
Chapter 2

Quantum-Electrodynamics Approach

to Description of Bremsstrahlung of a Fast

Charged Particle on an Atom with Account

for the Polarization Channel

In this chapter with the use of the consistent quantum-electrodynamic approach the

cross-section of bremsstrahlung of a fast charged particle on a one-electron and

multielectron atom was obtained and analyzed within the framework of the first

Born approximation.

In this section, unless otherwise indicated, we use the relativistic system of units,

in which �h ¼ c ¼ 1 (�h is the Planck constant, c is the velocity of light in vacuum).

2.1 Amplitude of Bremsstrahlung of a Relativistic Charged

Particle on a One-Electron Atom

In this paragraph the expression for the amplitude of Bs of a relativistic incident

particle (IP) on a one-electron (hydrogen-like) atom is derived within the frame-

work of the consistent quantum-electrodynamic approach.

Let us consider the collision of a relativistic charged particle (the charge e0, the

mass m0, the initial energy ei ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2i þ m2

0

p
) in the state pij i with a hydrogen-like

atom being in the state nij iwith the energyEi. (It will be recalled that the symbol cj i
means the Dirac ket vector corresponding to the wave function c.)

As a result of collision, the IP goes to the state nf
�� �

with the energy ef ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2f þ m2

0

q
, a bremsstrahlung photon with the frequency o and the wave vector k

is emitted, and the atom goes to the state nf
�� �

with the energy Ef .

We assume that the incident particle satisfies the Dirac equation. Besides, we

consider satisfied the Born condition for IP velocities before (vi ) and after (vf )

collision with a target (Z is the atomic nucleus charge):

Z e0 << vi; f : (2.1)
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In this case the IP is described by a plane wave in contrast to the exact solution of

the Dirac equation in the external nuclear field that is necessary to describe a bound

electron of an atom. In the case that an incident particle is an electron, this makes it

possible also to neglect exchange summands in the process amplitude.

Let us use the standard quantum-electrodynamic perturbation theory for a

scattering operator [1]. In its lower order of interaction between an IP and an atomic

electron with an electromagnetic field we have a graphic expression for the Bs

amplitude (Fig. 2.1).

In Fig. 2.1 the single lines correspond to the wave functions and the propagator of

an incident particle, the double lines correspond to an atomic electron in the nuclear

field, dfi is the Kronecker symbol. It will be recalled that the propagator (or the

propagation function) describes the amplitude of probability of particle propagation

from one spatio-temporal point to another. The wavy linemeans the electromagnetic

field: the photon propagator and the wave function of a free photonAks (k is the wave

vector, s is the photon polarization index).
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Fig. 2.1 The diagrams describing the amplitude of bremsstrahlung on an atom in the third order of

the perturbation theory
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The analytical expression for the amplitude of total Bs corresponding to the

diagrams shown in Fig. 2.1 represents the sum of static and polarization terms:

Mfi ¼ Mst
fi þMpol

fi (2.2)

The first summand in Eq. 2.2 corresponds to the ordinary (static) channel, its

expression looks like:

Mst
fi ¼ � 4pe20e

q2
Am�
k;s Zg0v f jih i � jvfi qð Þ
h i

Gvm p1; p2ð Þ; (2.3)

where

Gnm p1; p2ð Þ ¼ �ufffiffiffiffiffiffiffi
2 ef

p gn
gp2 þ m0

p22 � m2
0

gm þ gm
gp1 þ m0

p212 � m2
0

gn

� �
uiffiffiffiffiffiffiffi
2 ei

p (2.4)

is the propagator of a free electron. In the formulas (2.3) and (2.4) the following

designations are used:

q1 ¼ pf � pi, q ¼ q1 þ k, p2 ¼ pf þ k, p1 ¼ pi � k, Ak;s ¼ ffiffiffiffiffiffiffiffiffiffiffi
2p o=

p
ek;s,

pj i ¼ u p; sð Þffiffiffiffiffi
2e

p exp �ipxð Þ, jmn0n kð Þ ¼ n0h jgm exp �ikrð Þ nj i, a ¼ am ¼ a0; a
� �

,

ab ¼ ambm ¼ a0b0 � ab, m; n ¼ 0� 3.

The metric, normalization and designations in the formula (2.3) are analogous to

those used in the book [1]: gmn is the metric tensor, gm are the Dirac matrices. The

normalization of bispinors:�uu ¼ uþg0u ¼ 2m0 corresponds to the normalization of the

wave function of an incident charge to one particle in the main region with a unit

volume. Thewave function of a photonAks is also normalized to one photon in themain

region, eks is the polarization 4-vector that in the laboratory system of coordinates

satisfies the three-dimensionally transverse gauge: eks ¼ 0; eksf g, keks ¼ 0. n, f, i is
the set of quantum numbers defining a stationary state of an atom.

The second summand in the formula (2.2) corresponds to the polarization

channel. We have for it [2, Chap. 5]:

Mpol
fi ¼ 4p

q21
A�
svk

X
n

jvnf n kð Þjmnni q1ð Þ
Ef � En þ o� i0

þ
jmnf n q1ð Þjmnni kð Þ

Ei � En � o� i0

" #
�uf gmui
2
ffiffiffiffiffiffiffi
ef ei

p (2.5)

The sum over intermediate states extends both to the positive (þi 0) and to the

negative (�i 0) energy spectrum of an atomic electron.

Let us analyze the diagrams of Fig. 2.1 and their associated formulas (2.3) and

(2.5). The first four graphic summands and their associated expression for the static

amplitude (Eq. 2.3) in the case that an atomic electron does not change its state give

the classical Bethe-Heitler result [3] – bremsstrahlung of a relativistic electron in
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the static nuclear field and the atomic electron field screening it (the screening

approximation). If in these terms of the process amplitude all possible final states of

an atomic electron are taken into account, we will obtain the Lamb and Wheeler

result [4]. The Fourier transform of the time part of the transitional current 4-vector

at f ¼ i gives an ordinary form factor of charge screening. Its space part is a current

(magnetic) summand of screening and can be essential in Bs with excitation of deep

atomic shells for high nuclear charges.

It should be noted that the consistent electrodynamic approach to the relativistic

problem of Bs on an atom even in the ordinary static part of the process amplitude

leads to results supplementing the Bethe-Heitler theory: to taking into account a

possibility of change of an atomic state and to appearance of a current additive in

the form factor caused by the space components of the transitional current 4-vector

for an atomic electron.

The last two graphic summands in Fig. 2.1 and their associated expression (2.5)

describe the emission of a bremsstrahlung photon by an atomic electron in collision

of an IP with an atom. These terms appear if an atomic electron is considered as a

peer dynamic particle interacting with an electromagnetic field, including the

electromagnetic field of vacuum. The contribution to total bremsstrahlung given

by these summands is called polarization bremsstrahlung since it is defined by the

dynamic polarization of an atom in the IP field.

A characteristic feature of the polarization summand of the amplitude of Bs on

an atom is the presence of sums over intermediate states of an atomic electron with

resonant energy denominators. And the relativistic (for a bound electron) problem

in addition to the resonance in the electronic spectrum of atomic states has a

resonant denominator in the positron part of the sum, when o ¼ ei � eð�Þ
n � 2m.

However, we will restrict ourselves to the frequency range o<<m.
The total Bs cross-section contains also the interference contribution of the static

and polarization channels. But, as it will be seen from the following, its value for a

relativistic IP is small.

It is of interest to trace two passages to the limit in the expression (2.2). Let us

assume at first that a nucleus is absent (Z ¼ 0). In this case the first two diagrams

presented in Fig. 2.1 will disappear. In the remaining four diagrams it is necessary

to replace the double lines describing an atomic electron in the nuclear field by

single lines (describing a free electron). Then these diagrams go to the graphic

representation of the process of IP emission on a free electron that is well known in

quantum electrodynamics. In this case the first pair of diagrams describes

the contribution of an incident particle to Bs in its scattering by an electron, and

the second pair of diagrams describes the contribution of a recoil electron to the

process.

In the high-frequency range (o>>m) in case of an incident electron a result is

obtained that is known from quantum electrodynamics: recoil electron emission can

be neglected, in this case a fast electron emits at a slow unit charge as at an

immobile one. It should be noted that to obtain the said passage to the limit, it is
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necessary to take into account all possible excitations of an atom both in the discrete

spectrum and in the continuous spectrum.

In another limiting case, when an atomic electron is absent, the last four

diagrams in Fig. 2.1 disappear, and the process amplitude comes to bremsstrahlung

on a “bare” nucleus.

From the diagrams of Fig. 2.1 it is seen that the ordinary (static or Bethe-Heitler)

and polarization summands of the amplitude differently depend on the mass and

charge of an IP. Really,Mst
fi / e20e m0= , andMpol

fi / e0e
2 m= , and static Bs disappears

with the IP mass tending to infinity, while the polarization summand remains finite.

The change of the sign of the incident particle charge does not change the static

amplitude and changes the sign of the polarization amplitude, which results in

changing sign of the interference summand of the total cross-section of Bs on an

atom.

Let us consider a case of a nonrelativistic atomic electron (Z<<137, Ei; f � m
�� ��

<<m). If, besides, o<<m, the expression (2.5) can be transformed to the form

containing only nonrelativistic characteristics of an atomic electron.

Really, at Z << 137 we have the following passage to the limit for the

components of the current 4-vector:

jmfn q1ð Þ ¼
ð
dr’�

f 1;~af g’n exp �iq1rð Þ

�
ð
dr’�

f exp �i q1rð Þ’n;

ð
dr’�

f ĵ q1ð Þ’n

	 

; (2.6)

here

ĵ qð Þ ¼ exp �i qrð Þ �irð Þ
2m

þ �irð Þ
2m

exp �i qrð Þ (2.7)

is the nonrelativistic expression for the spatial Fourier transform of the current

density operator, r is the vector differential operator.

The approximate Eq. 2.6 corresponds to the formal expansion of atomic

bispinors to the large (~ 1) and small (~ va) spinors and to following neglect of

spin additives.

Thus in the polarization term of the amplitude (Eq. 2.5) in the sum over

intermediate states with positive energy the transition to the nonrelativistic descrip-

tion comes to replacement of relativistic expressions for transitional currents by

their nonrelativistic analogs. The sum over intermediate states with negative energy

can be transformed if it is assumed that the main contribution to it is made by states,

the energy of which satisfies the inequality jjEð�Þ
n j � mj<<m. In view of the fact

that Ef ;i � m
�� ��<<m and o<<m, the energy denominators in the summands with

negative energy can be replaced by the value 2 m. Further, using the projection

operator m� Ĥa

� �
2m= ( Ĥa is the atomic Hamiltonian) for the space of wave
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functions with negative energy, it is possible to extend summation to the whole

energy spectrum of an atomic electron. For this purpose we assume:

m� Ĥa

� �
2m= ¼ 1� g0

� �
2=

g0 n�
�� � ¼ � n�

�� �
;

then

X
En<0

� 1

2m
fh j exp �i qrð Þ gm

1� g0ð Þ
2

gn þ gn
1� g0ð Þ

2
gm

 �
ij i; (2.8)

and in view of the permutation relation gmgn þ gngm ¼ 2 dmn we will obtain:

X
En<0

� dmn

m
fh j exp �i qrð Þ ij i ¼ dmn

m
j
ð0Þ
fi qð Þ: (2.9)

Thus the polarization term of the amplitude for a nonrelativistic atomic electron

looks like:

Mpol
fi ¼ 4 p e0e2

q21
An�
ks

X
En>0

jnfn kð Þjmni q1ð Þ
ofn þ oþ i0

þ jmfn q1ð Þjnni
oin � oþ i0

þ dmn

m
jfi
0 qð Þ

" #
�uf gmui
2
ffiffiffiffiffiffiffi
ef ei

p :

(2.10)

The expression (2.10) in case of a nonrelativistic IP leads to the known result of

the nonrelativistic theory of PBs [2]:

Mpol
fi ¼ 4 p e0 e2

q21

ffiffiffiffiffiffi
2 p
o

r X
n

e�ksjfn kð Þ jni0 q1ð Þ
ofn þ oþ i0

þ jfn
0 q1ð Þ eksjni kð Þ
oin � oþ i0

( )
: (2.11)

To derive the formula (2.11) from (2.10), it is necessary to suppose (neglecting

spin effects):

�uf gm ui 2
ffiffiffiffiffiffiffi
eief

p� � 1; v0f g; q1j j<< pi; f
�� ��:

2.2 Amplitude of Bremsstrahlung of a Fast Charged Particle

on a Multielectron Atom

The consistent quantum-electrodynamic consideration of PBs of a relativistic IP on

a multielectron atom is complicated by the necessity to take into account the

interaction between atomic electrons in the relativistic formalism as well as by
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the problem of summation over states with negative energy for a multielectron

system. At the same time calculation for nonrelativistic atomic electrons can be

considerably simplified if from the very beginning a nonrelativistic atomic Hamil-

tonian is used and an incident particle is replaced by the electromagnetic field it

produces (by a set of virtual photons).

