
Chapter 8

Polarization Bremsstrahlung on Nanostructures

8.1 PBs on Atomic Clusters in a Wide Spectral Range

In Chap. 1 of this monograph the examples of calculation of PBs of an electron on a

nanocluster in the low-frequency range were given, when the photon energy is from

1 to several tens of eV [1]. Here we will consider bremsstrahlung of a relativistic

electron scattered on atomic clusters in a wide frequency range with an emphasis on

the role of cooperative effects in the polarization and ordinary (static) channels of

the process [2].

Let us calculate the intensity of the polarization and ordinary channels of Bs of a

fast charged particle on a cluster within the framework of a simple model. The main

assumptions of the used approach are reduced to the first Born approximation for

interaction of an IP with a target and a jelly model for the form factor of the cluster.

Further we use the quasi-classical formula for the amplitude of static (ordinary)

bremsstrahlung and the approximate expression for the generalized polarizability of

cluster atoms.

With the use of the standard quantum-mechanical procedure (see details in the

work [3]), for the differential intensity of Bs by each of the channels normalized to

the number of atoms in a cluster N the following expression can be obtained:

dI

do dOn

¼ 1

N

ðqmax

qmin

TðqÞ dq; (8.1)

where q ¼ pf � pi þ k is the momentum transferred to the target from an IP, TðqÞ is
the partial intensity of Bs,dOn is the solid angle in the direction of radiation,o; k are
the frequency and the wave vector of a photon,pi; f are the initial and finite momenta

of an incident particle. In this section the atomic system of units �h ¼ e ¼ me ¼ 1

is used.
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The partial intensity of PBs within the framework of the used approach can be

represented as

TpolðqÞ ¼
2 Z2

p

p c3 v q
S q; Nð Þ Zpol o; qð Þ�� ��2 If q; v; o; yð Þ; (8.2)

whereZp is the IP charge, c is the velocity of light, v is the velocity of an IP,S q; Nð Þ is
the structure factor of the cluster, Zpol o; qð Þ is the effective polarization charge of

cluster atoms, If q; v;o; yð Þ is the kinematic integral appearing as a result of

integration with respect to the azimuth angle of the vector q, y ¼ pi
^k is the angle

of photon emission.

It should be noted that the expression (8.2) was obtained for a range of high

enough frequencies, in whicho>>Ia, where Ia is the potential of ionization of atoms

forming the cluster. An opposite case of low frequencieso<Iawas considered in the
work [4].

For the structure factor of the clusterwewill use the followingmodel approximation:

S q;Nð Þ ¼ N2 F2
J q;Nð Þ þ N 1� F2

J q;Nð Þ� �
; (8.3)

where

FJ q;Nð Þ ¼ 3
j1 q rðNÞð Þ
q rðNÞ (8.4)

is the form factor of the spherical cluster in the jelly model normalized to one atom.

j1ðxÞ ¼ sin x

x2
� cos x

x
(8.5)

is the spherical first-order Bessel function, rðNÞ is the cluster radius depending on

the number of atoms N that can be calculated by the formula:

rðNÞ ¼ rWS

ffiffiffiffi
N3

p
¼

ffiffiffiffiffiffiffiffiffiffiffi
3N

4 p na
3

r
; (8.6)

where rWS is the Wigner–Seitz radius, na is the solid-state concentration of cluster

atoms.

The first summand on the right side of the Eq. 8.3 is the coherent part of the

structure factor of the cluster, the second summand is its incoherent part. It should

be noted that the forms factor (Eq. 8.4) is normalized to the number of atoms by the

spatial Fourier transform of probability of distribution of atoms in a cluster in the

jelly model:

wJ r;Nð Þ ¼ 3NY rðNÞ � rð Þ
4 p rðNÞ3 ; (8.7)

where YðxÞ is the Heaviside step function. In case of a monatomic cluster the

structure factor (Eq. 8.4) is equal to one.

208 8 Polarization Bremsstrahlung on Nanostructures



The polarization charge of cluster atoms can be represented as

Zpol o; qð Þ ¼ o2 a o; qð Þj j ffi o2 a oð Þj j ~FaðqÞ; (8.8)

where a oð Þ and ~FðqÞ are the dipole polarizability and the normalized form factor of

an atom. These values were calculated by themethod proposed in [5]. The imaginary

part of the polarizability was determined with the use of the optical theorem in terms

of the cross-section of photoabsorption of an atom by the data given at the site of the

Berkeley National Laboratory. Then the real part of the polarizability was restored

with the use of the Kramers-Kronig relation. The atomic form factor was calculated

in the Slater approximation by the formula obtained in the paper [6].

The kinematic integral included in the partial intensity of PBs (Eq. 8.2) is

determined by the equation

If q; v;o; yð Þ ¼ AD� BE� CD

D2 � E2ð Þ3=2
þ CD

E2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 � E2

p � C

E2
; (8.9)

where A; B; C; D; E are rather cumbersome functions of the problem parameters,

the explicit form of which is given in [5].

The approximate expression for the partial intensity of ordinary Bs in the quasi-

classical approximation ei>>o (ei is the initial IP energy) and the relativistic limit

ðv � cÞ looks like:

TstðqÞ ffi 2

3 p c3 v q
S q; Nð Þ Zp

mp

� �2

Z2 1� FaðqÞð Þ2
1� v c=ð Þ2

� 	
1þ cos2y

� 	
1� v c=ð Þ cos yð Þ2 ;

(8.10)

wheremp is the IP mass,Z is the charge of an atomic nucleus. It should be noted that

the relative error of the formula (8.10) for nonrelativistic IP velocities does not

exceed 30 %.

The above formulas describe the intensities of two Bs channels in scattering of a

fast charged particle by a cluster for high enough radiation frequencieso>>Ia. We

neglect the inter-channel interference summand due to different dependence of PBs

and SBs amplitudes on a transferred momentum, and in the relativistic case – on a

radiation angle too.

Let us use the obtained formulas for calculation of intensity of Bs by the static

and polarization channels in scattering of a fast electron by polyatomic clusters.

We will characterize the cooperative effects in Bs by the following ratio:

x ¼ dIðNÞ
dI N ¼ 1ð Þ ; (8.11)
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where dI is the differential intensity of Bs by one of the channels normalized to the

number of atoms in a cluster. In the absence of cooperative effects it is obvious that

x ¼ 1. In the opposite limiting case of constructive interference of contributions of

cluster atoms to the Bs intensity we have: x ¼ wN, w< 1. The coefficient w takes into
account the fact that transferred momenta essential in the process on an individual

atomdo not allmake a considerable contribution to the coherent part of Bs on a cluster.

The dependence of the parameter x on the number of atoms in a copper cluster

for both Bs channels is presented in Fig. 8.1. The bremsstrahlung photon energy is

1 keV, the Lorenz factor is g ¼ 10 (g ¼ 1� v c=ð Þ2
� 	�1 2=

).

In case of the polarization channel the dependence xðNÞ is given for two values

of the radiation angle y ¼ 0:5; 1 rad. From the figure it follows that cooperative

effects are negligible for the static Bs channel and rather substantial for the

polarization channel. The analysis shows that the value of cooperative effects in

PBs grows noticeably with decreasing radiation angle. Besides, their role increases

with growing IP energy and decreasing bremsstrahlung photon frequency. From the

given curves and calculation data it follows that in case of the polarization channel,

beginning from some valueNsat depending on the radiation angle and IP energy, the

saturation of radiation intensity as a function of the number of atoms in a cluster

takes place. The analysis shows that with decreasing radiation angle and growing IP

energy the value Nsat grows.

For explanation of the listed regularities we will take into account the fact that,

as follows from the formulas for the structure factor (Eqs. 8.3, 8.4, 8.5 and 8.6),

constructive interference of contributions of different cluster atoms to the process

takes place only for low enough values of the transferred momentum:

q< 1 rðNÞ= ; (8.12)
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Fig. 8.1 Cooperative effects

in PBs and SBs of an electron

scattered by a copper cluster

ðg ¼ 10, �ho ¼ 1 keV); 1 –
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y ¼ 0.5 rad; 3 – SBs
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where rðNÞ is the radius of the cluster (Eq. 8.6). Otherwise the structure factor of the
cluster (normalized to the number of atoms) is equal to one, and cooperative effects

are absent.

