
Generalized Subgraph Preconditioners
for Large-Scale Bundle Adjustment

Yong-Dian Jian, Doru C. Balcan, and Frank Dellaert

College of Computing, Georgia Institute of Technology
ydjian@gatech.edu, {dbalcan,dellaert}@cc.gatech.edu

Abstract. We propose the Generalized Subgraph Preconditioners (GSP) to solve
large-scale bundle adjustment problems efficiently. In contrast with previous work
using either direct or iterative methods alone, GSP combines their advantages and
is significantly faster on large datasets. Similar to [12], the main idea is to identify
a sub-problem (subgraph) that can be solved efficiently by direct methods and use
its solution to build a preconditioner for the conjugate gradient method. The dif-
ference is that GSP is more general and leads to more effective preconditioners.
When applied to the “bal” datasets [2], our method shows promising results.

1 Introduction

Large-scale visual modeling with Structure from Motion (SfM) algorithms is an impor-
tant problem. Recently, systems capable of handling millions of images have been built
to realize this task [1,13,23], enabling automated 3D model generation from unstruc-
tured internet photo collections.

Bundle adjustment is used to find the optimal estimates of camera poses and 3-D
points [26]. Mathematically speaking, it refers to the problem of minimizing the total
reprojection error of the 3-D points in the images. The classical strategy to solve this
problem is to apply a damped Newton’s method (e.g., Levenberg-Marquardt) and solve
the reduced camera system by Cholesky factorization. However, this strategy does not
scale well because the memory requirement of factorization methods grows quadrati-
cally with the number of variables in the worst case.

Several recent works suggest using iterative methods such as the conjugate gradient
(CG) method to solve the linear systems arising in bundle adjustment, as its memory
requirement grows only linearly with the number of variables. The convergence speed
of the CG method depends on how well conditioned the original problem is [21]. Hence
having a good preconditioner is crucial to make CG converge faster, yet most of the pre-
vious approaches [2,7,8,14] apply only standard preconditioning techniques, neglecting
to exploit SfM-specific constraints.

In robotics, Dellaert et al. [12] proposed the Subgraph-Preconditioned Conjugate
Gradients method (SPCG), which aims to combine the advantages of direct and itera-
tive methods to solve 2-D Simultaneous Localization and Mapping (SLAM) problems.
The main idea is to pick a subset of measurements that can be solved efficiently by
direct methods, and use it to build a preconditioner for the CG method. They show that
SPCG is superior to using either direct or iterative methods alone. However, for the

F. Dellaert et al. (Eds.): Real-World Scene Analysis 2011, LNCS 7474, pp. 131–150, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

132 Y.-D. Jian, D.C. Balcan, and F. Dellaert

bundle adjustment problem, whose graph structure is bipartite and highly unbalanced,
SPCG may over-estimate the uncertainty of the variables and hence lead to unsatisfac-
tory preconditioners.

In this paper, we propose the Generalized Subgraph Preconditioners (GSP) that adapt
SPCG to solve large-scale bundle adjustment efficiently [15]. While SPCG simply picks
a subgraph of the Jacobian factor graph, GSP operates on the Hessian factor graph
which is more general and leads to more effective preconditioners. From this perspec-
tive, the problem of designing a good subgraph preconditioner is reduced to picking a
subset of the Hessian factors that (1) can be solved efficiently by direct methods, and
also (2) make the linear systems well-conditioned.

An important open question in [12] is how to pick a good subgraph. To this end,
we introduce the ideas developed in the field of combinatorial preconditioners to build
good subgraph preconditioners [6]. The insight is that a good subgraph should not only
be sparse but also have small structural distortion (stretch) with respect to the original
graph. Yet finding the optimal subgraph that satisfies the above criteria is computation-
ally intractable for large graphs. Instead we propose a greedy algorithm to construct a
family of subgraphs by incrementally adding edges to reduce stretch without inducing
large cliques in the factorization phase.

This paper has three contributions: we (1) adapt the ideas of SPCG to the bundle
adjustment problem, (2) propose GSP which generalizes SPCG and leads to more ef-
fective subgraph preconditioners, and (3) develop a greedy algorithm based on the ideas
in combinatorial preconditioners to construct a family of subgraph preconditioners. We
use the proposed method to solve large-scale datasets and have promising results.

2 Bundle Adjustment

2.1 Formulation

Here we review the bundle adjustment, whose goal is to jointly estimate the optimal
camera parameters and 3-D structure by minimizing the total reprojection error. We
define X = {xi}Mi=1 as the camera parameters, L = {lj}Nj=1 as the 3-D points, and
Z = {zk}Kk=1 as the measurements of the 3-D point lkj in camera xki. We also define
a function hk(xki, lkj) that projects a 3-D point to an image (see Figure 1). The goal
of bundle adjustment is to find the optimal cameras X and 3-D points L that minimizes
the total reprojection error

K∑

k=1

‖hk(xki, lkj)− zk‖2. (1)

Equation (1) is nonlinear and has no closed-form solution, but suppose we know some
initial estimates of the cameras parameters and 3-D points, we can apply the first-order
Taylor expansion to linearize Equation (1) as

K∑

k=1

[h(xki, lkj) +
∂h(xki, lkj)

∂xki
δxki +

∂h(xki, lkj)

∂lkj
δlkj − zk]. (2)

Generalized Subgraph Preconditioners for Large-Scale Bundle Adjustment 133

��
��

��

l1

l2

l3
l4 l5

�

��	�
	�����

��	������	����������

��	�����	������������

Fig. 1. The bundle adjustment problem

By setting the first-order derivative of the measurements in Equation (2) to zero, we can
build a linear system