Let us justify a possibility of such a replacement. Let the free IP field operator

’̂ðxÞ (x ¼ t; rf g) satisfy the Dirac equation:

g p� m0ð Þ’̂ðxÞ ¼ 0: (2.12)

We will assume that for the operator of the electron-positron field of atomic

electrons ĉðxÞ the Dirac equation with interaction is true:

g pþ e AextðxÞ þ e Â
ae

� �
� m

h i
ĉðxÞ ¼ 0; (2.13)

where AextðxÞ is the potential of the external nuclear field, ÂaeðxÞ is the operator of
the electromagnetic field produced by atomic electrons that satisfies the Maxwell

equation:

@n@mÂ
ae mðxÞ � @m@mÂ

ae nðxÞ ¼ 4 p e ĵ
nðxÞ; (2.14)

where ĵ
nðxÞ ¼ �̂cðxÞ gn ĉðxÞ is the operator of atomic electron current, summation is

supposed over twice-repeating indices.

Thus it is supposed that the interaction between atomic electrons is taken into

account in ĉðxÞ.
Let us represent the state vectors for the system of fields (of atomic electrons, an

incident particle, an electromagnetic field) as the product: Fj

�� � ¼ jj i ’j

�� E
nksj i ,

where jj i is the state vector for atomic electrons interacting among themselves, ’j

�� E
is the state vector for a free incident particle, nksj i is the state vector for an

electromagnetic field. The equation for the system state vector Fj i in the interaction
representation looks like:

i@ Fj i=@t ¼
ð
dr e0Ĵ

nðxÞ � e ĵ
nðxÞ

h i
ÂnðxÞ Fj i;

where

Ĵ
nðxÞ ¼ €�’ðxÞ gn ’̂ðxÞ

is the four-dimensional vector of the operator of incident particle current density.

Ŝ ¼ T exp �i

ð
dx ÂnðxÞ e0 Ĵ

nðxÞ � e ĵ
nðxÞ

h i	 

; (2.15)

where T is the chronological ordering symbol.
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The PBs amplitude in the lower order of the perturbation theory is described by

the third term in the expansion of the scattering operator Ŝ (here for short we use the
designation xi � i):

Ŝ3 ¼ �ið Þ3 e2 e0
ð
d1 d2 d3 T Ânð1Þĵ nð1Þ Âmð2Þĵ mð2Þ Âlð3ÞĴlð3Þ

n o
: (2.16)

In obtaining this formula similar summands resulting from rearrangement of

integration variables were reduced. Hereafter we consider that there is no exchange

between an incident particle and atomic electrons. Using the commutativity of

corresponding operators, the expression (2.16) for the scattering operator in the

third order of the perturbation theory can be rewritten as:

Ŝ3 ¼ �ið Þ2
ð
d1d2Âvð1ÞT e2 ĵ vð1Þĵ mð2Þ

n oð
d3e0Dml 2; 3ð ÞĴlð3Þ; (2.17)

where Dml 2; 3ð Þ ¼ iT 0h jÂmð2Þ Âlð3Þ 0j i is the photon propagator.

In the formula (2.17) one unpaired Â -operator is retained, which corresponds to

the one-photon change of the electromagnetic field.

By matrixing the scattering operator Ŝwith respect to the initial and final states of
the system we obtain:

Spol3;fi ¼ �ið Þ2
ð
d1 d2A�

ksnð1Þ Lnmfi 1; 2ð ÞAð0Þ
m;fið2Þ; (2.18)

where

Lnmfi 1; 2ð Þ ¼ e2 fh jT ĵ
nð1Þ ĵ mð2Þ

n o
ij i (2.19)

is the relativistic analog of the tensor of electromagnetic field scattering by an atom;

A
ð0Þ
m;fið2Þ ¼ �e0

ð
d3Dmv 2; 3ð Þ ’f

D ��Ĵvð3Þ ’ij i (2.20)

is the 4-potential of a virtual photon produced by an incident particle in the process

of scattering: ’ij i ! ’f

�� E
. It should be noted that the potential of a virtual photon

Að0Þ
fi could be found from the Maxwell equations (2.14) if on their right side the

matrix element of the IP transitional current operator ’f

D �� Ĵmð3Þ ’ij i is substituted.
The formula (2.18) for the amplitude of PBs allows its interpretation as a process

of scattering (conversion) of a virtual photon Að0Þ
fi by atomic electrons to a real

photon.
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It is easy to show that the same expression for the PBs amplitude can be obtained

from another form of the interaction Hamiltonian:

V0 ¼ �e

ð
dr ÂnðxÞ þ A

ð0Þ
fi;nðxÞ

n o
ĵ
nðxÞ: (2.21)

Here an incident particle is replaced by the electromagnetic fieldA
ð0Þ
fi it produces

and thus it is excluded from consideration as a dynamical degree of freedom.

The field A
ð0Þ
fi can be considered a specified field determined by the Eq. 2.20 – the

prescribed current approximation. Then the PBs amplitude is obtained by the

standard method in the second order of the perturbation theory. After calculation

of a corresponding matrix element we find for it:

S0pol2;fi ¼ �ið Þ2
ð
d1 d2A�

ks;nð1Þ fh jT e2 ĵ
nð1Þ ĵ mð2Þ

n o
ij iAð0Þ

fið2Þ: (2.22)

From comparison of the formulas (2.18) and (2.22) it follows:

Spol3; fi ¼ S0pol2; fi :

Thus the PBs amplitude can be calculated (with fixed initial and final IP states)

with replacing an incident particle by the field it produces with the help of formula

(2.20). Then in the case under consideration for nonrelativistic atomic electrons a

single relativistic degree of freedom – an incident particle – will be excluded, and it

is possible to use the nonrelativistic formalism to calculate the Bs amplitude.

It should be noted that replacement of a particle by its field is widely used also in

calculation of Bethe-Heitler Bs by the equivalent photon method, when in the IP

rest frame the atomic field is replaced by equivalent photons that are Compton-

scattered to bremsstrahlung photons by an incident particle.

Let us calculate, replacing an IP by its field, the PBs amplitude for a nonrelativ-

istic multielectron atom (Z<<137) with neglected exchange of incident and bound

electrons. We use the axial gauge of the electromagnetic potential (A0 ¼ 0). The

nonrelativistic Hamiltonian of perturbation of atomic electrons by the electromag-

netic field looks like:

V ¼ e

2m

X
j

p̂jÂ rj; t
� �þ Â rj; t

� �
p̂j þ e Â

2
rj; t
� �n o

; (2.23)

where p̂j ¼ �irj , Â ¼ Â
ph þ A

ð0Þ
fi is the sum vector-potential, the operator Â

ph

describes the photon field (kx ¼ ot� kr, o ¼ kj j),

Â
phðxÞ ¼

X
k;s

ffiffiffiffiffiffi
2 p
o

r
ek;s ĉk;s exp �ikxð Þ þ e�k;s ĉþk;s exp ikxð Þ� �

; (2.24)

2.2 Amplitude of Bremsstrahlung of a Fast Charged Particle on a Multielectron Atom 25



whereek;s is the unit vector of photon polarization, c
þ
k;s,ck;s are the operators of birth

and destruction of photons; A
ð0Þ
fi is given by the formula (2.20) – this is an external

field produced by an incident particle.

Going to the interaction representation V̂int ¼ exp iĤat
� �

V exp �iĤat
� �

(the

photon field is already written in the interaction representation), we have for the

scattering operator:

Ŝ ¼ T exp �i

ð1
�1
V̂intðtÞ dt

8<
:

9=
;: (2.25)

The contribution to the PBs amplitude in the lower order of the perturbation

theory (in the second order with respect to an electron charge) is made by the first

and second terms of the expansion S, the zeroth term of this expansion – one –

corresponds to the unchanged state of the system. In the first-order term the

contribution to the process is made by the summand containing the squared sum

vector potential, in the first-order term in perturbation the contribution is made by

the summand containing p̂Âþ Âp̂. According to the physical picture of PBs, it is

necessary to take into account terms containing the mixed product Âph andA
ð0Þ
fi . So

the matrix element of the process is represented as

Spolfi ¼ S
ð1Þ
fi þ S

ð2Þ
fi ;

here

S
ð1Þ
fi ¼ �i Ff

� �� ð1
�1

dt exp iHatð Þ e
2

2m

XN
j¼1

2Â
ph

rj; t
� �

A
ð0Þ
fi rj; t
� �

exp �iHatð Þ Fij i;

(2.26)

with Fj

�� � ¼ jj i nk;s
�� �

since an incident particle is already taken into account inA
ð0Þ
fi .

From the relation (2.26) we find

S
ð1Þ
fi ¼ �2ipd ef þ Ef þ o� ei � Ei

� � ffiffiffiffiffiffi
2p
o

r
e�k;sA

ð0Þ
fi q1ð Þ fh j

XN
j¼1

exp �iqrj
� �

ij i e
2

m
;

(2.27)

whereA
ð0Þ
fi q1ð Þ is the spatio-temporal Fourier transform of the incident particle field

calculated on the four-dimensional vector q1 ¼ ef � ei; pf � pi

n o
. Spin effects are

neglected. By analogy, for S
ð2Þ
fi we have the expression:
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S
ð2Þ
fi ¼ � 1

2
Ff

� ��T ð ð dt dt0 V̂intðtÞ V̂int t
0ð Þ Fij i: (2.28)

After simple transformations the matrix element of the scattering operator S
ð2Þ
fi is

brought to the form:

S2fi ¼ �e22pd DEið Þ
ffiffiffiffiffiffi
2p
o

r
e�k;s;l A

ð0Þ
fi;s q1ð Þ fh j

ð
dt exp iotð Þĵ l k,tð Þĵ s q1ð Þ ij i; (2.29)

where

jl k,tð Þ ¼ exp iHatð Þ 1

2m

XN
j¼1

p̂lj exp �ikrj
� �þ exp �ikrj

� �
p̂lj

n o
exp �iHatð Þ

is the spatial Fourier transform of the operator of atomic electron current in the

interaction representation.

Summing the matrix elements S
ð1Þ
fi and S

ð2Þ
fi , we obtain the PBs amplitude as:

Spolfi ¼ 2pid ef þ Ef þo� ei � Ei

� �
q01
� �2 ffiffiffiffiffiffi

2p
o

r
e�k;s;lA

ð0Þ
fi;s q1ð Þ fh jĉls k;q1ð Þ ij i; (2.30)

where

q01 ¼ ef � ei

is the change of IP energy during the process.

In the expression (2.30) ĉls k; q1ð Þ is the operator of electromagnetic field

scattering by an atom in the nonrelativistic (for atomic electrons) approximation

that can be represented in the following form:

ĉls k; q1ð Þ ¼ e2

m q01
� �2 im

ð1
�1

dt exp iotð ÞT ĵ l k, tð Þĵ s q1; 0ð Þ� �� dlsn̂ qð Þ
2
4

3
5; (2.31)

where n̂ qð Þ ¼PN
j¼1

exp �i qrj
� �

is the Fourier transform of the operator of atom

electron density.

Analyzing the initial relativistic expression, from which Eq. 2.31 follows, it can

be said that the first summand in the square brackets in Eq. 2.31 arises from the sum

over the positive part of the atomic electron spectrum and describes scattering of an

electromagnetic field by the atomic electron current. The second summand in
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Eq. 2.31 arises after folding of the sum over states of the negative energy spectrum

and describes field scattering by the atomic electron charge.

