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Chapter 1

Genesis of the Concept of Polarization

Bremsstrahlung

1.1 Definition and Physics of Polarization Bremsstrahlung

Polarization bremsstrahlung (PBs) is a fundamental radiative process arising in

scattering of a charged particle by a target with internal degrees of freedom [1]. An

elementary example of PBs is radiation of an electron on an atom. In this case

internal degrees of freedom correspond to bound electrons of an atom that can

reradiate an electromagnetic eigenfield of an incident particle (in this case of an

electron). This process is presented in Fig. 1.1 together with ordinary bremsstrah-

lung (OBs) that is also called static bremsstrahlung (SBs).

In Fig. 1.1 the dotted arrows show a real bremsstrahlung photon, the solid thick

arrow shows a virtual photon of the eigenfield of an incident particle, the solid curve

shows the trajectory of an incident particle.

It will be recalled that OBs results from acceleration of a charged particle in the

field of a target. If an electron is scattered by a “bare” nucleus, bremsstrahlung (Bs)

will proceed only by an ordinary (static) channel if nuclear degrees of freedom are

neglected. In case of the presence of bound electrons, PBs arises together with OBs.

To take into account the polarization channel, it is necessary to consider atomic

electrons “on a par” with an incident electron, that is, as an independent dynamic

degree of freedom able to participate “fully” in electromagnetic processes. At early

stages of the theory of Bs on an atom an approximate model was used, within the

framework of which bound electrons were replaced with the static distribution of

electron charge. In other words, their role reduced exclusively to screening an

atomic nucleus. So this model is called the screening approximation. In the

screening approximation the polarization Bs channel is absent since atomic

electrons are prevented from reradiating the electromagnetic field of an incident

particle. But the fact is that atomic electrons are excited as a result of collision with

a charged particle incident on an atom and can transform the energy of this

excitation to the energy of a bremsstrahlung photon. It is significant that in this

case the matter is so-called virtual excitation, when an electron is in a state with a

V. Astapenko, Polarization Bremsstrahlung on Atoms, Plasmas, Nanostructures
and Solids, Springer Series on Atomic, Optical, and Plasma Physics 72,
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higher energy that does not conform to the stationary state of an electron in the field

of the atomic core.

It is possible to give PBs a double interpretation. First, this process can be

represented as the conversion (reradiation) of a virtual photon making the eigenfield

of an incident charge to a real photon on the electron subsystem of a target. This

interpretation goes back to the method of equivalent photons that was for the first

time applied by E. Fermi to calculate cross-sections of excitation of an atom by

charged particles even before development of quantum mechanics. In the case

under consideration PBs results from scattering of a virtual photon by atomic

electrons to a real photon. This approach is especially descriptive in case of a

relativistic incident particle, the electromagnetic field of which in its structure is

close to the field of a free electromagnetic wave corresponding to radiation in an

empty space. Another interpretation treats PBs as radiation arising as a result of

induction of a variable dipole moment in the target core during scattering of a

charged particle. The radiating dipole moment is proportional to the dynamic

polarizability of a target at a specified frequency, so arising radiation is called

polarization radiation. It is called bremsstrahlung since its energy, as in case of

ordinary Bs, is drawn from the kinetic energy of an incident particle that is slowed

down after emission of a photon.

Besides PBs on an atom, PBs on negative ions, positive ions with an electron

core, on Debye spheres in plasma, on a solid body (amorphous, crystalline, poly-

crystalline), clusters, nanoparticles, etc. is possible.

In the presence of radiation an inverse bremsstrahlung effect by the polarization

channel is also possible, when the energy of a radiation field is absorbed by an

electron scattered by an atom (ion) as a result of “pumping” through the electron

core of a target. Then the field energy decreases, and the electron is accelerated. In

case of a reverse energy flow, on the contrary, the electron is slowed down, and the

field is strengthened.

It should be emphasized that PBs and SBs arise in the same elementary radiative

process. In terms of quantum mechanics this means that in obtaining the probability

of total Bs it is necessary to sum their amplitudes. Hence it follows that the total

Atom

Incident particle 

Polarization Bs

ω 

Ordinary Bs

Fig. 1.1 Two channels of

bremsstrahlung of an incident

particle on an atom
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probability of the process contains an interference summand corresponding to

interchannel interference during Bs. This summand is particularly important in

case of bremsstrahlung of nonrelativistic electrons.

1.2 Analogs of Polarization Bremsstrahlung in a Medium

The term “polarization bremsstrahlung” was invented for radiation during scatter-

ing of a charged particle by an atom in 1985 [1]. Until then different scientific

groups used three terms: dynamic Bs (V.M. Buimistrov’s group), atomic Bs (M.Ya.

Amus’ya with co-workers), and polarization Bs (B.А. Zon).
For radiation resulting from the conversion of the eigenfield of charged particles

on Debye spheres in plasma А.V. Akopyan and V.N. Tsytovich [2] proposed the

term “transient bremsstrahlung”. The origin of this name is connected with the fact

that PBs in plasma can be described as transient scattering of virtual photons to real

photons by the Debye “coat”. The correspondence between transient Bs and

polarization (dynamic) Bs was established in the V.А. Astapenko’s thesis [3], in
which it was shown that transient Bs is nothing but polarization Bs on Debye coats

surrounding ions in plasma.

Another analog of PBs is parametric X-radiation arising in scattering of a

charged particle in a single crystal. This term was invented by Ya.B. Fainberg

and N.А. Khizhnyak.
In works of N.N. Nasonov it was shown that parametric X-radiation represents a

coherent part of PBs in a crystal in the spectral range, in which the high-frequency

approximation for dynamic polarizability of crystal atoms is true.

Finally, another realization of PBs is emission of a charged particle on

nonuniformities of dielectric permittivity of a medium that was studied theoreti-

cally by S.P. Kapitsa [4]. This emission results from scattering of the eigenfield of a

charge in a substance that is caused by the nonuniformity of electron density of a

target resulting in nonuniformity of dielectric permittivity.

From the above it is seen that the interpretation of PBs as the process of

scattering of virtual photons is applicable to a wide range of phenomena both on

atomic particles and on condensed media, in plasma, and in nanomaterials.

To summarize, the polarization mechanism is a basis for the consistent micro-

scopic description of related radiative phenomena, in which the conversion of a

virtual photon to a real photon on target electrons occurs (Table 1.1).

1.3 Main Properties and Characteristic Features of Polarization

Bremsstrahlung

Since the mechanism of initiation of a polarization channel differs from the

mechanism of initiation of ordinary Bs, PBs has a number of distinguishing

characteristic features (Table 1.2).
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The most essential distinction between these mechanisms of radiation is that the

intensity of OBs is inversely proportional to the squared mass of an incident

charged particle, and the intensity of PBs does not depend on this mass (as a first

approximation).

Another distinction shows itself for relativistic charged particles: OBs has a

narrow angular distribution along the velocity of a scattered charge, and the angular

distribution of PBs is of a dipole nature.

In the relativistic case the PBs cross-section increases logarithmically with the

energy of an incident particle, and the SBs cross-section does not depend on energy

in the relativistic limit.

Another important distinction is that OBs is formed at short distances from a

scattering center, and PBs is formed at large distances. So the polarization channel

is more sensitive to the spatial structure of a target than the static mechanism of Bs.

Based on this fact is the possibility to develop new methods of material diagnostics

using PBs.

The OBs spectrum is defined by the potential of a target, while the spectral PBs

cross-section is proportional to the squared dynamic polarizability of a target. This

property of the polarization channel can be used to determine eigenfrequencies and

strengths of oscillators of electron transitions of a target.

Table 1.1 Synonyms of the term “PBs” and analogs of PBs in a medium

Radiation on an atom Dynamic Bs (V.М. Buimistrov with co-workers)

Atomic Bs (М.Ya. Amus’ya with co-workers)

Polarization Bs (B.А. Zon)
Radiation in plasma Transient Bs (V.N. Tsytovich, А.V. Akopyan)
Radiation in a condensed medium Parametric X-radiation (Ya.B. Fainberg and N.А. Khizhnyak)

Radiation on random nonuniformities (S.P. Kapitsa)

Table 1.2 Characteristic features of ordinary and polarization bremsstrahlung

Static Bs Polarization Bs

Caused by acceleration of a charge in the field of a

target

Caused by a variable dipole moment

induced in the target core

Formed at short distances from a target Formed at long distances from a target

The intensity is inversely proportional to the squared

mass of an incident particle

The intensity does not depend on the mass

of an incident particle

Has an acute angular distribution for relativistic

incident particles

Has a dipole angular distribution for

relativistic incident particles

The spectrum is defined by the potential of a target The spectrum is defined by the dynamic

polarizability of a target
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1.4 Theoretical Fundamentals Concerning Polarization

Bremsstrahlung

Polarization bremsstrahlung results from virtual excitation of bound electrons of a

target under the action of a variable electric field produced by an incident particle.

Corresponding to the virtual excitation of a system in terms of the second-order

perturbation theory is summation over intermediate energy states of the electron

core of a target. Generally speaking, this summation covers the region of the

discrete and continuous energy spectra. If the frequency of an emitted photon

approaches one of eigenfrequencies corresponding to the transition of target

electrons between bound states, the resonance increase of the PBs cross-section

occurs. In this case resonant polarization bremsstrahlung takes place. The

described situation arises in scattering of electrons by ions in the UV and X-ray

(in case of multiply charged ions) ranges. Besides, it takes place in scattering of

electrons by alkali and alkali-earth atoms in the visible spectrum. Corresponding to

the resonance process is a resonance in the frequency dependence of the dynamic

polarizability of a target. Such a resonance is absent in the X-ray frequency range

for targets consisting of neutral atoms because of the low oscillator strength of

bound-bound transitions in this case and influence of electron collective effects.

As already noted, an important characteristic feature of PBs is the independence

of its cross-section from the mass of an incident particle, while ordinary brems-

strahlung (OBs) of heavy particles caused by acceleration of a charge in the electric

field of the target is suppressed. The OBs cross-section is inversely proportional to

the squared mass of an emitting particle. The independence of the PBs cross-section

from the mass of an incident particle is connected with the nature itself of this

phenomenon. The virtual photon of the charge eigenfield is defined by the velocity

and the impact parameter and does not depend on mass.

Within the framework of the classical trajectory description it can be said that

PBs is formed at distances exceeding the size of the electron core of a target since

with smaller impact parameters the coherence of reradiation of a virtual photon of

an incident particle eigenfield to a real photon is lost. On the contrary, OBs in

scattering of an electron by a neutral atom corresponds to small impact parameters

and occurs in the region of space where the scattering center field is the strongest.

The trajectory approach loses its obviousness in charge scattering in an extended

medium. Then it is better to use the conjugate space, in which the role of distance is

played by a wave vector transferred from an incident particle to a target: the more is

the transferred wave vector, the less is a corresponding spatial scale. In such an

approach it can be asserted that the most contribution to the integrated cross-section

of PBs on an isolated atomic particle is made by transferred wave vectors smaller

than the inverse radius of a target.

In case of electron scattering in a condensed substance and in plasma, PBs with

transfer of energy-momentum to collective excitations (phonons, plasmons,

polaritons) as well as to the whole sample as a unit is possible. The latter case is

realized in scattering of a charged particle in single-crystal and polycrystalline

targets, when together with pair (incoherent) interaction processes with transfer of a
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momentum (or a wave vector) to the whole crystal lattice are possible. In this situation

the transferred wave vector is equal to one of the vectors of the reciprocal crystal

lattice, and the yield of PBs photons is proportional to the squared concentration of

medium atoms. Coherent PBs in a single crystal occurs at fixed frequencies defined by

the reciprocal lattice vector and the incident particle velocity. It can be interpreted as

the Bragg scattering of a virtual photon of the incident particle eigenfield by the

crystal planes of a target. Thus the PBs spectrum in a regular structure has a set of

sharp maxima (coherent peaks). When going to a polycrystal, it is necessary to

average the PBs probability over possible orientations ofmicrocrystallites. As a result,

coherent peaks in the PBs spectrum disappear, and instead of them a stepped structure

appears that is caused by sequential “turning-off” of the reciprocal lattice vector

contribution to radiation as the bremsstrahlung photon energy growths.

Besides the coherent component of PBs, in crystalline targets at the nonzero

temperature of a medium an incoherent radiation channel arises that is caused by

lattice thermal vibrations. The incoherent component of PBs prevails in the high-

frequency spectral range where the process is accompanied by transfer of reciprocal

lattice vectors of high magnitudes from an incident particle to a target. Such

processes are rather sensitive to the deviation of the lattice structure from the

ideal structure.

PBs both of nonrelativistic and of relativistic electrons scattered by isolated

centers of force has a dipole pattern, while OBs of a relativistic charge in this case is

directed along its velocity. This is connected with the fact that a real photon during

PBs is produced as a result of scattering of a virtual photon by nonrelativistic

electrons of a target. If the radiation coherence length Lcoh is introduced as a

distance at which the detachment of a real photon from the eigenfield of a charged

particle occurs, it can be shown that this value reaches macroscopic sizes for

incident particles with the high Lorentz factor g ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v c=ð Þ2

q�
>> 1 (v is

the velocity of an incident particle, c is the velocity of light in free space) Lcoh �
g2 l (l is wavelength of emitted photon).

The coherence length of PBs in pair interaction remains being of the order of the

radiation wavelength. This causes the absence of the density effect for PBs in

disordered structures. It will be recalled that the density effect in OBs shows itself

in reduction of process intensity as a result of increasing phase velocity of electro-

magnetic waves in a medium with the plasma dielectric permittivity (which is less

than unity). This increase results in the fact that a real photon is detached from the

incident particle eigenfield faster than it would occur in vacuum, which results in

reduction of the OBs cross-section. This effect was for the first time predicted by

M.L. Ter-Mikaelyan [5]. It is responsible for decreasing OBs intensity in the

low-frequency range o < gope (ope is electronic the plasma frequency).

For applications of PBs spectroscopy as a physical basis for diagnostics of

materials including nanostructured media, it should be noted that it is the formation

of PBs at large impact parameters (or at low transferred momenta) that makes it

sensitive to interatomic correlations. This ultimately makes it possible to obtain

information on a target structure based on the analysis of spectral and angular

dependences of PBs.
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1.5 Polarization Bremsstrahlung in Atoms, Solids

and Nanostructures

The consistent theory of PBs on an atom based on the quantum-mechanical

approach has arisen in the works of V.М. Buimistrov, М.Ya. Amus’ya, and B.А.
Zon [1, 6–10]. The historically first were the works of V.М. Buimistrov [6] and

V.М. Buimistrov in co-author with L.I. Trakhtenberg [7]. In the first of the cited

works PBs that was called dynamic Bs of a nonrelativistic electron was calculated

in the resonant approximation, when the frequency of an emitted photon is close to

one of the eigenfrequencies of an atom. In this case it was possible to retain one

summand of the sum over virtual transitions of bound atomic electrons.

In the paper [7] a special method of summation of the perturbation theory series

was used in calculation of the cross-section of PBs of an electron scattered by a

hydrogen atom. As a result, it has been possible to describe the PBs spectrum in a

wide frequency range, but not only in the region of resonance frequencies. In the

work [10] the process was considered in the high-frequency approximation, when it

is possible to carry out the approximate summation of the perturbation theory

series. Within the framework of the consistent quantum-mechanical formalism in

this work the static Bs channel was also taken into account. It was shown that in the

high-frequency limit the cancellation of the contribution of the polarization channel

and the screening effect of atomic electrons in the OBs amplitude occurs. As a

result, the process proceeds as on a “bare” nucleus. This effect was called the effect

of atom stripping during Bs (stripping approximation), or the descreening effect.

Further it was shown that in case of multielectron atoms the “stripping” approxi-

mation gives a good conformity with the result of the more exact approach in a wide

frequency range, but not only in the high-frequency limit. In the papers [6–10] an

incident electron was assumed to be nonrelativistic, but fast enough, so it was

possible to use the Born approximation for its interaction with an atom.

In the work of М.Ya. Amus’ya with co-authors [8] an incident electron, on the

contrary, was assumed to be slow, and the inverse bremsstrahlung effect was

calculated, that is, the absorption of a photon of the external electromagnetic field

by an electron scattered by an atom. The contribution both of ordinary and of

polarization Bs was taken into account, and in the latter case for calculation of an

amplitude a special version of the many-particle perturbation theory was used: the

random phase approximation with exchange. It was shown that the contribution of

the polarization channel is rather essential and can exceed the contribution of the

ordinary mechanism of the bremsstrahlung effect even far from resonance

frequencies.

In the B.А. Zon’s work [9] in the description of the amplitude of PBs on an atom

in the Born-Bethe approximation the dynamic polarizability of an atom was used

for the first time, which was an essential step in the development of the PBs theory

since this has opened a possibility to use well-developed methods of calculation of

atomic polarizability for description of the polarization channel.
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The description of PBs in plasma in the approach of V.N. Tsytovich [2] was

based on the use of the classical formalism for nonlinear current arising in scatter-

ing of charged particles in plasma. Nonlinear current radiation as a result of

scattering processes of two types, Compton and transient, was considered. Compton

scattering is accompanied by transfer of the momentum excess during radiation to

plasma electrons and corresponds to ordinary Bs. Transient scattering is connected

with transfer of the momentum excess to plasma ions, when a photon is emitted by a

coherently vibrating charge of the Debye sphere, and corresponds to PBs. The

consideration of PBs in plasma within the framework of the quantum-mechanical

approach was given in the thesis [3] with the use of the method of the dynamic form

factor of plasma components that was finally expressed in terms of different

components of the plasma dielectric permittivity.

PBs on an amorphous target within the framework of the approach based on

classical electrodynamics was studied theoretically in the paper [11]. A similar

method was used in the work [12] in calculation of the spectrum of Bs of relativistic

electrons in a polycrystal with account for of the polarization channel. In the cited

paper it was shown that the PBs spectrum contains maxima corresponding to the

fulfilment of the Bragg condition in scattering of a virtual photon to a real photon by

a polycrystalline target. The position of the maximum is defined by the electron

velocity and the vector of the reciprocal lattice of the polycrystal. With increasing

velocity of an incident electron the spectral maximum is shifted towards higher

photon energies. The PBs intensity at the maximum exceeds the intensity of

ordinary Bs.

PBs of a nonrelativistic heavy charged particle on a thin polycrystalline target

was calculated in the work [13] by the methods of quantum mechanics without

considering photoabsorption and loss of energy of an incident particle in a sub-

stance. In this case the OBs intensity is negligible since it is inversely proportional

to the squared charge mass. It was shown that in contrast to the relativistic case the

significant contribution to the photon yield by the polarization channel is made by

the incoherent summand in the PBs amplitude connected with transfer of the

energy-momentum excess in binary collisions. The contribution of the coherent

mechanism of PBs, when a momentum is transferred to the whole crystal lattice as a

unit, is the most essential in the low-frequency part of the spectrum. An important

feature of PBs of a nonrelativistic charge in a polycrystal is the presence of

frequency steps in the spectrum connected with “turning-off” of the contribution

of one of the reciprocal lattice vectors to the process. The position of the frequency

step is defined by the reciprocal lattice vector and the velocity of an incident particle

and thus carries information on the target properties.

PBs of a nonrelativistic electron in a thin polycrystalline target was calculated in

the paper [14] in the stripping approximation with account for of the contributions

of both channels to the process. It was shown that the spectrum of total Bs contains

“frequency steps” arising due to the contribution of the coherent part of PBs to

radiation.

As already noted, experiments on investigation of PBs in a condensed medium

were carried out mainly with the use of relativistic electrons with an energy of
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several MeV. In this case the polarization channel shows itself as maxima on the

spectral dependence of bremsstrahlung photon yield. For example, in the work [15]

the spectrum of Bs of an electron with the energy of 2.4 MeV scattered in a

polycrystalline aluminum target was recorded. The position of the spectral maxi-

mum of radiation falling on photon energy of 4 KeV was clearly located. The

comparison with the calculation based on the approach [12] showed a good

conformity between the experimental and theoretical data. In the process of this

work in the paper [16] the measurements of the PBs spectra for electrons with the

energy of 7 MeV scattered in polycrystalline films of aluminum, copper, and nickel

were carried out, and the detailed quantitative comparison of the experimental and

calculated data was presented. A good conformity between the theory and the

experiment was obtained, which is demonstrated for a copper target by Fig. 1.2.

In the central part of this figure the major peak caused by the polarization

channel is located. The low-frequency part of the spectrum is an exponential

background. In the high-frequency wing there is a peak of the copper K-line with

a maximum at 8.025 eV. In the spectrum there is also a background peak of the

K-line of iron at 6.4 KeV. On the right side of the central peak of PBs there is a

second peak. Fitting the spectrum with the Gauss distribution gives the position of

peaks: 4.267 eV and 4.886 eV. The third peak of PBs should show itself according

to calculations in a range of photon energies about 7 KeV. However, in this case it is

difficult to discern this peak in the spectrum in view of its position at the rise of the

copper K-line peak that surpasses PBs in intensity by more than two orders of

magnitude.

Thus in case of scattering of relativistic electrons in polycrystalline targets a

reliable experimental evidence of substantiality of the PBs contribution to the yield

of X-ray photons is obtained, and the characteristic features of the polarization

channel spectrum are reproduced by calculation within the framework of a

corresponding theoretical approach [12].

The initial stage of theoretical and experimental investigations of PBs and

a number of related processes was summed up in the review [17] and the mono-

graph [18].

Fig. 1.2 The measured

(points) and calculated (solid
curve) spectra of PBs of an
electron with an energy of

7 MeV from a copper foil [16]
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The book [18] (Chap. 7) contains also the theoretical description of PBs in

collisions of electrons with metal clusters and fullerenes. The emphasis is on the

spectra in the visible wavelength range, where radiation has characteristic maxima

connected with collective excitations of the electron subsystem of a target. These

collective excitations are caused by variations of the electron density of valence (in

case of fullerenes) and delocalized (in case of metal clusters) electrons, by which a

virtual photon of an incident particle is scattered to a real bremsstrahlung photon.

The said variations occur in a thin near-surface layer of the target, the thickness a of
which is of the order of the atom size and is supposed to be much lesser than the

cluster radius R. In the interior of the cluster electron density is compensated by

the positive charge of ions. The construction of the theory in the case under

consideration is significantly simplified due to the presence of the small parameter

a R= that makes it possible to use a simple model expression for the form-factor of

the target FðqÞ.
The generalized polarizability of the target a o; qð Þ necessary for calculation of

the PBs cross-section in the Born approximation, as a rule, is calculated in the

multiplicative approximation, in which a o; qð Þ ¼ a oð Þ ~FðqÞ , where a oð Þ is the

dipole dynamic polarizability, ~FðqÞ is the normalized form factor of the target

representing a spatial Fourier transform of electron density distribution. The above

equation was proved in the paper [19] with the use of calculations made within the

framework of the quantum-mechanical random phase exchange approximation for

a case of multielectron atoms.

The dynamic polarizability of metal clusters and fullerenes was calculated in the

resonant approximation [18, 20], when the function a oð Þ has a resonance at the

plasma frequency op:

a oð Þ ¼ R3
o2

p

o2
p � o2 � ioG

; (1.1)

whereG is the damping constant. The plasma frequency is defined by the number of

delocalized electrons Ne and the target radius R. The formula for plasma frequency

used in [18, 20] in case of a metal cluster in atomic units (e ¼ me ¼ �h ¼ 1) looks

like: op ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ne R3=

p
, in case of a fullerene op ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ne 3R3=

p
.

For metal clusters the photon energy at the plasma frequency depending on the

size of a cluster changes from 2 to 5 eV. For the fullerene C60 this energy is much

more and is 19 eV.

It should be noted that the radius of the fullerene C60 is 0.35 nm (about 6 a.u.),

and the radius of a carbon atom is less than 0.1 nm. The form factor for cluster

targets can be calculated in the general form in view of the fact that PBs results from

scattering of a virtual photon of the incident particle eigenfield in a thin near-surface

layer. Substituting the equation raj j � R (ra is the radius vector of a cluster atom) in

the expression for the form factor, we can find: FðqÞ ¼ 3 j1 qRð Þ
qR ( j1ðxÞ is the first-

order spherical Bessel function). This expression is true for the transferred vectors q
of not too high magnitudes that satisfy the inequality: q << 1 a= .
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The expression for the spectral cross-section of PBs of a nonrelativistic electron

on a nanocluster (in atomic units) looks like [18, 20]:

o
dsPB

do
¼ 16o4

3 c3 v2
a oð Þj j2 S1 R qminð Þ � S1 R qmaxð Þ½ �; (1.2)

whereqmin ¼ m v
�h 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2 �ho

m v2

q� �
,qmax ¼ m v

�h 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2 �ho

m v2

q� �
are the magnitudes

of the minimum and maximumwave vectors transferred from an incident particle to

the target, and

S1ðxÞ ¼ 1

8 x6
�
6þ 9 x2 � �

12 xþ 2 x3 � 4 x5
�
sin

�
2 x

�� �
6� 3 x2 þ 2 x4

�
� cos

�
2 x

�� 8 x6 Ci
�
2 x

�	 (1.3)

is the function arising after integration with respect to the momentum transferred

from an electron to the target, CiðxÞ ¼ gþ ln xþ Ðx
0

cos t�1
t dt is the integral cosine

(g ffi 0.577 is the Euler constant). According to the formula (1.2), the function S1ðxÞ,
together with the target polarizability (1.1), defines the dependence of the PBs cross-

section on the size of a nanocluster.

It should be noted that far from the kinematic boundary, when �ho << m v2 2= ,

we haveqmin � o v= andqmax � 2m v �h= . In this case qmin << qmax and according to

the plot of Fig. 1.3, the inequality S1 R qminð Þ >> S1 R qmaxð Þ is true, so it is possible
to retain only the first summand in the square brackets on the right of the Eq. 1.2. In

the limitR qmin << 1 the formula (1.3) givesS1ðxÞ � � ln 2R qminð Þ ffi ln v 2oR=ð Þ,
and (1.2) and (1.3) give the result known from the theory of PBs on an atom.

Presented in the book [18] and the review [20] are the results of calculations (in

the first Born approximation for interaction of an incident particle with a target) of

spectral cross-sections of PBs arising in scattering of electrons by metal clusters and

fullerenes.

For a case of collision of an electron with fullerenes it was shown that the

maximum of the spectral PBs cross-section is reached in fulfilment of the condition
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Fig. 1.3 The plot of the

function S1ðxÞ defining,
together with the target

polarizability, the dependence

of the PBs cross-section on

the size of a nanocluster
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v ¼ vmax � Rop, where v is the initial velocity of a scattered electron. The value of

the optimum velocity vmax for the fullereneC60 is about 3.5 a.u., which corresponds

to the energy of 167 eV. At such an electron energy the maximum of the spectral

cross-section of PBs on the fullerene C60 falls on a photon energy about 19 eV, and

the calculated value of the cross-section o ds do= at a corresponding frequency is

about 10�19 cm2 (about 3.6·10�3 atomic cross-section units). The width of the

maximum in the spectrum of PBs on the fullerene is defined by the value of the ratio

G op


 � 0:6. The high value of this ratio is caused by the fact that the energy of

plasmon resonance in a fullerene is more than the potential of ionization of its

atoms, so the ionization processes (bound-free transitions) make a substantial

contribution to damping of collective oscillations in a fullerene.

With decreasing electron velocity the maximum of the PBs cross-section is

shifted towards lower photon energies. Thus at an electron velocity of 1.5 a.u. (an

energy of 30.6 eV) the cross-section maximum is reached at a bremsstrahlung

photon energy of 11.5 eV and is about 1.8·10�20 cm2. With increasing electron

velocity the cross-section maximum is shifted to the high-frequency range. In this

case the right resonance arm is amplified since the suppression of the PBs spectrum

(due to the influence of the target form factor) occurs then at higher frequencies.

The calculation of the spectral cross-section of PBs on a fullerene for an electron

velocity of 7 a.u. gives a maximum cross-section value of 7·10�20 cm2 at a

bremsstrahlung photon energy of 20 eV. At low velocities the process cross-section

as a function of the bremsstrahlung photon energy oscillates. These oscillations are

connected with the diffraction of the incident particle eigenfield on the target and

are seen on the plot of Fig. 1.3 for the function S1ðxÞ.
The calculation of the velocity dependence of the cross-section of PBs on a

fullerene shows that the cross-section maximum at the plasma frequency is reached

at an electron velocity of 3.5 a.u. A corresponding curve shows a sharp dip with

decreasing velocity, which is caused by the influence of the target form factor. At

high velocities rather smooth reduction of the cross-section occurs, which is

connected with the presence of the squared electron velocity in the denominator

of the expression for the PBs cross-section.

The numerical analysis presented in [18] and [20] shows that the angular

distribution of PBs in scattering of an electron by a fullerene depends on electron

velocity. At the maximum of the frequency and velocity dependences (�ho ¼ 19

eV, v ¼ 3:5 a.u.) this distribution has a maximum at a radiation angle of 90�. At
low velocities including the optimum velocity PBs is defined mainly by plasmon

oscillations occurring in parallel with the velocity of an incident electron. At

high electron energies the main role is played by transferred momenta perpendic-

ular to the direction of incident particle motion, which corresponds to the maxi-

mum of PBs along or antiparallel to the electron velocity (the radiation angle is

0� or 180�).
The results of calculations of spectral, angular, and velocity dependences of the

cross-section of PBs of an electron scattered by a metal nanoparticle are presented

in the publications [18] and [20]. In particular, a cluster was considered that
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contained 40 sodium atoms (Na40). In this case the relative width of resonance is

G op


 � 0:2. The small value of this ratio is caused by the fact that the energy of

plasmon resonance in a metal cluster is less than the potential of ionization of its

atoms. So bound-free transitions (ionization) do not make a contribution to the

process of plasma oscillation damping. As a result, the frequency dependence of the

cross-section of PBs on a metal cluster near the plasmon resonance is defined

mainly by the dynamic polarizability of a target.

The numerical analysis [18, 20] shows that the optimum value of electron

velocity to reach the maximum in the spectral cross-section of PBs on the cluster

Na40 at the plasmon resonance frequency (�hop ¼ 2:85 eV) is 1.5 a.u. (30.6 eV). In

this case the value o ds do= is 2.8·10�19 cm2 (0.01 atomic cross-section units).

With changing velocity the position of the maximum practically does not change,

and the cross-section value decreases. Thus in case of twofold decrease or increase

of incident particle velocity the cross-section of PBs at the maximum of the spectral

dependence decreases approximately by half. Also given in the cited works are the

calculations of the cross-section of PBs of an electron with the energy of 13.6 eV

scattered by clusters containing 102, 103, 104, and 105 atoms. The photon energy at

the maximum is practically the same for all types of clusters, and the maximum

cross-section grows from 8·10�19 to 4·10�17 cm2.

From the presented results it follows that the number of spectral oscillations of

the cross-section grows with increasing size of the cluster, and these oscillations are

most manifested in the low-frequency wing. With increasing size of the cluster the

optimum value of the velocity of an incident electron at which the cross-section has

maximum also increases.

It should be noted that the use of the model expression for polarizability in the

region of plasmon resonance (1.1) in description of PBs on metal clusters with a

great number of atoms (103 and more) seems inadequate. In this case it is more

preferable to use the Mi theory based on the introduction of the dielectric permit-

tivity of a target substance.

The ratio of the PBs cross-section to the ordinary bremsstrahlung cross-section is

given by the expression [18, 20]:

dsPB

dsOB
/ Ne

op

G

� �2

S1
op R

v

� �
; (1.4)

that is, is defined mainly by the number of delocalized electrons and by the ratio

op G= that for fullerenes is 1.67, and for metal clusters is five and more. The

argument of the function S1ðxÞ in case of optimum values of parameters for a

fullerene is 1.3, and the value of the function itself is about 0.36. In case of metal

nanoclusters the argument of S1ðxÞ does not exceed 0.2, and accordingly the value

of the function itself is S1ðxÞ � 2.

In view of the presented values of the magnitudes included in the formula (1.4),

it is possible to conclude that PBs of electrons on fullerenes and metal nanoclusters

in the region of plasmon resonance surpasses the contribution of ordinary
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bremsstrahlung in order of magnitude. The proportionality of the ratio of the PBs

and OBs cross-sections to the number of delocalized electrons following from

Eq. 1.4 is a consequence of coherent reradiation of a virtual photon of an incident

particle by fullerenes and nanoclusters in the wavelength range under

consideration.

PBs as a means of diagnostics of the fullerene structure was discussed in the

paper [21] on the basis of calculation of the form-factor defining the intensity of

radiation by the polarization channel. In contrast to the publications [18, 20], the

work [21] considered the kiloelectron-volt range of bremsstrahlung photon

energies, where the oscillations of PBs intensity increasing with decreasing photon

energy should also show themselves. These oscillations are explained by the

interference of contributions to the process from different sites of a fullerene. The

calculations carried out in the paper [21] are based on the approximate approach,

the main disadvantage of which is the absence of integration with respect to the

wave vector q transferred from an incident particle to a target as well as inexact

recording the value of the latter: q � 2 o c=ð Þ sin y 2=ð Þ , where y is the radiation

angle. Actually, in calculation of the total PBs intensity it is necessary to sum the

contribution to the process from all angles of electron scattering by a target, which

corresponds to integration with respect to the wave vector magnitude from o v= to

m v �h= . Another assumption made in the cited work consists in neglecting the bond

of fullerene electrons with the nuclei of carbon atoms. This assumption in the

spectral range under consideration is quite correct if valence electrons of atoms

making a fullerene are concerned. But it is not so obvious for electrons of inner

shells (K-electrons).
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Chapter 2

Quantum-Electrodynamics Approach

to Description of Bremsstrahlung of a Fast

Charged Particle on an Atom with Account

for the Polarization Channel

In this chapter with the use of the consistent quantum-electrodynamic approach the

cross-section of bremsstrahlung of a fast charged particle on a one-electron and

multielectron atom was obtained and analyzed within the framework of the first

Born approximation.

In this section, unless otherwise indicated, we use the relativistic system of units,

in which �h ¼ c ¼ 1 (�h is the Planck constant, c is the velocity of light in vacuum).

2.1 Amplitude of Bremsstrahlung of a Relativistic Charged

Particle on a One-Electron Atom

In this paragraph the expression for the amplitude of Bs of a relativistic incident

particle (IP) on a one-electron (hydrogen-like) atom is derived within the frame-

work of the consistent quantum-electrodynamic approach.

Let us consider the collision of a relativistic charged particle (the charge e0, the

mass m0, the initial energy ei ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2i þ m2

0

p
) in the state pij i with a hydrogen-like

atom being in the state nij iwith the energyEi. (It will be recalled that the symbol cj i
means the Dirac ket vector corresponding to the wave function c.)

As a result of collision, the IP goes to the state nf
�� �

with the energy ef ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2f þ m2

0

q
, a bremsstrahlung photon with the frequency o and the wave vector k

is emitted, and the atom goes to the state nf
�� �

with the energy Ef .

We assume that the incident particle satisfies the Dirac equation. Besides, we

consider satisfied the Born condition for IP velocities before (vi ) and after (vf )

collision with a target (Z is the atomic nucleus charge):

Z e0 << vi; f : (2.1)
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and Solids, Springer Series on Atomic, Optical, and Plasma Physics 72,
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In this case the IP is described by a plane wave in contrast to the exact solution of

the Dirac equation in the external nuclear field that is necessary to describe a bound

electron of an atom. In the case that an incident particle is an electron, this makes it

possible also to neglect exchange summands in the process amplitude.

Let us use the standard quantum-electrodynamic perturbation theory for a

scattering operator [1]. In its lower order of interaction between an IP and an atomic

electron with an electromagnetic field we have a graphic expression for the Bs

amplitude (Fig. 2.1).

In Fig. 2.1 the single lines correspond to the wave functions and the propagator of

an incident particle, the double lines correspond to an atomic electron in the nuclear

field, dfi is the Kronecker symbol. It will be recalled that the propagator (or the

propagation function) describes the amplitude of probability of particle propagation

from one spatio-temporal point to another. The wavy linemeans the electromagnetic

field: the photon propagator and the wave function of a free photonAks (k is the wave

vector, s is the photon polarization index).

pi pf pi pf

pf pi pf pi

f i f i

f i f i

pf pi pf pi

fiδ⋅

Ze Ze
∗Akσ Akσ

∗

∗Akσ
∗Akσ

∗Akσ

+

+

+

∗Akσ

Fig. 2.1 The diagrams describing the amplitude of bremsstrahlung on an atom in the third order of

the perturbation theory
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The analytical expression for the amplitude of total Bs corresponding to the

diagrams shown in Fig. 2.1 represents the sum of static and polarization terms:

Mfi ¼ Mst
fi þMpol

fi (2.2)

The first summand in Eq. 2.2 corresponds to the ordinary (static) channel, its

expression looks like:

Mst
fi ¼ � 4pe20e

q2
Am�
k;s Zg0v f jih i � jvfi qð Þ
h i

Gvm p1; p2ð Þ; (2.3)

where

Gnm p1; p2ð Þ ¼ �ufffiffiffiffiffiffiffi
2 ef

p gn
gp2 þ m0

p22 � m2
0

gm þ gm
gp1 þ m0

p212 � m2
0

gn

� �
uiffiffiffiffiffiffiffi
2 ei

p (2.4)

is the propagator of a free electron. In the formulas (2.3) and (2.4) the following

designations are used:

q1 ¼ pf � pi, q ¼ q1 þ k, p2 ¼ pf þ k, p1 ¼ pi � k, Ak;s ¼ ffiffiffiffiffiffiffiffiffiffiffi
2p o=

p
ek;s,

pj i ¼ u p; sð Þffiffiffiffiffi
2e

p exp �ipxð Þ, jmn0n kð Þ ¼ n0h jgm exp �ikrð Þ nj i, a ¼ am ¼ a0; a
� �

,

ab ¼ ambm ¼ a0b0 � ab, m; n ¼ 0� 3.

The metric, normalization and designations in the formula (2.3) are analogous to

those used in the book [1]: gmn is the metric tensor, gm are the Dirac matrices. The

normalization of bispinors:�uu ¼ uþg0u ¼ 2m0 corresponds to the normalization of the

wave function of an incident charge to one particle in the main region with a unit

volume. Thewave function of a photonAks is also normalized to one photon in themain

region, eks is the polarization 4-vector that in the laboratory system of coordinates

satisfies the three-dimensionally transverse gauge: eks ¼ 0; eksf g, keks ¼ 0. n, f, i is
the set of quantum numbers defining a stationary state of an atom.

The second summand in the formula (2.2) corresponds to the polarization

channel. We have for it [2, Chap. 5]:

Mpol
fi ¼ 4p

q21
A�
svk

X
n

jvnf n kð Þjmnni q1ð Þ
Ef � En þ o� i0

þ
jmnf n q1ð Þjmnni kð Þ

Ei � En � o� i0

" #
�uf gmui
2
ffiffiffiffiffiffiffi
ef ei

p (2.5)

The sum over intermediate states extends both to the positive (þi 0) and to the

negative (�i 0) energy spectrum of an atomic electron.

Let us analyze the diagrams of Fig. 2.1 and their associated formulas (2.3) and

(2.5). The first four graphic summands and their associated expression for the static

amplitude (Eq. 2.3) in the case that an atomic electron does not change its state give

the classical Bethe-Heitler result [3] – bremsstrahlung of a relativistic electron in
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the static nuclear field and the atomic electron field screening it (the screening

approximation). If in these terms of the process amplitude all possible final states of

an atomic electron are taken into account, we will obtain the Lamb and Wheeler

result [4]. The Fourier transform of the time part of the transitional current 4-vector

at f ¼ i gives an ordinary form factor of charge screening. Its space part is a current

(magnetic) summand of screening and can be essential in Bs with excitation of deep

atomic shells for high nuclear charges.

It should be noted that the consistent electrodynamic approach to the relativistic

problem of Bs on an atom even in the ordinary static part of the process amplitude

leads to results supplementing the Bethe-Heitler theory: to taking into account a

possibility of change of an atomic state and to appearance of a current additive in

the form factor caused by the space components of the transitional current 4-vector

for an atomic electron.

The last two graphic summands in Fig. 2.1 and their associated expression (2.5)

describe the emission of a bremsstrahlung photon by an atomic electron in collision

of an IP with an atom. These terms appear if an atomic electron is considered as a

peer dynamic particle interacting with an electromagnetic field, including the

electromagnetic field of vacuum. The contribution to total bremsstrahlung given

by these summands is called polarization bremsstrahlung since it is defined by the

dynamic polarization of an atom in the IP field.

A characteristic feature of the polarization summand of the amplitude of Bs on

an atom is the presence of sums over intermediate states of an atomic electron with

resonant energy denominators. And the relativistic (for a bound electron) problem

in addition to the resonance in the electronic spectrum of atomic states has a

resonant denominator in the positron part of the sum, when o ¼ ei � eð�Þ
n � 2m.

However, we will restrict ourselves to the frequency range o<<m.
The total Bs cross-section contains also the interference contribution of the static

and polarization channels. But, as it will be seen from the following, its value for a

relativistic IP is small.

It is of interest to trace two passages to the limit in the expression (2.2). Let us

assume at first that a nucleus is absent (Z ¼ 0). In this case the first two diagrams

presented in Fig. 2.1 will disappear. In the remaining four diagrams it is necessary

to replace the double lines describing an atomic electron in the nuclear field by

single lines (describing a free electron). Then these diagrams go to the graphic

representation of the process of IP emission on a free electron that is well known in

quantum electrodynamics. In this case the first pair of diagrams describes

the contribution of an incident particle to Bs in its scattering by an electron, and

the second pair of diagrams describes the contribution of a recoil electron to the

process.

In the high-frequency range (o>>m) in case of an incident electron a result is

obtained that is known from quantum electrodynamics: recoil electron emission can

be neglected, in this case a fast electron emits at a slow unit charge as at an

immobile one. It should be noted that to obtain the said passage to the limit, it is
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necessary to take into account all possible excitations of an atom both in the discrete

spectrum and in the continuous spectrum.

In another limiting case, when an atomic electron is absent, the last four

diagrams in Fig. 2.1 disappear, and the process amplitude comes to bremsstrahlung

on a “bare” nucleus.

From the diagrams of Fig. 2.1 it is seen that the ordinary (static or Bethe-Heitler)

and polarization summands of the amplitude differently depend on the mass and

charge of an IP. Really,Mst
fi / e20e m0= , andMpol

fi / e0e
2 m= , and static Bs disappears

with the IP mass tending to infinity, while the polarization summand remains finite.

The change of the sign of the incident particle charge does not change the static

amplitude and changes the sign of the polarization amplitude, which results in

changing sign of the interference summand of the total cross-section of Bs on an

atom.

Let us consider a case of a nonrelativistic atomic electron (Z<<137, Ei; f � m
�� ��

<<m). If, besides, o<<m, the expression (2.5) can be transformed to the form

containing only nonrelativistic characteristics of an atomic electron.

Really, at Z << 137 we have the following passage to the limit for the

components of the current 4-vector:

jmfn q1ð Þ ¼
ð
dr’�

f 1;~af g’n exp �iq1rð Þ

�
ð
dr’�

f exp �i q1rð Þ’n;

ð
dr’�

f ĵ q1ð Þ’n

	 

; (2.6)

here

ĵ qð Þ ¼ exp �i qrð Þ �irð Þ
2m

þ �irð Þ
2m

exp �i qrð Þ (2.7)

is the nonrelativistic expression for the spatial Fourier transform of the current

density operator, r is the vector differential operator.

The approximate Eq. 2.6 corresponds to the formal expansion of atomic

bispinors to the large (~ 1) and small (~ va) spinors and to following neglect of

spin additives.

Thus in the polarization term of the amplitude (Eq. 2.5) in the sum over

intermediate states with positive energy the transition to the nonrelativistic descrip-

tion comes to replacement of relativistic expressions for transitional currents by

their nonrelativistic analogs. The sum over intermediate states with negative energy

can be transformed if it is assumed that the main contribution to it is made by states,

the energy of which satisfies the inequality jjEð�Þ
n j � mj<<m. In view of the fact

that Ef ;i � m
�� ��<<m and o<<m, the energy denominators in the summands with

negative energy can be replaced by the value 2 m. Further, using the projection

operator m� Ĥa

� �
2m= ( Ĥa is the atomic Hamiltonian) for the space of wave

2.1 Amplitude of Bremsstrahlung of a Relativistic Charged Particle. . . 21



functions with negative energy, it is possible to extend summation to the whole

energy spectrum of an atomic electron. For this purpose we assume:

m� Ĥa

� �
2m= ¼ 1� g0

� �
2=

g0 n�
�� � ¼ � n�

�� �
;

then

X
En<0

� 1

2m
fh j exp �i qrð Þ gm

1� g0ð Þ
2

gn þ gn
1� g0ð Þ

2
gm

 �
ij i; (2.8)

and in view of the permutation relation gmgn þ gngm ¼ 2 dmn we will obtain:

X
En<0

� dmn

m
fh j exp �i qrð Þ ij i ¼ dmn

m
j
ð0Þ
fi qð Þ: (2.9)

Thus the polarization term of the amplitude for a nonrelativistic atomic electron

looks like:

Mpol
fi ¼ 4 p e0e2

q21
An�
ks

X
En>0

jnfn kð Þjmni q1ð Þ
ofn þ oþ i0

þ jmfn q1ð Þjnni
oin � oþ i0

þ dmn

m
jfi
0 qð Þ

" #
�uf gmui
2
ffiffiffiffiffiffiffi
ef ei

p :

(2.10)

The expression (2.10) in case of a nonrelativistic IP leads to the known result of

the nonrelativistic theory of PBs [2]:

Mpol
fi ¼ 4 p e0 e2

q21

ffiffiffiffiffiffi
2 p
o

r X
n

e�ksjfn kð Þ jni0 q1ð Þ
ofn þ oþ i0

þ jfn
0 q1ð Þ eksjni kð Þ
oin � oþ i0

( )
: (2.11)

To derive the formula (2.11) from (2.10), it is necessary to suppose (neglecting

spin effects):

�uf gm ui 2
ffiffiffiffiffiffiffi
eief

p� � 1; v0f g; q1j j<< pi; f
�� ��:

2.2 Amplitude of Bremsstrahlung of a Fast Charged Particle

on a Multielectron Atom

The consistent quantum-electrodynamic consideration of PBs of a relativistic IP on

a multielectron atom is complicated by the necessity to take into account the

interaction between atomic electrons in the relativistic formalism as well as by
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the problem of summation over states with negative energy for a multielectron

system. At the same time calculation for nonrelativistic atomic electrons can be

considerably simplified if from the very beginning a nonrelativistic atomic Hamil-

tonian is used and an incident particle is replaced by the electromagnetic field it

produces (by a set of virtual photons).

Let us justify a possibility of such a replacement. Let the free IP field operator

’̂ðxÞ (x ¼ t; rf g) satisfy the Dirac equation:

g p� m0ð Þ’̂ðxÞ ¼ 0: (2.12)

We will assume that for the operator of the electron-positron field of atomic

electrons ĉðxÞ the Dirac equation with interaction is true:

g pþ e AextðxÞ þ e Â
ae

� �
� m

h i
ĉðxÞ ¼ 0; (2.13)

where AextðxÞ is the potential of the external nuclear field, ÂaeðxÞ is the operator of
the electromagnetic field produced by atomic electrons that satisfies the Maxwell

equation:

@n@mÂ
ae mðxÞ � @m@mÂ

ae nðxÞ ¼ 4 p e ĵ
nðxÞ; (2.14)

where ĵ
nðxÞ ¼ �̂cðxÞ gn ĉðxÞ is the operator of atomic electron current, summation is

supposed over twice-repeating indices.

Thus it is supposed that the interaction between atomic electrons is taken into

account in ĉðxÞ.
Let us represent the state vectors for the system of fields (of atomic electrons, an

incident particle, an electromagnetic field) as the product: Fj

�� � ¼ jj i ’j

�� E
nksj i ,

where jj i is the state vector for atomic electrons interacting among themselves, ’j

�� E
is the state vector for a free incident particle, nksj i is the state vector for an

electromagnetic field. The equation for the system state vector Fj i in the interaction
representation looks like:

i@ Fj i=@t ¼
ð
dr e0Ĵ

nðxÞ � e ĵ
nðxÞ

h i
ÂnðxÞ Fj i;

where

Ĵ
nðxÞ ¼ €�’ðxÞ gn ’̂ðxÞ

is the four-dimensional vector of the operator of incident particle current density.

Ŝ ¼ T exp �i

ð
dx ÂnðxÞ e0 Ĵ

nðxÞ � e ĵ
nðxÞ

h i	 

; (2.15)

where T is the chronological ordering symbol.
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The PBs amplitude in the lower order of the perturbation theory is described by

the third term in the expansion of the scattering operator Ŝ (here for short we use the
designation xi � i):

Ŝ3 ¼ �ið Þ3 e2 e0
ð
d1 d2 d3 T Ânð1Þĵ nð1Þ Âmð2Þĵ mð2Þ Âlð3ÞĴlð3Þ

n o
: (2.16)

In obtaining this formula similar summands resulting from rearrangement of

integration variables were reduced. Hereafter we consider that there is no exchange

between an incident particle and atomic electrons. Using the commutativity of

corresponding operators, the expression (2.16) for the scattering operator in the

third order of the perturbation theory can be rewritten as:

Ŝ3 ¼ �ið Þ2
ð
d1d2Âvð1ÞT e2 ĵ vð1Þĵ mð2Þ

n oð
d3e0Dml 2; 3ð ÞĴlð3Þ; (2.17)

where Dml 2; 3ð Þ ¼ iT 0h jÂmð2Þ Âlð3Þ 0j i is the photon propagator.

In the formula (2.17) one unpaired Â -operator is retained, which corresponds to

the one-photon change of the electromagnetic field.

By matrixing the scattering operator Ŝwith respect to the initial and final states of
the system we obtain:

Spol3;fi ¼ �ið Þ2
ð
d1 d2A�

ksnð1Þ Lnmfi 1; 2ð ÞAð0Þ
m;fið2Þ; (2.18)

where

Lnmfi 1; 2ð Þ ¼ e2 fh jT ĵ
nð1Þ ĵ mð2Þ

n o
ij i (2.19)

is the relativistic analog of the tensor of electromagnetic field scattering by an atom;

A
ð0Þ
m;fið2Þ ¼ �e0

ð
d3Dmv 2; 3ð Þ ’f

D ��Ĵvð3Þ ’ij i (2.20)

is the 4-potential of a virtual photon produced by an incident particle in the process

of scattering: ’ij i ! ’f

�� E
. It should be noted that the potential of a virtual photon

Að0Þ
fi could be found from the Maxwell equations (2.14) if on their right side the

matrix element of the IP transitional current operator ’f

D �� Ĵmð3Þ ’ij i is substituted.
The formula (2.18) for the amplitude of PBs allows its interpretation as a process

of scattering (conversion) of a virtual photon Að0Þ
fi by atomic electrons to a real

photon.
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It is easy to show that the same expression for the PBs amplitude can be obtained

from another form of the interaction Hamiltonian:

V0 ¼ �e

ð
dr ÂnðxÞ þ A

ð0Þ
fi;nðxÞ

n o
ĵ
nðxÞ: (2.21)

Here an incident particle is replaced by the electromagnetic fieldA
ð0Þ
fi it produces

and thus it is excluded from consideration as a dynamical degree of freedom.

The field A
ð0Þ
fi can be considered a specified field determined by the Eq. 2.20 – the

prescribed current approximation. Then the PBs amplitude is obtained by the

standard method in the second order of the perturbation theory. After calculation

of a corresponding matrix element we find for it:

S0pol2;fi ¼ �ið Þ2
ð
d1 d2A�

ks;nð1Þ fh jT e2 ĵ
nð1Þ ĵ mð2Þ

n o
ij iAð0Þ

fið2Þ: (2.22)

From comparison of the formulas (2.18) and (2.22) it follows:

Spol3; fi ¼ S0pol2; fi :

Thus the PBs amplitude can be calculated (with fixed initial and final IP states)

with replacing an incident particle by the field it produces with the help of formula

(2.20). Then in the case under consideration for nonrelativistic atomic electrons a

single relativistic degree of freedom – an incident particle – will be excluded, and it

is possible to use the nonrelativistic formalism to calculate the Bs amplitude.

It should be noted that replacement of a particle by its field is widely used also in

calculation of Bethe-Heitler Bs by the equivalent photon method, when in the IP

rest frame the atomic field is replaced by equivalent photons that are Compton-

scattered to bremsstrahlung photons by an incident particle.

Let us calculate, replacing an IP by its field, the PBs amplitude for a nonrelativ-

istic multielectron atom (Z<<137) with neglected exchange of incident and bound

electrons. We use the axial gauge of the electromagnetic potential (A0 ¼ 0). The

nonrelativistic Hamiltonian of perturbation of atomic electrons by the electromag-

netic field looks like:

V ¼ e

2m

X
j

p̂jÂ rj; t
� �þ Â rj; t

� �
p̂j þ e Â

2
rj; t
� �n o

; (2.23)

where p̂j ¼ �irj , Â ¼ Â
ph þ A

ð0Þ
fi is the sum vector-potential, the operator Â

ph

describes the photon field (kx ¼ ot� kr, o ¼ kj j),

Â
phðxÞ ¼

X
k;s

ffiffiffiffiffiffi
2 p
o

r
ek;s ĉk;s exp �ikxð Þ þ e�k;s ĉþk;s exp ikxð Þ� �

; (2.24)
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whereek;s is the unit vector of photon polarization, c
þ
k;s,ck;s are the operators of birth

and destruction of photons; A
ð0Þ
fi is given by the formula (2.20) – this is an external

field produced by an incident particle.

Going to the interaction representation V̂int ¼ exp iĤat
� �

V exp �iĤat
� �

(the

photon field is already written in the interaction representation), we have for the

scattering operator:

Ŝ ¼ T exp �i

ð1

�1
V̂intðtÞ dt

8<
:

9=
;: (2.25)

The contribution to the PBs amplitude in the lower order of the perturbation

theory (in the second order with respect to an electron charge) is made by the first

and second terms of the expansion S, the zeroth term of this expansion – one –

corresponds to the unchanged state of the system. In the first-order term the

contribution to the process is made by the summand containing the squared sum

vector potential, in the first-order term in perturbation the contribution is made by

the summand containing p̂Âþ Âp̂. According to the physical picture of PBs, it is

necessary to take into account terms containing the mixed product Âph andA
ð0Þ
fi . So

the matrix element of the process is represented as

Spolfi ¼ S
ð1Þ
fi þ S

ð2Þ
fi ;

here

S
ð1Þ
fi ¼ �i Ff

� �� ð
1

�1
dt exp iHatð Þ e

2

2m

XN
j¼1

2Â
ph

rj; t
� �

A
ð0Þ
fi rj; t
� �

exp �iHatð Þ Fij i;

(2.26)

with Fj

�� � ¼ jj i nk;s
�� �

since an incident particle is already taken into account inA
ð0Þ
fi .

From the relation (2.26) we find

S
ð1Þ
fi ¼ �2ipd ef þ Ef þ o� ei � Ei

� � ffiffiffiffiffiffi
2p
o

r
e�k;sA

ð0Þ
fi q1ð Þ fh j

XN
j¼1

exp �iqrj
� �

ij i e
2

m
;

(2.27)

whereA
ð0Þ
fi q1ð Þ is the spatio-temporal Fourier transform of the incident particle field

calculated on the four-dimensional vector q1 ¼ ef � ei; pf � pi

n o
. Spin effects are

neglected. By analogy, for S
ð2Þ
fi we have the expression:
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S
ð2Þ
fi ¼ � 1

2
Ff

� ��T
ð ð

dt dt0 V̂intðtÞ V̂int t
0ð Þ Fij i: (2.28)

After simple transformations the matrix element of the scattering operator S
ð2Þ
fi is

brought to the form:

S2fi ¼ �e22pd DEið Þ
ffiffiffiffiffiffi
2p
o

r
e�k;s;l A

ð0Þ
fi;s q1ð Þ fh j

ð
dt exp iotð Þĵ l k,tð Þĵ s q1ð Þ ij i; (2.29)

where

jl k,tð Þ ¼ exp iHatð Þ 1

2m

XN
j¼1

p̂lj exp �ikrj
� �þ exp �ikrj

� �
p̂lj

n o
exp �iHatð Þ

is the spatial Fourier transform of the operator of atomic electron current in the

interaction representation.

Summing the matrix elements S
ð1Þ
fi and S

ð2Þ
fi , we obtain the PBs amplitude as:

Spolfi ¼ 2pid ef þ Ef þo� ei � Ei

� �
q01
� �2 ffiffiffiffiffiffi

2p
o

r
e�k;s;lA

ð0Þ
fi;s q1ð Þ fh jĉls k;q1ð Þ ij i; (2.30)

where

q01 ¼ ef � ei

is the change of IP energy during the process.

In the expression (2.30) ĉls k; q1ð Þ is the operator of electromagnetic field

scattering by an atom in the nonrelativistic (for atomic electrons) approximation

that can be represented in the following form:

ĉls k; q1ð Þ ¼ e2

m q01
� �2 im

ð1

�1
dt exp iotð ÞT ĵ l k, tð Þĵ s q1; 0ð Þ� �� dlsn̂ qð Þ

2
4

3
5; (2.31)

where n̂ qð Þ ¼PN
j¼1

exp �i qrj
� �

is the Fourier transform of the operator of atom

electron density.

Analyzing the initial relativistic expression, from which Eq. 2.31 follows, it can

be said that the first summand in the square brackets in Eq. 2.31 arises from the sum

over the positive part of the atomic electron spectrum and describes scattering of an

electromagnetic field by the atomic electron current. The second summand in
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Eq. 2.31 arises after folding of the sum over states of the negative energy spectrum

and describes field scattering by the atomic electron charge.

Let us write the matrix element clsfi k; q1ð Þ in terms of the sum over intermediate

states of atomic electrons:

clsfi k; q1ð Þ ¼ e2

m q01
� �2 m

X
n

jlfn kð Þjsni q1ð Þ
ofn þ oþ i0

þ jsfn q1ð Þjlni kð Þ
oin � oþ i0

" #
� dls nfi qð Þ

( )
:

(2.32)

In case of the spherically symmetric state ij i and within the framework of the

dipole approximation (for f ¼ i, k ¼ q1 ¼ 0), from the formula (2.32) it follows:

clsii q1; k ! 0ð Þ ! a oð Þ dls ¼ dls
e2

m

X
n

fin
o2

in � o2
; (2.33)

wherea oð Þ is the dipole polarizability of an atom, fin is the oscillator strength for the
transition i ! n. In the formulas (2.30), (2.31), (2.32) and (2.33) it is implied that

the bremsstrahlung photon frequency detuning D from resonance is great enough,

so that: D ¼ o� of ðiÞn
�� ��>>Gf ðiÞn , where Gf ðiÞn is the line width for the transition

n ! f ðiÞ. Otherwise in these expressions it is necessary to take into account the line
width for corresponding transitions.

It is well seen that the obtained expression for the PBs amplitude (Eq. 2.30)

corresponds to its interpretation as a process of scattering of the incident particle

eigenfield by atomic electrons to a bremsstrahlung photon.

Now let us calculate the amplitude of static (ordinary) bremsstrahlung (due to

emission of a photon by an incident particle) taking into account possible excitation

of atomic electrons. We use again the interpretation of bremsstrahlung as a process

of scattering of a virtual photon to a real photon. Now virtual photons are produced

by an atom (by a nucleus and bound electrons). For an atom at rest and nonrelativ-

istic atomic electrons, virtual photons produced by them are mainly longitudinal. In

this case it is convenient to use the Coulomb gauge of the electromagnetic potential

(divA ¼ 0) since then it is possible to take into account only its time component.

The space components describe in the Coulomb gauge the transverse part of the

field and in the case under consideration are small. The time component of the

potential of a virtual photon produced by an atom according to Eq. 2.20 is

A0
fi ¼ �

ð
d10 D00 1; 10ð Þ fh jĴ 0 10ð Þ ij i; (2.34)

where

Ĵ 0ð1Þ ¼ Zed r1 � r0ð Þ � e
XN
j¼1

d r1 � rj
� �
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is the atomic charge density operator in the coordinate representation (r0 is the

radius vector of a nucleus). According to the standard rules of quantum electrody-

namics [1], it is easy to obtain the expression for the static bremsstrahlung

amplitude:

Sstfi ¼ �2pi

ffiffiffiffiffiffi
2p
o

r
e20e

�
k;s;vT

v pf ;i; k
� �

A0
fiðqÞd ef þ Ef þ o� ei � Ei

� �
: (2.35)

Here the following designations are introduced:

Tv ¼ �ufffiffiffiffiffiffi
2ef

p gv
pf gþ gk þ m0

pf þ k
� �2 � m2

0

g0 þ g0
pig� gk þ m0

pi � kð Þ2 � m2
0

gv
( )

�uiffiffiffiffiffiffi
2ei

p ; (2.36)

A0
fi qð Þ ¼ 4p q2

�� �
dfiZe� enfi qð Þ� �

: (2.37)

Physically Eq. 2.37 describes the screened potential of a nucleus, and Eq. 2.36

describes scattering of an electromagnetic field by an incident particle.

Thus the total amplitude of Bs of a relativistic incident particle on a nonrelativ-

istic atom (Z <<137) in view of the polarization mechanism and possible excita-

tion of atomic electrons with neglected spin effects looks like:

SBrfi ¼ Sstfi þ Spolfi ; (2.38)

where Spolfi and Sstfi are given respectively by the formulas (2.30) and (2.35).

2.3 Total Bremsstrahlung of a Fast Charged Particle

on an Atom

2.3.1 General Expression for the Process Cross-Section

Based on the obtained expression for the amplitude, we will write the expression for

the spectral Bs cross-section [1]:

dsBr oð Þ
do

¼ ei
pij j
X
f ;s

dOk

2pð Þ3
dq

2pð Þ3 lim
T!1

SBrfi s; pf ;i; k
� ���� ���

T
; (2.39)

here dOk is the solid angle around the direction of the photon wave vector k, T is the

parameter having time meaning, summation is made over polarizations of an

emitted photon (s) and final states of an atom ( fj i). As before, we consider an
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incident particle to be a Born particle, and the initial state of an atom to be

nondegenerate.

In view of the explicit form of SBrfi the formula (2.39) can be rewritten:

dsBr oð Þ
do

¼ ei
pij j
X
f ;s

o2 dOk

2pð Þ3
dq

2pð Þ3 2pd DEð Þ

� 2p
o

e�ks;l e20T
l 4p
q2

Zedfi � enfi qð Þ� �þ q01
� �2

clsfiA
0
fi;s

	 
����
����
2

(2.40)

or

dsBr oð Þ
do

¼ ds st

do
þ ds pol

do
þ ds int

do
: (2.41)

The last term in Eq. 2.41 describes the interference of the static and polarization

Bs, Tl and clsfi are given by the formulas (2.36) and (2.32) of the previous paragraph.

Hereafter we assume that q1j j<< pf ;i
�� �� – the motion of an IP is weakly disturbed

during bremsstrahlung. So in the following formulas we use one value of IP

velocity: vi ffi vf � v0. Then for the vector potential of the virtual photon field A
ð0Þ
fi

we have the expression:

Að0ÞðqÞ ’ 4p e0
q0

v0 q0 c2
� � q

q0 c=ð Þ2 � q2
d q0 � qv
� �

; (2.42)

where v0 is the velocity of an incident particle.

In the same approximation for the function Т (see the definition (2.36)) we

obtain:

T ¼ q1

m0 g o� kv0ð Þ ; g ¼ ei m0= : (2.43)

The obtained expression (2.40) for the cross-section of bremsstrahlung on an

atom is the most general. With neglected internal degrees of freedom for an IP and

an atomic nucleus it describes consistently the contribution of atomic electrons to

the Bs process.

For the static Bs cross-section from Eq. 2.40 after simple transformations we

find:

dsst

do
¼ o
v0

ð
dOk dq

2pð Þ4
ð
dt eit oþq0

1ð Þ X
s

e�k;s T
��� ���2

� e40 e
2

q2
ih j Z � n̂ �qð Þð Þ Z � n̂ q; tð Þð Þ ij i: ð2:44Þ
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If the energy of excitation of atomic electrons can be neglected in comparison

with the frequency of an emitted photon o, then in the formula (2.44) it is possible

to assume n̂ q; tð Þ � n̂ q; 0ð Þ:
dsst

do
¼ o

v0

ð
dOk dq

2pð Þ3 d q01 þ o
� �

nT½ 
2 e40 e
2

q2
ih j Z � n̂ qð Þj j2 ij i; n ¼ k

k
: (2.45)

In derivation of (2.45) the equation was used:
P
s
e�ks;l eks;s ¼ dls � nl ns.

The expression (2.45) agrees with the result of Lamb and Wheeler [4] who for

the first time consistently took into consideration the contribution of excitation of

atomic electrons to static bremsstrahlung.

In case of a heavy IP m0 >>mð Þ the first summand under the modulus sign in

the formula (2.40) can be neglected in comparison with the second summand since

Tj j / 1 m0= , whileAð0Þ qð Þand ĉls k; q1ð Þdo not depend on the IP mass. Then the total

cross-section of Bs on an atom comes to the PBs cross-section, for which from

Eq. 2.40 we find:

dspol

do
¼ o
v0

ð
dOkdq

2pð Þ5 dls�nl nsð Þ q01
� �4

A
ð0Þ
fi;s0 q1ð ÞAð0Þ

fi;l0 q1ð Þ
ð
dteiq

0t ih jĉsl0�ð0Þ ĉls0 ðtÞ ij i;

(2.46)

where

ĉlsðtÞ ¼ exp i Ha tð Þ ĉlsð0Þ exp �i Ha tð Þ (2.47)

is the operator of electromagnetic field scattering by an atom in the Heisenberg

representation.

Thus the polarization bremsstrahlung cross-section summed over all final states

of atomic electrons is expressed in terms of the correlation function of the operator

of electromagnetic field scattering by an atom that can be written as

KciiðtÞ � ih jĉls0�ð0Þ ĉls0ðtÞ ij i;

where summation is supposed over twice-repeating indices.

2.3.2 PBs Without Excitation of a Target

Let us consider PBs without excitation of an atom (“elastic” PBs). Its cross-section

is given by the summand with f ¼ i in the second term under the modulus sign in the

formula (2.40):

dspolii

do
¼ o
v0

ð
dOkdq

2pð Þ4 dls�nl nsð Þ q01
� �4

A
ð0Þ
h q1ð ÞAð0Þ

r q1ð Þd q01þo
� �

ih jĉlh ij i ih jĉsr� ij i:

(2.48)
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At first we consider the spectral range o << pa v0 ( pa � Z1=3 me2 is the

characteristic atomic momentum). Then the main contribution to the process

under consideration will be made by the moduli q1j j<< pa permitted by the energy

conservation law. Otherwise ( q1j j>>pa) PBs with excitation and ionization of an

atom should prevail. So in this case for the scattering tensor the dipole approxima-

tion can be used:

clhii k; q1ð Þ ! dlh ai oð Þ y pa � q1j jð Þ; (2.49)

and instead of Eq. 2.48 we will obtain:

dspolii

do
� o

v0

ð
dOk dq

2pð Þ4 nAð0Þ q1ð Þ
h i2

d q0
� �

y pa � q1j jð Þ o2 ai oð Þ�� ��2; o < pa v0:

(2.50)

It should be noted that the used approximation corresponds to the Born-Bethe

approximation in the theory of atomic excitation by electron impact.

From the formula (2.50) we find the following expression for the frequency-

angular distribution of elastic PBs in the frequency range under consideration:

dspolii o; #ð Þ
do

¼ 2 e20
v20

do
o

o2 ai oð Þ�� ��2 1þ cos2#
� �

sin# d# ln
g pa v0
o

� �
; (2.51)

where # is the angle between the initial IP velocity vector and the bremsstrahlung

photon wave vector (radiation angle).

In derivation of the formula (2.51) summands of the order of one were neglected

in comparison with the large logarithm (the large logarithm approximation).

From the expression (2.51) two corollaries follow:

1. In contrast to static Bs, polarization Bs of an ultrarelativistic IP (g >> 1) in the

frequency range o < pa v0 is not directional, but is of a dipole nature,
2. The PBs cross-section grows logarithmically with IP energy in the ultrarela-

tivistic limit at o < pa v0.

These characteristic features of PBs of a relativistic IP allow descriptive physical

interpretation. The logarithmic growth of the PBs cross-section with IP energy is

connected with the features of the spatial structure of the electromagnetic eigenfield

of a relativistic charged particle. The spatial distribution of the potential of this field

at the frequency o is given by the formula:

Að0Þ oð Þ / exp i
o
v0

z� v0 tð Þ � i
or
g v0

 �
; (2.52)

here z, r are the cylindrical coordinates of the IP field.
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Thus we obtain the lateral dimension of the field rmax � g v0 o= , and accordingly

for the minimum transferred transverse momentumwe have q?j jmin � o g v0= . Hence

from the formula for the spectral PBs cross-section (in the Born approximation): d

spol oð Þ / ln q?j jmax q?j jmin

�� �
the second PBs property follows that is noted here. It

should be noted that in case of static Bs on a neutral atom the maximum size of a field

scattered by an IP to a bremsstrahlung photon is defined by the size of an atom.

2.3.3 High-Frequency Limit

Now we will consider “elastic” PBs (without change of an atomic state) in the

frequency range I<<o<<m (I is the atomic ionization potential). In this case it is

possible to use the high-frequency asymptotics for the scattering operator:

ĉls k; q1ð Þ � � e2

m q01
� �2 n̂ qð Þ dls þ ql1 q

s
1

2mo

	 

; I << o << m: (2.53)

The formula (2.53) is obtained with the use of the expansion into a series of the

matrix element clsfi (Eq. 2.32) in terms of the powers of the ratio ojn

�� �� o j ¼ f ; ið Þ= ,

the summands in the sum over intermediate states with ojn

�� ��>o making a small

contribution to clsfi at o>> I. Substituting the formula (2.53) in Eq. 2.48, we find:

dspolii

do
¼ o

v0

ð
dOk dq

2 pð Þ4 d q0
� � e2

m

 �2

nii qð Þj j2 n; Að0Þ qð Þ þ q1 q1A
ð0Þ q1ð Þ� �

2mo

 !" #2
;

I<<o<<m:

(2.54)

To simplify the calculations, we consider that g >> 1, then the IP field is mainly

transverse and q1 A
ð0Þ q1ð Þ ¼ 0. We use the approximation of exponential screening

of an atomic nucleus to calculate the spectral PBs cross-section. Then:

nii qð Þ ¼ N

1þ q2 p2a
�� � : (2.55)

Here N is the number of atomic electrons (for a neutral atom, naturally, N ¼ Z).
The valuenii qð Þ represents the (static) form factor of the atomic core in the state ij i.
Using Eq. 2.55 and the relation ai oð Þ ! a1 oð Þ ¼ �N e2 mo2

�
to estimate the

spectral PBs cross-section in a high-frequency range, we find for three spectral
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ranges after integration with respect to the solid angle of photon escape and the

transferred momentum the following expressions:

dspolii

do
¼ 16

3
N2 e4 e20

m2 o
ln

g pa
o

� �
I<<o<< pa; (2.56)

dspolii

do
¼ 2N2 e4 e20

m2 o
pa
o

� �2
ln gð Þ pa<<o<<g2 pa; (2.57)

dspolii

do
¼ 4N2 e4 e20

m2 o
pa
o

� �2 g2pa
o

 �2

g2pa<<o<<m: (2.58)

The formulas (2.56), (2.57), and (2.58) are low-sensitive to a specific type of

nucleus screening by atomic electrons. The spectral cross-section (2.56) can be

obtained from the formula (2.51) since in this frequency range the dipole approxi-

mation for interaction of an IP with an atomic core (and especially with a photon) is

still true.

The spectral cross-section of PBs of a relativistic electron on a hydrogen atom in

a high-frequency range calculated by the formulas (2.56) and (2.57) is presented in

Fig. 2.2 for two values of the relativistic factor g.
From the given figure it follows that the cross-section of PBs of a relativistic

electron in the high-frequency range o>pa decreases with growing frequency.

Physically this is a consequence of coherence loss for interaction of a virtual photon

of the IP field with an atomic electron. From mathematical point of view, this

decrease is defined by reduction of the atomic form factor nii qð Þ with growing

magnitude of the transferred wave vector qj j>pa. Another conclusion of Fig. 2.2 is

the growth of the PBs cross-section with increasing energy of a relativistic incident

particle (of the relativistic factor g).

0 1 2 3 4 5
0

0.001

0.01

0.1

1

10

σН,
rel. u.

r=ω/pa

Fig. 2.2 The spectral cross-

section of PBs of a relativistic

electron on a hydrogen atom

in the high-frequency region

o >> I ¼ 0.5 а.u. as a
function of the parameter

r ¼ o/pa for two values of the
relativistic factor:

g ¼ 2 (solid line),
g ¼ 10 (dotted line)
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The frequency range of Eq. 2.57 is characteristic for ultrarelativistic incident

particles. In this range the compensation of a momentum transferred from an IP

to an atom due to a photon momentum is possible. As the analysis shows, this is

true only for small enough radiation angles: # � ffiffiffiffiffiffiffiffiffiffiffi
pa o=

p � ffiffiffiffiffiffiffiffiffiffi
l Ra=

p
; Ra � p�1

a .

This inequation follows from the condition of smallness of a

momentum transferred to a target during Bs in comparison with an atomic

momentum: o 1� v0 cos #ð Þð Þ � pa v0.
Thus in the frequency range of Eq. 2.57 PBs gains directionality, and in

calculation of the process cross-section it is necessary to take into account a photon

momentum.

The angular diagram of PBs of a relativistic electron on a hydrogen atom in the

high-frequency limit is presented in Fig. 2.3 for different values of bremsstrahlung

photon energy.

It is seen that with growing energy of a bremsstrahlung photon the angular

distribution of PBs of a relativistic electron is narrowed.

In the frequency range of Eq. 2.58 (if it exists) a momentum transferred from an

IP to the atomic core at any radiation angles is more than the characteristic atomic

momentum, and PBs is strongly suppressed as it follows from the form of the static

atomic form factor (2.57). Physically this means that with large momenta trans-

ferred to an atom ( qj j>>pa) that are characteristic for this frequency range inelastic
PBs channels prevail that are accompanied by excitation and ionization of an

atomic electron.

It should be noted that in the above “elastic” PBs the contribution of all atomic

electrons to radiation is coherent, so the process cross-section is proportional to the

squared number of atomic electrons. This circumstance can be explained as follows.

During elastic PBs, when the state of the atomic core does not change, an electron

charge, remaining localized in the atom, shows itself as the charge of one particleNe
(at l>Ra). Therefore the amplitude of its interaction with an electromagnetic field is

proportional to Ne, and the cross-section is proportional to Neð Þ2.
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Fig. 2.3 The angular

dependence of PBs on an

atom (Z ¼ 30) in the

high-frequency approximation

for different frequencies of

a bremsstrahlung photon:

o ¼ 5 keV (curve 1),
o ¼15 keV (curve 2),
o ¼ 50 keV (curve 3), the
IP velocity is: v ¼ 0.9 c
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Let us return to the total PBs cross-section that takes into account excitation of

atomic electrons – the formula (2.46). To obtain the spectral PBs cross-section in

the explicit form in the general case does not seem possible. Let us consider some

particular, but practically important situations.

Let the frequencyo be such that the main contribution to the cross-section that is

differential with respect to a transferred momentum is made by q1j j<<pa. (This in
particular takes place in experiments on agreement (see [5]) if a scattered electron is

observed at small scattering angles). Then the dipole approximation for interaction

of an IP with the atomic core is true, and it is possible to integrate with respect toq in

view of the explicit form of Að0ÞðqÞ (Eq. 2.42). Taking into account the spherical

symmetry of the state ij i, we obtain after a number of transformations for the spectral

PBs cross-section the following expression (we assume that osi<pa v0 � o):

dspolfi

do
¼ 16 e20

9 v20

X
m;l; f

o3 fh jĉml oð Þ ij ij j2 ln
g pa v0
oþ ofi

 �
: (2.59)

It should be noted that the summand in the formula (2.59) with f ¼ i gives the
spectral cross-section of elastic PBs following also from the formula (2.51) after

integration with respect to the angle of photon escape.

2.3.4 Near-Resonant PBs

Let us consider a case of the near-resonance frequency o, when the following

inequation is satisfied: Gnf<< o� onf

�� ��<<o , here onf and Gnf are the

eigenfrequency and the line width for the transition n ! f between two states of

the discrete spectrum of the atomic core. Then in the expression for the matrix

element from the operator of electromagnetic field scattering by an atom (Eq. 2.32)

one resonant summand can be separated that makes the main contribution to the

amplitude, and the imaginary part of the scattering tensor can be neglected in

comparison with the real part. Then in the sum over f on the right side of the

Eq. 2.59 one resonant summand remains.

After summation over the projections of the total momentum of resonant states

we find for a singlet initial state:

dsresfi

do
¼ 4 e20 e

4

3 v20 m
2

o
D

� �2 fin
oni

2Jf þ 1
� �

ffn ln
g pa v0
oþ ofi

 �
D ¼ o� onf

o >> Dj j>>Gfn;

(2.60)

here fik is the oscillator strength for the transition i ! k, Jf is the quantum number of

the total angular momentum of an atom in the state fj i.
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Following from the expression (2.60) for f ¼ i is the formula for “elastic” near-

resonance PBs that was studied in detail earlier [2].

The case f 6¼ i was studied in the paper of V.M. Buimistrov and L.I.

Trakhtenberg [6] from the standpoint of the prospect of obtaining radiation ampli-

fication based on the PBs effect.

Given in the author’s work [7] is the generalization of the spectrum of near-

resonant PBs to the case of the energy-band structure of a target in the elementary

isotropic effective mass approximation.

In this situation the scattering tensor can be represented as:

chl k; qð Þ ¼
ð
OBr

d~k

2pð Þ3
e2

o2

jhvc k;~kð Þ jlcv q;~kð Þ
o� ocv ~kð Þ þ iGcv 2=

: (2.61)

Here integration is performed with respect to the quasi-momentum of electrons~k
in the Brillouin zone OBr , ocv ~kð Þ ¼ ec ~kð Þ � evc ~kð Þ is the difference of electron

energies in the conduction band and in the valence band. Then we will assume that

transitional current weakly depends on an electron quasi-momentum. In the general

case it is necessary to perform integration in the formula (2.61) in view of the

dispersion law ec;v ~kð Þ. We will consider the approximation of parabolic bands, in

which: ev;c ~kð Þ ¼ e0v;c �~k2 2mv;c

�
,mv;c are the effective masses of electrons near the

valence band top and the conduction band bottom. Then after averaging over

photon polarizations for the spectral intensity of PBs the following expression

can be obtained:

dWpol

do
¼ B oð Þ J Dð Þj j2; (2.62)

where

B oð Þ ¼
ð

dq

2pð Þ10 m3cv e
4 n jvc kð Þ½ 


2

AðqÞ jcv qð Þð Þ2;

J Dð Þ ¼
1�

ffiffiffiffiffi
Dj j

p
a arctg affiffiffiffiffi

Dj j
p
 �

; D<0

1þ
ffiffiffi
D

p
2a ln a�

ffiffiffi
D

p
aþ
ffiffiffi
D

p
��� ���; D>0

8>><
>>:

D ¼ o� e0c � e0v
� �

; m�1
cv ¼ m�1

c þ m�1
v ; a � N1=3

v m1=2cv ; n ¼ k kj j=
.

;

Nv is the concentration of the valence band electrons. The target parameter is a2,
it is proportional to the energy of localization of a quasi-particle with the reduced

mass mcv in the volume N�1
v , its value is accordingly of the order of the permitted

band width.
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In the formula (2.62) it is assumed that a2 6¼ Dj j, otherwise it is necessary to take
into account the imaginary additive in the expression for the scattering tensor

(2.61).

The function B oð Þ has no resonance peculiarities for the case under consider-

ation: o<v0 d= (d is the lattice constant), so the frequency peculiarities of the PBs

spectrum are described by the function J Dð Þj j2 , the plot of which is presented in

Fig. 2.4 for the case of practical interest D<a2 (a2 ¼ N2 3=
v mcv= ).

From this figure it follows in particular that the spectrum of near-resonance PBs

for the energy-band structure of a target has a pronounced asymmetry: for

frequencies smaller than the energy gap width (negative detunings from resonance D)
the PBs intensity falls more steeply than for positive detunings. This circumstance is

quite expected since positive detunings correspond to the virtual transition to the

conduction band, and negative detunings correspond to the virtual transition to the

band gap.

The function J Dð Þ itself for detunings under consideration is positive (D<a2),
which corresponds to destructive interference with the static Bs channel. For high

detunings D>a2 this function is negative, and interchannel interference is

constructive.

It should be noted that in the limit a2<< Dj j in the expression (2.62) the

multiplier ocv D=j j2 appears that is characteristic for near-resonant PBs on one atom.

It is significant that ifo<ocv and Dj j>Gcv, a cascade process connected with real

filling of the conduction band is impossible.

2.3.5 PBs with Target Excitation

Now we will calculate the PBs cross-section with excitation (including ionization)

of an atom form>>o>>I. Substituting the expression for ĉlh in this spectral range
Eq. 2.53 in the formula (2.48), we find
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0.5
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J
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Δ 2⎛
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Fig. 2.4 The plot of the

function JðxÞj j2 describing the
spectrum of near-resonance

PBs for a case of the energy-

band structure of a target in

the isotropic effective mass

approximation
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dsiipol

do
¼ o

v0

ð
dOk dq

2pð Þ4
e2

m

 �2

n; Að0Þ q1ð Þ þ q1 q1 A
ð0Þ q1ð Þ� �

2mo

 !" #2
SiiðqÞ: (2.63)

Here the value is introduced:

SiiðqÞ ¼ 1

2p

ð1

�1
dt exp iq0t

� �
i n̂j jh �qð Þn̂ q,tð Þ iij j (2.64)

that we will call the dynamic form factor according to the terminology accepted for

description of effects in a media. For simplicity we assume further q1 � q , so

neglecting summands of the order of pa o=ð Þ2 in comparison with one ato>>pa; at
o<pa the dipole approximation is true, so the magnitudes qj j and kj j can be

neglected in comparison with pa . As seen from Eq. 2.63, for calculation of the

spectral PBs cross-section it is necessary to know the explicit form of the q and q0

functional dependence of Sii.
With further tracing only qualitative moments in mind, here we use for

calculations the simplest analytical approximation of SiiðqÞ:

SiiðqÞ � y qj j � pað Þ d q0 þ q21
2m

 �
N þ y pa � qj jð Þ d q0

� �
N2; (2.65)

where N is the number of electrons in an atom.

The approximate Eq. 2.65 can be obtained after a number of transformations,

taking into account the explicit form of the electron density operator being

an operator of shift in the momentum space and corresponding permutation relations.

The physical meaning of two summands in Eq. 2.65 is transparent: the first

summand describes processes with ionization of the atomic core, when a transferred

momentum is large, in this case the contribution of bound electrons is incoherent

and part of energy is carried away by a knocked-on electron. The second summand

describes the coherent process, when a momentum transferred to the core from an

IP is small, and the atom remains in the former state. In the latter case the recoil

momentum takes over a massive nucleus, and coherence takes place since the phase

of electromagnetic interaction of the IP with the target core changes little at

distances of the order of the atomic radius.

From the formulas (2.63) and (2.65) it is easy to find the spectral PBs cross-

section in the approximation under consideration:

dspolii

do
¼ 16e20e

4

3m2v20
y pav0 � oð Þ N2 ln

gpav0
o

� �
þ N ln

m0v0

pa

 �� �	

þ y o� pav0ð ÞN ln
gm0v

2
0

o

 �

:

(2.66)
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The obtained expression allows descriptive physical interpretation. At o<pav0
(the summand in the square brackets) PBs proceeds both without excitation of an

atom (if qj j<pa ) and with its ionization (at qj j>pa ). And in the first case PBs is

coherent by the contribution of atomic electrons to the process (the cross-section

is proportional to N2 ), in the second case PBs is incoherent (the cross-section is

proportional to the number of atomic electrons N). In the spectral range o>pav0 –
the second summand in the braces in Eq. 2.66 – the law of conservation of energy-

momentum permits only qj j>pa , so PBs proceeds mainly with atomic ionization,

and its cross-section is proportional to N.
It is essential that the total PBs cross-section (2.66) taking into account excita-

tion and ionization of an atom admits a correct passage to the limit to the caseZ ¼ 0,

corresponding to which is the equation pa ¼ 0 in the formula (2.66). Then the

summand in the square brackets describing “elastic” PBs disappears, and the

remaining last term in the braces describes emission of a slow free recoil electron

in collision with a relativistic charged particle as it must be according to the

physical picture of the process. It should be noted that this passage to the limit

does not take place for the “elastic” PBs cross-section since in the absence of a

nucleus the process becomes fundamentally inelastic – an atomic electron takes

over a momentum excess and increases its energy.

Let us compare integrated (with respect to the scattering and radiation angles)

cross-sections of the polarization and static Bs channels. Corresponding cross-sections

look most simple in the quasi-classical (ef ;i>>o) and ultrarelativistic (g>>1) limits

and in the region of frequencies exceeding the atomic ionization potential.

Thus in the spectral range pa v0>o>>I the main contribution to both Bs

channels is made by the “elastic” summands (without excitation of the atomic

core) (we assume Z; N>>1):

dspolii

do
¼ 16N2e6

3m2o
ln

g pa
o

� �
; (2.67)

dsstii
do

¼ 16Z2e6

3m2o
ln

m

pa

 �
; (2.68)

that (in case of Z ¼ N) differ only by logarithmic factors, though they have (in the

ultrarelativistic case) essentially different radiation patterns.

Let us write out the cross-sections of inelastic static and polarization Bs in the

spectral range where the main contribution to PBs is made by the processes with

atomic ionization:

dspolnonel

do
¼ 16Ne6

3m2o
ln

e
o

� �
; (2.69)
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dsstlnonel
do

¼ 16Ne6

3m2o
ln

m

pa

 �
; g>>

ffiffiffiffiffi
o
pa

r
: (2.70)

Thus in the frequency range pa v0 << o<< m the cross-sections of elastic static

and elastic polarization Bs differ only by logarithmic factors, and inelastic summands

of the cross-section corresponding to them are close in value up to o � m.
Ato>>m the space part of the 4-momentum transferred to an atom is great, and

atomic electrons can to a good accuracy be considered free, which gives the result

known in quantum electrodynamics when a recoil electron emits o m= times less

than a fast electron. Thus the contribution of the polarization summand to the total

cross-section of Bs of an electron on an atom in the region of high (o>>m )

frequencies is negligibly small in comparison with the contribution of the static

summand.

