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Chapter 1
Genesis of the Concept of Polarization
Bremsstrahlung

1.1 Definition and Physics of Polarization Bremsstrahlung

Polarization bremsstrahlung (PBs) is a fundamental radiative process arising in
scattering of a charged particle by a target with internal degrees of freedom [1]. An
elementary example of PBs is radiation of an electron on an atom. In this case
internal degrees of freedom correspond to bound electrons of an atom that can
reradiate an electromagnetic eigenfield of an incident particle (in this case of an
electron). This process is presented in Fig. 1.1 together with ordinary bremsstrah-
lung (OBs) that is also called static bremsstrahlung (SBs).

In Fig. 1.1 the dotted arrows show a real bremsstrahlung photon, the solid thick
arrow shows a virtual photon of the eigenfield of an incident particle, the solid curve
shows the trajectory of an incident particle.

It will be recalled that OBs results from acceleration of a charged particle in the
field of a target. If an electron is scattered by a “bare” nucleus, bremsstrahlung (Bs)
will proceed only by an ordinary (static) channel if nuclear degrees of freedom are
neglected. In case of the presence of bound electrons, PBs arises together with OBs.
To take into account the polarization channel, it is necessary to consider atomic
electrons “on a par” with an incident electron, that is, as an independent dynamic
degree of freedom able to participate “fully” in electromagnetic processes. At early
stages of the theory of Bs on an atom an approximate model was used, within the
framework of which bound electrons were replaced with the static distribution of
electron charge. In other words, their role reduced exclusively to screening an
atomic nucleus. So this model is called the screening approximation. In the
screening approximation the polarization Bs channel is absent since atomic
electrons are prevented from reradiating the electromagnetic field of an incident
particle. But the fact is that atomic electrons are excited as a result of collision with
a charged particle incident on an atom and can transform the energy of this
excitation to the energy of a bremsstrahlung photon. It is significant that in this
case the matter is so-called virtual excitation, when an electron is in a state with a

V. Astapenko, Polarization Bremsstrahlung on Atoms, Plasmas, Nanostructures 1
and Solids, Springer Series on Atomic, Optical, and Plasma Physics 72,
DOI 10.1007/978-3-642-34082-6_1, © Springer-Verlag Berlin Heidelberg 2013



2 1 Genesis of the Concept of Polarization Bremsstrahlung

Fig. 1.1 Two channels of A Polarization Bs
bremsstrahlung of an incident :
particle on an atom

Incident particle

ho
Ordinary Bs

\

higher energy that does not conform to the stationary state of an electron in the field
of the atomic core.

It is possible to give PBs a double interpretation. First, this process can be
represented as the conversion (reradiation) of a virtual photon making the eigenfield
of an incident charge to a real photon on the electron subsystem of a target. This
interpretation goes back to the method of equivalent photons that was for the first
time applied by E. Fermi to calculate cross-sections of excitation of an atom by
charged particles even before development of quantum mechanics. In the case
under consideration PBs results from scattering of a virtual photon by atomic
electrons to a real photon. This approach is especially descriptive in case of a
relativistic incident particle, the electromagnetic field of which in its structure is
close to the field of a free electromagnetic wave corresponding to radiation in an
empty space. Another interpretation treats PBs as radiation arising as a result of
induction of a variable dipole moment in the target core during scattering of a
charged particle. The radiating dipole moment is proportional to the dynamic
polarizability of a target at a specified frequency, so arising radiation is called
polarization radiation. It is called bremsstrahlung since its energy, as in case of
ordinary Bs, is drawn from the kinetic energy of an incident particle that is slowed
down after emission of a photon.

Besides PBs on an atom, PBs on negative ions, positive ions with an electron
core, on Debye spheres in plasma, on a solid body (amorphous, crystalline, poly-
crystalline), clusters, nanoparticles, etc. is possible.

In the presence of radiation an inverse bremsstrahlung effect by the polarization
channel is also possible, when the energy of a radiation field is absorbed by an
electron scattered by an atom (ion) as a result of “pumping” through the electron
core of a target. Then the field energy decreases, and the electron is accelerated. In
case of a reverse energy flow, on the contrary, the electron is slowed down, and the
field is strengthened.

