Wk, we have

∑m
i=1 η̃ i

k = ∑m
i=1 ∑m

j=1[Wk]i j η j
k = ∑m

j=1 η j
k = mη̂k. Using this identity, together with

adding and subtracting the term αk ∑m
i=1 rigi(ẑk), from the preceding relation we

obtain

m

∑
i=1

Ek
[
Bx(x

∗,xi
k+1)+Bη(η∗,η i

k+1)
] ≤ m

∑
i=1

(
Bx(x

∗,xi
k)+Bη(η∗,η i

k)
)

−αk

(
m

∑
i=1

rigi(ẑk)+ η̂k −η∗
)
+αk

m

∑
i=1

ri
∣∣gi(ẑk)− gi(z̃

i
k)
∣∣

+α2
k m

(
r̄2(C+ν)2

2σx
+

(
1
m + r̄

)2

2ση

)
, (30)

where ẑk is as defined in (22). Next, we consider the term ∑m
i=1 ri

∣∣gi(ẑk)− gi(z̃i
k)
∣∣.

By the definition of gi and relation |max{a,0}−max{b,0}| ≤ |a− b| valid for any
two scalars a and b, we have the following:∣∣gi(ẑk)− gi(z̃

i
k)
∣∣≤ ∣∣ fi(x̂k)− fi(x̃

i
k)− η̂k + η̃ i

k

∣∣≤C‖x̂k − x̃i
k‖+

∣∣η̂k − η̃ i
k

∣∣ ,
where in the first inequality we use the definition of z̃i

k in (10), while in the last
inequality we use the subgradient boundedness assumption for fi. Further, by using
the definition of the variables x̃i

k and η̃ i
k in (10), the stochasticity of Wk and the

convexity of the norm, we obtain

∣∣gi(ẑk)− gi(z̃
i
k)
∣∣≤ m

∑
j=1

[Wk]i j

[
C‖x̂k − x j

k‖+ |η̂k −η j
k |
]
.

Therefore, by using the doubly stochasticity of Wk and r̄ = maxri, we obtain

m

∑
i=1

ri
∣∣gi(ẑk)− gi(z̃

i
k)
∣∣ ≤ r̄C

m

∑
j=1

‖x̂k − x j
k‖+ r̄

m

∑
j=1

|η̂k −η j
k |.

Substituting this estimate back in (30) we get the desired result. �

We are now ready to prove our main convergence result. The result essentially states
that under suitable conditions on the step size αk, all the agents’ estimates converge
to a common optimal point. Moreover, the agents’ estimates of the min-max value
also converge to the optimal value of the problem.

Theorem 3. Let Assumptions 1, 2, and 3 hold. Let the step sizes satisfy ∑∞
k=0 αk = ∞

and ∑∞
k=0 α2

k < ∞. Then, for all i ∈ V, the agents’ iterates xi
k and η i

k generated by
algorithm (10)–(11) are such that with probability 1 for all i ∈V:

(a) The decision variables xi
k converge to a common optimal (random) point x∗ ∈

X∗.
(b) The estimates η i

k converge to the optimal value η∗ of the min-max problem.
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Proof. Our analysis is based on applying the Robbins-Siegmund result from Theo-
rem 2 to the inequality derived in Lemma 5. By our assumption on the step sizes we
have ∑∞

k=0 α2
k < ∞, which trivially implies that

∞

∑
k=0

α2
k m

(
r̄2(C+ν)2

2σx
+

(
1
m + r̄

)2

2ση

)
< ∞.

Furthermore, by virtue of Lemma 4 we have
∞

∑
k=0

αkr̄
m

∑
j=1

(
C‖x̂k − x j

k‖+ |η̂k −η j
k |
)
< ∞. (31)

In addition, by the definition ẑi
k is a convex combination of (xi

k,η
i
k) ∈ X ×R for

all i ∈ V and k, implying by Lemma 1 that ∑m
i=1 rigi(ẑk)+ η̂k −η∗ ≥ 0 for all k ≥

0. Thus, we can apply Lemma 2 to the relation of Lemma 5 and infer that with
probability 1, ∑m

i=1

(
Bx(x∗,xi

k)+Bη(η∗,η i
k)
)

converges for every x∗ ∈ X∗ and

∞

∑
k=0

αk

(
m

∑
i=1

rigi(ẑk)+ η̂k −η∗
)

< ∞. (32)

Now, since ∑∞
k=0 αk = ∞, from (31)–(32) it follows that there exists a subsequence

indexed by {k�} such that with probability 1,

lim
�→∞

(
m

∑
i=1

rigi(ẑk�)+ η̂k� −η∗
)

= 0,

lim
�→∞

‖x̂k� − x j
k�
‖= 0 and lim

�→∞
|η̂k� −η j

k�
|= 0 for all j. (33)

Since ∑m
i=1

(
Bx(x∗,xi

k)+Bη(η∗,η i
k)
)

converges for every x∗ ∈ X∗, the sequence
∑m

i=1

(
Bx(x∗,xi

k)+Bη(η∗,η i
k)
)

must be bounded for every x∗ ∈ X∗ with probabil-
ity 1. Note that from Assumption 3 on the convexity of Bregman functions Bx and
Bη and their inherent strong convexity property we have

1
m

m

∑
i=1

(
Bx(x

∗,xi
k)+Bη(η∗,η i

k)
)≥ Bx(x

∗, x̂k)+Bη(η∗, η̂k)

≥ σx

2
‖x∗ − x̂k‖2 +

ση

2
|η∗ − η̂k|2.

Thus, the sequences {x̂k} and {η̂k} are also bounded with probability 1. Hence,
along a further subsequence, which without loss of generality we can let it be in-
dexed by the same index set {k�, � = 1,2, . . .}, with probability 1 we have
lim�→∞ x̂k� = x̄ and lim�→∞ η̂k� = η̄ , where x̄ ∈ X since X is closed. Moreover, with
probability 1 the limit points satisfy

m

∑
i=1

rigi(x̄)+ η̄ −η∗ = 0.

From this relation and Lemma 1 it follows that x̄∈X∗ and η̄ =η∗ with probability 1.
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In view of (33), and x̂k� → x̄ and η̂k� → η∗, we further have x j
k�
→ x̄ and η j

k�
→ η̄

for all j with probability 1. Therefore, lim�→∞ ∑m
i=1

(
Bx(x̄,xi

k�
)+Bη(η∗,η i

k�
)
)
=

0. However, we have established that the sequence ∑m
i=1

(
Bx(x∗,xi

k)+Bη(η∗,η i
k)
)

converges with probability 1 for any x∗ ∈ X∗, which in view of x̄ ∈ X∗, implies that
with probability 1,

lim
k→∞

m

∑
i=1

(
Bx(x̄,x

i
k)+Bη(η∗,η i

k)
)
= 0.

Finally, by the strong convexity of the Bregman-distance functions Bx and Bη , it
follows that x j

k → x̄ and η j
k → η∗ with probability 1 for all j. �

One may extend algorithm (10)–(11) to the case when each agent i uses a different
Bregman function Bη,i instead of a common one Bη . Following the same analysis,
with a slight modification, it can be seen that the convergence result of Theorem 3
would be applicable to such a modified algorithm.

4 Primal-Dual Approach

In this section we present a distributed primal-dual algorithm which is motivated by
the classical work of Arrow-Hurwicz-Uzawa [2]. Recently, a primal-dual method
was studied in [24] for approximate solutions to saddle-point problems by consid-
ering standard Euclidean norm. The use of Bregman distance for a saddle-point
problem was studied in [26]. The prior work is dealing with centralized problems,
while here we consider a primal-dual method with Bregman distances for solving
the distributed min-max problem in its epigraph formulation (3).

In order to apply primal-dual approach, we need to slightly modify the origi-
nal epigraph formulation (3) of the min-max problem but without changing its set
of optimal solutions. This is needed to ensure the convergence of the primal-dual
algorithm. Specifically, we assume that we have a closed convex interval D such
that η∗ ∈ D, which is equivalent to having some (arbitrarily large) upper and lower
estimates for η∗. Having such a set, we consider a modification of epigraph formu-
lation (3), given by

minimize η
subject to fi(x)≤ η for all x ∈ X , η ∈ D, and i ∈V . (34)

This problem has the same solutions as the original min-max problem since η∗ ∈ D.
The Lagrangian function associated with this problem is given by

L (x,η ,μ) =
m

∑
i=1

μi ( fi(x)−η)+η for x ∈ X ,η ∈ D,μ ≥ 0.



162 K. Srivastava, A. Nedić, and D. Stipanović

We can restrict the domain of dual variables of the Lagrangian function to the unit
interval, as we know that the dual optimal multipliers satisfy ∑m

i=1 μ∗
i = 1, as seen in

Section 3. Thus, we will consider the Lagrangian function with a restricted domain
(yet large enough to contain all dual optimal solutions):

L (x,η ,μ) =
m

∑
i=1

μi ( fi(x)−η)+η for x ∈ X , η ∈ D, μ ∈ Im, (35)

where I is the interval [0,1] and Im denotes the product of m copies of I. We are in-
terested in determining a primal-dual optimal pair for problem (34) by an algorithm
aimed at finding a saddle-point of the reduced Lagrangian (35).

4.1 Primal-Dual Algorithm

We are interested in distributed algorithm for computing a saddle-point of the La-
grangian (35). To accommodate distributed computations among m agents, we write
the Lagrangian function as a sum of m functions, as follows:

L(x,η ,μ) =
m

∑
i=1

μi ( fi(x)−η)+η =
m

∑
i=1

(
μi ( fi(x)−η)+

1
m

η
)
. (36)

Lagrangian-function component Li(x,η ,μi) = μi ( fi(x)−η) + 1
m η is assigned to

agent i ∈ V for processing without sharing the information about the function with
any other agent.

The distributed algorithm will use the Bregman-distance functions Bx and Bη , as
introduced in Section 3.2. In addition, we introduce another collection of Bregman-
distance functions, one for each of the agents in order to handle the Lagrange
multipliers for its constraint set {x | fi(x) ≤ η}. For this, for each i ∈ V , we let
Bμ,i(·, ·) be a Bregman-distance function associated with a strongly convex function
ωμ,i : R→R with parameter σμ,i > 0.

