
Chapter 3

Quasi-Classical Theory of Bremsstrahlung

on an Atom and an Ion with a Core

The quasi-classical theory of Bs on atoms and ions plays an important role in a

number of applications such as radiation in partially ionized plasma, low-

temperature plasma, gas discharge, absorption of radiation by plasma media, etc.

Stated in this chapter is the theory of spontaneous Bs, including the polarization

channel, in scattering of electrons by atoms and ions with a core with fulfilment of

the quasi-classical condition

Z e2

�h v
� 1; (3.1)

where Z is the charge number of an atom (ion), v is the electron velocity. In this

chapter the Gaussian system of units is used.

As seen from the formula (3.1), a quasi-classical electron should be rather slow

in contrast to a Born electron, for which the inequation (2.1) reverse of the relation

(3.1) is true. It should be noted that the Born inequation is “strong”, and the quasi-

classical inequation is “weak”.

The condition (3.1) is realized, for example, for low-temperature plasma. In this

case by the charge number of an atomic (ion) nucleus and the electron velocity their

average values defined by the state of a substance should be meant.

3.1 Classical Consideration in the Approximation of Straight

Trajectories

3.1.1 Ordinary (Static) Bremsstrahlung

As is known, emission of a photon in scattering of a charged particle on an atom

(ion, molecule, cluster, etc.) is called bremsstrahlung. The initial and final states of
an emitting particle in this process belong to the continuous spectrum, and radiant
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energy is got from its kinetic energy. Let us consider at first the most simple case,

when a nonrelativistic electron is scattered by a “bare” nucleus (that is, a nucleus

without bound electrons) with the charge numberZ. We use the classical expression

for the power of dipole radiation Q in terms of the acceleration of a scattered

electronw (the acceleration of a nucleus can be neglected due to its large mass) [1]:

QðtÞ ¼ 2 e2

3 c3
w2ðtÞ: (3.2)

The total energy of bremsstrahlung for the whole time of collision is:

DE ¼ 4 e2

3 c3

ð1
0

w oð Þj j2 do
2 p

: (3.3)

In derivation of Eq. 3.3 the relation was used:

ð1
�1

f 2ðtÞ dt ¼ 2

ð1
0

f oð Þj j2 do
2 p

; (3.4)

where f ðtÞ is the real function of time, f oð Þ is its Fourier component.

To calculate the Fourier component of the acceleration w oð Þ, it is necessary to

concretize the character of motion of a particle. It is well known that in case of a

central force field the moment of momentum of an electron isM ¼ m v r, where v is
the electron velocity (infinitely far from the nucleus),r is the impact parameter (see

Fig. 3.1).

Thus the motion of a particle in the potential U r ¼ rj jð Þ is characterized by two

values: the initial velocity and the impact parameter, so the Fourier component of

acceleration depends also on r: w oð Þ ! wr oð Þ. For the last value we have:

wr oð Þ ¼ e

m
E o; rð Þ; (3.5)

where E o; rð Þ is the Fourier component of the intensity of the nuclear electric field

acting on a scattered electron with a specified impact parameter.
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Fig. 3.1 The diagram of

electron scattering by a

nucleus in the approximation

of straight trajectories, r is the
impact parameter
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Let us calculate E o; rð Þ in the approximation of straight trajectories of electron

motion. This approximation is true for “distant” collisions, when r > aC (aC ¼
Z e2 m v2

�
is the Coulomb length). It should be noted that this approach was used by

E. Fermi in calculation of excitation of atoms by charged particles [2]. Using the

elementary electrodynamic formulas, we find for the Fourier component of nuclear

electric field intensity:

E o; rð Þ ¼ 2 Z e

r v
F

or
v

� �
en � iF0 or

v

� �
et

n o
; (3.6)

where en; t are the normal and tangent (with respect to the velocity vector v) unit

vectors (see Fig. 3.1);

F zð Þ ¼
ð1
0

cos z xð Þ
1þ x2ð Þ3 2=

dx; (3.7)

the prime designates differentiation with respect to the argument.

From the formula (3.3) in view of Eq. 3.5 the following expression for brems-

strahlung energy differential with respect to the photon frequency:

dEr

do
¼ 2 e4

3 pm2 c3
E o; rð Þj j2: (3.8)

The probability of bremsstrahlung in scattering of an electron with a specified

impact parameter and frequency is related to the energy of Eq. 3.8 by the relation:

dWr

do
¼ 1

�ho
dEr

do
; (3.9)

and spectral cross-section of the process is:

ds
do

¼ 2 p
ðrmax

rmin

dWr

do
r dr; (3.10)

where rmin; rmax are the minimum and maximum impact parameters. Assembling

the formulas (3.8), (3.9) and (3.10), we obtain:

ds
do

¼ 4 e4

3 m2 c3 �ho

ðrmax

rmin

E o; rð Þj j2 r dr: (3.11)
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Hence in the approximation of straight trajectories we have for the spectral

cross-section of bremsstrahlung of an electron on a “bare” nucleus:

ds
do

¼ 16 Z2 e6

3 m2 v2 c3 �ho

ðrmax

rmin

dr
r

F2 or
v

� �
þ F02 or

v

� �n o
; (3.12)

where the function F zð Þ is given by the formula (3.7).

The classical consideration is found to be not sufficient to determine the limits of

integration in Eq. 3.12 with respect to the impact parameter. For this purpose it is

necessary to involve quantum considerations. Thus the minimum value rmin is

defined by the de Broglie wavelength of a scattered electron:

rmin � l�DB ¼ �h

m v
: (3.13)

The relation (3.13) reflects the fact that the location of a quantum particle can not

be determined more precisely than the spatial “diffusiveness” of its wave function

that is characterized by the de Broglie wavelength. To determine the maximum

impact parameter rmax , it is necessary to use the energy conservation law in

bremsstrahlung and the connection of change of a momentum of an incident

electron with the value r: Dp � �h r= , then it is possible to obtain:

rmax �
v

o
: (3.14)

In derivation of Eq. 3.14 the energy conservation law was used in the form �ho ¼ v

Dp true for small changes of the electron momentum Dpj j � p, which corresponds to
the approximation of straight trajectories. This approximation realized in case of distant

collisions r > aC implies the weakness of interaction of an incident particle with a

target nucleus. It is natural that in weak interaction mainly low-frequency photons will

be emitted. It can be shown that a corresponding condition looks like:o < oC, where

oC ¼ v aC= is the Coulomb frequency. In the low-frequency region the argument of the

function F zð Þ and of its derivative F0 zð Þ is less than one: z ¼ or v= < 1, so, as it

follows from the definition (3.7), it is possible to use the following approximate

equations: F zð Þ � 1 and F0 zð Þ � 0. As a result, instead of Eq. 3.12 we have:

ds
do

¼ 16 Z2 e6

3 m2 v2 c3 �ho
ln

rmax

rmin

� �
: (3.15)

It is easy to generalize the obtained expression to an arbitrary scattered charged

particle, for which the used approximations are fulfilled. For this purpose in the

formulas (3.2) and (3.5) it is necessary to make replacements: e ! ep; m ! mp ,

where ep; mp are the charge and the mass of an incident particle. Then in view of
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Eqs. 3.13 and 3.14 we come from Eq. 3.15 to the final expression for spectral

bremsstrahlung of a nonrelativistic charged particle on a “bare” nucleus in the low-

frequency approximation (�ho<<mp v
2 2= ):

ds
do

¼ 16 Z2 e2 e4p
3 m2

p v
2 c3 �ho

ln
mp v

2

�ho

� �
: (3.16)

From the obtained equation it follows that the bremsstrahlung cross-section is

inversely proportional to the squared mass of an incident particle. Thus, when
going from light charged particles (electron, positron) to heavy particles (proton,

alpha particle, etc.), the cross-section of the process under consideration decreases

more than million times. This conclusion led to the well-known statement that

heavy charged particles do not emit bremsstrahlung photons. As it will be clear

from the following, this statement needs considerable correction.

The spectral intensity of emission is equal to the process cross-section multiplied

by the incident particle flux and the energy of an emitted photon, so Eq. 3.16 gives:

dI

do
¼ 16 Z2 e2 e4p

3 m2
p v c

3
ln

mp v
2

�ho

� �
: (3.17)

As was already said, the formulas (3.16) and (3.17) were obtained in the

approximation of distant collisions corresponding to emission of low-frequency

photons. The contribution to bremsstrahlung of high-frequency photons o > oC is

made by close collisions r < aC corresponding to strongly curved trajectories. The
spectral cross-section and the intensity of bremsstrahlung of an electron in this case

are described by the Kramers formulas:

ds Kramð Þ

do
¼ 16 pZ2 e6

3
ffiffiffi
3

p
m2 v2 c3 �ho

; (3.18)

dI Kramð Þ

do
¼ 16 p Z2 e6

3
ffiffiffi
3

p
m2 v c3

: (3.19)

The right side of the Eq. 3.19 does not include the Planck constant, which is

indicative of the purely classical nature of this expression.

The formulas for bremsstrahlung of an electron scattered by the Coulomb center

beyond the approximation of straight trajectories can be obtained by corresponding
replacement of the Fourier transform of the electric field intensity E o; rð Þ by the

function corresponding to motion in the Coulomb potential. This problem for a case

of static Bs is considered in detail in the review [3] within the framework of so-

called Kramers electrodynamics for motion of electrons along strongly curved

trajectories.
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It is interesting to note that the Kramers formulas (3.18) and (3.19) describe not

only bremsstrahlung, but also photorecombination, when the final state of an emitting

electron belongs to the discrete ion spectrum, that is, is bound. The said circumstance

is a consequence of the fact that emission in the high-frequency limit o > oC is

“gathered” from a section of the trajectory of the most approach to a nucleus, so an

emitting electron “does not know” where it gets after emission of a photon.

The expressions (3.16) and (3.17) are obtained within the framework of the

classical consideration with quantum “insertions” (3.13) and (3.14). It is clear that

such an approach is not consistent, but its important advantage is physical transpar-

ency and mathematical simplicity. It is pertinent to note here that the use of the

quantum-mechanical formalism within the framework of the Born approximation
results in the same formulas for the cross-section and intensity of bremsstrahlung of

low-frequency photons as Eqs. 3.16 and 3.17.

