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Preface

The topic of the 15th Workshop on Theoretical Foundations of Computer Vision
was Outdoor and Large-Scale Real-World Scene Analysis, which covers all aspects,
applications, and open problems regarding the performance or design of computer
vision algorithms capable of working in outdoor set-ups and/or large-scale envi-
ronments. Developing these methods is important for driver assistance, city mod-
eling and reconstruction, virtual tourism, telepresence, and motion capture. With
this workshop we aimed to attain several objectives, outlined below.

The first objective of the workshop was to take stock of the performance of
existing state-of-the-art computer vision algorithms and to define metrics and
benchmark datasets on which to evaluate them. It is imperative that we push
existing algorithms, which are currently benchmarked or tested with artificial or
indoor set-ups, toward real applications. Methods of interest are 3D reconstruc-
tion, optic flow computation, motion capture, surveillance, object recognition,
and tracking. These need to be dragged out of the lab and into the real world.
Over the last few years the computer vision community has recognized this
problem and several groups are increasingly concentrating on the analysis of un-
controlled scenes. Examples include reconstructing large city models from online
image collections such as Flickr, or human tracking and behavior recognition
in TV footage or video from arbitrary outdoor scenes. An outcome we envision
is the definition of appropriate metrics, benchmark sequences, and the defini-
tion of a grand-challenge problem that exposes algorithms to all the difficulties
associated with large-scale outdoor scenes while simultaneously mobilizing the
research community.

The second objective, then, was to define what the open problems are and
which aspects of outdoor and large-scale scene analysis make the problem cur-
rently intractable. In uncontrolled, outdoor settings many problems start to arise,
among them harsh viewing conditions, changing lighting conditions, and artifacts
from wind, rain, clouds, or temperature etc. In addition, large-scale modeling,
i.e., spanning city-scale areas, contains difficult challenges of data association and
self-consistency that simply do not appear in smaller data-sets. Failure of basic
building-block algorithms seems likely or even inevitable, requiring system-level
approaches in order to be robust to failure. One of the difficulties lies in the fact
that the observer looses complete control over the scene, which can become ar-
bitrary complex. This also brings with it the challenge of describing the scene in
terms other than purely geometric, i.e., perform true scene understanding at mul-
tiple spatial and temporal scales. Finally, outdoor scenes are dynamic and chang-
ing over time, requiring event learning and understanding as well as integrating
behavior recognition. In this regard, we brought in participants from industry in
order to ground the challenges discussed in real-world, useful applications.
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The third and final objective was to discuss strategies that address these chal-
lenges, by bringing together a diverse set of international researchers with people
interested in the applications, e.g., arising from photogrammetry, geoinformat-
ics, driver-assistance systems, or human motion analysis. Although these people
work in different fields and communities, they are unified by their goal of dealing
with images and/or video from outdoor scenes and uncontrolled settings. In the
workshop we allowed for an exchange of different modeling techniques and expe-
riences researchers have collected. We allowed time for working groups during the
workshop that connect people and whose goals are to develop ideas/roadmaps;
additionally, we allowed young researchers to connect with senior researchers,
and in general allowed for an exchange between researchers who would usually
not meet otherwise.

We are grateful to the team at Castle Dagstuhl for supporting our workshop.
We would like to thank all participants for their encouraging presentations, lively
discussions, and contributions for this book. The published papers were carefully
selected after a blind per-review process and reflect major topics presented at
the seminar.

June 2012 Frank Dellaert
Jan-Michael Frahm

Marc Pollefeys
Laura Leal-Taixé
Bodo Rosenhahn
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Norbert Krüger University of Southern Denmark - Odense, Denmark
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Exploiting Pedestrian Interaction
via Global Optimization and Social Behaviors

Laura Leal-Taixé, Gerard Pons-Moll, and Bodo Rosenhahn

Leibniz Universität Hannover, Appelstr. 9A, Hannover, Germany
{leal,pons,rosenhahn}@tnt.uni-hannover.de

Abstract. Multiple people tracking consists in detecting the subjects at each
frame and matching these detections to obtain full trajectories. In semi-crowded
environments, pedestrians often occlude each other, making tracking a challeng-
ing task. Tracking methods mostly work with the assumption that each pedestrian
moves independently unaware of the objects or the other pedestrians around it.
In the real world though, it is clear that when walking in a crowd, pedestrians
try to avoid collisions, keep a close distance to a group of friends or avoid static
obstacles in the scene.

In this paper, we present an approach which includes the interaction between
pedestrians in two ways: first, including social and grouping behavior as a phys-
ical model within the tracking system, and second, using a global optimization
scheme which takes into account all trajectories and all frames to solve the data
association problem . Results are presented on three challenging publicly avail-
able datasets, showing our method outperforms state-of-the-art tracking systems.
We also make a thorough analysis of the effect of the parameters of the proposed
tracker as well as its robustness against noise, outliers and missing data.

1 Introduction

Multiple people tracking is a key problem for many computer vision tasks, such as
surveillance, animation or activity recognition. In crowded environments occlusions
and false detections are common, and although there have been substantial advances in
the last years, tracking is still a challenging task. Tracking is often divided in two steps:
detection, finding the objects of interest on every frame, and data association, matching
the detections to form complete trajectories in time. Researchers have presented im-
provements on the object detector [1–3] as well as on the optimization techniques [4,5]
and even specific algorithms have been developed for tracking in crowded scenes [6,7].
Though each object can be tracked separately, recent works have proven that tracking
objects jointly and taking into consideration their interaction can give much better re-
sults in complex scenes. Current research is mainly focused on two aspects to exploit
the interaction between pedestrians: the use of a global optimization strategy [8,9] and a
social motion model [10,11]. The focus of this paper is to marry the concepts of global
optimization and social and grouping behavior to obtain a robust tracker able to work
in crowded scenarios. We extend the work presented in [12] to include more theoretical
details, experimental results and details about the performance of the proposed method.

F. Dellaert et al. (Eds.): Real-World Scene Analysis 2011, LNCS 7474, pp. 1–26, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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(a) (b) (c)

Fig. 1. Including social and grouping behavior to the network flow graph. (a) Constant velocity
assumption. (b) Avoidance forces. (c) Group attraction forces.

1.1 Related Work

The optimization strategy deals with the data association problem, which is usually
solved on a frame-by-frame basis or one track at a time. Several methods can be used
such as Markov Chain Monte Carlo (MCMC) [13], multi-level Hungarian [14], infer-
ence in Bayesian networks [15] or the Nash Equilibrium of game theory [16]. In [17]
an efficient approximative Dynamic Programming (DP) scheme is presented, in which
trajectories are estimated one after the other. This means that if a trajectory is formed
using a certain detection, the other trajectories which are computed later will not be able
to use that detection anymore. This obviously does not guarantee a global optimum for
all trajectories. Recent works show that global optimization can be more reliable in
crowded scenes as it solves the matching problem jointly for all tracks. The multiple
object tracking problem is defined as a linear constrained optimization flow problem
and Linear Programming (LP) is commonly used to find the global optimum. The idea
was first used for people tracking in [18], although this method needs to know a priori
the number of targets to track, which limits its application in real tracking situations.
In [9], the scene is divided into identical cells, each represented by a node in the con-
structed graph. Using the information of the Probability Occupancy Map, the problem
is formulated either as a max-flow and solved with Simplex, or as a min-cost and solved
using k-shortest paths, which is a more efficient solution. Both methods show a far su-
perior performance when compared to the same approach with DP [17]. The authors
of [19] also define the problem as a maximum flow on an hexagonal grid, but instead of
using matching individual detections, they make use of tracklets. This has the advantage
that they can precompute the social forces for each of these tracklets, nonetheless, the
fact that the tracklets are chosen locally, means the overall matching is not truly global,
and if errors occur during the creation of the tracklets, these cannot be overcome by the
global optimization. In [20], global and local methods are combined to match trajecto-
ries across cameras and across time. Finally, in [8] the tracking problem is formulated
as a Maximum A-Posteriori (MAP) problem, which is mapped to a minimum-cost net-
work flow and then efficiently solved using LP. In this case, each node represents a
detection, which means the graph is much smaller compared to [9, 19].
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Most tracking systems work with the assumption that the motion model for each tar-
get is independent. This simplifying assumption is especially problematic in crowded
scenes: imagine the chaos if every pedestrian followed his or her chosen path and com-
pletely ignored the other pedestrians in the scene. In order to avoid collisions and reach
the chosen destination at the same time, a pedestrian follows a series of social rules
or social forces. These have been defined in what is called the Social Force Model
(SFM) [21], which has been used for abnormal crowd behavior detection [22], crowd
simulation [23] and has only recently been applied to multiple people tracking: in [24],
an energy minimization approach is used to predict the future position of each pedes-
trian considering all the terms of the social force model. In [10] and [25], the social
forces are included in the motion model of the Kalman or Extended Kalman filter.
In [26] a method is presented to detect small groups of people in a crowd, but it is only
recently that grouping behavior has been included in a tracking framework [11,27,28].
In [28] groups are included in a graphical model which contains cycles and, therefore,
Dual Decomposition [29] is needed to find the solution, which obviously is computa-
tionally much more expensive than using Linear Programming. Moreover, the results
presented in [28] are only for short time windows. On the other hand, the formula-
tions of [11,27] are predictive by nature and therefore too local and unable to deal with
trajectory changes (e.g. when people meet and stop to talk).

Social behavior models have only been introduced within a predictive framework,
which are suboptimal due to the recursive nature of filtering. Therefore, in contrast to
previous works, we propose to include social and grouping models into a global opti-
mization framework which allows us to better estimate the true maximum a-posteriori
probability of the trajectories.

1.2 Contributions

We present a novel approach for multiple people tracking which takes into account the
interaction between pedestrians in two ways: first, using global optimization for data
association and second, including social as well as grouping behavior. The key insight
is that people plan their trajectories in advance in order to avoid collisions, therefore,
a graph model which takes into account future and past frames is the perfect frame-
work to include social and grouping behavior. We formulate multiple object tracking as
a minimum-cost network flow problem, and present a new graph model which yields
to better results than existing global optimization approaches. The social force model
(SFM) and grouping behavior (GR) are included in an efficient way without altering
the linearity of the problem. Results on several challenging public datasets show the
improvement of the tracking results in crowded environments. Experiments with miss-
ing data, noise and outliers are also shown to test the robustness of the proposed ap-
proach. In this paper, we extend the work presented in [12] in three aspects : (i) more
detailed theoretical explanations and background on Linear Programming for multiple
object tracking; (ii) experimental results with different parameter values to see the ef-
fect of each of them on tracking results and (iii) detailed implementation details and
computational aspects of the proposed method.
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2 Multiple People Tracking

Tracking is commonly divided in two steps: object detection and data association. First,
the objects are detected in each frame of the sequence and second, the detections are
matched to form complete trajectories. In this section we define the data association
problem and describe how to convert it to a minimum-cost network flow problem, which
can be efficiently solved using Linear Programming.

The idea is to build a graph in which the nodes represent the pedestrian detections.
These nodes are fully connected to past and future observations by edges, which deter-
mine the relation between two observations with a cost. Thereby, the matching problem
is equivalent to a minimum-cost network flow problem: finding the optimal set of tra-
jectories is equivalent to sending flow through the graph so as to minimize the cost. This
can be efficiently computed using the Simplex algorithm or k-shortest paths [30].

2.1 Problem Statement

Let O = {okt} be a set of object detections with ot
k = (pk, t), where pk = (x, y, z) is

the 3D position and t is the time stamp. A trajectory is defined as a list of ordered object
detections Tk = {o1

k,o
2
k, · · · ,oN

k }, and the goal of multiple object tracking is to find
the set of trajectories T ∗ = {Tk} that best explains the detections. This is equivalent to
maximizing the a-posteriori probability of T given the set of detections O. Assuming
detections are conditionally independent, the objective function is expressed as:

T ∗ = argmax
T

P (T |O) = argmax
T

∏
k

P (ok|T )P (T ) (1)

P (ok|T ) is the likelihood of the detection. In order to reduce the space of T , we make
the assumption that the trajectories cannot overlap (i.e., a detection cannot belong to
two trajectories), but unlike [8], we do not define the motion of each subject to be
independent, therefore, we deal with a much larger search space. We extend this space
by including the following dependencies for each trajectory Tk:

– Constant velocity assumption: the observation ot
k ∈ Tk depends on past observa-

tions [ot−1
k ,ot−2

k ]
– Grouping behavior: If Tk belongs to a group, the set of members of the group Tk,GR

has an influence on Tk

– Avoidance term: Tk is affected by the set of trajectories Tk,SFM which are close to
Tk at some point in time and do not belong to the same group as Tk

The first and third dependencies are grouped into the SFM term. The sets Tk,SFM and
Tk,GR are disjoint, i.e., a pedestrian can have an attractive effect or a repulsive effect
on another pedestrian, but not both. Therefore, we can assume that these two terms are
independent and decompose P (T ) as:

P (T ) =
∏

Tk∈T
P (Tk ∩ Tk,SFM ∩ Tk,GR) (2)

=
∏

Tk∈T
P (Tk,SFM|Tk)P (Tk,GR|Tk)P (Tk)
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Constant velocity assumption

Distance measure (DIST)

and
Avoidance term (SFM)

Grouping behavior (GR)

otk ot−1
k

ot−1
k

ot−2
kotq

otr

otm
otn

otk,SFM

otk,GR

Fig. 2. Diagram of the dependencies for each observation ot
k

where the trajectories are represented by a Markov chain:

P (T ) =
∏

Tk∈T
Pin(o

1
k) . . . P (ot

k|ot−1
k )

Pk,SFM(ot
k|ot

k,SFM,ot−1
k )Pk,GR(o

t
k|ot

k,GR,o
t−1
k )

. . . Pout(o
N
k ) (3)

where Pin(o
t
k) is the probability that a trajectory is initiated with detection ot

k, Pout(o
t
k)

the probability that the trajectory is terminated at ot
k and P (ot

k|ot−1
k ) is the probability

that ot−1
k is followed by ot

k in the trajectory. Pk,SFM evaluates how well the social rules
are kept if ot

k is matched to ot−1
k , and Pk,GR describes how well the structure of the

group is kept.
Let us assume that we are analyzing observationot

k. In Figure 2 we summarize which
observations influence the matching of ot

k. Typical approaches [8] only take into ac-
count distance (DIST) information, that is, the observation in the previous frame ot−1

k .
We introduce the social dependencies (SFM) given by the constant velocity assumption
(green nodes) and the avoidance term (yellow nodes). In this case, two observations, ot

q

and ot
r that do not belong to the same group as ot

k, will be considered to create a repul-
sion effect on ot

k. On the other hand, the orange nodes which depict the grouping term
(GR), are two other observations ot

m and ot
n which do belong to the same group as ot

k

and therefore have an attraction effect on ot
k. Note that all these dependencies can only

be modeled by high order terms, which means that either we use complex solvers [28]
to find a solution in graphs with cycles, or we keep the linearity of the problem by using
an iterative approach as we explain later on.
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2.2 Tracking with Linear Programming

We linearize the objective function by defining a set of flow flags fi,j = {0, 1} which
indicate if an edge (i, j) is in the path of a trajectory or not. In a minimum cost network
flow problem, the objective is to find the values of the variables that minimize the total
cost of the flows over the network. Defining the costs as negative log-likelihoods, and
combining Equations (1), (2) and (3), the following objective function is obtained:

T ∗ = argmin
T

∑
Tk∈T

− logP (Tk)− logP (TSFM|Tk) (4)

− logP (TGR|Tk) +
∑
k

− logP (ok|T )

= argmin
T

∑
i

Cin,ifin,i +
∑
i

Ci,outfi,out

+
∑
i,j

(Ci,j + CSFM,i,j + CGR,i,j)fi,j +
∑
i

Cifi

subject to the following constraints:

– Edge capacities: we assume that each detection can only correspond to one trajec-
tory, therefore, the edge capacities have an upper bound of uij ≤ 1 and:

fin,i + fi ≤ 1 fi,out + fi ≤ 1 (5)

– Flow conservation at the nodes:

fin,i + fi =
∑

j fi,j
∑

j fj,i = fi,out + fi (6)

– Exclusion property:

fi,j = {0, 1} (7)

The condition in Eq. 7 requires us to solve an integer program, which is known to
be NP-complete. Nonetheless, we can relax the condition to have the following linear
equation:

0 ≤ fi,j ≤ 1. (8)

Now the problem is defined and can be solved as a linear program. If certain conditions
are fulfilled, the solution T ∗ will still be integer, and therefore will also be the optimal
solution to the initial integer program. We discuss the integrality of the solution in more
detail in Section 4.

To map this formulation into a cost-flow network, we define G = (N,E) to be a
directed network with a cost Ci,j and a capacity uij associated with every edge (i, j) ∈
E. An example of such a network is shown in Figure 3; it contains two special nodes,
the source s and the sink t; all flow that goes through the graph starts at the s node
and ends at the t node. Thereby, each flow represents a trajectory Tk and the path that
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b1
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b4
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e1

(bi, ei)

(ei , bj )

Frame t Frame t+1Frame t-1

(s, ei)

(bi, t)

s

t

Fig. 3. Example of a graph with the special source s and sink t nodes, 6 detections which are
represented by two nodes each: the beginning bi and the end ei

each flow follows indicates which observations belong to each of the trajectories. Each
observation oi is represented with two nodes, the beginning node bi ∈ N and the end
node ei ∈ N (see Figure 3). A detection edge connects bi and ei.

Below we detail the three types of edges present in the graphical model and the cost
for each type:

Link Edges. The edges (ei, bj) connect the end nodes ei with the beginning nodes bj
in following frames, with cost Ci,j and flow fi,j , defined as:

fi,j =

{
1, oi and oj belong to Tk and Δf ≤ Fmax

0, otherwise
(9)

where Δf is the frame number difference between nodes j and i and Fmax is the maxi-
mum allowed frame gap.

The costs of the link edges represent the spatial relation between different subjects.
Assuming that a subject cannot move a lot from one frame to the next, we define
the costs to be a decreasing function of the distance between detections in successive
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frames. The time gap between observations is also taken into account in order to be able
to work at any frame rate, therefore velocity measures are used instead of distances. The
velocities are mapped to probabilities with a Gauss error function as shown in Equation
(10), assuming the pedestrians cannot exceed a maximum velocity Vmax. The effect of
parameter Vmax is detailed in Section 5.1.

E(Vt, Vmax) =
1

2
+

1

2
erf

(
−Vt +

Vmax
2

Vmax
4

)
(10)

As we can see in Figure 4, the advantage of using Equation (10) over a linear function
is that the probability of lower velocities decreases more slowly, while the probabil-
ity for higher velocities decreases more rapidly. This is consistent with the probability
distribution of speed learned from training data.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Speed in m/s

P
ro
b
a
b
il
it
y

Vmax = 10

Vmax = 7

Vmax = 5

Vmax = 3

Fig. 4. Blue = normalized histogram of speeds learned from training data. Red = probability dis-
tribution if cost depends linearly on the velocity. Green = probability distribution if the relation
of cost and velocities is expressed by Equation (10). An Vmax = 7m/s is used in the experiments.

Therefore, the cost of a link edge is defined as:

Ci,j = − log (P (oj |oi)) + C(Δf) (11)

= − logE
(

‖pj−pi)‖
Δt , Vmax

)
+ C(Δf)

where C(Δf) = − log
(
BΔf−1

j

)
is the cost depending on the frame difference be-

tween detections.
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Detection Edges. The edges (bi, ei) connect the beginning node bi and end node ei,
with cost Ci and flow fi, defined as:

fi =

{
1, oi belongs to Tk

0, otherwise
(12)

If all the costs of the edges are positive, the solution to the minimum-cost problem is
the trivial null flow. Consequently, we represent each observation with two nodes and a
detection edge with negative cost:

Ci = log (1− Pdet(oi)) + log

(
BBmin

‖pBB − pi)‖

)
. (13)

The higher the likelihood of a detection Pdet(oi) the more negative the cost of the de-
tection edge, hence, confident detections are likely to be in the path of the flow in order
to minimize the total cost. If a map of the scene is available, we can also include this
information in the detection cost. If a detection is far away from a possible entry/exit
point, we add an extra negative cost to the detection edge, in order to favor that obser-
vation to be matched. The added cost depends on the distance to the closest entry/exit
point pBB, and is only computed for distances higher than BBmin = 1.5m. This is a
probabilistic simple way of including other information present in the scene, such as
obstacles or attraction points (shops, doors, etc).

Entrance and Exit Edges. The edges (s, ei) connect the source s with all the end nodes
ei, with cost Cin,i and flow fin,i. Similarly, (bi, t) connects the end node bi with sink t,
with cost Ci,out and flow fi,out. The flows are defined as:

fin,i (or fi,out) =

{
1, Tk starts (or ends) at oi

0, otherwise
(14)

In [8], the authors propose to create the opposite edges (s, bi) and (ei, t), which means
tracks entering and leaving the scene go through the detection node and therefore ben-
efiting from its negative cost (see Figure 5(a)). If the costs Cin and Cout are then set to
zero, a track will be started at each detection of each frame, because it will be cheaper
to use the entrance and exit edges than the link edges. On the other hand, if Cin and
Cout are very high, it will be hard for the graph to create any trajectory. Therefore, the
choice of these two costs is extremely important. In [8], the costs are set according to
the entrance and exit probabilities Pin and Pout, which are data dependent terms that
need to be calculated during optimization.

In contrast, we propose to connect the s node with the end nodes and the t node to
the begin nodes (as shown in Figure 5(b)). This way, we make sure that when a track
starts (or ends) it does not benefit from the negative cost of the detection edge. Setting
Cin = Cout = 0 and taking into account the flow constraints of Eqs. (5) and (6), we
make sure the trajectories are only created with the information of the link edges.
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S

b1 e1

Ci

T

Cout = −log(Pout)

Cin = −log(Pin)

(a)

S

T

b1 e1

Ci

Cin = 0

Cout = 0

(b)

Fig. 5. (a) Graph structure as used in [8], which requires the computation of Pin and Pout in an
Expectation-Maximization step during optimization. In contrast, the proposed graph structure in
(b) allows us to get rid of these two extra parameters. The trajectories are found only with the
information of the link and detection edges.

3 Modeling Social Behavior

If a pedestrian does not encounter any obstacles, the natural path to follow is a straight
line. But what happens when the space gets more and more crowded and the pedestrian
can no longer follow the straight path? Social interaction between pedestrians is espe-
cially important when the environment is crowded. In this section we consider how to
include the social behavior [21], which we divide into the Social Force Model (SFM)
and the Group behavior (GR), into our minimum-cost network flow problem.

3.1 Social Force Model

The social force model states that the motion of a pedestrian can be described as if they
were subject to ”social forces”. There are three main terms that need to be considered:
the desire of a pedestrian to maintain a certain speed, the desire to keep a comfortable
distance from other pedestrians and the desire to reach a destination. Since we cannot
know a priori the destination of the pedestrian in a real tracking system, we focus on
the first two terms.

Constant Velocity Assumption. The pedestrian tries to keep a certain speed and direc-
tion, therefore we assume that in t+Δt we have the same speed as in t and predict the
pedestrian’s position in t+Δt accordingly.

p̃t+Δt
i = pt

i + vt
iΔt

Avoidance Term. The pedestrian also tries to avoid collisions and keep a comfortable
distance from other pedestrians. We model this term as a repulsion field with an expo-
nential distance-decay function with value α learned from training data.
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(a)

1 

(b) (c)

(d) (e)

Fig. 6. Three green pedestrians walk in a group, the predicted positions in the next frame are
marked by yellow heads. The purple pedestrian’s linearly predicted position (yellow head) clearly
interferes with the trajectory of the group. Representation of the probability (blue is 0 red is 1)
distribution for the purple’s next position using: 6(a) only distances, 6(b) only SFM (constant ve-
locity assumption and avoidance term), 6(c) only GR (considering the purple pedestrian belongs
to the group), 6(d) distances+SFM and 6(e) distances+SFM+GR.

at+Δt
i =

∑
gm �=gi

exp

(
−‖p̃t+Δt

i − p̃t+Δt
m ‖

αΔt

)
(15)

If we are computing the cost of edge (i, j), we use the constant velocity assumption to
predict the position of oi and oj as well as the rest of pedestrians p̃t+Δt

m , and compute
the repulsion acceleration each pedestrian has on i. The only pedestrians that have this
repulsion effect on subject i are the ones which do not belong to the same group as i
and ‖p̃t+Δt

i − p̃t+Δt
m ‖ ≤ 1m. The different avoidance terms are combined linearly.

Now the prediction of the pedestrian’s next position is also influenced by the avoid-
ance term (acceleration) from all pedestrians:

p̃t+Δt
i = pt

i + (vt
i + at+Δt

i Δt)Δt (16)

The distance between prediction and real measurements is used to compute the cost:

CSFM,i,j = − logE

(
‖p̃t+Δt

i − pt+Δt
j ‖

Δt
, Vmax

)
(17)

where the function E is detailed in Eq. (10).
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In Figure 6 we plot the probability distribution computed using different terms. Note,
this is just for visualization purposes, since we do not compute the probability for each
point on the scene, but only for the positions where the detector has fired. There are 4
pedestrians in the scene, the purple one and 3 green ones walking in a group. As shown
in 6(b), if we only use the predicted positions (yellow heads) given the previous speeds,
there is a collision between the purple pedestrian and the green marked with a 1 collide.
The avoidance term shifts the probability mode to a more plausible position.

3.2 Group Model

The social behavior [21] also includes an attraction force which occurs when a pedes-
trian is attracted to a friend, shop, etc. We model the attraction between members of
a group. Before modeling group behavior we determine which tracks form each group
and at which frame the group begins and ends (to deal with splitting and formation of
groups). The idea is that if two pedestrians are close to each other over a reasonable
period of time, they are likely to belong to the same group. From the training sequence
in [10], we learn the distance and speed probability distributions of the members of a
group Pg vs. individual pedestrians Pi. If m and n are two trajectories which appear on
the scene at t = [0, N ], we compute the flag Gm,n that indicates if m and n belong to
the same group.

Gm,n =

⎧⎨⎩1,
N∑
t=0

Pg(m,n) >
N∑
t=0

Pi(m,n)

0, otherwise
(18)

For every observation oi, we define a group label gi which indicates to which group the
observation belongs to, if any. If several pedestrians form a group, they tend to keep a
similar speed, therefore, if i belongs to a group, we can use the mean speed of all the
other members of the group to predict the next position for i:

p̃t+Δt
i = pt

i +
∑

gm=gi

vt
mΔt (19)

The distance between this predicted position and the real measurements is used in (10)
to obtain the cost for the grouping term.

An example is shown in Figure 6(c), where we can see that the maximum probability
provided by the group term keeps the group configuration. In Figure 6(d) we show the
combined probability of the distance and SFM information, which narrows the space of
probable positions. Finally, Figure 6(e) represents the combined probability of DIST,
SFM and GR. As we can see, the space of possible locations for the purple pedestrian
is considerably reduced as we add the social and grouping behaviors, which means we
have less ambiguities for data association. This is specially useful to decrease identity
switches as we present in Section 5.
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4 Implementation Details

To compute the SFM and grouping costs, we need to have information about the veloc-
ities of the pedestrians, which can only be obtained if we already have the trajectories.
We solve this chicken-and-egg problem iteratively as shown in Algorithm 1; on the first
iteration, the trajectories are estimated only with the information defined in Section 2.2,
for the rest of iterations, the SFM and GR is also used. The algorithm stops when the
trajectories do not change or when a maximum number of iterations Mi is reached.

Algorithm 1. Iterative optimization

while Ti �= Ti−1 and i ≤ Mi do

if i == 1 then

1.1. Create the graph using only DIST information

else

1.2. Create the graph using DIST, SFM and GR information

end if

2. Solve the graph to find Ti

3. Compute velocities and groups given Ti

end while

Linear Programming Solvers. The minimum cost solution is found using the Sim-
plex algorithm [30], with the implementation given in [31]. Though Simplex has an
exponential worst-case complexity, we are able to track most sequences in just a few
seconds; this is because each node represents one detection, and therefore the dimen-
sion of the graph is quite small. For larger graphs [9] or more crowded environments,
we can use the k-shortest paths solver [9, 32] which has a worst case complexity of
O(k(m + n · log(n))). For more details on network flows and Simplex we refer the
reader to [33], and to [34] for more information on the k-shortest path algorithm.

Integrality of the Solution. When defining the program to be solved, we saw that Eq.
(7) defined an integer program, which is known to be NP-complete. We relaxed the
condition into Eq. (8) in order to use efficient Linear Programming solvers to find the
optimum solution to our problem. If the solution to the relaxed version of the program
is integer, then we know it is an optimal solution of the original problem [33]. The
question is, can we guarantee that the solution will be always integer?

Let us assume the conditions of the Linear Program are expressed as: Ax = b. If all
entries of A and b are integer, as it is our case, we can determine that Ax = b has an
integer solution by Cramer’s rule:

Ax = b ⇔ x = A−1b ⇔ ∀i : xi =
det(Ai)

det(A)
(20)
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where Ai is equal to A except on the i-th column where it is equal to b. From here,
we can determine that x will be integer when det(A) is equal to +1 o -1. A matrix
A ∈ Zm×n is totally unimodular if the determinant of all the subsquare matrices of A
is either 0, +1 or -1.
Theorem 1: If A is totally unimodular, every vertex solution of Ax ≤ b is integer.

A well-known case of totally unimodular matrices are the node arc incidence matrices
N of a directed network. Therefore, our defined constraint matrix is totally unimodular,
and the solutions we will obtain will always be integer.

Computationally Reduction. To reduce the computational cost, we prune the graph
using the physical constraints represented by the edge costs. If any of the costs Cij ,
CSFM,i,j or CGR,i,j is infinite, the two detections i and j are either two far away to
belong to the same trajectory or they do not match according to social and grouping
rules, therefore the edge (i, j) is erased from the graphical model. For long sequences,
we divide the video into several batches and optimize for each batch. For temporal
consistency, the batches have an overlap of Fmax = 10 frames. With our non-optimized
code, the runtime for a sequence of 800 frames (114 seconds), 4837 detections, batches
of 100 frames and 6 iterations is 30 seconds on a 3GHz machine.

5 Experimental Results

In this section we show the tracking results of our method on three publicly avail-
able datasets and compare with existing state-of-the-art tracking approaches using the
CLEAR metrics [35], which split the measuring scores into accuracy and precision:

• Detection Accuracy (DA): measures how many detections where correctly found
and therefore is based on the count of missed detections mt and false alarms ft for
each frame t.

DA = 1−
∑Nf

t=1 mt + ft∑Nf

t=1 N
t
G

where Nf is the number of frames of the sequence and N t
G is the number of ground

truth detections in frame t. A detection is considered to be correct when it is found
within 50 pixels from the ground truth and the bounding boxes of both ground truth
and detection have some overlap.

• Tracking Accuracy (TA): similar to DA but also including the identity switches it.
In this case, the measure does not penalize identity switches as much as a missing
detection or a false alarm as we use a log10 weight.

DA = 1−
∑Nf

t=1 mt + ft + log10(1 + it)∑Nf

t=1 N
t
G



Everybody Needs Somebody 15

• Detection Precision (DP): precision measurements represent how well the bound-
ing box detections match the ground truth. For this, an overlap measure between
bounding boxes is used:

Ovt =

Nt
mapped∑
i=1

|Gt
i ∩Dt

i |
|Gt

i ∪Dt
i |

where N t
mapped is the number of mapped objects in frame t, i.e., the number of

detections that are matched to some ground truth object. Gt
i is the ith ground truth

object of frame t and Dt
i the detected object matched to Gt

i . The DP measure is
then expressed as:

DP =

Nf∑
t=1

Ovt

Nt
mapped

Nf

• Tracking Precision (TP): measures the spatiotemporal overlap between ground
truth trajectories and detected ones, taking into account also split and merged tra-
jectories.

TP =

Nt
mapped∑
i=1

Nf∑
t=1

|Gt
i∩Dt

i|
|Gt

i∪Dt
i|

Nf∑
t=1

N t
mapped

All experiments except the ones in Section 5.1 are performed with 6 iterations, a batch
of 100 frames, Vmax = 7m/s, Fmax = 10, α = 0.5 and Bj = 0.3.

5.1 Analysis of the Effect of the Parameters

All parameters defined in previous sections are learned from training data; in our case
we use one sequence of the publicly available dataset [10]. In this section we study
the effect of the few parameters needed in our implementation, and show the proposed
graph works well for a wide range of these parameters and therefore no parameter
tuning is needed to obtain a good performance. The analysis is done on two publicly
available datasets: a crowded town center [36] and the well-known PETS2009 dataset
[37], to see the different effects of each parameters on each dataset.

Number of Iterations. The first parameter we analyze is the number of iterations Mi

that we allow. This determines how many times the loop between computing social
forces and computing trajectories is performed as explained in Algorithm 1. Looking
at the results on the PETS 2009 dataset in Figure 7(b), we can see that after just 2 it-
erations the results remain very stable. Actually, the algorithm reports no changes in the
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Fig. 7. Tracking accuracy (black) and precision (magenta) obtained for the Town Center dataset
(left column) and the PETS 2009 dataset (right column) given varying parameter values
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trajectories after 3 iterations, and therefore stops even though the maximum number of
iterations allowed is higher. The result with 1 and 2 iterations is also not very different,
which means the social and grouping behavior do not significantly improve the results
for this particular dataset. This is due to the fact that this dataset is very challenging
from a social behavior point of view, with subjects often changing direction and groups
forming and splitting frequently. More details and comments on these results can be
found in Section 5.3. On the other hand, we observe a different effect on the Town-
Center dataset, shown in Figure 7(a). In this case, there is a clear improvement when
using social and grouping behavior (i.e. the result improves when we use more than
one iteration. We also observe a pattern on how the Tracking Accuracy of the dataset
evolves: there is a cycle of 3 iterations for which the accuracy increases and decreases
in a similar pattern. This means that the algorithm is jumping between two solutions
and will not converge to neither one of them. This happens when pedestrians are close
together for a long period of time but are not forming a group, which means that even
with social forces, it is hard to say which paths they will follow.

Maximum Speed. This is the parameter that determines the maximum speed of the
pedestrians that we are observing. In this case, we can see in Figures 7(c) and 7(d) a
clear trend in which the results are very bad when we force the pedestrians to walk
more slowly that they actually do, since we are artificially splitting trajectories. The
results converge when the maximum speed allowed is around 3m/s - 5m/s, which is
the reported mean speed of pedestrians in a normal situation. More interestingly, we
observe that the results are kept constant when using higher maximum speed values.
This is a positive effect of the global optimization framework, since we can use a much
higher speed limit and this will still give us good results and will allow us to track a
person running through the scene, a case of panic when people start running, etc.

Cost for the Frame Difference. The last parameter, Bj , appears in Eq. (12) and rep-
resents the penalization term that we apply when the frame difference between two
detections that we want to match is larger than 1. This term is used in order to give
preference to matches that are close in time. Here we can again see different effects on
the two datasets. In Figure 7(e), we see that the results are stable until a value of 0.4.
The lower the value, the higher is the penalization cost for the frame difference, which
means it is more difficult to match those detections which are more than 1 frame apart.
When the value of Bj is higher than 0.4, there are more ambiguities in the data associ-
ation process because it is easier to match detections which are many frames apart. In
the TownCenter dataset, there is no occluding object in the scene, which means miss-
ing detections are sporadic within a given trajectory. In this scenario, a lower value for
Bj is better, since small gaps can be filled and there are less ambiguities. Nonetheless,
we see different results in the PETS 2009 dataset in Figure 7(f), since here there is a
clear occluding object in the middle of the scene (see Figure 8) which occludes the
pedestrians for longer periods of time. In this case, a higher value of Bj allows to over-
come these large gaps of missing data, and that is why the best value for this dataset is
around 0.6.
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Fig. 8. Four frames of the PETS2009 sequence (separation of 9 frames), showing several occlu-
sions, both created by the obstacle on the scene and between pedestrians. All the occlusions can
be recovered with the proposed method.

5.2 Evaluation with Missing Data, Noise and Outliers

We evaluate the impact of every component of the proposed approach with one of the
sequences of the dataset [10], which contains images from a crowded public place, with
several groups as well as walking and standing pedestrians. The sequence is 11601
frames long and contains more than 300 trajectories. First of all, we evaluate our group
detection method on the whole sequence with ground truth detections: 61% are cor-
rectly detected, 26% are only partially detected, 13% are not found and an extra 7%
groups are detected wrongly.

Using the ground truth (GT) pedestrian positions as the baseline for our experiments,
we perform three types of tests, missing data, outliers and noise, and compare the results
obtained with:

• DIST: proposed network model with distances
• SFM: adding the Social Force Model (Section 3.1)
• SFM+GR: adding SFM and grouping behavior (Section 3.2)

Missing Data. This experiment shows the robustness of our approach given missed
detections. This is evaluated by randomly erasing a certain percentage of detections
from the GT set. The percentages evaluated are [0, 4, 8, 12, 16, 20] from the total num-
ber of detections over the whole sequence. As we can see in Figure 10, both SFM and
SFM+GR increase the tracking accuracy when compared to DIST.
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(a) (b)

(c)

Fig. 9. Top row: Tracking results with only DIST. Bottom row: Tracking results with SFM+GR.
Green = correct trajectories, Blue = observation missing from the set, Red = wrong match. 9(a)
Wrong match with DIST, corrected with SFM. 9(b) Missing detections cause the matches to
shift due the global optimization; correct result with SFM. 9(c) Missed detection for subject 3
on two consecutive frames. With SFM, subject 2 in the first frame (yellow arrow) is matched to
subject 3 in the last frame (yellow arrow), creating an identity switch; correct result with grouping
information.
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Fig. 10. Experiments are repeated 50 times and average result, maximum and minimum are plot-
ted. Blue star = results with DIST, Green diamond = results with SFM, Red square = results with
SFM+GR. From left to right: Experiment with simulated missing data, with outliers, and with
random noise.

Outliers. With an initial set of detections of GT with 2% missing data, tests are per-
formed with [0, 10, 20, 30, 40, 50]percentage of outliers added in random positions over
the ground plane.

In Figure 10, the results show that the SFM is especially important when the tracker
is dealing with outliers. With 50% of outliers, the identity switches with SFM+GR are
reduced 70% w.r.t the DIST results.

Noise. This test is used to determine the performance of our approach given noisy de-
tections, which are very common mainly due to small errors in the 2D-3D mapping.
From the GT set with 2% missing data, random noise is added to every detection. The
variances of the noise tested are [0, 0.002, 0.004, 0.006, 0.008, 0.01] of the size of the
scene observed. As expected, group information is the most robust to noise; if the po-
sition of pedestrian A is not correctly estimated, other pedestrians in the group will
contribute to the estimation of the true trajectory of A.

These results corroborate that having good behavioral models becomes more important
as the observations deteriorate. In Figure 9 we plot the tracking results of a sequence
with 12% simulated missing data. Only using distance information can see identity
switches as shown in Figure 9(a). In Figure 9(b) we can see how missing data affects
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the matching results. The matches are shifted, this chain reaction is due to the global op-
timization. In both cases, the use of SFM allows the tracker to interpolate the necessary
detections and find the correct trajectories. Finally, in Figure 9(c) we plot the wrong
result which occurs because track 3 has two consecutive missing detections. Even with
SFM, track 2 is switched for 3, since the switch does not create extreme changes in ve-
locity. In this case, the grouping information is key to obtaining good tracking results.
More results are shown in Figure 13, first row.
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Fig. 11. Predictive approaches [10, 11] (first row) vs. Proposed method (second row)

5.3 Tracking Results

We evaluate the proposed algorithm on two publicly available datasets: a crowded town
center [36] and the well-known PETS2009 dataset [37]. We compare results with:

• [36]: using the results provided by the authors for full pedestrian detections. The
HOG detections are also given by the authors and used as input for all experiments.

• [8]: globally optimum tracking based on network flow linear programming, for
which we use our own implementation.

• [10]: tracker based on Kalman Filter which includes social behavior, using the code
provided by the authors.

• [11]: tracker based on Kalman Filter which includes social and grouping behavior,
using our own implementation.

For a fair comparison, we do not use appearance information for any method. The
methods [10, 11, 36] are online, while [8] processes the video in batches.
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Town Center Dataset. We perform tracking experiments on a video of a crowded
town center [36]. To show the importance of social behavior and the robustness of our
algorithm at low frame rates, we track at 2.5fps (taking one every tenth frame). We
show detection accuracy (DA), tracking accuracy (TA), detection precision (DP) and
tracking precision (TP) measures as well as the number of identity switches (IDsw).

Table 1. Town Center sequence

DA TA DP TP IDsw
HOG Detections 63.1 − 71.9 − −
Benfold et al. [36] 64.9 64.8 80.5 80.4 259
Zhang et al. [8] 66.1 65.7 71.5 71.5 114
Pellegrini et al. [10] 64.1 63.4 70.8 70.7 183
Yamaguchi et al. [11] 64.0 63.3 71.1 70.9 196
Proposed 67.6 67.3 71.6 71.5 86

Note, the precision reported in [36] is about 9% higher than the input detections
precision; this is because the authors use the motion estimation obtained with a KLT
feature tracker to improve the exact position of the detections, while we use the raw
detections. Still, our algorithm reports 64% less ID switches. As shown in Table 1, our
algorithm outperforms [10], which includes social behavior, and [11], which includes
also grouping information, by almost 4% in accuracy and with 50% less ID switches.
In Figure 11 we can see an example where [10, 11] fail. The errors are created in the
greedy phase of predictive approaches, where people fight for detections. The red false
detection in the first frame takes the detection in the second frame that should belong to
the green trajectory (which ends in the first frame). In the third frame, the red trajectory
overtakes the yellow trajectory and a new blue trajectory starts where the green should
have been. None of the resulting trajectories violate the SFM and GR conditions. On
the other hand, our global optimization framework takes full advantage of the SFM and
GR information and correctly recovers all the trajectories. More results of the proposed
algorithm can be seen in Figure 13, last row.

Results on the PETS2009 Dataset. In addition, we perform monocular tracking on the
PETS2009 sequence L1, Views 1,5,6,7,8 and obtain the detections using the Mixture
of Gaussians (MOG) background subtraction method. We compare the results with the
previously described methods plus the monocular result of View 1 presented in [9],
where the detections are obtained using the Probabilistic Occupancy Map (POM) and
the tracking is done using k-shortest paths.

The first observation that we make is that the linear programming methods (LP and
Proposed) clearly outperform predictive approaches in accuracy. This is because this
dataset is very challenging from a social behavior point of view, because the subjects
often change direction and groups form and split frequently. Since our approach is



Everybody Needs Somebody 23

1 5 6 7 8
0.45

0.5

0.55

0.6

0.65

0.7

0.75

Camera view

D
et

ec
tio

n 
ac

cu
ra

cy

 

 
POM+KSP
Kalman+SFM
Kalman+SFM+GR
LP
Proposed

(a)

1 5 6 7 8
0.45

0.5

0.55

0.6

0.65

0.7

0.75

Camera view

D
et

ec
tio

n 
pr

ec
is

io
n

 

 
POM+KSP
Kalman+SFM
Kalman+SFM+GR
LP
Proposed

(b)

1 5 6 7 8
0.45

0.5

0.55

0.6

0.65

0.7

0.75

Camera view

T
ra

ck
in

g 
ac

cu
ra

cy

 

 
POM+KSP
Kalman+SFM
Kalman+SFM+GR
LP
Proposed

(c)

1 5 6 7 8
0.45

0.5

0.55

0.6

0.65

0.7

0.75

Camera view

T
ra

ck
in

g 
pr

ec
is

io
n

 

 
POM+KSP
Kalman+SFM
Kalman+SFM+GR
LP
Proposed

(d)

Fig. 12. Results of the proposed method on the PETS2009 dataset views 1,5,6,7,8. (a) Detection
accuracy, DA. (b) Detection precision, DP. (c) Tracking accuracy, TA. (d) Tracking precision.

based on a probabilistic framework, it is better suited for unexpected behavior changes
(like destination changes), where other predictive approaches fail [10, 11]. We can also
see that the Proposed method has a higher accuracy in most views that the LP method,
which does not take into account social and grouping behavior. The grouping term is
specially useful to avoid identity switches between member of a group (see an example
in Figure 13, third row, the cyan and green pedestrian who walk together). Precision is
similar for all methods since the same detections have been used for all the experiments
and we do not apply smoothing or correction of the bounding boxes. In general, views
7 and 8 are hard for tracking, due to 2D-3D calibration errors and a low field of view
which means it is impossible to keep the identities and many small separate trajectories
are created.
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Fig. 13. First row: Results on the BIWI dataset (Section 5.2). The scene is heavily crowded,
social and grouping behavior are key to obtaining good tracking results. Second and third rows:
Results on the PETS2009 dataset (Section 5.3). Last two rows: Results on the Town Center dataset
(Section 5.3).

6 Conclusions

In this paper, we argued for integrating pedestrian behavioral models in a linear pro-
gramming framework. Our algorithm finds the MAP estimate of the trajectories total
posterior including social and grouping models using a minimum-cost network flow
with an improved novel graph structure that outperforms existing approaches. People
interaction is persistent rather than transient, hence the proposed probabilistic formu-
lation fully exploits the power of behavioral models as opposed to standard predictive
and recursive approaches such as Kalman filtering. Experiments on three public datasets
reveal the importance of using social interaction models for tracking in difficult condi-
tions such as in crowded scenes with the presence of missed detections, false alarms
and noise. We present an extensive analysis of the effect of the parameters to show the
robustness of our method. Results show that our approach is superior to state-of-the-art
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multiple people trackers. As future work, we plan on working on the optimization itself
in order to find an efficient optimization method that keeps the linearity of the problem
and at the same time does not require to iterate between computing the social forces and
computing the data association. On the other hand, we also plan to extend our approach
to even more crowded scenarios where individuals cannot be detected and therefore
features might be used as in [38]. This will be a first step to bridge macroscopic and
microscopic approaches for crowd analysis.

Acknowledgements. This work was partially funded by the German Research Founda-
tion, DFG projects RO 2497/7-1 and RO 2524/2-1.
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Abstract. The accuracy of stereo algorithms or optical flow methods
is commonly assessed by comparing the results against the Middlebury
database. However, equivalent data for automotive or robotics applica-
tions rarely exist as they are difficult to obtain. As our main contri-
bution, we introduce an evaluation framework tailored for stereo-based
driver assistance able to deliver excellent performance measures while
circumventing manual label effort. Within this framework one can com-
bine several ways of ground-truthing, different comparison metrics, and
use large image databases.

Using our framework we show examples on several types of ground-
truthing techniques: implicit ground truthing (e.g. sequence recorded
without a crash occurred), robotic vehicles with high precision sensors,
and to a small extent, manual labeling. To show the effectiveness of our
evaluation framework we compare three different stereo algorithms on
pixel and object level. In more detail we evaluate an intermediate repre-
sentation called the Stixel World. Besides evaluating the accuracy of the
Stixels, we investigate the completeness (equivalent to the detection rate)
of the Stixel World vs. the number of phantom Stixels. Among many find-
ings, using this framework enables us to reduce the number of phantom
Stixels by a factor of three compared to the base parametrization. This
base parametrization has already been optimized by test driving vehicles
for distances exceeding 10000 km.

1 Introduction

Today’s stereo and flow algorithms have reached a maturity level that allows
their use in real-world systems. The development of efficient stereo algorithms is
the first step in making vehicles able to recognize their surroundings and even-
tually drive themselves in the future. Unfortunately, the performance evaluation
for such algorithms is still mostly limited to comparisons on the Middlebury
database1 [32]. There, stereo and flow algorithms are benched against a few in-
door images under controlled conditions. Most applications have to deal with a
1 e.g. http://vision.middlebury.edu/stereo/

F. Dellaert et al. (Eds.): Real-World Scene Analysis 2011, LNCS 7474, pp. 27–51, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://vision.middlebury.edu/stereo/
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lot of different conditions which are not covered by such controlled data sets.
Especially in the automotive field a limited sensitivity to adverse weather condi-
tions is crucial. This requires a certain robustness of the applied algorithms. For
such an outdoor imagery evaluation we need metrics to evaluate different algo-
rithms or parameters and to compare their performance. The goal is to create
a system that will automatically evaluate the computed 3D scene description
of the environment. For this purpose, we introduce a performance evaluation
framework considering the following three levels:

1. low-level: pixel-level, e.g. false stereo correspondences - based on stereo data
where we use knowledge about object-free volumes to detect violations.

2. mid-level: freespace/Stixel [2], the object-free space in front of the car — the
inverse is also called evidence grid/occupancy grid. This is computed directly
from the stereo correspondences. The freespace forms a basis for many other
object detection algorithms and thus is suitable for a mid-level evaluation.
Similar, the Stixel World describes the objects limiting the freespace and is
evaluated in detail here.

3. high-level: leader vehicle measurement. We pick one particular application
where the leading vehicle is measured in front of the ego-vehicle. This data is
needed for all adaptive cruise-control (ACC) variants. Depending on the im-
plemented driver assistance function, different accuracy demands are needed
for the distance, relative velocity, lateral position and width of the leading
vehicle. We focus on the lateral position and width of the leader vehicle since
we have a RADAR system that determines the distance and relative velocity
very accurately and serves as ground truth for that part. The challenge for
such applications is to create a correct object segmentation, and it is here
that the choice of stereo algorithm becomes apparent.

Our evaluation framework working on these three levels covers the range of
applications in which stereo is used in today’s automotive industry (e.g. [37]).

The structure of this paper is as follows: The related work on our system
is detailed in Section 2. The basic framework for this analysis is described in
Section 3. The ground truth needed to evaluate the tasks is introduced in the
same section. To show the power of the evaluation framework we select several
algorithms for evaluation that are described briefly in Section 4. In Section 5
more details on the used metrics to measure the performance are given. We have
tested three different stereo algorithms on all evaluation levels of detail and show
the results in Section 6.1. Evaluation results focusing on several aspects of the
Stixel World are presented in Section 6.2.

2 Related Work

2.1 Evaluation of Computer Vision Algorithms

In the field of automotive, computer vision systems become increasingly power-
ful. Consequently, many driver assistance systems make use of them for. However,
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under adverse weather conditions these systems do not posses the reliability re-
quired. Using image based sensor information for active braking or autonomous
steering requires high safety levels, robustness, and accuracy with respect to the
used algorithms. The more safety critical a system is the more effort has to be
spent in the evaluation process of such vision algorithms. The correctness and
the required integrity of these systems gain special importance when upcoming
norms like ASIL (Automotive Safety Integrity Levels or ISO 26262) come into
effect.

In [27], a general framework for performance evaluation of Computer Vision
algorithms is presented, with a focus on object detection algorithms. However,
all introduced metrics are limited to monocular sequences and to metrics within
the image plane. Both methods are less relevant to robotics and driver assistance
scenarios.

One of the major problems in evaluating computer vision algorithms is the
generation of ground truth data against which results can be tested. Tradition-
ally, most of the algorithms in literature are evaluated by measuring differences
between the computed result and the Middlebury database [44]. However, for au-
tomotive applications this is not sufficient, because the automotive field is faced
with a couple of challenges: Firstly, it has to deal with adverse weather and
lighting conditions which are not covered by such controlled data sets. Secondly,
the tremendously rising complexity of modern vision systems demand for new
evaluation methods which cannot be performed on single images. In addition, a
pixel-by-pixel comparison (as on Middlebury) is not applicable to sparse stereo
or flow algorithms - an algorithm class that might serve driver assistance tasks
very well.

In general, algorithms need to be tested on much larger datasets for obtain-
ing statistically meaningful performance measure [9]. A step towards creating
large ground truth datasets was made in [18]. The authors presented a reliable
methodology for establishing a large database of ground truth data for a vari-
ety of sensors on mobile platforms. The goal was to publish large datasets to
support other researchers to verify and evaluate their algorithms. An evaluation
strategy for stereo algorithms on large amounts of images was also proposed
in [36]. In that publication a performance evaluation scheme and corresponding
metrics were suggested. The authors describe a method for producing low effort
evaluation results without having real ground truth data. Some of the obtained
results are reiterated in this research.

2.2 Ground-Truthing

In recognition tasks (e.g. [10,12]) manually annotated ground truth is widely
used where Receiver-Operator-Curves (ROC), Precision-Recall-Curves, or clas-
sification rates are compared. There, ground-truthing is already necessary to
provide the recognition algorithms with training data.

An example used to easily obtain some ground truth data is shown in [24],
where an orthogonal method to determine the street plane is used to evaluate
stereo algorithms. However, the street plane investigation only verifies small
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parts of the image whereas for real automotive applications there are many
other parts of the 3D scene which are of high importance.

In the current literature, several concepts have been used for generating
ground truth data. Each of them have their corresponding advantages and draw-
backs. The following sections will give a short overview of those concepts.

Multi Sensor Technology. Modern test vehicles are usually equipped with
multiple sensors. LIDAR (Light Detection And Ranging), RADAR (Radio De-
tection and Ranging) and optical cameras are examples for those sensors. Using
a multi sensor system has the advantage of detecting (or even compensating) for
the various errors produced by each method yielding more reliable and accurate
data. Different approaches have been found which propose an efficient fusion
strategy as well as solutions in handling divergent data [11,17,42].

In [31] an evaluation strategy for the Stixel World was published using a high
precision LIDAR as a reference sensor. The Stixel’s distance information was
compared against the LIDAR measurements. Different scenarios were recorded
and the errors in various distances were analyzed. In order to realize the proposed
concept with low effort, the technical challenges in synchronizing the different
sensors were circumvented using the stop motion principle. Leaving, only simple
scenarios (without any dynamic driving maneuvering) can be analyzed.

According to [31], Semi-Global Matching (SGM) and LIDAR behave differ-
ently to reflective vehicle objects like windows, mirrors or puddles. While the
SGM stereo estimation smooths over these areas, the LIDAR looks right through
those or even follows the reflected rays of light: an undesirable property of such a
system. Consequently, using LIDAR as ground truth sensor makes an evaluation
in these areas impossible.

Another evaluation example using several sensors of the same type was pub-
lished in [28]. In this approach various common stereo matching algorithms were
evaluated using three cameras. Two of them were used for the stereo matching
and the third was used for reference in order to estimate the prediction error.
By using metrics assessing the intensity differences of the first two cameras and
comparing those with the output of the virtually computed third camera, it was
possible to rate different stereo algorithms on real-world scenes.

Manual Labeling Methods. One of the most commonly used methods in
generating ground truth data is the involvement of human expert interactions
called labeling. As every application or algorithm has different requirements nu-
merous approaches exist in designing ground-truthing tools. In general these can
be categorized as automatic or semi-automatic ones [19]. The majority of the
tools are semi-automatic as in most cases some additional information is needed
for starting the ground truth extraction.

Tools supporting manual input often have the advantage that errors raised
from model approximations or noisy data can be minimized through human
verification and correction. These semi-automatic tools are not very efficient in
generating large ground truth datasets as they involve human effort during the
process.
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Driver assistance imagery exhibit highly dynamic driving scenarios and often
at least 50 frames are necessary in order to make a reliable statement on the
performance of the applied algorithm. Consequently, labeling large amounts of
sequences is time consuming. To overcome this problem some approaches were
published incorporating available tracking mechanisms in ground-truthing tools
[18]. Instead of labeling each frame from the beginning, trackers can be used to
follow objects from one frame to the next so human inputs or corrections are
only required if deviations occur [26].

Synthetic Data. Today a lot of effort is put in generating realistic synthetic
scenes. Based on a physical model, static and moving objects are rendered and
placed into a defined scenario.

Using synthetic sequences has the advantage that all parameters for every
object are previously known. This accounts especially for the trajectories of the
moving objects. Hence, an evaluation becomes simple because ground truth data
can be calculated from ray-tracing principles and thus is available for every single
image of the sequence. Moving the viewpoint of a virtual image makes it possible
to generate image pairs for simulating stereo-vision and computing the ground
truth disparity image.

The drawback of using synthetic scenes is the increased entropy of real life: it
is next to impossible to create models for all the real-world situations. Adverse
weather conditions such as rain, sun glare or snow are examples of that as their
physical background is too complex for mapping it to a computer model.

Study [40] shows how synthetic scenes can have an negative impact on the
performance of stereo and motion estimation. Their results show that optimizing
algorithms for synthetic data can even make the results on real-world scenes
worse. For example motion blur, weather, and exposure differences between the
left and right image can highly influence the performance of the algorithms.

3 Evaluation Framework

The main aim of our evaluation framework is to provide an automatic method
for evaluating and optimizing different stereo and flow algorithms over a large
dataset [36]. By now, it has proved its strength to be well suited for all kind
of image processing tasks. A large sequence database with more than 1500 se-
quences (200-400 frames per sequence) serves as input for the evaluation task.
Since most of the vision algorithms consume a lot of computing power the idea
is to write the raw data measurements into an Evaluation Database (EDB) and
calculate the metrics afterwards. This has the advantage that a recalculation
of our metrics can be done within seconds. Figure 1 shows an overview of the
framework.

All algorithms that are tested perform their image processing tasks with a
predefined parameter set on the stored test sequences. For a meaningful eval-
uation, the content of the database has to differ with respect to daytime (day,
night), weather (rain, snow, fog), location and environment (city, rural roads,
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Fig. 1. Overview of the evaluation framework

highway). In an Evaluation Run (ER) for each frame of the sequence the mea-
sured raw data is written into the EDB. The ground truth data against which
will be tested is either collected during a specific test run or defined manually
by experts (manual ground-truthing). In case of manual ground-truthing, an ap-
propriate software module is used providing manual interactions with the image.
As a result of the image processing task a dataset with ground truth data and
measured raw data is available in the EDB. A Metrics-Generator C++ mod-
ule uses the generated datasets, computes the user defined metrics from it and
saves it as an XML file back into the database. The processed data is visualized
in a browser front-end by transforming the XML files with a predefined XSLT
(http://www.w3.org/TR/xslt) style-sheet to SVG images. The transformation
language (XSLT) provides an efficient strategy to transform a huge number of
measurements into a few compact and easily explorable representations.

In addition, for each sequence a score is extracted by integrating the metrics
frame-wise. By means of color encoded rankings one can easily determine those
sequences which are relevant for further algorithm improvements. The user em-
ploys the sequence-wise accumulated metrics to choose candidates which could
outperform the current ground truth. It takes only seconds in order to find and
inspect relevant frames and to decide if the current candidate is a better ground
truth or not. In order to verify the automatic testing process we use a subset of
about 20 manually labeled ground truth datasets. A 3D editor and a tracking
mechanism [4] allows effortless labeling of the scene infrastructure for this subset
of sequences (see Figure 2). The accuracy of the manual ground truth is about
0.05m error on average in the considered range (0m - 40 m).

The 3D editor displayed in Figure 2 is used to create artificial ground truth
data. For this purpose, static scene content from recorded sequences is projected
into a virtual 3D view. Within that view, scene geometry is defined using basic
geometrical shapes. During this step, dynamic scene content is taken into account
by using the boxed-based tracking scheme proposed by Barth et al. [5,6].
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Fig. 2. A 3D editor is used to manually create ground truth scene data. The right image
shows the corresponding 2D output. The blue walls describe static scene infrastructure
and the red boxes result from an object tracking algorithm to effectively evaluate
moving objects.

An additional source of ground truth are robotic vehicles operated on a prov-
ing ground. For accuracy evaluation these robotic vehicles (having high-precision
IMU) are used to perform predefined maneuvers repeatedly with high accuracy
(errors < 0.02m). This results in accurately known position and motion states
of the observed vehicles.

4 Algorithms Used

4.1 Stereo Algorithms

The initial motivation to build the evaluation system was in order to compare
the following three stereo algorithms. All of these algorithms have real-time
processing capability.

– Signature-Based Stereo: A signature based algorithm that searches for unique
(corresponding) features of pixels [35].

– Correlation Stereo: A patch based correlation stereo algorithm using ZSSD
(zero-mean sum of squared differences) [13].

– Semi-Global Matching (SGM): Computes an approximated global optimum
via multiple 1D paths in real-time [16].

4.2 Stixel World

The Stixel World [3,30] is a compact medium-level representation that describes
the local three-dimensional environment. Stixels are defined as earthbound and
vertically oriented rectangles with a fixed width (e.g. 5 px) and a variable height.
Under these restrictions, Stixels are a 2.5D representation similar to Digital
Elevation Maps [8]. From left to right, every obstacle within the image is approx-
imated by a set of adjacent Stixels. This way, Stixels allow for an enormous re-
duction of the raw input data, e.g. 400.000 disparity measurements (1024×440 px
stereo image pair) can be reduced down to only 200 Stixels.

Stixels simply give access to the most task-relevant information such as
freespace and obstacles. For providing multiple independent vision-tasks with
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Fig. 3. The Stixel World is extracted from stereo data in a cascade of multiple pro-
cessing steps. This includes stereo matching, mapping stereo data to occupancy grids,
freespace computation, a height segmentation and the final Stixel extraction step.

stereo-based measurement data, the Stixel World is neither too object-type spe-
cific nor too general and thus efficiently bridges the gap between low-level (pixel-
based) and high-level (object-based) vision.

According to [3], Stixels are computed in a cascade of multiple processing
steps: Mapping disparities to occupancy grids, a freespace computation, a height
segmentation, and the final Stixel extraction step. For clarity, that process is
visualized in Figure 3. Besides using Stixels to represent static environments, re-
lying on the 6D-Vision [14] based Kalman filtering techniques allows for robustly
tracking Stixels over time. Since the tracked objects are expected to move earth-
bound, the estimated state X is four-dimensional and consists of the lateral (X)
and longitudinal (Z) position as well as the corresponding velocity components,
such that X = (X,Z, Ẋ, Ż)T . As a result, motion information about the obsta-
cles in the scene is available for every Stixel independently [30].

Making this work demands to have knowledge about the own motion state
and requires to measure displacements of Stixels between two consecutive images.
Ego-motion is provided by either visual odometry [1,15], SLAM [21,22,23] (self
localization and mapping), or the inertial motion sensors of the vehicle. Stixel
motion is obtained by computing optical flow correspondences. To achieve this a
number of different methods are described in current literature. A short selection
of those methods is listed below.

4.3 Optical Flow Schemes

Tracking Stixels over time in order to estimate the velocity of other moving
obstacles requires the measuring of the two-dimensional displacement of these
objects within the images of two consecutive time steps. This is achieved by
computing the optical flow correspondences for exactly those areas.

Within the scope of this evaluation, four different flow methods have been
chosen for testing. In the following, their particular differences, assets and draw-
backs are highlighted briefly.
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Sparse KLT. In [25], Lucas et al. suggest an optical flow scheme for feature
tracking that relies on the gradient-based Lucas-Kanade method. The actual
displacement is computed by solving the optical flow equations resulting from
the constant brightness assumption for all the pixels in the neighborhood of a
center point. This is achieved by means of a least squares error minimization.

Aiming at gaining robustness to global illumination changes, the matching
criteria of this scheme is adapted to support a more robust measure, the zero-
mean sum of squared differences (ZSSD).

A benefit of this method is the possibility to use the Kalman filter prediction
of the tracked objects for initialization. This noticeably supports the estimation
of large optical flow vectors and reduces effects resulting from texture ambigui-
ties (e.g. repetitive patterns such as guard rails).

Patch KLT. The Patch KLT method is an extension of the KLT feature tracker
to larger m × n sized feature patches. In order to take perspective effects into
account the change of scale is part of the estimation process. Additionally, an
individual weight is considered for each pixel that is computed from the corre-
sponding disparity measurement and the disparity of the tracked Stixel. This
way, the influence of (background) pixels that lie within the patch (but do not
belong to the actual tracked object) is minimized.

The Patch KLT benefits from leveraging texture information much better
than competitive methods. Just like the sparse KLT method, the Patch KLT
allows to be initialized with the prediction of the Kalman filter state.

Census Optical Flow. Stein [35] presents a method that allows to compute
optical flow using the Census transform [41] as matching criteria. The census
signatures are mapped to a hash table which is then used to determine optical
flow correspondences between two images.

The benefit of this method is the constant run time independent of the max-
imum optical flow vector length. On the downside, this scheme does not allow
to incorporate the motion state of the tracked object during initialization.

Dense TV-L1 Optical Flow. Müller et al. [29] have proposed a dense TV-
L1-based method that puts dedicated focus on the application in open road
scenarios. It incorporates additional stereo and odometry knowledge about the
three-dimensional scenario. Their scheme is a variant of the work proposed by
Zach et al. [43]. The implementation used does not consider information about
the objects motion state for initialization.

5 Used Evaluation Metrics

Evaluating over large datasets demands effortless execution strategies and sim-
ple metrics which yield valuable information on the robustness and accuracy of
an algorithm. Low-level metrics reflect the performance of a pixel-wise algorithm
(e.g. the stereo matching scheme), mid-level metrics rate the quality of a pos-
sible intermediate representation at a later stage (e.g. the Stixel World) in the
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data processing chain, and high-level metrics consider the object level. The used
metrics are described in more detail in [33].

Typically, errors occur on sensor failures, atypical events (e.g. wipers crossing
the windshield), or adverse weather and poor lighting conditions. Thus, for the
purpose of our evaluation the following two aspects are examined:

– Robustness: represents the algorithm’s ability to deal with challenging situ-
ations like adverse weather and lighting conditions.

– Accuracy: describes the precision with which a Stixel represents the object
in the real world.

5.1 Robustness

In the context of safety-critical vision-based driver assistance, the robustness
of the used algorithms is of uttermost importance. With respect to robustness,
it is reasonable to distinguish between algorithms operating on the pixel layer
and those that use the object layer. For instance, a single error during stereo
matching is rather unlikely to lead to a drastic automatic intervention of the
driving car. However, the situation might be different for several false alarms in
the medium-level representation.

Naturally, object occurrences in the driving corridor have a high priority,
because those objects might lead to a critical change in driving. Hence, the
evaluation primarily focuses on errors occurring within the driving corridor.

False Stereo Correspondences (low-level). When dealing with a large se-
quence database it is neither practical nor expedient to create ground truth
data manually. This is especially true for disparity depth maps, as this method
turns out to be a very time-consuming and hardly a feasible undertaking. In our
research, a different strategy was chosen:

The vehicle’s driven path through the three-dimensional scene is reconstructed
before the evaluation. This is achieved by looking ahead the vehicle’s odometry
information (velocity and yaw rate) from the recorded sequence meta-data. It
enables us to evaluate the false positive rates up to distances of 40m. In case
of having other moving vehicles in the scene, the actual freespace is addition-
ally restricted by using an independent RADAR sensor (Continental ARS300
long range RADAR [34]). During this process, the RADAR is considered as
ground truth and the RADAR results were checked visually by backprojecting
the RADAR results into the image. For clarity, the described strategy is illus-
trated in Figure 4.

Given good visual conditions, no stereo measurements should fall into that
volume. Hence, all stereo correspondences that do so are registered as potential
errors of the stereo matching scheme. Following that strategy allows us to process
many sequences without the need for human inspection or interaction. In return,
that gives us the opportunity to evaluate very large sequence data bases with
minimal effort.
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Fig. 4. With a prediction of the ego vehicle’s current state it is not possible to detect the
oncoming sharp right-hand bend early enough (marked with the yellow ellipse). That
means that only a prediction around 25m would be possible. Instead, by looking ahead
the odometry information and RADAR information allows us to define the drivable
freespace up to distances of 40m. The diagram on the right side depicts such a freespace.

False Positives (mid-level). In order to test for false positive detections on
the medium level, the same strategy (as above) is followed.

In terms of the Stixel representation, a false positive is defined as a Stixel
detection that cannot be associated to an actual object in the real world. Thus,
similar to detecting false stereo correspondences, all Stixel observations that lie
within the driving path are considered as false detections.

Detection Range. Another important characteristic for a vision system is the
achieved detection range. Thus, for judging this property adequately, a so called
completeness measure is defined. It reflects the detection rate of objects in the
scene using ground truth object data.

For this evaluation task we use two different types of input data: Manually
labeled sequences with a known 3D world geometry as well as robotic sequences.
Robotic sequences correspond to driving scenarios with automated vehicles of
which one carries the stereo system. Their motion path is known precisely by
using iMAR iTrace-RT-F200 [20] IMUs as well as differential GPS.

For each time step in this database a corresponding ground truth Stixel repre-
sentation is computed. A particular ground truth Stixel is considered as detected
if a corresponding Stixel is computed from the input images (true positive).
Consequently, both Stixels have to be within a depth-range of ±1m or ±3 px
disparities. Otherwise, the object is considered as missed (true negative). The
corresponding completeness measure is defined as the ratio of the number of
detected Stixels over the expected total amount of Stixels.

Colliding Stixels. In order to determine the robustness of the Stixel velocity
estimate, it is preferable to have real-world ground truth data for all moving
objects in a scene. Again, this is hard to achieve for a large dataset so instead of
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performing a direct comparison, we use the Time To Collision (TTC) of a Stixel
as an indicator for tracking errors. Since all of the scenarios in the database
are recorded without having a collision, it can again be assumed that the TTC
to other objects (static and moving) is greater than 1 s. Hence, if the predicted
position of a Stixel intersects with the predicted vehicle position, a tracking
error is registered. Figure 5 shows an exemplary inner city scenario. The red
area visualizes the ego vehicle’s position within the next second. The arrows on
the ground plane denote where the Stixels will move in that same period of time.
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Fig. 5. Exemplary inner city scenarios with colliding Stixels. The red carpet indicates
the ego vehicle’s position in the next second. The white arrows denote the Stixel posi-
tions in the same period of time. On the right the intersection check is visualized.

5.2 Evaluation of Accuracy

For accuracy evaluation the robotic vehicles are used. The vehicles perform pre-
defined maneuvers. The IMU units record the exact paths of both platforms.
The data is used for testing the accuracy of the distance measurement as well
as the precision of the estimated velocity.

Distance Error. Both IMU units provide an accurate motion state for every
frame. Using this data allows to transform all robotic motion states into the ego-
system of the stereo camera rig used for testing. From that point onwards, it is
straightforward to extract all Stixel measurements that are located on the other
vehicle’s front and determine their mean distance so. This value is compared to
the ground truth data of the IMU units.

Velocity Error. The evaluation of the velocity tracking error is split in two
parts. Firstly, under the assumption that the current sequence is recorded in a
static environment (i.e. without any moving objects), the mean absolute velocity
error over all Stixel velocity estimates should equal to zero. Secondly, to evaluate
while dealing with moving objects the robotic sequences are used. This way, the
IMU velocity data is compared to the mean velocity estimate of those Stixels
that represent the vehicles front in the image.
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6 Evaluation Results

6.1 Stereo Performance

The sequences we used for stereo evaluation are divided into 50% bad weather
conditions (rain, snow, night) and 50% normal conditions and contain a total of
22.100 frames recorded at 25 fps. The mixture is chosen to find failure modes of
the algorithms as quickly as possible so less data will be needed.

The results in Table 1 show that the Signature-Based Stereo exhibits some
shortcomings. Correlation Stereo is far better than Signature-Based Stereo, but
the best method at all levels and metrics is SGM. The results from the bad
weather part of the database are shown separately using parentheses.

Furthermore, the freespace computation and the leader vehicle measurement
parameters were tuned for the Correlation Stereo method. For this reason, the
obtained results underline the overall good and stable performance of SGM. If
the applications were tuned with respect to SGM, the results of SGM would
be even better. Especially the availability of the leader vehicle measurements
outperforms the correlation approach by far. With the used freespace algorithm
and metric at hand, we obtain similar results and the same ranking of stereo
algorithms using the Stixels as intermediate representation.

Table 1. Evaluation result comparing census-stereo, correlation stereo, and SGM.
SGM outperforms the other algorithms on all levels of detail.

6.2 Stixel Robustness

For the robustness evaluation of the Stixels, the complete database with more
than 500 recorded sequences was used. It includes typical urban environments,
rural roads and highway scenarios at different day times and weather conditions.

Phantom Rate. The Stixel phantom rate was determined in the categories
Sunshine, Night, Rain, Heavy rain and Snow and is measured in phantoms per
frame. Examples of challenging scenes with occurring phantoms are shown in
Figure 6.

The results in Figure 7 primarily show that under optimal environmental
conditions an excellent low error rate is achieved. However, this result change
for adverse weather conditions such as Rain or even Heavy Rain, where the
phantom rates are considerably higher. Snow on the other hand turns out to be
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(a) Stixel phantoms in a rainy highway scenario.

(b) Interference as a result of a wiper crossing the windscreen.

(c) Snow scenario with phantom Stixels.

Fig. 6. The depicted Figures show different challenging scenarios of failure cases for
the stereo computation and thus for the Stixel extraction. The visualization shows both
the freespace/Stixel result as well as the disparity image.
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Fig. 7. The diagram depicts the Stixel phantom rates in the categories Sunshine, Rain,
Heavy rain and Snow evaluated on a dataset exceeding 500 sequences

less of a problem than anticipated. This effect is mainly explained by the fact
that, in contrast to rain, snow does not necessarily lead to a wet windshield and
therefore does not cause a blurred sight.

In order to optimize for a low phantom rate, different parameters of the Stixel
extraction schemes have been fine-tuned. At the same time it was important
to consider the completeness metric. Otherwise, minimizing the phantom rate
would inevitably lead to an arbitrary and possibly undesirable reduction of the
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Fig. 8. The figure visualizes the completeness measure averaged over all labeled ob-
jects in the database. With an increasing optimization level, the number of phantoms
decreases. However, a small phantom rate results in a low completeness. The diagram
shows the limit after which further optimizations would downgrade the detection rate
too much.
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Fig. 9. The diagram shows the completeness in relation to the distance. The embedded
histogram show the distribution of the distances at which the robotic vehicle reaches
the 90% completeness level for the first time.

object detection rate. In the sense of an ROC-curve, this dependency is visualized
in Figure 8. The optimization was performed using manually labeled ground
truth sequences with available 3D world geometry. This database consists of
20 manually labeled sequences with a total sum of approximately 1000 objects.
The images in Figure 8 illustrate an extract of labeled database objects (red is
moving, blue is static). In addition, the diagram depicts the limit up to which
an optimization allows a robust object detection. A 100% detection rate can not
be reached due to violations of the assumed vertical pose constraint.

Detection Range. The detection range was evaluated on robotic scenarios.
The priority was on that distance where the object detection exceeds 90% com-
pleteness on the robotic vehicle. Consequently, for this purpose, only scenarios
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with an oncoming vehicle covering a range of 0m−80m were of interest. Figure 9
shows the completeness over the distance. In order to have a meaningful result,
the completeness is averaged over several sequences of the same type.

6.3 Tracking Performance - Testing Different Optical Flow Methods

Within Section 4.3 different Stixel tracking strategies have been discussed. This
section aims to evaluate their performance and their quality with respect to the
estimated motion states.

In terms of the object tracking, a core aspect is the computation of the Stixel
displacement between the two consecutive images. For that task, we discussed
multiple approaches that differ with respect to their technical prerequisites, their
scope of action to combine the optical flow computation directly with the actual
tracking process, and their computational effort. The Stixel tracking was tested
in a stationary environment that contained no moving objects. Even though our
own car was moving, the goal was to detect that the environment around us
remains static.

The test using a static environment took place in a narrow urban environ-
ment with cars parked on both sides of the road. Naturally, the expectation for
the motion state of all tracked objects is to have zero velocity. To stress the
optical flow methods, the scenario was recorded several times while driving at
different speeds, which includes 4, 8, 14 and 20m/s ego-velocity. A snapshot of
that sequence is depicted in Figure 10. The given figure also discusses different
challenging aspects for the optical flow computation.

For estimating the optical flow between consecutive time steps the Census-
based feature flow proposed by Stein [35], the dense TV-L1 based optical flow
scheme proposed by Müller [29], the KLT-based feature tracker proposed by
Tomasi [39] and our own Patch KLT method were used. For the latter, a patch
size of 40× 16 px (width×height) has proved a good working choice.

The results for the static environment are depicted in Figure 11. On the left
side, for rating the tracking performance of the individual tracking schemes, the
mean absolute velocity of all tracked Stixels is computed. Depending on the ego-
velocity of the test vehicle, each sequence contributes about 300 to 1, 000 frames.
The evaluation is limited to a distance of 40m.

Apparently, for the current setup, the different optical flow schemes are closely
matched, such that there is no clear winner. Depending on the driven speed it
is shown, that the mean velocity errors of all schemes rise with a linear charac-
teristic. Yet, in reference to the total system complexity, that error is relatively
small and lies between 6% and 8% of the driven ego-velocity. The obtained error
curves seem plausible and match our expectations.

Altogether, the good performance of the investigated techniques is reasoned
in the fact that the considered scenario is relatively simple. Thus, by changing to
a highway-like environment, a more challenging scenario is taken into account.
It features neither cars nor moving objects but has guard rails on both sides
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(a) Correct estimation of the environment consisting of static objects. Thus, all
Stixels are drawn with a white coloring which denotes a velocity close to zero.

(b) Three typical sources for velocity errors during tracking within static envi-
ronments are illustrated. The first figure shows a reflecting surface, the middle
figure shows a jump in depth, and the third figure shows difficulties with motion
estimation at large distances.

Fig. 10. Color visualizes motion. Ideally, all static objects should have a white coloring
denoting zero velocity. This real-time color coding was used as quality indicator for the
different tracking schemes. Figure (a) shows a good example, Figure (b) shows typical
sources of error.

of the road. Naturally, due to their repetitive patterns, guard rails are likely to
cause problems for the optical flow computation when driving along in parallel
at high speeds. These problems are widely referred to as the aperture problem
or the blank wall problem [7,38]. This is illustrated in Figure 12.

To increase the degree of difficulty, the ego-velocity is gradually increased to
speeds of 8, 14, 20, 28 and 36m/s. When looking at Figure 12a another impor-
tant aspect becomes obvious. Problems within the optical flow estimation lead
to holes within the line of Stixels covering the guard rail. Typically, this effect is
caused by missing or erroneous optical flow measurements. Therefore, in order
to draw a more practical conclusion, the performed tests included the complete-
ness measure for the guard rail. This ratio is computed by using ground truth
geometry. The corresponding evaluation results are shown in Figure 13.

Contrary to the previous more static test, the highway environment reveals
severe differences between the tracking techniques. Depending on the particular
tracking procedure, the velocity estimates as well as the detection rates vary
noticeably. The best trade-off with respect to a low velocity error and a satisfying
completeness measure is achieved by using the proposed Patch KLT procedure or
dense TV-L1 optical flow. Altogether, those two schemes are closely matched. In
contrast, the point feature based KLT method and the Census-based optical flow
tracking scheme have serious difficulties estimating the velocity correctly. The
sparse KLT method yields a high completeness, but its mean absolute estimated
velocity is unacceptably high when driving faster than 14m/s. Even though the
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Fig. 11. Direct comparison of the four different tracking schemes. Ideally, the mean
absolute velocity should be zero. The quality of the optical flow measurement plays a
significant role in this process. Thus, depending on the optical flow scheme, that goal
is more or less achieved. For this static urban environment, the differences are rather
small.

(a) Unreliable optical flow estimates on
guard rails lead to wrong Stixel velocity
estimates. Additionally, the guard rail is
not covered completely.

(b) In contrast, successful optical flow
computation allows to obtain correct
Stixel velocity estimates. The guard rail
is covered much better.

Fig. 12. A precise optical flow estimate is essential for estimating the Stixel motion
state reliably. Especially for structures that suffer from aperture problems at high ego
velocities, this is a very challenging task. That matter is exemplified with a guard rail
scenario.

Census-based feature flow performs slightly better, the achieved velocity estimate
is still not good enough to be used in terms of our objectives. Also, that flow
scheme has severe problems regarding the detection rate. Thus, when going 14m/s
or faster, that ratio rapidly drops below 75% completeness.

The good performance of the TV-L1 -based optical flow is reasoned by the fact,
that for every image the assumption of the world to remain static is used as a
weak but apparently effective regularization prior for the optical flow estimation.
Additionally, the globally optimizing property of TV-L1 supports a solution that
is smooth and thus supports our world model too.

With regard to the Patch KLT, things are quite similar. The used tracking
scheme makes strong use of the Kalman filter prediction as a feed-forward sig-
nal. This clearly helps to resolve textural ambiguities of the tracked structures.
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Fig. 13. This figure shows the results of the performance evaluation for the different
tracking strategies using the guard rail scenarios. The left figure denotes the remaining
mean absolute velocity for the different driven vehicle speeds (8, 14, 20, 28 and 36m/s).
Correspondingly, the right side shows the achieved completeness measure of Stixels
covering the guard rail.
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Fig. 14. The diagram shows a comparison of the four tracking approaches (Sparse-
KLT, Patch KLT, Census Feature Flow and Dense TV-L1 Flow) in terms of colliding
Stixels. The Patch KLT exhibits the fewest tracking errors.

This way, even though the sparse feature based KLT technique allows for the
same procedure, things behave somewhat differently. For our understanding, the
weakness of the sparse KLT method performance results from not considering
the change of scale for the feature patch.

The proposed evaluation scheme is practicable as long as there are no mov-
ing objects within the scene. With respect to a robustness evaluation on larger
datasets it is required to apply other metrics. Therefore, we use the number of
colliding Stixels as indicator for tracking errors. Figure 14 demonstrates that the
percentage of colliding Stixels correlates perfectly with the mean velocity error
presented in the previous section.

Finally, this allows us to evaluate the robustness of different tracking schemes
under various weather conditions.
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6.4 Stixel Accuracy

We use the robotic vehicle scenes to assess the Stixel velocity accuracy. The
different flow algorithms performed similarly, hence we use the real-time Sparse
KLT in the following scenarios. The accuracy of the Stixel measurements was
evaluated on 30 robotic scenarios. Therefore, the defined metrics were analyzed
within the scope of three different scenario types: Oncoming vehicles, turning
maneuver and vehicles passing by.

Velocity Error. Robotic vehicles are used to obtain precise ground truth mo-
tion data. That data is used for testing the Stixel Kalman filter systems. For this
evaluation all dynamic Stixels in the robotic vehicle ROI with an age greater than
three frames were used. The resulting weighted mean velocity was compared to
the robotic ground truth velocity. Hereby, the goal was to minimize the velocity
error for the robotic sequences as well as for the static scenarios. Therefore, more
than 20 different filter configurations have been tested.

Figure 15 shows the resulting velocity estimation of an approaching vehicle
before and after the optimization process. Both filter configurations perform sim-
ilarly on the static scenes described in the previous section. The curves illustrate,
that in contrast with the optimized filter configuration, the default filter config-
uration reaches the final velocity approximately 20m later while exhibiting the
same noise level on static scenes. The corresponding qualitative test results are
shown in Figure 16.
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Fig. 15. This figure illustrates the velocity error for an oncoming robotic vehicle
(c.f. Figure 16). The diagram shows the Kalman filtered velocity component of two dif-
ferent filter configurations. The ground truth velocity of the robotic vehicle is visualized
in red. In contrast to the optimized filter configuration, the default filter configuration
reaches the final velocity approximately 20m later.

Distance Error. The distance error was evaluated for static and dynamic
Stixel measurements on a variety of sequences with approaching robotic vehi-
cles (see Figure 17). With the optimized filter configuration, both the measured
and filtered Stixel’s distance information averaged over the vehicle front yield
congruent output.
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Fig. 16. Sequence of an approaching robotic vehicle. That vehicle starts at a distance
of approximately 70m and closely passes our vehicle to the left.

Fig. 17. Example images for the distance error evaluation. The calculated robotic
vehicle position (marked in magenta) is projected into the image plane and used for
collecting all the Stixel measurements representing the vehicle’s front. On the right a
3D representation of the scene is visualized.

Figure 18 depicts the mean distance error to our robotic ground-truth distance
of all static Stixels representing the front of the robotic vehicle. The second axis
shows the calculated standard deviation for these Stixel measurements added on
the mean error.
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Fig. 18. The diagram shows the mean distance error of all Stixel measurements that
are located at the front of the vehicle. The error increases in greater distances due
to measurement noise as well as in the close-up range. The latter is explained by the
violated vertical pose constraint on the engine hood. The 3D representation in Figure 17
visualizes the displaced Stixel position.

The curves show a noisy depth estimation at larger distances as well as an
increasing distance error in the close-up range (< 15m). The measurements
near the ego vehicle address the violated vertical pose constraint described in
Section 4. As a consequence, if the vehicles front with its engine hood is modeled
end-to-end by one Stixel, its position in z direction will be displaced towards the
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windshield (see Figure 17). That means, the Stixel measurements are seen as
too far away. More details on the static Stixel position accuracy can be found
in [31].

7 Conclusion

In this research we presented an evaluation framework for stereo-based driver as-
sistance that operates on large image data bases and demands very little ground-
truthing effort. To show the power of the evaluation framework, we performed
evaluations on several stereo algorithms where we found the Semi-Global Match-
ing (SGM) to be the best performing stereo algorithm on pixel-level, on freespace
level and on object level. For the intermediate representation, the Stixel World,
we detected Stixel phantoms only for challenging weather scenarios. By using the
evaluation framework, the phantom rate could be further reduced by a factor of
three while maintaining the detection rate of the Stixel representation. Compar-
ing four optical flow algorithms used to generate dynamic Stixels we found the
Patch KLT to be the best performing algorithm under the aspects of accuracy
and robustness. For the absolute Stixel accuracy we determined a 0.5m position
error at 40m distance using data from robotic vehicles as reference.

For future work we will extend this analysis framework to all vision-based
driver assistance algorithms currently under development, to obtain meaningful
performance figures. In addition, we consider making parts of the used data
publicly available as part of a challenge that specifically addresses 3D outdoor
scene analysis under all weather conditions.
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Abstract. Evaluation of stereo-analysis algorithms is usually done by
analysing the performance of stereo matchers on data sets with available
ground truth. The trade-off between precise results, obtained with this
sort of evaluation, and the limited amount (in both, quantity and diver-
sity) of data sets, needs to be considered if the algorithms are required to
analyse real-world environments. This chapter discusses a technique to
objectively evaluate the performance of stereo-analysis algorithms using
real-world image sequences. The lack of ground truth is tackled by incor-
porating an extra camera into a multi-view stereo camera system. The
relatively simple hardware set-up of the proposed technique can easily
be reproduced for specific applications.

1 Introduction

Vision-based driver-assistance systems (DAS) are designed to detect dangerous
driving scenarios by understanding the 3-dimensional environment around the
ego-vehicle (i.e. the mobile platform carrying the recording cameras). All the
objects present in a given scene (e.g., other vehicles, pedestrians, road signs
or the road itself) need to be detected and segmented, such that it can be
decided whether they would represent a potential danger to the ego-vehicle. In
this chapter, we are concerned about the evaluation of the depth estimated by
using binocular stereo-matching algorithms.

Stereo-vision algorithms generate 3-dimensional information from a given
scene by identifying corresponding pixels in (at least) a pair of images. Depth
calculated via stereo-analysis algorithms is commonly incorporated into algo-
rithmic pipelines as a basic step for a wide variety of applications (see, for
example, [24,33]). Within the DAS context, stereo-analysis results contribute
to different processes, such as object segmentation (e.g. pedestrians or other
vehicles) [19], road modelling [35], or free-space detection [1].

Despite widespread acceptance of stereo-analysis algorithms as being a “fairly
reliable” source of 3-dimensional data, there is still a need to develop an ob-
jective evaluation scheme that can evaluate their performance when using real-
world images as input data. The lack of “true” measurements (i.e. for comparing
with ground truth) represents a hard obstacle in this area, as exact camera pose
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detection, together with the generation of precise 3-dimensional models of un-
controlled environments, is extremely difficult.1

In this chapter we discuss the evaluation method as presented in [30], we
provide more detailed ways to compare the input and comparison data, discuss
particular experiments, and summarise altogether our experience with this tech-
nique between 2009 and today. The basic idea of the technique is to use a third
camera (the control camera) to evaluate the performance of binocular stereo-
analysis: depth data calculated from the reference and match camera of a given
stereo-camera system, are used to warp the image (say) of the reference camera
into a virtual image that registers the scene as if it would be generated using the
control camera. The virtual image is then compared with the actually recorded
view in the control camera. (Of course, the 3-camera set-up can be generalised;
the key-idea is to have one additional image for comparison).

In short, the technique offers an objective way to evaluate stereo-analysis
algorithms using real-world data sets. The images of the control camera can
be seen as being ground-truth data. The warping of the reference image, from
a given stereo-pair into the virtual image, is defined by the calibrated camera
geometry. We are not aiming at generating a “nice” warped image; we are just
mapping intensity data of the reference image onto the nearest pixel in the image
plane of the third camera (possibly overwriting previously mapped values). The
control camera should also not be in a pose which supports similarities between
virtual and control image (e.g. as it would be the case if the control camera
would be positioned between reference and match camera).

The main advantage of the proposed evaluation technique is that the required
hardware setup can be easily reproduced. Based on today’s time efficiency of
stereo matchers, it can be used for real-time evaluations, and thus also as a
basic module for designing an adaptive computer vision system for vision-based
driver assistance (as discussed in [23]).

For our experiments we selected eight sequences of 400 trinocular stereo sets
each (i.e. a stereo-pair plus the control image), recorded in different scenarios.
The use of long sequences allows us to investigate the influence of changes in
conditions when recording the stereo image data on the performance of the
algorithms (e.g., local brightness variations between reference and match image,
changes in scene geometry, camera issues, or lighting variations).

The remaining of this chapter is structured as follows. We start in Section 2 by
reviewing some of the evaluation approaches found in the literature. In Section 3
we describe the generation of the virtual image and discuss the position of the
control camera. This section also discusses the selected evaluation index. In
Section 4 we briefly identify the stereo-analysis algorithms that are used for the
presented experiments. For the selected trinocular sequences and a discussion
about obtained evaluation results, see Section 5. Conclusions are provided in
Section 6.

1 The words true or truth are used in this chapter for a particular measuring method
(e.g. manual measurements, or high-end laser-range data) considered to be “highly
reliable”, but with being aware that measuring always involves errors.
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2 Related Literature

Evaluation of stereo-analysis algorithms can currently be divided into two major
groups. Accuracy is measured using data with available ground truth. Confi-
dence is estimated for data recorded in real-world environments (without having
ground truth available), for example by comparing stereo results of left-right and
right-left matching.

Evaluation using data with available ground truth allows a precise compari-
son between the generated and the true values. But, it is limited by the quan-
tity and diversity of available data sets. Test images, along with ground truth,
are generated either in laboratories under highly controlled conditions (engi-
neered images [34]), or by rendering 3-dimensional modelled scenes (synthetic
images [39]).

Engineered images challenge algorithms with real-world objects that might
be known as being problematic for stereo-analysis algorithms (e.g., textureless
areas, slanted planes, and so forth). But, they are limited to a few images,
showing close range scenarios that are almost free of real-world effects such as
multiple light sources, non-Lambertian surfaces, unexpected shadows (lighting
artefacts [40]), camera misalignment or blurring, and so forth. Scenes corre-
sponding to common driving conditions (e.g. rainy days, busy pedestrian cross-
ings, or different objects moving “randomly” and at multiple distances) cannot
be recorded in a laboratory.

[34] presented an evaluation and classification scheme for stereo-analysis al-
gorithms that has been widely followed by the computer-vision community. A
main contribution of this work was a data set of several engineered stereo-pairs
with available ground truth.

Synthetic data sets with available ground truth have also been made available
online for some years, see for example [4,5]. The computer-generated data sets
allow us to test the stereo-analysis methods in simulated environments where
the algorithms are expected to work. However, synthetic data sets are limited by
the models followed to generate the images (i.e. assuming pinhole-type cameras),
and the motion of the objects (i.e. how is represented the motion of a walking
pedestrian). Synthetic scenes are typically not yet aiming at a comprehensive
physics-based modelling of cameras, lighting, or surfaces [23].

In the context of DAS, in [39] and [38] were presented data sets simulat-
ing “multi-second driving sequences” (e.g. of more than 50 stereo frames) with
movement of both, the virtual camera and some of the objects present in the
scene.

Ground truth-based evaluation is a good option for debugging, tuning of algo-
rithms’ parameters, or for exploring new matching algorithms. For some appli-
cations, highly selective evaluations might be sufficient (i.e., for stereo-analysis
of controlled environments such as automated factories or warehouses). But this
cannot be expected for applications such as DAS, where stereo-vision programs
have to provide reliable data on every road, under all kinds of weather conditions,
and in any traffic context. According to [13], available data sets of engineered or
synthetic images do only represent a very selective challenge for the algorithms,
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Fig. 1. Disparity maps computed with the same stereo matcher (namely GCM-CEN,
to be defined further below). Left : Reference image of a synthetic scene from [7], and
computed disparity map. Right : Reference image of a real-world sequence and com-
puted disparity map. Both disparity maps are encoded from red (maximum disparity)
to blue (minimum disparity). GCM-CEN shows good performance on the synthetic
sequence, but fails “totally” on the shown real-world sequence.

with different characteristics (formally defined in [13]) compared to real-world
data.

