Chapter 2

Quantum-Electrodynamics Approach

to Description of Bremsstrahlung of a Fast
Charged Particle on an Atom with Account
for the Polarization Channel

In this chapter with the use of the consistent quantum-electrodynamic approach the
cross-section of bremsstrahlung of a fast charged particle on a one-electron and
multielectron atom was obtained and analyzed within the framework of the first
Born approximation.

In this section, unless otherwise indicated, we use the relativistic system of units,
in which 77 = ¢ = 1 (% is the Planck constant, c is the velocity of light in vacuum).

2.1 Amplitude of Bremsstrahlung of a Relativistic Charged
Particle on a One-Electron Atom

In this paragraph the expression for the amplitude of Bs of a relativistic incident
particle (IP) on a one-electron (hydrogen-like) atom is derived within the frame-
work of the consistent quantum-electrodynamic approach.

Let us consider the collision of a relativistic charged particle (the charge e, the
mass my, the initial energy ¢ = \/p? + m3) in the state | p;) with a hydrogen-like
atom being in the state |n;) with the energy E;. (It will be recalled that the symbol |i/)
means the Dirac ket vector corresponding to the wave function 1.)

As a result of collision, the IP goes to the state ‘nf> with the energy & =

£/ pj% + m3, a bremsstrahlung photon with the frequency  and the wave vector k

is emitted, and the atom goes to the state |nf> with the energy Ef.

We assume that the incident particle satisfies the Dirac equation. Besides, we
consider satisfied the Born condition for IP velocities before (v;) and after (vy)
collision with a target (Z is the atomic nucleus charge):
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Fig.2.1 The diagrams describing the amplitude of bremsstrahlung on an atom in the third order of
the perturbation theory

In this case the IP is described by a plane wave in contrast to the exact solution of
the Dirac equation in the external nuclear field that is necessary to describe a bound
electron of an atom. In the case that an incident particle is an electron, this makes it
possible also to neglect exchange summands in the process amplitude.

Let us use the standard quantum-electrodynamic perturbation theory for a
scattering operator [1]. In its lower order of interaction between an IP and an atomic
electron with an electromagnetic field we have a graphic expression for the Bs
amplitude (Fig. 2.1).

In Fig. 2.1 the single lines correspond to the wave functions and the propagator of
an incident particle, the double lines correspond to an atomic electron in the nuclear
field, J5 is the Kronecker symbol. It will be recalled that the propagator (or the
propagation function) describes the amplitude of probability of particle propagation
from one spatio-temporal point to another. The wavy line means the electromagnetic
field: the photon propagator and the wave function of a free photon Ak, (K is the wave
vector, ¢ is the photon polarization index).
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The analytical expression for the amplitude of total Bs corresponding to the
diagrams shown in Fig. 2.1 represents the sum of static and polarization terms:

Mp = M}} + M} (2.2)

The first summand in Eq. 2.2 corresponds to the ordinary (static) channel, its
expression looks like:
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is the propagator of a free electron. In the formulas (2.3) and (2.4) the following
designations are used:

q1 =pr —Pi»q=q1+k p2=pr+k pi =pi =k Axe = \/21/ 0 ex g,
u(p,s) . .

|p) = \/’_b exp(—ipx), jt, (K) = (n'|y* exp(—ikr)|n), a = a" = {aO,a},

ab = a"b, = a bo—ab,u,v:0+3.

The metric, normalization and designations in the formula (2.3) are analogous to
those used in the book [1]: g, is the metric tensor, y* are the Dirac matrices. The
normalization of bispinors: iiu = uu = 2 my corresponds to the normalization of the
wave function of an incident charge to one particle in the main region with a unit
volume. The wave function of a photon A, is also normalized to one photon in the main
region, e is the polarization 4-vector that in the laboratory system of coordinates
satisfies the three-dimensionally transverse gauge: ex, = {0; ek, }, kex, = 0.1, f, i is
the set of quantum numbers defining a stationary state of an atom.

The second summand in the formula (2.2) corresponds to the polarization
channel. We have for it [2, Chap. 5]:
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The sum over intermediate states extends both to the positive (4 0) and to the
negative (—i0) energy spectrum of an atomic electron.

Let us analyze the diagrams of Fig. 2.1 and their associated formulas (2.3) and
(2.5). The first four graphic summands and their associated expression for the static
amplitude (Eq. 2.3) in the case that an atomic electron does not change its state give
the classical Bethe-Heitler result [3] — bremsstrahlung of a relativistic electron in
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the static nuclear field and the atomic electron field screening it (the screening
approximation). If in these terms of the process amplitude all possible final states of
an atomic electron are taken into account, we will obtain the Lamb and Wheeler
result [4]. The Fourier transform of the time part of the transitional current 4-vector
atf = i gives an ordinary form factor of charge screening. Its space part is a current
(magnetic) summand of screening and can be essential in Bs with excitation of deep
atomic shells for high nuclear charges.

It should be noted that the consistent electrodynamic approach to the relativistic
problem of Bs on an atom even in the ordinary static part of the process amplitude
leads to results supplementing the Bethe-Heitler theory: to taking into account a
possibility of change of an atomic state and to appearance of a current additive in
the form factor caused by the space components of the transitional current 4-vector
for an atomic electron.

The last two graphic summands in Fig. 2.1 and their associated expression (2.5)
describe the emission of a bremsstrahlung photon by an atomic electron in collision
of an IP with an atom. These terms appear if an atomic electron is considered as a
peer dynamic particle interacting with an electromagnetic field, including the
electromagnetic field of vacuum. The contribution to total bremsstrahlung given
by these summands is called polarization bremsstrahlung since it is defined by the
dynamic polarization of an atom in the IP field.

A characteristic feature of the polarization summand of the amplitude of Bs on
an atom is the presence of sums over intermediate states of an atomic electron with
resonant energy denominators. And the relativistic (for a bound electron) problem

in addition to the resonance in the electronic spectrum of atomic states has a

resonant denominator in the positron part of the sum, when o = ¢; — 8,<f>

However, we will restrict ourselves to the frequency range w << m.

The total Bs cross-section contains also the interference contribution of the static
and polarization channels. But, as it will be seen from the following, its value for a
relativistic IP is small.

It is of interest to trace two passages to the limit in the expression (2.2). Let us
assume at first that a nucleus is absent (Z = 0). In this case the first two diagrams
presented in Fig. 2.1 will disappear. In the remaining four diagrams it is necessary
to replace the double lines describing an atomic electron in the nuclear field by
single lines (describing a free electron). Then these diagrams go to the graphic
representation of the process of IP emission on a free electron that is well known in
quantum electrodynamics. In this case the first pair of diagrams describes
the contribution of an incident particle to Bs in its scattering by an electron, and
the second pair of diagrams describes the contribution of a recoil electron to the
process.

In the high-frequency range (@ >> m) in case of an incident electron a result is
obtained that is known from quantum electrodynamics: recoil electron emission can
be neglected, in this case a fast electron emits at a slow unit charge as at an
immobile one. It should be noted that to obtain the said passage to the limit, it is

~ 2m.
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necessary to take into account all possible excitations of an atom both in the discrete
spectrum and in the continuous spectrum.

In another limiting case, when an atomic electron is absent, the last four
diagrams in Fig. 2.1 disappear, and the process amplitude comes to bremsstrahlung
on a “bare” nucleus.

From the diagrams of Fig. 2.1 it is seen that the ordinary (static or Bethe-Heitler)
and polarization summands of the amplitude differently depend on the mass and
charge of an IP. Really, M} o ege/my, and Mjﬁ’l-”l o ege?/m, and static Bs disappears
with the IP mass tending to infinity, while the polarization summand remains finite.
The change of the sign of the incident particle charge does not change the static
amplitude and changes the sign of the polarization amplitude, which results in
changing sign of the interference summand of the total cross-section of Bs on an
atom.

Let us consider a case of a nonrelativistic atomic electron (Z<<137, |E; y — m’
<< m). If, besides, w << m, the expression (2.5) can be transformed to the form
containing only nonrelativistic characteristics of an atomic electron.

Really, at Z << 137 we have the following passage to the limit for the
components of the current 4-vector:

i (ay) = Jdr {1, 3}, exp(—iq,r)

~ {Jdr ©r exp(—i qr)p,; Jdr w}f(qlm} (2.6)
here
, —iV)  (=iV
jia) = exp(iar) SV CV e gy @)

is the nonrelativistic expression for the spatial Fourier transform of the current
density operator, V is the vector differential operator.

The approximate Eq. 2.6 corresponds to the formal expansion of atomic
bispinors to the large (~ 1) and small (~ v,) spinors and to following neglect of
spin additives.

Thus in the polarization term of the amplitude (Eq. 2.5) in the sum over
intermediate states with positive energy the transition to the nonrelativistic descrip-
tion comes to replacement of relativistic expressions for transitional currents by
their nonrelativistic analogs. The sum over intermediate states with negative energy
can be transformed if it is assumed that the main contribution to it is made by states,

the energy of which satisfies the inequality ||E£f)| — m|<<m. In view of the fact
that |Ef_,- — m|<< m and @ << m, the energy denominators in the summands with
negative energy can be replaced by the value 2 m. Further, using the projection
operator (m — ﬁa) /2m (Ha is the atomic Hamiltonian) for the space of wave
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functions with negative energy, it is possible to extend summation to the whole
energy spectrum of an atomic electron. For this purpose we assume:

(m —I-?a)/2m =(1—-9)/2
Plnt) = £|n%),

then

~ 1 . R (17‘)}0) v ,‘v(l*yo)q .
> N%O‘exp(—lqr)(/" 5V /“)Il% (2.8)

E, <0

and in view of the permutation relation y*y” + y'y* = 2 6"" we will obtain:

o o
>~ (flexp(—iar)li) = — i’ (a). 29)

E,<0

Thus the polarization term of the amplitude for a nonrelativistic atomic electron
looks like:

2
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(2.10)

The expression (2.10) in case of a nonrelativistic IP leads to the known result of
the nonrelativistic theory of PBs [2]:

4neoe 2n €odsn (K) jui(d1) | ji(dy) exl,i (K)
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To derive the formula (2.11) from (2.10), it is necessary to suppose (neglecting
spin effects):

s " Mi/z Ve = {1, vo}, |Q1|<<}Pi,f|~

2.2 Amplitude of Bremsstrahlung of a Fast Charged Particle
on a Multielectron Atom

The consistent quantum-electrodynamic consideration of PBs of a relativistic IP on
a multielectron atom is complicated by the necessity to take into account the
interaction between atomic electrons in the relativistic formalism as well as by
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the problem of summation over states with negative energy for a multielectron
system. At the same time calculation for nonrelativistic atomic electrons can be
considerably simplified if from the very beginning a nonrelativistic atomic Hamil-
tonian is used and an incident particle is replaced by the electromagnetic field it
produces (by a set of virtual photons).