The criterion of the Born approximation (in the Gaussian system of units) is

given by the inequation:

Z e ep
�� ��
�h v

<<1; (3.20)

that is, corresponds to fast enough incident particles. The condition (3.20) allows

calculation of the scattering cross-section by the perturbation theory with the ratio

Z e ep
�� �� �h v= serving as a small parameter of the theory. The possibility of classical

consideration is given by the inequation reverse of (3.20), so the above agreement

of results is connected with the use of the approximation of straight trajectories,

when the influence of a target on an electron is low as in the case of the Born

approximation.

When going to bremsstrahlung on an atom, it is necessary to take into account

the screening effect of bound electrons, which results in the replacement

rmax ! min v o= ; rað Þ; (3.21)

(ra is the atomic radius) in the expressions for the cross-section and intensity of

the process. Really, for the impact parameters r > ra the atomic field is close to

zero, so the acceleration of an incident particle is negligible, and together with it,

according to Eq. 3.2, bremsstrahlung is also absent. It is clear that screening is

essential for low enough frequencies o < v ra= , otherwise an incident particle

should fly close enough to a nucleus to emit a photon of a specified frequency.

In case of bremsstrahlung on multielectron atoms, when the Thomas-Fermi model

“works”, the Thomas-Fermi radius can be used as an atomic radius: ra � rTF ¼
aB b

ffiffiffi
Z3

p�
, whereaB � 0:53 Å is the Bohr radius,Z is the charge number of the atomic

nucleus, b ffi 0:8553 is the constant.

The replacement of Eq. 3.21 corresponds to the screening approximation in the

bremsstrahlung theory used by Bethe and Heitler [4] in generalization of formulas

for the process cross-section to an atomic case.
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Physically the screening approximation means the replacement of atomic

electrons by the distribution of electrostatic charge screening a nucleus. Thus

bound electrons are excluded from consideration as a dynamic degree of freedom

that can be excited during bremsstrahlung and can reradiate the electromagnetic

field of an incident particle. Actually in emission of high-energy photons the

energy-momentum excess can be transferred to atomic electrons, resulting in

their excitation and ionization.

3.1.2 Polarization Bremsstrahlung

Besides the above real excitation, atomic electrons in case of collision of an atom

with a charged particle can be excited virtually. Virtual excitation corresponds to

appearance of a variable dipole moment in the atom that, according to the

fundamentals of electrodynamics, should radiate electromagnetic waves. Such a

process is called polarization bremsstrahlung since it is connected with the

dynamic polarizability of an atom. The dynamic polarizability of an atom is

considered in detail in Appendix 1. The dynamic polarizability of an atom together

with the external variable field defines a radiating dipole moment.

Another interpretation can be given to polarization bremsstrahlung as a process

of scattering of the eigenfield of an incident particle (a virtual photon) to the

radiation field (a real photon) by atomic electrons. Polarization bremsstrahlung is

an additional channel of radiation in charge scattering by a target having a system of

bound electrons. We will call ordinary bremsstrahlung existing also on a “bare”

nucleus ordinary or static bremsstrahlung. The last term implies that this channel is

a single channel in the model of static distribution of electron charge of bound

electrons.

Let us derive the formulas for polarization bremsstrahlung of a fast charged

particle on an atom, considering the atom to be an elementary dipole with the

polarizability a oð Þ (see Appendix 1, the formula (A.3) for connection of an induced

dipole moment and the electric field strength).

For description of motion of an incident particle we use, as above, the classical

approach and the approximation of straight trajectories. Again we proceed from the

formula for the power of dipole radiation, but this time we will write it in terms of

the dipole moment of the radiating system:

QðtÞ ¼ 2

3 c3
€dðtÞ�� ��2: (3.22)

Here two dots designate the second time derivative. Integrating the Eq. 3.22 with

respect to time and using the formula (3.37) for the squared second derivative of the

dipole moment, we come to the expression for the total energy of polarization

bremsstrahlung for the whole time of collision corresponding to the impact

parameter r:
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DE ¼ 4 e2

3 c3

ð1
0

o4 a oð ÞEðpÞ o; rð Þ�� ��2 do
2 p

; (3.23)

where EðpÞ o; rð Þ is the Fourier component of the intensity of the electric field of an

incident charged particle at the location of the atom. In derivation of this formula

the relation was used: €d oð Þ ¼ �o2 d oð Þ that follows from determination of the

Fourier components.

Going from the total radiated energy to the spectral cross-section, as it was done

in derivation of the formula (3.11), we obtain for polarization bremsstrahlung the

following expression:

dsPB

do
¼ 4o3 a oð Þj j2

3 c3 �h

ð~rmax

~rmin

EðpÞ o; rð Þ�� ��2 r dr: (3.24)

The upper limit of integration in this formula following from the energy conser-

vation law is determined by the Eq. 3.14, the same as for static bremsstrahlung. The

lower limit of integration is much different. In the elementary dipole approximation

under consideration it is defined by the size of an atom:

~rmin ¼ ra: (3.25)

As the analysis shows, scattering at low impact parameters r < ra makes a small

contribution to the polarization bremsstrahlung cross-section since then coherence

in reradiation of the eigenfield of an incident particle by atomic electrons to a real

photon is lost.

From Fig. 3.1 it is easy to see that the Fourier component of the intensity of the

electric field of an incident particle in the approximation of straight trajectories can

be calculated by the formula similar to Eq. 3.6 with replacement of the nuclear

charge by the incident particle (projectile) charge. As a result, for the intensity EðpÞ

o; rð Þ we have:

EðpÞ o; rð Þ ¼ 2 ep
r v

�F
or
v

� �
en þ i F0 or

v

� �
et

n o
; (3.26)

where en, et are the normal and tangent unit vectors, the functionF zð Þ is given by the
Eq. 3.7. Shown in Fig. 3.2 is the modulus of the normal and tangential components

of the electric field Eq. 3.26 as well as the entire spectrumH nð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 nð Þ þ F02 nð Þ

q
as a function of the dimensionless frequency n ¼ or v= .

From Fig. 3.2 it is seen that the main contribution to the spectral functionH nð Þ in
the region of its high values is made by the normal component of the electric field of

an electron, and the spectrum width is of the order of the ratio v r= .
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Substituting Eq. 3.26 in Eq. 3.24, we obtain the spectral cross-section of polari-

zation bremsstrahlung in the used approximation:

dsPB

do
¼ 16 e2p o

3 a oð Þj j2
3 v2 c3 �h

ðv o=

ra

dr
r

F2 or
v

� �
þ F02 or

v

� �n o
: (3.27)

Hence for intensity we find:

dIPB

do
¼ 16 e2p o

4 a oð Þj j2
3 v c3

ðv o=

ra

dr
r

F2 or
v

� �
þ F02 or

v

� �n o
: (3.28)

It should be noted that the formula (3.28) does not contain the Planck constant,

which is indicative of its classical nature.

In the limit of low frequencies, when F zð Þ � 1 and F0 zð Þ � 0, the formula (3.27)

gives:

dsPB

do
¼ 16 e2p o

3 a oð Þj j2
3 v2 c3 �h

ln
v

o ra

� �
: (3.29)

This expression is true for the frequencies o < v ra= , otherwise it is necessary

to use the formula (3.27). Calculation, however, shows that in the frequency range

o>v ra= polarization bremsstrahlung is low.

The cross-section of Eq. 3.29 can be obtained within the framework of the

quantum approach in case of truth of the Born approximation Eq. 3.20, that is, for

fast (but nonrelativistic) incident particles.

It must be emphasized that the polarization bremsstrahlung cross-sections

(3.27), (3.29) do not depend on the mass of an incident particle in contrast to the

static bremsstrahlung cross-section (3.17). Thus the statement long existing in

0 0.5 1 1.5 2 2.5 3
0

0.5

1

3

2

1

ν = ωρ/v

H(n)Fig. 3.2 The spectrum of the

electric field of an incident

particle (Eq. 3.26) as a function

of the dimensionless

frequency: 1 – entire spectrum,

2 – of the normal component of

the field, 3 – of the tangent

component of the field
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physics that heavy charged particles do not emit bremsstrahlung photons does not

extend to the polarization channel. This circumstance is connected with the fact that

the static bremsstrahlung cross-section is proportional to the squared acceleration of

an incident particle, while the polarization channel cross-section the does not

depend on this acceleration.

The polarization bremsstrahlung cross-section (3.29) can be obtained from the

static process cross-section (3.16) with the use of replacementsmp ! m, e4p ! e2 e2p,

rmin ! ~rmin, and

Z ! Zpol oð Þ; (3.30)

where

Zpol oð Þ ¼ mo2

e2
a oð Þj j (3.31)

is the effective polarization atomic charge (in the units of the electron charge e).
The polarization charge characterizes the ability of the electron core of an

atom to emit a photon under the action of an ac field. In contrast to an ordinary

charge, the polarization charge depends on the radiation frequency. The fre-

quency dependence of the polarization charges of silver and krypton atoms is

presented in Fig. 3.3.

From this figure it is seen that in the high-frequency range the polarization

charge is equal to the number of bound electrons of an atom (or the charge number

of its nucleus). This circumstance follows from the definition (3.31) and the formula

for high-frequency polarizability (A.16). In the region of low frequencies o ! 0

the polarization charge according to Eq. 3.31 decreases quadratically since then

the atomic polarizability is equal to its static value (A.15), that is, does not

depend on frequency. Finally, in the intermediate spectral range the polarization

charge is a nonmonotonic function that reflects the features of the energy spectrum

of an atom. For example, a wide “dip” on the dashed curve of Fig. 3.3 in a range

300025002000150010005000
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Z
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Kr
Ag

50

40

30

10

0

Fig. 3.3 The spectral

dependence of the

polarization charge of silver

and krypton atoms
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of 1,600–1,750 eV corresponds to the energy of binding of 2p -electrons in a

krypton atom. The minimum in the region of low frequencies corresponds to virtual

excitation of subshells of an atom with the principal quantum number n ¼ 3. Thus

the spectral cross-section of polarization bremsstrahlung reflects the dynamics of

the atomic core as a function of frequency.

In the high-frequency limit, when o>>oa (oa is the characteristic frequency of

excitation of an atom in the discrete spectrum), but still o < v ra= ,

a oð Þ � �Z e2 mo2
�

(Zpol oð Þ ¼ Z), and the formula (3.29) gives:

dsPB

do
¼ 16 Z2 e4 e2p

3m2v2 c3�ho
ln

v

o ra

� �
: (3.32)

Curiously, in case of an incident electron (positron) the obtained expression

differs from the formula for the static bremsstrahlung cross-section (3.17) only by a

logarithmic factor.