Figure 1 shows reference and disparity images for a synthetic (left) and a
real-world (right) stereo-pair. Both disparity maps were generated with the same
stereo algorithm (graph-cut stereo with census as cost function; see Section 4)
using exactly the same parameters. For the “synthetic” disparity map it is easy
to recognise all the objects present in the scene. For the real-world case, a lot of
details are missing (e.g. the two trees on the left are merged into a single object)
and a lot of noisy measurements are introduced.

One of the first evaluation schemes (data set and evaluation criteria) based on
real-world stereo-pairs (without ground truth), was reported in [12]. The author
provided twelve pairs of images to a selected number of research groups world-
wide. For evaluating the calculated stereo measurements, manual checking was
performed for around 50% of all the possible matchable pixels in the stereo-pairs.

A similar test bed was proposed in [3]. The authors made available to five
research groups a ground truth-less data set of 49 stereo-pairs (the JISCT data
set, visit [18]). Most of them are real-world images, but there are also engineered
and synthetic stereo-pairs. However, none of them came with ground truth. The
evaluation was based on a “reported value and unreported value” approach, i.e.
whether the algorithm reported a value in (a manually) selected region where a
measurement was feasible to be calculated.

Some other methods have been proposed to evaluate stereo-analysis algo-
rithms in the absence of ground truth. In [8], the authors calculated (manually)
true depth values at 200 randomly selected points. In [2], the evaluation was done
by measuring the number of “successfully” matched pixels using a left-right con-
sistency check [17]. Confidence measures are another example of evaluation in
the absence of ground truth [11,32]. The idea is to measure the reliability of the
calculated values for each pixel using heuristic or probabilistic approaches.

Approaches specifically designed for DAS have also been proposed. In [28,36],
the authors proposed techniques that evaluate the generated stereo data if cer-
tain conditions are satisfied during the recording of the real-world input stereo-
pairs. Recently, the organisers of the 2011 DAGM conference [6] provided its
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Fig. 2. Sketch of the followed technique. The NCC index is calculated between the
generated virtual image and the recorded control image.

own evaluation test-data set. However, there was no provided ground truth or
an objective evaluation scheme for comparing results.

Generating ground truth for outdoor environments has also been investigated.
For example, in [31] the true distance measurements were generated using a high-
end laser range-finder. Despite the accuracy of the depth readings, the reduced
resolution of the range finder, and possible calibration or synchronisation issues
(between the cameras and the range finder), are still limiting the applicability
of this option.

Extra images were used in [37] for defining a prediction error for optic flow
and stereo-analysis (see also [34]). For our technique, we have adapted the pre-
diction error technique for using it with three synchronous cameras recording
uncontrolled environments. We use an evaluation index that takes under con-
sideration the photometric differences between the three images involved in the
analysis (which is a quite common situation in real-world environments).

3 Trinocular Evaluation Technique

Consider time-synchronised recording of a scene by three video cameras. Video
data captured by reference and match camera are rectified in such a way that
each stereo-pair Ir and Im satisfies the standard stereo geometry [21] (SSG). The
third camera acts as control camera and is potentially in arbitrary pose “towards
the scene recorded by reference and match camera”.

The objective is to generate a virtual image Iv from a disparity map calculated
by a stereo-analysis algorithm (using Ir and Im), and to compare Iv with the
control image Ic recorded with the control camera.

We generate Iv by mapping (warping) the pixels of the reference image Ir
into the locations where they would have been recorded in Ic. Then, Ic and
Iv are compared using normalised cross-correlation (NCC) as a measure; see
Section 3.3 for its specification. Figure 2 summarises the followed technique.

3.1 Common Forward Equations

Assume that the coordinate system of the reference camera is identified with
the world coordinate system. Image coordinates are defined by each camera
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Fig. 3. A general trinocular camera configuration. The two cameras, represented by the
coordinate systems on the right, are assumed to satisfy the standard stereo geometry.
The third camera is rectified with respect to internal camera parameters only (i.e. thus
representing ideal central projection).

individually. Locations of reference, match and control camera are sketched in
Figure 3. In world coordinates, the optical centre of the reference camera lies
at the origin Or = (0, 0, 0)T , and those of the reference and match camera at
Om = (b, 0, 0)T and Oc = (b1, b2, b3)

T , respectively.
Let P = (X,Y, Z)T be a scene point in the shared field of view of all the three

cameras; and pr = (x, y)T ∈ Ir, pm = (xm, ym)T ∈ Im, and pc = (xc, yc)
T ∈ Ic

be the projections of P onto the rectified image planes of the three cameras. The
corresponding image point in the virtual image is denoted by pv = (xv, yv)

T .
For the assumed case of SSG between reference and match image, we provide

a formula below to obtain the coordinates of pv in terms of the coordinates of
pr, and the internal parameters of the stereo camera defined by the reference
and match cameras (i.e., base-line distance b and unified focal length f) and
the corresponding disparity value d (computed by some stereo-vision algorithm)
between pr and pm. Since P is visible from reference and match camera, by
triangulation, it is possible to write the coordinates of P with respect to the
coordinate system of Ir as follows:

(X,Y, Z)T =
b

d

(
x, y, f

)T
(1)
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Now, let (Xc, Yc, Zc)
T be the coordinates of P with respect to Oc. Using homo-

geneous coordinates and (for abbreviation) letting C and S be short for cosine
and sine functions, respectively, the matrix

M =

⎛⎜⎜⎝
CγCβ −CγSβSα− SγCα SγSα−CγSβCα −u1

SγCβ CγCα− SγSβSα −SγSβCα−CγSα −u2

Sβ CβSα CβCα −u3

0 0 0 1

⎞⎟⎟⎠ (2)

specifies the mapping

(XT , YT , ZT , 1)
T = M · (X,Y, Z, 1)T (3)

where angles α, β, and γ represent a rotation that fixes the X,Y and Z axis,
respectively.

u1 = b1CγCβ + b2(−CγSβSα− SγCα) + b3(SγSα−CγSβCα) (4)

u2 = b1SγCβ + b2(CγCα− SγSβSα) + b3(−SγSβCα−CγSα) (5)

u3 = b1Sβ + b2CβSα + b3CβCα (6)

Let mij be the element at position (i, j) in matrix M , for 1 ≤ i, j ≤ 3 and fc
be the focal length of the control camera. Thus, using the equations defined by
central projection, we have that

xv = fc ·
m11(bx− db1) +m12(by − db2) +m13(bf − db3)

m31(bx− db1) +m32(by − db2) +m33(bf − db3)
(7)

yv = fc ·
m21(bx− db1) +m22(by − db2) +m23(bf − db3)

m31(bx− db1) +m32(by − db2) +m33(bf − db3)
(8)

where d and b were defined above as being the disparity between pixels pr and pm
and the length of the baseline between reference and match camera, respectively.

With these two forward equations [22] it is possible to map any pixel location
(x, y)T in the reference image into a pixel (xv, yv)

T in the image plane of the
third camera. We select the nearest pixel position in this virtual image (i.e. in
the pose of the third camera) because we do not aim at any visual improvement
of this mapping (e.g. by interpolation of pixel values).

3.2 Poses of the Third Camera

In this section we discuss possible poses of the control camera. Note that the
pose of the control camera defines the final appearance of the generated virtual
image. The three cameras can be in an arbitrary position, but constrained by
the fact that reference and match images need to satisfy SSG after rectification.
In the following we denote the reference camera also as being the left camera of
this pair of two rectified cameras.

In order to reduce the number of occluded points between reference and con-
trol camera, we aim at having the focal point of the control camera collinear
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Fig. 4. Different types of occlusions for a horizontal configuration. Left : white pixels
indicate occlusion between reference and match camera. Centre: black pixels indicate
occlusion between third and reference camera (here: third camera is at position of
match camera). Right : combined visualisation where third camera is now left of the
reference camera.

with the focal points of the two other cameras. We discuss possible poses of the
control camera in such a horizontal configuration.

Occluded points may cause areas with no texture in Iv, or pixels from Ir being
mapped onto the wrong position due to having erroneous disparity results for
occluded pixels in the stereo-pair. We illustrate this by examples generated using
available ground truth for the synthetic sequence No. 1 from Set 2 of [7].

By increasing the translational distance between the poses of the control and
the stereo-camera system, more occluded areas occur on Iv. Occlusions could be
reduced (in general) by having the control camera positioned between reference
and match camera. Figure 4 shows three different occlusion cases. For this figure
we vary the poses of an imaginary third camera with respect to the used poses
of reference and match camera when rendering this sequence. The disparity map
Id is the available ground truth.

On the left, the figure shows the virtual view corresponding to the pose of
the reference image (i.e. the third camera was assumed to coincide with the
reference camera). White pixels represent occluded pixels between reference and
match image. Obviously, no disparity information is available for those. They are
already occluded with respect to both stereo cameras. For the centre image of the
figure, the third camera moved into the pose of the match camera. Occlusions
are now shown in black, and correspond to occluded pixels between reference
and control camera. The virtual view generated for a pose to the right of the
reference image (in a horizontal configuration) would tend to “cover” also such
occluded pixels that are visible for the reference camera but not for the match
camera. On the right, the figure shows a virtual view based on the pose of the
third camera located to the left of the reference camera. It is an example of a
virtual view in which both kinds of occlusions occur (white and black).

For the first configuration there are no occlusions between reference and con-
trol camera. This configuration is actually known in self-consistency studies [27].
However, we are interested into using an additional image for the evaluation, not
yet involved in the given stereo analysis, thus allowing us to obtain additional
insights into the performance.
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A symmetric pose of the control camera (focal point half-way on baseline
between reference and match camera, with the tree optical axis parallel to each
other) is also expected to minimise the impacts of both types of occlusions (i.e.,
the total number of either black or white pixels). In performance evaluation,
it would be ideal to separate the impact of occlusions from those of incorrect
stereo matching. Thus, the symmetric case seems to offer the possibility to focus
on disparity errors. However, errors due to mismatches are actually often not as
“obvious” for the symmetric case compared to a third-camera pose which differs
(much) from the symmetric case.

Thus, altogether, an in-depth statistics about error distributions for different
third-camera poses in a horizontal configuration (e.g. depending on scene geome-
try) might be of interest. However, in our practical tests we realised quickly that
having the third camera in a “different pose” compared to the stereo-camera
pair, but still “reasonably close” to this pair for not having to many occlusion
issues, provides a better “challenge” than having a symmetric camera set-up.

The experiments reported in this chapter had the control camera approxi-
mately 50 cm to the left of the reference camera; reference and match camera
are about 30 cm apart. This translational distance between control and reference
camera appeared to be large enough for detecting miscalculated disparity values
(even if disparities are small), but is still not yet exaggerating the influence of
occluded points. Note that detecting the occluded regions could only be done by
segmenting them manually on each trinocular stereo set. Thus, in the evaluation
we only discard the obvious occlusions (i.e. those in the lateral border of the
images).

3.3 Evaluation Index

As evaluation index we calculate the normalised cross-correlation (NCC) index
between the virtual image Iv and the control image Ic, for each trinocular stereo
frame at time t in a given image sequence. The NCC index is given by

NCC(Ic, Iv) =
100

|Ω|
∑

(x,y)∈Ω

[
Ic(x, y)− μc

][
Iv(x, y)− μv

]
σcσv

(9)

where μc and μv denote the means, and σc and σv the standard deviations of
the control and virtual images, respectively.

The set Ω is a subset of all pixel locations. It needs to be selected for defining
a “meaningful measure”. The default is that Ω is simply defined by pixels having
a valid disparity.2 |Ω| denotes the cardinality of this set.

The NCC index appears to be convenient for the presented evaluation tech-
nique (rather than, e.g., just a sum of absolute intensity differences), as it handles
photometric differences between reference and control image to some degree, and
brightness variations (e.g. non-uniform in a recorded image) are actually very
typical for recorded outdoor videos.

2 Our stereo-analysis algorithms assign a non-positive value to any pixel having no
valid disparity.



Real-World Stereo-Analysis Evaluation 61

Fig. 5. Samples of disparity maps and corresponding virtual images from consecutive
frames from the barrier sequence. Both disparity maps show difference in disparity
values in the indicated rectangular region, but the corresponding regions in the virtual
images look almost the same. Thus, the NCC measure is expected to lead to about the
same value (depicted in the disparity maps) in those regions. The NCC index for the
full image is shown in the virtual images.

3.4 Alternative Approach for Defining Set Ω

Images recorded in the context of DAS typically contain two large nearly texture-
less areas (i.e., featureless regions), namely the sky and the road. State-of-the-art
stereo-analysis algorithms often have difficulties calculating correct disparities in
such uniform regions. Values for the sky are irrelevant, and invalid values on the
road (if properly detected) can be interpolated for identifying the road manifold.

We notice that the defined evaluation technique might report a good perfor-
mance in such homogeneous regions even if this is not the case. In such regions
it is very likely to occur that a pixel in the reference image with a corresponding
miscalculated disparity value is mapped into a pixel in the virtual image that is
in the same textureless region (i.e., a region with insignificant intensity differ-
ences between its pixels). Thus, values in this region may incorrectly influence
the final evaluation index.

Figure 5 shows two virtual images and corresponding disparity maps when
using the BPM-CEN stereo matcher (defined later in Section 4) for two consec-
utive stereo frames (frames 326 and 327 in the barrier sequence). A rectangular
region is selected in the middle of the road; it shows differences in miscalculated
disparities in both frames. However, the corresponding regions in the virtual
images appear to be almost identical. For frame 326, disparity values in the
rectangle are between 28 to 56, and between 21 to 41 for frame 327. For road
surface points, this implies an average distance difference of about 5 metres. The
evaluation index, restricted to the rectangle, does not show this defect, and it is
considerable high for both frames (of 94.5 for frame 326 and of 90.0 for frame
327) compared to the NCC index calculated for the whole image (of 85.7 for
frame 326 and of 85.6 for frame 327).

The following modified definition of set Ω aims at restricting the performance
evaluation to areas being “rich in texture”. The basic idea is as follows. Mis-
calculated disparities at, or within a small distance to pixels with a significant
intensity gradient (used as a simple texture criterion) should affect the NCC
index more than miscalculated disparities in textureless regions. One option is to
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Fig. 6. Illustration of mask generation. From left to right : original image I , gradient
image ∇I , distance mask Ie, and identified textured zones in I .

simply discard the homogeneous regions completely when calculating the NCC
index.

Given an image I, we generate a mask Ik that shrinks the domain Ω by
eliminating textureless regions. The image Ik is produced in three steps. First,
a binarized gradient image ∇I is defined as

∇I(x, y) =

{
0, if

∣∣(∂xI(x, y), ∂yI(x, y)∣∣2 > T1

1, otherwise
(10)

where ∂x (or ∂y) denote the partial derivative in the lateral (or vertical)
direction.3 The sign | · |2 denotes the L2-norm and T1 is an adjustable threshold.
With ∇I we aim to identify regions with some changes in intensity values.

The second step uses Euclidean distance transformation for generating an
image Ie that labels pixels by their L2-distance to edge pixels identified by ∇I.
Finally, we define Ik as

Ik(x, y) =

{
0, if Ie(x, y) > T2

1, otherwise
(11)

where T2 is again a predefined threshold. For the experiments reported in this
chapter, we use the control image to define Ik, with T1 = 5 and T2 = 10.

Figure 6 illustrates the process of generating Ik. The leftmost image is the
input image I. The next image shows ∇I; followed by the distance image Ie.
The resultant image Ik is shown in the rightmost position.

Alternatively, the distance values in Ie could be used as weights when defining
the NCC index. However, experiments showed that using the defined mask Ik
helps to calculate NCC indices which correspond, in general, with subjective
visual evaluations of calculated depth accuracies.

4 Tested Stereo-Analysis Algorithms

We are interested in stereo-analysis algorithms for outdoor scenes in the context
of DAS and related applications. The diversity of recording situations (e.g. in
the night, in rain, with lighting artefacts) basically implies that one particular

3 We use central differences to approximate the partial derivatives.
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Table 1. Parametrization of the used stereo-analysis algorithms. BPM (SGM) uses
identical values for number of iterations (c1) and level of tree (c2) for the three different
cost functions SAD (sum of absolute differences), CEN (census function), or EPE (end-
point error).

BPM GCM SGM
dMax sMax λd iteration level λ1 λ2 threshold K c1 c2

SAD 100 500 0.3
7 6

4.2 1.4 1 7
30 150CEN 75 600 0.6 3 1 1 5

EPE 33 200 0.225 2.6 0.86 16 4.33

algorithm or parametrization cannot be the all-time winner; and some kind of
adaptation (e.g. using different parametrization for the used matcher) needs to
be supported.

4.1 Three Matchers

For the experiments to be reported in this chapter, we selected three dense
stereo-analysis algorithms based on algorithms that showed a good performance
in previous studies [30,31]. We test them using three different cost functions and 8
long trinocular sequences. The parametrization used for each of the matchers (see
Table 1), was optimised using the synthetic sequence introduced on Section 3.2.

Belief-Propagation Matching (BPM): We use a max-product iterative belief prop-
agation algorithm as presented on [9]. This algorithm uses a truncation parame-
ter for both, the cost function and the smoothness term. The smoothness term is
a truncated quadratic function, which allows to obtain a smooth disparity map
but without penalising depth discontinuities too much. Message passing is based
on 4-adjacency. The original source code on [9] was modified to allow the use of
different cost functions and of 10-bit input images as stereo frames.

To speed up the matching process, a hierarchical algorithm (i.e. a coarse-to-
fine approach) is considered such that the passing of messages is more efficient
when staying with a reduced number of iterations. The truncation parameters
for the data (dMax) and the smoothness (sMax) terms, the weighting factor for
the data term (λd), the number of iterations (iteration), and number of levels
(level) of the followed hierarchical algorithm are shown in Table 1.

Graph-Cut Matching (GCM): We use a modification of the graph cut -based
algorithm presented in [25]. For minimising the energy function, a randomly ini-
tialised disparity map is considered as a weighted graph. The optimum disparity
map is then calculated using the α-expansion method. The implementation of
this algorithm uses as smoothness term the binary Potts model to assure that a
global minimum can be reached. The three parameters required for defining the
Potts model (λ1, λ2, and the threshold) and the weighting factor for the cost
function (K) are summarised on Table 1.

As for BPM, this algorithm was also modified such that a wider range of cost
functions could be used.
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Semi-Global Matching (SGM): We also use a semi-global matching algorithm
as introduced in [17]. The matching strategy followed by BPM or GCM can be
characterised as being potentially global (but practically limited by the number
of iterations). In contrast, SGM limits its search space to a predefined set of paths
to obtain an optimum disparity value only with respect to this selected search
space. The used SGM implementation has been reported in [15]; it provides
two SGM configurations that use the census transform as cost function (see
Section 4.2), and optimise either along four or eight paths. We also examine the
performance of the hierarchical SGM algorithm recently presented in [16]. Using
four instead of eight paths reduces computation time without affecting much the
quality of the disparity maps in general. The hierarchical algorithm increases
the quality of SGM matching in areas that are the “usual suspects” for being
complicated (e.g. non-textured areas such as on a road). The selected values for
the two fixed penalties for the smoothness term (c1 and c2) are summarised in
Table 1.

4.2 Three Cost Functions

Three cost functions are considered for our experiments. Each of them analyses
different “characteristics” of the stereo input images when calculating costs for
assigning a disparity value to a given pixel.

Census Transform (CEN): The census transform [41] is defined by the Hamming
distance between two signature vectors. Its use supports robustness of a stereo
matcher against common types of noise found in real-world images [15]. Following
the latter paper, we use a 9 × 3 neighbourhood as it favours a stronger data
contribution along the epipolar line.

Gradient-Based Cost Function (EPE): The selected gradient-based cost func-
tion [20] analyses the L1-distance between the end-points of the gradient vec-
tors. This distance is expected to have a good performance when using real-world
data [14]. To calculate the discrete partial derivatives that define the gradient
vector, again we use central differences.

Sum of Absolute Differences (SAD): The sum-of-absolute-differences (SAD) cost
function is an intensity-based similarity measure. It is known for having a poor
performance when it comes to real-world stereo sequences, as the photometric
consistency assumption is commonly violated in those data. We are interested
in reconsidering this commonly used statement.

5 Experiments

We evaluate the performance of the three selected stereo-matchers using the
three specified cost functions for BPM and GCM; the three presented configura-
tions for SGM use CEN as a cost function. We use the abbreviations BPM-∗ or
GCM-∗, where ∗ denotes CEN, EPE, or SAD, and SGM-4, SGM-8, and SGM-
HIER for the configurations of the semi-global matcher.
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5.1 Evaluation Domains

The full approach refers to the method introduced at the beginning of Section 3;
the masked approach denotes the method discussed in Section 3.4.

BPM and GCM algorithms generate usually a valid disparity (no matter
whether correct or incorrect) for almost every pixel in the reference image. Thus,
we compare the whole virtual and control image (except for the obviously oc-
cluded regions at the left margin of both images). As we are using the same
evaluation domain, it is fair to compare the evaluation indices of those two
algorithms (i.e. the boosting effect from the non-textured regions described in
Section 3.4 should affect equally to indices of both algorithms).

For SGM, the evaluation domain is defined by the pixels in the disparity map
detected as being valid (usually around 60% of the whole image domain). Thus,
we only compare results between the three SGM configurations as their disparity
maps have a similar amount of valid pixels.

5.2 Data Sets

Regarding the experimental data set, we use eight long (400 trinocular frames
each) sequences recorded on real-world environments with test vehicle HAKA1
(see [23]), thus 9, 600 test images in total, each of 640× 480 resolution at 10-bit
per pixel.

The three cameras (of the same brand and model with identical lenses) were
firmly mounted on an horizontal metal bar behind the windshield, just below the
rear-view mirror. The reference and match cameras were placed on the driver’s
side of the vehicle. The length of the baseline is about 30 cm, thus, we are able
to calculate distances to objects located from just less than 5 m to the cameras,
up to around 310 m away (i.e., for a disparity value of 1). The control camera
was fixed to the left of the rear-view mirror, at around 50 cm away from the
reference camera. With this set-up we tried to keep the common field of view
as large as possible. By keeping a considerable distance between reference and
control cameras we support that appearing errors become more evident in the
calculated NCC evaluation indices along a test sequence.

Four of our sequences were recorded on the same street (the reference street)
under different environmental conditions. The street is surrounded by trees such
that illumination artefacts [40] are present in the images, especially if the sun is
low on the horizon. There are also some thin structures around the road (e.g.,
poles, trees branches, road signs) still make it a challenging test sequence. The
surface of the road has actually sufficient texture so it is expected that the road
will not be a source of noise during the matching process.

The other four sequences were recorded in more dynamic environments. They
were recorded on busy roads, where moving pedestrians and vehicles are part
of the scenery. Two of the sequences were recorded while driving at about 80
km/h, to test algorithms also for highly dynamic environments. The sequences
are available for download in Set 9 from [7]. A brief introduction to the sequences
is as follows:
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Fig. 7. Sample frames from the used 400-frame long trinocular sequences. Top row,
from left to right: midday sequence, wipers sequence, dusk sequence, and night sequence.
Bottom row, from left to right: queen sequence, people sequence, harbour sequence, and
barriers sequence.

Midday: This sequence was recorded in the reference street under “ideal” con-
ditions. The sun was close to its zenith, so there are not many of the undesired
illumination artefacts. There is no incoming or oncoming traffic. The idea of
recording such a simple sequence is to have a reference sequence, where the
algorithms should perform best.

Wiper: In order to gain experience on the influence of varying occlusions of
some regions in one (or both) camera(s) of the stereo system, we recorded a
sequence while the wipers have been switched on (but no rain). This sequence
was recorded within just a few minutes past the midday sequence on the same
default road, expecting that the only “differing” factor for the matching process
is the moving wipers.

Dusk: This sequence was recorded wile having the sun in a position close to the
horizon. The idea was to try to simulate the very common situation of having
large saturated areas in one or in both cameras. As the road is surrounded by
trees, there are intervals in the sequence with or without the sun striking directly
into the cameras.

Night: This sequence was recorded at night. Almost all the light in the scene
is provided by the headlamps of HAKA1. The trees around the road covered
almost all the light from the lamp posts, which are very sparse in this particular
road. The intention of having such a dark night scene was to simulate driving
conditions as faced on second-order highways or rural roads.

Queen: This sequence was recorded on a main road of Auckland city. It has
both, moving and static cars and pedestrians. It was recorded while driving
towards a set of traffic lights, with a stop there. There are moving pedestrians
at different distances. A bus stopped on the right hand side and has interesting
reflections in its windows.

People: This sequence was recorded while HAKA1 was standing still in front of
a pedestrian crossing. The sequence has varying numbers of pedestrians in the
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Table 2. Mean values of NCC indices, rounded to nearest integer, for full analysis. For
each sequence, we highlight the best performing configuration for each algorithm.

Full NCC average
Barriers Dusk Harbour Midday Night People Queen Wiper

BPM

CEN 62 74 63 73 41 61 66 69
EPE 66 90 70 91 64 68 80 87
SAD 56 87 59 91 63 66 79 86

GCM

CEN 59 87 62 93 41 66 82 89
EPE 37 82 38 88 21 42 67 83
SAD 40 82 40 60 62 62 78 85

SGM
4 76 92 80 95 86 79 88 92
8 76 92 80 95 87 79 89 92

HIER 76 95 81 96 90 79 89 94

scene, between 1 up to around 20 at a time. The pedestrians walk only in two
directions.

Harbour: This sequence was recorded while driving across the Auckland’s har-
bour bridge. The metal structure (i.e. the scaffolding) of the bridge represent a
challenging collection of thin objects in different orientations. The shadows pro-
jected by the metal bars introduce interesting illuminations artefacts into the
recorded images.

Barriers: This sequence was also recorded while driving across this harbour
bridge. In this case the recording vehicle was driving in a lane that it is enclosed
by medium-height concrete bars, and also the metal structure of the bridge is
further up.

5.3 Results and Discussion

The discussion is focused on the most remarkable details of obtained results
(e.g., when severe changes in the NCC index were detected, or when results
between algorithms were particularly different). The average NNC indices for
full or masked approaches, for all sequences and configurations, are presented in
Tables 2 or 3, respectively.

Midday: All the algorithms performed “fairly well” (as expected); the indices
reported for this sequence were the highest among the used sequences. Interest-
ingly, all the algorithms had local minima at about the same trinocular stereo
sets (see the left image on Figure 8). The drops in the indices are mainly caused
by miscalculated disparities corresponding to thin structures (e.g. power poles
or road signs). Erroneous disparity values on such objects had a particularly bad
effect on NCC indices at those frames. This became even more obvious by using
the masked analysis.
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Table 3. Mean values of NCC indices, rounded to nearest integer, for masked analysis.
For each sequence, we highlight the best performing configuration for each algorithm.

Masked NCC average
Barriers Dusk Harbour Midday Night People Queen Wiper

BPM

CEN 57 66 56 69 42 59 65 63
EPE 61 75 64 79 64 66 75 73
SAD 51 69 53 77 64 64 73 70

GCM

CEN 54 76 54 82 43 66 78 77
EPE 33 64 32 67 28 39 57 60
SAD 35 66 33 50 63 61 71 67

SGM
4 31 26 19 33 34 51 47 27
8 34 33 25 38 31 53 53 33

HIER 31 41 24 45 26 48 47 49

For GCM, the leading configuration was GCM-CEN. For the other two config-
urations, there are several regions with obvious (i.e. visual inspection) disparity
miscalculations. They were correctly penalised with both evaluation analysis.

BPM-EPE and BPM-SAD reported the best (and very close to each other)
NCC indices for BPM. For this matcher, the CEN cost function introduced a
kind of a “salt-and-pepper” noise (i.e. non-homogeneous results were homogene-
ity is expected) into the disparity maps that was also clearly identified by our
evaluation.

SGM-HIER showed a slightly better performance than the other two SGM
configurations for full analysis. This could be due to a better performance of
SGM-HIER on road regions (see the identified boosting effect of trinocular anal-
ysis). However, the same rank was observed when using the masked analysis,
showing that the estimation in non-homogeneous regions had also been improved
with the hierarchical algorithm. The left image in Figure 8 shows the full anal-
ysis’ results for the three SGM configurations. Note that there are almost no
difference between SGM-4 and -8.

Wiper: This sequence represents a particular challenge for the trinocular anal-
ysis. The wipers might be occluded with respect to reference and match camera;
or they might be occluded between the reference and control cameras. Thus,
in this sequence, low NCC indices might not only be caused by miscalculated
disparity values, but also due to having different objects (wipers) present in the
virtual and the control image.

All the configurations showed a repetitive pattern of local minima, as ex-
pected. When the wipers were not present in any of the images, the algorithms
performed just as with the midday sequence. Lowest local minima correspond
to frames where the wipers were in the virtual image and not in the control one,
or vice-versa; or when the wipers were in both images but in different position.

For cases when there were a wiper in the stereo-image pair, the algorithms
handled the wipers as invalid pixels (SGM) or by propagating estimated disparity
values of surrounding areas (BPM and GCM); this was more evident using CEN
or EPE.
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Fig. 8. Left : Midday sequence results for SGM. Right: Wiper sequence results for BPM.

Masked and full analysis led to similar results. With the masked approach, the
local minima were not as low as with the full analysis. Miscalculations introduced
by the wipers affected more the sky and road areas (we recall: both regions were
ignored when using the masked approach).

For BPM and GCM, the most negatively affected cost function was SAD;
drops in magnitudes of indices were the largest compared to other cost functions.
BPM-CEN was noticeably robust against the presence of wipers. Even that its
average performance was worst than that of the other two BPM configurations
(i.e. due to the detected salt-and-pepper noise), the drops in the index are not
as large as for BPM-SAD or BPM-EPE. The left image on Figure 8 shows the
results of the three BPM configurations. Note the large index’s drops for BPM-
SAD. The repetitive pattern of local minima was similar for the configurations
defined using the other two algorithms.

For SGM, -4 and -8 paths configuration showed an almost identical perfor-
mance. The HIER configuration reported a more steadier performance (i.e. the
drops on its index were smaller that those of the other two configurations);
defining the best overall performing SGM configuration.

Dusk: As expected, the performance of all the configurations decreased when
the sun stroke directly into the cameras (originating large homogeneous regions).

For all the algorithms and cost functions, there were scattered short time-
intervals with an extreme low NCC index (e.g. around frame 250 or 300 on the
right image on Figure 9). This was due to the fact that in those frames the
sun struck only the control camera. Thus, there is an analogous effect as with
the wiper sequence when there was a wiper only on the control camera. Ignoring
those outliers, the shape of the plot increased or decreased depending on whether
the sun struck directly into the three cameras, or not. For example, there were
two time-intervals where the sun struck freely into the three cameras (say, [0,50]
and [320,400]) and the evaluation reported lower indices than the average (see
again Figure 9, left).

We stress the robustness of SGM (in particular for SGM-HIER) when compar-
ing the three algorithms for this sequence. The indices of the three configurations
are quite similar for most of the frames, but SGM-HIER kept a more stable per-
formance in “complicated intervals” of the sequence. Figure 9 left, shows the
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Fig. 9. Left : Dusk sequence results comparing best performing configurations of all
three matchers. Right: Queen sequence results for GCM-configurations.

results for BPM-EPE, GCM-CEN, and SGM-HIER (the best performing con-
figuration of each matcher on this sequence). Note that the low peaks are less
intense for SGM. The rank suggested by this plot should be taken carefully, as
image domains used for algorithm evaluation are different.

Queen: The results obtained with the full and masked analysis, for all the
configurations, showed a common increasing tendency; which was particularly
evident from frame 300. This is because the scene is less complex, only a few
pedestrians remained on the field of view of the cameras and the road area had
enough texture to be matched properly.

GCM-SADand -EPE reported, between frames 20 and100 (seeFigure 9), a large
decay in the indices when using the full approach. In this particular time-interval,
the lower part of the road is quite homogeneous.Both configurations failed tomatch
correctly this problematic region. The low peak was not reported by the masked
approach, as this part of the road was discarded from the evaluation. None of the
others configurations had particular problems with this region.

SGM-HIER and SGM-8 reported different rankings when using the full or the
masked approach. It looks like SGM-HIER is taking advantage of the boosting
effect from the full analysis for this sequence.

People: Results for all the algorithms showed a common pattern for masked
and full analysis. Between frames 50 and 100, the two approaches reported low
indices for all the configurations. This part of the sequence is the most busy
one, with many pedestrians present in the scene. The following ups and downs
correspond to a single (or two) pedestrian(s) entering or crossing the common
field of view. See Figure 10, left, for BPM-results.

As the evaluation technique uses three different cameras, and all the pedestrians
are fairly close to them, we might conclude that low indices (between frames 50
and 100) are due to occlusions between the cameras. But, as pedestrians are “fairly
slim” structures, even aminormiscalculation implies awrong reconstruction of the
whole pedestrian in the virtual image (usually a misplaced body part).

The two evaluation approaches show an almost identical behaviour for BPM
and GCM. For SGM, the ranks were totally different for the two types of analysis.



Real-World Stereo-Analysis Evaluation 71

35

40

45

50

55

60

65

70

75

80

0 50 100 150 200 250 300 350 400

N
C
C

Frame

BPM People

CEN
EPE
SAD

70

75

80

85

90

95

100

0 50 100 150 200 250 300 350 400

N
C
C

Frame

SGM Harbour

4
8

HIER

Fig. 10. Left : People sequence results for BPM. Right: Harbour sequence results for
SGM.

It appears that SGM-HIER has more difficulties matching pixels near disparity
discontinuities, but performs better on homogeneous regions.

Harbour: This sequence reported an interesting difference between the full and
themasked approach for SGM. In all the sequences analysed so far, nomatterwhich
algorithm, the masked analysis follows the same trend as the full analysis. For this
sequence, for the three SGM-configurations, full or masked analysis reported a dif-
ferent behaviour in each case. In the full analysis, there was an increasing trend of
the index along the sequence; this tendency of the index was particularly strong
for the last 100 frames. The masked analysis reported an opposite tendency; the
indices decrease along the sequence. In Figure 10, right, we show the results of the
full analysis for SGM, where the increasing trend can easily be identified.

A possible explanation for this behaviour is that, at the end of the sequence,
the metal structure of the bridge disappears from the scene. What is depicted in
the images is mostly sky and road surface, with a large number of skinny poles
and small buildings in the background. Increasing indices for the full analysis
might be due to the boosting effect on the large homogeneous areas in the image.
The decreasing tendency of the masked approach could be explained as even the
smallest disparity miscalculation would imply a wrong warping of the skinny
structures (i.e. the poles and buildings) in the scene. This irregular behaviour
needs to be further analysed.

The masked and full approach for BPM and GCM both show the same pattern
for all the three cost functions.

Barriers: For this sequence, the algorithms showed common trends, with differ-
ences in the magnitude of the index but still a common behaviour. The ups and
downs in the indices (see Figure 11, left) were dictated by the appearance and dis-
appearance of patches of the sky.The sky decreased indices and themetal structure
of the bridge increased them; shadows created by the covering structure also con-
tribute to increase the index as they made less homogeneous the road area.

The evaluation of the GCM results showed an interesting behaviour using
the trinocular evaluation technique. The road and the barriers are large non-
homogeneous areas that were well reconstructed in the virtual images generated
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Fig. 11. Left : Barriers sequence results for GCM. Right: Night sequence result for
GCM.

with GCM-SAD. Even though, the disparity maps are quite “blocky” (i.e. large
regions were assigned with a single disparity value) in the road and barriers
regions, while the upper part of the disparity images have plenty of miscalcu-
lated values. GCM-CEN generated smoother and less noisy disparity maps. We
expected that, due to the boosting effect, the full analysis would assign really
close NCC values for both configurations. However, it made a clear difference
between the GCM-CEN and GCM-SAD results, assigning a larger NCC to the
former configuration (see Figure 11, left). The difference between the evaluation
indices was stressed using the masked approach.

Night: The matching of corresponding pixels, and the evaluation of the match-
ing process using the trinocular technique are both challenging due to the limited
dynamic range of the trinocular stereo sets from this sequence (of about 50 dif-
ferent intensity values only for some of the input images).

All the algorithms reported very low NCC indices. It is hard to visually iden-
tify the 3-dimensional structure of the scene in the disparity maps. The only
exception were the SGM-HIER disparity images, where it is possible to identify
the road area (illuminated by HAKA1 headlamps) and even some of the objects
that surround the road. This SGM-configuration reported the highest evalua-
tion indices for the full analysis. However, it could not be identified as a better
performer when using the masked analysis. The boosting effect of the correctly
estimated road area seemed to help SGM-HIER in the full analysis.

The evaluation results for BPM and GCM show an increasing trend as the
sequence reached the end. In the second half of the sequence there was more
light available (an incoming vehicle with headlamps on is approaching, and the
trees around the road are less dense), thus more disparity values were correctly
calculated. Figure 11, right, depicts the results for the GCM configurations. Note
the increasing tendency for the EPE and SAD configurations. The “volatile”
indices reported in the first half of the sequence for GCM-SAD are due the
assignation of a unique (i.e. but incorrect) very low disparity value to most of
the pixels in the upper half of the frame. Due to the homogeneity of input images,
the trinocular technique failed to assign a low NCC index (the masked analysis
reported similar behaviour).
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Table 4. Overall average NCC indices, rounded to nearest integer, for both approaches.
The “Win” rows show for how many frames the specific configuration performed best.
We compare BPM and GCM results directly, but separately from SGM, as image
domains used for evaluation are different. For each approach, we highlight the best
performing configuration for each algorithm; and that performing the best in a larger
number of frames.

BPM GCM SGM
CEN EPE SAD CEN EPE SAD 4 8 HIER

Full
Avg 63 77 73 72 58 67 86 86 88
Win 17 1449 82 1479 1 172 155 434 2611

Masked
Avg 60 70 65 66 55 45 33 38 39
Win 24 1184 83 1743 0 166 353 1434 1413

5.4 Overall Resume

Table 4 summarises the evaluation results for the two approaches. Each column
represent the overall average for each one of the used configurations. Column
“Win” (short for ‘winner’) shows the total number of frames on which a certain
configuration outperformed all the others. Note that we compare the results of all
the BPM and GCM configurations directly, but consider separately the results
of SGM because the image domain Ω used for BPM and GCM is different to
that used for SGM.

Information obtained with the full and masked approach showed a good cor-
relation. In the overall average, the two indices reported the same rankings. The
masked approach was useful to stress miscalculations; as well as to discover well
estimated disparities lost in regions full of miscalculated ones. But, we also no-
ticed that the masked approach can also hide some miscalculated values. For
example, in the queen sequence using GCM-SAD or -EPE, the mask analysis ig-
nores completely a large miscalculated region of the road area that was correctly
penalised with the full approach (i.e. the large decay in the index in the first 100
frames showed on Figure 9 left, is not reported on by the masked approach).

The results obtained in here suggest that the full approach, by itself, evaluates
fairly and objectively the calculated disparity maps. However, both analysis
should be considered when evaluating the algorithms.

The BPM algorithm showed an unexpected result when BPM-SAD outper-
formed BPM-CEN in the overall evaluation with respect to either evaluation ap-
proach (and for around 80 frames was the overall winner). The salt-and-pepper
noise observed in the BPM-CEN disparity maps was severely penalised using
both evaluations approaches. However, BPM-CEN had a more robust perfor-
mance, its evaluation index is lower than that of BPM-SAD, but it showed a more
steadier behaviour. For some problematic frames (e.g. in the dusk sequence),
BPM-SAD generated “useless” data which was not the case for BPM-CEN.

Regarding GCM, the outperforming configuration was GCM-CEN. It gen-
erated noisy disparity measurements in homogeneous regions (i.e. the road),
but managed to reconstruct better the other structures present in the scenes.
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The salt-and-pepper noise observed in the BPM-CEN disparity maps, was not
detected for this configuration. GCM-SAD estimated the homogeneous regions
as single-valued blocks and introduced “a lot” of incorrect measurements every-
where else. The full approach was in general capable to fairly evaluate the blocky
behaviour observed with this configuration; by using the masked approach the
miscalculations become more evident. GCM-EPE had the poorest performance;
the disparity maps have considerable amounts of random values, which degraded
significantly the generated virtual images.

Among the SGM configurations, SGM-HIER showed the best overall per-
formance with the two approaches. SGM-8 and -4 obtained very similar eval-
uation indices using the full approach. The results obtained using the masked
approach suggest that using more paths improve the disparity computation in
non-homogeneous regions (e.g. the difference in magnitude between the 4- and
8-paths configuration was larger with the masked approach, see Table 4).

The most noticeable difference between the three configurations was detected
in the estimation of homogeneous regions. SGM-HIER generated more uniform
surfaces but, it seems that its NCC-indices were “helped” by the boosting effect
when using the full analysis. Note that for the masked approach, even that SGM-
HIER had the best (masked) average index, SGM-8 performed better in a larger
number of frames.

6 Conclusions

This chapter reported about an evaluation technique for stereo-analysis algo-
rithms that uses an extra image (besides of the input stereo-pair) as reference
data. We illustrated its efficacy by measuring the performance of three differ-
ent algorithms using eight long real-world sequences. The discussed trinocular
technique [or, say (n + 1)-ocular analysis for an n-camera stereo-vision system]
appears to be a fairly indicative tool to highlight issues or good performance of
the tested stereo-analysis methods. For designing an adaptive computer vision
solution for vision-based driver assistance, it appears as particularly interesting
to identify frames (or time intervals) where the behaviour of stereo-vision al-
gorithms “suddenly changes”, such that a new optimisation can take place for
selecting and configuring a suitable matcher.

Large homogeneous regions in the images might mislead the NCC evalua-
tion index; we suggested an alternative method (the masked approach) to avoid
those problematic regions. By using both the full and the masked approach, it
was possible to point out particular weakness or strengths of a matching al-
gorithm depending on the used configuration. Miscalculations in homogeneous
areas may not become “visible” due to ongoing high NCC-indices in the full
analysis; however, using the masked approach, a more appropriate evaluation is
possible in general.

The proposed trinocular technique seems to be an adequate answer to the
problem of finding an objective evaluation method in the absence of ground-
truth. A (relatively) simple hardware set up allows us to record trinocular data
sets as appropriate in particular stereo-vision applications.
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Abstract. The pyramid transform compresses images while preserving
global features such as edges and segments. The pyramid transform is
efficiently used in optical flow computation starting from planar images
captured by pinhole camera systems, since the propagation of features
from coarse sampling to fine sampling allows the computation of both
large displacements in low-resolution images sampled by a coarse grid
and small displacements in high-resolution images sampled by a fine
grid.

The image pyramid transform involves the resizing of an image by
downsampling after convolution with the Gaussian kernel. Since the con-
volution with the Gaussian kernel for smoothing is derived as the solution
of a linear diffusion equation, the pyramid transform is performed by ap-
plying a downsampling operation to the solution of the linear diffusion
equation.

1 Introduction

The purpose of this paper is twofold. First, we introduce a method to construct
the pyramid transform on curved manifolds. Second, we propose a method to
evaluate the performance of optical flow without ground truth.

In images captured by an omnidirectional imaging system, moving objects and
target objects are relatively sparse, since the system images a wide-view envi-
ronment in a single view. The pyramid transform compresses a wide-view image
to a small image while preserving the global features of the images. Therefore,
pyramid transforms are suitable for the preprocessing of an omnidirectional im-
age/image sequence. However, omnidirectional images are geometric images on a
curved manifold. Therefore, we are required to construct the pyramid transform
[1, 2] for the multiresolution representation [3] of images on a sphere.

The real-world images captured by an imaging system mounted on a car and
on a mobile robot used for navigation and understanding of the environment have
no ground truth. Therefore, for the evaluation of computer vision algorithms in a
large real-world environment, we are required to compute features and evaluate
the results simultaneously. For stereo reconstruction, performance evaluation
without ground truth is achieved by using a parallel trinocular system, that is,
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a pair of stereo images is used for the computation and the other pair of images
is used for evaluation [4]. In featureless flow-based navigation, three consecutive
images are used for the detection of free space for motion planning, that is, the
optical flow field computed from the first pair of images is used to estimate the
free space in the third image [5].

Since the pyramid transform reduces the size of images while preserving the
size of pixels, the transform is used for preprocessing in the analysis of sparse
images [6–11]. The pyramid-transform-based multiresolution method efficiently
computes both large-displacement and small-displacement motion by propagat-
ing global features in a coarse grid to a fine grid [1, 12]. The pyramid-transform-
based method is efficiently used for optical flow computation from usual images
captured by pinhole camera systems. The image pyramid is separated into the
smoothing operation by the convolution with Gaussian kernel [13–16] and the
resizing operation on images by a downsampling operation [17, 18]. Since con-
volution with the Gaussian kernel for smoothing is achieved by computing the
solution of a diffusion equation [19–22], the pyramid transform is achieved by the
downsampling operation to the solution of the diffusion equation. We introduce
the Gaussian pyramid transform using scale-space analysis on the sphere. Since
the resolution of images captured by catoptrics and dipodic omnidirectional cam-
era systems is nonuniform, the pyramid-based multiresolution analysis allows
us to compute feaures on images uniformly using feature propagation across
the resolutions. The Gaussian pyramid transform on the plane is performed by
downsampling of the convolution between an image and a kernel function. Since
the convolution with the Gaussian kernel is the solution of a linear diffusion
equation, the Gaussian pyramid is obtained by applying downsampling to the
solution of linear diffusion equation. Here, we extend this idea.

In a real environment, the payload of a mobile robot, for example, the power
supply, the capacity of input devices and the computing power, is restricted.
Therefore, mobile robots are required to have simple mechanisms and devices
[5, 23] for navigation and localisation. To achieve a low payload, navigation algo-
rithms for autonomous robots using a vision system inspired by insects have been
proposed [24–28]. The insect-inspired vision system for robot control uses simple
information observed by a vision system mounted on the robot. The view from
the eyes of flying birds and the compound eyes of insects is a spherical image,
which is a normalised image captured by an omnidirectional vision system.

There are two typical methods for optical flow estimation for pinhole images,
the Lucas-Kanade (LK) method [29, 30] and the Horn-Schunck (HS) method [31],
which are a template-matching-based method and a variational-based method,
respectively. The image pyramid technique is commonly used to refine the accu-
racy of the stability of optical flow. The image pyramid is constructed by smooth-
ing by Gaussian blurring and by resizing by downsampling. The LK method with
pyramid-based multiresolution optical flow computation (LKP) [29, 30] is used
to guarantee the accuracy and stability of the solution for the image sequence
observed by a conventional pinhole camera. The convolution with the Gaussian
kernel in the pyramid transform is computed using a discretized small kernel for
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an planar image, for example, a 5×5 window is a typical selection for the kernel
assuming that the image is planar in this region.

A mathematical background of the multi-resolution image analysis based on
the pyramid transform [12, 32, 33] is the algebraic multigrid method in numerical
linear algebra [34–36]. The core of the algebraic multigrid method is the reduc-
tion of the equation to the coarse grid for accurate estimation of the residual and
the expansion of the residual to the finer grid as a correction of solution. The
expanded residual globally corrects the solution of the equation in the finer grid.
The injection and full-weighting are fundamental reduction operations [34]. The
full-weighting reduction is equivalent to the pyramid transform in digital image
analysis. The pyramid transform is effectively used in optical flow computation
[17, 30]. In optical flow computation with the pyramid transform. the correc-
tion procedure of the solution using the solution in the coarse grid is called the
multiresolution warp. In this paper, we develop a full-weighting multiresolution
linear-equation solver on the sphere [36] for the optical-flow computation from a
spherical omni-directional image sequence. In meteorology, the multigrid method
on the sphere is used to solve numerically partial differential equations on the
sphere for the global weather prediction [37–39]. Since in our omnidirectional
image analysis, a diffusion equation on the sphere is numerically solved for the
computation of optical flow of spherical image sequence.

2 Mathematical Aspects of the Pyramid Transform

Reduction and Expansion. For the sampled function fij = f(i, j), the
pyramid transform R [6–11] and its dual transform E [12, 17, 18] are expressed
as

Rfmn =

1∑
i,j=−1

wiwjf2m−i, 2n−j , Efmn = 4

2∑
i,j=−2

wiwjfm−i
2 , n−j

2
, (1)

where w±1 = 1
4 and w0 = 1

2 . and the summation is over integer values of (m−i)
2

and (n−j)
2 . Figures 1(a) and 1(b) show the transforms R and E, respectively.

The operation R in each step is performed by computing a weighted average
of the image values in a finite small region, which is called the window for the
operation. Therefore, image features extracted in the higher-layer images of the
pyramid transform describe global properties, in contrast with those extracted
in the lower layers in the hierarchical expression, as shown in Figs. 1(c) and
1(d). Furthermore, the operation E is achieved by linear interpolation. These
two operations involve the reduction and expansion of the image sizes.

Traditionally, the pyramid transform [6–12, 17, 18] yields a reduced image
sequence. This interpretation is drawn from a fundamental property that the
pyramid transform in each step yields a smaller image through a downsampling
process if we use the same pixel size in each layer to express digital images.
However, if we use the same landscape size in each layer, the transform in each
step yields a lower-resolution image.
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k

k+1

R

(a)

k

k+1

E

(b)

k+1

k

(c)

k+1

k

(d)

Fig. 1. Pyramid transform and its dual transform. (a) Reduction and (b) expansion
for a 2D image. (c) Pyramid transform with equi-pixel size in each layer. (d) Pyramid
transform with equi-image size in each layer.

A generalisation of the transforms defined in eq. (1) is

Rkfmn =

1∑
i,j=−1

wk
i w

k
j f2km−i, 2kn−j , Ekfmn = 4k

2∑
i,j=−2

wk
i w

k
j fm−i

2k
, n−j

2k
, (2)

where wk
±i =

1
2k

(
1− 1

2k |i|
)
, |i| ≤ 2k.

Setting the matrix B to be

B =

⎛⎜⎜⎜⎜⎜⎝
0 1 0 0 · · · 0 0
1 0 1 0 · · · 0 0
0 1 0 1 · · · 0 0
...
...
...

...
. . .

...
...

0 0 0 · · · 0 1 0

⎞⎟⎟⎟⎟⎟⎠ , (3)

the matrix expression of the Gaussian convolution kernel [41] is

G =
1

4
(I +

1

2
I ⊗B +

1

2
B ⊗ I +

1

4
B ⊗B). (4)

Furthermore, the downsampling operation [42] is expressed as

H = (I ⊗ e�2 )⊗ (e�2 ⊗ I), (5)
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where e2 = (0, 1)�. The upsampling operation [42] is expressed as H�. Since
the Gaussian pyramid transform is performed by applying downsampling to
the Gaussian convolution of the image array, the matrix forms of the Gaussian
pyramid transform and the dual transform are R = HG and E = GH�,
respectively. From these matrix expressions, we have the relation 1 (Rk)� =
((HG)k)� = (GH�)k = Ek.

The spectra of Ek and Rk satisfy the relations ρ(Ek) ≤ 1 and ρ(Rk) ≤ 1
since ρ(G) ≤ 1, ρ(D) ≤ 1, ρ(H�) = ρ(H) ≤ 1, ρ(E) ≤ ρ(G)ρ(H�) and
ρ(R) ≤ ρ(H)ρ(G).

Scale Space Analysis and Pyramid Transform. The pyramid transform

gn :=
1

4
f2n−1 +

1

2
f2n +

1

4
f2n+1 =

1

4
(f2n−1 + 2f2n + f2n+1) (6)

for the sequence {fn}∞n=−∞ is rewritten as

gn = h2n, hn =
1

4
(fn−1 + 2fn + fn+1). (7)

These relations imply that the pyramid transform is performed by downsampling
after calculating the moving average. If we adopt the discrete Gaussian ki for
the smoothing kernel, the pyramid transform is

gn =

∞∑
i=−∞

k2n−ifi, gn = h2n, hn =

∞∑
i=−∞

kn−ifi. (8)

For an analog function, downsampling after convolution is expressed as

g(x) = h(σx, τ), h(x, τ) =

∫ ∞

−∞
kτ (x − y)f(y)dy. (9)

If

kτ (x) =
1√
2πτ

exp

(
−x2

2τ

)
, (10)

h(x, τ) is the solution of
∂h

∂τ
=

1

2

∂2h

∂x2
(11)

for h(x, 0) = f(x). Moreover, discretisation of the diffusion equation

h
(n+1)
i − h

(n)
i =

1

2

(
h
(n)
i+1 − 2h

(n)
i + h

(n)
i−1

2

)
(12)

derives the discrete convolution

hi :=
1

4
hi+1 +

1

2
hi +

1

4
hi−1. (13)

1 Setting Gk to be the matrix expression of the convolution in the first equation of
eq. (2), we have the relation (HG)k = DkGk, where Gk �= Gk.
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From eqs. (9), (10), and (11) for two-dimensional functions, we have the relations

g(x, y) = h(σx, σy; τ) (14)

h(x, y; τ) =

∫ ∞

−∞

∫ ∞

−∞
kτ (x− u, y − v)f(u, v)dudv, (15)

kτ (x, y) =
1

2πτ
exp

(
−x2 + y2

2τ

)
, (16)

since h(x, y, τ) is the solution of

∂

∂τ
h =

1

4

(
∂2

∂x2
+

∂2

∂y2

)
h (17)

for h(x, y, 0) = f(x, y).
For a function 2such that wσ(x) = wσ(−x) ≥ 0 and wσ(x) = 0 for |x| > σ,

we deal with the linear transforms

g(x, y) = Rf(x, y) =

∫ ∞

−∞

∫ ∞

−∞
wσ(u)wσ(v)f(σx − u, σy − v)dudv, (18)

f(x, y) = Eg(x, y) =
1

σ2

∫ ∞

−∞

∫ ∞

−∞
wσ(u)wσ(v)g

(
x− u

σ
,
y − v

σ

)
dudv. (19)

These transforms are shift-invariant downsampling and upsampling operations
with orders σ and σ−1, respectively. Therefore, the results of the operations Rf
and Eg are elements of the Sobolev space.

We set

Rk+1f(x, y) = R(Rkf)(x, y), Ek+1f(x, y) = E(Ekf)(x, y), k ≥ 1. (20)

The sequence {f(k) = Rkf}Kk=0 expresses a hierarchical expression for the image
f .

Definition 1. In both the defined domain and the range space of the transfor-
mation R, the inner products of functions are defined as

(f, g)D =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)g(x, y)dxdy, (21)

(Rf,Rg)R =

∫ ∞

−∞

∫ ∞

−∞
Rf(x, y)Rg(x, y)dxdy. (22)

The dual operation R∗ of the operation R satisfies the relation (f,Rg)R =
(R∗f, g)D.

2 For σ > 0

wσ(x) =

{
1
σ

(
1− 1

σ
|x|

)
|x| ≤ σ

0 |x| > σ,

is a generalisation of w± = 1
4
and e0 = 1

2
.
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(a) Fine grid D (b) Corse grid D (c) Shrunk grid D

(d) Fine grid on ΓD (e) Corse grid on ΓD (f) Shrunk grid on ΓD

Fig. 2. Pyramid transform on the manifold Γ . Using an appropriate bijection ξ = φ(x)
from D ⊂ R

2 to ΓD ⊂ R
3, the downsampling operation is achieved in the subset ΓD

on the manifold Γ .

For the operators R and E, the relation∫ ∞

−∞

∫ ∞

−∞
Rf(x, y)g(x, y)dxdy =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)Eg(x, y)dxdy (23)

is satisfied. Therefore, we have the relation R∗ = E. For the derivation. Fur-
thermore, eqs. (20) and (23) imply that the dual operation of Rk is Ek, that is,
(Rk)∗ = Ek.

Pyramid Transform on the Curved Manifold. From a regioin D ⊂ R
n to

a region ΓD on a curved manifolf Γ , we define a one-to-one mapping ξ = φ(x)
as the parameterisation on ΓD. Using parameterisation on Γ , we define the
downsampling by the factor σ on ΓD as

σ[ξ] = φ(σx), σx ∈ D. (24)

Figure 2 shows a process of downsampling on a two-dimensional manifold ΓD in
three-dimensional Euclidean space R3. The bijection ξ = φ(x) transforms a fine



Pyramid and Scale-Space Analysis 85

grid in (a) and a coarse grid in (b) on R
2 to a fine grind (d) and a coarse grid

in (e) on M
2, respectively. From the coarse grid (e) on M

2, we can generate a
shrrunken grid (f), using the transform from (b) to (c).

Definition 2. The pyramid transform on a manifold is generally described as

g(ξ) = f(σ[ξ], τ),
∂f

∂τ
= ΔΓ f(ξ, τ), (25)

where ΔΓ is the Laplace-Beltrami operator on the manifold.

On the unit sphere S2 centred at the origin in three-dimensional Euclidean space
R

3, the vector
ω(φ, θ) = (sin θ cosφ, sin θ sinφ, cos θ) (26)

with φ ∈ [0, 2π), θ ∈ [0, π] satisfies the relation ω(φ+ π, π − θ) = ω(φ, θ).
The scale image f(φ, θ, τ) of the image f(φ, θ) : S2 → R is defined as the

solution of the linear heat equation

∂

∂τ
f(φ, θ, τ) = ΔS2f(φ, θ, τ), f(φ, θ, 0) = f(φ, θ), (27)

where

ΔS2 :=
∂2

∂θ2
+

1

tan θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2
. (28)

On S
2, f(φ, θ) is expressed by the spherical harmonic series

f(φ, θ) =
∞∑
l=0

l∑
m=0

cml Y m
l (φ, θ), (29)

where

cml =

∫
S2

f(φ, θ)Y m
l (φ, θ) sin θdφdθ. (30)

The Gaussian scale image f(φ, θ, τ) of the scale τ is expressed as

f(φ, θ, τ) =

∞∑
l=0

l∑
m=0

(
cml e−l(l+1)τ

)
Y m
l (φ, θ). (31)

As a generalisation of the Gaussian pyramid transform, we define the pyramid
transform on the sphere as follows.

Definition 3. 3The Gaussian pyramid transform on the sphere with the factor
σ is

Rσf(φ, θ) = f(σφ, σθ, τ), (32)

where 0 ≤ σθ ≤ π and 0 ≤ σφ ≤ 2π, for an appropriate positive constant τ .

3 Setting σx = (sin σθ cosσφ, sin σθ sin σφ, cosσθ), the operation is expressed as

Rσf(x) =
1

2π

∫
SO(3)

f(Rσ[x])G(R−1y, τ )dR, |y| = 1,

for the spherical Gaussian kernel G(x, τ ).
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Figure 3 illustrates the pyramid transform on the sphere. Figure 3(a) shows that
the mapping from the exterior sphere to the interior sphere defines the spher-
ical pyramid transformation. Figures 3(b) and 3(c) show the fine- and coarse-
resolution grids on the sphere, respectively. The image on the coarse-resolution
grid is generated from the image on the fine-resolution grid by smoothing and
downsampling.

(a) Mapping from the ex-
terior sphere to the inte-
rior sphere

(b) Finer-resolution grid (c) Coarser-resolution
grid

Fig. 3. Pyramid transformation. (a) The mapping from the exterior sphere to the
interior sphere defines the spherical pyramid transformation. (b) Finer-resolution grid
on the sphere. (c) Coarser-resolution grid on the sphere. The interior and exterior
spheres are expressed using the same radii.

On S
2, the sampling I(i, j) of f(φ, θ) is defined as

I(i, j) = f(i�φ, j�θ), 0 ≤ i ≤ 2N − 1, 0 ≤ j ≤ N − 1, (33)

where �φ = �θ = π/N for a positive integer N . The downsampling operation
of factor 2 on the unit sphere is

I(i, j) = f(i(2�φ), j(2�θ)), 0 ≤ i ≤ N − 1, 0 ≤ j ≤
⌊
N

2

⌋
− 1, (34)

where�φ=�θ=π/N . The image pyramid is the sequence of images I0, I2,. . ., In,
where I0 = I. Ii is the reduced image of Ii−1.

3 Multiresolution Optical Flow Computation

Optical Flow Computation. For a spatiotemporal image f(x, t), x = (x, y)�,
the optical flow vector u = ẋ = (ẋ, ẏ)�, for ẋ = u = u(x, y) and ẏ = v = v(x, y),
of each point x = (x, y)� is the solution of the singular equation

fxu+ fyv + ft = ∇f�u+ ∂tf = 0. (35)
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To solve this equation, a regularisation method [31, 43] which minimises the
criterion

J(u) =

∫
R2

{
(∇f�u+ ∂tf)

2 + κtrJJ�} dxdy, J =

(
ux uy

vx vy

)
(36)

is employed 4for the regularisation parameter κ. The Euler-Lagrange equations
of the energy functions defined by eq. (36) and the associated diffusion equation
of the Euler-Lagrange equation are

Δu =
1

κ
(∇f�u+ ft)∇f,

∂u

∂t
= Δu− 1

κ
(∇f�u+ ft)∇f, (37)

with the boundary condition ∂u
∂n = 0 for the unit normal n on the boundary.

The semi-implicit discritisation of the associated diffusion equation in eq. (37)
is

u
(l+1)
ij − u

(l)
ij

Δτ
= (Δu)

(l)
ij − 1

κ
((∇f)�iju

(l+1)
ij +

1

κ
(∂tf)ij(∇f)ij), (38)

where (f)ij is the ijth element of the sampled function f(δi, δj) of f(x, y) for
the sample interval δ.

Using the vectorisation of the array

u = vec

⎛⎜⎜⎜⎝vec

⎛⎜⎜⎜⎝
u11 u12 · · · u1N

u21 u22 · · · u2N

...
...

. . .
...

uM1 uM2 · · · uMN

⎞⎟⎟⎟⎠ , vec

⎛⎜⎜⎜⎝
v11 v12 · · · v1N
v21 v22 · · · v2N
...

...
. . .

...
vM1 vM2 · · · vMN

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ , (39)

eq. (38) is expressed as the iteration form [46]

Au(l+1) = P�BPu(l) + c, (40)

for

A = diag(I +
Δτ

κ
Smn), Smn = (∇f)mn(∇f)�mn, (41)

B = I + ΔτL2, (42)

c = vec(c11, · · · , cMN ), cij =
Δτ

κ
(ft)ij(∇f)ij . (43)

In this iteration form, L2 is the matrix expression of the discrete Laplacian
[47, 48] for the vector u, that is,

L2 =

(
1 0
0 1

)
⊗L (44)

4

trJJ� = u2
x + u2

y + v2x + v2y = |∇u|2 + |∇v|2.
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for

L = D ⊗ I + I ⊗D, D =

⎛⎜⎜⎜⎜⎜⎝
−1 1 0 0 · · · 0 0
1 −2 1 0 · · · 0 0
0 1 0 −2 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 · · · 0 1 −1

⎞⎟⎟⎟⎟⎟⎠ . (45)

and the permutation matrix P satisfies the relation

P =

(
1 0
0 1

)
⊗Q, (46)

where Q satisfies the permutation operation such that

Q

⎛⎜⎜⎜⎝vec

⎛⎜⎜⎜⎝
u11 u12 · · · u1N

u21 u22 · · · u2N

...
...

. . .
...

uM1 uM2 · · · uMN

⎞⎟⎟⎟⎠ , vec

⎛⎜⎜⎜⎝
v11 v12 · · · v1N
v21 v22 · · · v2N
...

...
. . .

...
vM1 vM2 · · · vMN

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎝vec

⎛⎜⎜⎜⎝
u11 u12 · · · u1N

u21 u22 · · · u2N

...
...

. . .
...

uM1 uM2 · · · uMN

⎞⎟⎟⎟⎠
�

, vec

⎛⎜⎜⎜⎝
v11 v12 · · · v1N
v21 v22 · · · v2N
...

...
. . .

...
vM1 vM2 · · · vMN

⎞⎟⎟⎟⎠
�⎞⎟⎟⎟⎟⎠ . (47)

For the energy functional

J(u, n, k; f) =

∫ ∫
R2

{
(∇fn�un + ∂tf

n)2 + κtrJnJn�} |t:=kdxdy, (48)

where

Jn =

(
un
x un

y

vnx vny

)
, un =

(
un

vn

)
, (49)

which is computed from the pair 〈Rnf(x, y, k), Rnf(x, y, k + 1)〉, we define

un
k = arg

(
min
u

J(u, n, k; f)
)
. (50)

A simple method of estimating an image in a fine grid from a coarse grid is
linear interpolation. Setting u(l) and f(l) to be the optical flow vector and image,
respectively, on the l-th layer in the pyramid hierarchy, the vector

u(l) = E(u(l+1)) (51)

is computed by the linear interpolation on the fine grid from a sample on the
coarse grid u(l+1). Furthermore, the solution of the variational problem [12]

L(u(l)) =

∫ ∫
R2

{
(∇f�

(l)u
(l) + ∂tf(l))

2 + γ(u(l) − E(u(l+1)))2
}
dxdy, (52)
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where E(u) = (Eu(x, y), Ev(x, y))�, is adopted as an initial estimate of the
optical flow on the lth layer [12, 44, 43]. The minimum of L(u) is algebraically
expressed as the solution of 2× 2 matrix equations,(

I +
1

γ
S(l)

)
u(l) =

1

γ
(E(u(l+1))− ∂tf(l)∇f(l)), S(l) = ∇f(l)∇f�

(l), (53)

for each point (x, y)�, that is [12],

u(l) =

(
I +

1

γ
S(l)

)−1
1

γ
(E(u(l+1))− ∂tf(l)∇f(l)), (54)

since I + 1
γS

(l) is non-singular for γ > 0 for each (m,n)�.
Using the pyramid transform, the optical-flow field is computed by the follow-

ing algorithm, where u and w denote the optical-flow computational algorithm
at each pyramid level and the warping operation, respectively, where w(f,u) =
f(x+u). In the algorithm, ul

t = (ul, vl)� is computed from ul+1
t = (ul+1, vl+1)�

as ul = E(ul+1) and vl = E(vl+1). Furthermore,

w(f l−1
t+1 ,u

l
t) = f l−1

t+1 (x− ul
t, t), (55)

where f l
t denotes the pyramidal representation at level l of an image f(x, y, t)

at time t.

Algorithm 1. Optical Flow Computation by the Horn-Schunk Method
Using Pyramids

Data: f l
t , f

l
t+1, 0 ≤ l ≤ maximum number of the layers;

Result: u0
t = (u0

t , v
0
t );

l := maximum number of the layers;
while l �= 0, do

ul
t := arg (minu J(u, n, k; f));

f l−1
t+1 := w(f l−1

t+1 ,u
l
t);

l := l − 1;
end

Spherical Optical Flow Computation. Since the vector expression for the

spatial gradient on the unit sphere is ∇S2 =
(

∂
∂θ ,

1
sin θ

∂
∂φ

)�
, for the temporal

image f(θ, φ, t) on the unit sphere S
2, the total derivative is

d

dt
f =

∂

∂θ
f +

1

sin θ

∂

∂φ
f +

∂

∂t
f. (56)

Therefore, the solution ω̇ = v = (θ̇, φ̇)� of the equation

v�∇S2f + ft = 0 (57)

is the optical flow of image f on the unit spherical surface S
2. The computation

of the optical flow from eq. (57) is an ill-posed problem. The HS criterion for
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the computation of the optical flow [31] on the unit sphere is expressed as the
minimisation of the functional

J(θ̇, φ̇) =

∫
S2

{
(v�∇S2f + ft)

2 + α(||∇S2 θ̇||22 + ||∇S2 φ̇||22)
}
sin θdθdφ, (58)

where the L2 norm on the unit sphere is

||f(θ, φ)||22 =
1

4π2

∫
S2

|f(θ, φ)|2 sin θdθdφ.

The system of the Euler-Lagrange equations in eq. (58) is

∇�
S2

· ∇S2 θ̇ =
1

α

∂f

∂θ

(
∂f

∂θ
θ̇ +

1

sinθ

∂f

∂φ
φ̇+

∂f

∂t

)
,

∇�
S2

· ∇S2 φ̇ =
1

αsinθ

∂f

∂φ

(
∂f

∂θ
θ̇ +

1

sinθ

∂f

∂φ
φ̇+

∂f

∂t

)
. (59)

The associated diffusion equations of the Euler-Lagrange equations for the min-
imiser of eq. (58) are

∂θ̇

∂τ
= ∇�

S2
· ∇S2 θ̇ −

1

α

∂f

∂θ

(
∂f

∂θ
θ̇ +

1

sinθ

∂f

∂φ
φ̇+

∂f

∂t

)
,

∂φ̇

∂τ
= ∇�

S2
· ∇S2 φ̇− 1

αsinθ

∂f

∂φ

(
∂f

∂θ
θ̇ +

1

sinθ

∂f

∂φ
φ̇+

∂f

∂t

)
. (60)

Therefore, from

θ̇n+1 − θ̇n

Δτ
= ∇�

S2
∇S2 θ̇

n − 1

α

∂f

∂θ
(∇S2f

�υ + ft),

φ̇n+1 − φ̇n

Δτ
= ∇�

S2
∇S2 φ̇

n − 1

α sin θ

∂f

∂φ
(∇S2f

�υ + ft),

setting υ = (θ̇, φ̇)�, we have the iteration form

(I +
Δτ

α
SS2)υ

(n+1) = (I +Δτ∇�
S2

· ∇S2)υ
(n) +

1

α
ft∇S2f, (61)

where SS2 = ∇S2f∇S2f
� is the structure tensor of the spherical function with

the condition ∇S2 θ̇|θ=0,π.
On S

2, the sampling I(i, j) of f(φ, θ) is defined as

I(i, j) = f(i�φ, j�θ), 0 ≤ i ≤ 2N − 1, 0 ≤ j ≤ N − 1, (62)

where �φ = �θ = π/N for a positive integer N . Therefore, the downsampling
operation of factor 2k for a non-negative integer k on the unit sphere is

Ik(i, j) = f(i(2kΔφ), j(2
kΔθ)) (63)
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Algorithm 2. PYRAMID OPTICALFLOW(I, J, n)

Input: I : frame image
Input: J : next frame of I
Input: n: number of levels of pyramid
Result: optical flow field between images I := f(φ, θ, t) and J := f(φ, θ, t+ 1)
begin

Compute image pyramid {Ik} and {Jk} for k = 0, . . . , (n− 1) from I and J ,
respectively;
vn ← 0;
k ← n− 1;
repeat

vi ← OPTICALFLOW(Ik, Jk, EXPAND(vi+1));
k ← k − 1;

until k ≥ 0;
return v0

end

for 0 ≤ i ≤
⌊
N
2k

⌋
− 1 and 0 ≤ j ≤

⌊
N
2k

⌋
− 1, where �φ = �θ = π/N .

The pyramid images on the unit sphere are the sequence of images I0, I1, . . . , In,
where I0 = I and

Ik(i, j) = Rkf(i�φ, j�θ, μ(k)× τ0), k ≥ 2 (64)

for a positive constant τ0 and an appropriate positive increasing function5 g(k).
For a pair of image frames I := f(φ, θ, t) and J := f(φ, θ, t + 1), setting

ft := I −J , Algorithm 2 is the optical flow computation on the unit sphere with
the pyramid transform.

4 Mathematical Properties of Algorithm

Lipschitz Motion. Using Lipschitz continuity, we define the continuity of the
optical flow field such that

|u(x, t)− u(x, t− T )| ≤ C0, (65)

|u(x, t)− u(x, t− T )| ≤ C1T, (66)

|u(x, t)− u(y, t)| ≤ C2|x− y|, (67)

|u(x, t)− u(y, t− T )| ≤ (C1T + C2|x− y|), (68)

for positive constants C0, C1 and C2. Equations (65) and (66) imply that the
optical flow vector satisfies the total smooth and the Lipschitz continuity con-
ditions in the temporal domain, respectively. Furthermore, eq. (67) implies that
the optical flow vector satisfies the Lipschitz continuity condition in the space

5 The function μ(k) satisfies the condition μ(k1) ≤ μ(k2) if 1 < k1 ≤ k2. An example
is μ(k) = 10k.
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domain. Moreover, eq. (67) implies that the optical flow vector satisfies the Lip-
schitz continuity condition in the spatio-temporal domain. We call the motion
field which satisfies these conditions the Lipschitz motion.

Setting the average motion field between time t and (t+ T ) to be

uT =
1

T

∫ t+T

t

u(x, y, s)ds, (69)

eq. (65) derives the relations

|uT | ≤ c00, (70)

|uT − u| ≤ c01, (71)

for positive constants c00 and c01. Furthermore, equations (66), (67), and (68)
derive the relations

|∂tu| ≤ c1, (72)

|∇u| ≤ c2, (73)

|∂t∇u| ≤ c3, (74)

for positive constants c1, c1 and c2. Moreover, we have the relation

1

|Ω|

∫
Ω

|∇u|dxdy ≤ c4 (75)

for a positive constant c4, where Ω is a finite region around each point and |Ω|
is the area measure of the region.

Setting M(·, ·) to be an appropriate measure between two fields such as angles
or norms between two fields, these continuity conditions imply that

M(ua,a+1,ua+1,a+2) < ε1, M(ua,a+1,ua,a+k) < ε2, (76)

where uab (a < b) is the optical flow field computed between images f(·, a) and
f(·, b).

Minimisation as a Series of Convex Problems. Multiresolution optical-
flow computation establishes an algorithm which guarantees the relation

lim
n→0

un = u (77)

for each time. Since J(u, n, t; f) is a convex functional for a fixed f , this func-
tional satisfies the relation

J(un, n, t; f) < J(u, n, t; f) (78)

for un �= u. Therefore, we have the relation

J(u(n−1), n− 1, t; f) ≤ J(un, n− 1, t; f). (79)
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This relation implies that it is possible to generate a sequence which reaches
E(u0, 0, t; f) from E(un, n− 1, t; f), since

J(u(n−1), n− 1, t; f) ≤ J(E(un), n− 1, t; f)

J(u(n−2), n− 2, t; f) ≤ J(E(u(n−1)), n− 2, t; f)

... (80)

J(u1, 1, t; f) ≤ J(E(u2), 1, t; f)

J(u0, 0, t; f) ≤ J(E(u1), 0, t; f)

for a fixed f , setting u(n−1) = E(un) + d(n−1), and for a fixed time t, where
|d(n−1)| � |u(n−1)|. Figure 4 illastrates a geometrical interpretation of eq. (80).
The minimum of a fixed resolution derives an approximation of the minimum
for the next finer resolution for optical flow computation.

Convergence Conditions. Using the conditions defined by eqs. (70) and (72)
we introduce the following definitions for the optical-flow vector u.

Definition 4. If a flow vector satisfy the condition |u|m ≤ α, for |u|m =
maxx∈R2 |u(x)| we call the flow vector is α-stationary.

Definition 5. For a sufficiently small positive constant β, if the optical-flow
vector u satisfies the relation

∣∣∂u
∂t

∣∣
m

≤ β, we call the flow field β-time stationary.
In paticular, if β = 0, the flow field is stationary in the temporal domain.

For the area measure |Ω| of a tessellated region, a possible selection for α is on
the order of

√
|Ω|, that is, we can set α = c

√
|Ω| for 0 < c ≤ 1. In reference [45],

β is also assumed to be β = c 3
√
|Ω| × T , 0 < c ≤ 1, where T is the time frame

interval and is usually set as 1. These conditions give a mathematical description
of the temporal smoothness of the optical flow vector at each point.

Next we introduce the spatial smoothness assumption applied to the optical
flow vectors using the relations defined by eqs. (71), (73) and (75).

Definition 6. For a sufficiently small positive constant γ, if the optical-flow
vector u satisfies the relation |∇u| =

√
trJJ� ≤ γ in domain Ω, we call flow

field γ-spatial stationary.

Furthermore, we introduce the cross-layer relation of a flow vector.

Definition 7. For un = 1
|Ω|

∫
Ω
undx, if

|un − un|m ≤ δ

3
, |u(n−1) − E(un)|m ≤ δ

3
, |u(n−1) − u(n−1)|m ≤ δ

3
, (81)

we call un δ-layer stationary.

From Definition 4, we have the relation |un −un|m ≤ 2α. Therefore, the second
condition controls the interlayer continuity of the flow vectors. It is possible to
assume δ = c

√
|Ω|, 0 < c ≤ 1.



94 Y. Mochizuki and A. Imiya

E

u

n

0

1

2

u0=u

(a)

E2

v

uE2

w

w

un

un-1un-2

(b)

Fig. 4. Convergence geometry. (a) The minimum of a fixed resolution derives an ap-
proximation of the minimum for the next finer resolution for optical flow computation.
(b) In classical multiresolution optical flow computation, the approximate solution
converges in each frame.

(a)

t t

(b)

(c)

n n

(d)

Fig. 5. Convergence conditions for optical flow on different layers. (a) The displacement
of the α-stationary optical flow is small. (b) The β-stationary optical flow is smooth
in the time domain. (c) The γ-stationary optical flow is smooth. (d) The δ-stationary
optical flow is smooth across the layers.
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Figure 5 shows geometrical interpretations of these definitions. (a) The dis-
placement of the α-stationary optical flow is small. (b) The β-stationary optical
flow is smooth in the time domain. (c) The γ-stationary optical flow is smooth.
(d) The δ-stationary optical flow is smooth across the layers.

Setting Δnu
n(x, t) = E(un(x, t))−u(n−1)(x, t), we have the following lemma.

Lemma 1. If un is δ-layer stationary, the relation |Δnu
n(x, t)|m ≤ δ is satis-

fied.

If u(n−1) is α-stationary, that is, |u(n−1)| ≤ α, we have the relation |un|m ≤ α
Ω .

Since

|E(u(n−1))− un|m ≤ |u(n−1) − u(n−1)|m + |E(u(n−1))− un|m + |un − un|m,

we have the relation |u(n−1) − E2(u
n)|m ≤ δ.

This relation leads to the next theorem.

Theorem 1. If the optical flow vectors are δ-layer stationary, the conventional
pyramid algorithm converges.

Furthermore, since

u
(n−1)
t+1 − E(un

t ) = u
(n−1)
(t+1) − E(un

(t+1)) + E(un
(t+1))− E(un

t )

= −Δnu
n
(t+1) + E(

∂

∂t
un
t ), (82)

we have the relation

|u(n−1)
(t+1) − E(un

t )|m ≤ δ +

∣∣∣∣E(
∂

∂t
un)

∣∣∣∣
m

≤ β + δ. (83)

This relation leads to the next theorem.

Theorem 2. Setting R to be an image transform used to derive a low-resolution
image from an image f , the low-resolution image is expressed as Rf . Then, δ
is sufficiently small, and the motion is β-time stationary for a sufficiently small
constant, and Algorithm 1 proposed in the previous section converges.

This theorem guarantees the convergence of the multiresolution optical flow for
a Gaussian pyramid transform.

5 Numerical Results

5.1 Planar Images

We evaluate our method using the four test image sequences shown in Fig. 6. In
experiments, optical flows between the first and ith frames in the sequences are
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computed both with and without a scale-space pyramid transform. The pyramid
of an image is constructed from the zeroth level, which is the same as the original
image, to the fourth level by Gaussian blurring with variance σ =

√
2Δ, where

Δ is the pixel size and is set to 1, followed by downsampling. Therefore, the area
of the image at the ith level is one-quarter of that at the (i − 1)th level.

Let uk
pyr(x, y, t) and uk

ord(x, y, t) be the optical flows between f(x, y, t) and
f(x, y, t+ k), with and without a pyramid transform, respectively. We compare
the average optical flow in a long interval, 1

ku
k(x, y, t) for k = 2, . . . , n, with the

optical flow in a short interval, u1(x, y, t), where uk = uk
pyr, u

k
pyr and n+1 is the

number of images in the sequence shown in Table 1. The statistical results for
each sequence are shown in Figs. 7–10.

In general, the HS-type optical flow computation cannot to be applied for a
long-interval sequence since the displacement of motion is too long and violates
the condition of the optical flow constraint.

By using the pyramid-based computation, the errors for k = 2, . . . , 5 are
improved in all sequences.

For the sequences Old Marbled Block and Yosemite, the optical flows are
improved by using the pyramid method, while there is little difference in the
Daimler sequence, because the motion in the sequence is constant.

The Metronome sequence contains a quick-moving object, and the computa-
tion of optical flow fails in both methods, which is indicated by the large variance
of the angle error.

Table 1. Image sequences used in the experiments

Sequence # Images Size Reference

Daimler (EISATS Set2 Left) 10 512 × 512
Metronome 10 896× 1072
Old Marbled Block 10 512 × 512
Yosemite 8 316 × 252

5.2 Spherical Images

Figure 11 shows the first frames and the corresponding scale images in the
panoramic projection of real and synthetic spherical image sequences captured
by a moving omnidirectional camera passing through a corridor. The size of
the original image is 256 × 128 pixels in the equi-rectangular projection map.
Therefore, the sizes of the images in the first and second levels are 128 × 64
and 64 × 32 pixels, respectively. The scale parameters for the first and second
transforms are τ1 = 0.0001 and τ2 = 10 × τ1, respectively. In the experiments,
we set the maximum order of the spherical harmonic series to lmax = 127. The
translation is 1cm per frame in the φ = 180◦ direction, which is the horizontal
center of the image.
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Daimler

Metronome

Old Marbled Block

Yosemite

Fig. 6. First images in the sequences used in the experiments and their pyramid trans-
forms. The leftmost image is the 0th level, which is the original image, and the rightmost
image is the 4th level.
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Fig. 7. Statistics for each interval of optical flow (Daimler)
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Fig. 8. Statistics for each interval of optical flow (Metronome)



100 Y. Mochizuki and A. Imiya

Planar angle error

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 2  3  4  5  6  7  8  9

M
ea

n 
pl

an
ar

 a
ng

le
 e

rr
or

 [d
eg

] pyramid
non-pyramid

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 2  3  4  5  6  7  8  9

V
ar

ia
nc

e 
pl

an
ar

 a
ng

le
 e

rr
or

 [d
eg

]

pyramid
non-pyramid

Spacial angle error

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 2  3  4  5  6  7  8  9

M
ea

n 
sp

at
ia

l a
ng

le
 e

rr
or

pyramid
non-pyramid

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 2  3  4  5  6  7  8  9

V
ar

ia
nc

e 
sp

at
ia

l a
ng

le
 e

rr
or pyramid

non-pyramid

Norm error

 0

 0.2

 0.4

 0.6

 0.8

 1

 2  3  4  5  6  7  8  9

M
ea

n 
no

rm
 e

rr
or

pyramid
non-pyramid

 0

 0.2

 0.4

 0.6

 0.8

 1

 2  3  4  5  6  7  8  9

V
ar

ia
nc

e 
no

rm
 e

rr
or

pyramid
non-pyramid

End-point error

 0

 0.2

 0.4

 0.6

 0.8

 1

 2  3  4  5  6  7  8  9

M
ea

n 
en

d-
po

in
t e

rr
or

pyramid
non-pyramid

 0

 0.2

 0.4

 0.6

 0.8

 1

 2  3  4  5  6  7  8  9

V
ar

ia
nc

e 
en

d-
po

in
t e

rr
or

pyramid
non-pyramid

Gain

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 2  3  4  5  6  7  8  9

M
ea

n 
ga

in

pyramid
non-pyramid

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 2  3  4  5  6  7  8  9

V
ar

ia
nc

e 
ga

in

pyramid
non-pyramid

Fig. 9. Statistics for each interval of optical flow (Old Marbled Block)
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Fig. 10. Statistics for each interval of optical flow (Yosemite)
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Figures 12 and 13 show the computed optical flow with and without the pyra-
mid method for two frame intervals for the real- and synthetic-image sequences,
respectively.

Real:

Synthetic:

Fig. 11. Real- and synthetic-image sequences

level #2 level #1 level #0 (pyramid) non-pyramid

frame #0-#1

frame #0-#2

frame #0-#3

Fig. 12. Results for the real-image sequence. The HS parameter is set to α = 0.5. The
X-axis is the interval between two frames.

Since the optical flow vector defines an infinitesimal displacement, the optical
flow υ = (θ̇, φ̇)� of the spherical image defines the infinitesimal rotation

R =

⎛⎝ 0 −φ̇ θ̇

φ̇ 0 0

−θ̇ 0 0

⎞⎠ , (84)

which is equivalent to the vector u = (0, θ̇, φ̇)� ∈ R3.
To evaluate the optical flows, we use the norm and angle errors. For all points

(φ, θ), the two flow vectors on the tangent plane are compared in terms of norm
and angle errors. The absolute norm error between u and v is measured as

n = |‖u‖ − ‖v‖| , (85)
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level #2 level #1 level #0 (pyramid) non-pyramid

frame #0-#1

frame #0-#2

frame #0-#3

Fig. 13. Results for the synthetic-image sequence. The HS parameter is set to α = 0.5.
The X-axis is the interval between two frames.

the spatial angle error as

θ = cos−1 û�v̂

‖û‖ ‖v̂‖ , (86)

where û := (u�,�φ)
� and v̂ := (v�,�φ)

�, and the planar angle error as

θ = cos−1 u�v

|u||v| . (87)

We set the planar angle error to 0 if either u or v is 0.
Figures 14 and 15 show the statistical results for difference between the short

displacement flow, computed from frames t and t+1, and the long displacement
flow, computed from frames t and t+ k, for the real-image and synthetic-image
sequences, respectively. The figures are plotted for each k. The results show that
the pyramid-based optical flow computation can compute motion with both
small and large displacements.

The rotation of a robot around a point causes the rotation of a spherical image
around the axis perpendicular to the floor and translation on a panoramic image.
The translation of the robot causes a divergent optical flow on both the spherical
image and the panoramic image.

For real-image sequences, we cannot prepare ground truth for the evaluation
of computed results. If the motion appearing in the captured image sequence is
locally stationary, optical flow fields for a pair of successive images are stationary.
Therefore, the difference between the optical flow fields for a pair of successive
images is small. Using this property of the optical flow sequence, we evaluated
the results using the flow field sequence computed from the real-image sequence
without using ground truth.

The measure ω̇i,n+i − ω̇j,n+j indicates the stability of the optical flow if the
motion is uniform in an environment with relatively small obstacles. If n > 2, the
optical flow is considered as a large displacement. The measure ω̇i,n+i−ω̇∗

j,n+j in-
dicates the difference between the pyramid-based and non-pyramid-based meth-
ods. The results show that the pyramid-based method computes optical flow
accurately for image sequences with large displacement.
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Fig. 14. Statistics for the real-image sequence



Pyramid and Scale-Space Analysis 105

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 2  3  4  5  6  7  8  9

M
ea

n 
pl

an
ar

 a
ng

le
 e

rr
or

 [d
eg

] pyramid
non-pyramid

(a) Angle error (planar)

 0

 2e-05

 4e-05

 6e-05

 8e-05

 0.0001

 2  3  4  5  6  7  8  9

M
ea

n 
en

d-
po

in
t e

rr
or

pyramid
non-pyramid

(b) End-point error

 0

 2e-05

 4e-05

 6e-05

 8e-05

 0.0001

 2  3  4  5  6  7  8  9

M
ea

n 
sp

at
ia

l a
ng

le
 e

rr
or

pyramid
non-pyramid

(c) Angle error (spatial)

 0

 2e-05

 4e-05

 6e-05

 8e-05

 0.0001

 2  3  4  5  6  7  8  9

M
ea

n 
no

rm
 e

rr
or

pyramid
non-pyramid

(d) Norm error

Fig. 15. Statistics for the synthetic-image sequence
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6 Conclusions

The pyramid transform is efficiently used in optical flow computation for planar
images captured by pinhole camera systems, since the propagation of features
from coarse sampling to fine sampling allows the computation of both large
displacements in low-resolution images sampled by a coarse grid and small dis-
placements in high-resolution images sampled by a fine grid.

The Gaussian pyramid transform on the plane is achieved by downsampling of
the convolution between an image and a kernel function. Since the convolution
with the Gaussian kernel is the solution of the linear diffusion equation, the
Gaussian pyramid is obtained by applying downsampling to the solution of the
linear diffusion equation. We have extended this idea.

In images captured by an omnidirectional imaging system, moving objects
and target objects are relatively sparse, since the system images a wide-view
environment in a single view. The pyramid transform compresses a wide-view
image to a small image preserving the global features of the image. Therefore,
pyramid transforms are suitable for the preprocessing of an omnidirectional im-
age/image sequence. Since omnidirectional images are geometrical images on a
curved manifold, we introduced the pyramid transform and a multiresolution
representation on the curved manifold.

Since the real-world images captured by an imaging system mounted on a car
and on a mobile robot used for navigation and understanding of the environment
have no ground truth, for the evaluation of computer vision algorithms in a
large real-world environment, we have introduced a method to evaluate results
simultaneously for an optical flow field using the continuity assumption.
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Appendix

In this appendix, we assume that the multiscale grid system {Ωi}Li=1 satisfies
the relation

Ω0 ⊂ Ω1 ⊂ Ω2 ⊂ · · · ⊂ ΩL,

that is, {Ωi}L−1
i=1 are the coarse grid systems and ΩL is the original grid system.

Therefore, the reduction and expansion are transforms for discrete functiosn
from Ωi to Ωi−1 and from Ωi−1 to Ωi, respectively.

We compare the pyramid-transform-based linear-equation solver (PS) and the
algebraic multigrid method. Before the main comparison, we define a relaxation

http://www.mgnet.org/mgnet-tuts.html
http://www.mgnet.org/mgnet-tuts.html
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Algorithm 3. Pyramid Transform Based Linear Equation Solver

input AL := A, for 0 ≤ l ≤ L− 1, Al−1 = RAlR
�, fl−1 = Rfl,

u0 := an initial vector;
output u := uL;
for l := 0 to L− 1 do

vl+1 := Eul;
dl+1 := Sμ(Adl+1 = (fl+1 −Avl+1));
ul+1 := vl+1 + dl+1;
l := l + 1

Algorithm 4. The V-cycle Multigrid Method

input AL := A, for 0 ≤ l ≤ L− 1, Al−1 = RAlR
�, fl−1 = Rfl,

u0 := an initial vector;
output u := uL;
M(ul,fl, l);
begin

if l = 0 then
ul = A−1

l fl

else
ul := Sμ1(Aul = fl);
dl−1 := R(fl −Aul);
vl−1 := 0;
call M(vl−1, fl−1, l − 1);
ul := ul +Evl−1;
ul := Sμ2(Aul = fl);

end

solver for the system of linear equations Au = f , assuming that A is non-
singular. By selecting an appropriate invertible matrix M , the iteration form

u(n+1) = u(n) +M−1(f −Au(n))

derives the Jacobi, Gauss-Seidel or Incomplete LU decomposition methods as a
linear equation solver. We define the relaxation procedure uμ := Sμ(Au = f)
for a positive integer μ.

Using the relaxation procedure v := Sμ(Au = f), we have Algorithm 3.
For a pre-fixed positive integer L, the V-cycle multigrid method is a recursive
procedure M(ul,fl, l) in the Algorithm 4 [40]. In this procedure, u := uL is the
multigrid solution of the system of linear equations Au = f .

The PS computes an estimation of the solution in a finer grid using the equa-
tion in a coarse grid and computes the correction to the estimated solution using
the residual in the finer grid. On the other hand, the algebraic multigrid method
computes the correction to the solution in a finer grid using the reduction of the
residual in the finer grid to a coarse grid.
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Abstract. We present a feature-based surveillance pipeline which, in
contrast to traditional image-based methods, allows to learn a detailed
description of the observed background as well as of foreground objects.
The pipeline consists of motion segmentation of feature trajectories and
subsequent tracking-by-recognition with updates. Furthermore, 3D ob-
ject representations are learned in order to extract the 3D object pose
of a later object recognition. Finally, we show how such sufficiently re-
liable information is inputted into a reasoning system comparing actual
and nominal condition of an airport apron. By this, automatic situation
assessment becomes possible in a manageable and reliable way.

1 Introduction

Video surveillance is a field in which manual interpretation of camera images
dominates. Although it is known that the human assessment of video material
is a fatiguing task with a short attention span of approximately 20 minutes [19],
computer assistance for operators is still at a very basic level: The usual assis-
tance is activity detection and convenient access to video material of multiple
cameras and time instances. Even though there are continuous advances in this
field, most approaches still suffer from high false positive rates or they are very
specific to certain setups, e.g. abandoned bag detection [2] or traffic analysis [6].
Furthermore, recent advances in object tracking, crowd analysis, face recogni-
tion, and unusual event detection are not integrated into commercial systems
since they are too complex to handle or compute, or since their output is too
noisy for an automatic situation assessment.

Summing up, computer vision approaches in surveillance allow remarkably-
well results in certain disciplines, but the high-level classification “is everything
alright?” has not been tackled yet. Besides the problem of imprecise knowledge
about the actual condition of the scene, the nominal condition (the background
knowledge) is also not present. This is crucial for detecting unusual events and
surveillance in general, since critical events cannot be trained by example.