Let us justify a possibility of such a replacement. Let the free IP field operator
@(x) (x = {t,r}) satisfy the Dirac equation:

(v p —mo)p(x) = 0. (2.12)

We will assume that for the operator of the electron-positron field of atomic
electrons l/A/(X) the Dirac equation with interaction is true:

[V (P + e A% (x) + eAae) — m} Y(x) =0, (2.13)

where A%(x) is the potential of the external nuclear field, A“*(x) is the operator of
the electromagnetic field produced by atomic electrons that satisfies the Maxwell
equation:

~ae |

0'0,A

~aev

(x) — 0"9,A" (x) = 4mej (x), (2.14)

where /" (x) = /(x) 7" ¥ (x) is the operator of atomic electron current, summation is
supposed over twice-repeating indices.

Thus it is supposed that the interaction between atomic electrons is taken into
account in v (x).

Let us represent the state vectors for the system of fields (of atomic electrons, an

incident particle, an electromagnetic field) as the product: ’(I)j> = | j>|g0j>\nka>,

<Pj>
is the state vector for a free incident particle, |ng,) is the state vector for an

electromagnetic field. The equation for the system state vector |®) in the interaction
representation looks like:

where | j) is the state vector for atomic electrons interacting among themselves,

i0]®) /0t Jdr e (1) — ' ()] Au() @),

where

AV .

J(x) = ()" p(x)
is the four-dimensional vector of the operator of incident particle current density.

S=T exp{—i deAv(x) [eof"(x) s j"(x)} } 2.15)

where T is the chronological ordering symbol.
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The PBs amplitude in the lower order of the perturbation theory is described by

the third term in the expansion of the scattering operator S (here for short we use the
designation x; = i):

S5 = (—i)> e? e Jdl d2d3T{ S (DA, (2)”‘(2)&(3)1“(3)}. (2.16)

In obtaining this formula similar summands resulting from rearrangement of
integration variables were reduced. Hereafter we consider that there is no exchange
between an incident particle and atomic electrons. Using the commutativity of
corresponding operators, the expression (2.16) for the scattering operator in the
third order of the perturbation theory can be rewritten as:

Sy = (—i)zjdldz&,(l) {ezj "(1),7"(2)} Jd3eODM(2,3)ﬂ(3), (2.17)

where D,,;(2,3) = iT(0|A,(2) A;(3)|0) is the photon propagator.

In the formula (2.17) one unpaired A -operator is retained, which corresponds to
the one-photon change of the electromagnetic field.

By matrixing the scattering 0perat0r§ with respect to the initial and final states of
the system we obtain:

St = ()" [ d1azag, () L2 AG @) @18)
where
L(1,2) = (AT 7 @ i (2.19)

is the relativistic analog of the tensor of electromagnetic field scattering by an atom;

A;(%(Z) = *€0Jd3Dm (2,3) <saf]J )e;) (2.20)

is the 4-potential of a virtual photon produced by an incident particle in the process
of scattering: |¢,) — ’cpf>. It should be noted that the potential of a virtual photon
A(O)ﬁ could be found from the Maxwell equations (2.14) if on their right side the
matrix element of the IP transitional current operator <<pf | J 3) |¢;) is substituted.

The formula (2.18) for the amplitude of PBs allows its interpretation as a process
of scattering (conversion) of a virtual photon A(O)ﬁ by atomic electrons to a real
photon.
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It is easy to show that the same expression for the PBs amplitude can be obtained
from another form of the interaction Hamiltonian:

V= —e Jdr {Av(x) +A(f‘),(x)}j"(x). 2.21)

(0)

Here an incident particle is replaced by the electromagnetic field A,

it produces
and thus it is excluded from consideration as a dynamical degree of freedom.

The field A;IO ) can be considered a specified field determined by the Eq. 2.20 — the

prescribed current approximation. Then the PBs amplitude is obtained by the
standard method in the second order of the perturbation theory. After calculation
of a corresponding matrix element we find for it:

sty = (-0 [ar2ag, {7 @ A%, @2

From comparison of the formulas (2.18) and (2.22) it follows:

pol __ alpol
S3,fi = Sz‘ﬁ.

Thus the PBs amplitude can be calculated (with fixed initial and final IP states)
with replacing an incident particle by the field it produces with the help of formula
(2.20). Then in the case under consideration for nonrelativistic atomic electrons a
single relativistic degree of freedom — an incident particle — will be excluded, and it
is possible to use the nonrelativistic formalism to calculate the Bs amplitude.

It should be noted that replacement of a particle by its field is widely used also in
calculation of Bethe-Heitler Bs by the equivalent photon method, when in the IP
rest frame the atomic field is replaced by equivalent photons that are Compton-
scattered to bremsstrahlung photons by an incident particle.

Let us calculate, replacing an IP by its field, the PBs amplitude for a nonrelativ-
istic multielectron atom (Z<<137) with neglected exchange of incident and bound
electrons. We use the axial gauge of the electromagnetic potential (Ag = 0). The
nonrelativistic Hamiltonian of perturbation of atomic electrons by the electromag-
netic field looks like:

¢ oA N . )
=5 {p,-A(rj,z) +A(rj,7)p;+eA (r,,z)}, (2.23)
J
p, = —i A=A" (0) ; ~ph
where p;=—1 Vi, A=A + Aﬁ is the sum vector-potential, the operator A

describes the photon field (kx = wr — kr, o = |K|),

) 2
A" =37y /E” {ers Cko eXp(—iky) + €'k o ¢Thp explikn)},  (2.24)
k,o
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where ey , is the unit vector of photon polarization, cl’: - Ck,o are the operators of birth
(0)

and destruction of photons; A" is given by the formula (2.20) — this is an external
field produced by an incident particle.

Going to the interaction representation Vi = exp(iH,t) V exp(—iH,t) (the
photon field is already written in the interaction representation), we have for the

scattering operator:

S =T exp —iJVim(t) dy. (2.25)

—00

The contribution to the PBs amplitude in the lower order of the perturbation
theory (in the second order with respect to an electron charge) is made by the first
and second terms of the expansion S, the zeroth term of this expansion — one —
corresponds to the unchanged state of the system. In the first-order term the
contribution to the process is made by the summand containing the squared sum
vector potential, in the first-order term in perturbation the contribution is made by
the summand containing f)A + Af) According to the physical picture of PBs, it is
necessary to take into account terms containing the mixed product Aph and A}?). So
the matrix element of the process is represented as

S =S+ 57

oo 5 N
. . N .
S}il) = —i(®y| J dtexp(lHat);—m El 24" (rj,t)A;?) (rj, 1) exp(—iH,t)|®;),
e =

(2.26)
with |(I)j> =/ |nkﬁ> since an incident particle is already taken into account in A(io )
From the relation (2.26) we find
1) . 2T (0 Al . Na
Sy = =2ind (g + Ef + © — & — E;) > e Ay (q1)(f] Zexp(—zqrj) |i) o
=
(2.27)

where A;?) (¢1) is the spatio-temporal Fourier transform of the incident particle field
calculated on the four-dimensional vector ¢; = < & — &;, p; — P, - Spin effects are
Iculated on the four-di ional y f ; - Spin eff

neglected. By analogy, for S;I-z) we have the expression:
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1 . .
s}f) =3 (¥|T J Jdt dt’ Vigg (1) Vie ()| D7) (2.28)

After simple transformations the matrix element of the scattering operator S (»,-2 s

brought to the form:
21
3 = ~2m0(AB)| 27 i AR (@) [ deexplion)j (o) (@)l 229)
where

N
7' (k1) = exp(iH,7) ﬁ 121:{ plexp(—ikr;) + exp(—ikr;)p }exp(—zHar)

is the spatial Fourier transform of the operator of atomic electron current in the
interaction representation.

Summing the matrix elements S;il) and S;lz ), we obtain the PBs amplitude as:

01 . 2 2 Als
S = 2mid (e + B+ 0 — o — E) ()| ei o A @) (16 (k@) i), (2:30)
where

0
g1 =& — &

is the change of IP energy during the process.

In the expression (2.30) ¢*(k,q,) is the operator of electromagnetic field
scattering by an atom in the nonrelativistic (for atomic electrons) approximation
that can be represented in the following form:

s e T o
Mk, qp) = — | J drexp(iwt) T{j K, 7)j%(q,, 0)} — Fa(q)|, .31)
m(q?) e

N
where 7i(q) = Zexp(—iqrj) is the Fourier transform of the operator of atom
i=1

electron density.

Analyzing the initial relativistic expression, from which Eq. 2.31 follows, it can
be said that the first summand in the square brackets in Eq. 2.31 arises from the sum
over the positive part of the atomic electron spectrum and describes scattering of an
electromagnetic field by the atomic electron current. The second summand in
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Eq. 2.31 arises after folding of the sum over states of the negative energy spectrum
and describes field scattering by the atomic electron charge.
Let us write the matrix element c}j (k,q,) in terms of the sum over intermediate

— 5]S I’lf,(q) } .

(2.32)

states of atomic electrons:

Cj[fzs'(kv(h) = 6—0)2 {mz

m(q1 7

.]_.;'n(k)j;i(ql) j;h(ql)jizi(k)
wp +o+i0  w), — o400

In case of the spherically symmetric state |i) and within the framework of the
dipole approximation (for f = i, k = q; = 0), from the formula (2.32) it follows:

2 .
ci(ay k= 0) = x(0) 8" = 6" = Zh (2.33)

where o() is the dipole polarizability of an atom, f;, is the oscillator strength for the
transition { — n. In the formulas (2.30), (2.31), (2.32) and (2.33) it is implied that
the bremsstrahlung photon frequency detuning A from resonance is great enough,
so that: A = }co - cof(,»>,1’>>r #(iyn» Where L'z, is the line width for the transition
n — f(i). Otherwise in these expressions it is necessary to take into account the line
width for corresponding transitions.

It is well seen that the obtained expression for the PBs amplitude (Eq. 2.30)
corresponds to its interpretation as a process of scattering of the incident particle
eigenfield by atomic electrons to a bremsstrahlung photon.