The proposed primal-dual distributed algorithm for finding a saddle-point of the
Lagrangian is as follows. At every iteration k, each agent i has estimates xi

k, η i
k and

μk
i , respectively, for an optimal solution of the min-max problem, the optimal value

and the Lagrangian multiplier associated with the constraint {x | fi(x) ≤ η} that
agent i is responsible for. Every agent firstly performs an intermittent adjustment of
the variables xi

k and η i
k as in (10) to obtain the estimates x̃i

k and η̃k
i . For convenience,

we restate these updates: [
x̃i

k
η̃ i

k

]
=

m

∑
j=1

[Wk]i j

[
x j

k
η j

k

]
. (37)

This step ensures that agents locally align the variables that are coupling. We note
that the agents do not have an intermittent adjustment for their multiplier estimates
μ i

k, as these variables do not couple.
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Then, every agent i ∈V generates new iterates by taking step toward minimizing
its own Lagrangian function Li(x,η ,μi) = μi ( fi(x)−η)+ 1

m η with respect to (x,η)
and maximizing it with respect to μi, in the following manner:

xi
k+1 = argminy∈X

[
αkμ i

k〈di
k + ε i

k,y〉+Bx(y, x̃
i
k)
]
,

η i
k+1 = argmins∈D

[
αk(1/m− μ i

k)s+Bη(s, η̃ i
k)
]
,

μ i
k+1 = argminζ∈I

[
αk

(
η̃ i

k − fi(x̃
i
k)
)

ζ +Bμ,i(ζ ,μ i
k)
]
, (38)

where di
k is a subgradient of fi(x) evaluated at x̃i

k and εk is a random error in the
subgradient evaluation. For each i, the initial values xi

0 ∈ X , η i
0 ∈ D, and μ i

0 ∈ I are
random and independent from the stochastic errors εk.

4.2 Algorithm Convergence

The analysis is similar to that of algorithm (10)–(11) using exact-penalty approach.
First, we state a lemma which relates the local iterates of the primal-dual algorithm
to their respective average trajectory for the coupling variables xi

k and η i
k.

Lemma 6. Let Assumptions 1 and 2 hold, and let the step sizes satisfy ∑∞
k=0 α2

k < ∞.
Then, for the instantaneous averages x̂k and η̂k of the iterates generated by algo-
rithm (37)–(38), we have ∑∞

k=0 αk‖x̂k − xi
k‖ < ∞ and ∑∞

k=0 αk|η̂k −η i
k| < ∞ for all

i ∈V, with probability 1.

Proof. The proof is similar to that of Lemma 4 and uses relations μ i
k ∈ I, i ∈V .

As a Lyapunov function, we choose the composite function

B(z,μ ,zk,μk) =
m

∑
i=1

[
Bx(x,x

i
k)+Bη(η ,η i

k)+Bμ,i(μi,μ i
k)
]
, (39)

where zk = (x1
k , . . . ,x

m
k ,η

1
k , . . . ,η

m
k ) and μk = (μ1

k , . . . ,μ
m
k ). We next establish a

descent-type relation for the expected value of the Lyapunov function, which re-
quires an appropriate sigma-field. We define the σ -field as follows:

Fk = {xi
t ,η i

t ,μ i
t , i ∈V, t = 0,1, . . . ,k} for k ≥ 0.

From now on, we abbreviate the conditional expectation notation by Ek[·] =E [· |Fk].
We have the following result that will play the key role in the convergence analysis.

Lemma 7. Let D ⊂R be a convex compact set such that η∗ ∈ D. Let Assumptions 1,
2 and 3 hold. Then, for algorithm (37)–(38) the following relation holds with prob-
ability 1, for all k ≥ 0, all z∗ = (x∗,η∗) with x∗ ∈ X∗, and all optimal multipliers μ∗,
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Ek[B(z
∗,μ∗,zk+1,μk+1)]≤ B(z∗,μ∗,zk,μk)+ 2αk

m

∑
j=1

(
C‖x j

k − x̂k‖+ |η j
k − η̂k|

)
−αk (L (x̂k, η̂k,μ∗)−L (x∗,η∗,μk))

+α2
k

(
m
(C+ν)2

2σx
+

m

∑
i=1

(1/m− μ i
k)

2

2ση
+

m

∑
i=1

( fi(x̃i
k)− η̃ i

k)
2

2σμ,i

)
.

Proof. Let z= (x∗,η∗)∈ X∗×D and μ∗ ∈ Im be arbitrary optimal primal-dual pairs,
where Im is the product of m copies of the interval I = [0,1]. Using the optimality
conditions for (38) and proceeding as in the proof of Lemma 5, we obtain with
probability 1,

Ek
[
Bx(x

∗,xi
k+1)

]≤ Bx(x
∗, x̃i

k)−αkμ i
k〈Ek[d

i
k + ε i

k], x̃
i
k − x∗〉+α2

k
(C+ν)2

2σx
.

Now, since Ek[ε i
k] = 0, and di

k is a subgradient of fi(x) at x̃i
k it follows that

Ek
[
Bx(x

∗,xi
k+1)

]≤ Bx(x
∗, x̃i

k)−αkμ i
k( fi(x̃

i
k)− fi(x

∗))+α2
k
(C+ν)2

2σx
. (40)

A similar analysis gives the following inequality for the iterates η i
k,

Bη(η∗,η i
k+1)≤ Bη(η∗, η̃ i

k)−αk(1/m− μ i
k)(η̃

i
k −η∗)+α2

k
(1/m− μ i

k)
2

2ση
, (41)

and the inequality for the multiplier iterates μ i
k,

Bμ,i(μ∗
i ,μ

i
k+1)≤ Bμ,i(μ∗

i ,μ
i
k)+αk( fi(x̃

i
k)− η̃ i

k)(μ
i
k − μ∗

i )+α2
k
( fi(x̃i

k)− η̃ i
k)

2

2σμ,i
.

(42)

Summing equations (40)–(42), and then summing the resulting relation over all i ∈
V , we have with probability 1,

Ek[B(z
∗,μ∗,zk+1,μk+1)]≤ B(z∗,μ∗, z̃k,μk)+α2

k K (43)

−αk

m

∑
i=1

⎛⎜⎝μ i
k( fi(x̃

i
k)− fi(x

∗))︸ ︷︷ ︸
Term 1

+(1/m− μ i
k)(η̃

i
k −η∗)︸ ︷︷ ︸

Term 2

−( fi(x̃
i
k)− η̃ i

k)(μ
i
k − μ∗

i )︸ ︷︷ ︸
Term 3

⎞⎟⎠ ,

where we use notation (39) for the Lyapunov function, z̃k = (x̃1
k , . . . , x̃

m
k , η̃

1
k , . . . , η̃

m
k ),

and K = m (C+ν)2

2σx
+∑m

i=1
(1/m−μ i

k)
2

2ση
+∑m

i=1
( fi(x̃i

k)−η̃ i
k)

2

2σμ ,i
. We now estimate the identi-

fied terms in the preceding relation by adding and subtracting f (x̂k) or η̂k. We have

fi(x
i
k)− fi(x

∗) = ( fi(x̂k)− fi(x
∗))+( fi(x̃

i
k)− fi(x̂k))≥ fi(x̂k)− fi(x

∗)−C‖x̃i
k− x̂k‖,
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where the inequality follows from the convexity of fi and subgradient boundedness.
Since μ i

k ∈ I = [0,1] for all i ∈V , it follows

Term 1 ≥ μ i
k( fi(x̂k)− fi(x

∗))−C‖x̃i
k − x̂k‖. (44)

For the second term, we have

(1/m− μ i
k)(η̃

i
k −η∗) = (1/m− μ i

k)(η̂k −η∗)+ (1/m− μ i
k)(η̃

i
k − η̂k)

≥ (1/m− μ i
k)(η̂k −η∗)−|1/m− μ i

k| |η̃ i
k − η̂k|.

Using μ i
k ∈ I = [0,1] for all i ∈V , we obtain

Term 2 ≥ (1/m− μ i
k)(η̂k −η∗)−|η̃ i

k − η̂k|. (45)

For the third term, we write

( fi(x̃
i
k)− η̃ i

k)(μ
i
k − μ∗

i ) = ( fi(x̂k)− η̂k)(μ i
k − μ∗

i )
+
(
( fi(x̃

i
k)− fi(x̂k))− (η̃ i

k − η̂k)
)
(μ i

k − μ∗
i )

≥ ( fi(x̂k)− η̂k)(μ i
k − μ∗

i )−
(
C‖x̃i

k − x̂k‖+ |η̃k − η̂k|
) |μ i

k − μ∗
i |,

where the inequality follows by the convexity of fi and the subgradient bounded-
ness. Again, since μ i

k,μ ∈ I, we see that |μ i
k − μi| ≤ 1, implying

Term 3 ≥ ( fi(x̂k)− η̂k)(μ i
k − μ∗

i )−
(
C‖x̃i

k − x̂k‖+ |η̃k − η̂k|
)
. (46)

Substituting estimates (44)–(46) back in relation (43), we obtain

Ek[B(z∗,μ∗,zk+1,μk+1)]≤ B(z∗,μ∗, z̃k,μk)+α2
k K +2αk

m

∑
i=1

(
C‖x̃i

k − x̂k‖+ |η̃ i
k − η̂k|

)
−αk

m

∑
i=1

(
μ i

k( fi(x̂k)− fi(x
∗))+(1/m−μ i

k)(η̂k −η∗)− ( fi(x̂k)− η̂k)(μ i
k −μ∗

i )
)
.

(47)

By definition in (10), the estimates x̃i
k and η̃ i

k are convex combinations of x j
k and η j

k ,
respectively. Since under our assumption the Bregman-distance functions Bx and Bη
are convex in the second argument, it follows

Bx(x
∗, x̃i

k)≤
m

∑
j=1

[Wk]i jBx(x
∗,x j

k), Bη(η∗, η̃ i
k)≤

m

∑
j=1

[Wk]i jBη(η∗,η j
k ).