It is essential that the inequation (8.33) is incompatible with the condition

q> 1 ra= (8.13)

defining the range of transferred momenta, in which ordinary Bs is not low in view

of the obvious inequation rðNÞ> ra (ra is the characteristic atomic radius). Hence a

negligible value of cooperative effects in ordinary Bs on a cluster follows.

At the same time the partial amplitude of PBs is great in case of fulfilment of an

inequation opposite to Eq. 8.13, so there is no analogous prohibition of cooperative

effects in the polarization channel. Let us write out the expression for a minimum

momentum transferred to the target from an IP, appearing in the integral (8.1):

qmin o, v, yð Þ ¼ o
v

1� v

c
cos y

� 	
: (8.14)

Following from the condition of essentiality of cooperative effects

qmin < 1 rðNÞ= (8.15)

and the formula (8.6) for the cluster radius is the expression for the saturating value

of the number of atoms in a cluster Nsat:

Nsat ¼ 4 p na v3

3o3 1� v
c
cos y

� 	3
: (8.16)

Following fromEq. 8.16 is the strong dependence of the valueNsaton the radiation

angle and IP energy in the relativistic case. For example, for the parameters of

Fig. 8.1 we have: Nsat y ¼ 1 radð Þ ¼ 27 and Nsat y ¼ 0:5 radð Þ ¼ 1; 312.
The influence of cooperative effects on the angular dependence of PBs on a

cluster is demonstrated by Fig. 8.2. Shown in this figure is the PBs intensity

normalized to its value at a zero angle as a function of the radiation angle for

different numbers of atoms in a copper cluster, including a monatomic case, at the

photon energy of 5 keV and a Lorenz factor of 10.

It is seen that the angular distribution of PBs with growing number of atoms is

narrowed, and its dependence on an angle in the limit of high values of the numberN
becomes nonmonotonic. This nonmonotonicity disappears in the nonrelativistic case

with decreasing radiation frequency and grows with increasing number of atoms.

It should be noted that the said dependences in the angular distribution of PBs on

clusters can be found experimentally only for heavy IP. In case of light IP (electron,

positron), at small radiation angles the static channel prevails, cooperative effects in

which are low.
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To describe the relative contribution of PBs to the process, let us introduce the

R-factor according to the equation:

R ¼ dIpol
dIst

: (8.17)

The angular dependence of the R-factor of an electron with g ¼ 10 for a photon

energy of 1 keV and different numbers of atoms in a copper cluster is presented in

Fig. 8.3. It is seen that with increasing number of atoms the role of PBs grows.

For example, for a monatomic case the angle, at which the intensities of PBs and

SBs become equal, is 30�, and for N ¼ 100 this angle is 10�.
Figure 8.4 demonstrates the influence of cooperative effects on the relative

contribution of the polarization channel to emission of a fast electron (g ¼ 10)

scattered by a copper cluster at different energies of a bremsstrahlung photon and a

radiation angle of 15�.
The growth of the R-factor with increasing number of electrons in a cluster goes

to saturation more fast for high photon energies according to the formula (8.16) for

the value Nsat . Following from this figure is the strong dependence of the role of

polarization effects on the cluster size, especially in the low-frequency range.

The condition of essentiality of cooperative effects in the spectrum of PBs on a

cluster can be obtained from the inequation (8.15) in view of the explicit expression

for the minimum momentum transferred to the target (Eq. 8.14). It looks like:

o<omax ¼
ffiffiffiffiffiffiffiffiffiffiffi
4 p na
3N

3

r
v

1� v
c
cos y

: (8.18)
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Fig. 8.2 The angular dependence of the normalized intensity of PBs of an electron on an individual

atom (Eq. 8.22) and a copper cluster: N ¼ 100 (Eq. 8.23), N ¼ 1,000 (Eq. 8.24); �ho ¼ 5 keV,

g ¼ 10
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For frequencies more than omax cooperative effects in Bs on a cluster are low.

In the nonrelativistic limit v<<c the maximum frequency of manifestation of

cooperative effects does not depend on the radiation angle and is:
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Fig. 8.3 The angular dependence of theR-factor for different numbers of atoms in a copper cluster

including a monatomic case: �ho ¼ 1 keV, g ¼ 10, 1 – N ¼ 100, 2 – N ¼ 10, 3 – N ¼ 1
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Fig. 8.4 The dependence of the R-factor on the number of atoms in a copper cluster for different

frequencies 1 – �ho ¼ 500 eV, 2 – �ho ¼ 2 keV, 3 – �ho ¼ 3 keV; g ¼ 10, y ¼ 15�
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onrel
max ¼

v

rWS

ffiffiffiffi
N3

p : (8.19)

The value of the Wigner–Seitz radius for metal clusters varies within

rWS ¼ 2�4; so the characteristic value of frequency (Eq. 8.19) for a mid-size

cluster and an IP velocity about 10 a.u. is 1 a.u.

It should be noted that in the frequency a range o< 1 a:u: the calculation model

used here becomes inadequate since then the dynamic polarizability of the cluster

will be to a great extent defined by collective excitations of the cluster electrons.

Such a situation for a nonrelativistic IP was considered in the work [7].

In the relativistic limit g>>1 it is convenient to represent the formula (8.18) in

the form:

omax ¼ 1

rWS

ffiffiffiffi
N3

p 2 g2

4 g2 sin2 y 2=ð Þ þ 1
(8.20)

clearly demonstrating the dependence of the maximum frequency omax on the IP

energy. From the Eq. 8.20 it follows that in contrast to the nonrelativistic case, in the

relativistic limit the influence of cooperative effects on the PBs spectrum is essen-

tially defined by the angle of photon emission. For small angles and high values of

the Lorenz factor of an IP the maximum frequency of manifestation of cooperative

effects in PBs can reach high values. However, in this case it should be remembered

that in the angular range y<g�2 in Bs of an electron (positron) the static channel

prevails. So the question about a role of cooperative effects in the spectrum of Bs of a

light charged particle on a cluster should be decided in view of concrete values of

problem parameters. At the same time for Bs of heavy charged particles, when SBs is

negligible, the spectral restriction on the role of cooperative effects in the relativistic

a case is given by the frequency of Eq. 8.20.

The dependence of the spectrum of PBs on a copper cluster consisting of ten

atoms on the IP energy is presented in Fig. 8.5 for a radiation angle of 0.5 rad.

It is seen that with growing Lorenz factor the intensity of radiation increases, and

the maximum of the spectral dependence is shifted to the region of high frequencies.

These changes are most pronounced in going from fast, but nonrelativistic IP to

weakly relativistic particles.With further growth of the Lorent factor the spectrum of

PBs on a cluster varies not so appreciably. With decreasing radiation angle the

spectrum of PBs of relativistic IP is found to be more pulled into the region of high

frequencies according to the formula (8.20), following from which is also the

decrease of the maximum frequency with growing number of atoms in a cluster.

The intensity of total Bs and PBs in scattering of a nonrelativistic electron on a

copper cluster and an individual atom as a function of the IP velocity is shown in

Fig. 8.6 for the radiation angle y ¼ 1 rad and the photon energy �ho ¼ 200 eV. It is

seen that in the nonrelativistic case there is the optimum value of the electron

velocity vopt, at which the intensity of PBs on a cluster is maximum. The dependence

of this optimum velocity on the problem parameters is given by the expression:

vopt ¼ o rðNÞ: (8.21)
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Fig. 8.5 The spectrum of PBs on a copper cluster (N ¼ 10) for different values of the Lorentz

factor and a radiation angle of 0.5 rad: 1 – g ¼ 102, 2 – g ¼ 10, 3 – g ¼ 1:1
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Fig. 8.6 The dependence of the Bs and PBs intensity on the electron velocity in the nonrelativistic

case for a copper cluster (N ¼ 20) and an individual atom, �ho ¼ 200 eV, y ¼ 1 rad. 1 – total Bs

(N ¼ 20), 2 – PBs (N ¼ 20), 3 – total Bs (N ¼ 1), 4 – PBs (N ¼ 1)
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In case of the process on an individual atom the cluster radius in Eq. 8.21 should

be replaced by the characteristic atomic radius ra . The given formula can be

obtained with the use of the expression for the minimum transferred momentum

(Eq. 8.14) in the case v<<c.