Now let us calculate the amplitude of static (ordinary) bremsstrahlung (due to
emission of a photon by an incident particle) taking into account possible excitation
of atomic electrons. We use again the interpretation of bremsstrahlung as a process
of scattering of a virtual photon to a real photon. Now virtual photons are produced
by an atom (by a nucleus and bound electrons). For an atom at rest and nonrelativ-
istic atomic electrons, virtual photons produced by them are mainly longitudinal. In
this case it is convenient to use the Coulomb gauge of the electromagnetic potential
(divA = 0) since then it is possible to take into account only its time component.
The space components describe in the Coulomb gauge the transverse part of the
field and in the case under consideration are small. The time component of the
potential of a virtual photon produced by an atom according to Eq. 2.20 is

A = = [ D11 1), (2.34)

where

fo(l) =Zed(ry —rg) — ezN:5(l’1 - l’j)
=1

J
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is the atomic charge density operator in the coordinate representation (ro is the
radius vector of a nucleus). According to the standard rules of quantum electrody-
namics [1], it is easy to obtain the expression for the static bremsstrahlung
amplitude:

2
St = —2mi Eﬂ et on T (Pris K)AN(9)0 (e + Er + 0 — & — E;). (2.35)

Here the following designations are introduced:

L— L_lf {W v Pf"/ + 'sz+ mo .0 + 0 pl’y - Vk + mo V} ﬁi s (236)
V2 | (pr+k) —m} (pi = k)" =" | V28
Aji(a) = (47/q?) {05Ze — en(a)}- @37

Physically Eq. 2.37 describes the screened potential of a nucleus, and Eq. 2.36
describes scattering of an electromagnetic field by an incident particle.

Thus the total amplitude of Bs of a relativistic incident particle on a nonrelativ-
istic atom (Z <<137) in view of the polarization mechanism and possible excita-
tion of atomic electrons with neglected spin effects looks like:

(2.38)

Br !
SBr = S + S,

where Sj’;-oz and S;} are given respectively by the formulas (2.30) and (2.35).

2.3 Total Bremsstrahlung of a Fast Charged Particle
on an Atom

2.3.1 General Expression for the Process Cross-Section

Based on the obtained expression for the amplitude, we will write the expression for
the spectral Bs cross-section [1]:

do®( Z ko ‘Sﬂ ( 5Pf.,i5k)’ 239

da Ip,l e T ’

here dQ) is the solid angle around the direction of the photon wave vectork, T is the
parameter having time meaning, summation is made over polarizations of an
emitted photon (o) and final states of an atom (|f)). As before, we consider an
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incident particle to be a Born particle, and the initial state of an atom to be
nondegenerate.
In view of the explicit form of Sﬁ" the formula (2.39) can be rewritten:

do” () _ 6§~ o 0 Ay sy
do il <= (2n)’ (2n)’
><2a’)I ;:M{ 27! 4_(ze5ﬁ ens()) + (g )cﬁAf”}2 (2.40)
or
M_d(f" doP?!  dgint 2.41)

do do Tdo | do

The last term in Eq. 2.41 describes the interference of the static and polarization

Bs, T! and cf’f are given by the formulas (2.36) and (2.32) of the previous paragraph.

Hereafter we assume that |q;|<< ‘pfﬁi‘ — the motion of an IP is weakly disturbed

during bremsstrahlung. So in the following formulas we use one value of IP

velocity: v; 2 v¢ = vq. Then for the vector potential of the virtual photon field A](c?)
we have the expression:

4mey Vo q0/62 —q

@ (¢°/c) —

A (g) ~ 3(¢° - qv), (2.42)

where vy is the velocity of an incident particle.
In the same approximation for the function T (see the definition (2.36)) we
obtain:

q,

y (B T
mo 7y (@ — Kkvo)

) = &/mo. (2.43)

The obtained expression (2.40) for the cross-section of bremsstrahlung on an
atom is the most general. With neglected internal degrees of freedom for an IP and
an atomic nucleus it describes consistently the contribution of atomic electrons to
the Bs process.

For the static Bs cross-section from Eq. 2.40 after simple transformations we
find:

de Jkoqu " 0
_ dt el (w+q,) e
a0 o) 2

4 2
x 0T (i(Z — i(—q)) (Z — A(q, 1)]i)- (2.44)
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If the energy of excitation of atomic electrons can be neglected in comparison
with the frequency of an emitted photon w, then in the formula (2.44) it is possible
to assume 7i(q, 1) = 7i(q, 0):

do" A0y dq
do VOJ(ZTC) oldi + o)

k
o (illz = a@P, =7 @45

In derivation of (2.45) the equation was used: > kgl Chas = O1s — Ny N.
~ :

The expression (2.45) agrees with the result of Lamb and Wheeler [4] who for
the first time consistently took into consideration the contribution of excitation of
atomic electrons to static bremsstrahlung.

In case of a heavy IP (my >>m) the first summand under the modulus sign in
the formula (2.40) can be neglected in comparison with the second summand since
|T| o 1/mo, while A) (q) and ¢* (k, q, ) do not depend on the IP mass. Then the total
cross-section of Bs on an atom comes to the PBs cross-section, for which from
Eq. 2.40 we find:

dor! dQyd £t asl o A5 L
e oy (O (@) A a0 A ) [are e 00 o,
(2.46)

where

(1) = exp(iH, t) ¢ (0) exp(—iH, t) (2.47)

is the operator of electromagnetic field scattering by an atom in the Heisenberg
representation.

Thus the polarization bremsstrahlung cross-section summed over all final states
of atomic electrons is expressed in terms of the correlation function of the operator
of electromagnetic field scattering by an atom that can be written as

Kei(t) = (ile™(0) &' (1)),

where summation is supposed over twice-repeating indices.

2.3.2 PBs Without Excitation of a Target

Let us consider PBs without excitation of an atom (“elastic” PBs). Its cross-section
is given by the summand withf = iin the second term under the modulus sign in the
formula (2.40):

(01— mns) (a9)* AR (a1) A (q1) 8 (a) + ) (e i) (16 ).

(2.48)

o' Jko dq
dw (2 n)4
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At first we consider the spectral range ® << p,vo (pa ~Z73me* is the
characteristic atomic momentum). Then the main contribution to the process
under consideration will be made by the moduli |q, |<< p, permitted by the energy
conservation law. Otherwise (|q;|>>p,) PBs with excitation and ionization of an
atom should prevail. So in this case for the scattering tensor the dipole approxima-
tion can be used:

it (k,qp) — 6" (@) 0(pa — |ay ), (2.49)

and instead of Eq. 2.48 we will obtain:

~

2
— [nA®(q)]"3(4") 0pa — las) [ (@), @ < pavo.

(2.50)

do?” o Jko dq
(2m)*

It should be noted that the used approximation corresponds to the Born-Bethe
approximation in the theory of atomic excitation by electron impact.

From the formula (2.50) we find the following expression for the frequency-
angular distribution of elastic PBs in the frequency range under consideration:

do‘;’i"l(a)ﬁ) _2¢do | 2 2 . YPa Vo
o v e |@? 0(w)|” (1 4 cos®d) sind) dvy hl(T)’ .51)

where 9 is the angle between the initial IP velocity vector and the bremsstrahlung
photon wave vector (radiation angle).
In derivation of the formula (2.51) summands of the order of one were neglected
in comparison with the large logarithm (the large logarithm approximation).
From the expression (2.51) two corollaries follow:

1. In contrast to static Bs, polarization Bs of an ultrarelativistic IP (y >> 1) in the
frequency range w < p, v is not directional, but is of a dipole nature,

2. The PBs cross-section grows logarithmically with IP energy in the ultrarela-
tivistic limit at w < p, vo.

These characteristic features of PBs of a relativistic IP allow descriptive physical
interpretation. The logarithmic growth of the PBs cross-section with IP energy is
connected with the features of the spatial structure of the electromagnetic eigenfield
of a relativistic charged particle. The spatial distribution of the potential of this field
at the frequency o is given by the formula:

A0 ()  ex (iﬂ Z— Vot —iﬂ), 252
(@) scexp (12 (= vor) 22 @.52)

here z, p are the cylindrical coordinates of the IP field.
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Thus we obtain the lateral dimension of the field p,,, &~ y vo/®, and accordingly
for the minimum transferred transverse momentum we have |q , |,.., = ®/7 vo. Hence
from the formula for the spectral PBs cross-section (in the Born approximation): d
o) o< In(|q_ | ax /10 [;min) the second PBs property follows that is noted here. It
should be noted that in case of static Bs on a neutral atom the maximum size of a field
scattered by an IP to a bremsstrahlung photon is defined by the size of an atom.

2.3.3 High-Frequency Limit

Now we will consider “elastic” PBs (without change of an atomic state) in the
frequency range I <<w<< m (I is the atomic ionization potential). In this case it is
possible to use the high-frequency asymptotics for the scattering operator:

I s
"k qp) ~ — i(q) {5“ +M}, [<<w<<m (2.53)

2mw

The formula (2.53) is obtained with the use of the expansion into a series of the
matrix element c)’tj (Eq. 2.32) in terms of the powers of the ratio |w;, | /o (j =f, i),

the summands in the sum over intermediate states with ‘a)jn} > » making a small
contribution to cf’f at w>> . Substituting the formula (2.53) in Eq. 2.48, we find:

0 [ 500) () o (A<0><q>+—“' (“'Aw)(‘“))ﬂ ,

do vy ) (2 77;)4 2mm

I<<w<<m.

(2.54)

To simplify the calculations, we consider that y >> 1, then the IP field is mainly

transverse and A0 (q;) = 0. We use the approximation of exponential screening
of an atomic nucleus to calculate the spectral PBs cross-section. Then:

N
nii(q) = ( (2.55)

L+a/p2)
Here N is the number of atomic electrons (for a neutral atom, naturally, N = Z).
The value n;;(q) represents the (static) form factor of the atomic core in the state |i).
Using Eq. 2.55 and the relation o;(w) — o (@) = —N €? /m @? to estimate the

spectral PBs cross-section in a high-frequency range, we find for three spectral
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Fig. 2.2 The spectral cross- 10
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ranges after integration with respect to the solid angle of photon escape and the
transferred momentum the following expressions:

de? 16 Ye2 1 Pa
o _ 16 ¢ e ln(/P ) I <<w<<pyg, (2.56)
dw 3 m2w w
dGROl 64 82 2
ﬁ =2N? mz—:; (%) In(y) pa<<w<<y*pa, (2.57)

pol 4 2 2 2
A9 _4n2 % (&)2 (Vp“> PPa<<m << m. (2.58)
do mo \o )

The formulas (2.56), (2.57), and (2.58) are low-sensitive to a specific type of
nucleus screening by atomic electrons. The spectral cross-section (2.56) can be
obtained from the formula (2.51) since in this frequency range the dipole approxi-
mation for interaction of an IP with an atomic core (and especially with a photon) is
still true.

The spectral cross-section of PBs of a relativistic electron on a hydrogen atom in
a high-frequency range calculated by the formulas (2.56) and (2.57) is presented in
Fig. 2.2 for two values of the relativistic factor 7.