By summing these relations over i ∈ V and using the doubly stochasticity of the
weight matrix Wk, we obtain

m

∑
i=1

Bx(x
∗, x̃i

k)≤
m

∑
j=1

Bx(x
∗,x j

k),
m

∑
i=1

Bη(η∗, η̃ i
k)≤

m

∑
j=1

Bη(η∗,η j
k ).
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Using the definition of B (see (39)) and these relations, from (47) we have

Ek[B(z
∗,μ∗,zk+1,μk+1)]≤ B(z∗,μ∗,zk,μk)+α2

k K +2αk

m

∑
i=1

(
C‖x̃i

k − x̂k‖+ |η̃ i
k − η̂k|

)
−αk

m

∑
i=1

(
μ i

k( fi(x̂k)− fi(x
∗))+(1/m−μ i

k)(η̂k −η∗)− ( fi(x̂k)− η̂k)(μ i
k −μ∗

i )
)

︸ ︷︷ ︸
Term

.

(48)

Now, we consider the identified term in (48). We note that

m

∑
i=1

μ i
k( fi(x̂k)− fi(x

∗))+ (1/m− μ i
k)(η̂k −η∗) = L (x̂k, η̂k,μk)−L (x∗,η∗,μk),

m

∑
i=1

( fi(x̂k)− η̂k)(μ i
k − μ∗

i ) = L (x̂k, η̂k,μk)−L (x̂k, η̂k,μ∗),

which imply
Term = L (x̂k, η̂k,μ∗)−L (x̂∗,η∗,μk). (49)

Furthermore, from convexity of the norm and the absolute value functions, since Wk

is doubly stochastic, and x̃i
k = ∑m

j=1 x j
k and η̃ i

k = ∑m
j=1 x j

k it follows that

m

∑
i=1

(
C‖x̃i

k − x̂k‖+ |η̃ i
k − η̂k|

)≤ m

∑
j=1

(
C‖x j

k − x̂k‖+ |η j
k − η̂k|

)
. (50)

Using (49)–(50) and K = m (C+ν)2

2σx
+∑m

i=1
(1/m−μ i

k)
2

2ση
+∑m

i=1
( fi(x̃i

k)−η̃ i
k)

2

2σμ ,i
, from (48)

we obtain the desired relation. �
In order to connect the limiting vector (x̄, η̄ , μ̄) of the iterates generated by the
primal-dual algorithm to the solutions of problem (34), we will invoke the necessary
and sufficient Karush-Khun-Tucker (KKT) optimality conditions. These conditions
are stated below for convenience, as adjusted to our problem.

Theorem 4. The vector (x̄, η̄ , μ̄) is a primal-dual optimal vector if and only if
fi(x̄)≤ η̄ and μ̄ ∈ Im and the following two conditions are satisfied

(x̄, η̄ , μ̄) ∈ argmin(x,η)∈X×DL (x,η , μ̄) μ̄ ∈ argmaxμ∈ImL (x̄, η̄ ,μ).

We are now in position to assert the convergence property of the algorithm for a
diminishing step size.

Theorem 5. Let Assumptions 1, 2, and 3 hold, except for subgradient norm bound-
edness of Assumption 2-b. Assume that X and D are compact convex sets, and that
min-max problem (3) has a unique optimal solution x∗. Let the step sizes satisfy
∑∞

k=0 αk = ∞ and ∑∞
k=0 α2

k < ∞. Then, the agents’ iterates xi
k, η i

k, μ i
k, generated by

algorithm (37)–(38) are such that with probability 1 for all i ∈V:
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(a) The estimates xi
k converge to the optimal point x∗.

(b) The estimates η i
k converge to the optimal value η∗ of the min-max problem.

(c) The dual iterates μ i
k converge to a (random) optimal dual variable μ∗

i .

Proof. The proof proceeds by applying the Robbins-Siegmund result (Theorem 2)
to the relation of Lemma 7. By our assumption on the step sizes we have ∑∞

k=0 α2
k <

∞, which immediately yields ∑∞
k=0 α2

k m (C+ν)2

2σx
< ∞. Since, the projection step in al-

gorithm (38) constrains the dual variables μ i
k to lie in the interval [0,1], it follows

that ∑∞
k=0 α2

k ∑m
i=1

(1/m−μ i
k)

2

2ση
< ∞ with probability 1. Moreover, as the constraint set

X and the set D are compact, and fi are continuous, the term ( fi(x̃i
k)− η̃ i

k)
2 is uni-

formly bounded for all i and k, implying that ∑∞
k=0 α2

k ∑m
i=1

( fi(x̃
i
k)−η̃ i

k)
2

2σμ ,i
< ∞ with

probability 1. From Lemma 6 we have ∑∞
k=0 αk

(
C ∑m

j=1 ‖x̂k − x j
k‖+ |η̂k −η j

k |
)
< ∞

with probability 1. As ∑∞
k=0 αk = ∞, it follows that with probability 1,

lim
k→∞

m

∑
j=1

(
‖x̂k − x j

k‖+ |η̂k −η j
k |
)
= 0.

By the saddle-point Theorem 1 we have L (x̂k, η̂k,μ∗)−L (x∗,η∗,μk) ≥ 0. Thus,
all the conditions of Theorem 2 are satisfied.

By applying Theorem 2 we infer that B(z∗,μ∗,zk,μk) converges for every dual-
optimal μ∗ with probability 1, and that ∑∞

k=0 αk (L (x̂k, η̂k,μ∗)−L(x∗,η∗,μk))< ∞
also holds with probability 1. Since ∑∞

k=0 αk = ∞, it follows that with probability 1,

lim
k→∞

(L (x̂k, η̂k,μ∗)−L(x∗,η∗,μk)) = 0.

As the sequences {xi
k}, η i

k}, {μ i
k} are bounded, they have accumulation points in

the sets X , D and I = [0,1], respectively. We can use Cantor diagonalization-type
argument to select a subsequence {k�} along which the following relations hold
with probability 1:

lim
�→∞

(x̂k� , η̂k� ,μk�) = (x̄, η̄ , μ̄) with (x̄, η̄ , μ̄) ∈ X ×D× Im, (51)

lim
�→∞

(
L (x̂k� , η̂k� ,μ

∗)−L (x∗,η∗,μk�)
)
= 0, (52)

lim
�→∞

‖x̂k� − x j
k�
‖= 0, lim

�→∞
|η̂k� −η j

k�
|= 0 for all j ∈V. (53)

We now examine the consequences of these relations. Since (x∗,η∗,μ∗) is a saddle-
point of the Lagrangian, it follows that L (x̄, η̄ ,μ∗)≥L (x∗,η∗,μ∗)≥L (x∗,η∗, μ̄),
implying that both inequalities hold as equalities. Therefore,

(x̄, η̄) ∈ argmin(x,η)∈X×DL (x,η ,μ∗), μ̄ ∈ argmaxμ∈ImL (x∗,η∗,μ).
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Since (x∗,η∗) is the unique solution of problem (34) (by our assumption), the
preceding relations together with the KKT conditions (Theorem 4) imply that
(x̄, η̄) = (x∗,η∗) and that μ̄ is an optimal dual multiplier.

It remains to show that the whole sequences converge to the desired optimal
points. From (53) it follows that lim�→∞ ‖x j

k�
− x∗‖ = 0 and lim�→∞ |η j

k�
−η∗| = 0

with probability 1 for all j, implying lim�→∞ B(z∗, μ̄ ,zk� ,μk�) = 0. However, we
have established that the sequence B(z∗,μ∗,zk,μk) converges with probability 1
for any optimal dual vector μ∗, so it converges with μ∗ = μ̄ . Thus, it follows
limk→∞ B(z∗, μ̄ ,zk,μk) = 0 with probability 1. Owing to the strong convexity of
the Bregman functions we have

B(z∗, μ̄ ,zk,μk)≥
m

∑
i=1

(σx

2
‖x∗ − xi

k‖2 +
ση

2
|η∗ −η i

k|2 +
σμ,i

2
|μ̄i − μ i

k|2
)
,

which yields xi
k → x∗, η i

k → η∗ and μ i
k → μ̄i with probability 1 for all i ∈V . �

5 Min-Max Game Against Exogenous Player

In this section we consider a different formulation than the one discussed so far. We
consider the case when the network of cooperative agents need to solve a min-max
game against an exogenous player. The exogenous player is a malicious agent/nature
which adversely affects the cost of each agent. Let us denote the action of the ad-
versarial agent by ξ . We also require that the feasible set of allowable actions ξ is a
compact set denoted by Θ . The objective is to solve:

min
x∈X

max
ξ∈Θ

m

∑
i=1

fi(x,ξ ). (54)

This can be thought of as the robust version of the problem considered in [35, 29],
where the optimization problem of the form minx∈X ∑m

i=1Eξ [ fi(x,ξ )] was consid-
ered. In certain cases when it is desired to model the unknown signal ξ as lying
in an uncertainty set Θ the robust version of problem (54) is more suitable. The
problem (54) could alternatively be thought of as a zero sum game between the ex-
ogenous player and the network. To guarantee the existence of a min-max optimal
solution to (54) we impose the following assumption.