All aforesaid is true also for the case of Bs of an ultrarelativistic positron on an

atom, when the sign of the polarization summand of the amplitude changes to the

opposite. But, as for an electron, due to different dependences of the static and

polarization summands on radiation angles their interference can be neglected and

thereby the total cross-section of Bs of an ultrarelativistic particle can be

represented as the sum of two summands (polarization and static).

2.3.6 Channel Interference

Now let us consider the summand in the cross-section of Bs on a neutral atom

describing the interference of the static and polarization channels. As follows from

the analysis of angular dependences, this interference is low for an ultrarelativistic

incident particle. So here we will consider an incident particle to be nonrelativistic,

but still a Born particle. Let us neglect excitation of an atom during bremsstrahlung.

Then from Eq. 2.40 in view of Eqs. 2.42 and 2.43 it can be obtained for the

interference summand in the cross-section:

dsintii

do
� 32 e20 o

3

3 v20

ðq1j jmax

o v0=

e e0j j
m0 o

Re cii o; q1j jð Þf g Z � nii q1ð Þð Þ d q1j j
q1j j : (2.71)

In derivation of Eq. 2.71 it was taken into account that for a nonrelativistic

IP q1j j  o v0>> kj j= . We call attention to the fact that the contribution to

interference is made only by the real part of the diagonal matrix element from

the operator of electromagnetic field scattering by an atom (Eq. 2.31). For the

elementary approximation of the scattering tensor (2.49) from the formula (2.71)

we have approximately:
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dsintii

do
� 32 e20e

�� ��
3m0v

2
0

o2 Re ai oð Þ½ 
f g
ðpa
p�

Z � nii q1j jð Þð Þ
q1j j d q1j j; (2.72)

p� ¼ max pmin; o v0=f g , where pmin is the characteristic momentum of outer shell

electrons, pa is the characteristic momentum of atomic electrons making the main

contribution to atomic polarizability at the frequency under consideration o . From

Eq. 2.72 it follows that the interference term in the Bs cross-section can be noticeable if

the greatest contribution to polarizability is made by the inner atomic shell with compara-

ble cross-sections of PBs and SBs. This takes place, for example, for Bs of electrons on

neutral xenon for frequencies near the potential of ionization of the 4f -subshell.
The radiation spectrum of xenon in case of passage of an electron beam through it

was recorded in the work [8]. A shift of the frequency maximum from the value

calculated without considering interference to 20 eV was found. This discrepancy

was explained by the fact that the velocity of electrons in a beam is probably not high

enough for the Born approximation to work “well”. On the other hand, a reason of

shift can be an interference term in the total Bs cross-section that was not taken into

account. And if an IP is heavy or ultrarelativistic, the expected value of shift should

be small due to the smallness of the interference summand in these cases.

For an ultrarelativistic IP the theory results in an additional possibility of

interest: the value of shift of the Bs frequency maximum relative to the potential

of ionization of a corresponding atomic subshell sharply depends on the angle of

photon emission, which is caused by essentially different patterns of the static and

polarization Bs channels in the ultrarelativistic case.

It should be noted that the above brief analysis of channel interference relates to

Bs of a Born IP on a neutral atom, where, generally speaking, interference effects in

the Bs cross-section integrated with respect to the angle of incident particle

scattering are low due to different regions of space of channel formation:

corresponding to the static channel are large angles of IP scattering and respectively

small distances to a nucleus, corresponding to the polarization channel are small

scattering angles and large distances.

Thus interference effects in Bs on a neutral atom can show themselves most

strongly in the Bs cross-section differential with respect to the angle of IP scatter-

ing, which was shown in the work [9]. The situation is different for Bs on ions for

strongly inelastic scattering of electrons of moderate energies, when channel

interference is found to be essential also in the integrated process cross-section.

2.4 Polarization Bremsstrahlung of a Fast Charged Particle

on an Atom in the Local Plasma Approximation

The spectral PBs cross-sections in the high-frequency limit obtained in the previous

paragraph in Eqs. 2.56, 2.57, and 2.58 are true for the frequencieso>> I, where I is
the characteristic atomic ionization potential (it will be recalled that in this chapter
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we use the relativistic system of units, in which �h ¼ c ¼ 1 ). In case of a

multielectron atom this value is of rather indefinite nature, so the domain of

applicability of the high-frequency approximation requires its refinement.

At the same time it is for a multielectron atom that polarization effects in Bs

should be the most essential. And the calculation of the dynamic polarizability of a

multielectron atom defining the PBs cross-section is an intricate quantum-

mechanical problem that has to be solved anew for each specific target.

In this connection it seems to be useful to apply simple universal models suitable

for estimation of the value of the polarization Bs cross-section and for revealing

general qualitative regularities of this process.

One of such models is the method of local electron density (or local plasma

frequency) that was first proposed by Brandt and Lundqvist for calculation of the

cross-section of photoabsorption by multielectron atoms [10].

In this section this method is used to describe PBs of a fast (including relativis-

tic) charged particle on a neutral multielectron atom, the distribution of electron

density in which is given by the statistical Thomas-Fermi model.

It should be noted that the use of the local plasma frequency method for

calculation of the polarizability of a Thomas-Fermi atom is intrinsically consistent

since the physical representations underlying both models are analogous.

The advantages of the used approach are also that it is most adequate just for

those frequencies and distances, at which the significant role is played by

multielectron effects, the description of which within the framework of the consis-

tent quantum-mechanical consideration is difficult and laborious.

2.4.1 Polarizability of a Thomas-Fermi Atom in the Local
Plasma Frequency Approximation

Within the framework of the Brandt-Lundqvist model the expression for the

dynamic polarizability of an atom looks like:

a oð Þ ¼
ð1

0

o2
pðrÞ r2 dr

o2
pðrÞ � o2 � i0

; (2.73)

where opðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 p e2 nðrÞ m=

p
is the local plasma frequency depending on the

local electron density of the electron core nðrÞ, r is the distance from a point under

consideration to an atomic nucleus.

Hereafter for the function nðrÞ the Thomas-Fermi approximation will be used

that gives [11]:

nðrÞ ¼ nTFðrÞ ¼ Z2 f r rTF=ð Þ; f ðxÞ ¼ 32

9 p3
wðxÞ
x

 �3=2

; (2.74)
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where rTF ¼ b a0 Z1=3
�

is the Thomas-Fermi radius (b ¼ 9 p2 128=ð Þ1=3 ffi 0:8853,

a0 is the Bohr radius, Z is the nuclear charge), wðxÞ is the Thomas-Fermi function.

The expression (2.71) can be transformed to the form revealing the scaling law

(scaling) with respect to the parameter n ¼ �ho 2Ry Z= (Ry ¼ 13:6 eV) having the

meaning of dimensionless (reduced) frequency:

a nð Þ ¼ r3TF b nð Þ ¼ b3 a30
Z

b nð Þ: (2.75)

Here the dimensionless complex function b nð Þ (the reduced polarizability of a

Thomas-Fermi atom) is introduced, the imaginary part of which is (the prime means

differentiation with respect to the argument x):

Im b nð Þf g ¼ p
f xnð Þ x2n
f 0 xnð Þj j ; (2.76)

and the real part can be calculated by the “punctured” Kramers-Kronig relation:

Re b nð Þf g ¼ 2

p

ð1

0

Im b nð Þf g � Im b ~nð Þf g½ 
~nd~n
n2 � ~n2

: (2.77)

In the formulas (2.76), (2.77) the value xn is determined by solution of the

equation:

4 p f ðxÞ ¼ n2 (2.78)

that describes the resonance of the radiated frequency with the local plasma

frequency at some value of the parameter x (the reduced distance to a nucleus).

The expression (2.76) is obtained from the determination of the dynamic

(Eq. 2.73) and reduced (Eq. 2.75) polarizabilities with the use of the known

Sokhotsky formula.

It should be noted that the numerical calculation of dimensionless polarizability

directly by the formulas (2.73), (2.74), and (2.75) is found to be difficult for low

frequencies (n<1) in view of the singularity of a corresponding integrand and slow

decrease of Thomas-Fermi electron density (2.74) with distance. As a result, the

numerical integration loses accuracy. So it is proved to be preferably to use the

formulas (2.76), (2.77), and (2.78) for calculation of the reduced polarizabilityb nð Þ.
The ratio g nð Þ of the modulus of the function b nð Þ to the modulus of its high-

frequency limit (b1 nð Þ ¼ �b�3n�2) is presented in Fig. 2.5.

Given in the same figure is the corresponding ratio for a krypton atom restored

by the data of the work [12], in which the dynamic polarizability of an atom was

calculated by the quantum-mechanical method within the framework of the random

phase exchange approximation.
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It is seen that the function g nð Þ ¼ n2 b nð Þj j for a Thomas-Fermi atom smoothly

describes the spectral peculiarities of the dynamic polarizability of a krypton atom

connected with the shell structure of an atom and approaches its high-frequency

limit for n>10.

However, it should be remembered that in the range of low frequencies n<0:1 the
used approximation becomes inadequate since, on the one hand, the local plasma

frequency approximation “works” badly for polarizability of an atom Eq. (2.73),

and on the other hand, the contribution to polarizability at these frequencies is made

by the peripheral regions of an atom, where the statistical model is inapplicable.

Really, calculation by the formula (2.78) gives: x0.1 ¼ 3.4, x1 ¼ 0.64, and

x10 ¼ 0.053, at the same time the region of truth of the statistical model in the

variable x is determined by the inequation Z�2=3 << x << Z1=3.

So in further consideration we will restrict ourselves to the range n>0:1. It should
be noted that for Z � 50 this corresponds to the photon energieso>130 eV, which

exceeds considerably the potential of ionization of the outer electron shell of a

neutral atom, so the electron core can be considered “defrozen”. Besides, in this

frequency range, as seen from the above values of xn, the inequation xn � 3:4 is true.
The boundary reduced radius of a neutral atom calculated in the Thomas-Fermi-

Dirac model (with consideration for exchange) according to the paper [13] is well

approximated by the formula x0 ¼ 4 Z0:4. Thus in our case (Z>>1) xn<<x0, and
conclusions of further consideration practically do not depend on refinements of the

initial statistical Thomas-Fermi model, they are also true for ions with low enough

degree of ionization if the condition x0 Zi Z=ð Þ>>xn is satisfied, which is confirmed

by calculations carried out.

Good agreement of the magnitude of the dynamic polarizability of a Thomas-

Fermi atom calculated in the local electron density approximation with the results

of quantum-mechanical calculations [12], as seen from Fig. 2.5, takes place for the

values of the dimensionless frequency: n>2. Both approaches give the same value

of frequency for the maximum of the function g nð Þ: nmax � 0:5 or �homax � 490 eV,

Fig. 2.5 The dynamic

polarizability moduli

normalized to their high-

frequency limit as functions

of the dimensionless

frequency n ¼ �ho 2 Z Ry= for

a krypton atom: solid curve –
by the data of the work [12],

dotted curve – calculation for

a Thomas-Fermi atom in the

local electron density model
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so that �homax >> Ip Krð Þ ¼ 14 eV, and the electron core of a krypton atom can be

considered “defrozen”.

The latter circumstance serves as a qualitative justification of adequacy of using

the local plasma frequency approximation for calculation of the dynamic polariz-

ability of an atom in the spectral range under consideration: n  nmax.

It is interesting to note that even in the region of the maximum of the function

g nð Þ ¼ n2 b nð Þj j (nmax � 0:5), where, generally speaking, the quantum features of

motion of atomic electrons are essential, the distinction in the results of quantum-

mechanical and statistical calculations of the dynamic polarizability of a krypton

atom is less than 30 %.

The most distinction in results (about 47 %), as seen from Fig. 2.5, takes place

for n � 1, that is, for frequencies near the potential of ionization of the 2 p -subshell
of a krypton atom. This fact is quite natural since neither the statistical model of a

Thomas-Fermi atom nor the local plasma frequency approximation takes into

account the shell structure of an atom, but they render the smoothed behavior of

corresponding dependences.

Thus it can be stated that the model approximations used in this section for

calculation of the dynamic polarizability of an atom are in good conformity with the

results of quantum-mechanical calculations and at the same time are of a universal

nature.

2.4.2 Cross-Section of Polarization Bs of a Fast Charged
Particle on a Thomas-Fermi Atom

The spectral cross-section of polarization Bs of a fast electron on an atom within the

framework of the first Born approximation is described by the expression (2.46) that

for a process without excitation of a target, as it was shown in the previous

paragraph, can be simplified to the form:

dsPB

do
¼ o5

2 pð Þ3 v

ð
dOn dq a o; qþ kð Þj j2 nAðqÞ½ 
2 d oþ qvð Þ; (2.79)

here dOn is the solid angle in the direction of photon emission, k; o are the wave

vector and the frequency of a bremsstrahlung photon, q ¼ pf � pi is the change of

an incident particle momentum,AðqÞ is the spatio-temporal Fourier transform of the

vector-potential of the incident particle electromagnetic field that in the axial gauge

(A0 ¼ 0) is given by the expression (2.42).

The key value in the formula (2.79) – a o; qþ kð Þ – is the nondipole dynamic

polarizability of an atom, to calculate which the above approach is used.

It should be noted that the formula (2.79) is of a classical nature, it does not

include the Planck constant, and it can be obtained within the framework of the
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classical calculation of the PBs cross-section for a uniformly moving charge after

summation over the impact parameter.

Hereafter for calculation of the Bs cross-section we will restrict ourselves to the

Born-Bethe approximation, in which it can be assumed:

a o; qð Þ ¼ a oð Þ y pa � qð Þ; (2.80)

here yðxÞ is the Heaviside function (a unit “step”). As a characteristic atomic

momentum, we will use the Thomas-Fermi momentum pa ¼ Z1=3 b a0ð Þ= .

In the Born-Bethe approximation (2.80) the integral in the formula (2.79) is

calculated analytically. The result, however, is found to be cumbersome. So we

will give here the formula in the general writing representing the spectral cross-

section of polarization Bs in terms of the single integral with respect to the

value of a transferred momentum. In this expression there are two characteristic

frequency ranges that are explicitly separated: o<pa v is the “low-frequency”

range and o> pa v is the “high-frequency” range:

dsPB

do
¼ 4o3

v2
a oð Þj j2 y

pav

1þ v
� o

 �
H1 o; pa � oð Þ þ H2 oð Þ½ 


	

þy o� pav

1þ v

 �
H1 o;

o
v

� �

;

(2.81)

where

G1 ¼ p2a � q� oð Þ2
2oq

o2 v2 þ q2 � 5

2
o2 þ o4

2 q2 v2

� �

� 1

3

p2a � q� oð Þ2
2oq

 !3

þ 1

2
4

3
5 q2 � 5

2
o2 þ 3o4

2 q2 v2

� �

and

G2 ¼ 2o2 v2 � 5

3

 �
þ 4

3
q2:

The formula (2.81) in the frequency range o<pa v, when the contribution to the

cross-section is made by the first summand in the braces, is reduced to the known

expression for the spectral cross-section of polarization Bs of a relativistic incident

electron [2] (see also the formula (2.51) for the spectral-angular PBs cross-section):

dsPB

do
¼ 16o3 a oð Þj j2

3 v2
ln

2 g pa v
o 1þ vð Þ
 �

; o<pa v: (2.82)
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Here g ¼ 1� v2ð Þ�1=2
is the relativistic factor, a oð Þ is the dipole dynamic

polarizability of a target atom.

Going in the formula (2.82) to dimensionless variables with the use of the

Eq. 2.75 and the determination of the Thomas-Fermi radius, we obtain the follow-

ing expression for the spectral cross-section of polarization Bs:

dsPB nð Þ ¼ 16 Z2 b6

3 v2
n2 b nð Þ�� ��2 dn

n
ln

2 g v
n a0 1þ vð Þ Z2=3

 �
¼ Z2 d~sPB nð Þ: (2.83)

In the formula (2.83) the function d~sPB nð Þ is introduced that is naturally can be

called the reduced cross-section of the process since for this function in the case

under consideration for polarization Bs of a fast incident particle approximate

scaling with respect to the parameter o Z= takes place, while the nuclear charge

dependence is only logarithmic.

From the expression (2.83) it follows in particular that the spectral cross-section

of polarization Bs of a Thomas-Fermi atom (accurate to the logarithmic factor)

grows quadratically with increasing nuclear charge if in this case the dimensionless

frequency n does not change.
It should be noted that in case of a hydrogen-like ion, when scaling with respect

to the parameter nH ¼ o Z2
�

takes place, the spectral cross-section of PBs of a fast

particle in the Born approximation does not depend at all on a nuclear charge for the

specified value of the dimensionless frequency nH, while the spectral cross-section
of static Bs grows quadratically with increasing Z (accurate to the logarithmic

factor).

Thus the used model predicts amplification of polarization effects in Bs of a fast

particle on a neutral atom with increasing charge of the nucleus of the latter.

The spectral cross-section of ordinary (static) Bs in view of screening of the

nuclear field [2] in case of weakly inelastic electron scattering is given by the

expression:

dsOB oð Þ ¼ 16 Z2

3 v2
do
o

ln
v

pa

	 

; o < pa v: (2.84)

The ratio of the cross-sections determined by the formulas (2.83) and (2.84)

makes it possible to find the R-factor in the frequency range under consideration

(o < pa v) and in the relativistic limit (v ffi 1):

R n; Z; gð Þ � dsPB

dsOB
¼ b6 n2 b nð Þ�� ��2 ln 137 g

nZ2=3

n o

ln 137
Z1=3

n o ; n<
137

Z2=3
: (2.85)

The results of calculation of the R-factor as a function of the dimensionless

frequency n for different values of the charge Z and the relativistic factor g in the
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range n<137 Z2=3
�

are presented in Fig. 2.6. It should be noted that corresponding to

these values of the dimensionless frequency n (for the nuclear charges Z � 50) are

the photon energies �ho < 14 keV.

It is seen that the value of the R-factor of a relativistic incident electron in a wide
frequency range is about one and for o � Z Ry (n ¼ 0.5) reaches its maximum

value about 2.5 � 3. In this case the “sublogarithmic” influence of a nuclear charge

on scaling with respect to Z is vanishingly small, and the influence of the relativistic

factor is more significant.

It should be noted that the interference of the polarization and static Bs channels

in case of a relativistic charged particle is small in view of different radiation

patterns: the ordinary channel gives high-directivity radiation to a cone with an

angle of the order of 1/g [1], and the angular distribution of polarization Bs for the

frequencies o<pa v is of a dipole nature [2].
In the case under consideration for weakly inelastic scattering of a Born charged

particle in the frequency rangeo<pa v the main contribution to Bs is made by small

scattering angles, when the influence of effects of penetration of an incident particle

into the electron core of an atom is small.

The said circumstance results in different frequency dependences of the polari-

zation Bs cross-section for different degrees of inelasticity of incident electron

scattering. In case of the process considered in this chapter, the spectral maximum

of the polarization Bs cross-section is considerably shifted to the region of high

frequencies and falls with growing Bs frequency more slowly than corresponding

spectral dependences in emission of photons of threshold energies.

In the frequency range o>pa v the law of conservation of energy-momentum

conditions the necessity of penetration of an incident charged particle into the

electron core of a target. So reradiation of a virtual photon of the scattered electron
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Fig. 2.6 The dependences of the R-factor on the reduced frequency n calculated for Bs of a fast

electron on a Thomas-Fermi atom with the nuclear charge Z: (a) solid curve – g ¼ 10, Z ¼ 60;

dotted curve – g ¼ 10, Z ¼ 30; (b) solid curve – Z ¼ 60, g ¼ 3; dotted curve – Z ¼ 60, g ¼ 10
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eigenfield to a real photon on atomic electrons loses coherent behavior. As a result,

the spectral cross-section of polarization Bs is found to be suppressed in compari-

son with the cross-section of ordinary Bs.

It should be noted that in the high-frequency region o>pa v the dimensionless

frequency n satisfies the inequation n > 10 (we assume that Z  30), and, as seen

from Fig. 2.5, the reduced polarizability of a Thomas-Fermi atom is close to its

high-frequency limit: b nð Þ � b1 nð Þ ¼ �b�3n�2. The frequency dependence of the

polarization Bs cross-section in this case is defined mainly by the integral with

respect to the angular variables and the value of the transferred momentum q in the
formula (2.79).

The formula (2.82) in the frequency range o>pa v becomes untrue, and for

determination of the polarization Bs cross-section it is necessary to proceed from

the general expression (2.81). In this case the contribution is made by the second

summand in the braces of Eq. 2.81. The analysis shows that in the expression for the

spectral cross-section the multiplier pa o=ð Þ2 appears that defines the smallness of

the polarization channel contribution to the total spectral Bs cross-section. How-

ever, the spectral-angular cross-section of polarization Bs in the region of photon

emission angles g�1<# � ffiffiffiffiffiffiffiffiffiffiffi
pa o=

p
exceeds the corresponding cross-section of the

static channel.

The carried out consideration shows in particular that the characteristic poten-

tial of ionization of a multielectron atom included in the definition of the region of

truth of the high-frequency approximation (see Eq. 2.53) can be represented as:

IðZÞ ¼ 2 z Z Ry, that is, increases linearly with growing charge of the nucleus of a

target atom. In this formula the constant z  5 is introduced, the exact value of

which is not determined and depends on accuracy, with which it is required to

calculate the process cross-section.

Thus in this paragraph within the framework of the local electron density method

and the Thomas-Fermi model the universal description of polarization Bs of a fast

Born charged particle on a multielectron atom (Z>>1) in the region of energies of

bremsstrahlung photons o>100 eV is given. It is shown that the R-factor defining
the relative value of the polarization channel contribution to the total Bs cross-

section has approximate scaling with respect to the parameter o Z= and at the

frequencies omax � Z Ry reaches its maximum value Rmax gð Þ ¼ 2:5� 3 that grows

logarithmically with the energy of an incident particle.

The decrease of the R-factor with growing energy of an emitted photon in the

low-frequency region o<pa v is most pronounced up to frequencies of the order of

20 Z Ry , when the magnitude of the polarizability of a Thomas-Fermi atom

decreases when going to its high-frequency asymptotics.

In the spectral range 10 Z Ry<o<pa v the decrease of the R-factor and polariza-

tion Bs intensity has weak logarithmic behavior and is caused by reduction of the

maximum impact parameter.

In the high-frequency range o>pa v the frequency change of polarization Bs

intensity is defined mainly by kinematic factors and by violation of coherence of

reradiation of a virtual photon to a real photon on atomic electrons. In this case the
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decrease of spectral intensity becomes power-like. At the same time the pattern of

radiation by the polarization channel is narrowed, so that # � ffiffiffiffiffiffiffiffiffiffiffi
pa o=

p
, and in the

frequency range pa<o<g2pa there is the region of Bs angles: g�1<# � ffiffiffiffiffiffiffiffiffiffiffi
pa o=

p
, in

which the polarization mechanism prevails over the ordinary (static) mechanism of

radiation.

2.5 Incoherent Polarization Bremsstrahlung of a Fast Charged

Particle on an Atom in the High-Frequency Approximation

In this paragraph within the framework of the high-frequency approximation for the

operator of electromagnetic field scattering the universal description of incoherent

polarization Bs of a fast charged particle on a multielectron atom is obtained. The

PBs cross-section is expressed in terms of the Compton profile of X-ray scattering,

for which a voluminous calculation material is available. The obtained universal

representation for the process cross-section is justified both for the statistical atom

model and on the basis of established approximate scaling of Hartree-Fock

Compton profiles.

This paragraph is the refinement, supplement, and generalization of the consid-

eration of PBs with atomic ionization carried out in the Sect. 2.3 to the case of

taking into account atomic electron binding in the initial state.

2.5.1 Connection of the Dynamic Form Factor with the Compton
Profile of an Atom

In Sect. 2.3 the expression (2.63) was obtained for the cross-section of high-

frequency PBs (m>>o>> I) of a fast charged particle in terms of the dynamic

form factor (DFF) of a target (Eq. 2.64).

The approximate expression for the DFF (2.65) and the formula following from

it for the PBs cross-section (2.66) give a qualitative idea of the process, separating

two characteristic frequency ranges.

In the low-frequency range (o < pa v0) PBs is coherent by the contribution of

atomic electrons, the process proceeds without excitation of a target, and the cross-

section is proportional to the squared number of atomic electrons.

In the high-frequency range (o > pa v0 ) radiation with ionization of a target

prevails, and the PBs cross-section is proportional to the number of electrons in an

atom.

In the latter case the (incoherent) DFF of an atom is represented as the sum of the

DFF of electron subshells of the atom:

SðqÞ ¼
X
n; l

SnlðqÞ: (2.86)
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Let us transform the expression for the dynamic form factor of the electron subshell

(Eq. 2.64) using the expansion in terms of the total system of wave functions.

Then we will use the fact that in the frequency range under considerationo>pa v0
momenta transferred from an incident particle to a target far exceed the characteristic

atomic momentum. Then the wave functions of the continuous spectrum making the

main contribution to the DFF can be to a good accuracy approximated by plane

waves, and the expression for the DFF of the electron subshell is represented as:

SnlðqÞ ¼
Z

dp

4 p
d q0 þ p� qð Þ2

2
� enl

 !
RnlðpÞj j2; (2.87)

here q0 ¼ oþ q1 vþ q21 2m= is the energy of a nonrelativistic IP transferred to the

target, (m is its mass); q1 ¼ pIPf � pIPi is the change of the incident particle

momentum (here the upper index is introduced for IP momenta to distinguish

them from atomic electron momenta), q ¼ q1 þ k is the momentum transferred

to the target; enl is the energy of the electron subshell under consideration (n; l are
the principal and orbital quantum numbers). In the formula (2.87) the function

Rnlð pÞ is introduced that represents the spatial Fourier transform of a normalized

radial wave function of the nl-state determined by the formula:

RnlðpÞ ¼
ffiffiffi
2

p

r ð1

0

RnlðrÞ jl p rð Þ r2dr; (2.88)

jl p rð Þ is the spherical Bessel function of the first kind.

2.5.2 Impulse Approximation

The delta function in the formula (2.86) describes the law of conservation of energy

in the PBs process with target ionization. In the expression (2.86) we went from

summation over the finite momentum of an atomic electron to summation over the

momentum of the Fourier expansion of the wave function of the electron subshell

under consideration. In the impulse approximation this value coincides with the

initial momentum of an atomic electron. Thus, if it is assumed that:

p2 2= ¼ enl; (2.89)

we come to the impulse approximation widely used in calculations of the Compton

effect on atoms.

Really, in fulfilment of Eq. 2.89 the DFF of the electron subshell (Eq. 2.86) can

be represented as:
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S
IAð Þ
nl ðqÞ ¼ 1

qj j Jnl Q ¼ � q0 þ q2 2=

qj j
 �

: (2.90)

Here the Compton profile of the electron subshell JnlðQÞ [14, 15] is introduced
that is determined according to the formula:

JnlðQÞ ¼ 1

2

ð1

Q

RnlðpÞj j2p dp: (2.91)

This value is tabulated for all subshells of all elements in [14] with the use of the

Hartree-Fock and Dirac-Hartree-Fock wave functions.

The formulas (2.86) and (2.90) give the representation of an incoherent DFF in

terms of the Compton profile in the impulse approximation.

Beyond the framework of the impulse approximation instead of the formula

(2.90) it is possible to obtain from Eq. 2.86 the following representation for the

dynamic form factor of an atom in terms of its Compton profile:

SnlðqÞ ¼ 1

2 qj j Jnl � qj j þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �q0 þ enlð Þ

p� �
� Jnl qj j þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �q0 þ enlð Þ

p� �n o
:

(2.92)

Using the tabulated values of the Compton profile [14] makes it possible with the

formulas (2.86), (2.92), and (2.63) to calculate the cross-sections of incoherent PBs

of various elements.

2.5.3 Compton Profile Within the Framework of Statistical Atom
Models

For universalization of the dependence of PBs cross-sections on the charge of an

atomic nucleus, it is of interest to obtain an expression for the Compton profile

within the framework of the statistical model.

Let us introduce an “effective” one-electron radial wave function of an atom in

the statistical model, connecting it with the radial density of distribution of the

electron charge rstatðrÞ by the formula:

RstatðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rstatðrÞ Z=

p
: (2.93)

Then, considering the distribution of electron density in an atom spherically

symmetrical, it is possible to obtain from Eqs. 2.88, 2.91, and 2.93 for the Compton

profile in the statistical approximation (in terms of one electron) the following

expression:
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J
ð1Þ
statðqÞ ¼

1

pZ

ð1

q

dp

p

ð1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rstatðrÞ

p
sin prð Þ r dr

������
������
2

: (2.94)

In the elementary case of exponential screening, when the radial electron density

in an atom looks like:

rexpðrÞ ¼
4 Z

r3TF
e�2 r rTF= ; (2.95)

the following expression for the Compton profile (Eq. 2.94) can be obtained:

Jð1ÞexpðqÞ ¼
8 rTF
3p

1

1þ q rTFð Þ2
� �3 : (2.96)

By analogy, for the reduced Compton profile of an atom in the Thomas-Fermi

model we have:

~JTF ~qð Þ ¼ 1

p

ð1

~q

gTF ~pð Þj j2
~p

d~p; (2.97)

introduced here is the spatial Fourier transform of the square root of the normalized

Thomas-Fermi density:

gTF ~pð Þ ¼
ð1

0

wðxÞð Þ3 4=
sin ~p xð Þ x1 4= dx: (2.98)

The obtained reduced Compton profiles satisfy the necessary normalizing

condition:

ð1

0

~Jstat ~qð Þ d~q ¼
ð1

0

J
ð1Þ
statðqÞ dq ¼ 0:5: (2.99)

As seen from the formulas (2.96), (2.97), the normalized Compton profile of an atom

in statistical models depends only on the reduced momentum ~q ¼ q rTF ¼ q pTF= .

Presented in Fig. 2.7 are the dependences of normalized Compton profiles of an

atom on the reduced momentum ~q calculated within the framework of statistical

models and by the data of the Hartree-Fock calculations [14] for argon and krypton

atoms. It is seen that the Thomas-Fermi Compton profile in the region of small

transferred momenta exceeds appreciably values obtained within the framework of

other models, which is explained by not fast enough decrease of the Thomas-Fermi

electron density with distance. At the same time the exponential screening model

54 2 Quantum-Electrodynamics Approach to Description of Bremsstrahlung. . .



gives quite satisfactory approximation to the results of more exact calculations [14]

with the use of the Hartree-Fock wave functions.

Following from this figure, in particular, is approximate scaling of normalized

Hartree-Fock Compton profiles as functions of the reduced momentum.

2.5.4 Cross-Section of Incoherent PBs of a Nonrelativistic Born
Particle

The expression for the spectral cross-section of PBs of a nonrelativistic Born

charged particle in the high-frequency range m>>o>> I integrated with respect

to the solid angle of photon emission can be obtained from the formula (2.63). In the

ordinary (Gaussian) system of units it looks like:

ds oð Þ ¼ 8

3 p
e4 e20

m2
e v �h c

3

do
o

ð ð
dOq dq S q0; q

� �
; (2.100)

where e0 ¼ Z0 e is the IP charge.

In derivation of (Eq. 2.100) the expression for the vector potential of the

eigenfield of a nonrelativistic IP in the axial gauge was used, and it was assumed

that q ¼ q1.

It should be noted that in the approximation of quasi-free (at rest) atomic

electrons the incoherent DFF of a target is given by the equation:

Sncohfree ðqÞ ¼
Z

q v
d

oþ q vþ q2 2 mð Þ=

q v

 �
; (2.101)

Fig. 2.7 The dependences of

the normalized Compton

profile on the reduced

transferred momentum

obtained within the

framework of different

models: (1) exponential
screening; (2) Hartree-Fock
calculation for an argon atom;

(3) Hartree-Fock calculation

for a krypton atom;

(4) Thomas-Fermi model
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where m is the reduced mass of an electron and an IP, Z is the number of atomic

electrons equal to the nuclear charge.

Substituting the expression (2.92) for the incoherent DFF summed over all

electron subshells of an atom in the formula (2.100), we come to the following

representation of the spectral PBs cross-section in the frequency range o>pa v0:

ds o; v; mð Þ ¼
ffiffiffi
Z

3
p

Z2
0 d~s

o
p2TF

;
v

pTF
; m

 �
: (2.102)

Introduced here is the reduced cross-sectiond~sdepending on the frequency of an
emitted photon and the IP velocity normalized accordingly to the characteristic

momentum of a Thomas-Fermi atom.

The reduced cross-section is expressed in terms of the normalized Compton

profile of an atom by the formulas:

d~s ~o; ~v; mð Þ ¼ s0
b2

~v2
d~o
~o

I ~o; ~v; mð Þ (2.103)

I ~o; ~v; mð Þ ¼
ðqmax

qmin

d~q

~q

ð�vm

�v

~J �~qþ
ffiffiffiffiffiffiffiffiffiffiffiffi
�2 ~q0

q
� ~J ~qþ

ffiffiffiffiffiffiffiffiffiffiffiffi
�2 ~q0

q � 

d v cos q vð Þð Þ;

	

(2.104)

here vm ¼ ~oþ ~q2 2m=
� �

~q= , b ¼ 0.8853.

The upper and lower limits of integration with respect to the magnitude of the

transferred momentum in the integral (2.104) are defined by the condition vm<v.

The dimensional cross-section s0 included in the expression (2.103) is:

s0 ¼ 16

3

e6

m2
e �h c

3
¼ 2:074 � 10�6 a:u: (2.105)

Here we used the Gaussian system of units.

Thus the formulas (2.102), (2.103), (2.104), and (2.105) reveal the scaling law

for the cross-section of incoherent PBs of a fast (but nonrelativistic) charged

particle on a multielectron atom and express the process cross-section in terms of

the normalized Compton profile of X-ray scattering. This cross-section (accurate to

the multiplier
ffiffiffi
Z3

p
) depends on the frequency of an emitted photon and the IP

velocity nondimensionalized with the use of the Thomas-Fermi momentum.

It should be noted that though, strictly speaking, scaling Eqs. 2.102, 2.103,

2.104, and 2.105 is obtained within the framework of the statistical model of an

atom, it is also approximately true for a Hartree-Fock atom in view of the above

approximate scaling of normalized Compton profiles (see Fig. 2.7).
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We will give for comparison a corresponding expression for the cross-section of

incoherent PBs on a hydrogen-like ion with the charge Z:

dsH o; v; mð Þ ¼ Z�1 b�2 d~s
o
p2H

;
v

pH
; m

 �
; (2.106)

where pH ¼ Z a.u. is the characteristic momentum of a hydrogen-like atom.

The found expression (2.102) for the cross-section of high-frequency PBs with

atomic ionization refines and supplements the result of Eq. 2.69 obtained with the

use of the DFF in the model of free atomic electrons (Eq. 2.101) that can also be

represented in the form (2.102) and (2.103), if it is assumed that:

Ifree ~o; ~v; mð Þ ¼ ln
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2 ~o m ~v2

� ��q

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2 ~o m ~v2

� ��q
8><
>:

9>=
>;: (2.107)

Shown in Fig. 2.8 are the spectral dependences of the value o ds
do calculated

within the framework of different approximations, including the model of free

atomic electrons, for incoherent PBs of a proton. It is seen that the main difference

of the models shows itself in the frequency range o>o� ¼ m v2 2= , that is, behind

the “cutoff” frequency for PBs on free electrons.

From kinematic considerations it is clear that the “cutoff” frequency for PBs of

an electron, other things being equal, is half the value for PBs of a proton (because

of the difference in reduced masses), this situation supplements the conclusion

drawn earlier about the PBs cross-section independence of the mass of an incident

particle.

The reduction of the cross-section with growing PBs frequency in the exponen-

tial screening model occurs appreciably faster than for the Hartree-Fock Compton

profile, which follows also from Fig. 2.7. For frequencies smaller than the “cutoff”

frequency the Hartree-Fock consideration of binding of atomic electrons in the

initial state results in a somewhat smaller cross-section value in comparison with

the model of free atomic electrons.

Let us note the close similarity of the dependences in Fig. 2.8 with corresponding

spectral cross-sections for radiation ionization from the theoretical work [16]. In

this work for description of incoherent PBs (radiation ionization) a similar approach

was used, based on the use of the nondiagonal atomic form factor Fn;WðqÞ that was
calculated earlier in connection with the problem of ionization of atoms and

excitation of characteristic X-rays.

Shown in Fig. 2.9 are the dependences of the value o ds do= of incoherent PBs

of a proton on a krypton atom on the proton velocity for three values of bremsstrah-

lung photon energy – 3.78 keV, 7.57 keV, and 11.35 keV.

It is seen that the velocity dependences of cross-section have maxima. These

maxima are shifted to the region of higher velocities with growing bremsstrahlung
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photon energy. A corresponding formula relating the bremsstrahlung photon

frequency and the optimum value of proton velocity in atomic units looks like:

vopt ¼ 1:89
ffiffiffiffi
o

p
(2.108)

It is essential that the relation (2.108) does not depend on the charge of an atomic

nucleus in contrast to the analogous dependence for coherent PBs, when there is a

linear connection between the optimum velocity and radiated frequency through the

radius of the atomic subshell making the greatest contribution to the process.

2.5.5 Comparison of Cross-Sections of Incoherent and Coherent
PBs

Now we will analyze the relation between the cross-sections of coherent and

incoherent PBs.

We will calculate the cross-section of the coherent process within the framework

of the exponential screening model for the electron density of the target core.

A corresponding expression can be obtained from the formula (2.63) if it is taken

into account that the DFF of an atom in this case is reduced to the ordinary static

form factor being a Fourier transform of electron density.

After standard transformations including integration with respect to the solid

angles of an emitted photon and a transferred momentum, for the cross-section of

coherent PBs of a nonrelativistic Born particle we have the following expression

(in atomic units):

Fig. 2.8 The spectral cross-

section of incoherent PBs of a

proton with an energy of

34 MeV on a krypton atom

near the “cutoff” frequency

calculated within the

framework of different

approximations for the

electron density of an atom:

Hartree-Fock calculation

(curve 1), exponential
screening (curve 2),
approximation of free atomic

electrons (curve 3)
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ds expð Þ
coh oð Þ ¼ 16

3

Z4=3

~v2 c3
b2

ð~qmax

~qmin

1

1þ ~q2 2=
� �4 d~q

~q

do
o
: (2.109)

In the integral of the expression (2.109) there are the same limits of integration

with respect to the transferred momentum as in the formula (2.104). “Tilde” above

the sign of the transferred momentum and of the IP velocity, as before, means

normalization to the momentum (velocity) of a Thomas-Fermi atom.

The integral in the Eq. 2.109 is taken in quadratures, but a corresponding

expression is rather cumbersome. For a heavy IP the upper limit of integration

can be replaced by infinity, then for the integral with respect to the reduced

transferred momentum we have:

I
expð Þ
coh ~o; ~vð Þ ¼

11þ 54 ~v
~o

� �2
þ 72 ~v

~o

� �4

12 1þ 2 ~v
~o

� �2 �3
� 11

12
þ 1

2
ln 1þ 2

~v

~o

 �2
 !

: (2.110)

It should be noted that in the limit v pTF<<o �ð Þ from the formula (2.110) the

asymptotics follow:

I
expð Þ
coh ~o; ~vð Þ ffi 2 ~v ~o=ð Þ8: (2.111)

The inequation (*) can be rewritten as:o >> 0:125 Z2=3 keV, whence it follows

that it is satisfied for all Z in the kiloelectron-volt range of bremsstrahlung photon

energies.

From the formulas (2.109), (2.110), and (2.111) we obtain for the coherent PBs

cross-section in the exponential screening approximation and the high-frequency

limit o >> 0:125 Z2=3 keV:

Fig. 2.9 Incoherent PBs of a

proton on a krypton atom as a

function of the proton velocity

for three values of

bremsstrahlung photon energy:

�ho ¼ 3.78 keV (curve 1),
�ho ¼ 7.57 keV (curve 2),
�ho ¼ 11.35 keV (curve 3)
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ds expð Þ
coh oð Þ ¼ 32 b2

3 c3
Z4=3 ~v6

~o8

do
o

: (2.112)

For correct estimation of the relation between the cross-sections of coherent and

incoherent processes it is important to emphasize that a simple exponential approx-

imation underestimates considerably the contribution of the K-shell to coherent PBs
on a multielectron atom in a high-frequency range. Really, the radius of the orbit

nearest to the nucleus is approximately Z2 3= times less than the Thomas-Fermi

radius, so the corresponding integral in the formula (2.109) results in reduction of

the spectral cross-section at higher frequencies than this takes place for the Thomas-

Fermi radius.

To take into account the contribution of the K-shell, we rewrite the formula

(2.109) as follows (Z>>1):

ds expð Þ
coh oð Þ ¼ 16

3

Z4=3

~v2 c3
b2

do
o

I
expð Þ
coh ~o; ~vð Þ þ 4

Z2
I
expð Þ
coh ~o; ~v pKðZÞ pTF=ð Þð Þ

	 

;

(2.113)

introduced here is the momentum of the atomic K-shell pKðZÞ.
The expression (2.113) is a universal (common for all nuclear charges) repre-

sentation of the cross-section of coherent PBs of a fast particle obtained in the

exponential electron density model with individual consideration of the contribu-

tion of the K-shell to radiation.

The results of calculation of the spectral cross-sections of coherent and incoher-

ent PBs of a proton on a krypton atom for two values of proton velocity are

presented in Fig. 2.10.

From this figure it follows in particular that the prevalence of the incoherent

process over the coherent process can take place at high enough velocities of an

incident particle since in this case the “cutoff frequency” for radiation ionization is

shifted to the region of high frequencies, in which the contribution of most of

atomic electrons to coherent PBs is already small.

Thus in this paragraph within the framework of the high-frequency approxima-

tion for the operator of electromagnetic field scattering the universal description of

incoherent PBs of a fast charged particle on a multielectron atom was obtained. The

process cross-section is expressed in terms of the Compton profile of X-ray

scattering.

The basis for the obtained universal description is approximate scaling of the

reduced Compton profile of X-ray scattering by a neutral atom for high enough

nuclear charges (Z  20) that was found in this work.

Based on the derived formulas and within the framework of different

approximations for electron density of the electron core of a target, the spectral

and velocity dependences of the cross-section of incoherent PBs of a proton on a

multielectron atom were analyzed.
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It was shown that for a specified PBs frequency there is an optimum velocity of

an incident particle, at which the process cross-section has maximum. The value of

optimum velocity grows as the square root of frequency.

The carried out comparison of the cross-sections of coherent and incoherent

processes has shown that for high enough velocities of an incident particle there is a

frequency range of prevalence of PBs with atomic ionization over coherent PBs.
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Chapter 3

Quasi-Classical Theory of Bremsstrahlung

on an Atom and an Ion with a Core

The quasi-classical theory of Bs on atoms and ions plays an important role in a

number of applications such as radiation in partially ionized plasma, low-

temperature plasma, gas discharge, absorption of radiation by plasma media, etc.

Stated in this chapter is the theory of spontaneous Bs, including the polarization

channel, in scattering of electrons by atoms and ions with a core with fulfilment of

the quasi-classical condition

Z e2

�h v
� 1; (3.1)

where Z is the charge number of an atom (ion), v is the electron velocity. In this

chapter the Gaussian system of units is used.

As seen from the formula (3.1), a quasi-classical electron should be rather slow

in contrast to a Born electron, for which the inequation (2.1) reverse of the relation

(3.1) is true. It should be noted that the Born inequation is “strong”, and the quasi-

classical inequation is “weak”.

The condition (3.1) is realized, for example, for low-temperature plasma. In this

case by the charge number of an atomic (ion) nucleus and the electron velocity their

average values defined by the state of a substance should be meant.

3.1 Classical Consideration in the Approximation of Straight

Trajectories

3.1.1 Ordinary (Static) Bremsstrahlung

As is known, emission of a photon in scattering of a charged particle on an atom

(ion, molecule, cluster, etc.) is called bremsstrahlung. The initial and final states of
an emitting particle in this process belong to the continuous spectrum, and radiant
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DOI 10.1007/978-3-642-34082-6_3, # Springer-Verlag Berlin Heidelberg 2013

63

http://dx.doi.org/10.1007/978-3-642-34082-6_2


energy is got from its kinetic energy. Let us consider at first the most simple case,

when a nonrelativistic electron is scattered by a “bare” nucleus (that is, a nucleus

without bound electrons) with the charge numberZ. We use the classical expression

for the power of dipole radiation Q in terms of the acceleration of a scattered

electronw (the acceleration of a nucleus can be neglected due to its large mass) [1]:

QðtÞ ¼ 2 e2

3 c3
w2ðtÞ: (3.2)

The total energy of bremsstrahlung for the whole time of collision is:

DE ¼ 4 e2

3 c3

ð1

0

w oð Þj j2 do
2 p

: (3.3)

In derivation of Eq. 3.3 the relation was used:

ð1

�1
f 2ðtÞ dt ¼ 2

ð1

0

f oð Þj j2 do
2 p

; (3.4)

where f ðtÞ is the real function of time, f oð Þ is its Fourier component.

To calculate the Fourier component of the acceleration w oð Þ, it is necessary to

concretize the character of motion of a particle. It is well known that in case of a

central force field the moment of momentum of an electron isM ¼ m v r, where v is
the electron velocity (infinitely far from the nucleus),r is the impact parameter (see

Fig. 3.1).

Thus the motion of a particle in the potential U r ¼ rj jð Þ is characterized by two

values: the initial velocity and the impact parameter, so the Fourier component of

acceleration depends also on r: w oð Þ ! wr oð Þ. For the last value we have:

wr oð Þ ¼ e

m
E o; rð Þ; (3.5)

where E o; rð Þ is the Fourier component of the intensity of the nuclear electric field

acting on a scattered electron with a specified impact parameter.

ρ
v

Z e

r(t)

En

Eτv t

Fig. 3.1 The diagram of

electron scattering by a

nucleus in the approximation

of straight trajectories, r is the
impact parameter
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Let us calculate E o; rð Þ in the approximation of straight trajectories of electron

motion. This approximation is true for “distant” collisions, when r > aC (aC ¼
Z e2 m v2

�
is the Coulomb length). It should be noted that this approach was used by

E. Fermi in calculation of excitation of atoms by charged particles [2]. Using the

elementary electrodynamic formulas, we find for the Fourier component of nuclear

electric field intensity:

E o; rð Þ ¼ 2 Z e

r v
F

or
v

� �
en � iF0 or

v

� �
et

n o
; (3.6)

where en; t are the normal and tangent (with respect to the velocity vector v) unit

vectors (see Fig. 3.1);

F zð Þ ¼
ð1

0

cos z xð Þ
1þ x2ð Þ3 2=

dx; (3.7)

the prime designates differentiation with respect to the argument.

From the formula (3.3) in view of Eq. 3.5 the following expression for brems-

strahlung energy differential with respect to the photon frequency:

dEr

do
¼ 2 e4

3 pm2 c3
E o; rð Þj j2: (3.8)

The probability of bremsstrahlung in scattering of an electron with a specified

impact parameter and frequency is related to the energy of Eq. 3.8 by the relation:

dWr

do
¼ 1

�ho
dEr

do
; (3.9)

and spectral cross-section of the process is:

ds
do

¼ 2 p
ðrmax

rmin

dWr

do
r dr; (3.10)

where rmin; rmax are the minimum and maximum impact parameters. Assembling

the formulas (3.8), (3.9) and (3.10), we obtain:

ds
do

¼ 4 e4

3 m2 c3 �ho

ðrmax

rmin

E o; rð Þj j2 r dr: (3.11)
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Hence in the approximation of straight trajectories we have for the spectral

cross-section of bremsstrahlung of an electron on a “bare” nucleus:

ds
do

¼ 16 Z2 e6

3 m2 v2 c3 �ho

ðrmax

rmin

dr
r

F2 or
v

� �
þ F02 or

v

� �n o
; (3.12)

where the function F zð Þ is given by the formula (3.7).

The classical consideration is found to be not sufficient to determine the limits of

integration in Eq. 3.12 with respect to the impact parameter. For this purpose it is

necessary to involve quantum considerations. Thus the minimum value rmin is

defined by the de Broglie wavelength of a scattered electron:

rmin � l�DB ¼ �h

m v
: (3.13)

The relation (3.13) reflects the fact that the location of a quantum particle can not

be determined more precisely than the spatial “diffusiveness” of its wave function

that is characterized by the de Broglie wavelength. To determine the maximum

impact parameter rmax , it is necessary to use the energy conservation law in

bremsstrahlung and the connection of change of a momentum of an incident

electron with the value r: Dp � �h r= , then it is possible to obtain:

rmax �
v

o
: (3.14)

In derivation of Eq. 3.14 the energy conservation law was used in the form �ho ¼ v

Dp true for small changes of the electron momentum Dpj j � p, which corresponds to
the approximation of straight trajectories. This approximation realized in case of distant

collisions r > aC implies the weakness of interaction of an incident particle with a

target nucleus. It is natural that in weak interaction mainly low-frequency photons will

be emitted. It can be shown that a corresponding condition looks like:o < oC, where

oC ¼ v aC= is the Coulomb frequency. In the low-frequency region the argument of the

function F zð Þ and of its derivative F0 zð Þ is less than one: z ¼ or v= < 1, so, as it

follows from the definition (3.7), it is possible to use the following approximate

equations: F zð Þ � 1 and F0 zð Þ � 0. As a result, instead of Eq. 3.12 we have:

ds
do

¼ 16 Z2 e6

3 m2 v2 c3 �ho
ln

rmax

rmin

� �
: (3.15)

It is easy to generalize the obtained expression to an arbitrary scattered charged

particle, for which the used approximations are fulfilled. For this purpose in the

formulas (3.2) and (3.5) it is necessary to make replacements: e ! ep; m ! mp ,

where ep; mp are the charge and the mass of an incident particle. Then in view of
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Eqs. 3.13 and 3.14 we come from Eq. 3.15 to the final expression for spectral

bremsstrahlung of a nonrelativistic charged particle on a “bare” nucleus in the low-

frequency approximation (�ho<<mp v
2 2= ):

ds
do

¼ 16 Z2 e2 e4p
3 m2

p v
2 c3 �ho

ln
mp v

2

�ho

� �
: (3.16)

From the obtained equation it follows that the bremsstrahlung cross-section is

inversely proportional to the squared mass of an incident particle. Thus, when
going from light charged particles (electron, positron) to heavy particles (proton,

alpha particle, etc.), the cross-section of the process under consideration decreases

more than million times. This conclusion led to the well-known statement that

heavy charged particles do not emit bremsstrahlung photons. As it will be clear

from the following, this statement needs considerable correction.

The spectral intensity of emission is equal to the process cross-section multiplied

by the incident particle flux and the energy of an emitted photon, so Eq. 3.16 gives:

dI

do
¼ 16 Z2 e2 e4p

3 m2
p v c

3
ln

mp v
2

�ho

� �
: (3.17)

As was already said, the formulas (3.16) and (3.17) were obtained in the

approximation of distant collisions corresponding to emission of low-frequency

photons. The contribution to bremsstrahlung of high-frequency photons o > oC is

made by close collisions r < aC corresponding to strongly curved trajectories. The
spectral cross-section and the intensity of bremsstrahlung of an electron in this case

are described by the Kramers formulas:

ds Kramð Þ

do
¼ 16 pZ2 e6

3
ffiffiffi
3

p
m2 v2 c3 �ho

; (3.18)

dI Kramð Þ

do
¼ 16 p Z2 e6

3
ffiffiffi
3

p
m2 v c3

: (3.19)

The right side of the Eq. 3.19 does not include the Planck constant, which is

indicative of the purely classical nature of this expression.

The formulas for bremsstrahlung of an electron scattered by the Coulomb center

beyond the approximation of straight trajectories can be obtained by corresponding
replacement of the Fourier transform of the electric field intensity E o; rð Þ by the

function corresponding to motion in the Coulomb potential. This problem for a case

of static Bs is considered in detail in the review [3] within the framework of so-

called Kramers electrodynamics for motion of electrons along strongly curved

trajectories.
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It is interesting to note that the Kramers formulas (3.18) and (3.19) describe not

only bremsstrahlung, but also photorecombination, when the final state of an emitting

electron belongs to the discrete ion spectrum, that is, is bound. The said circumstance

is a consequence of the fact that emission in the high-frequency limit o > oC is

“gathered” from a section of the trajectory of the most approach to a nucleus, so an

emitting electron “does not know” where it gets after emission of a photon.

The expressions (3.16) and (3.17) are obtained within the framework of the

classical consideration with quantum “insertions” (3.13) and (3.14). It is clear that

such an approach is not consistent, but its important advantage is physical transpar-

ency and mathematical simplicity. It is pertinent to note here that the use of the

quantum-mechanical formalism within the framework of the Born approximation
results in the same formulas for the cross-section and intensity of bremsstrahlung of

low-frequency photons as Eqs. 3.16 and 3.17.

The criterion of the Born approximation (in the Gaussian system of units) is

given by the inequation:

Z e ep
�� ��
�h v

<<1; (3.20)

that is, corresponds to fast enough incident particles. The condition (3.20) allows

calculation of the scattering cross-section by the perturbation theory with the ratio

Z e ep
�� �� �h v= serving as a small parameter of the theory. The possibility of classical

consideration is given by the inequation reverse of (3.20), so the above agreement

of results is connected with the use of the approximation of straight trajectories,

when the influence of a target on an electron is low as in the case of the Born

approximation.

When going to bremsstrahlung on an atom, it is necessary to take into account

the screening effect of bound electrons, which results in the replacement

rmax ! min v o= ; rað Þ; (3.21)

(ra is the atomic radius) in the expressions for the cross-section and intensity of

the process. Really, for the impact parameters r > ra the atomic field is close to

zero, so the acceleration of an incident particle is negligible, and together with it,

according to Eq. 3.2, bremsstrahlung is also absent. It is clear that screening is

essential for low enough frequencies o < v ra= , otherwise an incident particle

should fly close enough to a nucleus to emit a photon of a specified frequency.

In case of bremsstrahlung on multielectron atoms, when the Thomas-Fermi model

“works”, the Thomas-Fermi radius can be used as an atomic radius: ra � rTF ¼
aB b

ffiffiffi
Z3

p�
, whereaB � 0:53 Å is the Bohr radius,Z is the charge number of the atomic

nucleus, b ffi 0:8553 is the constant.

The replacement of Eq. 3.21 corresponds to the screening approximation in the

bremsstrahlung theory used by Bethe and Heitler [4] in generalization of formulas

for the process cross-section to an atomic case.
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Physically the screening approximation means the replacement of atomic

electrons by the distribution of electrostatic charge screening a nucleus. Thus

bound electrons are excluded from consideration as a dynamic degree of freedom

that can be excited during bremsstrahlung and can reradiate the electromagnetic

field of an incident particle. Actually in emission of high-energy photons the

energy-momentum excess can be transferred to atomic electrons, resulting in

their excitation and ionization.

3.1.2 Polarization Bremsstrahlung

Besides the above real excitation, atomic electrons in case of collision of an atom

with a charged particle can be excited virtually. Virtual excitation corresponds to

appearance of a variable dipole moment in the atom that, according to the

fundamentals of electrodynamics, should radiate electromagnetic waves. Such a

process is called polarization bremsstrahlung since it is connected with the

dynamic polarizability of an atom. The dynamic polarizability of an atom is

considered in detail in Appendix 1. The dynamic polarizability of an atom together

with the external variable field defines a radiating dipole moment.

Another interpretation can be given to polarization bremsstrahlung as a process

of scattering of the eigenfield of an incident particle (a virtual photon) to the

radiation field (a real photon) by atomic electrons. Polarization bremsstrahlung is

an additional channel of radiation in charge scattering by a target having a system of

bound electrons. We will call ordinary bremsstrahlung existing also on a “bare”

nucleus ordinary or static bremsstrahlung. The last term implies that this channel is

a single channel in the model of static distribution of electron charge of bound

electrons.

Let us derive the formulas for polarization bremsstrahlung of a fast charged

particle on an atom, considering the atom to be an elementary dipole with the

polarizability a oð Þ (see Appendix 1, the formula (A.3) for connection of an induced

dipole moment and the electric field strength).

For description of motion of an incident particle we use, as above, the classical

approach and the approximation of straight trajectories. Again we proceed from the

formula for the power of dipole radiation, but this time we will write it in terms of

the dipole moment of the radiating system:

QðtÞ ¼ 2

3 c3
€dðtÞ�� ��2: (3.22)

Here two dots designate the second time derivative. Integrating the Eq. 3.22 with

respect to time and using the formula (3.37) for the squared second derivative of the

dipole moment, we come to the expression for the total energy of polarization

bremsstrahlung for the whole time of collision corresponding to the impact

parameter r:

3.1 Classical Consideration in the Approximation of Straight Trajectories 69

http://dx.doi.org/10.1007/978-3-642-34082-6_BM1
http://dx.doi.org/10.1007/978-3-642-34082-6_BM1


DE ¼ 4 e2

3 c3

ð1

0

o4 a oð ÞEðpÞ o; rð Þ�� ��2 do
2 p

; (3.23)

where EðpÞ o; rð Þ is the Fourier component of the intensity of the electric field of an

incident charged particle at the location of the atom. In derivation of this formula

the relation was used: €d oð Þ ¼ �o2 d oð Þ that follows from determination of the

Fourier components.

Going from the total radiated energy to the spectral cross-section, as it was done

in derivation of the formula (3.11), we obtain for polarization bremsstrahlung the

following expression:

dsPB

do
¼ 4o3 a oð Þj j2

3 c3 �h

ð~rmax

~rmin

EðpÞ o; rð Þ�� ��2 r dr: (3.24)

The upper limit of integration in this formula following from the energy conser-

vation law is determined by the Eq. 3.14, the same as for static bremsstrahlung. The

lower limit of integration is much different. In the elementary dipole approximation

under consideration it is defined by the size of an atom:

~rmin ¼ ra: (3.25)

As the analysis shows, scattering at low impact parameters r < ra makes a small

contribution to the polarization bremsstrahlung cross-section since then coherence

in reradiation of the eigenfield of an incident particle by atomic electrons to a real

photon is lost.

From Fig. 3.1 it is easy to see that the Fourier component of the intensity of the

electric field of an incident particle in the approximation of straight trajectories can

be calculated by the formula similar to Eq. 3.6 with replacement of the nuclear

charge by the incident particle (projectile) charge. As a result, for the intensity EðpÞ

o; rð Þ we have:

EðpÞ o; rð Þ ¼ 2 ep
r v

�F
or
v

� �
en þ i F0 or

v

� �
et

n o
; (3.26)

where en, et are the normal and tangent unit vectors, the functionF zð Þ is given by the
Eq. 3.7. Shown in Fig. 3.2 is the modulus of the normal and tangential components

of the electric field Eq. 3.26 as well as the entire spectrumH nð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 nð Þ þ F02 nð Þ

q
as a function of the dimensionless frequency n ¼ or v= .

From Fig. 3.2 it is seen that the main contribution to the spectral functionH nð Þ in
the region of its high values is made by the normal component of the electric field of

an electron, and the spectrum width is of the order of the ratio v r= .
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Substituting Eq. 3.26 in Eq. 3.24, we obtain the spectral cross-section of polari-

zation bremsstrahlung in the used approximation:

dsPB

do
¼ 16 e2p o

3 a oð Þj j2
3 v2 c3 �h

ðv o=

ra

dr
r

F2 or
v

� �
þ F02 or

v

� �n o
: (3.27)

Hence for intensity we find:

dIPB

do
¼ 16 e2p o

4 a oð Þj j2
3 v c3

ðv o=

ra

dr
r

F2 or
v

� �
þ F02 or

v

� �n o
: (3.28)

It should be noted that the formula (3.28) does not contain the Planck constant,

which is indicative of its classical nature.

In the limit of low frequencies, when F zð Þ � 1 and F0 zð Þ � 0, the formula (3.27)

gives:

dsPB

do
¼ 16 e2p o

3 a oð Þj j2
3 v2 c3 �h

ln
v

o ra

� �
: (3.29)

This expression is true for the frequencies o < v ra= , otherwise it is necessary

to use the formula (3.27). Calculation, however, shows that in the frequency range

o>v ra= polarization bremsstrahlung is low.

The cross-section of Eq. 3.29 can be obtained within the framework of the

quantum approach in case of truth of the Born approximation Eq. 3.20, that is, for

fast (but nonrelativistic) incident particles.

It must be emphasized that the polarization bremsstrahlung cross-sections

(3.27), (3.29) do not depend on the mass of an incident particle in contrast to the

static bremsstrahlung cross-section (3.17). Thus the statement long existing in

0 0.5 1 1.5 2 2.5 3
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physics that heavy charged particles do not emit bremsstrahlung photons does not

extend to the polarization channel. This circumstance is connected with the fact that

the static bremsstrahlung cross-section is proportional to the squared acceleration of

an incident particle, while the polarization channel cross-section the does not

depend on this acceleration.

The polarization bremsstrahlung cross-section (3.29) can be obtained from the

static process cross-section (3.16) with the use of replacementsmp ! m, e4p ! e2 e2p,

rmin ! ~rmin, and

Z ! Zpol oð Þ; (3.30)

where

Zpol oð Þ ¼ mo2

e2
a oð Þj j (3.31)

is the effective polarization atomic charge (in the units of the electron charge e).
The polarization charge characterizes the ability of the electron core of an

atom to emit a photon under the action of an ac field. In contrast to an ordinary

charge, the polarization charge depends on the radiation frequency. The fre-

quency dependence of the polarization charges of silver and krypton atoms is

presented in Fig. 3.3.

From this figure it is seen that in the high-frequency range the polarization

charge is equal to the number of bound electrons of an atom (or the charge number

of its nucleus). This circumstance follows from the definition (3.31) and the formula

for high-frequency polarizability (A.16). In the region of low frequencies o ! 0

the polarization charge according to Eq. 3.31 decreases quadratically since then

the atomic polarizability is equal to its static value (A.15), that is, does not

depend on frequency. Finally, in the intermediate spectral range the polarization

charge is a nonmonotonic function that reflects the features of the energy spectrum

of an atom. For example, a wide “dip” on the dashed curve of Fig. 3.3 in a range
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of 1,600–1,750 eV corresponds to the energy of binding of 2p -electrons in a

krypton atom. The minimum in the region of low frequencies corresponds to virtual

excitation of subshells of an atom with the principal quantum number n ¼ 3. Thus

the spectral cross-section of polarization bremsstrahlung reflects the dynamics of

the atomic core as a function of frequency.

In the high-frequency limit, when o>>oa (oa is the characteristic frequency of

excitation of an atom in the discrete spectrum), but still o < v ra= ,

a oð Þ � �Z e2 mo2
�

(Zpol oð Þ ¼ Z), and the formula (3.29) gives:

dsPB

do
¼ 16 Z2 e4 e2p

3m2v2 c3�ho
ln

v

o ra

� �
: (3.32)

Curiously, in case of an incident electron (positron) the obtained expression

differs from the formula for the static bremsstrahlung cross-section (3.17) only by a

logarithmic factor.

Now we will consider a resonant case, when the bremsstrahlung frequency is

close to one of eigenfrequencies of an atom o � o0 , and dynamic polarizability

looks like:

a o � o0ð Þ ffi e2

m

f0
o2

0 � o2 � 2 io d0
: (3.33)

This expression for resonant polarizability follows from the general formula

(A.14), if in it one resonant summand is retained, in which onm � o0, fnm � f0 and
dnm � g0. Substituting the formula (3.31) in Eq. 3.29, we obtain:

dsres

do
¼ 4

3

e2p
�h c

c

v

� �2 r2e f
2
0 o0

o0 � oð Þ2 þ d20
ln

v

o ra

� �
; (3.34)

where re ¼ e2 mc2 � 2:8 � 10�13
�

cm is the electron classical radius.

From the expression (3.34) it is seen that resonance polarization bremsstrahlung

has a sharp maximum at the frequency o ¼ o0 if d0<<o0. The last inequation is

satisfied in case of excitation of electrons of the outer atomic shell in the discrete

spectrum, so for a neutral atom the energies of resonant photons are about 10 eV

and less. In case of multiply charged ions having a system of bound electrons

(an electron core) these energies can be much higher and reach a value of the

order of several keV. Then, however, the transition damping constant equal to

the Einstein coefficient Amn is also great, and therefore the resonance becomes

not such sharp. At frequencies corresponding to virtual excitation of inner

atomic shells the resonance structure in the spectral dependence of the dynamic

polarizability a oð Þ disappears. Instead of it, on the spectral curves “dips”

arise that correspond to the beginning of photoionization of the atomic subshell

(see Fig. 3.3).
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3.2 Bremsstrahlung of Quasi-Classical Electrons in the Local

Plasma Approximation for the Electron Core of a Target

The local plasma model (the Brandt-Lundqvist approximation [5]) for the polariz-

ability of a multielectron target was considered in Sect. 2.4 (Sect. 2.4.1). This model

was proposed for description of multielectron atoms, in which the electron–electron

interaction in a specified (wide enough) spectral range can play a role comparable to

the electron-nucleus interaction.

The Brandt-Lundqvist approximation can be considered as an elementary clas-

sical analog of the quantum-mechanical random phase exchange approximation

widely used for taking into account electron–electron correlations in atomic phys-

ics. The main idea of this method is that electron–electron correlation effects are

expressed in terms of the dynamic polarizability of the atomic core.

Such calculations in respect to the problem of calculation of the cross-section of

polarization bremsstrahlung on an atom in a wide frequency range were carried out

in the work [6] for electrons of kilovolt energies scattered by a krypton atom. It

should be noted that such calculations represent a rather intricate numerical prob-

lem since wave functions of atomic electrons already in the zeroth approximation

are the solutions of the Hartree-Fock integro-differential equations.

The high reliability of results obtained within the framework of the random

phase exchange approximation shows the reverse side of the medal in necessity to

carry out laborious calculations for each specific target and in difficulty of obtaining

qualitative regularities “working” in a wide enough range of variation of problem

parameters.

The purpose of this chapter is to develop semiquantitative methods of calcula-

tion of polarization effects in radiative processes on multielectron targets and to

carry out the analysis of qualitative regularities of the said processes on their basis.

The main advantage of the used approach consists in its calculating simplicity

and physical obviousness. Making no pretence of the exact quantitative description

of the phenomenon, the method used in this chapter can be considered as an

additional (to consistent quantum-mechanical calculations) method of description

of polarization-interference effects on multielectron systems.

3.2.1 Polarizability of an Atom in the Brandt-Lundqvist Model

The dipole polarizability of an atom (or other multielectron system) is given within

the framework of the local plasma frequency model by the formula (2.73) that can

be rewritten as

aBL oð Þ ¼
ðR0

0

o2
pðrÞ r2 dr

o2
pðrÞ � o2 � i d

¼
ð
bBL r;oð Þ dr; (3.35)
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whereopðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pe2nðrÞ=mp

is the local plasma frequency depending on the local

electron density of the electron core nðrÞ , r is the distance from a point under

consideration to the atomic nucleus, R0 is the atomic radius. Here and further the

spherical symmetry of the system is assumed, so n rð Þ ¼ nðrÞ.
The Eq. 3.35 gives the expression for dynamic polarizability as the volume

integral of some dimensionless function bBL r;oð Þ:

bBL r;oð Þ ¼ o2
pðrÞ 4 p=

o2
pðrÞ � o2 � i d

that is natural to be called the spatial density of the dynamic polarizability of a

target in the Brandt-Lundqvist approximation. This value in the local approxima-

tion under consideration is a liaison between the induced atomic polarization at the

specified frequency P r;oð Þ and the strength of the external electric field E r;oð Þ
causing this polarization, the cause and effect being taken at one point of space

(local approximation):

P r;oð Þ ¼ b r;oð ÞE r;oð Þ: (3.36)

In writing Eq. 3.36 it is assumed that the target has a spherical symmetry.

It should be noted that the expression (3.35) can be rewritten as the frequency

integral if the spectral density of the oscillator strength is duly introduced by the

formula

d f

do
¼ mo2

e2
r2p oð Þ drp oð Þ

do
; (3.37)

where the function rp oð Þ is determined by solution of the equation

o ¼ opðrÞ: (3.38)

Thus the dynamic polarizability in the Brandt-Lundqvist model can be formally

presented in the characteristic quantum-mechanical form. The remaining difference

consists in the fact that the Eq. 3.35 does not describe the contribution of the

discrete spectrum to the atomic polarizability, which is natural since the local

plasma frequency approximation is an essentially classical approximation. It should

be noted that the contribution of the discrete spectrum is most essential for alkali-

like ions and is small for systems with filled electron shells.

As easily seen from the formula (3.35), the high-frequency dynamic polarizabil-

ity in the Brandt-Lundqvist model has correct asymptotics agreeing with the result

of the quantum-mechanical calculation:

ahf oð Þ ¼ � e2 Ne

mo2
; (3.39)

whereNe is the full number of target electrons (see Appendix 1, the formula (A.16))
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Given in Table 3.1 is the comparison of the values of static polarizabilities of

atoms and ions (in atomic units) with filled electron shells calculated by different

methods within the framework of the statistical description of an atom with

experimental data (a0
exp).

Here: a0
var is the calculation by the variational method [7], a0

VSh is the calcula-

tion of Vinogradov and Shevel’ko [8], a0
BL ¼ R0

3/3 is the calculation in the

Brandt-Lundqvist model [5].

In calculations of static polarizability in the Brandt-Lundqvist model the radius

of an atom (ion) was used that was calculated in view of the correlation allowance

in the Thomas-Fermi-Dirac model.

From the given table it follows that in most cases for static polarizability the

Brandt-Lundqvist method gives a satisfactory fit to the experiment for atoms (ions)

with filled shells.

So from the analysis of low-frequency and high-frequency limits it can be

expected that the use of the Brandt-Lundqvist model in the first approximation

gives a reasonable approximation for the dynamic polarizability of an atom (ion).

Given in Fig. 3.4 are the frequency dependences of the values o2 Re a oð Þf g and
o2 Im a oð Þf g for a FeVI ion calculated in the Brandt-Lundqvist approximation in a

wide frequency range. The comparison with analogous dependences calculated in

the random phase exchange approximation for a multielectron atom [6] shows that

the calculation in the Brandt-Lundqvist model qualitatively correctly describes the

Table 3.1 Static polarizabilities of atoms and ions with filled shells (a.u.)

Atom (ion) ArI KrI XeI KII RbII CsII SrIII BaIII

a0
exp 11 17 27 7.5 12 16.3 6.6 11.4

a0
var 19.3 26.8 30.9 9.1 14.3 17.8 8.7 11.4

a0
VSh 21.1 25.5 6.6 11.9 15.3 7.5 9.7

a0
BL 22 24 27 8.6 11.6 13.5 7 8.4
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Fig. 3.4 The frequency dependences of the real (solid line) and imaginary (dotted line) parts of
the dynamic polarizability of the iron ion calculated within the framework of the local plasma

model
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smoothed functions o2 Re a oð Þf g, o2 Im a oð Þf g without considering peculiarities

caused by the shell structure of an atom (maxima and minima near the thresholds of

ionization of subshells).

Besides the Thomas-Fermi model for description of distribution of electron

density of an atom, a number of improved models is used, such as the Thomas-

Fermi-Dirac model and the Lenz-Jensen model [7]. Within the framework of these

models the radius of a neutral atom R0 is found to be a finite quantity in contrast to

the Thomas-Fermi model, in which R0 ! 1. Moreover, for description of electron

subshells the Slater wave functions are used that are distinguished by simplicity and

ease in carrying out analytical calculations. These functions look like:

PgðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2bð Þ2mþ1

G 2mþ 1ð Þ

s
rme�b r; (3.40)

where g ¼ nlð Þ is the set of quantum numbers characterizing an electronic state,b; m
are the Slater parameters that are chosen in a special manner to satisfy the experi-

mental data on the energy of corresponding shells. The wave functions (3.40) are

normalized, have correct asymptotics at long distances. With the use of the

functions (3.40) the radial distribution of electron density of an atom in the Slater

approximation can be obtained as

nðrÞ ¼
X
g

Ng P
2
gðrÞ: (3.41)

The Slater electron density as well as the densities of other models of the atomic

core can be used in calculation of the dynamic polarizability of an atom in the local

plasma frequency approximation (3.35).

In more detail the methods of description of the core of multielectron atoms and

ions, including statistical models, are stated in Appendix 2.

The results of calculation of the real and imaginary parts of the dipole dynamic

polarizability of a krypton atom within the framework of the local plasma fre-

quency method by the formula (3.35) with the use of electron density according to

Slater and Lenz-Jensen are presented in Fig. 3.5. Shown in the same figure are the

results of calculation of corresponding values in the quantum-mechanical random

phase exchange approximation carried out in the work [6].

It is seen that the dynamic polarizability of a krypton atom calculated in the

local plasma frequency model for Lenz-Jensen electron density in a smoothed

manner renders the quantum-mechanical features of the frequency behavior of

dynamic polarizability that are most pronounced near the potentials of ionization of

electron subshells. Using the Slater wave functions within the framework of this

model makes it possible to detect to some extent spectral fluctuations of polariz-

ability near the potentials of ionization of electron subshells. In this case, however,

the universality of description characteristic for the statistical model of an atom is

violated.
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With the use of the formula (3.35) and the statistical model of an atom (see

Appendix 2) for dynamic polarizability the following expression can be obtained:

a o; Zð Þ ¼ r3TF ~a
o
Z

� �
¼ b3a30

Z
~a

o
Z

� �
; (3.42)

~a nð Þ ¼
ðx0
0

4 p f ðxÞ x2 dx
4 p f ðxÞ � n2 � i0

; (3.43)

where rTF ¼ ba0=Z
1=3 is the Thomas-Fermi radius, Z is the charge of the atomic

nucleus,a0 is the Bohr radius,b ffi 0:8853,~a nð Þ is the dimensionless polarizability as

a function of the reduced frequency n ¼ �ho 2Ry Z= , (Ry ¼ 13:6 eV), x0 ¼ R0 rTF= is

the reduced atomic radius, f ðxÞ is the universal function describing the distribution

of the electron density nðrÞ in an atom within the framework of the statistical model

according to the formula nðrÞ ¼ Z2 f r rTF=ð Þ.
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The explicit expressions for the function f ðxÞ for a number of statistical models,

including the Thomas-Fermi and Lenz-Jensen models, are given in Appendix 2. For

example, for the Lenz-Jensen function the formula (A.46) is true. Though the

Thomas-Fermi function wðxÞ , in terms of which the concentration of atomic

electrons (A.45) and the atomic potential are expressed, has no analytical represen-

tation, for this formula there are good approximations obtained by А. Sommerfeld.

These approximations, both for neutral atoms and for multielectron ions, are also

given in Appendix 2 (see the formulas (A.48), (A.49) (A.50)).

It must be emphasized that the dimensionless polarizability ~a nð Þ does not depend
on the charge of an atomic nucleus. Thus the representation of the dynamic

polarizability of a statistical atom (3.42) and (3.43) reveals the scaling law for

this value with respect to the parameter n.
Let us give the high-frequency asymptotics of the dimensionless polarizability

following from the formulas (3.42) and (3.43) with the help of the explicit form of

the function f ðxÞ for the distribution of the Thomas-Fermi and Lenz-Jensen electron

density (see Appendix 2). For the imaginary part of the dimensionless polarizability

~a nð Þ we have:

Im ~aT�F n ! 1ð Þ	 
 ! 4:35

n4
; (3.44)

Im ~aL�J n ! 1ð Þ	 
 ! 4:615

n4
: (3.45)

From the formulas (3.44) and (3.45) it is seen that the above statistical models

give a close result for the imaginary part of polarizability. The high-frequency

asymptotics of the real part of the dimensionless polarizability ~a nð Þ in both models

of electron density of the atomic core look like

Re ~a n ! 1ð Þf g ! � b�3

n2
; (3.46)

which is in the qualitative agreement with the general formula (3.39). From

comparison of the expressions (3.44), (3.45) and (3.46) it follows in particular

that at high frequencies the imaginary part of polarizability decreases much more

rapidly than its real part.

Thus using the Brandt-Lundqvist model seems justified for the qualitative

description of polarization effects on multielectron ions and atoms for frequencies

o � Z and more.

In the low-frequency range the use of the plasma-statistical approach can require

some correction due to the fact that the potential of ionization of an atom within the

framework of statistical models has an underestimated value, especially for targets

with filled shells, so the characteristic features of the frequency dependence a oð Þ
are found to be shifted to the region of low frequencies. So in calculation of cross-

sections in the low-frequency range with the use of the Brandt-Lundqvist model for
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the dynamic polarizability of a target it is worthwhile to shift the frequency

dependence of polarizability to the region of high frequencies, so that the maximum

of its imaginary part falls on the potential of ionization of an atom.

3.2.2 Polarization Potential in the Bremsstrahlung Theory

For calculation of the polarization bremsstrahlung cross-section we will introduce

into consideration the potential of interaction of an incident particle with an ion

being in the external uniform electromagnetic field E oð Þ. This potential looks like

Vpol R;oð Þ ¼
ð
dr

dr r;oð Þ
r� Rj j ; (3.47)

here dr r;oð Þ is the spatial density of perturbation of an electron charge induced in

the ion core under the action of the external field, R is the radius vector of an

incident particle (IP).

It should be noted that the proposed approach is suited also for calculation of

spontaneous processes: in this case byE oð Þ the field of quantum fluctuations should

be understood.

The electron charge density perturbation dr r;oð Þ is related with the polarization
density induced in the ion core:

dr r;oð Þ ¼ div P r;oð Þ: (3.48)

The value P r;oð Þ in the local approximation is given by the formula (3.36).

The distribution of electron density in an atom (ion) everywhere in what follows

we will assume to be spherically symmetric.

Assembling the written-out formulas and using the expansion of the reciprocal

distance r� Rj j�1
in terms of spherical harmonics, after simple algebraic

transformations and integration with respect to angular variables we obtain for

the polarization potential in the local approximation the following expression:

Vpol R;oð Þ ¼ e
RE oð Þ
R3

ðR

0

b r;oð Þ 4pr2dr: (3.49)

It is essential that this formula describes the nondipole potential of interaction of
an IP with a perturbed ion core, which manifests itself in the presence of the

magnitude of the IP radius vector in the upper limit of integration. This circum-

stance has a simple electrostatic interpretation: an external charge interacts only

with part of the electron cloud inside the sphere of radius R.
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Thus the obtained polarization potential (Eq. 3.49) describes the effects

connected with penetration of an IP into the ion core.

Presented in Fig. 3.6a, b are the results of calculation of the real and imaginary

parts of the polarization potential normalized to the amplitude of the external

electric field for a KII ion. The calculation was made in the local plasma approxi-

mation with the use of the electron density of the ion core in the Thomas-Fermi-

Dirac model for two frequencies of the electromagnetic field o ¼ 0.9 a.u. (а), 3 a.u.
(b) by the formula (3.43). In both cases the real part of the polarization potential has

a maximum at a distance determined by the Eq. 3.38. At this distance the local

dielectric permittivity of a target becomes zero and at the same time an imaginary

additive to the polarization potential appears. It is seen from the figure that the

distance rp oð Þ (see Eq. 3.38) decreases with growing frequency. The function rp oð Þ
in the Thomas-Fermi-Dirac model is monotonically decreasing since the spatial

density of electron distribution in this model grows monotonically.

It is interesting to note that for any finite frequency (0 < o < 1) there is some

distance to a nucleus r0 oð Þ (and r0 oð Þ > rp oð Þ ), at which the real part of the

polarization potential changes a sign. If it is taken into account that the interaction

force is equal to the derivative of the potential taken with the minus sign, it can be
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Fig. 3.6 The real and

imaginary parts of the

polarization potential

normalized to the amplitude

of the electromagnetic field at

frequencies (a) o ¼ 0.9 a.u.,

(b) o ¼ 3 a.u. as functions of

the distance to the nucleus of

a KII ion. Calculation in the

Brandt-Lundqvist

approximation [5] with the

use of the Thomas-Fermi-

Dirac electron density
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concluded from the form of the curves in Fig. 3.6 that at short enough distances

from the nucleus an IP is effectively attracted to the target under the action of its

polarization. At the same time at long distances the polarization interaction

corresponds to repulsion.

Using the expression for the polarization potential (Eq. 3.49), it is possible to

obtain the formula for a dipole moment induced in the ion core by a scattered

particle if it is taken into account that:

Vpol R; oð Þ ¼ �E oð ÞDpol R; oð Þ: (3.50)

From comparison of Eqs. 3.49 and 3.50 we find

Dpol R;oð Þ ¼ �ep
R

R3

ðR

0

b r;oð Þ 4 p r2 dr: (3.51)

The dipole moment Dpol R;oð Þ induced in the atomic core is a function of the

external field frequency and the radius vector of an incident particle R.

In view of the explicit expression for the spatial density of polarizability (3.35)

from the formula (3.51) we find for the real and imaginary parts of the polarization

dipole moment

Re DBL o; Rð Þ	 
 ¼ e
R

R3
V:P:

ðR

0

o2
pðrÞ r2dr

o2
pðrÞ � o2

; (3.52)

Im DBL o;Rð Þ	 
 ¼ e
R

R3

p
2
o2

r2p oð Þ
dop rp

� �
dr=

�� �� y R� rp oð Þ� �
; (3.53)

where yðxÞ is the Heaviside theta function, V:P: is the symbol of the principal

integral value.

The total radiating dipole moment of the system IP þ atom (ion) is:

Dtot R;oð Þ ¼ ep R� ep
R

R3

ðR

0

b r;oð Þ 4 p r2 dr: (3.54)

It should be noted that following from the Eq. 3.54 is the simple relation between

the static and polarization dipole moments in the approximation under consideration:

Dpol R;oð Þ ¼ � 1

R3

ðR

0

b r;oð Þ 4 p r2 dr

8<
:

9=
;Dst R;oð Þ:
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The formula (3.54) is a primary formula for carrying out numerical calculations

of polarization effects in the local approximation. It corresponds to consideration of

two channels of the process: static (the first summand in Eq. 3.54) and polarization

(the second summand). Since these summands enter into the expression for the total

radiating dipole moment of the system target þ IP, the expression (3.54), being

substituted in the standard formula for the process cross-section or corresponding

intensity, will describe also interference effects connected with the interaction of

channels.

3.3 Polarization Bremsstrahlung on a Multielectron Ion

in the Approximation of Classical Motion of an Incident

Particle

As was already noted, the Born parameter � characterizing the motion of plasma

electrons under conditions of thermodynamically equilibrium plasma is more or of

the order of one:

� ¼ Ze2

�hv
� 1: (3.55)

The inequation (3.55) is the reverse of the Born condition and corresponds (in

the strong inequality limit) to the quasi-classical approximation for IP motion. It is

within the framework of quasi-classics (or, more precisely, of the semiclassical

approach) that V.I. Kogans with coworkers [9, 10] have carried out the detailed

analysis of the static channel of bremsstrahlung on multielectron atoms and ions.

The so-called rotation approximation has been developed that allows rather simple

calculation of spectral cross-sections of main radiation processes including

photorecombination as well.

The comparison with quantum-mechanical numerical calculations [11] has

shown high accuracy of the semiclassical approach and in particular of the rotation

approximation in the theory of static Bs.

So it seems natural to use the semiclassical approach also in investigation of

polarization Bs on a multielectron ion and to design on its basis the generalization

of the rotation approximation including the description of the polarization channel.

As known [12], in classical consideration of a collisional-radiative process the

value k is introduced that is called effective radiation by the formula

k ¼
ð1

0

DE rð Þ 2 p r dr; (3.56)

here DE rð Þ is the total radiation of one IP with the specified impact parameter r.
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Further we will be interested also in spectral effective radiation dk oð Þ do= , the

expression for which in the dipole approximation for interaction with an electro-

magnetic field for a spontaneous process looks like

dk oð Þ
do

¼ 4o4

3 c3

ð1

0

D o; rð Þj j2rdr; (3.57)

whereD o; rð Þ is the Fourier transform of the radiating dipole moment of the system

at the frequency o calculated along the trajectory of an IP characterized by the

impact parameter r.
Between the value dk do= and the spectral cross-section of bremsstrahlung

ds do= there is a simple connection:

dk
do

¼ �ho
ds
do

:

To take into account interference-polarization effects, asD o; rð Þ, further we will
use the temporal Fourier transform of the total dipole moment

Dtot o; rð Þ ¼
ðþ1

�1
Dtot R t; r; við Þ;oð Þeiotdt; (3.58)

in which the functionDtot R;oð Þ is given by the expression (3.54). It should be noted
that the dimensionalities ofDtot R;oð Þ andDtot o; rð Þdo not agree: the first value has
the dimensionality of the electric dipole moment, and the second value has the

dimensionality of its Fourier transform.

Thus in classical calculation of spectral effective radiation it is necessary to

know the law of IP motion:

R ¼ R t; r; við Þ; (3.59)

here vi is the initial IP velocity.

In investigation of strongly inelastic processes of scattering corresponding to IP

motion along strongly curved trajectories it is convenient to express the temporal

Fourier transform of the dipole moment of an IP (the first summand of the formula

(3.54)) in terms of the Fourier transform of the force acting on the IP on the side of a

target. Then from Eq. 3.54 the following expression for the Fourier transform of the

total radiating dipole moment of the system (the formula (3.58)) can be obtained:

Dtot o; rð Þ ¼ ep
mp o2

R

R

dUðRÞ
dR

 �
o;r

� ep
R

R3

ðR

0

b r;oð Þ 4 p r2dr
8<
:

9=
;

o;r

: (3.60)
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Here the braces designate taking the Fourier transform in view of the depen-

dence Eq. 3.59.

Thus the expressions (3.56), (3.57), and (3.60) give the formal solution of the

problem under consideration. Further simplification of these formulas is impossible

since the dependence Eq. 3.59 for IP motion in the Thomas-Fermi potential (and its

modifications) has no analytical description (in contrast to motion in the Coulomb

field).

To carry out numerical calculations, it is convenient from the independent time

variable (t) to go to the independent variable R – the distance from an IP to the

nucleus. For this purpose we will use the standard representation of trajectory time

and angle of rotation of the IP radius vector in terms ofR and the parameters r and vi:

t R; r; við Þ ¼
ðR

rmin r;við Þ

dR

vr R;r; við Þ (3.61)

’ R; r; við Þ ¼ r vi

ðR

rmin r;við Þ

dR

vr R; r; við ÞR2
; (3.62)

here vr R; r; við Þ is the radial IP velocity, the expression for which looks like

vr R; r; við Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2i þ 2 Uj j mp

� � v2i r2 R2=
q

; (3.63)

rmin r; við Þ is the minimum distance of IP approach to the center of the scattering

potential determined by solution of the equation

vr R; r; við Þ ¼ 0: (3.64)

Using the Eqs. 3.60, 3.61, 3.62, and 3.63, it is possible to calculate the Cartesian

projections (on the focal axes of coordinates – see Fig. 3.7) of the Fourier transform

of the radiating dipole moment of the system according to the formulas:

Dpol

� �
x
o; rð Þ ¼ 2

ð1

rmin

cos ’ R; rð Þð Þ cos o t R; rð Þð ÞDp o;Rð Þ dR

vr R; rð Þ; (3.65)

where Dp o;Rð Þ is the magnitude of the vector (3.51).