F. Dellaert et al. (Eds.): Real-World Scene Analysis 2011, LNCS 7474, pp. 110–130, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Fig. 1. System overview for a feature-based situation analysis system. For simplicity,
the 3D tracking-by-recognition pipeline of only one camera is displayed. In a complete
system, multiple tracking-by-recognition systems from different cameras are connected
to one inference system.

In this paper we propose a solution to both problems. As displayed in Figure 1,
we extract scene knowledge by the tracking by recognition approach. Since such
a feature-based surveillance system is sufficiently reliable, we can use its output
as facts in a reasoning system. Here, the actual condition is compared with a
nominal condition. If both states differ in a critical way, a warning is generated
in order to steer the operator’s attention. Such reasoning systems are widely
used in medical applications and are thus manageable and reliable at the same
time.

Our approach targets the automatic situation assessment for event-based
video surveillance (ASEV) on airport aprons. However, since the methods used
are quite general, they can be transferred easily to other scenarios. In the apron
scenario, the conflict between privacy and safety is very high since ramp staff
is monitored all the time and safety concerns are big. Since the whole approach
can be applied without knowing the original images, we believe that privacy as
well as safety can be enhanced.

This paper is organized as follows: In Section 2, we show how the image-based
pipeline in object tracking can be replaced by a feature-based which enables
learning object features by motion segmentation. By this, tracking by recognition
can be used which is very robust and allows to deal with long-time occlusions. In
Section 3, we show that on top of this, the 3D feature point cloud of an object can
be learned, which is used for 3D tracking by recognition. In Section 4, we describe
our reasoning system. In Section 5, we demonstrate how to create background
masks for privacy protection and to direct the attention of the operators. Finally,
a conclusion is given in Section 6.
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2 Feature-Based vs. Image-Based Surveillance

2.1 Image-Based Surveillance

Traditional image-based approaches reason on a stream of camera images It(x),
where x is a coordinate of a pixel in image It which may contain intensity, color,
and depth information. To detect and track objects in a scene, the change in
multiple images It is analyzed. A comprehensive survey can be found in [31]. In
surveillance scenarios, two approaches are commonly used: background removal
and optical flow.

In background removal, a binary foreground mask F (x) is defined for every
x by learning the probabilistic distribution pb of the background

F (x) =

{
1 pb(I(x)|x) < τi

0 otherwise .
(1)

In early approaches [41], pb was modeled by a pixel-wise GaussianN (μ(x), C(x))
containing the two parameters standard deviation μ(x), which denotes an av-
erage background image, and variance, or covariance matrix respectively, C(x),
which describes the variability of pixel x over time. More recent approaches use
multivariate Gaussian distributions [39], non-linear colorspaces [34], and hier-
archical modeling instead of pixel-wise [10]. In a post-processing step, obvious
errors in F like very small or very elongated objects are deleted. Furthermore,
special methods for shadow and reflection handling like [37] are applied. Since
the background model itself is learned and updated using F , drifting occurs if
the background is hidden by foreground objects for a long time or if foreground
is falsely classified as background1. An example for this is if a foreground ob-
ject is looking similar to the background (cf. Figure 2). On the other side, if
the background is classified as foreground, it is not updated and the modeling
becomes worse (cf. Figure 3). The main idea to circumvent this is to learn the
background model from long time spans (one day or more) which has a very
high computational complexity and which is not responsive if the background
changes. In terms of artificial intelligence, the approaches suffer from the adap-
tivity vs. plasticity dilemma [8].

Optical flow approaches analyze the spatial difference between two consecutive
images It−1 and It, to find the discrete displacement field D(x) by

argmin
D

‖It−1(x)− It(x−D(x))‖2 . (2)

1 These approaches are recursive as the learning is performed on previous classifica-
tions. There also exist non-recursive background models which estimate pb on the
basis of Nt previous images, e.g. by computing the pixel-wise median [7]. Such ap-
proaches are not taken into account since Nt must be much larger than the amount
of frames a foreground object may rest still. By this, the computational complexity
becomes too high and the model looses responsiveness since an update would take
Nt frames.
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Fig. 2. Background removal using a multivariate background probability. Displayed
are input image It, the average background μ, and the foreground mask F . It can be
observed, that the shirt of the left person is only partially detected as foreground since
it looks similar to the background. Furthermore, shadows on the floor are detected as
foreground.

(a) Original view at time t0. (b) Illumination changes
and reflections at t0 + 10s.

(c) Foreground from the
background model of (b).

Fig. 3. Diverged Gaussian mixture background model caused by illumination changing
faster than the model adapted

By assuming a static camera, the foreground F can be found from D by

F (x) =

{
1 ‖D(x)‖ > τf

0 otherwise .
(3)

However, determining the optical flow in (2) is complex and since foreground
objects do not necessarily move (e.g. a car waiting before traffic lights), this
method can only be used as a prior for (1).

To recapitulate: In image-based methods only the background is described,
as, in contrast to the foreground, it can be learned over a long time. However, the
performance of the various approaches is still not sufficient for many real-world
applications and high gains are still to be achieved [30]. A stable prior for motion
segmentation is the optical flow which is very complex even for two consecutive
images, but for reliable detection motion has to be analyzed over longer time
spans. In the following section we propose to adapt the methods of image-based
surveillance to feature-based. This has the advantage, that background as well
as foreground can be learned and that motion can be analyzed over longer time
spans.



114 R. Dragon et al.

Fig. 4. A feature-camera (blue frame) captures images, computes local features and
only exports the features

2.2 Tracking in Feature-Based Surveillance

In the past decade, the combination of interest point detectors like SIFT [24]
and Harris-affine [26] with local descriptor like SIFT, GLOH [27] and MSER
[25] has been successfully applied in a high number of computer vision prob-
lems. The main reason for that is the fact, that establishing local image corre-
spondences, which is one of the main computer vision problems, can be solved
by inexpensive descriptor matching. Since local image descriptors are used to
establish correspondences, such feature-based approaches are able to cope with
partial occlusions and clutter. The descriptors are intentionally built such that
changes in illumination as well as scaling and rotation of the image plane leaves
them mostly unchanged. Thus, the main problem in modeling, namely that the
background changes due to illumination, is suppressed up to a high degree when
using local image descriptors. This can be observed in Figure 5, in which the illu-
mination changes, which caused a background model to diverge in Figure 3, are
still acceptable in order to establish correspondences between the two images.
This gives hope that we can describe the background by means of features.

In the case of video surveillance, privacy protection plays an important role.
Since for feature-based methods no original image data is needed, a feature cam-
era could be used. As depicted in Figure 4, the features are extracted inside the
camera such that no image data leaves the camera. By this, unauthorized access
to the camera images becomes by far harder2.

2.3 Learning Object Features by Motion Segmentation

In this section we demonstrate that by using local features, the background can
be described even if the camera moves. Furthermore, we can also describe fore-
ground objects and by this learn their local features. In contrast to image-based
modeling, our feature-based approach distinguishes objects by their motions,

2 Recently, methods to reconstruct images from local image features were proposed
[40]. By this, the global scene layout could be recovered remarkably well. However,
details cannot be not recovered with this method since they are mainly hallucinated.
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Fig. 5. SIFT correspondences (top), and complementary NF feature [11] correspon-
dences (bottom) between the views in Figures (a) and (b) which caused the image-
based background model to diverge. From the point-of-view of illumination invariant
features, the images are similar since the correspondences cover wide areas.

not their appearance. Thus, we extract the foreground by motion segmentation
instead of building a pixel-wise foreground mask.

In the field of motion segmentation, feature trajectories Ti are clustered
into groups of common motion. In the surveillance context, the camera is far
from the object. By this, motion groups correspond to objects with different
motions and motion segmentation becomes equivalent to object segmentation
(cf. Figure 6). Motion segmentation approaches can be differentiated into
subspace- and affinity-based approaches. Subspace-based approaches like
[9,12,13,42] assume complete trajectories Ti which are inserted into a data ma-
trix W . Since rigid object trajectories form linear subspaces in W , different
object motions can be segmented by analysis of these subspaces. However, since
we cannot provide complete data, we use an affinity-based approach like [5,17].
Here, the square affinity matrix A is computed which consists of pair-wise affin-
ity measures ai,j between trajectories Ti and Tj . In these measures, the spatial
distance between Ti and Tj as well as their similarity in motion is included. In
a final spectral clustering [28] step, the association of the trajectories to motion
clusters is found.
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(a) Foreground object (b) Background

Fig. 6. Motion segmentation of SIFT features. Although the airplane performs a turn-
ing operation in which perspective effects are non-negligible, motion segmentation cor-
responds to object segmentation.

Motion segmentation is applied to trajectories found from subsequent feature
correspondences. In order to achieve longer trajectories, we apply the trajectory
repair idea from [38]. The problem is computationally tractable since only a
window over a time range sufficient for motion segmentation needs to be ana-
lyzed, here 5 s. Furthermore, the here-used independently-detected features al-
low satisfactory results when matching over a time span of 0.5 s, which is much
longer than tracked features like KLT [36]. Thus, we analyze windows of N = 10
frames taken at 2Hz. By this, we can reliably segment motion if it is noticeably
fast during the given window size and if the motion consists of enough features.
The first constraint could be weakened by enlarging the window size. Regard-
ing the second constraint, we deal with this by using high image resolution (up
to 1.5Mpel) or by using pan-tilt-zoom (PTZ) cameras scanning the scene with
high zoom until they detect motion. To our experience, objects need to own
approximately 10 to 15 detected features in order to reliably get detected (cf.
Figure 7).

Motion segmentation extracts sets of local features Mi(t), corresponding to
different motions i at frame t. We store these sets in the object feature database
O = {M1(t1),M2(t1), . . . ,M1(t2), . . .} in order to compare the features with
later input data. In contrast to image-based approaches, the background is
treated as a regular object. As demonstrated in Figure 8, this allows using non-
static cameras like PTZ cameras performing camera motion in the analyzed
frames. Since the objects are described by their features and their geometric
alignment, illumination changes as well as shadows and reflections do not pose
major problems.
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Fig. 7. Motion segmentation of small objects. Compared to the image resolution of
1440 × 1080 pel2, the objects are quite small with approximately 110 × 70 pel2 (left)
and 100 × 100 pel2 (right). Similarly, the number of features (18 and 15, respectively)
is only a fraction of the global scene (966 and 891, respectively).

Fig. 8. Motion segmentation under panning and tilting. The four images are taken
during a time span of 2 s. As it can be observed, that although the segmented airplane
is moving slowly compared to the panning, it is segmented correctly.
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Fig. 9. Four views automatically learned from motion-segmented feature trajectories
of the foreground object in Figure (a)

3 3D Object Learning and Recognition

The results of motion segmentation as described in Section 2.3 could be used
for multiple instance learning (cf. Figure 9). However for critical applications
such as airport surveillance, 2D object recognition is usually not sufficient for a
fully-informed operation as it merely permits to find the 2D camera coordinates
of the object location. In contrast, 3D tracking allows to recover complete 3D
information, such as object location, pose and motion direction, expressing them
with respect to a world coordinate frame. In these coordinates, safety rules of
an airport apron can easily be expressed (cf. Section 4), e.g. the rule “only the
scheduled airplanes may enter the taxi ways”.

One of the possible choices for the detection and tracking framework is the
model-based approach pioneered in [18,32], where SIFT features [24] are used to
reconstruct in an off-line fashion a 3D point cloud representing the target object.
Once the model database has been assembled, on-line recognition and tracking
can be performed by establishing putative correspondences between 3D model
and current frame features and then estimating the 3D object pose.
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M
Z = (X,F)

v1 v2 v3

X

f1 f2 f3 Appearance
Information

Fig. 10. 3D feature Z built from views v1, v2, and v3. The 3D descriptor F is established
from the corresponding 2D descriptors f1, f2, and f3, respectively.

3.1 3D Object Learning

The tracking-by-recognition approach requires first to build a set of 3D object
models in an off-line stage. Here we start from a set of training views which are
automatically found from motion-segmented trajectories Ti = (xi,1, . . . ,xi,n) (cf.
Section 2.3 and Figure 6). So like in similar approaches [3,20,21,23,29], we detect
and track SIFT features over visually close training views. The trajectories are
input to a Structure from Motion (SfM) algorithm that outputs a 3D point cloud
that represents the object structure. The feature descriptors fi,j , observed at the
respective 2D positions xi,j to which a corresponding 3D point Xi projects, are
provided together with the 3D point coordinates. By doing so, it is possible to
implement a 3D-2D feature matching at the recognition and tracking stage.

Since the set of descriptors can be highly redundant, particularly in case of
long tracks, many of the above methods employ a feature quantization step.
In [20], a hierarchical quantization is used for preserving matching ambiguities
until the pose estimation step, where incoherent matches are dropped. Feature
quantization can also be motivated by dimensionality reduction, as the 3D model
size is usually too large to keep the system operating in real-time. This approach
is shared by [3] and [21], where feature quantization is applied for outdoor scene
reconstruction and image registration, respectively.

In order to form a 3D feature Z, for each 3D point X we compute a 3D
feature descriptor F containing appearance information from multiple views by
applying a high-dimensional mean-shift clustering to the set of corresponding
features:

Z = (X,F). (4)

In Figure 10, an example of building of a 3D feature Z is shown. In this case, F
contains the matching 2D descriptors f1,f2,f3 from views v1,v2,v3.
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3.2 3D Object Recognition

Once the model database has been assembled, the general on-line operation
envisages the creation of 2D-3D correspondences between frame features and
model features, and the estimation of the pose by solving the projection problem.

A set of features is extracted in each frame and it is matched against the
model feature set by using one of the following matching strategies. The most
straightforward approach is to match the entire set of detected features against
the model feature set by using a matching strategy based on the second-nearest-
neighbor (2nn) distance ratio, as proposed by [24]. That is, a match (f,fnn)
between a feature f and its nearest-neighbor feature fnn is considered to be
correct if

d(f,fnn) < d(f,f2nn) · τ, (5)

where d(·,·) is an appropriate distance metric, f2nn is the second nearest neighbor
for f in the d(·,·) metric, and τ is a threshold, given as 0.7 in the original
paper [24]. Since the 2nn distance ratio strategy was conceived in order to reject
false matches due to background clutter, it may remove many true positives
if repetitive patterns or texture symmetries occur on the object surface. In [20]
countermeasures are proposed based on dropping the 2nn strategy and employing
hierarchical feature quantization and pose estimation constraints. Matches are
created by thresholding their normalized cross correlation and stored along with
their 3D location. Potentially spatial incoherent matches are kept until a pose
estimation step, where geometric constraints will single out the true matches
and discard the others. On the contrary, the 2nn approach can be maintained
if difficult feature arrangements are handled by spatially clustering the original
image feature set, e.g., by using mean shift clustering. Since features tend to
cluster over the object surface, individual objects can be isolated before the
matching step and thus, ambiguities can be avoided.3 A visual example of the
usefulness of spatial feature clustering is given in Figure 11.

Once feature clusters are established, object recognition and pose estimation is
performed on the clusters, as represented in the block diagram given in Figure 12.
Attention has to be payed as clustering may split or merge objects, visible in
Figure 11.

After the matching, putative correspondences are established. Given a set of
N 2D-3D correspondences (xi,X i), a projection matrix P is to be computed
such that

P = argmin
P̃

N∑
i=1

D(xi, P̃Xi)
2 . (6)

Thus, P minimizes the sum of the squared re-projection errors D over all cor-
respondences. Since the putative matches set contains outliers, a statistically
robust approach is typically used in order to estimate the mathematical model

3 Of course the motion segmentation methods from Section 2.3 could be applied here,
too. However this clustering method only works if an object is currently moving.
Thus, the tracking-by-recognition paradigm would be dismissed.
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Fig. 11. By spatial feature clustering, the objects in the scene are segmented into five
different clusters. This increases the inlier-outlier ratio for each cluster, and permits
to avoid mismatches due to objects having a similar appearance, as in the case of the
three airplanes.

underlying the samples. One of the most used algorithms is Random Sample
Consensus (RANSAC) [14], in which a minimal subset of samples is iteratively
used to estimate the model parameters, and the rest of the samples ranks the
model consensus and can eventually be used to refine the parameters themselves.

If the minimal subset is created by randomly selecting the samples, no ad-
ditional information regarding the importance of each sample and the relations
among the samples themselves is used. Several approaches have been proposed
in the literature in order to guide the RANSAC sampling by exploiting prop-
erties or constraints among the samples. E.g., in [20], a geometrical constraint
based on the co-visibility of the 3D points in the sample set is used. After the
first sample has been chosen, the part of the remaining samples that do not
share any common view in the training images is discarded. This concept can
be easily extended by giving the samples a weight-based priority computed from
additional 3D information. For each feature, we compute weights on the basis
on their frequency in the training images and of their co-visibility with other
samples. These weights guide RANSAC towards a better selection, thus improv-
ing the final robustness and accuracy of the estimated pose. [23] only exploits
feature priority in the matching step for the purpose of speeding up the process.
Instead of using all model features for matching, they propose to use a subset
of features selected on the basis of priorities representing feature frequency and
co-frequency.
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Spatial
Feature
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Feature
Matching

Pose Estimation
with

RANSAC

Fig. 12. On-line stage. SIFT features are detected and spatially clustered. Each cluster
is matched against a database object and its pose is estimated using RANSAC. The
model cloud is reprojected in orange to show the precision of the estimated pose.

In Table 1, an overview of the contribution of the guided sampling in terms
of average iteration count for different inlier ratios is given until at least 75% of
the inliers are found. The results are averaged over 1000 runs per frame for a
short video sequence. It can be observed that our method is highly beneficial in
real-time applications where the permitted number of iterations is small.

Table 1. Mean and standard deviation of the number of iterations for different inlier
ratios

Inlier ratio No weight Guided Sampling

60% 39.9 ± 40.6 5.8± 6.2
50% 110.5 ± 113.3 9.4± 12.6
40% 309.0 ± 286.7 17.4± 19.9
30% 627.4 ± 515.0 19.0± 27.6
20% 1428.5 ± 1294.6 29.1± 56.1

After the minimal subset is determined, a method for estimating the pose
P given in Eq. (6) that best fits the 2D-3D point pairs is used. This is called
the Perspective-n-Point (PnP) problem. The algorithms for estimating the pose
presented in the literature are countless, e.g., DLT, clamped DLT, POSIT, P4P,
etc., and therefore the choice depends mainly on the complexity and time con-
straints given by the application considered. In case of real-time applications,
like the one at hand, the Enhanced PnP (EPnP) method is a very common
choice. It guarantees speed, as its complexity is only O(n), and accuracy at the
same time, as shown in detail in [22]. Finally, the estimated pose that holds the
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maximum consensus among the entire set of correspondences is returned and
thus, the object is considered detected.

3.3 3D Object Tracking

Regarding object tracking, different strategies are typically presented in the lit-
erature, as, e.g., tracking-by-recognition. Advantages of the later method are the
absence of error drift and the fact that tracking failures do not affect successive
frames as each frame is treated separately.

However, the appearance between the object model and its current projection
on the image plane may vary too much. This can be due to the fact that the
model was created off-line from a finite and small number of views and that
SIFT features do not offer enough invariance. Therefore, it proves to be a hard
problem if the object pose is far from the training images. In order to cope with
this, [20] and [21] have proposed adding synthetic features created by deforming
the training images in an affine way and extracting the features out of them. A
clear disadvantage of this approach is the increase in size of the model, which
can enlarge by more than one order of magnitude. Further, the distinctivity
is lowered. A possible alternative is to use a model updating stage, where the
model description is augmented after it has been detected. As a matter of fact, a
matching image descriptor provides a reasonable approximation of the appear-
ance of the same 3D point in the following frame. By this, the detection rate is
boosted without a loss in precision. Some further images showing the tracking
performance of our system are given in Figure 13.

4 Reasoning on Streams of Object Recognitions
and Detections

The aim of the ASEV (automatic situation assessment for event-based video
surveillance) system is to detect potentially safety-critical situations based on
the image analysis results. To achieve this goal, the detected status is continually
checked against safety rules, and violations are displayed as warnings to video
surveillance operators. This section explains the challenges involved into this
task, and how they were solved.

The reasoning component uses Semantic Web standards to represent the rele-
vant expert knowledge. The airport domain is modeled using the Web Ontology
Language (OWL Lite, [1]), including types and properties of objects found on the
airport ramp, in particular the different vehicle types (cf. Figure 14). Safety rules
cannot be expressed in OWL Lite, therefore this knowledge is captured as classi-
cal logical rules, represented in the Rule Interchange Format (RIF, [4]). Figure 15
shows as example a distance rule between moving planes and any other vehicle.
These static expert knowledge is taken from official safety procedures, e.g. [15],
from airport-internal guidelines, from work plans and flight schedules. During
runtime, the facts describing the current situation are added to the knowledge
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Fig. 13. Example of the 3D tracking of a toy plane. Different situations are presented:
blank background, clutter and a combination of clutter and occlusion. The model cloud
is reprojected in orange to show the preciseness of the estimated pose.
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Fig. 14. Part of the airport ontology

base. These facts are generated by the object recognition algorithms described
in Section 3.

Usual reasoning systems rely on the assumption that the knowledge based is
rather static, while users pose a variety of queries over time. These systems are
optimized to index and preprocess the facts and rules such that any arbitrary
query can be processed efficiently. However, an update of the knowledge base
invalidates intermediate results and requires a complete recomputation [33]. For
the airport surveillance context, this assumption does not hold. New facts arrive
every second, while only one query is ever posed to the system, i.e., “is there
a safety critical situation?” In addition, the majority of incoming facts are not
new, but fact updates concerning the position, orientation, and speed of planes
and vehicles on the ramp. Therefore, existing reasoning engines could not be
used to process the incoming object detection event stream efficiently.

Instead, we implemented a novel reasoning system, based on the Rete al-
gorithm [16]. This algorithm works as follows: In an offline step, the domain
knowledge captured in rules is converted into a directed graph, consisting of two
types of nodes, α- and β-nodes. α-nodes represent conditions expressed in one of
the rules, and β-nodes join these conditions. The leafs of this graph are produc-
tions which generate additional facts derived through the rule network. Figure 16
shows a part of the Rete network for the distance rules from Figure 15. Arriving
facts are forwarded to all α-nodes, which act as filters (shown on the top right).
Matching facts are stored in the corresponding α memory nodes. For example,
the top α memory node maintains a list of all objects of type asev:Vehicle. If
a fact satisfies the constraint represented by an α-node, it is forwarded to all
β-nodes which rely on it. These nodes now perform a look-up in their β memory
to check if there is a join possible. For example, the leftmost β join node matches
objects which are vehicles and have a speed greater than 0. If a match could be
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# Rule1: any vehicle with speed ¿ 0 is moving
If And( rdf:type(?v asev:Vehicle) asev:speed(?v ?s) numeric-greater-than(?s, 0.0) )
Then Assert( asev:moving(?v) )

# Rule2: any aircraft with active anti-collision beacon is moving
If And( rdf:type(?a asev:Aircraft) asev:hasBeacon(?a ?acb) asev:active(?acb ”true”) )
Then Assert( asev:moving(?a) )

# Rule3: create warning if vehicle distance to moving aircraft is too low
If And(

rdf:type(?a asev:Aircraft) asev:moving(?a)
rdf:type(?b asev:Vehicle) asev:distance(?d ?a ?b)
numeric-less-than(?d, asev:MinDistanceMoving) )

Then
Assert(rdf:type(?w asev:DistanceWarning))
Assert(rdfs:member(asev:warnings ?w))
Assert(asev:participant(?w ?a))
Assert(asev:participant(?w ?b))

Fig. 15. Distance rule between moving aircraft and vehicles, modeled in RIF

type(?v, asev:Vehicle) 

Alpha-Network 

Alpha memory node 

greater-than(?s, 0.0) 

matches for  
Vehicle with speed > 0 

speed(?v, ?s) 

matches for 
Aircraft with active beacon 

join for rule2 

type(?v, asev:Aircraft) 

Beta join node 

Beta memory node 

moving(?v) 

Production node 

Facts 

join for rule3 

matches for 
Rule3 

Warning 

… 

… 

Fig. 16. Sample Rete network for distance rules from Figure 15

found, the result is forwarded to its successors. A successful join at a leaf node
triggers a production, which creates a derived fact. These facts are fed back into
the Rete-network to possibly derive further facts.
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In the original Rete algorithm, nodes hold references to related facts. To
optimize this approach for fact updates, we introduce an additional reverse index,
which allows a lookup of all α- and β-nodes maintaining this fact in their memory.
When an update for a fact arrives, this enables very efficient updating of the
respective node memories, to take the new value into account.

The reasoning engine is connected to the video analysis component via an
XML event stream. The tracking-by-recognition component sends high-level ob-
ject attributes such as type, position, speed, etc., and updates their values based
on the analysis of each frame. If a safety-critical situation is detected, the rea-
soning engine sends a warning message to the video operator application.

5 Logging and Controlling Access to Surveillance Data

Let us imagine a feature-based system like the one presented here reports a crit-
ical event. An operator would then like to have a view on the scene before he
takes further steps. If pure feature-cameras (cf. Figure 4) are used, this is not
possible since no image signal leaves the camera. However, by introducing a sys-
tem which controls access to images and logs this access, the use of surveillance
image data becomes transparent. The following access rules are self-explaining:

– Since the scene content is known, it is logged which operator observes which
object. Thus, mis-use by stalking is documented. Furthermore, regions with
irrelevant information can masked out (cf. Figure 17). In order to provide
context to an operator, such regions may instead be faded out or blurred.

– An operator is allowed to get access to image data only if a critical event is
detected. Overriding this is possible, but it is logged.

In order to quicklymask parts of the image, we use amethod similar to the feature-
based background removal from [35]. Given a set of features X+ and X− which
should be visible or not, respectively, we search for a binary segmentation s(x),
which is determined using spatial background and foreground probabilities p:

s(x) =

{
1 p(x|X+) > p(x|X−)

0 otherwise.
(7)

The spatial probabilities are estimated from kernel density estimation of X =
{x1, . . . ,xn} as

p(x|X ) =
1

n

n∑
i=1

N (x|xi, Ci) (8)

using the normal kernel N with adaptive bandwidth Ci, estimated from the
covariance of the nearest 10% neighbors of xi.

By this, the attention of operators can be directed to important objects and
unimportant image parts can be masked out. Furthermore, security and privacy
is enhanced at the same time.
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Fig. 17. Dense segmentation from SIFT feature density of the moving airplane and
the resting fueling vehicle from the sequence displayed in Figure 9

6 Conclusion

In this paper, we have shown the concepts of the feature-based surveillance sys-
tem ASEV (automatic situation assessment for event-driven video surveillance).
It consists of a 3D tracking-by-detection system which inputs 3D information
about visible objects into a reasoning system. By this, the current condition can
be compared with a nominal condition which is specified by a rule set. Further-
more we have shown how to learn 3D models from motion and how foreground
masks can be created from sets of foreground and background features.

Compared to traditional image-based surveillance, feature-based surveillance
has the advantage that it is much more robust towards changes in illumination or
background motion. Furthermore, our ASEV system allows to describe the fore-
ground as well, which in turn enables tracking through long-time occlusions. The
reasoning system facilitates comprehensive and reliable output event messages
to operators. Since the scene interpretation can be used to mask out non-related
scene content, the attention of surveillance operators is directed and privacy is
enhanced at the same time.
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Abstract. We propose the Generalized Subgraph Preconditioners (GSP) to solve
large-scale bundle adjustment problems efficiently. In contrast with previous work
using either direct or iterative methods alone, GSP combines their advantages and
is significantly faster on large datasets. Similar to [12], the main idea is to identify
a sub-problem (subgraph) that can be solved efficiently by direct methods and use
its solution to build a preconditioner for the conjugate gradient method. The dif-
ference is that GSP is more general and leads to more effective preconditioners.
When applied to the “bal” datasets [2], our method shows promising results.

1 Introduction

Large-scale visual modeling with Structure from Motion (SfM) algorithms is an impor-
tant problem. Recently, systems capable of handling millions of images have been built
to realize this task [1,13,23], enabling automated 3D model generation from unstruc-
tured internet photo collections.

Bundle adjustment is used to find the optimal estimates of camera poses and 3-D
points [26]. Mathematically speaking, it refers to the problem of minimizing the total
reprojection error of the 3-D points in the images. The classical strategy to solve this
problem is to apply a damped Newton’s method (e.g., Levenberg-Marquardt) and solve
the reduced camera system by Cholesky factorization. However, this strategy does not
scale well because the memory requirement of factorization methods grows quadrati-
cally with the number of variables in the worst case.

Several recent works suggest using iterative methods such as the conjugate gradient
(CG) method to solve the linear systems arising in bundle adjustment, as its memory
requirement grows only linearly with the number of variables. The convergence speed
of the CG method depends on how well conditioned the original problem is [21]. Hence
having a good preconditioner is crucial to make CG converge faster, yet most of the pre-
vious approaches [2,7,8,14] apply only standard preconditioning techniques, neglecting
to exploit SfM-specific constraints.

In robotics, Dellaert et al. [12] proposed the Subgraph-Preconditioned Conjugate
Gradients method (SPCG), which aims to combine the advantages of direct and itera-
tive methods to solve 2-D Simultaneous Localization and Mapping (SLAM) problems.
The main idea is to pick a subset of measurements that can be solved efficiently by
direct methods, and use it to build a preconditioner for the CG method. They show that
SPCG is superior to using either direct or iterative methods alone. However, for the
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bundle adjustment problem, whose graph structure is bipartite and highly unbalanced,
SPCG may over-estimate the uncertainty of the variables and hence lead to unsatisfac-
tory preconditioners.

In this paper, we propose the Generalized Subgraph Preconditioners (GSP) that adapt
SPCG to solve large-scale bundle adjustment efficiently [15]. While SPCG simply picks
a subgraph of the Jacobian factor graph, GSP operates on the Hessian factor graph
which is more general and leads to more effective preconditioners. From this perspec-
tive, the problem of designing a good subgraph preconditioner is reduced to picking a
subset of the Hessian factors that (1) can be solved efficiently by direct methods, and
also (2) make the linear systems well-conditioned.

An important open question in [12] is how to pick a good subgraph. To this end,
we introduce the ideas developed in the field of combinatorial preconditioners to build
good subgraph preconditioners [6]. The insight is that a good subgraph should not only
be sparse but also have small structural distortion (stretch) with respect to the original
graph. Yet finding the optimal subgraph that satisfies the above criteria is computation-
ally intractable for large graphs. Instead we propose a greedy algorithm to construct a
family of subgraphs by incrementally adding edges to reduce stretch without inducing
large cliques in the factorization phase.

This paper has three contributions: we (1) adapt the ideas of SPCG to the bundle
adjustment problem, (2) propose GSP which generalizes SPCG and leads to more ef-
fective subgraph preconditioners, and (3) develop a greedy algorithm based on the ideas
in combinatorial preconditioners to construct a family of subgraph preconditioners. We
use the proposed method to solve large-scale datasets and have promising results.

2 Bundle Adjustment

2.1 Formulation

Here we review the bundle adjustment, whose goal is to jointly estimate the optimal
camera parameters and 3-D structure by minimizing the total reprojection error. We
define X = {xi}Mi=1 as the camera parameters, L = {lj}Nj=1 as the 3-D points, and
Z = {zk}Kk=1 as the measurements of the 3-D point lkj in camera xki. We also define
a function hk(xki, lkj) that projects a 3-D point to an image (see Figure 1). The goal
of bundle adjustment is to find the optimal cameras X and 3-D points L that minimizes
the total reprojection error

K∑
k=1

‖hk(xki, lkj)− zk‖2. (1)

Equation (1) is nonlinear and has no closed-form solution, but suppose we know some
initial estimates of the cameras parameters and 3-D points, we can apply the first-order
Taylor expansion to linearize Equation (1) as

K∑
k=1

[h(xki, lkj) +
∂h(xki, lkj)

∂xki
δxki +

∂h(xki, lkj)

∂lkj
δlkj − zk]. (2)
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Fig. 1. The bundle adjustment problem

By setting the first-order derivative of the measurements in Equation (2) to zero, we can
build a linear system

Aθ = b, (3)

where A is a sparse rectangular matrix containing the Jacobian of the measurements
with respect to the cameras and 3-D points, θ is a vector that concatenates all δxi and
δlj , and b is a vector that concatenates the negative measurement errors. Then we solve
Equation (3) and use its solution to update the current estimates. This process is repeated
until convergence. We can see that solving bundle adjustment is equivalent to solving
a sequence of linear systems. An alternative to the second step is to form and solve the
normal equation

(ATA)θ = ATb, (4)

where ATA ≈ H is a first-order approximation to the Hessian of the total reprojection
error in Equation (1). Unfortunately, this method may not converge to the local mini-
mum if the initial estimate is close to a saddle point. To to resolve this problem, one can
solve a regularized linear system

(ATA+ λD)θ = ATb, (5)

where λ is a non-negative scalar, and D can be an identity matrix or the diagonal of
ATA. In bundle adjustment, the Levenberg-Marquardt algorithm is used to update the
value of λ according to quality of the solution. Note that the least-square linear system
corresponding to the normal equation (5) is[

A√
λD

]
θ =

[
b
0

]
. (6)

2.2 Jacobian Factor Graph Representation

The bundle adjustment problem can also be considered as an inference problem on a
factor graph. In particular, the sparse Jacobian matrix A in Equation (3) can be regarded
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x1 x2 x3

l1 l2 l3 l4

(a) (b)

Fig. 2. A toy bundle adjustment problem with three cameras and four 3-D points. All of the 3-D
points are observed by all of the cameras. (a) The Jacobian factor graph. The vertices denote the
camera and the 3-D point variables. The blue dots are the factors, and each factor indicates the
squared error term of a projection measurement. (b) The symbolic representation of the Jacobian
matrix A. Each row denotes one Jacobian factor, and each column indicates one variable.

as a Jacobian factor graph, where the vertices are the cameras and the 3-D points, and
each factor denotes the squared error term (block row) of a measurement. Figure 2
illustrates the idea with a simple example. Suppose we define the likelihood of a factor
as an exponential function of the negative squared error

P (zk|xki, lkj) ∝ exp{−‖h(xki, lkj)− zk‖2
2σ2

}, (7)

we can see that the maximum likelihood estimator of the factor graph is the minimizer
of Equation (1), i.e.

argmax
X,L

K∏
k=1

P (zk|xki, lkj) = argmin
X,L

K∑
k=1

‖h(xki, lkj)− zk‖2 (8)

This connection provides a foundation to the subgraph preconditioners.

2.3 Direct Methods

There are two ways to solve linear systems and the first one is called direct methods.
They work by factorizing the matrix to the product of an upper triangular matrix R and
its transpose, followed by a backward and forward substitution step. For instance, we
can use QR factorization to solve the linear least-square problem in Equation (3), and
use Cholesky factorization to solve the normal equation in Equation (4) [25]. On factor
graph, direct methods can be explained as a sequence of variable eliminations. Each
time we eliminate a variable (vertex), we will instantiate a new factor connecting to all
of its neighbors. After eliminating all of the variables, we will get an upper triangular
matrix R as a result. The process is illustrated in Figure 3. The variable elimination
ordering is very important to the efficiency of direct methods. Using a good ordering
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Fig. 3. An illustration of how direct methods factorize an H matrix into RtR. Suppose we have
a variable elimination ordering. On the factor graph, each time we eliminate a vertex (variable),
we will introduce a new factor (red) connecting to all of its neighbors. After eliminating all of the
vertices, we will get the factorized matrix R.
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Fig. 4. An illustration of how the elimination ordering affects the sparsity of R matrix. Suppose
we eliminate the leaf vertices first, the R matrix will be very sparse. Yet if we eliminate the
center vertex first, it will introduce a clique over the remaining vertices, and hence the R matrix
becomes very dense, which negatively affects the performance.

will result in a sparse R matrix and make the forward and backward substitutions more
efficient. Figure 4 shows how the ordering affects the sparsity of the factorized matrix.

Using direct methods to solve bundle adjustment has been well-studied in the lit-
erature [16,17,26]. The common practice is to eliminate all 3-D points first, and use
Cholesky factorization to solve the reduced camera system. Yet as shown in [2,8,14],
this strategy only works well for small problems, but does not scale satisfactorily be-
cause (1) the cost of forming and storing the reduced camera systems is prohibitive for
large problems, and (2) building the reduced camera system could destroy the sparse
problem structure and hence make it harder to solve. Therefore direct methods cannot
be directly applied to solve large-scale bundle adjustment without using hierarchical or
incremental techniques [19,22].

2.4 Iterative Methods

The second way to solve linear systems is called iterative methods. They are better
than direct methods for large problems because they involve only simple operations
and require less memory, but they may suffer from slow convergence if the original
problem is ill-conditioned.

The conjugate gradient (CG) method is the most efficient variant of iterative meth-
ods, but the convergence speed still depends on the condition number of the linear
system, which is defined as the ratio of extreme eigenvalues of the matrix ATA.

Several preconditioning techniques have been applied to make bundle adjustment
well-conditioned. Agarwal et al. [2] examined the performance of several standard pre-
conditioners and implementation strategies on large-scale datasets. Byröd and Åström
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[7,8] proposed to use multi-scale and the block Jacobi preconditioners respectively.
Jeong et al. [14] suggested using the band-diagonal of the reduced camera system as
a preconditioner. Yet these methods are very generic: We show that by exploiting the
problem structure of bundle adjustment we can obtain better preconditioners.

3 Combining the Best of Direct and Iterative Methods

3.1 Variable Reparameterization and Preconditioning

Re-parameterizing the variables can result in faster convergence for iterative methods.
In the robot mapping and localization problem, Olson et al. [20] showed that if the robot
poses are parameterized in the global coordinate system, it takes a long time to propa-
gate the loop closure constraints through the graph, but suppose the robot poses are in-
crementally parameterized along the odometry chain, so that the new variables denote
the difference between two consecutive poses, they show that it makes the stochastic
gradient descent method converge faster. Generally speaking, this re-reparameterization
can be considered as a linear transformation R between two domains.

Similarly, the preconditioned conjugate gradient method [21] also uses a precon-
ditioner R to linearly re-parameterize the problem such that the condition number be-
comes smaller and it can converge faster. This point of view indicates that linear variable
re-parametrization is essentially a preconditioning process.

3.2 Subgraph-Preconditioned Conjugate Gradient Method

Dellaert et al. [12] proposed the Subgraph-Preconditioned Conjugate Gradient (SPCG)
method, which aims to combine the advantages of direct and iterative methods to solve
2-D Simultaneous Localization and Mapping (SLAM) problems. The main idea is to
identify a sub-problem (subgraph) that can be solved efficiently by direct methods (e.g.,
a subgraph with small tree-width) and use it to build a preconditioner for the conjugate
gradient method. They show that this technique is a better alternative to using either
direct or iterative methods alone. Figure 5 illustrates the key steps of the algorithm.

Here we show how SPCG works in detail. Suppose we want to solve a linear system
(Jacobian factor graph) as in Equation (6). We pick a subset of the rows (factors), and
denote it as (A1,b1), and denote the remaining rows as (A2,b2). We can re-arrange
the linear system in Equation (6) as[

A1

A2

]
θ =

[
b1

b2

]
. (9)

After applying QR factorization to A1, we have A1 = Q1R1. By left-multiplying the
upper part with QT

1 , we get [
R1

A2

]
θ =

[
QT

1 b1

b2

]
. (10)
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Fig. 5. An illustration of the SPCG method. Suppose on the left is the original factor graph. SPCG
has three main steps: (1) Pick a sparse subgraph out of the original one. (2) Use direct methods to
factorize this sparse subgraph. This step is efficient because a good variable elimination ordering
for a sparse graph is always available. (3) Use the R matrix of the subgraph as the preconditioner
in the preconditioned conjugate gradient method to solve the original problem.
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(a) (b)

Fig. 6. An example that illustrates the SPCG technique. (a) The Jacobian factor graph that cor-
responds to a subset of the measurements (sub-problem) in Figure 2. (b) The symbolic matrix
representation of the subgraph.

Suppose c1 = QT
1 b1 and θ̄ = R−1

1 c1 is the optimal solution by considering only the
upper part of Equation (9). Then by re-parameterizing y = R1(θ − θ̄), we have[

I
A2R

−1
1

]
y =

[
0
c2

]
, (11)

where c2 = b2 − A2R
−1
1 c1. Equation (11) couples the solution of the subgraph part

(R−1
1 ) to precondition the remaining part. The intuition behind the re-parameterization

is that we penalize the deviation ofy from the subgraph solution θ̄. Finally Equation (11)
is solved by using the least-squares variant of the conjugate gradient method [4].

Figure 6 illustrates the SPCG technique with an example. Suppose we pick a span-
ning tree of the original graph as in Figures 6(a) and 6(b). We can use direct methods to
factorize the spanning tree efficiently. Then we use the factorized matrix to precondition
(re-parameterize) the original problem.

In addition, we also visualize the solutions obtained from the subgraph and the solu-
tions from the original graph in Figure 7. We can see that although the solution of the
subgraph is blurry and hence inferior to that of the original graph, we can use it to build
a preconditioner to solve the original graph efficiently.
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(a)

(b)

(c) (d)

Fig. 7. The solutions obtained from solving (a) (c) the subgraph and (b) (d) the original graph on
the Chicago-2 dataset (from Grant Schindler) and the NotreDame datasets [23] respectively. Note
that the solutions of the subgraphs are more blurry than (inferior to) those of the original graphs,
but they could serve as good preconditioners to solve the original graph.



Generalized Subgraph Preconditioners for Large-Scale Bundle Adjustment 139

4 Generalized Subgraph Preconditioners

Although SPCG works well for 2-D pose SLAM problems, its performance is actu-
ally worse than the Jacobi preconditioner, a simple and empirically effective precondi-
tioner [2,8,14], in our experiments on large-scale bundle adjustment. This indicates that
we need a different representation to design subgraph preconditioners.

To this end, we propose the Generalized Subgraph Preconditioners (GSP), which
generalize SPCG and are more suitable for large-scale bundle adjustment. While SPCG
works on the Jacobian factor graph where each measurement corresponds to a Jacobian
factor, GSP works on the Hessian factor graph where each measurement contribute
three factors to the graph. We will show that this finer-grained graph possesses greater
representation power than the Jacobian factor graph.

Compared to conventional matrix preconditioning machinery, GSP not only provides
an expressive language to design subgraph preconditioners, but also explains the stan-
dard Jacobi preconditioner naturally.

4.1 Hessian Factor Graph Representation

To gain insight into the performance properties of both Jacobi and SPCG precondi-
tioners, we investigate the structure of the Hessian matrix H ≈ ATA appearing in
the normal equation (4). The Hessian matrix can also be represented as a graph, more
specifically a Gaussian Markov Random Field (GMRF). Every principal sub-matrix of
H corresponds to the information matrix of the conditional distribution given the other
variables [11,18]. In this sense, solving the GMRF is analogous to solving Equation (4).

Yet a GMRF is usually represented as an undirected graph which is not expressive
enough for designing subgraph preconditioners. It prompts us to resort to a finer-grained
Hessian factor graph representation. The main difference is that we create two unary and
one binary factors out of each measurement, and accumulate all of them in the Hessian

�� �� ��
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(a) (b)

Fig. 8. The Hessian representation of the bundle adjustment problem in Figure 2. (a) The Hessian
factor graph. The red dots denote unary factors while the green dots denote binary factors. This
representation resembles to the Gaussian Markov Random Field representation [11,18]. (b) The
symbolic representation of the Hessian matrix H ≈ ATA. Both rows and columns indicate
variables. A diagonal (red) block indicates the certainty of a variable given the other variables are
known. An off-diagonal block indicates whether two variables are correlated given that the other
variables are known. Each non-zero off-diagonal (green) block corresponds to a Jacobian factor
in Figure 2(a) or a binary Hessian factor in (a).
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factor graph. The number of unary factors attached to a variable is equal to the number
of the associated measurements, with one binary factor per measurement.

As an example, consider the measurement between x0 and l0 in Figure 2(a) and
assume Ax0 and Al0 are the corresponding block entries in the first row of the Jacobian
matrix in Figure 2(b). Since the Hessian matrix is the sum of outer product of the block
rows of the Jacobian matrix, we can see that this measurement actually corresponds to
three terms in the Hessian matrix: AT

x0
Ax0 , AT

l0
Al0 and AT

x0
Al0 . Notice that the first

two are unary factors of x0 and l0, and the third is a binary factor between them. They
encode the information contributed by this measurement to the conditional Gaussian
densities. Repeating this process for all measurements, we can build the Hessian factor
graph representation illustrated in Figure 8(a).

From this perspective, the problem of designing a good subgraph preconditioner is
reduced to picking a subset of Hessian factors from the graph that (1) can be solved
efficiently by direct methods, and also (2) make the linear systems well-conditioned.
Once a subgraph is selected, we can use sparse direct methods to factorize the linear
system (i.e., H1 = RT

1 R1) and use R1 as the preconditioner in the conjugate gradient
method. The detail of how to to pick a subgraph will be discussed in Section 5.

GSP is more expressive than SPCG because we can always build a Hessian factor
graph from a subset of measurements, but not vice versa. For instance, suppose we want
to construct a Hessian factor subgraph as in Figure 9 by picking a subset of measure-
ments. One can see that no subset of Jacobian factors in Figure 2(a) corresponds to this
Hessian factor graph. Hence the GSP is indeed a generalization of SPCG.

The difference between GSP and SPCG is critical for large-scale bundle adjustment,
whose graph structure is bipartite and highly unbalanced. The amount of information
that SPCG brings in for each variable corresponds to the associated measurements in
the subgraph. In bundle adjustment, if SPCG picks a spanning tree as the subgraph, then
it can only collect at most two out of potentially thousands of unary factors for the cam-
era vertices. This results in over-estimating the uncertainty of the variables and hence
leads to unsatisfactory preconditioners. This idea is illustrated in Figure 10. Adding
more measurements to the subgraph might help, but it also makes it harder for direct
methods to to solve the subgraphs. In contrast, GSP provides the flexibility to keep part
or all of the unary factors (information) for each variable, and hence overcomes this
problem.
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Fig. 9. A subgraph that GSP can generate but SPCG cannot
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Fig. 10. The Hessian representation of the sub-problem in Figure 6. (a) The Hessian factor graph
with the corresponding unary and binary factors. (b) The symbolic matrix of the sub-problem.
The non-zero off-diagonal blocks are identical to those in Figure 8(b), but the diagonal entries
are smaller than those in Figure 8(b). It leads to over-estimating the uncertainty of the variables,
especially for the camera variables. This is problematic for large-scale bundle adjustment where
the graph is bipartite and unbalanced.

4.2 The Jacobi Preconditioner

The Jacobi preconditioner is a generic technique and it has been shown empirically
effective for large bundle adjustment [2,8,14]. Here we show that the Jacobi precondi-
tioner has a simple explanation within the GSP framework. The Jacobi preconditioner
works by taking only the diagonal entries of the Hessian matrix, and discarding all off-
diagonal entries [21]. A simple generalization is the block Jacobi preconditioner which
treats each camera and each 3-D point as an entity, and it corresponds to picking the
block diagonal of the Hessian matrix. The block Jacobi preconditioners can be solved
efficiently because all blocks are independent.

In the GSP machinery, the block Jacobi preconditioner corresponds to picking all of
the unary factors and discarding all of the binary factors of in the Hessian factor graph.
The idea is illustrated in Figure 11. Note that hereafter when we refer to the Jacobi
preconditioner, we actually mean the block Jacobi preconditioner.
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Fig. 11. Block Jacobi preconditioner of the toy problem
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5 The GSP-n Preconditioners

5.1 Matrix Preconditioners

Conventional matrix preconditioning techniques focus more on the efficiency of solv-
ing the preconditioners rather than on directly minimizing the condition number of the
preconditioned system [21]. For example, the Jacobi preconditioner offers good com-
putational efficiency by discarding the conditional correlation between variables. The
incomplete Cholesky preconditioner controls the computational cost by limiting the
amount of fill-in and discarding negligible entries during the factorization process. Al-
though these techniques work to some extent in practice, deriving theoretical bounds on
their condition numbers is generally non-trivial, and their actual meaning is also hard
to interpret graphically or probabilistically.

5.2 Combinatorial Preconditioners

Recently, combinatorial (graph) preconditioners have been studied to analyze and con-
struct effective preconditioners for the conjugate gradient method. Promising results
have been reported on solving linear systems with symmetric and diagonally dominant
matrices [6,24]. The main idea is to find ultra-sparsifiers such that the original graph
and the approximating graph have similar conductance – a measure of how fast infor-
mation travels between different parts of the graph. Insisting on sparse approximating
graphs produces preconditioners that can be solved efficiently by direct methods, while
maintaining the graph conductance effectively reduces the condition number of the pre-
conditioned systems, therefore the number of CG iterations.

If the subgraph is restricted to be a spanning tree, Boman and Hendrickson [6] rec-
ognized that the condition number of the preconditioned system is upper bounded by
the stretch of the original graph with respect to the spanning tree. More specifically,
suppose G = (V,E,w) is the graph of the original system where V , E and w denote
the vertices, edges and the weights of the edges respectively. If T is a spanning tree of
G, then for every edge e = (u, v) ∈ E, there is a unique path in T connecting u and v.
The stretch of e with respect to T is defined as

st(T, e) =
∑

f∈P (T,e)

w(e)

w(f)
, for e ∈ E (12)

where P (T, e) denotes the edges on the unique path between u and v in T . The stretch
of G with respect to T is defined as the sum of the stretches of all the edges in G:

st(T,G) =
∑
e∈E

st(T, e). (13)

Intuitively speaking, the higher the stretch of a tree, the more time it takes for informa-
tion to percolate, negatively affecting convergence.

If we relax the restriction and consider a general subgraph, a common practice is to
use a low-stretch spanning tree as a skeleton and augment it with additional edges to
further reduce the stretch. However, when additional edges are added to the subgraph,
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not only may the subgraph take longer to build, but also the preconditioners will become
more expensive to apply in the conjugate gradient method. Clearly, there is a trade-off
between the quality of the preconditioner and the time required to build and apply it.

5.3 The GSP-n Preconditioners

Finding the optimal subgraph is computationally intractable for large problems. Instead
we propose a greedy algorithm to construct a family of subgraphs with adjustable com-
plexity. On top of these subgraphs, we use GSP to build subgraph preconditioners. The
resulting preconditioners are called the GSP-n preconditioners, where n is a parameter
that controls the complexity of the subgraph.

The bundle adjustment graph is a bipartite graph G = (X,L,E), where X denote
the camera and L denote the 3-D points vertices on the two sides of G. Each edge in E
denotes a measurement that connects the corresponding camera and point vertices.

The goal is to find a subset ES of E, such that (1) the resulting subgraph GS has
low stretch with respect to G, and (2) the maximum size of the induced cliques does
not exceed the predefined parameter n. By the maximum size of the induced cliques we
actually mean the clique number in the factorization phase, which can indirectly affect
the computational complexity. A straightforward strategy would be to use a low-stretch
spanning tree of G as the subgraph, but this strategy is sub-optimal because it does not
exploit the bipartite and unbalanced nature of G.

Here we introduce some notation to facilitate the explanation. We denote X(l) as the
set of cameras associated with a 3-D point l, and E(l) as the corresponding set of edges
(measurements). Note that by picking t edges from E(l) into the subgraph, we will
induce a clique of size t between the corresponding cameras after eliminating the 3-D
point l in the factorization phase. Moreover, if the edges and the elimination ordering
are not chosen appropriately, even larger cliques will appear in the factorization phase.

Here we describe a greedy algorithm to construct a family of subgraphs. First, we
build a camera graph GX where the vertices consist of all cameras and the edge weight
between two cameras is defined as the number of 3-D points that are observed by both of
them. Then we find a low-stretch spanning tree TX in GX . The tree TX aims to preserve
the structural information of G, and provides a reference to augment additional edges.

Second, we show how to augment additional edges to the subgraph. Suppose initially
the edge set ES is empty. For each point l, we sort X(l) according to their average
distance to the other cameras in X(l) with respect to TX . Then we pick the edges of
E(l) into the subgraph according to this ordering. An edge is added into ES if it does
not induce a camera clique of size greater than n. To this end, we also maintain an array
(initially set to 0, whose length is the number of cameras) which holds the size of the
maximum clique that a camera belongs to. The array is updated whenever an edge is
added. Repeating this process for all 3-D points results in edge set ES .

Finally we construct the GSP-n preconditioner by using all of the unary factors in the
original graph and the binary factors corresponding to the edge set ES . Note that there
are two interesting special cases of the GSP-n preconditioners: GSP-0 corresponds to
the Jacobi preconditioner while GSP-∞ corresponds to using the original graph to con-
struct the subgraph preconditioner.
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5.4 The Symmetry and Positive Semidefiniteness of GSP-n

Being symmetric and positive semi-definite (spsd) is a necessary condition for being
a valid preconditioner in the conjugate gradient method. Here we show that any GSP-
n preconditioner is spsd. First, we know that any H ≈ ATA matrix is always spsd,
and hence GSP-n is also symmetric by construction. Second, discarding off-diagonal
block pairs AT

x0
Al0 , AT

l0
Ax0 in the Hessian while leaving the block-diagonal unchanged

corresponds to replacing a binary factor by two unary factors in the Jacobian factor
graph. The replaced binary factor corresponds to A’s block-row with nonzero blocks
Ax0 and Al0 , while each new unary factor contains exactly one of these blocks. The
inner product of the new factor matrix with itself is spsd, which guarantees the validity
of GSP preconditioners. Note that discarding symmetrical off-diagonal entries of an
arbitrary spsd matrix may not produce a spsd matrix. In the scalar case, Boman et al.
[5] proved that matrices with this property must admit a factorization ATA, with A
having a factor width ≤ 2.

6 Results

6.1 Configurations

Here we compare the sparse factorization method (DBA) and the conjugate gradient
(CG) method with three preconditioners: (1) the block Jacobi preconditioner (JACOBI),
(2) the subgraph preconditioner (SPCG), and (3) the generalized subgraph precondi-
tioner (GSP-n). The number attached to ”GSP-n ” indicates the maximum clique size
allowed in the greedy algorithm.

We use the Levenberg-Marquardt method as the nonlinear solver. The stopping cri-
teria are (1) the number of iterations exceeds 20, (2) the average reprojection error is
less than 0.8 pixel, or (3) the relative decrease of the error is less than 10−2.

For the linear solvers, DBA uses the cholmod package [9] with an approximate min-
inum degree ordering. For the solvers using the CG method, we solve Equation (6) by
using the least-squares variant of CG [4] without forming the normal equation (see Al-
gorithm 1). The stopping criteria for the CG method are (1) the number of iterations
exceeds 2000, (2) the relative decrease of residual is less than 10−2.

For JACOBI, we accumulate all unary factors for each variable (i.e., the diagonal
blocks of ATA) and solve them independently. For SPCG, we use the Sparse QR fac-
torization package [10]. For GSP-n, we use the cholmod package [9] with an ordering
in which the 3-D points are eliminated first and the cameras are eliminated according to
the topological ordering of the camera low-stretch spanning tree. We use Alon et al.’s
algorithm to find a low-stretch spanning tree in the camera graph [3]. Note that for
SPCG and GSP-n, the topology of the subgraph is determined at the beginning, and
never changed during the optimization.

We run the experiments on the bal datasets released by Agarwal et al. [2]. Since bal
contains many datasets and some of them cannot fit into the memory of a regular PC,
we select ten proper datasets from bal which have 100K to 500K points (see Table. 2).
We run all of the experiments on a Core2 Duo PC with 8G RAM.
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Algorithm 1. Preconditioned Conjugate Gradient Least-Squares Method

Input: Let A be the Jacobian matrix, RTR be the factorized preconditioner, x0 be an
initial estimate, ε be the tolerance, and t be the maximum number of iterations.

r0 = b− Ax0, p0 = s0 = R−T (AT r0), γ0 = ‖s0‖22
for k = 0 to t do

if γk < ε then break
tk = R−1pk
qk = Atk
αk = γk/‖qk‖22
xk+1 = xk + αktk
rk+1 = rk − αkqk
sk+1 = R−T (AT rk+1)
γk+1 = ‖sk+1‖22
βk = γk+1/γk
pk+1 = sk+1 + βkpk

end

6.2 The Performance of GSP-n

We first investigate the performance of GSP-n for different values of n, and show the
timing results in Figure 12. Notice that GSP-n is equivalent to JACOBI when n = 0.
We exclude the linearization time and focus on comparing the linear solvers. The results
show that GSP-n converges faster than JACOBI by 10-30% in most cases.

We also observe that as n increases, the overall time decreases at first, but increases
if n is set too high. To better understand the behavior of GSP-n, we break down the
timing results of one dataset and show the major components in Table 1. We can see
that as n increases, the subgraph becomes denser and harder to solve, but the time
spent on building the subgraph preconditioner is not significant when n is small. Here
the important parts are (1) the time to apply the preconditioner per CG iteration, and
(2) the number of total CG iterations. The former increases because the preconditioner
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Table 1. Timing results of GSP-n on the ”F-05” dataset. We only show the components relevant to
the linear solvers. The columns indicate (1) the maximum clique size in GSP-n, (2) the percentage
of edges used in the subgraph, (3) the time of building the subgraph, (4) the time per CG iteration,
and (5) the number of total CG iterations, and (6) the total time.

n edges (%) build (s) time/iter (s) #iters total (s)

0 0.0 27.2 0.48 1438 732.6

1 19.8 33.4 0.53 1130 648.8

2 26.6 48.7 0.56 866 550.5

3 32.5 69.1 0.62 631 473.7

4 39.0 101.5 0.78 526 512.8

Table 2. Timing results (secs) of the four methods on ten bal datasets. The second column corre-
sponds to the name and index in the original bal: ”D” for ”Dubrovnik”, ”L” for ”Ladybug”, ”V”
for ”Venice” and ”F” for ”Final”.

Set Source Cameras Points Measurements DBA JACOBI SPCG GSP-3

0 V-01 89 110,973 562,976 42 84 401 89

1 F-01 394 100,368 534,408 79 113 256 96

2 V-02 245 198,739 1,091,386 155 245 415 196

3 D-15 356 226,730 1,255,268 187 397 804 285

4 V-03 427 310,384 1,699,145 313 273 695 212

5 L-30 1,723 156,502 678,718 578 312 718 223

6 V-04 744 543,562 3,058,863 886 506 913 407

7 F-03 961 187,103 1,692,975 1148 252 741 191

8 F-02 871 527,480 2,785,977 1939 776 1154 564

9 F-05 3,068 310,854 1,653,812 3504 894 2035 473

becomes denser and hence more computation is involved in the back substitution. The
latter decreases because the linear systems become better conditioned. We can see that
their product dominate timing and clearly there is a trade-off between these two factors.

6.3 Timing Results

Here we compare the timing results of four linear solvers on the bal datasets. We use
n = 3 to build subgraphs for both SPCG and GSP-n. The timing results in Table 2
are sorted according to the DBA time, which reflects the intrinsic difficulty of the
datasets. The results confirm that sparse direct methods are efficient for small datasets,
but iterative methods are better alternatives for large datasets. Comparing JACOBI and
GSP, the results show that by adding extra factors to the subgraph, GSP provide better
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Table 3. The condition numbers of the SPCG, JACOBI, and GSP-3 on three bal datasets

Set Original SPCG JACOBI GSP-3

D-15 5.58e+21 1.87e+06 5.94e+04 4.36e+03

V-02 6.54e+21 6.46e+09 6.35e+05 1.38e+05

F-01 3.68e+11 1.92e+08 7.54e+06 8.71e+05

(a)

(b)

Fig. 13. Visualization of the “F-03” datasets. The solutions obtained from solving (a) the sub-
graph and (b) the original graph. Similar to Figure 7, the solution to subgraph serves as a good
preconditioner to solve the original problem.
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preconditioners than JACOBI in most of the cases. Comparing SPCG and GSP, the
results show that being able to add more unary factors to the graph is crucial to im-
prove the convergence speed of the CG method. An example of the result is shown in
Figure 13.

6.4 The Condition Numbers

The condition number is a common measure to estimate the convergence speed of the
conjugate gradient method [21]. Here we compare the condition numbers of the linear
systems preconditioned by the SPCG, JACOBI and GSP-3 preconditioners on several
medium bal datasets. The results are shown in Table 3. We can see that the original
condition numbers are huge, which indicate the slow convergence of using a plain CG
solver. The SPCG precondtitioner works to some extent, but is not as good as JACOBI
and GSP-3. The condition numbers of GSP-3 are 5-10 times smaller than JACOBI.

7 Conclusions and Future Work

While direct methods are efficient for small datasets and iterative methods are more ap-
propriate if the memory requirement is of concern, a subgraph-based preconditioning
method combines their advantages and provides a better alternative for solving large-
scale bundle adjustment. One such method is SPCG, which to the best of our knowledge
has not been applied to the bundle adjustment problem until now. Although for large
datasets SPCG is significantly better than direct methods and the plain CG method,
its behavior is sub-optimal: as the bundle adjustment graph is bipartite and unbalanced,
SPCG over-estimates the uncertainty of the variables. In contrast, GSP avoids this prob-
lem, and is more expressive and suitable for bundle adjustment. Well-known precondi-
tioners like Jacobi fit naturally in the GSP context. To exploit the graphical structure of
the problem, we develop an efficient algorithm rooted in combinatorial preconditioning,
to construct a family of subgraph preconditioners. When applied to large datasets, the
GSP-n preconditioners display promising performance.

For future work, first we would like to develop a more expressive factor representa-
tion to explain and understand the other matrix preconditioners such as the Incomplete
Factorization and the Symmetric and Successive Over-Relaxation preconditioners. The
second is to develop a better algorithm to construct the subgraph preconditioners, and
provide theoretical guarantees for their performance.
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Abstract. The US National Academy of Engineering recently identified restoring 
and improving urban infrastructure as one of the grand challenges of engineering. 
Part of this challenge stems from the lack of viable methods to map/label existing 
infrastructure. For computer vision, this challenge becomes “How can we automate 
the process of extracting geometric, object oriented models of infrastructure from 
visual data?” Object recognition and reconstruction methods have been 
successfully devised and/or adapted to answer this question for small or linear 
objects (e.g. columns). However, many infrastructure objects are large and/or 
planar without significant and distinctive features, such as walls, floor slabs, and 
bridge decks. How can we recognize and reconstruct them in a 3D model? In this 
paper, strategies for infrastructure object recognition and reconstruction are 
presented, to set the stage for posing the question above and discuss future research 
in featureless, large/planar object recognition and modeling.  

Keywords: recognition, reconstruction, infrastructure, buildings, construction. 

1 Introduction 

“Restoring and Improving Urban Infrastructure” has been recently identified as one of 
the grand challenges of engineering in the 21st century by the National Academy of 
Engineering [1]. Part of this challenge stems from the lack of viable methods to map 
and label existing infrastructure. For computer vision, this challenge leads to the 
question: “How can we automate the process of extracting geometric, object oriented 
models of infrastructure from visual data?”  

Currently, over two thirds of the effort needed to model even simple infrastructure 
is spent on manually converting a cloud of points to a 3D model [2, 3]. The result is 
that only very few constructed facilities today have a complete record of as-built 
information and that as-built models are not produced for the vast majority of new 
construction and retrofit projects, which leads to rework and design changes [1] that 
cost up to 10% of the installed costs [4, 5]. Any effort towards automating the 
modeling process will increase the percentage of modeled infrastructure projects and, 
considering that construction is a $772 billion industry [6], each 1% of increase can 
lead up to $772 million in savings. 
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From the perspective of civil engineering, this paper summarizes the achievements 
and challenges in recognizing and reconstructing civil infrastructure. First, it outlines 
current practices for as-built 3D modeling of civil infrastructure and recent research 
efforts in this direction. This is followed by a summary of recent research in 
infrastructure recognition and reconstruction, together with an outline of research 
solutions proposed in the authors’ group ranging from the creation of Visual Pattern 
Recognition (VPR) models, videogrammetric progressive site modeling, to reciprocal 
reconstruction and recognition for modeling infrastructure. The challenge and future 
work in featureless, large/planar object recognition and modeling is finally discussed. 

2 As-Built 3D Modeling of Civil Infrastructure 

The current state-of-the-art approach to collecting, organizing and integrating as-built 
data of a constructed facility into a single data structure is to model it using building 
information modeling (BIM) tools [7]. This approach generates parametric building 
models by producing logical building objects and their parametric relationships. The 
as-built modeling process can be divided into three phases; during the first phase, 
modelers collect spatial and visual data on site through cutting-edge surveying 
technologies, such as laser scanning (LIDAR) and photo/videogrammetry. The 
resulting data is in the form of images and a high-resolution point cloud that contains 
the spatial information of all elements in the scene. During the second phase, the 3D 
point cloud is replaced with objects and object relationships. This is achieved by 
having an operator observing the data manually to a) identify each object type, b) 
search for it in a database of standardized objects, c) fit it in the point cloud with 
partial help from fitting algorithms for optimal fitting, and d) assign the relationships 
of each object with the rest. The third phase, which is also manual, includes the 
assignment of any non-spatial as-built attributes (e.g., material, schedule, costs) to 
each object. The key difference of the outcome of the first phase (point cloud) with 
the final result (object oriented model) is that the final model contains multiple, 
discrete elements with a wide range of attributes (i.e. material, schedule, cost and 
other information). This is why the last two phases are necessary to derive the full 
benefits of the resulting model. 

Although as-built modeling is significantly assisted by recent technological 
advancements, most of it remains manual (Figure 1) making it time-consuming and 
costly. Professional modelers such as VECO [24] and Reality Measurements [25] 
report similar findings. This problem cascades further, since the significant cost and 
effort needed to convert the sensed infrastructure points to the desired object model 
counteracts the benefits of spatial modeling for the majority of civil infrastructure. 
This is true especially for small civil projects, where the projected savings hardly 
justify adopting this technology [26]. As a result, the infiltration of innovative spatial 
modeling technologies to the Architecture, Engineering and Construction (AEC) 
industry is slower than expected [27]. 

Automation primarily enables the recovery of the 3D points [8, 9, 10, 11, 12, 13, 
14, 15]. Recent research efforts have attempted to automate some of the manual steps 
by matching certain types of as-designed CAD objects with the point cloud [16, 17, 
18, 19]. Others have tried to classify and label components (i.e., wall, floor, window, 
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ceiling, floor plan, and molding) of a building room on a point cloud assuming that 
the contextual relationships of the indoor objects are orthogonal, parallel, adjacent or 
coplanar [20, 21, 22, 23]. Further automation could be achieved with the help of 
object recognition and reconstruction. A review of these techniques developed in the 
computer vision and civil infrastructure fields follows. 

 

Fig. 1. Dashed lines indicate manual steps 

3 Recognition of Civil Infrastructure 

Recognizing infrastructure objects can be generally divided into two categories based 
on the type of input data utilized: spatial or visual data.  

Spatial data in this case is typically in the form of high-resolution 3D point clouds, 
collected by remote sensing technologies such as laser scanning, 3D range cameras, 
or photo/videogrammetry. Methods utilizing spatial data [28, 29, 21] explore a priori 
knowledge with respect to object semantics (e.g., it is known that a point cloud 
contains walls, floors, ceilings, etc.), geometrical constraints (e.g., saddleback roofs 
have an angle between two planes), and spatial relationships (e.g., a wall is orthogonal 
to and connects with floor and ceiling) of objects to distinguish between different 
types of objects. The advantage of such methods is that even objects that are 
geometrically similar (e.g. walls, ceilings), and otherwise difficult to differentiate if 
observed in isolation, can be differentiated [22]. Those methods have been actively 
explored in building objects detection [30, 20, 21, 23] based on the observation that 
the majority of building objects can be decomposed into parts that correspond to 
geometric primitives such as planes, cylinders, and spheres, and have strong spatial 
relationships such as orthogonality, parallelity, and coplanarity. In the work of Huber 
et al. [21], for example, the point cloud of a building’s interior is first projected 
horizontally to identify ceilings and floors based on the observation that the projected 
point density is highest at those locations; once the planes of the ceiling and floor are 
identified, the point cloud is then projected onto the floor to identify the walls 
according to the same criterion. However, one major limitation of these methods is 
each type of object needs unique encoding [30], leading so far to the detection of 
limited objects (i.e., wall, floor, window, ceiling, floor plan, and molding) in 
restricted scenarios. Also, these methods have not yet been tested in highly cluttered 
scenes (e.g., construction site). 
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Alternative methods start from visual data. Visual data in this case is typically in 
the form of images and videos. Object detection utilizing visual data in most cases is 
model based. A priori knowledge of a numerical model containing several distinctive 
visual features of an element type is needed for the machine to recognize other 
elements of the same type. These object models consist of a collection of several 
spatially correlated characteristics of an element. So far research efforts have led to a 
number of numerical based models such as constellation models [78, 79, 80], pictorial 
structures [81, 82], shared feature models [83], and pyramid structures [84]. These 
models have emphasized on modeling the shape and appearance variability of objects 
viewed from specific poses [78, 85] or a mixture of poses [83, 86, 87, 88], and 
describe the objects by a list of class labels, such as chairs, desks etc., together with 
their rough 2D location and scale. However, these models are not capable of 
estimating the 3D position of objects in relation to each other and the observer, and 
are limited to be operational within specific view point configurations, such as front, 
back and ¾ views. Methods that are able to detect single objects from different poses 
exist [89, 90, 91, 92, 93, 94], but they are unable to detect object categories. Lately, 
there is a new class of methods that seek to detect objects from true multi-view 
settings [75, 76, 77, 95, 96, 97, 98, 99, 100, 101, 102, 103]. In these methods, object 
elements (features, parts, contours) are connected across views to form a unique, 
coherent model for the object category. 

For civil infrastructure, research in object recognition and classification using 
visual data is also a topic of significant interest in recent years. For example, Shin and 
Hryciw [31] determined average grain size from soil mass images using a two-
dimensional wavelet decomposition method. Masad et al. [32] and Pan and Tutumluer 
[33] created a 3D image analyzer to determine coarse aggregate size, texture and 
angularity. Lee et al [34] created an automated, image-based steel bridge corrosion 
detection method. Jeong and Abraham [35] evaluated underground imaging 
techniques for underground infrastructure detection. Hutchinson and Chen [36] 
created an automated statistical-based procedure for image based concrete damage 
evaluation. Lester and Bernold [37] used translation invariant wavelet packet 
detection to filter ground penetration radar data for characterizing buried utilities. 
Chen et al. [38] created an adaptive ellipse approach for the automated detection of 
bridge coating in images. Chae et al [39], Costello et al. [40], Sinha and Fieguth [41], 
Yang and Su [42], and Guo et al. [43] created automated pipe condition assessment 
methods using imaging techniques. Golparvar-Fard et al. [13] matched certain types 
of as-designed CAD objects with time-lapse photographs for progress monitoring and 
visualization. Zhu and Brilakis [44, 45] created two defect detection methods for 
concrete inspection. Son and Kim [19] created a method that is capable of recognizing 
simple 3D structural components (i.e. beams and columns) with specific 
configurations. These, and many other highly successful efforts, reflect the great 
importance of applying vision technologies to solve civil infrastructure related 
identification and assessment problems. Nonetheless, these undertakings are still at 
the basic stage that most efforts are primarily focused on recognizing attributes (e.g., 
soil mass, cracks, air pockets, discoloration), and materials (e.g., concrete, steel, 
wood). A higher level of detection methods is desired for detecting, recognizing, and 
classifying numerous, complex civil infrastructure objects in natural and cluttered 
scenes. 
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4 Reconstruction of Civil Infrastructure 

3D reconstruction is the process of capturing geometry and structure (i.e., 3D 
coordinates) of an object in the form of 3D point clouds. It is typically used in civil 
engineering applications with respect to quality control and assurance, as-built 
quantity takeoffs, as-designed and as-built comparisons, productivity measuring, 
project monitoring and control systems. 

Conventionally, time-of-flight laser scanners and 3D range cameras are used to 
collect as-built spatial data of infrastructure. Laser scanners perform fast and produce 
accurate results [47, 48]. However, the price of a laser scanner is usually high and it 
counteracts the benefit of generating a high-resolution map of depths, making this 
device infeasible for small construction projects, where the projected savings hardly 
justify purchasing this device. Regarding 3D range cameras, even though they show 
efficiency [49, 50], their applications suffer from short-range data collection. The 
measurement range of this technology is usually less than 10m [26, 51], making it 
infeasible for large-scale civil infrastructure projects.  

In contrast to time-of-flight technologies, vision-based methods are based on 
spatial computation conducted in images or videos to derive 3D information of an 
object. This makes these methods inexpensive and easy-to-use. In the field of 
computer science, there is a large number of vision-based techniques that have been 
developed such as scale-space theory [120], epipolar geometry [8], Scale Invariant 
Feature Transforms (SIFT) [104], combined corner and edge detectors [105], point 
feature detector and tracker [106], Speeded Up Robust Features (SURF) [107], scale 
and affine invariant point detector [108], and Patch-based Multi-View Stereo (PMVS) 
[53]. Inspired by these advances, many methods that use multiple views of a scene 
have been developed for 3D reconstruction [8, 9, 10, 11, 12, 13, 14, 15, 89, 109, 110, 
111, 112, 113, 114, 115, 116, 117, 118, 119]. For instance, Nistér [9] automated 
passive recovery of 3D scenes from images and video. Brown and Lowe [89] 
developed a method for unsupervised 3D object recognition and reconstruction. 
Snavely et al. [10] created a method for internet photo collection based modeling. 
Agarwal et al. [109] exploited a massive image dataset in order to recover large scale 
scenes. Bok et al. [110] combined vision-based and laser-scanning sensors to 
reconstruct historical monuments.  

Typically, based on the input data utilized, the vision-based methods can be 
divided into two categories: photogrammetry and videogrammetry. Both have been 
extensively investigated and developed for use in the civil engineering field. 

Regarding photogrammetric methods, Golparvar-Fard et al. [54, 55] created a four-
dimensional augmented reality (D4AR) system to monitor the progress of 
construction projects. In their method, a collection of uncalibrated daily photos 
captured from construction sites are utilized to generate 3D point clouds, and  
the points are then superimposed into as-planned models to derive deviations of the 
project progress. Similarly, Ibrahim et al. [56] proposed a method to assess the 
process of site activities using site photos and a database of building component 
models. Quiñones-Rozo et al. [57] established a method to retrieve a 3D model and 
track the activity progress for an excavation site using site images. To continue, 
González-Aguilera and Gómez-Lahoz [58] created a vision-based measurement 
method to analyze geometric dimensions of bridges. In their method, one single 
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image is utilized to measure the structure by incorporating the contextual information 
(i.e., perpendicularity, co-planarity, and parallelism) and image invariants (i.e., 
distance and angles) in order to fix the absolute value of the dimension. Dai and Lu 
[59] evaluated the accuracy of applying photogrammetry for measuring geometric 
dimensions of building objects. A single off-the-shelf camera is used in their method, 
and a process of manually defining the length of a reference line is needed to fix the 
scale of the Euclidean reconstruction. 

Several studies have also been conducted to develop videogrammetric methods for 
reconstructing 3D infrastructure. Pollefeys et al. [11] developed a 3D reconstruction 
system for reconstructing urban scenes from video streams. This method uses GPS 
(Global Positioning System) to geo-tag locations of the cameras, making it possible to 
model large-scale environments (e.g., cities). However, the GPS signal is weak in 
urban dense areas. Chae and Kano [60] created a stereo videogrammetric system to 
control the project progress. In their method, the data was extracted from two 
sequences of video streams, and commercial software was used to compute the 
locations of site objects. Nonetheless, their work reported high geometric errors for 
estimating the object’s positions. Son and Kim [19] applied videogrammetry to 
acquire 3D data for recognizing simple structural components. In their method, data 
acquisition was conducted by use of a trinocular camera system.  

In essence, photo/videogrammetric methods provide great potential to conventional 
time-of-flight-based methods in reconstructing spatial data of infrastructure. Rather 
than producing photorealistic visuals, however, a need for more robust and accurate 
reconstruction is desired for reliable use in civil engineering applications. Attention 
should also be given to the formalization of factors (type of camera, image resolution, 
shooting distance) for achieving a specific level of accuracy while maintaining run-
time efficiency. Moreover, confidence measure is needed for guiding sufficient data 
collection. Its goal is to avoid occlusion and low quality of frames that otherwise will 
undermine reliable post-processing of 3D points. This is true particularly in a built 
environment where there is only one chance to videotape an ongoing product in its as-
built state.  

5 Proposed Solutions 

This section presents recognition and reconstruction research solutions from the 
authors’ group aimed at reverse engineering the civil infrastructure. They are the first 
steps in the larger agenda of automatic modeling of as-built infrastructure objects. 

5.1 Visual Pattern Recognition Models  

A process for the manual creation of Visual Pattern Recognition (VPR) models is 
proposed as a simple and robust way to perform model based recognition on 
infrastructure elements. The ultimate goal is to gradually build an infrastructure 
element VPR model repository. 

Figure 2 depicts the proposed VPR model generation process that consists of three 
steps. In the first step (identify elements of visual characteristics), the distinctive 
visual characteristics that refer to specific image signal patterns are collected either 
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directly, through image intensity and color channels, or indirectly, through different 
image transformations, such as Fourier and Wavelet transforms. Such characteristics 
are usually related to color, texture and geometric properties, out of which the most 
suitable should be selected. The choice depends on how well a characteristic is 
modeled with the available image analysis tools and how “special” it makes the object 
in the scene. The total number of characteristics required for the recognition of an 
object varies according to the recognition performance. Only those characteristics that 
contribute to the increase of recognition accuracy are considered. The most distinctive 
characteristics for the recognition of infrastructure objects can be categorized to 
shape-related or texture-related types. The second step (represent image analysis 
features) involves finding or making the most suitable tool for recognizing each 
feature. Given that there are many ways of representing texture, such as with the use 
of spot filters, wavelet coefficients etc., it is necessary to perform a comparison of the 
accuracy of each representation of features and choose the most appropriate methods. 
Last, it is very important to correlate features and represent their relative topology to 
improve the object recognition performance. Thus, in the third step (correlate features 
with their topology), features and relative topology are bundled as an object, creating 
its VPR model. Each VPR model can be stored to gradually build the VPR repository.  

  

Fig. 2. VPR model creation 

5.2 Videogrammetric Progressive Site Modeling 

A videogrammetric framework for generating high-resolution (dense) point clouds is 
proposed as a simple and robust way to perform 3D Euclidean reconstruction on 
infrastructure objects. The final goal is to provide reliable and accurate 3D spatial 
data for automatic modeling of as-built infrastructure objects.  

Figure 3 depicts the proposed framework under which as-built infrastructure 
objects are progressively reconstructed. At the beginning, a physical scene is sensed 
using a calibrated set of high-resolution video cameras, which is progressively 
traversed around the scene. Feature points between the left and right video frames of 
the stereo rig are matched. The 2D location of the matched features and camera 
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calibration provide enough information to calculate the 3D coordinates of the feature 
points, which are going to be fed to the camera pose estimation step. Matched features 
are then identified using the KLT tracker [61] in consecutive video frames. Since the 
triangulation is much more uncertain in the depth direction, the system employs 
Perspective-n-Point (PnP) algorithms for camera pose estimation. PnP algorithms 
estimate the pose of the camera set from 3D to 2D point correspondences (i.e., the 3D 
points reconstructed from one stereo pair and their corresponding 2D points on the 
image plane after camera movement). Statistical methods (e.g., Kalman filter) and 
global optimization techniques (e.g., bundle adjustment) are further employed, for a 
certain number of frames, to refine the results. Since the outcome of the previous 
steps is a sparse 3D point cloud, dense multi-view stereo matching algorithms (such 
as those proposed in [53, 62]) are required to generate dense point clouds. The 
proposed technique, initially, rectifies the left and right video frames for this purpose. 
Then, a novel adoptive window-matching algorithm is used to automatically match 
non-feature points. This way, the point cloud will be progressively expanded, by the 
addition of the 3D points in new frames, to cover the whole scene. 

  

Fig. 3. Videogrammetric progressive site modeling method 

5.3 Reciprocal Reconstruction and Recognition 

In order to advance the level of detail for modeling as-built infrastructure objects, a 
reciprocal process that combines the ability to recognize objects from images with 
that of reconstructing the 3D scene is proposed. The expected outcome is the sensed 
spatial data of infrastructure objects associated with their structural detected members.  

Figure 4 depicts the proposed process that combines reconstruction and recognition 
for modeling as-built infrastructure objects. According to Figure 4, a calibrated  
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high-resolution camera is used to videotape an infrastructure scene from all accessible 
angles with minimum occlusion. Based on the video frames captured, the point feature 
detection, matching techniques, Structure from Motion (SfM) and Multi-View Stereo 
(MVS) algorithms are utilized to estimate the camera trajectories and generate the 
dense point cloud of the scene. In parallel to this, the structural members (concrete 
columns and beams in this study) are detected in the resulting stream of images, and 
their occupying regions are marked. By roughly registering the detected regions onto 
the 3D point cloud using the obtained camera trajectories, the result is a rendered 3D 
view of the structure with the recognized 3D element boundaries marked. This loops 
back to the detection of structural members, which can now be performed on the 
spatial data covered by the visually marked 3D element boundaries, resulting in more 
robust and accurate element detection, and consequently improved element matching 
and reconstruction. The final model is expected to be an accurate 3D representation of 
the structure with the load bearing linear members detected marked with 3D bounding 
boxes. This model is provided to the modeler, who can then use it to complete the 
model making process. 

 

Fig. 4. Reciprocal reconstruction and recognition method 

6 Implementation and Results 

This section presents the implementation and results of each solution. All method 
prototypes are implemented on top of Gygax, a barebone research platform developed 
by the authors’ research group using Microsoft C# with Windows Presentation 
Foundation and publicly available libraries such as EmguCV, a cross platform .Net 
wrapper to OpenCV for access to computer vision tools. 
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6.1 VPR Model Examples and Results 

The VPR models of concrete columns, concrete cracks, air pockets, exposed 
reinforcement, and asphalt pavement potholes have been created so far using the 
proposed process depicted in Section 5.1. The detailed steps of creating these VPR 
models and their validations are presented below.  

The evaluation of each application was performed by testing a database of 
images/videos for each type of civil infrastructure elements. All images were captured 
at natural light conditions by using digital cameras. In the case of concrete column 
detection, images at low-light conditions, where elements were difficult to be 
identified even by human naked eye, were rejected. The comparison was made 
between the outcomes of each VPR model and manual recognition results. In each 
case, the recognition precision and recall were measured. Precision measures the 
detection exactness and is equal to the percentage of the number of elements correctly 
recognized within the total number of elements correctly and incorrectly recognized. 
Recall measures the detection completeness and is equal to the percentage of the 
number of elements correctly recognized within the total number of elements 
correctly recognized and not recognized at all. Table 1 shows the outcomes of each 
application. The high recognition performance validates the effectiveness of using the 
method for creating VPR models to facilitate the recognition of infrastructure related 
elements.  

Table 1. Precision and recall summarization of VPR model applications 

Precision Recall 
Concrete columns 84.4% 74.5% 
Concrete cracks 64.2% 91.8% 
Air pockets 91.1% 85.6% 
Exposed reinforcement 83.2% 82.2% 
Asphalt pavement potholes 81.6% 86.1% 

Concrete Columns. Two are the distinctive characteristics of a concrete column in an 
image. The first one is that each column has a pair of long near-vertical lines and the 
second is that the uniform texture and color patterns lie on each of the member’s 
surface. Because of these characteristics, edge detection, Hough transform, image 
segmentation and a machine learning classifier are used for concrete column 
detection. 

First, the Canny edge detector is used for producing a binary image that is 
composed of edge and non-edge points. The Hough transform is then applied to group 
the distribution of edge points and retrieve long vertical line information from the 
edge map. Each vertical line is compared to its neighboring ones and if two vertical 
lines are similar in size then they are supposed to be a pair. The comparison keeps on 
being performed until no pairs can be formed. The criterion of keeping a pair of lines 
is if their aspect ratio (width/length) is greater than one. The procedure continues by 
calculating the color and texture feature of the image region contained in each pair of 
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lines. An artificial neural network performs the material type classification. If the 
material belongs to concrete, then a concrete column is detected. An example of 
recognizing different concrete columns using this method can be seen in Figure 5. 
The final results show a precision and recall of 84.4% and 74.5% respectively. 
Further details regarding the procedure and its results can be found in [63].  

 

Fig. 5. Concrete columns detection 

Concrete Cracks. This method aims to retrieve the properties of the cracks on 
concrete structural elements. The proposed framework is divided into two stages. In 
the first stage, which is crack detection, a crack map for every structural element 
surface is produced. The method used for crack detection is a modified version of the 
solution proposed by Yamaguchi and Hashimoto [64]. The gradient of each image 
pixel is initially calculated and the pixels with high gradient magnitudes are 
percolated. 

The second stage of the framework is to retrieve crack properties. Those are crack 
length, orientation, maximum and average width. A thinning algorithm is applied to 
the crack map in order to retrieve the crack’s skeleton, from which crack properties 
are acquired. Each crack pixel is then paired with the nearest distance to its 
boundaries. The distance is calculated with a Euclidean distance transform. This is the 
information needed for retrieving the necessary properties and reconstructing the 
crack. An example of recognizing concrete cracks using this method can be seen in 
Figure 6. The final results show a precision and recall of 64.2% and 91.8% 
respectively. More details regarding this method can be found in [65]. 

Air Pockets. This method aims to detect air pockets on the concrete surface of 
infrastructure elements captured in images. The unique characteristics used in this 
case are the circular shape of an air pocket and its darker region in comparison to the 
surrounding ones. 
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Fig. 6. Crack detection 

The procedure of air pocket detection is as follows. First, a spot filter is created to 
detect the air pockets. Three concentric, symmetric Gaussian filters with weights 1, -2 
and 1 and sigmas 0.62, 1 and 1.6 form the filter. The results of the filter are expected 
to be high for the regions where air pockets exist and have the same size as the filter. 
In any other case, the values of the intensities are low. In order to detect air pockets of 
larger size than the filter, the image is scaled down and filtered again. Now, the air 
pockets previously identified can’t be detected, but larger ones can. An example of 
recognizing different sizes of air pockets at concrete surfaces using this method can 
be seen in Figure 7. The final results show a precision and recall of 91.1% and 85.6% 
respectively. More details regarding this method can be found in [66]. 

 

Fig. 7. Detection of air pockets 

Exposed Reinforcement. The feature characteristics used for exposed reinforcement 
detection are: 1) such a region is darker that its surround ones, 2) ribbed texture exists 
along the reinforcement surface, and 3) the width of exposed reinforcement steel is 
significantly smaller than that of the concrete element.  

The procedure starts by applying a threshold to the original image to get a binary 
version of the reinforcing area. Template matching is then strengthening the image 
areas of reinforcing bars. In order to make the response of the reinforcement invariant 
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to the orientation of the ribbed regions of the reinforcement bars, multiple templates 
are used. A threshold is applied again to each resulting image in order to isolate the 
height-intensity pixels that represent the bars. Last, vertical and horizontal profiling is 
applied to reject any superfluous rebar pixels. Examples of exposed reinforcement 
recognition can be seen in Figure 8. The final results show a precision and recall  
of 83.2% and 82.2% respectively. More details regarding this method can be found  
in [67]. 

 

Fig. 8. Exposed reinforcement detection 

Asphalt Pavement Potholes. This framework aims to detect, recognize, spatially 
locate and evaluate the magnitude of defects of asphalt pavements. A high-speed fish-
eye camera that can tilt downwards is placed on the rear of a vehicle. While the 
vehicle is moving forward, the camera is captioning the pavement. A computer placed 
in the rear of a vehicle processes the data in two stages. First, high speed (real time) 
algorithms are used to detect frames that might contain evidence of defects and then 
the selected frames are run by defect detection algorithms. The final result is frames 
with regions characterized by the type of defect identified. Finally, defect property 
measurement algorithms assess the severity of the recognized defect. 
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The distinctive visual characteristics identified for potholes are: 1) a pothole 
includes one or more shadows that are darker that the surrounding area, 2) the shape 
of a pothole is almost elliptical, and 3) the surface texture inside a pothole is coarser 
and grainier than that of the surrounding surface texture. 

The proposed method is separated into three steps. First, the images are segmented. 
Actually, the original color images are transformed into gray-scale images and noise 
is reduced using a 5×5 median filter. In order to take advantage of the first distinctive 
visual characteristic, a histogram shape-based thresholding algorithm is used.  

Then, shape extraction is performed. Regions that either have a linear shape or are 
connected to the boundary of the image are rejected since they are assumed not to be 
potholes. In order to do the above, the length of the major axis ( , the position of 
the centroid (  and the orientation angle (α) are determined. Having this 
information, regions are separated into those that might represent a pothole shade and 
those that could represent an entire pothole. A sequence of morphological processes is 
performed (thinning and skeleton branching) to approximate the elliptical shape of a 
pothole. 

Finally, the texture of all regions is described using the standard deviation of gray-
level intensity values as a statistical measure. Then each region texture is compared 
with that of the surrounding region to identify false candidates and true potholes. 
During this step, three spot filters of the Leung-Malik (LM) filter bank [68] and one 
spot filter of the Schmid (S) [69] filter bank are applied to the images. Examples of 
asphalt pavement pothole recognition can be seen in Figure 9. The final results show a 
precision and recall of 81.6% and 86.1% respectively. More details regarding this 
method can be found in [70]. 

 

Fig. 9. Detection of asphalt pavement potholes 
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6.2 Generating 3D Point Clouds of Site Objects 

The equipment used to assemble the prototype for this implementation were a set of 
multi-mega pixel resolution Canon Vixia HF S100 cameras, which were calibrated 
with the use of Bouguet’s stereo camera calibration toolbox [71]. The intrinsic and 
extrinsic parameters of the camera set were estimated by a set of stereo images of a 
chessboard that is consisted of 30×30 mm squares. After the camera calibration, part 
of the application was tested in a control, yet realistic setting, but most of it was tested 
in a real built environment. The resolution of the cameras was set to 1600×1200 
pixels in both environments.  

SURF features were extracted from individual frames in a dataset of stereo pairs of 
video frames. The feature matching was performed by implementing the Euclidean 
distance between the descriptor vectors. The average ratio of correct matches was 
97.74%. The RANSAC algorithm was used for discarding incorrect matches. The 
fundamental matrix was used as the mathematical model and the probability of 
selecting inliers from the dataset was set to 99%.  

A sparse 3D point cloud was then produced for each pair of stereo frames. The 3D 
coordinates of the feature points were found by visual triangulation. In order to test 
the validity of the generated point cloud, the spatial distance between randomly 
selected points in the point cloud and their corresponding tape measurements in the 
real world were compared. The average value was 4.7 mm and the standard deviation 
24.9 mm. 

A dense matching map between points of different views is generated with an 
adaptive window-matching algorithm. Figure 10 shows the result of this method. The 
total processing time of a regular netbook for each frame set was 1.2 min. Further 
details regarding the procedure and its results can be found in [72]. 

6.3 Reciprocal Recognition and Reconstruction for Bridge Modeling  

A monocular videogrammetric pipeline has been created in order to achieve dense 3D 
reconstruction of concrete bridges. In order to improve the accuracy of the resulting 
3D points, three camera motion estimation algorithms were compared by using a 
consumer-grade camera (i.e., 8 megapixel Nikon Coolpix L19 in this study). Given 
that the baseline was set as 60 cm and the depth as 12 m, the average translation and 
rotation errors of camera ego-motions for three algorithms were measured. Figure 11 
shows the experimental results. As shown in Figure 11, the 5-point algorithm resulted 
in the most accurate outputs. Further details regarding the comparison procedure and 
its results can be found in [73]. Moreover, a monocular videogrammetric prototype 
has been implemented. It is robust even when motion blur exists in the video frames, 
and is capable of obtaining an optimum selection from a lengthy video stream, 
sufficing to generate a dense 3D point cloud and saving computational resources (e.g., 
CPU, memory, processing time) needed for post-processing of the video frames. 
Figure 12 gives a snapshot of the dense point cloud of a concrete bridge. 
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Fig. 10. 3D reconstruction of site construction application 

 

Fig. 11. Evaluation of camera motion estimation algorithms 
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Fig. 12. Snapshot of a produced dense point cloud (right) of a concrete bridge (left) 

7 Challenges and Future Directions 

While visual features are useful for identifying the type of an object and inferring its 
properties such as texture, shape, structure, and geometry, research in object detection 
using visual features in the area of civil infrastructure is still at the basic stage of 
recognizing attributes (e.g., soil mass, cracks, air pockets, discoloration), materials 
(e.g., concrete, steel, wood), and pose-invariant object types (e.g. columns) of objects 
without determining the 3D arrangement of the scene. At the same time, detecting 
simple 3D structural components (i.e. wall, floor, window, ceiling, and molding) of a 
building interior on a point cloud has been attempted [30, 20, 21, 22, 23] and may 
have significant potential. However, these methods have so far only been applied and 
tested in restricted scenarios (i.e. an interior of a room) requiring a priori knowledge 
(e.g., walls are adjacent and orthogonal to floors) without considering occlusions 
(furniture) and utilization of visual features (color, texture, etc.) of the objects, leading 
to their constrained applicability in complex civil infrastructure scenes. Also, the VPR 
models are not view or scale-invariant [74]. Consequently, they work very well for 
view/scale invariant objects (columns) or planar patterns (damage, defects) from 
given distance ranges, but are not effective for any other type of objects without 
having to make a separate model for each view and scale. In any case, these efforts 
are all great initial steps towards model based civil infrastructure elements detection. 
Considering the sheer volume of infrastructure elements that exist and complexity of 
their types, a more general numerical representation strategy of the appearance of 
infrastructure elements is needed. Even beyond that, if such representations were 
made available in the future, there are currently no robust methods for matching the 
elements of these representations with a 3D point cloud. 