Aθ = b, (3)

where A is a sparse rectangular matrix containing the Jacobian of the measurements
with respect to the cameras and 3-D points, θ is a vector that concatenates all δxi and
δlj , and b is a vector that concatenates the negative measurement errors. Then we solve
Equation (3) and use its solution to update the current estimates. This process is repeated
until convergence. We can see that solving bundle adjustment is equivalent to solving
a sequence of linear systems. An alternative to the second step is to form and solve the
normal equation

(ATA)θ = ATb, (4)

where ATA ≈ H is a first-order approximation to the Hessian of the total reprojection
error in Equation (1). Unfortunately, this method may not converge to the local mini-
mum if the initial estimate is close to a saddle point. To to resolve this problem, one can
solve a regularized linear system

(ATA+ λD)θ = ATb, (5)

where λ is a non-negative scalar, and D can be an identity matrix or the diagonal of
ATA. In bundle adjustment, the Levenberg-Marquardt algorithm is used to update the
value of λ according to quality of the solution. Note that the least-square linear system
corresponding to the normal equation (5) is

[
A√
λD

]
θ =

[
b
0

]
. (6)

2.2 Jacobian Factor Graph Representation

The bundle adjustment problem can also be considered as an inference problem on a
factor graph. In particular, the sparse Jacobian matrix A in Equation (3) can be regarded

134 Y.-D. Jian, D.C. Balcan, and F. Dellaert

x1 x2 x3

l1 l2 l3 l4

(a) (b)

Fig. 2. A toy bundle adjustment problem with three cameras and four 3-D points. All of the 3-D
points are observed by all of the cameras. (a) The Jacobian factor graph. The vertices denote the
camera and the 3-D point variables. The blue dots are the factors, and each factor indicates the
squared error term of a projection measurement. (b) The symbolic representation of the Jacobian
matrix A. Each row denotes one Jacobian factor, and each column indicates one variable.

as a Jacobian factor graph, where the vertices are the cameras and the 3-D points, and
each factor denotes the squared error term (block row) of a measurement. Figure 2
illustrates the idea with a simple example. Suppose we define the likelihood of a factor
as an exponential function of the negative squared error

P (zk|xki, lkj) ∝ exp{−‖h(xki, lkj)− zk‖2
2σ2

}, (7)

we can see that the maximum likelihood estimator of the factor graph is the minimizer
of Equation (1), i.e.

argmax
X,L

K∏

k=1

P (zk|xki, lkj) = argmin
X,L

K∑

k=1

‖h(xki, lkj)− zk‖2 (8)

This connection provides a foundation to the subgraph preconditioners.

2.3 Direct Methods

There are two ways to solve linear systems and the first one is called direct methods.
They work by factorizing the matrix to the product of an upper triangular matrix R and
its transpose, followed by a backward and forward substitution step. For instance, we
can use QR factorization to solve the linear least-square problem in Equation (3), and
use Cholesky factorization to solve the normal equation in Equation (4) [25]. On factor
graph, direct methods can be explained as a sequence of variable eliminations. Each
time we eliminate a variable (vertex), we will instantiate a new factor connecting to all
of its neighbors. After eliminating all of the variables, we will get an upper triangular
matrix R as a result. The process is illustrated in Figure 3. The variable elimination
ordering is very important to the efficiency of direct methods. Using a good ordering

Generalized Subgraph Preconditioners for Large-Scale Bundle Adjustment 135

�� ��

�� ��

�� ��

�� ��

������	
�����

���������	���������
������	
��

����
����

���	
����	�
�	������������������

Fig. 3. An illustration of how direct methods factorize an H matrix into RtR. Suppose we have
a variable elimination ordering. On the factor graph, each time we eliminate a vertex (variable),
we will introduce a new factor (red) connecting to all of its neighbors. After eliminating all of the
vertices, we will get the factorized matrix R.

1

2

4

3

5

���������	
��

�����	�

��
��������	�

5

1

3

2

4

����������	
�

�����	�

������������	�

Fig. 4. An illustration of how the elimination ordering affects the sparsity of R matrix. Suppose
we eliminate the leaf vertices first, the R matrix will be very sparse. Yet if we eliminate the
center vertex first, it will introduce a clique over the remaining vertices, and hence the R matrix
becomes very dense, which negatively affects the performance.

will result in a sparse R matrix and make the forward and backward substitutions more
efficient. Figure 4 shows how the ordering affects the sparsity of the factorized matrix.

Using direct methods to solve bundle adjustment has been well-studied in the lit-
erature [16,17,26]. The common practice is to eliminate all 3-D points first, and use
Cholesky factorization to solve the reduced camera system. Yet as shown in [2,8,14],
this strategy only works well for small problems, but does not scale satisfactorily be-
cause (1) the cost of forming and storing the reduced camera systems is prohibitive for
large problems, and (2) building the reduced camera system could destroy the sparse
problem structure and hence make it harder to solve. Therefore direct methods cannot
be directly applied to solve large-scale bundle adjustment without using hierarchical or
incremental techniques [19,22].

2.4 Iterative Methods

The second way to solve linear systems is called iterative methods. They are better
than direct methods for large problems because they involve only simple operations
and require less memory, but they may suffer from slow convergence if the original
problem is ill-conditioned.

The conjugate gradient (CG) method is the most efficient variant of iterative meth-
ods, but the convergence speed still depends on the condition number of the linear
system, which is defined as the ratio of extreme eigenvalues of the matrix ATA.