Now we will consider a resonant case, when the bremsstrahlung frequency is

close to one of eigenfrequencies of an atom o � o0 , and dynamic polarizability

looks like:

a o � o0ð Þ ffi e2

m

f0
o2

0 � o2 � 2 io d0
: (3.33)

This expression for resonant polarizability follows from the general formula

(A.14), if in it one resonant summand is retained, in which onm � o0, fnm � f0 and
dnm � g0. Substituting the formula (3.31) in Eq. 3.29, we obtain:

dsres

do
¼ 4

3

e2p
�h c

c

v

� �2 r2e f
2
0 o0

o0 � oð Þ2 þ d20
ln

v

o ra

� �
; (3.34)

where re ¼ e2 mc2 � 2:8 � 10�13
�

cm is the electron classical radius.

From the expression (3.34) it is seen that resonance polarization bremsstrahlung

has a sharp maximum at the frequency o ¼ o0 if d0<<o0. The last inequation is

satisfied in case of excitation of electrons of the outer atomic shell in the discrete

spectrum, so for a neutral atom the energies of resonant photons are about 10 eV

and less. In case of multiply charged ions having a system of bound electrons

(an electron core) these energies can be much higher and reach a value of the

order of several keV. Then, however, the transition damping constant equal to

the Einstein coefficient Amn is also great, and therefore the resonance becomes

not such sharp. At frequencies corresponding to virtual excitation of inner

atomic shells the resonance structure in the spectral dependence of the dynamic

polarizability a oð Þ disappears. Instead of it, on the spectral curves “dips”

arise that correspond to the beginning of photoionization of the atomic subshell

(see Fig. 3.3).
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3.2 Bremsstrahlung of Quasi-Classical Electrons in the Local

Plasma Approximation for the Electron Core of a Target

The local plasma model (the Brandt-Lundqvist approximation [5]) for the polariz-

ability of a multielectron target was considered in Sect. 2.4 (Sect. 2.4.1). This model

was proposed for description of multielectron atoms, in which the electron–electron

interaction in a specified (wide enough) spectral range can play a role comparable to

the electron-nucleus interaction.

The Brandt-Lundqvist approximation can be considered as an elementary clas-

sical analog of the quantum-mechanical random phase exchange approximation

widely used for taking into account electron–electron correlations in atomic phys-

ics. The main idea of this method is that electron–electron correlation effects are

expressed in terms of the dynamic polarizability of the atomic core.

Such calculations in respect to the problem of calculation of the cross-section of

polarization bremsstrahlung on an atom in a wide frequency range were carried out

in the work [6] for electrons of kilovolt energies scattered by a krypton atom. It

should be noted that such calculations represent a rather intricate numerical prob-

lem since wave functions of atomic electrons already in the zeroth approximation

are the solutions of the Hartree-Fock integro-differential equations.

The high reliability of results obtained within the framework of the random

phase exchange approximation shows the reverse side of the medal in necessity to

carry out laborious calculations for each specific target and in difficulty of obtaining

qualitative regularities “working” in a wide enough range of variation of problem

parameters.

The purpose of this chapter is to develop semiquantitative methods of calcula-

tion of polarization effects in radiative processes on multielectron targets and to

carry out the analysis of qualitative regularities of the said processes on their basis.

The main advantage of the used approach consists in its calculating simplicity

and physical obviousness. Making no pretence of the exact quantitative description

of the phenomenon, the method used in this chapter can be considered as an

additional (to consistent quantum-mechanical calculations) method of description

of polarization-interference effects on multielectron systems.

3.2.1 Polarizability of an Atom in the Brandt-Lundqvist Model

The dipole polarizability of an atom (or other multielectron system) is given within

the framework of the local plasma frequency model by the formula (2.73) that can

be rewritten as

aBL oð Þ ¼
ðR0

0

o2
pðrÞ r2 dr

o2
pðrÞ � o2 � i d

¼
ð
bBL r;oð Þ dr; (3.35)
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whereopðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pe2nðrÞ=mp

is the local plasma frequency depending on the local

electron density of the electron core nðrÞ , r is the distance from a point under

consideration to the atomic nucleus, R0 is the atomic radius. Here and further the

spherical symmetry of the system is assumed, so n rð Þ ¼ nðrÞ.
The Eq. 3.35 gives the expression for dynamic polarizability as the volume

integral of some dimensionless function bBL r;oð Þ:

bBL r;oð Þ ¼ o2
pðrÞ 4 p=

o2
pðrÞ � o2 � i d

that is natural to be called the spatial density of the dynamic polarizability of a

target in the Brandt-Lundqvist approximation. This value in the local approxima-

tion under consideration is a liaison between the induced atomic polarization at the

specified frequency P r;oð Þ and the strength of the external electric field E r;oð Þ
causing this polarization, the cause and effect being taken at one point of space

(local approximation):

P r;oð Þ ¼ b r;oð ÞE r;oð Þ: (3.36)

In writing Eq. 3.36 it is assumed that the target has a spherical symmetry.

It should be noted that the expression (3.35) can be rewritten as the frequency

integral if the spectral density of the oscillator strength is duly introduced by the

formula

d f

do
¼ mo2

e2
r2p oð Þ drp oð Þ

do
; (3.37)

where the function rp oð Þ is determined by solution of the equation

o ¼ opðrÞ: (3.38)

Thus the dynamic polarizability in the Brandt-Lundqvist model can be formally

presented in the characteristic quantum-mechanical form. The remaining difference

consists in the fact that the Eq. 3.35 does not describe the contribution of the

discrete spectrum to the atomic polarizability, which is natural since the local

plasma frequency approximation is an essentially classical approximation. It should

be noted that the contribution of the discrete spectrum is most essential for alkali-

like ions and is small for systems with filled electron shells.

As easily seen from the formula (3.35), the high-frequency dynamic polarizabil-

ity in the Brandt-Lundqvist model has correct asymptotics agreeing with the result

of the quantum-mechanical calculation:

ahf oð Þ ¼ � e2 Ne

mo2
; (3.39)

whereNe is the full number of target electrons (see Appendix 1, the formula (A.16))
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Given in Table 3.1 is the comparison of the values of static polarizabilities of

atoms and ions (in atomic units) with filled electron shells calculated by different

methods within the framework of the statistical description of an atom with

experimental data (a0
exp).

Here: a0
var is the calculation by the variational method [7], a0

VSh is the calcula-

tion of Vinogradov and Shevel’ko [8], a0
BL ¼ R0

3/3 is the calculation in the

Brandt-Lundqvist model [5].

In calculations of static polarizability in the Brandt-Lundqvist model the radius

of an atom (ion) was used that was calculated in view of the correlation allowance

in the Thomas-Fermi-Dirac model.

From the given table it follows that in most cases for static polarizability the

Brandt-Lundqvist method gives a satisfactory fit to the experiment for atoms (ions)

with filled shells.

So from the analysis of low-frequency and high-frequency limits it can be

expected that the use of the Brandt-Lundqvist model in the first approximation

gives a reasonable approximation for the dynamic polarizability of an atom (ion).

Given in Fig. 3.4 are the frequency dependences of the values o2 Re a oð Þf g and
o2 Im a oð Þf g for a FeVI ion calculated in the Brandt-Lundqvist approximation in a

wide frequency range. The comparison with analogous dependences calculated in

the random phase exchange approximation for a multielectron atom [6] shows that

the calculation in the Brandt-Lundqvist model qualitatively correctly describes the

Table 3.1 Static polarizabilities of atoms and ions with filled shells (a.u.)

Atom (ion) ArI KrI XeI KII RbII CsII SrIII BaIII

a0
exp 11 17 27 7.5 12 16.3 6.6 11.4

a0
var 19.3 26.8 30.9 9.1 14.3 17.8 8.7 11.4

a0
VSh 21.1 25.5 6.6 11.9 15.3 7.5 9.7

a0
BL 22 24 27 8.6 11.6 13.5 7 8.4
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Fig. 3.4 The frequency dependences of the real (solid line) and imaginary (dotted line) parts of
the dynamic polarizability of the iron ion calculated within the framework of the local plasma

model
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smoothed functions o2 Re a oð Þf g, o2 Im a oð Þf g without considering peculiarities

caused by the shell structure of an atom (maxima and minima near the thresholds of

ionization of subshells).

Besides the Thomas-Fermi model for description of distribution of electron

density of an atom, a number of improved models is used, such as the Thomas-

Fermi-Dirac model and the Lenz-Jensen model [7]. Within the framework of these

models the radius of a neutral atom R0 is found to be a finite quantity in contrast to

the Thomas-Fermi model, in which R0 ! 1. Moreover, for description of electron

subshells the Slater wave functions are used that are distinguished by simplicity and

ease in carrying out analytical calculations. These functions look like:

PgðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2bð Þ2mþ1

G 2mþ 1ð Þ

s
rme�b r; (3.40)

where g ¼ nlð Þ is the set of quantum numbers characterizing an electronic state,b; m
are the Slater parameters that are chosen in a special manner to satisfy the experi-

mental data on the energy of corresponding shells. The wave functions (3.40) are

normalized, have correct asymptotics at long distances. With the use of the

functions (3.40) the radial distribution of electron density of an atom in the Slater

approximation can be obtained as

nðrÞ ¼
X
g

Ng P
2
gðrÞ: (3.41)

The Slater electron density as well as the densities of other models of the atomic

core can be used in calculation of the dynamic polarizability of an atom in the local

plasma frequency approximation (3.35).

In more detail the methods of description of the core of multielectron atoms and

ions, including statistical models, are stated in Appendix 2.

The results of calculation of the real and imaginary parts of the dipole dynamic

polarizability of a krypton atom within the framework of the local plasma fre-

quency method by the formula (3.35) with the use of electron density according to

Slater and Lenz-Jensen are presented in Fig. 3.5. Shown in the same figure are the

results of calculation of corresponding values in the quantum-mechanical random

phase exchange approximation carried out in the work [6].