Let us write the matrix element clsfi k; q1ð Þ in terms of the sum over intermediate

states of atomic electrons:

clsfi k; q1ð Þ ¼ e2

m q01
� �2 m

X
n

jlfn kð Þjsni q1ð Þ
ofn þ oþ i0

þ jsfn q1ð Þjlni kð Þ
oin � oþ i0

" #
� dls nfi qð Þ

( )
:

(2.32)

In case of the spherically symmetric state ij i and within the framework of the

dipole approximation (for f ¼ i, k ¼ q1 ¼ 0), from the formula (2.32) it follows:

clsii q1; k ! 0ð Þ ! a oð Þ dls ¼ dls
e2

m

X
n

fin
o2

in � o2
; (2.33)

wherea oð Þ is the dipole polarizability of an atom, fin is the oscillator strength for the
transition i ! n. In the formulas (2.30), (2.31), (2.32) and (2.33) it is implied that

the bremsstrahlung photon frequency detuning D from resonance is great enough,

so that: D ¼ o� of ðiÞn
�� ��>>Gf ðiÞn , where Gf ðiÞn is the line width for the transition

n ! f ðiÞ. Otherwise in these expressions it is necessary to take into account the line
width for corresponding transitions.

It is well seen that the obtained expression for the PBs amplitude (Eq. 2.30)

corresponds to its interpretation as a process of scattering of the incident particle

eigenfield by atomic electrons to a bremsstrahlung photon.

Now let us calculate the amplitude of static (ordinary) bremsstrahlung (due to

emission of a photon by an incident particle) taking into account possible excitation

of atomic electrons. We use again the interpretation of bremsstrahlung as a process

of scattering of a virtual photon to a real photon. Now virtual photons are produced

by an atom (by a nucleus and bound electrons). For an atom at rest and nonrelativ-

istic atomic electrons, virtual photons produced by them are mainly longitudinal. In

this case it is convenient to use the Coulomb gauge of the electromagnetic potential

(divA ¼ 0) since then it is possible to take into account only its time component.

The space components describe in the Coulomb gauge the transverse part of the

field and in the case under consideration are small. The time component of the

potential of a virtual photon produced by an atom according to Eq. 2.20 is

A0
fi ¼ �

ð
d10 D00 1; 10ð Þ fh jĴ 0 10ð Þ ij i; (2.34)

where

Ĵ 0ð1Þ ¼ Zed r1 � r0ð Þ � e
XN
j¼1

d r1 � rj
� �
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is the atomic charge density operator in the coordinate representation (r0 is the

radius vector of a nucleus). According to the standard rules of quantum electrody-

namics [1], it is easy to obtain the expression for the static bremsstrahlung

amplitude:

Sstfi ¼ �2pi

ffiffiffiffiffiffi
2p
o

r
e20e

�
k;s;vT

v pf ;i; k
� �

A0
fiðqÞd ef þ Ef þ o� ei � Ei

� �
: (2.35)

Here the following designations are introduced:

Tv ¼ �ufffiffiffiffiffiffi
2ef

p gv
pf gþ gk þ m0

pf þ k
� �2 � m2

0

g0 þ g0
pig� gk þ m0

pi � kð Þ2 � m2
0

gv
( )

�uiffiffiffiffiffiffi
2ei

p ; (2.36)

A0
fi qð Þ ¼ 4p q2

�� �
dfiZe� enfi qð Þ� �

: (2.37)

Physically Eq. 2.37 describes the screened potential of a nucleus, and Eq. 2.36

describes scattering of an electromagnetic field by an incident particle.

Thus the total amplitude of Bs of a relativistic incident particle on a nonrelativ-

istic atom (Z <<137) in view of the polarization mechanism and possible excita-

tion of atomic electrons with neglected spin effects looks like:

SBrfi ¼ Sstfi þ Spolfi ; (2.38)

where Spolfi and Sstfi are given respectively by the formulas (2.30) and (2.35).

2.3 Total Bremsstrahlung of a Fast Charged Particle

on an Atom

2.3.1 General Expression for the Process Cross-Section

Based on the obtained expression for the amplitude, we will write the expression for

the spectral Bs cross-section [1]:

dsBr oð Þ
do

¼ ei
pij j
X
f ;s

dOk

2pð Þ3
dq

2pð Þ3 lim
T!1

SBrfi s; pf ;i; k
� ���� ���

T
; (2.39)

here dOk is the solid angle around the direction of the photon wave vector k, T is the

parameter having time meaning, summation is made over polarizations of an

emitted photon (s) and final states of an atom ( fj i). As before, we consider an
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incident particle to be a Born particle, and the initial state of an atom to be

nondegenerate.

In view of the explicit form of SBrfi the formula (2.39) can be rewritten:

dsBr oð Þ
do

¼ ei
pij j
X
f ;s

o2 dOk

2pð Þ3
dq

2pð Þ3 2pd DEð Þ

� 2p
o

e�ks;l e20T
l 4p
q2

Zedfi � enfi qð Þ� �þ q01
� �2

clsfiA
0
fi;s

	 
����
����
2

(2.40)

or

dsBr oð Þ
do

¼ ds st

do
þ ds pol

do
þ ds int

do
: (2.41)

The last term in Eq. 2.41 describes the interference of the static and polarization

Bs, Tl and clsfi are given by the formulas (2.36) and (2.32) of the previous paragraph.

Hereafter we assume that q1j j<< pf ;i
�� �� – the motion of an IP is weakly disturbed

during bremsstrahlung. So in the following formulas we use one value of IP

velocity: vi ffi vf � v0. Then for the vector potential of the virtual photon field A
ð0Þ
fi

we have the expression:

Að0ÞðqÞ ’ 4p e0
q0

v0 q0 c2
� � q

q0 c=ð Þ2 � q2
d q0 � qv
� �

; (2.42)

where v0 is the velocity of an incident particle.

In the same approximation for the function Т (see the definition (2.36)) we

obtain:

T ¼ q1

m0 g o� kv0ð Þ ; g ¼ ei m0= : (2.43)

The obtained expression (2.40) for the cross-section of bremsstrahlung on an

atom is the most general. With neglected internal degrees of freedom for an IP and

an atomic nucleus it describes consistently the contribution of atomic electrons to

the Bs process.

For the static Bs cross-section from Eq. 2.40 after simple transformations we

find:

dsst

do
¼ o
v0

ð
dOk dq

2pð Þ4
ð
dt eit oþq0

1ð Þ X
s

e�k;s T
��� ���2

� e40 e
2

q2
ih j Z � n̂ �qð Þð Þ Z � n̂ q; tð Þð Þ ij i: ð2:44Þ
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If the energy of excitation of atomic electrons can be neglected in comparison

with the frequency of an emitted photon o, then in the formula (2.44) it is possible

to assume n̂ q; tð Þ � n̂ q; 0ð Þ:
dsst

do
¼ o

v0

ð
dOk dq

2pð Þ3 d q01 þ o
� �

nT½ 
2 e40 e
2

q2
ih j Z � n̂ qð Þj j2 ij i; n ¼ k

k
: (2.45)

In derivation of (2.45) the equation was used:
P
s
e�ks;l eks;s ¼ dls � nl ns.

The expression (2.45) agrees with the result of Lamb and Wheeler [4] who for

the first time consistently took into consideration the contribution of excitation of

atomic electrons to static bremsstrahlung.

In case of a heavy IP m0 >>mð Þ the first summand under the modulus sign in

the formula (2.40) can be neglected in comparison with the second summand since

Tj j / 1 m0= , whileAð0Þ qð Þand ĉls k; q1ð Þdo not depend on the IP mass. Then the total

cross-section of Bs on an atom comes to the PBs cross-section, for which from

Eq. 2.40 we find:

dspol

do
¼ o
v0

ð
dOkdq

2pð Þ5 dls�nl nsð Þ q01
� �4

A
ð0Þ
fi;s0 q1ð ÞAð0Þ

fi;l0 q1ð Þ
ð
dteiq

0t ih jĉsl0�ð0Þ ĉls0 ðtÞ ij i;

(2.46)

where

ĉlsðtÞ ¼ exp i Ha tð Þ ĉlsð0Þ exp �i Ha tð Þ (2.47)

is the operator of electromagnetic field scattering by an atom in the Heisenberg

representation.

Thus the polarization bremsstrahlung cross-section summed over all final states

of atomic electrons is expressed in terms of the correlation function of the operator

of electromagnetic field scattering by an atom that can be written as

KciiðtÞ � ih jĉls0�ð0Þ ĉls0ðtÞ ij i;

where summation is supposed over twice-repeating indices.

2.3.2 PBs Without Excitation of a Target

Let us consider PBs without excitation of an atom (“elastic” PBs). Its cross-section

is given by the summand with f ¼ i in the second term under the modulus sign in the

formula (2.40):

dspolii

do
¼ o
v0

ð
dOkdq

2pð Þ4 dls�nl nsð Þ q01
� �4

A
ð0Þ
h q1ð ÞAð0Þ

r q1ð Þd q01þo
� �

ih jĉlh ij i ih jĉsr� ij i:

(2.48)

2.3 Total Bremsstrahlung of a Fast Charged Particle on an Atom 31



At first we consider the spectral range o << pa v0 ( pa � Z1=3 me2 is the

characteristic atomic momentum). Then the main contribution to the process

under consideration will be made by the moduli q1j j<< pa permitted by the energy

conservation law. Otherwise ( q1j j>>pa) PBs with excitation and ionization of an

atom should prevail. So in this case for the scattering tensor the dipole approxima-

tion can be used:

clhii k; q1ð Þ ! dlh ai oð Þ y pa � q1j jð Þ; (2.49)

and instead of Eq. 2.48 we will obtain:

dspolii

do
� o

v0

ð
dOk dq

2pð Þ4 nAð0Þ q1ð Þ
h i2

d q0
� �

y pa � q1j jð Þ o2 ai oð Þ�� ��2; o < pa v0:

(2.50)

It should be noted that the used approximation corresponds to the Born-Bethe

approximation in the theory of atomic excitation by electron impact.

From the formula (2.50) we find the following expression for the frequency-

angular distribution of elastic PBs in the frequency range under consideration:

dspolii o; #ð Þ
do

¼ 2 e20
v20

do
o

o2 ai oð Þ�� ��2 1þ cos2#
� �

sin# d# ln
g pa v0
o

� �
; (2.51)

where # is the angle between the initial IP velocity vector and the bremsstrahlung

photon wave vector (radiation angle).

In derivation of the formula (2.51) summands of the order of one were neglected

in comparison with the large logarithm (the large logarithm approximation).

From the expression (2.51) two corollaries follow:

1. In contrast to static Bs, polarization Bs of an ultrarelativistic IP (g >> 1) in the

frequency range o < pa v0 is not directional, but is of a dipole nature,
2. The PBs cross-section grows logarithmically with IP energy in the ultrarela-

tivistic limit at o < pa v0.

These characteristic features of PBs of a relativistic IP allow descriptive physical

interpretation. The logarithmic growth of the PBs cross-section with IP energy is

connected with the features of the spatial structure of the electromagnetic eigenfield

of a relativistic charged particle. The spatial distribution of the potential of this field

at the frequency o is given by the formula:

Að0Þ oð Þ / exp i
o
v0

z� v0 tð Þ � i
or
g v0

 �
; (2.52)

here z, r are the cylindrical coordinates of the IP field.
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Thus we obtain the lateral dimension of the field rmax � g v0 o= , and accordingly

for the minimum transferred transverse momentumwe have q?j jmin � o g v0= . Hence

from the formula for the spectral PBs cross-section (in the Born approximation): d

spol oð Þ / ln q?j jmax q?j jmin

�� �
the second PBs property follows that is noted here. It

should be noted that in case of static Bs on a neutral atom the maximum size of a field

scattered by an IP to a bremsstrahlung photon is defined by the size of an atom.