In pursuing robust and accurate infrastructure object recognition and 
reconstruction, expanding and customizing existing efforts is highly necessary. 
Current reconstruction methods primarily rely on applying scale invariant feature 
detectors, such as SIFT to match across images. These detectors find points or patches 
that are robust to image translation, scaling, and rotation. This is reasonable for 
generic, natural scene reconstruction. However for civil infrastructure scenes, most 
building elements lack such distinctive affine invariant features [12, 51], which makes 
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feature detection methods ineffective, and therefore the reconstruction process 
incapable of tracking camera trajectories and reconstructing 3D structure of an object. 
Similarly, the lack of sufficient visual features also undermines the performance of 
current prevailing generic multi-view models [75, 76, 77] in recognizing 
infrastructure-related objects. Generic multi-view models are developed in the 
computer vision area and are capable of recognizing objects under arbitrary viewing 
conditions as well as recovering the basic geometrical attributes of object categories 
relative to the observer and the environment. Typically, such models employ learning 
processes that need a set of object parts that represent visually distinctive 
characteristics in images for training, and it is achieved by applying the 
aforementioned affine invariant feature detectors. The result is that many 
infrastructure objects that are large and/or planar without significant and distinctive 
features are excluded from the use of the generic multi-view models. Figure 13 shows 
a typical scene of a monitor, keyboard, mouse, cup, etc. that can have up to 5159 
features while the building corridor scene (right) only contains 256 features, most of 
which are not located on the building objects, i.e., wall, floor, ceiling, and door.  

Moreover, practical challenges lie in advancing current reconstruction algorithms 
to produce more than nice visuals. Civil engineering applications also have the need 
of formalizing factors that achieve specific levels of accuracy and run-time efficiency 
simultaneously. In addition, confidence measures for guiding sufficient data 
collection is required to avoid occlusion and low quality frames for reliable post-
processing of 3D points. This is true particularly in a built environment where there is 
only one chance to videotape an ongoing product in its as-built state.  

 

Fig. 13. Detection in generic (left) & infrastructure (right) scenes 

8 Conclusions  

As-built spatial modeling is the process of capturing the infrastructure’s spatial data 
and transforming it into a structured, object-oriented representation suitable for 
generating useful information for solving complex problems. Nowadays, the greatest 
part of as-built modeling procedures is manual, thus inefficient. Researchers both in 
the fields of civil infrastructure and computer vision are geared toward finding 
automated solutions.  
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This paper reviewed and summarized recent research efforts in recognition and 
reconstruction in civil engineering applications. This was followed by a presentation 
of different solutions proposed in the authors’ group. First, a VPR framework, along 
with the gradual build of a VPR repository was proposed. This framework is applied 
for the modeling of concrete columns, concrete cracks, air pockets, exposed 
reinforcement and asphalt pavement potholes. Then a framework for videogrammetric 
progressive site modeling is presented. This was tested in the 3D Euclidean 
reconstruction of a site construction. Last, a method for reciprocal reconstruction and 
recognition is proposed. A road bridge was selected for validating this method, as a 
first step to demonstrate the effectiveness of producing a 3D geometric model with a 
single camera. 

Current methods in recognizing and reconstructing civil infrastructure-related 
objects are still at the basic stage. While it is true that computer vision concepts have 
significant potential in this, there is still much to be desired for attaining a robust and 
accurate recognition and reconstruction of civil infrastructure, particularly for those 
that are large and/or planar without significant and distinctive features. Yet, there is 
plenty of knowledge that can be harvested as computer vision technologies have 
greatly matured, and tasks that were considered to be impossible ten years ago are 
now within reach. 
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Abstract. We introduce an (equi-)affine invariant geometric structure
by which surfaces that go through squeeze and shear transformations can
still be properly analyzed. The definition of an affine invariant metric
enables us to evaluate a new form of geodesic distances and to construct
an invariant Laplacian from which local and global diffusion geometry
is constructed. Applications of the proposed framework demonstrate its
power in generalizing and enriching the existing set of tools for shape
analysis.

1 Introduction

Shape analysis has been one of the principal research fields in computer vision
for many years. Numerous methods are based on modeling shapes as Riemnnian
manifolds, from which it is possible to derive many geometric invariances. Dif-
ferential geometry and diffusion geometry have been bold players in this growing
field. Schwartz et al. [22] proposed to embed a non-rigid shape in an Euclidean
domain both conformal and isometric, followed by Elad et al. [14] that discussed
embeddings in higher dimensions, and presented a practical representation of
shapes referred to as canonical forms. Later on Elad et al. [13] and Bronstein et
al. [5] showed that for some surfaces, such as faces, a spherical domain better
captures intrinsic properties. In 2005 Memoli et al. [17] pointed the importance
of Gromov-Hausdorff distance for shape analysis, followed by Bronstein et al. [6]
who introduced a variational framework that minimizes the Gromov-Hausdorff
distance by a direct embedding between two non-rigid shapes which does not
suffer from an unbounded distortion of an intermediate ambient space. Diffusion
geometry, referred to as spectral geometry, based on heat diffusion on manifolds
and the properties of the Laplace Bertrami operator have become growingly
popular in shape analysis in the past years. Driving inspiration from Berard et.
al. 1994 work [2], Lafon et al. [10] proposed in 2006 a probabilistic analysis of
algorithms using graph Laplacians. In 2007, Rustamov [21] showed how shapes
can be analyzed using the eigen-functions of the Laplace Beltrami operator, and
later on Gebal et. al. [15] discussed auto diffusion functions. Sun et al. [24] used
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the decay of heat as a feature, known as Heat Kernel Signatures, which was
further used by [18] as volumetric descriptors. Diffusion geometric constructs
in general were found to be more robust than their geodesic counterparts [7],
hence they have found successful applications in many shape analysis tasks, such
as [19].

However, all of these constructions depend on the definition of the Riemannian
metric tensor. So far, the default choice of the metric induced by the Euclidean
embedding of the shape has been used. Such a metric and all the related con-
structions is invariant to inelastic deformations of the shape and global Euclidean
transformations (rotations, reflections and translations). In this paper, we show
a different construction of a metric that has a wider class of invariance, being
also invariant to equi-affine transformations. It contains the metric evaluation
we presented in [29] and [30] for both diffusion and differential geometry.

The rest of the paper is organized as follows. In Section 2 we provide the math-
ematical background of Euclidean and diffusion geometry, followed by Section 3
where we elaborate on the equi-affine metric. Section 4 is dedicated to numerical
aspects, and several applications are presented in Section 5. We conclude the
paper in Section 6.

2 Mathematical Background

2.1 Differential Geometry

We model a surface (X, g) as a compact complete two dimensional Riemannian
manifold X with a metric tensor g, evaluated on the tangent plane TxX of point
x in the natural basis using the inner product 〈·, ·〉x : TxX × TxX → R. We
further assume that X is embedded into E = R

3 by means of a regular map
x : U ⊆ R

2 → R
3, so that the metric tensor can be expressed in coordinates as

gij = 〈 ∂x
∂ui

,
∂x

∂uj
〉, (1)

where the ui’s are the coordinates of U , which yields the infinitesimal displace-
ment dp

dp2 = g11du1
2 + 2g12du1du2 + g22du2

2. (2)

Minimal geodesics, or shortest paths, are the minimizers of all path length

dX(x, x′) = min
C∈Γ (x,x′)

�(C) (3)

over the set of all admissible paths Γ (x, x′) between the points x and x′ on the
surfaceX , where due to completeness assumption, a minimizer always exists (not
necessary unique). Many algorithms have been proposed for the computation of
geodesic distances. They differ by accuracy and complexity. In this paper we
focus on the family of algorithms simulating wavefront propagation known as
fast marching methods [16].
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2.2 Differential Operators

Laplace Beltrami operator (LBO), named after Eugenio Beltrami, is the general-
ization of the Laplace operator. It is a linear operator, defined as the divergence
of the gradient of a scalar function f : X → R on a manifold

Δgf = divg gradgf. (4)

The operator can be extended to tensors, but it is beyond the scope of this note.
In local coordinates u of a chart [11] , the LBO assumes the form of

Δgf =
1√
|g|

∂

∂uα

(√
|g|gαβ ∂

∂uβ
f

)
, (5)

where X(u1, u2, · · · , un) =
(
X1, X2, ·, Xn

)
is the embedding of an n-dimentional

manifold. Since our focus will be two dimensional affine invariants, we constrain
ourself to two dimensions

X(u1, u2) =
(
x(u1, u2), y(u1, u2), z(u1, u2)

)
. (6)

2.3 Diffusion Geometry

The Laplace-Beltrami operator gives rise to the partial differential equation(
∂

∂t
+Δg

)
f(t, x) = 0, (7)

called the heat equation. The heat equation describes the propagation of heat on
the surface and its solution f(t, x) is the heat distribution at a point x in time t.
The initial condition of the equation is some initial heat distribution f(0, x); if X
has a boundary, appropriate boundary conditions must be added. The solution
of (7) corresponding to a point initial condition f(0, x) = δ(x− x′), is called the
heat kernel and represents the amount of heat transferred from x to x′ in time
t by the diffusion process. Using spectral decomposition, the heat kernel can be
represented as

ht(x, x
′) =

∑
i≥0

e−λitφi(x)φi(x
′) (8)

where φi and λi are, respectively, the eigenfunctions and eigenvalues of the
Laplace-Beltrami operator satisfying Δφi = λiφi (without loss of generality,
we assume λi to be sorted in increasing order starting with λ0 = 0). Since the
Laplace-Beltrami operator is an intrinsic geometric quantity, i.e., it can be ex-
pressed solely in terms of the metric of X , its eigenfunctions and eigenvalues
as well as the heat kernel are invariant under isometric transformations of the
manifold.

The value of the heat kernel ht(x, x
′) can be interpreted as the transition

probability density of a random walk of length t from the point x to the point
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x′. This allows to construct a family of intrinsic metrics known as diffusion
metrics,

d2t (x, x
′) =

∫
(ht(x, y)− ht(x

′, y))
2
dy

=
∑
i>0

e−λit(φi(x) − φi(x
′))2, (9)

which measure the “connectivity rate” of the two points by paths of length t.
The parameter t can be given the meaning of scale, and the family {dt} can

be thought of as a scale-space of metrics. By integrating over all scales, a scale-
invariant version of (9) is obtained,

d2CT(x, x
′) = 2

∫ ∞

0

d2t (x, x
′)dt

=
∑
i>0

1

λi
(φi(x)− φi(x

′))2. (10)

This metric is referred to as the commute-time distance and can be interpreted
as the connectivity rate by paths of any length. We will broadly call construc-
tions related to the heat kernel, diffusion and commute time metrics as diffusion
geometry.

3 Equi-affine Metric

An affine transformation x �→ Ax+b of the three-dimensional Euclidean space
can be parametrized by a regular 3 × 3 matrix A and a 3 × 1 vector b. since
all constructions discussed here are trivially translation invariant, we will omit
the vector b. The transformation is called special affine or equi-affine if it is
volume-preserving, i.e., detA = 1.

As the standard Euclidean metric is not affine-invariant, the Laplace-Beltrami
Operators associated with X and AX are generally distinct, and so are the
resulting diffusion geometries. In what follows, we are going to substitute the
Euclidean metric by its equi-affine invariant counterpart. That, in turn, will
induce an equi-affine-invariant Laplace-Beltrami Operator and define equi-affine-
invariant diffusion geometry.

The equi-affine metric can be defined through the parametrization of a curve
[8,23]. Let C be a curve on X parametrized by p. By the chain rule,

dC

dp
= x1

du1

dp
+ x2

du2

dp

d2C

dp2
= x1

d2u1

dp2
+ x2

d2u2

dp2
+ x11

(
du1

dp

)2

+

2x12
du1

dp

du2

dp
+ x22

(
du2

dp

)2

, (11)
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where, for brevity, we denote xi =
∂x
∂ui

and xij = ∂2x
∂ui∂uj

. As volumes are pre-

served under the equi-affine group of transformations, we define the invariant
arclength p through

det(x1,x2, Cpp) = 1. (12)

Plugging (11) into (12) yields

dp2 = det(x1,x2,x11du
2
1 + 2x12du1du2 + x22du

2
2), (13)

from where we readily have an equi-affine-invariant pre-metric tensor

ĝij = g̃ij |g̃|−1/4
, (14)

where g̃ij = det(x1,x2,xij). The pre-metric tensor (14) defines a true metric only
on strictly convex surfaces [8]; in more general cases, it might cease from being
positive definite. In order to deal with arbitrary surfaces, we extend the metric
definition by restricting the eigenvalues of the tensor to be positive. Representing
ĝ as a 2 × 2 matrix admitting the eigendecomposition Ĝ = UΓUT, where U is
orthonormal and Γ = diag{γ1, γ2}, we compose a new first fundamental form
for non-vanishing Gaussian curvature matrix G = U|Γ|UT. The metric tensor
g is positive definite and is equi-affine invariant.

4 Numerical Considerations

4.1 Local Fitting

In order to compute the equi-affine metric we need to evaluate the second-order
derivatives of the surface with respect to some parametrization coordinates.
While this can be done practically in any representation, here we assume that the
surface is given as a triangular mesh. For each triangular face, the metric tensor
elements are calculated from a quadratic surface patch fitted to the triangle itself
and its three adjacent neighbor triangles. The four triangles are unfolded to the
plane, to which an affine transformation is applied in such a way that the central
triangle becomes a unit simplex. The coordinates of this planar representation
are used as the parametrization u with respect to which the first fundamental
form coefficients are computed at the barycenter of the simplex (Figure 1). This
step is performed for every triangle of the mesh and is summarized in [30].

4.2 Affine Geodesics

Calculating geodesic distances was intensively explored in past decades. Sev-
eral fast and accurate numerical schemes [27,16,25,26] can be used for this pur-
pose. We use the FMM technique, after locally rescaling each edge according
to the equi-affine metric. The (affine invariant) length of each edge is defined
by L2(dx, dy) = g11dx

2 + 2g12dxdy + g22dy
2. Specifically, for our canonical tri-

angle with vertices at (0, 0), (1, 0) and (0, 1) we have L2
1 = g11, L

2
2 = g22 and

L2
3 = g11 − 2g12 + g22. Each edge may appear in more than one triangle. In our

experiments we use the average length as an approximation, while verifying that
the triangle inequality holds.
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Fig. 1. Left to right: part of a triangulated surface about a specific triangle. The three
neighboring triangles together with the central one are unfolded flat to the plane. The
central triangle is canonized into a right isosceles triangle; three neighboring triangles
follow the same planar affine transformation. Finally, the six surface coordinate values
at the vertices are used to interpolate a quadratic surface patch from which the metric
tensor is computed.

4.3 Finite Elements Method (FEM)

Having the discretized first fundamental form coefficients, our next target is to
discretize the Laplace-Beltrami Operator. Since our final goal is not the operator
itself but its eigendecomposition, we skip the explicit construction of the Lapla-
cian and discretize its eigenvalues and eigenfunctions directly. This is achieved
using the finite elements method (FEM) proposed in [12] and used in shape
analysis in [20]. For that purpose, we translate the eigendecomposition of the
Laplace-Beltrami Operator Δφ = λφ into a weak form∫

ψkΔφda = λ

∫
ψkφda (15)

with respect to some basis {ψk} spanning a (sufficiently smooth) subspace of
L2(X). Specifically, we choose the ψk’s to be the first-order finite element func-
tions obtaining a value of one at a vertex k and decaying linearly to zero in
its 1-ring (the size of the basis equals to the number of vertices in the mesh).
Substituting these functions into (15), we obtain∫

ψkΔφda =

∫
〈∇ψk,∇φ〉x da =

∫
gij(∂iφ)(∂jψk) da = λ

∫
ψkφda.(16)

Next, we approximate the eigenfunction φ in the finite element basis by φ =∑
l=1 αlψl. This yields∫

gij

(
∂i
∑
l

αlψl

)
(∂jψk) da = λ

∫
ψk

∑
l

αlψl da,

or, equivalently,∑
l

αl

∫
gij(∂iψl)(∂jψk) da = λ

∑
l

αl

∫
ψkψl da.
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Fig. 2. Four eigenfunctions of the standard (second through fifth columns) and the pro-
posed equi-affine-invariant (four rightmost columns) Laplace-Beltrami operator. Two
rows show a shape and its equi-affine transformation. For convenience of visualization,
eigenfunctions are textured mapped onto the original shape.

The last equation can be rewritten in matrix form as a generalized eigendecom-
position problem Aα = λBα solved for the coefficients αl, where

akl =

∫
gij(∂iψl)(∂jψk) da,

bkl =

∫
ψkψl da,

and the local surface area is expressed in parametrization coordinates as da =√
gdu1du2. The resulting eigendecomposition can be used to define an equi-

affine-invariant diffusion geometry. Eigenfunctions, heat kernels, and diffusion
distances remain invariant under volume-preserving affine transformations of
the shape (Figures 2–3).

Evaluating the proposed metric is bounded by the number of adjacent neigh-
bors of each vertex, from which we conclude that the new metric is evaluated
in linear time with relation of the number of vertices. Spectral decomposition is
performed using the power method, implemented in MATLAB, and in practice
we only need few (below 200) eigenvectors.

5 Applications

To evaluate the performance of the proposed approach for the construction of
local descriptors, we used the Shape Google framework [28] based on standard
and affine-invariant Heat Kernel Sigantures. HKS and AI-HKS were computed at
six arbitrary scales (t = 1024, 1351.2, 1782.9, 2352.5, and 4096). Bags of features
were computed using soft vector quantization with variance taken as twice the
median of all distances between cluster centers. Approximate nearest neighbor
method [1] was used for vector quantization. Both the standard and the affine-
invariant Laplace-Beltrami Operator discretization were computed using finite
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Fig. 3. Heat kernel signatureht(x, x) anddiffusionmetric ball (second and third columns,
respectively), and their equi-affine invariant counterparts (fourth and fifth columns, re-
spectively). Two rows show a shape and its transformation. For convenience of visualiza-
tion, the kernel and the metric are overlaid onto the original shape. Plots under the figure
show the corresponding metric distributions before and after the transformation.

elements. Heat kernels were approximated using the first 100 eigenpairs of the
discrete Laplacian. The geometric vocabulary size was set to 64.

Evaluation was performed using the SHREC 2010 robust large-scale shape
retrieval benchmark methodology [4]. The dataset consisted of two parts: 793
shapes from 13 shape classes with simulated transformation of different types
(Figure 4) and strengths (60 per shape) used as queries, and additional 521
shapes from a large variety of objects. The total dataset size was 1314. Re-
trieval was performed by matching 780 transformed queries to shape classes.
Each query had one correct corresponding null shape in the dataset. Perfor-
mance was evaluated using precision/recall characteristic. Precision P (r) is de-
fined as the percentage of relevant shapes in the first r top-ranked retrieved
shapes. Mean average precision (mAP), defined as mAP =

∑
r P (r) · rel(r),

where rel(r) is the relevance of a given rank, was used as a single measure of
performance. Intuitively, mAP is interpreted as the area below the precision-
recall curve. Ideal performance retrieval performance results in first relevant
match with mAP=100%. Performance results were broken down according to
transformation class and strength.
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Fig. 4. Examples of query shape transformations used in the shape retrieval experiment
(left to right): null, isometry, topology, affine, affine+isometry, sampling, local dilation,
holes, microholes, Gaussian noise, shot noise

Tables 2–1 show that in contrast to the Euclidean metric, the equi-affine
metric preserves the high accuracy rate of shape retrieval for all deformations,
including equi-affine. In some deformations we can see an improvement, which
we attribute to the smoothing effect of the second order interpolation. As this
metric is based on second derivatives it is less robust to noise than its Euclidean
adversary. Yet, since the numeric is based on the weak form (FEM) of the LBO,
the integration improves robustness. Adding that to the usage of low frequen-
cies from the eigendecomposition, explains the competitive results even without
performing noise reduction and/or resampling as a preprocessing step.

The equi-affine metric can be used in many existing methods that compute
geodesic distances. In what follows, we show several examples for using the
new metric in known applications such as Voronoi tessellation and non-rigid
matching.

Voronoi tessellation is a partitioning of (X, g) into disjoint open sets called

Voronoi cells. A set of k points (xi ∈ X)
k
i=1 on the surface defines the Voronoi

cells (Vi)
k
i=1 such that the i-th cell contains all points in X closer to xi than

to any other xj in the sense of the metric g. Voronoi tessellations created with
the equi-affine metric commute with equi-affine transformations as visualized in
Figure 5.

Table 1. Performance (mAP in %) of Shape Google with HKS descriptors

Strength
Transform. 1 ≤2 ≤3 ≤4 ≤5

Isometry 100.00 100.00 100.00 100.00 100.00
Equi-Affine 100.00 86.89 73.50 57.66 46.64
Iso.+Equi-Affine 94.23 86.35 76.84 70.76 65.36
Topology 100.00 100.00 98.72 98.08 97.69
Holes 100.00 96.15 92.82 88.51 82.74
Micro holes 100.00 100.00 100.00 100.00 100.00
Local scale 100.00 100.00 97.44 87.88 78.78
Sampling 100.00 100.00 100.00 96.25 91.43
Noise 100.00 100.00 100.00 99.04 99.23
Shot noise 100.00 100.00 100.00 98.46 98.77
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Table 2. Performance (mAP in %) of Shape Google with equi-affine-invariant HKS
descriptors

Strength
Transform. 1 ≤2 ≤3 ≤4 ≤5

Isometry 100.00 100.00 100.00 100.00 99.23
Affine 100.00 100.00 100.00 100.00 97.44
Iso.+Equi-Affine 100.00 100.00 100.00 100.00 100.00
Topology 96.15 94.23 91.88 89.74 86.79
Holes 100.00 100.00 100.00 100.00 100.00
Micro holes 100.00 100.00 100.00 100.00 100.00
Local scale 100.00 100.00 94.74 82.39 73.97
Sampling 100.00 100.00 100.00 96.79 86.10
Noise 100.00 100.00 89.83 78.53 69.22
Shot noise 100.00 100.00 100.00 97.76 89.63

Fig. 5. Voronoi cells generated by a fixed set of 20 points on a shape undergoing
an equi-affine transformation. The standard geodesic metric (left) and its equi-affine
counterpart (right) were used. Note that in the latter case the tessellation commutes
with the transformation.

Two non-rigid shapes X,Y can be considered similar if there exists an isomet-
ric correspondence C ⊂ X×Y between them, such that ∀x ∈ X there exists y ∈ Y
with (x, y) ∈ C and vice-versa, and dX(x, x′) = dY (y, y

′) for all (x, y), (x′, y′) ∈ C,
where dX , dY are geodesic distance metrics on X,Y . In practice, no shapes are
perfectly isometric, and such a correspondence rarely exists; however, one can
attempt finding a correspondence minimizing the metric distortion,

dis(C) = max
(x,y)∈C
(x′,y′)∈C

|dX(x, x′)− dY (y, y
′)|. (17)

The smallest achievable value of the distortion is called the Gromov-Hausdorff
distance [9] between the metric spaces (X, dX) and (Y, dY ),
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Fig. 6. The GMDS framework is used to calculate correspondences between a shape
and its isometry (left) and isometry followed by an equi-affine transformation (right).
Matches between shapes are depicted as identically colored Voronoi cells. Standard
distance (first row) and its equi-affine-invariant counterpart (second row) are used as
the metric structure in the GMDS algorithm. Inaccuracies obtained in the first case
are especially visible in the legs and arms.

dGH(X,Y ) =
1

2
inf
C

dis(C), (18)

and can be used as a criterion of shape similarity.
The choice of the distance metrics dX , dY defines the invariance class of this

similarity criterion. Using geodesic distances, the similarity is invariant to in-
elastic deformations. Here, we use geodesic distances induced by our equi-affine
Riemannian metric tensor, which gives additional invariance to affine transfor-
mations of the shape.
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Bronstein et al. [3] showed how (18) can be efficiently approximated using a
convex optimization algorithm in the spirit of multidimensional scaling (MDS),
referred to as generalized MDS (GMDS). Since the input of this numeric frame-
work are geodesic distances between mesh points, all that is needed to obtain
an equi-affine GMDS is one additional step where we substitute the geodesic
distances with their equi-affine equivalents. Figure 6 shows the correspondences
obtained between an equi-affine transformation of a shape using the standard
and the equi-affine-invariant versions of the geodesic metric.

6 Conclusion

We introduced an equi-affine-invariant metric that can cope with surfaces that do
not have vanishing Gaussian curvature. We showed a wide range of applications,
from shape retrieval through Voronoi tesselation to correspondence search, based
on differential geometry tools and spectral analysis. The limitation of the method
is the fixed scale restriction that will be solved in the future.
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Swiss High-Performance and High-Productivity Computing (HP2C).
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Abstract. Recent developments in Structure-from-Motion approaches
allow the reconstructions of large parts of urban scenes. The available
models can in turn be used for accurate image-based localization via pose
estimation from 2D-to-3D correspondences. In this paper, we analyze a
recently proposed localization method that achieves state-of-the-art lo-
calization performance using a visual vocabulary quantization for effi-
cient 2D-to-3D correspondence search. We show that using only a subset
of the original models allows the method to achieve a similar localization
performance. While this gain can come at additional computational cost
depending on the dataset, the reduced model requires significantly less
memory, allowing the method to handle even larger datasets. We study
how the size of the subset, as well as the quantization, affect both the
search for matches and the time needed by RANSAC for pose estimation.

Keywords: image localization, image retrieval, camera pose estimation.

1 Introduction

Image-based localization methods try to estimate the position from which a
query image was taken. Once obtained, the position can be used to determine,
e.g., the position of a pedestrian [20,29,40,7] or of a mobile robot [11,12,37]. An
especially interesting application is image-based localization for mobile devices,
where a user simply sends a photo taken with her mobile phone to a server and in
return receives information about her position [7]. Camera positions computed by
localization methods are also useful for Structure-from-Motion reconstructions
[1,10,14,18,28,35] or for the visualization of photo collections [34].

In order to enable image-based localization, some kind of visual representation
of the scene is required. Traditionally, the chosen representation has been a set
of images, enabling the use of image retrieval methods to efficiently find similar
images and then use the (GPS) positions of the images as an approximation to
the position of the query camera. Such a representation usually contains a lot
of redundant information as multiple images cover the same part of the scene.
Furthermore, many confusing features found in the images have to be removed for
better retrieval [22]. The redundancy in the image set can be exploited to obtain
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a Structure-from-Motion (SfM) reconstruction of the scene [1,10,14,18,28,35],
resulting in a 3D point cloud. The image matching part of the SfM pipeline
automatically removes most of the confusing features. Thus, a 3D reconstruction
offers a more compact representation of the scene than the original images.

While a purely image-based representation only allows to compute the posi-
tion of the camera, using a 3D model to represent the scene offers the additional
advantage that the full camera pose, i.e., both position and orientation, can be
determined. Essential for camera pose estimation are correspondences between
2D features in the query image and 3D points in the model. For every 3D point
there is a list of 2D image features obtained from the images used to triangu-
late the point. These features model the appearance of the point from multiple
viewpoints under varying lighting conditions. By also extracting local features
in the query image, the correspondence search can be modeled as a descriptor
matching problem. Due to the large scale of the reconstructions, containing one
million or more points, the search method needs to be efficient. Additionally, it
has to find enough correspondences to allow pose estimation. Furthermore, most
of the matches have to be correct to avoid spending too much time on RANSAC.

A common approach for fast correspondence search is to first find an intermedi-
ate representation to quickly narrow down the search for possible correspondence,
for example by only considering points found in database images similar to the
query image [20]. Recently, Sattler et al. showed that direct search approaches
that consider all 3D points with similar enough descriptors as potential correspon-
dences for a feature in the query image achieve a better localization performance,
i.e., are able to localize more images [30]. They propose a direct search method
based on a visual vocabulary which limits the correspondence search of a query
feature to all 3D points with descriptors assigned to the same visual word. Com-
bined with a prioritization scheme, their approach is able to outperform current
state-of-the-artmethods either in localizationperformance or efficiency or both. In
this paper, we look at two aspects of the method that are critical for scalability to
larger datasets: First, themethod requires to keepmultiple descriptors for every 3D
point in memory for efficient nearest neighbor search. Second, as more 3D points
are used, the space containing the descriptors becomes denser. As the method uses
SIFT features togetherwith SIFT ratio-test [24] to rejectwrong correspondences, a
denser search space will most likely remove more correct correspondences as well.
A simple way to reduce the memory footprint is to use only a subset of the 3D
points available in the model. Using fewer points, and thus fewer descriptors, can
also have a positive effect on the localization performance for larger datasets if the
descriptor space also becomes sparser. In this paper, we experimentally evaluate
the impact of considering subsets of the points in the model, selected by a simple
reduction scheme recently proposed by Li et al. [23]. More specifically, we explore
the relation between the number of points used, localization performance and effi-
ciency, as well as localization accuracy.We show that we can achieve a similar reg-
istration performance at comparable efficiency and slightly better accuracy when
using less than half of the points originally contained in the model. To explore the
effect of using fewer points on the descriptor space, we simulate a larger dataset by
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combining multiple smaller ones. Our experiments show that using subsets of the
points cannot prevent the descriptor space frombecoming too dense, but can speed
up the registration process while maintaining a similar registration performance.

We use the notation introduced in [23], referring to 2D local features found in
images and their descriptors as features and to 3D points and their descriptors
from the database images as points. A visual vocabulary is obtained by clustering
a set of local features using approximate k-means [27]. The obtained cluster
centers are called visual words. Assigning a feature to its visual words means
finding the cluster center which has the closest Euclidean distance to the feature
through approximate nearest neighbor search.

The paper is structured as follows. Section 2 reviews related work. Section 3
discusses the approaches from [23,30] in more detail as they are the most rele-
vant work to the work presented in this paper. We experimentally evaluate the
combination of the method from [30] and the point filtering proposed in [23] in
Section 4. Section 5 concludes the paper by discussing future work.

2 Related Work

Robertson and Cipolla developed one of the earliest image-based methods for
localization. Their database consists of 200 image of facades in an urban envi-
ronment, which are rectified to allow invariance against viewpoint changes [29].
The approach of Zhang & Kosecka retrieves the two images in a database that
are most similar to a given query image [40], but instead of canonic views they
use SIFT features to handle viewpoint differences. The position of the query
camera is then triangulated from the GPS positions of the two retrieved im-
ages. Schindler et al. use 30k images, each one associated to a GPS position,
to model large parts of a city [31]. To scale their localization method to such a
large dataset, they accelerate the image retrieval step through the vocabulary
tree method developed by Nister and Stewenius [26], using only features that
are informative about their location to obtain a discriminative vocabulary. While
Schindler et al. operate on a visual word level, Zamir and Shah use the original
SIFT descriptors found in 100k database images, storing the descriptors in a
tree-structure [39]. They propose an adapted SIFT ratio-test to deal with repet-
itive features and achieve positional accuracy comparable to GPS using a voting
scheme. To handle an ever larger dataset of around 1 million images, Avrithis
et al. aggregate the information of multiple images depicting the same scene
into scene maps [4]. This clustering has the positive effect that it increases the
recall while reducing the number of documents in the database. A still larger,
planet-scale level with more than 6 million database images is considered by Hays
and Efros who achieve localization through finding the modes of a probability
distribution of possible locations all over the globe [19].

In robotics, the scene in which a robot operates might not be known in ad-
vance. In this case, cameras mounted on the robot are used to build a 3D re-
construction of the environment. This model is in turn used to estimate the
relative position and orientation of the robot. An early version of such a simul-
taneous localization and mapping (SLAM) system has been proposed by Se et al.
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[32]. Current state-of-the-art methods such as [6,11,12] try to adapt the SLAM
approach to increasingly large scenes for real-time localization.

For large scenes, the construction of the 3D model cannot be achieved in
real-time anymore. In case of a static environment the reconstruction can be
precomputed using Structure-from-Motion techniques. Irschara et al. propose
an approach that uses such models for image-based localization [20]. To narrow
down the set of points that have to be considered to establish 2D-to-3D corre-
spondences, they use an image retrieval step to find similar images from the set
of images used for the reconstruction. Efficient GPU implementations for both
feature matching and vocabulary tree-based retrieval enable their approach to
perform in real-time. In order to localize query images substantially different
from the database images, Irschara et al. place synthetic cameras on the ground
plane to generate additional views. A informative subset of images is picked from
the set of original and new images to form the database for retrieval. Wendel et
al. generalize the placement of virtual cameras to full 3D to use a similar pipeline
for the localization of aerial vehicles [37]. In another retrieval-based approach,
Arth et al. use manually selected 3D point sets together with the images the
points are visible in for pose estimation on mobile phones [2].

Li et al. show that directly establishing 3D-to-2D correspondences without
the intermediate image retrieval step improves localization performance [23].
Starting with points visible in many database images, their prioritized matching
algorithm tries to match 3D points to the 2D features in the query image. A
point selection schemes computes a more compact representation of the origi-
nal reconstruction. They show that using such a reduced model improves both
localization performance and registration time. Sattler et al. present another
approach that directly tries to establish correspondences [30]. In contrast to Li
et al. they perform 2D-to-3D matching of 2D features against 3D points. To
accelerate the correspondence search they use a prioritization scheme that first
evaluates features for which only a small part of the descriptor space has to
be searched. The search cost associated with each feature is estimated using a
quantization of descriptor space defined by a visual vocabulary.

3 Prioritized Search

In this paper we evaluate the combination of the localization method from Sattler
et al. [30] with the point selection scheme from Li et al. [23], aiming to achieve a
similar localization performance and efficiency using fewer points and thus less
memory. In the following, we review the two approaches.

Both methods are based on the key observation that not all 2D-to-3D cor-
respondences that can be found are needed to successfully estimate the camera
pose. The search time can be reduced by applying a prioritization scheme that
first considers the most promising features and stops the search if enough corre-
spondences are found. As Li et al. and Sattler et al. perform matching in opposite
directions, their prioritization schemes are fundamentally different.

Li et al. try to match 3D points against 2D image features (3D-to-2D match-
ing). They establish a correspondence between a 3D point with mean descriptor
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d and a 2D feature with descriptor d1 if the SIFT ratio-test ‖d−d1‖2

‖d−d2‖2
< 0.7 is

fulfilled. Here d1 and d2 are the first and second nearest neighbors for d amongst
the descriptors in the query image, found through approximate tree-based search
[3]. Their prioritization scheme is based on co-visibility of points since a match
found for a point p increases the likelihood to find a correspondence for points
visible together with p. To this end, two points p and p′ are considered to be
visible together if there is at least one database image that contains both points.
The initial priority of a point is related to the number of database images it
is visible in. In case the model was constructed from images obtained from a
photo-sharing website, the method thus favors points visible in regions where
many photos were taken, i.e., regions which seem to be interesting for tourists.
If the model was built from more evenly distributed images, e.g., street view
panoramas, stable points visible under different viewing angles are preferred.
When a correspondence for p is found the priority of a point p′ is increased if p
and p′ are visible together. The search for correspondences is stopped as soon
as Nt = 100 correspondences are found. Observing that about one out of every
500 point creates a correspondences by pure chance, Li et al. stop the search as
soon as 500 ·Nt=50,000 points have been considered [23].

Large-scale reconstructions contain millions of 3D points and some query im-
ages might see only 3D points whose priority is so low that the search would
be stopped before any of them are considered. To circumvent this problem, Li
et al. propose to use a set of seed points [23] that contains locally important
points from all over the model. By giving these points a higher priority than all
other 3D points, they perform a breadth-first search on the set of seed points to
quickly converge to the area of the model that is likely to be seen in the image
[23]. The set of seed points is computed by solving a set cover problem, where
every point covers all images it is visible in. The seed set is constructed by find-
ing a (minimal) set of points such that every image in the database is covered
by at least 5 points. Since computing the minimum set cover is NP-hard, Li et
al. use a simple greedy algorithm that iteratively selects the point that covers
the largest number of images that have not yet been covered by 5 points [23].
The greedy algorithm is stopped after finding 2000 points to keep the set of
seed points compact. Li et al. also use a compact model, again obtained from
the greedy algorithm ensuring that every image is covered by at least K points
without any limit on the number of selected points, instead of the full 3D model
containing all points. They show experimentally that 3-20% of the original fea-
tures (depending on the structure of the dataset) suffice to achieve both faster
localization times and better localization performance, as more images can be
registered using the reduced model than with the original model.

While Li et al. match points against features, Sattler et al. propose an ap-
proach that performs matching in the other direction (2D-to-3D matching) [30].
They observe that a simple method that stores the mean descriptor for every 3D
point in a kd-tree and then performs approximate search [25] for the two nearest
neighbors for every query feature, followed by applying the SIFT ratio-test and
RANSAC-based pose estimation, achieves better localization performance than
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current state-of-the-art methods [23]. While offering excellent performance, this
method is way too slow for practical applications. Sattler et al. argue that this
is due to wasting most of the search time on features that have no correspon-
dence to 3D points in the scene. Instead of treating every feature the same way,
they propose a prioritization scheme that firsts evaluates features for which one
can quickly decide whether they lead to a correspondence or not. The cost of
matching a 2D feature against the reconstruction is related to the number of
points that have to be considered. To simultaneously limit the search space and
estimate the search cost, Sattler et al. quantize the descriptor space of the used
SIFT features into visual words using approx. k-means clustering [27]. In an of-
fline process, the descriptors of the 3D points are assigned to visual words and
for each word the list of points that have at least one descriptor assigned to it
is stored together with the corresponding feature descriptors. Considering only
the points assigned to the same visual word allows to relate the search cost of a
query feature to the number of points stored in its word.

Given a new query image and the local features extracted from it, the lo-
calization method by Sattler et al. first assigns every feature in the image to
its nearest visual word using approximate kd-tree search [25]. The list of (fea-
ture,word) pairs is then sorted in increasing number of (point,descriptor) pairs
assigned to the words during the offline process. The features in the image are
inspected in this order. Given the currently considered feature f , the method
performs a linear search through all (point,descriptor) pairs stored in the visual
word the descriptor df of f was assigned to. The search finds the two points p,
q (p �= q) whose descriptors dp, dq are the nearest neighbors of df . Similar to
[23], a correspondence between the feature f and the point p is established if

the SIFT ratio-test
‖df−dp‖2

‖df−dq‖2
< 0.7 is fulfilled. Since the 3D model is obtained

from a SfM reconstruction, every point has at least two descriptors assigned
to it. Therefore, a point can potentially be assigned to multiple visual words.
To avoid establishing multiple correspondences containing the same 3D point,
a newly found correspondence (f ′, p) replaces an existing correspondence (f, p)
if ‖df ′ − dp‖2 < ‖df − dp‖2 and is rejected otherwise. The search for further
correspondences is stopped when Nt correspondences are found. Similar to Li et
al., the 6-point DLT algorithm [17] is used to estimate the camera pose inside a
RANSAC [13] loop. For robust estimation, a randomized RANSAC variant [9]
is used in conjunction with a local optimization scheme [8].

Sattler et al. rigorously explore the design space of this method through ex-
periments on the datasets from [20,23], showing that their method outperforms
other state-of-the-art methods such as [20,23] in either localization performance
or efficiency or even both. They explore different strategies to represent 3D points
by their descriptors, reporting that the following two give the best results: The
all descriptors (all desc.) strategy represents every 3D point by all of its descrip-
tors. As a result, more than one descriptor of a point can be stored in the same
visual word, increasing the search time for the word. The integer mean per visual
word (int. mean) strategy tries to reduce the memory requirements by replacing
multiple descriptors of the same point assigned to the same word by their mean
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descriptor. The entries of this mean descriptor are then rounded to the nearest in-
teger value to be able to use only 1 byte for each entry instead of the 4 bytes needed
by a floating point representation. Choosing Nt = 100 helps to reduce the search
timeswithoutany significantnegative impact on the registrationperformance.Fur-
thermore, assuming an initial inlier ratio of 20% for RANSAC effectively limits the
maximal number of taken samples with little impact on the localization perfor-
mance. The source code for the method has been made publicly available and can
be found at http://www.graphics.rwth-aachen.de/localization/.

There is an interesting analogy between the prioritization scheme of Sattler
et al. and the well-known idf-weighting scheme used in image retrieval [33]. The
idf-scheme weights down words that are used in many documents since they are
less discriminative. Similarly, the prioritization scheme from [30] favors features
mapped to a visual word which does not occur very often in the model and thus
contains discriminative points. Therefore, besides trying to minimize the search
costs by finding a suitable ordering of features, the prioritization scheme starts
with the most promising features found in the image.

An interesting result from [30] is that the performance of a generic set of 100k
visual words obtained from an unrelated dataset is similar to the performance of
a specialized vocabulary trained from the descriptors of the points in the corre-
sponding reconstruction. This means that the same vocabulary can be re-used,
independently of the considered dataset. The main cause for this somewhat sur-
prising result is that Sattler et al. perform a very approximate nearest neighbor
search to compute the assignment of descriptors to visual words to minimize
search costs. Specially trained vocabularies do not offer any advantages for such
a very approximative search.

Two problems will arise when applying the method from Sattler et al. on even
larger datasets. Since multiple SIFT descriptors are stored for every 3D point, the
model will eventually become too large to fit into the RAM of a PC. As more
and more points are used, the distances between the descriptors of one point
and their nearest descriptors belonging to another point decrease. This has a
positive impact on the run-time of the RANSAC-based pose estimation, because
the SIFT ratio-test is able to remove more and more wrong correspondences.
However, as the descriptor space becomes denser, the ratio-test will also filter out
more correct correspondences. Thus only features with descriptors very similar
to the ones of its corresponding 3D point will pass the SIFT ratio-test. As a
result, images differing too much from the views in the database cannot be
registered anymore, decreasing the localization performance of the algorithm.
Compact models containing fewer points than the original reconstruction require
less memory and can therefore help to solve the first problem. Using fewer points
can also induce a sparser descriptor space, helping the localization method to
avoid rejecting too many good correspondences.

In the case of 3D-to-2D matching, the descriptor space formed by the 2D
features in an image is much sparser than the descriptor space of the 3D model.
Thus, Li et al. are able to avoid the problem of rejecting too many correct

http://www.graphics.rwth-aachen.de/localization/


198 T. Sattler, B. Leibe, and L. Kobbelt

Table 1. Details on the datasets used for experimental evaluation

Dataset # Cameras # 3D Points # Descriptors # Query Images

Dubrovnik 6044 1,886,884 9,606,317 800
Rome 15, 179 4,067,119 21,515,110 1000
Vienna 1324 1,123,028 4,854,056 266

matches at the cost of finding more wrong correspondences. Note that their
approach still has problems scaling to larger datasets. To enable the breadth-first
search performed by the algorithm, a larger set of seed points has to be used for
reconstructions containing more points. Based to the observation that roughly
one out of every 500 points matches by chance, it will happen that the algorithm
stops before even considering the whole seed set since enough correspondences
are already found. In turn, finding enough good candidate points for matching is
not a problem for the method from Sattler et al. due to using a visual vocabulary
for finding possible correspondences.

4 Compact Models for 2D-to-3D Search

In this section, we evaluate the combination of the localization method from
[30] and the point selection scheme proposed by [23]. Specifically, we explore the
impact of compact models constructed using different choices for the set cover
parameter K on localization performance, efficiency and accuracy. In Section
4.1 the used datasets and the experimental setup are explained. The impact
of the parameter K on both registration performance and registration times is
evaluated in Section 4.2. In Section 4.3 we show that compact models can help
the method to handle larger datasets. Section 4.4 details the impact of K on
the localization accuracy. Since the approach from Sattler et al. outperforms the
other state-of-the-art approaches, such as [20,23], we do not compare our results
against other approaches.

4.1 Experimental Setup

We use the three large-scale datasets from [20,23,30] to allow a direct and fair
comparison. For two of the datasets, Dubrovnik and Rome, the database images
for the reconstruction were obtained from the photo-sharing website Flickr [23].
For the Vienna dataset the database images were taken at regular intervals with a
single camera [20]. The original Dubrovnik reconstruction consists of 6844 images
depicting parts of the old city of Dubrovnik. 800 randomly selected images were
removed from the reconstruction to obtain a set of relevant query images. For
every camera in the test set, the SIFT descriptors of the points visible in it
were deleted from the model. Any point visible in only one remaining camera
was also removed. The query images for the Rome dataset were obtained in the
same fashion, removing 1000 randomly selected images from the 16,179 images
in the initial reconstruction. In contrast to the Dubrovnik model, the Rome
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Table 2. The percentage of points selected depending on K for Dubrovnik and Rome

K
Dataset 100 200 300 400 500 600 700 800 900 1000

Dubrovnik 3.84% 8.61% 13.58% 18.6% 23.55% 28.24% 32.68% 36.88% 40.82% 44.59%
Rome 3.56% 8.36% 13.57% 18.93% 24.23% 29.42% 34.32% 38.94% 43.29% 47.40%

Table 3. The percentage of points selected depending on K for the Vienna dataset

K
Dataset 500 750 1000 1250 1500 2000 2500 3000

Vienna 7.54% 12.53% 18.03% 23.62% 29.20% 39.68% 49.28% 58.00%

reconstruction consists of multiple connected components, each one representing
a distinct landmark in Rome [23]. The Vienna model consists of 1324 cameras in
three connected components. Query images were obtained from the Panoramio
website. All query images have maximal width and height of 1600 pixels. The
Dubrovnik and Rome models used in [23] and [30] differ slightly in the number
of 3D points they contain. We use the latter model. More information about the
datasets than presented in Table 1 is available in [20,23].

For the Dubrovnik model, Li et al. computed a transformation into a geo-
referenced coordinate frame such that distances in the model can be expressed
in meters [23]. Since the query images were obtained by removing images from
the initial reconstruction, we can use the original camera positions computed by
SfM as ground truth and measure the localization accuracy.

As proposed by Li et al., we accept a query image as localized, or registered
against the model, if the best camera pose estimated by RANSAC has at least
12 inliers. Repeating each experiment 10 times to account for the random nature
of RANSAC, we report the average number of images that can be registered and
the average time needed to register or reject an image. Assuming that SIFT
features are already given, the time needed to process an image is the sum of
the time needed to assign all of its features to visual words, the time needed
for correspondence search and the time needed by RANSAC to estimate the
camera pose. Beside the total time, we also report the time required for the
correspondence search and the time needed for RANSAC.

4.2 Compact Models

As shown in [38], pictures found on photo collection websites are distributed
around certain iconic views as tourists tend to take slightly different pictures
of the same buildings. Since the query images for Dubrovnik and Rome were
obtained by randomly selecting images from the reconstruction, they have the
same distribution as the database images. Thus the descriptors found in the
query images should be rather similar to those in the model. While the Vienna
model was reconstructed from images taken in nearly regular intervals, the query
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Table 4. Mean registration performance and times for 100k visual words and different
values for K. K=∞ denotes the results reported in [30] for which all available points
were used. We obtain a similar registration performance as [30] using compact models
with of fewer 3D points. For Dubrovnik and Rome we achieve better registration times.

all descriptors integer mean per vw
# reg. registr. rejection # reg. registr. rejection

K images time [s] time [s] images time [s] time [s]

D
u
b
ro
v
n
ik

100 569.40 ± 3.17 1.79 5.66 604.10 ± 4.61 1.59 5.45
200 736.20 ± 3.26 0.94 5.01 739.60 ± 1.96 0.78 4.67
400 776.80 ± 1.75 0.42 3.43 775.30 ± 1.16 0.37 3.03
600 781.30 ± 1.42 0.31 3.01 778.50 ± 1.18 0.28 2.66
800 782.10 ± 1.20 0.29 2.32 779.20 ± 1.40 0.26 2.17
900 782.00 ± 0.94 0.27 2.45 780.80 ± 1.23 0.26 1.96
1000 781.90 ± 0.99 0.27 2.43 781.30 ± 0.95 0.25 1.88

∞ 783.90 ± 1.60 0.31 2.22 782.00 ± 0.82 0.28 1.70

R
o
m
e

100 950.10 ± 1.66 0.41 3.08 947.40 ± 2.76 0.32 2.46
200 965.20 ± 1.62 0.23 1.84 964.10 ± 1.45 0.20 1.63
400 971.90 ± 1.45 0.21 1.90 972.50 ± 1.08 0.18 1.77
600 974.60 ± 1.07 0.21 1.88 974.70 ± 1.83 0.18 1.77
800 973.90 ± 1.52 0.21 1.76 974.30 ± 1.16 0.18 1.60
900 974.00 ± 1.33 0.22 1.62 975.90 ± 1.91 0.19 1.56
1000 974.90 ± 0.99 0.23 1.63 974.80 ± 1.87 0.20 1.59

∞ 976.90 ± 1.29 0.29 1.90 974.60 ± 1.65 0.25 1.66

V
ie
n
n
a

500 122.50 ± 2.07 2.44 5.37 127.00 ± 1.76 2.28 5.12
1000 181.30 ± 2.00 1.34 4.25 184.70 ± 2.54 1.24 4.02
1500 194.70 ± 0.82 0.73 3.63 193.90 ± 1.29 0.64 3.50
2000 202.30 ± 1.34 0.62 3.30 202.00 ± 1.05 0.63 3.04
2500 206.40 ± 1.26 0.60 3.07 205.10 ± 1.10 0.58 2.85
3000 206.90 ± 0.74 0.54 2.84 206.10 ± 1.10 0.51 2.70

∞ 207.70 ± 1.06 0.50 2.40 206.90 ± 0.88 0.46 2.43

images obtained from Panoramio follow a different distribution. Furthermore,
the database images were taken with a single camera on the same day while
query images are taken at different days and at different times of day with
different cameras. This makes the Vienna dataset the most challenging of the
three datasets and we can expect a larger difference between the SIFT descriptors
found in the query image and the those found in the database images. Due
to this difference in distributions, we use a different range of values for the
set cover parameter K for the Vienna dataset compared to the Dubrovnik and
Rome datasets, similar to [23]. Table 2 shows the percentage of points selected
depending on K for the Dubrovnik and Rome datasets, while Table 3 shows the
percentage of selected points for the Vienna dataset. We only consider values
for K until obtaining around 50% of the points contained in the original model
since we want to use the compact models to save storage space.

We evaluate the compact models obtained for the values for K shown in
Tables 2 and 3 together with the two strategies, all desc. and int. mean, in the
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Fig. 1. Dependence of the average time needed to find enough correspondences and
the average time to compute the camera pose through RANSAC on the parameter
K. Timings are shown for (a), (d) Dubrovnik, (b), (e) Rome and (c), (f) Vienna.
100k visual words were used for the results shown in the top row and 10k words for
the bottom row. Fewer 3D points yield more wrong correspondences, increasing the
run-time of RANSAC. Search time increases with the number of points in the words.

pipeline proposed in [30]. The visual vocabulary containing 100k words employed
in this experiments is the same as in [30]. We report the mean number of images
that can be localized and the mean time needed to register or reject an image in
Table 4. Small values for K lead to a significantly worse localization performance
with high registration and rejection times. Using more points allows to achieve
a registration performance similar to [30]. Slightly faster registration times can
be achieved for K from {800, 900, 1000} for Dubrovnik and Rome, while the
registration times for the Vienna dataset are a little worse compared to the full
model. There are two possible explanations for the observed behavior. First,
using fewer points and thus fewer descriptors leads to a sparser descriptor space
and visual words that are less full. As the distances between descriptors stored
in a visual word grow, it becomes more likely to accept wrong matches through
the SIFT ratio-test, which in turn increase the registration time. Secondly, the
selected points might not suffice to allow robust localization.

The first explanation is easy to verify. Figure 1 shows how the mean time for
correspondence search and the mean time RANSAC needs depend on the choice
of K for (a) Dubrovnik, (b) Rome and (c) Vienna. Compact models with more
points indeed lead to faster RANSAC times due to fewer wrong matches.

To reject the second explanation, we repeat the experiment using a visual
vocabulary containing only 10k words. Since each of the words in this smaller
vocabulary covers a larger part of descriptor space, the likelihood of assigning
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Table 5. Mean registration performance and times for 10k visual words and different
values for K. For the Dubrovnik and Rome datasets, fewer points still allow a similar
registration performance compared to [30] at higher localization costs. A significantly
better performance at comparable registration times is achieved for the Vienna dataset.

all descriptors integer mean per vw
# reg. registr. rejection # reg. registr. rejection

K images time [s] time [s] images time [s] time [s]

D
u
b
ro
v
n
ik

100 771.00 ± 1.49 0.36 2.03 765.40 ± 1.96 0.26 1.55
200 778.80 ± 1.75 0.31 1.81 777.20 ± 0.92 0.21 1.18
300 780.70 ± 0.95 0.33 1.70 778.00 ± 1.49 0.22 1.18
400 782.60 ± 1.84 0.35 1.86 779.20 ± 1.03 0.24 1.19
600 783.30 ± 0.95 0.40 2.02 781.60 ± 2.22 0.27 1.38
800 783.40 ± 0.97 0.44 2.12 783.20 ± 1.62 0.30 1.43
1000 784.50 ± 1.65 0.47 2.22 784.30 ± 0.82 0.32 1.69
[30] 783.90 ± 1.60 0.31 2.22 782.00 ± 0.82 0.28 1.70

R
o
m
e

100 964.20 ± 1.32 0.38 1.54 959.00 ± 1.56 0.21 1.13
200 972.40 ± 1.84 0.43 2.01 968.90 ± 1.10 0.24 1.36
300 974.90 ± 0.99 0.47 2.38 971.60 ± 1.17 0.28 1.44
400 978.80 ± 1.03 0.51 2.64 974.80 ± 1.55 0.31 1.55
600 980.00 ± 0.67 0.58 2.76 976.60 ± 0.84 0.36 1.86
800 978.80 ± 1.03 0.63 3.19 976.80 ± 1.62 0.40 2.09
1000 980.20 ± 1.75 0.67 3.45 977.10 ± 1.73 0.44 2.23
[30] 976.90 ± 1.29 0.29 1.90 974.60 ± 1.65 0.25 1.66

V
ie
n
n
a

500 198.70 ± 1.16 0.54 2.63 198.10 ± 1.66 0.55 2.18
750 209.00 ± 1.25 0.57 2.31 205.90 ± 0.74 0.52 1.86
1000 215.00 ± 1.25 0.55 1.91 209.60 ± 1.43 0.46 1.61
1250 217.50 ± 0.97 0.56 1.67 213.60 ± 0.70 0.44 1.37
1500 218.10 ± 0.88 0.56 1.54 213.90 ± 1.10 0.44 1.35
2000 219.30 ± 0.67 0.55 1.43 214.80 ± 1.23 0.44 1.27
2500 219.70 ± 0.82 0.58 1.31 215.20 ± 0.92 0.44 1.23
3000 218.90 ± 1.20 0.58 1.29 214.10 ± 1.29 0.43 1.23
[30] 207.70 ± 1.06 0.50 2.40 206.90 ± 0.88 0.46 2.43

the descriptors of a 3D point and the descriptor of its corresponding feature to
the same word increases compared to the original vocabulary. Table 5 shows that
a good registration performance can be achieved for much lower values of K with
the smaller vocabulary, indicating that enough points for robust localization are
selected. A compact model containing only about 18% of the original points
(K =400 for Dubrovnik and Rome, K =1000 for Vienna) gives a performance
comparable to the original methods from [30], albeit at increased registration
times. As shown in Figure 1(d)-(e) this increase is mainly due to the slower search
as more points are contained in the words. It is noticeable that the difference in
search time for both strategies is much larger for 10k words than for 100k words.
Since more descriptors of the same point are mapped to the same word for the
smaller vocabulary, the integer mean strategy is able to compress them into one
mean descriptor while the all descriptor strategy has to use all descriptors. At the
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Table 6. Results for combining different versions of the three models for query images
from each dataset. We useK1 to build compact models for Dubrovnik and Rome andK2

to obtain a compact model for Vienna. For comparison we include the results from [30]
on the single models. Due to the denser descriptor space, registration performance drops
compared to [30] for the combined models, but the usage of compact models can help
to decrease the registration and rejection times at a similar localization performance.

# reg. registered rejection
K1 / K2 method images search [s] RANSAC [s] total [s] time [s]

D
u
b
ro
v
n
ik

∞ / ∞ all desc. 779.20 ± 0.63 0.42 0.02 0.55 1.32
int. mean 776.00 ± 1.25 0.33 0.02 0.46 1.05

900 / 2500
all desc. 775.80 ± 1.23 0.27 0.02 0.40 0.90
int. mean 775.80 ± 1.40 0.20 0.02 0.33 0.68

400 / 1000
all desc. 774.60 ± 1.17 0.19 0.02 0.31 0.64
int. mean 773.50 ± 0.85 0.13 0.02 0.25 0.45

[30]
all desc. 783.90 ± 1.60 0.10 0.08 0.31 2.22
int. mean 782.00 ± 0.82 0.08 0.08 0.28 1.70

R
o
m
e

∞ / ∞ all desc. 973.10 ± 2.02 0.24 0.04 0.36 1.68
int. mean 971.20 ± 1.55 0.19 0.04 0.31 1.35

900 / 2500
all desc. 975.00 ± 1.25 0.16 0.04 0.28 1.32
int. mean 970.20 ± 1.23 0.12 0.04 0.24 1.10

400 / 1000
all desc. 971.90 ± 0.74 0.11 0.04 0.23 1.26
int. mean 970.90 ± 1.79 0.07 0.04 0.20 1.09

[30]
all desc. 976.90 ± 1.29 0.15 0.05 0.29 1.90
int. mean 974.60 ± 1.65 0.11 0.05 0.25 1.66

V
ie
n
n
a

∞ / ∞ all desc. 202.70 ± 0.67 0.54 0.01 0.67 1.29
int. mean 200.80 ± 0.79 0.43 0.01 0.57 0.98

900 / 2500
all desc. 203.90 ± 0.74 0.36 0.02 0.50 0.82
int. mean 200.60 ± 0.52 0.27 0.03 0.41 0.60

400 / 1000
all desc. 192.60 ± 1.26 0.24 0.02 0.37 0.66
int. mean 189.10 ± 0.57 0.16 0.02 0.30 0.48

[30]
all desc. 207.70 ± 1.06 0.06 0.30 0.50 2.40
int. mean 206.90 ± 0.88 0.05 0.28 0.46 2.43

same time, the all descriptor strategy is able to handle denser visual words much
better as all information about the 3D points is preserved, which is visible in the
better registration performance for smaller values for K. We observe a significant
increase in the localization performance for the smaller vocabulary on the Vienna
dataset. As mentioned above, the difference in viewpoint and viewing condition
is the largest on this dataset, explaining that using fewer words increases the
chance of assigning features and points that belong together to the same visual
word. As predicted, the number of wrong correspondences decreases for the words
in the smaller vocabulary as evident by the faster RANSAC run-time shown in
Figure 1(d)-(f) compared to Figure 1(a)-(c). This faster pose estimation has the
largest impact on the Vienna dataset for which the mean registration time was
dominated by the time spend by RANSAC when using 100k words.
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4.3 Combining the Datasets

As shown in the previous experiments, we can use compact representations of the
3D models obtained by the point selection scheme from [23] to reduce the mem-
ory footprint and still obtain a similar registration performance and efficiency
compared to the original models. For larger datasets, the descriptor space be-
comes denser as more points are used. As a result, the SIFT ratio-test is more
likely to also reject good correspondences. As compact models contain fewer
points, they could help to avoid the loss in registration performance.

In this section we want to explore the effect of using compact models on the
density of the descriptor space for datasets larger than the three models used
so far. Although modern SfM approaches can efficiently handle large datasets,
obtaining the images for very large scenes is still challenging. We therefore try to
simulate a larger dataset by combining the three models. This is motivated by the
observation that only few correspondences are found between points in one model
and query images from another dataset [30]. The combined datasets therefore
represents a sort of ”best case” model which consists of distinct landmarks. If
we can observe that the descriptor space becomes too dense for this model, we
would expect that the space will also become too dense for other large datasets.

We combine (subsets of ) the three models to obtain three larger datasets: The
first one consists of all points from all three datasets, i.e., we set K = ∞. The
second is obtained using the point selection scheme with K = 900 on Dubrovnik
and Rome and K = 2500 on Vienna. The last one consists of the points selected
with K = 400 on Dubrovnik and Rome and K = 1000 on Vienna. We chose
the combinations 900 / 2500 and 400 / 1000 because these were the smallest
values for K that gave results similar to the original method when using 100k
respectively 10k visual words. We only consider the vocabulary of size 100k
words since the search time for 10k words were already too large for the single
models. Table 6 reports the registration performance and efficiency for the query
images from each dataset and compares it to the results obtained in [30] on the
single models. As can be seen, the sparser descriptor space obtained from the
compact models is still too dense to prevent a loss in registration performance.
However, the compact models can be used to speed up the search times while
still obtaining very similar performance compared to using the full model.

The denser descriptor space has a significant impact on the pose estimation
time as most wrong correspondences are eliminated by the SIFT ratio-test, al-
lowing us to achieve even better registration and rejection times than the origi-
nal method. For example, we obtain significantly better registration times with
K = 1000 for the query images from Vienna dataset when combining the models
compared to only considering the Vienna model.

4.4 Localization Accuracy

We measure the localization accuracy of the combination of point selection and
the localization method from [30] on the Dubrovnik dataset. The random nature
of RANSAC results in slightly differing camera pose estimates for all repetitions
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of the experiment. To compensate for this, we measure the average camera po-
sition for every query image from all its estimated poses with at least 12 inliers
from the 10 repetitions. We report the distance between this averaged position
and the ground truth position of the query camera in the original reconstruction.

The greedy point selection algorithm iteratively picks the point that covers
the largest number of cameras that have not yet been covered and thus prefers
points visible in many cameras [23]. We can expect that the amount of positional
uncertainty related to the selected points is relative small, since they have been
detected in multiple images. Using these high-quality points should improve the
localization accuracy. Unfortunately, SIFT features are not equally distributed
over images but mostly found in highly textured regions. Given such a highly
textured region, it is rather likely that multiple points in this region appear in
many database images. Thus if one of them is selected by the greedy algorithm it
is very likely that also the other points are selected since they are also visible in
a similar number of images. As a result, it might happen that the selected points
are not well-distributed over the model but form small clusters. This in turn can
lead to unstable or even degenerate configurations for the pose estimation step.
To verify whether using fewer points yields less accurate localization results,
we look at the cumulative distribution of the query images over localization
errors depicted in Figure 2. In contrast to [30], we followed RANSAC-based pose
estimation with a linear least-squares estimate of the pose from the inliers. As
seen in Section 4.2, the number of images that can be registered differs with the
choice of K. To allow a fair comparison, we normalized the cumulative histogram
for each variant using the total number of images that it could register, i.e., the
number of images that could be localized at least once during the 10 repetitions of
the experiment. As can be seen in the figure, using too few points indeed results in
worse localization accuracy. However, about 14% of the total features (K = 300,
cf. Table 2) are already sufficient to achieve localization accuracy comparable
to or better than the results reported in [30]. Choosing K from {800, 900, 1000}
gives the best results. We notice that using the smaller vocabulary of 10k words
improves the accuracy. Due to the coarser quantization and the approximative
nature of visual word assignments, it is more likely to assign two descriptors of
the same 3D point to the same visual word when using 10k words instead of
100k. This enables the algorithm to find more correspondences for points seen
from rather large viewpoint changes compared to the original cameras, which in
turn yield better configurations for pose estimation.

More details on selected values for K are given in Table 7. We report the
median localization error, the 1st and 3rd quartile and the number of images with
a localization error smaller than 18.3m respectively 400m, which correspond to
the mean and maximal errors reported in [23]. The results verify the observations
from Figure 2, since compact models help to improve the localization accuracy.
Again, the usage of a smaller vocabulary has a positive impact on the accuracy of
the position estimates. We do not report the mean or maximal registration error,
since there are a few images with very high localization error of up to multiple
kilometers. These large errors are caused by degenerate point configurations for
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Fig. 2. Normalized cumulative histograms of the distribution of the localization error
depending on K for all descriptors using (a) 100k words respectively (c) 10k words
and integer mean using (b) 100k words and (d) 10k words. Choosing K ≥ 300 helps
to improve the localization accuracy compared to the original method independently
of the vocabulary size since a higher percentage of reliably localized images points is
used. Values for K from the range [800, 1000] give the best results.

pose estimation. We observe that images with such large errors mostly have
more than 12 inliers, indicating that the pure inlier count is not a good measure
for localization accuracy. This behavior has already been reported by Sattler et
al. [30]. They show that using the focal length of an image, obtained from its
EXIF tag, for 3-point pose estimation [13,16] or a more restrictive camera model,
which estimates only its focal length and a radial distortion parameter [21], help
to obtain more accurate estimates. We could also estimate the covariance of
the position parameters of the query camera and reject a camera for which the
positional uncertainty is too high.

We report the localization accuracies for the combined datasets in Table 8.
The results were obtained without the final linear least-square pose estimate
and show no significant difference in localization accuracy between the different
combinations and the original results from [30], obtained using only the
Dubrovnik dataset. The drop in localization accuracy compared to Table 7 can
be explained by the different set of correspondences found when also using the
points from the other datasets.
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Table 7. Statistics on the localization errors for selected values of K. Using compact
models helps to improve the localization accuracy compared to the original methods
using all points (K = ∞) from [30] and the method from [23].

Median Quartiles [m] #imgs. with error
K Method # vw [m] 1st 3rd < 18.3m > 400m

400
all desc.

10k 1.2 0.5 4.1 710 7
100k 1.3 0.5 4.3 690 9

int. mean
10k 1.2 0.5 4.1 703 6
100k 1.3 0.5 4.5 689 12

800
all desc.

10k 1.1 0.4 3.8 710 9
100k 1.2 0.5 4.3 698 11

int. mean
10k 1.2 0.4 4.3 714 12
100k 1.3 0.4 4.1 705 13

900
all desc.

10k 1.1 0.4 3.6 713 8
100k 1.2 0.4 3.9 698 10

int. mean
10k 1.2 0.5 3.5 709 9
100k 1.3 0.5 4.3 696 14

1000 all desc.
10k 1.1 0.4 3.8 714 9
100k 1.2 0.4 4.0 700 11

int. mean
10k 1.1 0.4 4.1 711 11
100k 1.3 0.5 4.3 701 10

∞ all desc. 100k 1.4 0.4 5.9 685 16
int. mean 100k 1.3 0.5 5.1 675 13

100 P2F [23] - 9.3 7.5 13.4 655 -

Table 8. Statistics on the localization errors for the combined datasets from Sec-
tion 4.3. There is no significant difference in localization accuracy between the different
combinations and the original results from [30].

Median Quartiles [m] #imgs. with error
K1 / K2 Method [m] 1st 3rd < 18.3m > 400m

∞ / ∞ all desc. 1.4 0.5 4.7 688 13
int. mean 1.3 0.4 5.2 674 9

900 / 2500
all desc. 1.3 0.4 5.8 671 12
int. mean 1.5 0.5 5.5 677 11

400 / 1000
all desc. 1.5 0.5 6.4 671 12
int. mean 1.5 0.5 6.9 671 13

[30]
all desc. 1.4 0.4 5.9 685 16
int. mean 1.3 0.5 5.1 675 13

5 Conclusion and Future Work

In this paper we have shown that not all points contained in a Structure-from-
Motion model are needed for robust image-based localization. By combining the
state-of-the-art localization method from Sattler et al. [30] and the simple point
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selection scheme from Li et al. [23] we demonstrated that using less than half of
the original points still allows state-of-the-art localization performance at similar
registration and rejection times and with slightly better localization accuracy.
This result is still valid when combining the different datasets to simulate one
larger reconstruction. Therefore, we can save memory by storing fewer points and
descriptors without a significant sacrifice in performance and efficiency. As the
method of computing the compact models does not depend on the type of feature
descriptor, it can be readily combined with more memory efficient descriptors
[5,36] to further reduce the memory footprint. The point selection algorithm from
Li et al. might prefer points that form small clusters over points that are well-
distributed over the model, which can lead to unstable configurations for pose
estimation. The point selection scheme does not take similarity in descriptor
appearance into account. As shown in Section 4.3, it thus cannot prevent a
drop in registration performance when the descriptor space becomes denser.
Furthermore, localization performance and efficiency depend on the set cover
parameter K. An interesting open question is whether we can design a better,
parameter-free point filtering algorithm that ensures a better distribution of
points and impacts the descriptor space.

As shown in Section 4.2, the number of points stored in a visual word has an
impact on the quality of the found correspondences. A data structure that tries
to adapt the number of words to take the density of the points inside a word
into account could help to improve localization performance further.

Finally, we notice that the localization methods proposed by Li et al. and
Sattler et al. have both distinct strength and weaknesses, as detailed at the end
of Section 3. Combining their matching directions could help to obtain a novel
localization method that combines the strength of both approaches while elimi-
nating their weaknesses, which would have a positive impact on its performance.
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Abstract. When capturing images underwater, image formation is af-
fected in two major ways. First, the light rays traveling underwater are
absorbed and scattered depending on their wavelength, creating effects
on the image colors. Secondly, the glass interface between air and water
refracts the ray entering the camera housing because of a different index
of refraction of water, hence the ray is also affected in a geometrical way.

This paper examines different camera models and their capabilities to
deal with geometrical effects caused by refraction. Using imprecise cam-
era models leads to systematic errors when computing 3D reconstruc-
tions or otherwise exploiting geometrical properties of images. In the
literature, many authors have published work on underwater imaging by
using the perspective pinhole camera model (single viewpoint model -
SVP) with a different effective focal length and distortion to compen-
sate for the error induced by refraction at the camera housing. On the
other hand, methods were proposed, where refraction is modeled explic-
itly or where generic, non-single-view-point camera models are used. In
addition to discussing all three model categories, an accuracy analysis
of using the perspective model on underwater images is given and shows
that the perspective model leads to systematic errors that compromise
measurement accuracy.

1 Introduction

Underwater imaging is becoming more and more popular as technology becomes
available to research the ocean floor at great water depths. Exemplary applica-
tions are the measurement of fish sizes or other organisms - in general observa-
tions of different ecosystems, (volumetric) measurements of deep sea structures
like hydrothermal vents, offshore oil production, construction and maintenance
of offshore wind parks, cable and pipe inspection, underwater archeology (e.g.
ship wreck inspection, cave diving), and ship hull inspection as a measure against
terrorism.
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Fig. 1. Fermat’s principle based on the ray from S to P being refracted at O

In contrast to conventional computer vision, underwater image formation is
effected in two ways. First, while traveling through the water, the light rays are
partly absorbed and scattered, dependent on the wavelength. This leads to a
green or blue hue on underwater images and has thus an effect on the colors.
Secondly, refraction of light occurs at the boundary to the underwater housing,
since the inside is usually occupied by air. Refraction effects the geometry of the
image formation and is the subject of this work.

1.1 Refraction at Underwater Housings

The definition of refraction, as in [20], is the deviation of a light ray from its
former path when entering a medium with a new optical density. While the
frequency is constant, this causes the propagation velocity to change and all
rays, not traveling perpendicularly to the interface, change their direction and
enter the new medium under a different angle compared to the interface’s normal.
This effect is explained by Fermat’s principle: the light traveling through two
different media always travels the way that takes the least time to traverse. A
derivation using the distances traveled and the speed of light in the different
media yields Snell’s law.

Following figure 1, the time the ray needs to travel from S to P is described
by the following sum:

t =

√
(Z − d)2 +R2

1,2

ν1
+

√
d2 + (R2 −R1,2)2

ν2
, (1)

where ν1 and ν2 denote the speed of light in the corresponding medium. In order
to minimize this equation, its derivative is computed:

∂t

∂R1,2
=

R1,2

ν1

√
(Z − d)2 +R2

1,2

+
−(R2 −R1,2)

ν2
√

d2 + (R2 −R1,2)2
= 0, (2)

which can also be expressed by:

sin θ1
ν1

=
sin θ2
ν2

, (3)
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Table 1. Indexes of refraction for air, different kinds of water, and glass as in [20] p.
163 and [36] p. 85

Medium Index of Refraction

air (λ = 589nm) 1.0003

pure water (λ = 700nm, 30◦C, p = 1.01e105Pa) 1.329

pure water (λ = 700nm, 30◦C, p = 1.08e108Pa) 1.343

sea water (λ = 700nm, 30◦C, p = 1.01e105Pa) 1.335

sea water (λ = 400nm, 30◦C, p = 1.08e108Pa) 1.363

quartz glass (λ = 589nm) 1.4584

acrylic glass (Plexiglas, λ = 589nm) 1.51

crown glass (λ = 589nm) 1.52

light flint glass (λ = 589nm) 1.58

dense flint glass (λ = 589nm) 1.66

Lanthan flint glass (λ = 589nm) 1.80

and with c being the speed of light in vacuum and n1 = c/ν1 and n2 = c/ν2,
Snell’s law follows:

sin θ1
sin θ2

=
n2

n1
. (4)

n1 and n2 are called indexes of refraction describing the phenomenon for both
media. When setting the index of refraction to 1.0 for vacuum, all other indexes
are determined relative to it. Important for this work are the indexes of refrac-
tion for water, glass, and air. The index of air is close to the index of vacuum,
and is therefore usually set to 1.0. The index of water changes due to wave-
length, salinity, pressure, and temperature, causing slight changes of the index
of refraction when comparing different water bodies in the ocean (see table 1).
According to [36], the dependency on all four parameters only induces a change
of about 3% in the index of refraction in the whole relevant parameter range for
ocean optics, thus the change can be ignored. In contrast to that, [20] lists the
indexes of refraction for glass (see table 1) and shows a far stronger variation
depending on the different materials, usually requiring them to be considered
explicitly.

When using cameras to capture underwater images, those cameras need to
be put into watertight underwater housings. These underwater housings have a
piece of glass through which the image is taken, while the inside of the housing is
filled with air. Hence, refraction, as described above, happens twice: first, at the
water-glass interface and, secondly, at the glass-air interface (fig. 2, left), causing
the ray to shift due to the double refraction depending on the glass thickness.

When working with camera housings, two different kinds of glass ports need
to be considered. Planar glass, effecting most of the rays to be refracted just as
depicted in figure 2 on the left, and dome ports (fig. 2, right), eliminating the
refractive effect to some extend. In theory, the dome port completely removes
refraction, due to zero angles between the interface normal and incoming rays.
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Fig. 2. Left: refraction at flat glass interface. Right: straight rays entering the under-
water housing through a dome port.

However, the port and housing need to be manufactured and assembled such that
the camera is centered perfectly with respect to the dome port’s center for this
to work. In case of a flat port or an imperfectly fit dome port, refraction of light
rays invalidates the single-view-point camera model. This can be observed in
figure 2 on the left for a flat port: the rays traveling in the water in the camera’s
direction are traced towards the optical center without refraction (dashed lines)
and they do not intersect the optical axis in one common center of projection.
Hence, the camera does not have a single view point (non-SVP camera model)
and the commonly used pinhole camera model is invalid for underwater images.

In the literature, a large group of authors uses the perspective model, although
their camera housings have flat ports, while others seek a complete physical
model of the refraction effects to achieve greater accuracy. A third approach
consists of using a more generic camera model, not requiring a single view point,
only being based on rays. The goal of this work is to examine the wealth of ap-
proaches to underwater imaging and to discuss their benefits and shortcomings.
We will show that the SVP assumption is not sufficient and will discuss a camera
model that eliminates these shortcomings.

Sections 2 - 4 will analyze in depth the state of the art in underwater camera
models and will give an overview of the publications on the above mentioned
categories. A concise summary of all papers and their application area is given
in tables 5-7 in an overview covering perspective models (28 papers), ray-based
models (6 papers), and physical, refractive models (19 papers). In section 5, an
error analysis of the usage of the perspective and the physical imaging model on
underwater images is presented, followed by a conclusion.

2 The Perspective Camera Model

Throughout the article, geometric entities are described in a common notation,
summarized in table 2. In addition, the conversion of Euclidean coordinates into
cylinder coordinates is required:⎛⎝R

ϕ
Z

⎞⎠ =

⎛⎝√
X2 + Y 2

arccos(XR )
Z

⎞⎠ . (5)
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Table 2. Notations for rays and points in Euclidean, homogeneous, and cylinder coor-
dinates. Note that in some cases, it is sufficient to use the radial coordinates (R,Z)T ,
thus ϕ is omitted for the sake of readability.

Homogeneous Point in 3D X = (X,Y, Z, 1)T

Homogeneous Point in 2D x = (x, y, 1)T

Euclidean Vector in 3D X = (X,Y, Z)T

Euclidean Vector in 2D x = (x, y)T

Ray in 3D X̃ = (X̃, Ỹ , Z̃)T

3D vector in cylinder coordinates Xc = (R,ϕ,Z)T

Ray in cylinder coordinates X̃c = (R̃, ϕ̃, Z̃)T

distance camera center - interface in mm d

glass thickness in mm dg
indexes of refraction (air, glass, water) na, ng, nw

The pinhole camera model with distortion is one of the established models for
perspective cameras. It uses rays to describe how 3D points are projected to indi-
vidual pixels and is parametrized by intrinsic parameters describing the camera’s
internal properties:

K =

⎛⎝f s cx
0 af cy
0 0 1

⎞⎠ (6)

with f being the focal length, a being the aspect ratio, s being the skew, and
(cx, cy) being the principal point. Extrinsic parameters describe the camera pose,
thus, the projection matrix follows with R being an orthonormal rotation matrix
and C being a translation vector: P = KRT [I| − C]. A homogeneous point X
in 3D space is projected by the camera, resulting in a homogeneous 2D point
x = PX. In addition, it is possible to use this parametrization to back project
2D image points, i.e. to compute the ray in space on which the 3D point lies
[18]. Imperfect lenses require an additional compensation for lens distortion [35],
which is usually divided into a radial component and a de-centering or tangential
component, approximated by a polynomial. Let (x, y) be a 2D image point with-

out distortion. With r =
√

x2 + y2, the distorted point (xd, yd) is then retrieved
by: (

xd

yd

)
=

(
x+ (x− cx)[r1r

2 + r2r
4 + ...] + xtan

y + (y − cy)[r1r
2 + r2r

4 + ...] + ytan

)
(7)

xtan =[t1(r
2 + 2(x− cx)

2) + 2t2(x− cx)(y − cy)](1 + t3r
2 + ...)

ytan =[2t1(x − cx)(y − cy) + t2(r
2 + 2(y − cy)

2)](1 + t3r
2 + ...)

where r1, r2, ... and t1, t2, ... are the radial and tangential distortion coefficients
respectively. In the literature, there is no consensus about the number of coef-
ficients that are necessary for perspective cameras with distortion. For example
[21] uses two parameters each, while [61] uses only one coefficient for radial dis-
tortion and none for tangential distortion. Two coefficients for radial distortion
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Fig. 3. Approximation of the underwater camera by the perspective model. A virtual
image plane is used in combination with larger radial distortion to image the point
onto the same radial coordinate. Even though, the two 3D points lying on the same
ray in water are projected to the same pixel using the underwater model, but onto
different pixels using the perspective model.

and none for tangential distortion are used by Zhang in [66]. A description of a
widely used toolbox for perspective camera calibration is found in [2]. For our
own experiments we use [52] with two coefficients for both components.

When using the perspective model on underwater images captured through
a glass port, a calibration based on above-water images is invalid underwater.
Furthermore, the perspective model itself is invalid for underwater images due
to the non-single view point. Despite that, focal length and distortion coeffi-
cients can be used to approximate the difference introduced by not modeling
refraction explicitly. Figure 3 depicts this approximation using cylinder coordi-
nates: (R1

w, Z
1
w) is a 3D point in water, which would be imaged to r1uncompensated

without any compensation causing a large error compared to the true image r.
By using a virtual image plane, which is moved further away from the center
of projection, a part of this error can be compensated (r1persp). Stronger radial
distortion r1comp can be used to eliminate the error (r = r1persp + r1comp). The
second 3D point (R2

w, Z
2
w) is imaged with a greater point-camera distance on

the same ray in water and it immediately becomes obvious, that the required
compensation by radial distortion r2comp differs from r1comp and is therefore de-
pending on the camera-point distance, a feature not supported by the common
pinhole camera model. Hence, the approximation can only be satisfying for the
calibration distance.

In spite of these problems, such an approximation offers the possibility of cal-
ibrating a camera above water and compute its approximate calibration for the
underwater scenario, which is examined in the following two presented methods.
Freyer et al. [12] use the pinhole camera model (with 3 parameters for radial
distortion and 2 for tangential distortion) and compensate for refraction by mul-
tiplying the focal length in water by 1.34. More important in their opinion, is the
change in the distortion parameters. When submerging a camera in water, the
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change in radial distortion is specified to be δr =
(

cos θw
cos θa

− 1
)
r, with r being the

radial distortion in air, θw being the angle between optical axis and water ray,
and θa being the angle between optical axis and air ray. In common applications
for perspective cameras, those angles are usually unknown.

Lavest et al. published a similar work in [30]. The paper explicitly models a
thick lens, directly emerged in a medium other than air, which is then transferred
into the pinhole model with distortion. Concerning the focal lengths in air and
water, the major result matches the one introduced above:

1.333fwater = fair. (8)

The computation of underwater distortion differs to the one in [12]: if rdair and
rdwater are the distorted coordinates in air and water respectively and rradair

and rradwater the corresponding radial distortion corrections, then

1.333(rdair − rradwater ) = rdwater − rradwater . (9)

The authors experimented with two different cameras and their calibrations in
air and water and found the theoretical equations (8) and (9) to be a good
approximation. When considering the above discussion of figure 3, it becomes
clear that unless rradwater is depending on the imaging distance, the model error
is still not eliminated completely.

In case of using a dome port with a perfect fit, meaning the sphere’s center
coincides with the camera’s center of projection, a calibration done in air is valid
below water. According to the entry pupil model used for lens systems [1], the
locus of the center of projection is determined by the lens system of the camera
and can even lie in front of the physical camera and its lens. Consequently, it is
a difficult task to perfectly align the camera center and the dome port’s center.
Alignment errors lead to even more complicated aberrations from the pinhole
model than in the flat port case.

Despite of this usually inevitable geometric error, the literature contains a
lot of methods (refer to tables 5-7), where the perspective model is used in un-
derwater scenarios. Examples for calibrating a camera underwater are found in
[4] or by Pessel et al. in [45,43,44]. Application areas utilize the implicitly con-
tained geometric properties of the images to measure distances in stereo images
[19,8], to compute dense stereo [51,39], to aid navigation by computing mosaics
[15,16,13,5,63,9,60,42], or to reconstruct 3D structure (called Structure from
Motion or SFM) [23,22,24,3,53,46,47,25,40,41]. The nature of these applications
requires accurate geometric estimation. Especially the SfM approaches utilize
navigation data, often available on a ROV (Remotely Operated Vehicle for un-
derwater operations) in order to gain more accurately estimated camera poses
and/or rely on extensive global optimization (bundle adjustment, refer to [59]).
Otherwise, drift, i.e. an accumulating error in the recovery of the camera path,
is a major problem sometimes causing the results to be useless. Some of the au-
thors even mention the erroneous camera model as one of the error sources, but
even though, up until now, most Structure from Motion approaches neglect the
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Fig. 4. Radial image of a caustic (marked in red) caused by refraction at a water-
air interface. When tracing the rays in water (dashed lines), they are tangents to the
caustic.

error caused by refraction. Only recently, research has begun to explicitly incor-
porate refraction in a specialized SfM-system [6]. Section 5.3 will try to answer
the question as to how severe the introduced error is for the applications.

3 Ray-Based Generic Camera Models

A possibility to account for refraction in underwater imaging more explicitly is
to use a more generic camera model in underwater scenarios. Such ray-based
cameras do not need to have a single viewpoint and are capable of dealing with
dome ports and flat ports alike.

Grossberg et al. [17] introduce a generic camera model, where incoming rays
are ’somehow’ captured by corresponding pixels on the sensor. It is assumed that
each pixel records exactly one main ray, no matter where on the ray the sensor
array is. Therefore, the central definition of the paper, the raxel, describes one
ray per pixel. When parameterizing all rays of an imaging system, there is usually
a singularity in the bundle of rays (not true for e.g. orthographic cameras). The
locus of this singularity is the caustic (fig. 4), uniquely describing the imaging
system. In case of a single view point system, the caustic encompasses only a
single point - the center of projection.

In order to compute the caustic, the mapping from image coordinates to rays
is differentiated.

X(x, y, α) =

⎛⎝X(x, y, α)
Y (x, y, α)
Z(x, y, α)

⎞⎠ = Xs(x, y) + αX̃(x, y), (10)

with Xs being the starting point and X̃ being the direction of the ray starting at
image point (x, y) and α ∈ R describing the position on the ray. The determinant
of the Jacobi matrix of this parametrization is set to zero and solved for the
parameter α.

det(J(X(x, y, α))) = 0 (11)

Using α in (10) allows to compute the corresponding point on the caustic
for each pixel position (x, y). Grossberg et al. develop a method to compute
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caustics for arbitrary cameras numerically by projecting differing calibration
patterns using an active display. Unfortunately such active displays are not fea-
sible in underwater environments, but as was noted by [58] (see also below),
caustics provide a natural connection between the underwater non-single-view-
point camera, generic ray-based cameras, and the common pinhole model.

A different work by Narasimhan et al. [38] researches light sheet reconstruction
as an application of the described raxel model for small scale underwater images
in laboratory settings. A camera is put in front of a water tank, and calibrated
by placing two planes into the tank vertically with respect to the optical axis
and therefore gaining two points in space for each ray.

In addition to the raxel model, Sturm et al. [55,54] work with another ray-
based model, where each pixel is simply represented by a ray defined by its
starting point and its direction of travel. By only assuming that neighboring
rays are close to each other, this model is independent of the physical location
of the sensor array and does not require an existing caustic, thus making the
camera model even more generic than the raxel model. A camera is calibrated
by taking several images of a calibration plane, however, the authors mention
problems with the calibration robustness. In [54], algorithms for pose estimation,
triangulation, multi-view geometry, in short for SfM, are derived and the theory
is applicable to the underwater case. [7] concentrates on the case of a refractive
plane in an underwater scenario. The derivation only works for one refractive
interface (thin glass) and has not yet been implemented.

Another possibility to deal with refraction by approximating ray-based cam-
eras is described in [62]. Here, the camera is viewed as a non-SVP camera having
a caustic instead of the single view point. Instead of modeling the refraction ef-
fect physically or using a generic ray-based camera, the camera is approximated
by several perspective cameras for the different areas of the image. The number
of virtual perspective cameras determines the accuracy of this system.

In summary, it can be said, that using a more generic camera model than the
pinhole model with distortion allows to deal with refractive effects. However,
using independent 3D origins and directions for each ray leads to a high degree
of freedom, making the robust calibration of generic camera models difficult,
especially in open water. The following section shows that far less parameters
need to be determined if refraction is modeled explicitly.

4 Physical Models for Refraction

The third possibility to deal with refraction is to use a physical model that
explicitly computes the refraction of rays at the underwater housing. Several
methods for achieving this will be compared in this section. They differ in the
assumptions made about the glass thickness, normal between interface and image
sensor plane, or indexes of refraction and in their derivation.

The two papers presented next describe the theory and calibration method
for calibrating underwater cameras with the assumption of a thin piece of flat
glass as an interface of the underwater housing.
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In [58] by Treibitz et al., the derivation of a refractive model and its cali-
bration for a perspective camera behind a flat port are presented. The authors’
underwater housing has a glass thickness of about 5mm. The ray’s shift due to
traveling through the glass interface is approximated to be about 0.28mm and
therefore neglected. In addition, it is assumed that the image sensor and the
interface are parallel. This allows examining the projection through a refractive
interface by using radial image coordinates, thus making it possible to derive all
required equations analytically.

The derivation is based on Fermat’s principle (see 1.1):

dt

dRi
= nw

−(Rw −Ri)√
(Zw − d)2 + (Rw −Ri)2

+ na
Ri√

d2 +R2
i

= 0, (12)

where, (Ri, d) is the radial coordinate on the interface and (Rw , Zw) is the radial
coordinate of the 3D point in the water. For common perspective systems with
only small amounts of radial distortion, the following equation holds for all radial
coordinates:

f ≈ Zwr

Rw
, (13)

with f being the focal length. This equation can be used to project (radial)
coordinates on the glass interface (Ri, d) into the perspective camera:

Ri = rd/f (14)

Using this in equation (12) yields:(
Rw − d

f
r

)2
[(

fnw

r

)2

+ (n2
w − 1)

]
= Z2

w (15)

relating r and (Rw, Zw) in the underwater case. In order to calibrate the camera
model, the common parameters for perspective cameras (f , (cx, cy), r1, r2) as
well as the interface distance d are calibrated. Based on (15), the following
equation needs to be satisfied:

Rw =
Zw√(

fnw

r

)2
+ (n2

w − 1)

+
d

f
ri (16)

which is extended to account for lens distortion. When using two points Xw1

and Xw2 , they are parametrized by (Rwi , ϕwi , Zwi) and their distance in space
is estimated using the law of cosines:

ŝ =

√
R̂2

w1
+ R̂2

w2
− 2R̂w1R̂w2 cos |ϕw1 − ϕw2 |. (17)

Using the true distances s, a non-linear optimization is used to solve for the
camera parameters. Usually, the intrinsic parameters apart from focal length are
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estimated beforehand, leaving only the interface distance and the focal length
to be calibrated.

As introduced by [17], caustics can be used as a measure of the deviation from
the single view point model. [58] derives the caustic analytically using equation
(16) (see section 3):

Rcaustic =

(
1− 1

n2
w

)(
r

f

)3

d (18)

Zcaustic =− n

[
1 +

(
1− 1

n2
w

)(
r

f

)2
]1.5

d (19)

Obviously, the caustic’s extent is directly depending on the interface distance d,
therefore, the extent of the caustic can be diminished by moving the entry pupil
as close to the glass interface as possible.

Telem et al. describe in [56,57] a different approach to model refraction. As
in the approach described above, the authors use a model with thin glass and
parallelism between image sensor and interface in the first paper, but in their
photogrammetric model, the authors relate the measured 2D image coordinates
to image coordinates eligible for perspective projection. Note that the camera
center is not valid for these points, so the intersection with the ray coming from
the water and the optical axis is computed for each set of image coordinates as
well. The non-refracted rays do not meet in one common center of projection.
For each point (in radial coordinates) a value

Δd = d

(
nw

naf

√
f2 + r2

(
1− n2

a

n2
w

)
− 1

)
(20)

specifies the distance between the center of projection and the actual crossing of
the non-refracted ray with the optical axis. The measured image points (x, y, f)
are modified in the underwater case to fit the perspective projection depending
on Δd, the water ray’s crossing with the optical axis:⎛⎝x′

y′

f ′

⎞⎠ =

⎛⎝ x d
f

y d
f

d+Δd

⎞⎠ . (21)

This allows to write the back projection to an underwater ray as:⎛⎝X
Y
Z

⎞⎠ = (C+ΔC) + λRT

⎛⎝x′

y′

f ′

⎞⎠ (22)

with ΔC = −Δdr3 being the deviation from the principle point and r3 being the
third row of the rotation matrix R. In a second paper [57], the authors extend
their approach to incorporate glass interfaces that are not parallel to the image
sensor, causing Δd to become more complicated. However, in our tests, we found
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that the ray coming from the water not necessarily intersects the optical axis if
the interface is not parallel to the image sensor. Errors introduced by a non-zero
glass thickness are absorbed by the interface distance. In the calibration tests,
the intrinsics are estimated first, then four additional parameters for the under-
water case are calibrated: d, n = nw/na, and two parameters for the interface
rotation. The results show that it is possible to estimate the required underwa-
ter parameters and the missing camera poses without getting large correlations
between the parameters.