It is seen that the dynamic polarizability of a krypton atom calculated in the

local plasma frequency model for Lenz-Jensen electron density in a smoothed

manner renders the quantum-mechanical features of the frequency behavior of

dynamic polarizability that are most pronounced near the potentials of ionization of

electron subshells. Using the Slater wave functions within the framework of this

model makes it possible to detect to some extent spectral fluctuations of polariz-

ability near the potentials of ionization of electron subshells. In this case, however,

the universality of description characteristic for the statistical model of an atom is

violated.
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With the use of the formula (3.35) and the statistical model of an atom (see

Appendix 2) for dynamic polarizability the following expression can be obtained:

a o; Zð Þ ¼ r3TF ~a
o
Z

� �
¼ b3a30

Z
~a

o
Z

� �
; (3.42)

~a nð Þ ¼
ðx0
0

4 p f ðxÞ x2 dx
4 p f ðxÞ � n2 � i0

; (3.43)

where rTF ¼ ba0=Z
1=3 is the Thomas-Fermi radius, Z is the charge of the atomic

nucleus,a0 is the Bohr radius,b ffi 0:8853,~a nð Þ is the dimensionless polarizability as

a function of the reduced frequency n ¼ �ho 2Ry Z= , (Ry ¼ 13:6 eV), x0 ¼ R0 rTF= is

the reduced atomic radius, f ðxÞ is the universal function describing the distribution

of the electron density nðrÞ in an atom within the framework of the statistical model

according to the formula nðrÞ ¼ Z2 f r rTF=ð Þ.
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Fig. 3.5 The frequency

dependences of the real

(a) and imaginary (b) parts of

the polarizability of a krypton

atom calculated in different

approximations: in the local

plasma frequency

approximation for Lenz-

Jensen electron density (1),
for Slater electron density (2),
and in the random phase

exchange approximation (3)
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The explicit expressions for the function f ðxÞ for a number of statistical models,

including the Thomas-Fermi and Lenz-Jensen models, are given in Appendix 2. For

example, for the Lenz-Jensen function the formula (A.46) is true. Though the

Thomas-Fermi function wðxÞ , in terms of which the concentration of atomic

electrons (A.45) and the atomic potential are expressed, has no analytical represen-

tation, for this formula there are good approximations obtained by А. Sommerfeld.

These approximations, both for neutral atoms and for multielectron ions, are also

given in Appendix 2 (see the formulas (A.48), (A.49) (A.50)).

It must be emphasized that the dimensionless polarizability ~a nð Þ does not depend
on the charge of an atomic nucleus. Thus the representation of the dynamic

polarizability of a statistical atom (3.42) and (3.43) reveals the scaling law for

this value with respect to the parameter n.
Let us give the high-frequency asymptotics of the dimensionless polarizability

following from the formulas (3.42) and (3.43) with the help of the explicit form of

the function f ðxÞ for the distribution of the Thomas-Fermi and Lenz-Jensen electron

density (see Appendix 2). For the imaginary part of the dimensionless polarizability

~a nð Þ we have:

Im ~aT�F n ! 1ð Þ	 
 ! 4:35

n4
; (3.44)

Im ~aL�J n ! 1ð Þ	 
 ! 4:615

n4
: (3.45)

From the formulas (3.44) and (3.45) it is seen that the above statistical models

give a close result for the imaginary part of polarizability. The high-frequency

asymptotics of the real part of the dimensionless polarizability ~a nð Þ in both models

of electron density of the atomic core look like

Re ~a n ! 1ð Þf g ! � b�3

n2
; (3.46)

which is in the qualitative agreement with the general formula (3.39). From

comparison of the expressions (3.44), (3.45) and (3.46) it follows in particular

that at high frequencies the imaginary part of polarizability decreases much more

rapidly than its real part.

Thus using the Brandt-Lundqvist model seems justified for the qualitative

description of polarization effects on multielectron ions and atoms for frequencies

o � Z and more.

In the low-frequency range the use of the plasma-statistical approach can require

some correction due to the fact that the potential of ionization of an atom within the

framework of statistical models has an underestimated value, especially for targets

with filled shells, so the characteristic features of the frequency dependence a oð Þ
are found to be shifted to the region of low frequencies. So in calculation of cross-

sections in the low-frequency range with the use of the Brandt-Lundqvist model for
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the dynamic polarizability of a target it is worthwhile to shift the frequency

dependence of polarizability to the region of high frequencies, so that the maximum

of its imaginary part falls on the potential of ionization of an atom.

3.2.2 Polarization Potential in the Bremsstrahlung Theory

For calculation of the polarization bremsstrahlung cross-section we will introduce

into consideration the potential of interaction of an incident particle with an ion

being in the external uniform electromagnetic field E oð Þ. This potential looks like

Vpol R;oð Þ ¼
ð
dr

dr r;oð Þ
r� Rj j ; (3.47)

here dr r;oð Þ is the spatial density of perturbation of an electron charge induced in

the ion core under the action of the external field, R is the radius vector of an

incident particle (IP).

It should be noted that the proposed approach is suited also for calculation of

spontaneous processes: in this case byE oð Þ the field of quantum fluctuations should

be understood.

The electron charge density perturbation dr r;oð Þ is related with the polarization
density induced in the ion core:

dr r;oð Þ ¼ div P r;oð Þ: (3.48)

The value P r;oð Þ in the local approximation is given by the formula (3.36).

The distribution of electron density in an atom (ion) everywhere in what follows

we will assume to be spherically symmetric.

Assembling the written-out formulas and using the expansion of the reciprocal

distance r� Rj j�1
in terms of spherical harmonics, after simple algebraic

transformations and integration with respect to angular variables we obtain for

the polarization potential in the local approximation the following expression:

Vpol R;oð Þ ¼ e
RE oð Þ
R3

ðR
0

b r;oð Þ 4pr2dr: (3.49)

It is essential that this formula describes the nondipole potential of interaction of
an IP with a perturbed ion core, which manifests itself in the presence of the

magnitude of the IP radius vector in the upper limit of integration. This circum-

stance has a simple electrostatic interpretation: an external charge interacts only

with part of the electron cloud inside the sphere of radius R.
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Thus the obtained polarization potential (Eq. 3.49) describes the effects

connected with penetration of an IP into the ion core.

Presented in Fig. 3.6a, b are the results of calculation of the real and imaginary

parts of the polarization potential normalized to the amplitude of the external

electric field for a KII ion. The calculation was made in the local plasma approxi-

mation with the use of the electron density of the ion core in the Thomas-Fermi-

Dirac model for two frequencies of the electromagnetic field o ¼ 0.9 a.u. (а), 3 a.u.
(b) by the formula (3.43). In both cases the real part of the polarization potential has

a maximum at a distance determined by the Eq. 3.38. At this distance the local

dielectric permittivity of a target becomes zero and at the same time an imaginary

additive to the polarization potential appears. It is seen from the figure that the

distance rp oð Þ (see Eq. 3.38) decreases with growing frequency. The function rp oð Þ
in the Thomas-Fermi-Dirac model is monotonically decreasing since the spatial

density of electron distribution in this model grows monotonically.

It is interesting to note that for any finite frequency (0 < o < 1) there is some

distance to a nucleus r0 oð Þ (and r0 oð Þ > rp oð Þ ), at which the real part of the

polarization potential changes a sign. If it is taken into account that the interaction

force is equal to the derivative of the potential taken with the minus sign, it can be
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concluded from the form of the curves in Fig. 3.6 that at short enough distances

from the nucleus an IP is effectively attracted to the target under the action of its

polarization. At the same time at long distances the polarization interaction

corresponds to repulsion.

Using the expression for the polarization potential (Eq. 3.49), it is possible to

obtain the formula for a dipole moment induced in the ion core by a scattered

particle if it is taken into account that:

Vpol R; oð Þ ¼ �E oð ÞDpol R; oð Þ: (3.50)

From comparison of Eqs. 3.49 and 3.50 we find

Dpol R;oð Þ ¼ �ep
R

R3

ðR
0

b r;oð Þ 4 p r2 dr: (3.51)

The dipole moment Dpol R;oð Þ induced in the atomic core is a function of the

external field frequency and the radius vector of an incident particle R.

In view of the explicit expression for the spatial density of polarizability (3.35)

from the formula (3.51) we find for the real and imaginary parts of the polarization

dipole moment

Re DBL o; Rð Þ	 
 ¼ e
R

R3
V:P:

ðR
0

o2
pðrÞ r2dr

o2
pðrÞ � o2

; (3.52)

Im DBL o;Rð Þ	 
 ¼ e
R

R3

p
2
o2

r2p oð Þ
dop rp

� �
dr=

�� �� y R� rp oð Þ� �
; (3.53)

where yðxÞ is the Heaviside theta function, V:P: is the symbol of the principal

integral value.

The total radiating dipole moment of the system IP þ atom (ion) is:

Dtot R;oð Þ ¼ ep R� ep
R

R3

ðR
0

b r;oð Þ 4 p r2 dr: (3.54)

It should be noted that following from the Eq. 3.54 is the simple relation between

the static and polarization dipole moments in the approximation under consideration:

Dpol R;oð Þ ¼ � 1

R3

ðR
0

b r;oð Þ 4 p r2 dr

8<
:

9=
;Dst R;oð Þ:
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The formula (3.54) is a primary formula for carrying out numerical calculations

of polarization effects in the local approximation. It corresponds to consideration of

two channels of the process: static (the first summand in Eq. 3.54) and polarization

(the second summand). Since these summands enter into the expression for the total

radiating dipole moment of the system target þ IP, the expression (3.54), being

substituted in the standard formula for the process cross-section or corresponding

intensity, will describe also interference effects connected with the interaction of

channels.

3.3 Polarization Bremsstrahlung on a Multielectron Ion

in the Approximation of Classical Motion of an Incident

Particle

As was already noted, the Born parameter � characterizing the motion of plasma

electrons under conditions of thermodynamically equilibrium plasma is more or of

the order of one:

� ¼ Ze2

�hv
� 1: (3.55)

The inequation (3.55) is the reverse of the Born condition and corresponds (in

the strong inequality limit) to the quasi-classical approximation for IP motion. It is

within the framework of quasi-classics (or, more precisely, of the semiclassical

approach) that V.I. Kogans with coworkers [9, 10] have carried out the detailed

analysis of the static channel of bremsstrahlung on multielectron atoms and ions.

The so-called rotation approximation has been developed that allows rather simple

calculation of spectral cross-sections of main radiation processes including

photorecombination as well.