Several preconditioning techniques have been applied to make bundle adjustment
well-conditioned. Agarwal et al. [2] examined the performance of several standard pre-
conditioners and implementation strategies on large-scale datasets. Byröd and Åström

136 Y.-D. Jian, D.C. Balcan, and F. Dellaert

[7,8] proposed to use multi-scale and the block Jacobi preconditioners respectively.
Jeong et al. [14] suggested using the band-diagonal of the reduced camera system as
a preconditioner. Yet these methods are very generic: We show that by exploiting the
problem structure of bundle adjustment we can obtain better preconditioners.

3 Combining the Best of Direct and Iterative Methods

3.1 Variable Reparameterization and Preconditioning

Re-parameterizing the variables can result in faster convergence for iterative methods.
In the robot mapping and localization problem, Olson et al. [20] showed that if the robot
poses are parameterized in the global coordinate system, it takes a long time to propa-
gate the loop closure constraints through the graph, but suppose the robot poses are in-
crementally parameterized along the odometry chain, so that the new variables denote
the difference between two consecutive poses, they show that it makes the stochastic
gradient descent method converge faster. Generally speaking, this re-reparameterization
can be considered as a linear transformation R between two domains.

Similarly, the preconditioned conjugate gradient method [21] also uses a precon-
ditioner R to linearly re-parameterize the problem such that the condition number be-
comes smaller and it can converge faster. This point of view indicates that linear variable
re-parametrization is essentially a preconditioning process.

3.2 Subgraph-Preconditioned Conjugate Gradient Method

Dellaert et al. [12] proposed the Subgraph-Preconditioned Conjugate Gradient (SPCG)
method, which aims to combine the advantages of direct and iterative methods to solve
2-D Simultaneous Localization and Mapping (SLAM) problems. The main idea is to
identify a sub-problem (subgraph) that can be solved efficiently by direct methods (e.g.,
a subgraph with small tree-width) and use it to build a preconditioner for the conjugate
gradient method. They show that this technique is a better alternative to using either
direct or iterative methods alone. Figure 5 illustrates the key steps of the algorithm.

Here we show how SPCG works in detail. Suppose we want to solve a linear system
(Jacobian factor graph) as in Equation (6). We pick a subset of the rows (factors), and
denote it as (A1,b1), and denote the remaining rows as (A2,b2). We can re-arrange
the linear system in Equation (6) as

[
A1

A2

]
θ =

[
b1

b2

]
. (9)

After applying QR factorization to A1, we have A1 = Q1R1. By left-multiplying the
upper part with QT

1 , we get

[
R1

A2

]
θ =

[
QT

1 b1

b2

]
. (10)

Generalized Subgraph Preconditioners for Large-Scale Bundle Adjustment 137

�� �� ��

l1 l2 l3 l4 l5

�� �� ��

l1 l2 l3 l4 l5

����������	
����
����	����
�

������������������������
����	���������	
��������
�

�������� ��!����"����	����
��������#��������������$

#�����������
� 	
�����	����
�

"�$�����

Fig. 5. An illustration of the SPCG method. Suppose on the left is the original factor graph. SPCG
has three main steps: (1) Pick a sparse subgraph out of the original one. (2) Use direct methods to
factorize this sparse subgraph. This step is efficient because a good variable elimination ordering
for a sparse graph is always available. (3) Use the R matrix of the subgraph as the preconditioner
in the preconditioned conjugate gradient method to solve the original problem.

�� �� ��

l1 l2 l3 l4

(a) (b)

Fig. 6. An example that illustrates the SPCG technique. (a) The Jacobian factor graph that cor-
responds to a subset of the measurements (sub-problem) in Figure 2. (b) The symbolic matrix
representation of the subgraph.

Suppose c1 = QT
1 b1 and θ̄ = R−1

1 c1 is the optimal solution by considering only the
upper part of Equation (9). Then by re-parameterizing y = R1(θ − θ̄), we have

[
I

A2R
−1
1

]
y =

[
0
c2

]
, (11)

where c2 = b2 − A2R
−1
1 c1. Equation (11) couples the solution of the subgraph part

(R−1
1) to precondition the remaining part. The intuition behind the re-parameterization

is that we penalize the deviation ofy from the subgraph solution θ̄. Finally Equation (11)
is solved by using the least-squares variant of the conjugate gradient method [4].

Figure 6 illustrates the SPCG technique with an example. Suppose we pick a span-
ning tree of the original graph as in Figures 6(a) and 6(b). We can use direct methods to
factorize the spanning tree efficiently. Then we use the factorized matrix to precondition
(re-parameterize) the original problem.

In addition, we also visualize the solutions obtained from the subgraph and the solu-
tions from the original graph in Figure 7. We can see that although the solution of the
subgraph is blurry and hence inferior to that of the original graph, we can use it to build
a preconditioner to solve the original graph efficiently.

138 Y.-D. Jian, D.C. Balcan, and F. Dellaert

(a)

(b)

(c) (d)

Fig. 7. The solutions obtained from solving (a) (c) the subgraph and (b) (d) the original graph on
the Chicago-2 dataset (from Grant Schindler) and the NotreDame datasets [23] respectively. Note
that the solutions of the subgraphs are more blurry than (inferior to) those of the original graphs,
but they could serve as good preconditioners to solve the original graph.

Generalized Subgraph Preconditioners for Large-Scale Bundle Adjustment 139

4 Generalized Subgraph Preconditioners

Although SPCG works well for 2-D pose SLAM problems, its performance is actu-
ally worse than the Jacobi preconditioner, a simple and empirically effective precondi-
tioner [2,8,14], in our experiments on large-scale bundle adjustment. This indicates that
we need a different representation to design subgraph preconditioners.