The expression for Dpol

� �
y
is obtained by replacement in Eq. 3.65 of cosines by

sines.

The diagram of IP scattering by an atom (ion) with indication of the coordinate

axes and the angle ’ is presented in Fig. 3.7.
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We will give the results of calculations of spectral effective radiation for electron

scattering by aKII ion for the following values of parameters vi¼1.4 a.u.,o ¼ 0.9 a.u.

The choice of these values is caused by the fact that under conditions of thermody-

namically equilibrium plasma of most interest is emission of thermal energy electrons

(of the order of the ion ionization potential) of photons with an energy close to the

initial IP energy. (The potential of ionization of a KII ion is 1.16 a.u.)
To calculate the dipole moment induced in the ion core, we will use the target

polarizability density in the Brandt-Lundqvist approximation (the formula (3.35))

shifted in frequency to the value Do ¼ 0.6 a.u. towards high frequencies. Then the

frequency dependence of the dynamic polarizability of the ion core will be

approximated to its quantum-mechanical analog.

The electron density of the ion core defining the local plasma frequency was

calculated on the basis of numerical integration of the Thomas-Fermi-Dirac equa-

tion (with exchange and correlation allowances) with the use of the reduced ionic

radius x0 ¼ 8:91 relative units. It will be recalled that the reduced ionic radius is the

ratio of the ionic radius R0 to the Thomas-Fermi radius aTF ¼ 0:8853 Z1=3
�

a.u. In

this case the “local plasma radius” (see Eq. 3.38) is rp oð Þ ¼ 2:77 a.u.

Let us introduce into consideration the characteristic radius of radiation in the

Kramers limit – ref o; við Þ – (see [13]), being the solution of the equation

v2i
2
þ UðrÞj j

mp
¼ o2r2

2
: (3.66)

This value defines the effective distance of radiation by the static channel. It is

essential that in the Kramers limit the value ref o; við Þ grows with initial velocity.

For the reduced values of parameters and the distribution of electron density of

the ion core of a KII ion in the Thomas-Fermi-Dirac model we have: ref o; við Þ ¼
1:98 a.u.

To clarify the appropriateness of using the quasi-classical approach, it should be

noted that besides the “global” criterion of quasi-classics (Eq. 3.55), there is also a

local criterion that in a three-dimensional case looks like:

Fig. 3.7 Scattering of an

incident particle by a target

with the electron core
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�locðrÞ ¼ �h div p rð Þð Þ
p2 rð Þ <<1: (3.67a)

The expression for the local parameter (3.67а) can be rewritten within the

framework of the rotation approximation [10] as follows:

�loc ref
� � ¼ �l ref

� �
=ref<<1; (3.67b)

here ref is given by the formula (3.66). The value (Eq. 3.67b) in the case under

consideration is: �loc ref
� � ¼ 0:22:

For a special case of a Thomas-Fermi atom (ion) in [10] the analog of the

“global” parameter (3.55) was obtained, the reciprocal of which e ¼ 1 �= is given

by the formula

e ¼ EaTF
Z e2

� 32:6
E keVð Þ
Z4=3

(3.67c)

Hence for the IP velocity vi ¼ 1.4 a.u. we find: e ¼ 0:017<<1.

Thus the values of the parameters of motion of an IP and a target ion under

consideration satisfy the conditions of the quasi-classical approximation for the

static Bs spectrum.

The condition of subline quasi-classicity (radiation from the trajectory with a

fixed impact parameter r) can be written as:

r vi �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l lþ 1ð Þ

p
� lþ 1 2= >>1: (3.68)

The condition (3.68) in our case gives r>>1 a.u.

Shown in Fig. 3.8 are the dependences of integrands in the definition of the

Fourier transforms of the x- and y-components of the dipole moment induced in

the core of a KII ion (the real part) on the distance to the nucleus for two values of

the impact parameter: (а) r ¼ 1:75 a.u. and (b) r ¼ 3 a.u.

In the first case the y-projection of the real part of the induced dipole moment is

maximum (ReDy ¼ 2:92 a.u., ReDx ¼ 1:1 a.u.), in the second case the x-projection
is maximum (ReDx ¼ 2:4 a.u., ReDy ¼ 1:59 a.u.).

From Fig. 3.8 it follows in particular that the maximum of the x-component of

the dipole moment is reached at the minimum (for the given impact parameter)

distance to the ion nucleus. The maximum of the y-component falls on the distance

equal to the “plasma” radius rp oð Þ (for those impact parameters, for which the

inequation rmin rð Þ < rp oð Þ is satisfied).
From Fig. 3.8b it is seen that the integrand for the x-component sharply grows

if the equation rmin rð Þ ¼ rp oð Þ takes place. This equation separates the trajectory

of IP motion, at which polarization Bs caused by the x-component of the dipole

moment induced in the ion core has maximum.

Let us represent the dependence of the projections of the dipole moments on the

impact parameter r as a table (Table 3.2).
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The parameters of calculation were corrected by the conformity of results for the

Coulomb potential to exact analytical expressions for the scattering angle.

The calculation in the statistical Thomas-Fermi-Dirac potential shows that for

impact parameters lesser than 1.4 a.u. the scattering angle exceeds 180	, which
corresponds to beginning of the phenomenon of IP twisting around the target.

On the other hand, for these impact parameters the condition of subline quasi-

classical condition is violated, which nevertheless is found to be inessential for

Table 3.2 Projections of dipole moments as functions of impact parameter [a.u.]

r 1 1.5 2 2.5 3 4 5 6

rmin 0.163 0.8 1.58 2.2 2.74 3.76 4.75 5.7

ReDpx �0.1 1.48 1.0 1.48 2.4 0.73 0.36 0.16

ReDpy �1.59 2.1 2.9 2.4 1.7 0.86 0.33 0.17

ImDpx �0.37 1.15 �0.03 �0.22 1.05 0.88 0.29 0.13

ImDpy �1 0.54 1.1 1.25 1.33 0.68 0.3 0.14
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Fig. 3.8 Integrands in the

definition of the Fourier

transforms of the x- (solid
curve) and y- (dotted curve)
components of the induced

dipole moment (the real part)

in the core of a KII ion
(o ¼ 0.9 a.u., E ¼ 1 a.u.) as

functions of the distance to

the nucleus for the impact

parameters: (а) r ¼ 1.75 а.u.
and (b) r ¼ 3 a.u.
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calculation of the polarization channel since small distances to the nucleus make a

small contribution to it.

The contribution of these impact parameters (r 
 1:4) to effective radiation by

the polarization channel is about 1 %.

The obtained dependences of the Fourier transforms Re Dx;y o; rð Þ on the

impact parameter r are presented in Fig. 3.9. From this figure it follows in

particular that the maximum of the x-component of the induced dipole moment

in the ion core falls on the impact parameter rmax that is approximately equal to the

“plasma” radius rp.
The results of calculation of the values of effective radiation (in atomic units) by

the static and polarization bremsstrahlung channels with subdivision to the

contributions of the x- and y-projections are given in Table 3.3.

From Table 3.3 it is seen that in the polarization channel the contribution of the

y-projection of the dipole moment induced in the core is comparable (and even

somewhat exceeds) the contribution of the x-projection in contrast to the relation of

these contributions to radiation by the static channel. This circumstance is a conse-

quence of the effect of penetration of an IP into the core of a target. This penetration

more strongly acts on the x-projection, reducing it, than on the y-projection. Formally

this can be explained by the fact that in motion of an IP along one of the halves of its

trajectory its x-coordinate changes a sign when crossing the abscissa of the point of

1 2 3 4 6 7

0

1

2

3

Dx,y

ρ, а.е. 

Fig. 3.9 The dependences on the impact parameter of the x- (solid curve) and y- (dotted curve)
components of the dipole moment induced in the KII ion core (the real part) at the frequency

o ¼ 0.9 a.u. in the Brandt-Lundqvist model [5] and the quasi-classical approximation for IP

motion

Table 3.3 Effective radiation by the static and polarization channels [a.u.]

Projections,

channels

x-projection real

imaginary

y-projection real

imaginary

Total for each

channel

Static 8.84�10�6 2.9�10�6 1.17�10�5

Polarization. 5.3�10�6 1.5�10�6 5.4�10�6 2.4�10�6 1.46�10�5
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location of the target nucleus, and the y-coordinate is constant-sign and approaches its
zero value only at the point of turn of radial IP motion (see Fig. 3.7).

Let us introduce the R-factor characterizing the relative contribution of the

polarization channel to bremsstrahlung by the formula:

R oð Þ ¼ dkpol oð Þ
dkst oð Þ : (3.69)

From the data of Table 3.3 the value of the R-factor in the case under consider-

ation can be determined:

Rf gBLclas o ¼ 0:9 a:u:; rmin ¼ 1:4 a:u:ð Þ ¼ 1:24: (3.70a)

It should be noted that in the value of effective radiation by the static channel an

uncertainty remains that is connected with the problem of choosing the lower limit

of integration with respect to the impact parameter in the formula (3.36).

For comparative estimation of the relative value of the polarization channel we

will use the result of calculation of the static channel contribution within the

framework of the rotation approximation (see the paper [10]).

The calculation in the Thomas-Fermi-Dirac model for spectral effective radia-

tion by the static channel gives:

dkrotst

do

 �
TFD

KII; o ¼ 0:9 a:u:ð Þ ¼ 5:46� 10�5 a:u:

Hence it follows that the R-factor within the framework of the rotation approxi-

mation is:

Rf gBL;rotclas;TFD KII; o ¼ 0:9 a:u:ð Þ ¼ 2:67: (3.70b)

However, it should be remembered that the Thomas-Fermi-Dirac model within

the framework of the rotation approximation somewhat overestimates the result just

for frequencieso 
 1 a.u. since in this case the effective radius of radiation ref (see
3.66) is found to be of the order of the boundary size of an ion, where the statistical

model has the greatest error.

So for more correct estimation of effective radiation within the framework of the

rotation approximation we use the ion potential in the Slater approximation. Then

instead of Eq. 3.70b it can be obtained:

dkrotst

do

 �
Slater

KII; o ¼ 0:9 a:u:ð Þ ¼ 4:72� 10�6 a:u:;
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and correspondingly:

Rf gBL;rotclas;Slater KII; o ¼ 0:9 a:u:ð Þ ¼ 3:1: (3.70c)

Thus it can be concluded that the classical estimation for the above values of

parameters gives the following lower boundary for the value of the R-factor at a
frequency near the potential of ionization of a KII ion for IP of threshold energies

(T is the IP energy):

R KII; �ho � Ip � T
� � � 2 (3.71)

and therefore the contribution of the polarization channel exceeds appreciably the

contribution of the static channel to effective radiation of bremsstrahlung.

This conclusion is rather essential since it relates to characteristic “plasma”

frequencies (of the order of the ion ionization potential) and a strongly inelastic

process, when radiated energy is of the order of the initial IP energy. It is just the

situation that is characteristic for Bs in plasma.

3.4 Polarization-Interference Effects in the High-Frequency

Limit

From the consideration of effective radiation in collision of an IP with a structural

target that was carried out in the previous paragraph within the framework of the

classical description of IP motion it follows that the calculation by the obtained

formulas is a multistep problem requiring trivariate integration with a singular

integrand even for the spectral cross-section. The calculation of the total brems-

strahlung loss, accordingly, results in a quadrivariate integral.

As is known, for static Bs the calculation of total effective radiation is simplified

considerably since it is possible to carry out a number of integrations analytically,

and the resultant expression (in case of the central potential of scattering) is a single

integral, from which all temporal characteristics of IP motion dropped out.

If the polarization channel is taken into account, the situation changes cardinally

since the frequency dependence of target polarization in the general case does not

allow frequency integration in the expression for total effective polarization

radiation.

Assembling the formulas (3.56), (3.57), (3.58), (3.59), and (3.60), we obtain for

the total bremsstrahlung loss by the polarization channel in the local plasma

frequency approximation:

kpol ¼
4 e2p
3 c3

ðmpv
2
i
2�h=

0

o4do
ð1

0

rdr
ðþ1

�1
dt eiot

R t; rð Þ
R t; rð Þ3

ðR t;rð Þ

0

b r;oð Þ 4 pr2dr

�������

�������

2

: (3.72)
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The upper limit of frequency integration reflecting the presence of a short-

wavelength limit in Bs is a corollary of quantum relations (the semiclassical

approximation [9]) introduced into the classical consideration.

It should be noted that in calculation of the temporal Fourier transform in the

formula (3.72) it is possible from time integration to go to integration with respect

to the variable distance of an IP to the nucleus R if the radial velocity of IP motion

by the formula (3.63) is introduced and the dependences (3.61), (3.62) for the

trajectory time and the angle of IP rotation are used.

The description of polarization-interference effects in Bs on a multielectron ion

(atom) is simplified considerably in the high-frequency limit, that is, for frequencies

much more than the characteristic frequencies of electrons of a target ion. As a

result, it appears to be possible to carry out analytical transformations of the

formulas describing polarization Bs and to give their descriptive physical

interpretation.

Most considerably simplified is the expression for total effective radiation (total

bremsstrahlung loss of energy).

Really, in the high-frequency limit the spatial density of the polarizability of the

target electron core will be written as:

bhf r;oð Þ ¼ � e2 nðrÞ
mo2

: (3.73)

It should be noted that the value (3.73) is dimensionless since the concentration

of the electron core nðrÞ has the dimensionality of the reciprocal volume.

For the radiating dipole moment of the core (the polarization channel) with the

use of the formulas (3.51) and (3.73) we find the following simple expression:

D
hf
pol R;oð Þ ¼ ep

R

R3

e2

m o2
NðRÞ; (3.74)

here

NðRÞ ¼
ðR

0

nðrÞ 4 p r2 dr (3.75)

is the number of target electrons inside the sphere of the radius R. It should be

recalled that R is a distance from an IP to the nucleus of the target.

The physical meaning of Eqs. 3.74 and 3.75 is that the contribution to polariza-

tion Bs is made only by the electron density of the target inside the said sphere. The

latter is the reflection of the electrostatic fact that a charge placed inside the

uniformly charged spherical layer will not experience the Coulomb force. This is

true for the process under consideration without real excitation of target electrons

since then the core electrons are equivalent to the charge distribution that does not

change its geometrical form.
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Substituting Eqs. 3.73 in 3.72 results in reduction of frequency degrees, and as a

result, changing the order of integration, we obtain:

khfpol ¼
4 e2p e

4

3 c3 m2

ð1

0

rdr
ð ð

dtdt0
ðv2i 2=

0

eio t�t0ð Þdo
RðtÞR t0ð Þ
R3ðtÞR3 t0ð ÞN RðtÞð ÞN R t0ð Þð Þ: (3.76)

Then we use the equation

Re

ð1

0

eio t�t0ð Þdo

8<
:

9=
; ¼ pd t� t0ð Þ:

The upper limit here is assumed to be equal to infinity according to the quasi-

classical condition �h!0. Going in the formula (3.76) to the integration variable R
(after such a replacement the lower limit of integration becomes equal to rmin rð Þ,
and the result is multiplied by 2 due to the parity of the integrand in the formula

(3.76) relative to the change of a time sign) and performing integration with respect

to the impact parameter r, we find:

khfpol ¼
8 p e2

3 c3 m2 vi

ð1

0

f 2polðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2UðrÞ

mpv
2
i

s
r2dr: (3.77)

The value fpolðrÞ appearing here, that is natural to be called polarization force, is
determined by the equation:

fpolðrÞ ¼ ep e
NðrÞ
r2

: (3.78)

This force (repulsion) acts on an IP on the side of target electrons located inside

the sphere of the radius R. With the same force (according to the Newton’s third

law) the IP accelerates target electrons moving as a single cloud of negative charge,

causing polarization Bs.

Let us give here also the expression for total effective radiation by the static

channel (see [9]):

kst ¼
8 p e2p

3 c3 m2
p vi

ð1

0

dUðrÞ
dr

� �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2UðrÞ

mpv
2
i

s
r2dr: (3.79)

It is well seen that the formulas (3.77), (3.79) have a quite similar structure, only

the last expression includes the ordinary “static” force:

fstðrÞ ¼ � dUðrÞ
dr

: (3.80)
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In spite of significant similarity of the Eqs. 3.77 and 3.79, there is also a

significant difference between them: the integral of Eq. 3.77 is divergent at the

lower limit (in a quasi-classical case as
Ð
0

r�5 2= dr) and requires a “cutoff”.

The “polarization” integral of Eq. 3.79 at the lower limit is convergent. This is a

corollary of taking into account the penetration of an IP into the target core, with the

result that the effective electron charge of a ion defining radiation by the polariza-

tion channel in the high-frequency limit under consideration decreases.

As a cutoff radius for static effective radiation (3.79), the effective radius of

radiation (the formula (3.66)) ref oð Þ at a frequency corresponding to the initial IP

energy is chosen: �ho ¼ mv2i 2= .

The formulas (3.76) and (3.77) describe the contribution of each channel to the

effective cross-section individually. In fact, in the high-frequency limit under

consideration interchannel interference is found to be rather considerable. For

total effective radiation of an electron the following expression can be obtained

in much the same way as this was done above:

khftot ¼
8p e2

3c3 m2vi

ð1

0

fstðrÞ � fpolðrÞ
� �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2UðrÞ

m v2i

s
r2dr: (3.81)

If an effective static charge for an incident electron is introduced by the formula:

Zef ðrÞ ¼ e�2 dUðrÞ
dr

����
���� r2; (3.82)

then instead of Eq. 3.81 we have:

khftot ¼
8 p e6

3c3 m2 vi

ð1

0

NðrÞ þ Zef ðrÞ
� �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2UðrÞ

m v2i

s
r�2dr: (3.83)

Hence it is seen that total effective radiation including interchannel interference

in the high-frequency limit is defined by the total charge

Z ¼ NðrÞ þ Zef ðrÞ (3.84)

that is equal to the charge of the ion nucleus.

To illustrate this fact, given in Fig. 3.10 are the radial dependences of effective

polarization (curve 1), static (curve 2), and total (curve 3) charges for a KII ion
calculated in the Slater model. It is seen that the total charge (3.84) is really equal to

the charge of the ion nucleus.

This circumstance is an analog of the effect of atom “stripping” that was for the

first time established in the Born approximation [14] for a case of quasi-classical IP

motion with penetration into the target core.
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From Fig. 3.10 it is seen also that the values of effective static and polarization

charges are compared for a KII ion at a distance about 0.6 a.u. from the nucleus. At

longer distances the “polarization” force prevails, at shorter distances the “static”

force prevails. In this case it should be remembered that the high-frequency

approximation under consideration is true for high enough frequencies

o > ~o:

The analysis shows that the characteristic frequency ~o for a KII ion is about

15–20 a.u. (for higher frequencies the polarizability of the target core is close to its

high-frequency limit). The effective radii of radiation determined by the Eq. 3.66 in

this frequency range satisfy the inequation ref < 0.4 a.u. So the “static” force

always exceeds the “polarization” force in the region of truth of the high-frequency

approximation.

3.5 Description of Polarization Effects Within the Framework

of the Generalized Rotation Approximation

The aim of this paragraph is to simplify the expression for polarization Bs to simple

enough calculation formulas. This will allow carrying out numerical estimations of

the process cross-sections by the order of magnitude in a wide frequency range in a

single manner for any nuclear charges and degrees of target ion ionization and,

moreover, it makes it possible to establish qualitative regularities of a phenomenon

without resorting to cumbersome calculations. The consistent approach (naturally,

within the framework of the plasma model for polarizability) does not allow

obtaining simple calculation formulas for spectral effective radiation even in the

high-frequency limit.
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Fig. 3.10 The radial

dependences of effective

(1) polarization, (2) static,
and (3) total charges for a KII
ion calculated in the Slater

model
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At the same time, as was already said above, in the theory of static Bs there is a

rather effective method of approximate calculation of intensity of radiation of a

quasi-classical particle, so-called rotation approximation [10], that from the stand-

point of the result was found to be more adequate than the consistent classical

consideration.

The physical basis of this approach is in the space limitation of a region

responsible for radiation by an IP of photons with high enough frequency. The

high-frequency behavior, more precisely, the “Kramers behavior”, is understood

from the standpoint of fulfilment of the inequation [3]:

o > oCoul
ef ¼ mpv

3
i

Zef e2p
: (3.85)

In this case an IP radiates mainly near the point of turn of its radial motion. It

should be noted that quantitatively the rotation approximation also gives a reason-

able result in the case o � oCoul
ef .

For the Bs cross-section integrated with respect to the impact parameter the

effective distance ( ref ) depends only on the radiated frequency and the target

potential and is determined by the Eq. 3.66.

Formally the rotation approximation corresponds to “introduction” into the

Eq. 3.60 for total effective static Bs of the delta function of the difference of

frequencies o and the IP rotation frequency at the distance ref :

orotðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2i þ 2 UðrÞ mp

��� ��q
r

: (3.86)

Thus we come to the following formula for spectral effective radiation in the
rotation approximation [10]:

dkst oð Þ
do

 �
rot

¼ 8p e2p
3 c3 m2

p vi

ð1

0

dUðrÞ
dr

� �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� UðrÞ

mpv
2
i 2=

s
d o� orotðrÞð Þ r2dr:

(3.87)

It seems attractive to generalize the rotation approximation for taking into

account radiation by the polarization channel as well.

This is hardly possible to be done strictly since even the static rotation approxi-

mation Eq. 3.87 is obtained on the basis of intuitive considerations. So the approach

developed below is qualitative, pretending only to the numerical estimation of

cross-sections by the order of magnitude.

In the formula (3.87) the information on the vector nature of the radiating dipole

moment of an IP is lost. It is connected with the fact that in the high-frequency

approximation Eq. 3.85 the main contribution to the process cross-section is made

by the x-component of the IP dipole moment. The situation is different for the
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polarization channel: for the parameters given in Table 3.3 the contributions of both

projections are approximately equal. Therefore in generalization of the rotation

approximation for taking into account the polarization channel it is necessary to

take into account the features of spatial formation of both Cartesian projections of

the dipole moment of the ion core on the axis of the focal system of coordinates.

As seen from Fig. 3.9, the Fourier component of the y-projection of the radiating
dipole moment of the target core is defined by the distances of the order of rp oð Þ
(see the formula (3.38)), while the x-component is defined by the distances of most

IP approach to the target rmin (the Eq. 3.66).

So it is natural to do the following generalization of the rotation approximation

to the polarization channel:

dkpol oð Þ
do

 �
rot

¼ dkpol oð Þ
do

 �rot

x

þ dkpol oð Þ
do

 �rot

y

; (3.88)

here

dkpol
do

 �rot

x

¼ 8 p e2

3m2 c3 v2i

f polx o;Rð Þ�� ��2vr R; r ¼ 0ð Þ
dorot dR=j j R2

" #
R¼ref oð Þ

(3.88a)

and

dkpol
do

 �rot

y

¼ 8 p e2

3m2 c3 v2i

f poly o;Rð Þ
��� ���2vr R; r ¼ 0ð Þ

dop dR=
�� �� R2

2
64

3
75
R¼rp oð Þ

: (3.88b)

The expression for the projection depending on the polarization force frequency

is the generalization of the high-frequency analog:

f polx;y o;Rð Þ ¼ ep
mo2 Rx;y

e R3

ðR

0

b r;oð Þ 4p r2dr: (3.89)

Quantitatively the use of the formula (3.89) instead of Eq. 3.78 means elimina-

tion of the abnormally great contribution of low frequencies to the cross-section of

polarization Bs arising in case of using the high-frequency approximation near the

threshold of target ionization.

It should be noted that the formula (3.89) can be also rewritten in the form

similar to Eq. 3.78:

f polx;y ¼ e ep
Rx;y

R3
Nef R;oð Þ; (3.90)
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here

Nef R;oð Þ ¼ mo2

e2

ðR

0

b r;oð Þ 4 p r2 dr
������

������ (3.91)

is the effective electron charge depending on the frequency and distance to the

target nucleus and defining the cross-section of Bs by the polarization channel.

The above formulas for the polarization Bs channel correspond to the simple

physical interpretation of this process in the spirit of classical electrodynamics as

radiation arising due to acceleration of the effective electron charge of a target

under the action of a force from the side of a scattered IP.

According to subdivision of spectral effective radiation by the polarization

channel into the sum of contributions of two projections of the induced dipole

moment of the target for the spectral R-factor determined by the relation (3.69),

within the framework of the generalized rotation approximation it can be written:

Rrot oð Þ ¼ 1

2
Rrot
x oð Þ þ Rrot

y oð Þ
� �

: (3.92)

The numerical coefficient in Eq. 3.92 arose due to approximate replacement of

the mean squares of sine and cosine of the angle of IP rotation (see Eq. 3.62) by 0.5.

Given in Fig. 3.11а are the frequency dependences of three types of the R-factors
appearing in the formula (3.92) for a KII ion and threshold energies of an IP. It is

essential that the values of the R-factors are compared far from the threshold of

target ionization. Near the threshold (for IP energies under consideration) the

contribution of the y-component prevails.

The analysis within the framework of the approximation under consideration

shows that with growing IP energy the relative contribution of the x-component

increases, reaching its maximum value at the energy (T ¼ mp v
2
i 2= ) determined by

the equation:

ref o; Tð Þ ¼ rp oð Þ (3.93)

The physical meaning of the formula (3.93) is clear: the generalized rotation

approximation predicts the optimum value of initial energy of an IP, at which the

effective radius of radiation by the static channel coincides with the “plasma”

radius corresponding to the maximum of the spatial density of target polarizability

at the given frequency o. For �ho ¼ 24:5 eV the IP energy satisfying the Eq. 3.93 is

Topt ¼ 75 eV in scattering by a KII ion.
Using this model makes it possible to answer an important question: beginning

from what frequencies does the high-frequency approximation for the polarization

Bs channel work? The comparison of calculation results in the generalized rotation

approximation with the high-frequency spectral R-factor is given in Fig. 3.11b.
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From this figure it is seen that the high-frequency approximation in scattering of an

IP of threshold energy by a KII ion is true for o > orot ¼ 20 a.u. With growing IP

energy the value orot increases.

Let us give the results of calculation of total effective radiation by the polariza-

tion channel with the use of the generalized rotation approximation. The

corresponding expression (in a somewhat simplified version) looks like:

kpolðTÞ ¼ 8p e2p e
4

3 c3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mp T

p
ð1

rminðTÞ

N2
ef R; orot R; Tð Þð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� UðRÞ

T

r
R�2 dR; (3.94)

here rminðTÞ ¼ ref T; Tð Þ.
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Fig. 3.11 (а) The frequency
dependence of the R-factor in
different versions of the

generalized rotation

approximation, when in the

PBs cross-section are
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the static channel, 3 – their
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for threshold energies of an IP
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Though the integral in the formula (3.94) is convergent, we introduced a “cutoff”

at the same lower limit as for the static channel since the “non-classical” region of

small distances to a nucleus makes a significant contribution for Thomas-Fermi

electron distribution overestimating the real electron density near the nucleus. The

results of numerical estimations on the basis of the obtained expressions are

presented in Table 3.4

In the second line of the table the values of the lower limit in the integrals of

Eqs. 3.80 and 3.60 determining total effective radiation by the polarization and

static channels are given. It is characteristic for the quasi-classical limit that this

value rather weakly decreases with growing IP energy. This defines the weak

dependence of total effective radiation on IP energy.

From the calculations carried out within the framework of the generalized

rotation approximation it follows that for quasi-classical energies of an incident

particle (in terms of fulfilment of the inequations (3.55)) the values of total effective

radiation of an electron on a KII ion by the static and polarization channels are much

the same. The high-frequency approximation overestimates considerably the con-

tribution of the polarization channel, in particular for low IP energies.

The developed approach allows numerical estimations of the contributions of

both Bs channels for a wide range of parameters: the charges of ion nuclei Z, the
degree of their ionization q ¼ Zi Z= , the frequency of radiation. For this purpose it is

convenient to use the Sommerfeld analytical model for the Thomas-Fermi function

[7] (see the formulas (A.48) and (A.49)) that makes it possible to carry out

calculations rather simply. The results of calculations of the spectral Bs

characteristics in the generalized rotation approximation for a wide frequency

range and IP of threshold energies (�ho � T) are presented in Fig. 3.12a, b.

Following from Fig. 3.12 are the important corollaries of calculations within the

framework of the generalized rotation approximation. The contributions of the

polarization and static channels to the spectral cross-section of Bs on a KII ion
for electrons of threshold energies are compared (R ¼ 1) at the frequency

o* ¼ 10 a.u. The maximum of the R-factor is reached for frequencies of the

order of the target ionization potential. In this case the generalized rotation approx-

imation gives the following value for the R-factor:Rrot
max � 3. It should be noted that

this value represents a lower estimate since the Brandt-Lundqvist model

underestimates the value of polarizability.

In the model under consideration the R-factor depends on IP energy (T), growing
with T. This has a simple qualitative explanation. With the increase of energy

Table 3.4 Effective radiation by different channels of a quasi-classical electron on a KII ion
depending on IP energy

T, а.u. IP energy 3 4 5 10 20

rminðTÞ; a:u: 1.9 0.95 0.85 0.6 0.42

kstðTÞ 105; a:u: rotation approximation 0.58 0.74 0.86 1.12 1.26

kpolðTÞ 105; a:u: generalized rotation approximation 0.56 0.73 0.86 1.14 1.15

kpolðTÞ 105; a:u: high-frequency approximation 13.2 10 9 5.4 3.2
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(limited by the conditions of usability of the rotation and quasi-classical

approximations) the effective radius of the static channel increases: as a result,

the effective charge of an ion decreases, the effective electron charge of the core

grows.

Given in Fig. 3.12а are the frequency dependences of effective radiation by the

polarization (solid curve) and static (dotted curve) channels for a Thomas-Fermi ion

(the charge of the nucleus is Z ¼ 60, the degree of ionization is q ¼ 0:05) up to the

kiloelectron-volt energy of a bremsstrahlung photon. It is seen that both

dependences have a maximum, and for the polarization channel it is shifted towards

lower frequencies. With growing energy of a bremsstrahlung photon effective

radiation by the polarization channel (after achievement of the maximum)

decreases faster than by the static channel. This is connected with the effect of

penetration of an IP into the electron core of a target ion, which, on the one hand,

results in increase of the effective charge of the ion defining static Bs, and on the

other hand, reduces the dynamic (nondipole) polarizability of the ion core causing

polarization Bs.

Presented in Fig. 3.12b are the spectral R-factors for two values of degree of ion
ionization: q ¼ 0:1 (solid curve), q ¼ 0:2 (dotted curve) and the charge of the ion

nucleus Z ¼ 60. It is seen that the maximum of the R-factor for an ion of lower
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Fig. 3.12 The calculations in

the generalized rotation

approximation: (а) The
spectral dependences of

effective radiation of IP of

threshold energies by the

polarization (solid curve) and
static (dotted curve) channels
for Z ¼ 60, q ¼ 0:05. (b) The
spectral R-factor for different
degrees of ionization: q ¼ 0:1
(solid curve), q ¼ 0:2 (dotted
curve) and Z ¼ 60
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charge is reached at lower frequencies, the value of the maximum R-factor is more

in magnitude for an ion of a lower degree of ionization. This is explained by higher

effective charge and lower nondipole polarizability for an ion of higher charge.

With growing photon energy these distinctions (for a multielectron ion) are

smoothed, and the values of the R-factors of ions under consideration at higher

frequencies are equalized.

Thus it is possible to make a conclusion about the important role of effects of

penetration of a radiating electron into the target core for correct description of Bs

on multielectron ions of IP of threshold energies. Without considering this phe-

nomenon a qualitatively incorrect result is obtained. For example, the R-factor with
growing frequency will tend to the value 1� q (equal to the ratio of the number of

bound electrons to the nuclear charge), but not to zero as it should be according to

the physics of the process.

Presented in Fig. 3.13a, b are the dependences of the spectral R-factor on the ion
charge for different Bs frequencies (а) and nuclear charges (b) calculated for IP of

threshold energies. This figure demonstrates the presence (within the framework of

the generalized rotation approximation used here) of the optimum ion charge Zopt
i e,

at which the value of the R-factor (at a frequency characteristic for a given ion) is

maximum. This circumstance is a nontrivial fact. Really, for a one-electron ion (and

in the case q � 1) the function R Zið Þ is monotonically decreasing since then the

value defining the R-factor is proportional to the reciprocal ion charge:

o2a oð Þ Zi oð Þ / 1 Zi== (for frequencies of the order of the ion ionization potential).

For a multielectron ion the behavior of this dependence is unobvious, and in the

general case an answer can be given only within the framework of the approximate

description of Bs.

From Fig. 3.13а it follows that the optimum charge Zopt
i e grows with decreasing

frequency of radiation, and the maximum value of the R-factor in this case

somewhat decreases. With growing charge of the ion nucleus (Fig. 3.13b) the

value Zopt
i e is shifted to the region of high values, and the value of the R-factor

appreciably increases. At the same time for low ion charges the R-factors calculated
at corresponding (different!) characteristic frequencies do not depend on the

nuclear charge.

Let us apply the obtained formulas for calculation of spectral effective radiation

in scattering of an electron with an energy of 1 and 10 keV by tungsten ions with

different charges. The corresponding diagrams are given in Figs. 3.14 and 3.15.

From the given figure it follows that the static channel prevails over the polarization

channel throughout the region of frequencies.

With growing IP energy, as seen from Fig. 3.15, a spectral range from 350 to

750 keV takes place, in which the polarization channel prevails over the static

channel. According to Figs. 3.14 and 3.15, effective radiation by the polarization

channel has a maximum in the low-frequency region of the spectrum that is shifted

to the region of high photon energies with increasing IP energy.

Presented in Fig. 3.16 are the calculations of the spectral R-factor (3.69) for Bs of
different energies on tungsten ions.
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It is seen that with growing IP energy (10 keV) the contribution of PBs grows

especially for rather low ion charges Zi ¼20, when the maximum Rmax ¼ 6.8 is

observed in a low-frequency range of the order of 200 keV. With increasing ion

charge (at the same IP energy of 10 keV) the maximum of the spectral R-factor is
shifted to the region of high photon energies (about 500 keV), becoming in this case

more wide. In case of low IP energies (1 keV) the R-factor is less than one

throughout the spectral range for the considered tungsten ions. This is explained

by deep penetration of an IP into the ion core for emission of a photon at a low IP

energy (1 keV).

Thus the use of the generalized rotation approximation in the description of

polarization effects for IP of threshold energies on multielectron ions is found to be

rather effective for revealing qualitative regularities of behavior of both Bs channels.
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Fig. 3.15 The spectrum of effective radiation in scattering of an electron of energy 10 keV by a

tungsten ion with the chargeZi ¼ 38: solid curve – static channel, dotted curve – polarization channel
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Fig. 3.16 The spectral R-factor for Bs on tungsten at different ion charges and IP energies: solid
curve – Zi ¼20, E ¼ 1 keV; dotted curve – Zi ¼38, E ¼ 1 keV; dashed curve – Zi ¼20,

E ¼ 10 keV; dash-and-dot curve – Zi ¼38, E ¼10 keV
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At the end of this paragraph we will make a useful remark on determination of

the effective charge of an ion in the rotation approximationZrot
ef e (e is the elementary

charge) that, in particular, can be used in estimation of effective radiation by the

static channel on the basis of the known Kramers formula:

dk Kramð Þ

do
¼ 16 p Z2

ef e
6

3
ffiffiffi
3

p
m2 v2 c3

: (3.95)

The matter is that the simple use of the formula (3.79) with substitution of the

effective radius of radiation in it leads, generally speaking, to an incorrect result.

The correct expression for the charge number Zrot
ef can be obtained from Eq. 3.87

with the use of simple algebraic transformations, it looks like:

Zrot
ef ¼ r2 dU dr=j j

e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 þ dU dr=j j mo2rð Þ=

p
( )

r¼ref o;Tð Þ
; (3.96)

where e is the elementary charge.

For Bs on a KII ion in the Thomas-Fermi-Dirac model from Eq. 3.96 we find:

Zrot
ef o ¼ 0:9 a:u:; T ¼ 1 a:u:ð Þ ¼ 1:83 and, accordingly, dkKr o; Zef

� �
do ¼=

6:3� 10�6 a:u::
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Chapter 4

Bremsstrahlung in Plasma with Account

for the Polarization Channel

4.1 Total and Spectral Intensities of Radiation of Quasi-

Classical Electrons on Atoms and Ions

At the beginning of this chapter we summarize the general expressions describing

bremsstrahlung of quasi-classical electrons on targets both having an electron core

and representing a “bare” atomic nucleus.

4.1.1 Main Expressions

According to classical electrodynamics, the instantaneous (at a given instant of

time t) power of dipole radiation of the charge e is expressed by the formula

QðtÞ ¼ 2 e2

3 c3
€rðtÞj j2; (4.1)

where c is the velocity of light in free space, €rðtÞ is the charge acceleration. The

dipole behavior of radiation means that its wavelength is much longer than the

characteristic dimensions of the radiating system. In this section we will be inter-

ested in radiation in infinite motion of a charged particle. Then the trajectory of

motion will be characterized by the impact parameter r: r ¼ r t; rð Þ. Knowing the

instant radiation power, it is possible to calculate the total energy of the electro-

magnetic field radiated in charge scattering by the external potential with the

specified impact parameter r:

DE rð Þ ¼
ð1

�1
Q t; rð Þ dt: (4.2)
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In classical physics for characterization of the radiative process the special value k is

introduced that is called effective radiation and is determined by the following equation:

k ¼
ð1

0

DE rð Þ 2 pr dr: (4.3)

Appearing here is the total energyDE rð Þ radiated during charge scattering that is
given by the expressions (4.1) and (4.2). Effective radiation describes the contribu-

tion to the process of all possible trajectories of charge motion characterized by

different impact parameters and orientations of orbit planes (the multiplier 2 p). For
transformation of the formula (4.3) we will use the known relation:

ð1

�1
f 2ðtÞ dt ¼ 1

p

ð1

0

f oð Þj j2do; (4.4)

where f ðtÞ is the real time function, f oð Þ is its Fourier transform. In our case

f ðtÞ ¼ €rðtÞj j , then f oð Þ ¼ o2 r oð Þj j according to the property of the Fourier

transform of a derivative. In view of Eq. 4.4, the formulas (4.1), (4.2), and

(4.3) give

k ¼
ð1

0

dk
do

do; (4.5)

where dk do= is spectral effective radiation, for which the equation is true:

dk
do

¼ 4 e2 o4

3 c3

ð1

0

r o; rð Þj j2 r dr: (4.6)

As seen from the above formulas, effective radiation has a dimensionality of

energy multiplied by area. To obtain the expression for radiation power, effective

radiation should be multiplied by the density of the flux of charged particles

(electrons) scattered by the potential j ¼ n v (n is the concentration of incident

particles, v is their velocity far from the scattering center):

dQ do= ¼ dk do=ð Þ j:

Then for the spectral radiation power we obtain

dQ

do
¼ 4 e2 o4

3 c3
n v

ð1

0

r o; rð Þj j2 r dr: (4.7)
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The total radiation power in charge scattering by the external potential will be

obtained after taking an integral of Eq. 4.7 with respect to positive frequencies up to

the maximum frequency omax ¼ E �h= defined by the energy conservation law:

Q ¼
ðomax

0

dQ

do
do: (4.8)

In case of a spherically symmetric potential it is possible to obtain a closure for

the total radiation power with the use of the formulas (4.1), (4.2), and (4.3). For this

purpose we will use the Newton’s second law that in the field of central conserva-

tive forces looks like

€rðtÞ ¼ � 1

m

r

r

dU

dr
: (4.9)

Substituting Eq. 4.9 in Eq. 4.1, we find

QðtÞ ¼ 2 e2

3m2 c3
U0

r rðtÞð Þ�� ��2; (4.10)

where rðtÞ is given by the motion trajectory, and the prime means a derivative with

respect to the radius vector magnitude. Then for the total radiated energy from

Eqs.4.10 and 4.2 we have

DE rð Þ ¼ 4 e2

3m2 c3

ð1

rmin

U0
r

�� ��2 dr

vr r; rð Þ: (4.11)

In this equation we went from time integration to integration with respect to the

radius vector magnitude using the replacement dt ¼ dr vr= , where vr is the radial

velocity of a particle (3.63) depending on the distance to the potential center and the

impact parameter r. Substituting Eq. 4.11 in Eq. 4.3, integrating with respect to dr,
and going to the radiation power by multiplying by the density of the flux of

incident electrons je ¼ ne ve, we find

Q ¼ k ne ve ¼ 8 p e2 ne
3m2

e c
3 ve

ð1

0

r2 U0
r

�� ��2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2e �

2

me
UðrÞ

r
dr: (4.12)

Here is taken into account that E ¼ m v2e 2= . For the Coulomb attractive potential

the formula (4.12) gives

QCoul ¼ 8 p e6 ne
3m2

e c
3 ve

ð1

0

r�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2e þ

2 Z e2

me r

s
dr: (4.13)
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Hence it is seen that the total intensity of radiation of charge scattering by the

Coulomb potential calculated within the framework of classical physics diverges at

small distances from the potential center as r�3=2 . This difficulty of the classical

theory is a matter of principle since it results from neglect of wave properties of

particles. To overcome it, the lower limit of integration in the formulas (4.12) and

(4.13) should be replaced by the de Broglie wavelength for an electron:

rmin ¼ �lDB ¼ �h

me ve
: (4.14)

This replacement means taking into account the fact that the distance between an

incident particle and the potential center can not be determined more precisely than

its de Broglie wavelength �lDB: This value characterizes the diffusiveness of a

particle trajectory due to its intrinsic wave properties. It should be noted that in case

of the Coulomb repulsive potential, when the potential energy is positive, the

minimum distance will be determined from the non-negativity constraint for the

radicand on the right side of the Eq. 4.12, that is

rmin ¼ 2 Z e2

me v2e
: (4.15)

4.1.2 High-Frequency Radiation. Kramers Electrodynamics

In scattering of an electron with the initial velocity ve by the external potentialUðrÞ
it is possible to determine scale distances and frequencies characterizing this

scattering. The scale distance r ¼ a is determined by the relation (E ¼ me v
2
e 2= )

E � UðaÞj j: (4.16)

The formula (4.16) has a simple physical meaning: at a characteristic distance

the initial energy of an electron and the magnitude of its potential energy are

compared. At distances r>>a the effect of the potential on the electron motion is

low. In the opposite limit r<<a the initial energy of an electron can be neglected in
comparison with its potential energy. In case of the Coulomb potential the charac-

teristic length scale is called the Coulomb length:

aCoul ¼ Z e2

me v2e
: (4.17)

The squared Coulomb length defines the cross-section of elastic scattering of

charges and a number of other collisional characteristics. It can be separated in the
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formula (4.13) describing the radiation power in scattering in the Coulomb field.

The Coulomb length (accurate to the multiplier) is equal to the minimum distance

in scattering in the repulsive potential (4.15).

The characteristic scattering frequency is given by the ratio of the initial velocity

of an electron and the characteristic length: ~o ¼ ve aCoul= . In case of the Coulomb

field this gives

~o � oCoul ¼ m v3e
Z e2

: (4.18)

The Coulomb frequency (4.18) defines the characteristic frequency of electron

radiation in the Coulomb field. High-frequency radiation

o>>oCoul (4.19)

has its specific features. Let us consider them by the example of the Coulomb

attractive potential. Rigorous analysis based on the exact solution of the

equations of charge motion in the Coulomb field shows that radiation in the high-

frequency range Eq. 4.19 is “gathered” from the trajectory section near the turning

point r � rmin, where the acceleration of a particle is maximum. Then the radiated

frequency is close to the frequency of rotation (the angular velocity) of a charge on

the section of the trajectory of the most approach:

o � orot rminð Þ ¼ v rminð Þ
rmin

: (4.20)

It should be noted that on the section under consideration the radial electron

velocity is equal to zero, so it coincides with the azimuthal velocity, therefore

v rminð Þ ¼ r ve
rmin

: (4.21)

The Eq. 4.21 follows from the angular momentum conservation law in the

spherically symmetric potential. For the Coulomb field of attraction we have

rmin rð Þ ¼ aCoul

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

a2Coul

s
� 1

" #
: (4.22)

If Eqs. 4.21 and 4.22 are substituted in the right side of the Eq. 4.20, then in view

of the definition (4.18) it can be seen that the inequation (4.19) is satisfied only for

low impact parameters:

r<<aCoul: (4.23)

Thus high-frequency radiation of Eq. 4.19 occurs on trajectories of charge

motion with a low impact parameter, when a particle at the point of the maximum
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approach has a high enough rotational velocity (4.20) to radiate an electromagnetic

wave of a specified frequency.

It should be noted that in the case (4.23) charge scattering occurs at large angles

y � p: The last relation follows from the connection between the impact

parameter and the angle of scattering in the Coulomb field aCoul ¼ r tg y 2=ð Þ:
Thus corresponding to high-frequency radiation of Eq. 4.19 is the motion along
strongly curved trajectories with low impact parameters. The features of

collisional-radiative processes under such conditions are described by the Kramers
electrodynamics. From the above it follows that in the case (Eq. 4.19) under

consideration, when the inequation (4.23) is satisfied, for the minimum distance

from a scattering particle to the potential center the approximate equation is true:

rmin r<<aCoulð Þ � r2

2 aCoul
<<r: (4.24)

The obtained relation follows from Eq. 4.22. Substituting Eqs. 4.21, 4.24 in the

formula (4.20), we come to the following estimation:

o � orot rminð Þ � 4
aCoul
r

� �3

oCoul: (4.25)

Sincer<<aCoul are considered, from Eq. 4.25 the inequation (4.19) follows, that

is, radiation really occurs at a frequency much higher than the characteristic

Coulomb frequency.

4.1.3 Total Radiation Power

The expression for the total (throughout the spectral range) power of radiation

arising as a result of electron scattering by an atom (ion) can be obtained by

integrating the expression (3.87) with respect to frequency in view of the presence

of a delta function and by multiplying it by the electron flow density. As a result, in

the quasi-classical approximation for plasma electron motion we find

Q ¼ 8 p e2 ne
3m2

e c
3 ve

ð1
�lDB

r2 f ðrÞj j2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2e �

2

me
UðrÞ

r
dr; (4.26)

where f ðrÞ is the force causing radiation of electromagnetic waves. In the case that

this is the ordinary (“static”) force fstðrÞ ¼ �dU dr= , the expression (4.26) describes

the intensity of radiation by the “static” channel, when the core of a target is

supposed to be “frozen”. And if f ðrÞ is the polarization force (3.78), the power

(Eq. 4.26) corresponds to the polarization channel of radiation. It will be recalled
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that in the quasi-classical limit bremsstrahlung and recombination radiation are

described by a common expression, and the difference is that the photon energy in

recombination radiation is more than the initial electron energy.

4.2 Bremsstrahlung of Thermal Electrons on the Debye Sphere

Around an Ion in Plasma

In plasma, besides polarization bremsstrahlung of electrons on atoms and ions, it is

necessary, generally speaking, to take into account radiation caused by the presence

of the Debye sphere around ions. This radiation arises with impact parameters that

are more than the ion size that in this case can be considered to be the point size.

The point ion together with the Debye sphere formed by plasma electrons is a

peculiar atom, with the essential difference that instead of bound electrons its

“nucleus” (ion) is screened by plasma electrons that are free. Nevertheless, the

said analogy makes it possible for description of PBs on the Debye sphere to use the

approach developed for radiation in electron-atom collisions.

PBs on the Debye sphere was for the first time considered by V.N. Tsytovich and

A.V. Akopyan for a case of fast (superthermal) electrons moving along straight-line

trajectories. This kind of polarization Bs in the original works [1, 2] was called

transient Bs.
In this section we will consider polarization Bs in the limit opposite in electron

motion velocity (when the inequation (3.1) is satisfied), which is more adequate for

plasma electrons, the characteristic velocity of which is of the order of the thermal

velocity.

To obtain effective radiation by the polarization channel, we use the expression

(4.26), in which it is necessary to substitute the formula for the polarization force

(3.78) and the Debye potential of an ion in plasma:

UDðrÞ ¼ � Zi e
2

r
exp �r rD=ð Þ; (4.27)

here rD is the Debye radius. After simple algebraic transformations with the use of

the relation Q ¼ k ne ve, assuming thatmev
2
e 2= ¼ T (T is the temperature of plasma

electrons in energy units), the expression for effective radiation by the polarization

channel can be written as:

kDpol ¼
8p e6

3me c3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2me T

p Z2
i

rD
F

2aT
rD

� �
; (4.28)

here the function is introduced:

FðxÞ ¼
ð1

0

dr

r2
1� e�r 1þ rð Þ½ � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x

r
e�r

r
: (4.29)
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The parameter aT ¼ Zi e
2 2T= is the Coulomb length in scattering of an electron

with the energy T by an ion with the charge Zi e . The plot of this function is

presented in Fig. 4.1.

It should be noted that the ratio x ¼ 2aT rD= is proportional to the nonideality

parameter (the ratio of average potential energy to average kinetic energy) for

plasma. For ideal plasma one has x<< 1. And if x>1, the condition of idealness

(ner
3
D>>1) is violated, and the nature of screening of an ion in plasma will change

too.

As seen from Fig. 4.1, the function (4.29) grows very slowly with its growing

argument, its derivative at zero is: F0ð0Þ ¼ 0:025 , so for all cases of practical

interest it is possible to suppose F ¼ 0.5. Therefore from the expression (4.28) it

follows:

kDpol ¼
4p e6

3me c3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2me T

p Z2
i

rD
: (4.30)

The formula (4.30) that is true for arbitrary quasi-classical motion of an electron

after multiplication by the electron flow density coincides (in terms of one ion) with

the expression for the total power radiated by the polarization channel that for the

first time was obtained by V.N. Tsytovich for straight-flight electrons [1].
Thus it can be concluded that under conditions of ideal plasma the nature of

motion of an electron weakly influences its radiation by the polarization channel.

For effective static radiation in the Coulomb field of the ion from the formula

(4.12) in view of the integral “cutoff” at the lower limit of Eq. 4.14 it can be obtained:

kst ¼ 8p Zi e6
ffiffiffiffiffiffiffiffiffiffiffi
T Ry=

p
9 c3 me �h

xm þ 2

xm

� �3=2

� 1

" #
; (4.31)

where xm ¼ 2
ffiffiffiffiffiffiffiffiffiffiffi
T Ry=

p
Zi=

� �2=3
, Ry ¼ 13.6 eV. In the limit xm<<1 the expression

(4.31) is simplified to the form:

0.01 0.1 1 10
0.5

0.55

0.6

0.65

Φ(x)

x

Fig. 4.1 The function F(x)
defining PBs of thermal

electrons on the Debye sphere

in plasma
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kst ¼ 8
ffiffiffi
2

p
p

9

Z2
i e

6

�hme c3
: (4.32)

It should be noted that the Planck constant in the quasi-classical equations

(4.31 and 4.32 arose because of its presence at the lower limit of the “cutoff” of

the integral in Eq. 4.12 with respect to distance (Eq. 4.14). The expression (4.32)

differs from the Kramers formula for effective radiation that can be obtained from

Eq. 5.76 by the multiplier
ffiffiffiffiffiffiffiffi
2 3=

p ’ 0:816.

From the formulas (4.32) and (4.30) with the use of the expression for the

electron Debye radius rD ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 4 p e2 ne=

p
we find for the ratio of the contributions

of the polarization and static channels:

ℜD ne; Tð Þ ¼ kDpol
kst

ffi 3

ffiffiffiffiffiffiffiffiffiffiffi
ne na=

p
T 2Ry=ð Þ ; (4.33)

where na ¼ a�3
B ’ 6:8 � 1024 cm�3 is the atomic concentration. As seen from

Eq. 4.33, for the appreciable contribution of polarization effects to Bs on an ion

with Debye screening plasma should be as dense and cold as possible.

Let us perform a numerical estimation of the value ℜ for laser plasma with

the following parameters: ne � 7�1018 cm�3, T � 1 eV, then ℜ � 10 %. And if

ne � 7�1020 cm�3, then ℜ � 100 %, but then the plasma parameter becomes less

than one, and plasma becomes nonideal.

It is of interest to estimate the contribution of polarization Bs for plasma of the

inner regions of Sun: ne � 5.7�1025 cm�3, T � 1,550 eV. For these values with the

use of Eq. 4.33 we find: ℜ � 15 %.

Let us write out the expression for the ratio ℜ in terms of the Debye number

(the parameter of plasma idealness) ND ¼ 4p 3=ð Þ r3D ne:

ℜ n;NDð Þ � 1:24
n na=ð Þ1=6
N

2=3
D

: (4.34)

Hence it is seen that for the fixed parameter of plasma idealnessND the ratioℜ is

a very weak function of the concentration of plasma electrons.

From the consideration carried out it follows that the contribution of polarization

effects to the total bremsstrahlung loss of plasma electrons on the Debye sphere

surrounding an ion in nondegenerate plasma can be comparable with the contribu-

tion of ordinary (static) Bs only for cold and dense enough plasma, when the

idealness parameter ND is of the order of one. Otherwise the ratio of the

contributions of the polarization and static channels does not exceed 10–15 %.

For spectral effective PBs within the framework of the rotation approximation

(3.88a) (neglecting the y-component of the polarization force) and the explicit

expression for the derivative dorot dR=j j following from the formula
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orotðRÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2e þ 2 UDðRÞ me=j jp

R
; (4.35)

the expression can be obtained:

dk rotð Þ
pol

do
¼ 8 p �h fpol ref oð Þ� ��� ��2

3m2
e c

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 T me=

p r4ef oð Þ
1þ U0

D ref oð Þ� ��� �� me o2 ref oð Þ� �� ; (4.36)

where U0
D ¼ dUD dr= , ref oð Þ is the effective distance, at which radiation of

electromagnetic waves of a specified frequency occurs, it is given by solution of

the Eq. 3.66, in which it is necessary to suppose U ! UD, mp ! me and vi ! ve.

To calculate the polarization force fpolðrÞ determined by the formula (3.78), we

will use the expression for electron concentration in the Debye sphere as a function

of the distance to an ion:

neðrÞ ¼ Zi
4 p r2D

exp �r rD=ð Þ
r

: (4.37)

Hence for the effective electron charge causing PBs – Npol R;oð Þ we find:

Npol R; oð Þ ¼ NeðRÞ ¼ 4 p
ðR

0

neðrÞ r2 dr ¼

¼ Zi 1� 1þ R rD=ð Þ exp �R rD=ð Þ½ �: ð4:38Þ

Here the value R is a current distance from a radiating electron to an ion in

electron motion in its orbit. The physical meaning of Eq. 4.38 is that PBs is formed

by the part of an electron charge screening a plasma ion that is in the sphere of

radius R since this charge interacts with an incident electron in a coherent manner

(as a unit). It should be noted that in this case the polarization charge does not

depend on frequency andNpol R>>rD; oð Þ ¼ Zi, that is, at long distances between a
radiating electron and an ion the whole electron charge of the Debye sphere takes

part in formation of PBs.

The expression for spectral effective radiation by the static channel within the

framework of the rotation approximation will be determined by the equation similar

to Eq. 4.36 accurate to the replacement of the polarization force by the ordinary

(“static”) force representing the derivative of the potential (4.27) with respect to the

radius vector (fst ¼ U0
D):

dk rotð Þ
st

do
¼ 8 p �h U0

D ref oð Þ� ��� ��2
3m2

e c
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 T me=

p r4ef oð Þ
1þ U0

D ref oð Þ� ��� �� me o2 ref oð Þ� �� : (4.39)
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Here and further the condition o>>ope providing propagation of a transverse

electromagnetic wave in plasma is supposed to be satisfied.

For the quantitative characteristic of the PBs contribution to bremsstrahlung in

electron scattering by a point ion in plasma we will introduce the spectral R-factor
in the rotation approximation:

R rotð Þ oð Þ ¼ dk rotð Þ
pol oð Þ

dk rotð Þ
st oð Þ

¼ fpol ref oð Þ� �
fst ref oð Þ� �

" #2
¼ Ne ref oð Þ� �

r2ef oð ÞU0
D ref oð Þ� �

" #2
: (4.40)

Substituting here the expressions forNeðRÞ (Eq. 4.38) andUD (Eq. 4.27), we find

R rotð Þ oð Þ ¼ 1� exp ref oð Þ rD=
� �

1þ ref oð Þ rD=

	 
2
� ref oð Þ<rD
� � � 1

4

ref oð Þ
rD

� �4

: (4.41)

In derivation of Eq. 4.41 the inequality ref oð Þ<rD is used that is true for ideal

plasma in the frequency range o � oCoul , where oCoul is the Coulomb frequency

determined by the formula (4.18).

The numerical estimation based on Eq. 4.41 indicates that in the case under

consideration the contribution of the polarization channel to bremsstrahlung is

small and is about 1 %.

With the use of the above expressions it can be shown that

dk rotð Þ
pol

do
/ o�8

3: (4.42)

This dependence somewhat differs from the similar dependence given in

the book [2] for fast superthermal electrons in the frequency range o>g2 v vTe=ð Þ
ope (v is the velocity of a fast electron, vTe is the thermal velocity of plasma

electrons, ope is the electron plasma frequency)

dkpol
do

/ o�4: (4.43)

4.3 Bremsstrahlung of Fast Electrons in Plasma

Radiation in scattering of electrons by ions in plasma was considered in Chap. 3

within the framework of the quasi-classical approximation, the criterion of which is

given in the general case by the inequation (3.67а) and by the relation (3.1) in case

of the Coulomb potential. In the quasi-classical approximation it can be considered

that the motion of an electron in radiation of electromagnetic waves occurs along a
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specified trajectory defined by the potential of a target. This situation is typical for

low-temperature plasma, in which the condition of quasi-classicity (Eq. 3.67а) is
satisfied.

In consideration of bremsstrahlung of fast (superthermal) particles, including

relativistic particles, an opposite approximation is adequate that is called the Born

approximation, the criterion of which is the inequation that is inverse for Eq. 3.1:

Z e2

�h v
<<1; (4.44)

where v is the electron velocity, Z is the charge number of the nucleus of an atom

(ion). It should be noted that the inequation (4.44) is strong, and the inequation (3.1)

is weak. Physically the Born condition corresponds to the weak disturbance of

motion of a scattered particle under the action of the target potential.

4.3.1 Polarization Bremsstrahlung of a Fast Charged Particle
in Plasma

As was already noted in Chap. 1, PBs can be considered as the conversion of a

virtual photon of the eigenfield of an incident particle to a real photon on electrons

of a medium. This interpretation becomes especially obvious for fast charged

particles, the eigenfield of which approaches the field of a free electromagnetic

wave. Plasma electrons in the frequency rangeo>>ope are quasi-free. (Here we do

not consider bound electrons of ions, and plasma is considered to be ideal.)

Therefore for description of PBs of a fast charged particle in plasma it is possible

to use the results obtained in Chap. 2 for bremsstrahlung on an atom in the high-

frequency limit (2.54). Really, for quasi-free electrons the eigenfrequency can be

assumed to be equal to the plasma frequency, and then the condition of high-

frequency in the spectral range under consideration is satisfied automatically.

From the aforesaid it follows that in going from an atom to plasma, in the

expression for the PBs cross-section (2.54) instead of the dynamic form factor of

an atom it is necessary to put the DFF of the electron component of plasma and to

neglect the second summand in the parentheses of the formula (2.54). As a result,

we have

dspolplas

do dOk

¼ r2e
o

v c �h

ð
dq

2pð Þ4 n; ~A
ðpÞ

q1ð Þ
h i2

~Se q0; q
� �

V; (4.45)

where V is the volume of plasma, in which PBs is generated, ~A
ðpÞ

q1ð Þ is the vector
potential of an incident particle (without a frequency delta function).

The normalized dynamic form factor of the electron component is [3]
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~SeðqÞ ¼ elðiÞðqÞ
elðqÞ
����

����
2

dneðqÞj j2 þ z2i
1� elðeÞðqÞ

elðqÞ
����

����
2

dniðqÞj j2; (4.46)

where

dne;iðqÞ
�� ��2 ¼ ne;iffiffiffiffiffiffi

2p
p

vTe qj j exp � q0ð Þ2
2 q2 v2Te;i

 !
(4.47)

are the spatio-temporal Fourier transforms of the squared thermal fluctuations of the

electron and ionic components of plasma calculated on the four-dimensional wave

vector q ¼ q0; qð Þ, ne;i are the average concentrations of electrons and ions.

The functions elðeÞðqÞ , elðiÞðqÞ and elðqÞ represent the longitudinal part of the

dielectric permittivity of plasma components (electrons and ions) and of the whole

plasma.

The DFF of plasma components and the longitudinal part of the dielectric

permittivity of plasma are considered in detail in Appendix 3.

In the spectral range under consideration o>>ope the dielectric permittivity of

plasma at the frequency of an emitted photon o is close to unity. Nevertheless, in

case of relativistic particles, when the Lorentz factor g>>1, in description of an

electromagnetic field in a medium the dielectric permittivity, generally speaking,

should be taken into account due to the presence of a resonant denominator in the

formula for the vector potential (4.48). In the case under consideration it can be

supposed that eðlÞ q1ð Þ ffi eðtÞ q1ð Þ ¼ e q01
� �

since the inequality q01
�� �� � o>> kj jvTe is

satisfied. Then the vector potential of the electromagnetic field of an IP is given by

the formula (2.42) from the second chapter with the replacement q ! q1 and in

view of the dielectric permittivity of a medium:

AðpÞ q1ð Þ ¼ 4 p c e0
q01 e q1ð Þ
� �

e q1ð Þ q01 c2
�� �

v� q1

e q1ð Þ q01 c=
� �2 � q21

d q01 � q1 v
� �

: (4.48)

The first summand on the right side of Eq. 4.46 after substitution in the

expression for the cross-section (4.45) corresponds to bremsstrahlung with transfer

of the momentum excess to a plasma electron. Let us call this radiation Compton Bs
by analogy with Compton X-ray scattering by an atom, when the energy-

momentum excess is carried away by an ionized atomic electron. In the case

under consideration the role of X-radiation is played by a virtual photon of the

eigenfield of an incident particle. It should be noted that the term Compton Bs in the

works [1, 2] was used in a different sense – for description of static Bs in a medium.

In view of the aforesaid, our use of this term seems more adequate.

The numerical analysis shows that in calculation of the cross-section of PBs in

plasma the replacement can be made to a high accuracy:

1ffiffiffiffiffiffi
2p

p
vT qj j exp � q0ð Þ2

2 q2 v2T

 !
! d q0

� �
: (4.49)
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Then the expression for the cross-section of Compton Bs takes the form

ds CBð Þ

do dOk

¼ Ne r
2
e

e20
�ho

c

v

	
ð
dq

p2
d q� kð Þvþ oð Þ n; ve oð Þ o c2

�� �� q
� �

2

q2 � 2qkð Þ2
q2 r2De

1þ q2 r2De

� �2

;

(4.50)

where Ne is the number of plasma electrons in the volume of interaction, rDe is the

electron Debye radius, kj j ¼ o c=ð Þ ffiffiffiffiffiffiffiffiffiffi
e oð Þp

. It should be noted that the last multi-

plier on the right side of this equation “cuts off” integration with respect to the

transferred wave vector from below: qj j>r�1
De . Physically this means that scattering

with low transfer of a momentum does not make a contribution to Compton Bs

since then an IP interacts not with an individual plasma electron, but with the Debye

sphere as a single formation.

Integration with respect to the solid angle of the transferred wave vector dOq in

Eq. 4.50 can be performed in the general form if the function is introduced:

I’ q; v;o; yð Þ ¼ q3 v

2 p

ð
dOq d o� kvþ qvð Þ n;o v e oð Þ c2

� � q
� �

2

q2 � 2 k qð Þ2 : (4.51)

Then instead of the Eq. 4.50 we have:

ds CBð Þ

do dOk

¼ 2

p
Ne r

2
e

e20
�ho

c

v2

ðxmax oð Þ

xmin yð Þ

x2 o rDe c=ð Þ2
1þ x2 o rDe c=ð Þ2
 !2

~I’ x; b; yð Þ dx
x
: (4.52)

Here xmax ¼ m c2 b �ho= , xmin ¼ qmin

c

o
¼ b�1 � cos y, the function ~I’ x; b; yð Þ is

given by the formula

~I’ x; b; yð Þ ¼ x2 f1 x; b; yð Þ
D3=2 x; b; yð Þ þ

x2

4

f2 x; b; yð Þ
D1=2 x; b; yð Þ � 1

" #
; (4.53)

where

f1 ¼ x2 þ 2 cos yð Þ xmin

� �
x2 � xmin

2
� �

cos2yþ xmin � bð Þ2sin2y
h i

þ 4 sin2y cos y xmin � bð Þ x2 � xmin
2

� �
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and

f2 ¼ x2 þ 2 cos yð Þ xmin; xmin ¼ qmin

c

o
¼ b�1 � cos y;

D ¼ x2 � 2 1� cos y
b

� �� �2

þ 4
1� b2

b2
sin2y:

It should be noted that in the nonrelativistic limit v<<c the integral of Eq. 4.51

looks like:

I’ q; v;o; yð Þ ffi 1þ cos2y
2

þ o
q v

� �2
1� 3 cos2y

2
: (4.53a)

Compton bremsstrahlung in case of an atomic target corresponds to PBs with

atomic ionization.

The second summand in the equation for the normalized DFF of the electron

component of plasma (4.46) after substitution in the expression for the cross-section

(4.45) corresponds to polarization Bs on the Debye sphere around a plasma ion.

This radiation in the original works [1, 2] was called transient bremsstrahlung. In

the process of transient Bs the energy-momentum excess is transferred to a heavy

ion, and emission of a photon occurs as a result of interaction of the electron Debye

sphere as a whole with the electromagnetic field. In view of the explicit form of the

longitudinal part of the dielectric permittivity of plasma (A.68), (A.69) and the

passage to the limit (4.50) for the spectral-angular cross-section of transient Bs

from Eqs. 4.45, 4.48 we obtain

ds TrBð Þ

do dOk

¼ Ni z
2
i r

2
e

e20
�ho

c

v

	
ð
dq

p2
n; v oe oð Þ c2

�� �� q
� �

2

q2 � 2qkð Þ2
d q� kð Þvþ oð Þ

1þ q2 r2De
� �2 ; (4.54)

where Ni is the number of plasma ions in the volume of interaction. Hence it is seen

that the main contribution to transient Bs is made by low values of the transferred

wave vector qj j<r�1
De that correspond in the classical pattern of the process to high

impact parameters r>rDe . It is in such a case that a fast electron interacts in a

coherent manner with electrons screening an ion in plasma. The coherence of

interaction manifests itself in the fact that the process cross-section (4.54) is propor-

tional to the squared number of electrons of the Debye sphere equal to the charge of a

plasma ion. Thus transient Bs can be interpreted as radiation of the Debye sphere

oscillating in the ac field produced by a fast electron during scattering.

For the spectral cross-section of transient Bs from Eq. 4.54 we have:

ds TrBð Þ

do
¼ 1

p2
Ni z

2
i r

2
e

e20
�ho

c

v2
= Trð Þ; (4.55)
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where the dimensionless integral is introduced:

= Trð Þ ¼ v

ð
dq

ð
dOk

n; v o e oð Þ c2
�� �� q

� �
2

q2 � 2q kð Þ2
d q� kð Þvþ oð Þ

1þ q2 r2De
� �2 : (4.56)

To calculate the integral of Eq. 4.56, it is convenient to make the replacement of

the variable: q ¼ kþ k , where k ¼ pf � pi

 �
�h= . Then after integration with

respect to the angular variables we have:

= Trð Þ ¼ 2 p2

r4De k

ðkmax

o v=

dk

k2 k2 � k2ð Þ2
o2 v2 k r2De

~c4
k2 � o2

v2

� �
g kð Þ þ 1

2 k r2De
f kð Þ

� �
;

(4.57)

g kð Þ ¼ 1

1þ r2De k� kð Þ2 �
1

1þ r2De kþ kð Þ2 ; (4.58)

f kð Þ ¼ o2 v2

2 ~c4
� k2 � 2

o2

~c2
� 3o4

2 ~c4 k2

� �

	 4 k k r2De þ 1þ r2De k2 þ k2
� �� �

ln
1þ r2De k� kð Þ2
1þ r2De kþ kð Þ2

" #
;

(4.59)

where~c ¼ c
ffiffi
e

p
= is the phase velocity of light in amedium,kmax ¼ m v �h= ,k ¼ ffiffi

e
p

o c= .

The analysis of the expressions (4.55), (4.56), (4.57), (4.58), and (4.59) shows

that it is possible to separate three characteristic frequency ranges for the spectral

cross-section of transient Bs of a relativistic (v ’ c) incident particle.

1. In the spectral range ope<<o<v rDe= ¼ v vTe=ð Þope (strong screening) that

exists in case of a fast particle (v>>vTe), the integral of Eq. 4.57 is simplified

to the form

= Trð Þ ’ 16

3
p2 ln

c

rDe o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c v=ð Þ2 � e oð Þ

q
0
B@

1
CA;

and the cross-section (4.55) in the relativistic limit is:

ds TrBð Þ

do
¼ 16

3
Ni z

2
i r

2
e

e20
�ho

c

v2
ln

g cope

vTe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 þ g2 o2

pe

q
0
B@

1
CA : (4.60)
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In derivation of Eq. 4.60 it was assumed that e oð Þ ¼ 1� ope o=
� �2

and

rDe ¼ vTe ope

�
.

2. In the range v vTe=ð Þope<<o<g2 v vTe=ð Þope (intermediate screening) we have:

ds TrBð Þ

do
¼ 2Ni z

2
i r

2
e

e20
�ho

c

v2
vope

vTe o

� �2

ln
2goffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

o2 þ g2 o2
pe

q
0
B@

1
CA : (4.61)

3. In the high-frequency range g2 v vTe=ð Þope<<o (weak screening) the equation is

true:

ds TrBð Þ

do
¼ 4Ni z

2
i r

2
e

e20
�ho

c

v2
vope

vTe o

� �2 g2vope

vTe o

� �2

: (4.62)

Let us comment the expressions (4.60), (4.61), and (4.62) that for the intensity of

Bs of an ultrarelativistic electron in plasma were for the first time obtained in the

work [2].

In the low-frequency spectral range (1) for all radiation angles y the inequality

(the case of strong screening) takes place:

qmin rDe<1: (4.63)

It will be recalled that qmin ¼ o v= � k cos y is the minimum wave vector

transferred from an incident particle to plasma. The condition (4.63) within the

framework of the classical picture of the process means that the law of conservation

of energy-momentum permits such impact parameters, at which a particle during

radiation flies at distances from an ion that are more than the Debye radius. In such a

case the coherent interaction of the IP with the Debye sphere takes place: the

electron charge screening an ion in plasma oscillates as a unit under the action of

the alternating field of the incident particle and emits a bremsstrahlung photon. The

phrase “strong screening” means that the Debye radius is small enough from the

standpoint of fulfilment of the inequation (4.63).

In the spectral range (1) the intensity of transient Bs

dI TrBð Þ

do
/ �ho

ds TrBð Þ

do

weakly depends on frequency: in the rangeo<gope there is no frequency dependence

at all, and for the high frequencies gope<o< v vTe=ð Þope (under the assumption that

v vTe= >g) this dependence is only logarithmic.

In going to the second (2) spectral range v vTe=ð Þope<<o<g2 v vTe=ð Þope –

intermediate screening – the inequation (4.63) providing the coherence of interac-

tion of an IP with the Debye sphere is satisfied only for small radiation angles
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y<
vope

vTe o
; (4.64)

which results in appearance of the small multiplier vope vTe o=
� �2

in the formula for

the cross-section. As a result, the intensity of transient Bs in the range under

consideration decreases as the squared frequency. Physically (4.64) separates the

region of radiation angles, for which a considerable part of the transferred wave

vector is carried away by a photon, so qmin 
 o g2vð Þ�
. As a result, the impact

parameter permitted by the law of conservation of energy-momentum exceeds the

Debye radius, and the interaction of the IP with the Debye sphere is of a coherent

nature.

Finally, in the high-frequency range (3) – weak screening – the law of conserva-

tion of energy-momentum permits only small impact parameters, lesser than the

Debye radius. In this case, “from the point of view of an IP”, for all radiation angles

the Debye sphere is a rather friable formation, so the interaction of a radiating

particle during PBs occurs most likely with each plasma electron taken separately.

The process loses coherence, the intensity of radiation decreases as the fourth

power of frequency.

4.3.2 Static Bremsstrahlung of a Fast Charged Particle in Plasma

We will give the formulas for the spectral cross-section of static Bs (ordinary

bremsstrahlung) in the limits of weak and strong screening obtained in the work

[1] for a relativistic incident electron. These expressions can also be derived within

the framework of the formalism stated in Chap. 2 in view of the influence of the

dielectric permittivity of a medium on an electromagnetic field.

Static Bs represents scattering of the eigenfield of a target (a virtual photon) by

an incident particle to a bremsstrahlung photon. Hence it is seen that in SBs there is

no analogy with Compton scattering as in PBs with ionization of an atom. Therefore

the term Compton Bs in relation to SBs introduced in the works [1, 2] seems to us

not quite appropriate. As stated above, we use this term to designate polarization Bs

on plasma electrons in case of a high transferred momentum that can be interpreted

as Compton scattering of a virtual photon by the Debye sphere. It should be noted

that this analogy can not be understood literally since plasma electrons are free, and

atomic electrons are bound.

In the limit ofweak screeningqmin rDe>1,wheng2 v vTe=ð Þope<<o, for the spectral
cross-section of static Bs to the logarithmic accuracy the expression is true [2]:

ds stð Þ

do
¼ 16

3
Ni z

2
i r

2
e

m

m0

� �2 e20
�ho

c

v2
ln

g2 mc2

�ho

� �
: (4.65)
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Implied by the logarithmic accuracy is the approximation, in which the value of

the order of one is neglected in comparison with a large logarithm. In this case the

argument of the logarithm on the right side of Eq. 4.65 is supposed to be much more

than one.

It should be noted that in case of an incident electron (m0 ¼ m) the SBs cross-

section (4.65) only by the logarithmed expression differs from the cross-section of

transient Bs (4.60) that, however, “works” in another spectral range.

In case of strong screening qmin rDe<1 corresponding to the frequency range

ope<<o<<g2 v vTe=ð Þope, for the static Bs cross-section it can be obtained [2]:

ds stð Þ

do
¼ 16

3
Ni z

2
i r

2
e

e20
�ho

m

m0

� �2 c

v2
o2

o2 þ g2 o2
pe

ln
mc vTe
�hope

� �
: (4.66)

In derivation of Eq. 4.66 the expression e oð Þ ¼ 1� ope o=
� �2

for the dielectric

permittivity of plasma was used.

Let us pay attention to the multiplier m m0=ð Þ2 in the expressions for the SBs

cross-section (m0 is the IP mass) that makes SBs of heavy particles negligible. This

multiplier is absent in case of PBs since then the conversion of a virtual photon to a

real photon occurs on electrons (either atomic or plasma electrons).

An important point in the formula (4.66) is the presence of the multiplier

o2 o2 þ g2 o2
pe

 �.
that for the frequencies o<gope reduces the cross-section of

SBs in plasma gope o=
� �2

times. This circumstance is called the density effect in

bremsstrahlung in a medium (or the Ter-Mikaelyan density effect [4]) since the

reduction of the cross-section is proportional to the electron concentration in a

substance (o2
pe 
 ne). The density effect under consideration is connected with the

increase of the phase velocity of light in plasma ~c ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� o2

pe o2=
 �r�

>c, which

results in reduction of the time of detachment of a bremsstrahlung photon from the

eigenfield of a relativistic charged particle.

As seen from the expression (4.60), the density effect in transient Bs does not

show itself. This is explained by the fact that in case of PBs the conversion of a

virtual photon to a real photon occurs on nonrelativistic electrons of plasma, so the

increase of the phase velocity of light in a medium has no effect on the cross-section

value.

Thus in the spectral rangeo<min gope; v vTe=ð Þope

� �
transient Bs of relativis-

tic electrons in plasma surpasses static Bs suppressed by the density effect.

In case of Bs of thermal electrons in plasma (v 
 vTe ) the static channel of

radiation, as a rule, prevails since the characteristic distance, at which radiation of a

bremsstrahlung photon occurs, is found to be less than the Debye radius

(see Eq. 4.41).

It should be noted that the obtained expressions for the cross-sections of PBs

and SBs are applicable not only for plasma, but also in the high-frequency range
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o>>Ia �h= (Ia is the potential of ionization of substance atoms), when the plasma

formula for the dielectric permittivity of a medium “works”, accurate to replace-

ment of plasma parameters by substance parameters.

4.4 Bremsstrahlung in Dense Plasma in the “Hard-Sphere”

Model

In case of dense and rather cold plasma, when the electron concentration reaches

solid-state values, the Debye model of electron distribution (4.38) defining Bs on a

screened plasma ion becomes inadequate, so it is necessary to use other approaches.

One of the most popular recent methods of description of dense plasma is so-called

“hard-sphere” model that will be used in this paragraph for calculation of Bs in the

local plasma approximation [5].

4.4.1 Hard-Sphere Model in Dense Plasma

Under the action of short energy momenta of high intensity on a solid body fast

ionization of atoms occurs, in which the electron-ion system has no time to shatter

forming plasma with a particle concentration up to 1022 cm�3. Under these

conditions Debye screening of an ion by plasma electrons is modified, so the formula

(4.37) for the distribution of the electron concentration around a plasma ion fails.

In the hard-sphere model it is supposed that plasma consists of ions screened both

by bound and by free electrons, and the radial derivative of the electron concentra-

tion on the sphere surface is equal to zero. This boundary condition corresponds to

the zero electric potential on the sphere surface in contrast to the Debye distribution

(4.37). The electric charge of the hard sphere is also equal to zero. The hard spheres

in plasma form a close-packed ensemble similarly to the solid-state case. The radius

of the hard sphere depends on the ion concentration ni by the formula

R0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
3

4 p ni
3

r
: (4.67)

For example, for the solid-state ion concentration ni ¼ 1022 cm�3 we have

R0 ¼ 2:88 Å. In this case the electron plasma frequency is ope ’ 13:4 eV

(naturally, plasma is assumed to be electrically neutral). In contrast to the

Debye radius ( rDe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Te 4 p e2 ne=

p
), the hard sphere radius does not depend

on plasma temperature. Presented in Fig. 4.2 in the log-log scale are the

dependences of the values of the hard sphere radius and the Debye radius (for

two temperatures) as functions of the ion concentration. From this figure it

follows that the Debye radius decreases faster with growing ion concentration

than the hard sphere radius, which, however, immediately follows from the

definition of these radii.
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The distribution of the electron density inside the hard sphere around an ion with

the charge numberZi is determined ab initio by solution of the quantum-mechanical

problem [6] with specified boundary conditions and the temperature T defining the

velocity distribution of free electrons inside the hard sphere. Within the framework

of this model, generally speaking, two types of electron distributions take place:

nhsbe r; T; Zið Þ for bound electrons and nhsfe r; T; Zið Þ for free electrons that depend on

plasma temperature.

The most simple model using the concept of hard sphere is the model of the

uniform distribution of electron density:

nhsueðrÞ ¼ ne y R0 � rð Þ; (4.68)

where yðrÞ is the Heaviside step function, ne ¼ Zi ni is the average concentration of
plasma electrons.

The Debye distribution of the electron concentration around an ion in plasma is

given by the formula (4.37)

nDðrÞ ¼ Zi
4 p r2De

exp �r rDe=ð Þ
r

;

where rDe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Te 4 p e2 ne=

p
is the Debye radius, that can be obtained from the

Poisson equation for the Debye potential (4.27).

Shown in Fig. 4.3 are the radial distributions of the electron concentration

around an Al13þ ion calculated within the framework of different models and

temperatures for the average ion concentration ni ¼ 1022 cm�3. It will be recalled

that the atomic unit of concentration is na ffi 6:8	 1024 cm�3. The distribution of

the electron concentration in the hard-sphere model for different temperatures and

average ion concentrations used in this chapter is kindly given by Xiangdong Li

(private communication). From the figure it follows in particular that with growing

temperature the electron distribution inside the hard sphere approaches the uniform

distribution (Eq. 4.68).
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the hard-sphere radius and the

Debye radius (for two
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concentration: (1) – hard-

sphere radius; (2) – Debye

radius for T ¼ 3 a.u.;

(3) – Debye radius for

T ¼ 50 a.u.
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The radial distribution of the electric potential around an Al13þ ion inside the

hard sphere in plasma with ni ¼ 1022 cm�3 is also shown in Fig. 4.4 for the hard-

sphere model and the Debye model for different temperatures.

It is seen that, as it follows from the definition of a hard sphere in dense plasma,

the electric potential at its boundary tends to zero, while the Debye potential at the

boundary of this sphere differs from zero.

4.4.2 Form Factor of the Hard Sphere in Dense Plasma

The cross-section of polarization bremsstrahlung is defined by the generalized

polarizability of a target a o; q1ð Þ (for example, see the formula (2.79)), where o
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Fig. 4.4 The radial dependence of the electric potential inside the hard sphere in plasma:

solid curve – hard-sphere model, Т ¼ 0.3 a.u., dotted curve – hard-sphere model, Т ¼ 3 a.u.,

dashed curve – hard-sphere model, Т ¼ 50 a.u., dash-and-dot curve – Debye model, Т ¼ 3 a.u.,

top dotted curve – Debye model, Т ¼ 50 a.u.
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Fig. 4.3 The radial dependence of the electron concentration inside the hard sphere around an

Al13þ ion in plasma calculated in different models: solid curve (1) – hard-sphere model,

Т ¼ 0.3 a.u., dotted curve (2) – hard-sphere model, Т ¼ 3 a.u., dashed curve (3) – hard-sphere

model, Т ¼ 50 a.u., dash-and-dot curve (4) – Debye model, Т ¼ 3 a.u.
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is the frequency of a bremsstrahlung photon, q1 ¼ qþ k is the wave vector

transferred to the target, q ¼ pf � pi

 �
�h= , pi; f are the initial and finite momenta

of an IP. The calculation of the generalized polarizability of the target is an intricate

quantum-mechanical problem, so in case of fast incident particles so-called multi-

plicative approximation is used:

a o; q1ð Þ � a oð Þ ~F q1ð Þ; (4.69)

where a oð Þ is the dipole dynamic polarizability of the target, ~F q1ð Þ is the

normalized form factor of the target ~Fð0Þ ¼ 1 representing the spatial Fourier

transform of the electron density of the target:

~F q1ð Þ ¼ 1

Zi

ð
n rð Þ exp i q1 rð Þ dr; (4.70)

whereZi is the charge number of a plasma ion,n rð Þ is the distribution of the electron
concentration in the hard sphere.

It should be noted that in case of atoms, ions and a hard sphere in plasma the

spherical symmetry takes place, so vectors appearing in the Eq. 4.70 can be

replaced by their magnitudes.

Thus according to Eq. 4.70, the normalized form factor of the target is defined by

the distribution of the electron density in it.

It should be noted that in the Born-Bethe approximation the normalized form

factor of the hard sphere in plasma is given by the simple formula:

~F
B�B

q1ð Þ ¼ y R�1
0 � q1

� �
; (4.71)

where yðxÞ is the Heaviside function.
In the model of the uniform distribution of electrons (Eq. 4.68) the normalized

form factor of the hard sphere can be calculated in the analytical form:

~Fu q1ð Þ ¼ 3
j1 q1R0ð Þ
q1 R0

; (4.72)

where j1ðxÞ is the spherical Bessel function of the first kind.

The form factor for the Debye distribution of electrons (Eq. 4.37) looks like

~FD q1ð Þ ¼ 1

1þ q1 rDeð Þ2 ; (4.73)

where rDe is the electron Debye radius.

Presented in Fig. 4.5 are the results of calculations of the squared function ~F q1ð Þ
of the hard sphere for different distributions of the electron concentration for the
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average concentration of Al13þ aluminum ions equal to ni ¼ 1022 cm�3 and for

several temperatures.

It is seen that the form factor of ab initio calculation for high temperature

(Т ¼ 50 а.u.) practically coincides with the form factor of the uniform distribution

of the electron concentration inside the hard sphere (4.68). The fastest decrease with

growing transferred wave vector takes place for the form factor corresponding to

the Debye distribution for high temperature. The slowest decrease of the form

factor takes place for ab initio calculation of the electron concentration at the

lowest considered temperature (T ¼ 0.3 a.u.).

4.4.3 Polarization Charge Around an Ion in Dense Plasma

As was noted in Chap. 3, for description of polarization bremsstrahlung by analogy

with ordinary Bs it is convenient to introduce a dimensionless quantity (the polari-

zation charge of a target) characterizing the efficiency of reradiation of a virtual

photon to a real photon of PBs by the electron core of a target. The polarization

charge can be determined with the use of the formula

Zpol oð Þ ¼ mo2

e2
a oð Þj j (4.74)

that includes the dynamic polarizability of the target a oð Þ . In contrast to the

ordinary charge number of the target nucleus, the polarization charge is a function

of the frequency of a photon emitted by the polarization channel. These

dependences for silver and krypton atoms are presented in Fig. 3.3. It is seen that
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Fig. 4.5 The squared normalized form factor for the distribution of free electrons in the hard

sphere calculated in different models, the X-axis in a.u., the Y-axis is dimensionless: (1) – ab initio
calculation for T ¼ 0.3 a.u., (2) – ab initio calculation for T ¼ 50 a.u., (3) – for uniform

distribution of electrons inside the hard sphere, (4) – Debye model for T ¼ 3 a.u., (5) – Debye

model for T ¼ 50 a.u., ni ¼ 1022 cm�3
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they have a nonmonotonic behavior with peculiarities near the potentials of ioniza-

tion of electron shells of atoms.

The spectral dependences of the polarization charge of the hard sphere around an

Al13þ aluminum ion in plasma with the concentration ni ¼ 1022 cm�3 calculated

within the framework of different approaches are presented in Fig. 4.6.

It is seen that ab initio calculations (Xiangdong Li, private communication)

predict the presence of a spectral maximum in a range from 10 to 14 eV (depending

on plasma temperature). With growing temperature the spectral maximum of the

polarization charge is shifted to the high-frequency region, and at the temperature

T ¼ 50a.u. (1,360 eV) the spectrum of the polarization charge obtained on the basis

of ab initio calculations practically coincides with that for the uniform distribution

of the electron charge inside the hard sphere (Eq. 4.68). In this case the position of

the spectral maximum of the polarization charge is practically equal to the electron

plasma frequency at the specified concentration ope ’ 13:4 eV. It is seen that the

polarization charge in the Debye model (curve 3) is a monotonically increasing

function of the photon energy without a maximum.

