
Chapter 5

Bremsstrahlung of Fast Charged
Particles in a Solid Body

5.1 Polarization Bremsstrahlung in a Single Crystal

5.1.1 General Expression for the Cross-Section of a Radiative
Process on an Atomic Ensemble

The cross-section of a photoprocess on an atomic ensemble (in case of a monatomic

target) can be represented in the following form [1]:

dst arg et ¼
X
j

exp i q rj
� ������

�����
2

dsatom; (5.1)

where summation is performed over all atoms of the target being in the volume

of interaction, dsatom is the differential cross-section of the process on one atom

under consideration,

q ¼ pf � pi

� �
�h= þ k

is the wave vector transferred from an incident particle (IP) to the target, pi; pf
are the initial and final momenta of the IP, k is the wave vector of a photon. For a

substance consisting of atoms of different kinds the formula (5.1) is obviously

generalized.

The expressions for the cross-sections of bremsstrahlung of fast charged

particles on an atom are given in Chap. 2 both for the static channel (see the

formulas (2.43), (2.45)) and for the polarization channel (see Eqs. 2.42 and 2.50).

In the state of thermodynamic equilibrium the squared absolute value in the

formula (5.1) should be correspondingly averaged:
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� �� �* +

: (5.2)

The angle brackets on the right side of the Eq. 5.2 imply thermodynamic

averaging.

5.1.2 Structure Factor of a Three-Dimensional Crystal

The structure factor of a medium in a three-dimensional case (a three-dimensional

single crystal, the angle brackets mean averaging over atomic positions) is [1]:

X
j;j0

exp iq rj � rj0
� �� �* +

¼ N 1� exp �u2 q2
� �� �

þ N na 2pð Þ3
X
g

e�u2 g2 S gð Þj j2 dð3Þ q� gð Þ; (5.3)

where N ¼ N0 Ncell is the full number of atoms in the volume of interaction, N0 is

the full number of cells in the volume of interaction, Ncell is the number of atoms

in a unit cell, g is the wave vector of a reciprocal lattice, na ¼ Ncell Dcell= is the

volume concentration of atoms, Dcell is the volume of a unit cell.

In the formula (5.3) the value S qð Þ is introduced – the normalized structure

factor of a unit cell of a crystal on the wave vector q; S q ¼ 0ð Þ ¼ 1; dð3Þ qð Þ
¼ d qxð Þ d qy

� �
d qzð Þ is the three-dimensional delta function of the wave vector

transferred to the target.

The first summand on the right side of the equation (5.3) describes incoherent

scattering of an electromagnetic field by the atoms of a lattice. It is proportional to

the number of atoms in the volume of interaction in the first degree. The second

summand on the right side of (5.3) describes coherent scattering proportional to the

squared concentration of atoms since N ¼ na V.
As can be seen from the formula (5.3), coherent scattering takes place only when

a wave vector transferred to a medium is equal to the reciprocal lattice vectorq ¼ g.
Formally this circumstance manifests itself as the presence of delta functions in the

coherent term. From the formula (5.3) it follows that in the limit of high transferred

momenta, when u2 q2 > 1; the incoherent component of the structure factor of the

medium prevails. In case of fulfilment of the opposite inequation, the main contri-

bution to the process is made by the coherent part of the structure factor of (5.3).

For a face-centered cubic lattice that corresponds to a number of metals such as

aluminum, iron, copper, silver, and gold, the geometrical structure factor of a unit

cell is equal to [2]:
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S gð Þ ¼ 1

4
1þ cos p n1 þ n2ð Þ½ � þ cos p n3 þ n2ð Þ½ � þ cos p n1 þ n3ð Þ½ �½ �; (5.4)

where g ¼ n1 b1 þ n2 b2 þ n3 b3; b1; b2; b3 are the basis vectors of the reciprocal
lattice; n1; n2; n3 are the integers. In case of a lattice with the diamond structure
that silicon and germanium also have, instead of (5.4) we have:

S gð Þ ¼ 1

4
cos

p
4

n1 þ n2 þ n3ð Þ
h i

� 1þ cos p n1 þ n2ð Þ½ � þ cos p n3 þ n2ð Þ½ � þ cos p n1 þ n3ð Þ½ �½ �: (5.5)

5.1.3 Cross-Section and Yield of Bremsstrahlung Photons

For convenience of comparison with an experiment, it is advisable to go from the

cross-section of Bs on an atom to the differential yield of a number of photons per

unit crystal length to the unit solid angle and in the unit frequency range:

dN

do dOn dx
¼ ds

V do dOn
; (5.6)

where V is the volume of interaction, N is the number of bremsstrahlung photons.