From the given figure it follows that the cross-section of PBs of a relativistic
electron in the high-frequency range w>p, decreases with growing frequency.
Physically this is a consequence of coherence loss for interaction of a virtual photon
of the IP field with an atomic electron. From mathematical point of view, this
decrease is defined by reduction of the atomic form factor n;(q) with growing
magnitude of the transferred wave vector |q|>p,. Another conclusion of Fig. 2.2 is
the growth of the PBs cross-section with increasing energy of a relativistic incident
particle (of the relativistic factor y).
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Fig. 2.3 The angular 1
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The frequency range of Eq. 2.57 is characteristic for ultrarelativistic incident
particles. In this range the compensation of a momentum transferred from an IP
to an atom due to a photon momentum is possible. As the analysis shows, this is
true only for small enough radiation angles: ¥ < \/p,/® ~ \/./R., R.=~p,'.
This inequation follows from the condition of smallness of a
momentum transferred to a target during Bs in comparison with an atomic
momentum: o (1 — vq cos(?)) < p, vo.

Thus in the frequency range of Eq. 2.57 PBs gains directionality, and in
calculation of the process cross-section it is necessary to take into account a photon
momentum.

The angular diagram of PBs of a relativistic electron on a hydrogen atom in the
high-frequency limit is presented in Fig. 2.3 for different values of bremsstrahlung
photon energy.

It is seen that with growing energy of a bremsstrahlung photon the angular
distribution of PBs of a relativistic electron is narrowed.

In the frequency range of Eq. 2.58 (if it exists) a momentum transferred from an
IP to the atomic core at any radiation angles is more than the characteristic atomic
momentum, and PBs is strongly suppressed as it follows from the form of the static
atomic form factor (2.57). Physically this means that with large momenta trans-
ferred to an atom (|q|>>p,) that are characteristic for this frequency range inelastic
PBs channels prevail that are accompanied by excitation and ionization of an
atomic electron.

It should be noted that in the above “elastic” PBs the contribution of all atomic
electrons to radiation is coherent, so the process cross-section is proportional to the
squared number of atomic electrons. This circumstance can be explained as follows.
During elastic PBs, when the state of the atomic core does not change, an electron
charge, remaining localized in the atom, shows itself as the charge of one particle Ne
(at A>R,). Therefore the amplitude of its interaction with an electromagnetic field is

proportional to Ne, and the cross-section is proportional to (Ne)z.
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Let us return to the total PBs cross-section that takes into account excitation of
atomic electrons — the formula (2.46). To obtain the spectral PBs cross-section in
the explicit form in the general case does not seem possible. Let us consider some
particular, but practically important situations.

Let the frequency w be such that the main contribution to the cross-section that is
differential with respect to a transferred momentum is made by |q;|<<p,. (This in
particular takes place in experiments on agreement (see [5]) if a scattered electron is
observed at small scattering angles). Then the dipole approximation for interaction
of an IP with the atomic core is true, and it is possible to integrate with respect to q in
view of the explicit form of A(O)(q) (Eq. 2.42). Taking into account the spherical
symmetry of the state |i), we obtain after a number of transformations for the spectral
PBs cross-section the following expression (we assume that wg<p, vy — ®):

4’ 164
dw 9v§ vy}

@B (). 2

It should be noted that the summand in the formula (2.59) with f = i gives the
spectral cross-section of elastic PBs following also from the formula (2.51) after
integration with respect to the angle of photon escape.

2.3.4 Near-Resonant PBs

Let us consider a case of the near-resonance frequency ®, when the following
inequation is satisfied: T,y<<|w —w,|<<w, here ®, and T, are the
eigenfrequency and the line width for the transition n — f between two states of
the discrete spectrum of the atomic core. Then in the expression for the matrix
element from the operator of electromagnetic field scattering by an atom (Eq. 2.32)
one resonant summand can be separated that makes the main contribution to the
amplitude, and the imaginary part of the scattering tensor can be neglected in
comparison with the real part. Then in the sum over f on the right side of the
Eq. 2.59 one resonant summand remains.

After summation over the projections of the total momentum of resonant states
we find for a singlet initial state:

dog™  4ede* joN\2 f; YPaV
fi _ 0 (7) Jin_ 27 1 1 Y Pa Vo A= _ ‘
do — 3vim? \A m,( 7+ 1) fi In o + W @ Onf

o >>|A[>>Tp,

(2.60)

here f; is the oscillator strength for the transitioni — k,Jr is the quantum number of
the total angular momentum of an atom in the state | f).
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Following from the expression (2.60) for f = i is the formula for “elastic”’ near-
resonance PBs that was studied in detail earlier [2].

The case f #i was studied in the paper of V.M. Buimistrov and L.I
Trakhtenberg [6] from the standpoint of the prospect of obtaining radiation ampli-
fication based on the PBs effect.

Given in the author’s work [7] is the generalization of the spectrum of near-
resonant PBs to the case of the energy-band structure of a target in the elementary
isotropic effective mass approximation.

In this situation the scattering tensor can be represented as:

di e jh(kR) /(g K)
Mk a) — J Z _Jve\® M Jev D . 2.61
c"(k, q) (27) O @ — 0(®) +iTe/2 (2.61)

Qp,

Here integration is performed with respect to the quasi-momentum of electrons ¥
in the Brillouin zone Qg,, ., (K) = ¢&.(K) — &,(K) is the difference of electron
energies in the conduction band and in the valence band. Then we will assume that
transitional current weakly depends on an electron quasi-momentum. In the general
case it is necessary to perform integration in the formula (2.61) in view of the
dispersion law ¢ ,(x). We will consider the approximation of parabolic bands, in
which: ¢, (K) = 88‘1, F i / 2 m, ., m, . are the effective masses of electrons near the
valence band top and the conduction band bottom. Then after averaging over
photon polarizations for the spectral intensity of PBs the following expression
can be obtained:

awr!
S =BV, (2.62)
where
2
B(w) = (2"‘; 12, e (6)] (Alg)j(@)

—\/‘—A—‘arc —a_
Ja) - 1 - tg<ﬂ>, A<O

a=vVA
a+VA|’ A>0

1+¥8n

A:w—(s?—e?,), ‘uc’vl:mgl—i—m;l, a%N‘l,ﬂ/ul/2 n =k/[Kk|,

cv )

N, is the concentration of the valence band electrons. The target parameter is a,
it is proportional to the energy of localization of a quasi-particle with the reduced
mass (i, in the volume N !, its value is accordingly of the order of the permitted
band width.
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In the formula (2.62) it is assumed thata® # |A|, otherwise it is necessary to take
into account the imaginary additive in the expression for the scattering tensor
(2.61).

The function B(w) has no resonance peculiarities for the case under consider-
ation: w<vo/d (d is the lattice constant), so the frequency peculiarities of the PBs
spectrum are described by the function [J(A)[?, the plot of which is presented in
Fig. 2.4 for the case of practical interest A<a® (a®> = N*/3/u,,).

From this figure it follows in particular that the spectrum of near-resonance PBs
for the energy-band structure of a target has a pronounced asymmetry: for
frequencies smaller than the energy gap width (negative detunings from resonance A)
the PBs intensity falls more steeply than for positive detunings. This circumstance is
quite expected since positive detunings correspond to the virtual transition to the
conduction band, and negative detunings correspond to the virtual transition to the
band gap.

The function J(A) itself for detunings under consideration is positive (A<a?),
which corresponds to destructive interference with the static Bs channel. For high
detunings A>a® this function is negative, and interchannel interference is
constructive.

It should be noted that in the limit a®?<<|A| in the expression (2.62) the
multiplier |w,, / A|2 appears that is characteristic for near-resonant PBs on one atom.

It is significant that if o<w,, and |A|>T,,, a cascade process connected with real
filling of the conduction band is impossible.

2.3.5 PBs with Target Excitation

Now we will calculate the PBs cross-section with excitation (including ionization)

of an atom for m>>w>>I. Substituting the expression for ¢
Eq. 2.53 in the formula (2.48), we find

in this spectral range
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n, (A(m(ql)—&—M)] Sii(q). (2.63)

2mo

o ® Jko dq (e_2)2
do  vo ] (2m)* \m

Here the value is introduced:
1 o
Si(q) = 7 J dr exp (lqot) (i|A|(—q)7(q,1)|i)| (2.64)

that we will call the dynamic form factor according to the terminology accepted for
description of effects in a media. For simplicity we assume further ¢; =~ ¢, so
neglecting summands of the order of (p,/ w)2 in comparison with one at w>>p,; at
w<p, the dipole approximation is true, so the magnitudes |q| and |k| can be
neglected in comparison with p,. As seen from Eq. 2.63, for calculation of the
spectral PBs cross-section it is necessary to know the explicit form of the q and ¢°
functional dependence of S;;.

With further tracing only qualitative moments in mind, here we use for
calculations the simplest analytical approximation of S;;(¢):

2
$3() = 0al = p) 3+ 511 ) N 0, Do) N2 (269)

where N is the number of electrons in an atom.

The approximate Eq. 2.65 can be obtained after a number of transformations,
taking into account the explicit form of the electron density operator being
an operator of shift in the momentum space and corresponding permutation relations.

The physical meaning of two summands in Eq. 2.65 is transparent: the first
summand describes processes with ionization of the atomic core, when a transferred
momentum is large, in this case the contribution of bound electrons is incoherent
and part of energy is carried away by a knocked-on electron. The second summand
describes the coherent process, when a momentum transferred to the core from an
IP is small, and the atom remains in the former state. In the latter case the recoil
momentum takes over a massive nucleus, and coherence takes place since the phase
of electromagnetic interaction of the IP with the target core changes little at
distances of the order of the atomic radius.

From the formulas (2.63) and (2.65) it is easy to find the spectral PBs cross-
section in the approximation under consideration:

da??'  16e3et Wa
= 6’082 {0(]7(1V() — o) [Nz ln(LwVO) +Nln (mov())]

do  3m2v} Pa

2
+ 0(w — pavo) N ln</mc(;v0> }

(2.66)
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The obtained expression allows descriptive physical interpretation. At w<p,vo
(the summand in the square brackets) PBs proceeds both without excitation of an
atom (if |q|<p,) and with its ionization (at |q|>p,). And in the first case PBs is
coherent by the contribution of atomic electrons to the process (the cross-section
is proportional to N?), in the second case PBs is incoherent (the cross-section is
proportional to the number of atomic electrons N). In the spectral range w>p,vo —
the second summand in the braces in Eq. 2.66 — the law of conservation of energy-
momentum permits only |q|>p,, so PBs proceeds mainly with atomic ionization,
and its cross-section is proportional to N.