To this end, we propose the Generalized Subgraph Preconditioners (GSP), which
generalize SPCG and are more suitable for large-scale bundle adjustment. While SPCG
works on the Jacobian factor graph where each measurement corresponds to a Jacobian
factor, GSP works on the Hessian factor graph where each measurement contribute
three factors to the graph. We will show that this finer-grained graph possesses greater
representation power than the Jacobian factor graph.

Compared to conventional matrix preconditioning machinery, GSP not only provides
an expressive language to design subgraph preconditioners, but also explains the stan-
dard Jacobi preconditioner naturally.

4.1 Hessian Factor Graph Representation

To gain insight into the performance properties of both Jacobi and SPCG precondi-
tioners, we investigate the structure of the Hessian matrix H ≈ ATA appearing in
the normal equation (4). The Hessian matrix can also be represented as a graph, more
specifically a Gaussian Markov Random Field (GMRF). Every principal sub-matrix of
H corresponds to the information matrix of the conditional distribution given the other
variables [11,18]. In this sense, solving the GMRF is analogous to solving Equation (4).

Yet a GMRF is usually represented as an undirected graph which is not expressive
enough for designing subgraph preconditioners. It prompts us to resort to a finer-grained
Hessian factor graph representation. The main difference is that we create two unary and
one binary factors out of each measurement, and accumulate all of them in the Hessian

�� �� ��

l1 l2 l3 l4

(a) (b)

Fig. 8. The Hessian representation of the bundle adjustment problem in Figure 2. (a) The Hessian
factor graph. The red dots denote unary factors while the green dots denote binary factors. This
representation resembles to the Gaussian Markov Random Field representation [11,18]. (b) The
symbolic representation of the Hessian matrix H ≈ ATA. Both rows and columns indicate
variables. A diagonal (red) block indicates the certainty of a variable given the other variables are
known. An off-diagonal block indicates whether two variables are correlated given that the other
variables are known. Each non-zero off-diagonal (green) block corresponds to a Jacobian factor
in Figure 2(a) or a binary Hessian factor in (a).

140 Y.-D. Jian, D.C. Balcan, and F. Dellaert

factor graph. The number of unary factors attached to a variable is equal to the number
of the associated measurements, with one binary factor per measurement.

As an example, consider the measurement between x0 and l0 in Figure 2(a) and
assume Ax0 and Al0 are the corresponding block entries in the first row of the Jacobian
matrix in Figure 2(b). Since the Hessian matrix is the sum of outer product of the block
rows of the Jacobian matrix, we can see that this measurement actually corresponds to
three terms in the Hessian matrix: AT

x0
Ax0 , AT

l0
Al0 and AT

x0
Al0 . Notice that the first

two are unary factors of x0 and l0, and the third is a binary factor between them. They
encode the information contributed by this measurement to the conditional Gaussian
densities. Repeating this process for all measurements, we can build the Hessian factor
graph representation illustrated in Figure 8(a).

From this perspective, the problem of designing a good subgraph preconditioner is
reduced to picking a subset of Hessian factors from the graph that (1) can be solved
efficiently by direct methods, and also (2) make the linear systems well-conditioned.
Once a subgraph is selected, we can use sparse direct methods to factorize the linear
system (i.e., H1 = RT

1 R1) and use R1 as the preconditioner in the conjugate gradient
method. The detail of how to to pick a subgraph will be discussed in Section 5.

GSP is more expressive than SPCG because we can always build a Hessian factor
graph from a subset of measurements, but not vice versa. For instance, suppose we want
to construct a Hessian factor subgraph as in Figure 9 by picking a subset of measure-
ments. One can see that no subset of Jacobian factors in Figure 2(a) corresponds to this
Hessian factor graph. Hence the GSP is indeed a generalization of SPCG.

The difference between GSP and SPCG is critical for large-scale bundle adjustment,
whose graph structure is bipartite and highly unbalanced. The amount of information
that SPCG brings in for each variable corresponds to the associated measurements in
the subgraph. In bundle adjustment, if SPCG picks a spanning tree as the subgraph, then
it can only collect at most two out of potentially thousands of unary factors for the cam-
era vertices. This results in over-estimating the uncertainty of the variables and hence
leads to unsatisfactory preconditioners. This idea is illustrated in Figure 10. Adding
more measurements to the subgraph might help, but it also makes it harder for direct
methods to to solve the subgraphs. In contrast, GSP provides the flexibility to keep part
or all of the unary factors (information) for each variable, and hence overcomes this
problem.

�� �� ��

l1 l2 l3 l4

(a) (b)

Fig. 9. A subgraph that GSP can generate but SPCG cannot

Generalized Subgraph Preconditioners for Large-Scale Bundle Adjustment 141

�� �� ��

l1 l2 l3 l4

(a)

���� ������ �� ��

��

��

��

��
��
��
��

(b)

Fig. 10. The Hessian representation of the sub-problem in Figure 6. (a) The Hessian factor graph
with the corresponding unary and binary factors. (b) The symbolic matrix of the sub-problem.
The non-zero off-diagonal blocks are identical to those in Figure 8(b), but the diagonal entries
are smaller than those in Figure 8(b). It leads to over-estimating the uncertainty of the variables,
especially for the camera variables. This is problematic for large-scale bundle adjustment where
the graph is bipartite and unbalanced.