The comparison with quantum-mechanical numerical calculations [11] has

shown high accuracy of the semiclassical approach and in particular of the rotation

approximation in the theory of static Bs.

So it seems natural to use the semiclassical approach also in investigation of

polarization Bs on a multielectron ion and to design on its basis the generalization

of the rotation approximation including the description of the polarization channel.

As known [12], in classical consideration of a collisional-radiative process the

value k is introduced that is called effective radiation by the formula

k ¼
ð1
0

DE rð Þ 2 p r dr; (3.56)

here DE rð Þ is the total radiation of one IP with the specified impact parameter r.
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Further we will be interested also in spectral effective radiation dk oð Þ do= , the

expression for which in the dipole approximation for interaction with an electro-

magnetic field for a spontaneous process looks like

dk oð Þ
do

¼ 4o4

3 c3

ð1
0

D o; rð Þj j2rdr; (3.57)

whereD o; rð Þ is the Fourier transform of the radiating dipole moment of the system

at the frequency o calculated along the trajectory of an IP characterized by the

impact parameter r.
Between the value dk do= and the spectral cross-section of bremsstrahlung

ds do= there is a simple connection:

dk
do

¼ �ho
ds
do

:

To take into account interference-polarization effects, asD o; rð Þ, further we will
use the temporal Fourier transform of the total dipole moment

Dtot o; rð Þ ¼
ðþ1

�1
Dtot R t; r; við Þ;oð Þeiotdt; (3.58)

in which the functionDtot R;oð Þ is given by the expression (3.54). It should be noted
that the dimensionalities ofDtot R;oð Þ andDtot o; rð Þdo not agree: the first value has
the dimensionality of the electric dipole moment, and the second value has the

dimensionality of its Fourier transform.

Thus in classical calculation of spectral effective radiation it is necessary to

know the law of IP motion:

R ¼ R t; r; við Þ; (3.59)

here vi is the initial IP velocity.

In investigation of strongly inelastic processes of scattering corresponding to IP

motion along strongly curved trajectories it is convenient to express the temporal

Fourier transform of the dipole moment of an IP (the first summand of the formula

(3.54)) in terms of the Fourier transform of the force acting on the IP on the side of a

target. Then from Eq. 3.54 the following expression for the Fourier transform of the

total radiating dipole moment of the system (the formula (3.58)) can be obtained:

Dtot o; rð Þ ¼ ep
mp o2

R

R

dUðRÞ
dR


 �
o;r

� ep
R

R3

ðR
0

b r;oð Þ 4 p r2dr
8<
:

9=
;

o;r

: (3.60)
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Here the braces designate taking the Fourier transform in view of the depen-

dence Eq. 3.59.

Thus the expressions (3.56), (3.57), and (3.60) give the formal solution of the

problem under consideration. Further simplification of these formulas is impossible

since the dependence Eq. 3.59 for IP motion in the Thomas-Fermi potential (and its

modifications) has no analytical description (in contrast to motion in the Coulomb

field).

To carry out numerical calculations, it is convenient from the independent time

variable (t) to go to the independent variable R – the distance from an IP to the

nucleus. For this purpose we will use the standard representation of trajectory time

and angle of rotation of the IP radius vector in terms ofR and the parameters r and vi:

t R; r; við Þ ¼
ðR

rmin r;við Þ

dR

vr R;r; við Þ (3.61)

’ R; r; við Þ ¼ r vi

ðR
rmin r;við Þ

dR

vr R; r; við ÞR2
; (3.62)

here vr R; r; við Þ is the radial IP velocity, the expression for which looks like

vr R; r; við Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2i þ 2 Uj j mp

� � v2i r2 R2=
q

; (3.63)

rmin r; við Þ is the minimum distance of IP approach to the center of the scattering

potential determined by solution of the equation

vr R; r; við Þ ¼ 0: (3.64)

Using the Eqs. 3.60, 3.61, 3.62, and 3.63, it is possible to calculate the Cartesian

projections (on the focal axes of coordinates – see Fig. 3.7) of the Fourier transform

of the radiating dipole moment of the system according to the formulas:

Dpol

� �
x
o; rð Þ ¼ 2

ð1
rmin

cos ’ R; rð Þð Þ cos o t R; rð Þð ÞDp o;Rð Þ dR

vr R; rð Þ; (3.65)

where Dp o;Rð Þ is the magnitude of the vector (3.51).

The expression for Dpol

� �
y
is obtained by replacement in Eq. 3.65 of cosines by

sines.

The diagram of IP scattering by an atom (ion) with indication of the coordinate

axes and the angle ’ is presented in Fig. 3.7.
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We will give the results of calculations of spectral effective radiation for electron

scattering by aKII ion for the following values of parameters vi¼1.4 a.u.,o ¼ 0.9 a.u.

The choice of these values is caused by the fact that under conditions of thermody-

namically equilibrium plasma of most interest is emission of thermal energy electrons

(of the order of the ion ionization potential) of photons with an energy close to the

initial IP energy. (The potential of ionization of a KII ion is 1.16 a.u.)
To calculate the dipole moment induced in the ion core, we will use the target

polarizability density in the Brandt-Lundqvist approximation (the formula (3.35))

shifted in frequency to the value Do ¼ 0.6 a.u. towards high frequencies. Then the

frequency dependence of the dynamic polarizability of the ion core will be

approximated to its quantum-mechanical analog.

The electron density of the ion core defining the local plasma frequency was

calculated on the basis of numerical integration of the Thomas-Fermi-Dirac equa-

tion (with exchange and correlation allowances) with the use of the reduced ionic

radius x0 ¼ 8:91 relative units. It will be recalled that the reduced ionic radius is the

ratio of the ionic radius R0 to the Thomas-Fermi radius aTF ¼ 0:8853 Z1=3
�

a.u. In

this case the “local plasma radius” (see Eq. 3.38) is rp oð Þ ¼ 2:77 a.u.

Let us introduce into consideration the characteristic radius of radiation in the

Kramers limit – ref o; við Þ – (see [13]), being the solution of the equation

v2i
2
þ UðrÞj j

mp
¼ o2r2

2
: (3.66)

This value defines the effective distance of radiation by the static channel. It is

essential that in the Kramers limit the value ref o; við Þ grows with initial velocity.

For the reduced values of parameters and the distribution of electron density of

the ion core of a KII ion in the Thomas-Fermi-Dirac model we have: ref o; við Þ ¼
1:98 a.u.

To clarify the appropriateness of using the quasi-classical approach, it should be

noted that besides the “global” criterion of quasi-classics (Eq. 3.55), there is also a

local criterion that in a three-dimensional case looks like:

Fig. 3.7 Scattering of an

incident particle by a target

with the electron core
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�locðrÞ ¼ �h div p rð Þð Þ
p2 rð Þ <<1: (3.67a)

The expression for the local parameter (3.67а) can be rewritten within the

framework of the rotation approximation [10] as follows:

�loc ref
� � ¼ �l ref

� �
=ref<<1; (3.67b)

here ref is given by the formula (3.66). The value (Eq. 3.67b) in the case under

consideration is: �loc ref
� � ¼ 0:22:

For a special case of a Thomas-Fermi atom (ion) in [10] the analog of the

“global” parameter (3.55) was obtained, the reciprocal of which e ¼ 1 �= is given

by the formula

e ¼ EaTF
Z e2

� 32:6
E keVð Þ
Z4=3

(3.67c)

Hence for the IP velocity vi ¼ 1.4 a.u. we find: e ¼ 0:017<<1.

Thus the values of the parameters of motion of an IP and a target ion under

consideration satisfy the conditions of the quasi-classical approximation for the

static Bs spectrum.

The condition of subline quasi-classicity (radiation from the trajectory with a

fixed impact parameter r) can be written as:

r vi �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l lþ 1ð Þ

p
� lþ 1 2= >>1: (3.68)

The condition (3.68) in our case gives r>>1 a.u.

Shown in Fig. 3.8 are the dependences of integrands in the definition of the

Fourier transforms of the x- and y-components of the dipole moment induced in

the core of a KII ion (the real part) on the distance to the nucleus for two values of

the impact parameter: (а) r ¼ 1:75 a.u. and (b) r ¼ 3 a.u.

In the first case the y-projection of the real part of the induced dipole moment is

maximum (ReDy ¼ 2:92 a.u., ReDx ¼ 1:1 a.u.), in the second case the x-projection
is maximum (ReDx ¼ 2:4 a.u., ReDy ¼ 1:59 a.u.).

From Fig. 3.8 it follows in particular that the maximum of the x-component of

the dipole moment is reached at the minimum (for the given impact parameter)

distance to the ion nucleus. The maximum of the y-component falls on the distance

equal to the “plasma” radius rp oð Þ (for those impact parameters, for which the

inequation rmin rð Þ < rp oð Þ is satisfied).
From Fig. 3.8b it is seen that the integrand for the x-component sharply grows

if the equation rmin rð Þ ¼ rp oð Þ takes place. This equation separates the trajectory

of IP motion, at which polarization Bs caused by the x-component of the dipole

moment induced in the ion core has maximum.

Let us represent the dependence of the projections of the dipole moments on the

impact parameter r as a table (Table 3.2).
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The parameters of calculation were corrected by the conformity of results for the

Coulomb potential to exact analytical expressions for the scattering angle.

The calculation in the statistical Thomas-Fermi-Dirac potential shows that for

impact parameters lesser than 1.4 a.u. the scattering angle exceeds 180	, which
corresponds to beginning of the phenomenon of IP twisting around the target.

On the other hand, for these impact parameters the condition of subline quasi-

classical condition is violated, which nevertheless is found to be inessential for

Table 3.2 Projections of dipole moments as functions of impact parameter [a.u.]

r 1 1.5 2 2.5 3 4 5 6

rmin 0.163 0.8 1.58 2.2 2.74 3.76 4.75 5.7

ReDpx �0.1 1.48 1.0 1.48 2.4 0.73 0.36 0.16

ReDpy �1.59 2.1 2.9 2.4 1.7 0.86 0.33 0.17

ImDpx �0.37 1.15 �0.03 �0.22 1.05 0.88 0.29 0.13

ImDpy �1 0.54 1.1 1.25 1.33 0.68 0.3 0.14
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Fig. 3.8 Integrands in the

definition of the Fourier

transforms of the x- (solid
curve) and y- (dotted curve)
components of the induced

dipole moment (the real part)

in the core of a KII ion
(o ¼ 0.9 a.u., E ¼ 1 a.u.) as

functions of the distance to

the nucleus for the impact

parameters: (а) r ¼ 1.75 а.u.
and (b) r ¼ 3 a.u.
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calculation of the polarization channel since small distances to the nucleus make a

small contribution to it.