It is essential that the total PBs cross-section (2.66) taking into account excita-
tion and ionization of an atom admits a correct passage to the limit to the case Z = 0,
corresponding to which is the equation p, = 0 in the formula (2.66). Then the
summand in the square brackets describing “elastic” PBs disappears, and the
remaining last term in the braces describes emission of a slow free recoil electron
in collision with a relativistic charged particle as it must be according to the
physical picture of the process. It should be noted that this passage to the limit
does not take place for the “elastic” PBs cross-section since in the absence of a
nucleus the process becomes fundamentally inelastic — an atomic electron takes
over a momentum excess and increases its energy.

Let us compare integrated (with respect to the scattering and radiation angles)
cross-sections of the polarization and static Bs channels. Corresponding cross-sections
look most simple in the quasi-classical (&f ;>>w) and ultrarelativistic (y>>1) limits
and in the region of frequencies exceeding the atomic ionization potential.

Thus in the spectral range p,vo>w>>I the main contribution to both Bs
channels is made by the “elastic” summands (without excitation of the atomic
core) (we assume Z, N>>1):

de?”  16N%¢  /yp

i I ( ) 2.67
dw 3mlw n w ( )
dost  16Z%¢° m

L In( — 2.68
do  3mio n<pa>’ (2.68)

that (in case of Z = N) differ only by logarithmic factors, though they have (in the
ultrarelativistic case) essentially different radiation patterns.

Let us write out the cross-sections of inelastic static and polarization Bs in the
spectral range where the main contribution to PBs is made by the processes with
atomic ionization:

d GPOI

nonel __

16Ne® &
—1 2.69
dw 3miw n( ) ’ ( )
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da!! 16Ne
O onel — 6Ne In ﬁ , y>> 2 (270)
dw 3miw a Pa

Thus in the frequency range p, vo < < @ << m the cross-sections of elastic static
and elastic polarization Bs differ only by logarithmic factors, and inelastic summands
of the cross-section corresponding to them are close in value up to w ~ m.

At w>>m the space part of the 4-momentum transferred to an atom is great, and
atomic electrons can to a good accuracy be considered free, which gives the result
known in quantum electrodynamics when a recoil electron emits w/m times less
than a fast electron. Thus the contribution of the polarization summand to the total
cross-section of Bs of an electron on an atom in the region of high (@ >>m)
frequencies is negligibly small in comparison with the contribution of the static
summand.

All aforesaid is true also for the case of Bs of an ultrarelativistic positron on an
atom, when the sign of the polarization summand of the amplitude changes to the
opposite. But, as for an electron, due to different dependences of the static and
polarization summands on radiation angles their interference can be neglected and
thereby the total cross-section of Bs of an ultrarelativistic particle can be
represented as the sum of two summands (polarization and static).

2.3.6 Channel Interference

Now let us consider the summand in the cross-section of Bs on a neutral atom
describing the interference of the static and polarization channels. As follows from
the analysis of angular dependences, this interference is low for an ultrarelativistic
incident particle. So here we will consider an incident particle to be nonrelativistic,
but still a Born particle. Let us neglect excitation of an atom during bremsstrahlung.
Then from Eq. 2.40 in view of Egs. 2.42 and 2.43 it can be obtained for the
interference summand in the cross-section:

. (91 |imax
do™t 326%(1}3 |€€()‘ d|q1|

iy Re{ci:(w: 7 — nj; . 2.71
AR j ooy Re(e(@i @D} (2 = maa) (1Y @70
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In derivation of Eq. 2.71 it was taken into account that for a nonrelativistic
IP |q,| > w/vo>>]k|. We call attention to the fact that the contribution to
interference is made only by the real part of the diagonal matrix element from
the operator of electromagnetic field scattering by an atom (Eq. 2.31). For the
elementary approximation of the scattering tensor (2.49) from the formula (2.71)
we have approximately:
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. pa
do™  32|ede| , J (Z — ni(la,]))
i 2 )2 {Refo(w ———d|q,|, (2.72)
do  3myv} {Rel(@)l} q il

P

p* = max{pmn, ®/Vo}, where pui, is the characteristic momentum of outer shell
electrons, p, is the characteristic momentum of atomic electrons making the main
contribution to atomic polarizability at the frequency under consideration . From
Eq. 2.72 it follows that the interference term in the Bs cross-section can be noticeable if
the greatest contribution to polarizability is made by the inner atomic shell with compara-
ble cross-sections of PBs and SBs. This takes place, for example, for Bs of electrons on
neutral xenon for frequencies near the potential of ionization of the 4f -subshell.

The radiation spectrum of xenon in case of passage of an electron beam through it
was recorded in the work [8]. A shift of the frequency maximum from the value
calculated without considering interference to 20 eV was found. This discrepancy
was explained by the fact that the velocity of electrons in a beam is probably not high
enough for the Born approximation to work “well”. On the other hand, a reason of
shift can be an interference term in the total Bs cross-section that was not taken into
account. And if an IP is heavy or ultrarelativistic, the expected value of shift should
be small due to the smallness of the interference summand in these cases.

For an ultrarelativistic IP the theory results in an additional possibility of
interest: the value of shift of the Bs frequency maximum relative to the potential
of ionization of a corresponding atomic subshell sharply depends on the angle of
photon emission, which is caused by essentially different patterns of the static and
polarization Bs channels in the ultrarelativistic case.

It should be noted that the above brief analysis of channel interference relates to
Bs of a Born IP on a neutral atom, where, generally speaking, interference effects in
the Bs cross-section integrated with respect to the angle of incident particle
scattering are low due to different regions of space of channel formation:
corresponding to the static channel are large angles of IP scattering and respectively
small distances to a nucleus, corresponding to the polarization channel are small
scattering angles and large distances.

Thus interference effects in Bs on a neutral atom can show themselves most
strongly in the Bs cross-section differential with respect to the angle of IP scatter-
ing, which was shown in the work [9]. The situation is different for Bs on ions for
strongly inelastic scattering of electrons of moderate energies, when channel
interference is found to be essential also in the integrated process cross-section.

2.4 Polarization Bremsstrahlung of a Fast Charged Particle
on an Atom in the Local Plasma Approximation

The spectral PBs cross-sections in the high-frequency limit obtained in the previous
paragraph in Egs. 2.56, 2.57, and 2.58 are true for the frequencies w >> I, where [ is
the characteristic atomic ionization potential (it will be recalled that in this chapter
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we use the relativistic system of units, in which Z=c=1). In case of a
multielectron atom this value is of rather indefinite nature, so the domain of
applicability of the high-frequency approximation requires its refinement.

At the same time it is for a multielectron atom that polarization effects in Bs
should be the most essential. And the calculation of the dynamic polarizability of a
multielectron atom defining the PBs cross-section is an intricate quantum-
mechanical problem that has to be solved anew for each specific target.

In this connection it seems to be useful to apply simple universal models suitable
for estimation of the value of the polarization Bs cross-section and for revealing
general qualitative regularities of this process.

One of such models is the method of local electron density (or local plasma
frequency) that was first proposed by Brandt and Lundqvist for calculation of the
cross-section of photoabsorption by multielectron atoms [10].

In this section this method is used to describe PBs of a fast (including relativis-
tic) charged particle on a neutral multielectron atom, the distribution of electron
density in which is given by the statistical Thomas-Fermi model.

It should be noted that the use of the local plasma frequency method for
calculation of the polarizability of a Thomas-Fermi atom is intrinsically consistent
since the physical representations underlying both models are analogous.

The advantages of the used approach are also that it is most adequate just for
those frequencies and distances, at which the significant role is played by
multielectron effects, the description of which within the framework of the consis-
tent quantum-mechanical consideration is difficult and laborious.

2.4.1 Polarizability of a Thomas-Fermi Atom in the Local
Plasma Frequency Approximation

Within the framework of the Brandt-Lundqvist model the expression for the
dynamic polarizability of an atom looks like:

wlz, (r)r*dr

w(w) = J —w; ) —a? =10 (2.73)
0

where w,(r) = \/4me?n(r)/m is the local plasma frequency depending on the
local electron density of the electron core n(r), r is the distance from a point under
consideration to an atomic nucleus.

Hereafter for the function n(r) the Thomas-Fermi approximation will be used
that gives [11]:

O\ 32
n(r) = np(r) = 22 f(r/rre),  f(x) = 32 (X( )> , (2.74)

oOm3 \ x
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where 77 = bag/Z'/? is the Thomas-Fermi radius (b = (9 712/128)1/3 =~ (0.8853,

ag is the Bohr radius, Z is the nuclear charge), y(x) is the Thomas-Fermi function.

The expression (2.71) can be transformed to the form revealing the scaling law
(scaling) with respect to the parameter v =% w/2RyZ (Ry = 13.6 ¢V) having the
meaning of dimensionless (reduced) frequency:

3 b’ ag

a(v) = 13 Bv) = (). (2.75)
Here the dimensionless complex function f(v) (the reduced polarizability of a

Thomas-Fermi atom) is introduced, the imaginary part of which is (the prime means

differentiation with respect to the argument x):

o

m{f()} == % , (2.76)

and the real part can be calculated by the “punctured” Kramers-Kronig relation:

oo

Re{f(v)} = 2 J [Im{B(v)} — Im!zgﬁ(v)}] vdy
0

(2.77)

vZ—9

Q

In the formulas (2.76), (2.77) the value x, is determined by solution of the
equation:

dnf(x) =+ (2.78)

that describes the resonance of the radiated frequency with the local plasma
frequency at some value of the parameter x (the reduced distance to a nucleus).

The expression (2.76) is obtained from the determination of the dynamic
(Eq. 2.73) and reduced (Eq. 2.75) polarizabilities with the use of the known
Sokhotsky formula.

It should be noted that the numerical calculation of dimensionless polarizability
directly by the formulas (2.73), (2.74), and (2.75) is found to be difficult for low
frequencies (v<1) in view of the singularity of a corresponding integrand and slow
decrease of Thomas-Fermi electron density (2.74) with distance. As a result, the
numerical integration loses accuracy. So it is proved to be preferably to use the
formulas (2.76), (2.77), and (2.78) for calculation of the reduced polarizability S(v).

The ratio g(v) of the modulus of the function f(v) to the modulus of its high-
frequency limit (B (v) = —b~3v~2) is presented in Fig. 2.5.

Given in the same figure is the corresponding ratio for a krypton atom restored
by the data of the work [12], in which the dynamic polarizability of an atom was
calculated by the quantum-mechanical method within the framework of the random
phase exchange approximation.
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It is seen that the function g(v) = v* |B(v)| for a Thomas-Fermi atom smoothly
describes the spectral peculiarities of the dynamic polarizability of a krypton atom
connected with the shell structure of an atom and approaches its high-frequency
limit for v>10.