4.2 The Jacobi Preconditioner

The Jacobi preconditioner is a generic technique and it has been shown empirically
effective for large bundle adjustment [2,8,14]. Here we show that the Jacobi precondi-
tioner has a simple explanation within the GSP framework. The Jacobi preconditioner
works by taking only the diagonal entries of the Hessian matrix, and discarding all off-
diagonal entries [21]. A simple generalization is the block Jacobi preconditioner which
treats each camera and each 3-D point as an entity, and it corresponds to picking the
block diagonal of the Hessian matrix. The block Jacobi preconditioners can be solved
efficiently because all blocks are independent.

In the GSP machinery, the block Jacobi preconditioner corresponds to picking all of
the unary factors and discarding all of the binary factors of in the Hessian factor graph.
The idea is illustrated in Figure 11. Note that hereafter when we refer to the Jacobi
preconditioner, we actually mean the block Jacobi preconditioner.

�� �� ��

l1 l2 l3 l4

(a)

���� ������ �� ��

��

��

��

��
��
��
��

(b)

Fig. 11. Block Jacobi preconditioner of the toy problem

142 Y.-D. Jian, D.C. Balcan, and F. Dellaert

5 The GSP-n Preconditioners

5.1 Matrix Preconditioners

Conventional matrix preconditioning techniques focus more on the efficiency of solv-
ing the preconditioners rather than on directly minimizing the condition number of the
preconditioned system [21]. For example, the Jacobi preconditioner offers good com-
putational efficiency by discarding the conditional correlation between variables. The
incomplete Cholesky preconditioner controls the computational cost by limiting the
amount of fill-in and discarding negligible entries during the factorization process. Al-
though these techniques work to some extent in practice, deriving theoretical bounds on
their condition numbers is generally non-trivial, and their actual meaning is also hard
to interpret graphically or probabilistically.

5.2 Combinatorial Preconditioners

Recently, combinatorial (graph) preconditioners have been studied to analyze and con-
struct effective preconditioners for the conjugate gradient method. Promising results
have been reported on solving linear systems with symmetric and diagonally dominant
matrices [6,24]. The main idea is to find ultra-sparsifiers such that the original graph
and the approximating graph have similar conductance – a measure of how fast infor-
mation travels between different parts of the graph. Insisting on sparse approximating
graphs produces preconditioners that can be solved efficiently by direct methods, while
maintaining the graph conductance effectively reduces the condition number of the pre-
conditioned systems, therefore the number of CG iterations.

If the subgraph is restricted to be a spanning tree, Boman and Hendrickson [6] rec-
ognized that the condition number of the preconditioned system is upper bounded by
the stretch of the original graph with respect to the spanning tree. More specifically,
suppose G = (V,E,w) is the graph of the original system where V , E and w denote
the vertices, edges and the weights of the edges respectively. If T is a spanning tree of
G, then for every edge e = (u, v) ∈ E, there is a unique path in T connecting u and v.
The stretch of e with respect to T is defined as

st(T, e) =
∑

f∈P (T,e)

w(e)

w(f)
, for e ∈ E (12)

where P (T, e) denotes the edges on the unique path between u and v in T . The stretch
of G with respect to T is defined as the sum of the stretches of all the edges in G:

st(T,G) =
∑

e∈E

st(T, e). (13)

Intuitively speaking, the higher the stretch of a tree, the more time it takes for informa-
tion to percolate, negatively affecting convergence.

If we relax the restriction and consider a general subgraph, a common practice is to
use a low-stretch spanning tree as a skeleton and augment it with additional edges to
further reduce the stretch. However, when additional edges are added to the subgraph,

Generalized Subgraph Preconditioners for Large-Scale Bundle Adjustment 143

not only may the subgraph take longer to build, but also the preconditioners will become
more expensive to apply in the conjugate gradient method. Clearly, there is a trade-off
between the quality of the preconditioner and the time required to build and apply it.

5.3 The GSP-n Preconditioners

Finding the optimal subgraph is computationally intractable for large problems. Instead
we propose a greedy algorithm to construct a family of subgraphs with adjustable com-
plexity. On top of these subgraphs, we use GSP to build subgraph preconditioners. The
resulting preconditioners are called the GSP-n preconditioners, where n is a parameter
that controls the complexity of the subgraph.

The bundle adjustment graph is a bipartite graph G = (X,L,E), where X denote
the camera and L denote the 3-D points vertices on the two sides of G. Each edge in E
denotes a measurement that connects the corresponding camera and point vertices.

The goal is to find a subset ES of E, such that (1) the resulting subgraph GS has
low stretch with respect to G, and (2) the maximum size of the induced cliques does
not exceed the predefined parameter n. By the maximum size of the induced cliques we
actually mean the clique number in the factorization phase, which can indirectly affect
the computational complexity. A straightforward strategy would be to use a low-stretch
spanning tree of G as the subgraph, but this strategy is sub-optimal because it does not
exploit the bipartite and unbalanced nature of G.

Here we introduce some notation to facilitate the explanation. We denote X(l) as the
set of cameras associated with a 3-D point l, and E(l) as the corresponding set of edges
(measurements). Note that by picking t edges from E(l) into the subgraph, we will
induce a clique of size t between the corresponding cameras after eliminating the 3-D
point l in the factorization phase. Moreover, if the edges and the elimination ordering
are not chosen appropriately, even larger cliques will appear in the factorization phase.

Here we describe a greedy algorithm to construct a family of subgraphs. First, we
build a camera graph GX where the vertices consist of all cameras and the edge weight
between two cameras is defined as the number of 3-D points that are observed by both of
them. Then we find a low-stretch spanning tree TX in GX . The tree TX aims to preserve
the structural information of G, and provides a reference to augment additional edges.