4.4.4 Cross-Sections of Polarization and Static Bs of Fast
Electrons in Dense Plasma (in the Hard-Sphere Model)

Looking most simply is the cross-section of PBs of a nonrelativistic Born electron on

the hard sphere in plasma in the Born-Bethe approximation for the form factor (4.71).

o
dsB�B

pol

do
¼ 16

3

Z2
pol oð Þ e6

m2v2 �h c3
ln

v

oR0

� �
; (4.75)
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where v is the initial velocity of a fast electron, Zpol oð Þ is the polarization charge of
the hard sphere (4.74). It is obvious that the formula (4.75) is true if the logarithmed

expression is more than one:

v

oR0

>1 ! o<
v

R0

� oB�B
max ; (4.76)

which imposes restriction on the PBs frequency in the Bethe-Born model.

The expression for the cross-section of SBs of a fast electron in the Bethe-Born

approximation is obtained by replacement on the right side of the Eq. 4.75 of the

squared polarization charge Z2
pol oð Þ ! Z2

i in the prelogarithmic factor and
rmax

rmin

¼ v

oR0

! m vR0

�h
in the logarithmed expression.

Another restriction of our consideration is inequality o>>ope where ope is

plasma frequency corresponding to average electron concentration. In opposite case

(o � ope ) it is necessary to account for dielectric permittivity e o; kð Þ in the

calculation of Bremsstrahlung cross-section in plasma.

As already noted, the formula (4.75) is true in the low-frequency limit o<v R0=
(Eq. 4.76). For higher frequencies the use of the form factor (Eq. 4.71) in the Born-

Bethe approximation becomes inadequate. Then it is necessary to apply the Born

approximation and the normalized form factor of the hard sphere in the general

form Eq. 4.70. The corresponding expression looks like

o
dsBpol
do

¼ 16

3

Z2
pol oð Þ e6

m2v2 �h c3

ðq1max

q1min

~F
2
q1ð Þ dq1

q1
; (4.77)

where q1max ¼ m v �h= and q1min ¼ o v= are the maximum and minimum wave

vectors transferred from a fast electron to the target.

For ordinary (static) Bs of an electron on the hard sphere in the Born approxi-

mation the formula is true:

o
dsBst
do

¼ 16

3

Z2
i e

6

m2v2 �h c3

ðq1max

q1min

1� ~F q1ð Þ� �2 dq1
q1

; (4.78)

where the limits of integration are the same as on the right side of the Eq. 4.77.

The expression (4.78) for static (ordinary) Bs can be obtained from the formula

(2.45) with the function Т (Eq. 2.43) in the nonrelativistic limit.

The formulas for PBs and SBs (4.76), (4.77), and (4.78) relate to arbitrary

spherically symmetric targets with a specified polarization charge and the static

form factor. The specificity of the situation under consideration consists in the

concrete form of the functions Z2
pol oð Þ and ~F q1ð Þ that for the hard-sphere model in

plasma were studied in Sects. 4.4.3 and 4.4.2.
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As follows from the results of Chap. 2 (see Sect. 2.3), besides the polarization

and static channels, in bremsstrahlung on targets with an electron core there is,

generally speaking, an interference summand (the third summand in the equation

below):

dstot oð Þ
do

¼ dsst
do

þ dspol
do

þ dsint
do

: (4.79)

Neglecting the interference of the polarization and static channels, we have:

dssum oð Þ
do

¼ dsst
do

þ dspol
do

; (4.80)

where the total cross-section means the sum of the contributions of two Bs channels

without the interference term.

Neglecting the interference summand in the cross-section of total spectral Bs can

be justified for relativistic electrons, when the angular distribution of radiation of

the polarization and static channels differ sharply. In the general case, taking into

account the interference summand may be essential and influence the value and

form of the spectrum of total Bs on targets with a core.

Presented in Fig. 4.7 are the spectral cross-sections of Bs in a wide range of

bremsstrahlung photon energies corresponding to total (1), sum (2), and static

(3) Bs of a fast electron (v ¼ 50 a.u.) on a neon-like aluminum ion in dense plasma

(Al3þ, ni ¼ 1020 cm�3) calculated within the framework of the Born approximation

and the local plasma frequency model for the polarizability of the hard sphere.

From Fig. 4.7 it follows that taking into account the polarization channel results

in this case in appearance of a spectral maximum in the Bs cross-section at a

frequency of several hundreds of electron-volts, corresponding to virtual excitation

of the electron core of a neon-like ion under the action of the fast electron field. It is

seen that the interference of channels plays an appreciable role: when it is taken into

account, at the maximum of the frequency dependence the cross-section of total Bs

on a neon-like aluminum ion in dense plasma is approximately three times more

than the cross-section of static Bs.
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The spectral cross-section of total Bs of a fast electron (v ¼ 50 a.u.) on neon-like

aluminum in plasma with different values of ion concentration (ni ¼ 1022 cm�3 and

ni ¼ 1020 cm�3) and the temperature Т ¼ 50 a.u. in a wide spectral range (from 0 to

4 keV) is presented in Fig. 4.8.

The similar data are given in Fig. 4.9 in a range of bremsstrahlung photon

energies from 1 to 4 keV, where the effect of the plasma electron concentration

on the total Bs spectrum shows itself distinctly.

The calculation was carried out within the framework of the local plasma

frequency method and the Born approximation for a fast electron with account

for the interference between static and polarization Bs channels on the basis of ab
initio data on electron distribution in the hard sphere in plasma. From Figs. 4.8 and

4.9 it follows that the calculation of total Bs of a fast electron on neon-like

aluminum within the framework of the used approximations predicts an insignifi-

cant effect of plasma concentration on the process cross-section in the kiloelectron-

volt range.

The local plasma frequency method makes it possible to describe in a single

approach the contribution of bound and free electrons of the hard sphere to Bs.
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Fig. 4.8 The cross-section of total Bs of a fast electron (v ¼ 50 a.u.) on neon-like aluminum in a

wide spectral range for two values of plasma concentration: solid curve – ni ¼ 1022 cm�3, dotted

curve – ni ¼ 1020 cm�3, plasma temperature Т ¼ 50 a.u.
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Fig. 4.9 The same as in Fig. 4.8 in the kiloelectron-volt range of bremsstrahlung photon energies
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The results of calculation of the spectral cross-section of total Bs of a fast electron

(v ¼ 50 a.u.) on aluminum ions of different multiplicities are presented in Fig. 4.10

for the ion concentration ni ¼ 1020 cm�3 and the plasma temperature Т ¼ 10 a.u.

Presented in the following Fig. 4.11 in the log-log scale (by both axes) are the

distributions of total electron density for the same plasma concentration and

different charge states of an aluminum ion.

Seen in Fig. 4.11 is the contribution of the second electron shell of neon-like

aluminum on the background of the electron concentration of an Al11þ ion. The

peripheral charge concentration is connected with free electrons inside the hard

sphere. It is seen that at distances r>1 a:u: the concentration of free electrons in case
of a fully ionized aluminum atom coincides with that for a helium-like aluminum

ion. At the same time the contribution of free electrons in case of a neon-like

aluminum ion at the periphery of the hard sphere is approximately an order of

magnitude less than in two other cases.
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Fig. 4.10 The spectrum of total Bs of a fast electron on aluminum ions of different multiplicities

in dense plasma: curve 1 – neon-like aluminum, curve 2 – helium-like aluminum, curve 3 – fully

ionized aluminum

0.01 0.1 1 10 100

0.01
0.1

1
10

100

1×104

1×103

1×10−3

1×10−4

1×10−41×10−31×10−5

ntot, a.u.

3
12

r, a.u.

Fig. 4.11 The results of ab initio calculations of the distribution of the electron density inside the

hard sphere in plasma with the concentration ni ¼ 1020 cm�3 and the temperature Т ¼ 10 a.u. for

different degrees of ionization of aluminum: curve 1 – neon-like aluminum, curve 2 – helium-like

aluminum, curve 3 – fully ionized aluminum
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From Fig. 4.10 it follows that in the spectral cross-section of total Bs of a fast

electron on neon-like aluminum a maximum is found with the center at a photon

energy about 350 eV. This peak is caused by the conversion of a virtual photon of a

fast electron to a real photon on the electron core of an Al3þ ion. The spectral

dependence of total Bs on a helium-like Al11þ ion in the approximation under

consideration represents a monotonically decreasing curve without peculiarities. It

is curious that the Bs spectrum in scattering of a fast electron by fully ionized

aluminum has a peculiarity as a weak maximum at a bremsstrahlung photon energy

of 190–200 eV. The growth of the Bs cross-section in the low-frequency range

is connected with the contribution of free electrons to the polarization channel

of the process (see Figs. 4.6, 4.7, 4.8, and 4.9). But the low-frequency spectral

region (o � ope) is beyond the validity of our cross-section calculations as it was

pointed above.
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Chapter 5

Bremsstrahlung of Fast Charged

Particles in a Solid Body

5.1 Polarization Bremsstrahlung in a Single Crystal

5.1.1 General Expression for the Cross-Section of a Radiative
Process on an Atomic Ensemble

The cross-section of a photoprocess on an atomic ensemble (in case of a monatomic

target) can be represented in the following form [1]:

dst arg et ¼
X
j

exp i q rj
� ������

�����
2

dsatom; (5.1)

where summation is performed over all atoms of the target being in the volume

of interaction, dsatom is the differential cross-section of the process on one atom

under consideration,

q ¼ pf � pi

� �
�h= þ k

is the wave vector transferred from an incident particle (IP) to the target, pi; pf
are the initial and final momenta of the IP, k is the wave vector of a photon. For a

substance consisting of atoms of different kinds the formula (5.1) is obviously

generalized.

The expressions for the cross-sections of bremsstrahlung of fast charged

particles on an atom are given in Chap. 2 both for the static channel (see the

formulas (2.43), (2.45)) and for the polarization channel (see Eqs. 2.42 and 2.50).

In the state of thermodynamic equilibrium the squared absolute value in the

formula (5.1) should be correspondingly averaged:
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X
j

exp i q rj
� ������

�����
2

!
X
j; j0

exp i q rj � rj0
� �� �* +

: (5.2)

The angle brackets on the right side of the Eq. 5.2 imply thermodynamic

averaging.

5.1.2 Structure Factor of a Three-Dimensional Crystal

The structure factor of a medium in a three-dimensional case (a three-dimensional

single crystal, the angle brackets mean averaging over atomic positions) is [1]:

X
j;j0

exp iq rj � rj0
� �� �* +

¼ N 1� exp �u2 q2
� �� �

þ N na 2pð Þ3
X
g

e�u2 g2 S gð Þj j2 dð3Þ q� gð Þ; (5.3)

where N ¼ N0 Ncell is the full number of atoms in the volume of interaction, N0 is

the full number of cells in the volume of interaction, Ncell is the number of atoms

in a unit cell, g is the wave vector of a reciprocal lattice, na ¼ Ncell Dcell= is the

volume concentration of atoms, Dcell is the volume of a unit cell.

In the formula (5.3) the value S qð Þ is introduced – the normalized structure

factor of a unit cell of a crystal on the wave vector q; S q ¼ 0ð Þ ¼ 1; dð3Þ qð Þ
¼ d qxð Þ d qy

� �
d qzð Þ is the three-dimensional delta function of the wave vector

transferred to the target.

The first summand on the right side of the equation (5.3) describes incoherent

scattering of an electromagnetic field by the atoms of a lattice. It is proportional to

the number of atoms in the volume of interaction in the first degree. The second

summand on the right side of (5.3) describes coherent scattering proportional to the

squared concentration of atoms since N ¼ na V.
As can be seen from the formula (5.3), coherent scattering takes place only when

a wave vector transferred to a medium is equal to the reciprocal lattice vectorq ¼ g.

Formally this circumstance manifests itself as the presence of delta functions in the

coherent term. From the formula (5.3) it follows that in the limit of high transferred

momenta, when u2 q2 > 1; the incoherent component of the structure factor of the

medium prevails. In case of fulfilment of the opposite inequation, the main contri-

bution to the process is made by the coherent part of the structure factor of (5.3).

For a face-centered cubic lattice that corresponds to a number of metals such as

aluminum, iron, copper, silver, and gold, the geometrical structure factor of a unit

cell is equal to [2]:
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S gð Þ ¼ 1

4
1þ cos p n1 þ n2ð Þ½ � þ cos p n3 þ n2ð Þ½ � þ cos p n1 þ n3ð Þ½ �½ �; (5.4)

where g ¼ n1 b1 þ n2 b2 þ n3 b3; b1; b2; b3 are the basis vectors of the reciprocal
lattice; n1; n2; n3 are the integers. In case of a lattice with the diamond structure
that silicon and germanium also have, instead of (5.4) we have:

S gð Þ ¼ 1

4
cos

p
4

n1 þ n2 þ n3ð Þ
h i

� 1þ cos p n1 þ n2ð Þ½ � þ cos p n3 þ n2ð Þ½ � þ cos p n1 þ n3ð Þ½ �½ �: (5.5)

5.1.3 Cross-Section and Yield of Bremsstrahlung Photons

For convenience of comparison with an experiment, it is advisable to go from the

cross-section of Bs on an atom to the differential yield of a number of photons per

unit crystal length to the unit solid angle and in the unit frequency range:

dN

do dOn dx
¼ ds

V do dOn

; (5.6)

where V is the volume of interaction, N is the number of bremsstrahlung photons.

Hence with the use of the following formula

dspolii

do dOk

¼ 2 e20 o2 ai oð Þ�� ��2
p v2 c3 �ho

ðqmax

qmin

I’ q; v;o; yð Þ ~F2
i ðqÞ

dq

q
(5.7)

for the cross-section of PBs on an atom, where the integral I’ q; v;o; yð Þ is given by
the Eq. 4.53, in view of the coherent part of the structure factor of the medium

(Eq. 5.3), the following expression can be obtained for the coherent part of PBs in a

single crystal in case of a nonrelativistic incident electron (a nonrelativistic electron
is considered here for simplicity of the formulas):

dN
cohð Þ
PB

dxdodOk

¼ n2a e
2

ph�vc3
X
g

S2 gð Þ d oþgv�kvð Þo3 a oð Þj j2 exp �u2 g2
� �

~F2
aðgÞ

s;g½ � 2
g4

;

(5.8)

where s is the unit vector in the direction of propagation of a photon, ~Fa is the

normalized form factor of a medium atom. The delta function appearing on the right

side of this equation gives the relation between the frequency and the angle of
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photon emission y ¼ v̂ k for the specified reciprocal lattice vector g. As a result, the

relationship is true:

o ¼ � g v

1� v

c
cos y

: (5.9)

Here for generality the term with the ratio v c= in the denominator is retained.

The relation (5.9) defines the frequency-angular distribution of coherent PBs in

scattering of a charged particle in a three-dimensional single crystal.

In the geometry of the process shown in Fig. 5.1 for the frequency of coherent

PBs from the formula (5.9) we have in the nonrelativistic limit:

og ¼ 2 p v
d

n1 cos a� sin a n2 cosfþ n3 sinfð Þ½ �; (5.9a)

d is the crystal lattice constant, n1; n2; n3 are the integers specifying the reciprocal
lattice vector.

In the high-frequency spectral range, when a oð Þ ! �Z e2 m= o2; the expression
for coherent PBs in a single crystal (Eq. 5.8) passes into the formula for X-ray

parametric radiation [1].

With the use of the incoherent component of the structure factor of the crystal

(Eq. 5.3) the incoherent part of PBs can be obtained. As a result, for the frequency-

angular distribution of photon yield per unit trajectory length we have for a

nonrelativistic incident electron:

dN
incohð Þ
pol

do dOk dx
¼ na

e2

�ho
o2a oð Þ�� ��2
p v2 c3

� 1þ cos2y
� � ðqmax

qmin

1� exp �u2 q2
� �� �

~F2
aðqÞ

dq

q
; (5.10)

where qmin ’ o v= , qmax ¼ 2m v �h= are the minimum and maximum wave vectors

transferred from an incident electron to the medium.

Given in Fig. 5.2 are the intensities of different channels of PBs of an electron

with a velocity of 1.5�109 cm/s scattered in a silicon single crystal as functions of

the input angle a for j ¼ p (see the definitions of the angles a and j in Fig. 5.1). In

Fig. 5.2 the solid curve represents coherent PBs; the dotted curve is for coherent

PBs calculated with the high-frequency polarizability of atoms; the dashed curve is

for incoherent PBs averaged over frequency with a relative resolution of 0.3 %.

It is seen that the intensity of coherent PBs calculated with the high-frequency

polarizability a oð Þ ¼ �Z e2 m= o2 does not depend on the angle of electron

incoming into a single crystal. This circumstance is explained by the fact that in

the high-frequency limit the polarization charge number proportional to o2a oð Þ�� ��
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does not depend on the radiation frequency. In calculation of the curves shown

in Fig. 5.2 the contribution of 4-vectors of the reciprocal crystal lattice giving

the identical dependence of radiation frequency on the input angle according to

the Eq. 5.9 was taken into account.

Let us give here also the expressions describing total Bs of a nonrelativistic
electron in a single crystal in view of the polarization and ordinary channels. For the

coherent component of photon yield per unit trajectory length we have:

0.8 1 1.2 1.4 1.6
0

2´10-9

4´10-9
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a, rad

Fig. 5.2 The intensity of PBs of a nonrelativistic electron in a silicon single crystal as a function

of the input angle (see the text)
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Fig. 5.1 The geometry of PBs in a single crystal
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dN
cohð Þ
tot

do dOk dx
¼ n2a Z

2e6

p �ho vm2 c3
�

�
X
g

S2 gð Þ d oþ gv� kvð Þexp �u2 g2
� �

� 1� ~FaðqÞ � mo2

Z e2
a oð Þ ~FaðgÞ

����
����
2

s; g½ � 2
g4

: ð5:11Þ

The incoherent component of total Bs of an electron is:

dN
incohð Þ
tot

do dOk dx
¼ na

Z2e6

�ho
1þ cos2yð Þ
p v2 m2 c3

ðqmax

qmin

1� exp �u2 q2
� �� �

� 1� ~FaðqÞ � mo2

Z e2
a oð Þ ~FaðqÞ

����
����
2

dq

q
: (5.12)

On the right side of the Eqs. 5.11 and 5.12 the first two summands under the

modulus sign describe the contribution of ordinary Bs to the process, and the third

summand corresponds to PBs.

It should be noted that the coherent and incoherent components of bremsstrah-

lung do not interfere with each other.

From the formulas (5.11) and (5.12) it follows that in the high-frequency limit

(a oð Þ ! �Z e2 m= o2 ) the second and third summands under the modulus sign

cancel out, which corresponds to the descreening effect (or the effect of atom

“stripping”) in the process of Bs. It should be noted that this effect takes place

only for a nonrelativistic incident electron.

For relativistic electrons in the most part of the spectral range the main contri-

bution to the process is made by the coherent component of Bs, when the momen-

tum excess from an incident particle is transferred to the crystal lattice as a whole.

In the nonrelativistic case, generally speaking, the contributions of the coherent and

incoherent Bs channels are comparable in value.

5.2 Polarization Bremsstrahlung in a Polycrystal

Serving as initial expressions for calculation of PBs of a fast charged particle in a

polycrystal are the formulas (5.8) and (5.9). Going from a single crystal to a

polycrystal consists in averaging the expression for the coherent component of

PBs (5.8) over the solid angle of the reciprocal lattice vectors Og according to the

equation

dN

do dOk dx

� �
polycr

¼
ð

dN

do dOk dx

dOg

4 p
: (5.13)
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It is obvious that such an averaging for the incoherent component of PBs (5.10)

will not change the initial expression that does not depend on the vectors of the

reciprocal lattice of a polycrystal. Therefore the expression for incoherent PBs in a

polycrystal is given by the same formula (5.10) as in the case of a single-crystal target.

It should be noted that averaging by the formula (5.13) assumes that crystallites

forming the polycrystal are of large enough size, so for each of them the expression

for the structure factor of Eq. 5.3 is true.

After averaging the right side of the Eq. 5.8, with the use of Eq. 5.13 we obtain

for the coherent component of PBs of a fast particle with the charge Zp e the

following expression:

dN

do dOk dx

� �
coh

¼ 4 p n2a Z
2
p e

2 o3

v2 c3 �h
�

�
X
g

NðgÞ a oð Þ ~FaðgÞ
�� ��2

g3
exp �g2 u2

� �
I’ g; v;o; yð Þ

�Y g v� o 1� v

c
cos y

� �� �
; ð5:14Þ

whereYðxÞ is the Heaviside theta function that is equal to zero at a negative value of
the argument and to one at a positive value. The theta function arose as a result of

averaging over the solid angleOg of the delta function d oþ gv� kvð Þ appearing in
the expression (5.8). The kinematic integral I’ g; v,o; yð Þ is given by the formulas

(4.53), and in the nonrelativistic limit by the formula (4.53а). Introduced into the

expression (5.14) is the charge number of an incident particleZp to describe PBs of a
multiply charged ion, whenZp > 1. It is obvious that in case of an electronZp ¼ �1.

Instead of summation over the reciprocal lattice vectors in the formula (5.8), on the

right side of the Eq. 5.14 summation is carried out over the magnitudes of the

reciprocal lattice vectors g ¼ gj j; NðgÞ is the number of reciprocal crystal lattice

vectors with a specified magnitude.

From the expression (5.14) it follows that in the spectrum of coherent PBs in a

polycrystal spectral “steps” appear at frequencies defined by the magnitude of the

reciprocal lattice vector gj; by the velocity of an incident particle v and the radiation
angle y according to the equation:

oj v,yð Þ ¼ gj v

1� v

c
cos y

(5.15)

Hence it is seen that in the nonrelativistic case v << c the frequency of the

spectral step (Eq. 5.15) does not depend on the radiation angle and is directly

proportional to the velocity of an incident particle.

An example of spectral steps in PBs on a polycrystalline target is presented in

Fig. 5.3, in which the spectral dependence of PBs for scattering by a silver atom of

an ion with the charge number Zp ¼ 30 and the velocity v ¼ c/3 is also given [3].
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For specified values of problem parameters (ion velocity and radiation angle), in

the frequency range shown in Fig. 5.3 there are three frequency steps, the position

of which is determined by the equation (5.15). For frequencies more than oj the

contribution of the specified magnitude of the reciprocal lattice vector g to the

process probability is equal to zero since the law of conservation of energy-

momentum is not followed for it. As a result, a “frequency step” appears on the

spectral dependence of yield of PBs photons. Since the frequency oj is defined by

the magnitude of the vector g; for which S gð Þ 6¼ 0; the form of the spectrum of PBs

in a polycrystal depends on the crystal structure of a target. For example, for a

diamond-type crystal lattice the number of frequency steps will be less than for a

face-centered lattice corresponding to silver. Really, in case of a diamond lattice

there is an additional restriction for reciprocal lattice vectors, for which the struc-

ture factor of a unit cell is nonzero according to the formula (5.5).

The “manifestation” of the spectral step depends on the relation between the

coherent and incoherent contributions to PBs. If incoherent PBs prevails, the

frequency step will be “slurred over”. To avoid this, the fulfilment of the condition

is necessary:

g <
1

u
1� v

c
cos y

� �
; (5.16)

where u is the root-mean-square deviation of medium atoms from the equilibrium

position. From the given inequation it follows that the stepped structure in the PBs

spectrum for the specified magnitude of the reciprocal lattice vector will be more

contrast for wide radiation angles y. Really, with growing angle y the minimum
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Fig. 5.3 PBs of a multiply charged ion in a silver polycrystal (solid curve) and on a silver atom

(dotted curve)
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momentum transferred to a target increases and the contribution of the incoherent

component of PBs decreases.

For reference we will give the formula for the root-mean-square deviation of

crystal lattice atoms from their equilibrium position:

u2
	 
 ¼ 3 �h2

4Ma TD
1þ 4

T

TD

� �2 ðTD T=

0

y dy

ey � 1

2
64

3
75; (5.17)

where TD is the Debye temperature in energy units, Ma is the mass of substance

atoms. The Debye temperatures for aluminum, silicon, iron, and copper are respec-

tively 418, 658, 467, and 339 K [1].

The dependence of the spectrum of PBs in a silver polycrystal on the angle of

bremsstrahlung photon radiation is shown in Fig. 5.4.

From this figure it is seen that with increasing radiation angle the relative value

of the “frequency jump” increases, and its position is shifted to the region of lower

frequencies according to the formulas (5.15), and (5.16). Really, if the radiation

angle is obtuse (the cosine is a negative value), then, as seen from the Eq. (5.16), the

condition of “manifestation” of the spectral step is satisfied better than for smaller

angles, when the cosine is equal to zero or takes on positive values. Physically this

is connected with the fact that with growing radiation angle the relative contribution

of the coherent component of PBs increases (in comparison with the incoherent

component), and spectral steps, as seen from the expression (5.14), are caused just

by coherent PBs. Thus the spectral steps are more noticeable for a radiation angle of

120� and are poorly discernible for a angle of 60�.
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Fig. 5.4 The spectrum of PBs in a silver polycrystal for different radiation angles: solid curve –
90�, dotted curve – 60�, dashed curve – 120�
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In calculation of the spectrum of PBs in a silver polycrystal the following value of

root-mean-square deviation of lattice ions from their equilibrium values uAg ¼ 0.087Å

was used. In the sum over the vectors of the reciprocal lattice with equal

magnitudes that defines coherent PBs 50 summands were taken into account, for

whichS gð Þ 6¼ 0. It should be noted that in taking into account 40 summands the result

for photon yield (in an energy range from 1 to 10 keV) changes less than by 1 %.

Shown in Fig. 5.5 is the spectrum of PBs of a multiply charged ion Zp ¼ 30 with

the velocity v ¼ c/3 for a radiation angle of 90� in a silver polycrystal and on a

silver atom in the low-frequency range.

In this case spectral steps are absent since the argument of the theta function in

the formula (5.14) is positive for allg 6¼ 0. It is also seen that in this frequency range

PBs in a polycrystal is suppressed in comparison with PBs on an isolated atom. This

fact can be explained by superimposition of two circumstances. First, as seen from

the formula (5.10), in the region of low frequencies o < v u= the incoherent

summand it small, and PBs is defined by the coherent component (Eq. 5.14).

Second, momenta transferred to a target do not all make a contribution to coherent

PBs in a polycrystal, but only those momenta, the magnitudes of which are equal to

the magnitude of one of reciprocal lattice vectors. It is this fact that reduces the

process intensity in comparison with radiation on an isolated atom, when the

contribution to the process is made by all momenta transferred to a target that are

permitted by the conservation law. For example, for the frequencies o << v g the

transferred momenta of small magnitude o v � q < g= do not make a contribution

to coherent PBs in a polycrystal, while it is just these momenta that play an

important role in formation of PBs on an isolated atom.
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Fig. 5.5 PBs of an ion with the charge Zp ¼ 30 and the velocity v ¼ c/3 in a silver polycrystal

(solid curve) and on a silver atom (dotted curve) in the low-frequency range
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The maxima of the frequency dependence in Fig. 5.5 are connected with the

maxima of the imaginary part of the silver atom polarizability for photon energies

close to the potentials of ionization of the shells N and M.

Presented in Fig. 5.6 is the dependence of the spectrum of PBs in an aluminum

polycrystal on the velocity of an incident particle. The solid curve represents the

radiation spectrum for a rather high value of the ion velocity (v ¼ c/3).

With decreasing velocity, first, the contribution of the incoherent process

increases, and second, the position of frequency steps is shifted to the low-frequency

range.

Thus the position of a frequency step in the PBs spectrum can serve as a measure

of energy of a scattered ion, and by the frequency shift oj it is possible to judge the

energy loss for an incident particle. The dashed curve in Fig. 5.6 corresponds to

the ion velocity equal to the velocity of protons with an energy of 1МeV used in the

experiments [4]. It is seen that in such an event the PBs spectrum does not contain a

characteristic solid-state structure, but coincides with the spectrum of radiation on

an isolated atom. It was this fact that took place in the experiments [4], in which no

stepped spectrum structure was observed. This is explained by the fact that in case

of low ion velocities the incoherent component of PBs prevails over the coherent

component beginning with a photon energy of 500 eV. As a result, the stepped

spectrum structure is found to be completely hidden behind the incoherent

background.

Presented in Fig. 5.7 is the ratio of the contributions of the coherent and

incoherent PBs channels for two values of energy (50 and 10 keV) of an electron

scattered in polycrystalline copper, the radiation angle is 90�.
It will be recalled that coherent PBs corresponds to transfer of a momentum from

an incident particle to a crystal lattice as a whole, and incoherent PBs arises during
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Fig. 5.6 The yield of PBs photons per unit trajectory length for an ion scattered in polycrystalline

aluminum for different ion velocities: solid curve – v ¼ c/3 (the ordinate is increased five times),

dotted curve – v ¼ c/20
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pair collisions between a scattered charge and target atoms. It is seen that in the

low-frequency range coherent PBs prevails over incoherent PBs, for 50 keV

electrons the contributions of both channels being compared at �ho ¼ 6.1 keV and

for 10 keV electrons at �ho ¼ 3 keV. Thus the more is the velocity of an incident

particle the wider is the spectral range of prevalence of coherent PBs over incoher-

ent PBs.

In the high-frequency region of the PBs spectrum (�ho > 10 keV) characterized by

high values of the momentum transferred to a target (or low values of the impact

parameter) incoherent PBs prevails. Therefore the solid-state spectrum structure

caused by the coherent interaction of an incident particle with the target becomes

poorly discernible. As a result, the spectrum of PBs in a polycrystal approaches the

spectrum on an isolated atom as it must be according to the physical picture of the

process.

Thus for observation of frequency steps in the spectrum of PBs on a polycrystal

it is necessary to use charged particles of high enough energy and to watch in the

intermediate region of photon energy: from 1.5–2 to about 6 keV.

In the relativistic case in the PBs spectrum, instead of spectral steps, peaks are

observed that correspond to the fulfilment of the Bragg condition for a virtual

photon scattered by a polycrystalline target to a real photon. The maximum

condition can be obtained from the formula (4.53) in the limit D ! 0. Then we

have xmax � 2 sin y 2=ð Þ or og � g c 2 sin y 2=ð Þ= – the frequency of a peak in the

spectrum of PBs of a relativistic particle corresponding to the magnitude of the

Fig. 5.7 The ratio of the coherent channel to the incoherent channel in PBs of an electron with an

energy of 50 keV (solid curve) and 10 keV (dash-and-dot curve) scattered in copper
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reciprocal crystal lattice vector g. An analogous result was obtained in the N.N.

Nasonov’s work [5] within the framework of classical electrodynamics. Experi-

mentally, the maxima of PBs of relativistic electrons in a polycrystalline target were

for the first time recorded in the work [6] (see Fig. 2 of Chap. 1).

As was already said, the maxima in the spectrum of coherent PBs of a relativistic

electron in a polycrystal correspond to Bragg scattering of virtual photons of its

electromagnetic field by atomic planes. The Bragg condition for PBs in a polycrys-

tal in the limit is expressed by the equation

k� kj j v
v
¼ g: (5.18)

In writing Eq. 5.18 it was assumed that the wave vector of a virtual photon is

directed along the velocity of an incident particle and is equal in magnitude to the

wave vector of a real bremsstrahlung photon. This assumption is substantiated by

the fact that the structure of the ultrarelativistic charge field is close to a plane wave

with a wave vector parallel to the velocity of a particle. The graphic representation

of the Eq. 5.18 is given in Fig. 5.8.

It should be noted that in case of a polycrystalline target for any radiation angle

there will always be a crystallite, one of crystallographic planes of which is the

bisector of the angle between the vectors k and v as shown in Fig. 5.8.

5.3 Polarization Bremsstrahlung in an Amorphous Medium

In case of PBs on an amorphous target, instead of the crystal structure factor (5.3) in

the formula for the Bs cross-section (5.1) the following expression should be used:

S qð Þ ¼ na
�1

X
j;l

exp i q rj � rl
� �� �	 
 ¼ 1þ na

ð
gðrÞ � 1½ � exp i q rð Þ dr: (5.19)

The second equation in Eq. 5.19, where gðrÞ is the pair correlation function for

atoms, relates to an isotropic medium. For the structure factor of an amorphous

substance in the “hard-sphere” approximation, when gðrÞ ¼ Y r � Dað Þ (Da is the

mean diameter of an atom, YðxÞ is the theta function), from Eq. 5.19 it follows:

SamorðqÞ ¼ 1� s
3 j1 qDað Þ

qDa

� �
; s ¼ 4 p na Da

3

3
; (5.20)

where j1ðxÞ is the first-order spherical Bessel function. The second summand in the

square brackets of the second equation (5.19) reflects the fact of destructive
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interference of the contributions of amorphous medium atoms to the total PBs

intensity, with the result that the suppression of PBs occurs. It is obvious that the

effect of PBs suppression connected with this interference is essential in the case

that the parameter s is close to one. Besides, for manifestation of this effect it is

necessary that the argument of the spherical Bessel function x ¼ qDa is less than

one. Hence in view of the expression for the minimummomentum transferred to the

medium qmin ¼ 1� v c=ð Þ cos yð Þ o v=ð Þ; we obtain:

o <
v

Da 1� v ~c=ð Þ cos yð Þ ; (5.21)

where ec is the velocity of light in the target material. This inequation (with

fulfilment of the condition s � 1) determines the spectral range of suppression of

PBs in an amorphous medium depending on the IP velocity and the angle of photon

emission. Physically, corresponding to the condition (5.21) are such parameters of

the problem, with which the contribution of small transferred momenta (high

impact parameters) to the process is essential. Then PBs is of a collective nature,

and mutual screening of different atoms reducing the process intensity occurs. This

screening can be interpreted also as destructive interference of elementary PBs

fields formed by individual atoms.

Fig. 5.8 The graphic representation of the Bragg condition for PBs of a relativistic particle

scattered in a crystal
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The use of the “hard-sphere” approximation (Eq. 5.20) for calculation of PBs

intensity requires knowledge of the parameter s ¼ 4 p na D3
a 3= . And if the concen-

tration of atoms can be easily estimated from the known density of a substance, in

determination of the mean atomic radius Da being a model value there can be

difficulties, especially in case of a medium with high atomic concentration. Let us

illustrate the aforesaid by the example of the structure factor of liquid silicon, for

which in the work [7] the results of quantum-chemical calculations are given.

Calculated in [7], the dependence of the structure factor on the momentum trans-

ferred to the medium q at the melting temperature for silicon T ¼ 1410�C is

presented in Fig. 5.9 by the solid curve. Given in the same figure is the structure

factor of liquid silicon calculated in the “hard-sphere” model for s ¼ 1 (dotted

curve). This value of the parameter s for the real density of liquid silicon na
¼ 5:446� 1022 cm�3 corresponds to the mean Da ¼ 1:64 Å that was used in

construction of the dotted curve of Fig. 5.9. At the same time the tabular value of

the silicon atomic diameter is Da ¼ 2:36 Å [8]. (It should be noted that the

doubled Wigner-Seitz radius for the above concentration of silicon atoms is

3.27 Å). But with such a value ofDa the parameters ffi 3, so S q ! 0ð Þ < 0, which

is in contradiction with the positive definiteness of the structure factor of

the medium.

A similar conclusion can be made for amorphous carbon and other condensed

media of light atoms, when the model structure factor (5.20) causes a contradiction

with the numerical values of the problem parameters. It should be noted that the pair
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Fig. 5.9 The structure factor of amorphous silicon: solid curve – quantum-chemical calculation

[7], dotted curve – calculation by the formula (5.20)
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correlation function gðrÞ used in the work [7] for determination of SðqÞ differs

noticeably from the theta function of the “hard-sphere” model. This difference is

especially great at short distances r � Da; where there is a maximum of the

correlation function: g � 2. The last circumstance is indicative of the presence of

a short-range order in liquid silicon at melting temperature.

Presented in Fig. 5.10 are the results of calculation of the spectrum of PBs in

liquid silicon normalized to the concentration of medium atoms na and in scattering
of an electron by an isolated atom. The plots of Fig. 5.10 are constructed for a

relativistic electron with the Lorentz factor g ¼ 10 (g ¼ 1� v c=ð Þ2
� ��1=2

) and the

angle of bremsstrahlung photon radiation y ¼ 18� . The maximum of the spectral

dependence for an isolated atom is caused by increasing polarization charge of a

silicon atom, when the bremsstrahlung photon energy approaches the energy of

ionization of the K-shell.
It is seen that the intensity of PBs in liquid silicon is much less than in the

monatomic case throughout the range of photon energies due to destructive inter-

ference of contributions of different atoms discussed above. The calculation shows

that for the larger radiation angle y ¼ 90� and the same other parameters the effect

of PBs suppression takes place in the low-energy range �h o < 3 keV. This fact

corresponds to the inequation (5.21) determining the region of essentiality of

destructive interference in PBs. In the relativistic case with growing radiation

angle the minimum momentum transferred to a medium increases and, as a result,

the role of cooperative effects causing destructive interference decreases. Therefore

0 5´103 1´104 1.5´104
0

5´10-7

1´10-6
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Fig. 5.10 The spectral intensity of PBs of an electron with g ¼ 10 on a target of amorphous

silicon at the angle of radiation y ¼ 18�: solid curve – radiation in amorphous silicon, dash-and-
dot curve – PBs on an individual silicon atom
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the effect of suppression of PBs intensity for large radiation angles occurs at lower

frequencies, when the minimum transferred momentum is low enough, and in an

elementary radiative act several medium atoms are involved.

In the experiment [9] that has shown the effect of suppression of PBs in an

amorphous medium, radiation of an electron with an energy of 5–7 МeV scattered

by a thin-film target of amorphous carbon was recorded. It is of interest to calculate

the PBs intensity for experimental conditions [9] within the framework of the

approach under consideration. The corresponding results are given in Fig. 5.11 for

the Lorentz factor of a scattered electron g ¼ 10; the radiation angle 45�, the target
density r ¼ 2:4 g/cm3, and the mean diameter of a carbon atom Da ¼ 1:258 Å,

(at which s ¼ 4 p na D3
a 3= ¼ 1).

Shown in the same figure are the results of calculation of the PBs intensity in

amorphous carbon in the high-frequency approximation. From the form of the

curves it follows that the suppression effect is most pronounced in the range of

bremsstrahlung photon energies �ho < 5 keV, which corresponds to the experimen-

tal data of the work [9]. The maxima of the spectral dependences correspond to the

binding energies for electrons of the K – and L-shells of a carbon atom – 296 and

16.6 eV. It is seen also that the high-frequency approximation well describes the

process in a wide spectral range up to photon energies of 300 eV.

The analysis shows that the error of calculation of PBs intensity caused by

inaccuracy of the model used for the structure factor of a medium depends on

problem parameters. This error is most essential in the low-frequency range for

large radiation angles, besides, it grows with increasing energy of an incident

electron. The comparison of the results of calculation of PBs in liquid silicon
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w, eV

Fig. 5.11 The spectral intensity of PBs of a relativistic electron (g ¼ 10, y ¼ 45�) on a carbon

target: solid curve – radiation on a target of amorphous carbon, dotted curve – PBs on a carbon

atom, dash-and-dot curve – PBs on amorphous carbon in the high-frequency approximation
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obtained in the “hard-sphere” model and with the use of the quantum-chemical

structure factor [7] gives a characteristic error no more than 20 % for g ¼ 10 and

y ¼ 18�. With growing radiation angle the calculation error increases, but the effect

of PBs suppression itself decreases.

The effect of suppression of PBs in an amorphous medium in the X-ray range is

essential only for relativistic incident particles. In case of a nonrelativistic electron

beam it can be neglected, at least for bremsstrahlung photon energies more than

1 keV. This circumstance is illustrated by Fig. 5.12, where the X-axis corresponds

to the energy of an incident particle normalized to the rest energy (for an electron to

511 keV), the Y-axis is the ratio of the intensity of PBs in an amorphous medium to

the intensity of PBs on an atom.

Also shown in Fig. 5.12 is the straight line corresponding to the value of the

PBs suppression ratio obtained in the limit of low transferred momenta: K ¼ 1� s
¼ 0:417 . The suppression effect more strongly shows itself for lower photon

energies, when the role of destructive interference of contributions of different

atoms to the intensity of the process is great. In the low-frequency range PBs

suppression occurs also for nonrelativistic incident particles, when g� 1<<1 .

For photons of high energies (o > 1 keV) the PBs intensity decreases noticeably

only in case of high Lorentz factors g . A characteristic feature of the curves in

Fig. 5.12 is the presence of such inflection points g
 that for g > g
 the effect of PBs
suppression begins. It should be noted that for large values of the Lorentz factor

g > 104 the suppression ratio becomes less than its limiting value K ¼ 1� s ¼ 0:
417 (calculated to the logarithmic accuracy). This is connected with the density
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Fig. 5.12 The suppression ratio for PBs in amorphous silver as a function of the energy of an

incident particle for the radiation angle y ¼ 18� and three values of bremsstrahlung photon

energy: solid curve –�ho ¼ 300 eV, dotted curve – �ho ¼ 1 keV, dashed curve – �ho ¼ 3 keV
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effect in PBs, when the intensity of the process decreases as a result of screening of

the IP eigenfield at e oð Þ < 1 (e oð Þ is the dielectric permittivity of a medium).

The last inequation for a silver target is satisfied in the range of photon energies:

�h o > 50 eV.

A similar effect of suppression of PBs intensity in the low-frequency range takes

place in scattering of a charged incident particle in a polycrystal [3] as was said in

the previous section. As in case of an amorphous medium in a polycrystal for low

transferred momenta q < 2 p d= (d is the lattice constant), the interference of the

contributions of substance atoms to the intensity of the polarization channel is of a

destructive nature, reducing the intensity of radiation. It should be noted that the

appreciable value of the suppression ratio in an amorphous medium is possible only

for relativistic incident particles (Fig. 5.12), while in a polycrystal the PBs intensity

considerably decreases (times) in comparison with an isolated atom and in the

nonrelativistic case [3].

The obtained expressions for the cross-section of Bs in different solid-state

targets can be also used for estimation of intensity of radiation of secondary

electrons produced in the target material by a primary electron beam, with

corresponding replacement of kinematic parameters (velocity, photon energy, and

radiation angle).
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Chapter 6

Bremsstrahlung of Fast Charged Particles

with an Electron Core in a Medium

6.1 Polarization Bremsstrahlung of a Hydrogen-Like

Ion in a Crystal

6.1.1 Introductory Remarks

In scattering of a fast ion in a medium, ordinary (static) bremsstrahlung caused by

acceleration of an incident particle (IP) in the field of a target is suppressed because of

the high mass of an ion. So the prevailing mechanisms of photon emission in this case

are connected with excitation (real or virtual) of electronic degrees of freedom of

colliding particles. In emission of high-energy photons with an energy of the order of

the IP kinetic energy,when amomentum transferred in collision is great in comparison

with the characteristic momenta of bound electrons, considered as main mechanisms

of radiation, as a rule, are processes with changing state of an electron subsystem.

Among these processes are radiation ionization, emission of secondary electrons, and

radiation electron capture [1]. In the spectral region far from the kinematic limit, when

the characteristic transferred momentum is not great, and the photon frequency is of

the order of the frequencies of excitation of bound electrons of colliding particles, it is

necessary to take into account radiation caused by virtual excitation of electronic

degrees of freedom without change of an electronic state. This kind of radiation

defined by the dynamic polarizability of a target and an IP was called polarization

bremsstrahlung [2].

PBs is a fundamental radiative process representing the conversion of the

electromagnetic eigenfield (a virtual photon) of one of colliding particles to a real

photon on the electron shell of another particle. In the case that both particles have

electronic degrees of freedom, radiation can proceed by two channels according to

on whose bound electrons the conversion of a virtual photon occurs. Thus, generally

speaking, “target” PBs caused by the polarizability of target atoms (channel 1) and

PBs of an incident particle caused by virtual excitation of an IP electron (channel 2)

take place. The schematic representation of two PBs channels is shown in Fig. 6.1. It

should be noted that the first PBs channel was studied by different authors both for a
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case of collision of a pair of particles and in scattering in a medium [3–8]. The role

of the second PBs channel is studied much less. Both PBs channels were first

calculated in the works of M.Ya. Amus’ya with co-authors [2, Chap. 7].

In going to consideration of PBs of an ion with an electron core in a crystal, it is

necessary to take into account collective effects caused by a possibility of coherent

interaction of an IP with a target. This problem becomes especially urgent in

connection with further improvement of methods of producing fast ion beams

with specified characteristics including beams of multiply charged hydrogen-like

ions [1]. Various aspects of interaction of such ions with a substance have been

intensively studied in recent years [9, 10]. In particular, coherent excitation of a

hydrogen-like argon ion in a single crystal was investigated experimentally [11], in

which a momentum multiple of the momentum of a reciprocal lattice is transferred

to a target (the Okorokov effect). Since PBs can be considered as a process of

virtual excitation of a subsystem of bound electrons with their following radiation

deexcitation, it is natural to expect that coherent effects such as the Okorokov effect

are to show themselves in polarization bremsstrahlung as well.

6.1.2 Bremsstrahlung in a Polycrystal

The expression for PBs on a target due to virtual excitation of a medium electron in

a polycrystal was derived in [5]. In this case the frequency-angular distribution of

photon yield per unit length is given by the sum of the incoherent and coherent

contributions:

dNt

dl do dOk

¼ dN
incohð Þ
t

dl do dOk

þ dN
cohð Þ
t

dl do dOk

: (6.1)

Fig. 6.1 (a) PBs by the first channel (target PBs), (b) PBs by the second channel (PBs from an IP)
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Incoherent PBs on a target is described by the formula:

dN
incohð Þ
t

dl do dOk

¼ 2 nt
e2

�ho
o2at oð Þ�� ��2
p v2 c3

�

�
ðqmax

qmin

1� exp �u2 q2
� �� �

Z proj � Fproj q1cð Þ� �2
F2
t ðqÞ I’ q; v;o; yð Þ dq

q
; ð6:2Þ

wherent,at oð Þ,FtðqÞ are the concentration, the dynamic polarizability, and the form

factor of target atoms; v,Z proj,Fproj are the velocity, the nuclear charge number, and

the form factor of an incident ion (IP);o,k are the frequency and the wave vector of
radiation in the target rest frame, y is the angle between v and k in the same rest

frame; �hq is the momentum transferred from an IP to the target, �hq1 is the change of
the IP momentum, �hq1c is the same value in the IP rest frame; u is the root-mean-

square deviation of target atoms from the equilibrium position; c is the velocity of

light; qmin ¼ 1� v c=ð Þ cos yð Þ o v=ð Þ, qmax ¼ 2 m v, m is the target IP reduced mass;

I’ q; v;o; yð Þ ¼ q3 v

2 p

ð
dOq d o� kvþ qvð Þ s;o v c2

� � q
� �

2

q2 � 2 k qð Þ2 ; s ¼ c k o= ; (6.3)

is the integral with respect to the solid angle connected with the momentum transfer

vector. This integral in the nonrelativistic limit takes the form

I’ q; v<<c;o; yð Þ ffi 1þ cos2y
2

þ o
q v

� 	2
1� 3 cos2y

2
: (6.3a)

The formula (6.2) describes PBs on a target without excitation of bound

electrons of the target and an IP – so-called “elastic” PBs.

The coherent part of PBs on a target is given by the following expression [5]:

dN
cohð Þ
t

dl do dOk

¼ 2 n2t
e2

�ho
o2 at oð Þ�� ��2
p v2 c3

X
g

NðgÞ Y gv� o 1� v

c
cos y


 �
 �
�

� exp �u2 g2ð Þ
g3

F2
t ðgÞ I’ g; v;o; yð Þ

ð2 p

0

Zproj � Fproj g1c fð Þð Þ� �2
df : (6.4)

There is the sum over the magnitudes of the reciprocal lattice vectors g, NðgÞ is
the number of these vectors with a specified magnitudeg;’ is the azimuth angle ofg.

In Eq. 6.4 averaging over the g direction is made to describe the contribution of all

polycrystalline cells to the process. The theta function YðxÞ expresses the law of

conservation of energy-momentum in radiation.

The expression for PBs of an IP (projectile) in a polycrystal can be derived with

the use of the approach proposed in [2, Chap. 7] for description of PBs in atom-atom

6.1 Polarization Bremsstrahlung of a Hydrogen-Like Ion in a Crystal 159



collisions in the relativistic case. Generalization of this approach to scattering in a

polycrystalline medium gives the following expression for the incoherent channel:

dN
incohð Þ
proj

dl do dOk

¼ nt
e2

�ho
ooc aproj ocð Þ�� ��2

p v2 c3
1þ cos2yc
� ��

�
ðqmax

qmin

F2
proj q1cð Þ Zt � FtðqÞ½ �2 1� exp �u2 q2

� �� � dq
q
; (6.5)

where aproj ocð Þ is the dynamic polarizability of an IP at the frequency in the IP rest

frame and yc as a radiation angle in the IP rest frame. These values are connected

with their analogs in the target rest frame according to the relations:

oc ¼ go 1� v c=ð Þ cos yð Þ; cos yc ¼ cos y� v c=

1� v c=ð Þ cos y ; (6.6)

where g ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v c=ð Þ2

q
:.

The coherent channel of PBs of an IP is described by the formula:

dN
cohð Þ
proj

dl do dOk

¼ n2t
e2

�ho
ooc aproj ocð Þ�� ��2

p v2 c3
1þ cos2yc
� ��

�
X
g

NðgÞ Y gv� o 1� v

c
cos y


 �
 � exp �u2 g2ð Þ
g3

� Zt � FtðgÞ½ �2
ð2 p

0

F2
proj g1c fð Þð Þ df : ð6:7Þ

Total PBs on an IP is given by the sum of Eqs. 6.5 and 6.7 as in the case of PBs

on a target Eq. 6.1.

Let us consider a hydrogen-like incident ion. The eigenfrequencies of its bound

electrons are given by the Bohr formula (the initial state of an IP electron is

supposed to be the ground state):

on ¼ Z2
proj Ry 1� n�2

� �
; (6.8)

where Ry ¼13.6 eV and n is the principal quantum number. The IP form factor is

Fproj q1ð Þ ¼ 1

1þ aproj q1 2=
� �2
 �2 ; (6.9)

160 6 Bremsstrahlung of Fast Charged Particles with an Electron Core in a Medium



where aproj ¼ �h2 Zproj m e2
� ��

is the Bohr radius. The general expression for the

dynamic polarizability of an IP has the usual form:

aproj ocð Þ ¼ e2

m

X
n

fn
o2

n � o2
c

; (6.10)

where fn are the oscillator strengths that in case of a hydrogen-like ion have

universal values independent of the charge number Zproj. Small imaginary additives

in the denominators on the right side of the Eq. 6.11 are omitted since further we do

not consider the exact resonance when oc ¼ on.

At first, let us compare the contributions of the coherent and incoherent channels

to PBs on a target and an IP. Figure 6.2 demonstrates this comparison for two values

of radiation angles in case of scattering of a hydrogen-like argon ion in polycrys-

talline aluminum (R ¼ dN cohð Þ dN incohð Þ�
).

The ratio R in Fig. 6.2 is shown as a function of the IP kinetic energy T for the

specified photon energy �ho ¼ 6 keV. The curves 1, 2 correspond to PBs on a target,

the curves 3, 4 correspond to PBs on an IP. It can be seen from Fig. 6.2 that in case

of PBs on a target the coherent channel prevails over the incoherent channel

(R > 1), while for PBs on an IP there is an opposite situation (R < 1). The latter

is due to the fact that in case of PBs on an IP an incident ion should approach the

target nucleus to interact with it. But at such small distances the coherent interaction
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Fig. 6.2 The ratio between the coherent and incoherent contributions to PBs of an incident Ar17+ ion

in aluminum: 1 – PBs on a target (y ¼ p/2); 2 – PBs on a target (y ¼ p/6); 3 – PBs on an IP (y ¼ p/2);
4 – PBs on an IP (y ¼ p/6)
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between an IP and the solid target is weak. During PBs on a target an incident ion

interacts with target electrons. This interaction occurs at long distances (if the

radiation frequency is not very high), so then coherent IP scattering by the target

is strong enough. Coherent PBs leads to appearance of a distinct stepped structure

on the curve 1. This structure is due to the presence of theta functions in the

formulas (6.4), (6.7) that correspond to turning of the additional reciprocal lattice

vector in the process with increasing IP kinetic energy.

Figure 6.3 demonstrates the spectra of PBs of an Ar17+ ion scattered in polycrys-

talline aluminum for the IP (curve 1) and target (curve 2) channels. There is also the

spectrum of electron bremsstrahlung on the same target (curve 3).

In Fig. 6.3 the presence of sharp and relativelywidemaxima in the spectrumof PBs

on an IP can be seen (curve 1). These maxima correspond to fulfilment of the resonant

conditions in the denominators of the expression for the dynamic polarizability of an

IP (Eq. 6.10) in case of a hydrogen-like incident particle. Due to the Doppler effect

(the first equation in Eq. 6.6), the resonance frequencies in the laboratory reference

system depend on the IP energy and the radiation angle according to the formula

omax n; v,yð Þ ¼ on

g 1� v c=ð Þ cos yð Þ ; (6.11)

where on is the eigenfrequency of a bound electron of an IP (Eq. 6.8), g is the

Lorentz factor. The first spectral maximum in Fig. 6.3 corresponds to virtual

excitation of an IP electron to the excited state with n ¼ 2. According to the formula

(6.11), the resonant photon energy in this case (for specified values of T and y) is
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Fig. 6.3 The spectra of PBs of an Ar17+ ion in polycrystalline aluminum: 1 – PBs on an IP, 2 – PBs
on a target, 3 – electron bremsstrahlung; T ¼ 390 MeV/u (g ¼ 1.42), y ¼ p/6

162 6 Bremsstrahlung of Fast Charged Particles with an Electron Core in a Medium



6,041 eV, while in the IP rest frame it is equal to 3,305 eV. As can be seen from

Fig. 6.3, in the vicinity of the maxima PBs on an IP strongly prevails over PBs on a

target and electron bremsstrahlung. In the high-frequency limit the curves 1 and 3

coincide. This has a simple physical interpretation. A bound electron interacts with

high-frequency radiation as a quasi-free electron. Therefore scattering of the IP

eigenfield by an IP electron to a real high-energy photon occurs as by a free electron.

The angular dependence of PBs on scattering of an Ar17+ ion in polycrystalline

aluminum (�ho ¼6 keV) is shown in Fig. 6.4 for two values of IP kinetic energy.

There are also sharp maxima due to dependence of the resonance frequency in

the target reference system on the radiation angle (Eq. 6.11). Radiation angles

corresponding to the maxima in the angular PBs distribution are given by the

formula:

ymax n;o; vð Þ ¼ arccos
c

v
1� o

gon

� 	 �
; (6.12)

where on is the eigenfrequency of an IP electron (Eq. 6.8). It can be seen from

Fig. 6.4 that the angles of the maxima increase with increasing IP kinetic energy.

Presented in Fig. 6.5 is PBs from hydrogen-like argon as a function of the IP

kinetic energy for two values of the radiation angle. There are also sharp maxima in

these dependences that have the same reason as in the case of the spectral-angular

distribution of PBs. In this case, however, the first excitation frequency (Eq. 6.8)

(n ¼ 2) in the sum (Eq. 6.10) corresponds to the high-energy peaks on the curves 1, 2.
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Fig. 6.4 The angular dependence of PBs on scattering of an Ar17+ ion in polycrystalline aluminum,

�ho ¼ 6 keV: 1 – T ¼ 100 MeV/u, 2 – T ¼ 390 MeV/u
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This is due to the fact that the radiation frequency in the IP rest frame decreases with

increasing IP kinetic energy according to the first formula (6.6).

It is shown that scattering of a fast multiply charged hydrogen-like ion in a

polycrystalline target results in intense radiation that has a sharp frequency and

angular dependence. This radiation arises due to scattering of the electromagnetic

eigenfield of a target to a real photon by a bound electron of an IP (IP polarization

bremsstrahlung). The PBs channel studied earlier due to scattering of the IP field to

a real photon by target electrons may be called PBs on a target. In contrast to PBs on

a target, the main contribution to PBs on an IP is made by the incoherent channel of

the process. In this item it is demonstrated that the frequency-angular features of

PBs on an IP strongly depend on the IP energy.

6.1.3 Bremsstrahlung in a Single Crystal

In this section we will consider a situation when a fast hydrogen-like ion with the

velocity v is scattered in a single crystal and emits a PBs photon with the wave

vector k in the geometry shown in Fig. 6.6.

The axes of the Cartesian coordinate system presented in this figure coincide

with the crystallographic axes of the target. The ion velocity is supposed to be high

enough, so that the first Born approximation for interaction of an IP with the target

can be used. As was mentioned at the beginning of Chap. 6, in the case under

consideration PBs proceeds by two channels: Eq. 6.13 due to virtual excitation of

target electrons and Eq. 6.14 as a result of virtual excitation of the electron core of
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Fig. 6.5 PBs from an Ar17+ ion in polycrystalline aluminum as a function of the IP kinetic energy,

�ho ¼ 6 keV: 1 – y ¼ p/6, 2 – y ¼ p/10
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an IP. In the first case scattering of the electromagnetic eigenfield of an incident ion

to a real photon by target electrons occurs, and in the second case, on the contrary,

there is scattering of the target eigenfield to a real photon by the electron core of an

IP (Fig. 6.1). The expressions for the cross-sections of these channels can be

obtained by summation of the contributions of PBs on different atoms (ions) of a

substance. In the case under consideration with a crystalline target for each of the

channels two types of the process are possible: the coherent process, when a

momentum from an incident particle is transferred to the crystal lattice as a

whole, and the incoherent process in case of pair interaction of an IP with atoms

(ions) of a medium. Thus there are four kinds of PBs in consideration: coherent PBs

on a target and an IP and incoherent PBs on a target and an IP.

To estimate the PBs value, it is convenient instead of the cross-section to use the

number of photons emitted by an IP per unit length in the unit frequency range and

to the unit solid angle. Then for coherent PBs by the first channel (Fig. 6.1а) the
following expression can be obtained:

dN
cohð Þ
t

dl do dOk

¼ n2t e
2

p �h v c3
X
g

S2 gð Þ d oþ gv� kvð Þo3 at oð Þj j2�

� exp �u2 g2
� �

~F2
t ðgÞ Zproj � Fproj g1cð Þ� �2 s;o v c2

� � g
� �

2

g2 � 2 k gð Þ2 : (6.13)

Here the following designations are introduced: nt is the concentration of target

atoms, e is the elementary charge, c is the velocity of light, S gð Þ is the geometrical

structure factor of the crystal, g is the reciprocal lattice vector,o is the frequency of

a bremsstrahlung photon,at oð Þ is the dynamic polarizability of target atoms, u is the

root-mean-square deviation of target atoms from the equilibrium position, ~FtðqÞ is
the normalized form factor of medium atoms, Zproj is the charge number of the IP

nucleus, FprojðqÞ is the form factor of the IP electron core, s ¼ c k o= is the unit

Fig. 6.6 The geometry of the

process
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vector in the direction of photon emission, g1 ¼ g� k, g1c is the reciprocal lattice

vector in the reference system connected with an IP.

In derivation of the formula (6.13) integration with respect to the transferred

wave vector q was performed in view of interaction of an IP with the target, which

resulted in the equation q ¼ g. The squared concentration of target atoms on the

right side of the Eq. 6.13 is indicative of the coherent behavior of the process.

The presence of the dynamic polarizability of target atoms in the formula (6.13)

reflects the fact that photon emission results from induction of a variable dipole

moment in target atoms during IP scattering. From the obtained expression it

follows also that in the limit u g > 1 coherent PBs is low since then the coherence

of IP interaction with a crystal lattice is violated.

The expression for incoherent PBs by the first channel looks like:

dN
incohð Þ
t

dl do dOk

¼ 2 nt
e2

�ho
o2at oð Þ�� ��2
p v2 c3

ðqmax

qmin

1� exp �u2 q2
� �� �

Zproj � Fproj q1cð Þ� �2 ~F2
t ðqÞ If q; v;o; yð Þ dq

q
; (6.14)

where qmin ¼ 1� v c=ð Þ cos yð Þ o v=ð Þ, qmax ¼ 2 m v �h= are the minimum and maxi-

mum transferred vectors, m is the reduced mass of an IP and an electron,

If q; v;o; yð Þ ¼ q3 v

2 p

ð
dOq d o� kvþ qvð Þ s;o v c2

� � q
� �

2

q2 � 2 k qð Þ2 (6.15)

is the dimensionless integral that in the nonrelativistic limit is equal to:

If q; v<< c;o; yð Þ ffi 1þ cos2y
2

þ o
q v

� 	2
1� 3 cos2y

2
; (6.16)

y is the angle between the IP velocity vector and the wave vector of a

bremsstrahlung photon (the radiation angle).

In contrast to coherent radiation (Eq. 6.13), incoherent PBs (Eq. 6.14) is propor-

tional to the concentration of medium atoms in the first degree and grows with the

parameter u.
With the use of the formulas for the cross-section of atom-atom PBs given in

[2, Chap. 7] it is possible to obtain the following equation for the number of photons of

coherent PBs in a single crystal by the second channel (Fig. 6.1b):

dN
cohð Þ
proj

dl do dOk

¼ n2t e
2Z2

t

p �h v c3
1þ cos2yc
� � X

g

S2 gð Þ d oþ gv� kvð Þo o2
c

� aproj ocð Þ�� ��2 exp �u2 g2
� �

F2
proj g1cð Þ 1� ~FtðgÞ

� �2
g2
�

; ð6:17Þ

166 6 Bremsstrahlung of Fast Charged Particles with an Electron Core in a Medium



whereZt is the charge number of nuclei of medium atoms. Appearing in the formula

(6.17), in contrast to coherent PBs by the first channel, is the dynamic polarizability

of the IP electron core aproj ocð Þ at the photon frequency in the reference system

connected with an incident particle:

oc ¼ go 1� v c=ð Þ cos yð Þ; (6.18)

where g ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v c=ð Þ2

q
: is the Lorentz factor. The expression (6.17) includes

also the cosine of the angle of photon emission in the IP reference system:

cos yc ¼ cos y� v c=

1� v c=ð Þ cos y : (6.19)

The formula for incoherent PBs by the second channel looks like:

dN
incohð Þ
proj

dl do dOk

¼ Z2
t nt

e2

�ho
ooc aproj ocð Þ�� ��2

p v2 c3
1þ cos2yc
� �

�
ðqmax

qmin

F2
proj q1cð Þ 1� ~FtðqÞ

� �2
1� exp �u2 q2

� �� � dq
q

: (6.20)

It should be noted that the form factors of medium atoms and IP are included in

the formulas (6.17), (6.20) for the second PBs channel differently than in the

analogous expressions (6.13), (6.14) for the first channel, which reflects the distinc-

tion in the processes of radiation by these channels (see Fig. 6.1).

The appreciable difference between the coherent and incoherent PBs channels is

that in the coherent case the radiation frequency is fixed for specified IP velocity,

angle of photon emission, and reciprocal lattice vector. This fact manifests itself in

the presence of a delta function in the formulas (6.13), (6.17), whence the equation

for the coherent radiation frequency (“coherent” frequency) follows:

og Nð Þ ¼ �g0Nv

1� v c=ð Þ cos y ; (6.21)

where the integer vector N ¼ N1; N2; N3ð Þ is introduced that is related to the

reciprocal lattice vector by the formula g ¼ g0 N1; N2; N3ð Þ, where g0 ¼ 2 p d=
(d is the lattice constant).

Since in the experiment the recording of photons is carried out with the use of a

photodetector with a finite frequency resolution, let us integrate the obtained
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expressions for coherent PBs (6.13), (6.17) using the spectral function of the

photodetector that we will choose in the form [8]:

fsp oð Þ ¼ 1ffiffiffi
p

p exp � o� orð Þ2
Do2

 !
; (6.22)

where or ¼ r e is the central frequency of the rth channel, Do is the spectral

resolution of the photodetector (e < Do).
After the said frequency integration we obtain the following expression for

coherent PBs by the first channel (see Fig. 6.1) recorded in the rth channel of the

photodetector [12]:

dN
cohð Þ
t

dl dOk

 !
r

ffi n2t e
2

p
ffiffiffi
p

p
�h v c3

X
N

S2 Nð Þo3
g Nð Þ at og Nð Þ� ��� ��2 exp � u g0ð Þ2 N2


 �

� exp � or � og Nð Þ� �2
Do2

 !
~F2
t g0 Nj jð Þ Zproj � Fproj g0 Nj jð Þ� �2

G s; v;N; g0ð ÞY �vNð Þ;

(6.23)

G s; v;N; g0ð Þ ¼ s; og Nð Þ v c2
� � g0 N

� �2
g20 N

2 � 2 g0 og Nð Þ s Nð Þ� �2 ; (6.24)

andY �vNð Þ is the Heaviside step function providing the positiveness of frequency
of an emitted photon.

The expression for coherent PBs by the second channel integrated with the use of

the spectral function of the photodetector (Eq. 6.22) looks like:

dN
cohð Þ
proj

dl dOk

 !
r

¼ Z2
t n

2
t e

2

p
ffiffiffi
p

p
�h v c3

g0 g2

1� v c=ð Þ cos y 1þ cos2yc
� �

X
N

S2 Nð Þ Y �vNð Þ �vNð Þ3 � aproj �g g0 vNð Þ�� ��2

exp � u g0ð Þ2 N2

 �

exp � or � og Nð Þ� �2
Do2

 !

� F2
proj g1cð Þ 1� ~Ft g0 Nð Þ� �2

N2
�

: (6.25)

Here the photon frequency in the reference system connected with an IP in the

argument of the dynamic polarizability of an IP is written out in the explicit form in

view of the Eqs. 6.18 and 6.21. In the formulas (6.23), (6.25) summation over the
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reciprocal lattice vectors are replaced by summation over the components of the

integer vector N ¼ N1; N2; N3ð Þ.
For incoherent PBs by the second channel after frequency integration with the

spectral function of the photodetector (6.22) the following approximate expression

can be obtained:

dN
incohð Þ
proj

dl dOk

 !
r

� Z2
t nt e

2

2
ffiffiffi
p

p
�h c

c

v


 �2 1þ cos2ycð Þ r2e
g2 1� v c=ð Þ cos yð Þ2

X
n

on

Don
f 2n

� exp � or � o labð Þ
n v,yð Þ� �2
Do2

( ) ð2mv

on g v=

1� exp �q2u2
� �� �

F2
proj q1cð Þ 1� ~FtðqÞ�2 dq q= ;

h
(6.26)

where o labð Þ
n v,yð Þ ¼ on

g 1� v c=ð Þ cos yð Þ is the IP eigenfrequency in the laboratory reference

system connected with a target, re ¼ e2 mc2
�

is the electron classical radius. The

derivation of the formula (6.26) was carried out under the assumption that Don<<Do
(Don is the spectralwidth of the line of the bound-bound transition in the electron core of

an IP). Besides, in Eq. 6.26 the cross terms appearing in squaring themagnitude of the IP

polarizability are omitted. For the polarizability of a bound electron the following

standard expression is used:

aproj ocð Þ ¼ e2

m

X
n

fn
o2

n � o2
c � ioc Don

; (6.27)

where fn, on are the oscillator strengths and the eigenfrequencies of transitions of a

bound electron of an IP from the ground state to the exited states. We assume that

the IP core during the process is invariably in the 1 s-state.

The spectral dependence of incoherent “target” PBs (the first channel) is rather

weak, so integration of its spectrum with the tool function of the photodetector

(Eq. 6.22) will result in multiplication of the primary expression (6.14) by the

parameter Do.
Let us use the obtained formulas for calculation of spectral, velocity (on the IP

velocity), and angular dependences of four kinds of PBs arising in scattering of a

hydrogen-like Ar17þ argon ion in a silicon single crystal. In this case for the

geometrical structure factor of the crystal the equation is true [13]:

S gð Þ ¼ 1

4
cos

p
4

N1 þ N2 þ N3ð Þ
h i

1þ cos pN1ð Þ þ cos pN2ð Þ þ cos pN3ð Þf g;
(6.28)
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where Nj are the integers that mark out nonzero terms in the sum over N in the

expression for coherent PBs (6.23), (6.25).

For the parameters of the polarizability of a bound electron of an IP being in the

ground 1s-state and of its form factor we use the known hydrogen-like formulas [14]:

on ¼ Z2
proj

n2 � 1

2 n2
a:u:; fn ¼ n5

28 n� 1ð Þ2n�4

3 nþ 1ð Þ2nþ4
; (6.29)

Fproj q1ð Þ ¼ 1

1þ aproj q1 2=
� �2
 �2 ; aproj ¼ �h2 Zproj m e2

� ��
: (6.30)

In the formulas (6.29) n is the principal quantum number of the electron core of

an IP. Fine splitting of energy levels is neglected. To be specific, in calculations the

natural broadening of transitions of an IP electron in the discrete spectrum is

assumed, then

Don ¼ An ¼ Z4
proj

27 n n� 1ð Þ2n�2

9 c3 nþ 1ð Þ2nþ2
a:u:; (6.31)

where An is the Einstein coefficient for a spontaneous transition.

It should be noted that using the formulas (6.29) that take into account only

transitions in the discrete spectrum is justified by the fact that the contribution of the

second PBs channel from bound-free transitions in the IP core is small.

The calculation of the dynamic polarizability and form factors of target atoms is

described in detail in the work [5].

Presented in Fig. 6.7 are the dependences of four kinds of PBs at the

central frequency of the photodetectoror calculated by the formulas of the previous

section for a case of scattering of a hydrogen-like Ar17þ argon ion (the IP velocity

v ¼4 6.65 a.u.) incoming along the crystallographic axis 2 (the input angle a ¼ 0,

see Fig. 6.2) into a silicon single crystal. For short, we will call these dependences

spectral. The radiation angle y is supposed to be 120�, and the spectral resolution

of the photodetector is taken equal to 3 a.u. (Do¼81.6 eV). From the figure it

follows that the spectra of coherent PBs by the first and second channels are sets

of maxima, the position of which, according to the formula (6.21), is defined by

the reciprocal lattice vector transferred from an IP to the target during PBs, by the

IP velocity and the radiation angle. The width of these spectral maxima is

connected with the width of the spectral resolution of the photodetector Do ,

and the value is defined by the magnitude of the polarizability of target atoms and

an IP electron at the coherent frequency (6.21).

The spectrum of incoherent PBs by the second channel is defined by the spectral

dependence of the IP polarizability having sharp peaks at frequencies that in the IP

reference system are close to the eigenfrequencies of excitation of a bound electron
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of a hydrogen-like ion. A corresponding condition for the frequency of a maximum

in the spectrum of incoherent PBs by the second channel looks like:

omax n; v,yð Þ ¼ on

g 1� v c=ð Þ cos yð Þ : (6.32)

The formula (6.32) is a condition of coincidence of the eigenfrequency of a

bound electron of an IP in the laboratory reference system with the frequency of

PBs recording. Owing to the Doppler effect, the eigenfrequency of the electron core

of an IP in the laboratory system depends on the IP velocity and the radiation angle.

The width of the discussed maxima, as in the coherent case, is defined by the value

of the spectral resolution of the photodetector Do.
It should be noted that in case of fast enough ions, following from the expression

(6.32) is a possibility of radiation frequency tuning at the expense of change of the

radiation angle, which may be found to be rather essential in practical applications

of the phenomenon under consideration.

The spectrum of incoherent PBs by the first channel in the frequency range under

consideration is described by a line weakly decreasing with growing frequency,

close to the horizontal straight line. This is connected with the fact that the dynamic

polarizability of target atoms defining this kind of PBs according to the formula
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Fig. 6.7 The dependence of four kinds of PBs on photon energy at the central frequency of the

photodetector in scattering of a hydrogen-like argon ion in a silicon single crystal (the ion velocity

v ¼ 46.65 a.u., the radiation angle y ¼ 120�, the IP input angle a ¼ 0, the resolution of the

photodetectorDo¼81.6 eV): 1 – coherent PBs on a target, 2 – coherent PBs on an IP, 3 – incoherent
PBs on a target, 4 – incoherent PBs on an IP
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(6.14) depends rather weakly on the frequency in the spectral range presented in

Fig. 6.7.

Figure 6.8 demonstrates the dependence of four kinds of PBs under consideration

on the IP velocity for the bremsstrahlung photon energy at the central frequency of

the photodetector �hor ¼ 2,445 eV and a radiation angle of 135�. The input angle is
supposed to be equal to zero, and the spectral width of the line of the photodetector

resolution Do ¼ 81.6 eV.

From the figure it is seen that incoherent PBs by the first channel weakly depends

on velocity. The velocity dependence of coherent PBs of the same channel is defined

by the condition of equality of the frequency of recording the radiation and frequency

of coherent radiation (Eq. 6.21). The maxima of the discussed dependence are

connected with different reciprocal lattice vectors transferred from an IP to the target

during coherent PBs. The width of these maxima is defined by the width of the

spectral function of the photodetector (Eq. 6.22), and the value is defined by the

dynamic polarizability of target atoms at the coherent frequency (6.21). It is seen that

in the presented range incoherent PBs by the first channel everywhere prevails over

coherent PBs.

The velocity dependence of incoherent PBs by the second channel has a wide

maximum caused by the Doppler effect and the finite width of the spectral line of the

photodetector. This maximum is connected with the fact that in view of fulfilment of
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Fig. 6.8 The dependence on the velocity of an incident particle for four kinds of PBs in scattering

of a hydrogen-like argon ion in a silicon single crystal (the photon energy at the central frequency

of the photodetector �hor ¼ 2,448 eV, the radiation angle y ¼ 135, the IP input angle a ¼ 0, the

resolution of the photodetector Do ¼ 81.6 eV): 1 – coherent PBs on a target, 2 – coherent PBs

on an IP, 3 – incoherent PBs on a target, 4 – incoherent PBs on an IP
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the conditionDon<<Do the radiation frequency in the reference system connected

with an IP is fixed and equal to one of the eigenfrequencies of a bound electron of an

ion. When going to the laboratory reference system, the dependence of this reso-

nance frequency on the IP velocity and the radiation angle appears, resulting in this

maximum.The presented reasoning immediately follows from the expression (6.26).

A characteristic feature of Fig. 6.8 is the presence of sharp peaks in the velocity

dependence of coherent PBs by the second channel. These peaks appear in case of

equality of the coherent frequency (6.21) and one of the eigenfrequencies of a

bound electron of an IP (the first equation in Eq. 6.29) converted to the laboratory

reference system. This condition looks like:

omax n; v,yð Þ � on

g 1� v c=ð Þ cos yð Þ ¼ og Nð Þ � �g0Nv

1� v c=ð Þ cos y : (6.33)

Hence the condition for the velocity value at the maximum of the velocity

dependence follows:

vmax n;N; a; ’ð Þ ¼ cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2 p c

on d


 �2
N1 sin a cos’þ N2 sin a sin’� N3 cos a½ �2

r :

(6.34)

It should be noted that the velocity at the maximum does not depend on the angle

of bremsstrahlung photon emission. In case of IP incoming along the crystallo-

graphic axis of the target (a ¼ 0) the expression (6.34) is simplified: the depen-

dence only on the integer N3 connected with the value of the transferred reciprocal

lattice vector and on the eigenfrequency of an ion electron remains.

For maxima defined by the first eigenfrequency of anAr17þ ion (on¼2 ¼ 3305eV),

from the Eq. 6.34 it is possible to obtain the table of values of IP velocity at

the maxima of the velocity dependence of coherent PBs by the second channel

(see Table 6.1).

Given in the second line of Table 6.1 are the values of coherent frequency (6.21)

calculated for a radiation angle of 135�. The distinction of these values from the first

eigenfrequency of an Ar17þ ion is connected with the Doppler effect.

In Fig. 6.8 four maxima corresponding to the values of IP velocity are well

visible that are given in Table 6.1: 38.13, 46.656, and 59.579 a.u.. Also present in

this figure are additional maxima of lesser values that are connected with equality of

the coherent frequency (6.21) and other eigenfrequencies of the electron core of an

IP (at n>2). The lesser value of these maxima is explained by the lesser value of

oscillator strengths for virtual transitions to bound states of an IP electron with n>2.

The width of “velocity” maxima, as seen from Fig. 6.8, is rather small. It is

defined by the value of spectral broadening of the line of the electron transition in

the IP core that in the present calculation is supposed to be natural (see Eq. 6.31).

6.1 Polarization Bremsstrahlung of a Hydrogen-Like Ion in a Crystal 173



Taking into account the additional mechanisms of broadening will result in broad-

ening of corresponding velocity dependences.

From Fig. 6.8 it follows that for the parameters under consideration in the range

of low velocities (v < 42 a.u.) incoherent Bs by the first channel prevails. For high

IP velocities the main contribution to the process is made by incoherent PBs by the

second channel, with the exception of rather narrow ranges near the values given in

Table 6.1, where coherent PBs by the second channel prevails.

It should be noted that now rather high energy monochromaticity of an ion beam

is achievable, at which the relative spread of IP velocity is fractions of a percent [1].

Therefore averaging over the spread of velocities in an ion beam should retain the

main conclusions following from the given analysis of velocity dependences of

different PBs kinds.

Presented in Fig. 6.9 are the angular dependences of considered kinds of PBs of an

Ar17þ ion incoming into a silicon single crystal at a zero angle to the crystallographic

axis for the IP velocity v ¼ 46.65 a.u. and the bremsstrahlung photon energy

�hor ¼ 2,448 eV. The angular dependence of incoherent PBs by the first channel

is manifested rather weakly.

The angular distributions of coherent PBs by both channels are similar: they have

two maxima, and for wide angles maxima are more flat. The widths of these maxima

are defined by the spectral resolution of the photodetector: they grow with Do .

Incoherent PBs by the second channel has amaximum in the region of wide radiation

angles connected with fulfilment of the resonant condition in the polarizability of

the electron core of an IP, when the conversion of the eigenfield of a target to a

bremsstrahlung photon on a bound electron of an IP proceeds most effectively.

On the whole, for specified values of IP velocity and bremsstrahlung photon energy

incoherent PBs prevails in the angular dependence, and only in a rather narrow range

of radiation angles near y ¼ 82� prevailing is the contribution of coherent PBs by the
first channel.

From the form of the angular dependences in Fig. 6.9 it follows that integration of

the obtained expressions for PBs with the angular tool function of the photodetector

may not change significantly the obtained result.

With increasing charge of the nucleus of a hydrogen-like ion the contribution of the

second PBs channel to total radiation will decrease. This is connected, first, with growth

of the IP eigenfield, which increases PBs by the first channel (see Eqs. 6.13, 6.14), and,

second, with reduction of the polarizability of a bound electron of an IP. Really, in case

of the natural broadening of the line (6.31) the sum over the principal quantum number

in the formula (6.26) will contain the multiplier fn on= decreasing as Z�2
proj. On the other

hand, with growingZproj the spectral region of essentiality of PBs by the second channel
will be shifted to the high-frequency region because of growing resonance frequencies

of the polarizability of a hydrogen-like ion, whereas for low Zproj this region

Table 6.1 Coherent

frequency as a function of

velocity in maximum for

various N3 values

N3 1 2 3 4 5

vmax, a.u. 112.751 80.372 59.579 46.656 38.13

�hog, keV 1,187 1,892 2,276 2,505 2,652
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corresponds to vacuum ultraviolet radiation and soft X-rays. With growing charge of

the nuclei of target atoms the relative contribution of the first and second PBs channels

practically will not change, and radiation by each of the channels will increase

proportionally.

6.2 Polarization Bremsstrahlung of a Fast Ion

with an Electron Core in Plasma

In this paragraph within the framework of the first Born approximation polarization

bremsstrahlung of a fast hydrogen-like ion in plasma is calculated and analyzed.

The contribution of two channels to the process is taken into account: Eq. 6.35 of

radiation due to conversion of the electromagnetic field of an ion to a real photon on

plasma electrons and Eq. 6.36 of radiation as a result of virtual excitation of a bound

electron of an ion (see Fig. 6.1a, b).

It is shown that the second channel of polarization bremsstrahlung has sharp

peaks in the narrow spectral-angular range near the eigenfrequencies of the electron

core of a fast ion, the spectral-angular dependence of radiation significantly

depending on the velocity of an incident particle. The influence of plasma

parameters on both polarization bremsstrahlung channels was investigated.
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Fig. 6.9 The angular dependence of different kinds of PBs in scattering of a hydrogen-like argon

ion in a silicon single crystal (the ion velocity v ¼ 46.65 a.u., the photon energy �hor ¼ 2,448 eV,

the input angle a ¼ 0, the resolution of the photodetector Do ¼ 81.6 eV): 1 – coherent PBs on a

target, 2 – coherent PBs on an IP, 3 – incoherent PBs on a target, 4 – incoherent PBs on an IP
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PBs of fast charged particles in plasma called transient Bs was for the first time

investigated in the works of V.N. Tsytovich and А.V. Akopyan [15]. Further it was

shown that this type of radiation is analogous to Bs in case of collision of charged

particles with an atom that is caused by a variable dipole moment induced in the

electron core of the atomby a scattered charged particle [2, Chap. 6]. PBs can arise also

as a result of collision of neutral atoms or ions having an electron core. Then two

channels of radiation are possible according to in which electron shell a radiating

dipole moment is induced. Corresponding formulas for cross-sections in nonrelativis-

tic and relativistic caseswere obtainedbyM.Ya.Amus’yawith co-authors [2,Chap. 9].

Let us consider the process of emission of a transverse photon in scattering in

plasma of an ion having a subsystem of bound electrons. By a transverse photon is

meant the transverse mode of an electromagnetic field in plasma propagating also in

vacuum in contrast to the longitudinal mode (plasmon). We assume that the ion

velocity exceeds significantly the characteristic velocities of plasma particles and

that the condition of the Born approximation for interaction of an IP with plasma

particles is satisfied. Besides, we consider that the photon frequency o > gop (g is
the Lorentz factor of the IP, op is the plasma frequency), then the influence of the

density effect on Bs can be neglected.

As was already noted, the ordinary mechanism of Bs caused by acceleration of an

IP in the target field is suppressed because of the high mass of an ion. As a result, the

main radiative process is connected with the polarization mechanism of Bs. PBs in

the case under consideration can proceed by two channels: (6.35) due to scattering of

the IP eigenfield to a real photon on plasma electrons and Eq. 6.36 as a result

of conversion of the eigenfield of plasma charges to a real photon on bound electrons

of an IP. In both cases the energy of electromagnetic radiation is got from the kinetic

energy of an IP, and the energy-momentum excess during the radiative process is

absorbed by plasma ions. This interpretation assumes that the energy of plasma ions

is insufficient to generate radiation of frequencies considered below.

6.2.1 Polarization Bremsstrahlung Due to Virtual Excitation
of Plasma Electrons (the First Channel)

The expression for the differential cross-section of PBs in plasma by the first

channel can be obtained within the framework of the approach described in

[2, Chap. 6] that is based on the use of the formalism of the dynamic form factor

of plasma components. The dimensionless PBs amplitude caused by the contribu-

tion of the jth plasma electron to the process under consideration is

TPB
fi ¼ 2p i d oþ ofi þ q1v

� �
q01
� �2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 p
�h o c2 V

r
e2

mo2
e	
k;s
; A prð Þ q1ð Þ


 �
exp i q rj
� �

;

(6.35)
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where V is the volume of quantization, v is the IP velocity and charge, �h q ¼ �h q0; qð Þ
is the four-dimensional energy-momentum vector transferred to plasma, �hofi is

the energy of excitation of a plasma electron during Bs, q1 ¼ q� k ¼
1 �h=ð Þ ef � ei; pf � pi

n o
is the four-dimensional wave vector proportional to the

change of the IP energy-momentum,k ¼ o c= ; kð Þ is the four-dimensionalwave vector

of a bremsstrahlung photon, ek;s is the unit vector of photon polarization,

A prð Þ q1ð Þ ¼ 4p cepr
q01 V

v q01 c2
� þ q1

q01 c=
� �2 � q21

; q01 ¼ q1v (6.36)

is the vector-potential of the IP field, epr ¼ Zpre is the IP charge. The axial gauge of

the electromagnetic field is used, in which the scalar potential is equal to zero.

Summing the amplitude (Eq. 6.35) over all final states of a plasma electron fj i,
plasma electrons in the volume of quantization and polarizations of a bremsstrah-

lung photon s, we find the following expression for the number of bremsstrahlung

photons emitted by the first channel per unit IP trajectory length to the range of

wave vectors dk:

dNt arg

dl do dOk

¼ 1

p2
r2e

c

v

e2

�ho

ð
Zpr � Fpr qð Þ� �2 s;o v c2

� � q
� �

2

q2 � 2 k qð Þ2 S eeð Þ q0; q
� �

dq;

(6.37)

where Zpr , Fpr qð Þ are the charge number and the electron form factor of an IP,

re ¼ e2 mc2
�

is the electron classical radius, s is the unit vector in the direction of

photon emission,

S jlð ÞðqÞ ¼ 1

2 p

ð1

�1
dt ei q

0 t n̂ðjÞ q; tð Þ n̂ðlÞ �qð Þ
D E

(6.38)

is the dynamic form factor corresponding to absorption of the four-momentum

�hq ¼ �h q0; qð Þ by plasma through interaction of the plasma components j and l.
(For more details of the DFF of plasma components, see Appendix 3.)

PBs by the first channel is defined by the electron–electron DFF:

S eeð ÞðqÞ ¼ S eeð Þ
e ðqÞ þ S

eeð Þ
i ðqÞ: (6.39)

The first summand in the electron DFF (6.39) describes processes with transfer

of the energy-momentum excess to the electron subsystem of plasma, the second

summand does the same for the ionic subsystem. In the first case the conversion of

the IP eigenfield occurs on individual plasma electrons (the incoherent process),

and in the second case the conversion occurs on the Debye sphere screening a
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plasma ion (the coherent process). Further we will be interested in coherent PBs.