Hence with the use of the following formula

dspolii

do dOk
¼ 2 e20 o2 ai oð Þ�� ��2

p v2 c3 �ho

ðqmax

qmin

I’ q; v;o; yð Þ ~F2
i ðqÞ

dq

q
(5.7)

for the cross-section of PBs on an atom, where the integral I’ q; v;o; yð Þ is given by
the Eq. 4.53, in view of the coherent part of the structure factor of the medium

(Eq. 5.3), the following expression can be obtained for the coherent part of PBs in a

single crystal in case of a nonrelativistic incident electron (a nonrelativistic electron
is considered here for simplicity of the formulas):

dN
cohð Þ
PB

dxdodOk
¼ n2a e

2

ph�vc3
X
g

S2 gð Þ d oþgv�kvð Þo3 a oð Þj j2 exp �u2 g2
� �

~F2
aðgÞ

s;g½ � 2
g4

;

(5.8)

where s is the unit vector in the direction of propagation of a photon, ~Fa is the

normalized form factor of a medium atom. The delta function appearing on the right

side of this equation gives the relation between the frequency and the angle of
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photon emission y ¼ v̂ k for the specified reciprocal lattice vector g. As a result, the
relationship is true:

o ¼ � g v

1� v

c
cos y

: (5.9)

Here for generality the term with the ratio v c= in the denominator is retained.

The relation (5.9) defines the frequency-angular distribution of coherent PBs in

scattering of a charged particle in a three-dimensional single crystal.

In the geometry of the process shown in Fig. 5.1 for the frequency of coherent

PBs from the formula (5.9) we have in the nonrelativistic limit:

og ¼ 2 p v
d

n1 cos a� sin a n2 cosfþ n3 sinfð Þ½ �; (5.9a)

d is the crystal lattice constant, n1; n2; n3 are the integers specifying the reciprocal
lattice vector.

In the high-frequency spectral range, when a oð Þ ! �Z e2 m= o2; the expression
for coherent PBs in a single crystal (Eq. 5.8) passes into the formula for X-ray

parametric radiation [1].

With the use of the incoherent component of the structure factor of the crystal

(Eq. 5.3) the incoherent part of PBs can be obtained. As a result, for the frequency-

angular distribution of photon yield per unit trajectory length we have for a

nonrelativistic incident electron:

dN
incohð Þ
pol

do dOk dx
¼ na

e2

�ho
o2a oð Þ�� ��2
p v2 c3

� 1þ cos2y
� � ðqmax

qmin

1� exp �u2 q2
� �� �

~F2
aðqÞ

dq

q
; (5.10)

where qmin ’ o v= , qmax ¼ 2m v �h= are the minimum and maximum wave vectors

transferred from an incident electron to the medium.

Given in Fig. 5.2 are the intensities of different channels of PBs of an electron

with a velocity of 1.5�109 cm/s scattered in a silicon single crystal as functions of

the input angle a for j ¼ p (see the definitions of the angles a and j in Fig. 5.1). In

Fig. 5.2 the solid curve represents coherent PBs; the dotted curve is for coherent

PBs calculated with the high-frequency polarizability of atoms; the dashed curve is

for incoherent PBs averaged over frequency with a relative resolution of 0.3 %.

It is seen that the intensity of coherent PBs calculated with the high-frequency

polarizability a oð Þ ¼ �Z e2 m= o2 does not depend on the angle of electron

incoming into a single crystal. This circumstance is explained by the fact that in

the high-frequency limit the polarization charge number proportional to o2a oð Þ�� ��
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does not depend on the radiation frequency. In calculation of the curves shown

in Fig. 5.2 the contribution of 4-vectors of the reciprocal crystal lattice giving

the identical dependence of radiation frequency on the input angle according to

the Eq. 5.9 was taken into account.