2.3.3 High-Frequency Limit

Now we will consider “elastic” PBs (without change of an atomic state) in the

frequency range I<<o<<m (I is the atomic ionization potential). In this case it is

possible to use the high-frequency asymptotics for the scattering operator:

ĉls k; q1ð Þ � � e2

m q01
� �2 n̂ qð Þ dls þ ql1 q

s
1

2mo

	 

; I << o << m: (2.53)

The formula (2.53) is obtained with the use of the expansion into a series of the

matrix element clsfi (Eq. 2.32) in terms of the powers of the ratio ojn

�� �� o j ¼ f ; ið Þ= ,

the summands in the sum over intermediate states with ojn

�� ��>o making a small

contribution to clsfi at o>> I. Substituting the formula (2.53) in Eq. 2.48, we find:

dspolii

do
¼ o

v0

ð
dOk dq

2 pð Þ4 d q0
� � e2

m

 �2

nii qð Þj j2 n; Að0Þ qð Þ þ q1 q1A
ð0Þ q1ð Þ� �

2mo

 !" #2
;

I<<o<<m:

(2.54)

To simplify the calculations, we consider that g >> 1, then the IP field is mainly

transverse and q1 A
ð0Þ q1ð Þ ¼ 0. We use the approximation of exponential screening

of an atomic nucleus to calculate the spectral PBs cross-section. Then:

nii qð Þ ¼ N

1þ q2 p2a
�� � : (2.55)

Here N is the number of atomic electrons (for a neutral atom, naturally, N ¼ Z).
The valuenii qð Þ represents the (static) form factor of the atomic core in the state ij i.
Using Eq. 2.55 and the relation ai oð Þ ! a1 oð Þ ¼ �N e2 mo2

�
to estimate the

spectral PBs cross-section in a high-frequency range, we find for three spectral
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ranges after integration with respect to the solid angle of photon escape and the

transferred momentum the following expressions:

dspolii

do
¼ 16

3
N2 e4 e20

m2 o
ln

g pa
o

� �
I<<o<< pa; (2.56)

dspolii

do
¼ 2N2 e4 e20

m2 o
pa
o

� �2
ln gð Þ pa<<o<<g2 pa; (2.57)

dspolii

do
¼ 4N2 e4 e20

m2 o
pa
o

� �2 g2pa
o

 �2

g2pa<<o<<m: (2.58)

The formulas (2.56), (2.57), and (2.58) are low-sensitive to a specific type of

nucleus screening by atomic electrons. The spectral cross-section (2.56) can be

obtained from the formula (2.51) since in this frequency range the dipole approxi-

mation for interaction of an IP with an atomic core (and especially with a photon) is

still true.

The spectral cross-section of PBs of a relativistic electron on a hydrogen atom in

a high-frequency range calculated by the formulas (2.56) and (2.57) is presented in

Fig. 2.2 for two values of the relativistic factor g.
From the given figure it follows that the cross-section of PBs of a relativistic

electron in the high-frequency range o>pa decreases with growing frequency.

Physically this is a consequence of coherence loss for interaction of a virtual photon

of the IP field with an atomic electron. From mathematical point of view, this

decrease is defined by reduction of the atomic form factor nii qð Þ with growing

magnitude of the transferred wave vector qj j>pa. Another conclusion of Fig. 2.2 is

the growth of the PBs cross-section with increasing energy of a relativistic incident

particle (of the relativistic factor g).
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0.001
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Fig. 2.2 The spectral cross-

section of PBs of a relativistic

electron on a hydrogen atom

in the high-frequency region

o >> I ¼ 0.5 а.u. as a
function of the parameter

r ¼ o/pa for two values of the
relativistic factor:

g ¼ 2 (solid line),
g ¼ 10 (dotted line)
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The frequency range of Eq. 2.57 is characteristic for ultrarelativistic incident

particles. In this range the compensation of a momentum transferred from an IP

to an atom due to a photon momentum is possible. As the analysis shows, this is

true only for small enough radiation angles: # � ffiffiffiffiffiffiffiffiffiffiffi
pa o=

p � ffiffiffiffiffiffiffiffiffiffi
l Ra=

p
; Ra � p�1

a .

This inequation follows from the condition of smallness of a

momentum transferred to a target during Bs in comparison with an atomic

momentum: o 1� v0 cos #ð Þð Þ � pa v0.
Thus in the frequency range of Eq. 2.57 PBs gains directionality, and in

calculation of the process cross-section it is necessary to take into account a photon

momentum.

The angular diagram of PBs of a relativistic electron on a hydrogen atom in the

high-frequency limit is presented in Fig. 2.3 for different values of bremsstrahlung

photon energy.

It is seen that with growing energy of a bremsstrahlung photon the angular

distribution of PBs of a relativistic electron is narrowed.

In the frequency range of Eq. 2.58 (if it exists) a momentum transferred from an

IP to the atomic core at any radiation angles is more than the characteristic atomic

momentum, and PBs is strongly suppressed as it follows from the form of the static

atomic form factor (2.57). Physically this means that with large momenta trans-

ferred to an atom ( qj j>>pa) that are characteristic for this frequency range inelastic
PBs channels prevail that are accompanied by excitation and ionization of an

atomic electron.

It should be noted that in the above “elastic” PBs the contribution of all atomic

electrons to radiation is coherent, so the process cross-section is proportional to the

squared number of atomic electrons. This circumstance can be explained as follows.

During elastic PBs, when the state of the atomic core does not change, an electron

charge, remaining localized in the atom, shows itself as the charge of one particleNe
(at l>Ra). Therefore the amplitude of its interaction with an electromagnetic field is

proportional to Ne, and the cross-section is proportional to Neð Þ2.

0
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Fig. 2.3 The angular

dependence of PBs on an

atom (Z ¼ 30) in the

high-frequency approximation

for different frequencies of

a bremsstrahlung photon:

o ¼ 5 keV (curve 1),
o ¼15 keV (curve 2),
o ¼ 50 keV (curve 3), the
IP velocity is: v ¼ 0.9 c
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Let us return to the total PBs cross-section that takes into account excitation of

atomic electrons – the formula (2.46). To obtain the spectral PBs cross-section in

the explicit form in the general case does not seem possible. Let us consider some

particular, but practically important situations.

Let the frequencyo be such that the main contribution to the cross-section that is

differential with respect to a transferred momentum is made by q1j j<<pa. (This in
particular takes place in experiments on agreement (see [5]) if a scattered electron is

observed at small scattering angles). Then the dipole approximation for interaction

of an IP with the atomic core is true, and it is possible to integrate with respect toq in

view of the explicit form of Að0ÞðqÞ (Eq. 2.42). Taking into account the spherical

symmetry of the state ij i, we obtain after a number of transformations for the spectral

PBs cross-section the following expression (we assume that osi<pa v0 � o):

dspolfi

do
¼ 16 e20

9 v20

X
m;l; f

o3 fh jĉml oð Þ ij ij j2 ln
g pa v0
oþ ofi

 �
: (2.59)

It should be noted that the summand in the formula (2.59) with f ¼ i gives the
spectral cross-section of elastic PBs following also from the formula (2.51) after

integration with respect to the angle of photon escape.

2.3.4 Near-Resonant PBs

Let us consider a case of the near-resonance frequency o, when the following

inequation is satisfied: Gnf<< o� onf

�� ��<<o , here onf and Gnf are the

eigenfrequency and the line width for the transition n ! f between two states of

the discrete spectrum of the atomic core. Then in the expression for the matrix

element from the operator of electromagnetic field scattering by an atom (Eq. 2.32)

one resonant summand can be separated that makes the main contribution to the

amplitude, and the imaginary part of the scattering tensor can be neglected in

comparison with the real part. Then in the sum over f on the right side of the

Eq. 2.59 one resonant summand remains.

After summation over the projections of the total momentum of resonant states

we find for a singlet initial state:

dsresfi

do
¼ 4 e20 e

4

3 v20 m
2

o
D

� �2 fin
oni

2Jf þ 1
� �

ffn ln
g pa v0
oþ ofi

 �
D ¼ o� onf

o >> Dj j>>Gfn;

(2.60)

here fik is the oscillator strength for the transition i ! k, Jf is the quantum number of

the total angular momentum of an atom in the state fj i.
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Following from the expression (2.60) for f ¼ i is the formula for “elastic” near-

resonance PBs that was studied in detail earlier [2].

The case f 6¼ i was studied in the paper of V.M. Buimistrov and L.I.

Trakhtenberg [6] from the standpoint of the prospect of obtaining radiation ampli-

fication based on the PBs effect.

Given in the author’s work [7] is the generalization of the spectrum of near-

resonant PBs to the case of the energy-band structure of a target in the elementary

isotropic effective mass approximation.

In this situation the scattering tensor can be represented as:

chl k; qð Þ ¼
ð
OBr

d~k

2pð Þ3
e2

o2

jhvc k;~kð Þ jlcv q;~kð Þ
o� ocv ~kð Þ þ iGcv 2=

: (2.61)

Here integration is performed with respect to the quasi-momentum of electrons~k
in the Brillouin zone OBr , ocv ~kð Þ ¼ ec ~kð Þ � evc ~kð Þ is the difference of electron

energies in the conduction band and in the valence band. Then we will assume that

transitional current weakly depends on an electron quasi-momentum. In the general

case it is necessary to perform integration in the formula (2.61) in view of the

dispersion law ec;v ~kð Þ. We will consider the approximation of parabolic bands, in

which: ev;c ~kð Þ ¼ e0v;c �~k2 2mv;c

�
,mv;c are the effective masses of electrons near the

valence band top and the conduction band bottom. Then after averaging over

photon polarizations for the spectral intensity of PBs the following expression

can be obtained:

dWpol

do
¼ B oð Þ J Dð Þj j2; (2.62)

where

B oð Þ ¼
ð

dq

2pð Þ10 m3cv e
4 n jvc kð Þ½ 


2

AðqÞ jcv qð Þð Þ2;

J Dð Þ ¼
1�

ffiffiffiffiffi
Dj j

p
a arctg affiffiffiffiffi

Dj j
p
 �

; D<0

1þ
ffiffiffi
D

p
2a ln a�

ffiffiffi
D

p
aþ
ffiffiffi
D

p
��� ���; D>0

8>><
>>:

D ¼ o� e0c � e0v
� �

; m�1
cv ¼ m�1

c þ m�1
v ; a � N1=3

v m1=2cv ; n ¼ k kj j=
.

;

Nv is the concentration of the valence band electrons. The target parameter is a2,
it is proportional to the energy of localization of a quasi-particle with the reduced

mass mcv in the volume N�1
v , its value is accordingly of the order of the permitted

band width.
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In the formula (2.62) it is assumed that a2 6¼ Dj j, otherwise it is necessary to take
into account the imaginary additive in the expression for the scattering tensor

(2.61).

The function B oð Þ has no resonance peculiarities for the case under consider-

ation: o<v0 d= (d is the lattice constant), so the frequency peculiarities of the PBs

spectrum are described by the function J Dð Þj j2 , the plot of which is presented in

Fig. 2.4 for the case of practical interest D<a2 (a2 ¼ N2 3=
v mcv= ).

From this figure it follows in particular that the spectrum of near-resonance PBs

for the energy-band structure of a target has a pronounced asymmetry: for

frequencies smaller than the energy gap width (negative detunings from resonance D)
the PBs intensity falls more steeply than for positive detunings. This circumstance is

quite expected since positive detunings correspond to the virtual transition to the

conduction band, and negative detunings correspond to the virtual transition to the

band gap.

The function J Dð Þ itself for detunings under consideration is positive (D<a2),
which corresponds to destructive interference with the static Bs channel. For high

detunings D>a2 this function is negative, and interchannel interference is

constructive.

It should be noted that in the limit a2<< Dj j in the expression (2.62) the

multiplier ocv D=j j2 appears that is characteristic for near-resonant PBs on one atom.

It is significant that ifo<ocv and Dj j>Gcv, a cascade process connected with real

filling of the conduction band is impossible.