The contribution of these impact parameters (r 
 1:4) to effective radiation by

the polarization channel is about 1 %.

The obtained dependences of the Fourier transforms Re Dx;y o; rð Þ on the

impact parameter r are presented in Fig. 3.9. From this figure it follows in

particular that the maximum of the x-component of the induced dipole moment

in the ion core falls on the impact parameter rmax that is approximately equal to the

“plasma” radius rp.
The results of calculation of the values of effective radiation (in atomic units) by

the static and polarization bremsstrahlung channels with subdivision to the

contributions of the x- and y-projections are given in Table 3.3.

From Table 3.3 it is seen that in the polarization channel the contribution of the

y-projection of the dipole moment induced in the core is comparable (and even

somewhat exceeds) the contribution of the x-projection in contrast to the relation of

these contributions to radiation by the static channel. This circumstance is a conse-

quence of the effect of penetration of an IP into the core of a target. This penetration

more strongly acts on the x-projection, reducing it, than on the y-projection. Formally

this can be explained by the fact that in motion of an IP along one of the halves of its

trajectory its x-coordinate changes a sign when crossing the abscissa of the point of

1 2 3 4 6 7

0

1

2

3

Dx,y

ρ, а.е. 

Fig. 3.9 The dependences on the impact parameter of the x- (solid curve) and y- (dotted curve)
components of the dipole moment induced in the KII ion core (the real part) at the frequency

o ¼ 0.9 a.u. in the Brandt-Lundqvist model [5] and the quasi-classical approximation for IP

motion

Table 3.3 Effective radiation by the static and polarization channels [a.u.]

Projections,

channels

x-projection real

imaginary

y-projection real

imaginary

Total for each

channel

Static 8.84�10�6 2.9�10�6 1.17�10�5

Polarization. 5.3�10�6 1.5�10�6 5.4�10�6 2.4�10�6 1.46�10�5
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location of the target nucleus, and the y-coordinate is constant-sign and approaches its
zero value only at the point of turn of radial IP motion (see Fig. 3.7).

Let us introduce the R-factor characterizing the relative contribution of the

polarization channel to bremsstrahlung by the formula:

R oð Þ ¼ dkpol oð Þ
dkst oð Þ : (3.69)

From the data of Table 3.3 the value of the R-factor in the case under consider-

ation can be determined:

Rf gBLclas o ¼ 0:9 a:u:; rmin ¼ 1:4 a:u:ð Þ ¼ 1:24: (3.70a)

It should be noted that in the value of effective radiation by the static channel an

uncertainty remains that is connected with the problem of choosing the lower limit

of integration with respect to the impact parameter in the formula (3.36).

For comparative estimation of the relative value of the polarization channel we

will use the result of calculation of the static channel contribution within the

framework of the rotation approximation (see the paper [10]).

The calculation in the Thomas-Fermi-Dirac model for spectral effective radia-

tion by the static channel gives:

dkrotst

do


 �
TFD

KII; o ¼ 0:9 a:u:ð Þ ¼ 5:46� 10�5 a:u:

Hence it follows that the R-factor within the framework of the rotation approxi-

mation is:

Rf gBL;rotclas;TFD KII; o ¼ 0:9 a:u:ð Þ ¼ 2:67: (3.70b)

However, it should be remembered that the Thomas-Fermi-Dirac model within

the framework of the rotation approximation somewhat overestimates the result just

for frequencieso 
 1 a.u. since in this case the effective radius of radiation ref (see
3.66) is found to be of the order of the boundary size of an ion, where the statistical

model has the greatest error.

So for more correct estimation of effective radiation within the framework of the

rotation approximation we use the ion potential in the Slater approximation. Then

instead of Eq. 3.70b it can be obtained:

dkrotst

do


 �
Slater

KII; o ¼ 0:9 a:u:ð Þ ¼ 4:72� 10�6 a:u:;
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and correspondingly:

Rf gBL;rotclas;Slater KII; o ¼ 0:9 a:u:ð Þ ¼ 3:1: (3.70c)

Thus it can be concluded that the classical estimation for the above values of

parameters gives the following lower boundary for the value of the R-factor at a
frequency near the potential of ionization of a KII ion for IP of threshold energies

(T is the IP energy):

R KII; �ho � Ip � T
� � � 2 (3.71)

and therefore the contribution of the polarization channel exceeds appreciably the

contribution of the static channel to effective radiation of bremsstrahlung.

This conclusion is rather essential since it relates to characteristic “plasma”

frequencies (of the order of the ion ionization potential) and a strongly inelastic

process, when radiated energy is of the order of the initial IP energy. It is just the

situation that is characteristic for Bs in plasma.

3.4 Polarization-Interference Effects in the High-Frequency

Limit

From the consideration of effective radiation in collision of an IP with a structural

target that was carried out in the previous paragraph within the framework of the

classical description of IP motion it follows that the calculation by the obtained

formulas is a multistep problem requiring trivariate integration with a singular

integrand even for the spectral cross-section. The calculation of the total brems-

strahlung loss, accordingly, results in a quadrivariate integral.

As is known, for static Bs the calculation of total effective radiation is simplified

considerably since it is possible to carry out a number of integrations analytically,

and the resultant expression (in case of the central potential of scattering) is a single

integral, from which all temporal characteristics of IP motion dropped out.

If the polarization channel is taken into account, the situation changes cardinally

since the frequency dependence of target polarization in the general case does not

allow frequency integration in the expression for total effective polarization

radiation.

Assembling the formulas (3.56), (3.57), (3.58), (3.59), and (3.60), we obtain for

the total bremsstrahlung loss by the polarization channel in the local plasma

frequency approximation:

kpol ¼
4 e2p
3 c3

ðmpv
2
i
2�h=

0

o4do
ð1
0

rdr
ðþ1

�1
dt eiot

R t; rð Þ
R t; rð Þ3

ðR t;rð Þ

0

b r;oð Þ 4 pr2dr

�������
�������
2

: (3.72)
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The upper limit of frequency integration reflecting the presence of a short-

wavelength limit in Bs is a corollary of quantum relations (the semiclassical

approximation [9]) introduced into the classical consideration.

It should be noted that in calculation of the temporal Fourier transform in the

formula (3.72) it is possible from time integration to go to integration with respect

to the variable distance of an IP to the nucleus R if the radial velocity of IP motion

by the formula (3.63) is introduced and the dependences (3.61), (3.62) for the

trajectory time and the angle of IP rotation are used.

The description of polarization-interference effects in Bs on a multielectron ion

(atom) is simplified considerably in the high-frequency limit, that is, for frequencies

much more than the characteristic frequencies of electrons of a target ion. As a

result, it appears to be possible to carry out analytical transformations of the

formulas describing polarization Bs and to give their descriptive physical

interpretation.

Most considerably simplified is the expression for total effective radiation (total

bremsstrahlung loss of energy).

Really, in the high-frequency limit the spatial density of the polarizability of the

target electron core will be written as:

bhf r;oð Þ ¼ � e2 nðrÞ
mo2

: (3.73)

It should be noted that the value (3.73) is dimensionless since the concentration

of the electron core nðrÞ has the dimensionality of the reciprocal volume.

For the radiating dipole moment of the core (the polarization channel) with the

use of the formulas (3.51) and (3.73) we find the following simple expression:

D
hf
pol R;oð Þ ¼ ep

R

R3

e2

m o2
NðRÞ; (3.74)

here

NðRÞ ¼
ðR
0

nðrÞ 4 p r2 dr (3.75)

is the number of target electrons inside the sphere of the radius R. It should be

recalled that R is a distance from an IP to the nucleus of the target.

The physical meaning of Eqs. 3.74 and 3.75 is that the contribution to polariza-

tion Bs is made only by the electron density of the target inside the said sphere. The

latter is the reflection of the electrostatic fact that a charge placed inside the

uniformly charged spherical layer will not experience the Coulomb force. This is

true for the process under consideration without real excitation of target electrons

since then the core electrons are equivalent to the charge distribution that does not

change its geometrical form.
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Substituting Eqs. 3.73 in 3.72 results in reduction of frequency degrees, and as a

result, changing the order of integration, we obtain:

khfpol ¼
4 e2p e

4

3 c3 m2

ð1
0

rdr
ð ð

dtdt0
ðv2i 2=

0

eio t�t0ð Þdo
RðtÞR t0ð Þ
R3ðtÞR3 t0ð ÞN RðtÞð ÞN R t0ð Þð Þ: (3.76)

Then we use the equation

Re

ð1
0

eio t�t0ð Þdo

8<
:

9=
; ¼ pd t� t0ð Þ:

The upper limit here is assumed to be equal to infinity according to the quasi-

classical condition �h!0. Going in the formula (3.76) to the integration variable R
(after such a replacement the lower limit of integration becomes equal to rmin rð Þ,
and the result is multiplied by 2 due to the parity of the integrand in the formula

(3.76) relative to the change of a time sign) and performing integration with respect

to the impact parameter r, we find:

khfpol ¼
8 p e2

3 c3 m2 vi

ð1
0

f 2polðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2UðrÞ

mpv
2
i

s
r2dr: (3.77)

The value fpolðrÞ appearing here, that is natural to be called polarization force, is
determined by the equation:

fpolðrÞ ¼ ep e
NðrÞ
r2

: (3.78)

This force (repulsion) acts on an IP on the side of target electrons located inside

the sphere of the radius R. With the same force (according to the Newton’s third

law) the IP accelerates target electrons moving as a single cloud of negative charge,

causing polarization Bs.

Let us give here also the expression for total effective radiation by the static

channel (see [9]):

kst ¼
8 p e2p

3 c3 m2
p vi

ð1
0

dUðrÞ
dr

� �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2UðrÞ

mpv
2
i

s
r2dr: (3.79)

It is well seen that the formulas (3.77), (3.79) have a quite similar structure, only

the last expression includes the ordinary “static” force:

fstðrÞ ¼ � dUðrÞ
dr

: (3.80)
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In spite of significant similarity of the Eqs. 3.77 and 3.79, there is also a

significant difference between them: the integral of Eq. 3.77 is divergent at the

lower limit (in a quasi-classical case as
Ð
0

r�5 2= dr) and requires a “cutoff”.