From the Eq. 8.21 it follows that with decreasing frequency and size of a cluster the

value of the optimum velocity decreases. In particular, for the process on an individual

atom and the photon energy �ho ¼ 200 eV the value vopt lies beyond the range of

applicability of the Born approximation, so the velocity dependence of the Bs and PBs

intensity looks like a monotonically decreasing curve.With growing number of atoms

in a cluster the value of the optimum velocity increases as seen from the formulas

(8.21) and (8.6).

With decreasing radiation angle the maximum in the velocity dependence of the

Bs intensity disappears, and for PBs it becomes less pronounced. This is connected,

on the one hand, with increasing contribution of the static channel to the process

(see the formula (8.10)), and on the other hand, with growing value of the minimum

transferred momentum (Eq. 8.14).

Figure 8.6 demonstrates the disappearance of cooperative effects with decreasing

IP velocity: for the given photon energy (200 eV) the total Bs and PBs on a cluster

and one atom coincide in the limit of low velocities.

In the high-frequency range the velocity dependence of the PBs intensity becomes

monotonically increasing, which is connected with the natural restriction on the

optimum IP velocity: vopt<137: The monotonically increasing dependence of

the PBs intensity on the IP energy is characteristic also for the relativistic case (with

the exception of low frequencies not considered here).

Based on the analysis carried out in this section, it is possible to draw a conclusion

about the essentiality of cooperative effects in Bs of a fast (including relativistic)

charged particle scattered by a polyatomic cluster in a wide range of frequencies.

These effects caused by constructive interference of the contributions of atoms to the

process by the polarization channel result in nonlinear growth of the PBs intensity as

a function of the number of atoms in a cluster. At the same time for the static Bs

mechanism the contribution of different atoms to radiation is incoherent, which is

caused by the smallness of impact parameters, on which SBs is formed.

It is shown that cooperative effects result in significant modification of the main

characteristics of Bs on a cluster in comparison with a monatomic case. For example,

in the high-frequency range with growing number of atoms the pattern of PBs is

narrowed, and for large enough clusters the angular dependence of PBs of relativistic

particles becomes nonmonotonic: a maximum appears with nonzero radiation angles.

With growing IP energy the maximum of the spectral distribution of PBs on a

cluster is shifted to the region of high frequencies. The form of the high-frequency

part of the spectrum in the relativistic case strongly depends on the radiation angle.

With reduction of this angle the Bs intensity decreases with growing frequency

much more slowly than for wide angles.
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The analysis of the Bs intensity as a function of the IP velocity has shown that in the

nonrelativistic case this dependence can be of different nature: from monotonically

increasing to monotonically decreasing. In the relativistic limit the PBs intensity

monotonically increases with IP energy. In the limit of low IP velocities the role of

cooperative effects in Bs on a cluster becomes negligible.

The obtained results can be used in interpretation of experimental data on Bs of

fast charged particles on clusters in the range of high enough photon energies.

8.2 PBs on Metal Nanospheres in a Dielectric Matrix

Metal nanoparticles of noble metals find use as nanomarkers for biological objects,

for investigation of behavior of chemical and biological processes, as sensors for

local optical environmental monitoring, for electrical control of light switching, for

measurement of an electric charge, etc. [8]. In the said applications, as a rule, scattering

of electromagnetic radiation in the spectral range corresponding to excitation of

surface plasmons (the photon energy �ho ¼ 1� 4 eV) is used.

Polarization bremsstrahlung (PBs) is a fundamental radiative process that can be

interpreted as the conversion of the eigenfield of a charged particle on target electrons

to a propagating electromagnetic wave [9]. Following from this interpretation is a

possibility (by analogywith ordinary radiation) to use PBs for substance spectroscopy,

in particular, for determination of parameters of metal nanoparticles.

In recent years works have appeared that are dedicated to the study of PBs as a basic

process for nanomaterial diagnostics. For example, in the paper [10] a possibility to use

this process for determination of a fullerene structure on the basis of calculation of a

target form factor was discussed. PBs spectroscopy for diagnostics of polycrystalline

and fine-grained media in the more general context of modification of the energy

dispersionmethodwas considered in the work [11].We believe that PBs spectroscopy

has also considerable promise as a physical method for metal nanosphere diagnostics.

8.2.1 General Formulas

In the Born approximation for interaction of an incident particle (IP) with a target in

a dielectric medium the differential PBs cross-section is given by the expression [2]

(in this section we use the Gaussian system of units):

dsPB

do dOk

¼ 2

p
o3

c3
e2p
�h v2

ðqmax

qmin

a o; qð Þj j2 If q; v;o; yð Þ dq
q
; (8.22)

where dOk is the element of a solid angle in the direction of radiation, c is the velocity
of light, ep is the IP charge, v is the IP velocity, a o; qð Þ is the generalized dynamic

polarizability of the target, k ¼ ffiffiffiffiffi
em

p
o c=ð Þ s is the wave vector of a bremsstrahlung

photon in a medium with the dielectric permittivity em , y is the angle between the
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electron velocity vector and the wave vector of a bremsstrahlung photon (the radiation

angle). The value q ¼ pf � pi þ k
� 	

�h= is the wave vector transferred from an IP to

the target (pi; f are the initial and finite momenta of an IP). The limits of integration on

the right side of the Eq. 8.22 are qmin ¼ 1� v ~c=ð Þ cos yð Þ o v=ð Þ, qmax ¼ 2 m v �h= ,

~c ¼ c
ffiffiffiffiffi
em

p

is the velocity of light in a medium. The dimensionless kinematic

integral If q; v;o; yð Þ appearing in the formula (8.22) is determined by the

equation

If q; v;o; yð Þ ¼ q3 v

2 p

ð
dOq d o� kvþ qvð Þ s;oem v c2


 � q
� �

2

q2 � 2 kqð Þ2 ; (8.23)

where s is the unit vector in the direction of photon emission. The solid-angle

integral of the wave vector transferred to the target in the determination (8.23) can

be calculated in elementary functions [5]. We do not give here a corresponding

expression because of its cumbersomeness.

In the multiplicative approximation that well works for multielectron systems

[12] the equation is true

a o; qð Þ ¼ a oð Þ ~FðqÞ; (8.24)

where a oð Þ is the dynamic polarizability, ~FðqÞ is the normalized form factor of the

target ( ~Fð0Þ ¼ 1). Substituting the relation (8.24) in the formula (8.22) and using the

expression for the radiation scattering cross-section in terms of the target polarizability

sscat oð Þ ¼ 8 p
3

o
c

� 	4

a oð Þj j2; (8.25)

we find the representation of the cross-section of PBs on an isolated target in terms

of the radiation scattering cross-section

dsPB

do dOk

¼ 3

4 p2
c

v2

e2p
�ho

sscat oð Þ
ðqmax

qmin

~F
2ðqÞ If q; v;o; yð Þ dq

q
: (8.26)

The convenient use of the expression (8.26) with regard to the analysis of PBs on

metal nanospheres in a range of photon energies of 1–5 eV consists in the fact that

the scattering cross-section sscat oð Þ can be calculated using the Mie theory [13].

Within the framework of this theory the cross-section of radiation scattering by a

metal sphere of the radius rs placed in a dielectric medium looks like

s Mieð Þ
scat oð Þ ¼ 2 p c2

em o2

X1
n¼1

2 nþ 1ð Þ an x; mx; mð Þj j2 þ bn x; mx; mð Þj j2
n o

; (8.27)

218 8 Polarization Bremsstrahlung on Nanostructures



where x ¼ k rs ¼ ffiffiffiffiffi
em

p o
c rs and m ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

es oð Þ em=
p

are the parameters of the Mie

theory, es oð Þ is the dielectric permittivity of the nanosphere material. The expansion

coefficients an and bn are

an x; y;mð Þ ¼ c0
nðyÞcnðxÞ � mc0

nðxÞcnðyÞ
c0

nðyÞ znðxÞ � m z0nðxÞcnðyÞ
; (8.28)

bn x; y;mð Þ ¼ mc0
nðyÞcnðxÞ � c0

nðyÞc0
nðxÞ

mc0
nðyÞ znðxÞ � z0nðxÞcnðyÞ

; (8.29)

cnðzÞ ¼ z jnðzÞ ¼
ffiffiffiffiffiffi
p z
2

r
Jnþ1=2ðzÞ; (8.30)

znðzÞ ¼ z hð1Þn ðzÞ ¼
ffiffiffiffiffiffi
p z
2

r
H

ð1Þ
nþ1 2= ðzÞ (8.31)

are the functions coined by Debye; jnðzÞ, hð1Þn ðzÞ are the spherical Bessel and Hankel
functions, Jnþ1=2ðzÞ and H

ð1Þ
nþ1 2= ðzÞ are the Bessel and Hankel functions.