2.3.5 PBs with Target Excitation

Now we will calculate the PBs cross-section with excitation (including ionization)

of an atom form>>o>>I. Substituting the expression for ĉlh in this spectral range
Eq. 2.53 in the formula (2.48), we find
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Fig. 2.4 The plot of the

function JðxÞj j2 describing the
spectrum of near-resonance

PBs for a case of the energy-

band structure of a target in

the isotropic effective mass

approximation
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dsiipol

do
¼ o

v0

ð
dOk dq

2pð Þ4
e2

m

 �2

n; Að0Þ q1ð Þ þ q1 q1 A
ð0Þ q1ð Þ� �

2mo

 !" #2
SiiðqÞ: (2.63)

Here the value is introduced:

SiiðqÞ ¼ 1

2p

ð1
�1

dt exp iq0t
� �

i n̂j jh �qð Þn̂ q,tð Þ iij j (2.64)

that we will call the dynamic form factor according to the terminology accepted for

description of effects in a media. For simplicity we assume further q1 � q , so

neglecting summands of the order of pa o=ð Þ2 in comparison with one ato>>pa; at
o<pa the dipole approximation is true, so the magnitudes qj j and kj j can be

neglected in comparison with pa . As seen from Eq. 2.63, for calculation of the

spectral PBs cross-section it is necessary to know the explicit form of the q and q0

functional dependence of Sii.
With further tracing only qualitative moments in mind, here we use for

calculations the simplest analytical approximation of SiiðqÞ:

SiiðqÞ � y qj j � pað Þ d q0 þ q21
2m

 �
N þ y pa � qj jð Þ d q0

� �
N2; (2.65)

where N is the number of electrons in an atom.

The approximate Eq. 2.65 can be obtained after a number of transformations,

taking into account the explicit form of the electron density operator being

an operator of shift in the momentum space and corresponding permutation relations.

The physical meaning of two summands in Eq. 2.65 is transparent: the first

summand describes processes with ionization of the atomic core, when a transferred

momentum is large, in this case the contribution of bound electrons is incoherent

and part of energy is carried away by a knocked-on electron. The second summand

describes the coherent process, when a momentum transferred to the core from an

IP is small, and the atom remains in the former state. In the latter case the recoil

momentum takes over a massive nucleus, and coherence takes place since the phase

of electromagnetic interaction of the IP with the target core changes little at

distances of the order of the atomic radius.

From the formulas (2.63) and (2.65) it is easy to find the spectral PBs cross-

section in the approximation under consideration:

dspolii

do
¼ 16e20e

4

3m2v20
y pav0 � oð Þ N2 ln

gpav0
o

� �
þ N ln

m0v0

pa

 �� �	

þ y o� pav0ð ÞN ln
gm0v

2
0

o

 �

:

(2.66)
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The obtained expression allows descriptive physical interpretation. At o<pav0
(the summand in the square brackets) PBs proceeds both without excitation of an

atom (if qj j<pa ) and with its ionization (at qj j>pa ). And in the first case PBs is

coherent by the contribution of atomic electrons to the process (the cross-section

is proportional to N2 ), in the second case PBs is incoherent (the cross-section is

proportional to the number of atomic electrons N). In the spectral range o>pav0 –
the second summand in the braces in Eq. 2.66 – the law of conservation of energy-

momentum permits only qj j>pa , so PBs proceeds mainly with atomic ionization,

and its cross-section is proportional to N.
It is essential that the total PBs cross-section (2.66) taking into account excita-

tion and ionization of an atom admits a correct passage to the limit to the caseZ ¼ 0,

corresponding to which is the equation pa ¼ 0 in the formula (2.66). Then the

summand in the square brackets describing “elastic” PBs disappears, and the

remaining last term in the braces describes emission of a slow free recoil electron

in collision with a relativistic charged particle as it must be according to the

physical picture of the process. It should be noted that this passage to the limit

does not take place for the “elastic” PBs cross-section since in the absence of a

nucleus the process becomes fundamentally inelastic – an atomic electron takes

over a momentum excess and increases its energy.

Let us compare integrated (with respect to the scattering and radiation angles)

cross-sections of the polarization and static Bs channels. Corresponding cross-sections

look most simple in the quasi-classical (ef ;i>>o) and ultrarelativistic (g>>1) limits

and in the region of frequencies exceeding the atomic ionization potential.

Thus in the spectral range pa v0>o>>I the main contribution to both Bs

channels is made by the “elastic” summands (without excitation of the atomic

core) (we assume Z; N>>1):

dspolii

do
¼ 16N2e6

3m2o
ln

g pa
o

� �
; (2.67)

dsstii
do

¼ 16Z2e6

3m2o
ln

m

pa

 �
; (2.68)

that (in case of Z ¼ N) differ only by logarithmic factors, though they have (in the

ultrarelativistic case) essentially different radiation patterns.

Let us write out the cross-sections of inelastic static and polarization Bs in the

spectral range where the main contribution to PBs is made by the processes with

atomic ionization:

dspolnonel

do
¼ 16Ne6

3m2o
ln

e
o

� �
; (2.69)
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dsstlnonel
do

¼ 16Ne6

3m2o
ln

m

pa

 �
; g>>

ffiffiffiffiffi
o
pa

r
: (2.70)

Thus in the frequency range pa v0 << o<< m the cross-sections of elastic static

and elastic polarization Bs differ only by logarithmic factors, and inelastic summands

of the cross-section corresponding to them are close in value up to o � m.
Ato>>m the space part of the 4-momentum transferred to an atom is great, and

atomic electrons can to a good accuracy be considered free, which gives the result

known in quantum electrodynamics when a recoil electron emits o m= times less

than a fast electron. Thus the contribution of the polarization summand to the total

cross-section of Bs of an electron on an atom in the region of high (o>>m )

frequencies is negligibly small in comparison with the contribution of the static

summand.

All aforesaid is true also for the case of Bs of an ultrarelativistic positron on an

atom, when the sign of the polarization summand of the amplitude changes to the

opposite. But, as for an electron, due to different dependences of the static and

polarization summands on radiation angles their interference can be neglected and

thereby the total cross-section of Bs of an ultrarelativistic particle can be

represented as the sum of two summands (polarization and static).

2.3.6 Channel Interference

Now let us consider the summand in the cross-section of Bs on a neutral atom

describing the interference of the static and polarization channels. As follows from

the analysis of angular dependences, this interference is low for an ultrarelativistic

incident particle. So here we will consider an incident particle to be nonrelativistic,

but still a Born particle. Let us neglect excitation of an atom during bremsstrahlung.

Then from Eq. 2.40 in view of Eqs. 2.42 and 2.43 it can be obtained for the

interference summand in the cross-section:

dsintii

do
� 32 e20 o

3

3 v20

ðq1j jmax

o v0=

e e0j j
m0 o

Re cii o; q1j jð Þf g Z � nii q1ð Þð Þ d q1j j
q1j j : (2.71)

In derivation of Eq. 2.71 it was taken into account that for a nonrelativistic

IP q1j j  o v0>> kj j= . We call attention to the fact that the contribution to

interference is made only by the real part of the diagonal matrix element from

the operator of electromagnetic field scattering by an atom (Eq. 2.31). For the

elementary approximation of the scattering tensor (2.49) from the formula (2.71)

we have approximately:
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dsintii

do
� 32 e20e

�� ��
3m0v

2
0

o2 Re ai oð Þ½ 
f g
ðpa
p�

Z � nii q1j jð Þð Þ
q1j j d q1j j; (2.72)

p� ¼ max pmin; o v0=f g , where pmin is the characteristic momentum of outer shell

electrons, pa is the characteristic momentum of atomic electrons making the main

contribution to atomic polarizability at the frequency under consideration o . From

Eq. 2.72 it follows that the interference term in the Bs cross-section can be noticeable if

the greatest contribution to polarizability is made by the inner atomic shell with compara-

ble cross-sections of PBs and SBs. This takes place, for example, for Bs of electrons on

neutral xenon for frequencies near the potential of ionization of the 4f -subshell.
The radiation spectrum of xenon in case of passage of an electron beam through it

was recorded in the work [8]. A shift of the frequency maximum from the value

calculated without considering interference to 20 eV was found. This discrepancy

was explained by the fact that the velocity of electrons in a beam is probably not high

enough for the Born approximation to work “well”. On the other hand, a reason of

shift can be an interference term in the total Bs cross-section that was not taken into

account. And if an IP is heavy or ultrarelativistic, the expected value of shift should

be small due to the smallness of the interference summand in these cases.

For an ultrarelativistic IP the theory results in an additional possibility of

interest: the value of shift of the Bs frequency maximum relative to the potential

of ionization of a corresponding atomic subshell sharply depends on the angle of

photon emission, which is caused by essentially different patterns of the static and

polarization Bs channels in the ultrarelativistic case.

It should be noted that the above brief analysis of channel interference relates to

Bs of a Born IP on a neutral atom, where, generally speaking, interference effects in

the Bs cross-section integrated with respect to the angle of incident particle

scattering are low due to different regions of space of channel formation:

corresponding to the static channel are large angles of IP scattering and respectively

small distances to a nucleus, corresponding to the polarization channel are small

scattering angles and large distances.

Thus interference effects in Bs on a neutral atom can show themselves most

strongly in the Bs cross-section differential with respect to the angle of IP scatter-

ing, which was shown in the work [9]. The situation is different for Bs on ions for

strongly inelastic scattering of electrons of moderate energies, when channel

interference is found to be essential also in the integrated process cross-section.

2.4 Polarization Bremsstrahlung of a Fast Charged Particle

on an Atom in the Local Plasma Approximation

The spectral PBs cross-sections in the high-frequency limit obtained in the previous

paragraph in Eqs. 2.56, 2.57, and 2.58 are true for the frequencieso>> I, where I is
the characteristic atomic ionization potential (it will be recalled that in this chapter
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we use the relativistic system of units, in which �h ¼ c ¼ 1 ). In case of a

multielectron atom this value is of rather indefinite nature, so the domain of

applicability of the high-frequency approximation requires its refinement.

At the same time it is for a multielectron atom that polarization effects in Bs

should be the most essential. And the calculation of the dynamic polarizability of a

multielectron atom defining the PBs cross-section is an intricate quantum-

mechanical problem that has to be solved anew for each specific target.

In this connection it seems to be useful to apply simple universal models suitable

for estimation of the value of the polarization Bs cross-section and for revealing

general qualitative regularities of this process.

One of such models is the method of local electron density (or local plasma

frequency) that was first proposed by Brandt and Lundqvist for calculation of the

cross-section of photoabsorption by multielectron atoms [10].

In this section this method is used to describe PBs of a fast (including relativis-

tic) charged particle on a neutral multielectron atom, the distribution of electron

density in which is given by the statistical Thomas-Fermi model.

It should be noted that the use of the local plasma frequency method for

calculation of the polarizability of a Thomas-Fermi atom is intrinsically consistent

since the physical representations underlying both models are analogous.

The advantages of the used approach are also that it is most adequate just for

those frequencies and distances, at which the significant role is played by

multielectron effects, the description of which within the framework of the consis-

tent quantum-mechanical consideration is difficult and laborious.

2.4.1 Polarizability of a Thomas-Fermi Atom in the Local
Plasma Frequency Approximation

Within the framework of the Brandt-Lundqvist model the expression for the

dynamic polarizability of an atom looks like:

a oð Þ ¼
ð1
0

o2
pðrÞ r2 dr

o2
pðrÞ � o2 � i0

; (2.73)

where opðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 p e2 nðrÞ m=

p
is the local plasma frequency depending on the

local electron density of the electron core nðrÞ, r is the distance from a point under

consideration to an atomic nucleus.

Hereafter for the function nðrÞ the Thomas-Fermi approximation will be used

that gives [11]:

nðrÞ ¼ nTFðrÞ ¼ Z2 f r rTF=ð Þ; f ðxÞ ¼ 32

9 p3
wðxÞ
x

 �3=2

; (2.74)

2.4 Polarization Bremsstrahlung of a Fast Charged Particle on an Atom. . . 43



where rTF ¼ b a0 Z1=3
�

is the Thomas-Fermi radius (b ¼ 9 p2 128=ð Þ1=3 ffi 0:8853,

a0 is the Bohr radius, Z is the nuclear charge), wðxÞ is the Thomas-Fermi function.