Assumption 4. Let the following hold:

(a) The functions fi are continuous over some open set containing X ×Θ .
(b) The cost functions fi(x,ξ ) are convex in x for every fixed value of ξ ∈ Θ , and

concave in ξ for every fixed x ∈ X.
(c) The constraint sets X and Θ are convex and compact.
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Under Assumption 4 the min-max problem (54) admits a solution set X∗ ×Θ ∗ such
that for any x∗ ∈ X∗ and ξ ∗ ∈Θ ∗, we have the saddle-point property [4]:

m

∑
i=1

fi(x
∗,ξ )≤

m

∑
i=1

fi(x
∗,ξ ∗)≤

m

∑
i=1

fi(x,ξ ∗) for all x ∈ X and ξ ∈Θ . (55)

Let Bx(·, ·) and Bξ (·, ·) be Bregman-distance functions for the sets X and Θ , re-
spectively. We propose the following algorithm for min-max problem (54): at each
iteration, at first, the agents update using the estimates x j

k and ξ i
k and obtain inter-

mittent estimates [
x̃i

k
ξ̃ i

k

]
=

m

∑
j=1

[Wk]i j

[
x j

k
ξ j

k

]
, (56)

where Wk is a weight matrix as in (10). Using these intermittent adjustment, every
agent updates according to the following rules:

xi
k+1 = argminy∈X

[
αk〈∇x fi(x̃

i
k, ξ̃

i
k),y〉+Bx(y, x̃

i
k)
]
,

ξ i
k+1 = argminζ∈Θ

[
−αk〈∇ξ fi(x̃

i
k, ξ̃

i
k),ζ 〉+Bξ (ζ , ξ̃ i

k)
]
, (57)

where ∇x and ∇ξ denote the partial derivative operators with respect to the variables
x and ξ , respectively. The initial points xi

0 and ξ i
0 satisfy xi

0 ∈ X and ξ i
0 ∈ Θ for all

i. It is also assumed that the constraint sets X and Θ are common knowledge for all
agents i ∈V .

The analysis of the algorithm follows along lines similar to that of the primal-
dual algorithm (37)–(38). This can be seen in light of the fact that the primal-dual
algorithm computes a saddle-point of the Lagrangian function in (5), whereas al-
gorithm (56)–(57) computes a saddle-point of problem (54). A major difference
between the algorithms is the fact that in (38) the agents update their own local dual
variables μ i

k, whereas in the algorithm (57) the agents update the whole vector ξ
which is coupling the agents. Note that there is no stochasticity in the current for-
mulation unless we consider a stochastic model of the network. The final result is
that asymptotically the agents estimates xi

k and ξ i
k converge to a common min-max

optimal pair (x∗,ξ ∗). We formalize the statement in the following theorem.

Theorem 6. Let Assumption 1 and 4 hold. Assume that problem (54) has an optimal
set of the form {x∗}×Θ ∗. Moreover, assume that the Bregman-distance functions
Bx(y,v) and Bξ (ζ ,φ) are convex in their second arguments v and φ , respectively
for every fixed y and ζ . If the step sizes αk in algorithm (56)–(57) are chosen to
satisfy ∑∞

k=0 αk = ∞ and ∑∞
k=0 α2

k < ∞, then the local variables (xi
k,ξ

i
k) converge to

a common saddle-point solution (x∗,ξ ∗) of the min-max problem (54), for all i ∈V.

Proof. The proof is similar to the proof of Theorem 5, with the Lyapunov function
∑m

i=1

(
Bx(x∗,xi

k)+Bξ (ξ ∗,ξ i
k)
)

for an arbitrary saddle-point solution (x∗,ξ ∗). �
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6 Uplink Power Control

In this section we show the suitability of our algorithms in (10)–(11) and (37)–(38)
to achieve a min-max fair allocation of utility in a cellular network. We will keep our
discussion brief and refer the readers to [12] for a general discussion on the power
allocation problem. We will be using the formulation discussed in [30].

There are m mobile users (MU) in neighboring cells communicating with their
respective base stations (BS) using a common wireless channel. Let pi denote the
power used by MU i to communicate with its base station. Due to the shared nature
of the wireless medium the total received SINR at BS i is given by

γi(p̄, h̄i) =
pih2

i,i

σ2
i +∑ j �=i p jh2

i, j

,

where hi, j is the channel coefficient between MU j and BS i, and σ2
i is the receiver

noise variance. The vector containing power variables pi is denoted p̄ and the vector
of channel coefficients at BS i is denoted h̄i. The power variables are non-negative
and constrained to a maximum value of pt , i.e., 0 ≤ pi ≤ pt for all i.

Let Ui(γi(p̄, h̄i)) be the utility derived by BS i and V (pi) be a cost function penal-
izing excessive power. We are interested in finding an allocation that minimizes the
worst case loss to any agent i, which amounts to solving the following problem:

min
p̄∈Π

max
i∈V

[
V (pi)−Ui(γi(p̄, h̄i))

]
,

where Π = { p̄ ∈ R
m | 0 ≤ pi ≤ pt for all i} and pt is the maximum power. We con-

sider the logarithmic utility function Ui(u) = log(u) for u > 0. Using the transfor-
mation pi = exi , it can be shown that the preceding problem can be cast in the form
of (1), with a cost function for each base station i given by:

fi(x) = log

(
σ2

i h−2
i,i e−xi +∑

j �=i

h−2
i,i h2

j,ie
x j−xi

)
+V(exi),

and X = {x ∈R
m | xi ≤ log(pt) for all i}.

We have considered a cellular network of 16 square cells of the same size (m =
16). The connectivity network for the BSs is shown in Figure 1. Within each cell,
the MU is randomly located (with a uniform distribution over the cell) and the base
station is located at the center of the cell. The channel coefficient hi, j is assumed
to decay as the fourth power of the distance between the MU j and the BS i. The
shadow fading is assumed to be log-normal with variance 0.1. The receiver noise
variance σ2

i is taken to be 0.01. The cost of the power is modeled as V (pi) = 10−3 pi.
In the simulations, there are no stochastic errors, i.e., all gradients and sub-

gradients are evaluated without stochastic errors. Four algorithms are used, namely,
the standard (centralized) gradient descent algorithm (applied to the penalized prob-
lem), a centralized primal-dual algorithm (that computes a saddle point of the
min-max problem), the distributed exact penalty (10)–(11), and the distributed
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Fig. 1 The circles denote the BSs. The dotted lines denote the communication links between
adjacent BSs. The crosses denote the MUs. The bold lines connect each MU to its respective
BS.

primal-dual (37)–(38). The standard (centralized) gradient descent algorithm is used
to determine the optimal min-max allocation, while the centralized primal-dual is
used to get a sense of dual optimal variables. In the distributed algorithms, the
weight matrices Wk are all equal since the connectivity graph is static, i.e., Wk =W
for all k. The weights Wi j are given by:

Wi j =
1

max{|Ni|, |Nj |} if i and j are neighbors,

and otherwise Wi j = 0, where |Ni| denotes the cardinality of the neighbor set Ni

(which includes agent i itself). The stepsize is αk =
10
k in the centralized methods,

αk =
50

k0.65 in the distributed exact penalty method, and αk =
4

k0.6 in the distributed
primal-dual method. The penalty parameter ri is 1.3 for all i in algorithm (10)–
(11). The Bregman-distance generating functions are the Euclidean norms. Each
algorithm is run for 4000 iterations.

Figure 2 shows the behavior of algorithms (10)–(11) and (37)–(38). As seen in the
figure, both centralized algorithms perform the best (as they have the whole knowl-
edge of the problem information) and they have a similar behavior. The distributed
algorithms are slightly worse than the centralized, which is expected due to their
”decentralized” incomplete knowledge of the problem. Of the two distributed algo-
rithms, the primal-dual algorithm is worse, as it often assigns much larger alloca-
tions than the distributed exact penalty method. Primal-dual algorithms (in absence
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Fig. 2 The final iterate values after 4000 iterations of the algorithms. The plot shows the
allocations achieved by Centralized Gradient Descent, Distributed Exact Penalty Algorithm,
Distributed Primal-Dual Algorithm, and Centralized Primal-Dual Algorithm.

of strong convexity of the primal) are known to be highly sensitive to the choices of
dual variables, which may be reflected in the results we see in Figure 2, where the
primal-dual algorithms use the initial values μi =

1
m for the multipliers.

7 Conclusion

We presented distributed algorithms for solving stochastic min-max optimization
problems in networks. We developed two algorithms based on Bregman-distance
functions. The first algorithm uses a non-differentiable penalty function to trans-
late the min-max problem to a format which is suitable for distributed algorithms.
The second algorithm is based on the primal-dual iterative update scheme. In both
of these algorithms we allow the presence of stochastic subgradient noise. We pro-
vided conditions on the dynamic network under which we can guarantee almost
sure convergent behavior of the algorithms. We illustrated the applicability of the
algorithms on a power allocation problem in a cellular network.

The effectiveness of these algorithms is highly dependable on the underlying
connectivity structure of the agent network. For future work, we plan to investigate
error bounds for the proposed algorithms, which will capture the scalability of the
algorithms with the number m of agents. Based on our prior work [31], we know
that these algorithms can scale at best in the order of m3/2 when the sum of the
functions fi is to be minimized and the ∑m

i=1 fi is strongly convex. We believe that
this bound is also achievable by the proposed algorithms for a class of functions
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fi, such as linear for example. Such results will also provide better insights into the
practical short-term behavior of these algorithms.
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A Probability Collectives Approach  
for Multi-Agent Distributed and Cooperative 
Optimization with Tolerance for Agent Failure1 

Anand J. Kulkarni and Kang Tai* 

Abstract. Centralized systems are vulnerable to single point failures that may se-
verely affect their performance. On the other hand, in the case of a distributed and 
decentralized algorithm, the system is more robust as it is controlled by its auto-
nomous subsystems or agents. This chapter intends to demonstrate the inherent 
ability of a distributed and decentralized agent-based optimization technique re-
ferred to as Probability Collectives (PC) to accommodate agent failures. The ap-
proach of PC is a framework for optimization of complex systems by decompos-
ing them into smaller subsystems to be further treated in a distributed and 
decentralized way. The system can be viewed as a Multi-Agent System (MAS) 
with rational and self-interested agents optimizing their local goals. At the core of 
the PC optimization methodology are the concepts of Deterministic Annealing in 
Statistical Physics, Game Theory and Nash Equilibrium. A specially developed 
Circle Packing Problem (CPP) with a known true optimum solution will be solved 
to demonstrate the ability of the PC approach to tolerate instances of agent failure. 
The strengths, weaknesses and future research directions of the PC methodology 
will also be discussed. 