The formula for the normalized form factor of a spherical target looks like [2]

~FsðqÞ ¼ 3
j1 q rsð Þ
q rs

: (8.32)

From this equation it follows in particular that ~Fs q ¼ 0ð Þ ¼ 1 and ~Fs q>ð
4 rs= Þ<0:01:

8.2.2 Results and Discussion

The spectral dependences of the PBs cross-section are presented in Fig. 8.7 for

different nanosphere radii and in Fig. 8.8 for different velocities of an incident

electron; the radiation angle in these figures is taken equal to 30�.
The maximum of the spectral dependence of the PBs cross-section shown in

Fig. 8.7 is caused by excitation of a plasmon on the surface of the metal sphere

under the action of the electric field of a scattered electron. From this figure it is

seen that with increasing nanosphere radius the position of the spectral maximum of

the PBs cross-section is shifted to the region of lower photon energies, and its width

increases.

An analogous dependence takes place for the cross-section of radiation scatter-

ing by metal nanospheres [8], which is caused by a change of the resonance

frequency of a surface plasmon ores with changing radius of the sphere. Really,
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Fig. 8.7 The differential PBs cross-section for electron scattering by silver spheres with different

radii in glass: solid line – rs ¼ 30 nm, dotted line – rs ¼ 60 nm, dashed line – rs ¼ 90 nm,y ¼ p 6= ,

v ¼ 50 a.u.
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Fig. 8.8 The differential PBs cross-section for electrons with different velocities scattered by a

silver sphere in glass: solid line – v ¼ 20 a.u., dotted line – v ¼ 50 a.u., dashed line – v ¼ 90 a.u.,

y ¼ p 6= , rs ¼ 60 nm
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the expression for the resonance frequency of a dipole plasmon on the sphere

surface looks like

ores ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

o2
p

e1 þ 2 em
� g2

s
; (8.33)

where op is the plasma frequency of electrons of the sphere substance, g is the

damping constant of a surface plasmon,e1 � 1is the contribution of bound electrons

to the dielectric permittivity of the metal. For large enough radii (rs > 30 nm in case

of a silver sphere) the damping constant becomes proportional to the cubed radius of

the sphere g / r3s , which defines a shift of the maximum of the radiation scattering

and PBs cross-sections with increasing radius of the metal sphere.

Shown in Fig. 8.8 is the PBs cross-section as a function of the photon energy for

different electron velocities and a silver sphere radius of 60 nm, the radiation angle

is 30�. It is seen that for specified values of parameters the PBs cross-section with

increasing electron velocity increases, and its spectral maximum is shifted to the

region of higher frequencies. For small nanosphere radii rs < 20 nm on the spectral

curve of the PBs cross-section additional maxima appear that are caused by

excitation of quadrupole and octupole surface plasmons.

It is seen that with approach of the electron velocity to the velocity of light in the

glass matrixv� ¼ ~c ¼ c
ffiffiffiffiffi
em

p
 ’ 91:33 a.u. the velocity dependence of the PBs cross-

section has singularity. Physically the said singularity corresponds to a possibility of

radiation by an electron of a propagating electromagnetic field in a medium without

scattering by a nanosphere. Besides, following fromFig. 8.9 is the presence ofmaxima

on the velocity dependence of the PBs cross-section for small enough metal sphere

radii. The value of electron velocity vmax corresponding to these maxima decreases

with decreasing radius according to the relation vmax / o rs.
Oscillations of the PBs cross-section in Fig. 8.9 at low electron velocities arise

due to the contribution to the process of transferred wave vectors of high magnitude:

q> 4 rs= , when oscillations of the target form factor (Eq. 8.32) as functions of the

argument x ¼ q rs take place.
The dependence of the differential PBs cross-section on the nanosphere radius for

different energies of a bremsstrahlung photon is demonstrated in Fig. 8.10 for an

electron velocity of 50 a.u. and a radiation angle of 90�. It follows from Fig. 8.10 that

with increasing photon energy the optimum radius of a nanoparticle, at which the

PBs cross-section is maximum, decreases. In this case it turns out that the greatest

value of the cross-section at the maximum of the radius dependence is reached for

�ho ¼ 2:8 eV.

Figure 8.11 demonstrates the narrowing of the angular dependence of the

normalized PBs cross-section with increasing nanosphere radius for an IP velocity

close to the velocity of light in a medium: v ! ~c. The normalization of the cross-

section was carried out to its value at a zero radiation angle. It is seen from this figure

that for small nanosphere radii (rs ¼ 10 nm) the angular dependence of the PBs

cross-section practically coincides with the angular dependence of linear dipole
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radiation. For lower electron velocities the effect of narrowing of the angular PBs

distribution also takes place, though it is not so pronounced.

Thus in this section polarization bremsstrahlung on metal spheres in a dielectric

medium is investigated theoretically with the use of the Mie theory of light scattering.
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dw dWk 

Fig. 8.9 The PBs cross-section for electron scattering by a silver sphere in glass as a function of

the electron velocity for y ¼ p 2= , �ho ¼ 2:8 eV. Solid line – rs ¼ 20 nm, dotted line – rs ¼ 40 nm,

dashed line – rs ¼ 60 nm
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Fig. 8.10 The PBs cross-section for electron scattering by a silver sphere in glass as a function of

the sphere radius for v ¼ 50 a.u., y ¼ p 2= . Solid line – �ho ¼ 2:6 eV, dotted line – �ho ¼ 2:8 eV,

dashed line – �ho ¼ 3:0 eV
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The spectral-angular distribution of PBs is calculated in the vicinity of a surface

plasmon resonance for different radii of nanospheres and IP velocities. It is shown

that the spectral line shape for PBs and the angular dependence are modified with the

increase of the target radius. The carried out analysis makes it possible to determine

an optimum region of parametric variation, in which the use of PBs spectroscopy for

investigation of the structure and physical properties of metal nanoparticles in a

dielectric matrix is most promising.

8.3 Bremsstrahlung of Fast Electrons on Graphene

8.3.1 Cross-Section of Bremsstrahlung on Graphene

8.3.1.1 General Expression for the Cross-Section of the Process

on an Ensemble of Atoms

The cross-section of a photoprocess on an ensemble of target atoms looks like

(in case of a monatomic target) [14]:

dst arg et ¼
X
j

exp i q rj
� ������

�����
2

dsatom; (8.34)
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Fig. 8.11 The angular dependence of the normalized PBs cross-section for electron scattering

by a silver sphere in glass for v ¼ 91 a.u., �ho ¼ 2:8 eV. Solid line is the dipole dependence

1þ cos2yð Þ 2= , dotted line – rs ¼ 10 nm, dashed line – rs ¼ 50 nm, dash-and-dot line – rs ¼ 90 nm
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where the sum is over all target atoms being in the volume of interaction, dsatom is

the differential cross-section of the process on one atom under consideration,

q ¼ pf � pi

� 	
�h= þ k

is the wave vector transferred from an incident electron to the target, pi; pf are the

initial and finite electron momenta, k is the wave vector of a photon.