The expression (2.71) can be transformed to the form revealing the scaling law

(scaling) with respect to the parameter n ¼ �ho 2Ry Z= (Ry ¼ 13:6 eV) having the

meaning of dimensionless (reduced) frequency:

a nð Þ ¼ r3TF b nð Þ ¼ b3 a30
Z

b nð Þ: (2.75)

Here the dimensionless complex function b nð Þ (the reduced polarizability of a

Thomas-Fermi atom) is introduced, the imaginary part of which is (the prime means

differentiation with respect to the argument x):

Im b nð Þf g ¼ p
f xnð Þ x2n
f 0 xnð Þj j ; (2.76)

and the real part can be calculated by the “punctured” Kramers-Kronig relation:

Re b nð Þf g ¼ 2

p

ð1
0

Im b nð Þf g � Im b ~nð Þf g½ 
~nd~n
n2 � ~n2

: (2.77)

In the formulas (2.76), (2.77) the value xn is determined by solution of the

equation:

4 p f ðxÞ ¼ n2 (2.78)

that describes the resonance of the radiated frequency with the local plasma

frequency at some value of the parameter x (the reduced distance to a nucleus).

The expression (2.76) is obtained from the determination of the dynamic

(Eq. 2.73) and reduced (Eq. 2.75) polarizabilities with the use of the known

Sokhotsky formula.

It should be noted that the numerical calculation of dimensionless polarizability

directly by the formulas (2.73), (2.74), and (2.75) is found to be difficult for low

frequencies (n<1) in view of the singularity of a corresponding integrand and slow

decrease of Thomas-Fermi electron density (2.74) with distance. As a result, the

numerical integration loses accuracy. So it is proved to be preferably to use the

formulas (2.76), (2.77), and (2.78) for calculation of the reduced polarizabilityb nð Þ.
The ratio g nð Þ of the modulus of the function b nð Þ to the modulus of its high-

frequency limit (b1 nð Þ ¼ �b�3n�2) is presented in Fig. 2.5.

Given in the same figure is the corresponding ratio for a krypton atom restored

by the data of the work [12], in which the dynamic polarizability of an atom was

calculated by the quantum-mechanical method within the framework of the random

phase exchange approximation.
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It is seen that the function g nð Þ ¼ n2 b nð Þj j for a Thomas-Fermi atom smoothly

describes the spectral peculiarities of the dynamic polarizability of a krypton atom

connected with the shell structure of an atom and approaches its high-frequency

limit for n>10.

However, it should be remembered that in the range of low frequencies n<0:1 the
used approximation becomes inadequate since, on the one hand, the local plasma

frequency approximation “works” badly for polarizability of an atom Eq. (2.73),

and on the other hand, the contribution to polarizability at these frequencies is made

by the peripheral regions of an atom, where the statistical model is inapplicable.

Really, calculation by the formula (2.78) gives: x0.1 ¼ 3.4, x1 ¼ 0.64, and

x10 ¼ 0.053, at the same time the region of truth of the statistical model in the

variable x is determined by the inequation Z�2=3 << x << Z1=3.

So in further consideration we will restrict ourselves to the range n>0:1. It should
be noted that for Z � 50 this corresponds to the photon energieso>130 eV, which

exceeds considerably the potential of ionization of the outer electron shell of a

neutral atom, so the electron core can be considered “defrozen”. Besides, in this

frequency range, as seen from the above values of xn, the inequation xn � 3:4 is true.
The boundary reduced radius of a neutral atom calculated in the Thomas-Fermi-

Dirac model (with consideration for exchange) according to the paper [13] is well

approximated by the formula x0 ¼ 4 Z0:4. Thus in our case (Z>>1) xn<<x0, and
conclusions of further consideration practically do not depend on refinements of the

initial statistical Thomas-Fermi model, they are also true for ions with low enough

degree of ionization if the condition x0 Zi Z=ð Þ>>xn is satisfied, which is confirmed

by calculations carried out.

Good agreement of the magnitude of the dynamic polarizability of a Thomas-

Fermi atom calculated in the local electron density approximation with the results

of quantum-mechanical calculations [12], as seen from Fig. 2.5, takes place for the

values of the dimensionless frequency: n>2. Both approaches give the same value

of frequency for the maximum of the function g nð Þ: nmax � 0:5 or �homax � 490 eV,

Fig. 2.5 The dynamic

polarizability moduli

normalized to their high-

frequency limit as functions

of the dimensionless

frequency n ¼ �ho 2 Z Ry= for

a krypton atom: solid curve –
by the data of the work [12],

dotted curve – calculation for

a Thomas-Fermi atom in the

local electron density model
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so that �homax >> Ip Krð Þ ¼ 14 eV, and the electron core of a krypton atom can be

considered “defrozen”.

The latter circumstance serves as a qualitative justification of adequacy of using

the local plasma frequency approximation for calculation of the dynamic polariz-

ability of an atom in the spectral range under consideration: n  nmax.

It is interesting to note that even in the region of the maximum of the function

g nð Þ ¼ n2 b nð Þj j (nmax � 0:5), where, generally speaking, the quantum features of

motion of atomic electrons are essential, the distinction in the results of quantum-

mechanical and statistical calculations of the dynamic polarizability of a krypton

atom is less than 30 %.

The most distinction in results (about 47 %), as seen from Fig. 2.5, takes place

for n � 1, that is, for frequencies near the potential of ionization of the 2 p -subshell
of a krypton atom. This fact is quite natural since neither the statistical model of a

Thomas-Fermi atom nor the local plasma frequency approximation takes into

account the shell structure of an atom, but they render the smoothed behavior of

corresponding dependences.

Thus it can be stated that the model approximations used in this section for

calculation of the dynamic polarizability of an atom are in good conformity with the

results of quantum-mechanical calculations and at the same time are of a universal

nature.

2.4.2 Cross-Section of Polarization Bs of a Fast Charged
Particle on a Thomas-Fermi Atom

The spectral cross-section of polarization Bs of a fast electron on an atom within the

framework of the first Born approximation is described by the expression (2.46) that

for a process without excitation of a target, as it was shown in the previous

paragraph, can be simplified to the form:

dsPB

do
¼ o5

2 pð Þ3 v

ð
dOn dq a o; qþ kð Þj j2 nAðqÞ½ 
2 d oþ qvð Þ; (2.79)

here dOn is the solid angle in the direction of photon emission, k; o are the wave

vector and the frequency of a bremsstrahlung photon, q ¼ pf � pi is the change of

an incident particle momentum,AðqÞ is the spatio-temporal Fourier transform of the

vector-potential of the incident particle electromagnetic field that in the axial gauge

(A0 ¼ 0) is given by the expression (2.42).

The key value in the formula (2.79) – a o; qþ kð Þ – is the nondipole dynamic

polarizability of an atom, to calculate which the above approach is used.

It should be noted that the formula (2.79) is of a classical nature, it does not

include the Planck constant, and it can be obtained within the framework of the
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classical calculation of the PBs cross-section for a uniformly moving charge after

summation over the impact parameter.

Hereafter for calculation of the Bs cross-section we will restrict ourselves to the

Born-Bethe approximation, in which it can be assumed:

a o; qð Þ ¼ a oð Þ y pa � qð Þ; (2.80)

here yðxÞ is the Heaviside function (a unit “step”). As a characteristic atomic

momentum, we will use the Thomas-Fermi momentum pa ¼ Z1=3 b a0ð Þ= .

In the Born-Bethe approximation (2.80) the integral in the formula (2.79) is

calculated analytically. The result, however, is found to be cumbersome. So we

will give here the formula in the general writing representing the spectral cross-

section of polarization Bs in terms of the single integral with respect to the

value of a transferred momentum. In this expression there are two characteristic

frequency ranges that are explicitly separated: o<pa v is the “low-frequency”

range and o> pa v is the “high-frequency” range:

dsPB

do
¼ 4o3

v2
a oð Þj j2 y

pav

1þ v
� o

 �
H1 o; pa � oð Þ þ H2 oð Þ½ 


	

þy o� pav

1þ v

 �
H1 o;

o
v

� �

;

(2.81)

where

G1 ¼ p2a � q� oð Þ2
2oq

o2 v2 þ q2 � 5

2
o2 þ o4

2 q2 v2

� �

� 1

3

p2a � q� oð Þ2
2oq

 !3

þ 1

2
4

3
5 q2 � 5

2
o2 þ 3o4

2 q2 v2

� �

and

G2 ¼ 2o2 v2 � 5

3

 �
þ 4

3
q2:

The formula (2.81) in the frequency range o<pa v, when the contribution to the

cross-section is made by the first summand in the braces, is reduced to the known

expression for the spectral cross-section of polarization Bs of a relativistic incident

electron [2] (see also the formula (2.51) for the spectral-angular PBs cross-section):

dsPB

do
¼ 16o3 a oð Þj j2

3 v2
ln

2 g pa v
o 1þ vð Þ
 �

; o<pa v: (2.82)
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Here g ¼ 1� v2ð Þ�1=2
is the relativistic factor, a oð Þ is the dipole dynamic

polarizability of a target atom.

Going in the formula (2.82) to dimensionless variables with the use of the

Eq. 2.75 and the determination of the Thomas-Fermi radius, we obtain the follow-

ing expression for the spectral cross-section of polarization Bs:

dsPB nð Þ ¼ 16 Z2 b6

3 v2
n2 b nð Þ�� ��2 dn

n
ln

2 g v
n a0 1þ vð Þ Z2=3

 �
¼ Z2 d~sPB nð Þ: (2.83)

In the formula (2.83) the function d~sPB nð Þ is introduced that is naturally can be

called the reduced cross-section of the process since for this function in the case

under consideration for polarization Bs of a fast incident particle approximate

scaling with respect to the parameter o Z= takes place, while the nuclear charge

dependence is only logarithmic.

From the expression (2.83) it follows in particular that the spectral cross-section

of polarization Bs of a Thomas-Fermi atom (accurate to the logarithmic factor)

grows quadratically with increasing nuclear charge if in this case the dimensionless

frequency n does not change.
It should be noted that in case of a hydrogen-like ion, when scaling with respect

to the parameter nH ¼ o Z2
�

takes place, the spectral cross-section of PBs of a fast

particle in the Born approximation does not depend at all on a nuclear charge for the

specified value of the dimensionless frequency nH, while the spectral cross-section
of static Bs grows quadratically with increasing Z (accurate to the logarithmic

factor).

Thus the used model predicts amplification of polarization effects in Bs of a fast

particle on a neutral atom with increasing charge of the nucleus of the latter.

The spectral cross-section of ordinary (static) Bs in view of screening of the

nuclear field [2] in case of weakly inelastic electron scattering is given by the

expression:

dsOB oð Þ ¼ 16 Z2

3 v2
do
o

ln
v

pa

	 

; o < pa v: (2.84)

The ratio of the cross-sections determined by the formulas (2.83) and (2.84)

makes it possible to find the R-factor in the frequency range under consideration

(o < pa v) and in the relativistic limit (v ffi 1):

R n; Z; gð Þ � dsPB

dsOB
¼ b6 n2 b nð Þ�� ��2 ln 137 g

nZ2=3

n o
ln 137

Z1=3

n o ; n<
137

Z2=3
: (2.85)

The results of calculation of the R-factor as a function of the dimensionless

frequency n for different values of the charge Z and the relativistic factor g in the
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range n<137 Z2=3
�

are presented in Fig. 2.6. It should be noted that corresponding to

these values of the dimensionless frequency n (for the nuclear charges Z � 50) are

the photon energies �ho < 14 keV.

It is seen that the value of the R-factor of a relativistic incident electron in a wide
frequency range is about one and for o � Z Ry (n ¼ 0.5) reaches its maximum

value about 2.5 � 3. In this case the “sublogarithmic” influence of a nuclear charge

on scaling with respect to Z is vanishingly small, and the influence of the relativistic

factor is more significant.

It should be noted that the interference of the polarization and static Bs channels

in case of a relativistic charged particle is small in view of different radiation

patterns: the ordinary channel gives high-directivity radiation to a cone with an

angle of the order of 1/g [1], and the angular distribution of polarization Bs for the

frequencies o<pa v is of a dipole nature [2].
In the case under consideration for weakly inelastic scattering of a Born charged

particle in the frequency rangeo<pa v the main contribution to Bs is made by small

scattering angles, when the influence of effects of penetration of an incident particle

into the electron core of an atom is small.