Second, we show how to augment additional edges to the subgraph. Suppose initially
the edge set ES is empty. For each point l, we sort X(l) according to their average
distance to the other cameras in X(l) with respect to TX . Then we pick the edges of
E(l) into the subgraph according to this ordering. An edge is added into ES if it does
not induce a camera clique of size greater than n. To this end, we also maintain an array
(initially set to 0, whose length is the number of cameras) which holds the size of the
maximum clique that a camera belongs to. The array is updated whenever an edge is
added. Repeating this process for all 3-D points results in edge set ES .

Finally we construct the GSP-n preconditioner by using all of the unary factors in the
original graph and the binary factors corresponding to the edge set ES . Note that there
are two interesting special cases of the GSP-n preconditioners: GSP-0 corresponds to
the Jacobi preconditioner while GSP-∞ corresponds to using the original graph to con-
struct the subgraph preconditioner.

144 Y.-D. Jian, D.C. Balcan, and F. Dellaert

5.4 The Symmetry and Positive Semidefiniteness of GSP-n

Being symmetric and positive semi-definite (spsd) is a necessary condition for being
a valid preconditioner in the conjugate gradient method. Here we show that any GSP-
n preconditioner is spsd. First, we know that any H ≈ ATA matrix is always spsd,
and hence GSP-n is also symmetric by construction. Second, discarding off-diagonal
block pairs AT

x0
Al0 , AT

l0
Ax0 in the Hessian while leaving the block-diagonal unchanged

corresponds to replacing a binary factor by two unary factors in the Jacobian factor
graph. The replaced binary factor corresponds to A’s block-row with nonzero blocks
Ax0 and Al0 , while each new unary factor contains exactly one of these blocks. The
inner product of the new factor matrix with itself is spsd, which guarantees the validity
of GSP preconditioners. Note that discarding symmetrical off-diagonal entries of an
arbitrary spsd matrix may not produce a spsd matrix. In the scalar case, Boman et al.
[5] proved that matrices with this property must admit a factorization ATA, with A
having a factor width ≤ 2.

6 Results

6.1 Configurations

Here we compare the sparse factorization method (DBA) and the conjugate gradient
(CG) method with three preconditioners: (1) the block Jacobi preconditioner (JACOBI),
(2) the subgraph preconditioner (SPCG), and (3) the generalized subgraph precondi-
tioner (GSP-n). The number attached to ”GSP-n ” indicates the maximum clique size
allowed in the greedy algorithm.

We use the Levenberg-Marquardt method as the nonlinear solver. The stopping cri-
teria are (1) the number of iterations exceeds 20, (2) the average reprojection error is
less than 0.8 pixel, or (3) the relative decrease of the error is less than 10−2.

For the linear solvers, DBA uses the cholmod package [9] with an approximate min-
inum degree ordering. For the solvers using the CG method, we solve Equation (6) by
using the least-squares variant of CG [4] without forming the normal equation (see Al-
gorithm 1). The stopping criteria for the CG method are (1) the number of iterations
exceeds 2000, (2) the relative decrease of residual is less than 10−2.

For JACOBI, we accumulate all unary factors for each variable (i.e., the diagonal
blocks of ATA) and solve them independently. For SPCG, we use the Sparse QR fac-
torization package [10]. For GSP-n, we use the cholmod package [9] with an ordering
in which the 3-D points are eliminated first and the cameras are eliminated according to
the topological ordering of the camera low-stretch spanning tree. We use Alon et al.’s
algorithm to find a low-stretch spanning tree in the camera graph [3]. Note that for
SPCG and GSP-n, the topology of the subgraph is determined at the beginning, and
never changed during the optimization.

We run the experiments on the bal datasets released by Agarwal et al. [2]. Since bal
contains many datasets and some of them cannot fit into the memory of a regular PC,
we select ten proper datasets from bal which have 100K to 500K points (see Table. 2).
We run all of the experiments on a Core2 Duo PC with 8G RAM.

Generalized Subgraph Preconditioners for Large-Scale Bundle Adjustment 145

Algorithm 1. Preconditioned Conjugate Gradient Least-Squares Method

Input: Let A be the Jacobian matrix, RTR be the factorized preconditioner, x0 be an
initial estimate, ε be the tolerance, and t be the maximum number of iterations.

r0 = b− Ax0, p0 = s0 = R−T (AT r0), γ0 = ‖s0‖22
for k = 0 to t do

if γk < ε then break
tk = R−1pk
qk = Atk
αk = γk/‖qk‖22
xk+1 = xk + αktk
rk+1 = rk − αkqk
sk+1 = R−T (AT rk+1)
γk+1 = ‖sk+1‖22
βk = γk+1/γk
pk+1 = sk+1 + βkpk

end

6.2 The Performance of GSP-n

We first investigate the performance of GSP-n for different values of n, and show the
timing results in Figure 12. Notice that GSP-n is equivalent to JACOBI when n = 0.
We exclude the linearization time and focus on comparing the linear solvers. The results
show that GSP-n converges faster than JACOBI by 10-30% in most cases.