In the state of thermodynamic equilibrium the squared absolute value in the

formula (8.34) should be properly averaged:

X
j

exp i q rj
� ������

�����
2

!
X
j; j0

exp i q rj � rj0
� �� �* +

:

8.3.1.2 Structure Factor of a Three-dimensional Crystal

The structure factor of a medium in a three-dimensional case (a three-dimensional

single crystal, the angle brackets mean averaging over atom positions) [14]:

X
j;j0

exp iq rj � rj0
� �� �* +

¼ N 1� exp �u2 q2
� �� �

þ N na 2pð Þ3
X
g

e�u2 g2 S gð Þj j2 dð3Þ q� gð Þ; (8.35)

whereN ¼ N0 Ncell is the full number of atoms in the volume of interaction,N0 is the

full number of cells in the volume of interaction, Ncell is the number of atoms in a

cell, g is the wave vector of a reciprocal lattice, na ¼ Ncell Dcell= is the volume

concentration of atoms, Dcell is the volume of a unit cell.

In the formula (8.35) the value S qð Þ is introduced – the normalized structure factor
of a unit cell of a crystal on the wave vector q, S q ¼ 0ð Þ ¼ 1, dð3Þ qð Þ ¼ d qxð Þ d qy

� �
d qzð Þ is the three-dimensional delta function of the wave vector transferred to the

target.

It should be noted that in the book [14] the nonnormalized structure factor of a

cell is used.

8.3.1.3 Structure Factor of a Two-dimensional Crystal

In going to a two-dimensional case (we assume that a two-dimensional single

crystal lies in the x y plane, the z coordinate is fixed: z ¼ z0; graphene), when:

q rj ¼ qz z0 þ qk rj;

for the structure factor of the target by analogy with the three-dimensional case

we have
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X
j; j0

exp i qk rj � rj0
� �� 	* +

¼ N 1� exp �u2 q2k
� 	� 	

þ N ns 2pð Þ2
X
g

e�u2 g2 S gð Þj j2 dð2Þ qk � g
� 	

;

(8.36)

where rj is the radius vector of an atom in the plane of the two-dimensional crystal,

r ¼ x; yð Þ, dð2Þ qk
� 	

¼ d qxð Þ d qy
� �

is the two-dimensional delta function, ns is the

two-dimensional concentration of atoms, u is the root-mean-square deviation of

atoms from the equilibrium position. The case u ¼ 0 corresponds to going to a

perfect crystal.

In Fig. 8.12 the crystal structure of graphene is presented.

The following values are introduced: a ¼ ffiffiffi
3

p
a0 ¼ 0:246 nm is the lattice

constant for graphene, a0 ¼ 0:142 nm is the distance between the nearest atoms

(the distance between the atoms in a unit cell, graphene has two atoms in a unit cell).

8.3.1.4 Structure Factor of a Unit Cell of Graphene

We assume that an atom A (Fig. 8.12) is at the origin of coordinates, then

S qð Þ ¼ 1

2
1þ exp i q rBð Þ½ �: (8.37)

From Fig. 8.12 it follows that

rB ¼ 2

3
e1 þ 1

3
e2;

where e1 ¼
ffiffi
3

p
a

2
;� a

2

� 	
and e1 ¼ 0; að Þ are the basis vectors if the y-axis is directed

straight down. Displacing a unit cell by these vectors, it is possible to reproduce the

Fig. 8.12 The crystal

structure of graphene. A unit

cell (CDEF) and elementary

translation vectors (e1, e2) are

shown (The author Alexander

Mayorov, InterNet)
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whole crystal lattice of graphene. Then for the graphene reciprocal lattice vectors

we have

g1 ¼ 4 p
ffiffiffi
3

p
a

.
; 0

� 	
; g2 ¼ 2 p

ffiffiffi
3

p
a

.
; 2 p a=

� 	
; (8.38)

so ei gj ¼ 2 p dij according to the definition of the reciprocal lattice vector.

In the Cartesian coordinates (yB ¼ 0) it can be written:

g rB ¼ gx xB þ gy yB ¼ gx xB ¼ gx a
ffiffiffi
3

p.
;

where the reciprocal lattice vector is:

g ¼ n1 g1 þ n2 g2; (8.39)

n1;2 are the integers and

gx ¼ n1 g1x þ n2 g2x:

Thus the scalar product included in determination of the structure factor of a unit

cell of graphene (Eq. 8.37) is

g rB ¼ 4 p
3

n1 þ 2 p
3

n2: (8.40)

Accordingly, the structure factor of a unit cell of graphene is

S gð Þ ¼ 1

2
1þ exp i 2 n1 þ n2ð Þ 2 p

3

� � �
: (8.41)

Hence for the squared absolute value of the structure factor of graphene we find

S gð Þj j2 ¼ 1

2
1þ cos

2 p
3

2 n1 þ n2ð Þ
� � �

: (8.42)

The magnitude of the graphene reciprocal lattice vector can be determined in

view of the above expressions:

g n1; n2ð Þ ¼ 4 pffiffiffi
3

p
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 þ n22 þ n1 n2

q
: (8.43)
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The two-dimensional concentration of graphene atoms that is included in the

structure factor of the two-dimensional crystal is

ns ¼ Ncell

Scell
:

The number of atoms in a unit cell of graphene isNcell ¼ 2, the area of a unit cell

is Scell ¼
ffiffi
3

p
a2

2
, so

ns ¼ 4ffiffiffi
3

p
a2

: (8.44)

Let us consider bremsstrahlung arising as a result of electron scattering by the

two-dimensional plane of graphene. The geometry of the process is shown in

Fig. 8.13.

8.3.2 Cross-Section of Polarization Bremsstrahlung
on a Carbon Atom

The cross-section of polarization bremsstrahlung on an atom, differential with

respect to the frequency and the solid angle of photon escape, is

ds PBð Þ
a

do dOk

¼ e2

�ho
c

p2 v

ð
d o� k vþ q vð Þ s; o v c2


 � q
� �2

q2 � 2 k qð Þ2
o
c

� 	2

a o; qð Þ
����

����
2

dq;

(8.45)

where a o; qð Þ is the generalized dynamic polarizability of an atom, s ¼ k kj j= is the

unit vector in the direction of photon emission.

v

k

z (001)

x (100)

y (010)

y

j

a

Fig. 8.13 The geometry of

the process: a is the angle of

photon emission with respect

to the normal of the graphene

plane, c is the polar angle of

electron incoming with

respect to the normal of the

graphene plane, ’ is the

azimuth angle of electron

incoming
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In the multiplicative approximation the generalized dynamic polarizability of an

atom is expressed in terms of the dipole polarizability and the atomic form factor:

a o; qð Þ ¼ a oð Þ ~FðqÞ; (8.46)

where ~FðqÞ is the atomic form factor normalized by the condition ~F q ¼ 0ð Þ ¼ 1.

To calculate the atomic form factor FðqÞ that within the framework of the

multiplicative approximation defines the dependence of the generalized polarizability

of an atom on the value of a transferred momentum (of a wave vector), it is

convenient to use the Slater wave functions of atomic orbitals. As shown in the

work [15], the form factor calculated in such a way differs from its Hartree-Fock

analog by no more than units of percents. Corresponding formulas look like:

~FðqÞ ¼ 1

Z

X
j

Nj Q q; bj; mj
� �

; Q q; b; mð Þ ¼
1þ q 2b=ð Þ2
h im

m q b=ð Þ sin 2 m atan
q

2 b

� � �
;

whereNj is the number of equivalent electrons in the j th atomic shell,b andm are the
Slater parameters of atomic shells.

The normalized form factor of a carbon atom calculated according to the above

formulas is presented in Fig. 8.14 as a function of the magnitude of the transferred

wave vector q. The nonmonotonicity of decrease of the form factor with growing

valueq is connected with the shell structure of an atom. Corresponding to high values

of q is the contribution to ~FðqÞ of the inner shell of a carbon atom with the principal

quantum number n ¼ 1. Corresponding to small values of q is the second (outer)

0 5 10 15 20
0

0.2
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0.8

1

Fn(q)

q

Fig. 8.14 The normalized form factor of a carbon atom, the X-axis is plotted in atomic units
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atomic shell. A bend of the dependence ~FðqÞ at q � 1 corresponds to transition from

one electron shell to another.