1   Introduction 

The decomposition of an entire system into smaller subsystems and optimizing 
them in a distributed and decentralized way to reach the system level optimum is 
one of the emerging approaches to deal with the growing complexity and uncer-
tainty encountered in real world problems. These subsystems together can be 
                                                           
Anand J. Kulkarni · Kang Tai 
School of Mechanical and Aerospace Engineering, Nanyang Technological University,  
50 Nanyang Avenue, Singapore 639798, Singapore 
e-mail: {kulk0003,mktai}@ntu.edu.sg 
 
* Corresponding author. 



176 A.J. Kulkarni and K. Tai
 

viewed as a collective, which in other words is a group of learning agents or a 
Multi-Agent System (MAS) [1-5]. In a distributed MAS, the rational and self-
interested behavior of the agents is very important to achieve the best possible lo-
cal goal/reward/payoff, but it is not trivial to make such agents work collectively 
to achieve the best possible global or system objective. Certainly, the major ad-
vantage of the distributed and decentralized optimization approach is its immunity 
to single point failure. The centralized system is vulnerable to single point failures 
and its performance may be severely affected if an agent in the system fails. On 
the other hand, in the case of a distributed and decentralized algorithm, the system 
is more robust as the system is controlled by its autonomous subsystems. The im-
munity to agent failure is essential in numerous applications including UAV for-
mation and collaborative path planning [3], urban traffic control [6-11], sensor 
networks [12-18], etc. 

Probability Collectives (PC) in the framework of Collective Intelligence 
(COIN) was first proposed by Dr. David Wolpert in 1999 [19]. It is an emerging 
distributed optimization methodology for modelling and controlling distributed 
MAS, inspired from a sociophysics viewpoint with deep connections to Game 
Theory, Statistical Physics, and Optimization [2, 3, 19, 20]. PC considers every 
variable in the system as an independent agent. These agents assign probability 
distributions to its possible set of actions/moves. Every agent independently up-
dates the probability distribution affecting its local goal which in turn also affects 
the global or system objective [2, 3, 19, 20]. The process continues and reaches 
equilibrium when no further increase in reward is possible for the individual agent 
by changing its actions further. This equilibrium concept is referred to as Nash 
equilibrium [21]. It is important to mention that the approach works on probability 
distributions and thereby directly incorporates uncertainty. The approach of PC 
has been implemented for solving both unconstrained [3, 4, 5, 12-20, 22, 23, 24, 
25] as well as constrained [1, 3, 26, 27, 31, 32] optimization problems. A concise 
summary of the PC literature is discussed below. 

According to [24], PC outperformed Genetic Algorithms (GAs) in terms of ro-
bustness, reproducibility, rate of descent, trapping in false minima and long term 
optimization when solving benchmark problems such as Schaffer's function, Ro-
senbrock function, Ackley Path function and Michalewicz Epistatic function. A 
variation of the original PC approach in [2, 3, 27, 28] referred to as Sequentially 
Updated PC (SPC) [25] performed better with higher dimension Hartman’s func-
tions only but failed to converge in the target assignment game. The decentralized 
PC architecture also outperformed its centralized architecture solving the 8-queens 
problem [22]. Two different PC approaches were proposed in [26] avoiding air-
planes collision. In the first approach, every airplane was assumed to be an auto-
nomous agent selecting their individual paths to avoid collision with other  
airplanes travelling in the neighbourhood. In the semi centralized approach, every 
airplane was given a chance to become a host airplane which computed and distri-
buted the solution to all other airplanes. 

The approach of PC [27, 28] was also tested on the discrete constrained prob-
lem of university course scheduling [31], but the implementation failed to generate 
any feasible solution. PC was also tested solving the discrete constrained problem 
of optimizing the cross-sections of individual bars and segments of a 10 bar truss 
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[28]. The approach of PC was successfully applied solving complex combinatorial 
optimization problem of airplane fleet assignment having the goal of minimization 
of the number of flights with 129 variables and 184 constraints [27]. This divided 
the communication and computational load into agents and also latency in the sys-
tem which could have resulted in the growing possibility of conflict in schedules 
and continuity. The approach of PC was also successfully applied solving combi-
natorial optimization problems such as the joint optimization of the routing and re-
source allocation in wireless networks [12-18].  

The authors of this chapter also tested the approach of PC for solving conti-
nuous unconstrained segmented beam problem [4], with the sampling method as 
well as associated sampling space updating scheme of the original PC approach 
modified. This modified PC approach was also validated successfully by optimiz-
ing the Rosenbrock function [5]. It was also applied for solving two test cases of 
the NP-hard combinatorial problem of Multi-Depot Multiple Travelling Salesmen 
Problem (MDMTSP) [1] as well as the cases of Single Depot MTSP (SDMTSP) 
[29]. Moreover, a constrained PC approach using a penalty function method was 
developed and applied to three test problems in [30]. In addition, in order to make 
PC an even more versatile optimization algorithm, a variation of the feasibility-
based rule originally proposed in [33] and further implemented in [35-40]  
was employed for solving two cases of the Circle Packing Problem (CPP) [32]. It 
is worth to mention here that both the cases yielded the true optimum solution in 
every run of the PC, which clearly demonstrated its ability to avoid the tragedy  
of commons. A more generic variation of the feasibility-based rule was success-
fully implemented for solving three variations of the Sensor Network Coverage 
Problem [33]. 

The above discussion shows that PC is versatile and applicable to variegated 
areas including constrained optimization problems; however, PC has never been 
tested for the practically important agent failure case. This chapter attempts to 
demonstrate the capability of PC as a distributed optimization approach to deal 
with an agent failure scenario. The solution highlights its potential to deal with 
agent failures which may arise in real world complex problems including urban 
traffic control, formation of airplanes fleet and mid-air collision avoidance, etc. 

The remainder of this chapter is organized as follows. Section 2 provides the 
framework and detailed formulation of the constrained PC method. It includes the 
formulation of the homotopy function, the constraint handling technique using the 
feasibility-based rule and the concept of Nash equilibrium. In Section 3, the con-
strained PC approach addressing the agent failure scenario is demonstrated by 
solving the CPP. It also includes an associated problem specific heuristic tech-
nique. The evident features, advantages, limitations and conclusions of the pre-
sented work and associated future directions are discussed in Section 5. 

2   The Constrained PC Framework and Formulation 

The variables in an optimization problem are considered by PC to be individual 
self interested learning agents/players of a game being played iteratively [2, 3, 27, 
28]. While working in some definite direction, these agents select actions over a 
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particular interval and receive some local rewards on the basis of the system ob-
jective achieved because of those actions. In other words, these agents optimize 
their local rewards or payoffs which at the same time also optimize the system 
level performance. The process iterates and reaches equilibrium (referred to as 
Nash equilibrium) when no further increase in the reward is possible for the indi-
vidual agent through changing its actions further. Moreover, the method of PC 
theory is an efficient way of sampling the joint probability space, converting the 
problem into the convex space of probability distribution. PC allocates probability 
values to each agent’s moves, and hence directly incorporates uncertainty. This is 
based on prior knowledge of the recent action or behavior selected by all other 
agents. In short, the agents in the PC framework need to have knowledge of the 
environment along with every other agent’s recent action or behavior. 

At every iteration, each agent randomly samples the moves/strategies from 
within its own sampling set (i.e. its own sampling interval) as well as from within 
other agents’ strategy sets and computes the corresponding system objectives. The 
other agents’ strategy sets are modeled by each agent based on their recent actions 
or behavior only, i.e. based on partial knowledge. By minimizing the collection of 
system objectives, every agent identifies the possible strategy which contributes 
the most towards the minimization of the collection of system objectives. Such a 
collection of functions is computationally expensive to minimize and also may 
lead to local minima [3]. In order to avoid this difficulty, the collection of system 
objectives is deformed into another topological space forming the homotopy func-
tion parameterized by computational temperature T  [41-44]. Due to its analogy to 
Helmholtz free energy [20, 41-45], the approach of Deterministic Annealing (DA) 
converting the discrete variable space into continuous variable space of probability 
distribution is applied in minimizing the homotopy function. At every successive 
temperature drop, the minimization of the homotopy function is carried out using 
a second order optimization scheme such as the Nearest Newton Descent Scheme 
[1-5, 12-18, 22-31] or BFGS Scheme [32, 33], etc. 

At the end of each iteration, each agent i  converges to a probability distribu-
tion clearly distinguishing the contribution of its every corresponding strategy val-
ue. For every agent, the strategy value with the maximum probability value is re-
ferred to as the favorable strategy and is used to compute the system objective and 
corresponding constraint functions. This system objective and corresponding 
strategy values are accepted based on a variation of the feasibility-based rule de-
fined in [34] and further successfully implemented in [35-40]. This rule allows the 
objective function and the constraint information to be considered separately. The 
rule can be described as follows: 

 
(a) Any feasible solution is preferred over any infeasible solution 
(b) Between two feasible solutions, the one with better objective is preferred 
(c) Between two infeasible solutions, the one with fewer constraint violations is 

preferred. 
 

In addition to the above, a perturbation approach is also incorporated to avoid 
premature convergence. It perturbs the individual agent’s favorable strategy set 
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based on its reciprocal and associated predefined interval. The solution is accepted 
if the feasibility is maintained. In this way, the algorithm continues until conver-
gence by selecting the samples from the neighborhood of the recent favorable 
strategies. The neighborhood space is reduced or expanded according to the im-
provement in the system objective for a predefined number of iterations. 

In some of the applications, the agents are also needed to provide the know-
ledge of the inter-agent-relationship. It is one of the information/strategy sets 
which every other entitled agent is supposed to know. There is also global infor-
mation that every agent is supposed to know. This allows agents to know the right 
to model other agents’ actions or behavior. All of the decisions are taken autono-
mously by each agent considering the available information in order to optimize 
the local goals and hence to achieve the optimum global goal or system objective. 
The following section discusses the constrained PC procedure in detail. 