Let us give here also the expressions describing total Bs of a nonrelativistic
electron in a single crystal in view of the polarization and ordinary channels. For the

coherent component of photon yield per unit trajectory length we have:

0.8 1 1.2 1.4 1.6
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a, rad

Fig. 5.2 The intensity of PBs of a nonrelativistic electron in a silicon single crystal as a function

of the input angle (see the text)
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Fig. 5.1 The geometry of PBs in a single crystal
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dN
cohð Þ
tot

do dOk dx
¼ n2a Z

2e6

p �ho vm2 c3
�

�
X
g

S2 gð Þ d oþ gv� kvð Þexp �u2 g2
� �

� 1� ~FaðqÞ � mo2

Z e2
a oð Þ ~FaðgÞ

���� ����2 s; g½ � 2
g4

: ð5:11Þ

The incoherent component of total Bs of an electron is:

dN
incohð Þ
tot

do dOk dx
¼ na

Z2e6

�ho
1þ cos2yð Þ
p v2 m2 c3

ðqmax

qmin

1� exp �u2 q2
� �� �

� 1� ~FaðqÞ � mo2

Z e2
a oð Þ ~FaðqÞ

���� ����2 dq

q
: (5.12)

On the right side of the Eqs. 5.11 and 5.12 the first two summands under the

modulus sign describe the contribution of ordinary Bs to the process, and the third

summand corresponds to PBs.

It should be noted that the coherent and incoherent components of bremsstrah-

lung do not interfere with each other.

From the formulas (5.11) and (5.12) it follows that in the high-frequency limit

(a oð Þ ! �Z e2 m= o2 ) the second and third summands under the modulus sign

cancel out, which corresponds to the descreening effect (or the effect of atom

“stripping”) in the process of Bs. It should be noted that this effect takes place

only for a nonrelativistic incident electron.

For relativistic electrons in the most part of the spectral range the main contri-

bution to the process is made by the coherent component of Bs, when the momen-

tum excess from an incident particle is transferred to the crystal lattice as a whole.

In the nonrelativistic case, generally speaking, the contributions of the coherent and

incoherent Bs channels are comparable in value.

5.2 Polarization Bremsstrahlung in a Polycrystal

Serving as initial expressions for calculation of PBs of a fast charged particle in a

polycrystal are the formulas (5.8) and (5.9). Going from a single crystal to a

polycrystal consists in averaging the expression for the coherent component of

PBs (5.8) over the solid angle of the reciprocal lattice vectors Og according to the

equation

dN

do dOk dx

� �
polycr

¼
ð

dN

do dOk dx

dOg

4 p
: (5.13)
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It is obvious that such an averaging for the incoherent component of PBs (5.10)

will not change the initial expression that does not depend on the vectors of the

reciprocal lattice of a polycrystal. Therefore the expression for incoherent PBs in a

polycrystal is given by the same formula (5.10) as in the case of a single-crystal target.

It should be noted that averaging by the formula (5.13) assumes that crystallites

forming the polycrystal are of large enough size, so for each of them the expression

for the structure factor of Eq. 5.3 is true.

After averaging the right side of the Eq. 5.8, with the use of Eq. 5.13 we obtain

for the coherent component of PBs of a fast particle with the charge Zp e the

following expression:

dN

do dOk dx

� �
coh

¼ 4 p n2a Z
2
p e

2 o3

v2 c3 �h
�

�
X
g

NðgÞ a oð Þ ~FaðgÞ
�� ��2

g3
exp �g2 u2

� �
I’ g; v;o; yð Þ

�Y g v� o 1� v

c
cos y

� �� �
; ð5:14Þ

whereYðxÞ is the Heaviside theta function that is equal to zero at a negative value of
the argument and to one at a positive value. The theta function arose as a result of

averaging over the solid angleOg of the delta function d oþ gv� kvð Þ appearing in
the expression (5.8). The kinematic integral I’ g; v,o; yð Þ is given by the formulas

(4.53), and in the nonrelativistic limit by the formula (4.53а). Introduced into the

expression (5.14) is the charge number of an incident particleZp to describe PBs of a
multiply charged ion, whenZp > 1. It is obvious that in case of an electronZp ¼ �1.

Instead of summation over the reciprocal lattice vectors in the formula (5.8), on the

right side of the Eq. 5.14 summation is carried out over the magnitudes of the

reciprocal lattice vectors g ¼ gj j; NðgÞ is the number of reciprocal crystal lattice

vectors with a specified magnitude.

From the expression (5.14) it follows that in the spectrum of coherent PBs in a

polycrystal spectral “steps” appear at frequencies defined by the magnitude of the

reciprocal lattice vector gj; by the velocity of an incident particle v and the radiation
angle y according to the equation:

oj v,yð Þ ¼ gj v

1� v

c
cos y

(5.15)

Hence it is seen that in the nonrelativistic case v << c the frequency of the

spectral step (Eq. 5.15) does not depend on the radiation angle and is directly

proportional to the velocity of an incident particle.