Since the dynamic polarizability of an atom is a complex value, the real and

imaginary parts of which are related by the Kramers-Kronig relations, it is convenient

to begin its calculationwith the imaginary part. To obtain the frequency dependence of

the imaginary part of the dipole polarizability, we proceed from its relation with the

cross-section of radiation absorption sph oð Þ given by the optical theorem:

Im a oð Þð Þ ¼ c

4 po
sph oð Þ: (8.47)

In this book, to determine the spectral dependence of the photoabsorption cross-

section sph oð Þ, the data on the radiation absorption coefficient given at the Internet
site of the Berkeley National Laboratory are used.

The real part of the atomic polarizability can be restored by the known imaginary

part with the use of the Kramers-Kronig relation that for calculations is convenient

to be presented as follows:

Re a oð Þð Þ ¼ 2

p

ð1
0

oIm a oð Þð Þ � o0Im a o0ð Þð Þ
o2 � o02 do0: (8.48)

This equation, due to the presence of the second summand in the numerator of

the integrand, allows calculation of the principal-value integral appearing in the

standard form of the Kramers-Kronig relations in terms of a punctured integral with

a “puncture” eliminating the singularity of the integrand, which is convenient in

practical calculations. At high frequencies the imaginary part of the polarizability

decreases aso�9 2= , so the integral on the right side of the equation converges well at

infinity.

The results of calculation of the dynamic polarizability of a carbon atom are

presented in Fig. 8.15. Given for comparison in the same figure is the number of

electrons in a carbon atom, tending to which in the high-frequency limit is the real

part of the atomic polarizability normalized to the polarizability of a free electron

with the opposite sign: a oð Þ ! a oð Þ �e2 mo2

� �


.

From this figure it is seen that in the high-frequency limit the imaginary part of the

polarizability tends to zero. The peculiarities on the curves of Fig. 8.15 correspond to

potentials of ionization of electron subshells of a carbon atom.

8.3.3 Polarization Bremsstrahlung on Graphene

If the expression for the structure factor of graphene (Eq. 8.36) is substituted in the

general formula for the cross-section of bremsstrahlung on a polyatomic target

(Eq. 8.34), two terms will appear in the Bs cross-section that correspond to the

incoherent (the first summand on the right side of Eq. 8.36) and coherent (the second

summand on the right side of Eq. 8.36) parts of the structure factor.
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8.3.3.1 Incoherent PBs on Graphene

Substituting Eq. 8.36 in Eq. 8.34, we find that the cross-section of incoherent PBs

on a target (in terms of one atom) is

1

N

ds PBð Þ
incoh

do dOk

¼ e2

�ho
c

p2 v

ð
d o� k vþ q vð Þ

	 1� exp �u2 q2
� �� � s; o v c2


 � q
� �2

q2 � 2 k qð Þ2
o
c

� 	2

a o; qð Þ
����

����
2

dq:

(8.49)

Integration on the right side of this equation with respect to the angles of the

vector q in view of the presence of the delta function gives:

1

N

ds PBð Þ
incoh

do dOk

¼ 2 e2

p v2 c3 �ho

ðqmax

qmin

dq

q
I’ q; v; o; yð Þ 1� e�u2 q2

� 	
o2 a o; qð Þ�� ��2;

(8.50)

where

qmin o,v,yð Þ ¼ o
v

1� v

c
cos y

� 	
; qmax ¼ 2m v �h= ;
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Fig. 8.15 The real (solid curve) and imaginary (dotted curve) parts of the dynamic polarizability

of a carbon atom multiplied by the squared frequency, the Y-axis is plotted in dimensionless units,

minus in the definition of the Y-axis relates to the real part and plus relates to the imaginary part of

the polarizability
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m is the reduced mass of an electron and a target atom, y ¼ angle k; vð Þ is the
radiation angle,

I’ q; v;o; yð Þ ¼ q3 v

2 p

ð
dOq d o� kvþ qvð Þ s;o v c2


 � q
� �

2

q2 � 2 k qð Þ2 (8.51)

is the dimensionless kinematic integral calculated in the explicit form in [5], dOq is

the element of the solid angle around the vector q. In the nonrelativistic limit v<<c
the kinematic integral looks like

I’ q; v;o; yð Þ ffi 1þ cos2y
2

þ o
q v

� �2
1� 3 cos2y

2
: (8.52)

In the general case the kinematic integral can be represented as a function of

three variables I’ q; v;o; yð Þ ¼ ~I’ x ¼ q c o= ; b ¼ v=c; yð Þ, where

~I’ x; b; yð Þ ¼ x2 f1 x; b; yð Þ
D3=2 x; b; yð Þ þ

x2

4

f2 x; b; yð Þ
D1=2 x; b; yð Þ � 1

" #
; (8.53)

f1 ¼ x2 þ 2 ~x cos y
� �

x2 � ~x2
� �

cos2yþ ~x� bð Þ2sin2y
h i

þ 4 sin2y cos y ~x� bð Þ x2 � ~x2
� �

;

f2 ¼ x2 þ 2 ~x cos y; ~x ¼ qmin

c

o
¼ b�1 � cos y;

D ¼ x2 � 2 1� cos y
b

� �� �2

þ 4
1� b2

b2
sin2y:

In the relativistic limit (b ! 1) the function ~I’ x; b; yð Þ has a sharp maximum in

fulfilment of the equation xmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1� cos y b=ð Þp � 2 sin y 2=ð Þ , and the sharp-

ness of the maximum increases for wide radiation angles y ! p . This maximum

corresponds to exit of a photon “to the mass shell” in case of propagation of an

electromagnetic field in a medium.

8.3.3.2 Coherent PBs on Graphene

The cross-section of coherent PBs on a two-dimensional periodic structure, which

is graphene, (in terms of one atom) is
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1

N

ds PBð Þ
coh

do dOk

¼ e2

�ho
c

p2 v
o
c

� 	4

ns 2 pð Þ2	
X
g

e�u2 gþq?ð Þ2 S gð Þj j2
ð
d o� k vþ g vþ qzvzð Þ

	 s; o v c2

 � gþ q?ð Þ� �2

gþ q?ð Þ2 � 2 k gþ q?ð Þ
� 	2

a o; gþ q?ð Þj j2dqz: (8.54)

In derivation of this expression it was taken into account that integration with

respect to the two-dimensional delta function dð2Þ qk � g
� 	

gives:

qk ¼ g; (8.55)

and there remains integration with respect to the component of the wave vector dqz
transferred to the target, this component being normal to the graphene plane, the

said integration is also “removed” due to the presence of the delta function

d o� k vþ g vþ qzvzð Þ under the sign of integration. As a result, we find a fixed

value for the normal (to the graphene plane) component of the wave vector

transferred to the target as a function of the problem parameters:

qz ¼ �g tgcþ o� k v

v cosc
: (8.56)

This value should be substituted in the expression for the coherent PBs cross-

section ( q?j j ¼ qz). Taking into account the fact that q? gð Þ ¼ 0 and in view of the

relation (8.46), we obtain for the differential spectral-angular cross-section of

coherent PBs on graphene the following expression:

1

N

ds PBð Þ
coh

do dOk

¼ 4 ns
cosc

e2

�ho

� �
o4 a oð Þj j2

c3 v2

	
X
g

e�u2 g2þq2zð Þ S gð Þj j2 ~F
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ q2z

q� �����
����
2

P g; k; q?ð Þ; (8.57)

where

P g; k; qzð Þ

¼
o v
c2

� �2 þ g2 þ q2z � 2 o v
c2 g sincþ qz coscð Þ � o v

c2 cos y� g sin a� qz cos a
� �2

g2 þ q2z � 2 o
c g sin aþ qz cos að Þ� �2 ;

(8.58)
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S gð Þj j2 ¼ cos2
p
3

2 n1 þ n2ð Þ
� 	

; gj j ¼ g n1; n2ð Þ ¼ 4 pffiffiffi
3

p
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 þ n22 þ n1 n2

q

cos y ¼ cos a coscþ cos’ sin a sinc; ns ¼ 4ffiffiffi
3

p
a2

;

and

qz ¼ �g tgcþ o
1� v c=ð Þ cos y

v cosc
:

Summation over the reciprocal lattice vectors g implies summation over the

integers n1;2 defining the magnitude of g.