An often cited method [28,29] establishes a way to combine refraction with the
pose estimation using the Direct Linear Transform (DLT [18]). However, paral-
lelism between interface and image sensor was be achieved by manually rotating
the hardware, and the distance between interface and camera center is mea-
sured. The authors have so far not included an estimation of those parameters
into their algorithm.

Up until now, all described methods considering a physical refraction model
assumed thin glass and, except for one, parallelism between interface and im-
age sensor. Li et al. [32,31] (see also [35]) describe an approach based on back
projecting image points, with a stereo rig where the complete physical model is
calibrated: the double refraction of rays at the air-glass and the glass-water inter-
faces is modeled explicitly. Here, the light is assumed to travel through p+1 dif-
ferent refractive media and thus is refracted p times. This is derived using Snell’s
law instead of Fermat’s principle: the points (Xi, Yi, Zi) and (Xi−1, Yi−1, Zi−1)
denote the points on the i-th and i-1-th interface surfaces. The path length of
the ray between those interfaces is:

ρ =
√
(Xi −Xi−1)2 + (Yi − Yi−1)2 + (Zi − Zi−1)2. (23)

In addition, it is assumed that the start and end points (X0, Y0, Z0) and
(Xp+1, Yp+1, Zp+1) are known as well as the functions of the refractive surfaces

Fi(Xi, Yi, Zi) = 0 with their existing derivation:
[
∂Fi

∂Xi
, ∂Fi

∂Yi
, ∂Fi

∂Zi

]T
.

Using those notations, Snell’s law is applied at each refractive point: ni sin θi =
ni+1 sin θ′i and the ray between the interfaces is determined by:

X̃i =
1

ρi

⎛⎝Xi −Xi−1

Yi − Yi−1

Zi − Zi−1

⎞⎠ . (24)

With ni being the normal at the interface point (computed using the derivatives
of function Fi), θi and θ′i are computed using the scalar product:

cos θi =nT X̃i cos θ′i =nT X̃i+1, (25)

allowing the computation of the following function using Snell’s law and the fact
that both rays and the normal form the same plane:

X̃i+1 =
ni

ni+1
X̃i −

(
ni

ni+1
cos θi − cos θ′i

)
ni. (26)
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Using (26), inner interface points are back projected, then refracted twice re-
sulting in outer interface points and rays in water eligible for triangulation using
the stereo rig. The calibration routine assumes known indexes of refraction and
estimates the intrinsics and rig extrinsics from images taken in air. Then the
underwater parameters are calibrated by taking images of a three-dimensional
calibration object underwater using linearized versions of the equations derived
above to find an initial solution. The accuracy evaluation in [32] showed that the
errors of reconstructed 3D points are between 6mm and 6cm for the optical axis
and 6mm and 1cm for the x- and y-axes. In [31], an additional reduced central
projection allows to project points from 3D through a refractive interface onto
the image plane with an iterative method that solves for the required unknowns
on the interfaces.

In [27], the usage of a perspective camera in an underwater scenario is exam-
ined as well as a flat port and dome port model. The back projection is derived
by computing rays in air, glass, and water using Snell’s law and quaternion ro-
tations (refer to section 5.1). Projections are computed numerically. In addition,
a calibration routine is proposed assuming intrinsics, indexes of refraction, and
glass thickness to be known. Nested loops of a Levenberg Marquardt routine
[48] are used to solve for the remaining interface parameters and the camera’s
poses with respect to a calibration pattern. Unfortunately, the authors did not
implement and examine their calibration routine, but conclude that considera-
tion of refraction is necessary when exploring the implicitly contained geometric
information from images due to the model error (see section 5). Chang and Chen
[6] made a promising start in developing an actual 3D-reconstruction algorithm
with explicit consideration of refraction. The cameras are assumed to view the
object of interest through the planar water surface. The vertical direction of the
camera is assumed to be known, so only the heading of the camera needs to be
computed.

Another approach to using physical models is found in the works of Maas,
[33,34] and a follow-up work by Putze [50,49]. The goal of both methods is optical
fluid flow analysis in fairly small laboratory tanks, where the fluid has been
marked with a set of particles. In the model, the actual 3D points in space are
substituted by their corresponding virtual 3D points, fitting the perspective back
projection. The computation of these points is based on an iteration with known
interface parameters and indexes of refraction. In order to calibrate the system,
a calibration pattern below water at known distances is used and optimized by
a bundle adjustment routine. The method has been found to perform well if the
indexes of refraction, especially for the glass are known. A correlation analysis
shows high correlation between focal length and distance between camera center
and glass interface for all three calibrated cameras. The works of Maas also
contain an introduction to epipolar geometry [18] in case of refractive imaging,
where the epipolar lines are bent into curves. If the ray in water from one camera
is known, several points on this ray are projected into the second image defining
a linear approximation of the epipolar curve. This is for example used in [11]
examining surface reconstruction.
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In addition, there exist some more exotic applications also considering refrac-
tion explicitly. In contrast to the approaches described above, where the indexes
of refraction are assumed to be known, here, they can be calibrated only in very
confined laboratory scenarios. See [37,64,65,26,10] for more detailed information.

The methods for using a physical model of refraction on underwater images
show that calibrating such systems is possible only if extra assumptions about
interface-sensor parallelism, indexes of refraction, or glass thickness are made or
a stereo rig is used. Until now, methods utilizing geometric information contained
in images usually rely on the perspective camera model, but [27] already showed
that a considerable error is caused by using the wrong camera model, however,
we found that an inclination angle between housing interface and image sensor
is even worse than different interface - camera distances. Therefore, the analysis
in [27] will be extended in the following section.

5 Accuracy Analysis of the Perspective Model

In this section, the exact derivation of the physical underwater ray cast will be
explained. This ray cast is then used to compute synthetic data compliant with
the underwater model allowing to compute for example the caustic for the case
of non-parallel interface and sensor plane. As shown in section 2, most authors
still work using a perspective camera on underwater images and this section
aims at examining the resulting error and its compensation in detail by using
the synthetic data computed by physically modeling refraction.

5.1 Physical Underwater Projection

The derivation of the ray cast in the physical underwater model presented here
follows [27], but is more detailed and considers projection routines. Note that
other papers using Snell’s law for the derivation come to similar conclusions.

Flat Port Back Projection in case of a flat port in front of an underwa-
ter housing, the distance to the port, the glass thickness, and the normal of
the glass within the camera coordinate system are important parameters. Here,
the inner interface plane is parametrized by Πi = (n1, n2, n3︸ ︷︷ ︸

nΠ

,−d) containing

the normal and the port’s distance to the camera origin. In addition, the outer
interface plane is parametrized by the same normal and the glass thickness dg:
Πo = (n1, n2, n3,−(d+dg)) (fig. 5). When back projecting an image point in the
underwater case, the goal is the computation of the point on the outer interface
plane and the direction of the ray within the water. First, the image point x
needs to be turned into a ray within the camera’s underwater housing:

X̃a = K−1x, (27)

with the subscript a denoting the coordinates within the underwater housing, in
air, and K being the camera matrix containing the intrinsic parameters. The ray
is in the camera coordinate system, i.e. the center of projection is in the origin.
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Fig. 5. When back projecting a point (solid line), the ray travels from the camera
through air until it intersects the inner interface plane (Xi, Yi, Zi, 1)

T . After being
refracted, the ray travels through glass until intersecting the outer interface plane
(Xo, Yo, Zo, 1)

T , is then refracted, and finally travels through water reaching the
3D point in water (Xw, Yw, Zw, 1)

T . Projecting (Xw, Yw, Zw, 1)
T without refraction

(dashed line) yields a different pixel in the image.

In order to find the intersection Xi between ray and interface the following
equation is used:

ΠT
i

⎛⎜⎜⎝
λgX̃a

λgỸa

λgZ̃a

1

⎞⎟⎟⎠ = 0 ⇒λg =
d

nT
Π X̃a

⇒Xi =

⎛⎝0
0
0

⎞⎠+ λgX̃a. (28)

The intersection of the port’s inner plane and the ray, parametrized by λg, is
used to determine the point on the inner plane of the interface Xi. After that,
the ray’s direction within the glass is computed: the scalar product between
the plane’s normal nΠ and the ray in air yields the angle between normal and
incident ray before refraction, and is then refracted:

θa = arccos

(
nT
Π X̃a

‖nΠ‖‖X̃a‖

)
θg = arcsin(sin θa

na

ng
). (29)

The ray being incident upon the inner interface plane needs to be rotated/
refracted. This is described by a rotation around the normal resulting from the
cross product of the plane normal and the incoming ray:

nrot =
nΠ × X̃a

‖nΠ‖‖X̃a‖ sin θa
. (30)
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The rotation angle is θrot = θg−θa and the rotation around the axis nrot is best
described by a unit quaternion:

q =

(
sin( θrot

2 )
‖nrot‖ nrot

cos
(
θrot
2

) )
. (31)

This quaternion is applied to the ray X̃a, yielding the refracted ray X̃g, which
describes the light’s traveling direction within the glass. Now, the point on the
outer interface needs to be computed:

λw =
(dg + d− nT

ΠXi)

nT
Π X̃g

⇒ Xo =Xi + λwX̃g. (32)

The ray within the glass is refracted again, using the indexes of refraction for
glass and water, the cross product, and the unit quaternion rotation. The result
is the ray in water X̃w. The 3D point can be computed, if the distance dist
between the camera center and the 3D point is known:

||Xo + αwX̃w|| = dist (33)

This equation can be solved for αw yielding the distance the ray needs to travel
from the interface point:

Xw = Xo + αwX̃w. (34)

Xw is still in the camera coordinate system, but using the transform of the camera
pose, the point can easily be transformed into the world coordinate system.

Dome Port Back Projection the dome is parametrized by its center with
respect to the camera’s center of projection and its inner and outer radius. In case
of perfect alignment of the dome center and the camera’s center of projection,
the project and back project functions are equal to the common pinhole camera
model. Otherwise, the refraction at the dome needs to be modeled explicitly, but
the only difference to the method described above is found in the intersection of
the rays in air or glass and the inner and outer interface respectively. To compute
the intersection point, the inner and outer dome spheres are parametrized by
using the quadric:

Q =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞⎟⎟⎠ . (35)

A transformation containing the sphere’s inner ri or outer ro radius and the
translation of the dome’s center (Xd, Yd, Zd)

T are applied to the quadric to get
the matrix describing the dome:
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Hi =

⎛⎜⎜⎝
ri 0 0 Xd

0 ri 0 Yd

0 0 ri Zd

0 0 0 1

⎞⎟⎟⎠ (36)

Di =(H−1)TQH−1.

A homogeneous point X lies on the quadric D if XTDX = 0. Using the
parametrization for the ray in air or in glass, the intersections of the rays with
the inner or outer dome surface can be determined. The normals at those in-
tersection points can be found by using the line from the center of the dome to
the intersection points. Once the normals, the intersection points, and the ray
directions in air and glass are known, the remaining derivation of the refraction
is exactly the same as in the flat port case.

Projection in contrast to [27], we analyze the projection of 3D points into the
camera in more detail, using an approach building upon [58]. The problem in
this case is caused by the unknown points on the inner and outer interface. In
order to derive a formula for the projection, Fermat’s principle is applied. The
total traveling time of the ray is the sum of three components: the time spent
in the underwater housing (in air), the time spent in the glass of the interface,
and the time spent in the water. The derived equation contains four unknowns,
the x- and y-coordinates on the inner and outer interface planes (Xi and Yi and
Xo and Yo respectively):

t(Xi, Yi, Xo, Yo) = (37)

nair

√
X2

i + Y 2
i + Z2

i +

nglass

√
(Xo −Xi)2 + (Yo − Yi)2 + (Zo − Zi)2+

nwater

√
(Xw −Xo)2 + (Yw − Yo)2 + (Zw − Zo)2.

Since the light always travels the distance in the least time, this equation’s
partial derivatives are used to minimize the traveling time with respect to the
unknowns:

∂t

∂Xi
=0

∂t

∂Yi
=0

∂t

∂Xo
=0

∂t

∂Yo
=0. (38)

The plane equations are utilized to eliminate the Z-components:

Zi =
d− n1Xi − n2Yi

n3
(39)

Zo =
d+ dg − n1Xo − n2Yo

n3
.

The resulting system of equations with four equations and four unknowns is
solved numerically using e.g. Powell’s hybrid method 1 [48]. After that, the

1 e.g. in GSL library from www.gnu.org/software/gsl/

www.gnu.org/software/gsl/
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Table 3. Parameters used for caustic computation

focal length 1100 px

image size 1001 × 801 px

principal point middle of image

distortion r1 = 0, r2 = 0, t1 = 0, and t2 = 0

aspect ratio 1

skew 0

index of refraction water 1.333

index of refraction glass 1.5

index of refraction air 1

interface distance 20mm

glass thickness 30mm

interface tilt 1.5◦

points on the inner and outer interface planes are determined, however, only
the point on the inner interface plane is relevant for projecting it onto the image
plane with the usual perspective projection.

In our tests, we found that it is difficult to find the correct solution using
this method, especially in case of a negative camera-interface distance. This
occasionally happens, when the entry-pupil of the camera lies in front of the
physical camera housing (refer to [1,58]). In case of thin or no glass, parallelism
between interface and image sensor and positive interface distance d, (38) is only
depending on the radial coordinate on the refractive plane. The derivative in this
direction becomes a polynomial of fourth degree [14,58]. For this special case,
[14] proved that the correct/practical root is found in the interval [0, Rw]. In
experiments in our more general case, with possibly negative d and non-parallel
interface, this is no longer true. In order to deal with all possible cases, the
projection can also be solved numerically (as in [27]). This is accomplished by
an optimization, which is initialized using the common perspective projection.
After that, the Nelder-Mead-Simplex routine2 [48] is used to compute the correct
2D point.

5.2 Caustics as a Measure of Deviation from the SVP

Caustics present the bridge between physically modeled underwater cameras and
more generic camera models. The extent of a caustic is also a measure of the devi-
ation from the perspective single view point camera. [17,62,58] describe methods
for deriving caustics analytically. In more generic models with thick glass and no
parallelism between the sensor and the interface, the analytic derivation becomes
infeasible.

Alternatively, the outer interface points and directions of the ray in water
are computed using the back project function described above. The derivatives
for the Jacobi matrix are computed numerically. α (parameterizing the point

2 NLOPT toolbox from ab-initio.mit.edu/nlopt/

ab-initio.mit.edu/nlopt/
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Fig. 6. Left: the caustic for a flat port camera housing with imperfect sensor-interface
alignment. Right: caustic in the dome port case with imperfect alignment.

Fig. 7. Left: caustic size depending on focal length for 30mm glass thickness and
interface tilt = 1.5◦. Right: caustic size depending on interface distance for 30mm
glass thickness and interface tilt = 1.5◦.

on each ray, which lies on the caustic) is expressed in terms of the entries of
the Jacobian. Once α is known, the ray parametrization is used to compute the
caustic point for each image point (x, y). Figure 6 shows an exemplary caustic
for the parameters in table 3,and figure 7 is an example for the extent in x- y-
and z-direction, which changes with focal length and distance between camera
center and interface, and can be in the order of centimeters.

5.3 Accuracy of the Perspective Model in Calibration,
Triangulation, and SfM

In this section, results of the accuracy analysis of using the perspective model
on underwater images from [58,27] are extended, especially considering slight
rotations of the interface plane.

Error Compensation in Perspective Calibrations. Using an implementa-
tion of the model described above, a thorough examination based on synthetic
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Table 4. Parameters used for synthetic tests

focal length 800,1000 px

image size 600× 800 px

principal point middle of image

distortion no distortion

aspect ratio 1

skew 0

index of refraction water 1.333

index of refraction glass 1.45

index of refraction air 1

interface distance 10 - 80 mm

glass thickness 5, 30, 60 mm

interface rotation 0◦ or 2− 3◦

rig baseline (no rotation) 200 mm

distance range checkerboard images 1000-10000 mm

data is possible. The synthetic images were rendered according to the underwa-
ter projection model for a stereo camera rig. In order to examine the influence
of different underwater housings, different sets of calibration images (50 for each
set) showing a checkerboard pattern were rendered with different parameters.
Using the exact checkerboard corners to eliminate effects from erroneous cor-
ner detection, the camera rigs were calibrated perspectively using [52]. Table 4
summarizes the parameters for different test cases.

When using the error-free 2D3D correspondences from perspective projections
for calibration in [52], the final re-projection error is in the order of 10−8 (model
and data fit perfectly). When using 2D3D correspondences compliant with the
underwater model, the final re-projection error is in the order of (∅ < 0.05 pixel),
which still suggests a good fit to the perspective model. As stated by [12,30], the
focal length changes according to the refractive index of water when calibrating
perspectively, see figure 8 on the left. The underwater images were rendered
without any distortion, so the four resulting parameters (fig. 8, right) give an
idea about how much the images are altered by refraction. Obviously, tangential
distortion does not compensate the error induced by tilting the interface. Figure
9 on the left shows the resulting errors in principal points of the calibration. In
the case of a slightly rotated interface plane, part of the error is absorbed by
moving the principal point. Furthermore, the computed camera centers have an
increasing error and increasing covariances (see figure 9 on the right), not only
suggesting problems with robustness, but an error in the extrinsic parameters
during the calibration causes errors during applications later on.

In case of dome ports, [27] came to the conclusion that perspective models
are accurate enough if the camera center does not move more than 1cm from
the dome center.
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Triangulation Errors. When using a perspectively calibrated underwater cam-
era for tasks such as measuring using stereo rigs or computing 3D reconstructions,
accuracy and drift reduction play important roles. The error induced by using the
perspective model for triangulating points is shown in figure 10. The left image
shows a rendering of 3 cameras and 20 triangulated points. In dark gray are the
true points triangulated using the underwater model, while the light gray points
were triangulated using the perspective model. It can be seen clearly that the
perspective calibration has an area where it fits well, allowing fairly accurate re-
construction, while in other areas of the 3D space high triangulation errors occur.
The right figure 10 shows triangulation errors depending on the interface distance
for the stereo rig calibrated in different parameter configurations. In addition to the
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Fig. 11. Two of the perspective calibration scenarios, both with interface distance
20mm were used to triangulate points on the xy-plane, with the camera being 2m
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with respect to the imaging sensor, while in the right scenario the interface was tilted
by (−1◦, 1◦) with the resulting errors in the perspective calibration. ’persp’ stands
for perspective triangulation, while ’unw’ stands for refractive triangulation. Note the
different scales of the z-axis.

dependence on the interface distance, the error also depends on the distance of the
points used for triangulation to the center of projection and the distance range of
the calibration pattern with respect to the camera. Figure 11 extends the analysis
of plane triangulation in [27] by comparing parallel and non-parallel interfaces:
the black (red in color version) planes are triangulated using the underwater
model (interface distance 20mm, glass thickness 30mm), while the gray (green
in color version) planes are triangulated using the perspective calibration. In case
of parallelism between interface and image sensor, the error is radially symmetric
(11, left), while in the right image, a slight rotation of the interface plane causes
far higher errors.
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calibrated camera is used to compute the reconstruction using a classical SfM approach.
On the right, error curves for the different scenarios are shown.

Errors in Pose Estimation. Figure 12 shows the reconstruction of a cylinder
captured from cameras moved on an orbit with slight interface rotation. The
error induced by the wrong camera model clearly accumulates. Note that the
correspondences used are synthetic and therefore not biased by feature detection
and matching methods, so all of the drift in this scenario is caused by the model
error alone, increasing especially in case of even slight rotations between interface
and image sensor.

Aside from other sources of error not present in the synthetic data presented
here (e.g. errors in checkerboard detection), the measurement errors induced by
using an incorrect imaging model do not bode well for exact measurements of
underwater structures. This matches the conclusions drawn in [27,6]: underwater
SfM so far works even in case of several thousand images, however, navigational
data or time consuming bundle adjustment methods are required to stabilize the
motion computation and reduce drift.
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p
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d
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d
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b
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b
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b
ra
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b
ra
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d
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p
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b
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b
ra
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b
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a
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b
ra
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p
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ra
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p
ro
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6 Conclusion and Future Work

We have discussed three different types of camera models, which are used to deal
with refraction effects on underwater images.

First, it was shown that the often used pinhole camera model is invalid due
to refraction at the camera housing, although it is common in the literature.
The accuracy analysis for the perspective model shows that the model error is
not negligible and grows with increasing interface distance and with stronger
tilt of the interface with respect to the image sensor. Applications like stereo
measurements, mosaicking for navigation, and Structure from Motion all rely on
accurate geometrical measurements. Especially Structure from Motion is prone
to errors due to drift in pose estimation and we believe that the systematic error
caused by using a wrong model for refractive effects adds an unnecessary source
of drift.

Second, the ray-based camera models have a completely derived theory for
SfM, but no implementation has been tried on real underwater images yet. In
addition, the high degree of freedom caused by individually parametrized rays
for each pixel makes robust calibration difficult or even infeasible in underwater
environments.

Third, physically modeled interfaces allow to compute refraction explicitly
without needing a high degree of freedom. Only the parameters describing the
underwater housing with respect to the camera are required in addition to the
classic perspective camera model. Applications like SfM, mosaicking, and stereo
based measurements could therefore profit from using such a model because the
systematic error induced by using an approximate, perspective camera model
can be eliminated by modeling refraction explicitly. Future Work will include
robust calibration of the interface parameters and application of the physical
model to underwater images.
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Abstract. Object detection in large-scale real-world scenes requires effi-
cient multi-class detection approaches. Random forests have been shown
to handle large training datasets and many classes for object detection
efficiently. The most prominent example is the commercial application
of random forests for gaming [37]. In this paper, we describe the general
framework of random forests for multi-class object detection in images
and give an overview of recent developments and implementation details
that are relevant for practitioners.
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1 Introduction

Object detection for real-world applications is still a challenging problem. While
recent research datasets like PASCAL VOC [12], ImageNet [10], or the Caltech
Pedestrian Dataset [11] increase the amount of training and testing examples to
get closer to real-world problems, the ability of detectors to process large data
sets in reasonable time becomes another important issue besides accuracy. It is
not only the number of training examples that matters, but also the number of
classes.

A family of methods that can handle large amount of training data efficiently
and that are inherently suited for multi-class problems are based on random
forests [1,5]. Random forests are ensembles of randomized decision trees that can
be applied for regression [8,13,19], classification tasks [26,28,30,6,40,4,35,38,37],
and even both at the same time [16,31,39,18,14]. The most prominent application
of random forest is the detection of human body parts from depth data [37]. The
method was trained on 900k training examples to detect 31 body parts (classes)
and runs at around 200 frames per second on the Xbox GPU. This commercial
application demonstrates the practicability of random forests for large-scale real-
world computer vision problems.

� This work has been partially funded by the EU projects IURO (FP7-ICT-248314)
and RADHAR (FP7-ICT-248873). The paper contains content that has been previ-
ously published in [18,32,33].
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The scope of this paper is to give an introduction to random forests in the
context of multi-class object detection and to give an overview of recent develop-
ments. For a more general discussion on random forests, we refer to the book [5]
and the tutorial [7]. Rather than providing a detailed experimental evaluation
which has been already presented in the referenced works, the paper serves more
as a guide for practitioners.

2 Random Forests for Object Detection

A random forest consists of a set of trees Tt where each tree consists of split
nodes and leaves as illustrated in Figure 1. The split nodes evaluate each arriving
image patch and, depending on the appearance of the patch, pass it to the left
or right child. Each leaf L stores the statistics of the image patches that arrived
during training. For a classification task, it is the probability for each class c,
denoted by p(c|L). For a regression task, it is a distribution over the continuous
parameter x ∈ R

H that one wants to estimate. While image segmentation is a
typical classification task where one wants to estimate the class label for each
image patch, object localization can be regarded as a regression problem where
each patch of the object predicts the location of the object in the image. Since
object detection involves both classifying patches belonging to an object and
using them to regress the location and scale of the object, random forests for
object detection need to be trained to satisfy both objectives.

Fig. 1. A random forest consists of a set of trees that map an image patch to a distri-
bution stored at each leaf. The disks indicate split nodes that evaluate the appearance
of a patch and pass it to the right or left child until a leaf is reached.
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Fig. 2. For training, a subset of image patches is taken from the entire training set. In
the simplest case, there are only two classes; one containing negative or background
examples (blue) and another containing positive examples (red). While the class labels
are required to distinguish object patches from background patches (classification),
additional offset vectors of the positive patches to the center of the object are stored
(green). The offset vectors will be used to predict the location of the object (regression).

2.1 Training

For training, a set of images is collected where each object is annotated by a
bounding box and the class label c. The background images are only annotated
by the class label. In order to handle large amount of training data and to
avoid overfitting, randomness is introduced by training each tree on a randomly
sampled subset of the training data [5]. For object detection, this means to
randomly select a subset of training images for each class. From the selected
images, only a subset of image patches is then sampled and used for training
as illustrated in Figure 2. For each sampled patch Pi that does not belong
to the background, the offset to a reference point of the object di is stored.
Ideally, the reference point is always the same for all training instances of a
class, e.g., the head of a pedestrian. However, taking the center of the bounding
box as reference point is usually a more practical choice. In general, the reference
point does not need to be the center of the object, but it should be as consistent
as possible among training examples. Scale is handled during testing and the
positive examples are scaled to a unit size su. A good choice for object detection
has been to use image patches of size 16×16 pixels and scale the images such that
the longest spatial dimension of the bounding box is about 100 pixels [16]. In
this setting, a patch covers meaningful parts like a wheel of a car or the head of a
human as shown in Figures 2 and 4. In case of tight bounding boxes around the
objects, it is beneficial to consider all patches for sampling that have the patch
center inside of a bounding box. In this way, important boundary information
can be better captured [9].

In summary, we have a set of training patches {Pi = (Ii, ci,di)} that are
randomly sampled from the examples where,

Ii are the extracted image features of the patch,

ci is the class label for the exemplar, the patch is sampled from,

di is a offset vector from the patch center to the reference point.
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Patches sampled from background images have a pseudo offset, i.e., di = 0. We
denote the set of randomly sampled training patches for a tree Tt by A = {Pi}.

In order to train a tree that can be used for object detection, one has to find
a split function

fφ(P) ∈ {0, 1} (1)

for each non-leaf node that separates the training patches in an optimal way. The
split functions are therefore also termed as weak learners [7]. The split function
evaluates one or more image features of the patch P and sends it to the left
(fφ(P) = 0) or right child (fφ(P) = 1) of the node; see Figure 1. The split
functions are parametrized by a set of parameters φ that need to be optimized
during training.

Each tree can be trained in parallel using the general random forest frame-
work [5]. Starting at the root node with the training set Anode = A, a tree grows
recursively:

1. Generate a random set of parameters Φ = {φk}.
2. Divide the set of patches Anode into two subset AL and AR for each φ ∈ Φ:

AL (φ) = {P ∈ Anode|fφ(P ) = 0} (2)

AR (φ) = {P ∈ Anode|fφ(P ) = 1} (3)

3. Select the split parameters φ∗ that maximize a gain function g:

φ∗ = argmax
φ∈Φ

g (φ,Anode) (4)

where

g (φ,Anode) = H (Anode)−
∑

S∈{L,R}

|AS (φ) |
|Anode|

H (AS (φ)) . (5)

Depending on the task, H(A) is chosen such that g measures the gain of the
classification or regression performance of the children in comparison to the
current node.

4. Continue growing with the training subsets AL and AR if some predefined
stopping criteria are not satisfied; otherwise, create a leaf node and store the
statistics of the training data Anode.

Step 1 is another source of randomness that reduces training time whereas eval-
uating all parameters φ would be infeasible in many cases. While the family of
split functions fφ, the measure H, and the stopping criteria will be discussed in
Section 3, we continue with the prediction model stored at each leaf L.

In the context of object detection, we are interested in the class probability
and the spatial distribution of the training patches for each class. The class
probability p(c|L) can be estimated by

p(c|L) = |AL
c | · rc∑

c (|AL
c | · rc)

; rc =
|A|
|Ac|

(6)
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Fig. 3. Visualization of some leaves of a tree for detecting cars (side-view; two classes).
Each leaf node L stores the probability of a patch belonging to the object class p(c|L),
estimated by the proportion of patches from the positive (red) and negative examples
(blue) reaching the leaf during training. For the positive class, the offset vectors d ∈ DL

c

are shown (green). The underlying distribution p(d|c, L) is multimodal. The positive
training examples falling inside each of the first three leaves can be associated with
different parts of a car. The last leaf contains only negative patches. The image has
been taken from [18].

where AL is the set of training patches reaching the leaf L after training, A
the entire training set used for training the tree, and Ac the patches in A with
class label c. The factor rc compensates for the sample bias that might have
been introduced when the number of training examples is not well distributed
among classes. The spatial distribution for each class, p(d|c, L), is obtained by
estimating the continuous distribution from the offset samples d ∈ DL

c of the
patches AL

c . While more details will be given in Section 3, the statistics of a few
example leaves are shown in Figure 3.

2.2 Detection

For detecting an object, image patches are sampled from a test image and passed
through the trees as shown in Figure 1. The image patches can be densely sam-
pled or subsampled as for training. Each patch P(y) sampled from image location
y ends in a leaf Lt(y) for each tree Tt. In order to locate an object in the image,
we evaluate the probability of an object hypothesis h(c,x, s), i.e., the probability
of an object belonging to class c with size s and its reference point at x. Besides
of scale, additional parameters of the object like depth [39], viewpoint [32], or
aspect ratio [16] can be estimated.

The probability p(h|Lt(y))
1 for a single patch and a single tree is then given

by
p(h(c,x, s)|Lt(y)) = p (d(x,y, s)|c, Lt(y)) p (c|Lt(y)) (7)

where

d(x,y, s) =
su(y − x)

s
. (8)

The term d(x,y, s) is basically the offset between y and x given the hypothesis
size s. Note that the unit size su and the two probabilities p(d|c, Lt(y)) and
p(c|Lt(y)), cf. Equation (6), are known from training as explained in Section 2.1.
The derivation of Equation (7) is straightforward and given in [18]. While random

1 We abbreviate h(c,x, s) to h and d(x,y, s) to d.
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(a) (b) (c) (d)

Fig. 4. For each of the three patches emphasized in (a), the random forest trained on
pedestrians casts weighted votes about the possible location of a pedestrian (b) (each
color channel corresponds to the vote of a sample patch). Note the weakness of the vote
from the background patch (green). After the votes from all patches are aggregated (c)
(white corresponds to a high value), the pedestrian can be detected (d) by searching
the mode of (c). The images have been taken from [18].

regression forests or classification forests model only one of the two terms in
Equation (7), the distribution p(h|Lt(y)) combines both the regression and the
classification objective.

The distribution p(d|c, Lt(y)) can be modeled by a set of votes d ∈ D
Lt(y)
c .

In this case, Equation (7) becomes

p(h(c,x, s)|Lt(y)) =
1∣∣∣DLt(y)

c

∣∣∣
⎛⎝ ∑

d∈D
Lt(y)
c

δd

(
su(y − x)

s

)⎞⎠ p (c|Lt(y)) , (9)

where δ is a Dirac measure. Since the distribution can be regarded as weighted

votes d ∈ D
Lt(y)
c to be cast into a Hough space, regression trees are also termed

Hough forests [16] in the context of object detection. Figures 4 (a) and (b) show
the votes or distribution of three patches. While the head (red) patch yields a
distribution with one strong mode, the patch of the right feet (blue) is similar
to the left feet in appearance and thus yielding a distribution with two modes.
The impact of the class probability can be observed for the background patch
(green). Since the probability of this patch belonging to the object is close to
zero, the votes are barely visible.

While Equation (7) models the probability for a single tree, the probabilities
of all trees are averaged, i.e.,

p(h(c,x, s)|P(y)) =
1

|{Tt}|
∑
t

p(h(c,x, s)|Lt(y)). (10)

Alternatively, the probabilities can also be multiplied but averaging is more
efficient [7]. Similarly, the distributions over all image patches can be either
accumulated as in [18]:

p(h(c,x, s)|I) = 1

|Ω|
∑
y∈Ω

p(h(c,x, s)|P(y)); (11)
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(a) (b)

Fig. 5. In order to detect objects at different scales (a), the original image is scaled
by the inverse expected sizes (b). The modes are detected in the joint space of image
location and scale (white corresponds to a high value). The small car yields a peak on
the two left images and the large car yields a peak on the right images.

or multiplied as in [2]. An example using Equation (11) for a single scale is
shown in Figure 4 (c). Multiple scales can be handled by processing the image
at different scales as shown in Figure 5. In order to detect an object of size
s, giving the training size su, the image is scaled by su

s . In this way, the scale
factor in Equation (8) is already taken into account. Object detection can then
be performed by using mean shift to detect the modes of Equation (11); see
Figures 4 and 5.

3 Implementation Details

So far, the general framework has been described. In this section, we discuss
variations and implementation details that are relevant for applications.

3.1 Features and Binary Tests

Actually any kind of image feature can be used that is useful for object detection.
This includes sparse features like SIFT [27] or SURF [3], but usually one relies on
low-level features like color, gradients, or Gabor filters that can be efficiently com-
puted. In contrast tomanual designed feature descriptors, the random forest selects
a split function (1) at each non-leaf node during training. All patches ending in one
leaf are therefore described by the split functions from the root to the leaf. The split
functions, however, can be directly optimized for the task of object detection.

A set of features obtained from simple pixel tests using intensity and first-
order gradients are shown in Figure 3. The used pixel tests are defined by:

fφ(P) =

{
0 if If (p)− If (q) < τ

1 otherwise.
(12)

where the parameters φ = {p, q, f, τ} comprise two pixel locations within the
patch, a low-level image feature If of the patch, and a threshold τ . The pixel
differences introduce invariance with respect to a constant change of the image
features If . In [28], only a pixel value is thresholded, i.e., If (p) < τ . More
general tests than (12) have been used in [8,13], where the feature values over
two regions Q and P are averaged:
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fφ(P) =

{
0 if 1

|P |
∑

p∈P If (p)− 1
|Q|

∑
q∈Q If (q) < τ

1 otherwise.
(13)

The regions are rectangles within the patch such that the average can be ef-
ficiently computed by integral images. In general, several features can be also
combined for a single test:

fφ(P) =

{
0 if τ1 <

∑
f wf

(
1

|Pf |
∑

p∈Pf
If (p)

)
< τ2

1 otherwise,
(14)

where wf is a weight between the features, e.g., wf ∈ {−1, 0, 1}, and τ1 is
an additional threshold [7]. While more complex split functions allow a better
separation at each node, they also involve more parameters to estimate and
increase the chance of overfitting [7]. Even for Equation (12) the patch size has
an impact on the detection performance although it is not very sensitive to the
exact size [18].

In practice, split tests of type (12) or (13) have shown to give a good perfor-
mance for object detection. While in case of depth data, using only depth data
already gives good results [19,37], 32 image features have been used in [18] for
object detection. Similarly to the number of parameters φ, the number of image
features can result in overfitting, i.e., a random forest trained with less image
features might perform better than a forest with many features.

To increase the robustness of features, one can introduce some variance to the
patches by transforming them. For instance, patches of various sizes and orienta-
tions are used in the context of classification [28]. In [24], additional patches are
tracked in video clips and added to the training data as temporal pairs. When
measuring the goodness of a split, one can enforce that temporal pairs are not
split. In this way, one can introduce some robustness of the features with respect
to small appearance changes over time. Measuring the goodness of a split will
be discussed in the next section.

In order to make the evaluation of the random set of parameters Φ more
efficient, one generates the parameters of a split function φ without a threshold
τ . The real-valued function fφ\τ is then applied to all patches Pi ∈ A, which are
sorted such that fφ\τ (Pi) ≤ fφ\τ (Pj) for i ≤ j. In this way, many thresholds can
be efficiently evaluated for the split function fφ. In [18], 10 randomly generated
thresholds are generated for each of the 2000 functions fφ\τ , yielding 20k split
functions for Φ in total.

3.2 Goodness of Split

Having defined a family of split functions, one has to measure the quality of a
split (5) by defining H(A). Depending on the task, one can define a classification
or regression functional; see Figure 6. An entropy-based classification functional
can be computed by

Hc (A) = −
∑
c

p (c|A) log (p (c|A)) , (15)
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(a) (b) (c)

Fig. 6. (a) Each split function separates the training data at a node. (b) The classifi-
cation objective aims to separate patches with different class labels. (c) The regression
objective aims to maximize the localization accuracy of the offsets.

where p(c|A) is computed as in Equation (6). The functional tends to separate
patches with different class labels in order to get leaves with low uncertainty for
p(c|L).

As in [7], one can also define a regression functional in a similar way by:

Hr (A) = −
∑
c

1

|A|
∑
P∈A

∫
d

p (d|c,P) log (p (d|c,P)) dd, (16)

to obtain leaves with a low uncertainty for p(d|c, L). While Hr(A) can be ef-
ficiently computed under the assumption that p (d|c,P) are Gaussian distri-
butions, the functional becomes too expensive for more general distributions.
In [18], a functional that is more efficient to compute has been used for
regression:

Hr (A) =
∑
c

⎛⎜⎝ ∑
d∈DA

c

∥∥∥∥∥∥d− 1

|DA
c |

∑
d′∈DA

c

d′

∥∥∥∥∥∥
2
⎞⎟⎠ . (17)

Using functional (16) with a Gaussian assumption or functional (17) is not opti-
mal since both functionals assume a unimodal distribution of the offsets, which
is not correct for object detection as illustrated in Figure 3. In practice, these
approximations are, however, preferred due to training efficiency.

For object detection, one is interested in minimizing the uncertainties for
p(c|L) and p(d|c, L). Therefore, one searches for a split function fφ that maxi-
mizes the gain (5) using Hc and Hr, denoted by gc(φ,A) and gr(φ,A), respec-
tively. While the objective is randomly selected at each node in [18], [31] uses a
weighted combination of gc(φ,A) and gr(φ,A):

gcr(φ,A) = gc(φ,A) + w(A)gr(φ,A). (18)

In [31], w(A) is only defined for a two class problem with a positive and a negative
class:

w(A) = αmax
(
p(cpos|A)− tp, 0

)
. (19)

In general, the measure gcr(φ,A) tries to separate patches with different class
labels first. If the purity of positive patches exceeds a given threshold tp, the im-
pact of the regression functional gr(φ,A), weighted by the constant α, increases.
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In [14], several weights for combining gc and gr based on the depth of the node
and including (19) have been evaluated in the context of head pose estimation.
They showed that a random approach as in [18] gives very similar performance
to weighting schemes with optimized parameters. The random approach, how-
ever, does not require additional parameters and is more efficient since only one
functional needs to be evaluated at each node.

While combining the classification term with the regression term improved
the performance for object detection in [18], the classification term gave the best
performance in the context of body part detection [19]. Body part detection is a
special case since all classes are spatially connected and it seems that enforcing
a local separation based on body part labels seems to be more appropriate than
making a unimodal approximation of the spatial distributions.

To avoidoverfitting, the parameters of the split functions can be regularized.For
instance, the weightswf of the split functions (14) can be regularized by g(φ,A)−
λ
∑

f ‖wf‖2 [29]. In [24], pairs of patches (P1,P2) are used for regularization:

−λ

⎛⎝ 1

|Bpos|
∑
Bpos

I
(
fφ(P1)�=fφ(P2)

)
+

1

|Bneg|
∑
Bneg

I
(
fφ(P1)=fφ(P2)

)⎞⎠ , (20)

where I is an indicator function. The regularizer enforces that patches that are
similar under certain transformations, i.e., (P1,P2) ∈ Bpos, are not separated
while patches that are dissimilar, Bneg, are separated. The regularizer can be
used to introduce some robustness of the features with respect to specific trans-
formations. In contrast to the training data A, the pairs in B do not contain class
labels and can be collected from other sources. For instance, tracked patches in
arbitrary video sequences were used in [24] to build pairs for regularization in
the context of object detection and tracking.

Equation (20) relates to semi-supervised learning that can be implemented in
an iterative approach as in [25] or by computing the unsupervised gain gu that
prefers to cluster patches of similar appearance [7]. Since the unsupervised gain
does not depend on labels, it can be computed over the union of the labeled set
A and an additional unlabeled set B. The supervised and unsupervised gain can
be combined by:

g(φ,A) + λgu(φ,A ∪B) (21)

where gu is defined by using

Hu (A ∪B) = −
∫
I
p (I|A ∪B) log (p (I|A ∪B)) dI (22)

in Equation (5). As Equation (16), the term Hu can be efficiently computed
under the assumption that the appearance of the patches of the set A ∪ B can
be approximated by a Gaussian distribution p(I|A∪B); otherwise the evaluation
becomes too expensive.

Regularizers and semi-supervised learning are importantwhen the set of labeled
training data is rather small to avoid overfitting. In case of large amount of labeled
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training data, the set of patches does not fit in thememory and on-line learning [36]
or subsampling strategies [36,19] can be used. These strategies can be easily im-
plemented using only a subset of the training data A′ ⊂ A for training a tree until
a certain size. For the next step, another subset A′′ ⊂ A is sampled and passed
through the previously learned tree. The training is then continued until the tree
has reached a final size. After the parameters of the split functions at the non-leaf
nodes have been optimized, the distributions at the leaves can be computed from
the full training setA by passing all patches through the tree and updating the off-
setsDL

c and the histograms of the class labels |Al
c| at the leaves.On-line learning or

updating the leaf statistics is also performed for object tracking [17,36,20] where
the training examples arrive sequentially over time.

3.3 Stopping Criteria

There are three main criteria for stopping the growing of a tree. The maximum
depth of a tree, a minimum number of samples arriving at a node during training
|Anode|, and a threshold based on the gain measure g(φ∗, Anode) (5). While the
gain should be always strictly positive, i.e., g(φ∗, Anode) > 0, finding a good
threshold is difficult. Therefore, limiting the tree depth and the minimum number
of samples are more practical criteria. In the context of on-line learning [36],
it has been shown that |Anode| > ε is a sufficient criteria and an additional
thresholding of the gain is not necessary. The optimal depth, however, depends on
the amount of training data. For instance, the optimal performance for detecting
organs in CT scans has been achieved by training 12 trees with depth 7 on the
available 55 training examples [8]. In [19], 3 trees with depth 20 trained on 300k
training examples performed well. While the number of trees is less critical since
the performance does not decrease with more trees, trees that are too deep can
have a negative impact on the performance due to overfitting [8].

3.4 Leaf Prediction Model

While p(c|L) is defined in (6), there are several choices for modeling the spatial
distributions p(d|c, L) at the leaf L. In [16], a Parzen estimate with a Gaussian
kernel K is used to reconstruct the distribution from the samples:

p(d|c, L) = 1

|DL
c |

⎛⎝ ∑
d′∈DL

c

K(d′ − d)

⎞⎠ . (23)

Although the non-parametric approach is very general, it does not scale with
the number of offsets per class |DL

c |. For many training examples, it is therefore
recommended to approximate the distributions by a Gaussian mixture model
as in [19,21]. Since in both cases a multimodal regression functional (16) is too
expansive to evaluate for training, it is therefore approximated by a more simple,
unimodal measure. In case of pose estimation [8,13], p(d|c, L) is even approxi-
mated by a single Gaussian. Although this makes the testing very efficient, it is
not an appropriate choice for object detection as indicated by the leaf distribu-
tions shown in Figure 3.
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Fig. 7. Object detection with backprojection. From left to right: After passing the
patches of the test image through the trees, the votes are collected. The mode of
the distribution the votes are sampled from is detected by mean shift. The votes are
backprojected to the image showing the image patches that voted for the object. The
backprojection mask visualizes the support from the wheels of the car. Note that the
occluding pedestrian is not part of the backprojection mask. The image has been taken
from [32].

3.5 Bounding Box Estimation

For getting object hypotheses, the modes of p(h|I) (11) can be searched by mean
shift [23,19] or by smoothing the voting space and searching for local maxima in
a greedy manner [16]. In both cases, the bandwidth of the used kernel needs to
be large enough to detect objects where the votes do not aggregate in the exact
spot. This is illustrated in Figure 7.

The computation of p(h|I) can be drastically reduced by sampling not all
patches from the test image, but using only a subset a patches. As long as the
average overlap between two nearest sampled patches is greater than 50%, the
loss in detection performance is acceptable in comparison to the gain in runtime
performance [16,18]. In addition, one can discard leaves that are very uncertain
as in [8,13,14,19], i.e., if p(c|L) is low or if the variance of p(d|c, L) is high. This
can be achieved by using a predefined threshold or taking a fix number of the
most certain leaves per image.

Having a hypothesis h(c,x, s), the enclosing bounding box can be estimated
by taking the average bounding box of the training examples of class c, after
rescaling to the unit size su, and multiplying it by the estimated size s

su
. The

position of the bounding box is defined by x.
In some cases, the aspect ratios vary widely within a single class such that

the average bounding box of the training images scaled and translated to the
detection center is not precise enough. Alternatively, one can compute the back-
projection of the supporting image patches for a hypothesis h(c,x, s) [23,32].
One approach to compute the backprojection mask extracts the maximum ex-
tent of a possible support, i.e., the largest bounding box of the training images
scaled and translated to the detection center. Within the bounding box, the
image patches are collected and passed again through the trees. Every time a
patch votes for the hypothesis, the contribution weight of the patch P(y) for h
is given by
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Fig. 8. Computing the bounding box based on the backprojection. Left: annotated
bounding box (blue) and estimated bounding box (green). Right: Superimposed back-
projection mask and estimated bounding box.

π(h(c,x, s),y) =
1

|{Tt}|
∑
t

⎛⎝ ∑
d∈D

Lt(y)
c

p (c|Lt(y))∣∣∣DLt(y)
c

∣∣∣ K

(
d− su(y − x)

s

)⎞⎠ , (24)

where K is the kernel used for mode detection. An obtained backprojection
mask π(h,y) is shown in Figure 7. To obtain the bounding box, the mask can
be thresholded to estimate the tightest bounding box encompassing the binary
mask. In [32], the threshold is defined by 1

2 maxy π(h,y). Two examples are
shown in Figure 8. In [23,34], the backprojection has been additionally aug-
mented by segmentation masks obtained from segmented training data. The
segmentation mask can also be used for verification.

In order to detect multiple instances in a single image, one can use a greedy
approach. Starting with the hypothesis with the highest score p(h|I), the im-
age patches that support the hypothesis are removed and the detection process
continues until a maximum number of hypotheses have been extracted from the
image or the remaining hypotheses have a score below a given threshold. How-
ever, there are more principled ways to detect multiple instances. In [23,2,34],
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Fig. 9. Two object hypotheses and their top ten nearest training examples (ordered
from left to right). The detected pedestrians are the same as in Figure 8. For each hy-
pothesis, the top row shows the training examples that contribute most to the hypoth-
esis. The bottom row shows the backprojection mask superimposed on each training
example. The images have been taken from [32].

optimization procedures for non-maximum suppression, for instance, based on
the minimum description length (MDL) principle are used. These methods han-
dle instances that occlude each other better since they aim at solving an optimal
assignment of the votes to competing hypotheses.

The backprojection can also be used to obtain a link between a hypothesis and
the training data [32]. For instance, Equation (24) can be modified by taking only

offsets D
Lt(y)
c (θ) into account that were sampled from a specific training example

θ. The contribution of a training example for a hypothesis is then measured by∑
y π(h,y, θ). Figure 9 shows the training examples that contribute most to the

detections shown in Figure 8.
More general, the similarity between two hypotheses h1 and h2 of the same

class c can be defined by

S(h1,h2) =

∑
t

∑
Lt

∑
d∈D

Lt
c

p(c|Lt)

|DLt
c | I (d,h1) I (d,h2)∑

t

∑
Lt

∑
d∈D

Lt
c

p(c|Lt)

|DLt
c | I (d,h1)

(25)

where

I (d,h) =

{
0 if maxy π(h,y,d) = 0,

1 otherwise.
(26)
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(a) (b) (c)

Fig. 10. Viewpoint retrieval on the Leuven car dataset [22]; some examples are shown
in the top row (blue - ground truth, green - correct detection, red - incorrect detection).
(a) Confusion matrix. Most of the confusions appear between neighboring viewpoints. (b-
c)The viewpoint retrieval performance with respect to the amount of occlusion. Although
the detection performance deteriorates with an increasing amount of occlusion (b), the
viewpoint retrieval performance is affected very little (c), which shows the robustness of
the similarity measure to occlusions. The images have been taken from [32].

The indicator function I(d,h) is basically 1 if an offset d contributes to a hy-
pothesis h, which is measured by π(h,y,d), i.e., Equation (24) computed for a
single offset d instead of

∑
d∈D

Lt(y)
c

.

Having a similarity measure, one can retrieve the nearest neighbors from the
training set and transfer attributes from them to the detection hypothesis. For
instance, the viewpoint of a detected car is estimated using Equation (25) in [32].
The most interesting property of the similarity measure based on the support of
two hypotheses is the robustness to occlusions as shown in Figure 10.

3.6 Feature Sharing

The advantage of using one multi-class detector compared to having a detector
for each positive class is the ability of sharing features among classes, which
reduces the memory requirements and also the testing time. The sharing and the
performance of a random forest for multi-class object detection on the PASCAL
VOC 2006 and 2007 datasets [12] have been investigated in [33].

The sharing among classes is illustrated in Figure 11. Since each leaf contains
patches from several classes, one can compute the amount of sharing among
classes [33] by
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(a) (b)

Fig. 11. Patches clustered in two leaves of a multi-class detector trained on PASCAL
VOC 2006. The first leaf shares features of similar appearance among the classes person,
sheep, and dog. The second example shares features among the classes cat, motorbike,
and bicycle. The images have been taken from [33].

(a) PASCAL VOC 2006 (b) PASCAL VOC 2007

Fig. 12. Sharing matrices and their corresponding taxonomies which are automatically
obtained by clustering the sharing matrices. The images have been taken from [33].

T (ci, cj) ∝
∑
t

∑
Lt

(∣∣DLt
ci

∣∣ · p (cj |Lt)
)
, (27)

where T (ci, cj) is normalized such that
∑

j T (ci, cj) = 1. The obtained sharing
matrix T among the positive classes for the two datasets PASCAL VOC 2006 and
2007 are shown in Figure 12. For PASCAL VOC 2006, many features are shared
between the pairs bus-car, cat-dog, motorbike-bicycle, and cow-sheep since these
categories are also similar in appearance and shape. For dissimilar categories like
bus and cow, the sharing is marginal.

Based on the sharing matrix T , one can derive a taxonomy of classes by clus-
tering the symmetric dissimilarity matrix D = 1− 1

2 (T +T T ). The automatically
derived taxonomies are also plotted in Figure 12. The taxonomies show that the
feature sharing within a multi-class random forest is meaningful. The close sim-
ilarity between cow and sheep can be explained by the typical green background
of the training images of the two classes. Since the forest is trained on bounding
boxes, many patches with class labels for cow and sheep contain mainly grass
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(a) (b)

Fig. 13. Both the number of leaves (a) and the number of votes (b) of a multi-class
random forest grow sublinearly with respect to the number of classes. In contrast,
one-vs-the-rest approaches grow linearly. The difference between the blue and the red
curve in (a) indicates the amount of sharing that is happening. In (b), the derived
taxonomy can be used to further reduce the number of votes. The images have been
taken from [33].

from the background. The sharing, however, depends on the image features that
are used for the split functions. For instance, potted plant and dinning table
are measured as similar for PASCAL VOC 2007. Since potted plants are not
well described by the used histogram of gradients features, the location of the
category in the taxonomy is not very meaningful.

Figure 13 shows the effect of sharing of a multi-class random forest in com-
parison to training a random forest for each positive class (one-vs-the-rest). Not
only the number of leaves is reduced, yielding less memory requirements, but
also the votes to be cast for detection is lower. This is achieved by casting only
votes if p (cj |Lt) >

1
C , where C is the number of classes. Based on the taxonomy,

one can even adjust the thresholds for the classes to reduce the number of cast
votes further [33].

The multi-class forest can also be used to generate class hypotheses that are
verified with a more sophisticated classifier or detector. In [33], the verification
detector [15] has been used for re-scoring each hypothesis. The performance
on PASCAL VOC 2006 is shown in Table 1. The multi-class random forest
(MC) and the taxonomy (T) perform similar or better than many one-vs-the-
rest (OvA) random forests even after the verification step. While the number of
verifications scales well with the number of classes as shown in Table 2, there
is no loss in detection performance compared to [15]. As reported in [33], the
system requires 35 seconds per image for detecting one positive class, but only
100 seconds for detecting all 20 classes. Comparing these numbers with the
fast verification detector [15], which requires 7 seconds per image and per class
and 134 seconds per image for 20 classes, there is already a benefit for less
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Table 1. Performance comparison of a multi-class method (MC) with some base-
lines in average-precision for the PASCAL VOC 2006 dataset. The first block shows
the detection without verification and without non-maxima suppression. MC outper-
forms one-vs-the-rest (OvA). The taxonomy not only reduces the amount of voting
(Figure 13), it also gives a slight improvement. In the second block, verification is per-
formed with [15]. By using a two-stage method, there is no loss in accuracy compared
to [15]. The number of performed verifications is given in Table 2.

Method bic. bus car cat cow dog hrs. m.bi. pers. shp. avg

OvA .16 .13 .07 .04 .18 .03 .15 .16 .11 .12 .114
MC .37 .12 .11 .02 .14 .05 .08 .21 .05 .12 .127

MC+T. .38 .13 .12 .05 .15 .03 .11 .12 .05 .12 .132

[15] .64 .62 .634 .23 .46 .14 .45 .61 .38 .45 .459
OvA+vrf. .67 .62 .62 .23 .46 .14 .46 .62 .35 .43 .461
MC+vrf. .68 .64 .65 .20 .47 .14 .44 .64 .38 .43 .465

MC+T.+vrf. .66 .64 .66 .22 .47 .14 .44 .64 .36 .42 .463

Table 2. The multi-class random forest (MC) reduces the number of windows for
verification per image. Since the hypotheses already have a class label, each hypothesis
or window needs to be verified only once. It is important that the reduction is achieved
without compromising accuracy; see Table 1.

Method #windows #verifications

MC-VOC’06 (10 cat.) 1321 1321
MC-VOC’07 (20 cat.) 1778 1778
[15]-VOC’07 (20 cat.) 42278 833141

than 20 classes. Although it is clear that 100 seconds are still not satisfying,
optimizing the random forest for multi-class object detection as in [19] or using
the approximations mentioned in this paper might give a significant reduction
of the detection time.

4 Discussion and Conclusion

In this paper, we have described a general random forest framework for multi-
class object detection and discussed several implementation variations. In this
context, object detection is formulated as a combined regression and classifi-
cation problem. While the detection problem becomes a distribution estima-
tion problem, the random forests allow to learn features and descriptors that
are optimal for estimating the distributions with low uncertainty. The theoreti-
cal framework, however, has the shortcoming that general distributions become
too expensive for large datasets. Therefore, several approximations have been
discussed to improve the efficiency. The approximations range from restricting
the type of distributions to Gaussians or Gaussian mixture models to using an
approximation of the spatial distribution for measuring the gain or using sub-
sampling strategies during training and testing. Although many approximations
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are very intuitive and the basic algorithm is straightforward to implement, it
requires some engineering to find an optimal trade-off between accuracy and
runtime performance. The most crucial parameter for the detection accuracy,
however, is the amount of training data. Random forests are not designed to
generalize from small training sets, but to handle large amount of training data
efficiently. For datasets with limited training data and large intra-class variation
like PASCAL VOC 2007, they do not achieve the best detection accuracy without
an additional verification step [18,33]. However, using semi-supervised learning
and regularizers that exploit large amount of unlabeled data as described in
this paper might overcome the overfitting problem of random forests partially.
Due to its relation to implicit shape models [23], the detection approach shares
advantages and limitations of this type of models. While techniques like back-
projection and feature sharing allow to reason about object hypotheses and the
similarity of categories, which goes beyond black box classifiers, the independent
assumption of the image patches is a weakness of these models that needs to be
addressed in the future. Nevertheless, random forests have a strong potential
for applications where many labeled examples are available. For instance, pose
or body part estimation from depth data [13,19] are examples where accurate
results can be obtained in real-time. The work [19] also shows the benefit of
engineering where a fine tuned version of [18] resulted in a speed-up by a factor
of 3200.
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Abstract. We present a novel approach to segment and classify objects
in images into two classes. A binary conditional random field (CRF)
framework is augmented with an unsupervised clustering step learning
contextual relations of objects, the so-called implicit scene context (ISC).
Several experiments with simulated data, images from benchmark data
sets, and aerial images of an urban area show improved results compared
to a standard CRF.
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1 Introduction

Object segmentation and classification in images is of major interest in such
different fields of science as computer vision, medical vision, and remote sensing.
The general aim is to assign a class label to each pixel of an image as opposed to
object detection, where rectangular bounding boxes are drawn around an object.
In case evidence directly at an object is insufficient to decide on an appropriate
class label, contextual information of a characteristic neighbourhood can support
segmentation and classification [18]. For example, a building facade often appears
in an image with some sky above and street below. Knowing this typical ordering
of objects can help distinguishing them.

One way to learn and infer contextual structures in images is to use graphs,
which represent different parts of an image as so-called nodes being linked
via edges. Characteristic contextual relations between image parts can be cap-
tured through edges thus supporting classification. A probabilistic way to exploit
graphs for classification combining direct object evidence and context is random
fields.

This paper gives a detailed explanation of an approach to contextual binary
object classification based on Conditional Random Fields (CRF) originally pre-
sented in [28]. It includes all its contribution, but adds experiments with aerial
images containing highly complex urban scenes. In the following, a comprehen-
sive review of related work is provided before turning to a brief introduction
to standard pair-wise CRFs. A graph structure based on image super-pixels is
described and a new way of context modelling is introduced called implicit scene
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context (ISC). Its performance is critically evaluated on images of different con-
text complexity levels. Finally, conclusions are drawn and ideas for contextual
inference of highly complex scenes are presented.

1.1 Related Work

Lafferty and collaborators proposed Conditional Random Fields [4] to label se-
quential data. CRFs are contextual graphical models like Markov Random Fields
(MRF), but provide higher modelling flexibilty for classification tasks. Kumar
and Hebert extended CRFs to two-dimensional data and applied them to object
detection in images [6]. They consider contextual knowledge through pair-wise
potentials weighted with features.

He et al. [9] learn pairwise relationships between parts of an image at multiple
scales. Local, regional and global features are generated and combined within a
single CRF. They may thus capture topologies of scenes at various scales from
fine details at a very local level to coarse scene structures of the entire image.
In [7] Kumar and Hebert propose a similar approach designing a CRF with two
layers. The first layer learns pair-wise relationships between different classes at
pixel-level, the second layer captures dependencies between super-pixels. Super-
pixels are rather large and typically the image is partitioned into approximately
twenty super-pixels. This way the CRF can learn both the global distribution of
object classes within a scene and local relationships of object class details. Such
approach works well on small images with clearly observable scene structures
consisting of few classes of large objects.

In general, CRFs provide a highly flexible framework for contextual classifi-
cation approaches. Torralba et al. [12] use Boosting to learn contextual knowl-
edge within a CRF framework. Spatial arrangements of objects in an image are
learned by a weak classifier and object detection and image segmentation are
done simultaneously. Shotton et al. [14] propose a similar concept (but relying
on features derived from texton maps) they call ”TextonBoost” to achieve joint
segmentation and object detection applying boosting within a CRF framework.
Lempitsky et al. [32] interleave multi-scale segmentation and object recognition
probabilistically without considering any high-level contextual potentials, but
using exact and efficient inference.

Another way of directly incorporating contexual knowledge into random fields
is to learn whether particular objects or object parts often co-occur in the same
scenes and if they have some typical relation. Characteristic spatial distributions
of object classes can directly be captured via co-occurrence matrices as, for ex-
ample, proposed by Carbonetto et al. [25]. The authors learn co-occurrences of
objects within a Markov Random Field framework. They test their approach on
both a regular grid of square image patches and on super-pixels. Rabinovich et
al. [17] propose a similar approach, but formulate a CRF instead of a Markov
Random Field. They encode co-occurrence preferences of objects over pair-wise
object categories based on image super-pixels. It allows them to distinguish
between object categories that often appear together in the same image and,
more important, categories that do usually not occur within the same scene.
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Galleguillos et al. [23] develop this method further by introducing contextual
interactions at pixel-level and at region-level in addition to semantic object in-
teractions via object class co-occurrences. Gould et al. [24] do not solely rely
on occurrences, but add a spatial component by modelling relative locations be-
tween two object classes and introducing them into a CRF as a unary potential.

In general, all previously reviewed approaches compare pairs of nodes in the
CRF graph structure. Functions relating nodes do not deal with more than two
nodes at a time. Kohli et al. [22] generalize this classical pair-wise model to higher
order potentials that enforce label consistency inside image super-pixels. It allows
to model interactions between multiple nodes, functions relate groups of nodes
instead of only two. They combine multiple segmentations generated with an
unsupervised segmentation method within a CRF for object extraction. Related
works of Ladicky et al. [26] propose a hierarchical CRF integrating features
computed in different spatial units as pixels, image super-pixels, and groups of
super-pixels. They formulate unary potentials over pixels and super-pixels, pair-
wise potentials between pixels and between super-pixels and also a connective
potential between pixels and the super-pixels they are contained in. All these
hierarchical graph-based approaches call for very sophisticated, computationally
expensive optimization procedures. Munoz et al. [31] also propose a hierarchical
approach, but bypass a global probabilistic model by training separate classifiers
at different levels of a multi-scale segmentation.

1.2 Contribution

The implicit scene context-CRF (ISC-CRF) for binary object classification orig-
inally proposed in [28] is explained in detail. This paper includes all of the
contribution of [28] and adds additional experiments with remote sensing data.

In contrast to all reviewed work neither an additional potential is added nor
any complex graph structure is generated, but the flexibility provided by the
definition of the CRF association potential is exploited thus keeping the global
probabilistic model. Context is represented via histograms as done by Belongie
et al. [5] and Savarese et al. [13]. Characteristic patterns within the background
class of partially labeled images and their relation to labeled object classes are
learned. Rotation invariance is achieved and the use of multiple context scales
ensures good performance for both small and big objects.

Although the implicit scene context is modelled within a binary CRF frame-
work, it can generally be utilized (with minor changes) with any kind of non-
contextual classifier like Support Vector Machines, too. Furthermore, it is
generally applicable to arbitrary image scenes, for example, aerial, terrestrial,
and medical images.

2 Research Background: Conditional Random Fields

In this section we give a short introduction to the basic theory of standard
Conditional Random Fields with a pair-wise factorization (Fig. 1). CRFs belong
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to the family of undirected graphical models being closely related to Markov
Random Fields (MRF). CRFs were originally introduced by Lafferty et al. [4] to
label one-dimensional text sequences. Kumar and Hebert [6,15] extended CRFs
to two-dimensional data to label images1.

CRFs are discriminative techniques meaning that they directly model the pos-
terior distribution P (y|x) of the labels y given data x as a Gibbs distribution
as opposed to MRFs being generative methods modelling the joint probabil-
ity P (x,y). Thus, a CRF can also be viewed as an incomplete model P (y|x)
whereas an MRF is a complete model P (x,y). CRFs are globally conditioned
on all data and we can thus design potential functions relating data of arbitrary
locations in an image. In figure 1 a CRF of an example graph is shown. For
instance, label yd of node d is not only connected to its own data xd, but also to
the data of all other nodes xa, xb, xd, and xe. In the prior term node labels are
compared with respect to data, too. In the following, it is described how these
properties can be expressed more formally.

Fig. 1. Labeling of nodes with labels y that depend on all data x globally with a pair-
wise factorized CRF (only a subset of the nodes is shown for visualization purposes)

We have an energy term E (x,y) encapsulating unary and pair-wise parts.
Potential functions of CRFs do not necessarily have to be formulated as prob-
abilities, but they have to be valued positively. Usually, functions out of the
exponential family are used to turn energies into potentials. In order to gain a
posterior distribution P (y|x), we need to turn potentials into probabilities by
normalizing them through the partition function Z (x). We may then write the
posterior distribution P (y|x) as:

P (y|x) = 1

Z (x)
exp (E (x,y)) . (1)

Following the notations of Kumar and Hebert [15] we can express the energy term
E (x,y) as the sum of a first term that associates labels with data Ai (x, yi) and
a second term that defines how labels interact (incorporating data) Iij (x, yi, yj):

1 Kumar and Hebert [6] call their method Discriminative Random Fields because
they use discriminative functions for both the unary and the pair-wise potentials.
This particular choice of the potential functions does not change the general CRF
framework and thus we will keep the notation Conditional Random Field here.
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E (x,y) =
∑
i∈S

Ai (x, yi) +
∑
i∈S

∑
j∈Ni

Iij (x, yi, yj) (2)

Substituting this energy function into equation 1 we get the standard CRF ex-
pression for two-dimensional data of the posterior P (y|x) of labels y conditioned
on all data x [15]:

P (y|x) = 1

Z (x)
exp

⎛⎝∑
i∈S

Ai (x, yi) +
∑
i∈S

∑
j∈Ni

Iij (x, yi, yj)

⎞⎠ . (3)

The left term of equation 3 is also called association potential Ai (x, yi). It mea-
sures how likely a node i is labeled with yi given all data x. Iij (x, yi, yj) is also
referred to as the interaction potential and it defines how the labels of two nodes
i and j interact. As previously explained, both potentials have access to the
whole image. In particular the interaction potential Iij (x, yi, yj) is not only a
function of adjacent labels yi and yj , but of all data x, too. Neighbourhood Ni

of node i may potentially be the entire image. This is convenient if we want to
compare labels based on underlying data. In addition, both the association po-
tential and the interaction potential are defined over all data. Therefore, we can
introduce both local and global context knowledge. To obtain a posterior prob-
ability P (y|x) of labels y conditioned on data x, the exponential of the sum of
association potential and interaction potential is normalized by division through
the partition function Z (x). It has to be evaluated for each new parameter set
during training, but is a constant for a given data set once parameters have
been adjusted. Our modelling of both Ai (x, yi) and Iij (x, yi, yj) of the stan-
dard CRF is closely related to the approach proposed by [15]. Both potentials
are discriminatively formulated as linear models:

Ai (x, yi) = yiw
Thi (x) , Iij (x, yi, yj) = yiyjv

Tμij (x) . (4)

Vector hi (x) contains all node scalar features. Vector wT contains weights of
features in hi (x) that are tuned during the training process. Features that
help to discriminate the object classes receive high weights, whereas those that
do not considerably contribute are down-weighted. In the interaction potential
Iij (x, yi, yj) the comparison of labels yi and yj follows the Ising model βyiyj
because we deal with a binary classification task. With β = 1, the product yiyj
becomes -1 if labels yi and yj do not belong to the same class, whereas their
product is 1 in case both labels are equal.

3 Conditional Random Fields on Super-Pixels

The ISC-CRF, which will be explained in detail in the following section, builds
upon an irregular graph of super-pixels of arbitrary shape. He et al. [9] were the
first to combine graphs of super-pixels with CRFs for object detection. More
sophisticated contextual learning based on super-pixels was published by, for
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example, Kohli et al. [22] and Gould et al. [24]. Pros and cons of this graph
layout are reviewed in this section.

Representing each pixel of an image with a node in the graph is infeasible for
large images and datasets because training and inference become computation-
ally very expensive. A standard principle to reduce graph size and computational
costs is to divide an image into a grid of square image patches (e.g., [15]) (Fig.
2(a)). A patch grid is set up independently of the scene content following the im-
age grid structure. It does not consider objects contained in the image, therefore
patches often cut across boundaries of objects (Fig. 2).

(a) (b) (c) (d)

Fig. 2. (a) Regular graph on image patches in a 4-connectivity neighbourhood, (b)
image patch grid overlaid to aerial photo, (c) irregular graph on image super-pixels,
(d) image segmentation overlaid to the same optical aerial image as in (b)

A graph based on super-pixels preserves object boundaries, the structure of
the scene is expressed via the graph structure, its size is usually significantly re-
duced thus decreasing computation time [30], and expressive context formulation
is facilitated. It should be noted that an additional advantage of super-pixels is
that they capture object shapes enabling the introduction of features like shape,
size, main orientation, and roundness.

Super-pixel-graphs call for a particular treatment because they have an ir-
regular structure, defined by the segmentation (Fig. 2c,d), where nodes have
different numbers of neighbours as opposed to the regular patch grid. In case
of a regular grid of image patches all nodes have equal numbers of neighbour-
ing nodes (except those at image boundaries and in corners). Depending on the
connectivity of the neighbourhood, either four or eight, nodes have four or eight
edges, respectively. If setting up an irregular graph of super-pixels, the number
of adjacent nodes and edges differs significantly depending on the image content
and the applied segmentation technique.

Considering nodes ai and bi in figure 2(c), node ai has five neighbours whereas
bi only two. Nodes with many neighbours would gain a higher weight than nodes
with less neighbours. In addition, the impact of the association potential of a
node on its label will significantly decrease the more neighbours exist. The label
of node ai would basically become a function of its neighbouring nodes, its
own features would significantly loose importance. A very high number of edges
would lead to the label of that node being almost independent of its association
potential. In order to avoid this bias some regularization has to be introduced.
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For example, Fulkerson et al. [27] use the shared boundary length between two
super-pixels as a regularizer thus generally giving more weight to adjacent super-
pixels that share longer boundaries. We put equal weights on all neighbours
because in our experience a longer shared boundary is not always an indicator
for higher significance. Therefore, we normalize each edge feature vector μij (x)
through the sum of norms of feature vectors hj (x) of neighbouring nodes at that
particular node to obtain μij,irregular (x):

μij,irregular (x) = μij (x) /
∑
j∈Ni

|hj (x) |. (5)

In this way it is guarenteed that no priority is given to nodes with more neigh-
bours and all nodes have per se equal weighting. It is noteworthy that this graph
of super-pixels is anisotropic in contrast to the patch graph. The value of an edge
potential between two nodes in the super-pixel graph depends on its direction,
whereas this is not the case for the isotropic regular graph of image patches.
In figure 2(c), the edge between hi and ai receives another weighting than vice
versa, for example, because ai has five neighbours and hi only three.

4 Implicit Scene Context

In this section a method is described integrating data globally, thus exploiting
the definition of Ai (x, yi) to its full extent. Even though computing features in
several resolutions enlarges a specific local neighbourhood beyond the capabili-
ties of MRFs, most of the techniques (e.g., [9,15]) rest quite local. The definition
of CRFs allows to consider all data x in association and interaction potential,
no restrictions exist with respect to location or correlation of features.

The key idea of this approach is to capture contextual relations of sub-
categories of labeled classes in training data, the so-called implicit scene con-
text [28]. We call this constellation of sub-categories implicit because no explicit
semantic object category is assigned during classification.

For example, training data is labeled with the two classes building and back-
ground as shown in figure 3(a). Background consists of several implicit sub-
categories like dark green tress, light green grass, and grey driveway (Fig. 3(b)).
Class building contains the two implicit sub-categories dark red roof plane and
light red roof plane (Fig. 3(c)).

The idea of ISC is to learn characteristic spatial patterns of those implicit
sub-categories to support object classification without giving semantics to each
object explicitly. This implicit context formulation allows to not explicitly know
all object classes contained in the data for training. Moreover, the context level
of detail can be chosen by a parameter of the algorithm instead of having to
label all training data again if a more detailed scene description is required.

The following requirements have to be met by the algorithm: It should be able
to cope with very local to global context scales. In addition, ISC shall be kept
generically applicable to multiple kinds of scenes. It should capture, for instance,
context in terrestrial images of building facades, where usually sky is above the
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(a) (b) (c)

Fig. 3. Example: (a) two classes building and non-building, (b) implicit object cate-
gories contained in background class, (c) implicit categories contained in building class

facade and vegetation below, but also in aerial images of buildings, where no
preferred ordering with attributes like ”above” and ”below” exists. Thus, no
preferred direction should be relied on. Finally, computational efficiency shall be
achieved and computation of co-occurrences be avoided. All steps necessary for
training will be explained next followed by a description of the testing phase. In
order to meet the requirements aforementioned, training consists of:

– Multi-scale segmentation of images into super-pixels,
– computation of features per super-pixel in all scales,
– unsupervised k-means clustering based on the previously generated features,
– generation of implicit context histograms in three different ranges per super-

pixel,
– computation of histogram features,
– integration as feature vector into the CRF unary potentials,
– and training of the CRF based on labeled images.

An unsupervised classification of all super-pixels is performed first for training.
Any kind of unsupervised classifier could be applied, but for means of speed
and simplicity a standard k-means clustering is chosen. As input to k-means
clustering all features hi (x) ∈ h (x) computed per super-pixel are taken. The
cluster centers K generated with k-means clustering K = Kmeans (h (x)) are
used for the following processing.

After k-means clustering, distances to all cluster centers K are determined in
feature space for each super-pixel. Cluster indices yus are recorded in ascending
order in a vector per super-pixel according to their distances, the closest center
first, the furthest last. Recording not only the closest center, which would corre-
spond to a Minimum Distance classifier, but all others in ascending order, too,
has advantages in terms of descriptive context learning and robustness.

Figure 4(a) shows an example consisting of three nodes ai, bi, and ci in blue
circles with white frames in feature space defined by hue and intensity. Cluster
centers 1 to 4 computed with k-means (considering additional nodes to the ones
shown in Fig. 4) are depicted in white circles with blue frames. Indices 1 to 4 are
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(a) (b)

Fig. 4. Two-dimensional feature space spannend by hue and intensity: Nodes ai, bi,
and ci and cluster centers 1, 2, 3, and 4 are shown; cluster centers are recorded in
descending order with respect to their distances to the nodes; (a) nodes cannot be
distinguished based on closest cluster center (first vector elements in orange frame),
but on the second closest (second vector elements in blue frame), (b) gain in robustness:
although the closest cluster centers of nodes ai and ci are different, they belong to the
same class because any combination of the first two vector elements (framed in blue),
no matter their order, is learned to be descriptive

the indices of the cluster centers, the vector of all indices is yus. Assuming ai
and ci to belong to object sub-categories and bi to a background sub-category,
it would be impossible to distinguish them if taking merely the closest cluster
index because all three nodes have equal distances to cluster center one. If just
recording the closest center (first element in vectors in Fig. 4(a) framed in or-
ange), all nodes would be labeled one, although they occur at different positions
in feature space. The second closest cluster center (framed in blue) is different
for all nodes and helps distinguishing.

In order to explain the gain in robustness, figure 4(b) shows a slightly different
setup. Nodes ai and ci, sharing the same class, have distinct closest cluster centers.
Nonetheless, considering in addition the second closest elements, too, both nodes
share the same first two cluster centers (framed in blue), only their order changes.
A feature is defined that accounts for this varation of absolute ordering. Super-
pixels are considered to be located closely in feature space if the first two vector
elements are equal, nomatter their order. In conclusion, benefits are twofold: First,
the type of cluster centers at each node carries valuable information facilitating
detailed distinctions between classes, second, robustness is gained if nodes of the
same class are assigned to equal cluster centers, but in different orders.

An example simulating an aerial image of an urban scene is shown schemat-
ically in figure 5(a). The task consists of assigning the explicit class labels
building or background to each pixel. Class building contains the two implicit
sub-categories ”light red roof” and ”dark red roof” whereas the background class
contains the implicit sub-categories ”light grey street”, ”light green grass”, and
”dark green trees”. In total, five distinct sub-categories occur captured with
k = 5 cluster centers2.

2 The number of cluster centers has to be set manually a priori. Automatic determina-
tion of the exact number of sub-categories in feature space, based on the ISODATA
method [19], for example, is left for future work.
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(a) (b)

Fig. 5. Implicit scene context: (a) ranges around the centroid of a super-pixel belonging
to implicit sub-category ”light red roof” (part of building class) represented by node
ai, (b) histograms of cluster labels of three ranges R1, R2, and R3; the ordinate counts
the number of super-pixels per cluster label within a range R, cluster labels are or-
dered on the abscissa; colours indicate different cluster labels appointed to super-pixels,
boundaries of super-pixels run along colour edges

Next, the centroid CS of each super-pixel is determined and histograms of
labels histR (yus) occurring within different ranges R around each super-pixel
are generated. Numbers of label occurrences yus within a range R are counted
in histograms. This is shown for a node ai of sub-category ”light red roof” in
figures 5(a,b) . Occurrences of five different labels are counted in three ranges
R1, R2, and R3

3. This procedure is conducted for all nodes in the graph.
The entire ISC concept is based on the assumption that histograms of par-

ticular sub-categories will have characteristic shapes because neighbouring sub-
categories will appear with particular frequencies in certain ranges. Combining
histograms of all ranges (R1, R2, and R2 in Fig. 5) results in distinct context
distributions of all sub-categories. Either short or long ranges can be chosen de-
pending on whether local or global context is to be integrated. In order to meet
the requirements of generalizability and transferability to multiple object classes
and scenes, the exact ranges should be adapted to the scale of the context. The
scale of the desired object class and its context can be approximated via the size
of super-pixels after (over-)segmentation. Ranges R as a linear function of the
mean super-pixel size were found to be optimal after tests with different image
data and scenes.

Various moments and additional information representing contextual patterns
in the environment of a particular super-pixel are derived from the histograms.
It is noteworthy that label histograms can either be directly introduced to node
feature vectors or specific features can be derived from histograms, the index
of the most often appearing label within each range, the index of the label

3 Any number of ranges can be chosen depending on the scene and on the scale of
context. However, more ranges lead to increasing computational costs; three ranges
are usually sufficient.



274 J.D. Wegner, B. Rosenhahn, and U. Sörgel

covering the largest area, for example. Qualitative, quantitative, and spatial
context features C (h (x)) can be generated.

For the testing phase, exactly the same processing steps are applied except
k-means clustering (and CRF training). Those cluster centers K, originally gen-
erated with k-means during training, are used to determine closest cluster centers
in ascending order per super-pixel of test data. Cluster indices are determined
for all test data nodes (i.e., super-pixels of the test images after segmentation),
measuring distances in feature space to cluster centers generated in the training
phase.

The class of each super-pixel i can be derived merely based on implicit con-
text features Ci (h (x)) or local node features hi (x) can be added to the feature
vector, too. The ISC-CRF unary potential is given in equation 6. Pair-wise po-
tentials only change in such a way that the element-wise absolute differences
between nodes i and j in the graph are computed based on the corresponding
implicit context features (Eq. 7).

Ai (x, yi) = yiw
TCi (h (x)) (6)

Iij (x, yi, yj) = yiyjv
TμC,ij (x) , μC,ij (x) = |Ci (h (x))−Cj (h (x)) | (7)

No normalization of the label count in the histogram is done based on the size
of the super-pixels, for example, because tests show that the importance of a
super-pixel does not necessarily increase with its size. Small super-pixels can be
characteristic context features and are of high relevance for a particular object
class, too. Dealing with a multi-scale segmentation, implicit context histograms
can be computed at coarser scales, too. It is possible to learn global context of
coarse scene structures at a coarse scale while simultaneously capturing local
context at the finest scale4.

5 CRF Training and Inference

The objective of training is to adjust parameters of the classifier function such
that classes are discriminated in an optimal way. In this paper, object detection
is viewed as a binary classification (e.g., object versus background), the task
is to find an optimal decision surface in feature space separating both classes.
Parameters to be trained model shape, orientation, and position of this surface.
They are the elements of node weight vector w and of edge weight vector v. In
order to ease notation, one can concatenate parameters of w and v in a single
parameter vector θ = (w1, w2, ..., wn; v1, v2, ..., vm) with number of node features
n and number of edge features m. Similarly, feature vectors h (x) and μ (x) are
concatenated to one vector Φ.

4 Graphs of image super-pixels generated with a multi-scale segmentation can also
be used directly for classification if object shapes are learned via so-called region
ancestries as proposed by Lim et al. [8]. The integration of this promising concept
into a CRF framework is left for future work.



Segmentation and Classification of Objects with Implicit Scene Context 275

Adjustment of parameters (w,v) is an unconstrained nonlinear optimization
problem that has to search a very large space of parameters. Being an entire
research area of its own and since focus of this contribution is on context mod-
elling and not on designing optimization techniques, a state-of-the-art method
as used in [16] is applied. It couples the optimization method Limited Memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) [2,1] with inference via Loopy Be-
lief Propagation (LBP) [3] for training. A detailed description of both methods
is beyond the scope of this paper, details can be found in the given references.

P (y|Φ, θ) is the posterior probability of the CRF and P (θ) is a prior over
parameters θ acting as a regularization term. It penalizes large parameters thus
smoothing the objective function to avoid over-fitting to training data. Usually,
the assumption is made that parameters θ follow an isotropic Gaussian prior

[34] and one may thus write their probability as P (θ) = exp
(

−(θ−θ0)
2

2σ2

)
with

θ0 = 0. This leads to a regularization term containing euclidean norm ||θ|| of
parameters and variance σ2:

P (θ) = exp

(
− 1

2σ2
||θ||2

)
(8)

The choice of σ steers smoothness of the objective function with respect to
training data. A larger σ results in a smoother function whereas a smaller σ
better adapts the objective function to training data, but at the risk of over-
fitting. An appropriate objective function, ensuring exactly one global optimum,
has to be designed. It should either be convex (global minimum) or concave
(global maximum). A concave objective function can be reformulated as a convex
function and vice versa. This criterion is met using the regularized log likelihood
as objective function [4,6,34]. The objective function L (θ) to be optimized for
parameter estimation is the negative regularized log-likelihood:

L (θ) = − log (P (y|Φ, θ) · P (θ)) (9)

6 Experiments

In order to assess benefits and limitations of the ISC-CRF several experiments
are conducted. First, standard CRF (as described in sections 2 and 3) and ISC-
CRF (section 4) are compared using a simulated test scene with context of low
complexity, where the exact number of sub-categories is known a priori. Second,
consequences of varying numbers of k-means cluster centers are investigated.
Third, robustness to noise in comparison to the standard CRF is tested. Fourth,
experiments with images of building facades taken from the eTrims dataset [33]
and with images of algae downloaded from the internet are done. Both kinds
of images represent context of medium complexity. Finally, buildings in aerial
images of an urban scene showing context of very high complexity are segmented
and classified.

Segmentation of images into super-pixels is done with Quickshift [21,20]. It is
particularly convenient for a multi-scale approach because small super-pixels at
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fine scales are always completely contained within larger ones at coarse scales
without any overlap at boundaries.

6.1 Features

In order avoid biasing evaluation by particularly designed sophisticated features
we select very simple ones. Mean of red and green channel (normalized by the
length of the RGB vector), hue mean and standard deviation, and saturation
mean are found to be descriptive colour features. Additional features are gen-
erated based on gradient orientation histograms of the intensity image [11] as
already used for detection of building facades [15,29]. Second and third cen-
tral moments of gradient orientation histograms are used as features. All basic
features are scaled between zero and one.

A quadratic expansion of feature vectors hi (x) is done as described by Ku-
mar and Hebert [15], who state that this step may be viewed as a kernel map-
ping of the original feature vector into a high dimensional space. It introduces
a quadratic decision surface in feature space capable of more precisely discrimi-
nating building nodes from background nodes compared to a simple linear one.
The basic idea is that a linear classifier applied in a quadratically expanded
feature space will yield a quadratic decision surface in original feature space.
Simple linear models can be kept allowing for efficient parameter estimation by
introducing a higher order feature space.

A quadratic feature vector contains all original elements, their squares, and
pairwise products. Kumar and Hebert [15] mention that this is equivalent to the
kernel mapping of the data using a polynomial kernel of degree two. Each first
component of an expanded node feature vector is set to one in order to accommo-
date a so-called bias parameter, which is the first element of the corresponding
weight vector. Its effect can be interpreted as shifting the decision surface in
feature space, exact shape modelling is done by all other parameters.

As ISC features we compute the closest and second closest cluster centers to
the node of interest (two features), minimum, maximum, median, and standard
deviation of occurring cluster indices at each context range (twelve features in
case of three context ranges), often and second most often occurring indices at
each range (six features in case of three context ranges).

6.2 Evaluation Strategy

Results of all classification experiments are evaluated in terms of false positive
rate (FPR) and true positive rate (TPR). FPR is the percentage of all back-
ground pixels being misclassified as building pixels. TPR represents the percent-
age of all building pixels being correctly classified as such. In general, the goal
is to develop a classification technique delivering results with high TPR and low
FPR. In order to ease visual interpretability of results, CRF classification out-
comes are overlaid to the intensity channel of the optical image. False positive
pixels are coloured red, true positive pixels green, missed building pixels blue
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(false negatives), and correctly classified background (true negatives) without
any colour.

Cross-validation is performed for all experiments in order to avoid particular
training/testing-setups biasing classification results. Corresponding to Crowther
and Cox [10], the optimum experimental setup is to use two thirds of data for
training and one third for testing. Thus, three-fold cross-validation is conducted
and each experiment is done three times with changing training and testing
image combinations. Twenty ISC features are computed in total at each seg-
mentation scale if considering three context ranges. A multi-scale segmentation
with three scales leads to 60 ISC features being written to a node at highest
scale.

6.3 Simulated Scene of Low Complexity Context

ISC-CRF and standard CRF are first applied to three simulated subscenes (one
is shown in Fig. 6(a)) containing red buildings, grey buildings, trees (dark green
circles), grassland (light green background), and streets (light grey lines). Only
colour features are used because no texture was simulated. Grey buildings and
grey streets are closely located in feature space and thus context has to support
discriminating buildings from streets. Implicit scene context is captured in three
ranges (radii 10, 20, and 30 pixels) and concatenated with original colour features
for ISC-CRF classification. Three-fold cross-validation is conducted and mean
TPR and FPR are computed. Standard CRF (Fig. 6(b)) and ISC-CRF (Fig.
6(c)) achieve the same TPR of 85.9%. The standard CRF misclassifies 6.8%
background pixels as building whereas the ISC-CRF has a significantly lower
FPR of 0.8%.

(a) (b) (c)

Fig. 6. CRF results with simulated data: (a) one image of the simulated test images, (b)
detected buildings without implicit scene context (c) and with implicit scene context

As edge feature vector the standard CRF considers the absolute difference of
adjacent node feature vectors in order to support or suppress smoothing. Since
grey buildings and grey streets are located very closely in colour feature space,
the standard CRF cannot well distinguish those two object categories, neither
based on node features nor on edge features. It leads to some street super-pixels
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being miscassified as building (Fig. 6(b)). The ISC-CRF learns the arrangement
of sub-categories ”street” and ”grey building” (besides all other sub-categories)
implicitly and is thus able to discriminate the two. Such being the case, streets
are correctly classified as background, although original colour features are not
distinctive (Fig. 6(c))5. This result shows that scenes with context of low com-
plexity can benefit from implicit scene context.

Cluster center number as well as segmentation scales are currently adapted
manually to each data set, whereas context radii are set as a function of the
mean super-pixel size of an image. The simulated urban scene (Fig. 6(a)) is used
to evaluate the impact of varying cluster centers because the exact number of
sub-categories is known: red buildings, grey buildings, trees (dark green circles),
grassland (light green background) and streets (light grey lines). Only colour
features are used for these tests leading to five distinct clusters. Three ranges
(radii 10, 20, and 30 pixels) are chosen and experiments with five up to 50
cluster centers are conducted. FPR of each ISC-CRF classification is displayed
in blue Fig. 7(a) and such of the standard CRF in red. The ISC-CRF FPR
varies about 1 % (from 0.8 % to 1.8 %) and no significant trend is observable.
Changing the number of k-means cluster centers has a very small impact on
classification performance, but of course on computation time. A rather small
number of cluster centers is beneficial. Segmentation scale is adapted to each
scene separately (and context radii are a function of the mean super-pixel size)
because it depends on the scales of context and objects. This makes the ISC-CRF
highly flexible and easy to adapt to new scenes.

(a) (b)

Fig. 7. FPR of ISC-CRF (blue) based on simulated data (FPR of standard CRF drawn
in red): (a) with varying numbers of cluster centers and (b) with different noise levels
(cluster center number fixed to five)

Robustness of the ISC-CRF to noise is experimentally evaluated. Several
Gaussian noise levels with mean zero and standard deviations up to 100 % (cor-
responding to 256 in our case of 8 bit RGB channels) are generated and added
to RGB channels of the simulated data, which is then cropped in order to keep

5 The misclassified part of the street is most probably caused by a boundary effect,
which also leads to the same part being correctly classified with the standard CRF
in Fig. 6(b).
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all values between zero and 255. Cross-validation tests with standard CRF and
ISC-CRF are done and FPR is recorded. In figure 7(b) FPR of standard CRF
(red) and of ISC-CRF (blue) considering all tested noise levels are displayed.
The FPR of the ISC-CRF stays below that of the standard CRF at all noise
levels. Furthermore, the ISC-CRF is slightly more robust to noise because its
FPR starts increasing later (approx. 90 % vs. approx. 80 %).

Experiments with simulated data show that the general concept of implicit
scene context helps discriminating object classes if original features are not dis-
tinctive enough. It is robust to noise, even more robust than the standard CRF,
and changing the currently manually adjusted number of cluster centers has only
a small impact on results.

(a) (b) (c)

(d) (e) (f)

Fig. 8. Comparison of standard CRF (b, e) and ISC-CRF (c, f) for eTrims [33] building
facades (a-c) and algae (d-f)
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6.4 Scenes of Medium Context Complexity

In order to evaluate the applicability of the ISC concept to scenes of medium
complexity, tests are performed with two different datasets: Facade images taken
from the eTRIMS benchmark data [33] and images of algae downloaded from the
internet. Those particular object class categories are chosen because they repre-
sent different spatial object and background distributions. Building facades are
single very large objects with clear straight boundaries and background context
only above and below (Fig. 8(a)). Algae are large but frayed objects partially
surrounded by background context (Fig. 8(d)).

Experiments are conducted with nine images of each scene category, which are
randomly partitioned into groups of three images for three-fold cross-validation.
Example images and corresponding results are shown in figure 8. Classification
performance is summarized in table 1.

Table 1. TPR and FPR for different objects and context patterns achieved with a
standard CRF and with an ISC-CRF

CRF ISC-CRF
Data TPR [%] FPR [%] TPR [%] FPR [%]

eTRIMS facades 86.9 22.1 88.1 7.3
Algae 75.7 37.0 84.5 23.7

The highest decrease of the FPR (7.3 % vs. 22.1%) is achieved with build-
ing facades (Fig. 8(a-c)). Only using the standard CRF, colour and gradient
features do not sufficiently well discriminate a building facade from foreground
(Fig. 8(b)). However, incorporating implicit scene context (based on the same
colour and gradient features), the CRF can well distinguish building facade from
vegetation and doorway in the foreground (Fig. 8(c)). A similar result is achieved
with the algae images. Implicit scene context decreases the FPR (23.7 % vs. 37.0
%) while increasing the TPR (84.5 % vs. 75.7 %) (cf. Fig. 8(d) & (f)).

6.5 Scenes of High Context Complexity

The previous scenes have shown that the concept of the ISC-CRF improves
classification results in comparison to such of a standard CRF if applied to images
containing scenes with low to medium complexity. In order to investigate the
impact of an ISC-CRF on highly complex scenes building classification in aerial
images is conducted (Fig. 9). However, results are neither significantly improved
nor deteriorated compared to the standard CRF. Compared to a standard CRF,
the TPR is slightly higher (79.5% to 76.3%), but the FPR increases (22.4% vs.
20.0%), too.

A reason for this outcome is the highly complex context of the urban scene.
Spatial arrangements of sub-categories show a significant variation, which could
not sufficiently well be learned by the ISC-CRF. Cluster patterns of buildings and
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(a) (b) (c)

Fig. 9. Classification results for a scene with context of high complexity: (a) Aerial
image of an urban area, (b) standard CRF, (c) ISC-CRF (three ranges, five cluster
centers)

surrounding sub-categories of the background class are very diverse. This high
diversity leads to no significant pattern being learned. One attempt to improve re-
sults would be to use much more training data, which calls for setting up a bench-
mark dataset of high-resolution aerial images. Another way to model relations of
sub-categories directly via the graph structure (i.e., pair-wise potentials).

On an IntelTM Core i7 2.4 Ghz CPU, 12 GB RAM training and inference per
image (of low to medium scene complexity) takes about ten seconds. The implicit
scene context potential does only marginally increase computation time by about
two seconds per image if dealing with those images (i.e., with a relatively low
number of super-pixels below 150 per image). However, implicit scene context
significantly slows down training and inference from five minutes per image to
ten minutes per image if applied to the highly complex aerial photos (Fig. 9(a)),
which are partitioned into approximately 700 super-pixels each.