2.1   Constrained PC Algorithm 

Consider a general constrained problem (in the minimization sense) as follows: 

Minimize G  (1)

Subject to

number of inequality constraints 0 , 1, 2,...,

number of equality constraints 0 , 1, 2,...,
j

j

s g j s

w h j w

≤ =

= =

 

where the objective function G  can take real and/or discrete variables. According 
to [46-48], the equality constraint 0jh =  can be transformed into a pair of inequa-

lity constraints using a tolerance value δ  as follows: 

0 1, 2,...,
0

0

s j j

j
s w j j

g h j w
h

g h

δ
δ

+

+ +

= − ≤ ==   = − − ≤
 (2)

Thus, w equality constraints are replaced by 2w  inequality constraints with the 
total number of constraints given by 2t s w= + . Then a generalized representation 
of the problem in equation (1) can be stated as follows: 

Minimize G  (3)

Subject to 0 , 1,2,...,jg j t≤ =  

In the context of PC, the variables of the problem are considered as computational 
agents/players of a social game being played iteratively [3, 19]. Each agent i  is 

given a predefined sampling interval referred to as ,lower upper
i i i

 Ψ ∈ Ψ Ψ  . As a 

general case, the interval can also be referred to as the sampling space. The lower 
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limit lower
iΨ  and upper limit upper

iΨ  of the interval iΨ  may be updated iteratively 

as the algorithm progresses. 

Each agent i  randomly samples [ ]r
iX , 1, 2,..., ir m=  strategies from within the 

corresponding sampling interval iΨ  forming a strategy set iX  represented as 

[ ][1] [2] [3]{ , , ,..., } , 1,2,...,im
i i i i iX X X X i N= =X  (4) 

where N  is the number of variables in the problem. 
Every agent is assumed to have an equal number of strategies, i.e. 

1 2 1... ...i N Nm m m m m−= = = = = = . The procedure of modified PC theory is ex-

plained below in detail with the algorithm flowchart in Figure 1. 
The procedure begins with the initialization of the sampling interval iΨ  for 

each agent i , temperature 0T >>  or initialT T=  or T → ∞  (simply high enough), 

the temperature step size Tα  ( 0 1Tα< ≤ ), convergence parameter 0.0001ε = , 

algorithm iteration counter 1n =  and number of test iterations testn . The value of 

Tα  and testn  are chosen based on preliminary trials of the algorithm. Further-

more, the constraint violation tolerance μ  is initialized to the number of con-

straints C , i.e. μ = C  where C  refers to the cardinality of the constraint vector 

[ ]1 2, ,..., tg g g=C . 
 

Step 1. Agent i   selects its first strategy [ ]1
iX  and samples randomly from other 

agents’ strategies as well. This is a random guess by agent i  about which 
strategies have been chosen by the other agents. This forms a ‘combined 

strategy set’ [ ]1
iY  given by 

{ }[1] [?] [?] [1] [?] [?]
1 2 1, ,..., ,..., ,i i NNX X X X X−=Y  (5)

The superscript [?] indicates that it is a ‘random guess’ and not known in 
advance. In addition, agent i  forms one combined strategy set for every 
strategy r  of its strategy set iX , as shown below. 

{ }
{ }

{ }

{ }

[2] [?] [?] [2] [?] [?]
1 2 1

[3] [?] [?] [3] [?] [?]
1 2 1

[ ] [?] [?] [ ] [?] [?]
1 2 1

[ ] [ ][?] [?] [?] [?]
1 2 1

, ,..., ,..., ,

, ,..., ,..., ,

, ,..., ,..., ,

, ,..., ,..., ,i i

i i NN

i i NN

r r
i i NN

m m
i i NN

X X X X X

X X X X X

X X X X X

X X X X X

−

−

−

−

=

=

=

=

Y

Y

Y

Y





 (6)
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Similarly, all the remaining agents form their combined strategy sets. 
Furthermore, every agent i  computes im  associated objective func-

tion values as follows: 

( ) ( ) ( ) ( )[ ][1] [2] [ ], ,..., ,..., imr
i i i iG G G G 

  
Y Y Y Y  (7)

The ultimate goal of every agent i  is to identify its strategy value which 
contributes the most towards the minimization of the sum of these system 

objective values, i.e. [ ]

1

( )
im

r
i

r

G
=
 Y , hereafter referred to as the collection of 

system objectives. 

Step 2. The minimum of the function [ ]

1

( )
im

r
i

r

G
=
 Y  is very hard to achieve as the 

function may have many possible local minima. Moreover, directly mi-
nimizing this function is quite cumbersome as it may need excessive 
computational effort [3]. One of the ways to deal with this difficulty is to 
deform the function into another topological space by constructing a re-

lated and ‘easier’ function ( )if X . Such a method is referred to as the 

homotopy method [41-44]. The function ( )if X  can be referred to as 

‘easier’ because it is easy to compute, the (global) minimum of such a 
function is known and easy to locate [41-46]. The deformed function can 
also be referred to as homotopy function J  parameterized by computa-
tional temperature T  represented as follows: 

( ) ( ) [ )[ ]

1

, ( ) , 0,
im

r
i i i i

r

J T G T f T
=

= − ∈ ∞X Y X  (8)

 The approach of Deterministic Annealing (DA) is applied to minimize 
the homotopy function in equation (8). The motivation behind this is its 
analogy to the Helmholtz free energy [29, 30, 32, 33]. It suggests the 
conversion of discrete variables into random real valued variables such as 
probabilities. This converts the original collection of system objectives 

[ ]

1

( )
im

r
i

r

G
=
 Y  into the ‘expected collection of system objectives 

( )[ ]

1

( )
im

r
i

r

E G
=
 Y . Furthermore, a suitable function for ( )if X  is chosen. 

The general choice is to use the entropy function 

[ ] [ ]
2

1

S ( ) log ( )
im

r r
i i i

r

q X q X
=

= −  [41-43]. 

homotopy function to the Helmholtz free energy discussed in [29, 30, 32, 
33]. 
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(a) Agent i  assigns uniform probabilities to its strategies. This is because, at 
the beginning, the least information is available (the largest uncertainty 
and highest entropy) about which strategy is favorable for the minimiza-

tion of the collection of system objectives [ ]

1

( )
im

r
i

r

G
=
 Y . Therefore, at the 

beginning of the ‘game’, each agent’s every strategy has probability 
1 / im  of being most favorable. Therefore, probability of strategy r  of 

agent i  is 

[ ]( ) 1/ , 1,2,...,r
i i iq X m r m= =  (9) 

Each agent i , from its every combined strategy set [ ]r
iY  and correspond-

ing system objective [ ]( )r
iG Y  computed previously, further computes im  

corresponding expected system objective values ( )[ ]( )r
iE G Y  as follows 

2, 3, 19, 20, 27, 28]: 

( )[ ] [ ] [ ] [?]
( )

( )

( ) ( ) ( ) ( )r r r
i i i i

i

E G G q X q X= ∏Y Y  (10)

 where ( )i  represents every agent other than i . Every agent i  then com-

putes the expected collection of system objectives denoted by 

( )[ ]

1

( )
im

r
i

r

E G
=
 Y . This also means that the PC approach can convert any 

discrete variables into continuous variable values in the form of probabil-
ities corresponding to these discrete variables. As mentioned earlier, the 
problem now becomes continuous but still not easier to solve. 

(b) Thus the homotopy function to be minimized by each agent i  in equa-
tion (8) is modified as follows: 

( )( ) ( )[ ]

1

, ( ) S
im

r
i i i i

r

J q T E G T
=

= −X Y  (11)

where [ )0,T ∈ ∞ . When the temperature T  is high enough, the entropy 

term dominates the expected collection of system objectives and the 
problem becomes very easy to be solved. 

The following steps of DA are formulated based on the analogy of the  
Step 3. In the author’s previous work [1-3, 29, 30], Nearest Newton Descent 

Scheme [4, 5, 12-18, 22-28, 31] was implemented for minimizing the 

homotopy function ( )( ),i iJ q TX . Motivated from this scheme, the mi-

nimization of the homotopy function ( )( ),i iJ q TX  given in equation 

(11) is carried out using a suitable second order optimization technique  
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Fig. 1 Constrained PC Algorithm Flowchart 
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such as the Broyden-Fletcher-Goldfarb-Shanno (BFGS) scheme [32, 33]. 
It is important to mention that similar to the Nearest Newton Descent 
Scheme, the BFGS scheme approximates positive definite Hessian. The 
BFGS scheme minimizing equation (11) is discussed in detail in [32, 33]. 

Step 4. For each agent i , the optimization process converges to a probability va-
riable vector ( )iq X  which can be seen as the individual agent’s probabil-

ity distribution distinguishing every strategy’s contribution towards the 
minimization of the expected collection of system objectives 

( )[ ]

1

( )
im

r
i

r

E G
=
 Y . In other words, for every agent i , if strategy r  contri-

butes the most towards the minimization of the objective compared to 
other strategies, its corresponding probability certainly increases by some 
amount more than those for the other strategies’ probability values, and 
so strategy r  is distinguished from the other strategies. Such a strategy is 

referred to as a favorable strategy [ ]fav
iX . As an illustration, the con-

verged probability distribution for agent i  may look like that shown in 
Figure 2 for a case where there are 10 strategies, i.e. 10im =  with favor-

able strategy indicated by *. Compute the corresponding system objective 
[ ]( )favG Y  and constraint vector [ ]( )favC Y  where [ ]favY b is given by 

[ ] [ ] [ ] [ ] [ ]{ }1 2 1, ,..., ,fav fav fav fav fav
N NX X X X−=Y  (12)
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Fig. 2 Probability Distribution of agent i  

Step 5. Accept the system objective [ ]( )favG Y  and corresponding [ ]favY  as cur-

rent solution, if the number of constraints violated, violatedC μ≤ . Update 

the constraint violation tolerance violatedCμ =  and continue to step 6. 
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If violatedC μ> , discard current system objective [ ]( )favG Y  and corres-

ponding [ ]favY , and retain the previous iteration solution and continue to 
step 6. 

If the current system objective [ ]( )favG Y  is feasible i.e. 