A corresponding component of the dynamic form factor of plasma S
eeð Þ
i ðqÞ in the

limit v>>vTi can be represented as:

S
eeð Þ
i ðqÞ ffi ni Z

2
i

1� elðeÞðqÞ
elðqÞ

����
����
2

d q0
� �

; (6.40)

where Zi, ni are the charge number and the concentration of plasma ions, elðeÞðqÞ,
elðqÞ are the longitudinal dielectric permittivities of an electron plasma component

and of plasma as a whole. The delta function in the Eq. 6.40 describes the energy

conservation law with neglected recoil of a plasma ion. The coherent nature of the

process is reflected in the quadratic dependence of S
eeð Þ
i ðqÞ on the number of

electrons in the Debye sphere equal to Zi . In the case under consideration for a

fast IP (v>>vTe>>vTi) we have

elðeÞðqÞ ffi el q ¼ 0; qð Þð Þ ¼ 1þ 1

r2D q2
; (6.41)

where rD is the Debye radius. Then

S
eeð Þ
i ðqÞ ffi ni

Zi
1þ r2D q2

����
����
2

d q0
� � ¼ ni Fi qð Þj j2 d q0

� �
: (6.42)

Here the form factor of the Debye sphere screening an ion in plasma is

introduced by analogy with the atomic case that is by definition equal to:

Fi qð Þ ¼ Zi
1þ r2D q2

; (6.43)

so the spatial Fourier transform of the charge of a plasma ion on the wave vectorq in

the units of elementary charge is Zi � Fi qð Þ. Substituting the expressions (6.42),

(6.43) in the formula (6.37) and dividing by the concentration of ions, we obtain the

expression for the differential cross-section of PBs on the Debye sphere (“target”

PBs) with transfer of the energy-momentum excess to a plasma ion:

dsPBt arg
do dOk

¼ 2Z2
i

po
va c

v2
r2e

ðqmax

qmin

Zpr � Fpr qð Þ� �2
If q; v;o; yð Þ dq

1þ r2D q2ð Þ2 q
; (6.44)

where va ¼ e2 �h= , q ¼ qj j, y ¼ k^v is the radiation angle, and

If q; v;o; yð Þ ¼ q3 v

2 p

ð
dOq d o� kvþ qvð Þ s;o v c2

� � q
� �

2

q2 � 2 k qð Þ2 (6.45)
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is the kinematic integral that in the nonrelativistic limit is

If q; v<< c;o; yð Þ ffi 1þ cos2y
2

þ o
q v

� 	2
1� 3 cos2y

2
: (6.46)

6.2.2 Polarization Bremsstrahlung as a Result
of Virtual Excitation of the Electron Core
of an IP (the Second Channel)

For the differential cross-section of the second PBs channel with generalization of

the formulas obtained by M.Ya. Amus’ya with co-authors [2, Chap. 9], in case of

atom-atom and ion-ion collisions the following expression can be obtained:

dsPBproj
do dOk

¼ Z2
i

p
va oo2

c

v2 c3
aproj ocð Þ�� ��2 1þ cos2yc

� �
Ipl rDð Þ; (6.47)

where aproj ocð Þ is the dynamic polarizability of an incident particle,

oc ¼ go 1� v c=ð Þ cos yð Þ; cos yc ¼ cos y� v c=

1� v c=ð Þ cos y (6.48)

are the frequency and the cosine of the radiation angle in the reference system

connected with an incident particle,

Ipl rDð Þ ¼
ðrD qmax

rD qmin

x3 Fpr x rD=ð Þ dx
1þ x2ð Þ2 ; (6.49)

qmin ¼ o
v

1� v c=ð Þ cos yð Þ; qmax ¼ 2 m v
�h

; (6.50)

where m is the reduced mass of an IP and a plasma ion. In derivation of the formula

(6.47) the expression for the form factor of the Debye sphere (Eq. 6.43) was used,

by which the above generalization of the formulas of the work [2, Chap. 9] to the

plasma case is achieved.

Further we will consider a case of a hydrogen-like incident ion. Then for the

dynamic polarizability of an IP we have:

aproj oð Þ ¼ e2

m

X
n

fn
o2

n � o2 � iodn
; (6.51)

where
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on ¼ Z2
pr

Ry

�h
1� 1

n2

� 	
(6.52)

are the eigenfrequencies of a bound electron of an IP, fn are the oscillator strengths,
dn are the damping constants. A characteristic feature of the dynamic polarizability

of a hydrogen-like ion is the presence of sharp resonances ato � on sinceon >> dn.
The electron form factor for the ground state of a hydrogen-like IP is

FprðqÞ ¼ 1

1þ a q 2=ð Þ2

 �2 ; (6.53)

where a ¼ �h2 Zpr me
2

� ��
. Substituting Eq. 6.53 in the formula (6.49), we find

Ipl rD; að Þ ¼
ðrD qmax

rD qmin

x3 dx

1þ x2ð Þ2 1þ a 2 rD=ð Þ2 x2

 �4: (6.54)

It should be noted that in the limit rD>>a characteristic for nondegenerate

plasma the approximate equation is true:

Ipl rD>>að Þ � ln
2 rD

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2D q2min

p
 !

� 17þ 11 r2D q2min

12þ 12r2D q2min

: (6.55)

The cross-section of ordinary Bs of an electron in plasma in the frequency range

under considerationm v2 2 �h= >> o > gop can be obtained if in the formula (6.47)

the function aproj ocð Þ is replaced by the dynamic polarizability of a free electron,

and instead of the integral Ipl rDð Þ, ln m v rD �h=ð Þ is substituted. As a result, we find

dsOBe
do dOk

¼ Z2
i

p
r2e
va c

v2
1þ cos2yc

g2 1� v c=ð Þ cos yð Þ2 ln
m v rD
�h


 �
: (6.56)

Now let us consider some limiting cases of the above expressions for the cross-

sections of PBs by the first and second channels. In the nonrelativistic case (v) in the

frequency range o < v rD= the formulas (6.44), (6.46) give

dsPBt arg o<v rD=ð Þ
do dOk

¼ 2Z2
i

p
Zpr � 1
� �2
v2 c3 o

1þ cos2y
� �

ln
v

o rD

� 	
: (6.57)
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In the opposite case of high enough frequencies o > v rD= , for the differential

cross-section by the first channel we have

dsPBt arg o > v rD=ð Þ
do dOk

¼ Z2
i

2p
Zpr � 1
� �2

1þ cos2y
� � v2

c3 o5 r4D
: (6.58)

The obtained expression contains the small multiplier v o rD=ð Þ4 that describes the
suppression of PBs on the Debye cloud in the frequency range under consideration.

This suppression is connected with the loss of coherence of conversion of a virtual

photon to a real photon on the electron charge of the Debye sphere if l<rD (l is the
wavelength of a bremsstrahlung photon).

In the low-frequency limit o < v rD= in case of nondegenerate plasma the

inequation o<Z2
prRy is satisfied. Then for the IP polarizability it is possible to use

the static approximation that for a hydrogen-like ion givesaprojð0Þ ¼ a3B Z4
pr

.
, where

aB is the Bohr radius. Substituting this expression in the formula for the cross-section

of PBs by the second channel (Eq. 6.47), we obtain:

dsPBproj o<Z2
prRy


 �
do dOk

¼ 81

4p
Z2
i

Z4
pr

a6B
o3 va

v2 c3
1� v c=ð Þ cos yð Þ2

1� v c=ð Þ 2 1þ cos2yc
� �

ln
rD
a


 �
:

(6.59)

In case of fulfilment of the inequation dn<< oc � onj j<<on for the dynamic

polarizability of an IP the resonant approximation “works”. Then for the differential

cross-section of PBs by the second channel the formula is true:

dsPBproj oc � onð Þ
do dOk

ffi Z2
i

2p
r2e
o

va c

v2
f 2n

on

o � g 1� v
c cos y

� �� �2 1þ cos2yc
� �

Ipl rDð Þ;

(6.60)

following from which is the presence of sharp peaks in the frequency-angular PBs

distribution caused by conversion of fluctuations of the electric field of plasma to a

real photon on a bound electron of a hydrogen-like IP. The frequency of a peak

depends on the angle of photon emission the and IP energy according to the equation:

omax n; v,yð Þ ¼ on

g 1� v c=ð Þcos yð Þ : (6.61)

At a fixed PBs frequency the maximum in the angular distribution of the process

is defined by the angle

ymax n;o; vð Þ ¼ arccos
c

v
1� o

gon

� 	 �
: (6.62)
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From the Eq. 6.62 it follows in particular that the angular maximum occurs in

fulfilment of the inequations

g 1� v

c


 �
on 
 o 
 g 1þ v

c


 �
on: (6.63)

Beyond the said spectral range the angular dependence of the cross-section of

resonant PBs by the second channel has a monotonic behavior.

Calculated by the formulas (6.44), (6.47) the spectra of two PBs channels

in scattering of a hydrogen-like helium ion (v ¼ 90a.u.) in nondegenerate plasma

(rD ¼ 103 a.u.) (curves 1, 2) are presented in Fig. 6.10 together with the spectrum of

ordinary Bs of an electron (curve 3) for the radiation angle y ¼ p 3= .

It is seen that PBs caused by conversion of the electric field of a plasma ion on a

bound electron of an IP to a bremsstrahlung photon (the second channel) has sharp

maxima at frequencies described by the formula (6.61), corresponding to resonances

of the dynamic polarizability of an IP. PBs by the second channel prevails every-

where, with the exception of the narrow region of low frequencies. At o ! 0 the

spectral cross-section of the second channel decreases according to the formula

(6.59) as the third power of frequency. At the same time the cross-section of the

first PBs channel rapidly decreases with growing frequency because of the loss of

coherence in reradiation of the IP eigenfield by electrons of the Debye sphere to a

bremsstrahlung photon. This circumstance is connected with the high value of the
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Fig. 6.10 The spectrum of PBs by the first channel (curve 1), by the second channel (curve 2) of a
Heþ ion and the spectrum of ordinary Bs of an electron (curve 3) in nondegenerate plasma

(rD ¼ 5�10�6 cm): v ¼ 1.98�1010 cm/s, y ¼ p 3=
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Debye radius in nondegenerate plasma rD >> aB , so the inequation o > v rD= is

satisfied in the overwhelming part of the spectral range, and the low value of the

process cross-section in this case is predicted by the formula (6.58). Thus the spectral

regions of essentiality of two PBs channels in nondegenerate plasma are much

spaced due to the high value of the Debye radius. It should be noted that in the

region of high frequencies, when the inequation oc > Z2
pr Ry is satisfied, the cross-

sections of PBs of a hydrogen-like ion by the second channel and of ordinary Bs of an

electron are close in value. This is connected with the fact that in the region of high

frequencies the dynamic polarizability of an IP is close to that for a free electron.

With growing IP velocity the spectral maxima of PBs by the second channel are

shifted to the region of lower frequencies, and the cross-section of the second

channel decreases not so rapidly. Similar changes of the spectra occur with reduction

of the radiation angle.

The spectral Bs cross-sections in scattering of a hydrogen-like carbon ion in

degenerate plasma are presented in Fig. 6.11. Since in this case the Thomas-Fermi

radius is much less than the Debye radius of nondegenerate plasma, the spectral

ranges of essentiality of both PBs channels intersect. The second PBs channel, as

before, prevails near the resonances of the dynamic polarizability of an IP.

The angular dependence of total PBs (the sum of both channels) in scattering of a

hydrogen-like helium ion ( v ¼ 90 a.u.) in nondegenerate plasma is presented in

Fig. 6.12 for the frequency o ¼ 1:7 a.u. (46.24 eV). From Fig. 6.12 it follows that

the angular dependence of PBs of a hydrogen-like ion in plasma has sharp maxima

corresponding, according to the formula (6.62), to the resonant conditionoc v,yð Þ � on

if only the frequency of a bremsstrahlung photon in the laboratory reference system

satisfies the inequations (6.63). These maxima are shifted to the region of small angles

with growing IP velocity.

The dependence of PBs of a hydrogen-like carbon ion scattered in nondegenerate

plasma on the IP velocity is presented in Fig. 6.13 for two radiation angles:y ¼ p 10=
and y ¼ p 6= . The bremsstrahlung photon energy is �ho ¼ 544 eV.

Two sharp peaks on these curves correspond to the resonance of the dynamic

polarizability of a carbon ion in excitation of its bound electron from the ground

state to the first exited condition. It is seen that with growing radiation angle the

position of the maximum is shifted to the region of higher velocities.

This circumstance is a corollary of the formulas (6.52), (6.61) determining the

photon energy at the maximum of the spectral dependence of the PBs cross-section

as a function of the radiation angle and the IP velocity. Following from them is the

expression for the IP velocity at the maximum:

v �ð Þ
max ¼ c

cos y�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 yþ on o=ð Þ2 � 1

h i
on o=ð Þ2 þ cos2 y

h ir

on o=ð Þ2 þ cos2 y
; (6.64)

where on is the eigenfrequency of a bound electron of an IP that is given by the

formula (6.52). The expression (6.64), naturally, is true for vmax. Depending on the
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Fig. 6.11 The spectrum of PBs by the first channel (curve 1), by the second channel (curve 2)

of a Cþ5 ion and the spectrum of ordinary Bs of an electron (curve 3) in degenerate plasma

(rTF ¼ 5�10�9 cm): v ¼ 1.98�1010 cm/s, y ¼ p 3=
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Fig. 6.12 The angular dependence of total PBs of a Heþ ion (v ¼ 90 a.u.) in nondegenerate

plasma (rD ¼5�10�6 cm) for the bremsstrahlung photon energy �ho ¼ 46.24 eV
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value of the ratio on o=ð Þ and the radiation angle y, the function s vð Þ can have two,
one, or no maxima. For example, if the radicand on the right side of the Eq. 6.64 is

equal to zero, it is obvious that v
�ð Þ
max ¼ v

þð Þ
max – there is one maximum. Satisfying this

condition is the relationship between the frequency and the radiation angle:

o ¼ on

sin y
� o	: (6.65)

In fulfilment of Eq. 6.65, following from Eq. 6.64 is a simple relation between

the velocity at the maximum of the cross-section of PBs by the second channel and

the radiation angle: vmax ¼ c cos y. At frequencies o > o	 the PBs cross-section

sharply decreases since the approximate equation oc � on resulting in a resonance

in the dynamic polarizability of an IP ceases to be satisfied. With decreasing

radiation frequency, when o << o	 , from the expression (6.64) the limiting

dependences follow: v
�ð Þ
max ! 0 and v

þð Þ
max ! c . Then the cross-section of PBs by

the second channel is low in a wide range of IP velocities.
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Chapter 7

Investigation of Bremsstrahlung

of Nonrelativistic Electrons in Thick

and Thin Metal Targets

This chapter is dedicated to presentation of results of theoretical and experimental

investigations of bremsstrahlung in scattering of nonrelativistic electrons with an

energy of several tens of keV by solid-state targets carried out at the Collective Use

Center of the Moscow Institute of Physics and Technology in 2009–2011.

In these investigations in interpretation of experimental results, besides the ordi-

nary (static)mechanismof radiation, the polarization channel, coherent and incoherent

electron scattering by a crystal lattice, electron energy loss in a medium, and absorp-

tion of bremsstrahlung photons in a substance material were taken into account.

7.1 Absorption of Photons in a Target Material

In case of thick enough targets, the thickness of which exceeds the photon absorption

path in a target material, the integrated yield of bremsstrahlung photons that is

recorded by a photodetector will be to a great extent defined by the said absorption.

Therefore for calculation of the integrated yield of bremsstrahlung photons from a

target it is important to know the frequency dependence of the photoabsorption

coefficient m oð Þ for a given substance.

Presented in Fig. 7.1 is the spectral dependence of the photon path length Lph oð Þ ¼
1 m oð Þ= and the electron path length in copper for an initial electron energy of 30 keV.

The data for the frequency dependence of the photoabsorption coefficient for copper m oð Þ
are taken from the site of the American National Institute of Standard [1].

The effect of photon absorption in a target material can be taken into account

using the Bouguer law, following from which is a simple expression for the

dependence of radiation intensity in a medium on the path length x that radiation

has passed in a target material:

IðxÞ ¼ Ið0Þ exp �m xð Þ: (7.1)

The Y-axis (in mm) in Fig. 7.1 is plotted in the logarithmic scale. Shown for

comparison in the same figure as a straight line is the path length of an electron with

V. Astapenko, Polarization Bremsstrahlung on Atoms, Plasmas, Nanostructures
and Solids, Springer Series on Atomic, Optical, and Plasma Physics 72,

DOI 10.1007/978-3-642-34082-6_7, # Springer-Verlag Berlin Heidelberg 2013

187



the energy of 30 keV in copper (3.4 mm) to a stop due to inelastic collisions with

medium atoms.

The minima of the photoabsorption path curve correspond to the electron binding

energies for the L- and K-shells of a copper atom (about 1 and 9 keV respectively).

It is seen that up to a photon energy of 4 keV the photoabsorption path in copper is

less than the path length of an electron with the energy of 30 keV, that is, in this

range of energies the photon yield is defined by photoabsorption in a target material.

In thick targets at frequencies near the minima of the photoabsorption curve

presented in Fig. 7.1 the maximum integrated yield of bremsstrahlung photons can

be expected.

7.2 Analytical Approach to Simulation of the Bremsstrahlung

Photon Yield from a Metal Target

The polarization mechanism of Bs was studied rather fully theoretically and

partially experimentally for atomic targets and for radiation of relativistic charges

in thin films [2–7]. In the first case there are no medium effects at all, and in the

second case in calculation of the process this influence was usually taken into

account in the first order of the perturbation theory. The situation is quite different

in consideration of Bs of nonrelativistic electrons in solid-state targets in the soft

and moderate X-ray bands: �ho ¼ 0:1� 10 keV. Then the bremsstrahlung photon

yield will experience a significant influence of scattering and electron energy loss as

well as of absorption of electromagnetic radiation in the substance. The said

situation takes place in a number of technical applications (in X-ray tubes, electron

microscopes, microwave devices), when the polarization mechanism of Bs is

usually not taken into account [8].
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Fig. 7.1 The photon path

length in copper (solid curve)
as a function of the photon

energy
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7.2.1 Expressions for the Number of Photons per Unit
Target Length

The spectral-angular distribution of Bs photons appearing in scattering of a non-

relativistic electron in a thick metal target was simulated with the use of the following

expression:

dNph

do dO
¼

ð ð
d~w d’

exp �~w2
� �

p
ffiffiffi
p

p
ðE0

Emin o;L;E0ð Þ

dNtot E;o; yð Þ
do dOk dx

� exp � m oð Þ x E;E0ð Þ
cos b

� �
� dx

dE

� �
dE; (7.2)

where’ is the azimuth angle of the electron trajectory plane, ~w ¼ w
ffiffiffiffiffiffiffiffiffi
w2h i

p.
, w is the

angle of electron scattering in a target material, w2
� �

is the mean-square angle of

electron scattering,
dNtot E;o; yð Þ
do dOk dx

is the full number of photons with the frequency o

emitted by an electron with the energy E per unit path length in metal in a specified

spectral-angular range, E0 is the initial electron energy, b is the angle between the

normal to the target surface and the direction to the photodetector (the viewing angle).

In the formula (7.2)Emin o; L;E0ð Þ is the minimum electron energy at the output of the

target, at which emission of a photon of a specified frequency is still possible, m oð Þ is
the photoabsorption coefficient in the targetmaterial,L is the target thickness,dx dE= is

the value of reciprocal loss of electron energy per unit length.As seen from the Eq. 7.2,

in calculation of photon yield integration with respect to the path length is replaced by

integration with respect to the electron energy E, and summation over trajectories is

carried out with the use of the Gaussian function determining the probability of

electron scattering to the specified angle w.
The formula (7.2) is true for distances between the radiation region and the

photodetector that are much more than the size of the interaction region as well as

for small enough electron scattering angles w. In this approximation the angle of Bs

photon emission y for the normal incidence of an electron on the target surface is

related to other angular parameters of the problem as follows:

y b; ’;E; ~wð Þ ¼ arccos
cos bð Þ cos ’ð Þ tg ~w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2ðEÞh i

p	 

� sin bð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ tg2 ~w
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2ðEÞh ip	 
r

2
664

3
775; (7.3)

As a target, we will further take a copper plate with a thickness from several

nanometers to several microns. The mean-square angle of scattering of an electron

with specified energy in copper (here energy is measured in kiloelectron-volts, the

scattering angle is measured in radians) is
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w2ðEÞ� � ffi 0:654

E
ln 25Eð Þ; E>>0:3 keV: (7.4)

In the general case w2ðEÞ� � ffi 0:07Z2=3

E
ln

230E

Z2=3

� �
for E>>0:035 Z 2=3 keV,

where Z is the charge number of the nuclei of target atoms. The Eq. 7.4 is obtained

with the use of the Born formula for the transport cross-section of electron scattering by

an atom.

The approximation expression for the reciprocal value of energy loss per unit

electron path in copper (the path is measured in centimeters, energy is measured in

kiloelectron-volts) obtained with the use of the Bethe formula looks like:

dx

dE
ffi �1:754 xmax E0ð Þ E E0=ð Þ0:754; (7.5)

where

xmax E0ð Þ ffi 3:4 � 10�4 E0 30=ð Þ1:75 (7.6)

is the path length in copper (in centimeters) of an electron with the specified initial

energyE0 (in kiloelectron-volts). From the Eq. 7.6 it follows in particular that for an

initial energy of 30 keV the electron path length in copper is 3.4 mm. For comparison

we will indicate that the path length in copper of an electron of this energy

according to Kanaya-Okayama is 2.89 mm [10].

The lower limit of integration with respect to the electron energy in the formula

(7.2) is:

Emin o; L;E0ð Þ ¼ max �ho; E L;E0ð Þf g: (7.7)

The dependence of the energy of an electron scattered in copper on the path

length and the initial energy is given by the approximate equation

E x;E0ð Þ ffi E0 1� x

xmax E0ð Þ
� �0:57

: (7.8)

The inverse of the Eq. 7.8, the expression for the path length in the copper target

of a electron with specified initial energy appearing on the right side of the Eq. 7.2

that can be obtained by solving the Eq. 7.5 looks like:

x E;E0ð Þ ffi xmax E0ð Þ 1� E

E0

� �1:754
" #

: (7.9)

To calculate the spectral-angular distribution of bremsstrahlung photons emitted by

an electron per unit path length, it is necessary to take into account that the interaction

of an electron with a polycrystalline target can be of a coherent and incoherent nature.
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In the coherent case an electron transfers to a target the wave vector q equal to the

reciprocal lattice vector g, that is, the interaction of an electron with all atoms of the

target as a whole takes place. In the second case a photon is emitted in pair collision of

an electronwith a target atom. The detailed consideration of these problems is given in

the work [5] and Chap. 5 of this monograph. Based on the analysis carried out in the

cited paper, in the Born approximation for interaction of an incident electron with a

target the necessary formulas can be obtained. For example, the spectral-angular

distribution of Bs photons emitted per unit path length in the process of coherent

scattering of a nonrelativistic electron in a polycrystal is given by the expression:

dN
cohð Þ
tot

do dOk dx
¼ n2a e

6

p �ho vm2 c3
�

�
ðX

g

S2 gð Þ d oþ gv� kvð Þ exp �u2g2
� �

� Z 1� ~FaðgÞ
� �� mo2

e2
a oð Þ ~FaðgÞ

����
����
2

s; g½ � 2
g4

dOg

4 p
; (7.10)

where na is the concentration of target atoms, e is the elementary charge, c is the

velocity of light,m is the electronmass,vis the electron velocity,S gð Þis the geometrical

structure factor of a crystal, g is the reciprocal lattice vector, o is the bremsstrahlung

photon frequency. In the formula (7.10) a oð Þ is the dynamic polarizability of target

atoms, u is the root-mean-square deviation of target atoms from the equilibrium

position (for copper u ¼ 0:077 Å at T ¼ 293�K ), ~FaðqÞ is the normalized form-

factor of medium atoms, s ¼ c k o= is the unit vector in the direction of photon

emission, dOg is the element of the solid angle around the direction of the reciprocal

lattice vector g.

On the right side of the Eq. 7.10 averaging over the directions of reciprocal

lattice vectors is carried out, which corresponds to going from a single crystal to a

polycrystalline target.

The expression (7.10) describes Bs of a nonrelativistic electron by the ordinary

and polarization channels as well as inter-channel interference. A corresponding

formula for ordinary Bs can be obtained from Eq. 7.10 if the polarizability of target

atoms is supposed to be equal to zero:

dN
cohð Þ
OB

do dOk dx
¼ n2a e

6 Z2

p �ho vm2 c3
�

�
ðX

g

S2 gð Þ d oþ gv� kvð Þ exp �u2 g2
� �

1� ~FaðgÞ
� ��� ��2 s; g½ � 2

g4
dOg

4 p
:

ð7:11Þ
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A similar expression for the frequency-angular distribution of coherent PBs per

unit path length of a nonrelativistic electron in a polycrystal is obtained from

Eq. 7.10 in the limit Z ¼ 0.

Indicative of the coherent nature of Bs is the presence of the squared concentration

of target atoms n2a in the expressions (7.10) and (7.11).

For incoherent Bs in view of two channels we have:

dN
incohð Þ
tot

do dOk dx
¼ na

e6

�ho
1þ cos2yð Þ
p v2 m2 c3

ðqmax

qmin

1� exp �u2 q2
� �� �

� Z 1� ~FaðqÞ
� �� mo2

e2
a oð Þ ~FaðqÞ

����
����
2

dq

q
; (7.12)

qmin ¼ 1� v c=ð Þ cos yð Þ o v=ð Þ; qmax ¼ 2m v �h= :

The frequency-angular distribution of incoherent ordinary Bs per unit path length

of a nonrelativistic electron in a polycrystal is given by the equation:

dN
incohð Þ
OB

do dOk dx
¼ na

Z2 e6

�ho
1þ cos2yð Þ
p v2 m2 c3

ðqmax

qmin

1� exp �u2 q2
� �� �

1� ~FaðqÞ
� ��� ��2 dq

q

(7.13)

that is obtained from Eq. 7.12 if a oð Þ ¼ 0 is assumed.

The total yield of Bs photons per unit length
dNtot E;o; yð Þ
do dOk dx

appearing in the

formula (7.2) is equal to the sum of the coherent and incoherent contributions (7.10)

and (7.12). The same is also true for the photon yield without considering the

polarization channel
dNOB E;o; yð Þ
do dOk dx

.

The squared value in the formulas (7.10) and (7.12) can be called the effective

charge number of an atom:

Zeff o; qð Þ ¼ Z 1� ~FaðqÞ
� �� mo2

e2
a oð Þ ~FaðqÞ

����
����: (7.14)

It depends on the photon frequency and the transferred wave vector. The effective

charge number of Eq. 7.14 defines the intensity of Bs of a nonrelativistic electron on

an atom in view of the ordinary and polarization channels as well as inter-channel

interference. It is interesting to note that for high enough photon energies�ho>>Ia (Ia
is the potential of atomic ionization) the approximate equationZeff o; qð Þ 	 Z is true.
The replacement Zeff o; qð Þ ! Z in calculation of intensity of Bs of a nonrelativistic

electron on an atom is called atom “stripping” [6] or the descreening approximation.
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The value

Zpol oð Þ ¼ mo2

e2
a oð Þ

����
���� (7.15)

can be called the polarization charge number since it defines the polarization channel

of Bs.

7.2.2 Results of Numerical Simulation

Let us use the obtained expressions for calculation of the yield of Bs photons in case

of normal incidence of an electron beam on a copper target for a viewing angle of

35� with account for absorption of photons, energy loss, and electron scattering in

the target material.

The spectra of total and ordinary Bs in scattering of an electron with an initial

energy of 30 keV by a thin copper foil with a thickness of 10 nm are given in Fig. 7.2.

In this case the target thickness is less than the path length of a photon and an

electron, so photoabsorption and electron energy loss are negligible. From Fig. 7.2 it

is seen that in contrast to the monotonically decreasing OBs spectrum, the spectrum

of total Bs has a dip for photon energies about 1 keV followed by the flat maximum.

These dip and maximum are connected with PBs and reflect the frequency depen-

dence of the polarization charge of a copper atom (Eq. 7.15) near the threshold of

ionization of the L-subshell.
It should be noted that without considering electron scattering in a target the Bs

spectrum has “frequency steps” corresponding to “turning-off” of the contribution of

a given reciprocal lattice vector to the process with growing photon energy [5].
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Fig. 7.2 The spectra of Bs of an electron with an initial energy of 30 keV from a thin (10 nm)

copper target calculated with account for PBs (solid curve) and without its considering (dash-and-
dot curve)
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These steps are connected with the contribution of coherent PBs. For problem

parameters corresponding to Fig. 7.2, the first frequency step in the Bs spectrum

falls on a photon energy about 1.7 keV, the second step falls on a photon energy about

1.9 keV. Electron scattering by target atoms results in “slurring” of frequency steps,

so in Fig. 7.2 they are practically indiscernible.

The spectrum of ordinary Bs in case of a thin target far from the short-wavelength

limit �ho<<E0 is well described by the dependence E0 �ho= following from the

simplest Bs consideration based on the use of the Kramers formula. This formula,

generalized to taking into account electron energy loss in a thick target, looks like

[8]:

dNph

do dO
¼ k Z

E0 � �ho
�ho

; (7.16)

where k is the coefficient of proportionality. It should be noted that the Eq. 7.16 does
not take into account the polarization Bs channel and absorption of radiation in a

target and is true for a target thickness more than the electron path length in this

target.

Presented in Fig. 7.3 are the results of calculation of the spectra of total Bs and

ОBs of an electron with an initial energy of 30 keV in a rather thick copper target

(L ¼ 1 mm), when L>Lph . It is seen that in contrast to Fig. 7.2 both spectra are

similar and differ only by absolute value. This circumstance is connected with the

fact that in this case the Bs spectrum is defined mainly by the frequency dependence

of photoabsorption identical for both Bs mechanisms.

The sharpmaximumnear a photon energy of 800 eV corresponds to themaximum

of the photon path length in copper. The flat maximum of the Bs spectrum near a

photon energy of 2.9 keV is connected with competition of two processes: the

decrease of the photon yield per unit path length in a target and the increase of
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Fig. 7.3 The spectra of Bs of an electron with the initial energy E0 ¼ 30 (solid curve) and

12.7 keV (dash-and-dot curve) from a copper target with a thickness of 1 mm
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the path length of a photon with its energy growing in a range from 1 to 9 keV. Thus

the behavior of the Bs spectrum changes with changing target thickness from 10 nm

to 1 mm, mainly due to the influence of photoabsorption.

In the analysis of experimental possibilities of investigation of the polarization

channel contribution to the total yield of Bs photons it should be remembered that

the strong L-line of characteristic copper radiation will mask Bs in an energy range

of 900 eV–1.1 keV.

With changing initial energy of an electron the length of its path in a substance

changes, which for thick enough targets should modify the Bs spectrum. This

circumstance is illustrated by Fig. 7.4, shown in which are the spectral dependences

of photon yield from a copper target with a thickness of 10 mm for electrons with an

initial energy of 30 keV (solid curve) and 12.7 keV (dash-and-dot curve) in a wide

range of photon energies from 1 to 10 keV.

It is seen that the Bs spectra in both cases havemaxima, for the lower initial energy

of an electron the maximum being shifted to the region of lower frequencies, and at a

photon energy about 3 keV the spectral dependences intersect. The comparison of the

spectra presented in Figs. 7.3 and 7.4 makes it possible to conclude that the spectral

maxima are better manifested in radiation in a thicker target. The shift of the maxima

of the curves is connected with the fact that at lower initial energy of an electron Bs is

“gathered” from a smaller path length, so the influence of radiation absorption in the

target is found to be weaker, and the photon yield in the long-wave spectral region is

found to be higher. With growing photon energy in a range from 1 to 9 keV the

photon path length becomes more than the electron path length in the target, which

explains a higher photon yield for a higher initial energy of an electron.
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Fig. 7.4 The spectra of Bs of an electron with the initial energy E0 ¼ 30 (solid curve) and

12.7 keV (dash-and-dot curve) from a copper target with a thickness of 10 mm
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As can be seen from comparison of the path lengths of a photon and an electron

in a substance, the position of these maxima is approximately described by solution

of the equation

Lph oð Þ ¼ xmax E0ð Þ; (*)

that is, the photon absorption length at the maximum of the frequency dependence of

the Bs yieldomax is equal to the electron path length in a target material. Appearance

ofmaxima on the spectral curves for Bs in a thick target is explained by competition of

influence of photoabsorption processes and electron energy loss on Bs yield from a

target. For frequencies lower thanomax the yield of bremsstrahlung photons increases

with growing frequency since the photoabsorption length in a target increases,

remaining less than the electron path length. For frequencies higher than omax the

increase of the photoabsorption length is of no further consequence since the trajec-

tory length is limited by the value xmax E0ð Þ. As a result, the yield of photons begins to
decrease with their growing energies since in this case the photon yield per unit path

length decreases.

The calculation shows that the polarization channel of Bs of an electron with an

initial energy of 30 keV makes the greatest contribution to the yield of a number of

photons from a copper target (about 60 % in view of inter-channel interference) at a

photon energy about 1.5 keV. With increasing photon energy the PBs contribution

monotonically decreases, reaching 10 % for photons with the energy of 10 keV.

With decreasing initial energy of an electron the maximum of the polarization

contribution to Bs is shifted to the region of lower photon energies.

Presented in Fig. 7.5 are the dependences of Bs intensity for photons with an

energy of 1.36 (solid curve) and 2.72 keV (dash-and-dot curve) on the thickness of a

copper target for an initial electron energy of 30 keV. It is seen that for a lower

photon energy the growth of Bs intensity with increasing target thickness goes to

saturation more fast, which is connected with the influence of photoabsorption.
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Fig. 7.5 The dependence

of total Bs on the target

thickness for two photon

energies: 1.36 (solid curve)
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196 7 Investigation of Bremsstrahlung of Nonrelativistic Electrons in Thick. . .



The numerical analysis of the ratio of total Bs to the contribution of ordinary Bs

depending on the target thickness, carried out within the framework of this

approach, is indicative of weak dependence of the contribution of PBs of non-

relativistic electrons scattered by a polycrystalline sample on its thickness.

7.3 Procedure of Manufacturing Thin Metal Films

For experiments, samples were required that were thin metal films. To avoid the

negative influence of a substrate on results of measurements of tested object

parameters, particular attention in the work was given to consideration of

possibilities to manufacture free thin-film metal structures or metalized thin films

of organic materials.

The development of technology for production of free films was coming to

optimization of a number of operations reflected in Fig. 7.6.

The film of a metal (1), in particular of copper, was applied by vacuum

evaporation to the polished surface of the substrate (2) of single-crystal potassium

dihydrogen phosphate (KDР) (Fig. 7.6а). The diameter of the substrate was 20 mm,

the thickness was 2 mm.

After coating, the ring (3) of D16T alloy was glued to the sample (Fig. 7.6b) with

K400 adhesive (4). The inner diameter of the ring was equal to the diameter of the

KDP substrate, its thickness was 3 mm, and the hole diameter was 1 mm. The

obtained construction was partially immersed in the bath (Fig. 7.6с) with distilled

water (5), so that the KDP substrate could be fully dissolved, but the solution did not

get to the other side of the sample (to provide the convenience of following rinsing).

Fig. 7.6 The technology for production of thin films

7.3 Procedure of Manufacturing Thin Metal Films 197



A substrate material for application of a thin-film coating was chosen from

considerations of its high water solubility. For example, at a temperature of 60 �С
in 100 g of water up to 50 g of potassium dihydrogen phosphate is dissolved. At the

same time it is possible to polish the surface of single-crystal substrates of this

material with high quality necessary for coating.

After removal of the process substrate by etching, the film was carefully rinsed

with distilled water. As a result, a sample of a thin-film membrane on a ring frame

was obtained (Fig. 7.6d).

With the use of the described technology it was possible to obtain free metal

films with a thickness of 1–3 mm. In case of large thicknesses there was a problem of

cracking of films and their coming off the KDP substrate in the process of vacuum

deposition. And films of a smaller thickness complicated the process of their rinsing

in the absence of damages in operations of substrate removal.

To produce samples with a more thin metal layer, substrates were used that had

the form of a thin-film lavsan membrane (1) pulled on the metal base in the form of

a ring between the parts (2) and (3) with male and female cones (Fig. 7.7).

The lavsan film as a substrate for application of a metal coating was chosen to

provide its minimum side effect on the results of measurements. This was achieved

both by the minimum thickness of the film (3 mm) and by the nature of its material –

polyethylene terephthalate (a monomer for its synthesis is a benzene ring with two

СООН end groups). The film retains its properties up to 180 �С, which allows its use
in the processes of deposition ofmetal coatings by themethod of vacuum evaporation.

In the work two samples with copper layers deposited on lavsan were studied.

The thickness of a metal layer was determined by the results of measurement of

He-Ne laser light transmission by semitransparent samples.

To estimate the thickness of a metal coating by the known transmission coefficient

T and reflection coefficient R, it is possible to use the formula following from the

Bouguer law:

exp �2 kext dð Þ ¼ Ip
~Ii
¼ Ip

Ii � R Ii
¼ T

1� R
; (7.17)

introduced here is the extinction coefficient depending on a radiation wavelength:

1 2

3

Fig. 7.7 The frame for

application of a thin metal

coating
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kext lð Þ ¼ 2 p
l

k lð Þ; (7.18)

where k lð Þ is the imaginary part of the refractive index of copper at a specified

wavelength, d is the coating thickness.

At the wavelength of a He-Ne laser l ¼ 633 nm for copper we have: k 	 3:45
according to the data of the work [9], in which optical constants for noble metals

and copper in a spectral range of 0.5–6.5 eV were measured with an error for the

refractive index less than 0.02.

From the formulas (7.17) and (7.18) it is easy to find the expression for the film

thickness:

d ¼ l
4 pk lð Þ ln

1� R

T

� 
: (7.19)

From the given formula it follows that, as it must be according to the physical

meaning, the target thickness grows with decreasing imaginary part of the refractive

index of a medium and the transmission coefficient of a coating.

In case of the first sample the transmission of the copper coating was 40 %, and

the reflection was 12 %. In view of these data, from the formula (7.19) we find for

the thickness of the first, more transparent, sample d1 ¼ 11:5 nm.

For a thicker coating produced by the above method when, according to the

carried out measurements, T < 0.0003 and R ¼ 0.4, the Eq. 7.19 gives the follow-

ing lower estimate for the metal film thickness: d2>110 nm.

7.3.1 Methods of Manufacturing Experimental Models

7.3.1.1 Thin-Film Evaporation

A glass substrate, previously washed and dried, is put in the BOC EDWARDS

AUTO 500 vacuum evaporation system. Evaporation was carried out by the

electron-beam method at a pressure of 2∙10�5 Torr. To obtain a smooth film, it is

necessary to chose a mode, in which evaporation is intensive enough, but there is no

bubble boiling yet. Presented in Fig. 7.8 is an example of an evaporated silver film.

7.3.1.2 Method of Shadow Evaporation

To obtain an island structure on the substrate surface, the method of shadow

evaporation is used (Fig. 7.9).

The method is based on the fact that at the initial stage of formation of a film on

the substrate surface the growth of separate islands of a material being evaporated

occurs. Presented in Fig. 7.10 is an example of a structure obtained by shadow

evaporation of indium.
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7.3.1.3 Technology for Manufacturing Membranes

On the polished surface of a potassium dideuterophosphate (DKDP) crystal a

required film (in our case Ag) is evaporated (Fig. 7.11a). On the surface of the

evaporated film a diaphragm is glued with epoxy adhesive (Fig. 7.11b). The obtained

construction is immersed in water on special holders for several hours (Fig. 7.11c).

Thus there remains amembrane “pulled” on the frame of the diaphragm (Fig. 7.11d).

7.4 Measurement of Bremsstrahlung Spectra for Electrons with

Energies up to 30 keV Scattered in Metal Coatings

To measure spectra of X-radiation of nonrelativistic electrons scattered in a solid-

state target, the FEI Quanta 200 scanning electron microscope was used. As a

target, a standard specimen of copper was used at the preliminary stage of

investigations. The measurements of the X-ray spectrum were carried out with

the use of the EDAX energy dispersion spectrometer with a silicon-lithium crystal.

Fig. 7.8 An Ag film on glass

Fig. 7.9 Shadow evaporation
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The energy resolution of the spectrometer determined by the half-width of the

characteristic manganese peak is 129 eV.

In Fig. 7.12 the diagram of the experimental system is presented.

An electron beam formed by the optics of the electron microscope after passing

the final lens (1) was focused on the surface of the sample (6) at a right angle to

the plane of the surface. Bremsstrahlung arising in the target was recorded by the

energy dispersion spectrometer (4).

In taking X-ray spectra the flange focal distance (the distance between the

objective lens and the sample) and the pressure in the chamber of the scanning

electron microscope remained constant. The angle between the electron beam (3)

and the direction to the spectrometer (4) was 35�.

Fig. 7.10 The structure of the initial stage of growth of a condensed film

Fig. 7.11 Manufacture of membranes
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One of important parameters in taking X-ray spectra is the beam current. In case

of current instability it is impossible to interpret the results of an experiment

correctly, so for control of this parameter the method with the Faraday cup (7) was

used. The Faraday cup is a fully enclosed, except for a small inlet hole, container.

This construction prevents reflected and secondary electrons arising under the action

of a primary beam from coming out. So the current flowing to the ground is exactly

equal to the current of an incident beam and can be easily measured by a

picoamperemeter. In our system the Keithley 6485 picoamperemeter (9) was used.

The beam current was controlled before and after taking a spectrum. To be sure that

during the experiment there were no jumps and sharp changes of current, an absorbed

current was taken from the sample. In all obtained spectra the deviation of the beam

current from the mean value does not exceed 1.5 %.

The results of measurements for different energies of the primary electron beam

are given in Fig. 7.13 (averaging over five points).

X-radiation was recorded in a quantum energy range from 1 to 7.5 keV to avoid

masking of Bs by an intensive peak of characteristic radiation of copper La1with the
energy of 933 eV. The peak that showed itself at the beginning of the spectrum

corresponds to the characteristic line Ka1 for aluminum of 1,486 eV that is caused

by the fact that part of electrons “shoots through” the copper film and begins to

excite X-radiation in the substrate. The intensity of the aluminum peak increases

with increasing energy of the primary electron beam since the depth of penetration

of electrons grows.

Fig. 7.12 The diagram of the

experimental system: 1 final

lens, 2 platinum diaphragm,

3 electron beam, 4 energy

dispersion spectrometer,

5 true secondary electron

detector, 6 sample, 7 Faraday

cup, 8 objective table,

9 Keithley picoamperemeter
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In the region of high energies (about 6.3 keV), most probably, showing itself is an

“escape” peak connected with ionization of the K-shell of a silicon atom in the

detector crystal by a photon of theK-line of copper, owing to which the spectrometer

records a pulse with an energy equal to the difference of the energy of the character-

istic peak of copper CuKa (8,037 eV) and the energy of ionization of the K-shell of a
silicon atom (1,839 eV).

The bremsstrahlung spectrum has a form of a curve with a smooth maximum, the

position of which is shifted to the region of high energies with increasing energy of

primary electrons as described by the Eq. *. The dependence of intensity for

energies of X-ray quanta to the right of the maximum and an electron beam energy

of 10 keV (the dotted thickened curve in Fig. 7.13) can be approximated by the

Kramers formula I / ðE0 � �hoÞ=�ho, where E0 is the energy of the primary beam,

�ho is the energy of a X-ray quantum.

Throughout the region the experimental spectrum is approximated by the theo-

retical formula obtained with the use of the expressions of the subsection 7.2, under

the assumption that the target thickness is 2 mm at an accelerating voltage of 30 kV

(the solid curve in Fig. 7.13).

The results of measurements of the spectra of electron radiation on a copper film

with a thickness of 100 nm are given in Fig. 7.14. The measurements of the X-ray

spectrum were carried out with the EDAX energy dispersion spectrometer with an

energy resolution of 129 eV. The results of measurements for different energies of

the primary electron beam are given in Fig. 7.14 (averaging over seven points).

X-radiation was recorded in a quantum energy range from 1 to 7.5 keV to avoid

masking of Bs by an intensive peak of characteristic radiation of copper La1with the
energy of 933 eV.

The peak that showed itself at the beginning of the spectrum corresponds to the

characteristic line Ka for aluminum of 1,486 eV that is caused by the fact that part of

electrons “shoots through” the copper foil and begins to excite X-radiation in the

substrate. The intensity of the aluminum peak increases with increasing energy of

the primary electron beam since the number of electrons that passed through the foil

Fig. 7.13 The spectrum of

X-radiation excited in a

copper target with a thickness

of 1 mm at an accelerating

voltage from 10 to 30 kV
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increases. On the spectrum a titanium peak (TiKa) with an energy of 4,510 eV is

also observed at all accelerating voltages, which is indicative of the presence of a

titanium impurity in the foil. The bremsstrahlung spectrum has a form of a curve

with a smooth maximum at the energy about 1,500 eV and does not depend on the

accelerating voltage of the electron beam.

Presented in Fig. 7.15 is the spectrumofBs from amassive aluminum sample taken

at an accelerating voltage of the electron beam of 30 kV. The spectrum has a smooth

maximum at the energy about 3,300 eV. At the beginning of the spectrum a section is

seen that corresponds to the characteristic aluminum peak (Ka) with the energy of

1,486 eV. At the centre of the spectrum at the energy of 2,978 eV a double aluminum

peak (Ka) is seen that is connectedwith the fact that the crystal of the energy dispersion

spectrometer has no time to divide two quanta that came simultaneously.

Shown in Fig. 7.16 is the X-ray spectrum from a massive manganese target arising

under the action on the target of electrons with the energy of 30 keV (the accelerating

Fig. 7.14 The spectra of Bs

from a 100-nm copper film

taken at different accelerating

voltages

Fig. 7.15 The spectrum of

Bs from a massive aluminum

sample taken at an

accelerating voltage of 30 kV
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voltage is 30 kV). The spectrum has a smooth maximum at a photon energy about

3 keV.At the end of the spectruma section is seen that corresponds to the characteristic

manganese peaks (Ka and Kb) with energies of 5,898 and 6,489 eV respectively.

At an energy of 4,059 eV a peak of loss of the characteristic lineMnKa is seen that

is connected with ionization of theK-shell of a silicon atom in the detector crystal by

a quantum of the K-line of manganese, owing to which the spectrometer records a

pulsewith an energy equal to the difference of the energy of the characteristic peak of

manganese MnKa (5,898 eV) and the energy of ionization of the K-shell of a silicon
atom (1,839 eV).
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Chapter 8

Polarization Bremsstrahlung on Nanostructures

8.1 PBs on Atomic Clusters in a Wide Spectral Range

In Chap. 1 of this monograph the examples of calculation of PBs of an electron on a

nanocluster in the low-frequency range were given, when the photon energy is from

1 to several tens of eV [1]. Here we will consider bremsstrahlung of a relativistic

electron scattered on atomic clusters in a wide frequency range with an emphasis on

the role of cooperative effects in the polarization and ordinary (static) channels of

the process [2].

Let us calculate the intensity of the polarization and ordinary channels of Bs of a

fast charged particle on a cluster within the framework of a simple model. The main

assumptions of the used approach are reduced to the first Born approximation for

interaction of an IP with a target and a jelly model for the form factor of the cluster.

Further we use the quasi-classical formula for the amplitude of static (ordinary)

bremsstrahlung and the approximate expression for the generalized polarizability of

cluster atoms.

With the use of the standard quantum-mechanical procedure (see details in the

work [3]), for the differential intensity of Bs by each of the channels normalized to

the number of atoms in a cluster N the following expression can be obtained:

dI

do dOn

¼ 1

N

ðqmax

qmin

TðqÞ dq; (8.1)

where q ¼ pf � pi þ k is the momentum transferred to the target from an IP, TðqÞ is
the partial intensity of Bs,dOn is the solid angle in the direction of radiation,o; k are
the frequency and the wave vector of a photon,pi; f are the initial and finite momenta

of an incident particle. In this section the atomic system of units �h ¼ e ¼ me ¼ 1

is used.
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The partial intensity of PBs within the framework of the used approach can be

represented as

TpolðqÞ ¼
2 Z2

p

p c3 v q
S q; Nð Þ Zpol o; qð Þ�� ��2 If q; v; o; yð Þ; (8.2)

whereZp is the IP charge, c is the velocity of light, v is the velocity of an IP,S q; Nð Þ is
the structure factor of the cluster, Zpol o; qð Þ is the effective polarization charge of

cluster atoms, If q; v;o; yð Þ is the kinematic integral appearing as a result of

integration with respect to the azimuth angle of the vector q, y ¼ pi
^k is the angle

of photon emission.

It should be noted that the expression (8.2) was obtained for a range of high

enough frequencies, in whicho>>Ia, where Ia is the potential of ionization of atoms

forming the cluster. An opposite case of low frequencieso<Iawas considered in the
work [4].

For the structure factor of the clusterwewill use the followingmodel approximation:

S q;Nð Þ ¼ N2 F2
J q;Nð Þ þ N 1� F2

J q;Nð Þ� �
; (8.3)

where

FJ q;Nð Þ ¼ 3
j1 q rðNÞð Þ
q rðNÞ (8.4)

is the form factor of the spherical cluster in the jelly model normalized to one atom.

j1ðxÞ ¼ sin x

x2
� cos x

x
(8.5)

is the spherical first-order Bessel function, rðNÞ is the cluster radius depending on

the number of atoms N that can be calculated by the formula:

rðNÞ ¼ rWS

ffiffiffiffi
N3

p
¼

ffiffiffiffiffiffiffiffiffiffiffi
3N

4 p na
3

r
; (8.6)

where rWS is the Wigner–Seitz radius, na is the solid-state concentration of cluster

atoms.

The first summand on the right side of the Eq. 8.3 is the coherent part of the

structure factor of the cluster, the second summand is its incoherent part. It should

be noted that the forms factor (Eq. 8.4) is normalized to the number of atoms by the

spatial Fourier transform of probability of distribution of atoms in a cluster in the

jelly model:

wJ r;Nð Þ ¼ 3NY rðNÞ � rð Þ
4 p rðNÞ3 ; (8.7)

where YðxÞ is the Heaviside step function. In case of a monatomic cluster the

structure factor (Eq. 8.4) is equal to one.
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The polarization charge of cluster atoms can be represented as

Zpol o; qð Þ ¼ o2 a o; qð Þj j ffi o2 a oð Þj j ~FaðqÞ; (8.8)

where a oð Þ and ~FðqÞ are the dipole polarizability and the normalized form factor of

an atom. These values were calculated by themethod proposed in [5]. The imaginary

part of the polarizability was determined with the use of the optical theorem in terms

of the cross-section of photoabsorption of an atom by the data given at the site of the

Berkeley National Laboratory. Then the real part of the polarizability was restored

with the use of the Kramers-Kronig relation. The atomic form factor was calculated

in the Slater approximation by the formula obtained in the paper [6].

The kinematic integral included in the partial intensity of PBs (Eq. 8.2) is

determined by the equation

If q; v;o; yð Þ ¼ AD� BE� CD

D2 � E2ð Þ3=2
þ CD

E2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 � E2

p � C

E2
; (8.9)

where A; B; C; D; E are rather cumbersome functions of the problem parameters,

the explicit form of which is given in [5].

The approximate expression for the partial intensity of ordinary Bs in the quasi-

classical approximation ei>>o (ei is the initial IP energy) and the relativistic limit

ðv � cÞ looks like:

TstðqÞ ffi 2

3 p c3 v q
S q; Nð Þ Zp

mp

� �2

Z2 1� FaðqÞð Þ2
1� v c=ð Þ2

� 	
1þ cos2y

� 	
1� v c=ð Þ cos yð Þ2 ;

(8.10)

wheremp is the IP mass,Z is the charge of an atomic nucleus. It should be noted that

the relative error of the formula (8.10) for nonrelativistic IP velocities does not

exceed 30 %.

The above formulas describe the intensities of two Bs channels in scattering of a

fast charged particle by a cluster for high enough radiation frequencieso>>Ia. We

neglect the inter-channel interference summand due to different dependence of PBs

and SBs amplitudes on a transferred momentum, and in the relativistic case – on a

radiation angle too.

Let us use the obtained formulas for calculation of intensity of Bs by the static

and polarization channels in scattering of a fast electron by polyatomic clusters.

We will characterize the cooperative effects in Bs by the following ratio:

x ¼ dIðNÞ
dI N ¼ 1ð Þ ; (8.11)
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where dI is the differential intensity of Bs by one of the channels normalized to the

number of atoms in a cluster. In the absence of cooperative effects it is obvious that

x ¼ 1. In the opposite limiting case of constructive interference of contributions of

cluster atoms to the Bs intensity we have: x ¼ wN, w< 1. The coefficient w takes into
account the fact that transferred momenta essential in the process on an individual

atomdo not allmake a considerable contribution to the coherent part of Bs on a cluster.

The dependence of the parameter x on the number of atoms in a copper cluster

for both Bs channels is presented in Fig. 8.1. The bremsstrahlung photon energy is

1 keV, the Lorenz factor is g ¼ 10 (g ¼ 1� v c=ð Þ2
� 	�1 2=

).

In case of the polarization channel the dependence xðNÞ is given for two values

of the radiation angle y ¼ 0:5; 1 rad. From the figure it follows that cooperative

effects are negligible for the static Bs channel and rather substantial for the

polarization channel. The analysis shows that the value of cooperative effects in

PBs grows noticeably with decreasing radiation angle. Besides, their role increases

with growing IP energy and decreasing bremsstrahlung photon frequency. From the

given curves and calculation data it follows that in case of the polarization channel,

beginning from some valueNsat depending on the radiation angle and IP energy, the

saturation of radiation intensity as a function of the number of atoms in a cluster

takes place. The analysis shows that with decreasing radiation angle and growing IP

energy the value Nsat grows.

For explanation of the listed regularities we will take into account the fact that,

as follows from the formulas for the structure factor (Eqs. 8.3, 8.4, 8.5 and 8.6),

constructive interference of contributions of different cluster atoms to the process

takes place only for low enough values of the transferred momentum:

q< 1 rðNÞ= ; (8.12)

0 20 40 60 80 100
0
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1

xpol

3
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N

Fig. 8.1 Cooperative effects

in PBs and SBs of an electron

scattered by a copper cluster

ðg ¼ 10, �ho ¼ 1 keV); 1 –

PBs, y ¼ 1 rad; 2 – PBs,

y ¼ 0.5 rad; 3 – SBs
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where rðNÞ is the radius of the cluster (Eq. 8.6). Otherwise the structure factor of the
cluster (normalized to the number of atoms) is equal to one, and cooperative effects

are absent.

It is essential that the inequation (8.33) is incompatible with the condition

q> 1 ra= (8.13)

defining the range of transferred momenta, in which ordinary Bs is not low in view

of the obvious inequation rðNÞ> ra (ra is the characteristic atomic radius). Hence a

negligible value of cooperative effects in ordinary Bs on a cluster follows.

At the same time the partial amplitude of PBs is great in case of fulfilment of an

inequation opposite to Eq. 8.13, so there is no analogous prohibition of cooperative

effects in the polarization channel. Let us write out the expression for a minimum

momentum transferred to the target from an IP, appearing in the integral (8.1):

qmin o, v, yð Þ ¼ o
v

1� v

c
cos y

� 	
: (8.14)

Following from the condition of essentiality of cooperative effects

qmin < 1 rðNÞ= (8.15)

and the formula (8.6) for the cluster radius is the expression for the saturating value

of the number of atoms in a cluster Nsat:

Nsat ¼ 4 p na v3

3o3 1� v
c
cos y

� 	3
: (8.16)

Following fromEq. 8.16 is the strong dependence of the valueNsaton the radiation

angle and IP energy in the relativistic case. For example, for the parameters of

Fig. 8.1 we have: Nsat y ¼ 1 radð Þ ¼ 27 and Nsat y ¼ 0:5 radð Þ ¼ 1; 312.
The influence of cooperative effects on the angular dependence of PBs on a

cluster is demonstrated by Fig. 8.2. Shown in this figure is the PBs intensity

normalized to its value at a zero angle as a function of the radiation angle for

different numbers of atoms in a copper cluster, including a monatomic case, at the

photon energy of 5 keV and a Lorenz factor of 10.

It is seen that the angular distribution of PBs with growing number of atoms is

narrowed, and its dependence on an angle in the limit of high values of the numberN
becomes nonmonotonic. This nonmonotonicity disappears in the nonrelativistic case

with decreasing radiation frequency and grows with increasing number of atoms.

It should be noted that the said dependences in the angular distribution of PBs on

clusters can be found experimentally only for heavy IP. In case of light IP (electron,

positron), at small radiation angles the static channel prevails, cooperative effects in

which are low.
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To describe the relative contribution of PBs to the process, let us introduce the

R-factor according to the equation:

R ¼ dIpol
dIst

: (8.17)

The angular dependence of the R-factor of an electron with g ¼ 10 for a photon

energy of 1 keV and different numbers of atoms in a copper cluster is presented in

Fig. 8.3. It is seen that with increasing number of atoms the role of PBs grows.

For example, for a monatomic case the angle, at which the intensities of PBs and

SBs become equal, is 30�, and for N ¼ 100 this angle is 10�.
Figure 8.4 demonstrates the influence of cooperative effects on the relative

contribution of the polarization channel to emission of a fast electron (g ¼ 10)

scattered by a copper cluster at different energies of a bremsstrahlung photon and a

radiation angle of 15�.
The growth of the R-factor with increasing number of electrons in a cluster goes

to saturation more fast for high photon energies according to the formula (8.16) for

the value Nsat . Following from this figure is the strong dependence of the role of

polarization effects on the cluster size, especially in the low-frequency range.

The condition of essentiality of cooperative effects in the spectrum of PBs on a

cluster can be obtained from the inequation (8.15) in view of the explicit expression

for the minimum momentum transferred to the target (Eq. 8.14). It looks like:

o<omax ¼
ffiffiffiffiffiffiffiffiffiffiffi
4 p na
3N

3

r
v

1� v
c
cos y

: (8.18)
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Fig. 8.2 The angular dependence of the normalized intensity of PBs of an electron on an individual

atom (Eq. 8.22) and a copper cluster: N ¼ 100 (Eq. 8.23), N ¼ 1,000 (Eq. 8.24); �ho ¼ 5 keV,

g ¼ 10
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For frequencies more than omax cooperative effects in Bs on a cluster are low.

In the nonrelativistic limit v<<c the maximum frequency of manifestation of

cooperative effects does not depend on the radiation angle and is:

0 5 10 15 20

3
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1
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100R

q°

Fig. 8.3 The angular dependence of theR-factor for different numbers of atoms in a copper cluster

including a monatomic case: �ho ¼ 1 keV, g ¼ 10, 1 – N ¼ 100, 2 – N ¼ 10, 3 – N ¼ 1

N
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Fig. 8.4 The dependence of the R-factor on the number of atoms in a copper cluster for different

frequencies 1 – �ho ¼ 500 eV, 2 – �ho ¼ 2 keV, 3 – �ho ¼ 3 keV; g ¼ 10, y ¼ 15�
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onrel
max ¼

v

rWS

ffiffiffiffi
N3

p : (8.19)

The value of the Wigner–Seitz radius for metal clusters varies within

rWS ¼ 2�4; so the characteristic value of frequency (Eq. 8.19) for a mid-size

cluster and an IP velocity about 10 a.u. is 1 a.u.

It should be noted that in the frequency a range o< 1 a:u: the calculation model

used here becomes inadequate since then the dynamic polarizability of the cluster

will be to a great extent defined by collective excitations of the cluster electrons.

Such a situation for a nonrelativistic IP was considered in the work [7].

In the relativistic limit g>>1 it is convenient to represent the formula (8.18) in

the form:

omax ¼ 1

rWS

ffiffiffiffi
N3

p 2 g2

4 g2 sin2 y 2=ð Þ þ 1
(8.20)

clearly demonstrating the dependence of the maximum frequency omax on the IP

energy. From the Eq. 8.20 it follows that in contrast to the nonrelativistic case, in the

relativistic limit the influence of cooperative effects on the PBs spectrum is essen-

tially defined by the angle of photon emission. For small angles and high values of

the Lorenz factor of an IP the maximum frequency of manifestation of cooperative

effects in PBs can reach high values. However, in this case it should be remembered

that in the angular range y<g�2 in Bs of an electron (positron) the static channel

prevails. So the question about a role of cooperative effects in the spectrum of Bs of a

light charged particle on a cluster should be decided in view of concrete values of

problem parameters. At the same time for Bs of heavy charged particles, when SBs is

negligible, the spectral restriction on the role of cooperative effects in the relativistic

a case is given by the frequency of Eq. 8.20.

The dependence of the spectrum of PBs on a copper cluster consisting of ten

atoms on the IP energy is presented in Fig. 8.5 for a radiation angle of 0.5 rad.

It is seen that with growing Lorenz factor the intensity of radiation increases, and

the maximum of the spectral dependence is shifted to the region of high frequencies.

These changes are most pronounced in going from fast, but nonrelativistic IP to

weakly relativistic particles.With further growth of the Lorent factor the spectrum of

PBs on a cluster varies not so appreciably. With decreasing radiation angle the

spectrum of PBs of relativistic IP is found to be more pulled into the region of high

frequencies according to the formula (8.20), following from which is also the

decrease of the maximum frequency with growing number of atoms in a cluster.

The intensity of total Bs and PBs in scattering of a nonrelativistic electron on a

copper cluster and an individual atom as a function of the IP velocity is shown in

Fig. 8.6 for the radiation angle y ¼ 1 rad and the photon energy �ho ¼ 200 eV. It is

seen that in the nonrelativistic case there is the optimum value of the electron

velocity vopt, at which the intensity of PBs on a cluster is maximum. The dependence

of this optimum velocity on the problem parameters is given by the expression:

vopt ¼ o rðNÞ: (8.21)
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Fig. 8.5 The spectrum of PBs on a copper cluster (N ¼ 10) for different values of the Lorentz

factor and a radiation angle of 0.5 rad: 1 – g ¼ 102, 2 – g ¼ 10, 3 – g ¼ 1:1
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Fig. 8.6 The dependence of the Bs and PBs intensity on the electron velocity in the nonrelativistic

case for a copper cluster (N ¼ 20) and an individual atom, �ho ¼ 200 eV, y ¼ 1 rad. 1 – total Bs

(N ¼ 20), 2 – PBs (N ¼ 20), 3 – total Bs (N ¼ 1), 4 – PBs (N ¼ 1)
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In case of the process on an individual atom the cluster radius in Eq. 8.21 should

be replaced by the characteristic atomic radius ra . The given formula can be

obtained with the use of the expression for the minimum transferred momentum

(Eq. 8.14) in the case v<<c.

From the Eq. 8.21 it follows that with decreasing frequency and size of a cluster the

value of the optimum velocity decreases. In particular, for the process on an individual

atom and the photon energy �ho ¼ 200 eV the value vopt lies beyond the range of

applicability of the Born approximation, so the velocity dependence of the Bs and PBs

intensity looks like a monotonically decreasing curve.With growing number of atoms

in a cluster the value of the optimum velocity increases as seen from the formulas

(8.21) and (8.6).

With decreasing radiation angle the maximum in the velocity dependence of the

Bs intensity disappears, and for PBs it becomes less pronounced. This is connected,

on the one hand, with increasing contribution of the static channel to the process

(see the formula (8.10)), and on the other hand, with growing value of the minimum

transferred momentum (Eq. 8.14).

Figure 8.6 demonstrates the disappearance of cooperative effects with decreasing

IP velocity: for the given photon energy (200 eV) the total Bs and PBs on a cluster

and one atom coincide in the limit of low velocities.

In the high-frequency range the velocity dependence of the PBs intensity becomes

monotonically increasing, which is connected with the natural restriction on the

optimum IP velocity: vopt<137: The monotonically increasing dependence of

the PBs intensity on the IP energy is characteristic also for the relativistic case (with

the exception of low frequencies not considered here).

Based on the analysis carried out in this section, it is possible to draw a conclusion

about the essentiality of cooperative effects in Bs of a fast (including relativistic)

charged particle scattered by a polyatomic cluster in a wide range of frequencies.

These effects caused by constructive interference of the contributions of atoms to the

process by the polarization channel result in nonlinear growth of the PBs intensity as

a function of the number of atoms in a cluster. At the same time for the static Bs

mechanism the contribution of different atoms to radiation is incoherent, which is

caused by the smallness of impact parameters, on which SBs is formed.

It is shown that cooperative effects result in significant modification of the main

characteristics of Bs on a cluster in comparison with a monatomic case. For example,

in the high-frequency range with growing number of atoms the pattern of PBs is

narrowed, and for large enough clusters the angular dependence of PBs of relativistic

particles becomes nonmonotonic: a maximum appears with nonzero radiation angles.

With growing IP energy the maximum of the spectral distribution of PBs on a

cluster is shifted to the region of high frequencies. The form of the high-frequency

part of the spectrum in the relativistic case strongly depends on the radiation angle.

With reduction of this angle the Bs intensity decreases with growing frequency

much more slowly than for wide angles.
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The analysis of the Bs intensity as a function of the IP velocity has shown that in the

nonrelativistic case this dependence can be of different nature: from monotonically

increasing to monotonically decreasing. In the relativistic limit the PBs intensity

monotonically increases with IP energy. In the limit of low IP velocities the role of

cooperative effects in Bs on a cluster becomes negligible.

The obtained results can be used in interpretation of experimental data on Bs of

fast charged particles on clusters in the range of high enough photon energies.

8.2 PBs on Metal Nanospheres in a Dielectric Matrix

Metal nanoparticles of noble metals find use as nanomarkers for biological objects,

for investigation of behavior of chemical and biological processes, as sensors for

local optical environmental monitoring, for electrical control of light switching, for

measurement of an electric charge, etc. [8]. In the said applications, as a rule, scattering

of electromagnetic radiation in the spectral range corresponding to excitation of

surface plasmons (the photon energy �ho ¼ 1� 4 eV) is used.

Polarization bremsstrahlung (PBs) is a fundamental radiative process that can be

interpreted as the conversion of the eigenfield of a charged particle on target electrons

to a propagating electromagnetic wave [9]. Following from this interpretation is a

possibility (by analogywith ordinary radiation) to use PBs for substance spectroscopy,

in particular, for determination of parameters of metal nanoparticles.

In recent years works have appeared that are dedicated to the study of PBs as a basic

process for nanomaterial diagnostics. For example, in the paper [10] a possibility to use

this process for determination of a fullerene structure on the basis of calculation of a

target form factor was discussed. PBs spectroscopy for diagnostics of polycrystalline

and fine-grained media in the more general context of modification of the energy

dispersionmethodwas considered in the work [11].We believe that PBs spectroscopy

has also considerable promise as a physical method for metal nanosphere diagnostics.

8.2.1 General Formulas

In the Born approximation for interaction of an incident particle (IP) with a target in

a dielectric medium the differential PBs cross-section is given by the expression [2]

(in this section we use the Gaussian system of units):

dsPB

do dOk

¼ 2

p
o3

c3
e2p
�h v2

ðqmax

qmin

a o; qð Þj j2 If q; v;o; yð Þ dq
q
; (8.22)

where dOk is the element of a solid angle in the direction of radiation, c is the velocity
of light, ep is the IP charge, v is the IP velocity, a o; qð Þ is the generalized dynamic

polarizability of the target, k ¼ ffiffiffiffiffi
em

p
o c=ð Þ s is the wave vector of a bremsstrahlung

photon in a medium with the dielectric permittivity em , y is the angle between the
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electron velocity vector and the wave vector of a bremsstrahlung photon (the radiation

angle). The value q ¼ pf � pi þ k
� 	

�h= is the wave vector transferred from an IP to

the target (pi; f are the initial and finite momenta of an IP). The limits of integration on

the right side of the Eq. 8.22 are qmin ¼ 1� v ~c=ð Þ cos yð Þ o v=ð Þ, qmax ¼ 2 m v �h= ,

~c ¼ c
ffiffiffiffiffi
em

p

is the velocity of light in a medium. The dimensionless kinematic

integral If q; v;o; yð Þ appearing in the formula (8.22) is determined by the

equation

If q; v;o; yð Þ ¼ q3 v

2 p

ð
dOq d o� kvþ qvð Þ s;oem v c2


 � q
� �

2

q2 � 2 kqð Þ2 ; (8.23)

where s is the unit vector in the direction of photon emission. The solid-angle

integral of the wave vector transferred to the target in the determination (8.23) can

be calculated in elementary functions [5]. We do not give here a corresponding

expression because of its cumbersomeness.

In the multiplicative approximation that well works for multielectron systems

[12] the equation is true

a o; qð Þ ¼ a oð Þ ~FðqÞ; (8.24)

where a oð Þ is the dynamic polarizability, ~FðqÞ is the normalized form factor of the

target ( ~Fð0Þ ¼ 1). Substituting the relation (8.24) in the formula (8.22) and using the

expression for the radiation scattering cross-section in terms of the target polarizability

sscat oð Þ ¼ 8 p
3

o
c

� 	4

a oð Þj j2; (8.25)

we find the representation of the cross-section of PBs on an isolated target in terms

of the radiation scattering cross-section

dsPB

do dOk

¼ 3

4 p2
c

v2

e2p
�ho

sscat oð Þ
ðqmax

qmin

~F
2ðqÞ If q; v;o; yð Þ dq

q
: (8.26)

The convenient use of the expression (8.26) with regard to the analysis of PBs on

metal nanospheres in a range of photon energies of 1–5 eV consists in the fact that

the scattering cross-section sscat oð Þ can be calculated using the Mie theory [13].

Within the framework of this theory the cross-section of radiation scattering by a

metal sphere of the radius rs placed in a dielectric medium looks like

s Mieð Þ
scat oð Þ ¼ 2 p c2

em o2

X1
n¼1

2 nþ 1ð Þ an x; mx; mð Þj j2 þ bn x; mx; mð Þj j2
n o

; (8.27)
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where x ¼ k rs ¼ ffiffiffiffiffi
em

p o
c rs and m ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

es oð Þ em=
p

are the parameters of the Mie

theory, es oð Þ is the dielectric permittivity of the nanosphere material. The expansion

coefficients an and bn are

an x; y;mð Þ ¼ c0
nðyÞcnðxÞ � mc0

nðxÞcnðyÞ
c0

nðyÞ znðxÞ � m z0nðxÞcnðyÞ
; (8.28)

bn x; y;mð Þ ¼ mc0
nðyÞcnðxÞ � c0

nðyÞc0
nðxÞ

mc0
nðyÞ znðxÞ � z0nðxÞcnðyÞ

; (8.29)

cnðzÞ ¼ z jnðzÞ ¼
ffiffiffiffiffiffi
p z
2

r
Jnþ1=2ðzÞ; (8.30)

znðzÞ ¼ z hð1Þn ðzÞ ¼
ffiffiffiffiffiffi
p z
2

r
H

ð1Þ
nþ1 2= ðzÞ (8.31)

are the functions coined by Debye; jnðzÞ, hð1Þn ðzÞ are the spherical Bessel and Hankel
functions, Jnþ1=2ðzÞ and H

ð1Þ
nþ1 2= ðzÞ are the Bessel and Hankel functions.

The formula for the normalized form factor of a spherical target looks like [2]

~FsðqÞ ¼ 3
j1 q rsð Þ
q rs

: (8.32)

From this equation it follows in particular that ~Fs q ¼ 0ð Þ ¼ 1 and ~Fs q>ð
4 rs= Þ<0:01:

8.2.2 Results and Discussion

The spectral dependences of the PBs cross-section are presented in Fig. 8.7 for

different nanosphere radii and in Fig. 8.8 for different velocities of an incident

electron; the radiation angle in these figures is taken equal to 30�.
The maximum of the spectral dependence of the PBs cross-section shown in

Fig. 8.7 is caused by excitation of a plasmon on the surface of the metal sphere

under the action of the electric field of a scattered electron. From this figure it is

seen that with increasing nanosphere radius the position of the spectral maximum of

the PBs cross-section is shifted to the region of lower photon energies, and its width

increases.

An analogous dependence takes place for the cross-section of radiation scatter-

ing by metal nanospheres [8], which is caused by a change of the resonance

frequency of a surface plasmon ores with changing radius of the sphere. Really,
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Fig. 8.7 The differential PBs cross-section for electron scattering by silver spheres with different

radii in glass: solid line – rs ¼ 30 nm, dotted line – rs ¼ 60 nm, dashed line – rs ¼ 90 nm,y ¼ p 6= ,

v ¼ 50 a.u.
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Fig. 8.8 The differential PBs cross-section for electrons with different velocities scattered by a

silver sphere in glass: solid line – v ¼ 20 a.u., dotted line – v ¼ 50 a.u., dashed line – v ¼ 90 a.u.,

y ¼ p 6= , rs ¼ 60 nm
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the expression for the resonance frequency of a dipole plasmon on the sphere

surface looks like

ores ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

o2
p

e1 þ 2 em
� g2

s
; (8.33)

where op is the plasma frequency of electrons of the sphere substance, g is the

damping constant of a surface plasmon,e1 � 1is the contribution of bound electrons

to the dielectric permittivity of the metal. For large enough radii (rs > 30 nm in case

of a silver sphere) the damping constant becomes proportional to the cubed radius of

the sphere g / r3s , which defines a shift of the maximum of the radiation scattering

and PBs cross-sections with increasing radius of the metal sphere.

Shown in Fig. 8.8 is the PBs cross-section as a function of the photon energy for

different electron velocities and a silver sphere radius of 60 nm, the radiation angle

is 30�. It is seen that for specified values of parameters the PBs cross-section with

increasing electron velocity increases, and its spectral maximum is shifted to the

region of higher frequencies. For small nanosphere radii rs < 20 nm on the spectral

curve of the PBs cross-section additional maxima appear that are caused by

excitation of quadrupole and octupole surface plasmons.

It is seen that with approach of the electron velocity to the velocity of light in the

glass matrixv� ¼ ~c ¼ c
ffiffiffiffiffi
em

p
 ’ 91:33 a.u. the velocity dependence of the PBs cross-

section has singularity. Physically the said singularity corresponds to a possibility of

radiation by an electron of a propagating electromagnetic field in a medium without

scattering by a nanosphere. Besides, following fromFig. 8.9 is the presence ofmaxima

on the velocity dependence of the PBs cross-section for small enough metal sphere

radii. The value of electron velocity vmax corresponding to these maxima decreases

with decreasing radius according to the relation vmax / o rs.
Oscillations of the PBs cross-section in Fig. 8.9 at low electron velocities arise

due to the contribution to the process of transferred wave vectors of high magnitude:

q> 4 rs= , when oscillations of the target form factor (Eq. 8.32) as functions of the

argument x ¼ q rs take place.
The dependence of the differential PBs cross-section on the nanosphere radius for

different energies of a bremsstrahlung photon is demonstrated in Fig. 8.10 for an

electron velocity of 50 a.u. and a radiation angle of 90�. It follows from Fig. 8.10 that

with increasing photon energy the optimum radius of a nanoparticle, at which the

PBs cross-section is maximum, decreases. In this case it turns out that the greatest

value of the cross-section at the maximum of the radius dependence is reached for

�ho ¼ 2:8 eV.

Figure 8.11 demonstrates the narrowing of the angular dependence of the

normalized PBs cross-section with increasing nanosphere radius for an IP velocity

close to the velocity of light in a medium: v ! ~c. The normalization of the cross-

section was carried out to its value at a zero radiation angle. It is seen from this figure

that for small nanosphere radii (rs ¼ 10 nm) the angular dependence of the PBs

cross-section practically coincides with the angular dependence of linear dipole
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radiation. For lower electron velocities the effect of narrowing of the angular PBs

distribution also takes place, though it is not so pronounced.

Thus in this section polarization bremsstrahlung on metal spheres in a dielectric

medium is investigated theoretically with the use of the Mie theory of light scattering.
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0

5

10

15

v, at. u.

dsPB
,

nm2/eV strad

dw dWk 

Fig. 8.9 The PBs cross-section for electron scattering by a silver sphere in glass as a function of

the electron velocity for y ¼ p 2= , �ho ¼ 2:8 eV. Solid line – rs ¼ 20 nm, dotted line – rs ¼ 40 nm,

dashed line – rs ¼ 60 nm
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Fig. 8.10 The PBs cross-section for electron scattering by a silver sphere in glass as a function of

the sphere radius for v ¼ 50 a.u., y ¼ p 2= . Solid line – �ho ¼ 2:6 eV, dotted line – �ho ¼ 2:8 eV,

dashed line – �ho ¼ 3:0 eV
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The spectral-angular distribution of PBs is calculated in the vicinity of a surface

plasmon resonance for different radii of nanospheres and IP velocities. It is shown

that the spectral line shape for PBs and the angular dependence are modified with the

increase of the target radius. The carried out analysis makes it possible to determine

an optimum region of parametric variation, in which the use of PBs spectroscopy for

investigation of the structure and physical properties of metal nanoparticles in a

dielectric matrix is most promising.

8.3 Bremsstrahlung of Fast Electrons on Graphene

8.3.1 Cross-Section of Bremsstrahlung on Graphene

8.3.1.1 General Expression for the Cross-Section of the Process

on an Ensemble of Atoms

The cross-section of a photoprocess on an ensemble of target atoms looks like

(in case of a monatomic target) [14]:

dst arg et ¼
X
j

exp i q rj
� ������

�����
2

dsatom; (8.34)
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Fig. 8.11 The angular dependence of the normalized PBs cross-section for electron scattering

by a silver sphere in glass for v ¼ 91 a.u., �ho ¼ 2:8 eV. Solid line is the dipole dependence

1þ cos2yð Þ 2= , dotted line – rs ¼ 10 nm, dashed line – rs ¼ 50 nm, dash-and-dot line – rs ¼ 90 nm
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where the sum is over all target atoms being in the volume of interaction, dsatom is

the differential cross-section of the process on one atom under consideration,

q ¼ pf � pi

� 	
�h= þ k

is the wave vector transferred from an incident electron to the target, pi; pf are the

initial and finite electron momenta, k is the wave vector of a photon.

In the state of thermodynamic equilibrium the squared absolute value in the

formula (8.34) should be properly averaged:

X
j

exp i q rj
� ������

�����
2

!
X
j; j0

exp i q rj � rj0
� �� �* +

:

8.3.1.2 Structure Factor of a Three-dimensional Crystal

The structure factor of a medium in a three-dimensional case (a three-dimensional

single crystal, the angle brackets mean averaging over atom positions) [14]:

X
j;j0

exp iq rj � rj0
� �� �* +

¼ N 1� exp �u2 q2
� �� �

þ N na 2pð Þ3
X
g

e�u2 g2 S gð Þj j2 dð3Þ q� gð Þ; (8.35)

whereN ¼ N0 Ncell is the full number of atoms in the volume of interaction,N0 is the

full number of cells in the volume of interaction, Ncell is the number of atoms in a

cell, g is the wave vector of a reciprocal lattice, na ¼ Ncell Dcell= is the volume

concentration of atoms, Dcell is the volume of a unit cell.

In the formula (8.35) the value S qð Þ is introduced – the normalized structure factor
of a unit cell of a crystal on the wave vector q, S q ¼ 0ð Þ ¼ 1, dð3Þ qð Þ ¼ d qxð Þ d qy

� �
d qzð Þ is the three-dimensional delta function of the wave vector transferred to the

target.

It should be noted that in the book [14] the nonnormalized structure factor of a

cell is used.

8.3.1.3 Structure Factor of a Two-dimensional Crystal

In going to a two-dimensional case (we assume that a two-dimensional single

crystal lies in the x y plane, the z coordinate is fixed: z ¼ z0; graphene), when:

q rj ¼ qz z0 þ qk rj;

for the structure factor of the target by analogy with the three-dimensional case

we have
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X
j; j0

exp i qk rj � rj0
� �� 	* +

¼ N 1� exp �u2 q2k
� 	� 	

þ N ns 2pð Þ2
X
g

e�u2 g2 S gð Þj j2 dð2Þ qk � g
� 	

;

(8.36)

where rj is the radius vector of an atom in the plane of the two-dimensional crystal,

r ¼ x; yð Þ, dð2Þ qk
� 	

¼ d qxð Þ d qy
� �

is the two-dimensional delta function, ns is the

two-dimensional concentration of atoms, u is the root-mean-square deviation of

atoms from the equilibrium position. The case u ¼ 0 corresponds to going to a

perfect crystal.

In Fig. 8.12 the crystal structure of graphene is presented.

The following values are introduced: a ¼ ffiffiffi
3

p
a0 ¼ 0:246 nm is the lattice

constant for graphene, a0 ¼ 0:142 nm is the distance between the nearest atoms

(the distance between the atoms in a unit cell, graphene has two atoms in a unit cell).

8.3.1.4 Structure Factor of a Unit Cell of Graphene

We assume that an atom A (Fig. 8.12) is at the origin of coordinates, then

S qð Þ ¼ 1

2
1þ exp i q rBð Þ½ �: (8.37)

From Fig. 8.12 it follows that

rB ¼ 2

3
e1 þ 1

3
e2;

where e1 ¼
ffiffi
3

p
a

2
;� a

2

� 	
and e1 ¼ 0; að Þ are the basis vectors if the y-axis is directed

straight down. Displacing a unit cell by these vectors, it is possible to reproduce the

Fig. 8.12 The crystal

structure of graphene. A unit

cell (CDEF) and elementary

translation vectors (e1, e2) are

shown (The author Alexander

Mayorov, InterNet)
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whole crystal lattice of graphene. Then for the graphene reciprocal lattice vectors

we have

g1 ¼ 4 p
ffiffiffi
3

p
a

.
; 0

� 	
; g2 ¼ 2 p

ffiffiffi
3

p
a

.
; 2 p a=

� 	
; (8.38)

so ei gj ¼ 2 p dij according to the definition of the reciprocal lattice vector.

In the Cartesian coordinates (yB ¼ 0) it can be written:

g rB ¼ gx xB þ gy yB ¼ gx xB ¼ gx a
ffiffiffi
3

p.
;

where the reciprocal lattice vector is:

g ¼ n1 g1 þ n2 g2; (8.39)

n1;2 are the integers and

gx ¼ n1 g1x þ n2 g2x:

Thus the scalar product included in determination of the structure factor of a unit

cell of graphene (Eq. 8.37) is

g rB ¼ 4 p
3

n1 þ 2 p
3

n2: (8.40)

Accordingly, the structure factor of a unit cell of graphene is

S gð Þ ¼ 1

2
1þ exp i 2 n1 þ n2ð Þ 2 p

3

� � �
: (8.41)

Hence for the squared absolute value of the structure factor of graphene we find

S gð Þj j2 ¼ 1

2
1þ cos

2 p
3

2 n1 þ n2ð Þ
� � �

: (8.42)

The magnitude of the graphene reciprocal lattice vector can be determined in

view of the above expressions:

g n1; n2ð Þ ¼ 4 pffiffiffi
3

p
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 þ n22 þ n1 n2

q
: (8.43)
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The two-dimensional concentration of graphene atoms that is included in the

structure factor of the two-dimensional crystal is

ns ¼ Ncell

Scell
:

The number of atoms in a unit cell of graphene isNcell ¼ 2, the area of a unit cell

is Scell ¼
ffiffi
3

p
a2

2
, so

ns ¼ 4ffiffiffi
3

p
a2

: (8.44)

Let us consider bremsstrahlung arising as a result of electron scattering by the

two-dimensional plane of graphene. The geometry of the process is shown in

Fig. 8.13.

8.3.2 Cross-Section of Polarization Bremsstrahlung
on a Carbon Atom

The cross-section of polarization bremsstrahlung on an atom, differential with

respect to the frequency and the solid angle of photon escape, is

ds PBð Þ
a

do dOk

¼ e2

�ho
c

p2 v

ð
d o� k vþ q vð Þ s; o v c2


 � q
� �2

q2 � 2 k qð Þ2
o
c

� 	2

a o; qð Þ
����

����
2

dq;

(8.45)

where a o; qð Þ is the generalized dynamic polarizability of an atom, s ¼ k kj j= is the

unit vector in the direction of photon emission.

v

k

z (001)

x (100)

y (010)

y

j

a

Fig. 8.13 The geometry of

the process: a is the angle of

photon emission with respect

to the normal of the graphene

plane, c is the polar angle of

electron incoming with

respect to the normal of the

graphene plane, ’ is the

azimuth angle of electron

incoming
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In the multiplicative approximation the generalized dynamic polarizability of an

atom is expressed in terms of the dipole polarizability and the atomic form factor:

a o; qð Þ ¼ a oð Þ ~FðqÞ; (8.46)

where ~FðqÞ is the atomic form factor normalized by the condition ~F q ¼ 0ð Þ ¼ 1.

To calculate the atomic form factor FðqÞ that within the framework of the

multiplicative approximation defines the dependence of the generalized polarizability

of an atom on the value of a transferred momentum (of a wave vector), it is

convenient to use the Slater wave functions of atomic orbitals. As shown in the

work [15], the form factor calculated in such a way differs from its Hartree-Fock

analog by no more than units of percents. Corresponding formulas look like:

~FðqÞ ¼ 1

Z

X
j

Nj Q q; bj; mj
� �

; Q q; b; mð Þ ¼
1þ q 2b=ð Þ2
h im

m q b=ð Þ sin 2 m atan
q

2 b

� � �
;

whereNj is the number of equivalent electrons in the j th atomic shell,b andm are the
Slater parameters of atomic shells.

The normalized form factor of a carbon atom calculated according to the above

formulas is presented in Fig. 8.14 as a function of the magnitude of the transferred

wave vector q. The nonmonotonicity of decrease of the form factor with growing

valueq is connected with the shell structure of an atom. Corresponding to high values

of q is the contribution to ~FðqÞ of the inner shell of a carbon atom with the principal

quantum number n ¼ 1. Corresponding to small values of q is the second (outer)
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q

Fig. 8.14 The normalized form factor of a carbon atom, the X-axis is plotted in atomic units
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atomic shell. A bend of the dependence ~FðqÞ at q � 1 corresponds to transition from

one electron shell to another.

Since the dynamic polarizability of an atom is a complex value, the real and

imaginary parts of which are related by the Kramers-Kronig relations, it is convenient

to begin its calculationwith the imaginary part. To obtain the frequency dependence of

the imaginary part of the dipole polarizability, we proceed from its relation with the

cross-section of radiation absorption sph oð Þ given by the optical theorem:

Im a oð Þð Þ ¼ c

4 po
sph oð Þ: (8.47)

In this book, to determine the spectral dependence of the photoabsorption cross-

section sph oð Þ, the data on the radiation absorption coefficient given at the Internet
site of the Berkeley National Laboratory are used.

The real part of the atomic polarizability can be restored by the known imaginary

part with the use of the Kramers-Kronig relation that for calculations is convenient

to be presented as follows:

Re a oð Þð Þ ¼ 2

p

ð1

0

oIm a oð Þð Þ � o0Im a o0ð Þð Þ
o2 � o02 do0: (8.48)

This equation, due to the presence of the second summand in the numerator of

the integrand, allows calculation of the principal-value integral appearing in the

standard form of the Kramers-Kronig relations in terms of a punctured integral with

a “puncture” eliminating the singularity of the integrand, which is convenient in

practical calculations. At high frequencies the imaginary part of the polarizability

decreases aso�9 2= , so the integral on the right side of the equation converges well at

infinity.