The said circumstance results in different frequency dependences of the polari-

zation Bs cross-section for different degrees of inelasticity of incident electron

scattering. In case of the process considered in this chapter, the spectral maximum

of the polarization Bs cross-section is considerably shifted to the region of high

frequencies and falls with growing Bs frequency more slowly than corresponding

spectral dependences in emission of photons of threshold energies.

In the frequency range o>pa v the law of conservation of energy-momentum

conditions the necessity of penetration of an incident charged particle into the

electron core of a target. So reradiation of a virtual photon of the scattered electron
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Fig. 2.6 The dependences of the R-factor on the reduced frequency n calculated for Bs of a fast

electron on a Thomas-Fermi atom with the nuclear charge Z: (a) solid curve – g ¼ 10, Z ¼ 60;

dotted curve – g ¼ 10, Z ¼ 30; (b) solid curve – Z ¼ 60, g ¼ 3; dotted curve – Z ¼ 60, g ¼ 10
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eigenfield to a real photon on atomic electrons loses coherent behavior. As a result,

the spectral cross-section of polarization Bs is found to be suppressed in compari-

son with the cross-section of ordinary Bs.

It should be noted that in the high-frequency region o>pa v the dimensionless

frequency n satisfies the inequation n > 10 (we assume that Z  30), and, as seen

from Fig. 2.5, the reduced polarizability of a Thomas-Fermi atom is close to its

high-frequency limit: b nð Þ � b1 nð Þ ¼ �b�3n�2. The frequency dependence of the

polarization Bs cross-section in this case is defined mainly by the integral with

respect to the angular variables and the value of the transferred momentum q in the
formula (2.79).

The formula (2.82) in the frequency range o>pa v becomes untrue, and for

determination of the polarization Bs cross-section it is necessary to proceed from

the general expression (2.81). In this case the contribution is made by the second

summand in the braces of Eq. 2.81. The analysis shows that in the expression for the

spectral cross-section the multiplier pa o=ð Þ2 appears that defines the smallness of

the polarization channel contribution to the total spectral Bs cross-section. How-

ever, the spectral-angular cross-section of polarization Bs in the region of photon

emission angles g�1<# � ffiffiffiffiffiffiffiffiffiffiffi
pa o=

p
exceeds the corresponding cross-section of the

static channel.

The carried out consideration shows in particular that the characteristic poten-

tial of ionization of a multielectron atom included in the definition of the region of

truth of the high-frequency approximation (see Eq. 2.53) can be represented as:

IðZÞ ¼ 2 z Z Ry, that is, increases linearly with growing charge of the nucleus of a

target atom. In this formula the constant z  5 is introduced, the exact value of

which is not determined and depends on accuracy, with which it is required to

calculate the process cross-section.

Thus in this paragraph within the framework of the local electron density method

and the Thomas-Fermi model the universal description of polarization Bs of a fast

Born charged particle on a multielectron atom (Z>>1) in the region of energies of

bremsstrahlung photons o>100 eV is given. It is shown that the R-factor defining
the relative value of the polarization channel contribution to the total Bs cross-

section has approximate scaling with respect to the parameter o Z= and at the

frequencies omax � Z Ry reaches its maximum value Rmax gð Þ ¼ 2:5� 3 that grows

logarithmically with the energy of an incident particle.

The decrease of the R-factor with growing energy of an emitted photon in the

low-frequency region o<pa v is most pronounced up to frequencies of the order of

20 Z Ry , when the magnitude of the polarizability of a Thomas-Fermi atom

decreases when going to its high-frequency asymptotics.

In the spectral range 10 Z Ry<o<pa v the decrease of the R-factor and polariza-

tion Bs intensity has weak logarithmic behavior and is caused by reduction of the

maximum impact parameter.

In the high-frequency range o>pa v the frequency change of polarization Bs

intensity is defined mainly by kinematic factors and by violation of coherence of

reradiation of a virtual photon to a real photon on atomic electrons. In this case the
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decrease of spectral intensity becomes power-like. At the same time the pattern of

radiation by the polarization channel is narrowed, so that # � ffiffiffiffiffiffiffiffiffiffiffi
pa o=

p
, and in the

frequency range pa<o<g2pa there is the region of Bs angles: g�1<# � ffiffiffiffiffiffiffiffiffiffiffi
pa o=

p
, in

which the polarization mechanism prevails over the ordinary (static) mechanism of

radiation.

2.5 Incoherent Polarization Bremsstrahlung of a Fast Charged

Particle on an Atom in the High-Frequency Approximation

In this paragraph within the framework of the high-frequency approximation for the

operator of electromagnetic field scattering the universal description of incoherent

polarization Bs of a fast charged particle on a multielectron atom is obtained. The

PBs cross-section is expressed in terms of the Compton profile of X-ray scattering,

for which a voluminous calculation material is available. The obtained universal

representation for the process cross-section is justified both for the statistical atom

model and on the basis of established approximate scaling of Hartree-Fock

Compton profiles.

This paragraph is the refinement, supplement, and generalization of the consid-

eration of PBs with atomic ionization carried out in the Sect. 2.3 to the case of

taking into account atomic electron binding in the initial state.

2.5.1 Connection of the Dynamic Form Factor with the Compton
Profile of an Atom

In Sect. 2.3 the expression (2.63) was obtained for the cross-section of high-

frequency PBs (m>>o>> I) of a fast charged particle in terms of the dynamic

form factor (DFF) of a target (Eq. 2.64).

The approximate expression for the DFF (2.65) and the formula following from

it for the PBs cross-section (2.66) give a qualitative idea of the process, separating

two characteristic frequency ranges.

In the low-frequency range (o < pa v0) PBs is coherent by the contribution of

atomic electrons, the process proceeds without excitation of a target, and the cross-

section is proportional to the squared number of atomic electrons.

In the high-frequency range (o > pa v0 ) radiation with ionization of a target

prevails, and the PBs cross-section is proportional to the number of electrons in an

atom.

In the latter case the (incoherent) DFF of an atom is represented as the sum of the

DFF of electron subshells of the atom:

SðqÞ ¼
X
n; l

SnlðqÞ: (2.86)
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Let us transform the expression for the dynamic form factor of the electron subshell

(Eq. 2.64) using the expansion in terms of the total system of wave functions.

Then we will use the fact that in the frequency range under considerationo>pa v0
momenta transferred from an incident particle to a target far exceed the characteristic

atomic momentum. Then the wave functions of the continuous spectrum making the

main contribution to the DFF can be to a good accuracy approximated by plane

waves, and the expression for the DFF of the electron subshell is represented as:

SnlðqÞ ¼
Z

dp

4 p
d q0 þ p� qð Þ2

2
� enl

 !
RnlðpÞj j2; (2.87)

here q0 ¼ oþ q1 vþ q21 2m= is the energy of a nonrelativistic IP transferred to the

target, (m is its mass); q1 ¼ pIPf � pIPi is the change of the incident particle

momentum (here the upper index is introduced for IP momenta to distinguish

them from atomic electron momenta), q ¼ q1 þ k is the momentum transferred

to the target; enl is the energy of the electron subshell under consideration (n; l are
the principal and orbital quantum numbers). In the formula (2.87) the function

Rnlð pÞ is introduced that represents the spatial Fourier transform of a normalized

radial wave function of the nl-state determined by the formula:

RnlðpÞ ¼
ffiffiffi
2

p

r ð1
0

RnlðrÞ jl p rð Þ r2dr; (2.88)

jl p rð Þ is the spherical Bessel function of the first kind.

2.5.2 Impulse Approximation

The delta function in the formula (2.86) describes the law of conservation of energy

in the PBs process with target ionization. In the expression (2.86) we went from

summation over the finite momentum of an atomic electron to summation over the

momentum of the Fourier expansion of the wave function of the electron subshell

under consideration. In the impulse approximation this value coincides with the

initial momentum of an atomic electron. Thus, if it is assumed that:

p2 2= ¼ enl; (2.89)

we come to the impulse approximation widely used in calculations of the Compton

effect on atoms.

Really, in fulfilment of Eq. 2.89 the DFF of the electron subshell (Eq. 2.86) can

be represented as:
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S
IAð Þ
nl ðqÞ ¼ 1

qj j Jnl Q ¼ � q0 þ q2 2=

qj j
 �

: (2.90)

Here the Compton profile of the electron subshell JnlðQÞ [14, 15] is introduced
that is determined according to the formula:

JnlðQÞ ¼ 1

2

ð1
Q

RnlðpÞj j2p dp: (2.91)

This value is tabulated for all subshells of all elements in [14] with the use of the

Hartree-Fock and Dirac-Hartree-Fock wave functions.

The formulas (2.86) and (2.90) give the representation of an incoherent DFF in

terms of the Compton profile in the impulse approximation.

Beyond the framework of the impulse approximation instead of the formula

(2.90) it is possible to obtain from Eq. 2.86 the following representation for the

dynamic form factor of an atom in terms of its Compton profile:

SnlðqÞ ¼ 1

2 qj j Jnl � qj j þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �q0 þ enlð Þ

p� �
� Jnl qj j þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �q0 þ enlð Þ

p� �n o
:

(2.92)

Using the tabulated values of the Compton profile [14] makes it possible with the

formulas (2.86), (2.92), and (2.63) to calculate the cross-sections of incoherent PBs

of various elements.

2.5.3 Compton Profile Within the Framework of Statistical Atom
Models

For universalization of the dependence of PBs cross-sections on the charge of an

atomic nucleus, it is of interest to obtain an expression for the Compton profile

within the framework of the statistical model.

Let us introduce an “effective” one-electron radial wave function of an atom in

the statistical model, connecting it with the radial density of distribution of the

electron charge rstatðrÞ by the formula:

RstatðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rstatðrÞ Z=

p
: (2.93)

Then, considering the distribution of electron density in an atom spherically

symmetrical, it is possible to obtain from Eqs. 2.88, 2.91, and 2.93 for the Compton

profile in the statistical approximation (in terms of one electron) the following

expression:
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J
ð1Þ
statðqÞ ¼

1

pZ

ð1
q

dp

p

ð1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rstatðrÞ

p
sin prð Þ r dr

������
������
2

: (2.94)

In the elementary case of exponential screening, when the radial electron density

in an atom looks like:

rexpðrÞ ¼
4 Z

r3TF
e�2 r rTF= ; (2.95)

the following expression for the Compton profile (Eq. 2.94) can be obtained:

Jð1ÞexpðqÞ ¼
8 rTF
3p

1

1þ q rTFð Þ2
� �3 : (2.96)

By analogy, for the reduced Compton profile of an atom in the Thomas-Fermi

model we have:

~JTF ~qð Þ ¼ 1

p

ð1
~q

gTF ~pð Þj j2
~p

d~p; (2.97)

introduced here is the spatial Fourier transform of the square root of the normalized

Thomas-Fermi density:

gTF ~pð Þ ¼
ð1
0

wðxÞð Þ3 4=
sin ~p xð Þ x1 4= dx: (2.98)

The obtained reduced Compton profiles satisfy the necessary normalizing

condition:

ð1
0

~Jstat ~qð Þ d~q ¼
ð1
0

J
ð1Þ
statðqÞ dq ¼ 0:5: (2.99)

As seen from the formulas (2.96), (2.97), the normalized Compton profile of an atom

in statistical models depends only on the reduced momentum ~q ¼ q rTF ¼ q pTF= .

Presented in Fig. 2.7 are the dependences of normalized Compton profiles of an

atom on the reduced momentum ~q calculated within the framework of statistical

models and by the data of the Hartree-Fock calculations [14] for argon and krypton

atoms. It is seen that the Thomas-Fermi Compton profile in the region of small

transferred momenta exceeds appreciably values obtained within the framework of

other models, which is explained by not fast enough decrease of the Thomas-Fermi

electron density with distance. At the same time the exponential screening model
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gives quite satisfactory approximation to the results of more exact calculations [14]

with the use of the Hartree-Fock wave functions.

Following from this figure, in particular, is approximate scaling of normalized

Hartree-Fock Compton profiles as functions of the reduced momentum.