An example of spectral steps in PBs on a polycrystalline target is presented in

Fig. 5.3, in which the spectral dependence of PBs for scattering by a silver atom of

an ion with the charge number Zp ¼ 30 and the velocity v ¼ c/3 is also given [3].
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For specified values of problem parameters (ion velocity and radiation angle), in

the frequency range shown in Fig. 5.3 there are three frequency steps, the position

of which is determined by the equation (5.15). For frequencies more than oj the

contribution of the specified magnitude of the reciprocal lattice vector g to the

process probability is equal to zero since the law of conservation of energy-

momentum is not followed for it. As a result, a “frequency step” appears on the

spectral dependence of yield of PBs photons. Since the frequency oj is defined by

the magnitude of the vector g; for which S gð Þ 6¼ 0; the form of the spectrum of PBs

in a polycrystal depends on the crystal structure of a target. For example, for a

diamond-type crystal lattice the number of frequency steps will be less than for a

face-centered lattice corresponding to silver. Really, in case of a diamond lattice

there is an additional restriction for reciprocal lattice vectors, for which the struc-

ture factor of a unit cell is nonzero according to the formula (5.5).

The “manifestation” of the spectral step depends on the relation between the

coherent and incoherent contributions to PBs. If incoherent PBs prevails, the

frequency step will be “slurred over”. To avoid this, the fulfilment of the condition

is necessary:

g <
1

u
1� v

c
cos y

� �
; (5.16)

where u is the root-mean-square deviation of medium atoms from the equilibrium

position. From the given inequation it follows that the stepped structure in the PBs

spectrum for the specified magnitude of the reciprocal lattice vector will be more

contrast for wide radiation angles y. Really, with growing angle y the minimum
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,
phdN

eV-1cm-1sr-1

dw d    dxW

Fig. 5.3 PBs of a multiply charged ion in a silver polycrystal (solid curve) and on a silver atom

(dotted curve)
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momentum transferred to a target increases and the contribution of the incoherent

component of PBs decreases.

For reference we will give the formula for the root-mean-square deviation of

crystal lattice atoms from their equilibrium position:

u2
	 
 ¼ 3 �h2

4Ma TD
1þ 4

T

TD

� �2 ðTD T=

0

y dy

ey � 1

264
375; (5.17)

where TD is the Debye temperature in energy units, Ma is the mass of substance

atoms. The Debye temperatures for aluminum, silicon, iron, and copper are respec-

tively 418, 658, 467, and 339 K [1].

The dependence of the spectrum of PBs in a silver polycrystal on the angle of

bremsstrahlung photon radiation is shown in Fig. 5.4.

From this figure it is seen that with increasing radiation angle the relative value

of the “frequency jump” increases, and its position is shifted to the region of lower

frequencies according to the formulas (5.15), and (5.16). Really, if the radiation

angle is obtuse (the cosine is a negative value), then, as seen from the Eq. (5.16), the

condition of “manifestation” of the spectral step is satisfied better than for smaller

angles, when the cosine is equal to zero or takes on positive values. Physically this

is connected with the fact that with growing radiation angle the relative contribution

of the coherent component of PBs increases (in comparison with the incoherent

component), and spectral steps, as seen from the expression (5.14), are caused just

by coherent PBs. Thus the spectral steps are more noticeable for a radiation angle of

120� and are poorly discernible for a angle of 60�.
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,
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dw d    dxW

Fig. 5.4 The spectrum of PBs in a silver polycrystal for different radiation angles: solid curve –
90�, dotted curve – 60�, dashed curve – 120�
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In calculation of the spectrum of PBs in a silver polycrystal the following value of

root-mean-square deviation of lattice ions from their equilibrium values uAg ¼ 0.087Å

was used. In the sum over the vectors of the reciprocal lattice with equal

magnitudes that defines coherent PBs 50 summands were taken into account, for

whichS gð Þ 6¼ 0. It should be noted that in taking into account 40 summands the result

for photon yield (in an energy range from 1 to 10 keV) changes less than by 1 %.

Shown in Fig. 5.5 is the spectrum of PBs of a multiply charged ion Zp ¼ 30 with

the velocity v ¼ c/3 for a radiation angle of 90� in a silver polycrystal and on a

silver atom in the low-frequency range.