The results of calculation of the dynamic polarizability of a carbon atom are

presented in Fig. 8.15. Given for comparison in the same figure is the number of

electrons in a carbon atom, tending to which in the high-frequency limit is the real

part of the atomic polarizability normalized to the polarizability of a free electron

with the opposite sign: a oð Þ ! a oð Þ �e2 mo2

� �


.

From this figure it is seen that in the high-frequency limit the imaginary part of the

polarizability tends to zero. The peculiarities on the curves of Fig. 8.15 correspond to

potentials of ionization of electron subshells of a carbon atom.

8.3.3 Polarization Bremsstrahlung on Graphene

If the expression for the structure factor of graphene (Eq. 8.36) is substituted in the

general formula for the cross-section of bremsstrahlung on a polyatomic target

(Eq. 8.34), two terms will appear in the Bs cross-section that correspond to the

incoherent (the first summand on the right side of Eq. 8.36) and coherent (the second

summand on the right side of Eq. 8.36) parts of the structure factor.
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8.3.3.1 Incoherent PBs on Graphene

Substituting Eq. 8.36 in Eq. 8.34, we find that the cross-section of incoherent PBs

on a target (in terms of one atom) is

1

N

ds PBð Þ
incoh

do dOk

¼ e2

�ho
c

p2 v

ð
d o� k vþ q vð Þ

	 1� exp �u2 q2
� �� � s; o v c2


 � q
� �2

q2 � 2 k qð Þ2
o
c

� 	2

a o; qð Þ
����

����
2

dq:

(8.49)

Integration on the right side of this equation with respect to the angles of the

vector q in view of the presence of the delta function gives:

1

N

ds PBð Þ
incoh

do dOk

¼ 2 e2

p v2 c3 �ho

ðqmax

qmin

dq

q
I’ q; v; o; yð Þ 1� e�u2 q2

� 	
o2 a o; qð Þ�� ��2;

(8.50)

where

qmin o,v,yð Þ ¼ o
v

1� v

c
cos y

� 	
; qmax ¼ 2m v �h= ;
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w, eV

Fig. 8.15 The real (solid curve) and imaginary (dotted curve) parts of the dynamic polarizability

of a carbon atom multiplied by the squared frequency, the Y-axis is plotted in dimensionless units,

minus in the definition of the Y-axis relates to the real part and plus relates to the imaginary part of

the polarizability
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m is the reduced mass of an electron and a target atom, y ¼ angle k; vð Þ is the
radiation angle,

I’ q; v;o; yð Þ ¼ q3 v

2 p

ð
dOq d o� kvþ qvð Þ s;o v c2


 � q
� �

2

q2 � 2 k qð Þ2 (8.51)

is the dimensionless kinematic integral calculated in the explicit form in [5], dOq is

the element of the solid angle around the vector q. In the nonrelativistic limit v<<c
the kinematic integral looks like

I’ q; v;o; yð Þ ffi 1þ cos2y
2

þ o
q v

� �2
1� 3 cos2y

2
: (8.52)

In the general case the kinematic integral can be represented as a function of

three variables I’ q; v;o; yð Þ ¼ ~I’ x ¼ q c o= ; b ¼ v=c; yð Þ, where

~I’ x; b; yð Þ ¼ x2 f1 x; b; yð Þ
D3=2 x; b; yð Þ þ

x2

4

f2 x; b; yð Þ
D1=2 x; b; yð Þ � 1

" #
; (8.53)

f1 ¼ x2 þ 2 ~x cos y
� �

x2 � ~x2
� �

cos2yþ ~x� bð Þ2sin2y
h i

þ 4 sin2y cos y ~x� bð Þ x2 � ~x2
� �

;

f2 ¼ x2 þ 2 ~x cos y; ~x ¼ qmin

c

o
¼ b�1 � cos y;

D ¼ x2 � 2 1� cos y
b

� �� �2

þ 4
1� b2

b2
sin2y:

In the relativistic limit (b ! 1) the function ~I’ x; b; yð Þ has a sharp maximum in

fulfilment of the equation xmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1� cos y b=ð Þp � 2 sin y 2=ð Þ , and the sharp-

ness of the maximum increases for wide radiation angles y ! p . This maximum

corresponds to exit of a photon “to the mass shell” in case of propagation of an

electromagnetic field in a medium.

8.3.3.2 Coherent PBs on Graphene

The cross-section of coherent PBs on a two-dimensional periodic structure, which

is graphene, (in terms of one atom) is
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1

N

ds PBð Þ
coh

do dOk

¼ e2

�ho
c

p2 v
o
c

� 	4

ns 2 pð Þ2	
X
g

e�u2 gþq?ð Þ2 S gð Þj j2
ð
d o� k vþ g vþ qzvzð Þ

	 s; o v c2

 � gþ q?ð Þ� �2

gþ q?ð Þ2 � 2 k gþ q?ð Þ
� 	2

a o; gþ q?ð Þj j2dqz: (8.54)

In derivation of this expression it was taken into account that integration with

respect to the two-dimensional delta function dð2Þ qk � g
� 	

gives:

qk ¼ g; (8.55)

and there remains integration with respect to the component of the wave vector dqz
transferred to the target, this component being normal to the graphene plane, the

said integration is also “removed” due to the presence of the delta function

d o� k vþ g vþ qzvzð Þ under the sign of integration. As a result, we find a fixed

value for the normal (to the graphene plane) component of the wave vector

transferred to the target as a function of the problem parameters:

qz ¼ �g tgcþ o� k v

v cosc
: (8.56)

This value should be substituted in the expression for the coherent PBs cross-

section ( q?j j ¼ qz). Taking into account the fact that q? gð Þ ¼ 0 and in view of the

relation (8.46), we obtain for the differential spectral-angular cross-section of

coherent PBs on graphene the following expression:

1

N

ds PBð Þ
coh

do dOk

¼ 4 ns
cosc

e2

�ho

� �
o4 a oð Þj j2

c3 v2

	
X
g

e�u2 g2þq2zð Þ S gð Þj j2 ~F
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ q2z

q� �����
����
2

P g; k; q?ð Þ; (8.57)

where

P g; k; qzð Þ

¼
o v
c2

� �2 þ g2 þ q2z � 2 o v
c2 g sincþ qz coscð Þ � o v

c2 cos y� g sin a� qz cos a
� �2

g2 þ q2z � 2 o
c g sin aþ qz cos að Þ� �2 ;

(8.58)
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S gð Þj j2 ¼ cos2
p
3

2 n1 þ n2ð Þ
� 	

; gj j ¼ g n1; n2ð Þ ¼ 4 pffiffiffi
3

p
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 þ n22 þ n1 n2

q

cos y ¼ cos a coscþ cos’ sin a sinc; ns ¼ 4ffiffiffi
3

p
a2

;

and

qz ¼ �g tgcþ o
1� v c=ð Þ cos y

v cosc
:

Summation over the reciprocal lattice vectors g implies summation over the

integers n1;2 defining the magnitude of g.

It should be noted that in contrast to coherent PBs in a three-dimensional single

crystal, when the radiated frequency is fixed by the condition

oð3Þ
max ¼ � g v

1� b cos y
; (8.59)

hence we find for a cubic crystal (n1;2;3 are the integers):

oð3Þ
max ¼ � g v n1 sinc cos’þ n2 sinc sin’þ n3 coscð Þ

1� b cos y
; (8.60)

the frequency of coherent PBs in a two-dimensional single crystal is not a fixed value.

Nevertheless, in the two-dimensional case with fulfilment of certain conditions (see

below) the PBs spectrum has sharp maxima. The frequencies of these maxima are

defined by the zeros of the denominatorP g; k; qzð Þ in the expression for the coherent
PBs cross-section (Eq. 8.57).

For the denominator P g; k; qzð Þ , taking into account the explicit form of qz ,
we find:

Denðo; a;c; b; yÞ ¼ g4

cos4 c

n
ð o
g v

Þ
2

d ½d� 2 b cos a cosc�

þ2 b
o
g v

cosc ½cos a sinc� sin a� d
b
tgc� þ 1

o2

; (8.61)

where the contracted notations d ¼ 1� b cos y, b ¼ v c= are introduced, and the

cosine of the radiation angle is cos y ¼ cos a coscþ cos’ sin a sinc.
For the zero angle of electron incoming into the graphene plane (c ¼ 0) the

expression for the denominator is simplified to the form:
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Den o; a;c ¼ 0; b; y ¼ að Þ

¼ g4
o
g v

� �2

1� b cos að Þ 1� 3 b cos að Þ � 2 b
o
g v

sin aþ 1

( )2

:
(8.62)

The resonance condition for the coherent PBs cross-section in the general case

looks like

Den o; a;c; b; yð Þ ¼ 0: (8.63)

If this equation is solved with respect to the radiation frequency, the following

expression for the frequency of a spectral maximum in coherent PBs on graphene

will be obtained:

omax ¼ g vFo a;c; y; bð Þ: (8.64)

Here the dimensionless function is introduced:

Fo a;c; y; bð Þ

¼ cosc b sin aþ d tgc� b sinc cos að Þ þ sign d� 2 b cos a coscð Þ ffiffiffiffi
D

p

d d� 2 b cos a coscð Þ ;

(8.65)

where d ¼ 1� b cos y, b ¼ v c= ,D ¼ cos2c b sin aþ tgcd� b sinc cos að Þ2 � d
d� 2 b cos a coscð Þ and

signðxÞ ¼
1 for x>0

0 for x ¼ 0

�1 for x<0

8<
: :

In case of the zero angle of electron incoming into a two-dimensional single

crystal (c ¼ 0), we have the following expression for the function determining the

dependence of the resonance frequency of radiation on the electron velocity and the

angle of photon emission:

Fo c ¼ 0ð Þ

¼
b sin aþ sign 1� 3 b cos að Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b sin að Þ2 � 1� b cos að Þ 1� 3b cos að Þ

q
1� b cos að Þ 1� 3b cos að Þ :

(8.66)
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For the positiveness of the discriminant in this expression

Do a; bð Þ ¼ b sin að Þ2 � 1� b cos að Þ 1� 3b cos að Þ; (8.67)

that is, for existence of a resonance frequency of coherent PBs the fulfilment of the

condition is required:

1

2 cos a� 1

 b 
 1

2 cos aþ 1
: (8.68)

Following hence is the necessary condition of the presence of a resonance

2 cos aþ1>1, that is, a<p 2= – radiation should go to the top hemisphere z> 0

(see Fig. 8.13).

The dependence of the discriminant (8.67) on the electron velocity for different

radiation angles for the zero angle of electron incoming is presented in Fig. 8.16.

From this figure it is seen that with increasing radiation angle the range of

electron velocity values decreases, in which the discriminant is positive, that is,

there is a resonance in the cross-section of coherent PBs on graphene. For the angle

a ¼ p 2= this range comes to the point v ¼ c.
If the equation 1� 3b cos a ¼ 0 is satisfied, then, as follows from the formulas

(8.64) and (8.66), the resonance frequency of coherent PBs becomes infinite, that is,

a resonance is absent. So the equation

Fig. 8.16 The dependence of the discriminant (8.67) defining the resonance frequency of PBs for

the zero angle of electron incoming c ¼ 0 on the electron velocity (:g / r3s :) for different radiation
angles a: solid line – a ¼ 0, dotted line – a ¼ p/4, dashed line – a ¼ p/3, dotted-dashed line
a ¼ p/2
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b ¼ 1

3 cos a
>

1

2 cos aþ 1
for a< p 2=

� �
(8.69)

means the absence of a resonance. In turn, it is possible if a< arccos 1 3=ð Þ.
Thus the analysis of coherent PBs in case of normal electron incoming has

shown in particular that for small enough radiation angles a< arccos 1 3=ð Þ with the

condition 3 cos a ¼ c v= satisfied spectral resonances in radiation are absent since

the resonance frequency becomes infinite.

It should be noted that if the discriminant (8.67) is negative, but is close to zero,

the cross-section of coherent PBs on graphene also has maxima, but not so sharp as

in case of the positive discriminant.

The total cross-section of electron PBs on graphene in terms of one atom is equal

to the sum of the incoherent and coherent parts:

1

N

ds PBð Þ

do dOk

¼ 1

N

ds PBð Þ
incoh

do dOk

þ 1

N

ds PBð Þ
coh

do dOk

: (8.70)

8.3.4 Static Bremsstrahlung on Graphene

The expression for the cross-section of static bremsstrahlung of a relativistic

charged particle on an atom (without its excitation) in the first Born approximation

looks like [16]:

dsOBel
do dOk

¼ 1

4p2 o

e2p
�h c

Z2 r2e
pf
pi

� �
m

mp

� �2 ð
dOpf

1� ~FaðqÞ
� �

2 J Opf

� 	
; (8.71)

where mp is the mass of an incident particle and J Opf

� 	
is the dimensionless

function determined by the equations:

J Opf

� 	
¼ m2

p

�h qð Þ4
pf
kf

� �2

4 e2i � �hqcð Þ2
� 	

sin2y0
(

þ pi
ki

� �2

4 e2f � �hqcð Þ2
� 	

sin2yþ 2 �hoð Þ2
ki kf

p2i sin
2yþ p2f sin

2y0
� 	

� 2pipf
ki kf

2 e2i þ e2f
� 	

� �hqcð Þ2
h i

sin y sin y0 cos’

)
;

ki ¼ ei c= � c kpið Þ o= ; kf ¼ ef c= � c kpf

� 	
o= ;
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�hq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hkð Þ2 þ p2i þ p2f � 2pi�hk cos yþ 2pf �hk cos y

0 � 2pipf cos y cos y0 þ sin y sin y0 cos’
� �q

;

y0 is the angle between the vectors pf and k,’ is the angle between the planespi k

and pf k, re ¼ e2

mc2 .

The approximate formula for the differential cross-section of SBs on an atom

looks like:

dsOBel
do dOk

� 1

p

Z2 e6 1þ cos2yð Þ 1� v
c

� �2� 	

m2 �ho v2 c3 1� v
c cos y

� �2
ðqmax

qmin

1� ~FðqÞ� �2
q

dq; (8.72)

where

qmin o,v,yð Þ ¼ o
v

1� v

c
cos y

� 	
; qmax ¼ 2m v �h= ;

m is the reduced mass of an electron and a target atom, y ¼ angle k; vð Þ is the
radiation angle.

The expression (8.72) has a characteristic error of 10–30 % in comparison with

the formula (8.71). In derivation of Eq. 8.72 the approximate equation for electron

energy change during bremsstrahlung was used:

ef � ei � �h q� kð Þ v:

In the nonrelativistic limit v<<c from the expression (8.72) the equation follows:

dsOBel
do dOk

� 1

p
Z2 e6 1þ cos2yð Þ

m2 �ho v2 c3

ðqmax

qmin

1� ~FðqÞ� �2
q

dq: (8.73)

For the incoherent part of the cross-section of SBs on graphene (in terms of one

atom) we have:

1

N

dsOBincoh
do dOk

� 1

p

Z2 e6 1þ cos2yð Þ 1� v
c

� �2� 	

m2h�ov2 c3 1� v
c cosy

� �2
ðqmax

qmin

1� ~FðqÞ� �2
q

1� exp �u2 q2
� �� �

dq:

(8.74)

Given in Figs. 8.17 and 8.18 is the comparison of the spectral cross-sections of

PBs and SBs on a carbon atom and incoherent PBs and SBs on graphene for an

electron velocity of 100 a.u. (this velocity corresponds to an incident electron energy

of 240 keV).
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From Fig. 8.17 it is seen that in case of a carbon atom the PBs cross-section at the

maximum of the frequency dependence is about an order of magnitude less than the

SBs cross-section. This circumstance is explained by relatively low dynamic

polarizability of a carbon atom that defines the value of the PBs cross-section.

With growing electron velocity the relative contribution of PBs will increase since

the role of high impact parameters will increase.

The difference of incoherent channels of PBs and SBs on graphene is even more

(Fig. 8.18) and is about two and a half orders of magnitude at the maximum of the

spectral dependence of PBs. The latter circumstance is connected with the fact that

the polarization channel is formed at long distances from a target, the contribution

1´103 1´104
1´10-13

1´10-12

1´10-11

1´10-10

1´10-9

1´10-8

w, eV

sincoh, a.u.

Fig. 8.17 The comparison of the spectral cross-sections of PBs (solid curve) and SBs (dotted
curve) of an electron with a velocity of 100 a.u. scattered by a carbon atom, the radiation angle is

y ¼ 30�, the abscissa is plotted in electron-volts, the ordinate is plotted in atomic units

100 1´103 1´104
1´10-14

1´10-13

1´10-12

1´10-11

1´10-10

1´10-9

1´10-8sincoh, a.u. 

w, eV

Fig. 8.18 The comparison of the spectral cross-sections of incoherent PBs (solid curve) and SBs

(dotted curve) of an electron scattered by graphene (in terms of one atom), v ¼ 100 a.u., the

radiation angle is y ¼ 30�
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of these distances to incoherent radiation is suppressed by the multiplier 1� exp

�u2 q2ð Þ that is small for q< 1 u= (low impact parameters).

8.3.4.1 Coherent SBs on Graphene

For calculation of the coherent part of SBs on graphene it is necessary to express the

cross-section of the process on an atom in terms of the integral with respect to the

transferred wave vector q:

dsOBa
do dOk

� 1

2 p2
Z2 e6 1þ cos2yð Þ 1� v

c

� �2� 	

�hom2 v c3 1� v
c cos y

� �2
ð

1� ~FðqÞ� �2
q2

d o� k vþ q vð Þ dq:

(8.75)

Then the expression for the differential cross-section of coherent SBs on

graphene (in terms of one atom) looks like:

1

N

ds OBð Þ
coh

do dOk

¼
Z2 e6 1þ cos2yð Þ 1� v

c

� �2� 	

�hom2 v c3 1� v
c cos y

� �2 ns
X
g

e�u2 gþq?ð Þ2 S gð Þj j2

	
ð
d o� k vþ g vþ qzvzð Þ 1� ~F gþ q?j jð Þ� �2

gþ q?ð Þ2 dqz: (8.76)

The calculation of the integral on the right side of this equation in view of the

delta function gives

1

N

ds OBð Þ
coh

do dOk

¼frac2 nscosc
Z2 e6 1þ cos2yð Þ 1� v

c

� �2� 	

�ho m2 v2 c3 1� v
c cos y

� �2

	
X
g

e�u2 g2þq2zð Þ S gð Þj j2 1� ~F
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ q2z

p� �� �2
g2 þ q2z

; (8.77)

where

qz ¼ �g tgcþ o
1� v c=ð Þ cos y

v cosc
; cos y ¼ cos a coscþ cos’ sin a sinc;

g n1; n2ð Þ ¼ 4 pffiffiffi
3

p
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 þ n22 þ n1 n2

q
:

In view of the last equation summation over the reciprocal lattice vectors g in the

formula (8.77) comes to summation over the set of the integers n1; n2ð Þ.
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8.3.5 Comparative Analysis of Contributions of Different
Bremsstrahlung Channels in Electron Scattering
on Graphene

Let us calculate the contribution of different Bs channels in electron scattering on

graphene with the use of expressions obtained in the previous section. The results of

calculations are given in Figs. 8.19, 8.20, 8.21 and 8.22.

From Fig. 8.19 it follows that in case of a relatively low electron velocity of 45 a.u.,

which corresponds to the energy of 30 keV (at a specified radiation angle), spectral

1×10−6   

1×10−7   

1×10−8   

1×10−9   

1×10−10   

1×10−11   

1×10−12   

1×10−13   

1×10−14  
2×103 4×103 6×103 8×103 1×104 0

a.u.
σ,

ω,eV

Fig. 8.19 The comparison of the cross-sections (in terms of one atom) of coherent and incoherent

PBs and SBs of an electron on graphene for an electron energy of 30 keV (v ¼ 45 a.u.), c ¼ 0 and

a radiation angle of 30�: solid curve – coherent PBs, dotted curve – coherent SBs, dashed curve –
incoherent PBs, dash-and-dot curve – incoherent SBs

0 2´103 4´103 6´103 8´103 1´104
1´10-14

1´10-13

1´10-12

1´10-11

1´10-10

1´10-9

1´10-8

1´10-7

1´10-6s,
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Fig. 8.20 The same as in Fig. 8.19 for an electron energy of 58 keV (v ¼ 60 a.u.)
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resonances in the spectral range under consideration in the coherent PBs cross-section

are absent. In this case coherent PBs prevails in the low-frequency region of the

spectrum �ho < 1 < 1 keV, in the rest of the spectrum incoherent SBs prevails.

0 2´103 4´103 6´103 8´103 1´104
1´10-15

1´10-14

1´10-13

1´10-12

1´10-11

1´10-10

1´10-9

1´10-8

1´10-7

1´10-6

s,

a.u.

w, eV 

Fig. 8.21 The cross-section of coherent PBs of an electron on graphene for an electron energy of

58 keV (v ¼ 60 a.u.), c ¼ 0 and different radiation angles: solid curve – 30�, dotted curve – 60�,
dashed curve – 120�

Fig. 8.22 The velocity dependences of coherent and incoherent PBs on graphene for the

normal incidence of an electron, a photon energy of 272 eV, and a radiation angle of 30�: solid
curve – coherent PBs, dotted curve – coherent SBs, dashed curve – incoherent PBs, dash-and-dot
curve – incoherent SBs
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With growing electron velocity maxima appear in the coherent PBs cross-section

at frequencies determined by the formulas (8.64) and (8.65) as seen from Fig. 8.20.

Now near resonance frequencies a prevailing radiation channel is coherent PBs.

With further increase of electron velocity the relative contribution of coherent PBs

grows: it becomes comparable with incoherent SBs even far from resonances.

Given in Fig. 8.21 is the comparison of spectra of coherent PBs on graphene for a

fixed electron velocity and different radiation angles.

It is seen that with growing radiation angle the maxima of the cross-section of

coherent PBs in the spectral range under consideration disappear, and the value of

the cross-section in a wide spectral range decreases.

The dependences of the cross-sections of different Bs channels on the electron

velocity are presented in Fig. 8.22. From this figure it is seen that coherent PBs on

graphene has sharp maximum and minimum. The velocity dependence of other Bs

channels is monotonic. Deep minima in the cross-section of coherent PBs on

graphene are caused by zeros of the function P g; k; qzð Þ (see the formula (8.58))

included in the expression for the cross-section (Eq. 8.57).

Thus the carried out analysis shows that themain contribution to bremsstrahlung of

an electron on graphene is made by coherent polarization Bs and incoherent static Bs.

It is found that the spectrum of coherent PBs of an electron on graphene for high

enough velocities and small radiation angles contains sharp maxima corresponding to

the vanishing denominator in the expression for the process cross-section. The spectral

maxima in the cross-section of coherent PBs in a certain region of parametric variation

take place in the angular and velocity dependences of the cross-section.
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Chapter 9

Experimental Observation of Polarization

Bremsstrahlung on Atoms, Clusters and Solids

9.1 Bremsstrahling on Atoms with Account for

the Polarization Channel

9.1.1 Early Investigations

One of the first experiments for PBs on atoms was the work of the E.T.

Verkhovtseva’s group [1], studied in which was the contribution of the “atomic”

component of Bs to the spectrum of bremsstrahlung of electrons with the energy

600 eV scattered by xenon gas in a photon energy range of 70–150 eV. In this

spectral range a “giant resonance” takes place in the xenon photoabsorption sph oð Þ,
the said resonance being caused by the 4d-subshell of an atom, which according to

the optical theorem

Im a oð Þf g ¼ c

4 po
sph oð Þ (9.1)

is indicative of the high value of the imaginary part and, as a consequence, of the

squared absolute value of the atomic polarizability a oð Þj j2 that defines the contri-
bution of the polarization channel to the total Bs. The last statement follows, for

example, from the formula (3.24).

It should be noted that in early investigations of PBs several terms for designa-

tion of the polarization channel in bremsstrahlung were used in literature: polariza-

tion Bs, atomic Bs, dynamic Bs, parametric X-radiation, and transient Bs in plasma

(see Chap. 1). For example, in the cited paper the polarization Bs channel was

called the atomic channel.

Given in Fig. 9.1a from the paper [1] is the comparison of the intensity of

polarization Bs on a xenon atom measured in a spectral range of 70–150 eV with

PBs calculated by the formula analogous to Eq. 3.29. In Fig. 9.1b the dynamic

polarizability of a xenon atom in a corresponding region of photon energies is

presented. The squared absolute value of the dynamic polarizability included in
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the expression for the PBs cross-section (Eq. 3.29) was calculated with the use of

the optical theorem (Eq. 9.1) and the Kramers-Kronig relation for the real part of

the polarizability

Rea oð Þ ¼ 1

p
V:P:

ð1

0

Ima o0ð Þ
o02 � o2

do02 (9.2)

by the cross-section of photoabsorption sph oð Þ taken from the experimental

work [2].

It should be noted that the electron energy was limited to the value 600 eV to

avoid ionization of the 3d-subshell of xenon and resulting radiation at the transition
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Fig. 9.1 (a) The comparison of the measured spectrum of atomic (polarization) Bs of an electron

on a xenon atom (solid curve) with the calculated PBs spectrum (dash-and-dot curve), the
photoabsorption spectrum is represented by a dashed curve; (b) the magnitude, the real and

imaginary parts of the dynamic polarizability of a xenon atom calculated by the experimental

value of the photoabsorption cross-section [1]
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4p54d9 ! 4p64d8 in the spectral range under study. The concentration of particles

in the interaction zone was 5� 8ð Þ � 1015 cm�3, so the absorption of Bs on xenon

atoms did not exceed 5 % in this frequency region.

To determine the atomic contribution to the process, from the spectrum of Bs of

electrons on xenon the spectrum of Bs on argon was subtracted. This method is

justified by the fact that PBs on argon in the spectral range under consideration is

negligible.

From Fig. 9.1 the correlation of the measured PBs spectrum and the frequency

dependence of the magnitude of the dynamic polarizability of a xenon atom in the

spectral range under consideration is seen. In this case the maximum of the PBs

spectrum fell on a photon energy of 113 eV, which considerably exceeds the energy

of ionization of the 4d-subshell of xenon. The FWHM of the measured spectrum

was 47 eV. The PBs intensity at the maximum of the frequency dependence was

70 % of the intensity of ordinary (electron) Bs according to the theoretical estimate

made in the work [3].

PBs in the considered case is formed as a result of virtual excitation of xenon

electrons to an ionization continuum above the threshold of ionization of the

4d-subshell. The authors of the work [1] connected the distinction between the

obtained experimental data and the theoretical PBs spectrum (the dash-and-dot

curve in Fig. 9.1) with a relatively low value of electron beam energy (600 eV) for

validity of the PBs theory based on the Born approximation.

In the work [3] published a year before the paper [1], radiation of electrons with

the energy of 500 eV scattered by metal lanthanum in a photon energy range of

100–140 eV was measured. In this frequency region the photoabsorption of metal

lanthanum is close to atomic, which gave the authors of the cited paper reason to

believe that the radiation spectrum is also of an atomic nature. A satisfactory

agreement of the measured spectrum with the calculation based on the theory of

PBs of fast electrons was found out.

The results of further experimental investigations of PBs of electrons on xenon

atoms carried out by E.T. Verkhovtseva with co-authors are presented in the paper

[4]. In this work the spectrum of radiation arising in electron scattering by xenon

atoms in a photon energy range of 80–220 eV was measured. The energy of an

electron beam varied within 300–900 eV.

In the cited work it was found that the position of the spectral maximum of

radiation omax depends on the energy of scattered electrons and the radiation angle

(between the electron velocity and the wave vector of a photon). This dependence is

connected with the large width of the spectral maximum of radiationG that is in turn

caused by a giant resonance in the spectrum of photoabsorption of a xenon atom in

the spectral range under consideration (Fig. 9.2a).

In the Born-Bethe approximation, in the paper [4] the following expression for

the shift of the PBs maximum with respect to the maximum of the frequency

dependence of the squared absolute value of the dynamic polarizability of an

atom o0 for a radiation angle of 90� was derived:
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omax � o0 ’ 2G2

o0

1þ 5 e L 4=

1þ 1� 5 G o0=ð Þ2 2=
h i

e L
; (9.3)

where e ¼ m �ho p2
�

(p is the initial electron momentum, �ho is the energy of a

bremsstrahlung photon), L ¼ ln g v2

o2 R2
a

� �
is the Coulomb logarithm (v is the initial

electron velocity,Ra is the mean atomic radius, g is the factor of the order of one). In
the limit e ! 0 the formula (9.3) for the frequency of the Bs spectrum maximum

gives:omax ! o0 þ 2G2 o0= . Thus even in the limit of high electron energies there

is a shift of the Bs spectrum maximum with respect to the spectral maximum of the

magnitude of the dynamic polarizability of an atom. From the obtained limiting

relation it follows also that the spectral shift under consideration is noticeable if the

ratio of the parameters G o0= is great enough.

Since ordinary (electron) Bs is a smooth function of the photon frequency and

the radiation angle, the shift of the spectral maximum is caused mainly by the

polarization channel.

Fig. 9.2 (a) The spectrum of

photoabsorption of a xenon

atom; (b) Bs of electrons

scattered by a xenon atom

with different energies: curve
1 – 300 eV, curve 2 – 600 eV,
curve 3 – 900 eV. All spectra

are normalized to their values

at the maximum [4]
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From the Eq. 9.3 it follows that the shift of the spectral maximum of PBs for a

radiation angle of 90� is always positive and decreases with growing electron

energy. Both these facts are in conformity with the experimental data obtained in

the work [4] (see Fig. 9.2b).

The plot of the function (Eq. 9.3) (depending on the electron energy) is presented

in Fig. 9.3 for two values of the Coulomb logarithm and the following values of

parameters: �ho0 ¼ 100 eV, �hG ¼ 24 eV.

The comparison with experimental data shows that the theoretical shift of the

frequency of the spectral maximum of PBs decreases with growing electron energy

more slowly than it was observed in the work [4], which is apparently explained by

insufficiency of the Born-Bethe approximation for quantitative description of Bs of

electrons with a specified energy.

So experimentally demonstrated in the cited paper was the importance of taking

into account the polarization channel in consideration of Bs on atom in the

frequency range where the dynamic polarizability of an atom is high.

9.1.2 Measurements of the Absolute Value of the Cross-Section
of Bs of Fast Electrons on Atoms

The measurements of the absolute double-differential Bs cross-section (depending

on the frequency and the angle of photon emission) in scattering of electrons with

an energy of 28 and 50 keV on atoms of noble gases were for the first time carried

out in the work [5] in a wide spectral range from 5 keV to the kinematic limit, the

radiation angle was 90�.
The results of experiments were compared with calculations of the cross-section

of ordinary Bs and total Bs (in view of the polarization channel). Corresponding

plots are presented in Figs. 9.4 and 9.5 [5].

The calculation of total Bs was carried out in the so-called “atom stripping”

approximation (stripping approximation) [6]. The main idea of this approximation

is that the PBs amplitude and the screening summand in the amplitude of ordinary

0 200 400 600 800 1×10312
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Fig. 9.3 The dependence

of the shift of the spectral

maximum of PBs in a photon

energy range of 100–140 eV

on the energy of an electron

scattered by a xenon atom, for

two values of the Coulomb

logarithm: solid curve – L (the

Coulomb logarithm) ¼ 10,

dotted curve – L ¼ 6; the

radiation angle 90�
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Bs on an atom cancel out [7], and the Bs process in the zeroth approximation

proceeds as on a “bare” nucleus.

The cross-section of ordinary Bs was calculated in the relativistic approximation

of partial waves, corresponding data are given in the work [8].

From the given figures it is seen that the measured cross-section exceeds consid-

erably the calculated data, which to the greatest extent shows itself for a xenon atom,

electron energy of 50 keV and in the low-frequency range. The exception is the case

of a neon atom (Fig. 9.6) having a low value of dynamic polarizability, as a result,

the measured contribution of PBs to the total cross-section of the process is

negligible (practically is not visible in the range of an experimental error).

From the given plots it is seen that the experimental value of the total Bs cross-

section, as a rule, exceeds its calculated value in the stripping approximation, which

is most probably indicative of insufficiency of this approximation in the case under

consideration.

As stated by the authors of the paper [5], the results of their work are strongly

indicative of the essentiality of the polarization channel contribution to Bs of fast

electrons on free atoms (with a considerable dynamic polarizability) in a wide

spectral range.

Fig. 9.4 The measured and

calculated cross-sections of

Bs of an electron with an

energy of 28 keV scattered by

krypton and xenon atoms [5]:

solid curves – the calculated

cross-section of total Bs in the

stripping approximation;

dashed curves – the

calculated cross-section of

ordinary Bs, black circles –
the experiment [5]

Fig. 9.5 The same as in

Fig. 9.4 for an electron energy

of 50 keV [5]
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9.1.3 PBs on Atomic Clusters

Theoretically the role of cooperative effects in Bs on atomic clusters in a wide

spectral range was studied in the author’s work [9] by the example of copper

clusters (see the Sect. 8.1 of this monograph). In particular, it was shown that

cooperative effects are of a considerable importance in PBs of relativistic electrons.

The experimental investigation of Bs of electrons with the energy of 700 eV on

xenon atoms and clusters was carried out in the work [10], in which the influence of

an ambient medium on the PBs spectrum was taken into account.

Under experimental conditions of [10] a cluster on the average consisted of 20

atoms, and the number of clusters in the volume of interaction was less than 2 % of

the total number of particles. In case of changing experimental conditions the

number of atoms in a cluster increased from several tens to 8,500.

The results of measurements and calculations of the cited paper are presented

in Figs. 9.7 and 9.8.

Corresponding to Fig. 9.7 is a concentration of xenon atoms of 1015 atoms/cm3.

The average number of atoms in a cluster corresponding to Fig. 9.8 is 8,500.

From comparison of the plots of Figs. 9.7 and 9.8 it is seen that in case of clusters

the maximum of the PBs spectrum is shifted by 10 eV towards lower photon

energies and has a FWHM lesser than for PBs on individual atoms. In both cases

the spectral maximum is of an asymmetric form.

The analysis of experimental data carried out in the paper [10] has shown that the

reduction of the width of the spectral maximum of PBs with growing number of

atoms in a cluster (N) at first is slow up to values N � 200–300. Then (for N > 500)

the sharp reduction of the width of the maximum begins, and the width goes to

saturation when the number of atoms in a cluster is several thousands. In this case

the width of spectral maximum decreases approximately by 30 %.

Fig. 9.6 The same as in

Fig. 9.4 for Ar and Ne atoms

and an electron energy of

50 keV [5]
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The calculations of the cross-section of PBs on xenon atoms and clusters in the

work [10] were carried out under the assumption that an atom/cluster is immersed

in a gaseous or solid medium with a certain dielectric permittivity that influences

the PBs spectrum. As a result, a good conformity between the experimental and

calculated data was established.

So experimentally demonstrated in the paper [10] was the important role of PBs

of electrons on xenon atoms and clusters in a spectral range corresponding to a giant

resonance in photoabsorption, and cooperative effects were recorded that come to

reduction of the PBs spectral maximum width with growing number of atoms in a

cluster.

9.2 Bremsstrahlung on Solid-State Targets

9.2.1 PBs of Fast Electrons on Metal Foils

As was already noted in Chap. 1, one of the first works, in which PBs of fast

(relativistic) electrons scattered by a metal foil was reliably recorded, was the paper

Fig. 9.7 The spectrum of

PBs of an electron with the

energy of 0.7 keV on a xenon

atom: “noisy” curve –
experiment, smooth curve –
calculation in view of the

dielectric permittivity of an

ambient medium

Fig. 9.8 The spectrum of

PBs of an electron with the

energy of 0.7 keV on a solid

xenon cluster: “noisy” curve –
experiment, smooth solid
curve – calculation in view of

the dielectric permittivity of

an ambient medium, dashed
curve – calculation in view of

the frequency dependence of

radiating dipole damping in a

medium
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[11]. In this work the measurement of the spectrum of electrons with an energy of

2.4 МeV scattered in a polycrystalline aluminum target was carried out. The

position of the spectral maximum of radiation falling on photon energy of 4 keV

was exactly recorded (Fig. 9.9).

This maximum, as was predicted in the theoretical work [12], corresponds to the

contribution of the polarization channel to total Bs. It corresponds to scattering of a

virtual photon to a real photon by the crystallographic plane of target crystallites

properly oriented, so that the Bragg condition (Eq. 5.19) is carried out for conver-

sion of a virtual photon to a real photon (see Fig. 5.8). The Eq. 5.19 contains the

target reciprocal lattice vector g that characterizes a crystallographic plane, by

which scattering of a virtual photon occurs. It should be noted that the wave vector

of a virtual photon forming the eigenfield of a relativistic electron is kj j v v= , wherev

is the electron velocity.

The maximum in the spectrum of PBs on a polycrystalline target is characteristic

for relativistic electrons. Its central frequency is given by the formula (5.9). It

should be noted that in case of nonrelativistic electrons the spectral maximum under

consideration degenerates into a “frequency step” according to the formula (5.15).

The calculated curve 3 of Fig. 9.9 corresponds to taking into account three

crystallographic planes (111), (220), (222). The spectral maximum at about

6 keV on the experimental curve 4 most probably corresponds to rescattered PBs

from crystallographic planes with a high wave vector magnitude.

Further experimental investigation of the absolute cross-section of PBs of

relativistic electrons with an energy of 7 МeV scattered by metal foils was carried

out in the work [13], in which a source of an electron beam was a microtron. As

targets, polycrystalline films of aluminum, copper and nickel were used. The film

thicknesses were respectively 8.5 mm (aluminum), 15 mm (copper), 15 mm (nickel).

The target was mounted at an angle of 45� to the beam axis, the radiation angle was

90�. Bs was recorded with the use of a Si-Li pin-detector. The angular acceptance of
the detector was 1.5 � 10�6 sterad. The intensity of the electron beam was measured

by a Faraday cup placed at the end of the experimental system. The system was not
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Fig. 9.9 The spectrum

of electrons with an energy

of 2.4 МeV scattered in

polycrystalline aluminum:

straight line 1 – calculation

of ordinary Bs, curve 2 –

calculation of PBs in

amorphous aluminum, curve
3 – calculation of PBs in

polycrystalline aluminum,

curve 4 – results of the

experiment of [11]
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separated from the microtron as regards vacuum, inside it a pressure no more than

10�5 Torr was sustained.

The results of measurements (together with the value of the experimental error)

and calculation of the spectrum of PBs of an electron with the energy of 7 МeV on a

polycrystalline aluminum target are presented in Fig. 9.10. The experimental and

theoretical data of this figure make it possible to separate three maxima in the PBs

spectrum, the central energies of which are 3,782 � 16, 4,560 � 36, and

6,273 � 19 eV. In the measured spectrum there is also an ambient background

from the microtron that has two sources. The first of them is connected with

incoherent PBs and ordinary Bs, its contribution is negligible. The second source

is caused by secondary photons appearing as a result of reradiation at the inner walls

of the target box and the photon channel. The contribution of this background is

2–4 % of the value of the main maximum in the PBs spectrum presented in

Fig. 9.10. In the third spectral maximum there is the contribution of characteristic

radiation of photons from the K-line of iron with an energy of 6,403 eV that were

produced under the action of scattered electrons of the beam at the inner surface of

the target chamber and the photon channel of the system.

Presented in Fig. 9.11 are the results of measurements and calculation of the

spectrum of PBs of electrons with the energy of 7 МeV on a nickel target.

The experimental data of Fig. 9.11 are indicative of the presence of three

maxima in the spectrum of PBs on a nickel foil, the centers of which have energies

of 4,257 � 15, 5,070 � 16 and 5,735 � 11 eV. There is also the contribution of

the K-line of iron near a photon energy of 6,400 eV. The spectral maximum at the

photon energy of 5,735 eV is of the known instrument origin. It results from

ionization of the detector atoms by photons of the K-line of the nickel target

since its central energy is exactly equal to the difference of energies of the K-line

of nickel (7,475 eV) and silicon atoms (1,740 eV).

Thus in the cited paper the spectra of PBs of relativistic electrons on metal foils

were measured and a satisfactory agreement with theoretical predictions for this

phenomenon was obtained.

Fig. 9.10 The spectrum of

electrons with an energy of

7 МeV scattered by an

aluminum polycrystalline

foil: dots – experiment, solid
curve – calculation [13]
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Bs of nonrelativistic electrons with an energy of 53 keV scattered by gold foils

of different thicknesses was studied experimentally and theoretically in the work

[14] for four values of photon energy (15, 25, 35, 45 keV) and a radiation angle of

135�. The calculation was carried out with the use of the PENELOPE computer

code [15] based on the Monte-Carlo method without considering the polarization

channel. The PBs contribution was taken into account within the framework of the

stripping approximation [6].

The results of measurements and the theoretical curves obtained in the cited

paper are presented in Fig. 9.12 for two values of thickness of a gold foil.

It is seen that for a more thin foil the experimental data are satisfactorily

described by the theory of Bs without considering the polarization channel. For a

thicker target the experimental dots lie considerably higher than the predictions of

the theory of ordinary Bs, however, they unsatisfactorily agree with the theoretical

curve describing the PBs contribution within the framework of the stripping

approximation.

It should be noted that from the theory of PBs on an atom it is known that the

relative contribution of the polarization channel to total Bs decreases with growing

energy of a bremsstrahlung photon (see Fig. 2.6). In the experiment of the work [14]

the minimum photon energy, for which the measurements were carried out, is

10 keV. This value is represented by a too high quantity, at which the PBs intensity

is already rather low. This circumstance is especially essential for nonrelativistic

electrons used in the work since the lateral dimension of a virtual photon in this case

is not large enough to excite in a coherent manner fluctuations of bound electrons in

the target that are the source of PBs. Therefore for recording the contribution of the

polarization channel it is preferable to study the low-frequency range of the

spectrum of Bs of nonrelativistic electrons with photon energy not exceeding

10 keV.

The results of the paper [14] are also indicate that in the case under consideration

a more exact theoretical approach to describe PBs should be used than the approach

used in the stripping approximation.

Fig. 9.11 The spectrum of

electrons with an energy of

7 МeV scattered by a nickel

foil: dots – experiment, solid
curve – calculation [13]

9.2 Bremsstrahlung on Solid-State Targets 255

http://dx.doi.org/10.1007/978-3-642-34082-6_2


9.2.2 PBs on Thick Metal Targets Under
the Action of b-particles

In the work [16] bremsstrahlung arising in bombardment of metal targets under the

action of b-particles from a 204Tl radioactive source in a range of photon energies

from 5 to 10 keV was investigated experimentally. To measure the spectral distri-

bution of bremsstrahlung photons, the highly sensitive X-PIPS Si (Li) detector with

an internal efficiency of 100 % and 97 % for photons with the energy of 5 and

10 keV respectively was used. The resolution of the detector was no less than

190 eV for photon energy of 5.9 keV. To decrease the influence of scattered photons

and to restrict the background to a low level, a line of tin fragments and an

aluminum foil was used for screening the detector. To obtain correct information

on Bs from targets, a special method was used that made it possible to remove the

influence of internal Bs and external background. Disks of aluminum (a mass

thickness of 293 mg/cm2), titanium (288 mg/cm2), tin (281 mg/cm2), and lead

(286 mg/cm2), each 4 cm in diameter, were used as targets.

It should be noted that in contrast to the above works, in which monoenergetic

electron beams were used, in the case under consideration the 204Tl source emits

b-particles with energies continuously distributed in a range from 0 to 765 keV.

For comparison with the experiment, several Bs theory versions were used: the

Bethe-Heitler theory without considering PBs with a modified Elvert factor for

nonrelativistic particles (EBH), the Bethe-Heitler theory without considering PBs

with a modified Elvert factor for relativistic particles (Fmod BH ), and the Bethe-

Heitler theory with a modified Elvert factor for relativistic particles with consider-

ation for PBs (Fmod BH þ PB). In the latter case PBs was calculated in the stripping
approximation.

The experimental and theoretical results of the cited work for aluminum and lead

targets are given in Figs. 9.13 and 9.14.

As seen from the given figures, the best agreement with experimental data is

provided by the Bethe-Heitler theory with a modified Elvert factor for relativistic

particles with consideration for the polarization channel (the curves 1 in Figs. 9.13

and 9.14).

Fig. 9.12 The experimental

and theoretical data on the

spectrum of Bs of an electron

with the energy of 53 keV

scattered by gold films of

different thicknesses [14]
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Fig. 9.13 The plots of the

number of Bs photons

normalized to the total photon

yield as functions of the

photon energy for aluminum

target [16]

Fig. 9.14 The plots of the

number of Bs photons

normalized to the total photon

yield as functions of the

photon energy for lead target

[16]
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So the experiment carried out in the work [16] confirms the presence of the

appreciable contribution of the polarization channel to total Bs in scattering of

b-particles by thick metal targets. The relative value of the polarization contribution

to Bs in the considered case is small and is on the average 10 % in a specified

spectral range (5–10 keV), decreasing with growing photon energy, especially for

targets of elements with a medium and high nuclear charge.

9.2.3 Proton Radiation on a Solid-State Target

In the work [17] the analysis of radiation arising in scattering of protons with energy

of several МeV by aluminum target was given that confirmed the important role of

PBs in the process under consideration. This analysis was based on the authors’

experimental data on Bs of protons and light ions obtained in [18] and the formulas

for PBs (called by the authors atomic Bs (AB)) and radiation ionization (RI) derived

in the paper [17]. It should be noted that radiation ionization represents simulta-

neous emission of a photon and ionization of a target in collision with a charged

particle. It is characteristic for processes with significant transfer of a momentum in

collision.

In the cited work the contributions of different processes to total radiation were

discussed. In case of light ions two mechanisms were usually taken into account:

bremsstrahlung of secondary electrons (SEB) and Bs of quasi-free electrons

(QFEB), the first of which has the boundary frequencyTm ¼ 2me v
2
p, and the second

has the boundary frequency Tr ¼ Tm 4= ¼ me v
2
p 2= , where vp is the velocity of an

incident particle, me is the electron mass. Meant by QFEB is radiation of electrons

of a target in their scattering in the field of an incident particle. In collision of heavy

ions with a target the main role is played by molecular-orbital X-radiation and

radiative capture (REC). Nuclear Bs can be neglected in case of fulfilment of the

inequation q a<<mT me= [17], where q is the wave vector transferred from an

incident particle to the target, a is the mean atomic radius, mT is the mass of the

target nucleus. This inequation is satisfied in the X-ray range characteristic for

physics of atomic collisions.

A new point in comparison with the previous works on radiation of ions on solid-

state targets was the fact that the authors in interpretation of their experimental data

took into account atomic (polarization) Bs. It was shown in particular that PBs of

protons is essential not only in the spectral range near the potential of ionization of a

target as was noted in the work [19], but also for high photon energies.

In the experiment [18] self-supporting aluminum foils with a mass thickness of

100 mg/cm2 were used as a target. The thickness of the targets was measured with

the use of the Rutherford scattering of protons with the energy of 1 МeV. A beam of

incident ions was formed by the Van de Graaff accelerator with a voltage of 5 МV.
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The recording of the X-ray spectrum was carried out with the use of a Si-Li detector

with a resolution of 205 eV at the photon energy of 6 keV and effective area of

12.5 mm2.

The typical spectra of X-radiation obtained in the work [18] with bombardment

of an aluminum target by protons and 3He ions with an energy of 1 and 3 МeV per

atomic mass unit (1, 3 MeV/amu) are presented in Fig. 9.15. The measurements

were carried out for an angle of 90� between the velocity of incident ions and the

direction to the photodetector (a detection angle). The angle of incidence of

incident particles on the target surface was 45�.
In plotting in Fig. 9.15 the background spectrum was subtracted, but correction

taking into account the absorption of X-radiation and the efficiency of the detector

was not made. The ordinate was normalized to the squared charge number of an

incident particle Z2
p , so from Fig. 9.15 it follows that the measured continuous

X-ray spectrum has a scaling with respect to the value Z2
p . Seen in the figure are a

maximum caused by characteristic K-radiation of an aluminum atom and a weak

peak (at 2.307 keV) connected with the Ka-line of sulfur impurity atoms.

As was already noted, the analysis of the X-ray spectra obtained in the paper [18]

was given in the work [17] with the use of the concept of polarization Bs that in the

cited work was called atomic. The results of this analysis are given in Figs. 9.16 and

9.17 for two values of energy of protons incident on an aluminum target of 1 and

4 МeV and a detection angle of 90�.
The theoretical curves for PBs and radiating ionization were calculated by the

formulas derived in the paper [17], Bs of free electrons was calculated with the use

of the expression obtained in the work [20].

Arrowed in Figs. 9.16 and 9.17 are the boundary frequency for Bs of secondary

electrons Tm and the boundary frequency for Bs of quasi-free electrons Tr ¼ Tm 4= .

From the given figures it is seen that in the high-frequency region of the

measured spectrum the main channel of radiation is PBs. In case of 1 МeV protons

Fig. 9.15 The spectra of

X-radiation in bombardment

of aluminum target by protons

and 3He ions for two energies

of incident particles, the

detection angle is 90� [18]
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this statement is true for �ho> Tm . For 4 МeV protons PBs prevails over other

channels of radiation in the range�ho> Tr ¼ Tm 4= . In the frequency region�ho< Tr
in this case the cross-section of radiation ionization exceeds the PBs cross-section

according to the calculations of the paper [17].

So the analysis of Bs of protons with an energy of 1 and 4 МeV scattered by the

aluminum target that was carried out in the paper [17] has shown that among

possible mechanisms of radiation PBs prevails in the high-frequency region of

the spectrum �ho> Tm. In the range Tm > �ho> Tr the main contribution is made by

Bs of secondary electrons and, finally, in the frequency region Tr> �ho radiation

ionization prevails.

Fig. 9.16 The comparison of

the theory with the

experiment for Bs of protons

with an energy of 1 МeV

bombarding an aluminum

target: solid curve – PBs

(calculation [17]), dash-and-
dot curve – radiating

ionization (calculation [17]),

dashed curve – radiation of

secondary electrons

(calculation [20]), dots –
experiment [18]

Fig. 9.17 The same as in

Fig. 9.16 for a proton energy

of 4 МeV, the top curve
corresponds to the cross-

section of total radiation [17]
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9.2.4 Experimental Observation of Coherent Spectral Peaks
of PBs of Relativistic Electrons in a Polycrystal
in Backward Radiation

Theoretically predicted in the work [21] was a sharp increase of the intensity of PBs

of a relativistic electron scattered in a polycrystal, when the angle y between the

wave vector of a bremsstrahlung photon and the electron velocity is 180� (backward
radiation). The results of calculations of the PBs spectra carried out in the cited

work are presented in Fig. 9.18 for an electron with the energy of 15 МeV scattered

in an aluminum polycrystal for two radiation angles.

Three spectral maxima on the curves of Fig. 9.18 correspond to coherent PBs

with transfer of the wave vector excess to different reciprocal lattice wave vectors

(see the formula (5.15)).

In the work [21] the following expression was derived that describes the

intensity of PBs of a relativistic electron in a polycrystal in the region of the

spectral maximum as a function of the radiation angle and the electron velocity:

Fmax y; g	ð Þ � 2 g	 sin y 2=ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 y 2=ð Þ � cos y 4 g2	

� ��q ; (9.4)

where g	 is the Lorenz factor in a medium that takes into account the change of

the phase velocity of radiation in a substance. From the formula (9.4) it follows that

the value of a spectral peak for radiation angles far from 180� is proportional to the
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Fig. 9.18 An abnormal peak

in the spectrum of PBs of an

electron with an energy of

15 МeV in an aluminum

polycrystal: solid curve
(1) – the radiation angle

y ¼ 180�, dotted curve (2) –
the radiation angle y ¼ 160�

(From the paper [21])
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relativistic factor g	 ; and if y ¼ 180�, then Fmax 
 g2	 , which in the limit g	>>1

means a sharp increase of the PBs intensity.

In the paper [22] the experimental confirmation of the theoretical conclusions of

the work [21] was obtained. The measurements of the spectra of PBs of electrons

with an energy of 7 МeV scattered in a polycrystalline copper target were carried

out for backward radiation. The basic diagram of the experimental system is given

in Fig. 9.19.

Backward PBs was recorded by the PIN detector 9, the energy resolution of

which was 152 eV. Serving as the target 7 was a foil of electrical copper with a

thickness of 25 mm.

The results of calculation of the spectrum of coherent PBs of a relativistic

electron in a copper polycrystal for the above problem parameters are presented

in Fig. 9.20.

From the given figure it is seen that with the radiation angle approaching 180� the
intensity of coherent PBs at the maximum of the frequency dependences sharply

increases, and the width of a spectral peak decreases. Three numbers in the

parentheses above spectral peaks number a crystallographic plane, by which

a virtual photon of the electron eigenfield is scattered to a real Bs photon (see Fig. 5.8).

Fig. 9.19 The diagram of the modified “Roentgen” experimental system: 1 – vacuum channel for

an electron beam; 2 – rotary magnets; 3, 8 – collimators; 4 – quadrupole lenses; 5 – beam corrector;

6 – vacuum chamber; 7 – target; 9 – X-ray detector; 10 – beam proportional chamber [22]

Fig. 9.20 The calculated spectrum of coherent PBs of a relativistic electron scattered by a copper

polycrystal for two radiation angles: solid curve – y ¼ 180�, dashed curve – y ¼ 160� (From the

paper [22])
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It should be noted that the spectrum of coherent PBs presented in Fig. 9.20

corresponds to averaging over orientations of crystallites forming the polycrystal

under the assumption of their isotropic distribution. This fact is expressed by the

formula (5.14), in which the integral with respect to the normalized solid angle of

the reciprocal lattice vector dOg 4 p= describes this averaging. In case of a texture

crystal, when the isotropism of the distribution of the reciprocal lattice vectors g is

violated, the polycrystal becomes partially oriented, it is necessary to introduce into

the integral on the right side of the Eq. 5.14 the distribution function f gð Þ reflecting a
concrete texture of a polycrystal. A texture can appear in a polycrystalline sample

such as a thin foil in the process of its manufacturing or by other reasons.

To investigate the microstructure of a target, in the work [22] the measurements

of the spectra of coherent PBs were carried out for different orientations of a sample

of a copper foil with respect to an electron beam. The results of these experiments

are presented in Fig. 9.21a–c).

The comparison of the PBs spectra (Fig. 9.21) measured for a real target with the

calculated spectrum (Fig. 9.20) obtained for a polycrystalline target (without

texture) shows a change of the PBs photon yield (reflection) caused by different

Fig. 9.21 The experimental

spectra of PBs of a relativistic

electron scattered by a copper

foil in backward radiation:

(a) normal orientation of the

sample plane with respect to

an electron beam, (b) random

orientation of the target plane

with respect to an electron

beam, (c) another random

orientation of the target

(From the work [22])
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crystallographic planes. For example, in Fig. 9.21a the (111) reflection yield is

strongly suppressed in comparison with the theoretical data for an isotropic

polycrystal and the (200) reflection yield is practically absent. At the same time

from Fig. 9.21b it follows that at a specified orientation of a target with respect to

an electron beam an increase of the (220) reflection yield is observed with other

reflections suppressed. The PBs spectrum shown in Fig. 9.21с, corresponding to

another abnormal orientation of a target, has another form differing from the spectra

of Fig. 9.21a, b.

The comparison of reflection yields was made on the basis of comparison of the

values of spectral maxima of PBswith the “instrument” spectral maximum at photon

energy of 6.3 keV that in Fig. 9.21 is designated by the symbol ESC. The position of

this spectral maximum is defined by the difference of the energy of a photon of

the K-line of characteristic copper radiation and the energy of the silicon

photoabsorption edge in the X-ray detector. It is seen that the spectral width of the

“instrument” peak is comparable with the widths of peaks of coherent PBs of a

relativistic electron with a specified energy (7 МeV) in backward radiation. Based

on this fact, the authors of the paper [22] made an assumption that the real spectral

width of PBs peaks in backward radiation is close to the spectral width of character-

istic radiation of the copper K-line, which requires additional measurements of

peaks under study by a detector with higher energy resolution.

It should be noted that according to the theoretical analysis carried out in the

work [21], the spectral width for coherent PBs in backward radiation decreases in

inverse proportion to the squared energy of an incident electron (with neglected

saturation effect that is caused by changing phase velocity of radiation in a medium).

For radiation angles less than 180� narrowing of the line of coherent PBs in a

polycrystal is inversely proportional to the electron energy in the first degree.

Thus it can be concluded that narrow spectral maxima of coherent PBs recorded

in the cited work were found to be rather sensitive to the structure of a polycrystal-

line target, which is of interest for development of a new energy dispersion method

for substance structure diagnostics with the use of recording PBs spectra [23].
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Chapter 10

Induced Bremsstrahlung Effect

in an Electromagnetic Field with Account

for Interference Phenomena

Considered in this chapter are spectral, angular, polarization, and amplitude

peculiarities of the near-resonance bremsstrahlung effect on ions with a core in

strongly inelastic electron scattering that arise due to the presence of the polariza-

tion channel of the process and its interference with the static channel. This

phenomenon plays an important role in processes of energy exchange between

plasma and a near-resonance laser field as well as in experiments on triple interac-

tion on electron and atomic beams and storage rings.

The near-resonance case under consideration corresponds to high enough radia-

tion frequency detunings from resonance in the ion core, so it is possible to neglect

real excitation of the core, and yet to low enough detunings to be limited to the

contribution of only one virtual transition of the subsystem of bound electrons to the

process amplitude.

In contrast to the majority of previous works on resonance PBs, considered here

is a bremsstrahlung effect on ions (including multiply charged ions) at relatively

low velocities of a scattered particle, when the Born approximation is inapplicable,

and the IP motion is more likely of a quasi-classical nature.

10.1 Near-Resonance Bremsstrahlung Effect (Including

a Multiphoton Effect) in the Dipole Approximation

for Interaction of a Quasi-Classical Incident Electron

and the Ion Core

In this paragraph the calculation of the cross-section of multiphoton induced

bremsstrahlung (IBs) in the dipole approximation for interaction of an incident

electron with the ion core is carried out. The incident electron motion is supposed to

be quasi-classical. The said limitations are adequate to laser field frequencies, near-

resonance virtual transitions in the ion core with no change of the principal quantum

number, and high enough charges of a target ion.
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and Solids, Springer Series on Atomic, Optical, and Plasma Physics 72,
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10.1.1 Prescribed Current Method in the Problem of
Bremsstrahlung of a Quasi-Classical Electron on
a Multiply Charged Ion (MCI)

The consistent quantum-electrodynamic solution of the set problem assuming

summation of an infinite diagram series is connected with great mathematical

difficulties. The approach developed below corresponds to approximate summation

of such a series in a case of interest for us for collisions of a charged particle with a

MCI. This approach is based on a possibility of description of radiative processes in

electron scattering in the MCI field within the framework of the approximation of

prescribed (not necessarily classical!) current. This model has a wide domain of

applicability for a case of IBs in collision of charged particles with a MCI. A key

condition of applicability of this approach is that in a region of space responsible for

photon radiation in a laser mode the IP motion is only weakly disturbed both by the

laser field (in comparison with disturbance of motion by the MCI field) and by an

act itself of photon emission/absorption (of a real photon in static Bs or an

equivalent photon in polarization Bs).

The smallness of the value of the laser field in comparison with the field of an ion

in the region of space responsible for radiation imposes the following limitation on

the amplitude of the intensity of an electric component in the laser beam (Ze is the
ion charge):

E0<
Ze

r2o
;

where the parameter ro is estimated as a characteristic distance, at which emission

of a photon with the frequency o in the MCI field occurs:

1. ro � Z Ry �ho=ð Þ2
h i1=3

aB

(here Ry is the Rydberg energy, aB is the Bohr radius) for the case of high-

frequency spectrum asymptotics in the quasi-classical case [1] (� ¼ Z e2 �h v= >1

is the Born parameter, o>>oCoul , oCoul � mv3 Ze2
�

is the characteristic

Coulomb frequency), and

2. ro � v o=
for the Born case (�<<1 ) and low-frequency asymptotics in case of quasi-

classical IP motion (�>1, o<<oCoul).

We will give the results of the works [2] and [3] concerning opposite limiting

cases of the IP motion nature.

The formula for the probability WðnÞ of a n-photon static process in the Born

case �<<1 that was for the first time obtained in [2] looks like:

WðnÞ ¼ J2n aqð Þ; (10.1)
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where Jn is the n
th-order Bessel function, a ¼ eE0 mo2

�
is the amplitude of electron

oscillation in the laser field of frequency o and amplitudeE0, �hq is the change of an

IP momentum in inelastic scattering by a MCI.

In case of quasi-classical motion (�>>1), in [3] the result is obtained that is

similar in structure:

WðnÞ ¼ J2n mo avo �h=j jð Þ; (10.2)

where vo is the Fourier component of IP velocity on the classical trajectory in the

field of an ion.

The relation between the formalism of the quasi-classical description of Bs and

the prescribed current method was traced in [3] at a qualitative level for a radiative

transition of an IP in its motion in the static central field. The rigorous quantum-

mechanical substantiation of the prescribed classical current method for calculation

of multiphoton IP transitions in the static central field in the presence of laser

radiation was for the first time carried out by A.B.. Kukushkin within the frame-

work of the method of two-dimensional quasi-classics [1] by the passage to the

limit �h ! 0 in the quantum formalism of multiphoton transitions in the joint (with

the author) work [4].

In the limit of fast collision (otcol<<1) corresponding to weak inelasticity of the

process, both results are represented, as was noted in [3], by a single formula of the

form (10.1), in which now the vector �hq is the change of an IP momentum in

scattering by a MCI both at �<<1 and at �>>1.

It turns out that the formula (10.1) can be extended to the region of strong

inelasticity in terms of nonsmallness of the ratio of the total energy of emitted

photons to the value Ei of the initial IP energy. In this case an actual limitation of its

applicability is a weak disturbance of IP motion by an act of radiation in the region

of space responsible for photon emission. As a matter of fact, such a generalization

of the formula (10.1) covers, in addition to the said domain of its applicability, the

region of strong inelasticity in case of quasi-classical motion of an IP, specifically

of an electron. In the latter case, as shown by the generalization of the formalism of

Kramers electrodynamics [1] to multiphoton processes [4], an actual condition

of weak disturbance of electron motion is, according to the main conclusions of

Kramers electrodynamics, weak local kinematic inelasticity

m � n�ho Ekin roð Þ= ;

where ro is the characteristic radius of electron rotation around an ion near the point
of the most approach, Ekin roð Þ is the local kinetic IP energy. In case of quasi-

classical electron motion that is characteristic just for collisions of electrons with

multiply charged ions of practical interest, the condition of smallness of m is found

to be satisfiable in a wide range of frequencies. Really, m � n �ho Ry=f g1=3Z�2=3 ,

so for characteristic frequencies of the Coulomb Bs spectrum (o � mv3 Ze2
�

)

we have: m � n x= , and for the short-wavelength Bs limit we obtain m � n x=ð Þ2=3
ðx ¼ o oCoul= Þ.
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The generalization of Eq. 10.1 to the case of strong inelasticity and arbitrary

quanticity of IP motion can be justified from consideration of a matrix element of a

multiphoton transition between true wave functions for IP motion in the static

central field of an ion. Such a generalization is based on joining of descriptions in

different regions of space {�h v Z e2
�

,n �ho Ei= }. The first step here is demonstration of

truth of the description (Eq. 10.1) in the low-frequency limit (�ho<<Ei, �ho<<Ef )

for an arbitrary �.
For a particular case of radiation of two photons in the Coulomb field this was

done in [5] by difficult calculations developing the approach [6] (it should be noted

that the formula for low frequencies and an arbitrary short-range potential given in

[7]). The second step consists in extension of the low-frequency description to the

case of arbitrary inelasticity within the framework of classical IP motion in the

region �>>1 . This is achieved by the above substantiation of the prescribed

classical current method (see Appendix 1 of [4]).

As a result of rigorous substantiations in the said regions of parameters and

interpolation in the intermediate region, we obtain finally – throughout the region of

truth of the prescribed current approximation – the following universal representa-

tion for the probability of multiphoton Bs in the static field of a target ion:

WstatðnÞ ¼ J2n 4nlaskln
stat
kl

� �1=2h i
: (10.3)

Here nlaskl is the occupation number for photons in a laser mode (nlaskl>>1), nstatkl is

the occupation number for photons spontaneously emitted by an IP in the static field

of an ion in the laser mode k; lf g with the wave vector k and polarization l in the

mode of ordinary single-photon Bs in inelastic (radiative) transition from the state

with the initial momentum pi to the state with the direction of a momentum

coinciding with the direction of the momentum nf ¼ pf pf
�� ��.

of the exact final

quantum state (the momentum of which is pf and the energy isEf ¼ Ei � n �ho), and
with an energy differing from the initial energy only by one photon:

nstatkl ¼ 2p
�h

o e dif1
� ��� ��2 V

dsscatt
dOf

� ��
; (10.4)

where dif1 is the matrix element for the radiating dipole moment of an incident

electron between the states ij i and f1j i,

ij i ¼ pij i ¼ Ei; nij i ¼ p2i 2m= ; pi pij j=
�� 	

; f1j i
¼ Ei � �ho; nf ¼ pf pf

�� ��.��� E
; (10.5)

where V is the volume of quantization, dsscatt dOf

�
is the cross-section of elastic IP

scattering in the ion field from the state ij i to the state f1j i.
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As seen from Eq. 10.4, the extension of the prescribed current method (in the

region of its truth) to the case of arbitrary quanticity of IP motion is achieved by

replacement of the classical Fourier transform jprojectileo for current produced by an IP

to the quantum-mechanical expression

m<f jjprojectileji>
2p�h

ffiffiffiffiffiffiffiffiffiffiffiffi
dsscatt
dOf

r� � : (10.6)

Really, at �h ! 0 by the correspondence principle [1] for single-quantum inelas-

tic transitions of an IP in an arbitrary central field between states described by wave

functions of the continuous spectrum we obtain the Fourier component of the

classical trajectory in the argument of the Bessel function in the formula (10.2).

And in the Born limit (�<<1) the formula (10.6) coincides with the valueq o= in the

formula (10.1) in the range of accuracy of this approximation itself based on weak

inelasticity of the transition (a change of energy, that is, of the magnitude of a

momentum vector, makes to �hq the contribution of the second order of smallness in

comparison with the contribution of the angle of rotation of the momentum vector).

The formula for the process cross-section is obtained from Eq. 10.3 by proper

summation over statistical weights of the final state of an IP, which corresponds to

multiplication of the probability of radiation by the cross-section of Coulomb IP

scattering in the MCI field:

dsðnÞ ¼ WðnÞ dsCoul: (10.7)

10.1.2 Generalization of the Fermi Equivalent Photon Method
to Multiquantum Processes

The basis for the generalization of the Fermi equivalent photon method to the

multiphoton case formulated below is extension of the prescribed classical current

approximation used in [3] for description of multiphoton static IBs at �>>1 to the

process of polarization IBs and, besides, at an arbitrary quanticity of IP motion.

The equivalent photon method is (within the framework of its applicability) insen-

sitive to the quanticity/classicity of motion of a charged particle producing a flux of

equivalent photons. Therefore in the problem of multiphoton induced PBs it seems

natural to take into account interaction of (of necessity quantized) radiated/absorbed

field of real photons not only directly with IP current (as in ordinary static Bs), but

also with polarization current induced by an IP in a target ion/atom. For the case of

prescribed classical current (the generalization to the quanticity of IP motion – see
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below) this gives an additional term in the Hamiltonian, so the equation for the wave

function w of one mode of the laser field in the interaction representation takes the

form:

i�h
@w
@t

¼ �e
2 p �h

o V

� �1=2

ðekljtotalÞðaklðtÞ þ aþklðtÞÞw; (10.8)

where a, aþ are the operators of annihilation and production of photons in the laser

mode, ekl is the unit vector of polarization of the intensity of an electric component

of laser radiation, е is the electron charge, V is the volume of quantization.

The Fourier transform of total current including polarization current is given by

the following expression:

jtotalo ¼ jprojectileo þ jpolarizo (10.9)

here jprojectileo is the Fourier transform of IP current calculated at a classical

trajectory, jpolarizo is the Fourier transform of polarization current induced in the

target.

The Eq. 10.9 corresponds to the dipole approximation both for interaction of

laser radiation with a MCI and an incident electron and for interaction of an incident

electron with a MCI. The first two conditions are expressed by the inequations:

l>rb and l>r oð Þ , the third condition is expressed by r oð Þ>rb (l is the laser

wavelength, rb is the radius of the orbit of a bound electron in a MCI, r oð Þ is the
characteristic distance from an IP to a MCI making the main contribution to

radiation of frequency o). It is can be seen that the dipole approximation is

applicable in a wide range of frequencies.

The last condition (r oð Þ>rb) defines also the fact that the field of an incident

electron at the location of a bound electron is much less than the field of the MCI

nucleus. Therefore in the rough the relation can be supposed to be satisfied:

jpolarizo � w E0ð Þ jprojectileo ; (10.10)

where w E0ð Þ is the integral operator of susceptibility of the electronic system of

multiply charged ions (in view of the influence of the laser field of amplitude E0)

including the contribution of all harmonics of the IP field. This relation defines the

linear connection between IP current and current induced in a MCI under the action

of IP in the process of scattering, which justifies the choice of total current in the

formula (10.10).

Further we will be interested in the case of a “developed” multiphoton nature of

energy exchange between an IP and a laser field (strong enough, but, it will be

recalled, still lower than the Coulomb MCI field in the effective region of radiation/

absorption of a photon), at which the main contribution to polarization IBs is

defined by the presence of single-photon near-resonance behavior of a laser field

with MCI eigenfrequencies. This case corresponds to induced (under the action of a
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laser field) scattering of n equivalent photons, each of energy �ho, “emitted” by an

IP in its scattering in the Coulomb MCI field, by the core of a target ion with their

transformation to n real photons. In the consistent quantum-electrodynamic consid-

eration this process is described by the sum of “ladder” diagrams (see Appendix

2 of the work [4]), which results in nth order near-resonance behavior in the

amplitudes of n-photon processes. Actually, corresponding to the said approach is

realization of the principle of inducedness (stimulatedness, preference) of radiation

of energy quanta at a frequency of the external field not only for (real) photons, but

also for virtual photons “waiting” for their transformation to real photons.

The described approach, however, does not take into account the contributions

from resonances in the core of an ion with higher laser frequency harmonics.

Corresponding to this fact would be the appearance of polarizabilities of higher

orders and, accordingly, the conversion of one virtual photon with the energy n �ho
to n real photons. In terms of diagrams, this process is represented by one (for a

specified n) “comb” diagram and therefore corresponds (1) to disturbance of a

target ion in a much more strict range of frequencies and (2) to a possibility only of

the first-order resonance in the process amplitude.

In the approximation under consideration we obtain

jtotalo ¼ jprojectileo þ jpolarizo ¼ 1� mo2

Ze2

� �
aðo;E0Þ

� �
jprojectileo ; (10.11)

where aðo;E0Þ is the first-order target polarizability at the frequency o determined

in view of disturbance of the target by the laser field of amplitude E0.

10.1.3 Probability of Multiphoton Bremsstrahlung in View
of the Polarization Channel

A corollary of the Eqs. 10.8 and 10.9 is the following expression for the

total probability of a n-photon process of radiation/absorption (W(n)) in the case

nlas>>1 (nlas is the occupation number for photons in a laser mode), including the

static and polarization channels:

WPðnÞ ¼ J2n 2 nlaskln
stat
kl

� �1=2
1� d½ �

n o
; (10.12)

where Jn is the n
th-order Bessel function, and

d ¼ mo2a o;E0ð Þ
Ze2

(10.13)
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is the summand describing the contribution of the polarization mechanism of

radiation to the process amplitude. In case of prevalence of radiation by the

polarization channel we obtain:

WpolðnÞ ¼ J2n 2 n las
kl n

polariz
kl

 �1=2
� �

; (10.14)

where npolarizkl ¼ d2nstatkl is the occupation number for photons that are spontaneously

emitted by an IP by the polarization channel in the laser mode k; lf g in collision of
the IP with a MCI.

The formula (10.12) is the result of summation over both channels. The separa-

tion of the contribution of radiation by one of the channels in this expression is

achieved by using the addition formula for Bessel functions. This makes it possible

to copy the Eq. 10.12 as:

WPðnÞ ¼
X

nþm¼n

Jn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n las

kl n
stat
kl

q� �
Jm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n las

kl n
polariz
kl

q� ������
�����
2

: (10.15)

The expression (10.12) for the probability of a multiphoton process is the

generalization of the formulas obtained earlier by F.V. Bunkin and M.V. Fyodorov

[2] in the Born approximation and by I.Ya. Berson [3] in the quasi-classical limit.

The generalization is made (1) to the case of strong inelasticity of a multiquantum

transition in a wide region of quanticity/classicity of IP motion covering the regions

of truth of the results of [2, 3] and the whole domain of applicability of the

prescribed quantum/classical current approximation, and (2) to taking into account

the contribution of the polarization channel to the process of radiation in the

prescribed quantum/classical current approximation for current produced by an IP.

It is significant that the result of Eq. 10.12 generalizes to the multiphoton case

the known effect [8] of “stripping” a target ion consisting in partial (for an ion) or

total (for an atom) descreening of a nucleus. This descreening occurs due to

compensation of contributions of polarization radiation and the part of IP brems-

strahlung that is caused by Coulomb interaction of an IP with electrons of the core.

Such a compensation exactly corresponds to disappearance of bremsstrahlung in

the dipole approximation in collision of particles with equal charge-to-mass ratios.

The approach, within the framework of which the formula (10.12) was obtained,

differs from the consideration of the work [9] carried out in the Born approximation

by consistent taking into account the interaction of polarization current induced in a

MCI with a quantized laser field and by generalization to the case of arbitrary

values of the parameter � in the domain of applicability of the prescribed current

formalism. However, it should be noted that the result of [9] has a strict physical

analog. The direct comparison of Eq. 10.12 with the formula (10.2) from [9] carried

out at the level of the cross-section of a corresponding process obtained by

multiplication of probability by the cross-section of Coulomb IP scattering in the
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MCI field is indicative of structure similarity. The main distinction consists in the

form of multipliers representing the polarization channel that in [9] are expressed in

terms of nonlinear susceptibilities of a target. This distinction is explained by

different models used as the basis for description of the phenomenon under

consideration.

The result obtained here (Eq. 10.12) corresponds, as mentioned above, to

induced (under the action of a laser field) scattering of n equivalent photons, each

of energy �ho, “emitted” by an IP in its scattering in the Coulomb MCI field, by the

core of a target ion with their transformation to n real photons (here nth order near-
resonance behavior arises, see Appendix 2 of [4]). And corresponding to the

approach of the work [9] – in the terms of the equivalent photon formalism – is

the conversion of one virtual photon with the energy n�ho to n real photons, at which
only the first-order resonance is possible. For considered in this work multiphoton

IBs in collision of a charged particle with a MCI in the presence of a strong laser

field that is near-resonance with respect to single-photon transitions in the MCI

core, the approximation we used is found to be more appropriate.

It should be noted that “odd” lines of virtual photons in “ladder” diagrams

describing the conversion “n to n” increase the number of diagram vertices, but

do not necessarily reduce the value of the process amplitude. In order for such a

reduction to take place actually, an additional inequation should be satisfied that

generalizes the known Born condition for a static scattering potential to a case of a

time-dependent potential. This condition for a case of electron scattering by a MCI

can be written as follows:

a oð ÞE
vro

<1: (*)

The inequation (*) can be called the dynamic Born condition. It was not used in

the work [9].

The distinction of the formula (10.12) from the formulas of the work [10] is

caused by the fact that in the said paper the wave function of a target was taken into

account in the “dipole disturbance” approximation, which has defined taking into

account emission of only one photon by the polarization channel.

The contribution of the polarization mechanism to the total probability of

induced Bs becomes prevailing in case of near-resonance laser radiation. In this

region generally determined by the condition

g<< o� o0j j<<o; (10.16)

whereo0 is the eigenfrequency of a resonance electron transition in a MCI, g is the
total width of the considered transition, it is necessary to take into account the

influence of a laser field on electrons of the MCI core that, as is known, can

approximately be reduced to the known modification of MCI polarizability – to

appearance in the denominator of the expression for the near-resonance MCI
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polarizability of the generalized Rabi frequency: OR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dE0 �h=ð Þ2 þ o� o0ð Þ2

q
.

The near-resonance MCI polarizability can be described by the expression: aðo;
E0Þ ¼ d2 sign o0 � oð Þ �hOR= , here d is the matrix element of the dipole moment of

the near-resonance transition. In terms of diagrams this can be shown by summation

of a corresponding diagram series describing the interaction of laser radiation and a

core ion. Accordingly, the expression for the value d describing the contribution of

the polarization channel to the total process amplitude can be represented as:

d ¼ mo2

Ze2

� �
d2 sign o� o0ð Þ

�hOR
: (10.17)

Based on the above formulas, it is possible to write out the following condition

of prevalence of the polarization channel over the static channel (in atomic units):

D2 þ gf
gi

f0
o
E2<

f0o
Z

� �2

; (10.18)

where f0 is the oscillator strength, gi; f are the statistical weights of the initial and

final states of the resonance transition, D ¼ o� o0 is the detuning of laser

frequency from resonance.

Following from the formula (10.18) is the expression for the saturating value of the

laser field amplitude in the near-resonance case under consideration: Esat ¼
ffiffiffiffiffiffiffiffiffiffi
gio
gf f0

D
q

.

For characteristic values of parameters included in this expression in the soft X-ray

region and laser frequency detunings from resonance D � 10�3 (which exceeds the

characteristic value for the Doppler broadening of the transition in the case under

consideration), for the saturating field we have the estimation: Esat � 10�3 (a.u.).

From the above formulas we obtain the upper boundary for the value of the laser

field for the region of prevalence of PBs over SBs in the near-resonance case:

Eh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2o
f0

o f0
2 Z

� �2

� D2

" #vuut : (10.19)

For Z ¼ 10, o � 2 a.u., f0 � 1 we find: Eh � 0:1 a.u.

In case of laser fields E<Esat we have the following condition of prevalence of

PBs over SBs:

Dj j< f0
Z
o; (10.20)

from which it follows that in this case a rather wide spectral range is covered.
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Let us estimate the significance of the role of induced Bs, including polarization

IBs, for a case of practical interest of coherent radiation generation in the soft X-ray

band. We will give the numerical estimation for values of parameters reachable in

modern experiments. Such an estimation is most appropriate to be given for the

Kramers case, when o � oCoul � v3 Z= .

In this case we obtain the following expression for the cross-section of a

n-photon induced process (a is the angle between the initial IP velocity and the

wave vector of a bremsstrahlung photon):

sn að Þ ¼ 2Zð Þ43
v2 o

2
3

ð2p
0

df
ð
dN

N
1
3

J2n
1� dj j
o

5
3 Z

1
3

E
25=3ffiffiffi
3

p
� �

N
2
3 FðN; a;fÞ

� �
(10.21)

where

FðN; a;fÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 a K2

2=3

4

3
N

� �
þ cos2f sin2a K2

1=3

4

3
N

� �s

and K2 3= , K1 3= are the Macdonald functions.

The analysis of the expression (10.21) shows the importance of interference

effects between the static and polarization radiation channels. They result, in

particular, in “dips” both on spectral and on amplitude dependences of the cross-

section of the induced bremsstrahlung effect. These effects correspond to vanishing

of the argument of the Bessel function in the formula (10.21) for d ¼ 1. The last

case can occur both due to a corresponding shift of the laser field frequency from

the center of the emission line and (for negative detunings from resonance) due to

dependence of the value d on the amplitude of the laser field (see Eq. 10.17 and the

expression for the generalized Rabi frequency).

Since the Bessel function reaches its maximum at the value of the argument

approximately equal to the order of the function, for the probability of a multipho-

ton process to be comparable with the probability of a single-photon process it is

necessary that the argument of the Bessel function in the above formulas is great

enough. At the same time there is a top limitation on the value of a laser field

(the formula (10.19)) for the relative contribution of the polarization channel to be

not too small. So the contribution of PBs to the multiphoton process is noticeable

against the background of the contribution of static IBs for a limited range of values

of problem parameters. This ion-charge dependence for a lithium-like isoelectronic

series of ions is presented in Fig. 10.1.

Given in Fig. 10.2 is the dependence of the differential cross-sections of induced

bremsstrahlung of single-photon (curve 1) and two-photon (curve 2) processes on

the intensity of a linearly polarized laser field for a zero angle between the field

vector and the initial electron velocity vector.

Also given in the figure are the curves corresponding to the contribution only of

the static channel (curves 3, 4) also are given. It is seen that in taking into account

the polarization channel the cross-section of the two-photon process is compared
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with the cross-section of the single-photon process at lower values of laser field

intensity.

10.1.4 Cross-Section of a Single-Photon Process

Let us calculate the cross-section of induced bremsstrahlung/absorption for a

single-photon process for laser field intensities, at which the argument of the Bessel

Li-like ion series
2s-2p resonance

2 4 6 8 10
0.1

1

10

100

ar
gB
(Z
)

Z

Fig. 10.1 The dependence of the argument of the Bessel function in the expression for multipho-

ton IBs near-resonance with respect to the transition 2s-2p in a lithium-like ion on the charge of the

ionic nucleus in case of equal amplitudes of the static and polarization channels. The relative

detuning from resonance 5% Z= for two values of IP velocity: Z 3= a.u. (dotted curve), Z
ffiffiffi
3

p�
a.u.

(solid curve)

Fig. 10.2 The dependence of the differential cross-sections of IBs of single-photon, s1(0)

(curve 1) and two-photon, s2(0) (curve 2) processes on the intensity of a linearly polarized laser

field for the angle a ¼ 0, the ion charge Z ¼ 4, the IP velocity v ¼ 0.447 a.u., the laser frequency

o ¼ 0.37 a.u., the oscillator strength f0 ¼ 0.69, the relative frequency detuning D/o � + 0.014.

The curves corresponding to the contribution only of the static channel for single-photon (3) and
two-photon (4) processes are also given
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function in the formula (10.21) is less than one, so it is possible to retain the first

term in the expansion of the said function. We will consider a case when the

condition of (quasi-)classicity of motion of an incident particle (� ¼ Z e2 �h v= >1)

is satisfied. Then it is possible to perform integration with respect to impact

parameters (or eccentricity of an orbit) in the closed form in the formula for the

differential cross-section as it was for the first time done in [3]. Let us assume also

that the condition of “Kramers behavior” of the process is satisfied, that is, the laser

field frequency is much higher than the Coulomb frequency: o>>oCoul (oCoul

� mv3 Ze2
�

). Under the said assumptions the expression for the cross-section of the

single-photon process takes the form:

s1 #ð Þ ¼ p2ffiffiffi
3

p Z2

v2o4
E2
las 1� dj j2 sin2 #þ 2 3 cos2 #� 1

� �� �
; (10.22)

where# is the angle between the vector of the initial velocity of an incident electron
and the laser field intensity vector (Elas), the value d is given by the formula (10.17).

Further we will carry out calculation for a case of relatively cold recom-

bining plasma, the temperature of which can be estimated according to the formula:

T � 0:025 Z2. To be specific, we will consider the distribution of plasma electrons

by velocities to be Maxwellian distribution. Then for the cross-section averaged

over velocities (in the two-level approximation for a target ion) we find:

s1 Elas;Dð Þ ¼ 2
ffiffiffi
p

p

3
ffiffiffi
3

p 1þ o f0 signðDÞ
2Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ f0E2

las=2o
q

�������

�������

2

Z2 E2
las

T o4
: (10.23)

Here the explicit expression of the parameter d for a near-resonance case is used,
f0 is the oscillator strength for the near-resonance transition.

We assume that the magnitude of the laser field frequency detuning from the

frequency of the resonant transition in an ion (D � o� o0) exceeds considerably

both homogeneous and inhomogeneous broadening of the transition under consid-

eration. It should be emphasized that the obtained expression (10.23) essentially

depends on a sign of detuning from resonance, which defines the asymmetry of the

process cross-section.

The cross-section of the static channel of the process under consideration is

obtained from the formula (10.23) in case of dropping the second summand under

the modulus sign. On the contrary, the polarization channel cross-section

corresponds to the second summand under the modulus sign in Eq. 10.23.

We will give the results of calculations by the formula (10.23) for a case of

bremsstrahlung absorption of a near-resonance laser field in scattering of electrons

of relatively cold plasma ( T � 0:025 Z2 ) by a lithium-like oxygen ion (О5+)

(Fig. 10.3).

10.1 Near-Resonance Bremsstrahlung Effect (Including a Multiphoton Effect) in. . . 279



We assume that the laser frequency is close to the eigenfrequency of the

transition 2s-3p of this ion, but at the same time the detuning from resonance

exceeds both homogeneous and inhomogeneous broadening of the transition in

magnitude. In the case under consideration the values of the problem parameters are

the following: Z ¼ 5, o ¼ 3:037 a.u. (86.2 eV), T ¼ 0.625 a.u., f0 ¼ 0:26. Hence
for the initial values of the Born parameter ( � ) and the “Kramers behavior”

parameter (x ¼ o oCoul= ) we have: � ¼ 4:47 and x ¼ 10:87. It should be noted

that the final values of these parameters are inessential for applicability of the

approximations used here.

For a possibility to neglect the spin-orbit splitting of the 3p-state it is sufficient
that the magnitude of the relative detuning from resonance (jDj/o) is much higher

than the relative value of this splitting (0.024 %). The relative value of the Doppler

broadening in the case under consideration is about 0.01 %. Thus the two-level

model works for jDj/o > 0.1 %.

For applicability of the prescribed current approximation used here it is neces-

sary that the intensity of the Coulomb field of an ion in a region of space responsible

for radiation (Eeff
Coul) exceeds the laser field intensity. The estimation for Eeff

Coul gives:

Eeff
Coul � 7:5 a:u: By this value the values of the laser field intensities are bounded

above. On the other hand, the performed expansion of the Bessel function is true up

to Elas � 8 a:u: So in our case the expansion of the Bessel function is true

throughout the region of validity of the prescribed current approximation.

From Fig. 10.3 the asymmetry of the process spectral line shape is well seen.

A “dip” in the low-frequency wing of the line corresponds to cancellation of the

contributions of the polarization and static channels in case of their destructive

interference. In the high-frequency wing of the line, on the contrary, the interfer-

ence of the channels is constructive, and the total cross-section of the process

exceeds the simple sum of the contributions of two Bs mechanisms.