It should be emphasized that PBs and SBs arise in the same elementary radiative
process. In terms of quantum mechanics this means that in obtaining the probability
of total Bs it is necessary to sum their amplitudes. Hence it follows that the total
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probability of the process contains an interference summand corresponding to
interchannel interference during Bs. This summand is particularly important in
case of bremsstrahlung of nonrelativistic electrons.

1.2 Analogs of Polarization Bremsstrahlung in a Medium

The term “polarization bremsstrahlung” was invented for radiation during scatter-
ing of a charged particle by an atom in 1985 [1]. Until then different scientific
groups used three terms: dynamic Bs (V.M. Buimistrov’s group), atomic Bs (M.Ya.
Amus’ya with co-workers), and polarization Bs (B.A. Zon).

For radiation resulting from the conversion of the eigenfield of charged particles
on Debye spheres in plasma A.V. Akopyan and V.N. Tsytovich [2] proposed the
term “transient bremsstrahlung”. The origin of this name is connected with the fact
that PBs in plasma can be described as transient scattering of virtual photons to real
photons by the Debye “coat”. The correspondence between transient Bs and
polarization (dynamic) Bs was established in the V.A. Astapenko’s thesis [3], in
which it was shown that transient Bs is nothing but polarization Bs on Debye coats
surrounding ions in plasma.

Another analog of PBs is parametric X-radiation arising in scattering of a
charged particle in a single crystal. This term was invented by Ya.B. Fainberg
and N.A. Khizhnyak.

In works of N.N. Nasonov it was shown that parametric X-radiation represents a
coherent part of PBs in a crystal in the spectral range, in which the high-frequency
approximation for dynamic polarizability of crystal atoms is true.

Finally, another realization of PBs is emission of a charged particle on
nonuniformities of dielectric permittivity of a medium that was studied theoreti-
cally by S.P. Kapitsa [4]. This emission results from scattering of the eigenfield of a
charge in a substance that is caused by the nonuniformity of electron density of a
target resulting in nonuniformity of dielectric permittivity.

From the above it is seen that the interpretation of PBs as the process of
scattering of virtual photons is applicable to a wide range of phenomena both on
atomic particles and on condensed media, in plasma, and in nanomaterials.

To summarize, the polarization mechanism is a basis for the consistent micro-
scopic description of related radiative phenomena, in which the conversion of a
virtual photon to a real photon on target electrons occurs (Table 1.1).

1.3 Main Properties and Characteristic Features of Polarization
Bremsstrahlung

Since the mechanism of initiation of a polarization channel differs from the
mechanism of initiation of ordinary Bs, PBs has a number of distinguishing
characteristic features (Table 1.2).
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Table 1.1 Synonyms of the term “PBs” and analogs of PBs in a medium

Radiation on an atom Dynamic Bs (V.M. Buimistrov with co-workers)
Atomic Bs (M.Ya. Amus’ya with co-workers)
Polarization Bs (B.A. Zon)

Radiation in plasma Transient Bs (V.N. Tsytovich, A.V. Akopyan)

Radiation in a condensed medium Parametric X-radiation (Ya.B. Fainberg and N.A. Khizhnyak)
Radiation on random nonuniformities (S.P. Kapitsa)

Table 1.2 Characteristic features of ordinary and polarization bremsstrahlung

Static Bs Polarization Bs

Caused by acceleration of a charge in the field of a  Caused by a variable dipole moment

target induced in the target core

Formed at short distances from a target Formed at long distances from a target

The intensity is inversely proportional to the squared The intensity does not depend on the mass
mass of an incident particle of an incident particle

Has an acute angular distribution for relativistic Has a dipole angular distribution for
incident particles relativistic incident particles

The spectrum is defined by the potential of a target  The spectrum is defined by the dynamic
polarizability of a target

The most essential distinction between these mechanisms of radiation is that the
intensity of OBs is inversely proportional to the squared mass of an incident
charged particle, and the intensity of PBs does not depend on this mass (as a first
approximation).

Another distinction shows itself for relativistic charged particles: OBs has a
narrow angular distribution along the velocity of a scattered charge, and the angular
distribution of PBs is of a dipole nature.

In the relativistic case the PBs cross-section increases logarithmically with the
energy of an incident particle, and the SBs cross-section does not depend on energy
in the relativistic limit.