However, it should be remembered that in the range of low frequencies v<0.1 the
used approximation becomes inadequate since, on the one hand, the local plasma
frequency approximation “works” badly for polarizability of an atom Eq. (2.73),
and on the other hand, the contribution to polarizability at these frequencies is made
by the peripheral regions of an atom, where the statistical model is inapplicable.
Really, calculation by the formula (2.78) gives: xo; = 3.4, x; = 0.64, and
X190 = 0.053, at the same time the region of truth of the statistical model in the
variable x is determined by the inequation Z~%/3 << x << Z'/3.

So in further consideration we will restrict ourselves to the range v>0.1. It should
be noted that for Z ~ 50 this corresponds to the photon energies w>130 eV, which
exceeds considerably the potential of ionization of the outer electron shell of a
neutral atom, so the electron core can be considered “defrozen”. Besides, in this
frequency range, as seen from the above values of x,, the inequationx, < 3.41is true.
The boundary reduced radius of a neutral atom calculated in the Thomas-Fermi-
Dirac model (with consideration for exchange) according to the paper [13] is well
approximated by the formula xo = 4 Z%*. Thus in our case (Z>>1) x,<<xg, and
conclusions of further consideration practically do not depend on refinements of the
initial statistical Thomas-Fermi model, they are also true for ions with low enough
degree of ionization if the condition x(Z;/Z)>>x, is satisfied, which is confirmed
by calculations carried out.

Good agreement of the magnitude of the dynamic polarizability of a Thomas-
Fermi atom calculated in the local electron density approximation with the results
of quantum-mechanical calculations [12], as seen from Fig. 2.5, takes place for the
values of the dimensionless frequency: v>>2. Both approaches give the same value
of frequency for the maximum of the function g(v): viax = 0.5 0r i pmax = 490 €V,
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so that /1 . >> [1,(Kr) = 14 eV, and the electron core of a krypton atom can be
considered “defrozen”.

The latter circumstance serves as a qualitative justification of adequacy of using
the local plasma frequency approximation for calculation of the dynamic polariz-
ability of an atom in the spectral range under consideration: v > vyax.

It is interesting to note that even in the region of the maximum of the function
g(v) = v} |B(V)| (vmax = 0.5), where, generally speaking, the quantum features of
motion of atomic electrons are essential, the distinction in the results of quantum-
mechanical and statistical calculations of the dynamic polarizability of a krypton
atom is less than 30 %.

The most distinction in results (about 47 %), as seen from Fig. 2.5, takes place
for v = 1, that is, for frequencies near the potential of ionization of the 2 p -subshell
of a krypton atom. This fact is quite natural since neither the statistical model of a
Thomas-Fermi atom nor the local plasma frequency approximation takes into
account the shell structure of an atom, but they render the smoothed behavior of
corresponding dependences.

Thus it can be stated that the model approximations used in this section for
calculation of the dynamic polarizability of an atom are in good conformity with the
results of quantum-mechanical calculations and at the same time are of a universal
nature.

2.4.2 Cross-Section of Polarization Bs of a Fast Charged
Particle on a Thomas-Fermi Atom

The spectral cross-section of polarization Bs of a fast electron on an atom within the
framework of the first Born approximation is described by the expression (2.46) that
for a process without excitation of a target, as it was shown in the previous
paragraph, can be simplified to the form:

do™® & j i da |(o2, q + K) [0 A(q)]>6(e + qv) (2.79)
do — (27)v n 4 ! e .

here d€, is the solid angle in the direction of photon emission, k, @ are the wave
vector and the frequency of a bremsstrahlung photon, q = p; — p; is the change of
an incident particle momentum, A (q) is the spatio-temporal Fourier transform of the
vector-potential of the incident particle electromagnetic field that in the axial gauge
(Ap = 0) is given by the expression (2.42).

The key value in the formula (2.79) — a(w, q + k) — is the nondipole dynamic
polarizability of an atom, to calculate which the above approach is used.

It should be noted that the formula (2.79) is of a classical nature, it does not
include the Planck constant, and it can be obtained within the framework of the
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classical calculation of the PBs cross-section for a uniformly moving charge after
summation over the impact parameter.

Hereafter for calculation of the Bs cross-section we will restrict ourselves to the
Born-Bethe approximation, in which it can be assumed:

OC(GL CI) = OC((U) 9(pa - Q)7 (2.80)

here 0(x) is the Heaviside function (a unit “step”). As a characteristic atomic
momentum, we will use the Thomas-Fermi momentum p, = Z'/3/( bay).

In the Born-Bethe approximation (2.80) the integral in the formula (2.79) is
calculated analytically. The result, however, is found to be cumbersome. So we
will give here the formula in the general writing representing the spectral cross-
section of polarization Bs in terms of the single integral with respect to the
value of a transferred momentum. In this expression there are two characteristic
frequency ranges that are explicitly separated: w<p,v is the “low-frequency”
range and w > p, v is the “high-frequency” range:

o™ 40} oV
== |oc(a>)|2{0 (lp? - w) [H (@, pq — ) + Ha()]

+0 (w - 1inV>H1 (.2) }

2.81)

where
2 2 4
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Gy === 7 _Z -
1 2 0q [w v +gq 3 w +2q2v2
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1 173_(‘1—60)2 > 5 5 30t
__ Pa — \4— %) 1 _= -~
3 ( 2 wq * T75@ +2q2v2
and
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Gr=20 [V =2) +2 ¢
2 CO(V 3>+3C]

The formula (2.81) in the frequency range w<p, v, when the contribution to the
cross-section is made by the first summand in the braces, is reduced to the known
expression for the spectral cross-section of polarization Bs of a relativistic incident
electron [2] (see also the formula (2.51) for the spectral-angular PBs cross-section):

do™  160° a(w)? 1n< 29pav

= . 2.82
do 3v2 w(1+v))’ W<PaV 282)



48 2 Quantum-Electrodynamics Approach to Description of Bremsstrahlung. . .

Here y = (1— vz)fl/2 is the relativistic factor, o(w) is the dipole dynamic
polarizability of a target atom.

Going in the formula (2.82) to dimensionless variables with the use of the
Eq. 2.75 and the determination of the Thomas-Fermi radius, we obtain the follow-
ing expression for the spectral cross-section of polarization Bs:

16 Z% p° 2 dv

2yv
PB 2
dO' (V) = 3 V2 ‘V ﬂ(v)| 7 ln (W

) =72dé"™(v). (2.83)

In the formula (2.83) the function dG"2(v) is introduced that is naturally can be
called the reduced cross-section of the process since for this function in the case
under consideration for polarization Bs of a fast incident particle approximate
scaling with respect to the parameter w/Z takes place, while the nuclear charge
dependence is only logarithmic.

From the expression (2.83) it follows in particular that the spectral cross-section
of polarization Bs of a Thomas-Fermi atom (accurate to the logarithmic factor)
grows quadratically with increasing nuclear charge if in this case the dimensionless
frequency v does not change.

It should be noted that in case of a hydrogen-like ion, when scaling with respect
to the parameter vy = / Z? takes place, the spectral cross-section of PBs of a fast
particle in the Born approximation does not depend at all on a nuclear charge for the
specified value of the dimensionless frequency vy, while the spectral cross-section
of static Bs grows quadratically with increasing Z (accurate to the logarithmic
factor).

Thus the used model predicts amplification of polarization effects in Bs of a fast
particle on a neutral atom with increasing charge of the nucleus of the latter.

The spectral cross-section of ordinary (static) Bs in view of screening of the
nuclear field [2] in case of weakly inelastic electron scattering is given by the
expression:

167% do

dJOB(w)f " o

ln{v}, W < Pav. (2.84)

a

The ratio of the cross-sections determined by the formulas (2.83) and (2.84)
makes it possible to find the R-factor in the frequency range under consideration
(w < pgv) and in the relativistic limit (v = 1):

da"B 61 2 2 ln{jé—z/g} 137
R(V, Z, V) = ngB =b |V B(V)| m7 v< ﬁ (285)
7173

The results of calculation of the R-factor as a function of the dimensionless
frequency v for different values of the charge Z and the relativistic factor y in the
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Fig. 2.6 The dependences of the R-factor on the reduced frequency v calculated for Bs of a fast
electron on a Thomas-Fermi atom with the nuclear charge Z: (a) solid curve —y = 10, Z = 60;
dotted curve —y = 10, Z = 30; (b) solid curve — Z = 60, y = 3; dotted curve —Z = 60, y = 10

range v<137 / 72/3 are presented in Fig. 2.6. It should be noted that corresponding to
these values of the dimensionless frequency v (for the nuclear charges Z ~ 50) are
the photon energies /i < 14 keV.

It is seen that the value of the R-factor of a relativistic incident electron in a wide
frequency range is about one and for w ~ ZRy (v = 0.5) reaches its maximum
value about 2.5 + 3. In this case the “sublogarithmic” influence of a nuclear charge
on scaling with respect to Z is vanishingly small, and the influence of the relativistic
factor is more significant.

It should be noted that the interference of the polarization and static Bs channels
in case of a relativistic charged particle is small in view of different radiation
patterns: the ordinary channel gives high-directivity radiation to a cone with an
angle of the order of 1/y [1], and the angular distribution of polarization Bs for the
frequencies w<p, v is of a dipole nature [2].

In the case under consideration for weakly inelastic scattering of a Born charged
particle in the frequency range w<p, v the main contribution to Bs is made by small
scattering angles, when the influence of effects of penetration of an incident particle
into the electron core of an atom is small.

The said circumstance results in different frequency dependences of the polari-
zation Bs cross-section for different degrees of inelasticity of incident electron
scattering. In case of the process considered in this chapter, the spectral maximum
of the polarization Bs cross-section is considerably shifted to the region of high
frequencies and falls with growing Bs frequency more slowly than corresponding
spectral dependences in emission of photons of threshold energies.

In the frequency range w>p, v the law of conservation of energy-momentum
conditions the necessity of penetration of an incident charged particle into the
electron core of a target. So reradiation of a virtual photon of the scattered electron
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eigenfield to a real photon on atomic electrons loses coherent behavior. As a result,
the spectral cross-section of polarization Bs is found to be suppressed in compari-
son with the cross-section of ordinary Bs.

It should be noted that in the high-frequency region w>p, v the dimensionless
frequency v satisfies the inequation v > 10 (we assume that Z > 30), and, as seen
from Fig. 2.5, the reduced polarizability of a Thomas-Fermi atom is close to its
high-frequency limit: B(v) &~ B, (v) = —b~3v~2. The frequency dependence of the
polarization Bs cross-section in this case is defined mainly by the integral with
respect to the angular variables and the value of the transferred momentum ¢ in the
formula (2.79).