Fig. 10.3 The spectral cross-section of the single-photon induced bremsstrahlung effect for a

quasi-classical electron on a OVI lithium-like ion in the laser field Elas ¼ 0.2 a.u. that is near-

resonance with respect to the transition 2s-3p in the ion core. Curve 1 – total cross-section, curve
2 – contribution of the polarization channel, curve 3 – contribution of the static channel
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Also following from this figure is the broadening influence of the laser field on

the resonant transition in the ion core due to the presence of the Rabi frequency in

the expression for the near-resonance polarizability of the target. This influence

results in the fact that the resonance growth of the polarization channel cross-

section is reduced for low enough detunings.

As will be shown in the following paragraphs, the dipole approximation in

consideration of PBs for near-resonance transitions with changing principal quan-

tum number and strongly inelastic electron scattering, generally speaking, is not

sufficient since the penetration of an IP into the target core takes place. The above

analysis can be considered as a zeroth approximation, in which the main features of

the process are the most pronounced.

For near-resonance transitions in lithium-like ions the dipole approximation is

more adequate, but in this case it is necessary to take into account the fine splitting

of a radiating transition.

10.1.5 Taking into Account the Fine Splitting of the Upper
Resonant Level

Here we will consider the influences of polarization of the ion core on induced

bremsstrahlung in a situation when it is necessary to take into account simulta-

neously the influence of a strong near-resonance laser field on the polarizability of

bound electrons and the fine splitting of the resonant transition. This case is

characteristic for a MCI of a moderate charge ( Zi � 10 ) and near-resonance

transitions with no change of the principal quantum number (Dn ¼ 0). Really, for

example, for a lithium-like OVI ion the ratio of the value of fine splitting to the

medium transition frequency for transitions 2s ! 2p and 2s ! 3p is respectively

0.5 % and 0.024 %.

To describe the process under consideration, it is possible to use the following

expression for the cross-section of the induced single-photon bremsstrahlung effect

in view of polarization of the ion core, being the generalization of the formula

(10.23) to a case of polarizability of the core of the general form:

s1ðo; vÞ ¼ p4

6

Z2e2

�h2o4m2v2
E2
Las 1�

mo2aðo;ElasÞ
Ze2

����
����FðxÞ; (10.24)

where Ze is the ion charge, v is the velocity of an incident plasma electron,

x ¼ o oCoul= , and the function F xð Þ is given by the expression:

FðxÞ ¼ x H
ð1Þ
ix ixð Þ

��� ���Hð1Þ
ix

0
ixð Þ;

whereHð1Þ andHð1Þ0 are the Hankel function of the first kind and its derivative with
respect to the argument, a o;Elasð Þ is the polarizability of the ion core in view of the
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influence of a strong near-resonance laser field. It should be noted that in the

Kramers region (x>>1): F xð Þ ¼ 4
ffiffiffi
3

p
p

� ��
.

So in the case under consideration the resonance |g> ! |e1>, |e2> takes place,

where |e1,2> are the split upper states. We will assume that the magnitude of the

splitting frequency D0 ¼ o2 � o1 is much less than the resonance frequencies o1,2

themselves. However, it can be great enough in comparison with the detunings

D1,2 ¼ o � o1,2 and is comparable with the resonance Rabi frequency

O0 ¼ d0 Elas �h= . Here d0 is the matrix element of the dipole moment of the transition

that we will assume to be the same for transitions to both split states. Further we will

have to calculate the resonant polarizability a o;Elasð Þ defining the contribution of

the polarization channel to the process.

A strong near-resonance laser field results in mixing of lower and upper levels of

the resonant transition and to appearance of so-called “dressed” states, into which

the initial state of the ion core goes in case of adiabatic turning-on of the laser field

(depending on the value and the sign of the detuning D). So three new states |0>,

|1>, |2> appear being the coherent superposition of the initial states |g>, |е1>,

|е2> with coefficients that are time-independent in the condition of applicability of

the rotating wave approximation: |D|/o<<1 that we assume to be satisfied.

With the use of a usual procedure of system Hamiltonian diagonalization (in the

rotating wave approximation) the following characteristic equation for determina-

tion of the energy of “dressed” states can be obtained:

l3 � D1 þ D2ð Þl2 � 2O2
0 � D1D2

� �
lþ D1 þ D2ð ÞO2

0 ¼ 0: (10.25)

In derivation of the Eq. 10.25 it was assumed that <e1|d12|e2> ¼ 0.

The solutions (Eq. 10.25) can be obtained using the Cardano formula. The

explicit form lj ¼ lj(D1,2, Elas) is not given here because of its cumbersomeness.

Depending on the value D1, the following transitions between the initial and

“dressed” states of the resonant transition take place as a result of adiabatic turning-

on of the laser field:

D1<0 : g> )j j1>; e1> )j j3>; e2> )j j2> (10.26a)

0<D1<D0 : g> )j j3>; e1> )j j1>; e2> )j j2> (10.26b)

D0<D1 : g> )j j2>; e1> )j j1>; e2> )j j3> (10.26c)

From the formulas (10.26a), (10.26b) and (10.26c) it follows that the polariz-

ability of the resonant transition in the ion core, according to in which electronic

state an ion was before turning-on of the laser field, can be represented in terms

of polarizabilities of the “dressed” states as a function of D1 (it is obvious that

D2 ¼ D1 � D0) as follows:

agðD1Þ ¼ a1ðD1Þ Yð�D1Þ þ a2ðD1Þ YðD1Þ YðD0 � D1Þ þ a3ðD1Þ YðD1 � D0Þ;
(10.27a)
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ae1ðD1Þ ¼ a3ðD1Þ Yð�D1Þ þ a1ðD1Þ YðD1Þ; (10.27b)

ae2ðD1Þ ¼ a2ðD1Þ YðD0 � D1Þ þ a3ðD1Þ YðD1 � D0Þ: (10.27c)

Here Y(x) is the Heaviside theta function.

For polarizabilities of the “dressed” states aj (j ¼ 1,2,3) the following formulas

are true:

aj D1;ELasð Þ

¼ �d20
�h

Wj D1;ELasð Þ=�hþD1

� ��1 þ Wj D1;ELasð Þ=�hþD1 � D0

� ��1

O0 2=ð Þ2 Wj D1;ELasð Þ=�hþD1

� ��2 þ Wj D1;ELasð Þ=�hþD1 �D0

� ��2
n o

þ 1
:

(10.28)

Shown in Fig. 10.4 are the spectral cross-sections for a FVII ion and two values

of the amplitude of the laser field Elas ¼ 0.01 a.u. (curve 1) and Elas ¼ 0.02 a.u.

(curve 2) calculated by the formulas (10.24), (10.25), (10.26a), (10.26b), (10.26c),

(10.27a), (10.27b), (10.27c) and (10.28).

From this figure it follows that interference effects for frequencies inside the fine

splitting take place for much larger average cross-sections of the process in

comparison with a dip in the low-frequency wing that occurs also without consid-

ering the fine splitting of upper levels (for a laser field value lower than the

saturating value).

To calculate the total cross-section of the process, it is necessary to perform

averaging over the initial distribution of bound electrons of the ion core by the

states |g>, |е1>, |е2>. This averaging in case of the Boltzmann distribution will
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Fig. 10.4 The spectral cross-sections of the induced bremsstrahlung effect for quasi-classical

electrons on a FVII ion in the laser field with the amplitude Elas ¼ 0.01 a.u. (curve 1), Elas ¼ 0.02

a.u. (curve 2) and a frequency close to the eigenfrequency of the transition 2s ! 2p in the electron
core of the ion in view of the fine splitting of the upper level. The calculation is in the dipole

approximation for IP interaction with the target core
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result in slurring of dips in the spectral cross-section of the process. However, for a

temperature range characteristic for MCI, as a rule, the corona equilibrium is

realized, in which the distribution by electronic states of the ion core will be defined

by the ratio of the rates of excitation and deexitation of the states |е1>, |е2>. The

estimation for the ratio (Ne/Ng)corona to (Ne/Ng)Boltzm (Ne/Ng) gives:

ðNe=NgÞcorona
ðNe=NgÞBoltzm

� 10�19ne ½cm�3�: (10.29)

So from the relation (10.29) it follows that for a case of not too dense plasma in

the corona equilibrium the population of the excited state of the resonant transition

can be neglected in comparison with the population of the ground state.

10.2 Near-Resonance Bremsstrahlung of Quasi-Classical

Electrons on Ions in the Coulomb Approximation: Taking

into Account the Effects of Penetration into a Target Core

In this paragraph the interference-polarization effects in near-resonance Bs of

quasi-classical electrons are analyzed in view of their penetration into the core of

an ion, which is found to be rather essential for strongly inelastic processes. The

approximations accepted here – the quasi-classical approximation for IP motion

and the Coulomb approximation for field acting on an IP – are most adequate to

scattering of plasma electrons by multiply charged ions. However, as the quantum

analysis shows (see the following paragraph), the calculation below is approxi-

mately true also for ions of low charge.

The proposed quasi-classical consideration provides physical visualization

making it possible to get the picture of a phenomenon under study that is not so

obvious in the more exact quantum approach.

10.2.1 Main Relations

In the Sect. 10.1 the prescribed current method for calculation of the cross-section

of Bs on multiply charged ions with a core for arbitrary values of the Born parameter

� ¼ Zi/v was justified. For slow enough incident particles, when the relation � � 1

is satisfied, good results are given by the so-called semiclassical approximation, in

which the classical theory of Bs in combination with some quantum restrictions is

used [1]. Here we use the semiclassical approximation also for calculation of the

polarization channel of induced bremsstrahlung or absorption in the part concerning

incident particles; for calculation of characteristics of bound electrons of the core,

naturally, we use the consistent quantum-mechanical approach.
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Within the framework of this picture the spectral amplitude of induced brems-

strahlung or absorption for the IP scattering angle # (or the eccentricity of an orbit

e ¼ 1 sin #=2ð Þ= ) is the sum of two summands, one of which is proportional to the

temporal Fourier transform of the dipole moment of a scattered IP (Dst o; eð Þ is the
static channel), and the other is proportional to the Fourier transform of the dipole

moment induced by the IP in the ion core (Dpol o; eð Þ is the polarization channel).

Further we will consider induced bremsstrahlung or absorption at the frequency

of outer radiation o close to the eigenfrequency o0 of the transition in the electron

core of an ion such as: (ni s) ! (n p), however, in this case we assume that the

detuning D ¼ o� o0 exceeds the transition line width, so the real excitation of the

ion core can be neglected.

The corresponding formulas obtained in [11] in view of field broadening of the

near- resonance transition look like:

dstot o; eð Þ ¼ 2 p
3

Z2
i

v4
E0 D

tot o; eð Þj j2 e de (10.30)

Dtot o; eð Þ ¼ Dst o; eð Þ þ Dpol o; eð Þ (10.31)

Dpol
j o; eð Þ ¼ 1

6 p
ni; l ¼ 0 k d n; l ¼ 1ikh

O

	
ðþ1

�1
dt eio t Rj t; eð Þ

R t; eð Þ n; l ¼ 1h k a1 rcore; R t; eð Þð Þ k ni; l ¼ 0i

a1 r;Rð Þ ¼ y R� rð Þ r

R2
þ y r � Rð Þ R

r2
; (10.32)

here Rj t; eð Þ is the jth projection of the IP radius vector for a specified eccentricity

of an orbit as a time function; O ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ O2

0

q
is the generalized Rabi frequency,

O0 ¼ d0 E0 �h= is the resonance Rabi frequency, d0 is the matrix element of the

dipole moment of the resonant transition; E0 is the amplitude of the electric field in

outer radiation.

The time integral in the formula (10.32) is proportional to the temporal Fourier

transform of the potential of interaction between an IP and the near-resonance

transition in the ion core:

’eg Rð Þ ¼ eh jr� Rj j�1 gj i;

here g and e is the set of quantum numbers of the lower and upper states of the

electron transition under consideration.

In obtaining the formula (10.32), summation over magnetic quantum numbers

and integration with respect to the angular variables of the ion core are performed.
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It should be noted that the operation of taking the Fourier transform in the above

formulas within the framework of the semiclassical approximation being used is

equivalent to calculation of a matrix element from a corresponding operator in the

consistent quantum-mechanical approach. The described procedure is the expres-

sion of the conformity principle for a matrix element of an arbitrary inelastic

process calculated between the wave functions of the continuous IP spectrum

generalized in [4] to a multiquantum case.

In the dipole approximation for interaction of an IP with an ion the formula

(10.32) is reduced to the form:

Dpol; dip
j o; eð Þ ¼ 1

3

ni; l ¼ 0 k d n; l ¼ 1ikh
O

o2

Zi
Rj o; eð Þ: (10.33)

The expression (10.33) can be obtained from Eq. 10.32 in the limit of the zero

radius of the ion core with the use of the formula:

�o2 Rj o; eð Þ
Zi

¼ Rj t; eð Þ
R3 t; eð Þ

� �
o
; (10.34)

following from the equation of IP motion in the field of a point ion.
Following from the formula (10.33) is an important conclusion that the temporal

Fourier transform of the dipole moment induced by the IP field in the ion core is

proportional to a corresponding Fourier transform of the dipole moment produced

by a scattered IP [8, Chap. 10]. This circumstance, true in the dipole approximation

for IP interaction with an ion, formed the basis of the analysis of induced brems-

strahlung or absorption in the works [4].

Nondipole effects in induced bremsstrahlung or absorption in the work [12] were

studied for a case of isotropic (by initial velocities) IP distribution, when the

dependence of the process on polarization of external radiation disappears. It is

just the purpose of this paragraph to take into account this dependence. Therefore

we will calculate the cross-section of induced bremsstrahlung or absorption without

averaging over the direction of the initial IP velocity. The expression for the cross-

section integrated with respect to the IP scattering angle looks like:

dstot o;að Þ ¼ 2p
3

Z2
i

v4
E2
0

ð1

1

Dtot
x o; eð Þ�� ��2 �

fx a; eð Þþ Dtot
y o; eð Þ

��� ���2
� �

fy a; eð Þ
� �

e�1 de;

(10.35)

where

fxða; eÞ ¼ cos2aþ e2 � 1

2
sin2a; fyða; eÞ ¼ ðe2 � 1Þcos2aþ 1

2
sin2a:
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In this formula x, y are the axes of the focal coordinate system specified by the

initial IP velocity vector [3], a is the angle between the initial IP velocity vector and

the vector of the electric field vector of external radiation. In derivation of the

expression (10.35) from the formula (10.30) integration with respect to the azimuth

angle of scattering was performed.

The formulas (10.35), (10.31) and (10.32) are the main formulas for our investi-

gation of polarization-interference effects in induced bremsstrahlung or absorption

of quasi-classical electrons on ions with a core.

10.2.2 Influence of the Nondipole Nature of Interaction
“IP-Target” on a Radiating Dipole Moment

A cause of arising polarization-interference effects under consideration is the

nondipole nature of IP interaction with the near-resonance transition in the ion

core. In the dipole approximation the interference summand in the Bs cross-section

does not depend on polarization of external radiation [4]. Thus for appearance of

this dependence the distinction of the potential of interaction “IP-ion core” from its

dipole analog (“IP-point ion”) is essential.

Given in Fig. 10.5 are the dependences of the ratio of the exact interaction

potential to the dipole potential on the parameter x ¼ ZR (where R is the distance

from an IP to the nucleus) in case of IP interaction with the transition 2s-2p and with
the transition 2s-3p in a hydrogen-like ion. The calculation in the model potential

approximation shows that similar dependences take place for transitions of an outer

electron in a lithium-like ion.
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Fig. 10.5 The distinction of the potential of interaction of an incident particle with the transitions

2s-2p (curve 1), 2s-3p (curve 2) of a bound electron in a hydrogen-like ion from its dipole

approximation (Z is the charge of the ion nucleus)
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From this figure it follows that the deviation from the dipole nature in IP

interaction with the near-resonance transition occurs at the parameter values

x0 � 12 (for Dn ¼ 0) and x1 ¼ 16 (for Dn ¼ 1), while the value x corresponding

to the radius of the 2p-state of a hydrogen-like ion is about 4. So the dipole nature

begins to show itself already at distances from an IP to the nucleus three times

longer than the characteristic radius of the upper resonant state. As is known (see,

for example, [1]), in the Kramers limit the region of the IP trajectory responsible

for emission of a photon of frequency o is localized at a distance of the order of

Ro Zið Þ � Zi
o2

� �1=3
(for the Coulomb field) from the field center (this estimation

corresponds to the “rotation” approximation [1]).

In case of lithium-like ions the eigenfrequency of the transition 2s-2p can be

approximated by the expression: o2s�2pðZÞ ¼ 0:0707 Z � 0:120 a.u. (Z is the

charge of the nucleus of an ion). From the given expressions it is possible to

estimate the parameter of nondipole behavior wnd xoð Þ ¼ V2s�2p xoð Þ
Vdip
2s�2p xoð Þ (here xo(Zi)

¼ Zi Ro(Zi)) as a function of the charge of a lithium-like ion Zi for the near-

resonance transition 2s-2p. Simple calculations give: wnd(1,2,3,4,5) ¼ 0.25, 0.8,

0.96, 0.99 for Dn ¼ 0.

So this estimation based on the use of the “rotation” approximation shows that in

lithium-like ions for transitions with no change of the principal quantum number

the parameter of nondipole behavior for high enough charges of an ion (Zi � 4) is

close to one. An analogous estimation for the transition Dn ¼ 1 shows that the

corresponding parameter of nondipole behaviorxo Zið Þ ismuch less than one for allZi.
However, it should be remembered that the “rotation” approximation corr-

esponds to replacement of summation over the impact parameter of the contributions

of different IP trajectories by IP radiation at a some effective distanceRo Zið Þ. It is not
obvious beforehand that such a replacement is correct for taking into account the

interference of the static and polarization channels occurring for each fixed impact

parameter, especially in the region of destructive interference of these channels,

where the value of the total cross-section is small. The calculations carried out in

[12] in the prescribed Coulomb IP current approximation show that the “rotation”

approximation, generally speaking, is insufficient for description of fine interference

effects in the region of spectral-amplitude “dips”. It is approximately true in the

region of constructive interference of the static and polarization channels for

transitions with no change of the principal quantum number. Therefore for correct

description of this interference throughout the range of parameter values it is

necessary to proceed from the general nonsimplified formula (10.35).

With the calculation of induced bremsstrahlung or absorption for lithium-like
ions in mind, further we use the Coulomb approximation for IP current, in which the

trajectory of IP motion is specified by the known classical expressions [3] of motion

of a charged particle in the Coulomb field of attraction with the effective charge

Zeff ¼ Zi + 1/2.
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The calculation of dependences of focal components of an induced dipole

moment of the ion core on the eccentricity of the orbit of an incident particle –Dx;y

eð Þ – shows that for transitions of bound electrons of an ion with no change of the

principal quantum number the y-projection of the dipole moment is close to its

dipole analog. At the same time the x-projection of the dipole moment for

eccentricities close enough to unity differs greatly from the same value calculated

in the dipole approximation. In particular, for some eccentricity of the orbit of an

incident particle the x-projection of the dipole moment becomes zero and near

e ¼ 1 changes sign.

The said difference underlies the dependence (being studied in this work) of

polarization-induced effects in induced bremsstrahlung or absorption on the angle

between the vector of the initial velocity of an incident particle and the vector of

intensity of the electric field in an electromagnetic wave.

The physical cause of these peculiarities in behavior of the functions Dx(e) and
Dy(e) consists in different influence of the effect of penetration of an incident

particle into the ion core on the projections of the Fourier transform of an induced

dipole moment in the focal coordinate system. Penetration into the ion core more

strongly influences the x-component of the dipole moment than the y-component

since it is the x-component of the radius vector of an incident particle that changes

its sign in the process of motion of the incident particle from the point of minimum

approach to the field center to infinity, while the y-component remains constant-

sign at this section of the trajectory.

10.2.3 Polarization, Spectral and Amplitude Dependences of
Induced Bremsstrahlung or Absorption in View of
Penetration of an IP into the Target Core

The results of calculations of the cross-section of induced bremsstrahlung or

absorption within the framework of the approach under consideration are presented

in Figs. 10.6, 10.7 and 10.8. The calculations were carried out for the transitions

2s-2p and 2s-3p in a lithium-like N4+ ion. As wave functions of a valence electron,

the functions of the model potential method were used.

In all figures the cross-sections of induced bremsstrahlung or absorption

integrated with respect to the angle of IP scattering are given.

The spectral dependences of the cross-section of induced bremsstrahlung or

absorption normalized to the static value near the transition eigenfrequency with

no change of the principal quantum number in the ion core for two values of the

angle a (between the vector of the initial velocity of an incident particle and the

vector of intensity of the electric field in outer radiation) are shown in Fig. 10.6 for

the initial IP velocity v ¼ 0.6 a.u. From this figure it follows that interference

effects are most pronounced for the angle a ¼ p/2, while for a ¼ 0 they are

considerably reduced. And the distinction is greatest in the region of destructive
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Fig. 10.6 The spectral dependences (D ¼ o � o0) of the induced bremsstrahlung or absorption

cross-section normalized to the static value for a quasi-classical electron on a N4+ ion for two

values of the angle a (a ¼ 0 – curve 1, a ¼ p/2 – curve 2) between the initial IP velocity vector

(v ¼ 0.6 a.u.) and the vector of intensity of the electric field of outer radiation (E0 ¼ 10�3 a.u.) for

an outer field frequency near the eigenfrequency of the resonant transition in the ion core with no
change of the principal quantum number (2s-2p)
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Fig. 10.7 The dependences of the induced bremsstrahlung or absorption cross-section normalized

to the static value on the intensity of the electric field in outer radiation for two values of the angle

a between the vectors of the initial electron velocity and of the electric field intensity

(a ¼ 0 – curve 1, a ¼ p/2 – curve 2), negative detuning from resonance (o � o0)/

o0 ¼ �0.3 % near the eigenfrequency of the transition 2s-2p in a N4+ ion for the IP velocity

v ¼ 0.6 a.u.
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interference of the static and polarization channels (o < o0), where calculations in

the dipole approximation for interaction of an incident particle with the core

showed the presence of a deep minimum caused by cancellation of the polarization

and static summands in the process amplitude. In the region of constructive

interference (o > o0) the distinction in the spectral dependence of the cross-

sections for two values of the angle a is insignificant.

The cause of considered polarization peculiarities in the spectral cross-section of

induced bremsstrahlung or absorption is connected with the distinction (discussed in

the previous section) in influence of the nondipole nature of interaction of an incident

particle with the near-resonance transition on the focal components of the radiating

dipole moment induced in the ion core: in more strong influence on its x-component

and weak influence (for the transition with Dn ¼ 0) on the y-component. In case of

a ¼ 0 the main contribution to radiation (for low enough velocities of an incident

particle) is made by Dx, which is caused by the form of the functions fx;y a; eð Þ (the
formula (10.34)). Really, if a ¼ 0, then fx 0; eð Þ ¼ 1and fx 0; eð Þ ¼ e2 � 1. If now it is

taken into account that for low enough values of the IP velocity (in the Kramers limit

[1]) the main contribution to the process cross-section integrated with respect to the

eccentricity of an orbit is made by e � 1 (close collisions), from the previous

equations it follows that fx 0; eð Þ>> fy 0; eð Þ.
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Fig. 10.8 The dependence of

the cross-section of induced

bremsstrahlung or absorption

averaged over the angle a (for

the angular distribution of the

type Dp að Þ ¼ cospa pþ 1ð Þ=
with the distribution axis

perpendicular to the

polarization of outer

radiation) on the intensity of

the electric field of outer

radiation for two values of the

angular distribution

parameter (p ¼ 2 – curve 1,
p ¼ 12 – curve 2) in
scattering of electrons with

v ¼ 0.6 a.u. by a N4+ ion for

detuning of the external field

frequency from the

eigenfrequency of the

transition 2s-2p in the ion

core that is: (o � o0)/

o0 ¼ �0.3 %
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The analogous reasoning shows that for a ¼ p 2= the inverse inequation fx 0; eð Þ
<< fy 0; eð Þ is true, and, accordingly, the main contribution to the process is made

by the y-component of the radiating dipole moment.

Thus the angle a “controls” the relative contribution of different focal

components of radiating dipole moment. In the case that the main contribution to

radiation is made by Dx, the strong influence of the nondipole nature of interaction

of an incident particle with the ion core results in the fact that the cancellation of

amplitudes of the static and polarization channels (in the region of their destructive

interferenceo<o0) takes place only for high enough values of the y of the orbit of

an incident particle. For low enough eccentricities the said cancellation is no more

true. Moreover, beginning with a some value e0, the function Dx eð Þ changes sign,
and the interference of the static and polarization channels gets a constructive

nature. As a result, the interference “dip” in the cross-section of induced brems-

strahlung or absorption integrated with respect to the eccentricity of the orbit of an

incident particle is “slurred over”, which is well seen in Fig. 10.6.

In the high-frequency wing of the spectral line o>o0 the situation is opposite:

high “manifestation” of channel interference results in a higher value of the cross-

section of induced bremsstrahlung or absorption for the angle a ¼ p 2= in compari-

son with the value a ¼ 0. However, in this case the relative role of the interference

summand is small since the total cross-section of the process is great. This circum-

stance is connected with closeness of the parameter of nondipole behavior wnd to

unity (noted in the previous section) for Dn ¼ 0 and Zi � 2.

In the low-frequency wing of the spectral line, where the total cross-section is

small, on the contrary, the role of interference is rather essential and the considered

dependence of the cross-section of induced bremsstrahlung or absorption on polari-

zation of outer radiation is most pronounced.

Similar spectral dependences were also obtained for the transition with changing

principal quantum number: 2s-3p. In this situation the distinction of the cross-

sections in the region of destructive interference is not so great as for the transition

with Dn ¼ 0, which is explained by strong influence of the nondipole behavior on

the value of the y-component of the dipole moment induced in the ion core, caused

by the large radius of the 3p-state in comparison with the 2p-state.
Presented in Figs. 10.7 and 10.8 are the amplitude dependences of the cross-section

of induced bremsstrahlung or absorption (from the intensity of the electric field in

external radiation) integrated with respect to the IP scattering angle, for which

polarization-induced interference effects of interaction of the static and polarization

channels also take place.

Given in Fig. 10.7 is the amplitude dependence of the ratio of the total (including

the polarization summand in the amplitude) cross-section of induced bremsstrah-

lung or absorption to its static analog for two values of the angle a (a ¼ 0 – curve 1,

a ¼ p/2 – curve 2) in the region of destructive interference of the channels

(o < o0). As seen from the figure, in the first case interference effects are very

low: they show themselves in the fact that with increasing intensity of the electric

field the process cross-section tends to a value that is somewhat lower than the static
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value due to destructive interference strongly suppressed by the nondipole behavior

of interaction of an incident particle with the ion core. For a ¼ p/2 a strong

interference effect is present: the amplitude dependence of the cross-section of

induced bremsstrahlung or absorption has a wide “dip” caused by cancellation of

the static and polarization summands in the process cross-section that is character-

istic for consideration within the framework of the dipole approximation for

interaction of an incident particle with the ion core [4, 12]. The cause of retention

of “dipole features” in the amplitude dependence of the cross-section is the same as

in the spectral dependence: for the angle a ¼ p/2 the main contribution to radiation

is made by the y-component of the induced dipole moment that is weakly subject to

the influence of the nondipole behavior for transitions with no change of the

principal quantum number.

Given in Fig. 10.8 are averaged over the angular distribution of incident particles

of the type

Dp að Þ ¼ cospa pþ 1ð Þ=

amplitude dependences of the total cross-section of induced bremsstrahlung or

absorption for two values of the angular distribution parameter (p ¼ 2, p ¼ 12)

for the angle p/2 between the distribution axis and the vector of intensity of the

electrical field in an electromagnetic wave. The chosen kind of angular distribution

of electrons is characteristic for the process of ablation of a solid-state target under

the action of high-power laser radiation, and the angle a ¼ p/2 corresponds to the

normal incidence of radiation on the solid surface.

From the figure it is seen that the interference effect is most pronounced for more

“sharp” (p ¼ 12) angular distribution, which was to be expected since in this case

the average angle a is more close to p/2.

10.3 Quantum Approach to Description of

Polarization-Interference Effects in Near-Resonance

Strongly Inelastic Electron Scattering

The purpose of this paragraph consists in the quantum (for IP motion) calculation of

spectral cross-sections (integrated and differential with respect to the electron

scattering angle) of strongly inelastic electron scattering (with absorption and

emission of photons) of thermal (relatively slow) electrons in a near-resonance

external field and the analysis of influence of target polarization, channel interfer-

ence, the nondipole nature of IP interaction with a target ion, and exchange effects

on this process.
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10.3.1 Method of Calculation

The primary formula for the cross-section of inelastic scattering of an electron

from the state with the initial momentum pi to the state with the finite momentum pf
in the solid angledOf by an ion under the action of the external field of amplitude E0

and frequency o can be represented as (we use in this section atomic units

�h ¼ m ¼ e ¼ 1):

ds pfð Þ ¼ 1

16 p2
Mfið Þj j2 pf

pi
dOf ; (10.36)

here

Mfi oð Þ ¼ pfh j r
r

VstðrÞ þ Vpol r;o;E0ð Þ� �
pij iE0

o2
(10.37)

is the matrix element from the operator of disturbance of IP motion in the static field

of the target and in the field of the induced dipole moment of the target. Here pi;f
�� 	

are the wave functions of an IP in the central field of an ion normalized to the unit

flux, pf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2i 
 2o

p
is the magnitude of the final IP momentum, the plus sign

relates to absorption, minus relates to emission of a photon as a result of inelastic

scattering.

The expression (10.37) is obtained with neglected exchange effects, the contri-

bution to the cross-section of which will be mentioned below.

In the formula (10.37) the function VstðrÞ is the magnitude of intensity of the

static field of a target ion at the location of an IP, and Vpol r;o;E0ð Þ is connected
with the dynamic polarization of the electron core of an ion at the external field

frequency o and for the near-resonance case under consideration ( o� o0j j<<o0)

looks like:

Vpol r;o;E0ð Þ ¼ sign Dð Þ o2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ d0E0ð Þ2 3=

q d0
3
Vns;n0pðrÞ; (10.38)

where d0 ¼ nsh jdj jn0pj i is the reduced matrix element of the dipole moment of the

transition, Vns;n0pðrÞ is the reduced matrix element of the potential of IP interaction

with the near-resonance transition ns ! n0p in the ion core that is equal to:

Vnsn0pðrÞ ¼ ns y r � rbð Þrb r2
� þ y rb � rð Þr r2b

��� ���
n0pi; (10.39)

rb is the radius vector of a bound electron of the ion, yðxÞ is the Heaviside function.
Everywhere in the paper the ground s-state of the ion core is considered.
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In calculation of the functionsVstðrÞ andVns;n0pðrÞ for an outer electron of the ion
core the wave function of the model potential method was used, and for inner

2s-electrons the Slater wave functions were used.
The main distinction of this consideration from previous quantum calculations

of inelastic electron scattering in the near-resonance field is consistent taking into

account the interference of contributions of the static and polarization channels in

case of essentiality of the nondipole nature of IP interaction with a radiating

transition in the ion core. The said nondipole nature is essential if the contribution

of short distances (of the order of an ion size) exceeds the contribution of long

distances or is comparable with it, which takes place in case of strong enough

inelasticity of scattering that we assume in this chapter.

The wave functions of an IP can be calculated in the prescribed quantum IP

current approximation by quantum number expansion of the orbital moment ℓ ħ.
The external electromagnetic field is supposed to be weak enough, so the wave

functions of the continuous spectrum of a scattered electron can be found by

solution of a corresponding Schrödinger equation in the central field of a target ion.

The calculation was carried out for lithium-like ions in the ground state and for

external radiation frequencies that are near-resonance with respect to the transition

with no change of the principal quantum number.

The radial wave functions of the continuous IP spectrum were normalized

according to their asymptotic form:

u r ! 1; l; pð Þ ! 2

r
sin pr þ Zi

p
ln 2prð Þ � p

2
lþ d l; pð Þ

� �
; (10.40)

here d l; pð Þ ¼ dC l; pð Þ þ Dd l; pð Þ is the total phase shift equal to the sum of the

Coulomb dC l; pð Þ and non-Coulomb Dd l; pð Þ phase shifts, the latter was calculated
by the formula [13]:

sin Dd l; pð Þð Þ ¼ 1

2 p

ð1

0

Zi
r
� VstðrÞj j r

� �
u r; l; pð Þ uCoul r; l; pð Þ r2dr; (10.41)

where uCoul r; l; pð Þ is the solution of the radial Schrödinger equation with the

Coulomb potential.

As a result, the integrated and differential cross-sections of inelastic scattering

are represented as the sum (over the quantum number of the orbital angular

momentum) of terms containing radial matrix elements of the total potential of

disturbance of IP motion (VstðrÞ þ Vpol r;o; E0ð Þ):

Rl;l
1 ¼ u r; l; pið Þh jVstðrÞ þ Vpol r;o;E0ð Þ u r; l
 1; pf
� ��� 	

(10.42)

and corresponding phase shifts for the IP wave functions.
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10.3.2 Inelastic Scattering Cross-Section Differential with
Respect to Angle

After integration with respect to the directions of the IP radius vector the formulas

(10.36) and (10.37) give:

sðOf Þ ¼ 1

16pf p
3
i

E0

o2

� �2 X1
l¼0

Sfil ðOf Þ
�����

�����
2

dOf : (10.43)

For parallel polarization (pi ==E0) the summands Sl look like:

Sfi;parl ¼ al Plþ1 Rl;lþ1e
i d l;pið Þþd lþ1;pfð Þð Þ � Pl Rlþ1;le

i d lþ1;pið Þþd l;pfð Þð Þh i
; (10.44)

where Pl cos yð Þ are the Legendre polynomials, y is the angle of IP scattering,

al ¼ lþ 1.

By analogy, in case of perpendicular polarization of the external field (pi ?E0):

Sfi;perl ¼ ei d lþ1;pfð Þbl Ylþ1;1 þ Ylþ1;�1

� �
ei d l;pið Þ Rl;lþ1 þ ei d lþ2;pið Þ Rlþ1;l

n o
; (10.45)

where bl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p lþ1ð Þ lþ2ð Þ

2lþ3

q
, Ynm Of

� �
are the spherical functions.

Since for strongly inelastic scattering under consideration a considerable contri-

bution to the cross-section is made by short distances to the nucleus of an ion, the

calculation of radial matrix elements took into account the contribution of exchange

processes in the polarization channel for two possible values of the total spin of the

system “IP and ion core”.

The results of calculation of spectral cross-sections normalized to the static

cross-section and averaged over possible values of the total spin of colliding

particles for different angles of inelastic IP scattering and two polarizations of the

external field are presented in Fig. 10.9a, b for the incident electron energy 1 Ry and
the external field strength E0 ¼ 10�3 a.u., the field is near-resonance with respect to

the transition 2s-2p (�ho0 ¼ 10 eV) in the core of a N4+ ion.

From Fig. 10.9a it is seen that taking into account the nondipole nature of IP

interaction with the radiating transition in the ion core for the case of parallel

polarization of the external field results in the fact that the minimum in the spectral

cross-section of the process caused by destructive interference of the static and

polarization channels depends considerably on the angle of electron scattering. For

small angles of IP scattering (y < 90�) the minimum falls on negative detunings

(o < o0), and for wide angles (y > 140�) it falls on positive detunings (o > o0).

There is also a small range of angles (y � 120� ), in which the interference

minimum is absent. Accordingly, the “inversion” of spectral line shape asymmetry

for the process cross-section with growing angle of IP scattering also occurs.
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In case of perpendicular polarization (pi ?E0) the interference minimum for all

angles of IP scattering lies in the region of negative detunings of the external field

frequency from resonance in the ion core (Fig. 10.9b), shifting to the center of the

line with increasing scattering angle and disappearing at y � 180�.
The considered features of the spectral cross-section differential with respect to

the IP scattering angle are connected with the dependence of the radial matrix

element of nondipole polarization interaction on the quantum number of the orbital

moment of an IP. The said matrix element changes sign in going from high

moments to low ones. The role of these low moments is most essential in case of

parallel polarization of the external field since then the contribution of an IP orbit

section near the classical turning point increases.

On the contrary, for perpendicular polarization increases the role of long

distances IP – ion (and accordingly, of high orbital moments), where the IP

acceleration is found to be parallel to the vector of the external field strength.

Given in Fig. 10.10a, b are the spectral cross-sections for two angles of elastic IP

scattering with photon absorption and two possible spin states of the system of

colliding particles (without averaging over the total spin).
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Fig. 10.9 The spectral cross-sections (averaged over the spin state of the system of colliding

particles) of inelastic scattering (absorption) of an electron by a N4+ ion for different angles of IP

scattering (1 – y ¼ 57�, 2 – 120�, 3 – 140�), normalized to corresponding cross-sections of the

static channel. Quantum calculation for IP motion: (a) parallel polarization of the external field

pi ==E0, (b) perpendicular polarization of the external field pi ?E0

10.3 Quantum Approach to Description of Polarization-Interference Effects in. . . 297



It is seen that in case of parallel polarization of the external field exchange

effects are most essential for wide angles of electron scattering, and in this case

(y ¼ 172�) the line shape asymmetry is more pronounced for the singlet state of the

system (S ¼ 0), for the triplet state (S ¼ 1) the spectral shape of a scattering line is

practically symmetric.

But in case of perpendicular polarization the exchange is noticeable also for

small scattering angles and the interference minimum is found to be more deep for

the triplet state. The line shape for a wide scattering angle is practically symmetric

for the singlet state.

These features of the spectral cross-sections of inelastic IP scattering for differ-

ent spin states of the system “IP + ion core” can be explained as follows. The

exchange potential for the singlet state corresponds to effective attraction, so it

reduces the amplitude of the polarization channel for those (high) orbital moments.
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Fig. 10.10 The spectral cross-sections of inelastic scattering (absorption) of an electron by a N4+

ion for different angles of IP scattering (1 – y ¼ 57�, 2 – 172�), for the singlet (S ¼ 0, curves a)
and triplet (S ¼ 1, curves b) states of the system of colliding particles. Quantum calculation for IP

motion: (a) parallel polarization of the external field pi ==E0, (b) perpendicular polarization of the

external field pi ?E0
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At such angles polarization interaction results from repulsion between an IP and the

radiating transition in the ion core, which is true for perpendicular polarization

(at any scattering angles) and in case of parallel polarization for small scattering

angles.

And if an IP is scattered to wide angles in parallel polarization, polarization

interaction results from an effective attraction between colliding particles, which is

mathematically expressed in a change of the sign of a radial matrix element from

the polarization potential for low ℓ. Therefore the exchange in the singlet state

increases the polarization amplitude of the process. As a result, the asymmetry of

the spectral cross-section of scattering for S ¼ 0 is found to be more than in the

triplet state, and in case of perpendicular polarization – quite the contrary.

It should be noted that the consideration of exchange interaction (only in the

polarization channel) carried out in the work seems quite adequate for high enough

degrees of ionization of a target, when the wave functions of an IP are mainly

defined by the Coulomb attraction. In the opposite case this consideration may be

insufficient. Nevertheless, the qualitative conclusions about the influence of spin

effects on the spectral cross-section of strongly inelastic scattering given here

should be retained.

10.3.3 Inelastic Scattering Cross-Section Integrated with Respect
to Angle

For the spectral cross-section of induced inelastic scattering integrated with respect

to the angle of IP scattering with parallel orientation of the vector of the external

field strength and the vector of the initial IP momentum, after integration with

respect to the solid angle dOf the following expression can be obtained:

ð
dsparpf

¼ p
4

E0

o2

� �2
1

pf p2i

X1
l¼0

lþ 1ð Þ2
2 lþ 3

Tl
par pi; pf

� �
; (10.46)

where

Tl
par pi; pf

� � ¼ R2
l;lþ1 þ

2lþ 3

2lþ 1
R2
lþ1;l � 2

	 lþ 2

lþ 1
R2
l;lþ1 R

2
lþ2;lþ1 cos d l; pið Þ � d lþ 2; pið Þð Þ:

For the integrated spectral cross-section averaged over the polarization of the

external field (or, which gives the same result, over the direction of the initial IP

momentum) we have:
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ð
dsaverpf

¼ p
4

E0

o2

� �2
1

pf p2i

X1
l¼0

lþ 1ð Þ
3

R2
l;lþ1 þ R2

lþ1;l

 �
: (10.47)

For a case of arbitrary orientation of the vector E0 with respect to the vector pi
(at the angle a) the following expression can be obtained:

ð
dspf að Þ ¼ 3

2
sin2a

ð
dsaverpf

� �
þ 3 cos2 a� 1

2

ð
dsparpf

� �
: (10.48)

It should be noted that the quantum calculation makes it possible to distinguish

between the cross-sections of absorption and photon emission in IP scattering in the

external field, which is important, for example, for the problem of energy exchange

between plasma and radiation.

However, as carried out calculations show, the relative value of a corresponding

difference cross-section (absorption minus photon emission) is maximum for

directed IP motion and considerably decreases in case of averaging over the

angle a between the field vector and the initial IP velocity vector.

The results of calculation of the spectral cross-section integrated with respect to

the angle of IP scattering with absorption and emission of a photon for different

polarizations of the external field are presented in Fig. 10.11. Scattering of an

electron with an energy of 11 eV by a N4+ ion in the field that is near-resonance

with respect to the transition 2s-2p in the ion core was considered, E0 ¼ 10�3 a.u.

From the given figures it follows that in the qualitative conformity with the

conclusions of the quasi-classical consideration of the previous paragraph interfer-

ence effects in the integrated cross-section of inelastic scattering are most pro-

nounced for perpendicular polarization of the external field. At the same time, a

spectral dip is found to be somewhat more smoothed and less deep in comparison

with the results of the classical calculation.

For high detunings from resonance, where the static channel prevails, the sign of

the difference cross-section corresponds to the results of calculation in the Born

static approximation [14]: absorption exceeds radiation for perpendicular polariza-

tion and vice-versa for parallel polarization.

With decreasing frequency detuning the difference cross-section begins to be

defined by interchannel interference that, as it was already mentioned, in the

integrated scattering cross-section is most pronounced for perpendicular polariza-

tion of the external field. For example, in the frequency range of essentiality of

destructive interference absorption considerably exceeds radiation for perpendicu-

lar polarization, as seen from Fig. 10.11 (bottom diagram) since the spectral

minimum of scattering with photon emission is shifted towards higher detunings

in comparison with absorption. However, the same shift results in the fact that with

decreasing value of frequency detuning in the region o<o0 the cross-section of

radiation begins to exceed the cross-section of absorption. Foro>o0 (pi ?E0) the

situation becomes opposite.
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For parallel polarization (pi ==E0) the value of the difference cross-section in the

spectral range of essentiality of interference effects is much less (Fig. 10.11 (top

diagram)) and has an opposite sign: absorption exceeds radiation for negative

detunings low enough in magnitude (o<o0) and vice-versa for o>o0.

The calculation within the framework of the model under consideration shows

that the difference cross-section of inelastic scattering averaged over the angle a
and the total spin has an appreciable value near the resonance, where the process

proceeds mainly by the polarization channel. The sign of the difference cross-

section strongly depends on the IP energy: immediately near the threshold (in IP

scattering with emission of a photon) radiation exceeds absorption, but even in case

of small excesses of the IP energy over the threshold the situation becomes

opposite.

Fig. 10.11 The spectral cross-sections (integrated with respect to the scattering angle) of absorp-

tion (curve 1) and radiation (curve 2) in electron scattering (pi ¼ 0.9 a.u.) by lithium-like nitrogen

in the external field (E0 ¼ 10�3 a.u.) that is near-resonance with respect to the transition 2s-2p in

the core. Quantum calculation. Top diagram – parallel polarization of the external field pi ==E0,

bottom diagram – perpendicular polarization of the external field pi ?E0
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The standard recalculation of the difference cross-section to the absorption/

amplification coefficient shows that the value of the latter in the frequency range

under consideration and for reasonable values of concentrations of colliding

particles is extremely low and can be made appreciable only for very low detunings

from resonance [15], where the specificity of the phenomenon under consideration

disappears to a great extent. Nevertheless, it is possible that there will be such

conditions, under which the obtained results can help also in the problem of

amplification of electromagnetic radiation.

Thus in this paragraph within the framework of the prescribed quantum current

approximation the spectral angular and integrated cross-sections of strongly inelas-

tic scattering of thermal IP by an ion in the near-resonance external field are

calculated.

It is shown that an essential role in the process under consideration is played by

the nondipole nature of IP interaction with the near-resonance transition in the ion

core. This nondipole nature results in the dependence of the nature of interchannel

interference on such problem parameters as polarization of external radiation, the

value of the initial IP velocity, and (for targets with a spin) on the total spin of the

system of colliding particles.

The calculation of the cross-section differential with respect to the angle of IP

scattering has found out the dependence of the spectral cross-section on the angle of

IP scattering that is most strong for parallel polarization of external radiation, when

with increasing scattering angle a peculiar kind of “inversion” of spectral line shape

asymmetry occurs.

Confirmed on the basis of the quantum calculation was the conclusion of the

quasi-classical consideration of the previous paragraph about the most manifesta-

tion of interchannel interference in the integrated cross-section of inelastic scatter-

ing for perpendicular polarization of the external field manifested in the asymmetry

of the spectral cross-section and the presence of spectral dips.

The role of exchange effects in the spectral cross-section differential with

respect to the angle of IP scattering was analyzed.

The features of the spectral dependences of the cross-section integrated with

respect to the angle of IP scattering with absorption and emission of a photon for

different orientations of the external field strength vector in relation to the initial IP

velocity were investigated.

It was shown that the difference scattering cross-section (absorption minus

radiation) averaged over the direction of the initial velocity is rather sensitive to

the IP energy. In the near-threshold region of energies for frequencies near the

resonance radiation exceeds absorption, but even in case of small excesses over the

threshold the situation becomes opposite.
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10.4 Experiments on Electron Scattering by Atoms in a Laser

Field

In the processes of inelastic electron scattering by targets with a core in the presence

of an external electromagnetic field an important role can be played, as it was

theoretically predicted in [16], by a polarization mechanism, with which the

transfer of energy from a field to an electron proceeds through virtual excitation

of a target. Taking into account the contribution of the polarization channel made it

possible to explain low laser breakdown thresholds for alkali metal vapor [17],

atoms of which have high polarizability.

There is also another group of experiments on inelastic scattering of electrons by

atoms in a laser field, in which the energy spectra of electrons scattered at a certain

angle were measured, and for interpretation of which the calculation of the process

cross-section based on the static approximation in a number of cases is found to be

insufficient.

One of the first works of this kind [18] was dedicated to investigation of

multiphoton processes in scattering of electrons by argon atoms in the presence

of intensive radiation of a CO2 laser (a peak power of 50 МW). The initial energy of

electrons was 11 eV. It is essential that electrons were recorded at a wide angle of

scattering (153�). In the experiment the number of scattered electrons with a

specified energy was measured. It was found that the laser field results in significant

redistribution of an originally monoenergetic electron beam by energies. The

central peak corresponding to elastic scattering decreased approximately by

45 %. At the same time there arose additional maxima in the energy spectrum of

scattered electrons, corresponding to absorption/emission of several laser photons

up to n ¼ 3.

The obtained experimental data were found to be in good agreement with

predictions of the semiclassical phenomenon theory developed in [7]. In particular,

it was shown that for the conditions of the carried out experiment the so-called “sum

rule” is satisfied: the total probability of scattering summed over all photonicities of

the process is a constant value.

The influence of target polarization and statistical properties of an electromag-

netic field on the sum rule for multiphoton induced Bs was investigated in the work

[19] within the framework of the first Born approximation. Meant by the sum rule in

this case is a closure arising after summation of cross-sections corresponding to

different numbers of photons emitted/absorbed by a target. This closure, without

considering the polarization channel, is equal to the cross-section of elastic scatter-

ing of an electron by a target in the absence of radiation [20]. In the paper [19] it was

shown that taking into account the polarization channel considerably modifies the

sum rule for small enough angles of electron scattering. From the expression for the

total scattering cross-section obtained in [19] it follows also that going from

coherent radiation to stochastic radiation increases the role of polarization effects.

The contribution of these effects to the transport cross-section of scattering has

maximum for the perpendicular orientation of the external field vector with respect

to the initial electron velocity vector.
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The experimental investigation of electron scattering by helium atoms in a laser

field was carried out in the work [21]. Radiation of a CO2 laser with a power density

of the order of 108W/cm2, the photon energy�ho ¼ 0:117 eV, and an electron beam

with the energy Ei ¼ 9:5 eV were used. The viewing angle was 9�. The electron

energy Ei was chosen so as, on the one hand, to satisfy the quasi-classical condition

Ei >> �ho, and on the other hand, to avoid impact excitation of bound states of a

helium atom with an energy about 19 eV.

As a result of measurements of the energy of an electronic signal, besides elastic

scattering (with no change of electron energy), in the energy spectrum of scattered

electrons maxima corresponding to absorption or emission of a whole number of

laser photons were recorded. Emission/absorption of a photon in this case is an

induced bremsstrahlung effect in a laser field, in the process of which electrons

decrease or increase their kinetic energy.

The relative contribution of absorption/emission of laser photons in scattering

measured within the first 3 s after beginning of a laser pulse is presented in

Fig. 10.12. The typical temporal shape of a laser pulse is presented in Fig. 10.13.

It was found that the intensity of additional electron peaks corresponding to

absorption/emission of laser photons by electrons in scattering exceeds consider-

ably the values predicted by the theory [7] that does not take into account the

polarization channel. The experimental conditions were chosen in [21] so as to

satisfy to a maximum extent the criteria of applicability of the so-called Kroll-

Watson approximation [7] and to exclude processes of excitation of the electron

Fig. 10.12 The electronic spectra resulting from scattering of electrons by helium atoms in the

laser field under conditions of the experiment [21]
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core of a target. The low value of polarizability of helium assumed also the

minimization of polarization effects. Nevertheless, the results of [21] are indicative

of insufficiency of the Kroll-Watson formula for explanation of the obtained

experimental data and require taking into account additional mechanisms of radia-

tion such as the polarization channel.
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Chapter 11

Review of Possible PBs Applications for

Structure Diagnostics and as an Effective

Source of X-ray and UV Radiation

11.1 Procedure of Nanomaterial Diagnostics Based

on PBs Spectroscopy

11.1.1 General Principles of Spectroscopy Based on PBs

Since polarization bremsstrahlung can be interpreted as scattering of virtual

photons of a charged particle to a real photon by target electrons, PBs spectroscopy

is in essence the generalization of ordinary spectroscopy and therefore has a number

of features inherent in the latter. When the velocity of a charged particle approaches

the velocity of light, this analogy becomes more exact since the electromagnetic

field of a relativistic charge is close to the electromagnetic field of a real photon

(a plane electromagnetic wave). One of manifestations of the said analogy is the

Bragg condition for scattering of a virtual photon by crystal structures agreeing with

the ordinary Bragg condition if it is considered that the wave vector of a virtual

photon is directed along the velocity of an incident particle.

At the same time there is a number of distinctive properties in PBs spectroscopy

that are connected first of all with the fact that the eigenfield of an incident particle

has a continuous spectrum of virtual photons, and the dispersion law for a virtual

photon differs from the dispersion law for a real photon. This allows obtaining a

momentary “scan” of a recorded spectrum by all frequencies and wave vectors

permitted by the energy conservation law. So instead of multiple spectral

measurements by methods of ordinary spectroscopy, it is possible to carry out

one measurement with the use of PBs spectroscopy that will contain the same or

even greater body of information on an object under study.

From the practical point of view, an important distinction between PBs spec-

troscopy and traditional spectroscopy consists also in the fact that sources of fast

electrons having in their electromagnetic field a wide set of virtual photons, as a

rule, are more accessible than generators of real photons. This is especially true if

the case in point is generation electromagnetic radiation in a wide spectral range

including the X-ray wavelength range.
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The next important distinguishing feature of the polarization spectroscopy

method is a possibility of local excitation of a sample on the spatial scale much

lesser than the wavelength of the optical range. Thus it is possible to increase

considerably spatial resolution in comparison with traditional diffraction-limited

spectroscopy.

Another important circumstance considerably enhancing the capabilities of PBs

spectroscopy in comparison with traditional spectroscopy consists in the fact that

the electromagnetic eigenfield of a charged particle contains a set of virtual photons

with different angular momenta. It will be recalled that the angular momentum of a

real photon is equal to one (in units of the Planck constant). This allows excitation

of dipole-forbidden and intercombination transitions in a target under study that are

inaccessible for investigation by traditional methods. Such an example is investi-

gation of singlet-singlet transitions at NV (nitrogen-vacancy) centers in diamond

samples that can not be exited by optical methods from the ground triplet state.

11.1.2 Recommendations for the Use of PBs Spectroscopy

The recommendations for development of a procedure of material diagnostics

based on PBs spectroscopy are based on theoretical and experimental investigations

carried out in the works of the last decade. The obtained expressions for intensity of

PBs of fast electrons scattered by different types of targets, including single-crystal,

polycrystalline, amorphous, cluster, nanostructured, two-dimensional targets, make

it possible to determine a region of parametric variation, in which the use of PBs

spectroscopy is most efficient as well as a procedure itself for investigation of

structural, electronic and other properties of targets.

One of general recommendations for development of methods of nanomaterial

diagnostics with the use of PBs following from theoretical consideration is a

condition for a spectral region, in which the measurements of PBs spectra should

be carried out. The optimum spectral range corresponds to the spectral maximum of

the dynamic polarizability of atoms forming a target, which occurs usually

near eigenfrequencies of target excitation or near thresholds of atomic ionization.

Necessary information on dynamic polarization can be obtained on the basis of

experimental data on photoabsorption with the use of the optical theorem and the

Kramers-Kronig relations. In case of cluster targets, the use of quantum-chemical

methods of calculation for the analysis of the electronic and spatial structure of a

target is efficient. The most optimum approach for such a calculation is based on the

density functional theory with the use of the hybrid three-parameter exchange Becke

functional with the correlative Lee-Yang-Parr functional (B3LYP functional).

Another general recommendation in development of PBs spectroscopy methods

consists in the fact that in spectral ranges corresponding to excitation of character-

istic radiation PBs will be completely masked by it. Therefore, when choosing

frequency ranges to record PBs, it is necessary to avoid proximity to characteristic

peaks.
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The recent works [1, 2], have allowed the development of experimental methods

of nanomaterial diagnostics based on the use of a scanning electron microscope and

photodetectors of different types for recording spectra in a wide spectral range.

The use of a scanning electron microscope makes it possible to realize the

important advantage of PBs spectroscopy in comparison with traditional spectros-

copy – high spatial resolution in investigation of nanostructures and usual materials.

Scanning the surface of a sample allows obtaining a two-dimensional “PBs-image”

of an object for short time intervals. Besides, the developed technology of scanning

microscopy makes it possible to handle micro- and nanoobjects easily, which is an

important advantage in nanostructure diagnostics.

The developed experimental procedure allows carrying outmeasurements in awide

temperature range, which is important in the presence of a strong electron–phonon or

electron-vibron coupling in a target material as it is, for example, in case of NV centers

in diamond samples that are promising for many applications of optical informatics.

PBs spectroscopy for investigation of nanomaterials (clusters, fullerenes, quan-

tum dots, nanocoatings, metamaterials with different nanoinclusions, etc.) can be

developed in the X-ray, UV, visible, and IR wavelength ranges with the use both of

nonrelativistic and relativistic electron beams. PBs spectroscopy and spectroscopy

of related radiative processes (ordinary Bs, transition radiation, cathode lumines-

cence) assumes obtaining information on the structure and physical properties of a

target not only on the basis of recording spectral regularities, but also by taking

angular, velocity, and orientation dependences of radiation.

In investigation of the structure and physical properties of nanoinclusions in

metamaterials (metal and semiconductor nanospheres, nanorods, nanodisks, etc.) it

seems advisable to carry out measurements of PBs in the visible and near-UV

spectral regions, where the photon energy varies from 2 to 6 eV. In this range

polarization bremsstrahlung is formed due to excitation of surface plasmons [3].

For example, in case of silver nanospheres with a radius from several nanometers to

several tens of nanometers the plasmon resonance lies in a photon energy range

from 2.4 to 3 eV. The central frequency of the plasmon resonance is shifted to the

region of lower photon energies with increasing size of a metal nanoparticle. The

spectral width of the resonance in this case increases in connection with decreasing

time of plasmon dephasing. Since the plasmon frequency is defined by the concen-

tration of electrons in a target, it seems hardly probable to obtain its shift with

changing target temperature. At the same time the width of the spectral resonance

that depends on scattering of plasmons in a sample can show the temperature

dependence. The optimum value of the electron beam energy for observation of

PBs on metal clusters near the maximum of the frequency dependence, as a rule, is

less than 100 eV. This value is 2 times less than the minimum energy of electrons in

the Quanta 200 SEM (FEI).

PBs spectroscopy for investigation of a С60 fullerene should be carried out in two

frequency ranges: in the low-frequency range (wavelength is 200–300 nm), where

dipole-allowed transitions with highest oscillator strengths are concentrated, and
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near the plasmon resonance energy (�ho ¼ 19 eV ). In the latter case the maximum

PBs cross-section is achieved at the electron energy of 167 eV. With growing

electron beam energy the position of the spectral maximum is shifted to the region

of high photon energies.

X-ray spectroscopy of PBs of structured nanomaterials for a case of nonrelativ-

istic electrons is based on measurement of spectra peculiarities connected with the

presence of optimum conditions for conversion of the IP eigenfield to a bremsstrah-

lung photon on the target structure. In case of a polycrystalline medium the

structure of a target is defined by the crystal lattice of a sample material. Then

the peculiarities of the PBs spectrum show themselves as a sawtooth structure

reflecting “turning-off” of the contribution of the reciprocal lattice vector to the

process, which is caused by the law of conservation of energy-momentum in

coherent interaction (see Fig. 5.3 of this monograph). The energy of the first

“tooth” of the spectral dependence is about 1.5 keV, it is defined by the spatial

scale of the structure and the velocity of an incident particle. To find out this

structure experimentally, it is necessary to use a photodetector with a resolution

no more than 10 eV.

In case of a relativistic electron, in the spectrum of PBs on a structured target

maxima appear with fulfilment of the Bragg condition describing scattering of a

virtual photon of the IP eigenfield to a real bremsstrahlung photon (see Fig. 5.8 and

the formula (5.18) of this book). The width of these peaks is proportional to the

cotangent of the half-angle of radiation, so the PBs intensity is maximum in

back radiation, which defines the requirement to the optimum conditions of the

experiment [4].

11.1.3 PBs Spectroscopy of Nanoobjects

According to the results of carried out investigations and literature data, in scatter-

ing of relativistic electrons by fullerenes in the PBs spectrum in the X-ray range

radiation intensity oscillations caused by interference effects should be observed.

The period of these oscillations is defined by the IP velocity, the radiation angle and

the fullerene radius, and the amplitude is defined by the electron energy [5].

Therefore it is possible to determine the size of a nanotarget by the PBs spectrum

with specified parameters of scattering.

The peculiarities of PBs of fast charged particles on clusters in the X-ray spectral

range are defined by cooperative effects in summation of process amplitudes from

different atoms forming the cluster. In the carried out investigations it was shown

that with growing IP energy the maximum of the spectral distribution of PBs on a

cluster is shifted to the region of high frequencies. The form of the high-frequency

part of the spectrum in the relativistic case strongly depends on the radiation

angle. With reduction of this angle the Bs intensity decreases with growing fre-

quency much more slowly than for wide angles. The analysis of the Bs intensity
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as a function of IP velocity has shown that in the nonrelativistic case this depen-

dence can be of different nature. In the limit of low IP velocities the role of

cooperative effects in Bs on a cluster becomes negligible. The obtained results

can be used in interpretation of experimental data on Bs of fast charged particles on

clusters in the X-ray frequency range and in development of methods of investiga-

tion of the atomic cluster structure with the use of PBs.

The theoretical investigations carried out for the analysis of emission of fast

electrons scattered by graphene [6] have laid the foundation for development of a

PBs spectroscopy procedure in diagnostics of two-dimensional crystal structures.

As shown in the Sect. 8.3 of this book, the spectrum of coherent PBs on graphene

contains sharp peaks corresponding to transfer of a momentum proportional to one

of the reciprocal lattice vectors to the two-dimensional crystal lattice. The relation-

ship of the frequency of these maxima with the electron velocity and the angle of

incident electron as well as with the angle of emission of a bremsstrahlung photon

and the magnitude of the reciprocal lattice vector in the general case is given by the

formulas (8.64), and (8.65), and in case of normal incidence of an electron on the

graphene surface it is given by the formulas (8.64), (8.66). The obtained relation-

ship makes it possible by known kinematic problem parameters to determine the

parameters of a two-dimensional crystal structure, on which scattering and emission

of electrons occurs, that is, to carry out target diagnostics. The condition of

appearance of sharp maxima in the spectrum of coherent PBs is given by the

inequations (8.68), from which it follows that for recording these spectral peaks

two conditions should be satisfied: emission of a bremsstrahlung photon should be

directed to the forward hemisphere, and the electron velocity should be high

enough, though not necessarily relativistic. As follows from Fig. 8.20 of this

monograph, at a radiation angle of 30� the electron energy of 58 keV is sufficient

for appearance of sharp maxima in the spectrum of coherent PBs on graphene that

can be used for target diagnostics. Thus it can be concluded that for diagnostics of

PBs on two-dimensional structures the use of a transmission electron microscope

for recording forward radiation and the use of electrons of high enough energy are

optimum.

11.1.4 Diagnostics of Fine-Grained Media

The analysis of possibilities of fine-grained media diagnostics based on measure-

ment of the spectrum of PBs of a fast electron was carried out in the work [7]. In

motion of such an electron through a fine-grained medium the mechanism of Bragg

scattering of the Coulomb field is not realized because of a small grain size. Under

considered conditions the main thing is coherent scattering on a grain as a whole.

This scattering is most efficient in a frequency-angular region, in which the length

of radiation forming exceeds the grain size. Under considered conditions the use of

the dipole approximation for the tensor of the photon Green function in a medium is

more adequate. In the work [7] the following expression for PBs in a fine-grained
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medium was obtained (here and further the velocity of light is assumed to be equal

to one):

o
dN

dtdodO
¼ e2

p
nc o4 a oð Þj j2

�
ð1

sin y
2ð Þ

dx x expð�4o2u2Tsin
2 y

2

� �
x2Þ

1þ 4o2R2sin2 y
2

� �
x2

� �2

� TðkÞj j2 � 4pnc
k

ð1

0

dr r 1�WðrÞð Þ sin krð Þ TðkÞ
��� ���2

2
4

3
5 f y;r; xð Þ; ð11:1Þ

where

f y; r; xð Þ ¼

¼ 1þ cos2yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1ð Þ2 þ r2ctg2 y

2

� �q � 2sin2
y
2

� �
1� x2 � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � 1ð Þ2 þ r2ctg2 y
2

� �q
0
B@

1
CA

2
64

� r2ctg2 y
2

� �
cos2y

x2 � 1ð Þ2 þ r2ctg2 y
2

� �� 	3
2

3
75

is the auxiliary function , TðkÞ ¼P
n
ei krn is the structure factor of a grain (rn is the

coordinate of the nth atom in the grain ), nc is the grain density, WðrÞ is the pair

correlation function describing the probability of the centers of two grains being at

the distance r (it is obvious thatWðrÞ ¼ 0 at r< L andWðrÞ ! 1 at r>> L, L is the

characteristic grain size),r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g�2 þ op o=

� �2q
(g is the relativistic factor,op is the

plasma frequency of the medium), the viewing angle y exceeds r; the line in (11.1)
means averaging over orientations of grains, k ¼ 2o sinðy=2Þx.

The formula (11.1) makes it possible to propose a new method of determination

of the grain size by the position of a maximum in the spectrum of the coherent PBs

peak (the maximum arises due to the multipliero4 on the right side of Eq. 11.1 that

suppresses the radiation yield in the region of smallo, in which the polarizability is
aðoÞ � constÞ. For simplicity, let us consider a grain in the form of a cube, along

the edge of which N atoms are located, the distances between which are equal (see

Fig. 11.1).

In the case under consideration the value TðkÞj j2 can be represented as TðkÞj j2
¼ N3TN, where
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The spectrum of PBs of 50МeV electrons in fine-grained monodisperse tungsten

calculated by the formulas (11.1) and (11.2) without considering correlations

between grains (WðrÞ ¼ 1) is given in Fig. 11.2 for the viewing angle y ¼ 0:3 rad

and three different values N.
The clear dependence of the position of a maximum in the spectrum on the size

of a grain is seen. It is necessary to note very strong influence of dispersion of the

dielectric susceptibility wðoÞ ¼ 4p nc aðoÞ on the form of the spectrum. To elimi-

nate this influence, in the work [7] the function was analyzed:

Fðx;NÞ ¼ sin2 y 2=ð Þ
o a w oð Þj j2
 !

� dN

dtdodO
¼ e2

64p3

� �
x2P xð Þ
N3

;

where dN
dtdodO is the value measured in the experiment, x ¼ 2o a sinðy=2Þ; P xð Þ is

the integral on the right side of the Eq. 11.1.

Given in Fig. 11.3 are the curves of the dependence Ф ðx;NÞ constructed by the

formula (11.1) for fixed values of the viewing angle y ¼ 0.8 rad and the parameter

r ¼ 0:01 � g�1 , but for different values N. According to Fig. 11.3, the proposed

method allows discerning grains of rather close sizes.

It is significant that the dielectric susceptibility wðoÞ of a medium included in the

functionF x;Nð Þwas determined experimentally in a wide range of frequencies for

many elements, so it is possible to avoid model distortions of wðoÞ in experimental

data processing.

Fig. 11.1 The geometry of

the process
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Fig. 11.2 The dependence of the spectrum of the coherent peak of PBs in fine-grained tungsten on

the size of a grain. The electron energy is 50 МeV. The radiation angle is y ¼ 0:3 rad [7]

Fig. 11.3 The dependence of the position of a maximum in the spectrum of the modified PBs peak

on the size of a grain [7]
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In real materials grains always have a spread both in values and in form. To

estimate the sensitivity of the method to a medium size of a grain in a polydisperse

material, the dependence was calculated:

�Fðx;N�Þ ¼
X
N�1

F x;Nð Þ 1ffiffiffi
p

p
s
exp � N � N

�� �2
s2

 !
;

simulating PBs in a material with the Gaussian distribution of grains by sizes. The

results of the calculation presented in Fig. 11.4 are indicative of retention of high

sensitivity even for relatively high dispersion of the distribution.

The possibilities of the discussed method of diagnostics were checked experi-

mentally by the example of scattering of the Coulomb field of relativistic electrons

in polycrystalline media [7]. The scheme of the experiment is shown in Fig. 11.5 for

the case that the angle between the velocity of a radiating electron and the direction

of PBs photon escape is 90�.
In the experiments the electron beam current was measured, which allowed

carrying out absolute measurements of radiation yield. The electron guide, the

target chamber, and the photon channel for recording PBs were located in vacuum,

which made it possible to avoid distortions of the measured photon spectrum

photons due to absorption in air. The results of these experiments are presented in

Fig. 11.6 for scattering of electrons with the energy of 7МeV by an aluminum foil.

Fig. 11.4 The influence of

the spread of grains in values

on the position of a maximum

in the spectrum of the

modified PBs peak. The

curves are calculated with

the fixed value s ¼ 3

and different values N
�
.

Curve 1 corresponds to the

value N
�
, curve 2 corresponds

to the value N
� ¼ 6

Fig. 11.5 The scheme of the

experiment on diagnostics of

the structure of a polycrystal

based on PBs. 1 electron

beam; 2 target; 3 collimators;

4 detector; 5 radiation; 6
proportional chamber; 7
Faraday cup
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The dependence of the position of a maximum of the coherent peak on the

radiation viewing angle following from the theory developed in [7] was checked.

Presented in Fig. 11.6 are the measured and calculated spectra of PBs from an

aluminum film collimated at angles of 90� and 75�. The agreement of these

measurements with theoretical predictions is seen, which proves the prospects for

using the dependence of the position of the structural peak of PBs of relativistic

electrons in polycrystals for identification of such peaks. The proposed method of

measurement of sizes of grains in fine-grained media can be used in the

nanomaterial industry.

Fig. 11.6 The dependence of the position of a maximum in the spectrum of the coherent peak of

PBs in an aluminum polycrystal with an effective thickness of 14 mm on the radiation angle. The

electron energy is 7 МeV
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11.2 Prospects for Using PBs for Development of Efficient

Sources of X-radiation and UV Radiation

11.2.1 Near-Resonance PBs on Multiply Charged Ions with
an Electron Core

As is known, a significant obstacle to development of laser sources of X-radiation is

short lifetime of the upper operating level in a multiply charged ion.

In case of traditional lasers there should be real population of the upper operating

level. The main idea of using near-resonance PBs of electrons (see the Sect. 2.42)

on multiply charged ions as a source of short-wave radiation is that in this case real

population of exited energy levels of ions is not required since radiation occurs as a

result of virtual excitation of a target.

Near-resonance PBs with the frequencyo on an isolated atomic particle arises in

fulfilment of the condition

dnf<< o� onf

�� ��<<o; (11.3)

where onf and dnf are the eigenfrequency and the width of the line of the transition

n ! f between two states of the discrete spectrum of the atomic core of an atom

(ion). Since radiation frequency detuning is much higher than the transition line

width, real population of the level fj i can be neglected.

The expression for the cross-section of near-resonance PBs in case of homogeneous

broadening of the dipole-allowed transition with the oscillator strength f0 6¼ 0 on an

atom is given by the formula (3.34) for a nonrelativistic incident particle.

The spectral cross-section of near-resonance PBs of a relativistic electron (v ’ c,
v is the electron velocity) in the Born-Bethe approximation is:

dsres

do
¼ 4

3

e2

�h c

r2e f 20 o0

o0 � oð Þ2 þ d20
ln

g c
o ra

� �
; (11.4)

where re ¼ e2 mc2 � 2:8 � 10�13



cm is the classical electron radius, g is the Lorenz
factor of an electron, ra is the characteristic radius of the electron core of an atom

(ion).

It should be noted that the formula (11.4) is true in fulfilment of the inequation

o<
g c
ra

;

when the Born-Bethe approximation “works”.

As an example of using the formula (11.4), we will consider an elementary case

of PBs of a relativistic electron on a hydrogen-like ion (with the nuclear charge Z e )
with natural broadening of a spectral line (the line width is defined by the Einstein
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coefficient for spontaneous emission of radiation d0 ¼ An) for the near-resonance

transition 1s ! np (1s is the ground state, n is the principal quantum number of an

exited state).

Then it is possible to use the analytical expressions for all values included in the

formula (11.4). The oscillator strength of the transition under consideration is:

f0 ¼ fn ¼ n5
28 n� 1ð Þ2n�4

3 nþ 1ð Þ2nþ4
; (11.5)

the eigenfrequency of the transition (in atomic units) is

o0 ¼ on ¼ Z2 n
2 � 1

2 n2
; (11.6)

the width of the near-resonance transition line is

d0 ¼ An ¼ Z4 27 n n� 1ð Þ2n�2

9 137ð Þ3 nþ 1ð Þ2nþ2
; (11.7)

and the characteristic radius of the electron core in the exited state is ra � rn ¼ n2

aB Z= (aB is the Bohr radius). It should be noted that the oscillator strength of a

hydrogen-like ion (Eq. 11.5) does not depend on a nuclear charge.

From comparison of the formulas (11.6) and (11.7) it is seen in particular that

with growing charge of the nucleus of a hydrogen-like ion in the considered case of

natural broadening the line width grows faster than the eigenfrequency of the

transition: An on / Z2



.

Presented in Fig. 11.7 are the diagrams of the spectral cross-section of near-

resonance PBs calculated by the formulas (11.4), (11.5), (11.6), (11.7) for n ¼ 2

(the a-line of the Lyman series), g ¼ 100, and different charges of the nucleus of a

hydrogen-like ion: Z 6, 10, 28. The logarithmic scale on both axes is used.

It should be noted that for Z 6 the resonance frequency is 367.2 eV, for Z 10 it

is 1.02 keV and for Z 28 it is about 8 keV. In this case the natural line widths are

respectively: 5.35�10�4 eV, 4.13�10�3 eV and 0.254 eV. Following from Fig. 11.7

are rather high value of the cross-section of near-resonance PBs and a narrow

spectral line.

Besides, it should be noted that the angular directivity of PBs of a relativistic

electron in the considered spectral rangeo < g c ra= is of a dipole nature in contrast

to ordinary Bs directed to a narrow cone with the axis parallel to the vector of the

relativistic electron velocity. This circumstance is rather important for the practical

use of near-resonance PBs.

The above case corresponds to special experimental conditions, when it is

possible to neglect all kinds of broadening, except for natural broadening caused

by spontaneous radiation.
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If PBs occurs on multiply charged ions in plasma, it is necessary to take into

account a number of factors defining the form and width of the spectral line, such as

the Doppler effect and the Stark effect. This requires a special consideration in each

specific case, however, the main features of the spectral cross-section of near-

resonance PBs will be retained, at least, at a qualitative level.

11.2.2 Resonance PBs in Crystals and Accompanying Radiative
Processes

As was noted in Chap. 1 (see Table 1.2), coherent PBs of the X-ray range in crystals

is called parametric X-radiation (PXR). This radiation has sharp spectral peaks in

case of relativistic electrons and fulfilment of the Bragg condition for virtual and

real photons (see the formula (5.18) and Fig. 5.8). The frequency of these spectral

maxima is determined by the formula (5.9). The spectral-angular yield of PXR

photons per unit trajectory length for an electron is given by the expression (5.8).

In contrast to the formula (5.8), in theoretical works on PXR (see, for example,

the paper [8]) it is usually supposed that for the dynamic polarizability of an atom

the high-frequency approximation can be used, when (see Appendix 1, the formula

(A.16)):

a1 oð Þ ¼ � e2 Na

mo2
; (11.8)

where Na is the number of electrons in an atom. This is connected with the

fact that in the X-ray range the frequency of radiation, as a rule, exceeds the
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Fig. 11.7 The spectral cross-section of near-resonance PBs on a hydrogen-like ion calculated by

the formula (11.4) for different nuclear charges: solid curve – Z 6, dotted curve – Z 10, dashed
curve – Z 28
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eigenfrequencies of atomic electrons, except for those that are most strongly bound

with a nucleus. In other words, atomic electrons react to X-radiation as quasi-free

charges.

It should be noted that the formula (11.8) is true in the dipole approximation,

when radiation wavelength exceeds the average size of an atom. Otherwise X-ray

photon (real or virtual) “knocks out” an electron from an atom. This takes place in

the Compton effect and the collision ionization of atoms.

Using the formula (11.8) for description of PBs is equivalent to the approxima-

tion of dielectric permittivity of a medium by the plasma formula in the PXR

theory, which “slurs over” the single physical nature of these radiative processes

that practically describe the same phenomenon.

Experimentally, PXR was for the first time observed in the work [9] with the use

of 900 МeV electrons that were generated at the “Sirius” synchrotron (Tomsk,

Russia). As a target, a diamond crystal of thickness 0.08 cm was used. An electron

beam was directed along the (100) axis of the crystal. The X-ray detector was

located at the double Bragg angle 2 yB ¼ 90� with respect to the electron velocity

vector v in the plane defined by the vectors v and t, where the vector t corresponded
to the (220) crystallographic plane. For these conditions the photon spectrum

recorded by the photodetector consisted of sharp maxima at frequencies multiples

of photon energy of 6.96 keV. This set of resonance frequencies was determined by

the formula [9]:

oðnÞ
B ¼ p n c

d sin yB
; (11.9)

where d is the distance between crystallographic axes on which conversion of a

virtual photon of the electron eigenfield to a real PXR photon occurred, yB is the

Bragg angle, n ¼ 1; 2; 3; . . . is the natural number. (It will be recalled that the

Bragg angle is determined by the equation 2 d sin yB ¼ n l , l is the radiation

wavelength).

As a result of the carried out experiment, the angular distribution of PXR

photons was recorded that was in satisfactory agreement with predictions of the

theory of this phenomenon [10].

In the dissertation [11] an extensive investigation of PXR was carried out to

elucidate a possibility and optimum conditions of using this phenomenon for

development of an efficient X-ray source convenient for a number of applications

including medical ones.

Among medical applications, having a significant place is imaging of various

organs with the use of a PXR source, specifically, mammography. In this connec-

tion, in the cited work a special emphasis was made on generation of X-radiation

with the energy of 18 keV that is most convenient for mammographic purposes.

The comparison of the quality of X-radiation obtained with the use of a standard

mammography device and PXR is presented in Table 11.1.

Used for comparison was electromagnetic radiation with an average energy of

17.5 eV, the distance from the source to the receiver, both placed in the vacuum
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chamber, was 50 cm. PXR was calculated for electrons with an energy of 60 МeV

and a silicon target of thickness 500 mm with diffraction of virtual photons on the

(220) crystallographic plane. Radiation from the mammography device was calcu-

lated by the Monte-Carlo method for electron energy of 30 keV and a molybdenum

anode placed at an angle of 15� to the electron beam.

Used in a standard X-ray source is a rather large flow of electrons (an electric

current of the order of several mA) that, colliding with the anode, cause character-

istic radiation and bremsstrahlung of a target. To image, characteristic radiation is

used that results from radiation filling of a vacancy in the inner atomic shell

produced by an incident electron.

Bremsstrahlung is an accompanying process. In case of nonrelativistic electrons

it has a broad pattern and, as a result, produces a background with a wide spectrum,

an effect of which on living tissues may be adverse.

Thus from the point of view of practical application a PXR source has the

following advantages in comparison with a standard mammography device: a

possibility of X-ray photon energy tuning, specified polarization of radiation,

narrow spectral-angular distribution, minimum bremsstrahlung background, and

high photon yield.

From the above it follows that in the context of medical applications, such as

imaging of a living organ, PXR improves an image contrast, reduces a radiation

doze received by a patient. The last circumstance is connected with a possibility to

obtain PXR photons of optimum energy for specified parameters of an organ under

study [12].

11.2.2.1 Accompanying Radiative Processes

In scattering of relativistic electrons in a crystal, besides PXR and characteristic

radiation, other types of radiative processes also occur [13]: coherent Bs, transition

radiation, channeled electron radiation, Cherenkov radiation.

Given in Table 11.2 is the comparison of three types of radiation from the above-

listed types.

Coherent ordinary bremsstrahlung is not considered here since for this brems-

strahlung much higher photon energy is characteristic.

Cherenkov radiation, on the contrary, is generated in a more long-wave

range than the X-ray range. For its generation the fulfilment of the condition

Table 11.1 Comparison of PXR and mammography device X-radiation qualities [11]

Quality PXR Mammography device

Energy tunability Continuous None

Polarized Yes No

Directionality 1/g 8.5 mrad 262 mrad

Limit of energy width Photon lifetime Ka transition

Yield [photon/e/cm2] 2�10�6 3�10�8
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n oð Þ > c v= (v is the electron velocity) is necessary, where n oð Þ is the refractive

index of a medium at a specified frequency that for X-rays is of the order of one

and less than one.

11.2.2.2 Transition Radiation

Transition radiation (TR), by analogy with PBs, can be also considered as scattering

of the eigenfield of a charged particle by inhomogeneities of dielectric permittivity

of a medium. In case of TR arising at the media interface, reflection or refraction of

a virtual photon of the charge eigenfield with conversion to a real photon takes

place.

Thus PBs and TR belong to the same class of radiative processes that can be

interpreted as conversion of a virtual photon of the eigenfield of a charged particle

to a real photon either on atomic particles (PBs) or on optical inhomogeneities of a

medium (TR).

The formula for the spectral-angular distribution of energy of transition radiation

arising in case of incoming of a charged particle from vacuum ( e1 ¼ 1 ) into a

substance with the dielectric permittivity e2 ¼ e at a right angle to the flat surface

(Fig. 11.8) looks like:

dE
ðbÞ
tr

dodOk
¼ e2b2sin2 2w

4p2cð1� b2cos2 wÞ2
ðe� 1Þ

�
1� b2 þ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e� sin2 w

p 	
�
1þ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e� sin2 w

p 	�
e cos wþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e� sin2w

p 	
������

������
2

;

(11.10)

where e is the dielectric permittivity of a medium, k is the photon wave vector,

b ¼ v c= , v is the particle velocity, e is the particle charge, w is the angle between the
vectors k and � v.

The formula (11.10) is obtained within the framework of classical electrody-

namics in view of boundary conditions for intensity of the total electric field (charge

field and radiation field) and the vector of electric induction at the media interface.

Transition radiation is polarized in the plane set by the electron velocity vector

and the wave vector of an emitted photon.

The frequency dependence of transition radiation energy (11.10) is defined by

the frequency dependence of the dielectric permittivity of a medium e oð Þ. In the

Table 11.2 Comparison of three types of radiation [11]

Source

Bandwidth

Do o=
Emission

direction

Energy

tunability

Emission

cone

Intensity [ph/s/

mrad2/1%bw]

Transition

radiation

50 % Forward Not practical g�1 108

Channeling

radiation

10 % Forward Not practical g�1 3= 108

PXR 1 % 2 yB Simple g�1 108
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high-frequency limit, when e ! 1, the transition radiation energy tends to zero

according to the expression (11.10). Really, in the case e ¼ 1 the interface

disappears, and along with it transition radiation disappears too.

Let us consider limiting cases of the expression (11.10) that admit

simple analytical representation. At the interface of vacuum with an ideal conductor

ej j ¼ 1, and the formula (11.10) is simplified to the form

dE
ðbÞ
tr

dodOk

¼ e2 b2 sin2 w

p2 cð1� b2 cos2 wÞ2
: (11.11)

It should be noted that the right side of the Eq. 11.11 formally does not depend

on frequency. Actually, the frequency boundary of applicability of this expression

is defined by a spectral range, in which a medium can be considered to be an ideal

conductor.

Shown in Fig. 11.9 is the angular distribution of transition radiation calculated by the

formula (11.11) for different values of the parameterb ¼ v c= . The Y-axis is plotted in

atomic units in the logarithmic scale. It is seen that in the nonrelativistic case (b ¼ 0:6)
the maximum of the angular dependence of radiation falls on w 90�. With growing

particle velocity the TR maximum is shifted to the region of small angles w. In the

ultrarelativistic limit radiation is directed antiparallel to velocity, that is, w 0. It should

be noted that in this limit the charge electromagnetic field is similar to the plane wave

field, and the said angular dependence of TR corresponds to reflection of the particle

eigenfield back from the interface in case of normal incidence as it would be in

reflection of a free electromagnetic field according to the Snell law.

From Fig. 11.9 it follows also that the intensity of transition radiation increases

with charge energy. For nonrelativistic velocities intensity grows linearly with

energy as it follows from the formula (11.11).

For high velocities, when g >> 1 and transition radiation is mainly directed

antiparallel to velocity (w < 1), the formula (11.10) can be represented as

dE
ðbÞ
tr

dodOk

¼ e2

p2c

ffiffi
e

p � 1ffiffi
e

p þ 1

����
����
2 w2

w2 þ g�2½ 	2 : (11.12)

e   e  

e, v 

w, k 

c

x

== 21 1 e
Fig. 11.8 Transition

radiation in normal incidence

of a charged particle on the

vacuum/substance interface
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Hence it follows in particular that the width of the angular distribution of TR is

of the order of 1 g= (see Table 11.2).

The energy of transition radiation of an ultrarelativistic particle integrated with

respect to the angle (in case of incoming from vacuum into a substance) to the

logarithmic accuracy is equal to

dE
ðbÞ
tr

do
¼ 2e2

pc

ffiffi
e

p � 1ffiffi
e

p þ 1

����
����
2

1ng; (11.13)

that is, increases with particle energy (g ¼ E=mc2) logarithmically.

If the plasma formula for the dielectric permittivity of a substance

e ¼ 1� op o=
� �2

is used, for frequencies o >> op following from the formula

(11.13) is the decrease of transition radiation energy with growing frequency as

o�4. This means that the main contribution to back transition radiation is made

by frequencies lower than the plasma frequency op and of the order of it.

Thus TR of a charged particle with back radiation (Fig. 11.8) lies mainly in the

visible and ultraviolet wavelength ranges.

Transition radiation in case of escape of a charged particle from a substance into

vacuum (forward TR) is given by the formula analogous to Eq. 11.10, in which it is

necessary to make the replacementb ! �b. In this case w ! y, where y is the angle
between the vectors k and v (the radiation angle).

Fig. 11.9 The angular distribution of transition radiation energy in case of electron incoming from

vacuum into an ideal conductor perpendicular to the interface for different electron velocities:

solid curve – b ¼ 0:6, dash-and-dot curve – b ¼ 0:9, dashed curve – b ¼ 0:99; b ¼ v c=
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In the ultrarelativistic limit b ¼ v c= ! 1 a corresponding expression for the

spectral-angular distribution of forward TR takes the form

dE
forð Þ
tr

dodOK

¼ e2y2

p2c

ffiffi
e

p � 1

g�2 þ y2
� �

1� b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 � y2

p� 	
������

������
2

; (11.14)

where g ¼ 1� v c=ð Þ2
� 	�1 2=

is the relativistic factor. Hence it follows that transi-

tion radiation of an ultrarelativistic particle in case of escape from a medium into

vacuum is concentrated in the region of small angles y 
 1 g= along the direction of

motion. The radiation energy in the region of low frequencies integrated with

respect to the angle, when the dielectric permittivity differs noticeably from one, is

dE
forð Þ
tr

do
¼ 2e2

pc
1ng: (11.15)

In the plasma dielectric permittivity model the spectral range, in which the

expression (11.15) “works”, is determined by the inequation: o 
 op. Within the

framework of this model in the range op <<o <<gop the formula (11.14) gives

dE
forð Þ
tr

do
¼ 2e2

pc
1n

gop

o

� 	
; (11.16)

and in the high-frequency region o>>gop we obtain

dE
forð Þ
tr

do
¼ e2

6pc
gop

o

� 	4
: (11.17)

Thus in the case under consideration (g>>1) the frequency o upð Þ
tr ¼ gop is the

upper frequency limit for forward transition radiation (in case of particle escape

from a substance into vacuum).

The expressions (11.16) and (11.17) indicate that the main contribution to

forward transition radiation is made by high frequencies o � gop in contrast to

the above back transition radiation, when in the spectrum the low-frequency range

o 
 op prevails.

The energy of forward transition radiation of an ultrarelativistic particle

integrated with respect to the frequency is given by the simple formula

E
forð Þ
tr ¼ e2

3�hc
g�hop: (11.18)
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Here the Planck constant is introduced to separate the expression for the photon

energy at the plasma frequency �hop , the characteristic value of which in devices

based on transition radiation is 20 eV.

From the expression (11.18) it follows that the total energy of TR of an

ultrarelativistic charged particle (b ¼ v c= ! 1) radiated forward in the direction

of its motion grows linearly with particle energy. The linear growth of the total

energy of forward TR is caused by two reasons: the increase of the spectral energy

(Eq. 11.16) with increasing relativistic factor g and the growth of the upper

frequency limit.