In this case spectral steps are absent since the argument of the theta function in

the formula (5.14) is positive for allg 6¼ 0. It is also seen that in this frequency range

PBs in a polycrystal is suppressed in comparison with PBs on an isolated atom. This

fact can be explained by superimposition of two circumstances. First, as seen from

the formula (5.10), in the region of low frequencies o < v u= the incoherent

summand it small, and PBs is defined by the coherent component (Eq. 5.14).

Second, momenta transferred to a target do not all make a contribution to coherent

PBs in a polycrystal, but only those momenta, the magnitudes of which are equal to

the magnitude of one of reciprocal lattice vectors. It is this fact that reduces the

process intensity in comparison with radiation on an isolated atom, when the

contribution to the process is made by all momenta transferred to a target that are

permitted by the conservation law. For example, for the frequencies o << v g the

transferred momenta of small magnitude o v � q < g= do not make a contribution

to coherent PBs in a polycrystal, while it is just these momenta that play an

important role in formation of PBs on an isolated atom.
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,dN ph

eV-1сm-1sr-1

dw d    dxΩ

Fig. 5.5 PBs of an ion with the charge Zp ¼ 30 and the velocity v ¼ c/3 in a silver polycrystal

(solid curve) and on a silver atom (dotted curve) in the low-frequency range
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The maxima of the frequency dependence in Fig. 5.5 are connected with the

maxima of the imaginary part of the silver atom polarizability for photon energies

close to the potentials of ionization of the shells N and M.

Presented in Fig. 5.6 is the dependence of the spectrum of PBs in an aluminum

polycrystal on the velocity of an incident particle. The solid curve represents the

radiation spectrum for a rather high value of the ion velocity (v ¼ c/3).

With decreasing velocity, first, the contribution of the incoherent process

increases, and second, the position of frequency steps is shifted to the low-frequency

range.

Thus the position of a frequency step in the PBs spectrum can serve as a measure

of energy of a scattered ion, and by the frequency shift oj it is possible to judge the

energy loss for an incident particle. The dashed curve in Fig. 5.6 corresponds to

the ion velocity equal to the velocity of protons with an energy of 1МeV used in the

experiments [4]. It is seen that in such an event the PBs spectrum does not contain a

characteristic solid-state structure, but coincides with the spectrum of radiation on

an isolated atom. It was this fact that took place in the experiments [4], in which no

stepped spectrum structure was observed. This is explained by the fact that in case

of low ion velocities the incoherent component of PBs prevails over the coherent

component beginning with a photon energy of 500 eV. As a result, the stepped

spectrum structure is found to be completely hidden behind the incoherent

background.

Presented in Fig. 5.7 is the ratio of the contributions of the coherent and

incoherent PBs channels for two values of energy (50 and 10 keV) of an electron

scattered in polycrystalline copper, the radiation angle is 90�.
It will be recalled that coherent PBs corresponds to transfer of a momentum from

an incident particle to a crystal lattice as a whole, and incoherent PBs arises during

2000 3000 4000 5000 6000
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0.01
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hw, eV 

,dN ph

eV-1сm-1sr-1

dw d    dxΩ

Fig. 5.6 The yield of PBs photons per unit trajectory length for an ion scattered in polycrystalline

aluminum for different ion velocities: solid curve – v ¼ c/3 (the ordinate is increased five times),

dotted curve – v ¼ c/20
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pair collisions between a scattered charge and target atoms. It is seen that in the

low-frequency range coherent PBs prevails over incoherent PBs, for 50 keV

electrons the contributions of both channels being compared at �ho ¼ 6.1 keV and

for 10 keV electrons at �ho ¼ 3 keV. Thus the more is the velocity of an incident

particle the wider is the spectral range of prevalence of coherent PBs over incoher-

ent PBs.

In the high-frequency region of the PBs spectrum (�ho > 10 keV) characterized by

high values of the momentum transferred to a target (or low values of the impact

parameter) incoherent PBs prevails. Therefore the solid-state spectrum structure

caused by the coherent interaction of an incident particle with the target becomes

poorly discernible. As a result, the spectrum of PBs in a polycrystal approaches the

spectrum on an isolated atom as it must be according to the physical picture of the

process.

Thus for observation of frequency steps in the spectrum of PBs on a polycrystal

it is necessary to use charged particles of high enough energy and to watch in the

intermediate region of photon energy: from 1.5–2 to about 6 keV.