The “polarization” integral of Eq. 3.79 at the lower limit is convergent. This is a

corollary of taking into account the penetration of an IP into the target core, with the

result that the effective electron charge of a ion defining radiation by the polariza-

tion channel in the high-frequency limit under consideration decreases.

As a cutoff radius for static effective radiation (3.79), the effective radius of

radiation (the formula (3.66)) ref oð Þ at a frequency corresponding to the initial IP

energy is chosen: �ho ¼ mv2i 2= .

The formulas (3.76) and (3.77) describe the contribution of each channel to the

effective cross-section individually. In fact, in the high-frequency limit under

consideration interchannel interference is found to be rather considerable. For

total effective radiation of an electron the following expression can be obtained

in much the same way as this was done above:

khftot ¼
8p e2

3c3 m2vi

ð1
0

fstðrÞ � fpolðrÞ
� �2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2UðrÞ
m v2i

s
r2dr: (3.81)

If an effective static charge for an incident electron is introduced by the formula:

Zef ðrÞ ¼ e�2 dUðrÞ
dr

����
���� r2; (3.82)

then instead of Eq. 3.81 we have:

khftot ¼
8 p e6

3c3 m2 vi

ð1
0

NðrÞ þ Zef ðrÞ
� �2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2UðrÞ
m v2i

s
r�2dr: (3.83)

Hence it is seen that total effective radiation including interchannel interference

in the high-frequency limit is defined by the total charge

Z ¼ NðrÞ þ Zef ðrÞ (3.84)

that is equal to the charge of the ion nucleus.

To illustrate this fact, given in Fig. 3.10 are the radial dependences of effective

polarization (curve 1), static (curve 2), and total (curve 3) charges for a KII ion
calculated in the Slater model. It is seen that the total charge (3.84) is really equal to

the charge of the ion nucleus.

This circumstance is an analog of the effect of atom “stripping” that was for the

first time established in the Born approximation [14] for a case of quasi-classical IP

motion with penetration into the target core.
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From Fig. 3.10 it is seen also that the values of effective static and polarization

charges are compared for a KII ion at a distance about 0.6 a.u. from the nucleus. At

longer distances the “polarization” force prevails, at shorter distances the “static”

force prevails. In this case it should be remembered that the high-frequency

approximation under consideration is true for high enough frequencies

o > ~o:

The analysis shows that the characteristic frequency ~o for a KII ion is about

15–20 a.u. (for higher frequencies the polarizability of the target core is close to its

high-frequency limit). The effective radii of radiation determined by the Eq. 3.66 in

this frequency range satisfy the inequation ref < 0.4 a.u. So the “static” force

always exceeds the “polarization” force in the region of truth of the high-frequency

approximation.

3.5 Description of Polarization Effects Within the Framework

of the Generalized Rotation Approximation

The aim of this paragraph is to simplify the expression for polarization Bs to simple

enough calculation formulas. This will allow carrying out numerical estimations of

the process cross-sections by the order of magnitude in a wide frequency range in a

single manner for any nuclear charges and degrees of target ion ionization and,

moreover, it makes it possible to establish qualitative regularities of a phenomenon

without resorting to cumbersome calculations. The consistent approach (naturally,

within the framework of the plasma model for polarizability) does not allow

obtaining simple calculation formulas for spectral effective radiation even in the

high-frequency limit.
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Fig. 3.10 The radial

dependences of effective

(1) polarization, (2) static,
and (3) total charges for a KII
ion calculated in the Slater

model
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At the same time, as was already said above, in the theory of static Bs there is a

rather effective method of approximate calculation of intensity of radiation of a

quasi-classical particle, so-called rotation approximation [10], that from the stand-

point of the result was found to be more adequate than the consistent classical

consideration.

The physical basis of this approach is in the space limitation of a region

responsible for radiation by an IP of photons with high enough frequency. The

high-frequency behavior, more precisely, the “Kramers behavior”, is understood

from the standpoint of fulfilment of the inequation [3]:

o > oCoul
ef ¼ mpv

3
i

Zef e2p
: (3.85)

In this case an IP radiates mainly near the point of turn of its radial motion. It

should be noted that quantitatively the rotation approximation also gives a reason-

able result in the case o � oCoul
ef .

For the Bs cross-section integrated with respect to the impact parameter the

effective distance ( ref ) depends only on the radiated frequency and the target

potential and is determined by the Eq. 3.66.

Formally the rotation approximation corresponds to “introduction” into the

Eq. 3.60 for total effective static Bs of the delta function of the difference of

frequencies o and the IP rotation frequency at the distance ref :

orotðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2i þ 2 UðrÞ mp

��� ��q
r

: (3.86)

Thus we come to the following formula for spectral effective radiation in the
rotation approximation [10]:

dkst oð Þ
do


 �
rot

¼ 8p e2p
3 c3 m2

p vi

ð1
0

dUðrÞ
dr

� �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� UðrÞ

mpv
2
i 2=

s
d o� orotðrÞð Þ r2dr:

(3.87)

It seems attractive to generalize the rotation approximation for taking into

account radiation by the polarization channel as well.

This is hardly possible to be done strictly since even the static rotation approxi-

mation Eq. 3.87 is obtained on the basis of intuitive considerations. So the approach

developed below is qualitative, pretending only to the numerical estimation of

cross-sections by the order of magnitude.

In the formula (3.87) the information on the vector nature of the radiating dipole

moment of an IP is lost. It is connected with the fact that in the high-frequency

approximation Eq. 3.85 the main contribution to the process cross-section is made

by the x-component of the IP dipole moment. The situation is different for the
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polarization channel: for the parameters given in Table 3.3 the contributions of both

projections are approximately equal. Therefore in generalization of the rotation

approximation for taking into account the polarization channel it is necessary to

take into account the features of spatial formation of both Cartesian projections of

the dipole moment of the ion core on the axis of the focal system of coordinates.

As seen from Fig. 3.9, the Fourier component of the y-projection of the radiating
dipole moment of the target core is defined by the distances of the order of rp oð Þ
(see the formula (3.38)), while the x-component is defined by the distances of most

IP approach to the target rmin (the Eq. 3.66).

So it is natural to do the following generalization of the rotation approximation

to the polarization channel:

dkpol oð Þ
do


 �
rot

¼ dkpol oð Þ
do


 �rot

x

þ dkpol oð Þ
do


 �rot

y

; (3.88)

here

dkpol
do


 �rot

x

¼ 8 p e2

3m2 c3 v2i

f polx o;Rð Þ�� ��2vr R; r ¼ 0ð Þ
dorot dR=j j R2

" #
R¼ref oð Þ

(3.88a)

and

dkpol
do


 �rot

y

¼ 8 p e2

3m2 c3 v2i

f poly o;Rð Þ
��� ���2vr R; r ¼ 0ð Þ

dop dR=
�� �� R2

2
64

3
75
R¼rp oð Þ

: (3.88b)

The expression for the projection depending on the polarization force frequency

is the generalization of the high-frequency analog:

f polx;y o;Rð Þ ¼ ep
mo2 Rx;y

e R3

ðR
0

b r;oð Þ 4p r2dr: (3.89)

Quantitatively the use of the formula (3.89) instead of Eq. 3.78 means elimina-

tion of the abnormally great contribution of low frequencies to the cross-section of

polarization Bs arising in case of using the high-frequency approximation near the

threshold of target ionization.

It should be noted that the formula (3.89) can be also rewritten in the form

similar to Eq. 3.78:

f polx;y ¼ e ep
Rx;y

R3
Nef R;oð Þ; (3.90)
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here

Nef R;oð Þ ¼ mo2

e2

ðR
0

b r;oð Þ 4 p r2 dr
������

������ (3.91)

is the effective electron charge depending on the frequency and distance to the

target nucleus and defining the cross-section of Bs by the polarization channel.

The above formulas for the polarization Bs channel correspond to the simple

physical interpretation of this process in the spirit of classical electrodynamics as

radiation arising due to acceleration of the effective electron charge of a target

under the action of a force from the side of a scattered IP.

According to subdivision of spectral effective radiation by the polarization

channel into the sum of contributions of two projections of the induced dipole

moment of the target for the spectral R-factor determined by the relation (3.69),

within the framework of the generalized rotation approximation it can be written:

Rrot oð Þ ¼ 1

2
Rrot
x oð Þ þ Rrot

y oð Þ
� �

: (3.92)

The numerical coefficient in Eq. 3.92 arose due to approximate replacement of

the mean squares of sine and cosine of the angle of IP rotation (see Eq. 3.62) by 0.5.

Given in Fig. 3.11а are the frequency dependences of three types of the R-factors
appearing in the formula (3.92) for a KII ion and threshold energies of an IP. It is

essential that the values of the R-factors are compared far from the threshold of

target ionization. Near the threshold (for IP energies under consideration) the

contribution of the y-component prevails.

The analysis within the framework of the approximation under consideration

shows that with growing IP energy the relative contribution of the x-component

increases, reaching its maximum value at the energy (T ¼ mp v
2
i 2= ) determined by

the equation:

ref o; Tð Þ ¼ rp oð Þ (3.93)

The physical meaning of the formula (3.93) is clear: the generalized rotation

approximation predicts the optimum value of initial energy of an IP, at which the

effective radius of radiation by the static channel coincides with the “plasma”

radius corresponding to the maximum of the spatial density of target polarizability

at the given frequency o. For �ho ¼ 24:5 eV the IP energy satisfying the Eq. 3.93 is

Topt ¼ 75 eV in scattering by a KII ion.
Using this model makes it possible to answer an important question: beginning

from what frequencies does the high-frequency approximation for the polarization

Bs channel work? The comparison of calculation results in the generalized rotation

approximation with the high-frequency spectral R-factor is given in Fig. 3.11b.
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From this figure it is seen that the high-frequency approximation in scattering of an

IP of threshold energy by a KII ion is true for o > orot ¼ 20 a.u. With growing IP

energy the value orot increases.