Another important distinction is that OBs is formed at short distances from a
scattering center, and PBs is formed at large distances. So the polarization channel
is more sensitive to the spatial structure of a target than the static mechanism of Bs.
Based on this fact is the possibility to develop new methods of material diagnostics
using PBs.

The OBs spectrum is defined by the potential of a target, while the spectral PBs
cross-section is proportional to the squared dynamic polarizability of a target. This
property of the polarization channel can be used to determine eigenfrequencies and
strengths of oscillators of electron transitions of a target.
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1.4 Theoretical Fundamentals Concerning Polarization
Bremsstrahlung

Polarization bremsstrahlung results from virtual excitation of bound electrons of a
target under the action of a variable electric field produced by an incident particle.
Corresponding to the virtual excitation of a system in terms of the second-order
perturbation theory is summation over intermediate energy states of the electron
core of a target. Generally speaking, this summation covers the region of the
discrete and continuous energy spectra. If the frequency of an emitted photon
approaches one of eigenfrequencies corresponding to the transition of target
electrons between bound states, the resonance increase of the PBs cross-section
occurs. In this case resonant polarization bremsstrahlung takes place. The
described situation arises in scattering of electrons by ions in the UV and X-ray
(in case of multiply charged ions) ranges. Besides, it takes place in scattering of
electrons by alkali and alkali-earth atoms in the visible spectrum. Corresponding to
the resonance process is a resonance in the frequency dependence of the dynamic
polarizability of a target. Such a resonance is absent in the X-ray frequency range
for targets consisting of neutral atoms because of the low oscillator strength of
bound-bound transitions in this case and influence of electron collective effects.

As already noted, an important characteristic feature of PBs is the independence
of its cross-section from the mass of an incident particle, while ordinary brems-
strahlung (OBs) of heavy particles caused by acceleration of a charge in the electric
field of the target is suppressed. The OBs cross-section is inversely proportional to
the squared mass of an emitting particle. The independence of the PBs cross-section
from the mass of an incident particle is connected with the nature itself of this
phenomenon. The virtual photon of the charge eigenfield is defined by the velocity
and the impact parameter and does not depend on mass.

Within the framework of the classical trajectory description it can be said that
PBs is formed at distances exceeding the size of the electron core of a target since
with smaller impact parameters the coherence of reradiation of a virtual photon of
an incident particle eigenfield to a real photon is lost. On the contrary, OBs in
scattering of an electron by a neutral atom corresponds to small impact parameters
and occurs in the region of space where the scattering center field is the strongest.
The trajectory approach loses its obviousness in charge scattering in an extended
medium. Then it is better to use the conjugate space, in which the role of distance is
played by a wave vector transferred from an incident particle to a target: the more is
the transferred wave vector, the less is a corresponding spatial scale. In such an
approach it can be asserted that the most contribution to the integrated cross-section
of PBs on an isolated atomic particle is made by transferred wave vectors smaller
than the inverse radius of a target.

In case of electron scattering in a condensed substance and in plasma, PBs with
transfer of energy-momentum to collective excitations (phonons, plasmons,
polaritons) as well as to the whole sample as a unit is possible. The latter case is
realized in scattering of a charged particle in single-crystal and polycrystalline
targets, when together with pair (incoherent) interaction processes with transfer of a
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momentum (or a wave vector) to the whole crystal lattice are possible. In this situation
the transferred wave vector is equal to one of the vectors of the reciprocal crystal
lattice, and the yield of PBs photons is proportional to the squared concentration of
medium atoms. Coherent PBs in a single crystal occurs at fixed frequencies defined by
the reciprocal lattice vector and the incident particle velocity. It can be interpreted as
the Bragg scattering of a virtual photon of the incident particle eigenfield by the
crystal planes of a target. Thus the PBs spectrum in a regular structure has a set of
sharp maxima (coherent peaks). When going to a polycrystal, it is necessary to
average the PBs probability over possible orientations of microcrystallites. As a result,
coherent peaks in the PBs spectrum disappear, and instead of them a stepped structure
appears that is caused by sequential “turning-off” of the reciprocal lattice vector
contribution to radiation as the bremsstrahlung photon energy growths.

Besides the coherent component of PBs, in crystalline targets at the nonzero
temperature of a medium an incoherent radiation channel arises that is caused by
lattice thermal vibrations. The incoherent component of PBs prevails in the high-
frequency spectral range where the process is accompanied by transfer of reciprocal
lattice vectors of high magnitudes from an incident particle to a target. Such
processes are rather sensitive to the deviation of the lattice structure from the
ideal structure.