It should be noted that in contrast to coherent PBs in a three-dimensional single

crystal, when the radiated frequency is fixed by the condition

oð3Þ
max ¼ � g v

1� b cos y
; (8.59)

hence we find for a cubic crystal (n1;2;3 are the integers):

oð3Þ
max ¼ � g v n1 sinc cos’þ n2 sinc sin’þ n3 coscð Þ

1� b cos y
; (8.60)

the frequency of coherent PBs in a two-dimensional single crystal is not a fixed value.

Nevertheless, in the two-dimensional case with fulfilment of certain conditions (see

below) the PBs spectrum has sharp maxima. The frequencies of these maxima are

defined by the zeros of the denominatorP g; k; qzð Þ in the expression for the coherent
PBs cross-section (Eq. 8.57).

For the denominator P g; k; qzð Þ , taking into account the explicit form of qz ,
we find:

Denðo; a;c; b; yÞ ¼ g4

cos4 c

n
ð o
g v

Þ
2

d ½d� 2 b cos a cosc�

þ2 b
o
g v

cosc ½cos a sinc� sin a� d
b
tgc� þ 1

o2

; (8.61)

where the contracted notations d ¼ 1� b cos y, b ¼ v c= are introduced, and the

cosine of the radiation angle is cos y ¼ cos a coscþ cos’ sin a sinc.
For the zero angle of electron incoming into the graphene plane (c ¼ 0) the

expression for the denominator is simplified to the form:

8.3 Bremsstrahlung of Fast Electrons on Graphene 233



Den o; a;c ¼ 0; b; y ¼ að Þ

¼ g4
o
g v

� �2

1� b cos að Þ 1� 3 b cos að Þ � 2 b
o
g v

sin aþ 1

( )2

:
(8.62)

The resonance condition for the coherent PBs cross-section in the general case

looks like

Den o; a;c; b; yð Þ ¼ 0: (8.63)

If this equation is solved with respect to the radiation frequency, the following

expression for the frequency of a spectral maximum in coherent PBs on graphene

will be obtained:

omax ¼ g vFo a;c; y; bð Þ: (8.64)

Here the dimensionless function is introduced:

Fo a;c; y; bð Þ

¼ cosc b sin aþ d tgc� b sinc cos að Þ þ sign d� 2 b cos a coscð Þ ffiffiffiffi
D

p

d d� 2 b cos a coscð Þ ;

(8.65)

where d ¼ 1� b cos y, b ¼ v c= ,D ¼ cos2c b sin aþ tgcd� b sinc cos að Þ2 � d
d� 2 b cos a coscð Þ and

signðxÞ ¼
1 for x>0

0 for x ¼ 0

�1 for x<0

8<
: :

In case of the zero angle of electron incoming into a two-dimensional single

crystal (c ¼ 0), we have the following expression for the function determining the

dependence of the resonance frequency of radiation on the electron velocity and the

angle of photon emission:

Fo c ¼ 0ð Þ

¼
b sin aþ sign 1� 3 b cos að Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b sin að Þ2 � 1� b cos að Þ 1� 3b cos að Þ

q
1� b cos að Þ 1� 3b cos að Þ :

(8.66)
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For the positiveness of the discriminant in this expression

Do a; bð Þ ¼ b sin að Þ2 � 1� b cos að Þ 1� 3b cos að Þ; (8.67)

that is, for existence of a resonance frequency of coherent PBs the fulfilment of the

condition is required:

1

2 cos a� 1

 b 
 1

2 cos aþ 1
: (8.68)

Following hence is the necessary condition of the presence of a resonance

2 cos aþ1>1, that is, a<p 2= – radiation should go to the top hemisphere z> 0

(see Fig. 8.13).

The dependence of the discriminant (8.67) on the electron velocity for different

radiation angles for the zero angle of electron incoming is presented in Fig. 8.16.

From this figure it is seen that with increasing radiation angle the range of

electron velocity values decreases, in which the discriminant is positive, that is,

there is a resonance in the cross-section of coherent PBs on graphene. For the angle

a ¼ p 2= this range comes to the point v ¼ c.
If the equation 1� 3b cos a ¼ 0 is satisfied, then, as follows from the formulas

(8.64) and (8.66), the resonance frequency of coherent PBs becomes infinite, that is,

a resonance is absent. So the equation

Fig. 8.16 The dependence of the discriminant (8.67) defining the resonance frequency of PBs for

the zero angle of electron incoming c ¼ 0 on the electron velocity (:g / r3s :) for different radiation
angles a: solid line – a ¼ 0, dotted line – a ¼ p/4, dashed line – a ¼ p/3, dotted-dashed line
a ¼ p/2
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b ¼ 1

3 cos a
>

1

2 cos aþ 1
for a< p 2=

� �
(8.69)

means the absence of a resonance. In turn, it is possible if a< arccos 1 3=ð Þ.
Thus the analysis of coherent PBs in case of normal electron incoming has

shown in particular that for small enough radiation angles a< arccos 1 3=ð Þ with the

condition 3 cos a ¼ c v= satisfied spectral resonances in radiation are absent since

the resonance frequency becomes infinite.

It should be noted that if the discriminant (8.67) is negative, but is close to zero,

the cross-section of coherent PBs on graphene also has maxima, but not so sharp as

in case of the positive discriminant.

The total cross-section of electron PBs on graphene in terms of one atom is equal

to the sum of the incoherent and coherent parts:

1

N

ds PBð Þ

do dOk

¼ 1

N

ds PBð Þ
incoh

do dOk

þ 1

N

ds PBð Þ
coh

do dOk

: (8.70)

8.3.4 Static Bremsstrahlung on Graphene

The expression for the cross-section of static bremsstrahlung of a relativistic

charged particle on an atom (without its excitation) in the first Born approximation

looks like [16]:

dsOBel
do dOk

¼ 1

4p2 o

e2p
�h c

Z2 r2e
pf
pi

� �
m

mp

� �2 ð
dOpf

1� ~FaðqÞ
� �

2 J Opf

� 	
; (8.71)

where mp is the mass of an incident particle and J Opf

� 	
is the dimensionless

function determined by the equations:

J Opf

� 	
¼ m2

p

�h qð Þ4
pf
kf

� �2

4 e2i � �hqcð Þ2
� 	

sin2y0
(

þ pi
ki

� �2

4 e2f � �hqcð Þ2
� 	

sin2yþ 2 �hoð Þ2
ki kf

p2i sin
2yþ p2f sin

2y0
� 	

� 2pipf
ki kf

2 e2i þ e2f
� 	

� �hqcð Þ2
h i

sin y sin y0 cos’

)
;

ki ¼ ei c= � c kpið Þ o= ; kf ¼ ef c= � c kpf

� 	
o= ;
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�hq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hkð Þ2 þ p2i þ p2f � 2pi�hk cos yþ 2pf �hk cos y

0 � 2pipf cos y cos y0 þ sin y sin y0 cos’
� �q

;

y0 is the angle between the vectors pf and k,’ is the angle between the planespi k

and pf k, re ¼ e2

mc2 .

The approximate formula for the differential cross-section of SBs on an atom

looks like:

dsOBel
do dOk

� 1

p

Z2 e6 1þ cos2yð Þ 1� v
c

� �2� 	
m2 �ho v2 c3 1� v

c cos y
� �2

ðqmax

qmin

1� ~FðqÞ� �2
q

dq; (8.72)

where

qmin o,v,yð Þ ¼ o
v

1� v

c
cos y

� 	
; qmax ¼ 2m v �h= ;

m is the reduced mass of an electron and a target atom, y ¼ angle k; vð Þ is the
radiation angle.