In the relativistic case in the PBs spectrum, instead of spectral steps, peaks are

observed that correspond to the fulfilment of the Bragg condition for a virtual

photon scattered by a polycrystalline target to a real photon. The maximum

condition can be obtained from the formula (4.53) in the limit D ! 0. Then we

have xmax � 2 sin y 2=ð Þ or og � g c 2 sin y 2=ð Þ= – the frequency of a peak in the

spectrum of PBs of a relativistic particle corresponding to the magnitude of the

Fig. 5.7 The ratio of the coherent channel to the incoherent channel in PBs of an electron with an

energy of 50 keV (solid curve) and 10 keV (dash-and-dot curve) scattered in copper
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reciprocal crystal lattice vector g. An analogous result was obtained in the N.N.

Nasonov’s work [5] within the framework of classical electrodynamics. Experi-

mentally, the maxima of PBs of relativistic electrons in a polycrystalline target were

for the first time recorded in the work [6] (see Fig. 2 of Chap. 1).

As was already said, the maxima in the spectrum of coherent PBs of a relativistic

electron in a polycrystal correspond to Bragg scattering of virtual photons of its

electromagnetic field by atomic planes. The Bragg condition for PBs in a polycrys-

tal in the limit is expressed by the equation

k� kj j v
v
¼ g: (5.18)

In writing Eq. 5.18 it was assumed that the wave vector of a virtual photon is

directed along the velocity of an incident particle and is equal in magnitude to the

wave vector of a real bremsstrahlung photon. This assumption is substantiated by

the fact that the structure of the ultrarelativistic charge field is close to a plane wave

with a wave vector parallel to the velocity of a particle. The graphic representation

of the Eq. 5.18 is given in Fig. 5.8.

It should be noted that in case of a polycrystalline target for any radiation angle

there will always be a crystallite, one of crystallographic planes of which is the

bisector of the angle between the vectors k and v as shown in Fig. 5.8.

5.3 Polarization Bremsstrahlung in an Amorphous Medium

In case of PBs on an amorphous target, instead of the crystal structure factor (5.3) in

the formula for the Bs cross-section (5.1) the following expression should be used:

S qð Þ ¼ na
�1

X
j;l

exp i q rj � rl
� �� �	 
 ¼ 1þ na

ð
gðrÞ � 1½ � exp i q rð Þ dr: (5.19)

The second equation in Eq. 5.19, where gðrÞ is the pair correlation function for

atoms, relates to an isotropic medium. For the structure factor of an amorphous

substance in the “hard-sphere” approximation, when gðrÞ ¼ Y r � Dað Þ (Da is the

mean diameter of an atom, YðxÞ is the theta function), from Eq. 5.19 it follows:

SamorðqÞ ¼ 1� s
3 j1 qDað Þ

qDa

� �
; s ¼ 4 p na Da

3

3
; (5.20)

where j1ðxÞ is the first-order spherical Bessel function. The second summand in the

square brackets of the second equation (5.19) reflects the fact of destructive
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interference of the contributions of amorphous medium atoms to the total PBs

intensity, with the result that the suppression of PBs occurs. It is obvious that the

effect of PBs suppression connected with this interference is essential in the case

that the parameter s is close to one. Besides, for manifestation of this effect it is

necessary that the argument of the spherical Bessel function x ¼ qDa is less than

one. Hence in view of the expression for the minimummomentum transferred to the

medium qmin ¼ 1� v c=ð Þ cos yð Þ o v=ð Þ; we obtain:

o <
v

Da 1� v ~c=ð Þ cos yð Þ ; (5.21)

where ec is the velocity of light in the target material. This inequation (with

fulfilment of the condition s � 1) determines the spectral range of suppression of

PBs in an amorphous medium depending on the IP velocity and the angle of photon

emission. Physically, corresponding to the condition (5.21) are such parameters of

the problem, with which the contribution of small transferred momenta (high

impact parameters) to the process is essential. Then PBs is of a collective nature,

and mutual screening of different atoms reducing the process intensity occurs. This

screening can be interpreted also as destructive interference of elementary PBs

fields formed by individual atoms.

Fig. 5.8 The graphic representation of the Bragg condition for PBs of a relativistic particle

scattered in a crystal
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The use of the “hard-sphere” approximation (Eq. 5.20) for calculation of PBs

intensity requires knowledge of the parameter s ¼ 4 p na D3
a 3= . And if the concen-

tration of atoms can be easily estimated from the known density of a substance, in

determination of the mean atomic radius Da being a model value there can be

difficulties, especially in case of a medium with high atomic concentration. Let us

illustrate the aforesaid by the example of the structure factor of liquid silicon, for

which in the work [7] the results of quantum-chemical calculations are given.