The formula (2.82) in the frequency range w>p,v becomes untrue, and for
determination of the polarization Bs cross-section it is necessary to proceed from
the general expression (2.81). In this case the contribution is made by the second
summand in the braces of Eq. 2.81. The analysis shows that in the expression for the

spectral cross-section the multiplier (p,/ a))2 appears that defines the smallness of
the polarization channel contribution to the total spectral Bs cross-section. How-
ever, the spectral-angular cross-section of polarization Bs in the region of photon

emission angles 7! < < \/p,/w exceeds the corresponding cross-section of the
static channel.

The carried out consideration shows in particular that the characteristic poten-
tial of ionization of a multielectron atom included in the definition of the region of
truth of the high-frequency approximation (see Eq. 2.53) can be represented as:
I(Z) = 2 Z Ry, that is, increases linearly with growing charge of the nucleus of a
target atom. In this formula the constant { > 5 is introduced, the exact value of
which is not determined and depends on accuracy, with which it is required to
calculate the process cross-section.

Thus in this paragraph within the framework of the local electron density method
and the Thomas-Fermi model the universal description of polarization Bs of a fast
Born charged particle on a multielectron atom (Z>>1) in the region of energies of
bremsstrahlung photons w>100 eV is given. It is shown that the R-factor defining
the relative value of the polarization channel contribution to the total Bs cross-
section has approximate scaling with respect to the parameter w/Z and at the
frequencies wmax & Z Ry reaches its maximum value Ry« (y) = 2.5 =+ 3 that grows
logarithmically with the energy of an incident particle.

The decrease of the R-factor with growing energy of an emitted photon in the
low-frequency region w<p, v is most pronounced up to frequencies of the order of
20ZRy, when the magnitude of the polarizability of a Thomas-Fermi atom
decreases when going to its high-frequency asymptotics.

In the spectral range 10 Z Ry<w<p, v the decrease of the R-factor and polariza-
tion Bs intensity has weak logarithmic behavior and is caused by reduction of the
maximum impact parameter.

In the high-frequency range w>p, v the frequency change of polarization Bs
intensity is defined mainly by kinematic factors and by violation of coherence of
reradiation of a virtual photon to a real photon on atomic electrons. In this case the
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decrease of spectral intensity becomes power-like. At the same time the pattern of
radiation by the polarization channel is narrowed, so that ¥ < \/p,/w, and in the
frequency range p,<w<7’p, there is the region of Bs angles: y~!'<¥ < /p,/w, in
which the polarization mechanism prevails over the ordinary (static) mechanism of
radiation.

2.5 Incoherent Polarization Bremsstrahlung of a Fast Charged
Particle on an Atom in the High-Frequency Approximation

In this paragraph within the framework of the high-frequency approximation for the
operator of electromagnetic field scattering the universal description of incoherent
polarization Bs of a fast charged particle on a multielectron atom is obtained. The
PBs cross-section is expressed in terms of the Compton profile of X-ray scattering,
for which a voluminous calculation material is available. The obtained universal
representation for the process cross-section is justified both for the statistical atom
model and on the basis of established approximate scaling of Hartree-Fock
Compton profiles.

This paragraph is the refinement, supplement, and generalization of the consid-
eration of PBs with atomic ionization carried out in the Sect. 2.3 to the case of
taking into account atomic electron binding in the initial state.

2.5.1 Connection of the Dynamic Form Factor with the Compton
Profile of an Atom

In Sect. 2.3 the expression (2.63) was obtained for the cross-section of high-
frequency PBs (m>>w>>I) of a fast charged particle in terms of the dynamic
form factor (DFF) of a target (Eq. 2.64).

The approximate expression for the DFF (2.65) and the formula following from
it for the PBs cross-section (2.66) give a qualitative idea of the process, separating
two characteristic frequency ranges.

In the low-frequency range (w < p, vo) PBs is coherent by the contribution of
atomic electrons, the process proceeds without excitation of a target, and the cross-
section is proportional to the squared number of atomic electrons.

In the high-frequency range (w > p, Vo) radiation with ionization of a target
prevails, and the PBs cross-section is proportional to the number of electrons in an
atom.

In the latter case the (incoherent) DFF of an atom is represented as the sum of the
DFF of electron subshells of the atom:

S(q) = Su(q). (2.86)

n,l
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Let us transform the expression for the dynamic form factor of the electron subshell
(Eq. 2.64) using the expansion in terms of the total system of wave functions.

Then we will use the fact that in the frequency range under consideration w>p, vq
momenta transferred from an incident particle to a target far exceed the characteristic
atomic momentum. Then the wave functions of the continuous spectrum making the
main contribution to the DFF can be to a good accuracy approximated by plane
waves, and the expression for the DFF of the electron subshell is represented as:

d N2
Su(q) = / ﬁ 0 <q° + w — sn;> IRu(p)|?, (2.87)

here ¢° = w + q, v + q} /2 m is the energy of a nonrelativistic IP transferred to the
target, (m is its mass); q, = p{’ —p;” is the change of the incident particle
momentum (here the upper index is introduced for IP momenta to distinguish
them from atomic electron momenta), q = q, + k is the momentum transferred
to the target; ¢, is the energy of the electron subshell under consideration (n, / are
the principal and orbital quantum numbers). In the formula (2.87) the function
R,(p) is introduced that represents the spatial Fourier transform of a normalized
radial wave function of the nl-state determined by the formula:

2 o0
Ru(p) = \/E JRnl(r) ji(pr)ridr, (2.88)

0

Ji(pr) is the spherical Bessel function of the first kind.

2.5.2 Impulse Approximation

The delta function in the formula (2.86) describes the law of conservation of energy
in the PBs process with target ionization. In the expression (2.86) we went from
summation over the finite momentum of an atomic electron to summation over the
momentum of the Fourier expansion of the wave function of the electron subshell
under consideration. In the impulse approximation this value coincides with the
initial momentum of an atomic electron. Thus, if it is assumed that:

P*/2 = tu, (2.89)

we come to the impulse approximation widely used in calculations of the Compton
effect on atoms.

Really, in fulfilment of Eq. 2.89 the DFF of the electron subshell (Eq. 2.86) can
be represented as:
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Here the Compton profile of the electron subshell J,,(Q) [14, 15] is introduced
that is determined according to the formula:

Jnl(Q)

N|~

J IRu(p)*p dp. (2.91)
(9]

This value is tabulated for all subshells of all elements in [14] with the use of the
Hartree-Fock and Dirac-Hartree-Fock wave functions.

The formulas (2.86) and (2.90) give the representation of an incoherent DFF in
terms of the Compton profile in the impulse approximation.

Beyond the framework of the impulse approximation instead of the formula
(2.90) it is possible to obtain from Eq. 2.86 the following representation for the
dynamic form factor of an atom in terms of its Compton profile:

Sule) = 577 {1l + VEEAT20) ~Ju(jal + VI F o)) |

(2.92)

Using the tabulated values of the Compton profile [14] makes it possible with the
formulas (2.86), (2.92), and (2.63) to calculate the cross-sections of incoherent PBs
of various elements.

2.5.3 Compton Profile Within the Framework of Statistical Atom
Models

For universalization of the dependence of PBs cross-sections on the charge of an
atomic nucleus, it is of interest to obtain an expression for the Compton profile
within the framework of the statistical model.

Let us introduce an “effective” one-electron radial wave function of an atom in
the statistical model, connecting it with the radial density of distribution of the
electron charge p,,, (r) by the formula:

RWU( ) pvtat( )/Z (293)

Then, considering the distribution of electron density in an atom spherically
symmetrical, it is possible to obtain from Eqs. 2.88, 2.91, and 2.93 for the Compton
profile in the statistical approximation (in terms of one electron) the following
expression:
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1
1
Js(m)z(CI) =27
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Oyae (1) sin(pr) rdr| . (2.94)
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In the elementary case of exponential screening, when the radial electron density
in an atom looks like:
4Z .
Pexplr) = 721", (2.95)
Trr

the following expression for the Compton profile (Eq. 2.94) can be obtained:

8r 1
() (q) = 21TE . (2.96)

erl? 3n (1 + (CII‘TF)2>3

By analogy, for the reduced Compton profile of an atom in the Thomas-Fermi
model we have:

~ 1T
Jrr(q) = = Jf D, (2.97)
q

introduced here is the spatial Fourier transform of the square root of the normalized
Thomas-Fermi density:

err(p) = J (2(x))*"* sin(p x) x/*dx. (2.98)
0

The obtained reduced Compton profiles satisfy the necessary normalizing
condition:

Jiw<c7> dg = Jlﬁ&(q) dg = 0.5. (2.99)
0 0

As seen from the formulas (2.96), (2.97), the normalized Compton profile of an atom
in statistical models depends only on the reduced momentum ¢ = g rrr = q/prr.

Presented in Fig. 2.7 are the dependences of normalized Compton profiles of an
atom on the reduced momentum ¢ calculated within the framework of statistical
models and by the data of the Hartree-Fock calculations [14] for argon and krypton
atoms. It is seen that the Thomas-Fermi Compton profile in the region of small
transferred momenta exceeds appreciably values obtained within the framework of
other models, which is explained by not fast enough decrease of the Thomas-Fermi
electron density with distance. At the same time the exponential screening model
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Fig. 2.7 The dependences of ()
the normalized Compton 1.0
profile on the reduced
transferred momentum
obtained within the
framework of different
models: (/) exponential
screening; (2) Hartree-Fock
calculation for an argon atom;
(3) Hartree-Fock calculation
for a krypton atom;

(4) Thomas-Fermi model

gives quite satisfactory approximation to the results of more exact calculations [14]
with the use of the Hartree-Fock wave functions.

Following from this figure, in particular, is approximate scaling of normalized
Hartree-Fock Compton profiles as functions of the reduced momentum.

2.5.4 Cross-Section of Incoherent PBs of a Nonrelativistic Born
Particle

The expression for the spectral cross-section of PBs of a nonrelativistic Born
charged particle in the high-frequency range m>>w>> I integrated with respect
to the solid angle of photon emission can be obtained from the formula (2.63). In the
ordinary (Gaussian) system of units it looks like:

8 e dw
do(w) :—nmzjdeqqu(qo, q), (2.100)
e

where ey = Zj e is the IP charge.

In derivation of (Eq. 2.100) the expression for the vector potential of the
eigenfield of a nonrelativistic IP in the axial gauge was used, and it was assumed
that q = q;.

It should be noted that in the approximation of quasi-free (at rest) atomic
electrons the incoherent DFF of a target is given by the equation:

2
Snrce(;h(q) :£ 5(w+qv+q /(2:“)>7 (2.101)
qv qv
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where  is the reduced mass of an electron and an IP, Z is the number of atomic
electrons equal to the nuclear charge.