We also observe that as n increases, the overall time decreases at first, but increases
if n is set too high. To better understand the behavior of GSP-n, we break down the
timing results of one dataset and show the major components in Table 1. We can see
that as n increases, the subgraph becomes denser and harder to solve, but the time
spent on building the subgraph preconditioner is not significant when n is small. Here
the important parts are (1) the time to apply the preconditioner per CG iteration, and
(2) the number of total CG iterations. The former increases because the preconditioner

 0

 500

 1000

 0 1 2 3 4 5 6 7 8 9

Ti
m

e
(s

ec
)

Dataset Index

Jacobi
GSP1
GSP2
GSP3
GSP4

Fig. 12. Timing results of JACOBI and GSP-n on bal

146 Y.-D. Jian, D.C. Balcan, and F. Dellaert

Table 1. Timing results of GSP-n on the ”F-05” dataset. We only show the components relevant to
the linear solvers. The columns indicate (1) the maximum clique size in GSP-n, (2) the percentage
of edges used in the subgraph, (3) the time of building the subgraph, (4) the time per CG iteration,
and (5) the number of total CG iterations, and (6) the total time.

n edges (%) build (s) time/iter (s) #iters total (s)

0 0.0 27.2 0.48 1438 732.6

1 19.8 33.4 0.53 1130 648.8

2 26.6 48.7 0.56 866 550.5

3 32.5 69.1 0.62 631 473.7

4 39.0 101.5 0.78 526 512.8

Table 2. Timing results (secs) of the four methods on ten bal datasets. The second column corre-
sponds to the name and index in the original bal: ”D” for ”Dubrovnik”, ”L” for ”Ladybug”, ”V”
for ”Venice” and ”F” for ”Final”.

Set Source Cameras Points Measurements DBA JACOBI SPCG GSP-3

0 V-01 89 110,973 562,976 42 84 401 89

1 F-01 394 100,368 534,408 79 113 256 96

2 V-02 245 198,739 1,091,386 155 245 415 196

3 D-15 356 226,730 1,255,268 187 397 804 285

4 V-03 427 310,384 1,699,145 313 273 695 212

5 L-30 1,723 156,502 678,718 578 312 718 223

6 V-04 744 543,562 3,058,863 886 506 913 407

7 F-03 961 187,103 1,692,975 1148 252 741 191

8 F-02 871 527,480 2,785,977 1939 776 1154 564

9 F-05 3,068 310,854 1,653,812 3504 894 2035 473

becomes denser and hence more computation is involved in the back substitution. The
latter decreases because the linear systems become better conditioned. We can see that
their product dominate timing and clearly there is a trade-off between these two factors.

6.3 Timing Results

Here we compare the timing results of four linear solvers on the bal datasets. We use
n = 3 to build subgraphs for both SPCG and GSP-n. The timing results in Table 2
are sorted according to the DBA time, which reflects the intrinsic difficulty of the
datasets. The results confirm that sparse direct methods are efficient for small datasets,
but iterative methods are better alternatives for large datasets. Comparing JACOBI and
GSP, the results show that by adding extra factors to the subgraph, GSP provide better

Generalized Subgraph Preconditioners for Large-Scale Bundle Adjustment 147

Table 3. The condition numbers of the SPCG, JACOBI, and GSP-3 on three bal datasets

Set Original SPCG JACOBI GSP-3

D-15 5.58e+21 1.87e+06 5.94e+04 4.36e+03

V-02 6.54e+21 6.46e+09 6.35e+05 1.38e+05

F-01 3.68e+11 1.92e+08 7.54e+06 8.71e+05

(a)

(b)

Fig. 13. Visualization of the “F-03” datasets. The solutions obtained from solving (a) the sub-
graph and (b) the original graph. Similar to Figure 7, the solution to subgraph serves as a good
preconditioner to solve the original problem.

148 Y.-D. Jian, D.C. Balcan, and F. Dellaert

preconditioners than JACOBI in most of the cases. Comparing SPCG and GSP, the
results show that being able to add more unary factors to the graph is crucial to im-
prove the convergence speed of the CG method. An example of the result is shown in
Figure 13.

6.4 The Condition Numbers

The condition number is a common measure to estimate the convergence speed of the
conjugate gradient method [21]. Here we compare the condition numbers of the linear
systems preconditioned by the SPCG, JACOBI and GSP-3 preconditioners on several
medium bal datasets. The results are shown in Table 3. We can see that the original
condition numbers are huge, which indicate the slow convergence of using a plain CG
solver. The SPCG precondtitioner works to some extent, but is not as good as JACOBI
and GSP-3. The condition numbers of GSP-3 are 5-10 times smaller than JACOBI.

7 Conclusions and Future Work

While direct methods are efficient for small datasets and iterative methods are more ap-
propriate if the memory requirement is of concern, a subgraph-based preconditioning
method combines their advantages and provides a better alternative for solving large-
scale bundle adjustment. One such method is SPCG, which to the best of our knowledge
has not been applied to the bundle adjustment problem until now. Although for large
datasets SPCG is significantly better than direct methods and the plain CG method,
its behavior is sub-optimal: as the bundle adjustment graph is bipartite and unbalanced,
SPCG over-estimates the uncertainty of the variables. In contrast, GSP avoids this prob-
lem, and is more expressive and suitable for bundle adjustment. Well-known precondi-
tioners like Jacobi fit naturally in the GSP context. To exploit the graphical structure of
the problem, we develop an efficient algorithm rooted in combinatorial preconditioning,
to construct a family of subgraph preconditioners. When applied to large datasets, the
GSP-n preconditioners display promising performance.

For future work, first we would like to develop a more expressive factor representa-
tion to explain and understand the other matrix preconditioners such as the Incomplete
Factorization and the Symmetric and Successive Over-Relaxation preconditioners. The
second is to develop a better algorithm to construct the subgraph preconditioners, and
provide theoretical guarantees for their performance.