An important role in technical applications is played by X-ray transition radia-

tion (XTR) of relativistic and ultrarelativistic charged particles. In the X-ray range

the dielectric permittivity of a medium is to a good accuracy given by the plasma

formula. Intensive forward XTR arises in case of escape of a charged particle from

a target. Then the total radiation energy is proportional to the relativistic factor g
(see the formula (11.18)), and the spectrum extends up to frequencies of the order of

gop . Thus the XTR energy can serve as a measure of the energy of a charged

particle crossing the interface between media with different dielectric permittivities.

This opens up a possibility to measure energy of elementary particles with the use

of XTR.

The convenience of use of PXR of relativistic electrons in practical applications

in comparison with TR is connected with the fact that the angular directivity of

PXR is not rigidly bound with the direction of electron motion, but can be varied in

a specified manner by changing the Bragg angle (see Table 11.2).

To optimize the PXR source for mammographic applications, in the work [11]

experimental investigations of PXR were carried out with a 60МeV linear acceler-

ator in a photon energy range from 17 to 20 keV. The value of electron current

varied from 10 nA to 1–1.5 mA. As targets, graphite and LiF, Si, Ge, Cu, and W

single crystals were used. The spectral widths and PXR photon yield in conversion

of virtual photons to real photons on different crystallographic planes of the above-

listed crystals were measured. To determine the spectral width of a PXR line and

photon energy, as a rule, the Si Amptek XR-100CR X-ray detector with a resolution

of 350 eV for a photon energy of 17.5 keV and an area of 9 mm2 was used.

A typical diagram of the experimental system used in the work [11] is given in

Fig. 11.10 for a LiF target and the Bragg angle yB ¼ 15�.
In the case that the calculated line width was found to be so narrow that it could

not be recorded with the use of the X-ray Si detector, for this purpose near-

absorption edge transmission equipment was used. By this means the FWHM of

the PXR spectrum was determined for a silicon target in conversion of a virtual

photon on the (400) crystallographic plane (134 eV at a photon energy of 9.0 keV)

and a silicon target in conversion of a virtual photon on the (220) crystallographic

plane (540 eV at a photon energy of 17.7 keV).

As a result of the carried out experiments, it was shown that materials consisting

of light atoms (graphite, LiF) are more suitable for generation of PXR photons since

in them X-radiation is absorbed weaker, the bremsstrahlung background is less, and

the cross-section of electron scattering is less. The highest yield of PXR photons

was recorded in graphite, in a LiF crystal there was a narrowest emission line.
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Presented in Fig. 11.11 is the PXR spectrum measured on a LiF crystal, resulting

from conversion of virtual photons of the eigenfield of an electron beam with an

energy of 56 МeV on the (220) crystallographic plane.

From the given figure it is seen that in the actual spectral range (17–20 keV)

there is a narrow PXR peak with a low background of bremsstrahlung.

Fig. 11.10 The typical diagram of the experimental system for recording PXR [11]
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Figure 11.12 demonstrates possibilities of imaging with the use of a PRX source

based on a LiF crystal and a CCD camera [11].

The comparison of images obtained with the use of PXR and with the use of

bremsstrahlung (from the same target) shows that in the first case much higher

contrast is achieved. Images of a small fish (a biological object), a plastic electric

switch, and a number of metal objects were also obtained.

In individual experiments the temperature of a target crystal was recorded, and it

was shown that it grows rapidly under the action of an electron beam. Based on the

carried out analysis, a conclusion was drawn that crystal cooling and short exposure

time are requiredwhen using PXR for imaging if the beam current exceeds several mA.
Thus in the work [11] it was shown that with the use of a PXR source it is

possible to generate wavelength- (photon energy)-tunable X-radiation with a nar-

row spectrum, with intensity sufficient for imaging objects of a different nature with

the use of a X-ray CCD camera in a reasonable exposure time and with a high

enough contrast.

11.2.3 PBs on Nanostructures

Considered in Chap. 8 of this book was PBs on nanostructures: atomic clusters,

metal nanoparticles, and graphene. It was shown in particular that the spectrum of

Fig. 11.11 The measured PXR spectrum from a LiF target at the Bragg angle yB ¼ 15� [11]
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coherent PBs on graphene contains sharp maxima, the frequencies of which in the

general case are determined by the formulas (8.64) and (8.65), and for the zero

(relative to the normal of the graphene plane) angle of electron incoming they are

determined by the more simple formula (8.66). The nature of these maxima is

connected with coherent interaction of an incident electron and a two-dimensional

graphene crystal.

As seen from the mentioned formulas, the resonance frequency of PBs on

graphene is defined both by the reciprocal lattice vector g and by other problem

parameters (see Fig. 8.13): the electron incoming angley, the radiation angle a, and
the electron velocity v ¼ b c (c is the velocity of light in vacuum). In case of the zero

incident angle, the dependence on the incoming angle y , naturally, disappears (see

the formula (8.66)).

So, operating the above parameters, it is possible to change the resonance

frequency of coherent PBs on graphene, which is very important for possible

practical applications of the phenomenon under consideration.

A criterion for existence of resonance frequencies was also introduced that for

the zero angle of electron incoming is given by the inequations (8.68). From these

inequations it follows in particular that a necessary condition of existence of a

resonance frequency is radiation of a PBs photon to the top hemisphere (Fig. 8.13),

in other words, forward along the direction of electron motion ( cos a>0). It should

be noted that the inequations (8.68) can be rewritten in the form that is explicit in

relation to the radiation angle a:

Fig. 11.12 At the left: the photo of a computer chip of length 4 cm with a separated square site of

1.6 cm; at the right: PXR of the image of the separated site of the computer chip obtained with the

use of a (200) LiF target, the electron current is 3.2 mA, the exposure time is 25 s, the active surface

of the CCD camera is 3 � 4 cm [11]
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arccos
b�1 � 1

2

� �
� a � 0: (11.19)

It should be noted that the argument under the arc cosine sign on the left side of

Eq. 11.19 is less than one for b>1 3= , that is, an incident electron should be fast

enough, but not necessarily relativistic:

v>
c

3
: (11.20)

Following hence is the condition for the minimum kinetic energy of an electron

T, at which sharp resonances in the spectrum of coherent PBs on graphene are still

possible:

T>30:968 eV: (11.21)

For an ultrarelativistic electron (b ! 1) the inequations (11.19) give p 2= � a
� 0, that is, the resonance frequency in the spectrum of coherent PBs on graphene

exists for any radiation angle a.
The calculated spectra of different Bs channels in crossing the graphene plane by

a fast electron are given in Figs. 8.19, 8.20, and 8.21 for different values of problem

parameters. From the presented plots it follows that sharp resonances in the

spectrum of coherent PBs on graphene (in the X-ray wavelength range) take

place for nonrelativistic electrons and wide radiation angles. These characteristic

features of the process under consideration make it very promising for various

applications.

Presented in Fig. 11.13 is the dependence of the resonance frequency of coherent

PBs on graphene on the electron velocity at the zero incoming angle for three values

of the radiation angle a in scattering of a virtual photon by the crystallographic

plane corresponding to the reciprocal lattice vector g (1,1).

It is seen that for each radiation angle a there is its minimum electron velocity,

below which there is no sharp resonance in the spectrum of coherent PBs on

graphene. The value of this velocity for the given radiation angles lies in the

nonrelativistic range and decreases with decreasing angle a. Besides, according to

the formula (8.69) that can be represented as (y is the incoming angle, see

Fig. 8.13):

vinf y ¼ 0ð Þ ¼ c

3 cos a
; (11.22)

for a specified radiation angle a there is an electron velocity, at which the resonance
frequency becomes infinite, that is, sharp peaks in the spectrum of coherent PBs on

graphene are absent.

So, operating the values of problem parameters (the electron velocity and the

angular characteristics), it is possible to control the value of resonance frequency.
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To obtain intensive radiation in the UV range, it is possible to use PBs on metal

nanoparticles placed in a dielectric medium. The calculation and analysis of the

cross-section of this process for a case of silver nanospheres in glass are carried out

in the Sect. 8.2 of this book in the spectral range corresponding to excitation of

dipole plasmons on the surface of nanoparticles.

It was shown that the maximum of the spectral PBs cross-section caused by

excitation of a surface plasmon depends on the radius of a nanoparticle. In the

considered case the position of the spectral maximum is shifted from the region of

the near-IR range to the region of the visible spectrum adjacent to the boundary

with the UV range in case of reduction of the radius from 90 to 30 nm.

As follows from the formula for the frequency of the spectral maximum (8.33)

caused by excitation of a dipole surface plasmon, when placing nanoparticles in a

medium with lesser dielectric permittivity, the spectral maximum of PBs will be

shifted towards high photon energies [14].

Presented in Fig. 11.14 are the results of calculation of the spectrum of PBs of

electrons scattered by silver nanoparticles of different radii placed in a substance

with the refractive index n ¼ 1.33. It is seen that in this case the spectra are

somewhat shifted to the region of higher values of photon energies in comparison

with the case n ¼ 1.5.

The X-ray and near-UV radiation sources under development can be used in

X-ray lithography, medical diagnostics, microelement analysis of a substance in

chemical and biological investigations. The advantages of such sources consist in a

possibility of smooth emission line tuning and compactness of the system, which is

caused by using accelerators for relatively low (in comparison with synchrotrons)

electron energies. The trends of development of investigations in the field of X-ray

sources are directed to creation of compact laboratory sources for industrial and
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Fig. 11.13 The dependence of the resonance frequency of coherent PBs on graphene on the

electron velocity at the zero incoming angle for three values of the radiation angle: solid curve –
a ¼ 30�, dotted curve – a ¼ 45�, dashed curve a ¼ 60�, the reciprocal lattice vector is g (1,1)
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diagnostic applications (a tabletop source). The vacuum ultraviolet range is inten-

sively mastered, which is dictated, first of all, by biological investigations. The

development of nanomaterial industry requires the development of efficient

methods of diagnostics of such materials, so the intensification of research in this

field should be expected.
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Chapter 12

Conclusions

12.1 General Provisions

This monograph considers polarization bremsstrahlung on atoms, nanostructures

and solids with the use of the consistent quantum-mechanical approach in various

regions of parametric variation. The cases both of spontaneous and induced PBs (in

electron scattering by an atom/ion in the external field of radiation), PBs of incident

particles with an own electron core are analyzed in details, the theoretical methods

of description of this phenomenon and the experimental facts confirming a neces-

sity to take into account PBs in a number of important physical situations are

presented.

The main conclusion that can be drawn on the basis of the carried out consider-

ation is that PBs is a fundamental radiative process resulting from scattering of

virtual photons of an IP eigenfield by electrons of a target that should be taken into

account for obtaining a full physical picture of Bs with participation of structural

particles [1].

The material presented in the book demonstrates that the PBs concept covers a

wide range of collisional-radiative phenomena that were earlier considered inde-

pendently of one another, but actually representing the realization of PBs in various

concrete physical situations.

According to its name, PBs of an electron on a target atom is defined by the

generalized dynamic polarizability of a target a o;qð Þ depending both on the

radiation frequency o and on the wave vector q transferred to the target, so various

methods of calculation of this value play a key role for quantitative description of

the process under study. Together with quantum-mechanical methods of calculation

of dynamic polarizability, presented in the book are simple semiclassical methods,

such as the local plasma frequency approximation [2], that are to a great extent

based on physical intuition, but give (under certain conditions) satisfactory quanti-

tative description.

When going to PBs on ensembles of atoms/ions (in plasma, nanostructures and

solids), for obtaining a quantitative result it is necessary to sum the amplitudes of
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and Solids, Springer Series on Atomic, Optical, and Plasma Physics 72,
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PBs on individual atoms with corresponding phase multipliers, which allows

correct taking into account interference effects in the cross-section of PBs on

nanostructures and in solids. Since (within the framework of the classical picture)

PBs is defined by high impact parameters in scattering of an electron by a target

with an electron core, the role of the above interference effects can be rather great.

This is in contrast with ordinary (static) Bs, for which small impact parameters are

characteristic, and the contribution of coherent interactions to the total SBs cross-

section, as a rule, is insignificant.

For quantitative description of collective effects in PBs in plasma, an approach

was developed that is based on the use of the dynamic form factor of a medium

representing the spatio-temporal Fourier transform of the density-density correlator

for plasma particles. The same approach can be used for PBs in other natural media

and nanostructures in the high-frequency limit, when radiated frequency exceeds

considerably the eigenfrequencies of target electrons.

12.2 PBs on an Atom

Within the framework of the consistent quantum-electrodynamic approach the

expression was obtained for the amplitude of PBs of a relativistic incident particle

on a one-electron atom with an arbitrary nuclear charge Z � 137 in a wide spectral

range.

For frequencies �ho<<mc2 a rigorous passage to the limit in case of a nonrela-

tivistic atomic electron was carried out, and the expression was obtained for the

amplitude of PBs in the terms of the operator of electromagnetic field scattering by

an atom, taking into account excitation and ionization of an atomic electron.

The equivalent photon method in calculation of the amplitude of PBs of a

charged Born particle scattered by a multielectron atom (ion) was justified.

In the spectral range I<<�ho<<mc2 (I is the characteristic ionization potential of
atom) the expression for the total PBs cross-section in terms of the dynamic form

factor of a target was obtained that is convenient for carrying out numerical

calculations.

The expression for the spectral intensity of near-resonance PBs for a case of the

band structure of the energy spectrum of a target was obtained.

The regions of essentiality of elastic and inelastic channels of polarization and

static mechanisms of bremsstrahlung were determined.

Based on the analysis of the obtained expressions for the cross-section of total Bs

of a relativistic charged particle, it was found that:

– The angular distribution of photons in the polarization channel of Bs of a

relativistic IP in the region of essentiality of its integral cross-section (for

frequencies pav0 > �ho, pa is the characteristic momentum of an atomic electron,

v0 is the initial IP velocity) is of a dipole nature;
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– In the frequency range I<< �ho<<pav0 the spectral cross-sections of Bs on a

neutral atom by the polarization and static channels are approximately equal

(accurate to the logarithmic factor);

– The spectral cross-section of polarization Bs grows logarithmically with the

energy of relativistic IP;

– In the spectral range pac<< �ho<<g2pac (g>> 1 is the relativistic factor) the

angular distribution of bremsstrahlung photons emitted by the polarization

channel gets the orientation along the IP velocity vector;

– In the frequency range �ho � pav0 the main contribution to the polarization

channel is made by elastic processes (without excitation or ionization of a

target), and if �ho> pav0, the main contribution is made by inelastic processes.

In the Born approximation for IP motion and in the Brandt-Lundqvist model [2],

for the polarizability of the electron core of a target the expression for the PBs

cross-section was obtained in the form of a local density functional for bound

electrons. With the use of the Thomas-Fermi model for electron density of an

atom it was shown that the spectral R-factor – the ratio of the cross-sections of Bs

by the polarization and ordinary (static) channels – reaches its maximum value

(of the order of unity) at the frequency �homax � Z m e4 �h2
�

(Z ej j is the charge of an
atomic nucleus).

The universal description of incoherent PBs of a fast charged particle on a

multielectron atom is given on the basis of approximate scaling of the reduced

Hartree-Fock profile of X-ray scattering, for which there is an extensive database

allowing the calculations of corresponding cross-sections for all possible neutral

atoms.

12.3 PBs of Fast Electrons in Plasma

Based on the microscopic consideration, the theory of PBs of a relativistic charged

particle in partially ionized plasma is constructed in view of radiation on the Debye

sphere and the influence of a medium on an electromagnetic field.

It is shown that the process cross-section can be expressed in terms of the

dynamic form factors of plasma components describing the interaction between

different kinds of particles, which allows taking into account mutual screening of

plasma components with different charge signs in the process of bremsstrahlung.

The developed approach makes it possible in a single formalism to describe Bs

of a fast charged particle in plasma with transfer of the energy-momentum excess to

different plasma excitations including collective degrees of freedom.

As a result of the carried out analysis of the obtained cross-sections, it was found

that:

– Studied earlier in the works of V.N. Tsytovich and A.V. Akopyan [3], transient

Bs and polarization Bs on the Debye sphere around an ion in plasma have the

same physical nature (practically coincide);
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– PBs in plasma (with not too high concentrations) is not subject to the influence of

the density effect suppressing static Bs of relativistic IP in the frequency range

o< gope;

– The influence of a medium on the cross-section of PBs in plasma counts only in

the logarithmed expression, which leads (for relativistic IP) in the frequency

range o< gope to leveling of logarithmic increase of the cross-section with

energy.

Bs of fast electrons in dense plasma in the hard-sphere model was investigated in

a wide spectral range, including the polarization and static channels of the process

and their interference. The cases of fully and partially ionized plasma were consid-

ered. It was shown that the spectra of total Bs have maxima, the position and shape

of which form depend on the density of plasma and the degree of ionization of a

plasma ion.

12.4 Quasi-Classical Theory of PBs of Thermal Electrons

on Atoms and Ions in Plasma

Within the framework of the local plasma model for target polarizability, a semi-

quantitative approach to description of polarization effects in strongly inelastic Bs

on a multielectron ion was developed.

Based on the developed approach, the analysis of the contribution of the polari-

zation channel to spectral and total effective radiation was carried out for quasi-

classical and quantum IP motion in view of penetration of an IP into the target core

for different degrees of inelasticity of the process.

The generalized rotation approximation was constructed that makes it possible

to estimate the value of the PBs cross-section (within the framework of the statisti-

cal model of a target ion) in a common manner for all nuclear charges and degrees

of ionization.

In the high-frequency limit the analytical expression having a visual physical

interpretation was obtained for total effective radiation of a quasi-classical IP on a

multielectron ion in view of the polarization channel. The generalization of the

target “stripping” effect to the case of classical IP motion is given.

A simple expression for total bremsstrahlung loss of thermal plasma electrons on

the Debye cloud around an ion in plasma was obtained that extends the previous

result for PBs of straight-flight superthermal particles and covers a case of nonideal

plasma. It is shown that the ratio of the contributions of the polarization and static

channels is a weak function of plasma electron density for a fixed value of the

plasma perfectness parameter.

On the basis of the carried out analysis it was found that:

1. The contribution of the polarization channel to the cross-section of strongly

inelastic Bs is maximum near the frequency of ionization of a target ion. The
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maximum value of the R-factor (the ratio of the values of the channel

contributions) within the framework of the Brandt-Lundqvist model for the

polarizability of the ion core is approximately equal to two. The spectral

R-factor, growing in the power manner in the region of low frequencies, sharply

falls after reaching the extreme value due to the effects of IP penetration into the

target core. The width of a corresponding maximum grows with inelasticity of

the process. For characteristic frequencies of the order of a ionic charge

(in atomic units) the R-factor is 10–15 %.

2. Interchannel interference in the spectral dependence of the Bs intensity is most

essential near the potential of ionization of a target, being at extrema more than

60 % of the total intensity of the process. For frequencies lower than the

ionization threshold, interference is of a destructive nature, for frequencies

higher than the ionization threshold, it is of a constructive nature. The role of

interchannel interference decreases with decreasing inelasticity of IP scattering

since in this case the spatial regions of formation of Bs channels are more

separated.

3. There is an optimum ionic charge (Zopt
i ), at which the value of the spectral

R-factor at a frequency multiple of the characteristic frequency of ionization of

an ion in the Thomas-Fermi model is maximum. This value Zopt
i decreases with

growing Bs frequency and grows with increasing ionic charge.

4. The integral with respect to the magnitude of the radius vector in the expression

for the polarization bremsstrahlung loss of a quasi-classical IP converges at the

lower limit of integration (in contrast to the divergent integral of the static

channel), which reflects taking into account IP penetration into the electron

core of a target. Thereby for polarization Bs the impossibility in principle of

consistent calculation of bremsstrahlung loss by the static channel within the

framework of classical physics is smoothed.

5. The values of the total static and polarization effective radiations calculated

within the framework of the generalized rotation approximation are approxi-

mately equal up to IP energies of the order of an ionic charge (in atomic units)

for targets with a low degree of ionization.

6. The polarization bremsstrahlung loss of thermal electrons on the Debye cloud

around an ion in ideal plasma is about 10–15 % of the value of “static”

bremsstrahlung loss and can be comparable with the latter only in case of

nonideal plasma.

12.5 PBs of Fast Particles in a Solid

The general expression for the cross-section of PBs in a solid in terms of the

structure factor of a medium is obtained, with the use of which it is possible to

describe PBs in a single crystal, a polycrystal, and an amorphous substance. In case

of a polycrystal, in the expression for the process cross-section averaging over the
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direction of the reciprocal lattice vector was carried out, and in an amorphous

medium the pair correlation function of medium atoms was used.

It is found that in the general case the cross-section of PBs in a crystal can be

represented as the sum of two summands: coherent and incoherent. These

summands reflect the nature of interaction of an incident electron with the crystal

lattice of a target. In the coherent case a momentum equal to the momentum of the

reciprocal crystal lattice is transferred to the target, and the radiated frequency is

found to be fixed for specified values of problem parameters. The incoherent part of

the cross-section is analogous to the cross-section of PBs on an individual atom in

view of the Debye-Waller factor.

It is shown that the coherent part of PBs of a relativistic electron in a single

crystal in the X-ray range of frequencies is nothing but parametric X-radiation

theoretically predicted by Ya.B. Fainberg and N.A. Khizhnyak and experimentally

discovered by V.G. Baryshevsky with co-authors [4].

As a result of investigation of PBs of nonrelativistic particles in polycrystals [5],

it was shown that in the region of low photon energieso<< 2 p v a= (a is the crystal
lattice constant), when the coherent component of the process prevails, PBs in a

polycrystal is suppressed in comparison with radiation on an individual atom. This

suppression is connected with the fact that low momenta transferred to the target

and defining PBs on an isolated atom do not make a contribution to coherent

scattering of a fast ion by a crystal lattice in the low-frequency range.

In the intermediate region of photon energies o � 2 p v a= (2–6 keV) a well-

discernible stepped structure in the PBs spectrum takes place – “frequency steps”.

This structure is connected with coherent scattering of an incident particle by a

crystal lattice, in which a momentum equal in magnitude to one of the reciprocal

lattice vectors is transferred to a target. A frequency step results from “turning-off”

of the contribution of one of the reciprocal lattice vectors (g) to the process, when a

minimum transferred momentum defined by the conservation laws in magnitude

exceeds g. The position and the value of frequency steps reflect the features of the

structure of a target, depend on the incident particle velocity and the angle of photon

emission.

In the high-frequency spectral region o>> 2 p v a= (o > 8–10 keV) the inco-

herent component of PBs prevails, and the radiation spectrum approaches the

spectrum on an isolated atom.

The consistent quantum-mechanical calculation of the intensity of PBs of a

relativistic electron in an amorphous medium has shown the important role of the

effect of suppression of radiation of a fast charged particle. This effect is a result of

destructive interference of the contributions to the process amplitude from different

atoms of a substance that are chaotically arranged in the region of formation of an

elementary radiative act. According to this physical picture, the suppression of PBs

should be the more essential, the more atoms of a medium are in the region of

formation of radiation, that is, for low frequencies, high IP energies and small

radiation angles. This conclusion is confirmed by the results of the numerical

analysis carried out in this paper for a number of targets and different problem

parameters.
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In the book different types of PBs of a fast hydrogen-like ion in a single crystal

are calculated and analyzed. It is shown that radiation results from scattering of

eigenfields of colliding charges to a bremsstrahlung photon by bound electrons of a

target and an IP. The presence of a crystal structure results in the fact that the

process of radiation can proceed both due to coherent interaction of an IP with a

target and in an incoherent manner. As a result, four types of PBs take place:

coherent and incoherent PBs on target electrons and coherent and incoherent PBs

on an IP electron. In the coherent case a wave vector equal to one of the reciprocal

lattice vectors g is transferred to a single crystal. In this case radiation occurs at a

fixed coherent frequency (with specified g, IP velocity and angle of photon

emission). The frequency of incoherent PBs is not fixed, and the intensity of

radiation is maximum in the near-resonance region near the eigenfrequencies of a

bound IP electron. From the obtained expressions it follows that with growing

charge of the IP nucleus the contribution of PBs by the second channel to the total

radiation decreases, and the spectral range of its essentiality is shifted to the region

of higher frequencies. At the same time the relative value of the considered types of

PBs weakly depends on the charge of nuclei of target atoms, with increase of which

the intensity of each of them grows proportionally.

By the example of a target of a copper foil, Bs of an electron with an energy of

10–30 keV was studied theoretically and experimentally in view of the ordinary and

polarization channels, interchannel interference, photon absorption, scattering and

loss of electron energy in a target. It is shown that with growing thickness of a target

the nature of the Bs spectrum changes. For a thin target, with increasing photon

energy a monotone decrease of Bs yield takes place with a peculiarity near the

threshold of ionization of the electron shell of target atoms due to the influence of

PBs. In case of a thick target the Bs spectrum is a curve with a maximum that is well

pronounced if the thickness of the target is more than the photon and electron path

length. With increasing initial electron energy the position of a spectral maximum is

shifted to the region of high photon energies. The physical cause of appearance of

maxima in the spectrum of Bs from a thick target consists in the competition of

influences of photon absorption and energy loss by an electron on the Bs process.

It is found that with growing target thickness the yield of Bs photons reaches

saturation faster for lower photon energies. For example, for �ho ¼ 1:36 keV and

an initial electron energy of 30 keV the “saturation thickness” is about 0.4 mm.With

decreasing initial electron energy the “saturation thickness” increases a little.

The contribution of the polarization channel is most essential near the threshold

of ionization of the L-shell of target atoms, that is, in the considered case for a

photon energy about 1.5 keV. The variation of the initial energy of an electron beam

results in a change of the relative PBs contribution to the total photon yield (in view

of interchannel interference) within 45–65 %, and the maximum of the polarization

contribution is reached for the energy E0 ¼ 30 keV. With growing photon energy

the PBs contribution decreases, so for �ho ¼ 10 keV it does not exceed 10 %. The

change of the viewing angle b rather weakly influences the PBs contribution to the

total photon yield. The calculation shows that with a growth of the angle b from 10�

to 80� the PBs contribution decreases approximately by 15 %.
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The carried out analysis indicates that the contribution of the polarization

channel depends weakly on the thickness of a target.

The experimental identification of the PBs contribution to the total photon yield

in the considered case is complicated by the fact that the spectra of PBs and Bs of a

nonrelativistic electron, generally speaking, are similar. The distinction in spectral

curve shapes is most essential for thin targets near the threshold of ionization of

atomic shells, where Bs is masked by a strong maximum of characteristic radiation.

Beyond this spectral region the PBs contribution can be recorded by carrying out

absolute measurements of the Bs spectrum. An alternative approach to investiga-

tion of PBs can be based on taking the spectra of radiation in the region of the

threshold of ionization of atomic shells with a temporal resolution for separation of

a practically momentary Bs response from characteristic radiation with a finite

relaxation time.

12.6 PBs on Nanostructures

Based on the carried out analysis of radiation of electrons on nanoclusters, it is

possible to draw a conclusion about essentiality of cooperative effects in Bs of a fast

(including relativistic) charged particle scattered by a polyatomic cluster in a wide

range of frequencies. These effects caused by constructive interference of

contributions of atoms to the process by the polarization channel result in nonlinear

growth of the PBs intensity as a function of the number of atoms in a cluster. At the

same time for the ordinary (static) mechanism of Bs the contribution of different

atoms to radiation is incoherent, which is caused by the smallness of impact

parameters, on which ordinary Bs is formed. The value of cooperative effects as a

function of the number of atoms in a cluster is investigated. The dependence of the

number Nsat (beginning with which the nonlinear growth of the PBs intensity

ceases) on the main problem parameters is established. In particular, it is shown

that for relativistic IP the valueNsat strongly grows with decreasing radiation angle.

It is shown that cooperative effects result in considerable modification of the

main characteristics of Bs on a cluster in comparison with a monatomic case. For

example, in the high-frequency range with growing number of atoms the PBs

pattern is narrowed, and for large enough clusters the angular dependence of PBs

of relativistic particles becomes nonmonotonic: a maximum appears at nonzero

radiation angles.

With growing IP energy the maximum of the spectral distribution of PBs on a

cluster is shifted to the region of high frequencies. The form of the high-frequency

part of the spectrum in the relativistic case strongly depends on the radiation angle.

With decrease of this angle, the Bs intensity with growing frequency decreases

much more slowly than for wide angles.

An analytical expression was obtained for the spectral-angular cross-section of

PBs of a charged particle scattered by a metal nanosphere placed in a dielectric

medium. The derived formula contains the cross-section of scattering of an
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electromagnetic field, for which in the developed approach the result of the Mie

theory is used.

Within the framework of the proposed method of calculation, polarization

bremsstrahlung on a silver sphere with a radius from 10 to 100 nm in glass and

other matrices was analyzed. Awide range of incident electron velocities from 1 a.u.

to the value equal to the velocity of light in a matrix material was considered. The

calculations of the PBs cross-section differential with respect to the frequency and

the radiation angle are carried out in the region of excitation of a plasmon resonance

on the surface of a silver nanosphere (the photon energy is 1–4 eV), where the

spectral characteristics of the process are most sensitive to the target and matrix

parameters and the polarization channel of radiation prevails. The main spectral,

velocity, and angular regularities of the process under consideration that are neces-

sary for development of PBs spectroscopy are established. In particular, it is shown

that the position and width of the spectral maximum in the PBs cross-section are

defined by the radius of a nanosphere, the dielectric permittivity of a matrix, and the

velocity of a scattered electron. It is shown that for large enough sphere radii in the

high-frequency part of the PBs spectrum an additional maximum appears that is

caused by excitation of quadrupole plasmons.

The carried out analysis makes it possible to establish an optimum region of

parametric variation, in which the use of PBs spectroscopy for investigation of the

structure and physical properties of metal nanoparticles in a dielectric medium is

most promising.

Polarization bremsstrahlung and static (ordinary) bremsstrahlung (SBs) of a fast

electron scattered by graphene are investigated theoretically. Coherent and inco-

herent interactions between an electron and a two-dimensional graphene lattice as

well as the dynamic polarizability and the form factor of the core of a carbon atom

are taken into account.

It is shown that the spectral features of the PBs cross-section depend on the

electron velocity, the angle of IP incidence, and the radiation angle. In the said

region of problem parameters sharp maxima in the PBs spectrum are predicted. For

the normal incidence of an electron on the graphene plane the analytical description

of resonance frequencies as functions of velocity and radiation angles is obtained.

In the low-frequency range coherent PBs is prevailed by the process without

momentum exchange between an IP and graphene. In this range coherent PBs is

comparable with or higher than incoherent PBs. Our analysis shows that prevailing

channels of bremsstrahlung of a fast electron on graphene are coherent PBs and

incoherent SBs.

12.7 Induced Bremsstrahlung Effect in an Electromagnetic

Field

The induced bremsstrahlung effect in a near-resonance laser field in strongly

inelastic scattering of electrons by ions with a core is calculated and analyzed,

including the multiphoton process. The contributions of the ordinary (static) and

polarization Bs mechanisms to the process cross-section are taken into account.
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Particular attention is given to interference effects caused by interaction of the

channels.

It is shown that IP penetration into the target core strongly influences the

interference effects.

As a result of the carried out investigations, it was found that:

– Interference between the static and polarization channels in near-resonance Bs

results in asymmetry of the process spectral line shape, so in the low-frequency

wing of the line a “dip” appears;

– The form and depth of the spectral “dip” essentially depend on the intensity of

the external field in the region of its “saturating” values and on the energy of a

resonant transition;

– An interference “dip” occurs in the dependence of the cross-section of near-

resonance induced Bs on the amplitude of the external electromagnetic field with

negative detuning of radiation frequency from resonance (o < o0);

– The effects of IP penetration into the target core result in dependence of the

process spectral line shape on the angle between the vector of the initial IP

velocity and the vector of the electric field of near-resonance radiation, so

interference effects are most pronounced in case of perpendicular orientation

of the said vectors and are strongly reduced in case of their parallel orientation;

– In the cross-section of near-resonance Bs differential with respect to the angle of

IP scattering a peculiar kind of “inversion” of process spectral line shape

asymmetry occurs as the angle of IP scattering increases due to the change of

the sign of the nondipole polarization potential;

– Based on the quantum calculation, the conclusion of the quasi-classical consid-

eration about the most manifestation of interchannel interference in the

integrated cross-section of inelastic scattering is confirmed for perpendicular

polarization of the external field expressed in the asymmetry of the spectral

cross-section and the presence of spectral dips;

– The role of exchange effects in the spectral cross-section differential with

respect to the angle of IP scattering is analyzed;

– The features of the spectral dependences of the cross-section integrated with

respect to the angle of IP scattering with absorption and emission of a photon for

different orientations of the vector of the external field strength in relation to the

initial IP velocity are investigated.

12.8 Experimental Investigation of the Polarization Channel

in Bremsstrahlung

The most dramatic proofs of essentiality of PBs were obtained in experiments with

relativistic electrons scattered by solid-state targets, both single-crystal and poly-

crystalline [6] and amorphous, as well as in Bs on atoms in the region of a giant

resonance in photoabsorption [7].
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In case of a single-crystal target, when, as a rule, instead of PBs the term

parametric X-radiation is used, sharp maxima in the radiation spectrum were

recorded that are caused by conversion of virtual photons to real photons on the

crystallographic planes in fulfilment of the Bragg condition. The width and inten-

sity of these maxima were found to be comparable with the spectral width and

intensity of characteristic radiation [8]. In contrast to unpolarized characteristic

radiation having a wide angular distribution and a fixed central frequency of a

maximum, PBs is polarized and has a narrow pattern, and the central frequency of

its spectral maximum can be controlled by changing the problem parameters.

In the experimental spectra of relativistic electrons in polycrystals maxima are

also found that are defined by the Bragg condition for a specified radiation angle

[9]. In contrast to the case of a single-crystal target, these maxima have a large

width and much lower intensity [10] that, however, in the region of the maximum

exceeds the intensity of ordinary Bs (see Fig. 9.9).

The absolute measurements of the cross-section of Bs of nonrelativistic electrons

on atoms of noble gases [11] in a wide spectral range from 5 keV to the kinematic

limit have shown that the obtained results are not described by the standard Bs

theory (without considering the polarization channel) (see Figs. 9.4, 9.5 and 9.6). In

the work [11] it is shown that in the considered case taking Bs into account

improves the agreement between experimental and theoretical data. Based on the

carried out analysis, the conclusion was drawn that the obtained experimental

dependences are unambiguously indicative of the considerable contribution of the

polarization channel to Bs of fast electrons on free atoms.

The absolute measurements of the yield of bremsstrahlung photons in scattering

of an electron with the energy of 53 keV by gold films of different thicknesses were

carried out in the work [12] for a radiation angle of 153�. In this case it was found

that the theory of ordinary Bs (without considering PBs) gives a good agreement

with the experiment in contrast to the results of the work [11] on measurement of Bs

on free atoms and experiments on emission of relativistic electrons on metal foils

[10]. It should be noted that the theoretical data in the paper [11] were obtained

within the framework of the atom “stripping” approximation and, as the authors of

the paper note, for verification of the obtained conclusions a more consistent

theoretical approach is needed. Such an approach for a polycrystalline target is

described in the Sect. 5.3 of this book. Besides, for detection of “frequency steps” in

the spectrum of PBs of a nonrelativistic charged particle scattered by a polycrystal

(see Figs. 5.3 and 5.4) high enough resolution of the photodetector is necessary.

Otherwise the said structure will be “slurred over” by the instrument function of the

photodetector, and characteristic features of PBs predicted by the theory will

disappear in the experiment.

Thus it can be concluded that reliable experiments intended to reveal the PBs

contribution to radiation of nonrelativistic electrons on polycrystalline targets need

the use of more perfect measuring equipment.

The interference of coherent ordinary Bs and coherent PBs in scattering of

nonrelativistic electrons with the energy from 50 to 100 keV by a thin target of a

silicon single crystal was observed in the work [13] in the X-ray range. The
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experiment was carried out for a sliding angle of radiation with respect to the

surface of a target to decrease photon absorption in the target material. Shown in

the cited work was a possibility of frequency tuning of X-radiation due to the

change of conditions of interference between the ordinary and polarization channels

of coherent Bs.

In conclusion it should be noted that the important property of PBs – indepen-

dence from an IP mass – was still insufficiently used in experimental investigations.

The exception is the work [14]. At the same time PBs of multiply charged ions can

have wide practical applications both for obtaining new types of sources of short-

wave radiation and for diagnostics of materials.
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Appendix 1 Dynamic Polarizability of an Atom

Definition of Dynamic Polarizability

The dynamic (dipole) polarizability a oð Þ is an important spectroscopic characteris-

tic of atoms and nanoobjects describing the response to external electromagnetic

disturbance in the case that the disturbing field strength is much less than the atomic

electric field strength E<<Ea ¼ m2
e e

5 �h4
� ffi 5:14 � 109 V=cm, and the electromag-

netic wave length is much more than the atom size.

From the mathematical point of view dynamic polarizability in the general case

is the tensor of the second order aij connecting the dipole moment d induced in the

electron core of a particle and the strength of the external electric field E (at the

frequency o):

di oð Þ ¼
X
j

aij oð ÞEj oð Þ: (A.1)

For spherically symmetrical systems the polarizability aij is reduced to a scalar:

aij oð Þ ¼ a oð Þ dij; (A.2)

where dij is the Kronnecker symbol equal to one if the indices have the same values

and to zero if not. Then the Eq. A.1 takes the simple form:

d oð Þ ¼ a oð ÞE oð Þ: (A.3)

The polarizability of atoms defines the dielectric permittivity of a medium e oð Þ
according to the Clausius-Mossotti equation:

e oð Þ � 1

e oð Þ þ 2
¼ 4

3
p na a oð Þ; (A.4)
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where na is the concentration of substance atoms. For simplicity it is assumed in

Eq. A.4 that a medium consists of atoms of the same kind.

It should be noted that the basis for a number of experimental procedures of

determination of the dynamic polarizability a oð Þ is its connection with the

refractive index of a substance (that for a transparent nonmagnetic medium is

determined by the equation n oð Þ ¼ ffiffiffiffiffiffiffiffiffiffi
e oð Þp

).

Dynamic polarizability defines the shift of the atomic level energy DEn in an

external electric field. In the second order of the perturbation theory for the

nonresonant external field E and a spherically symmetric electronic state a

corresponding correction to energy looks like

DEð2Þn ¼ �
1

2
an oð ÞE2: (A.5)

The formula (A.5) describes the quadratic Stark effect. In the case that the

external field frequency coincides with the eigenfrequency of an atom, the energy

shift is found to be linear in electric field intensity – the linear Stark effect. The

linear Stark effect is realized also in case of an orbitally degenerate atomic state as it

takes place for a hydrogen atom and hydrogen-like ions.

Static polarizability, that is, polarizability at the zero frequencya o ¼ 0ð Þdefines
the level shift in a constant electric field and, besides, the interatomic interaction

potential at long distances (the Van der Waals interaction potential). Since static

polarizability is a positive value (see below), from the Eq. A.5 it follows that the

energy of a nondegenerate atomic state decreases in the presence of a constant

electric field. The potential of interaction of a neutral atom with a slow charged

particle at long distances is also defined by its static polarizability:

VpolðrÞ ¼ �e20
að0Þ
2 r4

; (A.6)

where e0 is the particle charge. With the use of Eq. A.6 it is possible to obtain the

following expression for the cross-section of elastic collision of a charged particle

with an atom in case of applicability of the classical approximation for description

of motion of an incident particle with the energy E:

selscatðEÞ ¼ 2 p e0

ffiffiffiffiffiffiffiffiffi
að0Þ
2E

r
: (A.7)

It should be noted that the Eq. A.7 follows (accurate to the factor equal to 2) from

Eq. A.6 if the effective scattering radius rE is determined with the use of the

equation

E ¼ Vpol rEð Þ
�� ��: (A.8)
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Thus the knowledge of dynamic polarizability is very important for description

of a whole number of elementary processes.

Expression for the Dynamic Polarizability of an Atom

Let us calculate the dipole moment of an atom d in the monochromatic field

EðtÞ ¼ 2Re Eo exp �io tð Þf g that by definition is

dðtÞ ¼ 2Re a oð ÞEo exp �io tð Þf g: (A.9)

The Fourier component of the dipole moment is given by the expression

do ¼ a oð Þ Eo: (A.10)

In the formulas (A.9) and (A.10) Eo is the complex electric field vector in

monochromatic radiation being a Fourier component of EðtÞ.
The dipole moment of an atom in the absence of external fields is equal to zero in

view of spherical symmetry, so the value of an induced dipole moment can serve as

a measure of disturbance of an atom by an external action. The linear dependence

dðtÞon electric field intensity (A.9) is true in case of smallness of the field strengthE
from the standpoint of fulfilment of the inequations E<<Ea. Thus for low enough

field strengths the response of an atom to electromagnetic disturbance can be

characterized by its polarizability a oð Þ.
For description of the electromagnetic response of an atom – a quantum system –

within the framework of classical physics, it is convenient to use the spectroscopic
conformity principle. It can be formulated as follows: an atom in interaction with an

electromagnetic field behaves as a set of classical oscillators (transition oscillators)

with eigenfrequencies equal to the frequencies of transitions between atomic energy

levels. This means that each transition between the atomic states jj i and nj i is
assigned an oscillator with the eigenfrequency ojn and the damping constant djn<
<ojn . The contribution of the transition oscillators to the response of an atom to

electromagnetic action is proportional to a dimensionless quantity called oscillator
strength – fjn , the more is the oscillator strength, the stronger is a corresponding

transition. Transitions with the oscillator strength equal to zero are called forbidden

transitions.

According to the spectroscopic conformity principle, the change of an atomic

state is made up of the change of motion of transition oscillators. The inequation

E<<Ea means the smallness of perturbation of an atomic electron state as a result

of action of the electromagnetic field. Thus it is possible to consider the deviations

of the transition oscillators from the equilibrium position under the action of the

field EðtÞ small, so for a n th oscillator the equation of motion in the harmonic

approximation is true:
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€rn þ dn0 _rn þ o2
n0 rn ¼

e

m
fn0 EðtÞ; (A.11)

where rn is the radius vector corresponding to the deviation of the transition oscillator

from the equilibrium position; dn0, on0, fn0 are the damping constant, eigenfrequency

and the oscillator strength. For simplicity we consider a one-electron atom in the

ground state, the dipole moment of which is equal to d ¼ e r . (In case of a

multielectron atom the dipole moment is equal to the sum of dipole moments of

atomic electrons.) In view of the conformity principle the induced dipole moment

of an atom is made up of induced dipole moments of the oscillators of transitions to

the nth state dn: d ¼
P
n
dn ¼ e

P
n
rn. Going in this equation to Fourier components,

we have

do ¼ e
X
n

rno; (A.12)

where rno is the Fourier transform of the radius vector of the transition oscillator

deviation from the equilibrium position. The expression for this value follows from

the equation of motion (A.11):

rno ¼ e

m

fn0
o2
n0 � o2 � io dn0

Eo: (A.13)

Substituting the formula (A.13) in the Eq. A.12 and using the definition of

polarizability (A.10), we find for it the following expression:

a oð Þ ¼ e2

m

X
n

fn0
o2
n0 � o2 � io dn0

: (A.14)

Hence it follows that the dynamic polarizability of an atom represents, generally

speaking, a complex value with a dimensionality of volume. The imaginary part of

polarizability is proportional to the damping constants of the transition oscillators.

The sum on the right of the Eq. A.14 includes both summation over the discrete

energy spectrum and integration with respect to the continuous energy spectrum.

The imaginary part of polarizability is responsible for absorption of radiation, and

the real part defines the refraction of an electromagnetic wave in a medium. The

expression (A.14) describes not only a one-electron atom, but also a multielectron

atom. The multielectron nature of an atom is taken into account by the fact that in

definition of the oscillator strength the dipole moment of an atom is equal to the sum

of dipole moments of its electrons.

From the Eq. A.14 several important limiting cases can be obtained. For

example, if the frequency of the external field is equal to zero, the formula (A.14)

gives the expression for the static polarizability of an atom:
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a0 � a o ¼ 0ð Þ ¼ e2

m

X
n

fn0
o2
n0

: (A.15)

Hence it is seen that static polarizability is a real and positive value. It has a large

numerical value if in the atomic spectrum there are transitions with high oscillator

strength and low eigenfrequency as it is, for example, for alkaline-earth atoms.

In the opposite high-frequency limit, when �ho>>IP ( IP is the ionization

potential of atom) and the eigenfrequencies in the denominators of Eq. A.14 can

be neglected, from the formula (A.14) in view of the golden rule of sums, according

to which the sum of oscillator strengths is equal to the number of electrons in an

atom Na, we obtain

a1 oð Þ ¼ � e2 Na

mo2
: (A.16)

Hence it is seen that the high-frequency polarizability of an atom is a real and

negative value that decreases quadratically with growing frequency of the external

field.

If the external field frequency is close to one of eigenfrequencies of the transition

oscillators, so that the resonance condition

o� on0j j � dn0 (A.17)

is satisfied and one resonant summand in the sum (A.14) can be retained, then from

Eq. A.14 the expression for resonant polarizability follows:

ares oð Þ ¼ e2

2mon0

� �
fn0

on0 � o� i dn0 2=
: (A.18)

In derivation of Eq. A.18 from Eq. A.14 in nonresonance combinations the

distinction of the external field frequency from the transition eigenfrequency was

neglected. Resonant polarizability is a complex value, the real part of which can be

both positive and negative.

The Eq. A.10 determining dynamic polarizability after the Fourier transforma-

tion can be rewritten as

dðtÞ ¼
ð1

�1
a tð ÞE t� tð Þ dt; (A.19)
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where a tð Þ is the real time function, the Fourier transform of which is equal to the

dynamic polarizability a oð Þ. The most simple expression for a tð Þ follows from the

formula (A.18):

ares tð Þ ¼ e2 fn0
2mon0

�ið Þ y tð Þ exp �ion0 t� dn0 t 2=ð Þ; (A.20)

where y tð Þ is the Heaviside step function. The time dependence of the induced

dipole moment dðtÞ coincides with the time dependence of the right side of the

Eq. A.20 for the delta pulse of the field:EðtÞ ¼ E0 dðtÞ, where dðtÞ is the Dirac delta
function. In the general case the expression for b tð Þ can be obtained by replacement

of the frequency on0 !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2
n0 � dn0 2=ð Þ2

q
and summation over all transition

oscillators. It should be noted that the decrease of the eigenfrequency of oscillations

in view of damping following from the said replacement is quite natural since

friction (the analog of damping) reduces the rate of motion.

Concerned above was dipole polarizability that describes the response of an

atom to a spatially uniform electric field. In the case that the characteristic size

of the spatial nonuniformity of a field is less than the size of an atom, dipole

polarizability should be replaced by the generalized polarizability of an atom

a o; qð Þ depending on the momentum �h q transferred as a result of interaction.

The spatial scale of the field nonuniformity l is inversely proportional to the

value of the wave vector l � 1 q= . With the use of the generalized polarizability

of an atom a o; qð Þ the formula (A.3) is modified to the form

D oð Þ ¼
ð
a o; qð ÞE o; qð Þ dq

2 pð Þ3; (A.21)

where E o; qð Þ is the spatio-temporal Fourier transform of the electric field

vector. For the spatially uniform field E o; qð Þ ¼ E oð Þ d qð Þ the Eq. A.21 (in case

of a spherically symmetric atomic state) goes to Eq. A.1 in view of the fact that

a oð Þ ¼ a o; q ¼ 0ð Þ.
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Appendix 2 Methods of Description

of the Electron Core of Multielectron

Atoms and Ions

Slater Approximation

For definition of the effective field and the concentration of a atomic core, for

simple estimations, and in a number of applications, in which the behavior of wave

functions of atomic electrons at long distances is essential, nodeless Slater functions

of the following form are used:

PgðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2bð Þ2mþ1

G 2mþ 1ð Þ

s
rme�b r; (A.22)

where g ¼ nlð Þ is the set of quantum numbers characterizing an electronic state,b; m
are the Slater parameters. The wave functions (A.22) are normalized, have correct

asymptotics at long distances. The main advantage of the functions (A.22) consists

in their simplicity.

To determine the parameters b; m, Slater proposed empirical rules that for shells

more than half-filled look like

bg ¼
Z � Sg
mg

; (A.23)

where Z is the atomic nucleus charge, Sg is the screening constant, the values of

which, together with the parameter mg and the number of electrons Ng for different

electron shells, are given in Table A.1.

For shells that are half-filled or less than half-filled, the best results are given by

another rule:

m ¼ half-integer value nearest to Z
ffiffiffiffiffiffiffiffiffi
2 Ej j

p.
;b ¼ m 2 Ej j Z= ; (A.24)
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where E is the electronic state energy in atomic units.

With the use of the functions (A.22) the radial distribution of the electron density

of an atom in the Slater approximation can be obtained as

rðrÞ ¼
X
g

Ng P
2
gðrÞ: (A.25)

The atomic (Slater) potential corresponding to this electron density is

USðrÞ ¼ � zSðrÞ
r

; (A.26)

where zSðrÞ is the effective charge of the core:

zSðrÞ ¼ Z �
ðr

0

r r0ð Þdr0 � r

ð1

r

r r0ð Þ
r0

dr0: (A.27)

It is possible to make sure that the potential of Eqs. A.26 and A.27 satisfies the

electrostatic Poisson equation with the boundary conditions:

zSð0Þ ¼ Z; zS 1ð Þ ¼ Zi; (A.28)

where Zi is the charge of an ion that is equal, naturally, to zero for a neutral atom.

Substituting in Eq. A.27 the formulas (A.22), (A.25) and performing integration,

we find

zSðrÞ ¼ Z �
X
g

Ng 1� e�2br
X2m�1
k¼0

2m� k

2m
2b rð Þk
k!

" #
g

: (A.29)

So the expressions (A.26), (A.29) give the atomic potential in the Slater

approximation.

Table A.1 Slater parameters

of atomic shells
Shell g ¼ nlð Þ Sg mg Ng

1s2 0.30 1 2

2(sp)8 4.15 2 8

3(sp)8 11.25 3 8

3d10 21.15 3 10

4(sp)8 27.75 3.5 8

4d10 39.15 3.5 10

5(sp)8 без 4f 45.75 4 8

4(df)24 44.05 3.5 24

5(sp)8 с 4f 57.65 4 8

5d10 c 4f 71.15 4 10
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Quantum-Mechanical Methods of Calculation of the Structure

of Multielectron Atoms

Consistent quantum-mechanical methods of calculation of the structure of

multielectron atoms are based on solution of the Schrödinger equation with a multi-

particle Hamiltonian taking into account electron-nucleus and electron–electron

interaction that contains direct and exchange components. The multielectron wave

function of an atom C depends both on the spatial coordinates ri and on the spin

variables of atomic electrons si. The general form of the functionC for atoms with two

and more electrons is unknown. This reflects the impossibility in principle to solve a

many-body problem. So different approximatemethods are used that are based on one

or another choice of a general form of the atomic wave function that is then

substituted in the Schrödinger equation.

With neglected exchange effects, the elementary form of the multiparticle function

C ri; sið Þ is a multiplicative form of the one-particle coordinate wave functions cgi
depending on “their” spatial variables. This approach was proposed by Hartree at the

initial stage of the quantum theory of multielectron atoms (the Hartree approxima-

tion). This approximation was extended by V.A. Fock to account for exchange

interelectron interaction. The corresponding approach – the Hartree-Fock method –

has found wide application in calculations of the structure of electron shells of atoms.

In this method the multiparticle wave function is written as the Slater determinant:

C ¼ 1ffiffiffiffiffi
N!
p detN ci xkð Þf g; (A.30)

where detN designates a determinant of the Nth order (N is the number of atomic

electrons) with the line number i and the column number k, xk is the set of spatial and
spin coordinates of the kth electron. The representation (A.30) automatically takes

into account the properties of antisymmetry of the full wave function of an atom

with respect to rearrangement of coordinates of electrons (including their spins).

Physically the approximate expression for the multiparticle wave function (A.30) is

connected with the idea of a self-consistent field, according to which each separated

atomic electron moves in a spherically symmetric electric field produced by a

nucleus and other atomic electrons.

In case of the ground nondegenerate state of an atom, its wave function is given

by one Slater determinant such as Eq. A.30 with a specified electron configuration,

that is, with specified distribution of electrons by shells. In the general case it is

necessary to consider the linear superposition of the functions (A.30). For the

ground state, using the substitution of the determinant of Eq. A.30 in the multipar-

ticle Schrödinger equation, the following integro-differential system of the Hartree-

Fock equations can be obtained:
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� �h2

2m
Di’i rið Þ �

Z e2

ri
’i rið Þ þ

e2

2

X
j 6¼i

’j rj
� ��� ��2

ri � rj
�� ��’i rið Þ �

e2

2

X
j6¼i

’�j rj
� �

’i rj
� �

ri � rj
�� �� ’j rið Þ ¼ ei ’i rið Þ;

(A.31)

where i; j ¼ 1	 N , N is the number of electrons in an atom, ’i rið Þ are the one-

electron wave functions, ei are their associated one-electron energies. The first and

the second summands in Eq. A.31 are one-particle terms connected with the kinetic

energy operator and the Coulomb potential of an atomic nucleus respectively. The

second two summands describe two-particle electron–electron interaction, the third

summand relating to direct interaction and the fourth summand relating to exchange

interaction. It is essential that the potential of direct interelectron interaction is

local, that is, depending on an electron coordinate at a given point. At the same time

the potential of exchange interaction is nonlocal and is defined by the distribution of

the electron density of the electronic state under consideration in the whole space,

which considerably complicates the solution of the system (A.31). It should be

noted that this system without the last summand on the left side of the equations is a

system of the Hartree equations that does not take into account exchange interaction

between electrons that, generally speaking, is rather essential for correct calculation

of an atomic structure.

Practically for determination of the one-electron orbitals ’i and their associated

energies ei , instead of the Hartree-Fock equations (A.31), a variational method is

often used that is equivalent to them, in which the minimization of a corresponding

energy functional is carried out by the iterative method. The computational com-

plexity of the Hartree-Fock method grows rapidly with the number of atomic

electrons, so the corresponding calculated time for heavy atoms is found to be too

long even when using modern computers. Another disadvantage of this method is

that it does not take into account the correlation interaction between electrons

depending on the difference of their coordinates. Taking into account the correla-

tion interaction is beyond the scope of the self-consistent field approximation that is

a physical basis of the Hartree-Fock method.

The said disadvantages can be to some extent overcome with the use of

approaches, in which the localization of the exchange potential is carried out. One

of such methods is the local electron density approximation, in which the electron

density n rð Þ is considered as a basic value defining the properties of the ground state
of an atom. Within the framework of this approximation it is possible to a certain

extent to take into account also the correlation interelectron interaction by introducing

a single exchange-correlation potential. A corresponding system of equations looks

like:

� �h2 2m=
� �

Dþ Veff rð Þ	 

’i rð Þ ¼ ei ’i rð Þ; (A.32)
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Veff rð Þ ¼ � Z e2

r
þ e2

ð
n r0ð Þ
r� r0j j dr

0 þ dExc n½ 

dn rð Þ ; (A.33)

n rð Þ ¼
XN
i¼1

’i rð Þj j2; (A.34)

where Exc n½ 
 is the exchange-correlation energy functional depending on the local

electron density. The exchange-correlation energy is obtained as a result of func-

tional differentiation of the functional Exc n½ 
 as seen from Eq. A.33. Since the exact

form of Exc n½ 
 , as a rule, is unknown, different approximations are used for this

form. In the method under consideration the exchange-correlation energy is written

as

Exc n½ 
 ¼
ð
n rð Þ exc n rð Þ½ 
 dr; (A.35)

where exc is the exchange-correlation energy per one electron. The approximation

(A.35) results in the local exchange-correlation potential:

Vxc rð Þ ¼ @

@n rð Þ n rð Þ exc n rð Þ½ 
f g: (A.36)

In practice, instead of Eq. A.36, the following simple expression (in atomic

units) is often used:

Vxc rð Þ ¼ � 0:611

rs rð Þ � 0:0333 ln 1þ 11:1

rs rð Þ
� �

; (A.37)

where the function rs rð Þ is determined from solution of the equation 4 3=ð Þ p r3s ¼
n�1 rð Þ. In view of Eq. A.37, the Eqs. A.32, A.33, and A.34 become much more

simple than the Hartree-Fock equations A.31, in which the nonlocal exchange

interaction is present.

Statistical Methods of Description of the Structure

of Multielectron Atoms

As noted above, the Hartree-Fock approximation becomes extremely laborious with

growing number of atomic electrons. At the same time, it is for description of

multielectron atoms ( N � 20 ) that there is an alternative approach based on

the statistical model of the atomic core. The most known model of such a kind

is the Thomas-Fermi approximation. There are different methods to derive this

Appendix 2 Methods of Description of the Electron Core of Multielectron Atoms and Ions 357



approximation. Here we will give one of them, based on the plasma model for a

subsystem of bound electrons of an atom. An argument for such an approach is the

fact that plasma models of an atom retain their attractiveness for investigations in the

field of atomic physics for years, in spite of rapid development of computingmethods.

An obvious advantage of these models is their simplicity and universality making it

possible to describe many properties of complex atoms and ions on a single basis.

Among such properties are potentials of interaction of atoms with charged particles,

cross-sections of photoionization of atoms, their static and dynamic polarizabilities,

and other parameters.

The Thomas-Fermi distribution for a multielectron atom can be obtained

following the works of A.V. Vinogradov with collaborators, from solution of

the Vlasov self-consistent equations that are traditionally used in plasma physics.

A corresponding system of equations looks like (in this item we use atomic units

�h ¼ e ¼ me ¼ 1):

@f

@t
þ p

@f

@r
�rU @f

@p
¼ 0; (A.38)

DU ¼ 4p Z d rð Þ � n rð Þ½ 
; (A.39)

n r; tð Þ ¼
ð
f r; p; tð Þ dp; (A.40)

where f r; p; tð Þ is the electron distribution function, U r; tð Þ is the electron energy in

the self-consistent field, n r; tð Þ is the electron density distribution, Z is the atomic

nucleus charge. In absence of an external electromagnetic field, for the function of

distribution of electrons and their energywe have: f r; p; tð Þ ¼ f0 r; pð Þ,U r; tð Þ ¼ ’ðrÞ,
n r; tð Þ ¼ n0ðrÞ. Then the solution of the Eq. A.38 can be represented as

f0 r; pð Þ ¼ 2

2pð Þ3 y EF � Eð Þ; E ¼ p2 2= þ ’ðrÞ (A.41)

In writing Eq. A.41 the presence of the Fermi energy EF for degenerate electron

gas of atomic electrons following the Pauli principle was taken into account.

Substituting Eq. A.41 in the formulas (A.39) and (A.40) gives the Thomas-Fermi

distribution:

n0ðrÞ ¼ p3F
3 p2

; pFðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 EF � ’ðrÞð Þ

p
; (A.42)

EF � ’ðrÞ ¼ Z

r
w

r

rTF

� �
; rTF ¼ bffiffiffi

Z3
p ; b ¼

ffiffiffiffiffiffiffiffi
9 p2

128

3

r
ffi 0:8853; (A.43)
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where wðxÞ is the Thomas-Fermi function being a solution of the equation of the

same name

x1=2
d2wðxÞ
dx2

¼ wðxÞ3=2

with the boundary conditions; wð0Þ ¼ 1 and w 1ð Þ ¼ 0; rTF is the Thomas-Fermi

radius.

It should be noted that for a neutral atom the Fermi energy is equal to zero:

EF ¼ 0. As a result, from Eqs. A.42 and A.43) we have the distribution of the

electron density of a Thomas-Fermi atom:

nTFðrÞ ¼ Z2 fTF x ¼ r rTF=ð Þ; (A.44)

where the function of the dimensionless distance to the nucleus is introduced that is

fTFðxÞ ¼ 1

4 p b3
wðxÞ
x

� �3=2

: (A.45)

The representation of electron density in the form of Eq. A.44 is common for all

statistical models. The form of the function f ðxÞ depends on a concrete approxima-

tion. For example, in the statistical approach proposed by Lenz and Jensen the

following expression for f ðxÞ is obtained (the Lenz-Jensen model):

fLJðxÞ ffi 3:7 e�
ffiffiffiffiffiffiffi
9:7 x
p 1þ 0:26

ffiffiffiffiffiffiffiffiffiffi
9:7 x
p� �3

9:7 xð Þ3=2
: (A.46)

It should be noted that for x � 1 the formulas (A.45) and (A.46) give practically

coincident results, at high x the Lenz-Jensen function results in a somewhat more

realistic reduction of the electron density of an atom with distance than the Thomas-

Fermi function.

The most simple statistical model corresponds to the exponential decrease of the

electron density on the Thomas-Fermi radius, in this case

fexpðxÞ ¼ p�1b�3 exp �2xð Þ: (A.47)

The model of the atomic core of Eqs. A.44 and A.47) is often used in consider-

ation of interaction of an electromagnetic field with atoms in solids.

Given in Fig. A.1 is the radial electron density of a krypton atom calculated

within the framework of different approximations.

It is seen that the statistical Lenz-Jensen model (A.44) and (A.46) in a smoothed

manner renders the quantum-mechanical dependence obtained in the Hartree-Fock

approximation, without considering peculiarities connected with the shell structure
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of an atom. The Slater model (A.22), (A.23), (A.24), and (A.25) to some extent

detects the radial fluctuations of electron density, especially in the region of small

distances to a nucleus.

Approximations of the Thomas-Fermi Function

for Neutral Atoms and Multielectron Ions

The Thomas-Fermi functionwðxÞdetermining the potential and the electron density of

an atom in the Thomas-Fermi model has no exact analytic representation, but there

are its numerous approximations. Let us give here for the function wðxÞ the

Sommerfeld approximation describing not only neutral atoms, but also multielectron

ions:

w x; qð Þ ¼ w0ðxÞ 1� 1þ zðxÞ
1þ z0ðqÞ
� �l1 l2=

" #
; zðxÞ ¼ xffiffiffiffiffiffiffiffi

1443
p
� �l2

; (A.48)

where q ¼ Zi Z= is the degree of ionization, x0ðqÞ is the reduced radius of an ion,

l1 ¼ 7þ ffiffiffiffiffi
73
p� �

2= , l2 ¼ �7þ ffiffiffiffiffi
73
p� �

2= , w0ðxÞ is the Thomas-Fermi function for a

neutral atom, for which the following expression can be used:

4pn(r)r2

1

2

3

r, a.u.
0 1 2 3

0

20

40

60

Fig. A.1 The radial density of the electron core of a krypton atom calculated within the

framework of different models: 1 Lenz-Jensen, 2 Hartree-Fock, 3 Slater
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w0ðxÞ ¼
1

1þ zðxÞð Þl1 2=
: (A.49)

The parameter x0ðqÞ can be determined from solution of the transcendental

equation q ¼ �x dw dx= , in which for the function w x; qð Þ the formulas (A.48) and

(A.49) are used. For high enough degrees of ionization a good result is given by the

approximation of the reduced radius of an ion obtained in the Thomas-Fermi-Dirac

model:

x0ðqÞ ¼ 2:96
1� q

q

� �2=3

; 0:2< q � 1: (A.50)

The Thomas-Fermi-Dirac model generalizes the Thomas-Fermi approximation

to the consideration of exchange interaction between electrons. This interaction is a

matter of principle for the statistical model of a neutral atom since it results in the

finite size of the atom. It should be noted that in the Thomas-Fermi model the radius

of an atom is equal to infinity. In the Thomas-Fermi-Dirac approximation the

relation is true:

x0 q ¼ 0ð Þ � 4 Z0:4; (A.51)

and thus the radius of an atom within the framework of this model is finite.
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Appendix 3 Dynamic Form Factor

of Plasma Particles

Longitudinal Dielectric Permittivity of Plasma

Longitudinal waves, in which the electric field vector is parallel to the wave

vector can propagate only in a substance. This follows from the Maxwell equation

divD ¼ 0. Really, from this equation in case of vacuum (e ¼ 1) for the longitudinal

wave (k k E k;oð Þ) we obtain k � E k;oð Þð Þ ¼ k E k;oð Þ ¼ 0! E k;oð Þ ¼ 0. In a

medium, generally speaking, e 6¼ 1 , so a longitudinal wave can exist if the

equation is satisfied:

eðlÞ k;oð Þ ¼ 0: (A.52)

In writing this relation taken into account are spatial dispersion and the fact that

the connection between the longitudinal components of electric induction and

electric field intensity is given by the longitudinal component of dielectric permit-

tivity eðlÞ k;oð Þ.
The Eq. A.52 represents the law of dispersion of a longitudinal electric wave in a

medium. Solving it, it is possible to obtain the dependence oðkÞ being the

characteristic of the wave process in a substance under consideration with a

specified longitudinal dielectric permittivity.

To obtain the dispersion dependence oðkÞ, it is necessary to know the explicit

form of the function eðlÞ k;oð Þ. In case of plasma the dielectric permittivity is defined

by free charges, the motion of which is subject to the laws of classical mechanics.

To describe an ensemble of classical particles, the distribution function f r; v; tð Þ is
used that by definition is equal to the number of particles per unit phase volume at a

specified point of phase space and a specified instant of time. In this case meant by

the phase space is the six-dimensional space formed by the geometrical space and

the velocity space. The velocity space integral of the distribution function gives the

concentration of particles at a specified spatio-temporal point:

V. Astapenko, Polarization Bremsstrahlung on Atoms, Plasmas, Nanostructures
and Solids, Springer Series on Atomic, Optical, and Plasma Physics 72,

DOI 10.1007/978-3-642-34082-6, # Springer-Verlag Berlin Heidelberg 2013
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n r; tð Þ ¼
ð
f r; v; tð Þ dv:

The distribution function defines all properties of the ensemble of particles

including the contribution of this type of particles to the dielectric permittivity of a

medium. In case of plasma the dielectric permittivity is defined by electrons and ions.

Further in this section, unless otherwise indicated, by plasma particles we will mean

electrons.

According to the Liouville theorem, the distribution function of the Hamiltonian

system does not vary along any trajectory in the phase space. As applied to plasma,

the Hamiltonian properties mean neglect of collisions. Thus in collisionless plasma

for each kind of particles (electrons, ions) the following equation for the distribu-

tion function (the kinetic equation) is true:

df

dt
� @f

@t
þ v

@f

@r
þ F

m

@f

@v
¼ 0; (A.53)

where F is the force acting on a particle,m is the particle mass. For charged plasma

particles F is the Lorentz force

F ¼ eEþ e

c
vB½ 
;

wheree is the charge of the kind of particles under consideration,E,Bare the electric

field strength and the magnetic induction acting on plasma particles.

If collisions can not be neglected, on the right side of the Eq. A.53 there should

be the collision integral St ff g representing an integral operator that is quadratic for
the distribution function.

Let us consider the response of isotropic plasma to the longitudinal electric field of

a plane wave E ¼ E o; kð Þ exp i k r� oð Þf g . Let the wave vector k and the field

intensity E be parallel to the axis x. Then, according to the definition of the electric

induction and the longitudinal component of dielectric permittivity, we have (P is the

plasma polarization):

Dx ¼ eðlÞ Ex ¼ Ex þ 4 pPx; (A.54)

hence

Px ¼ eðlÞ � 1

4 p
Ex: (A.55)

On the other hand, from the equation r ¼ �divP for the Fourier component of

polarization the equation is true:
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Px o; kð Þ ¼ �i r o; kð Þ
k

; (A.56)

where k � kx. The obtained formulas give

eðlÞ o; kð Þ ¼ 1þ 4 p i
k

r o; kð Þ
E o; kð Þ : (A.57)

Thus for determination of the explicit form of eðlÞ o; kð Þ it is necessary to find the
density of the polarization charge r o; kð Þ induced in plasma by the longitudinal

electric field E o; kð Þ . The desired density is connected with perturbation of the

function of the plasma distribution d f arisen under the influence of the field:

r ¼ e

ð
d f dv: (A.58)

The perturbed distribution function is f ¼ f0 þ d f ( f0 is the unperturbed

distribution function). Further we assume that d f<<f0. Substituting the perturbed

distribution function f ¼ f0 þ d f in the Eq. A.53, we find

@d f
@t
þ v

@d f
@r
¼ � eE

m

@f0
@v

: (A.59)

In derivation of Eq. A.59 the productw d f was neglected as a second-order term,

and it was taken into account that the unperturbed distribution function is supposed

to be isotropic, homogeneous and stationary (depends only on the magnitude of

particle velocity and does not depend on the coordinate and time f0 r; t; vð Þ ¼ f0 vð Þ).
In the case under consideration, when plasma is perturbed by a plane wave, the

space-time dependence of perturbation of the function of the distribution of plasma

particles in the approximation linear with respect to field looks like

d f / exp i k r� oð Þf g:

Substituting this dependence in the Eq. A.59, we find:

d f ¼ iw @f0 @v=

k v� o
: (A.60)

Hence for the density of a polarization charge induced by the external field we

have

r ¼ i
e2

m

ð
E @f0 @v=

k v� o
dv: (A.61)
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Substituting the obtained expression in the Eq. A.57, we find for the longitudinal

component of the dielectric permittivity of plasma:

eðlÞ o; kð Þ ¼ 1� 4 p e2

mk

ð1

�1

@f0 vxð Þ @vx=ð Þ
k vx � o� i 0

dvx; (A.62)

where

f0 vxð Þ ¼
ð ð

f0 vð Þdvy dvz:

The infinitesimal imaginary additive in the denominator of Eq. A.62 is necessary

for integral convergence. Its sign can be determined from the following reasoning. Let

the electric field in the infinite past be equal to zero (E t! �1ð Þ ¼ 0) and be turned

on infinitely slowly. This means that the time dependence of intensity looks like

EðtÞ � exp �io tþ g tf g ¼ exp �i oþ igð Þ tf g;

where g! þ0 , that is, for taking into account the said field turning-on it is

necessary to make the replacement o! oþ i 0 as is done in Eq. A.62.

If the Sokhotsky’s formula is used:

1

x� i 0
¼ V:P:

1

x
þ ip dðxÞ;

then for the real and imaginary parts of the longitudinal component of the dielectric

permittivity of plasma it can be obtained:

Re eðlÞ o; kð Þ
n o

¼ 1� 4 p e2

mk
V:P:

ð1

�1

@f0 vxð Þ @vx=ð Þ
k vx � o

dvx; (A.63)

Im eðlÞ o; kð Þ
n o

¼ � 4 p2 e2

mk2
@f0 vx ¼ o k=ð Þ

@vx
: (A.64)

It will be recalled that the symbol V:P: means the principal integral value.

The distribution function in the expression for the imaginary part of dielectric

permittivity (A.64) is taken for the x -projection of the electron velocity equal to the
phase velocity of an electric wave vph ¼ o k= .

In view of the explicit form of the function of the electron velocity distribution in

Maxwell plasma
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f0 vxð Þ ¼ me neffiffiffiffiffiffiffiffiffiffiffiffi
2 pTe
p exp �mev

2
x

2 Te

� �
(A.65)

from the formula (A.62) the following expression can be obtained for the complex

longitudinal component of dielectric permittivity in view of the electron contribution:

e l;eð Þ o; kð Þ ¼ 1þ 1

k2 r2De
1þ F

offiffiffi
2
p

k vTe

� � �
; (A.66)

where

FðxÞ ¼ xffiffiffi
p
p

ð1

�1

exp �z2ð Þ
z� x� i 0

dz; (A.67)

vTe ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Te me=

p
is the average thermal velocity of plasma electrons,

rDe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Te 4 p e2 neð Þ=

p
is the electron Debye radius. The plot of the function

(A.67) is presented in Fig. A.2.

Two characteristic ranges of variation of parameters for the dielectric permittivity

of plasma can be separated: (1) the high-frequency rangeo>> k vTe and (2) the low-
frequency range o<< k vTe. In the first case spatial dispersion is low in comparison

with frequency dispersion. In other words, the electric field is quasi-uniform in space

and essentially nonstationary. In the second case, on the contrary, the field is

practically constant, but essentially nonuniform in space.

In the high-frequency range we have x>>1, and for the function (A.67) the

expansion is true:

F x>>1ð Þ � �1� 1

2 x2
� 3

4 x4
þ i

ffiffiffi
p
p

x exp �x2� �
;

the imaginary part being close to zero. This can be seen from the diagrams of

Fig. A.2. Then for the longitudinal part of dielectric permittivity we find:

e l;eð Þ ’ 1� o2
pe

o2
1þ 3 k rDeð Þ2
h i

: (A.68)

Hence in the long-wavelength limit k rDe<<1 the elementary plasma formula for

dielectric permittivity e oð Þ ¼ 1� o2
p o2
�

follows.

In the low-frequency range (x<<1) for the function (A.67) it is possible to obtain

FðxÞ � �2 x2 þ i
ffiffiffi
p
p

x:

Hence in the zeroth approximation F ¼ 0, and the formula (A.66) gives
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e l;eð Þ ¼ 1þ 1

k2 r2De
; (A.69)

that is, the low-frequency longitudinal dielectric permittivity does not depend on

frequency.

The function (A.69) describes screening of the electric field of a static charge

placed in plasma. It is possible to be convinced of this, calculating the spatial

Fourier transform of the potential of a screened charge ’ ¼ q exp �r rD=ð Þ r= and

dividing it by the Fourier transform of the potential of a point charge in vacuum.

The low-frequency dielectric permittivity (A.69) indicates that long-wave

perturbations (k<< r�1De ) are strongly screened in plasma e l;eð Þ>>1 , and short-

wave perturbations (k>> r�1De ), on the contrary, are weakly screened: e l;eð Þ ’ 1.

The longitudinal part of the dielectric permittivity of Maxwell plasma in view of

the contribution of ions looks like:

eðlÞ o; kð Þ ¼ 1þ 1

k2 r2De
1þ F

offiffiffi
2
p

k vTe

� � �
þ 1

k2 r2Di
1þ F

offiffiffi
2
p

k vTi

� � �
; (A.70)

where the function FðxÞ is given by the expression (A.67), vTi ¼
ffiffiffiffiffiffiffiffiffiffiffi
Ti mi=

p
,

rDi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ti 4 p e2i ni
� ��q

is the ionic Debye radius (ei is the charge of a plasma

ion).

0 1 2 3 4
-2

-1

0

1

x

F

Fig. A.2 The real (solid curve) and imaginary (dotted curve) parts of the function

(A.67) determining the longitudinal dielectric permittivity of Maxwell plasma
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It should be noted that since vTe>>vTi, an electric wave that is high-frequency in

comparison with the ionic component of plasma can be low-frequency in compari-

son with plasma electrons.

Determination and Calculation of the Dynamic Form Factor

Expressed in terms of longitudinal dielectric permittivity is an important characteris-

tic of plasma called the dynamic form factor (DFF) or the spectral density function.
The dynamic form factor defines the probability of electromagnetic interactions with

participation of plasma particles, during which the subsystem of plasma electrons or

ions absorbs the energy-momentum excess. An example of such processes is radiation

scattering in plasma, bremsstrahlung and polarization bremsstrahlung on plasma

particles including an induced bremsstrahlung effect and a number of other

phenomena.

The determination of the DFF of a specified plasma component looks like

S o; kð Þ ¼ 1

2 p

ð1

�1
dt ei ot n̂ k; tð Þ n̂ �kð Þh i; (A.71)

where n̂ kð Þ; n̂ k; tð Þ are the spatial Fourier transforms of the operator of concentra-

tion of plasma particles of a specified type in the Schrödinger and Heisenberg

representations, the angle brackets include quantum-mechanical and statistical

averaging.

It will be recalled that the Heisenberg representation of quantum-mechanical

operators implies taking into account their time dependence in contrast to the

Schrödinger representation, in which the whole time dependence is transferred to

the wave function of the system. The connection between these representations for

an arbitrary operator Q̂ is given by the relation:

Q̂ðtÞ ¼ exp i Ĥ t �h=
� �

Q̂ exp �i Ĥ t �h=
� �

;

where Ĥ is the Hamiltonian of the quantum-mechanical system. In this paragraph,

however, the quantum-mechanical formalism will not be used, the quantum terms

and designations are given only for completeness of statement.

The Eq. A.71 can be obtained from the formula

S o; kð Þ ¼
X
f ;i

wðiÞ d oþ ofi

� �
nfi kð Þ
�� ��2; (A.72)

in which in the explicit form averaging over initial ij i and summation over final fj i
states of plasma particles is performed (wðiÞ is the probability of a plasma particle
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being in the ith state). The delta function in Eq. A.72 reflects, as usual, the energy

conservation law.

Depending on the type of plasma particles, the DFF can be electron, ionic, and

mixed. In case of the mixed DFF in the definition (A.71) the product of the density

operators for electrons and ions appears.

By its physical meaning the DFF defines the probability of plasma absorption

of the four-dimensional wave vector k ¼ o; kð Þ in terms of the action of

external disturbance on a specified plasma component. In case of uniform

charge distribution in plasma this probability would be equal to zero since

then the Fourier transform of the density of charged particles is reduced to

the delta function n kð Þ ! n d kð Þ . Thus the DFF is connected with charge

fluctuations in plasma.

The dynamic form factor reflects the dynamics of plasma particles interacting

with each other through the long-range Coulomb forces. In this case the interaction

both in the ensemble of particles of one type and between electrons and ions is taken

into account.

In case of uniform plasma it is convenient to introduce the DFF of the unit

volume (the normalized DFF) by the formula

~S o; kð Þ ¼ S o; kð Þ
V

; (A.73)

where V is the volume of plasma. This equation follows from the fact that for a

uniform medium the pair correlation function of concentration depends only on the

relative distance between spatial points:

Kn r; r0; tð Þ � n̂ r; tð Þ n̂ r0; 0ð Þh i ¼ Kn r� r0; tð Þ:

To calculate the normalized DFF, it is convenient to use the fluctuation-

dissipative theorem connecting the DFF of plasma components with the function

of plasma response to the external electromagnetic disturbance. This theorem for

the electron DFF is expressed by the equation:

~Se o; kð Þ ¼ �h

p e2
Im Fee o; kð Þf g
exp ��ho T=ð Þ � 1½ 
 ; (A.74)

where Fee o; kð Þ is the linear function of the electron component response to the

fictitious external potential acting only on plasma electrons, T is the temperature of

plasma in energy units. The imaginary part of the response function appearing in

Eq. A.74 describes energy dissipation in plasma, which is the reason for the name of

the theorem.

Let us introduce the second linear function of the response to the external potential

Fei o; kð Þ that describes the response of the electron component of plasma under the

action of the fictitious external potential acting only on plasma ions. Here for
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convenience we use the Coulomb gauge of the electromagnetic field, in which the

divergence of the vector potential is equal to zero (divA ¼ 0) and the charge density is

related only to the scalar potential of the electromagnetic field ’ via the Poisson

equation. So let the external potential ’extðkÞ act on plasma, where k ¼ o; kð Þ is the
four-dimensional wave vector. Then the density of the electron charge induced in

plasma is expressed in terms of the introduced response functions as follows:

r̂eðkÞh i ¼ FeeðkÞ þ FeiðkÞ½ 
’extðkÞ; (A.75)

r̂jðkÞ
D E

¼ ej n̂jðkÞ
� �

is the density of the charge of the jth type of plasma

particles. The Eq. A.75 indicates that the electron density of a charge arises in

plasma both due to direct action on plasma electrons of the external potential

(the first summand in the square brackets of Eq. A.75) and as a result of action of

the external potential on plasma ions that are connected with electrons by Coulomb

forces. If the interaction between particles of the kind i and of the kind j is weak, it is
possible to expressFij in terms of the characteristics of noninteracting particles. For

this purpose the new response function ajðkÞ is introduced – the function of the

response of particles of the kind j to the total potential in plasma. It takes into

account the action on charged particles of the potential ’indðkÞ induced in plasma

that appears because of redistribution of charged particles under the action of the

external potential. With the use of the function ajðkÞ the induced charge density for

the jth component can be expressed in terms of the total potential as follows:

r̂jðkÞ
D E

¼ ajðkÞ’totðkÞ: (A.76)

As the response function ajðkÞ describes the action on plasma particles of the

total potential, for its calculation the characteristics of noninteracting particles can

be used since the interaction between them is already taken into account in the total

potential. This technique is widely used in plasma physics in description of screen-

ing and initiation of collective excitations. In the approach under consideration the

response function ajðkÞ can be expressed in terms of the function QjðkÞ
characterizing the noninteracting particles aj ¼ e2j Qj, where

QjðkÞ ¼
ð

nj pþ �h kð Þ � nj pð Þ
Ej pþ �h kð Þ � Ej pð Þ � �ho� i 0

2 dp

2 p �hð Þ3 : (A.77)

Here nj pð Þ is the dimensionless function of the distribution of plasma particles of

the kind j by momenta, Ej pð Þ ¼ p2 2mj

�
. Further we should know the imaginary

part of the function QjðkÞ that can be determined from Eq. A.77 with the use of the

Sokhotsky’s formula. For the Maxwell distribution of electrons by velocities we

find

Appendix 3 Dynamic Form Factor of Plasma Particles 371



Im QjðkÞ
� � ¼ p e��ho T= � 1

� �
nj

exp �o2 2 k2 v2Tj

.n o
ffiffiffiffiffiffi
2 p
p

k vTj
: (A.78)

The introduced functions of the response to the total potential are related to the

longitudinal part of dielectric permittivity as follows:

e l; jð ÞðkÞ ¼ 1� 4 p
k2

ajðkÞ: (A.79)

Now let us solve the set problem: we will find the function Fee o; kð Þ expressing
it in terms of the function of the response to the total potential. For this purpose we

will introduce the fictitious external potential ’�ext acting only on electrons. Then

according to the definition Fee o; kð Þ we have

r̂�eðkÞ
� � ¼ FeeðkÞ’�extðkÞ: (A.80)

On the other hand, r̂�e
� �

can be expressed in terms of ae:

r̂�eðkÞ
� � ¼ aeðkÞ ’�extðkÞ þ ’�indðkÞ

	 

; (A.81)

where ’�ind is the potential induced under the action of ’�ext, determined in terms of

the density of all plasma charges with the use of the Poisson equation:

’�indðkÞ ¼
4 p
k2

r̂�eðkÞ
� �þ r̂�i ðkÞ

� �	 

; (A.82)

where

r̂�i ðkÞ
� � ¼ aiðkÞ’�indðkÞ; (A.83)

since the potential’�ext is assumed to act only on electrons. Solving the system of the

Eqs. A.80, A.81, A.82, and A.83, we find the following expression for Fee:

FeeðkÞ ¼
aeðkÞ 1� 4 p k2

�� �
aiðkÞ

	 

1� 4 p k2

�� �
aeðkÞ þ aiðkÞ½ 
 : (A.84)

Substituting Eq.A.84 in Eq. A.74 and using Eqs. A.78 and A.79, we obtain

~SeðkÞ ¼ elðiÞðkÞ
elðkÞ
����

����
2

dneðkÞj j2 þ z2i
1� elðeÞðkÞ

elðkÞ
����

����
2

dniðkÞj j2; (A.85)
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where

dne;iðkÞ
�� ��2 ¼ ne;iffiffiffiffiffiffi

2p
p

vTe kj j exp �
o2

2 k2 v2Te;i

 !
(A.86)

are the spatio-temporal Fourier transforms of the squared thermal fluctuations of

electron and ionic components of plasma calculated on the four-dimensional wave

vectork ¼ k; oð Þ, zi is the charge number of plasma ions, it is implied that the quasi-

neutrality condition is satisfied, so ne ¼ zi ni.
The expression for the ionic normalized DFF is found in exactly the same way as

for the electron DFF. For this purpose it is necessary to make the replacement of the

indices e! i and to take into account the fact that now in the denominator of the

formula (A.74) the ion charge ei ¼ zi e appears, then we obtain:

~SiðkÞ ¼ elðeÞðkÞ
elðkÞ
����

����
2

dniðkÞj j2 þ z�2i

1� elðiÞðkÞ
elðkÞ

����
����
2

dneðkÞj j2: (A.87)

The mixed normalized DFF is given by the equation:

~SeiðkÞ ¼ z�1i

1� elðiÞðkÞ
elðkÞ

����
����
2

dneðkÞj j2 þ zi
1� elðeÞðkÞ

elðkÞ
����

����
2

dniðkÞj j2 (A.88)

that follows from the fluctuation-dissipative theorem (A.74) (with the replacement

e2 ! e ei ) and the formula for the linear response function Fei describing the

initiation of an electron charge induced by the fictitious potential that acts only

on ions. This formula looks like:

FeiðkÞ ¼
4 p k2
�� �

aiðkÞaeðkÞ
1� 4 p k2

�� �
aeðkÞ þ aiðkÞ½ 
 : (A.89)

The Eq. A.89 is obtained with the use of similar reasoning that led to the formula

(A.84).

Let us explain the physical meaning of the expression (A.85) for the electron

DFF. The first summand is connected with the deficiency of electron charge around

the electron density fluctuation caused by electron–electron repulsion. The second

summand in this expression describes the electron charge screening the fluctuation

of the ionic plasma component, it results from electron-ion attraction. By analogy,

in the expression (A.87) for the ionic DFF the second summand describes the ionic

charge screening the fluctuation of electron density, and the first summand

describes the deficiency of ionic charge around the ionic fluctuation. Finally, in

the formula (A.88) for the mixed DFF the first summand describes the ionic charge

screening the fluctuation of electron density, and the second summand describes the

electron charge screening the fluctuation of ionic density.
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Let us consider the explicit form of the electron DFF in fulfilment of the

inequations k vTe >>o>> k vTi; opi. Then for the longitudinal electron dielectric

permittivity of plasma the low-frequency approximation is true, and for the ionic

component the high-frequency approximation is true. Using the formulas (A.68),

(A.69), (A.70), and (A.85), we find

~SeðkÞ ’ k2 r2De
1þ k2 r2De

� �2

dneðkÞj j2 þ z2i

1þ k2 r2De
� �2 dniðkÞj j2: (A.90)

From this formula it is seen that in case of long-wave fluctuations, when

k2 r2De<<1 (k ¼ 2 p l= ), the first summand describing the deficiency of electron

charge around the fluctuation of electron density is small. The second sum-

mand connected with electron screening of ionic density fluctuations is great.

Hence it follows that in the long-wavelength limit the transfer of energy-

momentum to plasma proceeds through the electron charge of the Debye

sphere around a plasma ion that reacts in a coherent manner to the electric

field, that is, the interaction is of a collective nature. In the short-wave case

k2 r2De>>1 the situation is opposite: the electromagnetic interaction is realized

through excitation of individual plasma electrons, into which the Debye

sphere “falls apart” because of strong spatial nonuniformity of the electric

field.
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