Let us give the results of calculation of total effective radiation by the polariza-

tion channel with the use of the generalized rotation approximation. The

corresponding expression (in a somewhat simplified version) looks like:

kpolðTÞ ¼ 8p e2p e
4

3 c3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mp T

p ð1
rminðTÞ

N2
ef R; orot R; Tð Þð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� UðRÞ

T

r
R�2 dR; (3.94)

here rminðTÞ ¼ ref T; Tð Þ.
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Fig. 3.11 (а) The frequency
dependence of the R-factor in
different versions of the

generalized rotation

approximation, when in the

PBs cross-section are

separated: 1 – “plasma”

radius, 2 – effective radius of

the static channel, 3 – their

half-sum. (b) The comparison

of the R-factor calculated in

the generalized rotation

approximation (1) with the

high-frequency R-factor (2)
for threshold energies of an IP

in its scattering by a KII ion
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Though the integral in the formula (3.94) is convergent, we introduced a “cutoff”

at the same lower limit as for the static channel since the “non-classical” region of

small distances to a nucleus makes a significant contribution for Thomas-Fermi

electron distribution overestimating the real electron density near the nucleus. The

results of numerical estimations on the basis of the obtained expressions are

presented in Table 3.4

In the second line of the table the values of the lower limit in the integrals of

Eqs. 3.80 and 3.60 determining total effective radiation by the polarization and

static channels are given. It is characteristic for the quasi-classical limit that this

value rather weakly decreases with growing IP energy. This defines the weak

dependence of total effective radiation on IP energy.

From the calculations carried out within the framework of the generalized

rotation approximation it follows that for quasi-classical energies of an incident

particle (in terms of fulfilment of the inequations (3.55)) the values of total effective

radiation of an electron on a KII ion by the static and polarization channels are much

the same. The high-frequency approximation overestimates considerably the con-

tribution of the polarization channel, in particular for low IP energies.

The developed approach allows numerical estimations of the contributions of

both Bs channels for a wide range of parameters: the charges of ion nuclei Z, the
degree of their ionization q ¼ Zi Z= , the frequency of radiation. For this purpose it is

convenient to use the Sommerfeld analytical model for the Thomas-Fermi function

[7] (see the formulas (A.48) and (A.49)) that makes it possible to carry out

calculations rather simply. The results of calculations of the spectral Bs

characteristics in the generalized rotation approximation for a wide frequency

range and IP of threshold energies (�ho � T) are presented in Fig. 3.12a, b.

Following from Fig. 3.12 are the important corollaries of calculations within the

framework of the generalized rotation approximation. The contributions of the

polarization and static channels to the spectral cross-section of Bs on a KII ion
for electrons of threshold energies are compared (R ¼ 1) at the frequency

o* ¼ 10 a.u. The maximum of the R-factor is reached for frequencies of the

order of the target ionization potential. In this case the generalized rotation approx-

imation gives the following value for the R-factor:Rrot
max � 3. It should be noted that

this value represents a lower estimate since the Brandt-Lundqvist model

underestimates the value of polarizability.

In the model under consideration the R-factor depends on IP energy (T), growing
with T. This has a simple qualitative explanation. With the increase of energy

Table 3.4 Effective radiation by different channels of a quasi-classical electron on a KII ion
depending on IP energy

T, а.u. IP energy 3 4 5 10 20

rminðTÞ; a:u: 1.9 0.95 0.85 0.6 0.42

kstðTÞ 105; a:u: rotation approximation 0.58 0.74 0.86 1.12 1.26

kpolðTÞ 105; a:u: generalized rotation approximation 0.56 0.73 0.86 1.14 1.15

kpolðTÞ 105; a:u: high-frequency approximation 13.2 10 9 5.4 3.2
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(limited by the conditions of usability of the rotation and quasi-classical

approximations) the effective radius of the static channel increases: as a result,

the effective charge of an ion decreases, the effective electron charge of the core

grows.

Given in Fig. 3.12а are the frequency dependences of effective radiation by the

polarization (solid curve) and static (dotted curve) channels for a Thomas-Fermi ion

(the charge of the nucleus is Z ¼ 60, the degree of ionization is q ¼ 0:05) up to the

kiloelectron-volt energy of a bremsstrahlung photon. It is seen that both

dependences have a maximum, and for the polarization channel it is shifted towards

lower frequencies. With growing energy of a bremsstrahlung photon effective

radiation by the polarization channel (after achievement of the maximum)

decreases faster than by the static channel. This is connected with the effect of

penetration of an IP into the electron core of a target ion, which, on the one hand,

results in increase of the effective charge of the ion defining static Bs, and on the

other hand, reduces the dynamic (nondipole) polarizability of the ion core causing

polarization Bs.

Presented in Fig. 3.12b are the spectral R-factors for two values of degree of ion
ionization: q ¼ 0:1 (solid curve), q ¼ 0:2 (dotted curve) and the charge of the ion

nucleus Z ¼ 60. It is seen that the maximum of the R-factor for an ion of lower
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Fig. 3.12 The calculations in

the generalized rotation

approximation: (а) The
spectral dependences of

effective radiation of IP of

threshold energies by the

polarization (solid curve) and
static (dotted curve) channels
for Z ¼ 60, q ¼ 0:05. (b) The
spectral R-factor for different
degrees of ionization: q ¼ 0:1
(solid curve), q ¼ 0:2 (dotted
curve) and Z ¼ 60
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charge is reached at lower frequencies, the value of the maximum R-factor is more

in magnitude for an ion of a lower degree of ionization. This is explained by higher

effective charge and lower nondipole polarizability for an ion of higher charge.

With growing photon energy these distinctions (for a multielectron ion) are

smoothed, and the values of the R-factors of ions under consideration at higher

frequencies are equalized.

Thus it is possible to make a conclusion about the important role of effects of

penetration of a radiating electron into the target core for correct description of Bs

on multielectron ions of IP of threshold energies. Without considering this phe-

nomenon a qualitatively incorrect result is obtained. For example, the R-factor with
growing frequency will tend to the value 1� q (equal to the ratio of the number of

bound electrons to the nuclear charge), but not to zero as it should be according to

the physics of the process.

Presented in Fig. 3.13a, b are the dependences of the spectral R-factor on the ion
charge for different Bs frequencies (а) and nuclear charges (b) calculated for IP of

threshold energies. This figure demonstrates the presence (within the framework of

the generalized rotation approximation used here) of the optimum ion charge Zopt
i e,

at which the value of the R-factor (at a frequency characteristic for a given ion) is

maximum. This circumstance is a nontrivial fact. Really, for a one-electron ion (and

in the case q � 1) the function R Zið Þ is monotonically decreasing since then the

value defining the R-factor is proportional to the reciprocal ion charge:

o2a oð Þ Zi oð Þ / 1 Zi== (for frequencies of the order of the ion ionization potential).

For a multielectron ion the behavior of this dependence is unobvious, and in the

general case an answer can be given only within the framework of the approximate

description of Bs.

From Fig. 3.13а it follows that the optimum charge Zopt
i e grows with decreasing

frequency of radiation, and the maximum value of the R-factor in this case

somewhat decreases. With growing charge of the ion nucleus (Fig. 3.13b) the

value Zopt
i e is shifted to the region of high values, and the value of the R-factor

appreciably increases. At the same time for low ion charges the R-factors calculated
at corresponding (different!) characteristic frequencies do not depend on the

nuclear charge.

Let us apply the obtained formulas for calculation of spectral effective radiation

in scattering of an electron with an energy of 1 and 10 keV by tungsten ions with

different charges. The corresponding diagrams are given in Figs. 3.14 and 3.15.

From the given figure it follows that the static channel prevails over the polarization

channel throughout the region of frequencies.

With growing IP energy, as seen from Fig. 3.15, a spectral range from 350 to

750 keV takes place, in which the polarization channel prevails over the static

channel. According to Figs. 3.14 and 3.15, effective radiation by the polarization

channel has a maximum in the low-frequency region of the spectrum that is shifted

to the region of high photon energies with increasing IP energy.

Presented in Fig. 3.16 are the calculations of the spectral R-factor (3.69) for Bs of
different energies on tungsten ions.
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It is seen that with growing IP energy (10 keV) the contribution of PBs grows

especially for rather low ion charges Zi ¼20, when the maximum Rmax ¼ 6.8 is

observed in a low-frequency range of the order of 200 keV. With increasing ion

charge (at the same IP energy of 10 keV) the maximum of the spectral R-factor is
shifted to the region of high photon energies (about 500 keV), becoming in this case

more wide. In case of low IP energies (1 keV) the R-factor is less than one

throughout the spectral range for the considered tungsten ions. This is explained

by deep penetration of an IP into the ion core for emission of a photon at a low IP

energy (1 keV).

Thus the use of the generalized rotation approximation in the description of

polarization effects for IP of threshold energies on multielectron ions is found to be

rather effective for revealing qualitative regularities of behavior of both Bs channels.
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Fig. 3.15 The spectrum of effective radiation in scattering of an electron of energy 10 keV by a

tungsten ion with the chargeZi ¼ 38: solid curve – static channel, dotted curve – polarization channel
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Fig. 3.16 The spectral R-factor for Bs on tungsten at different ion charges and IP energies: solid
curve – Zi ¼20, E ¼ 1 keV; dotted curve – Zi ¼38, E ¼ 1 keV; dashed curve – Zi ¼20,

E ¼ 10 keV; dash-and-dot curve – Zi ¼38, E ¼10 keV
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At the end of this paragraph we will make a useful remark on determination of

the effective charge of an ion in the rotation approximationZrot
ef e (e is the elementary

charge) that, in particular, can be used in estimation of effective radiation by the

static channel on the basis of the known Kramers formula:

dk Kramð Þ

do
¼ 16 p Z2

ef e
6

3
ffiffiffi
3

p
m2 v2 c3

: (3.95)

The matter is that the simple use of the formula (3.79) with substitution of the

effective radius of radiation in it leads, generally speaking, to an incorrect result.

The correct expression for the charge number Zrot
ef can be obtained from Eq. 3.87

with the use of simple algebraic transformations, it looks like:

Zrot
ef ¼ r2 dU dr=j j

e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 þ dU dr=j j mo2rð Þ=

p
( )

r¼ref o;Tð Þ
; (3.96)

where e is the elementary charge.

For Bs on a KII ion in the Thomas-Fermi-Dirac model from Eq. 3.96 we find:

Zrot
ef o ¼ 0:9 a:u:; T ¼ 1 a:u:ð Þ ¼ 1:83 and, accordingly, dkKr o; Zef

� �
do ¼=

6:3� 10�6 a:u::
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