References

1. Agarwal, S., Snavely, N., Simon, I., Seitz, S., Szeliski, R.: Building rome in a day. In: IEEE
12th International Conference on Computer Vision, pp. 72–79 (2009)

2. Agarwal, S., Snavely, N., Seitz, S.M., Szeliski, R.: Bundle Adjustment in the Large. In:
Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6312, pp. 29–42.
Springer, Heidelberg (2010)

Generalized Subgraph Preconditioners for Large-Scale Bundle Adjustment 149

3. Alon, N., Karp, R., Peleg, D., West, D.: A graph-theoretic game and its application to the
k-server problem. SIAM Journal on Computing 24(1), 78–100 (1995)

4. Björck, A.: Numerical Methods for Least Squares Problems. SIAM Publications (1996)
5. Boman, E., Chen, D., Parekh, O., Toledo, S.: On factor width and symmetric h-matrices.

Linear Algebra and its Applications 405, 239–248 (2005)
6. Boman, E., Hendrickson, B.: Support theory for preconditioning. SIAM Journal on Matrix

Analysis and Applications 25(3), 694–717 (2003)
7. Byröd, M., Åström, K.: Bundle adjustment using conjugate gradients with multiscale pre-

conditioning. In: British Machine Vision Conference (2009)
8. Byröd, M., Åström, K.: Conjugate Gradient Bundle Adjustment. In: Daniilidis, K., Maragos,

P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6312, pp. 114–127. Springer, Heidelberg
(2010)

9. Chen, Y., Davis, T., Hager, W., Rajamanickam, S.: Algorithm 887: CHOLMOD, supernodal
sparse Cholesky factorization and update/downdate. ACM Transactions on Mathematical
Software 35(3), 1–14 (2009)

10. Davis, T.: Algorithm 915, SuiteSparseQR: multifrontal multithreaded rank-revealing sparse
QR factorization. ACM Transactions on Mathematical Software 38(1) (2011)

11. Dellaert, F., Kaess, M.: Square root sam: Simultaneous localization and mapping via square
root information smoothing. International Journal of Robotics Research 25(12), 1181–1203
(2006)

12. Dellaert, F., Carlson, J., Ila, V., Ni, K., Thorpe, C.E.: Subgraph-preconditioned conjugate
gradient for large scale slam. In: IEEE/RSJ International Conference on Intelligent Robots
and Systems (2010)

13. Frahm, J.-M., Fite-Georgel, P., Gallup, D., Johnson, T., Raguram, R., Wu, C., Jen, Y.-H.,
Dunn, E., Clipp, B., Lazebnik, S., Pollefeys, M.: Building Rome on a Cloudless Day. In:
Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 368–381.
Springer, Heidelberg (2010)

14. Jeong, Y., Nister, D., Steedly, D., Szeliski, R., Kweon, I.: Pushing the envelope of mod-
ern methods for bundle adjustment. In: IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1474–1481 (2010)

15. Jian, Y.D., Balcan, D.C., Dellaert, F.: Generalized subgraph preconditioners for large-scale
bundle adjustment. In: IEEE 13th International Conference on Computer Vision (2011)

16. Konolige, K., Garage, W.: Sparse sparse bundle adjustment. In: Proc. of the British Machine
Vision Conference (2010)

17. Lourakis, M., Argyros, A.: SBA: A software package for generic sparse bundle adjustment.
ACM Transactions on Mathematical Software 36(1), 1–30 (2009)

18. MacKay, D.: Information theory, inference, and learning algorithms. Cambridge Univ. Press
(2003)

19. Ni, K., Steedly, D., Dellaert, F.: Out-of-core bundle adjustment for large-scale 3D reconstruc-
tion. In: IEEE 11th International Conference on Computer Vision (2007)

20. Olson, E., Leonard, J., Teller, S.: Fast iterative alignment of pose graphs with poor initial
estimates. In: Proceedings of IEEE International Conference on Robotics and Automation,
pp. 2262–2269 (2006)

21. Saad, Y.: Iterative methods for sparse linear systems. Society for Industrial Mathematics
(2003)

22. Snavely, N., Seitz, S.M., Szeliski, R.S.: Skeletal graphs for efficient structure from motion.
In: IEEE Conference on Computer Vision and Pattern Recognition (2008)

150 Y.-D. Jian, D.C. Balcan, and F. Dellaert

23. Snavely, N., Seitz, S., Szeliski, R.: Modeling the world from internet photo collections. In-
ternational Journal of Computer Vision 80(2), 189–210 (2008)

24. Spielman, D.A.: Algorithms, graph theory, and linear equations. In: International Congress
of Mathematicians (2010)

25. Trefethen, L., Bau, D.: Numerical linear algebra, vol. 50. Society for Industrial Mathematics
(1997)

26. Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle Adjustment – A Mod-
ern Synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) ICCV-WS 1999. LNCS,
vol. 1883, pp. 298–372. Springer, Heidelberg (2000)

	Generalized Subgraph Preconditioners for Large-Scale Bundle Adjustment
	Introduction
	Bundle Adjustment
	Formulation
	Jacobian Factor Graph Representation
	Direct Methods
	Iterative Methods

	Combining the Best of Direct and Iterative Methods
	Variable Reparameterization and Preconditioning
	Subgraph-Preconditioned Conjugate Gradient Method

	Generalized Subgraph Preconditioners
	Hessian Factor Graph Representation
	The Jacobi Preconditioner

	The GSP-n Preconditioners
	Matrix Preconditioners
	Combinatorial Preconditioners
	The GSP-n Preconditioners
	The Symmetry and Positive Semidefiniteness of GSP-n

	Results
	Configurations
	The Performance of GSP-n
	Timing Results
	The Condition Numbers

	Conclusions and Future Work
	References