7 Conclusion and Future Work

In conclusion, implicit scene contex significantly improves object detection if
applied to scenes with context of medium and low complexity. Remote sensing
data proves to be the most challenging classification task because context has
the highest degree of complexity. Building segmentation and classification is not
significantly improved with the ISC-CRF. Therefore, novel ways of sophisticated
contextual learning have to thought of for highly complex scenes.

One possibility could be the integration of a multi-scale segmentation explic-
itly into the graph resulting in a three-dimensional structure, where messages are
passed between super-pixels of neighbouring scales (e.g., [22,23]). Object feature
distributions and contextual links could be captured separately at different scene
scales. In addition, completely representing a scene topology in multiple scales
with a graph would enable inter-scale contextual learning. Region-ancestry con-
cepts as suggested by Lim et al. [8] could be included and re-formulated in a
CRF.
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Another idea concerning the ISC-CRF is to consider the shapes of super-pixels
for context histogram ranges. Instead of simply drawing circular ranges around
the super-pixel centroid, one could enlarge the original super-pixel, keeping its
shape, by certain ranges. Elongated street super-pixels, for example, sticking out
of the first circular range and being counted twice (again in the second range),
would be extended by the same distance in any direction thus avoiding double
counting. Circular ranges reach out further into the image perpendicularly to
an elongated super-pixel, with respect to its boundaries, than lengthwise. In-
troduction of shape would avoid this bias and give equal importance to any
direction.

In general, the CRF prior has not been used to explicitly learn contextual
relations of object categories, yet. It basically has stayed a smoothing term. Fur-
thermore, only local to regional context has been learned, yet, although the CRF
allows for global context learning. Concerning remote sensing applications one
idea would be to use large cartographic databases, for example Open Street Map,
to train global contextual relations between urban objects like roads, buildings,
and vegetated areas. Learning this global context would be rather fast because
cartographic data already exists in vector format. We could exploit very large
databases in a relatively short time. Instead of only determining one-by-one re-
lations of the node of interest to a neighboring node we could think of detecting
particular context constellations. The association potential of the CRF frame-
work would then learn local object features, the interaction potential regional
context, and an additional potential global patterns via cartographic data.

References

1. Liu, D.C., Nocedal, J.: On the Limited Memory BFGS method for large scale
optimization. Mathematical Programming 45, 503–528 (1989)

2. Nocedal, J.: Updating Quasi-Newton Matrices with Limited Storage. Mathematics
of Computation 35, 773–782 (1980)

3. Frey, B.J., MacKay, D.J.C.: A Revolution: Belief Trees: Belief Propagation in
Graphs With Cycles. In: Jordan, M.I., Kearns, M.J., Solla, S.A. (eds.) Advances
in Neural Information Processing Systems, pp. 479–485. MIT Press, Cambridge
(1998)

4. Lafferty, J., McCallum, A., Pereira, F.: Conditional Random Fields: Probabilistic
Models for segmenting and labeling sequence data. In: ICML, p. 8 (2001)

5. Belongie, S., Malik, J., Puzicha, J.: Shape Matching and Object Recognition Us-
ing Shape Contexts. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 24(24), 509–522 (2002)

6. Kumar, S., Hebert, M.: Discriminative random fields: A discriminative framework
for contextual interaction in classification. In: ICCV, vol. 2, pp. 1150–1157 (2003)

7. Kumar, S., Hebert, M.: A Hierarchical Field Framework for Unified Context-Based
Classification. In: ICCV, vol. 2, pp. 1284–1291 (2005)

8. Lim, J.J., Arbelaez, P., Gu, C., Malik, J.: Context by Region Ancestry. In: ICCV,
pp. 1978–1985 (2009)
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Abstract. This paper describes an approach for Structure from Motion
(SfM) for wide baselines image sets and its combination with the dense
Semiglobal Matching (SGM) 3D reconstruction approach. Our approach
for SfM relies on given information concerning image overlap, but can
deal with large baselines and produces highly precise camera parameters
and 3D points. At the core of our contribution is robust least squares ad-
justment with full exploitation of the covariance information from affine
point matching to bundle adjustment. Reweighting for robust adjust-
ment is based on covariance information for each individual residual. We
use points detected based on Differences of Gaussians including scale and
orientation information as well as a variant of the five point algorithm.
A strategy similar to the Expectation Maximization (EM) algorithm is
employed to extend partial solutions. The key characteristics of the ap-
proach is reliability obtained by aiming at a high precision in every step.
The capabilities of our approach are demonstrated by presenting results
for sets consisting of images from the ground and from small Unmanned
Aircraft Systems (UASs).

1 Introduction

Structure from Motion (SfM) from sets of images in combination with dense 3D
reconstruction forms a good basis for photo realistic visualization. For example,
Leberl et al. [14] show that high quality models can be generated from aerial
images, in particular for Microsoft Bing Maps. Leberl et al. term the resulting
model extended by semantic information, for instance concerning windows and
cars, ‘Virtual habitat’. For generating semantic information, terrestrial images
and derived 3D models can be used as well, e.g., for buildings and trees [24,11].

Pollefeys et al. [22] presented one of the first approaches dealing with SfM
for a larger number of images in a general configuration, i.e., without known
approximate pose. It employed uncalibrated images, i.e., images for which the
intrinsic camera parameters such as principal distance (focal length) and prin-
cipal point are not known. This makes the approach very flexible, yet, on the
other hand, reliant on sufficient 3D structure in the scene for the determination
of intrinsic parameters.

With the five point algorithm [19], it became feasible to directly compute
SfM from calibrated images, i.e., for which the intrinsic parameters are known.

F. Dellaert et al. (Eds.): Real-World Scene Analysis 2011, LNCS 7474, pp. 285–304, 2012.
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Pollefeys et al. [20] have used it to build a system that was employed for recon-
structing 3D structure from more than one hundred thousand images.

Commonly, image overlap is either known implicitly in the form of the order in
a sequence, or explicitly, e.g., from an aerial flight plan. Schaffalitzky and Zisser-
man [25] presented one of the first approaches which automatically determined
the image overlap in image sets.

This has led to methods for very large image collections, the so called ‘Commu-
nity Photo Collections’ – CPC [6] on the Internet. These techniques mostly use
information from the Exif (Exchangeable image file format) tags of the images
to derive approximate intrinsic camera parameters and thus conduct calibrated
SfM. Agarwal et al. [1] have approached the challenge of CPC with a large cloud
of computers. Yet, ‘Building Rome on a Cloudless Day’ [5] has dealt with millions
of images, for which the only thing known to start with is a tag linking them to
a place / city such as Rome. It was shown that the images can be organized in
terms of visual similarity. This is used for 3D reconstruction of parts with many
images. Everything is computed in one day on one standard computer, albeit
with several powerful GPUs – Graphical Processing Units.

While the above work is impressive, one has to note that it is based on certain
characteristics of the data and a couple of assumptions which make it tractable:

– Many images at tourist attractions are taken from nearly the same spot and
thus look alike, i.e., many similar images can be found even for extremely
downscaled versions of the images. Frahm et al. [5] use the GIST operator
on 4×4 images, i.e., very little information on texture and color is available.

– The goal is to reconstruct the obvious 3D structure, leading to impressive
3D reconstructions of highlights, such as the Colosseum in Rome. Yet, there
might be images, possibly with wider baselines, that could be used to extend
the geometrical coverage or even to link the tourist attractions. This is not
considered, as it would mean a detailed comparison of many more images.

A preliminary version of our work, comprising also absolute pose estimation,
has been published earlier [2]. It focuses on image sets with possibly very large
baselines. For the registration of these images, we have to either supply the
sequence of images, or sets of overlapping triplets.

The basis of our work (Figure 1) are points with scale and rotation detected
based on Difference of Gaussians (Section 2). We start by removing unlikely
matches by cross correlation with a very low threshold. Matches are refined
by least squares matching [7] using an affine geometric model. This results in
subpixel accurate point positions including covariance information.

The points and their covariance information are employed for SfM from pairs
and triplets (Section 3). It is based on a variant of the five point algorithm em-
bedded into RANdom SAmple Consensus – RANSAC [4] using the Geometric
Robust Information Criterion – GRIC [27]. A strategy similar to the Expectation
Maximization (EM) algorithm is used to extend partial solutions. We employ ro-
bust bundle adjustment (Section 4), where we reweight based on residuals (dis-
tance between reprojected 3D point and measured 2D point) and, particularly,
covariance information for each individual residual.
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Triplet matching using epipolar constraint

Structure from motion for triplets based on 5−point
algorithm and a strategy similar to the EM algorithm

Essential matrix estimation (5−point algorithm)
and a strategy similar to the EM algorithm

Point detection (Difference of Gaussians)

Pair matching

Fig. 1. Structure from Motion based on least squares matching and robust bundle
adjustment

Triplets are linked either sequentially or hierarchically to image sets (Section
5). This results in highly precise poses, improved intrinsic parameters, and 3D
points including covariance information.

Section 6 presents results for terrestrial images and images acquired from small
Unmanned Aircraft Systems (UASs) with a size of less than one meter and a
weight of approximately one kilogram. We demonstrate the precision obtained
by our approach by means of a loop closing experiment. Wide baseline matching
capabilities are shown with results for a combination of terrestrial images and
images from a UAS.

The poses and intrinsic parameters are input for Semiglobal Matching – SGM
[9] (Section 7) which leads to dense 3D point sets and detailed 2.5D, or 3D
surfaces. Finally, results for dense matching with SGM are given. Section 8 con-
cludes the paper with an outlook.

2 Point Detection and Matching

The basis for our approach are points based on Differences of Gaussians (DOG)
as proposed by Lowe [15] and implemented in SiftGPU [29]. As we want to deal
with situations with very low contrast, such as weak structures on facades, we
employ a very low threshold.

We start with image pairs. The point centers as well as their estimated scale
and rotation are employed to cut out image patches of size 13×13 pixels from the
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images. These patches are correlated by means of (normalized) cross correlation.
For all best matches for points in the master image, which exceed a low threshold
of 0.5, we compute a histogram of the rotation differences. The histogram is
smoothed and its mode determined. As the mode of the histogram was found
to rather reliably describe the in-image-plane rotation between image pairs, we
use it for normalization: We cut out unrotated patches (though with individual
scale) in one image and rotate all patches in the second image according to the
difference of rotation as given by the mode of the histogram.

Cross correlation between patches is computed again and the same low thresh-
old of 0.5 is used. Yet, this time the best matches for all points in the master
image exceeding the threshold are subject to least squares matching [7]: The
sum of the squared intensity differences between patches around the points is
minimized by varying the parameters for a geometric and a radiometric trans-
formation between the patches.

We use an affine geometric model with six parameters (ai0, . . . , b
i
2) describing

the translation in x- and y-direction as well as two rotations and two scales. Given
a square patch in master image 0, this leads to a parallelogram in the matching
images (Figure 2). While the general model for a linear mapping between image
patches is a homography, we found that the eight parameters of a homography
usually cannot be reliably determined for small patches. Small patches are a
must, though, because the region around a point in the scene does not have
to be planar and the farther one goes from a point, the higher becomes the
likelihood for discontinuities and occlusion.

Δ

Δ

Matching image 1 Master image 0 Matching image i

parallelogram

y

x

transformation 0 − 1
affine affine

transformation 0 − i

parallelogram

square patch

Fig. 2. Least squares matching is based on an affine geometric model. Individual pixels
(small dots) of image patches around subpixel precise points (large dots) are trans-
formed based on the affine model. Given a square patch in the master image this leads
to parallelograms in the matching images.

The pixel raster of the patch in the master image is defined by Δx and Δy
as well as the indices j and k (−N ≤ j ≤ N and −N ≤ k ≤ N with N = 6).
Δx and Δy depend on the scale known from point detection. The coordinates
of the pixels in the master image 0 and the matching image i are described by
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x0
jk = x0 + jΔx

x0
jk = y0 + kΔy

xi
jk = xi + ai0 + ai1jΔx+ ai2kΔy (1)

yijk = yi + bi0 + bi1jΔx+ bi2kΔy , (2)

with x0, y0 and xi, yi denoting the centers of the patches in master image 0 and
matching image i, respectively. We use subpixel coordinates also for x0 and y0

to optimally center the patch around the point.
For the subpixel precise point positions, the intensity of the pixels has to

be determined by (in our case bilinear) interpolation. Additionally to the six
parameters ai0, . . . , b

i
2 for the geometry we use bias ri0 and contrast ri1 for the

intensity to radiometrically adapt the patch in matching image i. This leads to
the following residuals vijk for least squares adjustment (I0() and Ii() denote the
intensity function in master image 0 and matching image i, respectively):

vijk = I0(x0
jk, y

0
jk)− [ri0 + ri1I

i(xi
jk, y

i
jk)] (3)

The goal of least squares matching is to estimate affine parameters ai0, . . . , b
i
2

and radiometric parameters ri0, r
i
1 minimizing the sum of all squared residuals

N∑
j=−N

N∑
k=−N

[vijk]
2 . (4)

Equation (4) is linear with respect to the radiometric parameters ri0 and ri1.
It is nonlinear in terms of the geometric parameters, because Ii() is nonlinear
in general. As there is no closed-form solution, first order Taylor expansion is
employed to linearize Equation (4) based on initial values for the parameters.
We assume no translation (ai0 = bi0 = 0), a similar intensity (ri0 = 0 and ri1 = 1)
and take the known scale difference and rotation into account for ai1, a

i
2, b

i
1 and

bi2. Setting the derivative to zero, one obtains a linear system

Aβ = y . (5)

Matrix A consists of the Jacobian of the intensity function in the matching
image i with respect to the unknown geometric and radiometric parameters
concatenated in vector β. Vector y comprises the negative measurement errors.

While the linear system (5) can be solved directly, we employ the normal
equations

Nβ = (ATA)β = ATy (6)

and compute β = N−1ATy. By this means we obtain C = N−1, i.e., the relative
covariance matrix for the unknown parameters. Because the problem is nonlin-
ear, the solution is obtained iteratively. For optimization we use the Levenberg
Marquardt algorithm.

The criteria for a valid match obtained by least squares matching are that the
cross correlation value is larger than 0.8 as well as that the estimated variance
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for the shift is below 0.1 pixels. For the latter, one has to consider that from our
experience the estimated variance is always highly optimistic. Cross correlation is
known to be not a good descriptor for stronger geometrical distortions. Though,
it was found to be very useful if the geometrical distortions are small [18], which
is the case after least squares matching.

For more than two images, we link least squares matching for pairs. The
image in which the patch is closest to the image center is used as master, as
this improves the chance for a frontal view. The patch in the master image is
geometrically kept as square and the affine transformations relative to the other
images are estimated (Figure 2).

The solutions are linked by substituting I0() in equation (3) by the average
intensity in all images. To account for different average intensities and contrasts
of the patches, we take the estimated radiometric parameters ri0 and ri1 for each
patch into account when computing the average. As the problem is nonlinear
and solved iteratively, the average intensity changes due to different geometric
transformations as well as different radiometric parameters for each iteration.

Output for the accepted matches are the improved coordinates xi + ai0 and
yi + bi0 as well as their relative covariance information. The latter can improve
SfM estimation particularly for stronger in-image-plane rotations [17].

While least squares matching entails more effort than just using the point
centers of the SIFT points, we found that the relative coordinates obtained are
more precise. This is probably due to the fact, that we look for optimum matches.
This reduces the influence of geometrical deformations, partial occlusions, and
noise, which influence point centers when they are estimated independently.

3 Two and Three View Geometry

In the remainder of this paper we assume that we have at least an approximate
knowledge of the intrinsic parameters. We also implemented an uncalibrated
approach in the spirit of Pollefeys et al. [21]. Yet, we found it to be only reliable
if sufficient 3D structure is present. Only then, the intrinsic parameters can be
reliably determined.

Triplets are the basic geometric building block of our approach due to the
following reasons:

– Opposed to pairs where points can only be checked in one dimension by
means of their distance from their respective epipolar lines, triplets allow for
an unambiguous geometric check of points. This does not only lead to much
more reliable points, but also to improved, more reliable information for the
cameras.

– Triplets can be directly linked into larger sets by determining their relative
pose (translation, rotation, and scale) based on two common images.

Because the combinatorics is worse for triplets than for pairs, we start with pairs
and determine essential matrices and thus epipolar lines for them. For known in-
trinsic parameters, the relative pose of the image pair is determined directly, i.e.,
with no need for approximate values, by means of the five point algorithm [19].
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As usually only a possibly small part of the matched point pairs is actually
correct, we employ RANSAC in conjunction with GRIC [27]. The later means,
that instead of counting the number of inliers, we attribute a constant penalty
to outliers and values proportional to their squared residuals v2 to inliers. A
threshold is used to define where the transition from inliers to outliers occurs.
While in RANSAC the number of inliers is maximized, GRIC aims at a minimum
corresponding to many points with small residuals. By means of GRIC one can
distinguish between solutions with a low precision, but more points, and highly
precise solutions, with possibly less points, but smaller residuals, which are more
likely correct.

The above combination of RANSAC and GRIC works well for more or less
well behaved scenes. Yet, we found that for complex scenes, e.g., involving many
very similar points, the above combination is not sufficient to tell good from
bad solutions. This happens, e.g., for window corners on facades of buildings,
possibly in conjuction with camera movements which conspire with repetitions
on the facade. Inspired by Chum et al. [3], we compute a maximum likelihood,
i.e., robust bundle adjustment, solution for the best of every couple of hundred
RANSAC iterations. Eventually, the bundle solution which leads to the lowest
GRIC value is taken as the final result.

But even this gives only a partial solution to the problem. While RANSAC
produces a solution from only inliers with a certain probability, it is not guar-
anteed, that this solution is accurate. Even worse, inaccurate solutions can also
be not representative for all, or even the majority of the inliers. E.g., consider a
larger image and RANSAC selecting in one sample only inliers from the center
of the image. While the geometric solution (of the five point algorithm) will be
correct, it will not be precise enough to find also the correct matches closer to the
margin of the image. A way to counteract this is to force RANSAC only to use
points with a certain minimum distance. Though, this is problematic, because
in certain cases there might be just correct matches in the center of the image.

We have devised a strategy similar to the EM algorithm (Figure 3) which em-
ploys robust bundle adjustment (cf. next Section) to mitigate the above problem.
We robustly bundle adjust the initial direct solution using the inliers determined
by RANSAC. The obtained, geometrically improved, solution is employed to
compute new inliers based on GRIC. This is iterated until either a predefined
number of iterations (here 5) is reached, or no significant improvement in terms
of GRIC is obtained.

The above procedure is used for pairs and triplets. For the latter, we employ
the result for image pairs to restrict the search space via epipolar lines derived
from the essential matrices. This strongly reduces the number of hypotheses for
image triplets.

For the geometric computation of triplets, we use one image as master and
compute translation and rotation towards the other two images via the five point
algorithm for five conjugate points in the three images. This fixes all but one pa-
rameter, namely the relative base length between the two pairs. At the moment
we assume that we only work with images with a significant base between them.
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Expectation (E): Determination of inliers

Approximate Solution

until no improvement or maximum number of iterations

Maximization (M): Improvement of solution by robust bundle adjustment

Improved solution with more inliers with higher accuracy

Fig. 3. Strategy similar to the Expectation Maximization (EM) algorithm

While this is a limitation of our approach, we note that there is only a problem
with the infinite homography, not with homographies for real planes. Particu-
larly, we triangulate the five points in both pairs and compute the distance from
the master image. The ratio of the distances in both pairs is proportional to
the ratio of the base lengths. To make the computation robust, we employ the
median value of the five ratios computed for the five conjugate points.

4 Robust Bundle Adjustment

While bundle adjustment [28] has not been seen as crucial for early approaches
on multi view geometry, since a couple of years it is acknowledged that it is
useful and even necessary for large image sets.

This is demonstrated by recent work on generalized preconditioners [13]. They
allow for an efficient use of conjugate gradient based solutions for bundle adjust-
ment for very large systems also for the general configurations encountered when
collecting data from the ground or in CPC.

Our work goes into another direction, namely robustifying bundle adjustment
by means of reweighting. I.e., least squares are generalized in the form of an
M-estimator [12]. The particular contribution is, that we compute an estimate
for the variance of each individual residual and use this for reweighting when
implementing the M-estimator.

The estimation of individual variances for the residuals is costly in terms of
computation per iteration. Yet, we found that at least for systems with a limited
number of images, i.e., tens of images, it is actually faster in the aggregated
run time, because much fewer iterations are needed. What is more, one usually
obtains a more precise solution consisting of more points.

Following Jian et al. [13], we define P = {Pi; i = 1, . . . ,M} as the camera pa-
rameters, X = {Xj; j = 1, . . . , N} as the 3D points, and x = {xk; k = 1, . . . ,K}
as the measurement of 3D point Xj in camera Pi). Function fk(Pi, Xj) projects
a 3D point to an image. By

vk = fk(Pi, Xj)− xk
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we define the residual between the projected 3D point and the measured im-
age point. The goal of bundle adjustment is to reduce the sum of the squared
residuals

K∑
k=1

[vk]
2 . (7)

Equation (7) is nonlinear. It can be linearized by means of first order Taylor
expansion, assuming that appropriate initial estimates for the camera parameters
Pi and the 3D points Xj are available:

K∑
k=1

[fk(Pi, Xj) +
∂fk(Pi, Xj)

∂Pi
dPi +

∂fk(Pi, Xj)

∂Xj
dXj − xk]

2 . (8)

As above for least squares matching, a linear solution (5) can be obtained by
setting the derivatives in (8) to zero. The system consists of a sparse matrix A
made up of the Jacobian of the measurements with respect to cameras and 3D
points, the vector β concatenating the parameters of cameras and 3D points,
and finally, the vector y consisting of the negative measurement errors.

While (5) can be solved directly, we solve the normal equations (6). By this
means we can introduce the estimated accuracy of the measured image points as
derived by least squares matching in Section 2 in the form of a weight matrix.
Particularly, we employ as weight the inverse of the relative covariance matrix
of the measurements C, leading to

Nβ = (ATC−1A)β = ATC−1y . (9)

For optimizing the solution, we again use the Levenberg Marquardt algorithm.
Please note, that C is a positive definite block diagonal matrix consisting of 2×2
blocks describing the variance of the measured points in x- and y-direction as
well as their x-y covariance.

In the M-estimator, we reweight C by

w =
√
2 + v2 ,

with v = v/σv. I.e., the residual is divided by its standard deviation. While
usually a common variance is used, we compute an estimate of the covariance of
the individual residuals Cv as follows:

Cv = C−A(ATC−1A)−1AT = C−AN−1AT (10)

For an efficient solution, we employ the Schur complement and split up the
design matrix in a part for 3D points AX and a part for the cameras AC . This
results in the following (symmetric) matrix N and its inverse M

N =

[
NXX NXC

NT
XC NCC

]
and M = N−1 =

[
MXX MXC

MT
XC MCC

]
.
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We solve forMCC = (NCC−NT
XCNXXNXC)

−1, i.e., the inverse for the cameras,
at the core of the bundle adjustment. The computation of MXX = N−1

XX +
N−1

XXNXCMCCN
T
XCN

−1
XX can be done very efficiently, as it only involves the

inversion of 3×3 matrices in the block diagonal matrix NXX and multiplications
with 3×6 and 6×6 matrices. The covariance between points and cameras MXC

is for most applications not needed and, thus, not calculated. From N ·M = I
(with I the unit matrix) one can derive

MXC = N−1
XXNXCMCC ,

giving the full matrix M = N−1 needed to solve Equation (10).
As the measurements are 2D image coordinates, the covariance information for

residuals corresponds to 2D ellipses. Thus, v = v/σv is computed as ratio of the
length of the residual vector and the standard deviation of the residual in the di-
rection of the residual σv as shown in Figure 4. v is employed to reweight the 2× 2
block in matrix C corresponding to the residual.

v

σv

Fig. 4. Error ellipse for residual, direction of the residual and the standard deviation
in the direction of the residual σv

5 Structure from Motion for Image Sets

We link image sets based on camera information for two common images. We
start by linking triplets, but depending on the strategy (cf. below), also sets are
linked to sets.

For obtaining approximate values, we first relate the camera information for
an image in one set, i.e., the master set, to the camera information for the
same image in the other set, i.e., the slave set. As we assume that we know the
intrinsic parameters, we can translate and rotate the slave into the master set.
The remaining unknown is scale. It is derived from the camera parameters for a
second common image, for which in both images the distance to the first common
camera is computed. The ratio of the distances gives the ratio in scale of the
two coordinate systems. With the obtained approximate values for translation,
rotation, and scale, we transform all camera parameters and 3D points from the
slave into the master set.

Additionally, we transform also points from the master into the slave set,
to obtain more than threefold, i.e., n-fold points1. The higher n, the more ge-
ometrically stable the solution becomes. For computing n-fold points, we first

1 The terms twofold, threefold, and n-fold point are used for expressing that the pro-
jection of a 3D scene point is detected in two, three, or n images.
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note, that it is not useful to compare points in 3D space, because its metric is
in general not well defined. Thus, we conduct the comparison in image space.
Particularly, we employ trifocal tensors computed from the camera matrices [8]
of the slave set and project points from the two common images of the master
set into the third, etc., image of the slave set. There, multi-image least squares
matching (Section 2) is conducted leading to n-fold points. Finally, we compute
a robust bundle adjustment (Section 4) based on the approximate values for
translation, rotation, and scale, as well as the n-fold points.

This gives an improved solution for the overlapping part of the combined set.
Yet, novel points in the slave set are still missing. Therefore, we compare for the
two common images the image coordinates from the slave set with the image
coordinates in the master set. Only when there is no nearby point found in image
space as implemented by dilation with a radius of two pixels, the corresponding
3D point is introduced. Eventually, again a robust bundle adjustment is com-
puted, this time also including the estimation of improved intrinsic parameters.

We note that the above procedure tracks a point only as long it is visible.
While this means that points which are occluded in a frame are lost and possi-
bly re-introduced, we found that this is superior to projecting 3D points into the
images. The problem with the latter is, that if one goes around an object, re-
peating structures, possibly even on the backside, can by chance be at the same
location and match very well. As these points are wrong, they can introduce a
serious bias in the estimation.

For linking sets, we have implemented a

– sequential strategy and a
– hierarchical strategy.

The sequential strategy is very simple: We just link one triplet after the other
to the set with an overlap of always two images. The basic problem with this
simple strategy is, that at least for wide baseline sets we found it is necessary
that we conduct a robust bundle adjustment each time we add a triplet. This
makes the strategy computationally very intensive.

On the other hand, in the hierarchical strategy, sub-sets are grown in parallel
and linked one by one (Table 1). As we need two common images, this means
that we can extend the set by 2i−2 images. Starting with 3, we obtain sets with
4, 6, 10, 18, 34, etc. images. This is obviously much more efficient as it entails
much fewer robust bundle solutions.

It is less obvious, though, that the hierarchical strategy is also very useful
in terms of robust bundle adjustment, particularly for large sets. For robust
reweighting (Section 4), it is important, that the variances of the residuals are
comparable. If this is not the case, e.g., when linking a large set with multiple
overlap and high internal precision with a small set and thus with low precision,
there is a strong tendency, that a considerable number of the weaker, but correct
points of the smaller set will be thrown out. All this is avoided by hierarchical
linking, where sets of approximately the same size and, thus, precision are linked.
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Table 1. Hierarchical linking eight image triplets for ten images

1 2 3 2 3 4 3 4 5 4 5 6 5 6 7 6 7 8 7 8 9 8 9 10
1 [2 3] 4 3 [4 5] 6 5 [6 7] 8 7 [8 9] 10

1 2 [3 4] 5 6 5 6 [7 8] 9 10
1 2 3 4 [5 6] 7 8 9 10

This was demonstrated by Mayer [16] for a loop of ninety images taken inside
the Zwinger, Dresden, Germany. Hierarchical linking has been seven times faster.
More important, it produced not only 32,783 compared to 28,582 points for
sequential linking, but also many more many-fold points.

6 Results of Structure from Motion

All experiments reported in this section have been conducted using the sequential
strategy and the same parameters.

The sequence castle-R20 of Ettlingen castle in Germany consists of twenty im-
ages [26]. Some of them are shown at the top of Figure 5. Our SfM approach results
in an estimated average back-projection error σ0 of 0.14 pixels. For demonstrating
the high precision of our results, we conducted a loop closing experiment, i.e., we
took the last image of the twenty images sequence to be the same as the first image.
SfM was conducted without closing the sequence. This means that the differences
between the camera parameters for the first and the last image, which should be
the same, give an indication of the precision obtained.

Firstly, we note that Figure 5 visually shows, that the differences are small.
Table 2 gives a quantitative evaluation. The upper part shows the translation
error. It is in the range of 0.1 % of the maximum distance between the camera
centers. In terms of an absolute distance this means about 4 centimeters. The
absolute angular error after twenty images is only 0.14◦. This means that we
obtained a relative angular error per image of 0.007◦, demonstrating the high
precision achieved.

The top of Figure 6 shows three pairs of near infrared images of size 1392×1040
pixel of a sequence of 400 images taken by a mobile mapping system. The pairs
have a small overlap due to a diverging imaging configuration and the images
a limited quality due to the near infrared. In spite of this and even though
the images were not explicitly treated as pairs in SfM, but as sequence, the
local geometry of the pairs could be estimated very well. This is mainly due to
robustly tracking points over many frames resulting in highly precise many-fold
points and camera poses.

The third example is based on images acquired for a village in southern Ger-
many by a small UAS. In one experiment, a building has been captured by
terrestrial images which have been linked via ascending images (center of Fig-
ure 7 bottom) to a flight line above the village. In spite of the partially strong
wide baseline geometry (Figure 7, center row), we could still compute valid and
precise camera poses and 3D points.
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Fig. 5. Top: Images four, seven, and eight of image sequence castle-R20 of Ettlingen
castle in Germany, with twenty images [26]. Bottom: Result for SfM (σ0 = 0.14 pixels).
Cameras are given as pyramids and points are colored from the images. For the loop
closing experiment, the first and the last image of the sequence were taken to be the
same, depicted in red and blue with numbers 0 and 20. The overlap of the latter
demonstrates the high quality of the reconstruction.

7 Dense Reconstruction

For dense reconstruction we employ Semiglobal Matching – SGM [9]. It is based
on

– mutual information (MI) or the Census filter for cost computation and

– the substitution of a 2D smoothness term by a combination of 1D constraints
(semiglobal).

The mutual information miI1,I2 is the sum of the entropies in the two images to
be matched hI1(i) and hI2(k) minus their joint entropy hI1,I2(i, k)

miI1,I2 = hI1(i) + hI2(k)− hI1,I2(i, k) . (11)



298 H. Mayer et al.

Table 2. Evaluation for castle-R20 in terms of loop closing error – Top: Translation
in terms of maximum distance of projection centers as well as in absolute distance;
Bottom: Absolute angular error (after twenty images) and relative angular error (per
image)

Translation x y z

% of maximum distance 0.124 -0.011 -0.053

absolute distance [m] 0.041 -0.004 -0.017

Absolute angular error 0.1398◦

Relative angular error per image 0.0070◦

Fig. 6. Top: Image pairs of an infrared sequence of 400 images taken by a mobile
mapping system given in the form top / bottom from left to right: Pairs 4 / 5, 118 /
119, and 180 / 181. Bottom: Result of SfM. Points are given with the color taken from
the images and camera positions and orientations are marked by colored pyramids.

This leads to the following matching cost (fD transforms the matching image
Im with an initial disparity image D)

CMI(p, d) = −miIb,fD(Im)(Ibp, Imq) , (12)



Dense 3D Reconstruction from Wide Baseline Image Sets 299

Fig. 7. Top: Images of a German village taken from the ground and from an ascending
UAS. Please note the wide baselines between the left and the other two images of
the triplet shown on the second row. Bottom: Result for SfM estimation. Cameras are
given as pyramids and points are colored from the images. For the building in the
center terrestrial images have been linked to the flight line above via ascending images.

where q is the pixel in the matching image Im corresponding to the pixel p in
the reference image Ib and the disparity d.

In essence, MI gives the conditional probability distribution for the inten-
sities in the matching image given an intensity in the reference image without
resorting to a parametric model. Thus, MI can compensate a large class of global
radiometric differences. Though, one has to note that the conditional probability
is computed for the whole image which can be a problem for local radiometric
changes, e.g., if materials with very different reflection characteristics exist in
the scene or lighting conditions change.

The Census filter was found by Hirschmüller and Scharstein [10] to be the
most robust variant for matching cost computation. It defines a bit string with
each bit corresponding to a pixel in the local neighborhood of a given pixel. A bit
is set if the intensity is lower than that of the given pixel. Census thus encodes
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Fig. 8. Top: Dense 3D points generated by SGM. Bottom: Part

the spatial neighborhood structure. A 7 × 9 neighborhood can be encoded in
a 64 bit integer. Matching is conducted via computing the Hamming distance
between corresponding bit strings.

The smoothness term punishes changes of neighboring disparities (operator
T [] is 1 if its argument is true and 0 otherwise):

E(D) =
∑
p

⎛⎝C(p, Dp) +
∑

q∈Np

P1T [|Dp −Dq| = 1]

+
∑

q∈Np

P2T [|Dp −Dq| > 1]

⎞⎠ (13)
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Fig. 9. Result for dense 3D surface mesh reconstruction using SGM of parts of image
sequence castle-R20 (Figure 5) – shaded (top) and textured (bottom)

– The first term consists of pixel matching costs for all disparities of D.
– The second term adds a constant penalty P1 for all pixels q from the neigh-

borhood Np of p, for which the disparity changes only slightly (1 pixel).
– The third term adds a larger constant penalty P2 for bigger changes of the

disparities. Because it is independent of the size of the disparities, it preserves
discontinuities.

– As discontinuities in disparity are often visible as intensity changes, P2 is
calculated depending on the intensity gradient in the reference image (with
P2 ≥ P1).

In 2D, global minimization is NP hard for many discontinuity preserving ener-
gies E(D). In 1D, minimization can be done in polynomial time via dynamical
programing, which is usually applied within image lines. Unfortunately, because
the solutions for neighboring lines are computed independently, this can lead to
streaking.
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For the semiglobal solution, 1Dmatching costs are computed in different, (prac-
tically 8) directions which are aggregated without weighting. In the reference im-
age, straight lines are employed, which are deformed in the matching image.

By computing D for exchanged reference and matching image one can infer
occlusions or matching errors by means of a consistency check. If more than
one pair with the same reference image is matched, the consistency check is
conducted for all pairs only once.

With the above methodology, dense disparities can be computed. By using the
camera parameters all points can be projected into 3D leading to dense 3D point
clouds. While the original work of Hirschmüller [9] has shown how to derive 2.5D
surface models, work on the derivation of a 3D surface by means of triangulation
of the 3D points dealing also with outliers has been started only recently.

For parts of the village for which camera poses and 3D point clouds have been
estimated (Section 6, Figure 7), SGM was used to compute dense 3D points from
several pairs. Figure 8 gives an impression of the very high point density and
quality obtained.

Finally, Figure 9 shows first results for dense 3D surface mesh reconstruction
using SGM. Particularly the shaded visualization shows, that the indentations
of the windows could be determined reliably.

8 Conclusions and Outlook

In this paper we have presented an approach for dense reconstruction from wide
baseline image sets. As key characteristics it aims at a high precision in every
step of the approach from least squares matching to robust bundle adjustment.
Particularly for the latter, we take into account the estimated covariance for the
residuals, leading to more precise solutions with more points in less time.

Even though we have demonstrated that we can compute SfM for larger scenes
consisting of hundreds of images with wide baselines, there are still a couple of
shortcomings. The most basic is, that we rely on given information concerning
image overlap. While Agarwal et al. [1] and Frahm et al. [5] have shown how
the problem can be solved in principle, it is still not clear how to deal with wide
baselines. The most obvious way is to compare all possible pairs, but for larger
sets this seems to be not feasible even using GPUs.

Yet, also for large scenes with small baselines problems exist. One is in the
line of thought of our hierarchical approach for linking image sets (Section 5).
Particularly, the question is, which parts of the unordered sets should be linked
when, i.e., at which level of the hierarchy.

Then, there are problems with objects of the real world with specific charac-
teristics. E.g., some objects have symmetries, such as that front and back look
very similar. This is hard for current approaches for unordered sets, where miss-
ing matches are usually attributed to unmodeled occlusions. Thus, the questions
arises, how much semantic information is needed for a reliable 3D reconstruction?
Should ordering information from the camera, e.g., in terms of known acquisition
time be used? If location information, e.g., from GPS is available and reliable,
it could be used to circumvent the problem.
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Finally, there are also a couple of smaller or larger details in our approach
which could be solved in a better way. E.g., at the moment we use one standard
value for RANSAC / GRIC for pairs and triplets. While this works in nearly
all cases, it can be far from optimal as it does not account for the different
precisions possible for images of different sizes, distortions, lighting, contrast
and scene characteristics (e.g., facade planes versus trees). Here, estimation by
means of RECON [23] could give a more general solution.
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Abstract. Human motion capturing (HMC) from multiview image sequences is
an extremely difficult problem due to depth and orientation ambiguities and the
high dimensionality of the state space. In this paper, we introduce a novel hy-
brid HMC system that combines video input with sparse inertial sensor input.
Employing an annealing particle-based optimization scheme, our idea is to use
orientation cues derived from the inertial input to sample particles from the man-
ifold of valid poses. Then, visual cues derived from the video input are used to
weight these particles and to iteratively derive the final pose. As our main con-
tribution, we propose an efficient sampling procedure where the particles are de-
rived analytically using inverse kinematics on the orientation cues. Additionally,
we introduce a novel sensor noise model to account for uncertainties based on
the von Mises-Fisher distribution. Doing so, orientation constraints are naturally
fulfilled and the number of needed particles can be kept very small. More gen-
erally, our method can be used to sample poses that fulfill arbitrary orientation
or positional kinematic constraints. In the experiments, we show that our system
can track even highly dynamic motions in an outdoor environment with changing
illumination, background clutter, and shadows.

1 Introduction

Recovering 3D human motion from 2D video footage is an active field of research
[21,3,7,10,33,37]. Although extensive work on human motion capturing (HMC) from
multiview image sequences has been pursued for decades, there are only few works,
e.g. [15], that handle challenging motions in outdoor scenes.

To make tracking feasible in complex scenarios, motion priors are often learned to
constrain the search space [18,29,30,32,37]. On the downside, such priors impose cer-
tain assumptions on the motions to be tracked, thus limiting the applicability of the
tracker to general human motions. While approaches exist to account for transitions be-
tween different types of motion [2,5,11], general human motion is highly unpredictable
and difficult to be modeled by pre-specified action classes.

Even under the use of strong priors, video HMC is limited by current technology:
depth ambiguities, occlusions, changes in illumination, as well as shadows and back-
ground clutter are frequent in outdoor scenes and make state-of-the-art algorithms break
down. Using many cameras does not resolve the main difficulty in outdoor scenes,
namely extracting reliable image features. Strong lighting conditions also rule out the
use of depth cameras. Inertial sensors (IMU) do not suffer from such limitations but
they are intrusive by nature: at least 17 units must be attached to the body which poses

F. Dellaert et al. (Eds.): Real-World Scene Analysis 2011, LNCS 7474, pp. 305–328, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Input data

Orientation cues

Image cues

Sampled particles

Weighted particles Final pose

Fig. 1. Orientation cues extracted from inertial sensors are used to efficiently sample valid poses
using inverse kinematics. The generated samples are evaluated against image cues in a particle
filter framework to yield the final pose.

a problem from bio-mechanical studies and sports sciences. Additionally, IMU’s alone
fail to measure accurately translational motion and suffer from drift. Therefore, simi-
lar to [27,24,35], we argue for a hybrid approach where visual cues are supplemented
by orientation cues obtained by a small number of additional inertial sensors. While
in [35] only arm motions are considered, the focus in [24] is on indoor motions in a
studio environment where the cameras and sensors can be very accurately calibrated
and the images are nearly noise- and clutter-free. By contrast, we consider full-body
tracking in an outdoor setting where difficult lighting conditions, background clutter,
and calibration issues pose additional challenges. The work presented here is an exten-
sion of our previous article [27]. Here, we extend it and show more results and more
implementation details of the proposed approach.

In this paper, we introduce a novel hybrid tracker that combines video input from
four consumer cameras with orientation data from five inertial sensors, see Fig. 1.
Within a probabilistic optimization framework, we present several contributions that
enable robust tracking in challenging outdoor scenarios. Firstly, we show how the high-
dimensional space of all poses can be projected to a lower-dimensional manifold that
accounts for kinematic constraints induced by the orientation cues. To this end, we in-
troduce an explicit analytic procedure based on Inverse Kinematics (IK). Secondly, by
sampling particles from this low-dimensional manifold the constraints imposed by the
orientation cues are implictly fulfilled. Therefore, only a small number of particles is
needed, leading to a significant improvement in efficiency. Thirdly, we show how to
integrate a sensor noise model based on the von Mises-Fisher [8] distribution in the
optimization scheme to account for uncertainties in the orientation data. In the exper-
iments, we demonstrate that our approach can track even highly dynamic motions in
complex outdoor settings with changing illumination, background clutter, and shadows.
We can resolve typical tracking errors such as miss-estimated orientations of limbs and
swapped legs that often occur in pure video-based trackers. Moreover, we compare it
with three different alternative methods to integrate orientation data. Finally, we make
the challenging dataset and sample code used in this paper available for scientific use1.

1 http://www.tnt.uni-hannover.de/˜pons/

http://www.tnt.uni-hannover.de/~pons/
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2 Related Work

For solving the high-dimensional pose optimization problem, many approaches rely
on local optimization techniques [4,15,28], where recovery from false local minima is
a major issue. Under challenging conditions, global optimization techniques based on
particle filters [7,10,38,26] have proved to be more robust against ambiguities in the
data. Thus, we build upon the particle-based annealing optimization scheme described
in [10]. Here, one drawback is the computational complexity which constitutes a bot-
tleneck when optimizing in high-dimensional pose spaces.

Several approaches show that constraining particles using external pose informa-
tion sources can reduce ambiguities [1,12,13,16,17,20,34]. For example, [17] uses the
known position of an object a human actor is interacting with and [1,20] use hand detec-
tors to constrain the pose hypotheses. To integrate such constraints into a particle-based
framework, several solutions are possible. Firstly, the cost function that weights the par-
ticles can be augmented by additional terms that account for the constraints. Although
robustness is added, no benefits in efficiency are achieved, since the dimensionality of
the search space is not reduced. Secondly, rejection sampling, as used in [17], discards
invalid particles that do not fulfill the constraints. Unfortunately, rejection sampling can
be very inefficient and does not scale well with the number of constraints as we will
show. Thirdly, approaches such as [9,12,19,34] suggest to explicitly generate valid par-
ticles by solving an IK problem on detected body parts. While the proposals in [19,34]
are tailored to deal with depth ambiguities in monocular imagery, [12] relies on local
optimization which is not suited for outdoor scenes as we will show. In the context of
particle filters, the von Mises-Fisher distribution has been used as prior distribution for
extracting white matter fiber pathways from MRI data [40].

In contrast to previous work, our method can be used to sample particles that ful-
fill arbitrary kinematic constraints by reducing the dimension of the state space. Fur-
thermore, none of the existing approaches perform a probabilistic optimization in a
constrained low-dimensional manifold. We introduce an IK based on the Paden-Kahan
sub-problems and model rotation noise with the von Mises-Fisher distribution.

3 Global Optimization with Sensors

To temporally align and calibrate the input data obtained from a set of uncalibrated and
unsynchronized cameras and from a set of orientation sensors, we apply preprocessing
steps as explained in Sect. 3.1. Then, we define orientation data within a human motion
model (Sect. 3.2) and explain the probabilistic integration of image and orientation cues
into a particle-based optimization framework (Sect. 3.3).

3.1 Calibration and Synchronization

We recorded several motion sequences of subjects wearing 10 inertial sensors (we used
XSens [36]) which we split in two groups of 5: the tracking sensors which we use
for tracking and the validation sensors which we use for evaluation. According to the
specifications, the IMU orientation accuracy is around 2◦ for smooth motions and in
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abscence of magnetic field. In practice, unfortunatelly, the error is much higher due
to different sources of uncertainty, see Sect.4.3. The tracking sensors are placed in the
back and the lower limbs and the validation sensors are placed on the chest and the upper
limbs. An inertial sensor s measures the orientation of its local coordinate system FS

s

w.r.t. a fixed global frame of reference FT . All sensors derive the same global frame of
reference by merging information from a magnetic field sensor, an accelerometer and a
rate gyro. The orientation data is given as a stream of rotation matrices RTS

s (t) that de-
fine the coordinate transform from FS

s to FT . In the process of calibrating the camera,
the global tracking coordinate system FT is defined by a calibration cube placed into
the recording volume. In order to bring F I and FT into correspondence, we carefully
place the calibration cube such that the axes of FT directly correspond to the axes of the
known F I using a compass. Like this, the orientation data RIS

s (t) also directly maps
from the local sensor coordinate system FS

s to the global tracking coordinate system
FT and we note RTS := RIS . Note that there might be slight missalignments be-
tween the tracking and inertial frame for which we compensate bt introducing a sensor
noise model, see Sec. 4.3. In this paper, we refer to the sensor orientations by RTS and,
where appropriate, by using the corresponding quaternion representation qTS . Quater-
nions generalize complex numbers and can be used to represent 3D rotations the same
way as complex numbers can be used to represent planar rotations [31]. The video se-
quences recorded with four off-the-shelf consumer cameras are synchronized by cross
correlating the audio signals as proposed in [15]. Finally, we synchronize the IMU’s
with the cameras using a clapping motion, which can be detected in the audio data as
well as in the acceleration data measured by IMU’s.

3.2 Human Motion Model

We model the motion of a human by a skeletal kinematic chain containing N = 25
joints that are connected by rigid bones. The global position and orientation of the
kinematic chain are parameterized by a twist ξ0 ∈ R

6 [22]. A twist is an element of
the tangent space of rigid body motions, see [26] for a comprehensive introduction to
human body parameterizations. Together with the joint angles Θ := (θ1 . . . θN ), the
configuration of the kinematic chain is fully defined by a D=6+N -dimensional vector
of pose parameters x = (ξ0, Θ). We now describe the relative rigid motion matrix Gi

that expresses the relative transformation introduced by the rotation in the i − th joint.
A joint in the chain is modeled by a location mi and a rotation axis ωi. The exponential
map of the corresponding twist ξi = (−ωi ×mi, ωi) yields Gi by

Gi = exp(θiξ̂i). (1)

Let Ji ⊆ {1, . . . , n} be the ordered set of parent joint indices of the i − th bone. The
total rigid motion GTB

i of the bone is given by concatenating the global transformation
matrix G0 = exp(ξ̂0) and the relative rigid motions matrices Gi along the chain by

GTB
i = G0

∏
j∈Ji

exp(θj ξ̂j). (2)
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The rotation part of GTB
i is referred to as tracking bone orientation of the i− th bone.

In the standard configuration of the kinematic chain, i.e. , the zero pose, we choose the
local frames of each bone to be coincident with the global frame of reference FT . Thus,
GTB

i also determines the orientation of the bone relative to FT . A surface mesh of the
actor is attached to the kinematic chain by assigning every vertex of the mesh to one of
the bones. Let p̄ be the homogeneous coordinate of a mesh vertex p in the zero pose
associated to the i − th bone. For a configuration x of the kinematic chain, the vertex
is transformed to p̄′ using p̄′ = GTB

i p̄.

3.3 Optimization Procedure

If several cues are available, e.g. image silhouettes and sensor orientation z =
(zim, zsens), the likelihood is commonly factored in two independent terms:

argmax
x

p(x|zim, zsens) = p(zim|x)p(zsens|x)p(x) (3)

where it is assumed that the measurements zim and zsens are conditionaly independent
given that the pose x is known. The human pose x can then be found by minimizing
the negative log-likelihood which yields a weighted combination of cost functions for
both terms as in [24]. Since in outdoor scenarios the sensors are not perfectly calibrated
and the observations are noisy, fine tuning of the weighting parameters would be neces-
sary to achieve good performance. Furthermore, the orientation information is not used
to reduce the state space, and thus the optimization cost and ambiguities. Hence, we
propose a different probabilistic formulation of the problem:

p(x|zim, zsens) =
p(zim, zsens|x)p(x)

p(zim, zsens)
=

p(zim|x)p(zsens|x)p(x)
p(zim)p(zsens)

(4)

where we assumed independence between sensors and using

p(x|zsens) = p(zsens|x)p(x)
p(zsens)

we obtain the following factorized posterior

p(x|zim, zsens) ∝ p(zim|x)p(x|zsens). (5)

that can be optimized globally and efficiently. We disregard the normalization factor
p(zim) since it does not depend on the pose x. The weighting function p(zim|x) can be
modeled by any image-based likelihood function. Our proposed model of p(x|zsens),
as introduced in Sect. 4, integrates uncertainties in the sensor data and constrains the
poses to be evaluated to a lower dimensional manifold. For single frame pose estima-
tion, optimization is typically performed by importance sampling, i.e. sampling from
the prior p(x) and weighting by the likelihood function p(zim|x). The problem with
this is that the prior is broad compared to p(zim|x) that is peaky and typically multi-
valued. By drawing proposals directly from p(x|zsens) we are effectively reducing the
number of wasted samples, i.e. we are concetrating samples on the likelihood region.
For optimization, we use the method proposed in [10]; the implementation details are
given in Sect. 4.4.
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xa zgt zsens

x

zim

IMU measurement

Image observations

Manifold coordinates

Full pose

Fig. 2. Graphical model of the approach. The measurements zim and zsens are shown as shaded
nodes because they are observable during inference. The manifold coordinates, xa, the full state
pose x and the true orientations zgt are hidden. To infer the full state pose x we optimize the
manifold coordinates and marginalize out zgt. To integrate out zgt, we assume it follows a von-
Mises-Fisher distribution with mean direction μ = zsens.

4 Manifold Sampling

Assuming that the orientation data zsens of the Ns orientation sensors is accurate and
that each sensor has 3 DoF that are not redundant 2, the D dimensional pose x can be
reconstructed from a lower dimensional vector xa ∈ R

d where d = D − 3Ns. In our
experiments, a 31 DoF model can be represented by a 16 dimensional manifold using 5
inertial sensors as shown in Fig. 5 (a). The mapping is denoted by x = g−1(xa, z

sens)
and is described in Sect. 4.1. In this setting, Eq. (3) can be rewritten as

argmax
xa

p
(
zim|g−1(xa, z

sens)
)
. (6)

Since the orientation data zsens is not always accurate due to sensor noise and calibra-
tion errors, we introduce a term p(zsensgt |zsens) that models the sensor uncertainty, i.e. ,
the probability of the true orientation zsensgt given the sensor data zsens. We assume the
conditional probability p(zsensgt |zsens) follows a von-Mises Fisher distribution and it is
described in detail Sect. 4.3. Hence, we get the final objective function:

argmax
xa

∫
p
(
zim|g−1(xa, z

sens
gt )

)
p
(
zsensgt |zsens

)
dzsensgt . (7)

where we marginalize out the sensor noise and optimize the manifold coordinates. The
integral can be approximated by importance sampling, i.e. , drawing particles from
p(zsensgt |zsens) and weighting them by p(zim|x). Consequently, we can efficiently con-
centrate the search space in the neighborhood region of a low dimensional manifold. In
addition, we can guarantee that the kinematic constraints are satisfied.

2 Since the sensors are placed in different body parts they are not redundant because they explain
different DoF in the kinematic chain.
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α

β

α
β

α
β

Fig. 3. Toy example to illustrate our idea to sample from lower dimensional manifolds. For this
simple kinematic chain the state vector has 2 DoF , x = (α, β). If we impose the constraint that
the cake plate must be perpendicular to the ground the true state vector has dimensionality 1. The
constraint is α+β = π and therefore the state vector can be re-parameterized as x = (α, π − α).
For the problem of human pose estimation however the constraints are non-linear and therefore
re-parametrization is achieved by solving small Inverse Kinematics subproblems.

4.1 Inverse Kinematics Using Inertial Sensors

For solving Eq. (7), we derive an analytical solution for the map g : RD �→ R
D−3Ns and

its inverse g−1. Here, g projects x ∈ R
D to a lower dimensional space and its inverse

function g−1 uses the sensor orientations and the coordinates in the lower dimensional
space xa ∈ R

D−3Ns to reconstruct the parameters of the full pose, i.e. ,

g(x) = xa g−1(xa, z
sens) = x. (8)

To derive a set of minimal coordinates, we observe that given the full set of parameters
x and the kinematic constraints placed by the sensor orientations, a subset of these
parameters can be written as a function f(·) of the others, see Fig. 3 for an intuitive
illustration. Specifically, the full set of parameters is decomposed into a set of active
parameters xa which we want to optimize according to Eq. (7) and a set of passive
parameters xp that can be derived from the constraint equations and the active set.
Writing the state as x = (xa,xp) with xa ∈ R

d and xp ∈ R
D−d we have

f(xa, z
sens) = xp =⇒ g−1(xa, z

sens) = (xa, f(xa, z
sens)). (9)

Thereby, the direct mapping g is trivial since from the full set only the active parameters
are retained. The inverse mapping g−1 can be found by solving inverse kinematics (IK)
sub-problems. Several choices for the decomposition into active and passive set are
possible. To guarantee the existence of solution for all cases, we choose the passive
parameters to be the set of 3 DoF joints that lie on the kinematic branches where a
sensor is placed. In our experiments using 5 sensors, we choose the passive parameters
to be the two shoulder joints, the two hips and the root joint adding up to a total of
15 parameters which corresponds to 3Ns constraint equations, see Fig. 5 (a). Hence,
the passive parameters consist of Ns triplets of joint angles xp = (θj1 , θj2 , θj3)

T , j ∈
{1 . . .Ns} with corresponding rotation matrices Rj . Since each sensor s ∈ {1 . . .Ns}
is rigidly attached to a bone, there exists a constant rotational offset RSB

s between the
i-th bone and the local coordinate system FS

s of the sensor attached to it. This offset can
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(a) (b) (c)

Fig. 4. Manifold Sampling: (a) Original image. (b) Full space sampling. (c) Manifold sampling.
Note that the generated samples in (c) have parallel end-effector orientations because they satisfy
the constraints and uncertainty is therefore reduced.

be computed from the tracking bone orientation RTB
i,0 in the first frame and the sensor

orientation RTS
s,0

RSB
s = (RTS

s,0 )
TRTB

i,0 . (10)

At each frame t, we obtain sensor bone orientations RTS
s,t R

SB
s by applying the rota-

tional offset. In the absence of sensor noise, it is desired to enforce that the tracking
bone orientation and the sensor bone orientation are equal:

RTB
i,t = RTS

s,t R
SB
s (11)

In Sect. 4.3 we show how to deal with noise in the measurements. Let Rj be the relative
rotation of the j-th joint given by the rotational part of Eq. (1). The relative rotation Rj

associated with the passive parameters can be isolated from Eq. (11). To this end, we
expand the tracking bone orientation RTB

i,t to the product of 3 relative rotations3 Rp
j ,

the total rotation motion of parent joints in the chain, Rj , the unknown rotation of the
joint associated with the passive parameters, and Rc

j , the relative motion between the
j-th joint and the i-th joint where the sensor is placed:

Rp
jRjR

c
j = RTS

s RSB
s (12)

Note that Rp
j and Rc

j are constructed from the active set of parameters xa using the
product of exponentials formula (2). From Eq. (12), we obtain the relative rotation
matrix

Rj = (Rp
j )

TRTS
s RSB

s (Rc
j)

T . (13)

Having Rj and the known fixed rotation axes ωj1 , ωj2 , ωj3 of the j-th joint, the rotation
angles θj1 , θj2 , θj3 , i.e. , the passive parameters, must be determined such that

exp(θj1 ω̂j1) exp(θj2 ω̂j2) exp(θj3 ω̂j3) = Rj . (14)

3 The temporal index t is omitted for the sake of clarity.
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This problem can be solved by decomposing it into sub-problems [23], see Sec. 4.2.
By solving these sub-problems for every sensor, we are able to reconstruct the full state
x using only a subset of the parameters xa and the sensor measurements zsens. In this
way, the inverse mapping g−1(xa, zsens) = x is fully defined and we can efficiently
sample from the manifold, see Fig. 4.

4.2 Paden-Kahan Subproblems

We are interested in solving the following problem:

exp(θ1ω̂1) exp(θ2ω̂2) exp(θ3ω̂3) = Rj . (15)

This problem can be solved by decomposing it into sub-problems as proposed in [23]. A
comprehensive description of the Paden-Kahan subproblems applied to several inverse
kinematic problems can also be found in [22]. The basic technique for simplification
is to apply the kinematic equations to specific points. By using the property that the
rotation of a point on the rotation axis is the point itself, we can pick a point p on the
third axis ω3 and apply it to both sides of Eq. (15) to obtain

exp(θ1ω̂1) exp(θ2ω̂2)p = Rjp = q (16)

which is known as the Paden-Kahan sub-problem 2. For our problem the 3 rotation axes
intersect at the same joint location. Consequently, since we are only interested in the
orientations, we can translate the joint location to the origin qj = O = (0, 0, 0)T . In
this way, any point p = λω3 with λ ∈ R, λ �= 0 is a valid choice for p. Eq. (16) can
decomposed in two subproblems

exp(θ2ω̂2)p = c and exp(−θ1ω̂1)q = c, (17)

where c is the intersection point between the circles created by the rotating point p
around axis ω2 and the point q rotating around axis ω1 as shown in Fig. 5 (b). In order
for Eq. (17) to have a solution, the points p, c must lie in the same plane perpendicular
to ω2, and q, c must lie in the same plane perpendicular to ω1. This implies that the
projection of the position vectors 4 p, c,q onto the span of ω1, ω2 respectively must be
equal, see Fig. 6

ωT
2 p = ωT

2 c and ωT
1 q = ωT

1 c (18)

Additionally, the norm of a vector is preserved after rotation and therefore

‖p‖ = ‖c‖ = ‖q‖ (19)

Since ω1 and ω2 are not parallel, the vectors ω1, ω2, ω1 ×ω2 form a basis that span R
3.

Hence, we can write c in the new basis as

c = αω1 + βω2 + γ(ω1 × ω2) (20)

4 Since we translated the joint location to the origin we can consider the points as vectors with
origin at the joint location qj .
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(a) (b) (c)

Fig. 5. Inverse Kinematics: (a) decomposition into active (yellow) and passive (green) parameters.
Paden-Kahan sub-problem 2 (b) and sub-problem 1 (c).

where α, β, γ are the new coordinates of c. Now, using the fact that ω2 ⊥ ω1 × ω2

and ω1 ⊥ ω1 × ω2, we can substitute Eq. (20) into Eq. (18) to obtain a system of two
equations with two unknowns (α, β)

ωT
2 p = αωT

2 ω1 + β

ωT
1 q = α+ βωT

1 ω2 (21)

from which we can isolate the first two coordinates of c

α =
(ωT

1 ω2)ω
T
2 p− ωT

1 q

(ωT
1 ω2)2 − 1

β =
(ωT

1 ω2)ω
T
1 q− ωT

2 p

(ωT
1 ω2)2 − 1

(22)

From Eq. (19) and Eq. (20) we can write

‖p‖2 = ‖c‖2 = α2 + β2 + 2αβωT
1 ω2 + γ2‖ω1 × ω2‖2 (23)

and obtain the third coordinate γ as

γ2 =
‖p‖2 − α2 − β2 − 2αβωT

1 ω2

‖ω1 × ω2‖2
(24)

This last equation has no solution when the circles do not intersect, one solution when
the circles are tangential and two solutions when the circles intersect at two points.
For our choice of decomposition, the passive parameters correspond to 3DoF joints
which are modeled as 3 concatenated revolute joints whose axis are mutually orthogo-
nal. Therefore, there always exists a solution [22]. We note that the inverse kinematic
solutions presented here are also valid for other decompositions, e.g. one could choose
as passive parameters two rotation axes of the shoulder joint and one rotation axis of
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(a) (b)

Fig. 6. Paden-Kahan subproblem 1: (a) the projection length of p and c onto ω2 must be equal,
(b) the projection of the vectors p and c onto the orthogonal plane to the rotation axes ω2

the elbow joints. However, the existence of solution should then be checked during the
sampling process. Once we have the new coordinates (α, β, γ) we can obtain the inter-
section point c in the original coordinates using equation Eq. (20). Thereafter, Eq. (17)
can be decomposed into two problems of the form

exp(θ2ω̂2)p = c

exp(−θ1ω̂1)q = c (25)

which simplifies to finding the rotation angle about a fixed axis that brings a point p to
a second one c, which is known as Paden-Kahan sub-problem 1

exp(θ2ω̂2)p = c. (26)

This problem has a solution when the projections of the vectors p and c onto the or-
thogonal plane to ω2 have equal lengths. Let p′ and c′ be the projections of p, c onto
the plane perpendicular to ω2, see Fig. 6,

p′ = p− ω2ω
T
2 p and c′ = c− ω2ω

T
2 c. (27)

If the projections have equal lengths ‖p′‖ = ‖c′‖ then the problem is as simple as
finding the angle between the two vectors

ωT
2 (p

′ × c′) = sin θ2‖p′‖‖c′‖
p′ · c′ = cos θ2‖p′‖‖c′‖ (28)

By dividing the equations we finally obtain the rotation angle using the arc tangent

θ2 = atan2(ωT
2 (p

′ × c′),p′ · c′). (29)

We can find θ1 using the same procedure. Finally, θ3 is obtained from Eq. (15) after
substituting θ1 and θ2

exp(θ3ω̂3) = exp(θ1ω̂1)
T exp(θ2ω̂2)

TRj = R (30)
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(a) (b) (c) (d)

Fig. 7. Sensor noise model. (a) Points disturbed with rotations sampled from a von Mises-Fisher
distribution. (b) The orientation of the particles can deviate from the sensor measurements. Track-
ing without (c) and with (d) sensor noise model.

where the rotation matrix R is known. The rotation angle θ3 satisfies

2 cos θ3 = (trace(R)− 1) (31)

2 sin θ3 = ωT
3 r (32)

where r = (R32 − R23,R13 − R31,R21 − R12) (page 584 of [14]). Finally, the
rotation angle θ3 can be computed from cos θ3 and sin θ3 using atan2. By solving these
sub-problems for every sensor, we are able to reconstruct the full state x using only a
subset of the parameters xa and the sensor measurements zsens. The good property of
this geometric algorithms for solving inverse kinematics is that they are numerically
very stable. More importantly, the same principle can be applied to solve more complex
IK problems involving a number of positional and orientational constraints.

4.3 Sensor Noise Model

In practice, perfect alignment and synchronization of inertial and video data is not pos-
sible. In fact, there are at least four sources of uncertainty in the inertial sensor mea-
surements, namely inherent sensor noise from the device, temporal unsynchronization
with the images, small alignment errors between the tracking coordinate frame FT and
the inertial frame F I , and errors in the estimation of RSB

s . Hence, we introduce a noise
model p(zsensgt |zsens) in our objective function (7). Rotation errors are typically mod-
eled by assuming that the measured rotations are distributed according to a Gaussian in
the tangent spaces which is implemented by adding Gaussian noise vi on the parameter
components, i.e. , x̃j = xj + vi. The topological structure of the elements, a 3-sphere
S3 in case of quaternions, is therefore ignored. The von Mises-Fisher (MF) distribution
models errors of elements that lie on a unit sphere Sp−1 [8] and is defined as

fp(x;μ, κ) =
κp/2−1

(2π)p/2Id/2−1(κ)
exp(κμTx) (33)
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where Iv denotes the modified Bessel function of the first kind, μ is the mean direc-
tion, and κ is a concentration parameter that determines the dispersion form the true
position. The distribution is illustrated in Fig. 7. For our problem, p = 4 and thus the
elements x are quaternions. Therefore, on the one hand samples of the MF disutribution
are quaternions whose corresponding axis of rotation are uniformly distributed in all di-
rections. On the other hand, the sample concentration decays with the angle of rotation.
To see this, observe that the distribution can be expressed as a function of the angular
rotation θ from the mean μ where we replaced the inner product μTx by cos

(
θ
2

)
( the

inner prodcut between two quaternions results in cos( θ2 ), where θ is the geodesic angle
distance between rotations).

In order to approximate the integral in Eq. (7) by importance sampling, we use the
method proposed in [39] to draw samples qw from the von Mises-Fisher distribution
with p = 4 and μ = (1, 0, 0, 0)T , which is the quaternion representation of the identity.
We use a fixed dispersion parameter of κ = 1000. The sensor quaternions are then
rotated by the random samples qw:

q̃TS
s = qTS

s ◦ qw (34)

where ◦ denotes quaternion multiplication. In this way, for every particle, samples q̃TS
s

are drawn from p(zsensgt |zsens) using Eq. (34) obtaining a set of distributed measure-
ments z̃sens =

(
q̃TS
1 . . . q̃TS

Ns

)
. This can be interpreted as the analogous of additive

Gaussian Noise where qw is a rotation noise sample. Thereafter, the full pose is re-
constructed from the newly computed orientations with g−1(xa, z̃

sens) as explained in
Sect. 4.1 and weighted by p(zim|x).

In Fig. 8, we compare the inverse kinematic solutions of 500 samples i ∈ {1 . . . 500}
by simply adding Gaussian noise only on the passive parameters {g−1(xa, z

sens)+vi}i
and by modeling sensor noise with the von Mises-Fisher distribution {g−1(xa, z̃

sens,i)}i.
For the generated samples, we fixed the vector of manifold coordinates xa and we used
equivalent dispersion parameters for both methods. To visualize the reconstructed poses
we only show, for each sample, the elbow location represented as a point in the sphere.
This example shows that simply adding Gaussian noise on the parameters is biased to-
wards one direction that depends on the current pose x. By contrast, the samples using
von Mises-Fisher are uniformly distributed in all directions and the concentration decays
with the angular error from the mean. Note, however, that Fig. 8 is a 3D visualization,
in reality the bone orientations of the reconstructed poses should be visualized as points
in a 3-sphere S3.

fp(θ;κ) =
κp/2−1

(2π)p/2Id/2−1(κ)
exp

(
κ cos

(
θ

2

))
(35)

4.4 Implementation Details

To optimize Eq. (7), we have implemented ISA (Interacted Simulated Annealing), the
global optimization approach that has been proposed in [10] and use only the first stage of
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(a) (b)

Fig. 8. Sensor noise model. 500 samples of the IK elbow location are shown as points using: (a)
added Gaussian noise and (b) noise from the von Mises-Fisher distribution.

Fig. 9. Tracking with background clutter

the algorithm, i.e. we do not locally optimize. ISA is based on simulated annealing which
is a stochastic optimization technique to locate a good approaximation of the global op-
timum of a cost function in a large search space. In the remainder of this paper we will
use the term global optimization whenever ISA was used for optimization to make the
distinction with local optimization methods. As cost function, we use the silhouette and
color terms

V (x) = λ1Vsilh(x) + λ2Vapp(x) (36)
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with the setting λ1 = 2 and λ2 = 40. Although a good likelihood model is essential for
good performance, it is not the focus of our work and we refer the interested reader to
[26] for more details. During tracking, the initial particles {xi

a}i are predicted from the
particles in the previous frame using a 3rd order autoregression and projected to the low-
dimensional manifold using the mapping g; see Sect. 4.1. The optimization is performed
only over the active parameters xa ∈ R

D−3Ns , i.e. , the diffusion step is performed in
R

D−3Ns . Specifically, diffusion is performed with a Gaussian kernel with zero mean and
covariance matrix

Σa,k =
αΣ

N − 1

(
ρI+

N∑
i

(x
(i)
a,k − μa,k)(x

(i)
a,k − μa,k)

T

)
(37)

proportional to the sampling covariance matrix scaled by αΣ where μk is the particle set
mean at the current iteration k.

For the weighting step, we use the approach described in Sect. 4.3 to generate a sample
z̃sens,i from p(zsensgt |zsens) for each particle xi

a. Consequently, we can map each particle
back to the full space using xi = g−1(xi

a, z̃
sens,i) and weight it by

π
(i)
k = exp

(
−βk · V

(
g−1(xi

a,k, z̃
sens)

))
, (38)

where βk is the inverse temperature of the annealing scheme at iteration k and V (·) is
the image cost function defined in Eq. (36). From the obtained set of weighted particles
{π(i)

k ,x
(i)
a,k}Ni=1 we draw a new set of particles with resampling and probability equal

to the normalized weights. The weighting, resampling and diffusion step are iterated
M times before going to the next frame. In our experiments, we used 15 iterations for
optimization. Finally, the pose estimate is obtained from the remaining particle set at the
last iteration as

x̂t =
∑
i

π
(i)
k g−1(x

(i)
a,k, z̃

sens,i). (39)

The steps of our proposed sampling scheme are outlined in Algorithm 1.

Dynamics: To model the dynamics we use a 3rd order auto-regression using Gaussian
Process regression that provides a predictionxpred and a covariance matrixΣpred related
with the confidence of the prediction. Thereby, the particles from the previous frame are
drifted towards the predicted mean xpred and diffused with a Gaussian kernel with zero
mean and covariance Σpred. In order to obtain the low dimensional particle set, every
particle is projected g(xi

t) = x
(i)
a,t

5. We note that we do not learn a mapping directly in
the low dimensional space since the previous estimates of passive parametersxp,t−4:t−1

are in general also correlated with the active parameters xa,t. The particle set is used as
the initial proposal distribution for the first iteration of ISA.

5 Since the basic Gaussian process does not take the correlation of the output variables into
account the process is equivalent to a 3rd order regression from previous full state estimates to
the manifold coordinates.
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Algorithm 1. Proposed algorithm

Require: number of layers M , number of samples N , initial distribution L0, sensor orientations
zsens, image cost function V (·)
Initialize: Draw N initial samples from L0 → x

(i)
a,k

for layer k = 0 to M do
1. MANIFOLD SAMPLING
start from the set of un-weighted particles of the previous layer
for i = 1 to N do

1.1 SENSOR NOISE
/* draw a sample z̃sens,i from p(zsensgt zsens) */
for s = 1 to Ns do

draw sample from von-Mises Fisher fp(μ, κ) → qw

q̃TS
s = qTS

s ◦ qw

end for
set z̃sens,i = (q̃TS

1 . . . q̃TS
Ns

)T

1.1 INVERSE KINEMATICS
/* computation of x

(i)
k = g−1(xi

a,k, z̃
sens) */

for j = 1 to Ns do
compute: RTS

s = quat2mat(q̃TS
j )

compute: F(xa) → Rp
j ,R

c
j

set: Rj = (Rp
j )

TRTS
s RSB

s (Rc
j)

T

solve: exp(θj1 ω̂j1) exp(θj2 ω̂j2) exp(θj3 ω̂j3) = Rj

end for
set: π(i)

k = exp
(
−βk · V

(
x
(i)
k

))
end for
set: Lk = {π(i)

k ,x
(i)
a,k}

N
i=1

2. RESAMPLING
draw N samples from Lk → x

(i)
a,k

3. DIFFUSION
x
(i)
a,k+1= x

(i)
a,k +Bk {Bk is a sample from N (0, Σa)}

end for

5 Experiments

The standard benchmark for human motion capture is HumanEva that consists of indoor
sequences. However, no outdoor benchmark data comprising video as well as
inertial data exists for free use yet. Therefore, we recorded eight sequences of two sub-
jects performing four different activities, namely walking, karate, basketball and soccer.
Multiview image sequences are recorded using four unsynchronized off-the-shelf video
cameras. To record orientation data, we used an Xsens Xbus Kit [36] with 10 sensors.
Five of the sensors, placed at the lower limbs and the back, were used for tracking, and
five of the sensors, placed at the upper limbs and at the chest, were used for validation.
As for any comparison measurements taken from sensors or marker-based systems, the
accuracy of the validation data is not perfect but is useful to evaluate the performance
of a given approach. The eight sequences in the data set comprise over 3 minutes of
footage sampled at 25Hz. Note that the sequences are significantly more difficult than the
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Fig. 10. Tracking with strong illumination

sequences of HumanEva since they include fast motions, illumination changes, shadows,
reflections and background clutter. For the validation of the proposed method, we addi-
tionally implemented five baseline trackers: two video-based trackers based on local (L)
and global optimization (G) respectively and three hybrid trackers that also integrate ori-
entation data: local optimization (LS), global optimization (GS) and rejection sampling
(RS) which we briefly describe here

• (L): Local optimization tracker. The model is projected to the image to find corre-
spondences between the image silhouette contours and the model points. Then, the
non-linear least squares problem is solved using a variant of Levenberg-Marquardt
algorithm, see [15,25] for more details.

• (G): Global Particle based optimization. Optimization here is performed by means
of simulated annealing, i.e. , pose hypotheses are generated and weighted with pro-
gressively smooth versions of the image likelihood. The final pose is obtained as the
average of the particle set in the last annealing layer, see [6,10] for more details.

• (LS): Local optimization + inertial Sensors. Optimization is again performed by
means of non-linear least squares but the cost function to be minimized consists
of an image term and a term that models the likelihood of the inertial sensor mea-
surements

V (x) = μ1V
im(x) + μ2V

sens
1 (x)

where V sens
1 (x) is defined as the squared Frobenious norm between the sensor and

the tracking bone orientation matrices. Both the model-image Jacobian and the ori-
entational Jacobian are derived analytically for better accuracy and efficiency. The
algorithm is the based on [24].
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Fig. 11. Tracking results of a karate sequence

• (GS): Global particle based optimization with Sensors. Like the (G) method but in-
cluding the inertial sensor measurements in the weighting function. We optimize a
cost function

V (x) = μ1V
im(x) + μ2V

sens
2 (x)

where the image term V im(x) is the one defined in Eq. (36) and is chosen to be to be
a piece-wise increasing linear function of the angular error between the tracking and
the sensor bone orientations. That is, for angular errors bigger than 10 degrees we
scale the cost by a factor of 5. Big deviations from the orientation measurement could
in principle be penalized with a quadratic function but this yields to many particles
being rejected in early stages and results in lower performance. Note that although
μ2V

sens
2 (x) and μ2V

sens
1 (x) are not identical they are both functions of distance

metrics for rotations and are thus equivalent. For (LS) we optimize μ2V
sens
1 (x) be-

cause derivatives are easier to compute. We hand tuned the influence weights μ1, μ2

to obtain the best possible performance.
• (RS): Rejection Sampling. This method is commonly used to sample hypotheses that

satisfy a set of constraints. The method works by sampling hypotheses and reject-
ing hypotheses that do not satisfy the constraints up to a certain tolerance. It was for
example used in [17] to integrate object interaction constraints. For our problem, to
combine inertial data with video images we draw particles directly from p(xt|zsens)
using a rejection sampling scheme. In our implementation of (RS), we reject a par-
ticle when the angular error for any of the constraints is bigger than 10 degrees.

For a comprehensive overview of model based methods for human pose estimation we
refer the interested reader to [26].
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Fig. 13. (a): Orientation error with respect to number of particles with (red) the GS method and
(black) our algorithm. (b): Running time of rejection sampling (RS) with respect to number of
constraints. By contrast our proposed method takes 0.016 seconds for 15 DoF constraints. The
time to evaluate the image likelihood is excluded as it is independent of the algorithm.

Let the validation set be the set of quaternions representing the sensor bone orien-
tations not used for tracking as vsens = {qval

1 , . . . ,qval
5 }. Let is, s ∈ {1 . . . t} be the

corresponding bone index, and qTB
is

the quaternions of the tracking bone orientation
(Sect. 3.2). We define the error measure as the average geodesic angle between the sen-
sor bone orientation and the tracking orientation for a sequence of T frames as

dquat =
1

5 T

5∑
s=1

T∑
t=1

180◦

π
2 arccos

∣∣〈qval
s (t),qTB

is (t)
〉∣∣ . (40)

Comparison with Video and Local Trackers: We compare the performance of four
different tracking algorithms using the distance measure, namely (L), (G), (LS) and our
proposed approach (P). We show dquat for the eight sequences and each of the four track-
ers in Fig. 12. For (G) and (P) we used the same number of particles N = 200. As it is
apparent from the results, local optimization is not suitable for outdoor scenes as it gets
trapped in local minima almost immediately. Our experiments show that LS as proposed
in [24] works well until there is a tracking failure in which case the tracker recovers only
by chance. Even using (G), the results are unstable since the video-based cues are too
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Fig. 14. Angular error for the left hip of a walking motion with (red) no sensor noise model (NN),
(blue) Gaussian noise model (GN) and (black) our proposed (MFN)

Fig. 15. Tracking results of a soccer sequence

ambiguous and the motions too fast to obtain reliable pose estimates. By contrast, our
proposed tracker achieves an average error of 10.78 ◦±8.5◦ and clearly outperforms the
pure video-based trackers and (LS).

Comparison with GS: In Fig. 13 (a), we show dquat for a varying number of particles
using the (GS) and our proposed algorithm (P) for a walking sequence.

The error values show that optimizing a combined cost function leads to bigger errors
for the same number of particles when compared to our method. This was an expected
result since we reduce the dimension of the search space by sampling from the manifold
and consequently less particles are needed for equal accuracy. Most importantly, the vi-
sual quality of the 3D animation deteriorates more rapidly with (GS) as the number of
particles are reduced6. This is partly due to the fact that the constraints are not always
satisfied when additional error terms guide the optimization.

6 See the video for a comparison of the estimated motions at
http://www.tnt.uni-hannover.de/˜pons/

http://www.tnt.uni-hannover.de/~pons/
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Comparison with Rejection Sampling (RS): Another option for combining inertial
data with video images is to draw particles directly from p(xt|zsens) using a simple re-
jection sampling scheme. In our implementation of (RS), we reject a particle when the
angular error is bigger than 10 degrees. Unfortunately, this approach can be very ineffi-
cient especially if the manifold of poses that fulfill the constraints lies in a narrow region
of the parameter space. This is illustrated in Fig. 13 (b) where we show the processing
time per frame (excluding image likelihood evaluation) using 200 particles as a func-
tion of the number of constraints. Unsurprisingly, rejection sampling does not scale well
with the number of constraints taking as much as 100 minutes for 15 DoF constraints
imposed by the 5 sensors. By contrast, our proposed sampling method takes in the worst
case (using 5 sensors) 0.016 seconds per frame. These findings show that sampling di-
rectly from the manifold of valid poses is a much more efficient alternative.

Sensor Noise Model: To evaluate the influence of the sensor noise model, we tracked
one of the walking sequences in our dataset using no noise (NN), additive Gaussian noise
(GN) in the passive parameters and noise from the von Mises-Fisher (MFN) distribution
as proposed in Sect. 4.3. In Fig. 14 we show the angular error of the left hip using each
of the three methods. With (NN) error peaks occur when the left leg is matched with the
right leg during walking, see Fig. 7. This typical example shows that slight misalignment
(as little as 5◦ − 10◦) between video and sensor data can miss-guide the tracker if no
noise model is used. The error measure was 26.8◦ with no noise model, 13◦ using Gaus-
sian noise and 7.3◦ with the proposed model. The error is reduced by 43% with (MFN)
compared to (GN) which indicates that the von Mises-Fisher is a more suited distribution
to explore orientation spaces than the commonly used Gaussian. This last result might
be of relevance not only to model sensor noise but to any particle-based HMC approach.
Finally, pose estimation results for typical sequences of our dataset are shown in Fig. 9,
10, 11 and 15. A video of the proposed approach along with tracking results can be found
in the authors website7.

6 Discussion and Limitations

State-of-the-art video trackers, either based on local or global optimization, suffer from
3D ambiguities inherent in video and usually fail to recover from errors. Our experi-
ments reveal that video based pose estimation algorithms benefit from using a set of
small IMUs, specially in outdoor scenarios where the image observation models are
weak and ambiguous. Nonetheless, combining inertial and video measurements poses a
difficult optimization problem that has to be dealt efficiently. Local optimization is fast
and accurate in indoor scenarios. However, our findings indicate that to integrate orien-
tation, (LS) is not suited in outdoor scenarios because it suffers from tracking failures
that occur frequently. Optimizing a global cost function (GS) is also not the best choice
since it yields an optimization in a high dimensional space which is computationally
more expensive. In particular, a high number of hypotheses have to be generated since
the search space volume is huge. Rejection sampling (RS) is not suited because it scales

7 http://www.tnt.uni-hannover.de/˜pons/

http://www.tnt.uni-hannover.de/~pons/
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very poorly with the number of constraints and the computational time grows exponen-
tially. Finally, we showed that the commonly used Gaussian Noise is outperformed by
the proposed von Mises-Fisher noise model when it comes to modeling orientation am-
biguities. The reason is that spherical sampling in the joint angle domain does not yield
spatially spherical joint configurations as opposed to sampling using (MF). Our proposed
method overcomes much of the described limitations: on the one hand the search space is
explored only in the region that satisfies the constraints, and on the other hand sampling
using Inverse Kinematics has a reinitialization power that overcomes tracking failures
in many occasions. Unfortunately, the proposed method is limited by the availability
of IMUs. Even though the IMUs are very small and we use only five, they are unavail-
able in several applications such as surveillance or MoCap and scene understanding from
video archives. Another issue that requires improvement is robustness to unsynchroniza-
tion produced by the IMUs lag during fast motions. The performance of our proposed
tracker is still affected from such unsynchronization between IMUs and the video cam-
eras. Since IMUs do not provide any positional measurement, our tracker fails when the
body limbs (specially the arms) are not detectable due to long term occlusions. Finally,
even though we achieve considerable computational gains w.r.t optimizing the full state
space, evaluating the image cost function for every sample is still a bottle neck. To further
reduce computational time, an option would be to use very few particles e.g. 25 and then
locally optimize to obtain better accuracy. Although in this work we have presented an
algorithm to combine IMUs with video, the ideas shown here are of significant relevance
for the computer vision community. Firstly, the Inverse Kinematics sampling scheme can
be used to generate pose hypotheses that satisfy a set of kinematic constraints (we leave
extensions to positional constraints as interesting future work). Secondly, the proposed
sensor noise model can be used in any problem that involves modeling or optimization
of rotation elements.

7 Conclusions

By combining video with IMU input, we introduced a novel particle-based hybrid tracker
that enables robust 3D pose estimation of arbitrary human motions in outdoor scenar-
ios. As the two main contributions, we first presented an analytic procedure based on
Inverse Kinematics for efficiently sampling from the manifold of poses that fulfill orien-
tation constraints. Notably, we show how the IK can be solved in closed form by solving
smaller Paden-Kahan subproblems. Secondly, robustness to uncertainties in the orien-
tation data was achieved by introducing a sensor noise model based on the von Mises-
Fisher distribution instead of the commonly used Gaussian distribution. Our experiments
on diverse complex outdoor video sequences reveal major improvements in the stability
and time performance compared to other state-of-the art trackers. Although in this work
we focused on the integration of constraints derived from IMU, the proposed sampling
scheme can be used to integrate general kinematic constraints. In future work, we plan
to extend our algorithm to integrate additional constraints derived directly from the the
video data such as body part detections, scene geometry or object interaction.
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1 Introduction

The aim of optical flow (OF) algorithms is to compute a motion vector field based
on an image sequence (the problem of defining OF properly is discussed in Sec-
tion 2). OF analysis in image processing and computer vision is a comparatively
young field of research with an approximate birthday in the early 80ies [1, 2].
Nonetheless, for more than thirty years, many solutions for OF problems have
been proposed: a search on Google Scholar reveals that about every ten years
the number of existing publications with the term ”optical flow” appearing in
the title doubled, reaching around 3000 this year (cf. Figure 1)2. Among these
articles, around 150 have been published in four major journals (IJCV, PAMI,
IP, CVIU) since 1980. Counting the number of publications in these journals
using the term ”optical flow” in the full text, the number for these journals goes
up to around 1600.

Fig. 1. Cumulative number of publications with optic or optical flow in title based
on scholar.google.com (no patents, articles only in the fields ”Engineering, Computer
Science, and Mathematics”, these fields are defined by Google).

A lot of the investigations in these papers deal with the question whether a
problem for a specific application can be solved at all with image processing tech-
niques. Today, it seems likely that many interesting problems might be solved
using image processing. Although we focus on OF estimation methods, this dis-
cussion also relates to other image processing and computer vision methods such
as stereo estimation, medical registration, segmentation and denoising.

Yet, with the advent of commercial applications and a ripening field of re-
search, new challenges arise. In this position paper, we specifically discuss the
problem of performance analysis which is becoming more and more important in
applications such as those involving security risks (e.g. driver assistance systems).
We use the term performance analysis rather than benchmarking, evaluation or

2 Source: scholar.google.com, 26.07.2011

scholar.google.com


On Performance Analysis of Optical Flow Algorithms 331

ranking with the intent to draw attention to the fact that the performance of an
algorithm consists of a set of criteria (or requirements) that can vary with the
needs of different applications and types of data. As we will discuss, we want to
emphasize that performance characteristics of an algorithm cannot be described
by a single scalar value.

Starting out from a discussion of contemporary performance analysis ap-
proaches in OF problems, we will address each challenge in performance analysis
in a separate subsection of this text. Our aim is not to define a new paradigm
for performance analysis for OF problems. Neither do the authors offer exper-
imental results on or implementations of existing methods. Instead, the aim of
the paper is:

– to review related literature,
– to create awareness for new problems arising due to the increasing number

and complexity of existing OF algorithms,
– to show current trends of ongoing discussions among scientists as well as

practitioners,
– to propose various new ways to characterize computer vision algorithms,
– and thereby to suggest new fields of research addressing the problems iden-

tified in these discussions.

1.1 Related Work

Both experimental and theoretical performance analysis of algorithms have a
long-standing history in computer science and mathematics (e.g. rooted in com-
plexity theory), whereas system characterization and specification is a similar
strand of research in engineering (e.g. requirements analysis in software engi-
neering).

Although many OF algorithms have been suggested, only four publications on
their performance analysis exist. Chronologically, the first ones date back to 1994
[3, 4]. At this point around 500 papers with optical flow in their title had been
published. In 2001, McCane et al. [5] created a new benchmark, including new
synthetic scenes and a free software framework to generate new datasets. The
most influential paper was published in 2007 by Simon Baker et al. [6, 7]. The
authors not only created new datasets (with extraordinary efforts) and evaluated
a new set of algorithms; they also created a website known as Middlebury-
Database which has since been used by authors of new OF algorithms to compare
their results with others. Today, around forty algorithms have been added to this
database. However, compared to the very large corpus of existing work in this
field, the number of evaluations is still small and lacks a theoretically justified
framework.

The remainder of this section deals with papers on general theoretical ap-
proaches to performance analysis in computer vision. In later sections, we will
address related work on each of the more specific topics we believe to be relevant
for performance analysis of optical flow methods.

In the late 90ies, a number of workshops have been held dealing with per-
formance analysis for computer vision in general [8–10], laying out a roadmap
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on why and how this strand of research should and could be established in the
community. A general discussion of ten pros and cons for performance analysis in
image processing was listed by Förstner [11]. This paper very much reflects the
facts that on the one hand performance analysis can be very difficult, expensive
and cumbersome, but on the other hand, it is also very important and feasible
in terms of longterm research goals. In the same workshop, Maimone and Shafer
[12] state six steps necessary for performance analysis: mathematical analysis,
simulations without noise, simulations with noise, empirical testing with real
data with full control, empirical testing with real data with partial control and
empirical testing with uncontrolled data. A year later, these steps have been
cited in a workshop editorial by Christensen et al. [8]. In 1998, Matei [13] ad-
dressed the first step by suggesting a statistical framework he called ”resampling
paradigm”, whereas Klausmann et al. [14] concentrated on the practical question
on how to evaluate performance based on given applications. They were the first
to explicitly state that performance characterization and algorithm ranking are
two different tasks which should be addressed only if a clear definition of the
application of an algorithm is given. Therefore, they define a requirement profile
and an assessment function respectively. They argue that: ”The assessment of
computer vision algorithms is more than just a question of statistical analysis of
algorithm results. Rather, the algorithm field of application has to be taken into
account as well.”

In 2001, Courtney and Thacker [15] stated that current research focuses too
much on innovation and sophistication and that performance analysis is not
carried out in a well-motivated, rigorous manner. They explicitly mention that
showing results on a few test images is insufficient, because it does not allow a
statistical analysis. They further argue that computer vision should strictly be
regarded as a branch of applied statistics. To carry out performance analyses
their approach is to distinguish three evaluation types: Technology evaluation
(groups of generic algorithms for generic applications), scenario evaluations (spe-
cific algorithms for specific applications) and operational evaluations (analysis of
the full end user system). In a series of later papers the authors refine these ideas
and suggest more concrete methods on computer vision system design [16–18].

Luxen [19] suggests to accumulate large amounts of data such as many views
of the same object to achieve low errors. The results can then be used as al-
most noise-free ground truth. He also suggests to carefully characterize input
and output data of computer vision algorithms in order to better understand
under which circumstances which output quality can be expected. Similar to
[15], Luxen distinguishes four levels of abstraction in computer vision systems
design: intentions (e.g. image matching), functions (e.g. least squares fitting),
algorithms (e.g. matrix inversion), implementations (concrete code realizing an
algorithm). He argues, that each performance characterization can be based on
one of these four fields. Hence, both empirical as well as theoretical studies were
needed to fully characterize a system. Finally, similar to [12] he distinguishes
three types of reference data for real environments: the first type are human an-
notations (ground truth), the second type is defined by a pair of reference data



On Performance Analysis of Optical Flow Algorithms 333

(without ground truth) as well as reference code and the third type is defined
by an arbitrary implementation of an algorithm, but predefined reference input.
We will discuss the generation of reference data in Section 3.4.

Further discussions on performance analysis in general can be found in [20] and
[21]. The authors of [20] argue that the whole system (including all algorithms
in a processing chain) need to be understood as one large optimization problem
which should be solved based on a very large reference database. In [21] two
important aspects are the notion that performance metrics are subject to change
over time and that ground truth is very often easy to obtain in case the problem
to be solved is on such a high level that humans can simply answer yes/no-
questions to create ground truth. The authors also note the interesting fact that
currently document analysis [22], face recognition [23] and tracking/surveillance
[24] are predominant fields with many and very detailed performance analyses
being published.

Most recently, in a book draft [25], Burfoot picked up on the points of [11],
but in a much more explicit way. According to the author, ”The weakness of
evaluation in computer vision is strongly related to the fact that the field does
not conceive of itself as an empirical science. [...] Instead [...], vision researchers
see themselves as producing a suite of tools.” (p.103). Burfoot further states:
”A critical reader of the computer vision literature is often struck by the fact
that different authors formulate the same problem in very different ways.[...]
The cause of this ambiguity in problem definition is that computer vision has
no standard formulation or parsimonious justification. [...] Vision papers are
often justified by a large number of incompatible ideas. [...] They will also often
include completely orthogonal practical justifications, arguing that certain low-
level systems will be useful for later, high-level applications.” (p. 104).

He also sees similarities to historical problems in other fields of science such
as physics and chemistry: ”It is almost as if, by viewing birds, researchers of an
earlier age anticipated the arrival of artificial flight, and proposed to pave the
way to that application by developing artificial feathers.”(p. 106) ”The argument
of this book, then, is that the conceptual obstacle hindering progress in computer
vision is simply a reincarnation of one that so long delayed the development of
physics and chemistry.” (p. 108) ‘”The difference is that physicists can eventually
determine which explanation is the best. One crucial aspect of the success of the
field of physics is that physicists are able to build on top of their predecessors’
work.” (p. 105)

We would like to encourage a discussion on these hypotheses with respect
to optical flow estimation. In the remainder of this work we will first review
what is actually meant by the term ”optical flow” (Section 2). Then, we suggest
a number of approaches to consolidate optical flow estimation research in the
future.

2 Defining Optical Flow

Before we can characterize the properties of an algorithm, we need to clearly
define what we mean by ”optical flow algorithm”. Using the notion of a function
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signature in programming, we therefore ask for input and output datatypes. Sev-
eral definitions can be found in textbooks (e.g. [26–28]). According to Burton
and Radford [26], the term ”optical flow” is defined as: ”the pattern of apparent
motion of objects, surfaces, and edges in a visual scene caused by the relative
motion between an observer (an eye or a camera) and the scene.”. This defines
the output datatype to a certain degree. Remaining questions are for example
whether dense or sparse flow fields need to be found; in case the actual vision
system is interested in segmenting an image, the motion contours might be of
interest. For tracking applications, the 3D motion of a physical object computed
from the flow field could be the output whereas for motion detection, a thresh-
olded flow field might suffice.

The question for the input datatype is more difficult to answer due to several
reasons.