The expression (8.72) has a characteristic error of 10–30 % in comparison with

the formula (8.71). In derivation of Eq. 8.72 the approximate equation for electron

energy change during bremsstrahlung was used:

ef � ei � �h q� kð Þ v:

In the nonrelativistic limit v<<c from the expression (8.72) the equation follows:

dsOBel
do dOk

� 1

p
Z2 e6 1þ cos2yð Þ

m2 �ho v2 c3

ðqmax

qmin

1� ~FðqÞ� �2
q

dq: (8.73)

For the incoherent part of the cross-section of SBs on graphene (in terms of one

atom) we have:

1

N

dsOBincoh
do dOk

� 1

p

Z2 e6 1þ cos2yð Þ 1� v
c

� �2� 	
m2h�ov2 c3 1� v

c cosy
� �2

ðqmax

qmin

1� ~FðqÞ� �2
q

1� exp �u2 q2
� �� �

dq:

(8.74)

Given in Figs. 8.17 and 8.18 is the comparison of the spectral cross-sections of

PBs and SBs on a carbon atom and incoherent PBs and SBs on graphene for an

electron velocity of 100 a.u. (this velocity corresponds to an incident electron energy

of 240 keV).
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From Fig. 8.17 it is seen that in case of a carbon atom the PBs cross-section at the

maximum of the frequency dependence is about an order of magnitude less than the

SBs cross-section. This circumstance is explained by relatively low dynamic

polarizability of a carbon atom that defines the value of the PBs cross-section.

With growing electron velocity the relative contribution of PBs will increase since

the role of high impact parameters will increase.

The difference of incoherent channels of PBs and SBs on graphene is even more

(Fig. 8.18) and is about two and a half orders of magnitude at the maximum of the

spectral dependence of PBs. The latter circumstance is connected with the fact that

the polarization channel is formed at long distances from a target, the contribution

1´103 1´104
1´10-13

1´10-12

1´10-11

1´10-10

1´10-9

1´10-8

w, eV

sincoh, a.u.

Fig. 8.17 The comparison of the spectral cross-sections of PBs (solid curve) and SBs (dotted
curve) of an electron with a velocity of 100 a.u. scattered by a carbon atom, the radiation angle is

y ¼ 30�, the abscissa is plotted in electron-volts, the ordinate is plotted in atomic units

100 1´103 1´104
1´10-14

1´10-13

1´10-12

1´10-11

1´10-10

1´10-9

1´10-8sincoh, a.u. 

w, eV

Fig. 8.18 The comparison of the spectral cross-sections of incoherent PBs (solid curve) and SBs

(dotted curve) of an electron scattered by graphene (in terms of one atom), v ¼ 100 a.u., the

radiation angle is y ¼ 30�
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of these distances to incoherent radiation is suppressed by the multiplier 1� exp

�u2 q2ð Þ that is small for q< 1 u= (low impact parameters).

8.3.4.1 Coherent SBs on Graphene

For calculation of the coherent part of SBs on graphene it is necessary to express the

cross-section of the process on an atom in terms of the integral with respect to the

transferred wave vector q:

dsOBa
do dOk

� 1

2 p2
Z2 e6 1þ cos2yð Þ 1� v

c

� �2� 	
�hom2 v c3 1� v

c cos y
� �2

ð
1� ~FðqÞ� �2

q2
d o� k vþ q vð Þ dq:

(8.75)

Then the expression for the differential cross-section of coherent SBs on

graphene (in terms of one atom) looks like:

1

N

ds OBð Þ
coh

do dOk

¼
Z2 e6 1þ cos2yð Þ 1� v

c

� �2� 	
�hom2 v c3 1� v

c cos y
� �2 ns

X
g

e�u2 gþq?ð Þ2 S gð Þj j2

	
ð
d o� k vþ g vþ qzvzð Þ 1� ~F gþ q?j jð Þ� �2

gþ q?ð Þ2 dqz: (8.76)

The calculation of the integral on the right side of this equation in view of the

delta function gives

1

N

ds OBð Þ
coh

do dOk

¼frac2 nscosc
Z2 e6 1þ cos2yð Þ 1� v

c

� �2� 	
�ho m2 v2 c3 1� v

c cos y
� �2

	
X
g

e�u2 g2þq2zð Þ S gð Þj j2 1� ~F
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ q2z

p� �� �2
g2 þ q2z

; (8.77)

where

qz ¼ �g tgcþ o
1� v c=ð Þ cos y

v cosc
; cos y ¼ cos a coscþ cos’ sin a sinc;

g n1; n2ð Þ ¼ 4 pffiffiffi
3

p
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 þ n22 þ n1 n2

q
:

In view of the last equation summation over the reciprocal lattice vectors g in the

formula (8.77) comes to summation over the set of the integers n1; n2ð Þ.
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8.3.5 Comparative Analysis of Contributions of Different
Bremsstrahlung Channels in Electron Scattering
on Graphene

Let us calculate the contribution of different Bs channels in electron scattering on

graphene with the use of expressions obtained in the previous section. The results of

calculations are given in Figs. 8.19, 8.20, 8.21 and 8.22.

From Fig. 8.19 it follows that in case of a relatively low electron velocity of 45 a.u.,

which corresponds to the energy of 30 keV (at a specified radiation angle), spectral

1×10−6   

1×10−7   

1×10−8   

1×10−9   

1×10−10   

1×10−11   

1×10−12   

1×10−13   

1×10−14  
2×103 4×103 6×103 8×103 1×104 0

a.u.
σ,

ω,eV

Fig. 8.19 The comparison of the cross-sections (in terms of one atom) of coherent and incoherent

PBs and SBs of an electron on graphene for an electron energy of 30 keV (v ¼ 45 a.u.), c ¼ 0 and

a radiation angle of 30�: solid curve – coherent PBs, dotted curve – coherent SBs, dashed curve –
incoherent PBs, dash-and-dot curve – incoherent SBs

0 2´103 4´103 6´103 8´103 1´104
1´10-14

1´10-13

1´10-12

1´10-11

1´10-10

1´10-9

1´10-8

1´10-7

1´10-6s,

a.u.

w, eV 

Fig. 8.20 The same as in Fig. 8.19 for an electron energy of 58 keV (v ¼ 60 a.u.)
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resonances in the spectral range under consideration in the coherent PBs cross-section

are absent. In this case coherent PBs prevails in the low-frequency region of the

spectrum �ho < 1 < 1 keV, in the rest of the spectrum incoherent SBs prevails.

0 2´103 4´103 6´103 8´103 1´104
1´10-15

1´10-14

1´10-13

1´10-12

1´10-11

1´10-10

1´10-9

1´10-8

1´10-7

1´10-6

s,

a.u.

w, eV 

Fig. 8.21 The cross-section of coherent PBs of an electron on graphene for an electron energy of

58 keV (v ¼ 60 a.u.), c ¼ 0 and different radiation angles: solid curve – 30�, dotted curve – 60�,
dashed curve – 120�

Fig. 8.22 The velocity dependences of coherent and incoherent PBs on graphene for the

normal incidence of an electron, a photon energy of 272 eV, and a radiation angle of 30�: solid
curve – coherent PBs, dotted curve – coherent SBs, dashed curve – incoherent PBs, dash-and-dot
curve – incoherent SBs
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With growing electron velocity maxima appear in the coherent PBs cross-section

at frequencies determined by the formulas (8.64) and (8.65) as seen from Fig. 8.20.

Now near resonance frequencies a prevailing radiation channel is coherent PBs.

With further increase of electron velocity the relative contribution of coherent PBs

grows: it becomes comparable with incoherent SBs even far from resonances.

Given in Fig. 8.21 is the comparison of spectra of coherent PBs on graphene for a

fixed electron velocity and different radiation angles.

It is seen that with growing radiation angle the maxima of the cross-section of

coherent PBs in the spectral range under consideration disappear, and the value of

the cross-section in a wide spectral range decreases.

The dependences of the cross-sections of different Bs channels on the electron

velocity are presented in Fig. 8.22. From this figure it is seen that coherent PBs on

graphene has sharp maximum and minimum. The velocity dependence of other Bs

channels is monotonic. Deep minima in the cross-section of coherent PBs on

graphene are caused by zeros of the function P g; k; qzð Þ (see the formula (8.58))

included in the expression for the cross-section (Eq. 8.57).

Thus the carried out analysis shows that themain contribution to bremsstrahlung of

an electron on graphene is made by coherent polarization Bs and incoherent static Bs.

It is found that the spectrum of coherent PBs of an electron on graphene for high

enough velocities and small radiation angles contains sharp maxima corresponding to

the vanishing denominator in the expression for the process cross-section. The spectral

maxima in the cross-section of coherent PBs in a certain region of parametric variation

take place in the angular and velocity dependences of the cross-section.
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