Calculated in [7], the dependence of the structure factor on the momentum trans-

ferred to the medium q at the melting temperature for silicon T ¼ 1410�C is

presented in Fig. 5.9 by the solid curve. Given in the same figure is the structure

factor of liquid silicon calculated in the “hard-sphere” model for s ¼ 1 (dotted

curve). This value of the parameter s for the real density of liquid silicon na
¼ 5:446� 1022 cm�3 corresponds to the mean Da ¼ 1:64 Å that was used in

construction of the dotted curve of Fig. 5.9. At the same time the tabular value of

the silicon atomic diameter is Da ¼ 2:36 Å [8]. (It should be noted that the

doubled Wigner-Seitz radius for the above concentration of silicon atoms is

3.27 Å). But with such a value ofDa the parameters ffi 3, so S q ! 0ð Þ < 0, which

is in contradiction with the positive definiteness of the structure factor of

the medium.

A similar conclusion can be made for amorphous carbon and other condensed

media of light atoms, when the model structure factor (5.20) causes a contradiction

with the numerical values of the problem parameters. It should be noted that the pair

0 1 2 3 4 5 6
0

0.5

1

1.5

q , a.u.

S

Fig. 5.9 The structure factor of amorphous silicon: solid curve – quantum-chemical calculation

[7], dotted curve – calculation by the formula (5.20)
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correlation function gðrÞ used in the work [7] for determination of SðqÞ differs

noticeably from the theta function of the “hard-sphere” model. This difference is

especially great at short distances r � Da; where there is a maximum of the

correlation function: g � 2. The last circumstance is indicative of the presence of

a short-range order in liquid silicon at melting temperature.

Presented in Fig. 5.10 are the results of calculation of the spectrum of PBs in

liquid silicon normalized to the concentration of medium atoms na and in scattering
of an electron by an isolated atom. The plots of Fig. 5.10 are constructed for a

relativistic electron with the Lorentz factor g ¼ 10 (g ¼ 1� v c=ð Þ2
� ��1=2

) and the

angle of bremsstrahlung photon radiation y ¼ 18� . The maximum of the spectral

dependence for an isolated atom is caused by increasing polarization charge of a

silicon atom, when the bremsstrahlung photon energy approaches the energy of

ionization of the K-shell.
It is seen that the intensity of PBs in liquid silicon is much less than in the

monatomic case throughout the range of photon energies due to destructive inter-

ference of contributions of different atoms discussed above. The calculation shows

that for the larger radiation angle y ¼ 90� and the same other parameters the effect

of PBs suppression takes place in the low-energy range �h o < 3 keV. This fact

corresponds to the inequation (5.21) determining the region of essentiality of

destructive interference in PBs. In the relativistic case with growing radiation

angle the minimum momentum transferred to a medium increases and, as a result,

the role of cooperative effects causing destructive interference decreases. Therefore

0 5´103 1´104 1.5´104
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5´10-7

1´10-6

1.5´10-6

2´10-6

I, a.u.

w, eV

Fig. 5.10 The spectral intensity of PBs of an electron with g ¼ 10 on a target of amorphous

silicon at the angle of radiation y ¼ 18�: solid curve – radiation in amorphous silicon, dash-and-
dot curve – PBs on an individual silicon atom
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the effect of suppression of PBs intensity for large radiation angles occurs at lower

frequencies, when the minimum transferred momentum is low enough, and in an

elementary radiative act several medium atoms are involved.

In the experiment [9] that has shown the effect of suppression of PBs in an

amorphous medium, radiation of an electron with an energy of 5–7 МeV scattered

by a thin-film target of amorphous carbon was recorded. It is of interest to calculate

the PBs intensity for experimental conditions [9] within the framework of the

approach under consideration. The corresponding results are given in Fig. 5.11 for

the Lorentz factor of a scattered electron g ¼ 10; the radiation angle 45�, the target
density r ¼ 2:4 g/cm3, and the mean diameter of a carbon atom Da ¼ 1:258 Å,

(at which s ¼ 4 p na D3
a 3= ¼ 1).