First, there often is no notion about the kind of images used as input. Some-
times images come from different spectra (e.g. infrared, x-ray, ...) or optical
systems (e.g. fisheye lenses, omnidirectional cameras) and sometimes not all
pixels in the image contain useful information (e.g. in the case of particle im-
age velocimetry as defined in [29]). Second, mostly two images are assumed as
input, therefore forbidding the use of more than two images in a sequence. Ad-
ditionally, depending on how strictly this definition is interpreted, it implicitly
assumes that there is a bijection, mapping pixel locations in the first image to
locations in the second image. Thus, on a discrete grid, occlusions, divergences
and convergences are assumed to be negligible, leaving only globally constant
translations and rotations as possible outcome of optical flow algorithms. These
limitations can be overcome by extending the orthodox notion of optical flow,
e.g. by acknowledging and making use of the finite exposure times of images [30].

Of course these definitions are refined or varied in each publication accordingly
to describe challenges given a specific application. Usually, all approaches are
subsumed under some general term such as optical flow, medical registration,
stereo estimation or particle image velocimetry. This is useful to group subsets
of OF algorithms with respect to their application domain and typical model
assumptions. However, this terminology comes with two disadvantages: first, it is
often unclear which application domains are associated with one of these groups.
For example, a temporally consistent, non-dense algorithm for pixel-accurate
estimation for motion utilizing more than two image frames of a sequence at once
can be considered an optical flow algorithm. On the other hand, the algorithm
cannot easily be compared by means of the Middlebury database for optical
flow evaluation because the number of frames of the test sequences might be too
small to yield good results.

The second disadvantage is that it creates the illusion in the mind of the
reader, that those algorithms are comparable in their general performance. For
example, an algorithm estimating motion in image sequences recorded from in-
side a car in order to ultimately assist the driver in detecting potential obstacles
might be highly similar to an algorithm estimating the motion of a swarm of
bees in their nest in order to ultimately understand the communication encoded
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in their dance. Yet, each algorithm can be based on completely different as-
sumptions such as there is a planar street on which the camera is moved or that
the bees move on a hexagonal grid. The algorithms might also address differ-
ent problems as for example the occlusion and translucency of cars or motion
blur of the bee’s shaking bodies. Furthermore, the outcome of the algorithm
might be subject to requirements such as sub-pixel accuracy for time-to-impact
computation versus good motion boundaries for bee-body segmentation.

Due to these disadvantages of adding all OF algorithms to a single group, we
believe that a very careful categorization based on the properties defined in the
following sections is crucial for further advancements in the field.

As correspondence problems are mostly ill-posed, prior knowledge about the
estimates to be computed is always needed. This knowledge should be well-
understood and described as well as possible and also be as accurate as needed
for the task. On the other hand, it should generalize well over many types of
input data. Therefore, as in machine learning, a trade off between generalization
and specialization for the model needs to be found. This condenses to the ques-
tion: which model is too general and which is too specific? In contrast, current
approaches to performance analysis try to categorize existing algorithms either
based on the employed optimization framework (e.g. local versus global and vari-
ational versus graphical models) or are based on a single scalar output criterion
such as the average endpoint error (defined as Eep(x) = ||u(x) − g(x)||2 with
x being a pixel location, u(x) = (ux(x), uy(x))

T the computed flow and g(x)
the true flow, respectively). Yet, instead of being fixed to a single criterion such
a ranking needs to take into account all requirements of a given application.

Given a system that uses correspondences as input data (an application), re-
quirements analysis (cf. e.g. [31]) helps to understand how specific the model
can be without loss of generalization within the bounds of the application do-
main. But working with requirements implies knowledge about the application
domain. Hence, in order to clearly define OF algorithms we need to create a
categorization of applications, which will be discussed now.

2.1 Application Categorization/Systematization

In order analyze the appropriateness of a model for a given application, we need
to know the application. On the other hand, there might be an infinite number of
yet unknown applications for OF algorithms. It seems unlikely that we can first
enumerate all applications and then analyze the performance of each and every
algorithm for each and every application. System engineers (cf. e.g. [32]) found
a way around this problem by identifying a number of meaningful and intuitive
properties for each system component which are measured and then listed in
a specification sheet. These properties are selected by finding those which are,
ideally, important for as many relevant applications as possible. In order to select
the most indicative properties, all currently available applications are considered.
Then, by experimentation, system properties are selected and tested for their
usefulness.
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Currently, the two most important properties for OF algorithms seem to be
average endpoint error (disparity error in stereo) and (to some extent) algorithm
complexity (computation time, memory efficiency). By looking at some well-
known applications we will see that there is a variety of other properties that
are important and sometimes contradicting each other.

For photogrammetry and 3D reconstruction [33, 34] correspondences are the
basis for triangulations: if the 2D position of the same 3D point is known for two
or more views in a number of images, the 3D position can be reconstructed via
projective geometry. The accuracy of this reconstruction largely depends on the
accuracy of the correspondence (which, in turn, depends on system configuration
parameters such as camera baseline, etc.; cf. e.g. [35]). Such methods typically
require a large number of correspondences which are not spatially correlated by
regularization techniques. The correlation due to these (in general necessary)
techniques is a severe problem in statistical analysis as it is difficult to charac-
terize. If the regularization is data dependent or robust estimators are used, the
problem becomes even more theoretically involved.

As soon as very large scenes have to be reconstructed, speed and memory
efficiency become an issue as well [36]. Here, a tradeoff between speed and ac-
curacy has to be found. This leads to the notion of ”scalable algorithms” where
an optimum tradeoff can be found by adjusting system parameters.

In robotics and driver assistance systems, OF algorithms have different re-
quirements: in this scenario the task often is to merely detect objects such as
traffic signs, the ground plane or sources of danger. Here, speed, memory and
energy consumption play a crucial role. On the other hand, sparse flow fields
often are sufficient, e.g. for navigation and localization [37, 38].

Correspondences are also used to interpolate intermediate frames between
two consecutive time steps of an image sequence [7, 39]. A related case is stereo
baseline adjustment or, more general, view synthesis based on multiple images
[40]. Software companies involved in cinematic movie postproduction such as
The Foundry (Nuke) implement a number of (modified) methods known from
literature but are not always published [41, 42]. In these applications the corre-
spondences need not necessarily be physically correct; the most important prop-
erty often is is that they are temporally consistent and can be used to produce
results which are pleasing to the eye.

The opposite is the case in scientific measurements. Application scenarios
are for example the mensuration of water waves or plant growth in environ-
mental physics [43, 44], estimation of air streams around objects [45], weather-
forecasting [46] and the analysis of fluid motion in heart-assist devices [47]. In all
these cases, a small endpoint error of the flow vectors has the highest priority,
whereas speed often plays a minor role. Furthermore, the confidence (cf. Section
3.2) of each individual measurement needs to be estimated to allow researchers
to asses the outcome of each experiment. Interestingly, for these applications,
completely parallel fields of research with little overlap to image processing or
computer vision have been established [29, 48], bringing up similar concepts



On Performance Analysis of Optical Flow Algorithms 337

of correspondence estimation, but focusing on different approaches (e.g. block-
matching for motion estimation [49]).

A number of other fields of research deal with optical flow, such as action
recognition [50], video surveillance [51], video compression [52], video annotation
[53], supervision of elderly people [54], swarm analysis of beehives [55] as well as
research in zebrafish embryo development [56].

The abundance of existing and possible applications indicates that a complete
overview of applications is difficult to define and maintain. On the other hand,
based on the requirements of a subset of these applications, a set of more abstract
algorithms properties could be found. Similar to specification sheets of electronic
system components, we believe that OF algorithms can be described by carefully
characterizing input and output data as well as system properties.

Once a definition (or a set of definitions) for algorithms has been found based
on applications and their requirements, we would like to understand how well a
given algorithm performs. To answer this question, several challenges have to be
solved. This will be discussed in the following section.

3 Challenges in Performance Analysis

We identified five points to be considered to thoroughly characterize the perfor-
mance of an algorithm:

– Input data characterization can help to organize typical image sequences
into categories with similar properties (Section 3.1).

– Output data characterization should not only evaluate the accuracy of OF
methods. Instead, we suggest a list of six important properties of output
data (Section 3.2).

– System properties describe the technical aspects of speed and memory con-
sumption as well as modularity and engineerability (Section 3.3).

– The problem of ground truth generation is largely unsolved, but is one of
the most crucial as well as difficult aspects of performance analysis for OF
algorithms (Section 3.4).

– Finally, well-motivated performance metrics for the comparison of flow fields
have to be found (Section 3.5).

Each of these points is carefully motivated in the following subsections. Related
work will be discussed along with suggestions how each topic can contribute to
a more thorough and theoretically motivated approach to OF performance anal-
ysis. In Section 4, we will discuss hypotheses why so few performance analyses
for OF are currently available and why a detailed consideration of each of our
points could boost both quality and quantity of optical flow research.

3.1 Input Data Characterization

As discussed above, the type of data inserted into an OF algorithm is not always
sufficiently described as ”image pair”.
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Qualitative Characterization. First steps in input characterization could be
to describe the image acquisition process and the content of the scenes for which
the algorithm should work. In many specialized publications as for example in
medical image registration the mode of data (x-ray, ultrasound, ...) is usually
defined clearly. To extend this description of input data it would be beneficial to
describe the full imaging setup including sensors, lenses, lens settings (numerical
aperture and focal length), light sources (incident angle, physical shape, spectra),
surface material properties (reflectance functions), etc. This is usually done in
particle image velocimetry were the setups vary largely [29]: in this special case
the input data is a 2D image generated laser sheet that visualizes particles. Here,
the motion is considered to be truly 2D-dimensional so that apparent flow and
physical motion coincide.

Describing and categorizing the acquisition process and the content of the
scenes creates awareness for the task the algorithm was made for, but it will
often be difficult to exhaustively explore the data when the algorithm is supposed
to work well and when not. Another way to solve this challenge might be the
analysis of large amounts of input data ideally fully describing inputs which are
suitable for the algorithm.

Quantitative Characterization. Local feature vectors containing e.g. orien-
tation and scale information could be used to decide whether a given scene is
similar enough to yield acceptable results with the OF method at hand. It might
be useful if these features were directly related to known critical situations such
as occlusions, low amounts of texture, illumination changes or large motions.
Also global features describing the image or the scene as a whole and comparing
it to sequences with known outcome might characterize input data in a useful
way. However, it remains to be studied whether purely local or purely global fea-
tures can express the full complexity of data sufficiently for a given application.

There are several possibilities to characterize the specific set of image se-
quences which are addressed by an OF algorithm. First of all, much research
has been dedicated to scene descriptors (e.g. GIST is popular approach [57]).
Another possibility is to characterize the structure of the (single) images by
more or less standard techniques, such as describing the spatial autocovariance
function; this can be done compactly by setting up parameterized models, such
as separable exponential decay functions. This description should be completed
by at least a rough description of the noise variance. A more careful and de-
tailed characterization would include a parameterized description of the optical
point spread function as well as the spatial sensor element dimensions (fill fac-
tor, or more detailed). The overall characterization of the discrete inter-pixel
autocovariance results then from convolving the optical and sensor characteri-
zation, and the intrinsic autocovariance function of the image, as it would be if
the former two influences were neglectable. This intrinsic image autocovariance
function corresponds to what is often discussed as the ’natural’ and ubiquitous
power spectrum of images per se, often modeled as an 1/f power spectrum.
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The temporal characterization should consider the exposure time(which can
range between a small fraction of the temporal distance of frames, and the full
inter-frame period). More importantly, the temporal characterization should de-
scribe the distribution of apparent 2D velocities (or displacements). In the case
of certain applications, in particular for driver assistance, this distribution can
be significantly different across the image area, and it can also be dependent on
some (measurable) external parameters such as camera motion w.r.t. the fixed
world coordinate frame. These characterizations do of course not capture the full
characteristics of an ’interesting’ image sequence, which is structured into differ-
ently moving objects, has occlusions, etc., but it is already a very solid basis for
optimally designing the derivative operators needed for all differential methods
[58] for designing averaging operators (instead of resorting to ’Gaussians’) [59],
and furthermore to provide useful priors for the entities which are sought.

In an ideal scenario a set of generative input data models (acquired e.g. by
machine learning) could be found which can reliably be used to describe the input
data the algorithm was made for. As will be discussed in Section 3.2, another
intriguing aspect of input data characterization is to identify local regions in a
scene were the model cannot be applied to because it is either too specific or
unspecific.

3.2 Output Data Characterization

As the results of OF methods are used for many different applications, the quality
with respect to a given application can be defined with various optimization goals.
Hence, next to characterizing input data the same should be done for the resulting
flow fields. We will now describe several approaches starting out from very basic
characterization techniques such as using example outputs and qualitative evalua-
tions. Then, we will shortly discuss two seldom addressed output data properties,
namely robustnesswith respect tomodel violations aswell as temporal consistency
of flow fields. Finally, we will review research on the heavily studied question for
accuracy and a currently evolving approach to confidence estimation.

Example Output. The most basic and also a very general way to characterize
output data is to provide example outputs of the algorithm. This can for example
help programmers to check the correctness of a reimplementation of the method
at hand. If large amounts of results are available on various kinds of data it can
also facilitate the choice of algorithm for a specific application.

Qualitative Evaluations. Another basic approach are qualitative evaluations.
In creative image processing, aspects such as visualization, rendering and post-
processing of videos, the mere beauty of the results can be of major importance.
Typical cases are frame interpolation as well as view synthesis. In such cases it
might also be possible to ”cheat” on the viewer by creating false results which
have no noticeable effect on the outcome of the application. These scenarios also
allow for psychological tests analyzing whether the viewer is able to find the
errors in, or is otherwise affected by the algorithm outcome [60].



340 D. Kondermann et al.

Robustness with Respect to Model Violations. In safety-relevant appli-
cations such as driver assistance and medical systems, the robustness of model
and optimization strategy with respect to data violating the model is of great
interest. As there is an infinite number of possible model violations it is diffi-
cult to devise general tests. One way to describe output data with respect to
model violations is to collect large amounts of data containing common model
violations, such as motion blur, lens flares, etc. Another closely related question
is how fast the results deteriorate if the model is violated. In case the quality
degrades gracefully, the algorithm might be better suited for those applications
dealing with safety issues.

Temporal Consistency. For video processing, the temporal consistency of the
algorithm results are often more important than other properties. A test for
this consistency could be carried out by systematically varying original data to
see how the outcome changes. This is similar to sensitivity analysis in linear
models [61] and machine learning approaches. Two recent articles enforcing this
property and showing very promising results are [62, 63].

Accuracy Limits. There are several ways to test and compare accuracies of
OF algorithms. A major problem is how to measure the error because there is an
infinite number of options to define an order (or ranking) between two vectors.
Hence, each pair of vectors (i.e. ground truth and measured flow vector) first
has to be transformed into scalar values in order to be comparable. Next to the
regularly used endpoint error [7] various choices exist. One way is to compute
the magnitude of both vectors. This is problematic when ground truth vector
and measured flow vector are on the one hand equally long but on the other
hand point into opposite directions. The magnitude error would still be zero.
Another way would be to compute the angle between two vectors which raises
the analog problem: The vectors can be of different magnitude. Another problem
here is the singularity for vectors of very small magnitude. To weight these two
components of magnitude and angle the so-called angular error defined by [64]
has been suggested. This error weights both parts of the errors in a nonlinear and
unintuitive manner which was not motivated in the original paper (as discussed
in [65]). Depending on the application one error measure or another might be
favorable, a fact that should be taken into account when stating the accuracy
limits of the algorithm.

Once an error measure has been defined, the error distribution needs to be suf-
ficiently motivated. The problem here is, that this distribution actually depends
on image data, ground truth and measured flow. For example, testing of the accu-
racy with a highly textured region that moves at a constant velocity everywhere
yields very low errors with most algorithms. If the images were of constant color
(one homogeneous region) the results could be completely wrong. The ground
truth could also be arbitrary. Hence, testing on a sequence like Yosemite [66]
(or any other small set of sequences) does not adequately represent the quality
of the algorithm. It just gives a hint that for this type of scene (e.g. highly tex-
tured, smooth and mostly small motion in case of the Yosemite sequence) the



On Performance Analysis of Optical Flow Algorithms 341

algorithm might actually work well. Thus, in some cases algorithms work very
well for extremely small motions, sometimes for very large motions. These limits
should be well understood and clearly stated.

Furthermore, representing the error distribution only by its mean and variance
for a full image is not sufficient, because only the Gaussian distribution can be
fully described by these first two moments. As motion estimation errors are far
from being Gaussian distributed it might be more helpful to actually visualize
the whole distribution (or parts of it) which in turn raises the problem of density
estimation. Another option could be to show per-pixel error measures as is done
on the Middlebury website.

Finally, it would be helpful if it was known under which circumstances the
most accurate results can be achieved by an algorithm. At first this sounds easy
to answer: Constant motion through time and much texture certainly is a simple
case. Yet, an image of a Gaussian intensity distribution in a 32 bit quantized
image might even yield very accurate results for non-constant motions such as
a rotation. Furthermore, it is interesting to which degree the results deteriorate
with respect to more challenging image data. To the best of our knowledge,
this aspect has never been studied thoroughly although it is very important for
scientific applications where sub pixel accuracy is critical and where it is safe to
make more specific assumptions about the model.

Estimatibility, Confidence and Alternative Solutions. Usually, OF algo-
rithms are analyzed by comparing ground truth with actual algorithm results.
This type of performance analysis is carried out by humans prior to the actual
usage of the algorithm in a full computer vision system. Therefore, we call this
technique supervised performance analysis. An alternative approach is to allow
for self-diagnosis of the computer vision system while it is running in its real
environment. We call this approach unsupervised performance analysis which
will be described now.

To motivate three aspects of unsupervised performance analysis consider the
following extreme example of OF input data: A typical image sequence for par-
ticle velocimetry consists of a mainly black background and some hundred (or
thousand) bright moving spots which are physical tracer particles in a fluid. In
the black (homogeneous) regions of the background no motion can be estimated:
a black spot at any location can be matched to almost any other location in the
next frame. We do not care about these occlusions and ambiguities in the back-
ground and simply assume that there is no motion at all. Hence, an algorithm
working on this data should be able to decide where motion can (or should) be
estimated at all. Furthermore, particle velocimetry is often used in environmen-
tal sciences to measure fluid motion, so each and every measurement must come
with (at least) an error bar, showing the precision of each flow vector. Finally,
occlusion occurs whenever two particles are crossing due to the projective nature
of the image acquisition. Sometimes, it is impossible to decide which particle is
which after they crossed in the image plane. Therefore, our algorithm needs to
be aware of alternative solutions.
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More generally, we ask how much information we need to obtain from the
given data and how much we can obtain depending on the intended later use of
the resulting motion:

– Dealing with occlusions and ambiguities can be understood as dealing with
estimatibility: Instead of assuming that at each pixel of an image sequence
a full flow can be estimated, we pose the question whether motion can be
estimated at all and, if so, how many parameters of it [67, 68]. This should
be easier to decide than to actually carry out the estimation.

– To answer the question how accurate the results are we use confidence mea-
sures. This should still be easier than computing an actual flow field.

– Finally, the most algorithmically complex and related task would be to not
only find one motion estimate but to also inform the user about alternative
solutions.

These notions of estimatibility, confidence and alternative solutions also relax the
problem of motion estimation: we do no longer need to estimate flows at each
and every pixel. This reduces both computational cost and potentially harmful
results in safety-relevant applications such as driver assistance systems.

While little literature focuses on estimatibility and alternative solutions for
optical flow, confidence measures have already been studied by Barron et al. [3].
A first paper specifically dedicated to the comparison of confidence estimation
approaches has been published by Bainbridge and Lane in 1996 [69].

Two approaches are regularly being studied: confidence based on input data
(images) and confidence based on output data (flows). As the first does not take
the results into account, they can also be interpreted as estimatibility measures.
A central theme recurring in all image-based confidence methods is the notion
of the local shape of the energy to be minimized. The intuition is that sharp
peaks in the energy indicate high confidence whereas low curvatures allow for
many equally likely flows resulting in a low confidence.

More formally, two highly related theoretical frameworks can be used to de-
scribe this approach: intrinsic dimensions and Fisher information (both defined
e.g. in [70]). Both definitions are based on the local covariance matrix of the en-
ergy of an OF model. Intrinsic dimensions can for example be used to determine
the number of parameters which can be estimated [67]. They have firstly been
applied in computer vision in 1990 [71] and later been adopted e.g. in [27] and
[72, 73]. Fisher information is used to describe the Cramér-Rao Lower Bound
which states that the variance of any unbiased estimator is at least as high as
the inverse of the Fisher information. Therefore, this bound is an indicator of
how accurate the best possible outcome of the motion estimate can be. Another
option is to use the Chi-Square-Test which can be used to verify the appropri-
ateness of a model in case the errors are normally distributed, unbiased and have
a given assumed covariance matrix.

A different way to estimate confidences is to solely rely on prior knowledge
on flow field statistics. This has been studied for example in [74, 75], where the
spatio-temporal statistics of typical flow fields are learned in terms of a linear
model which is then used to employ hypothesis testing on OF algorithm results.
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Similar approaches on learning the statistics of flow fields have previously been
applied to OF estimation (e.g. in [76–78]).

Two recent publications [79, 80] use learning based on multiple clues derived
from both image and flow data for confidence estimation.

Finally, scene-inherent redundancy could be another aspect for confidence
estimation: in case one has three or more images, the results should be consistent
with respect to to the geometry of the scene, e.g. rays to the same scene points
should intersect. This goes beyond the Fisher information, as additional flow
fields of other pairs of images of a static scene can be used to define a local flow
vector quality criterion.

3.3 System Properties

Until now we have focused on the algorithm definition as well as the input and
output data characteristics. All these properties focus on the data an algorithm
receives and computes. Another important point is to understand all relevant
technical details of concrete implementations. Hence, a set of system properties
needs to be found so that engineers can deal with a system to compute flow fields
as black box. We identified three major groups of such properties: the ease of
maintenance and implementation, the possibility of white-box testing and speed
as well as memory usage.

Engineerability and Number of Parameters. We understand engineerabil-
ity as the ease of implementation, the possibility to actually implement the algo-
rithm in a commercial application and the possibilities of adapting the method
to the specific needs of engineers. Especially the number of parameters influenc-
ing the output of the algorithm should be small in their number, intuitive to
understand and insensitive with respect to input data. In case the number of
parameters cannot easily be reduced, a set of default values should be known
which can be used to create results of reasonable quality on most images. Com-
mercial aspects such as whether the algorithm is patented or not might also play
a role. This system property can be tested easily by explaining and motivating
the parameters thoroughly and estimating the amount of time a programmer
new to the field might need to implement the method.

Modularity and White Box Testing. A common practice in the publica-
tion of OF algorithms is to describe the whole algorithm and to test its output
against test sequences. Regularly, a few crucial parts of the algorithm are either
left out or parameterized differently in order to estimate its effect on the overall
results. For example, many OF algorithms are built up from many algorithmic
elements, such as multiple similarity measures, image derivative kernels, interpo-
lation techniques, pyramid computation schemes, regularization terms and so on.
Each of these elements has parameters and can even be replaced by completely
different methods. For example, sub pixel image intensities can be interpolated
by a number of interpolation schemes; an image pyramid can be computed by
scaling the original image down by a factor of two or smaller or it can even scale
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the image up to some degree [81]; the derivative of an image can be computed
by many kernels or even other filtering techniques ranging from simple central
differences to sophisticated filters specially designed to estimate motion with a
specific similarity measure [82]. Any subtle change in these settings can influence
the overall accuracy of the results and is therefore worth further investigation.

At the core of this problem lies the fact that any OF algorithm is actually
plugged together from a large set of modules available. Some of these modules
as for example image derivative computation are fields of research on their own.
It would be helpful if there were a set of known slots (constituting the elements
of the most general motion estimation algorithm and clearly defining input and
output data) and a variety of possible modules that could be plugged into each
appropriate slot. Then, each slot or module could be scientifically investigated
separately and also in its combination with other modules (white box testing). A
software framework for this approach including a number of example optical flow
algorithms has recently been made publicly available3. The software is based on
a modularization strategy specifically designed for OF algorithms as suggested
in [83]. These modules of an optical flow method are another interesting set of
algorithm properties.

Execution Speed and Memory Usage. The time and memory an algorithm
needs to actually estimate the motion of an image sequence usually is a ma-
jor issue in industrial applications. Several aspects range from practical over
completely theoretical to technically highly intricate considerations; to each of
these a complete field of research is dedicated. Therefore, it is very difficult to
judge the execution speed of an algorithm even though it is one if its important
properties.

– Data Reduction: Sometimes, it suffices to only compute motion at a few
locations. Hence, computation time can be saved by finding algorithms that
reduce the number of locations. This is a typical approach in tracking [84]
where usually only very few pixels of an image sequence are investigated.

– Mathematics: For example in global motion estimation techniques (often
including systems of partial differential equations), large linear systems of
equations are generated from the image sequence. Their solution can be
carried out by many methods, ranging from Gaussian Elimination Schemes
over Krylov Subspace Methods to Algebraic Multigrid Schemes. Exploiting
mathematical properties can dramatically reduce computation times. This
was for example shown by [85, 86].

– Parallelization: With the dawn of multicore desktop computers and general
purpose GPUs, parallelization has become a major topic. Especially in image
processing, parallelization is surprisingly easy to implement (consider e.g. the
convolution of an image with a mask). But also solving large linear systems
of equations can be done in parallel (cf. e.g. [87].

– Code Optimization: It might sound trivial but with a diversity of large im-
age processing libraries for major programming languages (as e.g. C++ and

3 http://charon-suite.sourceforge.net

http://charon-suite.sourceforge.net
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Matlab) code optimization is far from simple. Nonetheless, this part can also
affect theoretical considerations: if it were for example easier to optimize code
for matrices than for other data structures such as graphs, the choice of the
optimization method would interfere with the actual code design. Today, a
programmer needs to have a deeper understanding on how image processing
libraries implement their functionality in order to optimally exploit its in-
ternal structures. Another problem is that the ways compilers optimize code
is rather unintuitive: one cannot implement all functions in the same way
to yield the same automatic code optimizations. A typical approach is trial
and error, but each compiler optimizes its code differently so that the same
code can be much faster when compiled with a different compiler.

– Choice of Hardware: For some methods, specifically designed hardware
ranging from image acquisition device to integrated circuits for numerical
optimization can influence the execution speed. For example, modern driver
assistance systems contain integrated modules for stereo estimation which de-
liver highly accurate depth maps in real time with very low power consump-
tion. Another example are highly optimized detectors in the large hadron
collider which can detect and transfer collisions in the gigabyte-range per sec-
ond. Finally, the famousMicrosoftKinect creates depthmaps in real time with
a customized hardware setup for structured light. This shows that a focus on
regular personal computers is not necessarily the best way to decide whether
an algorithm can be fast or whether some specific problem can be considered
as solved.

Hence, investigations into the various complexities of optical flow algorithms are
an important property to be specified.

3.4 Ground Truth Generation

The typical approach to evaluate the quality of output data is to design ground
truth image sequences where the motion is known. Two approaches can be
chosen:

1. Synthetic image sequences are generated. Due to the underlying and known
3D models, the true motion field is generated easily from animation data.
The problem with this approach is that rendered images can be unrealistic.
In fact, it is unknown whether renderings are realistic enough to fake real-
world scenes.

2. Real images are recorded. The motion is measured by some technique which
is more accurate than optical flow methods. The problem with this approach
is that the measurement motion can be inaccurate and that very few accurate
motion estimation techniques are known. This leads to scenes with limited
content such as scenes with rigid body transformations, small sets of a col-
lection of rather artificial items and the like.

The dilemma in ground truth generation therefore is that either the ground truth
flow fields are too inaccurate or the recorded image sequences are too artificial.
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The most famous examples for synthetic scenes are the Yosemite sequence [66],
the street and office sequences [5] and the diverging tree sequence [3]. Of course,
they do not cover all types of applications and can therefore only be used as a
hint on how the algorithm might perform on other sequences. One problem with
such sequences is that it is largely unknown whether they represent important or
typical cases of motion together with the rendered images. Furthermore, there are
sequences which are acquired with a real camera. The first well-known example
is the marbled block sequence [4] which contains a few block-shaped, textured
objects standing on a textured underground. Recently, a number of new synthetic
and real sequences have been generated by [7]. Furthermore, the authors of
[7] encourage the publication of results based on a website were everyone can
submit new motion fields. For automotive scenarios three large datasets have
been published [88–90]. They both contain very large amounts of representative
data, but for [89], no ground truth is available whereas [88, 90] partly have been
augmented with ground truth.

Furthermore, the generation of ground truth data is a challenging optical
measurement task itself. Its accuracy should ideally be magnitudes above the
accuracy that can be achieved by motion estimation algorithms. The typical
problem of real sequences is the estimation of this accuracy. In the publications
mentioned above the information supplied from an optical measurement per-
spective seems to be insufficient to clearly state accuracy limits. Hence, even
though in real sequences all physical imaging effects from lens distortion and
noise to light reflections and refractions are modeled properly, it remains un-
clear whether their ground truth is good enough. In such circumstances, when
ground truth of real world data is either difficult or impossible to obtain, one
can either use human-assisted motion annotations [91, 92] and carefully evaluate
the accuracy of the resulting flow fields or one can try to synthetically create
image sequences with known ground truth. One tool to achieve the latter has
recently been suggested by [79].

Then, an open question is whether rendered scenes are sufficient to simulate
the real world with respect to OF methods. Inspired by a first analysis of real
versus synthetic data [88], in [93, 94] the goal was to create the same scene
both in the computer and in reality and to compare the outcome of a given OF
algorithm. In case the two results do not differ significantly, we can conclude that
computer graphics can be used to simulate at least a part of reality. How large
this part is would then be subject of further investigations. Yet, along with [11],
we would like to stress the point that simulated data are absolutely necessary
to prove the correctness and potential accuracy of algorithms.

Finally, the selection of the (ideally) best datasets is a big and completely
unsolved problem. In practical applications, we are required to evaluate OF
without ground truth. Therefore, we need to believe that the results computed
by algorithms which derive acceptable performance for reference data are also
acceptable for other sequences. However, to accept this meta-criterion, we are
required to accept the pre-assumption that mathematical, geometrical, and phys-
ical properties of the test data are at least comparable to the previously used
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reference datasets. Therefore, we need to evaluate the quality of our datasets:
which scenes do represent real data best for a given application?

In current real datasets, the camera often does not move. In synthetic datasets
the camera is often flying smoothly through the scene. Both types of camera
motion seem unlikely in real-world situations such as robotics or driver assistance
systems. On the other hand, in surveillance applications a static camera can very
often be assumed, whereas in airborne settings, a smoothly flying camera might
be a good assumption. Next to the camera motion, the content of the scene and
the motions present in the scene have to be decided on some well-motivated
thoughts. For example, most probably nobody wants to estimate the motion of
fireworks exploding in a breaking ocean wave during a blizzard with big snow
flakes and lightning bolts. On the other hand, difficult sequences such as the
motion analysis of a soccer game during rain with hundreds of strobe lights
triggered by reporters can be highly valuable.

Another problem for the best selection of sequences with realistic camera and
object motions is the length of the sequence: In case motion is temporally coher-
ent in our reference datasets, we can use the computed results of the previous
frame as a guide to evaluate the results in the present frame. Yet, this prop-
erty implies that to evaluate algorithms which will be applied to long image
sequences, we are required to prepare reference image sequences which satisfy
the same temporal motion coherence along the time axis.

Little related work on this topic exists; a first step towards the question of good
datasets was proposed in [95]. Outside the field of OF, Shotton et al. showed that
for human pose estimation it is feasible to build a challenging synthetic test (and
training) dataset [96]. Kaneva et al. used this idea for feature estimation [97].

Even if ground truth data could be easily generated in large amounts, it
would still be unclear whether a generalization of the image data created across
all fields or even inside each field of applications can be found. Thus, the quality
assessment of something like a general-purpose optical flow algorithm might still
be impossible: We would have to test it with all types of test sequences we can
imagine. Therefore, even if a general-purpose algorithm were found, we would
possibly never be able to identify it. We argue that to alleviate this problem
many more sequences need to be created. If a generative model for input char-
acterization methods (as discussed in Section 3.1) would be found, one way to
use it would be to generate such large amounts of ground truth. As optical flow
scientists usually have a specific type of images in mind, another way to alleviate
this problem is to supply the source code of the algorithms in order to enable
other scientists to carry out tests with their own data. This method may seem
obvious but is, unfortunately, not always put into practice.

3.5 Performance Metrics

New motion estimation algorithms are usually tested with a number of ground
truth sequences. Until the Middlebury Database was established in 2007, they
where often solely tested against the Yosemite sequence [66]. As an error mea-
sure usually the so called average angular error (defined by [64] and used by [3]
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and most successive papers) and its standard deviation over a single frame of
this sequence is reported. Not only is this error measure unmotivated, it also is
inappropriate for the comparison of some typical problems of motion estimation
as is e.g. laid out in [27]. To address these problems, an additional set of perfor-
mance measures was introduced by [7]. But it is not obvious which measure can
best be used to compare the estimated results to the ground truth.

To put it in a nutshell, currently used performance measures are of question-
able use in real-world application scenarios. A lot of future research could be
carried out in this field.

4 Conclusion and Future Research

In this paper we have discussed the importance of performance analysis for op-
tical flow algorithms. A number of algorithm characteristics have been proposed
to help scientists as well as engineers to design improved algorithms or choose
between several options for a given application.

How can we facilitate systematic performance analyses of existing OF algo-
rithms?

In the past much attention was paid to innovation of new methods rather than
consolidation of existing methods. This resulted in an abundance of publications.
To better understand these findings in OF research, we suggest the following first
steps to consolidate existing work.

4.1 Creation of Reference Implementations

Creating a new implementation of existing methods is a time-consuming task due
to the increasing complexity in current modeling and optimization techniques.
Often, much theory knowledge and programming expertise are needed. Yet, it
would help to have multiple independent implementations of each OF method
for performance analysis.

Implementing an existing method could be rewarded by scientific reputation:
the online journal Image Processing On Line is dedicated to certifying algo-
rithm implementations4, so that peer-reviewed implementations of OF methods
become part of a scientific result. This approach has many advantages:

– Peer-reviewed reference implementations would be generally accepted by the
community.

– Comparisons to baseline methods became possible without ambiguity due to
implementation details.

– The workload of reimplementing existing methods is distributed over the
community.

– Performance analyses of new methods become easier.

For future research, we encourage students and scientists to publish peer-reviewed
reference implementations to create a basis for consolidation in OF research.

4 www.ipol.im

www.ipol.im
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4.2 Creation of a System Characterization Standard

We have suggested a number of ways to characterize OF algorithms. We showed
that, next to accuracy, speed and innovations in modeling, there are many in-
teresting properties. Characterizing them could lead to new approaches with
very good tradeoffs for the specialization-generalization-dilemma stated above.
This article is a step towards more awareness for system characterization in OF.
Further position papers, workshops or even dedicated journals or conferences
could help to create a system characterization standard which is supported by
a majority of researchers.

4.3 Specialization of Publications on Subtopics in OF

Historically, publishing a new paper in OF is done by reviewing the related
work and describing a model as well as optimization technique. Experiments
are shown indicating that the proposed method works well under reasonable
assumptions. In the nineties, the number of publications was already so large
that it became difficult to exhaustively describe the related work. The first review
papers emerged and authors of new methods concentrated on the closest related
work in order to be able to keep the page limit.

Today, models and optimization techniques become more and more sophisti-
cated and the number of OF publications has grown out of the bounds of an
exhaustive review paper. Additionally, performance analysis has become more
important as engineers need to choose from among thousands of publications
”the correct” method for their specific application. As a result, it became diffi-
cult to give all answers about a new approach within a single publication.

Breaking down the OF problem into parts which can be handled conveniently
and in great detail within a single article could therefore be beneficial. One ap-
proach could be to only propose a new model in a baseline optimization frame-
work and show that the results make sense (but without performance analysis)
and the idea is innovative. Other researchers could create and/or use a reference
implementation to study its properties as proposed in this article. Yet another
group could compare the results with those of other methods. Finally, a paper
about many comparisons could come to a conclusion about the question which
method is most appropriate for which task.

Thus, innovation and consolidation and could be significantly facilitated.

4.4 Usage of White-Box-Testing for Performance Analysis

Black-box-testing analyzes the properties of an OF algorithm solely based on
its output [98]. The advantages of this approach are that no knowledge about
the internals is necessary and users will experience the same behavior. A dis-
advantage is that it remains unclear which component of the method caused a
change of the system properties: for example, exchanging a scheme for pyramid
or derivative computation can have a large impact on the output.
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Whenever multiple modules are modified at the same time, black-box-testing
is no longer suitable to interpret the results: it might be possible that two of
three modified modules degrade the outcome whereas the third modules yields a
very significant improvement. If several results from more than one publication
are to be compared, we simply cannot change one module at a time.

These are reasons to use so-called white-box-testing, meaning that the effect
of each module of an algorithm on the system properties should be analyzed
separately. One approach is to segment OF algorithms into independent modules
and create reference implementations for each module separately. Algorithms
sharing several modules such as pyramid or derivative computation can then
be easily compared. This approach has been described in [83] and resulted in a
freely available, modular software suite called Charon5.

4.5 Development of a Simple Ground Truth Generation Technique

Categorizing OF applications and finding a way to characterize input and output
data as prerequisites for thorough performance analyses is a difficult task in its
own right. Until a standard approach has been found it would still be useful
to evaluate OF algorithms with respect to specific applications. Creating many
ground truth sequences is a good way to achieve this, but as the number of
applications is very large it is difficult to create so many sequences. Ideally,
everybody should be able to easily create new ground truth satisfying some
well-defined quality constraints. Possible candidates for such an approach would
be synthetic image sequences or 3D scanning. Both ideas need a sound scientific
validation before they can be employed as a black box.

4.6 Summary

We have suggested five directions for future research: reference implementations,
system characterization standards, subtopics for publications, white-box-testing
and simple ground truth generation. A better balance between consolidation
and innovation could be found by these approaches. With this article we hope
to inspire scientists to have a closer look at what has already been achieved in
our field of research.
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Abstract. Several new algorithms for camera-based fall detection have
been proposed in the literature recently, with the aim to monitor older
people at home so nurses or family members can be warned in case of a
fall incident. However, these algorithms are evaluated almost exclusively
on data captured in controlled environments, under optimal conditions
(simple scenes, perfect illumination and setup of cameras), and with falls
simulated by actors.

In contrast, we collected a dataset based on real life data, recorded
at the place of residence of four older persons over several months. We
showed that this poses a significantly harder challenge than the datasets
used earlier. The image quality is typically low. Falls are rare and vary
a lot both in speed and nature. We investigated the variation in en-
vironment parameters and context during the fall incidents. We found
that various complicating factors, such as moving furniture or the use of
walking aids, are very common yet almost unaddressed in the literature.
Under such circumstances and given the large variability of the data in
combination with the limited number of examples available to train the
system, we posit that simple yet robust methods incorporating, where
available, domain knowledge (e.g. the fact that the background is static
or that a fall usually involves a downward motion) seem to be most
promising. Based on these observations, we propose a new fall detec-
tion system. It is based on background subtraction and simple measures
extracted from the dominant foreground object such as aspect ratio,
fall angle and head speed. We discuss the results obtained, with special
emphasis on particular difficulties encountered under real world circum-
stances.
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1 Introduction

Many older persons fall and are not able to get up again unaided. Thirty to
forty-five percent of the persons aged 65 or older living at home and more than
half of the elders living in a nursing home fall at least once a year. One out of
three up to one out of two older persons fall more than once every year [14,24].

Ten to fifteen percent of those who fall, suffer severe injuries. [14] The lack
of timely aid can lead to further complications such as dehydration, pressure
ulcers and even death. Although not all falls lead to physical injuries such as
hip fracture, psychological consequences are equally important, leading to fear
of falling, losing self-confidence and fear of losing independence [4,14]. Taking
the ongoing aging of the population into account, it is obvious that adequately
detecting fall incidents is getting more and more important. Indeed, a large study
in the Netherlands reported an increase of fall-related hospital admissions from
1981 to 2008 by 137% [8]. Furthermore, falls are associated with substantial
costs. For instance, the excess costs associated with treating hip fractures range
between USD 11,241-18,727 in the first year following the fracture [7]. A study
in the U.K. estimated the total cost (year 1999) related to injurious falls in those
aged 75 and older to be almost 647 million [20].

The existing technological detectors are mostly based on wearable sensors.
However, a market study of SeniorWatch [21] discovered that the sensors are
not worn at all times (e.g. at night). Also, in case the device is button operated,
as with a Personal Alarm System, some persons with (mild) cognitive impair-
ment are not always able to activate the alarm system due to complexity of issues
around the use of call alarms [4]. As a result, many falls remain undetected. A
camera-based system, on the other hand, has the potential to overcome the limi-
tations mentioned above, because it is contactless and does not require initiative
of the person. On the downside, one or more cameras need to be installed in
every room, increasing the cost of this system; the system is fixed; and only
works indoor. Another disadvantage is that it is not possible to take the system
along on a trip.

In the last decade, several research groups have focused on a camera based fall
detection algorithm. However a major drawback of these studies, is the fact that
they use simulated data. The falls have been recorded in artificial environments
and the simulators are mostly younger persons. The goal of our work is the
development and evaluation of a prototype camera based fall detection system
using real life data. For this, we have installed cameras monitoring four older
persons with an increased risk of falling at their place of residence for six months.
Three of these persons are residing in a nursing home, since people with a history
of falling are often institutionalized.

In the remainder of this paper, we first discuss how we captured our dataset
and the challenges posed by the usage of real world data (Section 2). Next, we
give an overview of earlier work (Section 3). In Section 4, we describe the fall
detection algorithm we developed, followed by some preliminary results of the
validation of our algorithm using the real life video data in Section 5. In Section
6 we discuss these results. Section 7 concludes the paper.
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2 The Dataset and Its Challenges

2.1 Data Collection

During the acquisition phase, we have installed four camera systems at the place
of residence of four older persons. one at the home of an independently living
older woman, one in a room of a nursing home and two in a service flat. Figure 1
shows how the cameras were installed in the nursing home. For privacy reasons,
we did not plan to install a camera in the bathroom. However, the person in
the nursing room asked us to install a camera there after falling twice at that
location. We also provided a control panel that allowed the participant to switch
off the system whenever wanted. However, only the cleaning personnel used this
option.

The participants’ age was in the range of 83 to 95 years old, and all of them
had an increased risk of falling. Recordings were made during approximately
six months, 7 days a week, and 24 hours a day. During these six months, we
recorded over 14.000 hours of video and captured 24 falls. Most falls occured in
two persons. The person living independently did not fall during our monitoring
period, while one of the participants in a service flat only fell once. To our
knowledge, this is a unique dataset. To capture these events, we received the
approval of the Medical Ethics Committee of the Leuven University Hospitals
and all participants gave their written informed consent.

For each residence we used 4 wall-mounted IP cameras.We used a combination
of ACTI ACM-1511 and AXIS 207 cameras. The ACTI cameras already had
day/night vision. We changed the lenses of the AXIS cameras to one with a
view angle of 80 degrees without a near-infrared filter. Additional near-infrared
sources made it possible to record video in low-light conditions and during the

Fig. 1. Setup of cameras. Left panel: Room in nursing home. Right panel: Service flat.
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night. We recorded images with a resolution of 640 by 480 pixels using a frame
rate of 12 frames per second. Since we wanted to be able to analyze images in
low light conditions or during the night, we used gray level images. To be able
to store the data, we used M-JPEG compression. This reduced the disc space
usage to 1.8 GB per hour.

Not only did the collection of this dataset allow us to evaluate prototype
systems for camera based fall detection on real world data (see Section 5), it
also provided us with valuable insights on the typical challenges that can arise
when using real life data, both for fall and non-fall scenarios. While we cannot
make the dataset publicly available because of privacy issues, we can comment
on these general findings.

2.2 Data Characteristics in a Typical Real Life Scenario

The analysis of the captured video shows some challenges that researchers de-
veloping fall detection systems should be aware of. Which ones are important
depends on the algorithms used.

Image quality. First, the quality of the camera in a real world scenario is typically
lower than what is used in a lab setup. Indeed, from a practical point of view, to
be cost-efficient, it is not possible to install high quality cameras. Moreover, it is
necessary to monitor the person also in low-light conditions during the evening
or night. Therefore, we also needed to record near-infrared, which is often more
noisy. It is important to install as few cameras as possible. The usage of a camera
and lens with view angle close to 90 degrees installed in the corner in of the room
gives the best coverage. But the wide angle of the lens also decreases the spatial
resolution of the camera.

Color information. In near-infrared night images, no color information is avail-
able. But even during daytime when color information is available, it is not very
reliable. Especially the different light sources in a house (sun light, fluorescent
light, light bulbs, tv-screen, etc.) present some specific challenges. For example,
during one of our preliminary tests, a person moved in front of a window, the
sunlight was partially blocked, which changed the color of the incident light. Sev-
eral methods for fall detection proposed in the literature [2] rely on color-based
shadow detection algorithms to improve the output of a background subtraction
algorithm. However, these are based on the assumption that when an area is
covered by a shadow, this results in a significant change in brightness only with-
out change in color information [6]. This assumption is not always met in real
world circumstances. Hence color can be an unreliable source of information.

Overexposure. The range of light intensities that occur during the day, is exten-
sive. A good configuration of the camera is needed. Even then, the brightness of
the sun can cause overexposure in some areas of the image. Careful placement
of the cameras in the room can decrease the problem to some extent. Instead of
pointing the camera to the window, it is better to attach it above the window,



360 G. Debard et al.

Fig. 2. Examples of video frames with different illumination. Upper left: Sunlight
causes overexposure at window. Upper right: Localized overexposure caused by halogen
lamps. Lower left: Same room with minor overexposure. Lower right: Frame recorded
at night using near infrared.

facing the room. However, since it is necessary to cover all areas of the room
with a limited number of cameras, pointing them towards the windows cannot
always be avoided. Also halogen lamps can cause overexposure, as well as spe-
cial lighting conditions. Figure 2 shows an example of the same room at different
moments with different kinds of illumination.

Image clutter. Not only the change in illumination has to be taken into account,
but also the changes occurring in the room itself. Rooms are often small, both
in nursing homes as in private homes and older persons tend to collect a lot
of furniture, which can have a sentimental value. When moving to a smaller
residence, they want to take these along. As a consequence, rooms are often
highly cluttered. When moving around in the room, the person is quite often
partially occluded. Over longer time periods, furniture is also less static than
one might expect (see also Figure 2). Furniture that is shifted, should therefore
be dealt with appropriately by the system.

Walking aids. Some older persons have difficulties walking unaided. Because of
this, they sometimes use a walking aid like e.g. a rollator or a walking frame. The
legs of the person and part of the lower body can be occluded by this. Moreover,
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the walking aid is another dominant foreground object, sometimes moving along
with the person, sometimes put aside (see e.g. Figure 2 top left). Fall detection
algorithms that rely on the person being the only or largest foreground object
in the scene may not be able to cope with this situation.

Appearance changes. The appearance of the person also changes over time, e.g.
while getting (un)dressed or changing clothes. Under such conditions, relying on
color or intensity distributions to track the person, may not be a good idea.

Other moving objects. Other challenges are for example a television or a cup-
board with doors that can be opened. Also a door is difficult to take into account.
It is a large moving object, and what is behind the door can differ each time
(e.g. an entrance door in a nursing home). A person that is lying in bed, is al-
most completely occluded by the sheets while sleeping. But getting out of bed,
the sheets are folded back, which again represents a large moving object. Some
methods based on motion history images (e.g. [19]) learn to ignore the motion
in these image areas. However, this means that falls occurring at these locations
are more likely to be ignored as well.

Motion patterns. The behavior of an older person can differ significantly from
that of a younger person. Analyzing our data, we observed that some persons
stay seated in the same place for extended times during the complete day. The
manner in which older persons move can differ significantly from younger per-
sons, certainly with respect to the speed of movement, which can be extremely
slow in some cases. Also the typical gait is different, with shorter strides.

2.3 Analysis of the Observed Fall Incidents

As mentioned before, we monitored four persons and collected 24 falls. One
person did not fall during the monitoring period, while a second person fell
only once. The other two persons fell 10 and 13 times, respectively. Because
the majority of the falls occurred in only two individuals, it is not possible to
generalize our findings. Nevertheless, the recorded falls already give us some
insight in the challenges their detection represents.

Use of walking aids. Both persons with a high number of falls, often used a
rollator walker. Half of the falls (n=12) occurred while using a walking aid. When
the person was falling, the rollator was pushed forward, sometimes crossing a
huge part of the room, or turning over. All these cases may interfere with the
fall detection, either because the person is occluded behind it, or because it
corrupts the extracted features. Figure 3 shows some examples of interference
that a rollator walker can cause.

Initial pose. Not all falls start from a standing pose. A fall can also start from
a crouching or a bend over position, while picking something up. This occurs in
five falls (21%). A fall can also happen in two steps. Sometimes the person was
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Fig. 3. Two fall incidents with interference of a rollator walker. Upper panels: a fall
where the rollator partially occludes the person. Lower panels: the rollator is pushed
and rolls away from the person.

able to grab hold of a door or chair, but after a short time, had to let go and
fell to the ground. This happened in two falls (9%). Five falls (21%) happened
shortly after standing up or while preparing to sit down. This arises because an
older person sometimes doesn’t have enough strength in his/her legs to stand
up or sit down slowly.

Occlusions and appearance. Occlusions are another important challenge. In eleven
falls (46%), the person was completely or partially occluded, either by the walking
aid or by the furniture. In one case, the fall started in one room and ended in an
adjacent one. Even with multiple cameras in the room, it is often impossible to get
an unoccluded view of the person. In three falls (12%), the person was undressing,
which drastically changed the appearance of the person.

Other moving objects. One of the most occurring challenges are other moving
objects in the scene. In 18 falls (75%), the furniture in the room was moved by
the fall. Certainly chairs and tables are shifted easily, but also small and even
larger cupboards can be moved during a fall. Moving doors are also common. In
one case, a painting on the wall was shifted. The consequence is that sometimes
the appearance of the room can change completely. We already mentioned that
in some cases, the room is really filled with different pieces of furniture. In such a
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Fig. 4. Two fall incidents with moving furniture. Upper panels: The table and chairs
are moved and the upper body of the person is occluded. Lower panels: The table,
chairs and sofa are moved. The rollator is also fallen over and the person is almost
completely occluded.

case, it is almost impossible to not hit something while falling down. Even when a
room is only modestly furnished, a fall against furniture will occur in most cases.
Figure 4 shows some examples of this type of interference. Especially methods
assuming a static scene and relying on background subtraction are affected by
this. On the other hand, a sudden motion over a large part of the scene could
by itself be a cue for fall detection.

Unbalanced data. The final challenge is the ratio of fall to non-fall data. We have
recorded a dataset that is really extensive. The persons that we monitored all
had a high risk of falling. The numerous falls of two of our participants show
this. But even in this case, the falls only represent a tiny portion of the available
data. The performance of a fall detector is not only determined by its ability to
detect a fall, but also by its ability to generate as few false alarms as possible.
To test this, it is important to not only use the falls, but also part of the realistic
non-fall data.

The usage of this real life data and the numerous challenges it represents,
greatly increases the complexity in building a working fall detection system.
In the following section we review the state-of-the-art, taking the challenges
mentioned above into account. Next, in Section 4, we explain our preliminary
fall detector in more detail.
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3 Related Work

Most systems described in the literature can be divided in two main approaches
to the problem: those that try to detect the action of falling directly (e.g.
[1,2,5,12,13,18,19,22,23,25]), and those that instead detect unusual events in
general (e.g. [15,16,19]). The latter rely on indirect evidence, such as prolonged
inactivity at unusual locations, to infer fall incidents. Since normal behavior in
terms of person appearance (actions or poses) is considered too broad and varied
to model, these systems typically focus on spatio-temporal trajectories instead.
By doing so, the problem of the large variability in appearance is circumvented.
Moreover, since it is only needed to learn what normal behavior looks like, the
unbalancedness of the data is not really an issue, nor is the variability in ap-
pearance of fall incidents. On the downside, what is normal behaviour in terms
of spatio-temporal trajectories is typically location and camera (viewpoint) spe-
cific. Therefore, these systems usually need to be retrained for each new camera
setup. Also, an unusual pattern does not imply the occurrence of a fall incident
(or another event that would require intervention, for that matter). If, for in-
stance, a person is ill, he/she may show various forms of unusual behaviour, such
as staying in bed longer than usual, or going to the bathroom in the middle of
the night. This may result in lots of false alarms.

Methods that more directly try to detect the dynamic event of falling, do not
suffer from the above mentioned limitations. In this category, we again distin-
guish between methods building on simple cues like motion detection, often com-
bined with domain knowledge (e.g. [1,2,13,18,19,23]), and methods that build
on recent advances in generic person detection and action recognition (e.g. [22]).
While the latter may seem promising at first, the amount of training data seems
insufficient to learn a reliable model for falls, especially when taking the large
variability in appearance of the falls into account. Also the quality of the images
is a limiting factor. Figure 5 shows the output of a state-of-the-art person de-
tector / pose estimator [28] applied to some of our recordings. A tracker might
improve these results to some extent, but we doubt whether it will be accurate
enough to infer a fall from the change in pose. Finally, the needed computation
time of these methods often does not allow for real-time processing.

It is possible to use more complex methods, like action recognition and person
detection, but we believe the most promising approach at this moment to be a
combination of relatively simple, low-level cues with available domain knowl-
edge. Since we know the cameras are static, background subtraction can be
applied to find the moving foreground objects, including the person. Likewise,
one can build on domain knowledge to design simple yet robust fall features,
such as the aspect ratio [1,2,13,27] or the speed of the head of a person [18,12]
(exploiting the fact that the head remains mostly unoccluded). These can be
combined in a low dimensional representation and presented to a classifier, with
limited risk of overfitting. Background subtraction has been used by many sys-
tems (e.g. [1,2,5,12,13,16,23,27]). However, in many cases, it is assumed that this
results in an accurate silhouette of the person, based on which the pose can be
determined (e.g. [1,2,5,16]). This is usually not the case for our real life data.
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Fig. 5. Examples of the output of a state-of-the-art person detector [28]. Upper left
panel: Successful detection of human pose. Upper right and lower panels: Failed to
detect pose of the person.(Green : head, yellow : torso, violet : left arm, light blue :
right arm, red : left leg, dark blue : right leg)

Due to the low image quality as well as problems with overexposure, occlusions
or changing illumination conditions, background subtraction (even after shadow
removal) only gives a rough idea of where the person might be. Also the fact
that older persons often stay seated at the same place over long periods of time
does not help in this respect.

In conclusion, methods exploiting relatively low-level cues (e.g. [10,18,19,23])
seem most promising in a real life context. They are robust, fast to compute,
and relatively generic (no need for retraining or calibration for each new camera
setup). More complex schemes can then be added as further verification or to
corroborate the results, if applicable.

4 Methods

Our fall detection algorithm consists of four main parts: video acquisition, person
detection, fall detection and alarm generation (see Figure 6). The video is first
converted to gray level images. This way there is no need to alter the processing
if we switch to near-infrared at night. The alarm generation is not implemented
at this stage. The next sections explain the person detection, features for fall
detection and fall detector in further detail.
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Fig. 6.Overview of the system (ROI: region of interest detection; Different fall features:
Aspect Ratio (AR), Fall Angle (FA), Speed of center of gravity (CS), Head Speed (HS)

4.1 Person Detection

Foreground Detection. We first needed to segment out the foreground. For
this we used a background subtraction technique based on an approximate me-
dian filter [11]. The advantages of the approximate median filter are its low
memory consumption, fast computation and robustness. The drawbacks are its
rather slow update to large changes in illumination and the fact that, as any
background subtraction method using a dynamic background, the foreground is
influencing the background. This influence leads to the appearance of a ghost
figure. When a person is sitting on the couch for a longer period, the background
is updated to incorporate the person into the background. If he stands up, the
region of the couch that was occluded previously will also differ from the back-
ground and it is detected as foreground. This can influence the extraction of
the features to detect a fall. Not updating the model within the detected ROI
(see below) is not a solution, since a background model that is not updated
over a longer time is also not representative anymore due to changes in lighting
conditions.

Shadow Removal. A shadow cast by a moving object is also detected as
foreground since it makes the covered pixels appear darker. This makes the
detected foreground region larger than it should be. To remove this shadow, we
used the property that a shadow only changes the intensity of the pixel while
the texture of the covered region does not change [6]. As a result, the texture
of the shadow is correlated with the corresponding texture of the background
image. Jacques and Jung describe in [9] the usage of the cross correlation (CC)
to see how good the detected foreground pixels match the background pixels.
In case the cross correlation is higher than a certain threshold and the pixel is
darker in the current image, then the pixel is classified as shadow. Also other
changes in illumination can be eliminated using this technique when removing
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Fig. 7. Extraction of fall features: purple: bounding box, white: bounding ellipse, green:
center of gravity, blue: head position (The black box is for privacy reasons)

the constraint that the pixel has to be darker in the current image. Jacques
and Jung state that a threshold for the cross correlation of 0.98 together with
a 5 × 5 neighborhood gives a good result. These values were also used in our
experiments.

ROI Detection. The next step in our algorithm was the determination of
a region of interest (ROI). We first used an erosion/dilation step on all fore-
ground pixels. Next, we applied a connected components analysis to determine
the foreground objects. The largest object in the foreground was selected and
considered to correspond to the person. As noted earlier, selecting the largest
foreground object is prone to errors, since furniture or walking aids may move as
well. A better choice is to rely on a tracker. However, this was left as future work.
To minimize noise and interference, the object had to be larger than a certain
threshold. In our case, a minimum of 17500 pixels gave the best performance.
From this object we started to extract the features to detect a fall.

4.2 Fall Detection Features

Using the person, we extracted four features to detect a fall, including: aspect
ratio (AR) [1,2,13,27], fall angle (FA) [19,27], center speed (CS) [19] and head
speed (HS) [5,12] (see Figure 7). These features have been designed based on
domain knowledge, i.e. in such a way that they capture relevant information to
discriminate falls from other actions, while at the same time being robust to
inaccuracies in the person detection. These are also the most widely used in the
literature, as explained in Section 3.

Aspect Ratio. The aspect ratio is calculated as the ratio of the width of the
bounding box (BB) around the foreground object and its height. A low aspect



368 G. Debard et al.

ratio represents an upright person, while a high aspect ratio might point to a
person lying down.

Fall Angle. The angle of the person in the image can be defined as the angle
between the long axis of the bounding ellipse and the horizontal direction. A
person that is standing, has an angle close to 90 degrees. A small angle represents
a person lying down (if seen from a side-view). We defined the fall angle as the
change in angle over a fixed timespan (2 seconds in our experiments). A large
fall angle can indicate a fall.

Center Speed and Head Speed. A person, and certainly an older person,
typically moves with a low speed. In contrast, most of the falls have a portion
with high speed movement. Based on this observation, we used two fall features
related to speed, center speed and head speed. Center speed is the speed of
the center of gravity of the foreground object. This center of gravity has the
advantage that it is rather stable. Small changes in appearance of the person
give only small changes in the center of gravity. But an occlusion of the lower
body, which happens frequently, causes the center of gravity to move upwards.
The head, on the other hand, is visible in most non-fall actions. In [5] Foroughi
et al. define the head as the highest point of the object. Here we used the highest
end of the main axis of the bounding ellipse as head position. The speed itself
was then defined as the amount of pixels that the point had shifted between two
adjacent frames in the video divided by the time between these two frames.

4.3 Fall Detection with SVM

Given that the features defined in the previous section are based on domain
knowledge, each of them can be used as a basic fall detector simply by choosing
an appropriate threshold (as done e.g. in [27]). However, better results can be
obtained if they are merged, and a single classifier combining the different cues is
learned. In this section we propose a Support Vector Machine (SVM) [26] based
fall detector which classifies a time slot (by its features) either as a fall or as
another event.

As noted earlier, the classes are imbalanced (in most cases ”normal” behav-
ior is seen, falls are rare) and class distributions are overlapping (the limited
set of features being used might not clearly discriminate all ”normal” events
from falls). Without any precautions SVM prediction might result in a simple
majority vote ignoring the existence of falls. To address this problem the SVM
learning objective was modified such that different weights are applied to mis-
classifications depending on the class [17]. In the SVM learning objective errors
for the minority class were multiplied by w while majority errors were multiplied
by 1− w. How we determined w, is explained later.

In order to validate the fall detector the available dataset was randomly par-
titioned into a training set, containing 66% of the data, and an independent test
set with the remaining data. The training set was then used to estimate the
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SVM model parameters and a set of hyper-parameters. The test set was only
used for evaluation.

The hyper-parameters used in this paper are (a) the weight w, (b) the regular-
ization parameter of the SVM and (c) the Radial Basis Function (RBF) kernel
bandwidth. These were selected using cross-validation and a grid search maxi-
mizing the Area Under the Curve (AUC) of a Receiver Operating Characteristic
(ROC) curve. The ROC curve was computed by varying the threshold on the dis-
tances of considered data examples to the separating hyperplane which is defined
by the SVM model. In order to reduce random effects induced by partitioning
the data averaged AUC scores were computed on different data partitionings.

Additionally, feature selection was performed by executing a greedy forward
search. Firstly, 4 univariate SVM models (each based on 1 different feature and
trained using the procedure explained above) were compared in terms of AUC.
Next, the best feature (corresponding to the best SVM model) was retained and
combined with each of the remaining features in a bivariate SVM model. The
best feature set was retained and the procedure was repeated to find the best
feature set with incremented cardinality. Note that features were standardized
to have zero mean and unit standard deviation.

5 Results

As mentioned before, we acquired an extensive dataset. To validate the algo-
rithm, we used for each of the 24 falls, the camera on which the person is best
visible. From this video, we selected a fragment of 20 minutes with the fall oc-
curring in the last two minutes of the video. Our current system does not use
the post-fall information (i.e., the person lying on the floor). Each video was di-
vided in non-overlapping time slots of two minutes long. For each time slot, the
fall features were extracted and the maximum values during that time slot were
used for further analysis (max pooling). In total this resulted in 240 epochs, of
which 24 are labeled as a fall. In a real system, the choice of the cameras could be
dealt with using a voting mechanism. The extraction of the different fall features
was executed on a pc with an Intel Core2 Quad Core Q9650 CPU running at 3
GHz. The algorithm was implemented in C++ using OpenCV. We can run four
threads with different video, each processing around eight frames per second.

Given our four features, SVM models were estimated using the procedure
described in the previous section. Results were averaged over 10 different parti-
tionings of training and test set.1 Table 1 lists the averaged AUC scores and the
corresponding standard deviations for SVM models based on different feature
sets. Figure 8 and Figure 9 respectively present the ROC and Precision Recall
curves of the four best performing SVM models (measured in terms of AUC).
It can be observed that the combination of aspect ratio and head speed is to be
preferred. Using this feature set SVM outputs an averaged operating point with
a recall of 0.9(±0.2) and a precision of 0.26(±0.07). Another observation is that
the fall angle performs significantly lower than the other features.

1 Note that for each feature set the same set of data partitionings was used.
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Fig. 8. ROC Curve

Fig. 9. Precision Recall graph
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Table 1. Fall detection results

Feature set AUC

{AR} 0.88(±0.06)
{FA} 0.53(±0.09)
{CS} 0.84(±0.05)
{HS} 0.87(±0.05)

{AR,HS} 0.91(±0.06)
{AR,HS, FA} 0.90(±0.05)

{AR,HS,FA,CS} 0.86(±0.06)

Fig. 10. Class distribution using normalized aspect ratio and head speed

Considering Figure 9, we noticed that the precision quickly drops when increas-
ing the recall. This behavior can be explained by looking at Figure 10, that repre-
sents the distribution of the data when considering features aspect ratio and head
speed. Here we can see that there are quite a number of non-falls that are close to
the falls. Closer visual inspection revealed that 90% of these have 4 main causes.
In 25% of the cases 2 persons were present in the room. In 20% of the cases another
foreground object had almost the same size as the person. In both cases, the sys-
tem often switched to the other person or object, resulting in large motions and
changes in aspect ratio. In 25% of the cases, the person’s image was split in 2 blobs
which were almost the same size. Situations where such an event occurs included:
over-illumination, the person wearing a shirt that is similar to the background
or the person starting to be integrated in the background by the background up-
date. This often resulted in a deviating aspect ratio as well as large motions as the
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system jumps back and forth between the different parts. Finally, in 20% of the
cases there was interference of a ghost figure or moved furniture.

6 Discussion

Comparing our results with those reported in the literature [13][18], we have a
similar or higher detection rate, but a higher false alarm rate. Two out of the
three undetected falls started and ended outside of the view of the camera. This
was e.g. the case when the older person was taking something out of the closet.
The door was occluding the person at the start of the fall. During the fall the
person was visible just for a very short time, before tumbling in the bathroom.
A better placing or additional cameras can solve this. The higher false alarm
rate can be explained by the challenging nature of our dataset, including various
sources of errors that were previously largely ignored. In real life, falls only occur
in rare cases. It is thus important to significantly decrease the number of false
alarms to an acceptable level to get a usable fall detection system.

Most of the false alarms can be solved by using more advanced techniques. The
largest improvement can be expected from the use of a tracker. This avoids large
motions and changes in appearance caused by jumping back and forth between dif-
ferent foreground blobs of different (parts of) persons or other objects. This is the
first step that we will investigate further. Also a more advanced foreground detec-
tion, that is robust to continuous changes in illumination, slow movement of older
persons, different types of light-sources and possible over-illumination, can give a
large improvement. Using amixture of Gaussians tomodel the background showed
no improvement on first sight. A means to detect a person in the foreground, like
for example the person detector of Felzenszwalb et al. [3] can also reduce erroneous
foreground objects. This detector is only trained for standing persons (both whole
body and upper body), but it can still help as a verification every now and then.
Alternatively, an articulated pose estimator such as [28] may be used as well. In
Figure 5 it did not perform well. However, given a good initialization based on
foreground detection, it may be useful.

Additional improvements may be possible by adding other fall features (e.g.
posture or other appearance-based approaches), integrating information of several
cameras or other sensors and especially by integrating the post-fall information.

In our tests, we used the camera on which the person was best visible. In
a real system, this choice has to be made automatically. A voting mechanism,
that uses the information how certain the system is that a fall occurred, can be
implemented for this. This knowledge of the certainty of the fall can also be used
to determine the needed action.

To reduce the annoyance of the false alarms, it is also possible to use an
alarming chain. A possible fall could first be presented to the resident itself,
if he doesn’t react, a further escalation to different levels of caregivers can be
executed.
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7 Conclusion

Fall detection is becoming more and more important to ease the fears of an older
person or someone with an increased fall risk. In this way these persons are able
to live longer independently in a more comfortable way. In this paper we have
given an overview of our ongoing research, which is unique in the way we use
real life data. We have shown that under real life conditions, various sources
of errors emerge such as other persons, moving furniture, walking aids, etc.
that significantly increase the number of false alarms, yet have previously been
largely ignored. Our preliminary fall detector shows a recall of 0.9(±0.2) and a
precision of 0.26(±0.07). This calls for further research into more discriminative
fall features, as well as better foreground detection algorithms, including tracking
and person detection.

Acknowledgments. This work is funded by the FWO via project G039811N:
”Monitoring van gedrag en ongebruikelijke menselijke activiteit met meerdere
camera’s”, by the IWT via TETRA project 80150 ”Fallcam: Detection of fall in
older persons with a camera system.” and by the EU via ERASME (FP7) project
IWT 100404 ”AMACS: Automatic Monitoring of Activities using Contactless
Sensors.” The authors like to thank the persons who participated in the research
by giving their permission to be monitored during several months.

References

1. Anderson, D., Keller, J., Skubic, M., Chen, X., He, Z.: Recognizing falls from
silhouettes. In: 28th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, EMBS 2006, pp. 6388–6391 (September 2006)

2. Cucchiara, R., Prati, A., Vezzani, R.: An intelligent surveillance system for danger-
ous situation detection in home environments. Intelligenza Artificiale 1(1), 11–15
(2004)

3. Felzenszwalb, P., Mcallester, D., Ramanan, D.: A discriminatively trained, mul-
tiscale, deformable part model. In: IEEE International Conference on Computer
Vision and Pattern Recognition (CVPR) Anchorage, Alaska (June 2008)

4. Fleming, J., Brayne, C.: Inability to get up after falling, subsequent time on floor,
and summoning help: prospective cohort study in people over 90. British Medicine
Journal 337(v17 1), 2227 (2008)

5. Foroughi, H., Aski, B., Pourreza, H.: Intelligent video surveillance for monitoring
fall detection of elderly in home environments. In: 11th International Conference
on Computer and Information Technology, ICCIT 2008, pp. 219–224 (2008)

6. Grest, D., Frahm, J., Koch, R.: A color similarity measure for robust shadow
removal in real-time. Vision, Modeling and Vizualization (2003)

7. Haentjens, P., Lamraski, G., Boonen, S.: Costs and consequences of hip fracture oc-
currence in old age: An economic perspective. Disability and Rehabilitation 27(18-
19), 1129–1141 (2005)

8. Hartholt, K.A., van der Velde, N., Looman, C.W.N., van Lieshout, E.M.M., Pan-
neman, M.J.M., van Beeck, E.F., Patka, P., van der Cammen, T.J.M.: Trends in
fall-related hospital admissions in older persons in the netherlands. Arch. Intern.
Med. 170(10), 905–911 (2010)



374 G. Debard et al.

9. Jacques, J.C.S., Jung, C.R.: Background subtraction and shadow detection in
grayscale video sequences. In: The XVIII Brazilian Symposium on Computer
Graphics and Image Processing, SIBGRAPI 2005 (2005)

10. Lee, T., Mihailidis, A.: An intelligent emergency response system: preliminary de-
velopment and testing of automated fall detection. Journal of Telemedicine and
Telecare 11(4), 194–198 (2005)

11. McFarlane, N.J.B., Schofield, C.P.: Segmentation and tracking of piglets in images.
Machine Vision and Applications 8(3), 187–193 (1995)

12. Miao, Y., Naqvi, S., Chambers, J.: Fall detection in the elderly by head tracking. In:
IEEE/SP 15th Workshop on Statistical Signal Processing, SSP 2009, pp. 357–360
(September 2009)

13. Miaou, S.G., Sung, P.H., Huang, C.Y.: A customized human fall detection system
using omni-camera images and personal information. Distributed Diagnosis and
Home Healthcare, 39–42 (2006)

14. Milisen, K., Detroch, E., Bellens, K., Braes, T., Dierickx, K., Smeulders, W.,
Teughels, S., Dejaeger, E., Boonen, S., Pelemans, W.: Falls among community-
dwelling elderly: a pilot study of prevalence, circumstances and consequences in
flanders. Tijdschr Gerontol Geriatr 35(1), 15–20 (2004)

15. Nait-Charif, H., McKenna, S.J.: Activity summarisation and fall detection in a
supportive home environment. In: ICPR 2004: 17th International Conference on
Proceedings of the Pattern Recognition, vol. 4, pp. 323–326. IEEE Computer So-
ciety, Washington, DC (2004)

16. Nater, F., Grabner, H., Van Gool, L.: Visual abnormal event detection for pro-
longed independent living. In: International Mobile Health (mHealth) Workshop
(2010)

17. Osuna, E., Freund, R., Girosi, F.: Support vector machines: Training and applica-
tions. AI Memo 1602, Massachusetts Institute of Technology (1997)

18. Rougier, C., Meunier, J., St-Arnaud, A., Rousseau, J.: Monocular 3d head tracking
to detect falls of elderly people. In: Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (2006)

19. Rougier, C., Meunier, J., St-Arnaud, A., Rousseau, J.: Fall detection from human
shape and motion history using video surveillance. In: 21st International Confer-
ence on Advanced Information Networking and Applications Workshops, AINAW
2007, vol. 2, pp. 875–880 (2007)

20. Scuffham, P., Chaplin, S., Legood, R.: Incidence and costs of unintentional falls
in older people in the United Kingdom. J. Epidemiol. Community Health 57(9),
740–744 (2003)

21. SeniorWatch: Fall detector: Case study of european ist seniorwatch project. Tech.
rep., SeniorWatch (2001)

22. Syngelakis, E., Collomosse, J.: A bag of features approach to ambient fall detection
for domestic elder-care. In: Proc. Intl. Symp. on Ambient Technologies, AMBIENT
2011 (2011)

23. Thome, N., Miguet, S., Ambellouis, S.: A real-time, multiview fall detection system:
A lhmm-based approach. IEEE Transactions on Circuits and Systems for Video
Technology 18(11), 1522–1532 (2008)

24. Tinetti, M.E.: Preventing falls in elderly persons. New England Journal of
Medicine 348(1), 42–49 (2003)



Camera-Based Fall Detection on Real World Data 375
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Abstract. Conventional rigid structure from motion (SFM) addresses
the problem of recovering the camera parameters (motion) and the 3D
locations (structure) of scene points, given observed 2D image feature
points. In this chapter, we propose a new formulation called Seman-
tic Structure From Motion (SSFM). In addition to the geometrical con-
straints provided by SFM, SSFM takes advantage of both semantic and
geometrical properties associated with objects in a scene. These proper-
ties allow to jointly estimate the structure of the scene, the camera pa-
rameters as well as the 3D locations, poses, and categories of objects in
a scene. We cast this problem as a max-likelihood problem where geome-
try (cameras, points, objects) and semantic information (object classes)
are simultaneously estimated. The key intuition is that, in addition to
image features, the measurements of objects across views provide addi-
tional geometrical constraints that relate cameras and scene parameters.
These constraints make the geometry estimation process more robust
and, in turn, make object detection more accurate. Our framework has
the unique ability to: i) estimate camera poses only from object detec-
tions, ii) enhance camera pose estimation, compared to feature-point-
based SFM algorithms, iii) improve object detections given multiple
uncalibrated images, compared to independently detecting objects in
single images. Extensive quantitative results on three datasets – Li-
DAR cars, street-view pedestrians, and Kinect office desktop – verify our
theoretical claims.

1 Introduction

Joint object recognition and 3D reconstruction of complex scenes from images
is one of the critical capabilities of an intelligent visual system. Consider the
photographs in Figure 1(a). These show the same environment observed from a
handful of viewpoints. Even if this is the first time you (the observer) have seen
this environment, it is not difficult to infer: i) the spatial structure of the scene
and the way objects are organized in the physical space; ii) the semantic content
of the scene and its individual components. State-of-the-art methods for object
recognition [9,21,10,20] typically describe the scene with a list of class labels (e.g.
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Fig. 1. Main objective of SSFM. (a) Input photos showing the same environment
observed from a handful of viewpoints. (b) Traditional object recognition algorithms
identify objects in 2D without reasoning about the 3D geometry. (c) SFM returns 3D
scene reconstruction (3D point clouds) with no semantic information attached to it. (d)
SSFM aims to jointly recognize objects and reconstruct the underlying 3D geometry
of the scene (cameras, points and objects).

a chair, a desk, etc...) along with their 2D location and scale, but are unable
to account for the 3D spatial structure of the scene and object configurations
(Figure 1(b)). On the other hand, reconstruction methods (e.g. those based on
SFM) [26,8,31,24,32] produce metric recovery of object and scene 3D structure
(3D point clouds) but are mostly unable to infer the semantic content of its
components (Figure 1(c)).

In this chapter we seek to fill this representation gap and propose a new
framework for jointly recognizing objects as well as discovering their spatial or-
ganization in 3D (Figure 1(d)). The key concept we explore in this work is that
measurements across viewpoints must be semantically and geometrically consis-
tent. By measurements, we refer to the set of objects that can be detected in
the image (e.g. a chair or monitor in Figure 1), their x,y location in the image,
their scale (approximated by a bounding box) and their pose. Given a set of
measurements from one view point, we expect to see a set of corresponding mea-
surements (up to occlusions) from different view points which must be consistent
with the fact that the view point has changed. For instance, the chair in Figure
1(a) appears in two views and its location, scale and pose variation across the
two views must be consistent with the view point transformation. In this work
we exploit this property and introduce a novel joint probability model where
object detection and 3D structure estimation are solved in a coherent fashion.

Our proposed method has the merit of enhancing both 3D reconstruction and
visual recognition capabilities in two ways: i) Enhancing 3D reconstruction: Our
framework can help overcome a crucial limitation of scene/object modeling meth-
ods. State-of-the-art SFM techniques mostly fail when dealing with challenging
camera configurations (e.g. when the views are too few and the view baseline
is too large). This failure occurs as it is very hard to establish correct feature
correspondences for widely separated views. For instance, the 3D reconstruction
in Figure 1(c) was obtained using a state-of-the-art SFM algorithm [13] using
43 densely-sampled pictures of an office. The same algorithm would not work
if we just used the two images in Figure 1(a) for the reasons mentioned above.
By reasoning at the semantic level, and by establishing object correspondences
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across views, our framework creates the conditions for overcoming this limita-
tion. We show that our framework has the ability to estimate camera poses from
object detections only. Moreover, our framework can still exploit traditional SFM
constraints based on feature correspondences to make the 3D reconstruction pro-
cess robust. We show that our method can significantly outperform across-view
feature matching SFM algorithms such as [31,23] (Table 1). ii) Enhancing visual
recognition: Traditional recognition methods are typically prone to produce false
alarms when appearance cues are not discriminative enough and no contextual
information about the scene is available. For instance, the cabinet in Figure 1(a)
can be easily confused with a monitor as they both share similar appearance
characteristics. By reasoning at the geometrical level, our framework is able to
identify those hypotheses that are not consistent with the underlying geometry
and reduce their confidence score accordingly. Our model leads to promising
experimental results showing improvements in object detection rates compared
with the state-of-the-art methods such as [9] (Figure 7 and Table 2). Also, we
show that we can automatically establish object correspondence across views.

2 Related Works

Recently, a number of approaches have explored the idea of combining seman-
tic cues with geometrical constraints for scene understanding. Notable examples
are [14,30,22,33,17]. These focus on single images and, unlike our work, they
do not attempt to enforce consistency across views. Moreover, they make re-
strictive assumptions on the camera and scene configuration. Other methods
have been proposed to recognize objects with multi-view geometry [19,16], but
they assume that the underlying scene geometry is available. A large number
of works have proposed solutions for interpreting complex scenes from 3D data
[11,18,28,27] or a combination of 3D data and imagery [3]. However, in most of
these methods 3D information is either provided by external devices (e.g. 3D
scanning systems such as LiDAR) or using traditional SFM techniques. In either
case, unlike our framework, the recognition and reconstruction steps are sepa-
rated and independent. [5] attempts joint estimation using a “cognitive loop” but
requires a dedicated stereo-camera architecture and makes assumptions about
camera motion. Having our preliminary result published as [1], we are the first
to make these two steps coherent within a setting that requires only images with
uncalibrated cameras (up to internal parameters) and arbitrary scene-camera
configurations.

3 The Semantic Structure from Motion Model

Conventional rigid structure from motion (SFM) addresses the problem of re-
covering camera parameters C and the 3D locations of scene points Q, given
observed 2D image feature points. In this chapter, we propose a new formu-
lation where, in addition to the geometrical constraints provided by SFM, we
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take advantage of both the semantic and geometrical properties associated with
objects in the scene in order to recover C and Q as well as the 3D locations,
poses, and category memberships of objects O in the scene. We call this se-
mantic structure from motion (SSFM). The key intuition is that, in addition
to image features, the measurements of objects across views provides additional
geometrical constraints that relate camera and scene parameters. We formulate
SSFM as a maximum likelihood estimation (MLE) problem whose goal is to find
the best configuration of cameras, 3D points and 3D objects that are compatible
with the measurements provided by a set of images.

3.1 Problem Formulation

In this section we define the SSFM problem and formulate it as an MLE problem.
We first define the main variables involved in SSFM, and then discuss the MLE
formulation.

Cameras. Let C denote the camera parameters. C = {Ck} = {Kk, Rk, T k}
where K is the camera matrix capturing the internal parameters, R rotation
matrix, and T translation vector with respect to a common world reference
system. K is assumed to be known, whereas {R, T } are unknown. Throughout
this chapter, the camera is indexed by k as a superscript.

3D Points Q and Measurements q,u. Let Q = {Qs} denote a set of 3D
points Qs. Each 3D point Qs is specified by (Xs, Ys, Zs) describing the 3D point
location in the world reference system. Q is an unknown in our problem. De-
note by q = {qki } the set of point measurements (image features) for all the
cameras. Namely, qki is the ith point measurement in image (camera) k. A point
measurement is described by the measurement vector qk = {x, y, a}ki , where x, y
describe the point image location, and a is a local descriptor that captures the
local neighborhood appearance of the point in image k. These measurements
may be obtained using feature detectors and descriptors such as [23,35]. Since
each image measurement {qki } is assumed to correspond to a certain physical 3D
point Qs, we model such correspondence by introducing an indicator variable
uk
i , where uk

i = s if qki corresponds to Qs. A similar notation was also intro-
duced in [7]. A set of indicator variables u = {uk

i } allows us to establish feature
correspondences across views and to relate feature matches with 3D point can-
didates (Section 3.3). Unlike [7], we assume the feature correspondences can be
measured by feature matching algorithms such as [23]. Throughout this chapter,
Q and q are indexed by s and i respectively and they appear as subscripts.

3D Objects O and Measurements o. Let O = {Ot} denote a set of 3D
objects Ot. As Figure 2 illustrates, the tth 3D objects Ot is specified by a 3D
location (Xt, Yt, Zt), a pose (Θt, Φt), and a category label ct (e.g, car, person,
etc...). Thus, a 3D object is parametrized by Ot = (X,Y, Z,Θ, Φ, c)t. The set O is
an unknown in our problem. Denote by o = {okj } the set of object measurements
for all the cameras. Thus, okj is the jth measurement of an object in image
(camera) k. An object measurement is described by the following measurement
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vector okj = {x, y, w, h, θ, φ, c}kj (Figure 2). As discussed in Section 3.2, these
measurements may be obtained using any state-of-the art object detector that
can return the probability that certain location x, y in an image is occupied by
an object with category c, scale h,w, and pose θ, φ (e.g. [29])1. Similar to the 3D
point case, if an object measurement okj in image k is assumed to correspond to
some physical 3D object Ot, such correspondence may be modeled by introducing
an indicator variable vkj , where vkj = t if okj corresponds to 3D object Ot. For
the object case, the correspondences are automatically obtained by projecting
3D object into the images (Section 3.2). Thus, from this point on, we assume 2D
object observations are given by o. We denote 3D object and 2D object using
the subscript index t and j respectively.
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Fig. 2. 3D object’s location and pose parametrization. (a) Assume an object is enclosed
by the tightest bounding cube. The object 3D location X,Y, Z is the centroid of the
bounding cube (red circle). The object’s pose is defined by the bounding cube’s three
perpendicular surface’s norms that are n, q, t and parametrized by the angles Θ,Φ in a
given world reference system (b). r is the ray connecting O and the camera center. Let
zenith angle φ be the angle between r and n, and azimuth angle θ be the angle between
q and rS , where rS is the projection of r onto the plane perpendicular to n. Notice
that we assume there is no in-plane rotation of the camera. We parametrize an object
measurement in the image by the location x, y of tightest bounding box enclosing the
object, the width w and height h of the bounding box (object 2D scale), the object
pose θ, φ, and class c.

MLE Formulation. Our goal is to estimate a configuration of Q, O and C
that is consistent with the feature point measurements q,u and the object mea-
surements o. We formulate this estimation as the one of finding Q,O,C such
that the joint likelihood is maximized:

{Q,O,C} = arg max
Q,O,C

Pr(q,u,o|Q,O,C)

= arg max
Q,O,C

Pr(q,u|Q,C) Pr(o|O,C) (1)

where the last expression is obtained by assuming that, given C, Q and O,
the measurements associated with 3D objects and 3D points are conditionally

1 State of the art object detectors such as [9] can be modified so as to enable pose
classification, as discussed in Section5.1.
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Fig. 3. Multi-pose and multi-scale object detection illustration. The “probability maps”
are obtained by applying car detector with different scales and poses on the left image.
The color from red to deep blue indicates the detector response from high to low. We
used LSVM [9] (Section 5.1) to obtain these probability maps. In this example, Ξ has
dimensions Lx × Ly × 15. If the scale=3 (small), pose=4, and category=car, Π will
return the index π = 14 (the red circle). Thus, Ξ(x, y, 14) will return the confidence
of detecting a car at small scale and pose=4 at location x, y in the image (the orange
rectangle).

independent. In the next two sections we show how to estimate the two likelihood
terms Pr(q,u|Q,C) (Equation 4 or 5) and Pr(o|O,C) (Equation 3).

3.2 Object Likelihood Pr(o|O,C)

Pr(o|O,C) measures the likelihood of object measurements o given the cam-
era and object configurations O,C. This term can be estimated by computing
the agreement between predicted measurements and actual measurements. Pre-
dicted measurements are obtained by introducing a mapping ωk

t = ωk(Ot) =
ωk((X,Y, Z,Θ, Φ, c)t) that relates the parameters describing the 3D object Ot

to the image of camera Ck. Thus, ωk
t is a parameter vector that contains the

predicted location, pose, scale and category of Ot in Ck. Next, we present expres-
sions for predicting the measurements and relating them to actual measurements
and for obtaining an estimate of the likelihood term.

Computing Predicted Measurements. The transformation ωk
t = ωk(Ot) can

be computed once cameras C are known. Specifically, let us denote by Xk
t , Y

k
t , Zk

t

the 3D location of Ot in the reference system of Ck and by Θk
t , Φ

k
t its 3D pose

(these can be obtained from Xt, Yt, Zt, Θt, Φt in the world reference system by
means of a (known) rigid transformation). Predicted location (xk

t , y
k
t ) and pose

(φk
t , θ

k
t ) of Ot in camera Ck can be computed by using the camera projection

matrix [15] as [xk
t , y

k
t , 1]

′ = Kk[Xk
t , Y

k
t , Zk

t ]
′/Zk

t and [φk
t , θ

k
t ] = [Φk

t , Θ
k
t ]. Predict-

ing 2D object scales in the image requires a more complex geometrical derivation
that goes beyond the scope of this chapter. We introduce an approximated sim-
plified mapping defined as follows:{

wk
t = fk ·W (Θk

t , Φ
k
t , ct)/Z

k
t

hk
t = fk ·H(Θk

t , Φ
k
t , ct)/Z

k
t

(2)

where wk
t , h

k
t denote the predicted object 2D scale (similar to Figure 2), fk is

the focal length of the kth camera. W (Θk
t , Φ

k
t , ct) and H(Θk

t , Φ
k
t , ct) are learned
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(scalar) mapping that describe the typical relationship between physical object
bounding cube and object image bounding box. The equations above allow us
to fully estimate the object prediction vector ωk

t = {x, y, w, h, φ, θ, c}kt for object
Ot in camera Ck.

Learning Object Size Mapping. W (Θk
t , Φ

k
t , ct) and H(Θk

t , Φ
k
t , ct) are (scalar)

mapping functions of the object pose Θk
t , Φ

k
t and category ct. They can be learned

by using ground truth 3D object bounding cubes and corresponding observations
using ML regressor. The mappings W and H relate the physical object bounding
cube with the tth object bounding box size (parametrized by wt and ht) in the
image. In the validation set, we have 3D objects {ot} = {w̃t, h̃t, Z̃t, Θ̃t, Φ̃t, ct}
with ground truth scale w̃t, h̃t, depth Z̃t, pose Θ̃t, Φ̃t, and category ct. We formu-
late the scale likelihood as Pr(W (Θt, Φt, ct)|w̃t) ∝ exp(−(f ·W (Θ̃t, Φ̃t, ct)/Z̃t −
w̃t)

2/σw) and Pr(H(Θt, ΦT , ct))|h̃t) ∝ exp(−(f · H(Θ̃t, Φ̃t, ct)/Z̃t − h̃t)
2/σh).

Therefore, with the validation set, W and H can be learned as the mean value:{
W (Θ,Φ, c) = 1

N∗
t

∑
ct=c, ˜Θt=Θ,˜Φt=Φ w̃t · Z̃t/f

H(Θ,Φ, c) = 1
N∗

t

∑
ct=c, ˜Θt=Θ,˜Φt=Φ h̃t · Z̃t/f

where N∗
t is number of objects that have the pose as Φ,Θ and category c.

Measurements as Probability Maps. Pr(o|O,C) can be now estimated by
computing the agreement between predicted measurements and actual measure-
ments. Such agreement is readily available using the set of probability values
returned by object detectors such as [9] applied to images (Figure 3). The out-
put of this detection process for the image of Ck is a tensor Ξk of M probability
maps wherein each map captures the likelihood that an object of category c
with scale w, h and pose θ, φ presents at location x, y in the image. Thus, we can
interpret Ξk as one Lx ×Ly ×M tensor, where Lx and Ly are the image width
and height and M adds up to the number of object categories, scales and poses.
Let us denote by Π : {w, h, φ, θ, c} → π ∈ 1 . . .M the indexing function that
allows retrieval from Ξk the detection probability at any location x, y given a set
of values for scale, pose and category. Figure 3 shows an example of a set of 15
probability maps for only one object category (i.e., the car category), three scales
and five poses associated with a given image. Notice that since measurements
can be extracted directly from Ξk once the mapping 3D-object-image ω is com-
puted (Figure 4), the 2D objects of the kth image are automatically associated
with the 3D objects. As a result, across-view one-to-one object correspondences
are also established.

Estimating the Likelihood Term. The key idea is that the set Ξk of proba-
bility maps along with π can be used to estimate Pr(o|O,C) given the predicted
measurements. To illustrate this, let us start by considering an estimation of
the likelihood term Pr(o|Ot, C

k) for Ot observed from camera Ck. Using ωk
t ,

we can predict the object’s scale {w, h}kt , pose {φ, θ}kt and category ckt . This
allows us to retrieve from Ξk the probability of detecting an object at the pre-
dicted location {x, y}kt by using the indexing function πk

t , and in turn estimate
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Fig. 4. Mapping 3D objects to measurements. In this example, the measurements of
O1 (green) correspond to high value location in the probability maps, while the 2D
measurements of O2 (red) correspond to low value location in the probability maps.
Therefore, Pr(o|O1,C) is much higher than Pr(o|O2,C).

Pr(o|Ot, C
k) = Ξk(xk

t , y
k
t , π(w

k
t , h

k
t , φ

k
t , θ

k
t , c

k
t )). Assuming that objects are inde-

pendent from each other and camera configurations are independent, the joint
likelihood of objects and cameras can be approximated as:

Pr(o|O,C) ∝
Nt∏
t

Pr(o|Ot,C) ∝
Nt∏
t

(1−
Nk∏
k

(1 − Pr(o|Ot, C
k))) (3)

where Nt is the number of objects and Nk is the number of cameras. Nt is
in general unknown, but it can be estimated using detection probability maps
(Section4.1). Notice that this term does not penalize objects that are observed
only by a portion of images while they are truncated or occluded in other images.
Pr(o|Ot,C) is only partially affected by an occluded or truncated object Ot in
the kth image even if the object leads to a low value for Pr(o|Ot, C

k).

3.3 Points Likelihood Pr(q, u|Q,C)

Pr(q,u|Q,C) measures the likelihood of the 3D points and cameras given the
measurements of 3D points and their correspondences across views. This like-
lihood term can be estimated by computing the agreement between predicted
measurements and actual measurements. Similar to the 3D object case, pre-
dicted measurements are obtained by introducing a mapping from 3D points to
the images.

Predicted Measurements. Predicted measurements can be easily obtained
once the cameras C are known. We indicate by qks the predicted measurement (a
pixel location in the image) of the sth point Qs in camera Ck. qks can be obtained
by using the projection matrix of camera Ck. Since we know which point is being
projected, we have a prediction for the indicator variable u as well.

Point Measurements. Point measurements are denoted by qki = {x, y, a}ki ,
where x, y describe the point location in image k of measurement i, and a is a
local descriptor that captures the local appearance of the point in a neighborhood
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of image k. We obtain location measurements {x, y}ki using a DOG detector
equipped with a SIFT descriptor for estimating aki [23]. Measurements for feature
correspondences (matches) across images are obtained by matching the point
features.

Estimating the Likelihood Term. Pr(q,u|Q,C) can be estimated by com-
puting the agreement between predicted measurements and the actual measure-
ments (Figure 5). Let us start by considering the likelihood term Pr(q|Qs, C

k)
for one point Qs and for camera Ck. As introduced in [7], one possible strategy
for computing such agreement assumes that the location of measurements and
predictions are equal up to a noise n - that is, qki = qks + n, where s = uk

i . If we
assume zero mean Gaussian noise, we can estimate Pr(qki |Qs, C

k) ∝ exp(−(qki −
qk
uk
i
)2/σq), leading to the following expression for the likelihood:

Pr(q,u|Q,C) =

NQ∏
i

Nk∏
k

exp(−(qki − qkuk
i
)2/σq) (4)

where Nk is the number of cameras, NQ is the number of points, and σq is the
variance of 2D point projection measurement error. This is obtained by assuming
independence among points and among cameras.