0violatedCμ = =  and is not worse than the previous feasible solution, ac-

cept the current system objective [ ]( )favG Y  and corresponding [ ]favY  as 

current solution and continue to step 6, else discard current feasible sys-

tem objective [ ]( )favG Y  and corresponding [ ]favY , and retain the pre-

vious iteration feasible solution and continue to step 6.  
Step 6. On the completion of pre-specified testn  iterations, the following condi-

tions are checked for every further iteration. 

(a) If [ ] [ ], ,( ) ( )testfav n fav n nG G −≤Y Y , then every agent shrinks its sam-

pling interval as follows: 
[ ]( ) [ ]( ),fav favupper lower upper lower

i i i i down i i i downX Xλ λ Ψ ∈ − Ψ − Ψ ⋅ + Ψ − Ψ ⋅  
,   0 1downλ< ≤  

  where downλ  is referred to as the interval factor corresponding to the 

shrinking of sample space. 

(b) If [ ],( )fav nG Y  and [ ],( )testfav n nG −Y  are feasible and 

[ ] [ ], ,( ) ( )testfav n fav n nG G ε−− ≤Y Y , the system 

objective [ ],( )fav nG Y  can be referred to as a stable solution [ ],( )fav sG Y  

or possible local minimum. In order to jump out of this possible local 
minimum, a perturbation approach is incorporated. It is described below. 

Every agent i  perturbs its current favorable strategy [ ]fav
iX  by a per-

turbation factor ifact  corresponding to the reciprocal of its favorable 

strategy [ ]fav
iX  as follows: 

[ ] [ ] [ ]( )fav fav fav
i i i iX X X fact= ± ×  (13) 

where 

( ) [ ]

( ) [ ]

1 1

2 2

1
,

1
,

upperlower
fav

i
i

upperlower
fav

i

randomvalue if
X

fact

randomvalue if
X

σ σ γ

σ σ γ

 ∈ ≤
= 
 ∈ >



 

and 1 1 2 2, , ,lower upper lower upperσ σ σ σ  are randomly generated values between 

0 and 1 i.e. 1 1 2 20 , , , 1lower upper lower upperσ σ σ σ< < , and 
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1 1 2 2
lower upper lower upperσ σ σ σ< ≤ < . The value of γ  as well as ‘+’ or ‘-’ sign 

in equation (13) are chosen based on the preliminary trials of the  
algorithm. 

It gives a chance to every agent i  to jump out of the local minima and 
further may help to search for a better solution. The perturbed solution is 
accepted if and only if the feasibility is maintained. Furthermore, every 
agent expands its sampling interval as follows: 

( ) ( ),lower upper lower upper upper lower
i i i i up i i i upλ λ Ψ ∈ Ψ − Ψ − Ψ ⋅ Ψ + Ψ − Ψ ⋅  

   

0 1upλ< ≤  
  where upλ  is referred to as the interval factor corresponding to the ex-

pansion of sample space. 
Step 7. If either of the two criteria listed below is valid, accept the current stable 

system objective [ ],( )fav sG Y  and corresponding [ ],fav sY  as the final solu-

tion referred to as [ ],( )fav finalG Y  and 
[ ] [ ] [ ] [ ] [ ]{ }, , , , ,

1 2 1, ,..., ,fav final fav final fav final fav final fav final
N NX X X X−=Y , respectively and 

stop, else continue to step 8. 
(a) If temperature finalT T=  or 0T → . 

(b) If there is no significant change in the successive stable system ob-

jectives (i.e. [ ] [ ], , 1( ) ( )fav s fav sG G ε−− ≤Y Y ) for two successive imple-

mentations of the perturbation approach. 
Step 8. Each agent i  then samples im  strategies from within the updated sam-

pling interval iΨ  and forms the corresponding updated strategy set iX  

represented as follows. 

[ ][1] [2] [3]{ , , ,..., } , 1,2,...,im
i i i i iX X X X i N= =X  (14)

Reduce the temperature TT T Tα= − , update the iteration counter 

1n n= +  and return to step 1. 
 
From above detailed PC procedure, it is clear that in each iteration, every agent 
sets up its own strategy set/sampling interval and models the strategy set of every 
other agent based on their recent actions or behavior only, i.e. based on partial 
knowledge. In addition, each agent randomly samples the strategies from within 
its own strategy set as well as from within other agents’ strategy sets, and  
computes the corresponding system objectives. By minimizing the collection of 
system objectives, every agent further identifies the possible strategy which con-
tributes the most towards the minimization of the collection of system objectives. 
Hence, in every iteration of PC procedure, convergence of all the agents to the 
same solution cannot be guaranteed. However, the solutions achieved by all the 
agents could be guaranteed to be in very close proximity of one another. 
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2.2   Nash Equilibrium 

In order to achieve a Nash equilibrium, every agent in a MAS should have the 
properties of Rationality and Convergence [49-52]. Rationality refers to the cha-
racteristic whereby every agent selects (or converges to) the best possible strategy 
given the strategies of the other agents. The convergence property refers to the 
stability condition i.e. a policy using which every agent selects (or converges to) 
the best possible strategy when all the other agents use their policies from a prede-
fined class (preferably same class). The Nash equilibrium is naturally achieved 
when all the agents in a MAS are convergent and rational. Moreover, a Nash equi-
librium is guaranteed when all the agents use stationary policies, i.e. those policies 
that do not change over time. It is worth to mention here that all the agents in the 
MAS proposed using PC algorithm exhibit the above mentioned properties. It is 
elaborated in the detailed PC algorithm discussed in the previous few paragraphs. 

In any game, there may be a large but finite number of Nash equilibria present, 
depending on the number of strategies per agent as well as the number of agents. It 
is essential to choose the best possible combination of the individual strategies se-
lected by each agent. It is quite hard to go through every possible combination of 
the individual agent strategies and choose the best out of it that can produce a best 
possible Nash equilibrium and hence the system objective. 

As discussed in the detailed PC algorithm, in each iteration n , every agent i  

selects the best possible strategy referred to as the favorable strategy [ ],fav n
iX  by 

guessing the possible strategies of the other agents. This information about its fa-

vorable strategy [ ],fav n
iX  is made known to all the other agents as well. In addition, 

the corresponding global knowledge such as system objective value 
[ ] [ ] [ ] [ ] [ ] [ ]( ), , , , , ,

1 2 3 1( ) , , ,..., ,fav n fav n fav n fav n fav n fav n
N NG G X X X X X−=Y  is also available to each 

agent which clearly helps all the agents take the best possible informed decision in 
every further iteration. This makes the entire system ignore a considerably large 
number of Nash equilibria but select the best possible one in each iteration and ac-

cept the corresponding system objective [ ],( )fav nG Y . Mathematically the Nash 

equilibrium solution in any iteration can be represented as follows: 

[ ] [ ] [ ] [ ]( ) ( ) [ ] [ ] [ ]( )
[ ] [ ] [ ] [ ]( ) [ ] ( ) [ ] [ ]( )

[ ] [ ] [ ] [ ]( ) [ ]

, , , , , , ,,
1 2 1 1 2 1

, , , , , , ,,
1 2 1 1 2 1

, , , ,
1 2 1 1

, ,..., , , ,..., ,

, ,..., , , ,..., ,

, ,..., ,

fav n fav n fav n fav n fav n fav n fav nfav n
N N N N

fav n fav n fav n fav n fav n fav n fav nfav n
N N N N

fav n fav n fav n fav n fav
N N

G X X X X G X X X X

G X X X X G X X X X

G X X X X G X

− −

− −

−

≤

≤

≤


[ ] [ ] ( )( ), , , ,
2 1, ,..., ,n fav n fav n fav n

N NX X X−

 (15) 

where ( ),fav n
iX  represents any strategy other than the favorable strategy [ ],fav n

iX  

from the same sample space n
iΨ . 
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Furthermore, from this current Nash equilibrium point with system objective 
[ ],( )fav nG Y , the algorithm progresses to the next Nash equilibrium point with better 

system objective [ ], 1( )fav nG +Y , i.e. [ ] [ ], , 1( ) ( )fav n fav nG G +≥Y Y . As the algorithm 

progresses, those ignored Nash equilibria as well as the best Nash equilibria se-
lected at previous iterations would be noticed as inferior solutions.  

This process continues until there is no change in the current solution 
[ ],( )fav nG Y , i.e. no new Nash equilibrium has been identified that proves the cur-

rent Nash equilibrium to be inferior. Hence the system exhibits stage-wise conver-
gence to a unique Nash equilibrium and the corresponding system objective is  

accepted as the final solution [ ],( )fav finalG Y . As a general case, this progress can be 

represented as 

[ ] [ ] [ ] [ ] [ ],1 ,2 , , 1 ,( ) ( ) ... ( ) ( ) ... ( )fav fav fav n fav n fav finalG G G G G+≥ ≥ ≥ ≥ ≥ ≥Y Y Y Y Y . 

3   The Circle Packing Problem (CPP) 

The solution to a general packing problem aims to determine how best to pack z  
objects into a predefined bounded space that yields best utilization of space with 
no overlap of object boundaries [53, 54]. The bounded space can also be referred 
to as a container. The packing objects and container can be circular, rectangular or 
irregular. Although the problem appears rather simple and in spite of its practical 
applications in production and packing for the textile, apparel, naval, automobile, 
aerospace, food industries, etc. [55] the CPP received considerable attention in the 
‘pure’ mathematics literature but only limited attention in the operations research 
literature [56]. According to [54, 57-59], as CPP cannot be effectively solved by 
purely analytical approaches [60-70], a number of heuristic techniques were pro-
posed [53, 54, 71-83]. Most of these approaches address the CPP in limited ways, 
such as close packing of fixed and uniform sized circles inside a square or circle 
container [54, 60-69], close packing of fixed and different sized circles inside a 
square or circle container [76-83], simultaneous increase in the size of the circles 
covering the maximum possible area inside a square [72-75], etc. PC was success-
fully applied solving two cases of the CPP [32]. It is important to mention here 
that true optimum solution was achieved in every run of the PC solving both the 
cases of the CPP. The next few sections describe mathematical formulation of the 
CPP followed by the solution to the CPP without agent failure [32] and the case of 
the CPP with agent failure. 