Substituting the expression (2.92) for the incoherent DFF summed over all
electron subshells of an atom in the formula (2.100), we come to the following
representation of the spectral PBs cross-section in the frequency range w>p, vo:

do(w, v, m) = /ZZ2 d&(p‘;, v m) (2.102)

TF PTF

Introduced here is the reduced cross-section dé depending on the frequency of an
emitted photon and the IP velocity normalized accordingly to the characteristic
momentum of a Thomas-Fermi atom.

The reduced cross-section is expressed in terms of the normalized Compton
profile of an atom by the formulas:

b? da
e (@, ¥, m) = 9 — %’ (@, ¥, m) (2.103)
v
Gmax —Vm
da - -
I(®, v, m) = J ?q J {J(t}Jr \/ 23" J(c} +1/ 2670) } d(v cos(qV)),

(2.104)

here v,, = (@ + ¢*/2m) /G, b = 0.8853.
The upper and lower limits of integration with respect to the magnitude of the
transferred momentum in the integral (2.104) are defined by the condition v, <v.
The dimensional cross-section ¢ included in the expression (2.103) is:

_16 e®
7= 3 m:hc’

=2.074-10%a.u. (2.105)

Here we used the Gaussian system of units.

Thus the formulas (2.102), (2.103), (2.104), and (2.105) reveal the scaling law
for the cross-section of incoherent PBs of a fast (but nonrelativistic) charged
particle on a multielectron atom and express the process cross-section in terms of
the normalized Compton profile of X-ray scattering. This cross-section (accurate to
the multiplier v/Z) depends on the frequency of an emitted photon and the IP
velocity nondimensionalized with the use of the Thomas-Fermi momentum.

It should be noted that though, strictly speaking, scaling Eqgs. 2.102, 2.103,
2.104, and 2.105 is obtained within the framework of the statistical model of an
atom, it is also approximately true for a Hartree-Fock atom in view of the above
approximate scaling of normalized Compton profiles (see Fig. 2.7).
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We will give for comparison a corresponding expression for the cross-section of
incoherent PBs on a hydrogen-like ion with the charge Z:

doy(w, v, m) =2 b2 d&(pﬂz, Al m) (2.106)
H PH

where py = Z a.u. is the characteristic momentum of a hydrogen-like atom.

The found expression (2.102) for the cross-section of high-frequency PBs with
atomic ionization refines and supplements the result of Eq. 2.69 obtained with the
use of the DFF in the model of free atomic electrons (Eq. 2.101) that can also be
represented in the form (2.102) and (2.103), if it is assumed that:

1+4/1=20/(uv?)
Ifl'ee((ba Va Au) =In
L—y\/1=20/(uv?)
do

Shown in Fig. 2.8 are the spectral dependences of the value w do calculated

(2.107)

within the framework of different approximations, including the model of free
atomic electrons, for incoherent PBs of a proton. It is seen that the main difference
of the models shows itself in the frequency range w>w* = pv?/2, that is, behind
the “cutoff” frequency for PBs on free electrons.

From kinematic considerations it is clear that the “cutoff” frequency for PBs of
an electron, other things being equal, is half the value for PBs of a proton (because
of the difference in reduced masses), this situation supplements the conclusion
drawn earlier about the PBs cross-section independence of the mass of an incident
particle.

The reduction of the cross-section with growing PBs frequency in the exponen-
tial screening model occurs appreciably faster than for the Hartree-Fock Compton
profile, which follows also from Fig. 2.7. For frequencies smaller than the “cutoff”
frequency the Hartree-Fock consideration of binding of atomic electrons in the
initial state results in a somewhat smaller cross-section value in comparison with
the model of free atomic electrons.

Let us note the close similarity of the dependences in Fig. 2.8 with corresponding
spectral cross-sections for radiation ionization from the theoretical work [16]. In
this work for description of incoherent PBs (radiation ionization) a similar approach
was used, based on the use of the nondiagonal atomic form factor F,, y (¢) that was
calculated earlier in connection with the problem of ionization of atoms and
excitation of characteristic X-rays.

Shown in Fig. 2.9 are the dependences of the value w dg/dw of incoherent PBs
of a proton on a krypton atom on the proton velocity for three values of bremsstrah-
lung photon energy — 3.78 keV, 7.57 keV, and 11.35 keV.

It is seen that the velocity dependences of cross-section have maxima. These
maxima are shifted to the region of higher velocities with growing bremsstrahlung
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Fig. 2.8 The spectral cross- ® do/dw, bam
section of incoherent PBs of a 1.0
proton with an energy of

34 MeV on a krypton atom
near the “cutoff” frequency
calculated within the
framework of different
approximations for the
electron density of an atom:
Hartree-Fock calculation
(curve 1), exponential
screening (curve 2),
approximation of free atomic
electrons (curve 3)

0.5

fio, keV

photon energy. A corresponding formula relating the bremsstrahlung photon
frequency and the optimum value of proton velocity in atomic units looks like:

Vop = 1.89 (2.108)

It is essential that the relation (2.108) does not depend on the charge of an atomic
nucleus in contrast to the analogous dependence for coherent PBs, when there is a
linear connection between the optimum velocity and radiated frequency through the
radius of the atomic subshell making the greatest contribution to the process.

2.5.5 Comparison of Cross-Sections of Incoherent and Coherent
PBs

Now we will analyze the relation between the cross-sections of coherent and
incoherent PBs.

We will calculate the cross-section of the coherent process within the framework
of the exponential screening model for the electron density of the target core.
A corresponding expression can be obtained from the formula (2.63) if it is taken
into account that the DFF of an atom in this case is reduced to the ordinary static
form factor being a Fourier transform of electron density.

After standard transformations including integration with respect to the solid
angles of an emitted photon and a transferred momentum, for the cross-section of
coherent PBs of a nonrelativistic Born particle we have the following expression
(in atomic units):
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Fig. 2.9 Incoherent PBs of a o do/dwm, barn
proton on a krypton atom as a 6
function of the proton velocity
for three values of

bremsstrahlung photon energy:
ho = 3.78 keV (curve 1), 4+
ho = 7.57 keV (curve 2),
ho = 11.35keV (curve 3)
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coh 3 3203 ~2 4
Vo (1 +3q /2) q

min

In the integral of the expression (2.109) there are the same limits of integration
with respect to the transferred momentum as in the formula (2.104). “Tilde” above
the sign of the transferred momentum and of the IP velocity, as before, means
normalization to the momentum (velocity) of a Thomas-Fermi atom.

The integral in the Eq. 2.109 is taken in quadratures, but a corresponding
expression is rather cumbersome. For a heavy IP the upper limit of integration
can be replaced by infinity, then for the integral with respect to the reduced
transferred momentum we have:

~\ 2 ~\ 4
n+s4($) +72 (9 o

P o ! 7\ ?
159 (6, %) — -5+ 1n<1+2 (%) ) (2.110)
12 <1+2 %) )

N

It should be noted that in the limit v prr<<® (*) from the formula (2.110) the
asymptotics follow:

19P(@, %) =2 (V/@)*. 2.111)
The inequation (¥) can be rewritten as: » >> 0.125Z?/3 keV, whence it follows
that it is satisfied for all Z in the kiloelectron-volt range of bremsstrahlung photon
energies.
From the formulas (2.109), (2.110), and (2.111) we obtain for the coherent PBs
cross-section in the exponential screening approximation and the high-frequency
limit @ >> 0.125 7%/ keV:
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32p7 Ve d
_ 220 a3 Y49 2.112)

(exp)
dogy () = 3¢3 @ o

coh

For correct estimation of the relation between the cross-sections of coherent and
incoherent processes it is important to emphasize that a simple exponential approx-
imation underestimates considerably the contribution of the K-shell to coherent PBs
on a multielectron atom in a high-frequency range. Really, the radius of the orbit
nearest to the nucleus is approximately Z?/? times less than the Thomas-Fermi
radius, so the corresponding integral in the formula (2.109) results in reduction of
the spectral cross-section at higher frequencies than this takes place for the Thomas-
Fermi radius.

To take into account the contribution of the K-shell, we rewrite the formula
(2.109) as follows (Z>>1):

4/3
exp)g oy _ 10277 5 dO [oexp) = oy 4 exn) s o
da(‘olz (CU) - ? \72 3 b ; ]coh ((’0? V) +? ]cnh ((1), v (PK(Z)/PTF)) 5

(2.113)

introduced here is the momentum of the atomic K-shell pk(Z).

The expression (2.113) is a universal (common for all nuclear charges) repre-
sentation of the cross-section of coherent PBs of a fast particle obtained in the
exponential electron density model with individual consideration of the contribu-
tion of the K-shell to radiation.

The results of calculation of the spectral cross-sections of coherent and incoher-
ent PBs of a proton on a krypton atom for two values of proton velocity are
presented in Fig. 2.10.

From this figure it follows in particular that the prevalence of the incoherent
process over the coherent process can take place at high enough velocities of an
incident particle since in this case the “cutoff frequency” for radiation ionization is
shifted to the region of high frequencies, in which the contribution of most of
atomic electrons to coherent PBs is already small.

Thus in this paragraph within the framework of the high-frequency approxima-
tion for the operator of electromagnetic field scattering the universal description of
incoherent PBs of a fast charged particle on a multielectron atom was obtained. The
process cross-section is expressed in terms of the Compton profile of X-ray
scattering.

The basis for the obtained universal description is approximate scaling of the
reduced Compton profile of X-ray scattering by a neutral atom for high enough
nuclear charges (Z > 20) that was found in this work.

Based on the derived formulas and within the framework of different
approximations for electron density of the electron core of a target, the spectral
and velocity dependences of the cross-section of incoherent PBs of a proton on a
multielectron atom were analyzed.



References 61

a b
 do/dw, barn b
100
10 |
10 - o i !
2 0.1+ 2
0.01
] =
I
0.001

0 2 4 6 8 10
fiw, keV

Fig. 2.10 The spectral cross-sections of coherent (curves 1) and incoherent (curves 2) polarization
bremsstrahlung of a proton on a krypton atom for different proton velocities: (a) v/f = 10vyr = 3
7.3 au., (b) v =3vyr = 11.2 au

It was shown that for a specified PBs frequency there is an optimum velocity of
an incident particle, at which the process cross-section has maximum. The value of
optimum velocity grows as the square root of frequency.

The carried out comparison of the cross-sections of coherent and incoherent
processes has shown that for high enough velocities of an incident particle there is a
frequency range of prevalence of PBs with atomic ionization over coherent PBs.
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