�

�
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�

�

�

��
�

Fig. 5. Estimating the likelihood term for points. q11 and q21 are point measurements. Q1

and Q2 are candidate 3D points corresponding to q11 and q21 . In this case, the likelihood
of Q1 is higher than Q2, because the projections of Q1 are closer to the measurements.

We also propose an alternative estimator for Pr(q,u|Q,C). While this esti-
mator leads to a coarser approximation for the likelihood, it makes the inference
process more efficient and produces more stable results. This estimator exploits
the epipolar constraints relating camera pairs. Given a pair of cameras Cl and
Ck, we can estimate the fundamental matrix Fl,k. Suppose qki , qlj are from Ck

and Cl respectively, and the matching algorithm predicts that qki and qlj are in
correspondence. Fl,k can predict the epipolar line ξl,ki (or ξk,lj ) of qki (or qlj) in
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image Cl (or Ck). If we model the distance2 dl,kj,i between ξl,ki and qlj as zero-
mean Gaussian with variance σu, Pr(qki , qlj |Qs, Cl, Ck) ∝ exp(−dl,kj,i/σu). Notice
that this expression does not account for appearance similarity between matched
features – that is the similarity between the descriptors aki and alj . We model ap-

pearance similarity as exp(−α(ak
i ,a

l
j)

σα
) where α(·, ·) captures the distance between

two feature vectors and σα the variance of the appearance similarity. Overall,
we obtain the following expression for the likelihood term:

Pr(q,u|Q,C) ∝
Nk∏
k �=l

Ns∏
i�=j

Pr(qki , q
l
j |Qs, Cl, Ck)

∝
Nk∏
k �=l

Ns∏
i�=j

exp(−
dl,kj,i
σu

) exp(−
α(aki , a

l
j)

σα
) (5)

Equation 5 is obtained by assuming that feature locations and appearance are
independent. During the learning stage, we learn the variance σu and σα using
an ML estimator on a validation set. Notice that Pr(q,u|Q,C) is no longer a
function of Qs. Hence, during every iterations in Algorithm. 1, we can avoid
estimating 3D points, which is usually an expensive process (e.g. see the bundle
adjustment algorithm[34]). This significantly reduces the complexity for solving
the MLE problem.

4 Max-Likelihood Estimation with Sampling

Our goal is to estimate camera parameters, points, and objects so as to maximize
Equation 1. Due to the high dimensionality of the parameter space, we propose to
sample C,Q,O from Pr(q,u,o|Q,C,O) similar to [7]. This allows us to approx-
imate the distribution of Pr(q,u,o|Q,C,O) and find the C,Q,O that maximize
the likelihood. In Section 4.1 we discuss the initialization of the sampling process,
and in Section 4.2 we describe a modified formulation of the Markov Chain Monte
Carlo (MCMC) sampling algorithm for solving the MLE problem.

4.1 Parameter Initialization

Appropriate initialization of cameras, objects, and points is a critical step in
the sampling method. We initialize camera configurations (i.e. estimate camera
configurations that are geometrically compatible with the observations) using
feature point matches and object detections.

Camera Initialization by Feature Points. We follow [24] to initialize (esti-
mate) C from image measurements q. Due to the metric reconstruction ambi-
guity, we scale the estimated camera translation with several random values to
obtain several camera pose initializations.
2 To account for outliers, we set a threshold on dl,kj,i . Namely, if d̄l,kj,i is the measurement,

we set dl,kj,i = min(d̄l,kj,i , Γ ). We learn the outlier threshold Γ using a validation set.
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Camera Initialization by Objects. We use a standard object detector [9] to
detect 2D objects and estimate object pose and scale (Section 5.1). Next, we use
these object detections to form possible object correspondences and use these to
estimate several possible initial camera configurations. Assume the kth camera
has a set of object detections ok = {okt }, where okt is the tth detected 2D object in
the kth camera. okt captures the 2D object location xk

t , y
k
t and bounding box scale

wk
t , h

k
t (i.e. okt = {xk

t , y
k
t , w

k
t , h

k
t }). If the object detector has the ability to classify

object pose, okt also captures the pose φk
t , θ

k
t (i.e. okt = {xk

t , y
k
t , w

k
t , h

k
t , φ

k
t , θ

k
t }).

Depending on whether the pose φk
t , θ

k
t and the pre-learned object scale W,H (so

as to allow us to use Equation 2 to compute the object depth) are used or not,
there are three ways to initialize the camera extrinsic parameters Rk, T k (the
intrinsic parameter Kk is known): 1) initialize cameras by only using object scale
W,H ; 2) initialize cameras by only using object pose φ, θ; 3) initialize cameras
by using scale W,H and pose φ, θ. In our experiments, case 1 applies on the
pedestrian dataset, as the pose cannot be robustly estimated for pedestrians;
case 2 does not apply on any of our experiments; case 3 applies on the Ford
car dataset and the office dataset. The propositions in Section 7 give necessary
conditions for estimating the camera parameters. These propositions establish
the least number of objects that are necessary to be observed for each of the
initialization cases above. These propositions also give conditions for estimating
camera parameters given a number of object detections. Based on a list of pos-
sible object correspondences across images, these propositions can be used for
generating hypotheses for camera and object configurations for initializing the
sampling algorithm.

Points and Objects Initialization. Camera configurations obtained by using
points and objects form the initialization set. For each of these initial configu-
rations, object detections are used to initialize objects in 3D using the mapping
in Equation 2. If certain initialized 3D objects are too near to others (location
and pose-wise), they are merged to a single one. We use the distance between
different initializations to remove overlapping 3D initializations. Suppose that,
after the initializations, the objects are {Ot} = {Xt, Yt, Zt, Φt, Θt, ct, ρt} where
Xt, Yt, Zt is the object coordinates in the world coordinate system, Φt, Θt is the
object pose in the world coordinate system, ct is the object category, and ρt
is the 2D detection probability of the 2D object that initializes Ot. We per-
form a greedy search to remove the overlapping object: Ot will be removed from
the 3D object set if there is another object Os with cs = ct and ρs > ρt so
that ||[Xt, Yt, Zt] − [Xs, Ys, Zs, ]|| < tXY Z and ||[Φt, Θt] − [Φs, Θs]|| < tΦΘ. The
threshold tXY Z and tΦΘ are learned from a validation set where the ground
truth object 3D location and pose are available. Similar to objects, for each
camera configuration, feature points q are used to initialize 3D points Q by
triangulation[15]. Correspondences between q and Q are established after the
initialization. We use index r to indicate one out of R possible initializations for
objects, cameras and points (Cr,Or,Qr).
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4.2 Sample and Maximize the Likelihood

We sample C,O,Q from the underlying Pr(q,u,o|Q,C,O) using a modified
Metropolis algorithm [12] (Algorithm 1). Since the goal of the sampling is to
identify a maximum, the samples should occur as near to maxPr(q,u,o|Q,C,O)
as possible, so as to increase the efficiency of the sampling algorithm. Thus, we
only randomly sample C, while the best configuration of O and Q given the
proposed C are estimated during each sampling step. In step 3, the estimation
of O′ is obtained by greedy search within a neighborhood of the objects proposed
during the previous sampling step (Section 4.3). Since the object detection scale
and pose are highly quantized, the greedy search yields efficient and robust
results in practice. In step 4, the estimation of Q is based on the minimization
of the projection error (Section 4.4).

By Algorithm 1, we can generate the sample {C,O,Q}r from the rth initializa-
tion. From all of the samples, we estimate the maximum of Pr(q,u,o|Q,C,O) as
follows. We concatenate {C,O,Q}r from different initializations into one sample
point set {C,O,Q}. Next, the frequency of the samples will provide an approxi-
mation of the distribution of Pr(q,u,o|Q,C,O). To identify the maximum, the
MeanShift algorithm [4] is employed to cluster the samples. The center of the
cluster with the highest sample number is regarded as the approximation of
the maximum of Pr(q,u,o|Q,C,O) and thus taken as the solution of the final
estimation of C,O,Q.

Algorithm 1 can be applied using either Equation 4 or 5. If Equation 5 is used,
the estimation is greatly simplified as Q no longer appears in the optimization
process. Hence step 4 is no longer required. Our experiments use the latter
implementation.

Algorithm 1. MCMC sampling from rth initialization.
1: Start with rth proposed initialization Cr,Or,Qr. Set counter v = 0.
2: Propose new camera parameter C′ with Gaussian probability whose mean is
the previous sample and the co-variance matrix is uncorrelated.
3: Propose new O′ within the neighborhood of previous object’s estimation to
maximize Pr(o|O′,C′).
4: Propose new Q′ with C′ to minimize the point projection error.
5: Compute the acceptance ratio α = Pr(q,u,o|C′,O′,Q′)

Pr(q,u,o|C,O,Q)

6: If α � � where � is a uniform random variable � ∼ U(0, 1), then accept
(C,O,Q) = (C′,O′,Q′). Record (C,O,Q) as a sample in {C,O,Q}r.
7: v = v + 1. Goto 2 if v is smaller than the predefined max sample number;
otherwise return {C,O,Q}r and end.

4.3 Proposing New Objects

The goal of step 3 of Algorithm 1 is to propose and select the best O′ given
newly proposed cameras C′. Let us denote by O (C) the estimation of the
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Fig. 6. Proposing object candidates given newly proposed cameras. The red circle is the
result of the estimation from step i. The green line collects the proposed 3D locations
of the object centroid (i.e. a proposed line of sight). The estimation of the object in
step i+ 1 is obtained as function of the image measurements, and shown as red star.

configuration of the objects (cameras) at MCMC sampling iteration i, and by
O′ (C′) the configuration of objects (cameras) at the next sampling iteration.

Proposing O′: Since the objects are assumed to be independent to each other,
we focus on the single object O′

t. We propose a set of object candidates (locations,
poses, scales) for O′

t, and we denote such set of candidates by ΨC′(Ot). ΨC′(Ot)
is obtained by sampling in the neighborhood in the parameter space of Ot.
Without loss of generality, assume that the kth image has the largest single-image
detection likelihood for Ot given C, i.e. Pr(o|Ot, C

k) = maxh=1···Nk
Pr(o|Ot, C

h)
. We define Ck as the “dominating camera” of Ot (Figure 6). okt is the projection of
Ot onto the kth image. As a result of previous optimization, okt is corresponding to
the local maximum of 2D object detection probability. To increase the computing
efficiency, we enforce that the proposed candidate of O′

t will generate a projection
o′kt in image k that belongs to a neighborhood of okt . More specifically, we enforce
|o′kt − okt | < Δo where Δo = {Δx,Δy,Δh,Δw,Δθ,Δφ}. We also enforce that
the proposed object depth to be within a finite range Zk

t /(1 + Δ) < Z ′k
t <

Zk
t /(1−Δ)). Such proposals for O′

t form the set ΨC′(Ot). In Figure 6, the green
line corresponds to the “location” component of ΨC′(Ot).

Selecting O′: Again, let us focus on the single object O′
t. The new O′

t is selected
as the element in ΨC′(Ot) that maximizes the object measurement likelihood:

O′
t = arg max

O′
t∈Ψc′(Ot)

Pr(o|O′
t,C

′) (6)
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As a reminder, the computation of Pr(o|O′
t,C

′) is explained in Section 3.2. Given
the limited number of proposals within ΨC′(O′

t), an exhaustive search is feasible
and it is computationally cheap to select O′

t using Equation 6. Finally, by select-
ing new estimations for every objects, the new estimation for objects is obtained
as O′ = {O′

t}.

4.4 Proposing 3D Points

The goal of step 4 of Algorithm 1 is to propose and select the best Q′ given
newly proposed cameras C′. If Equation 4 is used, the goal of proposing the new
Q′ is to maximize the points likelihood:

Q′ = argmax
Q′

NQ∏
i

Nk∏
k

exp(−(qki − qkuk
i
)2/σq)

= argmin
Q′

NQ∑
i

Nk∑
k

(qki − qkuk
i
)2 (7)

Notice that solving Equation 7 is equivalent to the objective function of bun-
dle adjustment [34]. Therefore, bundle adjustment can be applied given camera
parameters to propose the new Q′ in Algorithm 1 step 4.

If Equation 5 is used, the 3D point likelihood Pr(q,u|Q,C) is approximated
using the epipolar geometry. Note Q does not appear in Equation 5 and thus has
no effect on the optimization process. The approximation gives the significant
advantage of accelerating the sampling process Algorithm 1, since the optimiza-
tion (bundle adjustment) of Q is avoided. As a result, Q is not estimated during
the sampling process but is instead estimated by triangulation after the best
camera configuration C is found.

5 Evaluation

In this section we qualitatively demonstrate the ability of the SSFM model to
jointly estimate the camera pose and improve the accuracy in detecting objects.
We test SSFM on three datasets: the publicly available Ford Campus Vision
and LiDAR Dataset[25], a novel Kinect office dataset3, and a novel street-view
pedestrian stereo-camera dataset. Anecdotal examples are shown in Figure 9.
Although SSFM does not use any information from 3D points, the calibrated
3D points from LiDAR and Kinect allows us to easily obtain the ground truth
information. The typical running time for one image pair with our Matlab single-
thread implementation is ~20 minutes. Benchmark comparisons with the state-
of-the-art baseline detector Latent SVM [9] and point-based SFM approach
Bundler [31] demonstrate that our method achieves significant improvement
on object detection and camera pose estimation results.

3 Available at http://www.eecs.umich.edu/vision/projects/ssfm/index.html

http://www.eecs.umich.edu/vision/projects/ssfm/index.html
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(c) Office

Fig. 7. Detection PR results by SSFM with calibrated cameras (green), SSFM with
uncalibrated cameras (blue) and LSVM [9] (red). Figure 7c shows average results for
mouse, keyboard and monitor categories. SSFM is applied on image pairs randomly
selected from the testing set (unless otherwise stated). Calibration is obtained from
ground truth.

To evaluate the object detection performance, we plot precision-recall (PR)
curves and compare the average-precision (AP) value with baseline detector
LSVM [9]. Object detection for SSFM is obtained by projecting the estimated 3D
object bounding cube into each image. Given ground truth bounding boxes, we
measure the object detection performance following the protocol of the PASCAL
VOC Challenge4. LSVM baseline detector is applied to each image used by
SSFM. Thus PR values are computed for each image for fair comparison.

To evaluate the camera pose estimate, we compare the camera pose estimation
of SSFM with the state-of-the-art point-based structure-from-motion approach
Bundler [31]. Bundler first employs the SIFT feature, five-points algorithm [24]
and RANSAC to compute the fundamental matrix, and then applies Bundle Ad-
justment [34]. In certain configurations (e.g. wide baseline) RANSAC or Bundle
Adjustment fail to return results. In such cases we take the camera pose es-
timation of five-points algorithm as the results for comparison. We follow the
evaluation criteria in [24]. When comparing the camera pose estimation, we al-
ways assume the first camera to be at the canonical position. Denote Rgt and
Tgt as the ground truth camera rotation and translation, and Rest and Test the
estimated camera rotation and translation. The error measurement of rotation
eR is the minimal rotating angle of RgtR

−1
est. The error measurement of transla-

tion eT is evaluated by the angle between the estimated baseline and the ground

truth baseline, and eT =
TT
gtR

−T
gt R−1

estTest

|Tgt|·|Test| . For a fair comparison, the error results
are computed on the second camera.

We also analyze the performance of SSFM as a function of the number of
cameras (views). A testing set is called N -view set if it contains M groups of N
images. The testing sets with smaller number of views are first generated (i.e.
2-view set is the very first). If one N -view set is used, the N +1-view testing set
is generated by adding one additional random view to each of the M groups of
N images.

4 http://pascallin.ecs.soton.ac.uk/challenges/VOC/

http://pascallin.ecs.soton.ac.uk/challenges/VOC/
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5.1 Implementation Details

SSFM requires an object detector that is capable of determining the object pose.
We use the state-of-the-art object detector [9] and treat object poses as extra-
classes for each object category.

5.2 Ford Campus Vision Dataset[25]

The Ford Campus Vision dataset consists of images of cars aligned with 3D
scans obtained using a LiDAR system. Ground truth camera parameters are
also available. Our training / testing set contains 150 / 200 images of 4 / 5
different scenes. We randomly select 350 image pairs out of the testing images
with the rule that every pair of images must capture the same scene. The training
set for the car detector is the 3D object dataset [29]. This training set consists
of 8 poses.

Camera Pose Estimation: SSFM obtains smaller translation estimation error
than Bundler and comparable rotation estimation error (Table 1).

Table 1. Evaluation of camera pose estimation for two camera case. ēT represents
the mean of the camera translation estimation error, and ēR the mean of the camera
rotation estimation error.

Dataset ēT Bundler/SSFM ēR Bundler/SSFM
Ford Campus Car 26.5/19.9◦ < 1◦/< 1◦

Street Pedestrian 27.1◦/17.6◦ 21.1◦/3.1◦

Office Desktop 8.5◦/4.7◦ 9.6◦/4.2◦

Table 2. Camera pose estimation errors and object detection AP v.s. numbers of
cameras on the Ford-car dataset. The baseline detector AP is 54.5%.

Camera # 2 3 4
Det. AP (Cali. Cam.) 62.1% 63.6% 64.2%

Det. AP (Uncali. Cam.) 61.3% 61.7% 62.6%
ēT 19.9◦ 16.2◦ 13.9◦

Object Detection: The PR by SSFM and the baseline detector are plotted in
Figure 7a. Since ground truth annotation for small objects is difficult to obtain
accurately, in this dataset we only test scales whose bounding box areas are
larger than 0.6% of the image area. SSFM improves the detection precision and
recall.

Camera Baseline Width v.s. Pose Estimation: We analyze the effect of
baseline width on the camera pose estimation. Since the rotation estimations of
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(d) 3D obj. localization. d = 0.1m.

Fig. 8. System analysis of SSFM on Ford Car Dataset (a)(b) and Kinect Office Dataset
(c)(d). For the car dataset, the typical object-to-camera distance is 10 ~ 30 meters.
For the office dataset, the typical object-to-camera distance is 1 ~ 2 meters.

both Bundler and SSFM contain little error, we only show the translation esti-
mation error v.s. camera baseline width (Figure 8a). This experiment confirms
the intuition that a wider baseline impacts more dramatically the performance
of methods based on low level feature matching than does on methods such as
SSFM where higher level semantics are used.

Comparison for Different Number of Cameras: Table 2 shows the camera
pose estimation error and the object detection AP as a function of the number of
views (cameras) used to run SSFM. As more cameras are available, SSFM tends
to achieve better object detection result and camera translation estimation.

3D Object Localization Performance: Due to the metric-reconstruction am-
biguity, we use calibrated cameras in this experiment to enforce that the coordi-
nates of 3D objects have a physical meaning. We manually label the 3D bounding
boxes of cars on the LiDAR 3D point cloud to obtain the ground truth car 3D
locations. We consider a 3D detection to be true positive if the distance between
its centroid and ground truth 3D object centroid is smaller than a threshold d
(see figure captions). The 3D object localization for one camera (single view) is
obtained by using its 2D bounding box scale and location [2]. SSFM performance
increases as the number of views grows (Figure 8b).

Object-Based Structure from Motion: We disable the feature point detec-
tion and matching, thus no 2D points are used (i.e. just maximize Pr(o|C,O)).
For the two-view case, the detection AP increases from the baseline 54.5% to
55.2%, while the error of camera pose estimation is ēT = 81.2◦ and ēR = 21.2◦.
Notice that random estimation of the parameters would yield ēT = 90◦ and
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Fig. 9. Anecdotal examples. Column 1: Baseline object detection in the 1st image;
Column 2,3: the final joint object detections projected in the 1st and 2nd image; Col-
umn 4: the top view of the scene. Colors in the last three columns show the object
correspondences established by SSFM.
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ēR = 90◦. To the best of our knowledge, this is the first time SFM has been
tested based only on high-level cues (objects) rather than low-level / middle-
level cues (e.g. points, lines, or areas). Notice that the

5.3 Kinect Office Desktop Dataset

We use Microsoft’s Kinect to collect images and corresponding 3D range data of
several static indoor office environments. The ground truth camera parameters
are obtained by aligning range data across different views. We manually identify
the locations of ground truth 3D object bounding cubes similarly to the way
we process Ford dataset. The objects in this dataset are monitors, keyboards,
and mice. The testing and training sets contain 5 different office desktop scenes
respectively and each scenario has ~50 images. From each scenario, we randomly
select 100 image pairs for testing or training. SSFM performance is evaluated
using the ground truth information and compared against baseline algorithms.
We show these results as Figure 7c, Table 1, Figure 8c, and Figure 8d. SSFM
estimates camera poses more accurately than point-based SFM, and detects
objects more accurately than single-image detection method.

5.4 Stereo Street-View Pedestrian Dataset

We collected this dataset by simultaneously capturing pairs of images of street-
view pedestrians. The two cameras are pre-calibrated so that the ground-truth
camera poses are measured and known. The object category in this dataset is
pedestrian. The training set of object detector is INRIA pedestrian dataset [6]
with no pose label. The two cameras are parallel and their relative distance is
4m. The typical object-to-camera distance is 5 ∼ 10m. The training set contains
200 image pairs in 5 different scenes. The testing set contains 200 image pairs
in 6 other scenes. SSFM attains smaller camera pose estimation error compared
to Bundler (Table 1) and better detection rates than LSVM (Figure 7b). Notice
in this dataset the baseline width of the two cameras is fixed thus we cannot
analyze the camera pose estimation error v.s. camera baseline width and cannot
carry out experiments with multiple cameras.

6 Conclusion

This chapter presents a new paradigm called the semantic structure from mo-
tion for jointly estimating 3D objects, 3D points and camera poses from multiple
images. We demonstrated that semantic structure from motion is capable of es-
timating camera poses more accurately than point-based structure-from-motion
methods, and recognizing objects in 2D / 3D more accurately than methods
based on a single image. We see this work as a promising step toward the goal of
coherently interpreting the geometrical and semantic content of complex scenes.
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7 Appendix

Proposition 1. Assume that at least 3 objects can be detected in the kth image.
Assume that the detector returns object image coordinates xk

t , y
k
t (t = 1, 2, 3),

scales wk
t , h

k
t , and category ct. Assume that the mappings Wt and Ht are avail-

able for each detected object. Then extrinsic camera parameters Rk, T k can be
calculated.

Proof. We demonstrate proposition 1 for 3 objects but the proof can be extended
if more than 3 objects are available. Let O1, O2, O3 be the observed objects and
Ok

1 , O
k
2 , O

k
3 are their locations, poses, scales in the kth camera reference system.

We define the world reference system based on the first camera: location of O1
1 is

the origin; the vector from O1
2 to O1

1 is the X-axis; and the locations of O1
1 , O

1
2 , O

1
3

(3 points) characterize the X-Y plane. The object coordinate in camera reference
system is [Xk

t , Y
k
t , Zk

t ] = Zk
t (K

k)−1[xt, yt, 1]
′, where Zk

t can be computed from
wk

t , h
k
t with the mappings W and H . Therefore, we have the camera translation

as T k = [Xk
1 , Y

k
1 , Zk

1 ]. Since [xt, yt, 1]
′ = Kk(Rk[Xt, Yt, Zt]

′ +Tk)/Z
k
t (t = 1, 2, 3)

and the degree of freedom of Rk is 3, the camera rotation matrix Rk can be
solved accordingly.

Proposition 2. Assume that at least 2 objects can be detected in all the images.
Assume that from image k the detector returns object image coordinates xk

t , y
k
t ,

pose θkt , φ
k
t , and category ct. The camera extrinsic parameters Rk, T k can be

calculated up to a scale ambiguity (metric reconstruction).

Proof. We demonstrate proposition 2 for 2 objects but the proof can be ex-
tended if more than 2 objects are available. Let O1, O2 be the observed objects,
and let Ok

1 , O
k
2 be their locations, poses, scales in the kth camera reference sys-

tem. We define the world reference system based on the first camera: the lo-
cation O1

1 is the origin; and the normals (q,t,n) of the bounding cube of O1
1

(Figure 2) are the X,Y,Z axes. To address the ambiguity of the metric con-
struction, we assume the distance between O1 and O2 is unit length. By using
the observed pose of Ok

1 and O1
1 , the rotation of the kth camera Rk can be

computed, and its translation T k is unknown up to 1 degree of freedom which
is the distance of Ck to O1. Since we assume the distance between O1, O2 is
unit length, the 3D location of O2 (in the world system) becomes a function of
T k, denote which by X2(T

k), Y2(T
k), Z2(T

k). Given all the cameras C1 · · ·CNk ,
we have equations [X2(T

1), Y2(T
1), Z2(T

1)] = [X2(T
2), Y2(T

2), Z2(T
2)] = · · · =

[X2(T
Nk), Y2(T

Nk), Z2(T
Nk)]. These equations provide 3× (Nk− 1) constraints.

Since the degree of freedom of T k is 1, the number of unknowns are Nk. Therefore
{T k} can be jointly solved if more than two cameras are available. Notice that
the {Rk, T k} are estimated by assuming O1, O2 has the unit length. However,
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the real distance of O1, O2 is unknown and therefore the estimation of cameras
is up to a metric reconstruction.

Proposition 3. Assume that at least 1 object can be detected in all the images.
Assume on image k the detector returns object image coordinates xk

t , y
k
t , pose

θkt , φ
k
t , scales wk

t , h
k
t , and category ct. Assume that the mapping Wt and Ht are

available for each detected object. Then the camera extrinsic parameters Rk, T k

can be calculated.

Proof. We demonstrate proposition 3 for 1 object but the proof can be extended
if more than 1 object is available. Let O1 be the observed object and Ok

1 be its
location, pose, and scale in the kth camera reference system. We define the world
reference system based on the first camera: the location of O1

1 is the origin and
the normals (q,t,n) of the 3D cube of O1 (Figure 2) are the X,Y,Z axes. Hence,
Θ1, Φ1 (in the world system) is the same as the observed Θ1

1, Φ
1
1 . Object camera

coordinate is [Xk
1 , Y

k
1 , Zk

1 ] = Zk
1 (K

k)−1[x1, y1, 1]
′. Therefore, the translation of

the kth camera is T k = [Xk
1 , Y

k
1 , Zk

1 ]. Finally, Rk can be computed by θk1 , φ
k
1 and

Θ1, Φ1.
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Hierarchical Surface Reconstruction

from Multi-resolution Point Samples

Ronny Klowsky, Patrick Mücke, and Michael Goesele

TU Darmstadt

Abstract. Robust surface reconstruction from sample points is a chal-
lenging problem, especially for real-world input data. We present a new
hierarchical surface reconstruction based on volumetric graph-cuts that
incorporates significant improvements over existing methods. One key
aspect of our method is, that we exploit the footprint information which
is inherent to each sample point and describes the underlying surface
region represented by that sample. We interpret each sample as a vote
for a region in space where the size of the region depends on the foot-
print size. In our method, sample points with large footprints do not
destroy the fine detail captured by sample points with small footprints.
The footprints also steer the inhomogeneous volumetric resolution used
locally in order to capture fine detail even in large-scale scenes. Simi-
lar to other methods our algorithm initially creates a crust around the
unknown surface. We propose a crust computation capable of handling
data from objects that were only partially sampled, a common case for
data generated by multi-view stereo algorithms. Finally, we show the ef-
fectiveness of our method on challenging outdoor data sets with samples
spanning orders of magnitude in scale.

1 Introduction

Reconstructing a surface mesh from sample points is a problem that occurs in
many applications, including surface reconstruction from images as well as scene
capture with triangulation or time-of-flight scanners. Our work is motivated by
the growing capabilities of multi-view stereo (MVS) techniques [20,8,9,7] that
achieve remarkable results on various data sets.

Traditionally, surface reconstruction techniques are designed for fairly high-
quality input data. Measured sample points, in particular samples generated
by MVS algorithms, are, however, noisy and contain outliers. Figure 1 shows an
example reconstructed depth map that we use as input data in our method. Fur-
thermore, sample points are often non-uniformly distributed over the surface and
entire regions might not be represented at all. Recently, Hornung and Kobbelt
presented a robust method well suited for noisy data [12]. This method generates
optimal low-genus watertight surfaces within a crust around the object using a
volumetric graph cut. Still, their algorithm has some major limitations regarding
crust generation, sample footprint, and missing multi-resolution reconstruction
which we address in this paper.

F. Dellaert et al. (Eds.): Real-World Scene Analysis 2011, LNCS 7474, pp. 398–418, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Fig. 1. Left: An input image to Multi-View Stereo reconstruction. Middle: The re-
constructed depth map visualized in gray values (white: far, black: near). Right: The
triangulated depth map rendered from a slightly different view point.

Fig. 2. Visualization of the footprint of a sample point: A certain pixel in the left image
covers a significantly larger area than a corresponding pixel in the right image

Hornung and Kobbelt create a surface confidence function based on unsigned
distance values extracted from the sample points. The final surface S is obtained
by optimizing for maximum confidence and minimal surface area. As in many
surface reconstruction algorithms, the footprint of a sample point is completely
ignored when computing the confidence. Every sample point, regardless of how
it was obtained, inherently has a footprint, the underlying surface area taken
into account during the measurement (see Figure 2). The size of the footprint
indicates the sample point’s capability to capture surface details. A method
that outputs sample points with different footprints was proposed by Habbecke
and Kobbelt [9]. They represent the surface with surfels (surface elements) of
varying size depending on the image texture. Furukawa et al. [7] consider foot-
prints to estimate reconstruction accuracy and Fuhrmann and Goesele [6] build
a hierarchical signed distance field where they insert samples on different scales
depending on their footprint. However, both methods effectively discard samples
with large footprints prior to final surface extraction. In this paper, we propose
a different way to model the sample footprint during the reconstruction process.
In particular, we create a modified confidence map where samples contribute
differently depending on their footprints.
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The confidence map is only evaluated inside a crust, a volumetric region
around the sample points. In [12], the crust computation implicitly segments
the boundary of the crust into interior and exterior. The final surface separates
interior from exterior. This crust computation basically works only for com-
pletely sampled objects. Even with their proposed workaround (estimating the
medial axis), the resulting crust is still not applicable to many data sets. Such
a case is illustrated in Figure 3, where no proper interior component can be
computed. This severely restricts the applicability of the entire algorithm. We
propose a different crust computation that separates the crust generation from
the crust segmentation process, extending the applicability to a very general
class of input data.

Finally, as Vu et al. [24] pointed out, volumetric methods such as [12] rely-
ing on regular volume decomposition are not able to handle large-scale scenes.
To overcome this problem our algorithm reconstructs on a locally adaptive vol-
umetric resolution and finally extracts a watertight surface. This allows us to
reconstruct fine details even in large-scale scenes such as the Citywall data set
(see Figure 11).

This paper builds strongly on a recent publication by Mücke et al. [18] but
contains the following substantial improvements.

– The sampling of the global confidence map is parallelized.
– We now employ a graph embedding modeling the 26-neighborhood which
better approximates the Euclidean distance.

– Surface extraction is deferred to the end of the algorithm by using a com-
bination of marching cubes and marching tetrahedra on a multi-resolution
grid. This supersedes the need of the error-prone mesh clipping used before.

In addition, we show the effectiveness of our algorithm on a new challenging
data set with high surface genus.

The remainder of the paper is organized as follows: First, we review previous
work (Section 2) and give an overview of our reconstruction pipeline (Section 3).
Details of the individual steps are explained in Sections 4–7. Finally, we present
results of our method on standard benchmark data as well as challenging outdoor
scenes (Section 8) and wrap up with a conclusion and an outlook on future work
(Section 9).

2 Related Work

Surface Reconstruction from (Unorganized) Points

Surface reconstruction from unorganized points is a large and active research
area. One of the earliest methods was proposed by Hoppe et al. [10]. Given a set
of sample points, they estimate local tangent planes and create a signed distance
field. The zero-level set of this signed distance field, which is guaranteed to be a
manifold, is extracted using a variant of the marching cubes algorithm [15].

If the sample points originate from multiple range scans, additional informa-
tion is available. VRIP [5] uses the connectivity between neighboring samples as
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well as the direction to the sensor when creating the signed distance field. Ad-
ditionally, it employs a cumulative weighted signed distance function allowing
it to incrementally add more data. The final surface is again the zero-level set
of the signed distance field. A general problem of signed distance fields is that
local inconsistencies of the data lead to surfaces with undesirably high genus
and topological artifacts. Zach et al. [25] mitigate this effect. They first create a
signed distance field for each range image and then compute a regularized field
u approximating all input fields while minimizing the total variation of u. The
final surface is the zero-level set of u. Their results are of good quality, but the
resolution of both, the volume and the input images, is very limited. In their very
recent paper, Fuhrmann and Goesele [6] introduce a depth map fusion algorithm
that takes sample footprints into account. They merge triangulated depth maps
into a hierarchical signed distance field similar to VRIP. After a regularization
step, basically pruning low-resolution data where reliable higher-resolution data
is available, the final surface is extracted using marching tetrahedra. Our method
does not rely on triangulated depth maps and tries to merge all data samples
while never discarding information from low-resolution samples. Another recent
work taking unorganized points as input is called cone carving and is presented
by Shalom et al. [21]. They associate each point with a cone around the es-
timated normal to carve free space and obtain a better approximation of the
signed distance field. This method is in a way characteristic for many surface
reconstruction algorithms in the sense that it is designed to work on raw scans
from a commercial 3D laser scanner with rather good quality. Such methods are
often not able to deal with the lower quality data generated by MVS methods
from outdoor scenes containing a significant amount of noise and outliers.

Kazhdan et al. [13] reformulate the surface reconstruction problem as a stan-
dard Poisson problem. They reconstruct an indicator function marking regions
inside and outside the object. Oriented points are interpreted as samples of the
gradient of the indicator function, requiring accurate normals at each sample
point’s position which are usually not present in MVS data. The divergence of
the smoothed vector field, represented by these oriented points, equals the Lapla-
cian of the indicator function. The final surface is extracted as an iso-surface of
the indicator function using a variant of the marching cubes algorithm. Along
these lines, Alliez et al. [1] use the normals to derive a tensor field and compute
an implicit function whose gradients best approximate that tensor field. Addi-
tionally, they present a technique, called Voronoi-PCA, to estimate unoriented
normals using the Voronoi diagram of the point set.

Graph Cut Based Surface Reconstruction

Boykov and Kolmogorov [2] introduced the idea of reconstructing surfaces by
computing a cut on a graph embedded in continuous space. They also show
how to build a graph and set the edge weights such that the resulting surface
is minimal for any anisotropic Riemannian metric. Hornung and Kobbelt [11]
use the volumetric graph cut to reconstruct a surface given a photo-consistency
measure defined at each point of a predefined volume space. They propose to
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embed an octahedral graph structure into the volume and show how to extract
a mesh from the set of cut edges. In a follow-up paper [12], they present a way
to compute confidence values from a non-uniformly sampled point cloud and
improve the mesh extraction procedure.

An example of using graph cuts in multi-view stereo is the work of Sinha et
al. [22]. They build an adaptive multi-resolution tetrahedral mesh where an esti-
mated photo-consistency guides the subdivision. The final graph cut is performed
on the dual of the tetrahedral mesh followed by a photo-consistency driven mesh
refinement. Labatut et al. [14] build a tetrahedral mesh around points merged
from multiple range images. They introduce a surface quality term and a sur-
face visibility term that takes the direction to the sensor into account. From
an optimal cut, which minimizes the sum of the two terms, a labeling of each
tetrahedra as inside or outside can be inferred. The final mesh consists of the
set of triangles separating the tetrahedra according to their labels. Vu et al. [24]
replace the point cloud obtained from multiple range images with a set of 3D fea-
tures extracted from the images. The mesh obtained from the tetrahedral graph
cut is refined mixing photo-consistency in the images and a regularization force.
However, none of the existing graph cut based surface reconstruction algorithms
properly incorporates the footprint of a sample.

3 Overview

The input of our algorithm is a set of surface samples representing the scene
(Figure 3a). Each surface sample consists of its position, footprint size, a scene
surface normal approximation, and an optional confidence value. A cubic bound-
ing box is computed from the input points or given by the user.

First, we determine the crust, a subset of the bounding volume containing
the unknown surface. All subsequent computations will be performed inside this
crust only. Furthermore, the boundary of the crust is partitioned into interior
and exterior, defining interior and exterior of the scene (Figure 3b). Inside the
crust we compute a global confidence map, such that points with high confidence
values are likely to lie on the unknown surface. Each sample point adds confidence
to a certain region of the volume. The size of the region and the confidence peak
depend on the sample point’s footprint size. Effectively, every sample point adds
the same total amount of confidence to the volume but spread out differently. A
volumetric graph is embedded inside the crust where graph nodes correspond to
voxels and graph edges map the 26-neighborhood. A minimal cut on this graph
separates the voxels into interior and exterior representing the optimal surface
at this voxel resolution (Figure 3c). The edge weights of the graph are chosen
such that the final surface minimizes surface area while maximizing confidence.

We then identify surface regions with sampled details too fine to be adequately
represented on the current resolution. Only these regions are subdivided, the
global confidence map is resampled, and the graph cut is computed on a higher
resolution (Figure 3d+e). We repeat this process iteratively until eventually
all fine details were captured. Finally, we extract the surface in the irregular
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a) b) c)

d) e) f)

Fig. 3. Overview of our reconstruction pipeline. a) We compute a crust around the
input samples of different footprints and varying sampling density. b) We segment the
crust into interior (red) and exterior (green) and compute the global confidence map
(GCM) to which each input sample contributes. c) A minimal cut on the embedded
graph segments the voxel corners representing the surface with maximum confidence
while minimizing surface area. We mark the areas with high-resolution samples (dashed
black box) and iteratively increase resolution therein. d+e) In the increased resolution
area we re-evaluate the GCM and perform the graph cut optimization. f ) Finally, an
adaptive triangle mesh is extracted from the multi-resolution voxel corner labeling.
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voxel grid using a combination of marching cubes and marching tetrahedra.
This results in a multi-resolution surface representation of the scene, the output
of our algorithm (Figure 3f).

4 Crust Computation

We subdivide the cubic bounding box into a regular voxel grid. For memory
efficiency and to easily increase the voxel resolution, this voxel grid is represented
by an octree data structure. Our algorithm iteratively treats increasing octree
levels (finer resolution) starting with a user-defined low octree level �0, i.e., with
a coarse resolution.

The crust Vcrust ⊂ V is a subset of voxels that contains the unknown surface.
The crust computation is an important step in the algorithm for several reasons:
The shape of the crust constrains the shape of the reconstructed surface. Fur-
thermore, the crust has to be sufficiently large to contain the optimal surface
and on the other hand as narrow as possible to reduce computation time and
memory cost. We split the crust computation into two parts. First, the crust is
generated, then the boundary of this crust is segmented to define interior and
exterior of the scene (see Figure 4 for an overview).

Crust Generation. We initialize the crust on level �0 with the set of voxels on the
parent octree level �0−1 containing surface samples. We dilate this sparse set of
voxels several times over the 6-neighborhood of voxels, followed by a morpholog-
ical closing operation (Figure 4a). The number of dilation steps is currently set
by the user, but the resulting crust shape can be immediately inspected, as the
crust generation is fast on the low initial resolution. Subsequently, these voxels
v ∈ V �0−1

crust are once regularly subdivided to obtain the initial crust V �0
crust for

further computations on level �0.

Crust Segmentation. In this step our goal is to assign labels interior and exterior
to all boundary voxel corners on level �0 to define the interior and exterior of the
scene. In the following, we define ∂V �

crust to be the set of boundary voxels on level
�. We start by determining labels for voxel corners vf that lie on the midpoints of

boundary faces of parent crust voxels v ∈ ∂V �0−1
crust . The labels are determined by

comparing a surface normal estimate nsurf
v for parent voxel v with the normals

of the boundary faces ncrust
vf

. The surface normal is computed for each crust
voxel by averaging the normals of all sample points inside the crust voxel. Crust
voxels that do not contain surface samples obtain their normal estimate through
propagation during crust dilatation (Figure 4b). We determine the initial labels
on the crust boundary by

label(vf) =

⎧⎪⎨⎪⎩
exterior, if ncrust

vf · nsurf
v ≥ τ

interior, if ncrust
vf

· nsurf
v ≤ −τ

unknown, otherwise

(1)

with τ ∈ (0, 1) (Figure 4c). We used τ = 0.75 in all experiments.
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a) b)

c) d)

Fig. 4. Initial crust computation for lowest resolution: a) We initialize the crust with
voxels containing sample points and dilate several times. b) Surface normals are com-
puted for each voxel. c) The comparison of surface normals with the face normals of
the crust voxels defines an initial labeling into interior (red), exterior (green), and
unknown (blue). d) An optimization yields a homogenous crust surface segmentation.

By now we have just labeled a subset of all voxel corners on level �0 (Fig-
ure 4c). Furthermore, since surface normal information of the samples may only
be a crude approximation, this initial labeling is noisy and has to be regularized.
We cast the problem of obtaining a homogenous labeling of the crust surface
into a 2D binary image denoising problem solved using graph cut optimization
as described by Boykov and Veksler [4]. We build a graph with a node per voxel
corner in ∂V �0

crust and a graph edge connecting two nodes if the corresponding
voxel corners share a voxel edge. Additionally, ‘diagonal’ edges are inserted that
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Fig. 5. Visualization of the crust surface for the Temple (cut off perpendicular to the
viewing direction). The color is similar to Figure 4. Light shaded surfaces are seen from
the front, dark shaded ones are seen from the back.

connect the initially labeled corners in the middle of parent voxel faces with
the four parent voxel corners. We also add two terminal nodes source and sink
together with further graph edges connecting each node to these terminals. Note
that this graph is used for the segmentation of the crust on the lowest resolu-
tion level �0 only and should not be confused with the graphs used for surface
reconstruction on the different resolutions.

All edges connecting two non-terminal nodes receive the same edge weight w.
Edges connecting a node n with a terminal node receive a weight depending on
the labeling of the corresponding voxel corner vc, where unlabeled voxel corners
are treated as unknown:

wsource
n =

⎧⎪⎨⎪⎩
μ if vc is labeled interior

1− μ if vc is labeled exterior
1
2 if vc is unknown

(2)

wsink
n = 1− wsource

n (3)

for a constant μ ∈ (0, 12 ). With these edge weights the exterior is associated
with source, interior with sink. A cut on this graph assigns each node either
to the source or to the sink component and therefore yields a homogeneous
segmentation of the boundary voxel corners of ∂V �0

crust (Figure 4d and Figure 5
right). We used w = 0.5 and μ = 0.25 in all experiments.

If two neighboring crust voxel corners obtained different labels, the recon-
structed surface is forced to pass between them, as it has to separate interior
from exterior. The denoising minimizes the number of such occurrences and
therefore prevents unwanted surfaces from being formed. In the case of entirely
sampled surfaces and a correctly computed crust, two neighboring voxel corners
never have different labels. However, if the scene surface is not sampled entirely,
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such segment borders occur even for correct segmentations (see Figure 4d). This
forces the surface to pass through the two involved voxel corners which, unlike
the rest of the surface reconstruction, does not depend on the confidence values.
This fixation does not affect the surface in sampled regions, though. We exploit
this constraint on the reconstructed surface in our refinement step where we
reconstruct particular areas on higher resolution (see Section 7).

5 Global Confidence Map

The global confidence map (GCM) is a mapping Γ : R3 → R that assigns a
confidence value to each point in the volume. Our intuition is that each sample
point spreads its confidence over a region in space whose extent depends on the
sample footprint. Thus, sample points with a small footprint create a focused
spot whereas sample points with a large footprint create a blurry blob (see
Figure 3b). We model the spatial uncertainty of a sample point as a Gaussian
γs centered at the sample point’s position with standard deviation equal to half
the footprint size. If the sample points are associated with confidence values we
scale the Gaussian accordingly. The local confidence map (LCM) γs determines
the amount of confidence added by a particular sample point s. Consequently,
the GCM is the sum over all LCMs:

Γ (x) =
∑
s

γs(x). (4)

Implementation. Let � be the octree level at which we want to compute the graph
cut. In all crust voxels {xv}v∈V �

crust
we evluate the GCM Γ at 27 positions: at

the 8 corners of the voxel, at the middle of each face and edge, and at the
center of the voxel. When adding up the LCMs of each sample point s we clamp
the value of γs to zero for points for which the distance to s is larger than
three times the footprint size of sample point s. Also, we sample each γs only
at a fixed number of positions (≈ 53) within its spatial support and exploit the
octree data structure by accumulating each γs to nodes at the appropriate octree
level depending on the footprint size. After all samples have been processed, the
accumulated values in the octree are propagated to the nodes at level � by adding
the values at a node to the children’s nodes using linear interpolation for in-
between positions. The support of LCMs of sample points with small footprints
might be too narrow to be adequately sampled on octree level �. For those
samples we temporarily increase the footprint for the computation of the LCM
γs and mark the corresponding voxel for later processing at higher resolution.

5.1 Parallelization

In order to speed-up the sample insertion into the octree which is costly since
each input point creates≈ 125 samples, we parallelize the insertion at each octree
level �̂ ≤ � using a binning approach. In our implementation, bins correspond to
voxels. In each bin we sort the samples into eight lists representing the eight child
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Fig. 6. Visualization of an intermediate state of the binning approach used for the
parallelization of the GCM computation. Starting with two bins (left), the right bin
is subdivided into eight new bins (middle). One of the new bins is subdivided again
(right) resulting in a total number of 16 bins.

voxels in a predefined order. We process the first list of all bins in parallel, then
the second list, and so on. For this purpose samples in list x of two different bins
should not interfere with each other, i.e., affect the same nodes in the octree. We
start with the bounding cube as root bin containing all samples to be processed
on level �̂. We subdivide a bin if the following two criteria are satisfied:

1. the bin contains more than nmax samples, and
2. subdividing the bin maintains the property that samples out of the same list

but different bins do not interfere with each other given their footprint.

When subdividing a bin the lists are effectively turned into bins and the samples
are partitioned into eight smaller lists according to the same predefined order
as before. The subdivision stops if a maximum number of bins has been reached
or no more bins can be subdivided. Figure 6 shows the main principle of the
subdivision process where the color coded voxels represent the individual lists.
Note that two voxels with the same color never touch so that the LCM of samples
do not interfere with each other.

6 Graph Cut

As done by Hornung and Kobbelt [12] we apply a graph cut to find the optimal
surface. The layout of the graph cut is however more similar to Boykov and
Kolmogorov [2] since we define a graph node per voxel and edges representing
the 26-neighborhood (inside the set of crust voxels Vcrust). Note that at this
stage we compute the graph cut on a certain resolution only and do not extract
the surface explicitly. The edge weights wi in the graph are derived from the
GCM values Γ (xi) in the center of the voxel, edge, or face, respectively. Since
the optimal surface should maximize the global confidence Γ we want to set small
edge weights for regions with high confidence and vice versa. A straightforward
way to implement this would be

wi = 1− Γ (xi)

Γmax
+ a with Γmax = max

x∈R3
Γ (x) (5)
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Fig. 7. The GCM values can be arbitrarily large leading to near-constant edge weights
in large regions of the volume (left). Our local GCM balancing compensates for that
allowing the final graph cut to find the correct surface (right).

such that all edge weights lie in [a, 1 + a], where a controls the surface tension.
Note, that scaling all edge weights with a constant factor does not change the
resulting set of cut edges. As the global maximum Γmax can be arbitrarily large,
local fluctuation of the GCM might be vanishingly small in relation to Γmax (see
Figure 7 left). Since the graph cut also minimizes the surface area while maxi-
mizing for confidence, the edge weights need to have sufficient local variation to
avoid that the graph cut only minimizes the number of cut edges and thus the
surface area (shrinking bias). In order to cope with that, we apply a technique
similar to an adaptive histogram equalization which we call local GCM balanc-
ing. Instead of using the global maximum in Equation 5 we replace it with the
weighted local maximum (LM) of the GCM at point x. We compute ΓLM (x) by

ΓLM (x) = max
y∈R3

[
W

(
‖x− y‖

2−� · Bedge

)
· Γ (y)

]
(6)

where Bedge is the edge length of the bounding cube. We employ a weighting
function W to define the scope in which the maximum is computed. We define
W as

W (d) =

{
1−

(
d

1
2D

)c
if d ≤ 1

2D
0 if d > 1

2D
(7)

where D is the filter diameter in voxels. We used D = 11 and c = 4 in all our
experiments. W is continuous in order to ensure continuity of the GCM. See
Figure 7 (right) to see the effect of local GCM balancing.

After the graph cut, each voxel corner on octree level � is either labeled interior
or exterior which we can think of as binary signed distance values. In particular,
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since the subdivision from level �−1 is regular we have labels for all voxel corners,
the voxel center, the center of each face and edge. This will be exploited during
final surface extraction in the next Section.

7 Multi-resolution Surface Reconstruction

Due to memory limitations, it is often impossible to reconstruct the whole scene
on a resolution high enough to capture all sampled details. An adaptive multi-
resolution approach which reconstructs different scene regions on adaptive res-
olutions depending on the sample footprints is therefore desirable. During the
GCM sampling on octree level � we marked voxels that need to be processed on
higher resolution. After the graph cut we dilate this set of voxels several times
and regularly subdivide the resulting voxel set to obtain a new crust V �+1

crust. The
crust segmentation can be obtained from the graph cut on level �, as this cut
effectively assigns each voxel corner a label interior or exterior. For boundary
voxel corners in V �+1

crust that coincide with voxel corners on level � we simply trans-
fer the label. This ensures a continuous reconstruction across level boundaries.
For voxel corners that lie on a parent voxel edge or face, i.e., between two or four
voxel corners on level �, we obtain the conform label of the surrounding voxel
corners or we leave it unknown. The new crust V �+1

crust is now ready for graph cut
optimization on level � + 1 (see Figure 3d+e). For voxel corners that coincide
with voxel corners on the lower resolution the resulting labeling on level � + 1
overwrites the labeling obtained before.

The recursive refinement stops if the maximum level �max is reached or no
voxels are marked for further processing. Due to our refinement scheme the last
subdivision in the octree is always regular, i.e., all eight octants are present. The
graph cuts define the voxel corners of the finest voxels as interior or exterior.

7.1 Final Surface Extraction

To extract the final surface we apply a combination of marching cubes and
marching tetrahedra. The decision is made voxel-by-voxel one level above the
finest level. Note that the last subdivision step is always regular. If the voxel is
single-resolution containing 27 labeled voxel corners, we apply classical march-
ing cubes to all eight child voxels. We interpret the voxel corner labels as binary
signed distance values. If the voxel is multi-resolution, i.e., there is a change in
resolution present affecting at least one of the cube edges or faces, we apply
the tetrahedralization scheme by Manson and Schaefer [16] (see Figure 8). We
hereby place dual vertices at voxel corners and at the centers of edges, faces,
and voxels. These positions coincide with voxel corners of the finest levels pro-
viding the binary signed distance values needed for the subsequent marching
tetrahedra. Now, we only need to take care of voxel faces where triangles pro-
duced by marching cubes and triangles produced by marching tetrahedra meet.
It is possible that T-vertices were created here but this can be easily fixed using
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a) b)

c) d) e)

Fig. 8. Tetrahedralization of the multi-resolution grid. We connect a vertex (a) with
the dual vertex of an edge (b), add a face vertex (c), and form a tetrahedron by adding
the dual vertex of a cell (d). Adaptive triangulation of the multi-resolution grid (e).
Tetrahedralization scheme and figures similar to Manson and Schaefer [16].

an edge flip or vertex collapse. The final multi-resolution surface mesh is water-
tight and has different sized triangles depending on the details present in the
corresponding areas.

8 Results

We will now present results of our method on different data sets (see Table 1).
The source code is publicly available on the project page [19]. Our experiments
were performed on a 2.7 GHz AMD Opteron with eight quad-core processors and
256GB RAM. All input data was generated from images using a robust structure-
from-motion system [23] and an implementation of a recent MVS algorithm [8]
applied to down-scaled images. We used all reconstructed points from all depth
maps as input samples for our method. The footprint size of a sample is computed
as the diameter of a sphere around the sample’s 3D position whose projected
diameter in the image equals the pixel spacing. For all graph cuts involved we
used the publicly available library by Boykov and Kolmogorov [3].

Table 1. The data sets we used and the number of sample points, the number of
vertices in the resulting meshes, octree levels used for surface extraction, computation
time and relative variation in footprint size

data set
sample vertices octree comp. rel. variation
points level time in footprint

Temple 22M 0.5M 9 1 h 1.5
Kopernikus 32M 3.3M 10–12 1.5 h 38

Stone 43M 4.3M 8–14 4.5 h 75
Citywall 80M 8.6M 11–16 6 h 209
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Fig. 9. An input image of the Temple data set (left) and a rendered view of our
reconstructed model (right)

The Temple is a widely used standard data set provided by the Middlebury
Multi-View Stereo Evaluation Project [20,17] and consists of 312 images showing
a temple figurine. This data set can be considered to be single-resolution since
all input images have the same resolution and distance to the object, resulting in
the complete temple surface to be reconstructed on the same octree level in our
algorithm. The reconstruction quality (Figure 9) is comparable to other state-
of-the-art methods. We submitted reconstructed models created for a previous
submission [18] for the TempleFull and the TempleRing variant (using only a
subset of 47 images as input to the pipeline) to the evaluation. For TempleFull we
achieved the best accuracy (0.36mm, 99.7% completeness), for the TempleRing
we achieved 0.46mm at 99.1% completeness.

The stone data set consists of 117 views showing a region around a portal
where one characteristic stone in the wall is photographed from a close distance
leading to high-resolution sample points in this region. Overall we have a factor
of 75 of variation in footprint sizes. In Figure 10 we compare our reconstruction
with Poisson surface reconstruction [13]. In the overall view our reconstruction
looks significantly better, especially on the ground where our method results in
less noise. In the close-up view also Poisson surface reconstruction shows the
fine details. Due to the fact that the sampling density is much higher around
the particular stone Poisson surface reconstruction used smaller triangles for the
reconstruction.
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Our results Poisson surface reconstruction

Fig. 10. Top: Example input images of the stone data set. Middle + Bottom: Com-
parison of our reconstruction (left) with Poisson surface reconstruction [13] (right).
Although Poisson surface reconstruction does not take footprints into account the re-
construction shows fine details due to the higher sampling density. However, our surface
shows significantly less noise and clutter.
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Fig. 11. Top: Two input images of the Citywall data set. Middle: Entire model (color
indicates the octree level, red is highest). Bottom: Close-ups of the two detailed regions.

The Citywall data set consists of 487 images showing a large area around
a city wall. The wall is sampled with medium resolution, two regions though
are sampled with very high resolution: the fountain in the middle and a small
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sculpture of a city to the left (Figure 11 top). Our multi-resolution method is able
to reconstruct even fine details in the large scene where sample footprints differ
up to a factor of 209. In consequence, the reconstruction spans six octree levels
and detailed regions are triangulated about 32 times finer than low-resolution
regions. The middle image of Figure 11 shows the entire mesh whereas the bot-
tom images show close-ups of the highly detailed surface regions. One can even
recognize some windows of the small buildings in the reconstructed geometry.

The Kopernikus data set (Figure 12) consists of 334 images showing a statue
with a man and a women. The underlying surface geometry is particularly chal-
lenging due to its high genus. The data set is also multi-resolution in the sense
that we took close-up views of the area around the hands. We compare our recon-
struction against VRIP [5] and the depth map fusion by Fuhrmann and Goesele

Fig. 12. Two input images of the Kopernikus data set, the complete reconstructed
model from two perspectives and a close-up of the wireframe showing the adaptively
triangulated mesh
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Our results Depth map fusion VRIP

Fig. 13. Comparison of our reconstruction (left) with depth map fusion (middle) [6]
and VRIP (right) [5]

[6] (Figure 13). It is clearly visible that our model contains significantly less noise
and shows no clutter around the real surface. Also, the complex topology of the
object is captured very well in comparison to the other methods. However, in
regions with low-resolution geometry staircase artifacts are visible due to the
surface extraction from a binary signed distance field. This is also visible in the
wireframe rendering in Figure 12 (bottom right) showing the dense triangulation
of the women’s face versus the coarse triangulation of the men’s upper body.

9 Conclusion and Future Work

We presented a robust surface reconstruction algorithm that works on general
input data. To our knowledge, except for the concurrent work of Fuhrmann
and Goesele [6], we are the first to take the footprint of a sample point into
account during reconstruction. Together with a robust crust computation and
an adaptive multi-resolution reconstruction approach we are able to reconstruct
fine detail in large-scale scenes. We presented results comparable to state-of-the-
art techniques on a benchmark data set and proved our superiority on challenging
large-scale outdoor data sets and objects with complex topology. The triangle
meshes are manifold and watertight and show an adaptive triangulation with
smaller triangles in regions where higher details were captured.

In future work, we plan to explore other ways to distribute a sample point’s
confidence over the volume, e.g., taking the direction to the sensor into account.
This would allow us to better model the generally anisotropic error present in
reconstructed depth maps.
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Abstract. Utilization of camera systems for surveillance tasks (e. g.
traffic monitoring) has become a standard procedure and has been in
use for over 20 years. However, most of the cameras are operated locally
and data analyzed manually. Locally means here a limited field of view
and that the image sequences are processed independently from other
cameras. For the enlargement of the observation area and to avoid occlu-
sions and non-accessible areas multiple camera systems with overlapping
and non-overlapping cameras are used. The joint processing of image se-
quences of a multi-camera system is a scientific and technical challenge.
The processing is divided traditionally into camera calibration, object
detection, tracking and interpretation. The fusion of information from
different cameras is carried out in the world coordinate system. To reduce
the network load, a distributed processing concept can be implemented.

Object detection and tracking are fundamental image processing tasks
for scene evaluation. Situation assessments are based mainly on charac-
teristic local movement patterns (e.g. directions and speed), from which
trajectories are derived. It is possible to recognize atypical movement
patterns of each detected object by comparing local properties of the
trajectories. Interaction of different objects can also be predicted with
an additional classification algorithm.

This presentation discusses trajectory based recognition algorithms
for atypical event detection in multi object scenes to obtain area based
types of information (e.g. maps of speed patterns, trajectory curvatures
or erratic movements) and shows that two-dimensional areal data anal-
ysis of moving objects with multiple cameras offers new possibilities for
situational analysis.

Keywords: Traffic observation, multi-camera system, cooperative dis-
tributed vision, multi-camera orientation, multi-target tracking, situa-
tion assessment.

1 Introduction

Monitoring traffic at roads and road intersections is a well-known application for
surveillance cameras. Video Image Detection Systems (VIDS) can derive traffic
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parameters by means of image processing and pattern recognition methods. The
temporal behavior of each object in the observation area can be described by
trajectories.

For local applications (e. g. traffic light control) all vehicles, cyclists and pedes-
trians must be recognized. However, a special challenge is the detection of the
interaction of road users. Zebra crossings on crossroads are a typical example
where pedestrians and cyclists can collide with turning vehicles. The detection of
such events can only be done with active or passive optical recognition methods.

The temporal behavior of every object in the observation area can be described
by trajectories. The interaction between objects can also be determined from the
trajectories.

Different views of the same area by more than one camera are necessary,
due to limitations of single camera systems, resulting in line of sight blockage
(occlusion) by other objects (e. g. cars, trees and traffic signs). Furthermore,
a distributed cooperative multi-camera system (DCMCS) enables a significant
enlargement of the observation area and a recording of activity and movement
patterns based on trajectories.

The fusion of the derived data from different camera views is done on object
or trajectory levels by a multi-target tracking approach. For this, only object
specific features (center coordinate, size, color) are considered. To perform the
fusion, these object features (e. g. the center coordinate) will be transformed
from the camera coordinate system into a common world coordinate system.
This information is then used as an additional measurement for the determi-
nation of the object trajectories. Prerequisite is an accurate common master
clock for successful time tagging, and merging or tracking and an exact camera
orientation.

The 2D view under certain observation conditions causes non-negligible shifts
in the center coordinates of the same object. This is a reason for notable tracking
errors. The use of wide baseline stereo methods can improve object detection,
object characterization and tracking accuracy. A first approach for situation
assessment is the assumption that normal traffic conditions can be derived from
the analysis and clustering of the object trajectories in the observed region. The
deviation from the typical clustered trajectory is detected as an abnormal event
The drawback is, that the complete trajectories for further evaluation frequently
cannot be determined.

An alternative is a map based approach, which was developed in our group
(see [38]). Semantic interpretation from trajectories or short-term tracklets can
be derived by statistical evaluation. For that purpose, simple parameters derived
from tracklets (for example speed and direction), are locally accumulated and
statistically evaluated. Stronger deviations from the local statistics can be in-
terpreted as atypical events and used for detection of atypical situations. The
disadvantage of this method is that no interactions can be calculated between
the object trajectories.

This contribution describes an expansion of the map based approach. For
determination of object interactions an additional protocol was implemented,
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which determines possible collisions between objects. The algorithm can be par-
allelized because of the independent local analysis.

This paper is organized as follows: First, review of existing systems for sit-
uation analysis and atypical event detection is given. Next is an overview of
the DCMCS processing. In the fourth chapter the existing implementations are
explained. Then former development in trajectory processing und situation as-
sessment are summarized and recent evaluation and results are presented. This
article closes with conclusion and outlook.

2 Situation Analysis and Atypical Event Detection
Overview

Situation analysis in a road environment aims at the integration and interpreta-
tion of data from single or multiple sensor systems. The result of the process is
a semantic description of the situation, applicable to higher level decision pro-
cesses. Other areas for situation analysis may include surveillance applications,
sport video analysis [22] or even customer tracking for marketing analysis [25].
In the following a short overview will be given.

An essential approach consists in the analysis of the trajectory. Jiang et. al.
proposed in [21] an algorithm for clustering trajectories based on similarity mea-
surements using the Bayesian information criterion (BIC) for model selection. It
evaluates the trade-offs between the likelihood (quality of the model) and number
of parameters (complexity of the model). The authors choose a Hidden Markov
Model (HMM) to describe each trajectory and calculate the BIC for each. The
HMM results represent frequent trajectories in the data set and can be used for
detecting abnormal events. The advantage of this approach is, that this method
is not sensitive to the absolute similarity values and that the number of clusters
is calculated automatically.

Yao et. al. presents in [46] a contextual model for abnormal event detection
based on a graphical representation of the trajectories augmented with spatio-
temporal relations from a training scene. This relations model shows dependen-
cies between a moving object and a semantic region (source, sink and path),
the moving object itself (speed and acceleration), paired moving objects (vehi-
cle distances) and interactions of multiple objects (pedestrians and cars moving
over a crosswalk). The model is used for detecting abnormalities in subgraphs
utilizing the log-likelihood ratio test. The results show that it is very useful as
prior knowledge for tracking and abnormal event analysis.

Aköz and Karsligil [3] uses continuous HMM for clustering and the Expec-
tation-Maximization algorithm for learning the model parameters. The approach
relies on learning normal traffic flow using trajectory clustering techniques, then
analyzing accident events by observing partial vehicle trajectories and motion
characteristics. Unfortunately the number of clusters must be known in advance.
Differentiating normal and abnormal events is done by defining descriptors and
executes semantic decisions about traffic events and accident characteristics.
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Whenever the partial log-likelihood values of observations towards a cluster de-
clines significantly, an abnormal trajectory is detected.

Chiu and Tsai [11] introduce a macro-observation scheme for abnormal event
detection. The scheme is based on energy maps which are created from the move-
ment strength of each pixel in the training video. The movement strengths are
weighted exponentially to emphasize the movement pattern of the most recent
frames. The energy maps of the training observations are clustered into groups
using hierarchical clustering. Abnormal events are detected by thresholding the
minimum distance of the observation maps to the trained cluster centroids. The
approach can easily-implemented for abnormality detection in daily life. It is not
highly responsive to events that last only a few seconds.

Piciarelli and Foresti [35] present an online algorithm for clustering trajecto-
ries and building a tree-like structure for modeling spatio-temporal dependencies.
The clusters are represented by a list of points and local variances. The distance
between a point of a trajectory and a cluster is given by the Euclidean distance
to the closest point in the cluster within a temporal sliding window. Once a
cluster is created, it is arranged with all the other clusters in a tree. The edges
of the tree are continuously annotated with the transition probability between
the clusters on each tracked observation. The probability of a trajectory is the
product of all transition probabilities of the tree-clusters it belongs to. Improb-
able trajectories are marked as abnormal. The problem here is that complete
trajectories must be recorded, which cannot t generally be expected.

Sillito and Fisher [44] introduced a semi-supervised method for learning nor-
mal trajectories using a Gaussian Mixture model. The trajectories are modelled
by seven control points from an approximated cubic B-spline and classified by
comparing the Mahalanobis distance to Gaussian mixture model with a thresh-
old. If a trajectory exceeds that threshold, a human operator decides on the tra-
jectory abnormality. In the case of normal trajectories, the classifier is updated.
The combination of automatic classification and human operator improves the
detection quality, since not every unusual trajectory is detected as abnormal.

3 Overview DCMCS Processing Approach

The approach proposed here is based on the use of a number of cameras (sensor
network). The used cameras cover overlaid or adjacent observation areas. The
same object can be observed using different cameras and camera views from dif-
ferent positions, time and observation angles. Using image processing methods
the objects of interest can be detected in the images with background subtrac-
tion. A description of recent development in video processing and tracking can
be found in the book from Maggio [29].

In order to enable tracking and fusion of the objects detected in the respec-
tive observation area, the image coordinates of these objects are converted to
a common world coordinate system. In case of poor quality of the orientation
parameters, the same objects, which were derived from different camera images,
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will be observed at different places. To avoid false identification of these objects,
high precision in coordinate transformation of the image into the object space
is required. Therefore, an exact camera calibration (interior orientation) as well
as knowledge of the position and view direction (exterior orientation) of the
camera is necessary. If the camera positions are given in absolute geographical
coordinates with known geographic direction, the detected objects can also be
provided in real world coordinates.

The approach presented here can be separated into the following steps (Fig-
ure 1). In the brackets, the name of the boxes are given. We assume a number
of n cameras. Firstly, after image acquisition for each camera objects have to
be extracted from each frame of the video sequence (Acquisition, Object Detec-
tion). Next, the center coordinate of these objects have to be transformed onto
a georeferenced world plane with known Z-coordinates (Orientation, Transfor-
mation). These processing steps are implemented very close to each camera.
The results (center coordinates, object size, etc.) are transmitted to a distant
processing unit. Here, the combined tracking occurs from the results of the dis-
tributed cameras. Afterwards the objects from all cameras are associated to
trajectories (Tracking). This can be utilized to derive e.g. comprehensive traffic
parameters (Trajectory Processing) and to characterize trajectories of individual
objects (Atypical Event Detection) or for the generation of feature maps from
tracklets (Feature Map Generation). These steps will be described in more detail
below.
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Fig. 1. Processing chain. The left block is camera related (from camera 1 to camera
n). The right part (beginning with tracking) is global with the data from all cameras.
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3.1 Video Acquisition

In order to receive reliable and reproducible results, compact digital industrial
cameras with standard interfaces and protocols (e. g. IEEE1394, GigE Vision
Camera Interface) are used. All cameras have to be synchronized to a common
master clock. While dealing with traffic surveillance and fast moving objects,
the synchronization allows a maximum divergence of only a few milliseconds. In
this approach the Network Time Protocol (NTP) is utilized to make all sensors
use a common time axis. Continuous time synchronization with a maximum di-
vergence of less than a millisecond between all cameras could be achieved using
a local NTP-Server [40] . For acquisition of stereo data, the synchronization is
implemented in hardware. A small trigger unit connects to the separate cameras.
It can be set up to generate continuous triggering signals with different frequen-
cies of 3, 7.5, 15 and 30 frames per second. The resulting maximum temporal
difference of the corresponding images is here in the order of a few nanoseconds.

A centralized video server has been developed which receives all image data
over TCP/IP. It is able to relay the images to any number of clients at any
requested resolution and image quality, limited by the server computation power
and server bandwidth only. There is no limitation for the number of clients with
different requirements at the same time.

3.2 Background Estimation and Object Detection

To extract moving objects from an image sequence, different image processing
libraries or programs (e. g. OpenCV or HALCON) can be utilized. The image
processing and object detection algorithms used here are based on a background
estimation in combination with other algorithms (e.g. shadow detection algo-
rithm by Prati et al. [36]).

Different background algorithms are implemented and used in dependence of
the applications. The background estimation provided by Javed et al. [20] is a
Gaussian Mixture Models (GMM) and uses image gradients to differ between
real objects in the foreground and regions that are falsely detected as foreground
such as changes in illumination. Another background estimation was performed
very similar to the approach of MacFarlane and Schofield [31]. The extraction is a
combination of a Laplacian and a median average background. (For more details
refer to [31]). A detected feature is considered as an object, if it has a minimum
area of at least 30 pixels. For further processing the object is binarized. The
resulting binarized object is frayed or disrupted. This effect is typically removed
by a morphological closing.

A center point for every object can be determined by an ellipse fit. The ellipse
encloses the object and remaining holes with a convex envelope. The resulting
ellipses have shown to be quite stable in their shape, position and direction.

An example is shown in Figure 2.
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Fig. 2. Acquired image (left), extracted objects (right)

3.3 Camera Calibration and Camera Orientation Determination

The determination of interior and exterior orientations are necessary preprocess-
ing steps for further tasks. The interior orientation (camera calibration) is the
determination of the camera model’s parameters. Exact surveyed test fields were
used to determine camera’s interior and exterior orientations. Self-calibration,
i.e. determination of interior orientation, is mostly used when test fields are
not available during an on-the-job calibration. Since prior camera calibration is
possible and the cameras broadly follows a perspective camera model, classic
photogrammetric calibration can be used.

Cameras with very short focal lengths needs a replacement for the perspective
model. The determination of exterior orientation is necessary for unique geomet-
ric relationships in overlapping regions. For the unambiguous determination of
the geometric relationships between image and the world coordinate system,
ground control points are necessary. The exterior orientation can be directly de-
rived for each camera (see e.g. Reulke et al. [38]). If there are no control points,
the relative orientation and bundle adjustment can be used. A particularly sim-
ple method is to use the projective transformation for a transition to a common
world coordinate system. The mentioned methods will be described below.

Camera Models. The perspective projection with an additional distortion
models is the most used camera model in literature and can model common
types of cameras exactly. Despite that, there are many camera systems that
cannot be calibrated at all or not precisely enough using this model. Especially
the increasing usage of omnidirectional or wide-angle camera systems requires
appropriate modelling.

Many different types of distortion models [8,9,7,27,24] extended by some
additions proposed by [13] have been developed. Originally, these distortion
models were implemented to compensate lens errors caused by physical effects
or other manufacturing issues. The parameters (principal point, focal length and
additional camera distortion in case of perspective camera model) can be deter-
mined using the test fields. The “Australis” software (based on a bundle block
adjustment [16]) was used for parameter determination, which incorporates a 10
parameter model. With these parameters, the normalized (undistorted) image
can be calculated from the distorted one.
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If the error after the adjustment of the distortion model is too large, often
the imaging model for the camera does not fit. Nevertheless, distortion models
can be utilized to approximate non-perspective camera models by using them
in addition to the classic perspective camera model. Even though this extended
perspective projection yields sufficient accuracy at the expense of additional
distortion parameters, it will probably fail when used for very wide fields of views.
So called catadioptric or fish-eye lenses have a FOV beyond 180◦ and cannot be
modeled using a perspective projection. However, there are parametric models
that can approximate these types of lenses and other non-perspective lenses
very well [43,47]. To avoid the decision for a proper camera model, a general
camera model was introduced and evaluated by different authors for particular
applications [5,12,17,33]. This generic model is suitable to calibrate the majority
of commonly used camera systems including perspective and non-perspective
types of projection. Despite its generic character, an adequate distortion model
is often necessary to compensate additional lens errors.

The perspective camera model is characterized by the following radial distance
function:

r = c · tan θ (1)

Where r is the radial distance of an image point starting from the principal
point, c is the principal distance (focal length) and θ is the inclination angle
between the object ray and the optical axis. Other parametric models used, for
e. g. fisheye camera systems, are:

stereographic − r = 2c · tan θ
2

equidistant − r = cθ
equisolid-angle − r = 2c · sin θ

2
orthogonal − r = c · sin θ

(2)

To approximate a set of particular parametric models and to calibrate cameras
which do not follow one of the mentioned parametric models a general model is
needed. Here a polynomial with odd powers is appropriate to serve as a generic
camera model since it approximates trigonometric functions [23,19]. The poly-
nomial may be defined as follows:

r (θ) =

p∑
i=1

kiθ
2i−1 (3)

By limiting the polynomial degree p to 3 or 4 the proposed generic camera
model is able to replace many types of cameras with different parametric model.
Furthermore, the field of views may exceed the problematic 1800 degree angle
limit of perspective and orthogonal projections. The parameter k0 corresponds
to the classic focal length c (but may be change over the field of view).
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Fig. 3. Camera Model Approximation: blue - perspective, green - stereographic, red
- equidistant, cyan - equisolid angle, magenta - orthogonal, dashed black - accordant
polynomial approximation

Figure 3 displays some arbitrary trigonometric camera models and their ap-
proximation by an polynomial model. Despite the perspective model, this generic
approach is able to accurately approximate different trigonometric camera mod-
els. In this case a three parameter polynomial, i.e. 5th degree, was used.

Exterior Orientation Determination. For the determination of exterior ori-
entation, i. e. orientation and position of the camera in world coordinate system,
exact known ground control points (GCP) are necessary. Prominent image points
must be assigned to known reference points. These reference points can be de-
rived from known quantitative information like width of streets or markings on
the lanes. Here, a high resolution ortho-image was used as reference map. Since
no exact georeferencing is required, merely relative orientation or a much simpler
projective transformation can be used.

The existing tracking concept (see section 3.6) is based on extracted objects,
which are georeferenced to a world coordinate system. This concept allows the
integration or fusion of additional data sources. Therefore, a transformation
between image and world coordinates is necessary. Using collinearity equations
(4), the world coordinates X,Y, Z can be derived from the image coordinates
x′, y′:

X = X0 + (Z − Z0) ·
r11·(x′−x0)+r21·(y′−y0)−r31·c
r13·(x′−x0)+r23·(y′−y0)−r33·c

Y = Y0 + (Z − Z0) ·
r12·(x′−x0)+r22·(y′−y0)−r32·c
r13·(x′−x0)+r23·(y′−y0)−r33·c

(4)

with the normalized image coordinates x′, y′, the planar X , Y world coordinates
(to be calculated) and the Z-component in world coordinates (to be known, can
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be deduced by appointing a dedicated ground plane). The exterior orientation
X0, Y0, Z0 (position of the perspective center in world coordinates) and r11,
r12,. . . , r33 (elements of the rotation matrix), as well as the interior orientation
x0, y0 (image coordinates of the principal point) and c (focal length) have to be
known.

The calculation of the exterior orientation of a camera is based on previ-
ously measured ground control points (GCPs) e. g. with differential GPS. The
accuracy of the points should be in the range of few centimeters. With these
coordinates an approximate orientation can be deduced using DLT [2,1]. For
improvement and elimination of erroneous GCPs the exterior orientation is
calculated with the spatial resection algorithm. This algorithm was described
previously ([38]). This experimental setup was implemented at the intersection
Rudower Chaussee / Wegedornstrafie, Berlin (Germany). In another experimen-
tal setup consisting of two cameras, it has been installed at the intersection
Rudower Chaussee / Brook-Taylor-Strafie, Berlin (Germany). The observed area
has an extent to about 100× 100m2. Figure 4 shows the original images taken
from two different positions and in 5 the derived disparity map. The accuracy
and the density of the derived disparity map is a good indicator for the suf-
ficient accuracy of this approach. Before matching images a considerable good
relative orientation has to be determined, which will be describe in the next
section.

Fig. 4. Original images of the example scene

Relative Orientation Determination. If we consider cameras pairwise, then
sometimes it is sufficient to determine the relative orientation (see e. g. Luhmann
[27]) or fundamental matrix (see e. g. Ma [28]). Relative orientation determi-
nation can be done in different ways. We assume normalized image coordinates
(after distortion correction), including uniform focal length.

If the exterior orientation has been determined with sufficient accuracy, the
relative orientation between two cameras can be derived from this exterior ori-
entation. For a more general discussion, let C1 and C2 be the absolute camera
orientation in homogeneous coordinates for two cameras (both are of size 4x4).
Furthermore, let R be the unknown relative orientation:
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Fig. 5. Disparity image, generated from images of two different observation positions

R · C1 = C2

⇔ R = C2 · C−1
1 . (5)

If rotation and translation are assumed, only, the matrices can be written as:

(
Rr tr
0 1

)
=

(
R2 t2
0 1

)
·
(
RT

1 −RT
1 t1

0 1

)
, (6)

were Ri and ti are the respective rotation matrices and translation vectors. The
advantage of this approach is the immediate integration into the world coordinate
system and hence, the scale is already determined. (This procedure is equivalent
to the determination of relative and absolute orientation.)

A second way of determining the relative orientation can be performed by a
selection of (possibly manual) homologous point pairs. Using these, one can use
the 8 point algorithm (see [28]) to determine a rough relative orientation. This
is usually followed by a non-linear minimization approach, to obtain the exact
relative orientation. This approach has been suggested in the Computer Vision
domain, for more details or for less initial correspondences, for instance refer
to [28]. This approach can be stabilized by use of RANSAC [14] which allows
elimination of wrong or inaccurate correspondences.

The third way is contributed by the Photogrammetry domain. By utilizing
the DLT, one obtains an initial linearly estimated relative orientation. Bundle
Adjustment will refine this orientation, by minimizing the remaining root mean
square error. For more details, refer for instance to [24]. The last two approaches
are supposed to have slightly better accuracy as compared to the first approach.
It is important to mention the different representation of rotation and trans-
lation in these two domains. However, it is rather simple to convert between
those two. Let R be a camera’s rotation matrix and t the respective projection
center.
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Fig. 6. Original (left), normalized (middle) and transformed image (right)

The Projection matrix, for use in the Computer Vision domain, is given by:

C =

(
R −Rt
0 1

)
. (7)

All the described algorithms are implemented and used for different applica-
tions and frameworks. The accuracy of relative orientation determination can
be determined e. g. from y-disparity (perpendicular to the x-disparity, which is
correlated to the depth distance) for some characteristic points, seen in both
images.

Projective Transformation. A particularly simple transformation from the
image into the world coordinate system is the projective transformation. It is
assumed that it is transformed from one plane to another plane. Especially in
the street environment, this assumption is well fulfilled. The actual projective
mapping from points x of the camera image to points x′ of an ortho-image can
be determined given a set D of manually selected corresponding homogeneous
points. A projective mapping matrix P ∈ R

3×3 which best fits the matches in L2-
sense can be determined by means of the SVD, for instance: Px = x′, ∀(x,x′) ∈
D. In the following figure 6 the described process is visualized.

3.4 Wide Baseline Stereo

Due to perspective effects, fusion of 2D trajectories can lead to erroneous tra-
jectories, due to displacement errors. Additional sources of errors are changes in
illumination conditions, weather changes or in general outdoor setups. This may
lead to many false positive objects in the background estimation process. Stereo
reconstruction is independent of object movement and lighting conditions. But
sometimes cameras are not or cannot be placed right next to each other.

Wide baseline stereo is a situation where the base length, that is the distance
between the two camera centers, becomes significant with respect to the scene
distance. In one of our scenarios, we have a camera pair with a base length of
roughly 7 m. The distance to the scene starts with 15m and goes up to the
horizon. To improve the object detection and tracking, additional constraints
for wide baseline stereo were introduced.
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Feature matching, that is detecting homologous point pairs, becomes more
and more ambiguous the more the baseline increases. This is due to projective
effects, different line of sight blockages (occlusions) in both cameras and possibly
significant differences in illumination. To overcome this, additional constraints
in epipolar geometry can be introduced, see [42]. Necessary are region features,
similar to MSER features. They have already been proven to be good feature
detectors for wide baseline situations, see [30].

The new constraints are based on a shape of the region features. MSER regions
can be described with an ellipse, which is what was done in [42]. In projective
space, ellipse tangents can be computed to any point. If the epipole is chosen
as the point which both tangents have to cross, two new constraints arise: Both
tangents map to tangents of the same feature in the second view, by use of the
fundamental matrix F . Hence, both tangents or epipolar lines have to match, if
we want correct correspondences. In figure 7, it some of these epipolar tangents
can be seen and the fact that they match very well. In summary, the ellipse
center, as well as the tangents have to match on the respective epipolar line.
In [42] we have shown, that this reduces ambiguity of the matching process.
These improvements have been utilized in the approach of Rueß et al. [41]. A
future goal is to use these constraints to deduce a fast and more accurate relative
orientation, as it can be shown, that only 3 correspondences are required when
considering conics.

Fig. 7. Outdoor Data Set. Displayed are some of the correspondences after match-
ing using the ellipse epipolar constraints. Smaller features are marked with an arrow.
Additionally the tangency epipolar lines of the ellipses are shown.

3.5 Object Association in Consecutive Images

The following two sections deal with the object tracking. The simplest method
(and the prerequisite for a complex tracking) is the object association.

To keep track of objects in between two consecutive images, we need to es-
tablish object correspondences. Objects from time t − 1 have to be matched to
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objects at time t. In general this can be done by generic appearance descriptors,
which means looking for most similar objects compared to objects of the last
time step. Again, object descriptions may include texture, shape but can also be
position, same direction of movement etc.

This setup uses a template matching approach. The transformation to a world
coordinate frame is reduced by projective mapping onto a plane (as described in
3.3). This transformation will distort objects in between frames but the temporal
distance of two frames is very low. Thus, the objects still look very similar in con-
secutive time steps. This justifies the usage of the Normalized Cross Correlation
(NCC).

3.6 Tracking, Trajectory Creation and Fusion

A number of objects are recognized for each image k. For the n objects a set
of position data is available. The aim is to map the observation to an exist-
ing object and to update its state values describing this object, e.g. position or
shape. There are different tracking algorithms. Tracking is done here by using
a standard Kalman filter approach [4,6]. The basic idea consists of transferring
supplementary information concerning the state into the filter approach in ad-
dition to the measurement. A forecast of the measuring results (prediction) is
derived from earlier results of the filter. With that the approach is recursive . A
map of the system state to the measurement vector has to be done in order to
describe a complex state of an observed process:

Zk = H ·Xk + βk + εk (8)

with Zk measurement of the sensor at time tk, Xk object state at tk, βk unknown
measurement offset, εk random measurement error, H Observation matrix and
H ·Xk Measurement (object position).

Very important for the usability of the Kalman filter is the state model. A first
approach for the state-vector is to assume for each object position, speed and
acceleration only in X-axis and Y- direction (Xk = [rxk ryk vxk vyk axk ayk]

′
).

For the tasks described here, a more complex state model is reasonable. We used
a state model consisting of position, speed (along the direction of moving), yaw
angle and yaw rate ( Xk = [rxk ryk ψk vxyk ωk]

′
). This model is very useful

when object are moving on curves, because this cannot be described only with
acceleration as shown in the first approach. The observation matrix for the first
model is given in equation 9 and in equation 10 for the second, respectively. The
second filter is an extended Kalman filter (EKF), because the observation matrix
depends on the current state. It has been shown, that using a linear Kalman
filter for some first observations is useful. For 3D tracking a separate Kalman
filter for the Z-axis was used. The measurement statistics will be described by
uncorrelated white noise.
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H
1
=

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 Δt 0 Δt2

2 0

0 1 0 Δt 0 Δt2

2
0 0 1 0 Δt 0
0 0 0 1 0 Δt
0 0 0 0 1 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ (9)

H
2
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 −vxyk sin(ψk)Δt cos(ψk)Δt 0 0
0 1 0 vxyk cos(ψk)Δt sin(ψk)Δt 0 0
0 0 1 0 0 Δt 0
0 0 0 1 0 0 Δt
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(10)

The state transition model (plant model) is characterized by uniform motion.
Since this one is idealized, an additional model error (predictions error, plant
noise) was introduced.

Xk+1 = Φ (Δtk) ·Xk + Uk (11)

with Φ calculated from the movement model and Uk plant noise.
If a (filtered) estimation is given at tk, then the predicted state X’k+1 at

tk+1 is:

X ′
k+1 = Φ (Δtk) ·Xk tk+1 = tk +Δtk (12)

The a posteriori state estimation is a linear combination of the a priori estimation
and the weighted difference from the difference of forecast and measurement:

Xk+1 = X ′
k+1 +K(Zk+1 −HX ′

k+1) (13)

The initialization of the state-vector will be done from two consecutive images.
The association of a measurement to an evaluated track is a statistical based
decision-making process. It is implemented using the Kuhn-Munkres-Algorithm
(Hungarian Method) which allows for solving bipartite graph assignment prob-
lems. Based on a feature distance this returns matched pairs of objects with
an overall minimum sum of feature distances. Too large actual Euclidean space
distances are rejected in advance.

Errors are related to clutter, object aggregation and splitting. The decision
criteria minimize the rejection probability.

The coordinate projection mentioned in the last paragraph and the tracking
process provides the possibility to fuse data acquired from different sensors. The
algorithm is independent from the sensor as long as the data is referenced in a
joint coordinate system and they share the same time frame.
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The resulting trajectories are then used for different applications e. g. for the
derivation of traffic parameters (TP).

More details can be found in [41] and [45]. These are additional, slightly
different implementations of the above described tracking system. In [41] a real
3D-tracking approach is realized and in [45], similar planar surveillance and 2D-
merging techniques have been used.

4 Trajectory Analysis and Situation Assessment

The following examples were chosen to show the advantage of the trajectory based
object description and situation assessment. Three different approaches will be
described. Some results canbe found in earlier publications ([37,39,38,40,34]). New
are the investigation of interactions between traffic participants.

4.1 Counting Vehicles Using Virtual Detectors

The most common detection systems to measure traffic flow on public roads are
inductive loops. Non-intrusive video-detection for traffic flow measurement is
the primary alternative to conventional detectors. Often, the image processing
is designed to analyze visual changes on a surface such as an induction loop.
Tracking based approaches has some advantages. In particular object detection
and accuracy of the derived data are much better. Image acquiring, processing
and tracking was used as described in the pre-vious sections. After that, the
different observations were merged to be able to track and summarize the re-
sults using, e. g., a curve fitting algorithm. Depending on the model, different
types of data were generated for each vehicle (size, average speed, trajectory
type) and saved to a database. In the paper [40], only when a vehicle passes
the virtual induction loop was used and compared to that from the induction
loop. Figure 8 shows a visualization of the results. The field of view (FOV) of
the camera and the virtual loop are shown on an ortho-rectified image of the
area. The derived object positions are marked as crosses and the trajectories as
lines.

Fig. 8. Camera view with detected objects (left), FOV of the cameras and the virtual
loop (middle), trajectory and an intersection with the virtual loop (right). Images are
from [40].
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4.2 Deterministic Analysis of Trajectories

A method for the deterministic description of trajectories was proposed by
Pfeiffer [34]. For trajectories, the functional descriptions should be as simple
as possible and permit a straightforward interpretation. Linear movements can
be described by simple straights. But there are several possibilities of description
for curve tracks by functional dependencies.

It exist a variety of suggestions of possible functions in the literature. Ex-
amples are Clothoid [26] or Splines [15], Cartesian polynomials fifth degree or
Polarsplines [32].

Anderson [4] has proposed a description of tracks by hyperbolas. The advan-
tage is that the derived parameters allows direct geometric interpretation and
permit a classification and derivation of important features of the trajectories.

Fig. 9. Example tracks and trajectory fit, observed from a three cameras system (left)
and a bunch of trajectories fit by hyperbolas (right)

Figure 9 shows an example of the implemented approach. The colored points
and crosses are related to the trajectory, observed from different cameras. The
hyperbola fit can be used for an automatic classification of right and left turns.
In this case the angle φ is positive or negative. With the calculated center (xm,
ym) all four possibilities for right / left turning on the junction can be classified
(see Pfeiffer [34]).

4.3 Trajectory Based Atypical Event Detection

For the detection of atypical events, trajectories have to be tagged, that fail to fit
into the expected scheme, which was learned from a large number of previously
recorded trajectories. For the deterministic approach, clustering of valid hyper-
bola parameters in a parameter space has been done and atypical trajectories
could be sorted out by a threshold for the cluster distance. For the statistical
analysis, a different approach was chosen.

It starts from the already described trajectory pieces (tracklets). These track-
lets are conducted over a grid that was placed on a geocoded map. The grid
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Fig. 10. Speed maps of an intersection (left). Detectors store activities in world coor-
dinates in a 1m × 1m grid (upprt right). 2D histogram collects statistical values for
the direction of the entire scene (lower right). The maps are generated from accepted
trajectories and used for atypical trajectory detection.

size is 1m × 1m or less. For all tracklets that met boundary of a grid box,
their statistical features were added into ortho-maps. At the example of speeds,
figure 10 shows such a map for two different camera views right before fusion.

Atypical trajectories have been detected in our experiments by comparing
currently tracked objects to the result of a map fusion and accumulate differ-
ences.

Figure 11 shows an example. Data about traffic direction where collected over
a certain time (see figure left). Based on this direction map motorist driving
against the traffic on motorways can be automatically detected.

Fig. 11. Direction map (left), detected wrong-way driver (middle and right)

A major drawback of the described method is that an interaction between road
users cannot be detected without further assistance. In the following section, a
method is described which provides these capabilities.
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4.4 Interaction and Dangerous Situation Analysis

The starting point is the observation of the scene in the world coordinate system.
Each acquired image of the scene is transformed according to the section 3.3
(planar surveillance). As already described in section 4.3 the observation area
is decompose into different sized areas. Unlike the previous sections 4.3, not
only the statistics are determined but also performed the object recognition and
tracking in these specified sub-areas.This makes a high degree of parallelization
possible. In addition, another instance is introduced, which evaluates the local
trajectories (tracklets) over the observation range.

All image patches pi return objects o, including positions xo,i and velocities
vo,i. Based on this information, a first possible danger analysis can be performed
by computing the intersection of the two trajectory lines. If, for two objects o
and o′, the solution λ and λ′ of the linear system

xo,i + λvo,i = xo′,i′ + λ′vo′,i′ , (14)

is real, there exists a section between the two paths. Here, λ and λ′ represent the
time (in number of frames) for the respective objects to reach that section. If, in
addition, the difference of both times |λ− λ′| differs only a little (e. g. 10 frames,
which equals 667 ms) then a collision is possible. A further improvement is to
react only to possible collisions in nearby future, that is, one of the conditions
λ < tmax or λ′ < tmax has to be true.

4.5 Improvements with SVM

In the planar surveillance system the goal was to find any kind of feature, which
helps classifying the current situation. Each “smart camera” maps its input im-
age to a plane, previously defined by the user (see section 3.3). Objects are
extracted and matched between consecutive time steps (see section 3.5). This
creates a movement vector for objects. Based on this movement, it is possible
to detect situations like “near collision” or “area not allowed”. In general the
objective was to classify as “hazardous/dangerous” or not. Due to several rea-
sons, there are many false positive objects, as well as false positive “hazardous”
situations.

To this end, we introduced supervised learning to our algorithms. Based on
many different kinds of features, some of which are position, direction, speed,
angle between objects, traffic lights, on/off street, we could show improvements.
The “Support Vector Machine” (SVM, see [10], for instance) is able to model
a set of training data by use of hyperplanes in feature space. It also has the
ability to separate classes not only linearly and is known to produce very rea-
sonable class boundaries. For this reason, we chose to employ the SVM for it
can weigh different feature vectors on its own. An exemplary output can be seen
in figure 12. It turns out, that the number of false positives can be reduced sig-
nificantly whilst keeping the number of true positives high. More details can be
found in [18].
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Fig. 12. Dangerous situation. Upper row: original frames of a pedestrian vs car
sequence. Lower row: possible output of danger analysis with possible collisions marked
with a circle (radius: time in frames to possible collision).

5 Conclusion and Outlook

The presented approach for a multi-camera multi-object tracking and surveil-
lance system has been implemented and tested. Thus, it could be shown that
relevant surveillance tasks and automatic scene description can be automatically
assisted based on video detection, tracking and trajectory analysis.
This is a necessary step for the future of next generation surveillance systems.
However, detection errors and tracking problems can deteriorate the trajectory
data. This leads to less usable trajectories for analysis or less reliable alarm
rates for the operators. Methods to recognize object detection errors and dete-
riorated trajectories to stitch them together are key factors in the current and
future work. Furthermore, the intelligent evaluation of feature maps for atypical
trajectory detection will be expanded.
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knowledge financial support of the Helmholtz Research School on Security
Technologies.
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