2.5.4 Cross-Section of Incoherent PBs of a Nonrelativistic Born
Particle

The expression for the spectral cross-section of PBs of a nonrelativistic Born

charged particle in the high-frequency range m>>o>> I integrated with respect

to the solid angle of photon emission can be obtained from the formula (2.63). In the

ordinary (Gaussian) system of units it looks like:

ds oð Þ ¼ 8

3 p
e4 e20

m2
e v �h c

3

do
o

ð ð
dOq dq S q0; q

� �
; (2.100)

where e0 ¼ Z0 e is the IP charge.

In derivation of (Eq. 2.100) the expression for the vector potential of the

eigenfield of a nonrelativistic IP in the axial gauge was used, and it was assumed

that q ¼ q1.

It should be noted that in the approximation of quasi-free (at rest) atomic

electrons the incoherent DFF of a target is given by the equation:

Sncohfree ðqÞ ¼
Z

q v
d

oþ q vþ q2 2 mð Þ=

q v

 �
; (2.101)

Fig. 2.7 The dependences of

the normalized Compton

profile on the reduced

transferred momentum

obtained within the

framework of different

models: (1) exponential
screening; (2) Hartree-Fock
calculation for an argon atom;

(3) Hartree-Fock calculation

for a krypton atom;

(4) Thomas-Fermi model
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where m is the reduced mass of an electron and an IP, Z is the number of atomic

electrons equal to the nuclear charge.

Substituting the expression (2.92) for the incoherent DFF summed over all

electron subshells of an atom in the formula (2.100), we come to the following

representation of the spectral PBs cross-section in the frequency range o>pa v0:

ds o; v; mð Þ ¼
ffiffiffi
Z

3
p

Z2
0 d~s

o
p2TF

;
v

pTF
; m

 �
: (2.102)

Introduced here is the reduced cross-sectiond~sdepending on the frequency of an
emitted photon and the IP velocity normalized accordingly to the characteristic

momentum of a Thomas-Fermi atom.

The reduced cross-section is expressed in terms of the normalized Compton

profile of an atom by the formulas:

d~s ~o; ~v; mð Þ ¼ s0
b2

~v2
d~o
~o

I ~o; ~v; mð Þ (2.103)

I ~o; ~v; mð Þ ¼
ðqmax

qmin

d~q

~q

ð�vm

�v

~J �~qþ
ffiffiffiffiffiffiffiffiffiffiffiffi
�2 ~q0

q
� ~J ~qþ

ffiffiffiffiffiffiffiffiffiffiffiffi
�2 ~q0

q � 

d v cos q vð Þð Þ;

	

(2.104)

here vm ¼ ~oþ ~q2 2m=
� �

~q= , b ¼ 0.8853.

The upper and lower limits of integration with respect to the magnitude of the

transferred momentum in the integral (2.104) are defined by the condition vm<v.

The dimensional cross-section s0 included in the expression (2.103) is:

s0 ¼ 16

3

e6

m2
e �h c

3
¼ 2:074 � 10�6 a:u: (2.105)

Here we used the Gaussian system of units.

Thus the formulas (2.102), (2.103), (2.104), and (2.105) reveal the scaling law

for the cross-section of incoherent PBs of a fast (but nonrelativistic) charged

particle on a multielectron atom and express the process cross-section in terms of

the normalized Compton profile of X-ray scattering. This cross-section (accurate to

the multiplier
ffiffiffi
Z3

p
) depends on the frequency of an emitted photon and the IP

velocity nondimensionalized with the use of the Thomas-Fermi momentum.

It should be noted that though, strictly speaking, scaling Eqs. 2.102, 2.103,

2.104, and 2.105 is obtained within the framework of the statistical model of an

atom, it is also approximately true for a Hartree-Fock atom in view of the above

approximate scaling of normalized Compton profiles (see Fig. 2.7).
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We will give for comparison a corresponding expression for the cross-section of

incoherent PBs on a hydrogen-like ion with the charge Z:

dsH o; v; mð Þ ¼ Z�1 b�2 d~s
o
p2H

;
v

pH
; m

 �
; (2.106)

where pH ¼ Z a.u. is the characteristic momentum of a hydrogen-like atom.

The found expression (2.102) for the cross-section of high-frequency PBs with

atomic ionization refines and supplements the result of Eq. 2.69 obtained with the

use of the DFF in the model of free atomic electrons (Eq. 2.101) that can also be

represented in the form (2.102) and (2.103), if it is assumed that:

Ifree ~o; ~v; mð Þ ¼ ln
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2 ~o m ~v2

� ��q
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2 ~o m ~v2

� ��q
8><
>:

9>=
>;: (2.107)

Shown in Fig. 2.8 are the spectral dependences of the value o ds
do calculated

within the framework of different approximations, including the model of free

atomic electrons, for incoherent PBs of a proton. It is seen that the main difference

of the models shows itself in the frequency range o>o� ¼ m v2 2= , that is, behind

the “cutoff” frequency for PBs on free electrons.

From kinematic considerations it is clear that the “cutoff” frequency for PBs of

an electron, other things being equal, is half the value for PBs of a proton (because

of the difference in reduced masses), this situation supplements the conclusion

drawn earlier about the PBs cross-section independence of the mass of an incident

particle.

The reduction of the cross-section with growing PBs frequency in the exponen-

tial screening model occurs appreciably faster than for the Hartree-Fock Compton

profile, which follows also from Fig. 2.7. For frequencies smaller than the “cutoff”

frequency the Hartree-Fock consideration of binding of atomic electrons in the

initial state results in a somewhat smaller cross-section value in comparison with

the model of free atomic electrons.

Let us note the close similarity of the dependences in Fig. 2.8 with corresponding

spectral cross-sections for radiation ionization from the theoretical work [16]. In

this work for description of incoherent PBs (radiation ionization) a similar approach

was used, based on the use of the nondiagonal atomic form factor Fn;WðqÞ that was
calculated earlier in connection with the problem of ionization of atoms and

excitation of characteristic X-rays.

Shown in Fig. 2.9 are the dependences of the value o ds do= of incoherent PBs

of a proton on a krypton atom on the proton velocity for three values of bremsstrah-

lung photon energy – 3.78 keV, 7.57 keV, and 11.35 keV.

It is seen that the velocity dependences of cross-section have maxima. These

maxima are shifted to the region of higher velocities with growing bremsstrahlung

2.5 Incoherent Polarization Bremsstrahlung of a Fast Charged Particle. . . 57



photon energy. A corresponding formula relating the bremsstrahlung photon

frequency and the optimum value of proton velocity in atomic units looks like:

vopt ¼ 1:89
ffiffiffiffi
o

p
(2.108)

It is essential that the relation (2.108) does not depend on the charge of an atomic

nucleus in contrast to the analogous dependence for coherent PBs, when there is a

linear connection between the optimum velocity and radiated frequency through the

radius of the atomic subshell making the greatest contribution to the process.

2.5.5 Comparison of Cross-Sections of Incoherent and Coherent
PBs

Now we will analyze the relation between the cross-sections of coherent and

incoherent PBs.

We will calculate the cross-section of the coherent process within the framework

of the exponential screening model for the electron density of the target core.

A corresponding expression can be obtained from the formula (2.63) if it is taken

into account that the DFF of an atom in this case is reduced to the ordinary static

form factor being a Fourier transform of electron density.

After standard transformations including integration with respect to the solid

angles of an emitted photon and a transferred momentum, for the cross-section of

coherent PBs of a nonrelativistic Born particle we have the following expression

(in atomic units):

Fig. 2.8 The spectral cross-

section of incoherent PBs of a

proton with an energy of

34 MeV on a krypton atom

near the “cutoff” frequency

calculated within the

framework of different

approximations for the

electron density of an atom:

Hartree-Fock calculation

(curve 1), exponential
screening (curve 2),
approximation of free atomic

electrons (curve 3)
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ds expð Þ
coh oð Þ ¼ 16

3

Z4=3

~v2 c3
b2

ð~qmax

~qmin

1

1þ ~q2 2=
� �4 d~q

~q

do
o
: (2.109)

In the integral of the expression (2.109) there are the same limits of integration

with respect to the transferred momentum as in the formula (2.104). “Tilde” above

the sign of the transferred momentum and of the IP velocity, as before, means

normalization to the momentum (velocity) of a Thomas-Fermi atom.

The integral in the Eq. 2.109 is taken in quadratures, but a corresponding

expression is rather cumbersome. For a heavy IP the upper limit of integration

can be replaced by infinity, then for the integral with respect to the reduced

transferred momentum we have:

I
expð Þ
coh ~o; ~vð Þ ¼

11þ 54 ~v
~o

� �2
þ 72 ~v

~o

� �4
12 1þ 2 ~v

~o

� �2 �3
� 11

12
þ 1

2
ln 1þ 2

~v

~o

 �2
 !

: (2.110)

It should be noted that in the limit v pTF<<o �ð Þ from the formula (2.110) the

asymptotics follow:

I
expð Þ
coh ~o; ~vð Þ ffi 2 ~v ~o=ð Þ8: (2.111)

The inequation (*) can be rewritten as:o >> 0:125 Z2=3 keV, whence it follows

that it is satisfied for all Z in the kiloelectron-volt range of bremsstrahlung photon

energies.

From the formulas (2.109), (2.110), and (2.111) we obtain for the coherent PBs

cross-section in the exponential screening approximation and the high-frequency

limit o >> 0:125 Z2=3 keV:

Fig. 2.9 Incoherent PBs of a

proton on a krypton atom as a

function of the proton velocity

for three values of

bremsstrahlung photon energy:

�ho ¼ 3.78 keV (curve 1),
�ho ¼ 7.57 keV (curve 2),
�ho ¼ 11.35 keV (curve 3)
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ds expð Þ
coh oð Þ ¼ 32 b2

3 c3
Z4=3 ~v6

~o8

do
o

: (2.112)

For correct estimation of the relation between the cross-sections of coherent and

incoherent processes it is important to emphasize that a simple exponential approx-

imation underestimates considerably the contribution of the K-shell to coherent PBs
on a multielectron atom in a high-frequency range. Really, the radius of the orbit

nearest to the nucleus is approximately Z2 3= times less than the Thomas-Fermi

radius, so the corresponding integral in the formula (2.109) results in reduction of

the spectral cross-section at higher frequencies than this takes place for the Thomas-

Fermi radius.

To take into account the contribution of the K-shell, we rewrite the formula

(2.109) as follows (Z>>1):

ds expð Þ
coh oð Þ ¼ 16

3

Z4=3

~v2 c3
b2

do
o

I
expð Þ
coh ~o; ~vð Þ þ 4

Z2
I
expð Þ
coh ~o; ~v pKðZÞ pTF=ð Þð Þ

	 

;

(2.113)

introduced here is the momentum of the atomic K-shell pKðZÞ.
The expression (2.113) is a universal (common for all nuclear charges) repre-

sentation of the cross-section of coherent PBs of a fast particle obtained in the

exponential electron density model with individual consideration of the contribu-

tion of the K-shell to radiation.

The results of calculation of the spectral cross-sections of coherent and incoher-

ent PBs of a proton on a krypton atom for two values of proton velocity are

presented in Fig. 2.10.

From this figure it follows in particular that the prevalence of the incoherent

process over the coherent process can take place at high enough velocities of an

incident particle since in this case the “cutoff frequency” for radiation ionization is

shifted to the region of high frequencies, in which the contribution of most of

atomic electrons to coherent PBs is already small.

Thus in this paragraph within the framework of the high-frequency approxima-

tion for the operator of electromagnetic field scattering the universal description of

incoherent PBs of a fast charged particle on a multielectron atom was obtained. The

process cross-section is expressed in terms of the Compton profile of X-ray

scattering.

The basis for the obtained universal description is approximate scaling of the

reduced Compton profile of X-ray scattering by a neutral atom for high enough

nuclear charges (Z  20) that was found in this work.

Based on the derived formulas and within the framework of different

approximations for electron density of the electron core of a target, the spectral

and velocity dependences of the cross-section of incoherent PBs of a proton on a

multielectron atom were analyzed.
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It was shown that for a specified PBs frequency there is an optimum velocity of

an incident particle, at which the process cross-section has maximum. The value of

optimum velocity grows as the square root of frequency.

The carried out comparison of the cross-sections of coherent and incoherent

processes has shown that for high enough velocities of an incident particle there is a

frequency range of prevalence of PBs with atomic ionization over coherent PBs.
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