Shown in the same figure are the results of calculation of the PBs intensity in

amorphous carbon in the high-frequency approximation. From the form of the

curves it follows that the suppression effect is most pronounced in the range of

bremsstrahlung photon energies �ho < 5 keV, which corresponds to the experimen-

tal data of the work [9]. The maxima of the spectral dependences correspond to the

binding energies for electrons of the K – and L-shells of a carbon atom – 296 and

16.6 eV. It is seen also that the high-frequency approximation well describes the

process in a wide spectral range up to photon energies of 300 eV.

The analysis shows that the error of calculation of PBs intensity caused by

inaccuracy of the model used for the structure factor of a medium depends on

problem parameters. This error is most essential in the low-frequency range for

large radiation angles, besides, it grows with increasing energy of an incident

electron. The comparison of the results of calculation of PBs in liquid silicon

0 2´103 4´103 6´103 8´103 1´104
0

1´10-7

2´10-7

3´10-7

4´10-7

5´10-7

I, a.u.

w, eV

Fig. 5.11 The spectral intensity of PBs of a relativistic electron (g ¼ 10, y ¼ 45�) on a carbon

target: solid curve – radiation on a target of amorphous carbon, dotted curve – PBs on a carbon

atom, dash-and-dot curve – PBs on amorphous carbon in the high-frequency approximation
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obtained in the “hard-sphere” model and with the use of the quantum-chemical

structure factor [7] gives a characteristic error no more than 20 % for g ¼ 10 and

y ¼ 18�. With growing radiation angle the calculation error increases, but the effect

of PBs suppression itself decreases.

The effect of suppression of PBs in an amorphous medium in the X-ray range is

essential only for relativistic incident particles. In case of a nonrelativistic electron

beam it can be neglected, at least for bremsstrahlung photon energies more than

1 keV. This circumstance is illustrated by Fig. 5.12, where the X-axis corresponds

to the energy of an incident particle normalized to the rest energy (for an electron to

511 keV), the Y-axis is the ratio of the intensity of PBs in an amorphous medium to

the intensity of PBs on an atom.

Also shown in Fig. 5.12 is the straight line corresponding to the value of the

PBs suppression ratio obtained in the limit of low transferred momenta: K ¼ 1� s
¼ 0:417 . The suppression effect more strongly shows itself for lower photon

energies, when the role of destructive interference of contributions of different

atoms to the intensity of the process is great. In the low-frequency range PBs

suppression occurs also for nonrelativistic incident particles, when g� 1<<1 .

For photons of high energies (o > 1 keV) the PBs intensity decreases noticeably

only in case of high Lorentz factors g . A characteristic feature of the curves in

Fig. 5.12 is the presence of such inflection points g
 that for g > g
 the effect of PBs
suppression begins. It should be noted that for large values of the Lorentz factor

g > 104 the suppression ratio becomes less than its limiting value K ¼ 1� s ¼ 0:
417 (calculated to the logarithmic accuracy). This is connected with the density

0.01 0.1 1 10
0.4

0.6

0.8

1

1.2
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Fig. 5.12 The suppression ratio for PBs in amorphous silver as a function of the energy of an

incident particle for the radiation angle y ¼ 18� and three values of bremsstrahlung photon

energy: solid curve –�ho ¼ 300 eV, dotted curve – �ho ¼ 1 keV, dashed curve – �ho ¼ 3 keV
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effect in PBs, when the intensity of the process decreases as a result of screening of

the IP eigenfield at e oð Þ < 1 (e oð Þ is the dielectric permittivity of a medium).

The last inequation for a silver target is satisfied in the range of photon energies:

�h o > 50 eV.

A similar effect of suppression of PBs intensity in the low-frequency range takes

place in scattering of a charged incident particle in a polycrystal [3] as was said in

the previous section. As in case of an amorphous medium in a polycrystal for low

transferred momenta q < 2 p d= (d is the lattice constant), the interference of the

contributions of substance atoms to the intensity of the polarization channel is of a

destructive nature, reducing the intensity of radiation. It should be noted that the

appreciable value of the suppression ratio in an amorphous medium is possible only

for relativistic incident particles (Fig. 5.12), while in a polycrystal the PBs intensity

considerably decreases (times) in comparison with an isolated atom and in the

nonrelativistic case [3].

The obtained expressions for the cross-section of Bs in different solid-state

targets can be also used for estimation of intensity of radiation of secondary

electrons produced in the target material by a primary electron beam, with

corresponding replacement of kinematic parameters (velocity, photon energy, and

radiation angle).
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