3.1   Formulation of the CPP 

The objective of the CPP solved here was to cover the maximum possible area 
within a square by z  number of circles without overlapping one another or  
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exceeding the boundaries of the square. In order to achieve this objective, all the 
circles were allowed to increase their sizes as well as change their locations. The 
problem is formulated as follows: 

2 2

1

Minimize
z

i
i

f L rπ
=

= −  (16)

( ) ( )2 2

Subject to

i j i j i jx x y y r r− + − ≥ +
 (17)

i i lx r x− ≥  (18)

i i ux r x+ ≤  (19)

i i ly r y− ≥  (20)

i i uy r y+ ≤  (21)

0.001 2i
Lr≤ ≤  (22)

, 1, 2,...,i j z i j= ≠  (23) 

where 
L = length of the side of the square 

ir = radius of circle i  

,i ix y = x  and y  coordinates of the center of circle i  

,l lx y = x  and y  coordinates of the lower left corner of the square 

,u ux y = x  and y  coordinates of the upper right corner of the square 

 
In solving the proposed CPP using constrained PC approach presented in Section 
2.1, the circles were considered as autonomous agents. These circles were assigned 
the strategy sets of x  and y  coordinates of the center and the radius. In both cases 

of the CPP solved here, the circles were randomly initialized inside the square and 
were not allowed to cross the square boundaries. Moreover, for the case of the CPP 
with agent failure, on completion of a predefined number of iterations one of the 
circles was failed. Furthermore, for both the cases, the constraints in equation (17) 
were satisfied using the Feasibility-based Rule I described in Section 2.1  
and the constraints in equations (18) to (21) were satisfied in every iteration of the 
algorithm using a repair approach. The repair approach refers to pushing the  
circles inside the square if they crossed the boundaries of it. It is similar to  
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the one proposed in [1] solving the MTSP. The initial configuration of the case of 
the CPP without agent failure and the case with agent failure are shown in Figure 
3(a) and 6(a), respectively.  

The constrained PC algorithm solving both the cases was coded in MATLAB 
7.8.0 (R2009A) and the simulations were run on a Windows platform using an  
Intel Core 2 Duo, 3GHz processor speed and 3.25GB memory capacity. Further-
more, for both the cases the set of parameters chosen was as follows: (a) individu-
al agent sample size 5im = , (b) number of test iterations 20testn = , (c) the shrink-

ing interval factor 0.05downλ = , (d) the expansion interval factor 0.1upλ = , (e) 

perturbation parameters 1 0.001lowerσ = , 1 0.01upperσ = , 2 0.5lowerσ = , 2 0.7upperσ = , 

0.99γ =  and the sign in equation (13) was chosen to be ‘-’. In addition to it, a 

voting heuristic was also incorporated in the constrained PC algorithm. It is de-
scribed in Section 4.3. 

3.2   CPP without Agent Failure 

In this case of the CPP, five circles ( 5z = ) were initialized randomly inside the 
square and were not allowed to cross the square boundaries. The length of the side 
of the square was five units (i.e. 5L = ). More than 30 runs of the constrained PC 
algorithm described in Section 2.1 with different initial configuration of the circles 
were conducted solving the CPP. The true optimum solution was achieved in 
every run with the average CPU time of 9 minutes and 25500 average number of 
function evaluations. The randomly generated initial solution, the intermediate ite-
ration solutions, and the converged true optimum solution from one of the in-
stances are presented in Figure 3. The corresponding convergence plot of the  
system objective is presented in Figure 4. The solution was converged at iteration 
936 with 24336 function evaluations and the periodic rises represent the perturba-
tions. The true optimum value of the objective function ( f ) achieved was 3.0807 

units. 
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       (a) Randomly generated Initial Solution                    (b) Solution at Iteration 101 

Fig. 3 Solution History for CPP without Agent Failure 
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  (c) Solution at Iteration 401                           (d) Solution at Iteration 601 
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  (c) Solution at Iteration 701                       (d) Solution at Iteration 801 
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     (e) Solution at Iteration 901                    (f) Stable Solution at Iteration 936 

Fig. 3 (continued) 
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Fig. 4 Convergence of the Objective Function for CPP without Agent Failure 

3.3   Voting Heuristic 

In a few instances of the CPP solved here, in order to jump out of the local mini-
mum, a voting heuristic was required. It was implemented in conjunction with the 
perturbation approach. Once the solution was perturbed, every circle voted 1 for 
each quadrant which it does not belong to at all, and voted 0 otherwise. The circle 
with the smallest size shifted itself to the extreme corner of the quadrant with the 
highest number of votes, i.e. the winner quadrant. The new position of the smallest 
size circle was confirmed only when the solution remained feasible and the algo-
rithm continues. If all the quadrants acquire equal number of votes, no circle 
moves its position and the algorithm continues. The voting heuristic is demon-
strated in Figure 5. 
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       (a) A Case for Voting Heuristic                                 (b) Voting Grids 

Fig. 5 Voting Heuristic 
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A voting grid corresponding to every quadrant of the square in Figure 5(a) is 
represented in Figure 5(b). The solid circles represent the solution before perturba-
tion while corresponding perturbed ones are represented in dotted lines. The votes 
given by the perturbed circles (dotted circles) to the quadrants are presented in the 
grid. As the maximum number of votes are given to quadrant 1 (i.e. Q 1), the cir-
cle with smallest size (circle 3) shifts to the extreme corner of the quadrant Q 1 
and confirms the new position as the solution remains feasible. Based on the trials 
conducted so far, it was noticed that the voting heuristic was not necessary to be 
implemented in every run of the constrained PC algorithm solving the CPP. 
Moreover, in those of the few runs in which the voting heuristic was required, it 
was required to be implemented only once in the entire execution of the algorithm. 
A variant of the voting heuristic was also implemented in conjunction with energy 
landscape paving algorithm [53, 77, 78], in which the smallest circle was picked 
and placed randomly at the vacant place to produce a new configuration. It was 
claimed that this heuristic helped the algorithm jump out of the local minima. Fur-
thermore, this heuristic was required to be implemented in every iteration of the 
algorithm. 

3.4   CPP with Agent Failure 

As mentioned in Section 3, the failed agent in PC can be considered as the one 
that does not communicate with other agents in the system and does not update its 
probability distribution. This does not prevent other agents from continuing fur-
ther, by simply considering the failed agent’s latest communicated strategies as the 
current strategies. In the context of the CPP, circle 2 was failed at a randomly cho-
sen iteration 30, i.e. circle 2 does not update its x  and y  coordinates as well as 
its radius after iteration 30. More than 30 cases of the constrained PC algorithm 
with Feasibility-based Rule I were conducted solving the CPP with agent failure 
case and the average function evaluations were 17365. For the case presented 
here, the number of function evaluations was 19066 and the randomly generated 
initial solution, the intermediate iteration solutions, and the converged true opti-
mum solution are shown in Figure 6. The corresponding convergence plot of the 
system objective is presented in Figure 7. The solution was converged at iteration 
890 with 23140 function evaluations and the periodic rises represent the perturba-
tions described in Section 2.1. 

It is worth to mention that the voting heuristic was not required for the above 
agent failure case. This is because according to the voting heuristic the smallest 
circle that has to move to the new position will have to be the failed agent itself. In 
addition, the same set of parameter values listed in Section 4.1 was used for the 
agent failure case. 
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(a) Randomly generated Initial Solution                  (b) Solution at Iteration 124 
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         (c)Solution at Iteration 231                                (d) Solution at Iteration 377 
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         (e) Solution at Iteration 561                                 (f) Solution at Iteration 723 

Fig. 6 Solution History for the CPP with Agent Failure 
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          (g) Stable Solution at Iteration 901                 (h) Stable Solution at Iteration 1051 

Fig. 6 (continued) 
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Fig. 7 Convergence of the Objective Function for the CPP with Agent Failure 

4   Discussion and Conclusions 

The above sections described the successful implementation of a generalized con-
strained PC approach using a variation of the feasibility-based rule originally pro-
posed in [34]. It is evident that because of the inherent distributed nature of the PC 
algorithm, it can easily accommodate the agent failure case. The solution high-
lights its strong potential to deal with the agent failure which may arise in real 
world complex problems including urban traffic control, formation of airplanes 
fleet and mid-air collision avoidance, etc. In addition, it is evident that the ap-
proach was sufficiently robust and produced true optimum results in every run of 
the case of CPP without agent failure. It implies that the rational behavior of the 
agents could be successfully formulated and demonstrated. It is important to  
mention that the concept of the avoidance of tragedy of commons was also  
successfully demonstrated in solving the CPP. 
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In addition, the feasibility-based rule in [35-40] suffered from maintaining the 
diversity and further required additional techniques such as niching [35], SA [179    
36], modified mutation approach [37, 38], and several associated trials in [37-39], 
etc. It may require further computations and memory usage.  On the other hand, in 
order to jump out of the possible local minima, a simple perturbation approach 
was successfully incorporated into the constrained PC algorithm. It is worth to 
mention that the perturbation approach was computationally cheaper and required 
no additional memory usage. 

In agreement with the no-free-lunch theorem [84], some limitations were also 
identified. The rate of convergence and the quality of the solution was dependent 
on the parameters such as the number of strategies im  in every agent’s strategy 

set iX , the interval factor λ  and also the perturbation parameters. It is also ne-

cessary that some preliminary trials are performed for fine-tuning these parame-
ters. Additionally, in order to confirm the convergence, the algorithm was required 
to be run beyond the convergence for a considerable number of iterations. In the 
future, as a generalized approach, an adaptive system can be developed for self 
tuning of the parameters. Furthermore, the ability of the PC methodology accom-
modating multiple agent failure case at multiple instances can be practically tested 
solving more realistic problems such as machine shop scheduling, urban traffic 
control, etc. The authors also see some potential in the field of healthcare systems 
management [85]. 
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