PBs both of nonrelativistic and of relativistic electrons scattered by isolated
centers of force has a dipole pattern, while OBs of a relativistic charge in this case is
directed along its velocity. This is connected with the fact that a real photon during
PBs is produced as a result of scattering of a virtual photon by nonrelativistic
electrons of a target. If the radiation coherence length L., is introduced as a
distance at which the detachment of a real photon from the eigenfield of a charged
particle occurs, it can be shown that this value reaches macroscopic sizes for

incident particles with the high Lorentz factor y = 1 / \/1=(v/ c)2 >>1 (v is

the velocity of an incident particle, c is the velocity of light in free space) L., ~
7% ) (. is wavelength of emitted photon).

The coherence length of PBs in pair interaction remains being of the order of the
radiation wavelength. This causes the absence of the density effect for PBs in
disordered structures. It will be recalled that the density effect in OBs shows itself
in reduction of process intensity as a result of increasing phase velocity of electro-
magnetic waves in a medium with the plasma dielectric permittivity (which is less
than unity). This increase results in the fact that a real photon is detached from the
incident particle eigenfield faster than it would occur in vacuum, which results in
reduction of the OBs cross-section. This effect was for the first time predicted by
M.L. Ter-Mikaelyan [5]. It is responsible for decreasing OBs intensity in the
low-frequency range @ < y wp, (wy, is electronic the plasma frequency).

For applications of PBs spectroscopy as a physical basis for diagnostics of
materials including nanostructured media, it should be noted that it is the formation
of PBs at large impact parameters (or at low transferred momenta) that makes it
sensitive to interatomic correlations. This ultimately makes it possible to obtain
information on a target structure based on the analysis of spectral and angular
dependences of PBs.
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1.5 Polarization Bremsstrahlung in Atoms, Solids
and Nanostructures

The consistent theory of PBs on an atom based on the quantum-mechanical
approach has arisen in the works of V.M. Buimistrov, M.Ya. Amus’ya, and B.A.
Zon [1, 6-10]. The historically first were the works of V.M. Buimistrov [6] and
V.M. Buimistrov in co-author with L.I. Trakhtenberg [7]. In the first of the cited
works PBs that was called dynamic Bs of a nonrelativistic electron was calculated
in the resonant approximation, when the frequency of an emitted photon is close to
one of the eigenfrequencies of an atom. In this case it was possible to retain one
summand of the sum over virtual transitions of bound atomic electrons.

In the paper [7] a special method of summation of the perturbation theory series
was used in calculation of the cross-section of PBs of an electron scattered by a
hydrogen atom. As a result, it has been possible to describe the PBs spectrum in a
wide frequency range, but not only in the region of resonance frequencies. In the
work [10] the process was considered in the high-frequency approximation, when it
is possible to carry out the approximate summation of the perturbation theory
series. Within the framework of the consistent quantum-mechanical formalism in
this work the static Bs channel was also taken into account. It was shown that in the
high-frequency limit the cancellation of the contribution of the polarization channel
and the screening effect of atomic electrons in the OBs amplitude occurs. As a
result, the process proceeds as on a “bare” nucleus. This effect was called the effect
of atom stripping during Bs (stripping approximation), or the descreening effect.
Further it was shown that in case of multielectron atoms the “stripping” approxi-
mation gives a good conformity with the result of the more exact approach in a wide
frequency range, but not only in the high-frequency limit. In the papers [6-10] an
incident electron was assumed to be nonrelativistic, but fast enough, so it was
possible to use the Born approximation for its interaction with an atom.

In the work of M.Ya. Amus’ya with co-authors [8] an incident electron, on the
contrary, was assumed to be slow, and the inverse bremsstrahlung effect was
calculated, that is, the absorption of a photon of the external electromagnetic field
by an electron scattered by an atom. The contribution both of ordinary and of
polarization Bs was taken into account, and in the latter case for calculation of an
amplitude a special version of the many-particle perturbation theory was used: the
random phase approximation with exchange. It was shown that the contribution of
the polarization channel is rather essential and can exceed the contribution of the
ordinary mechanism of the bremsstrahlung effect even far from resonance
frequencies.

In the B.A. Zon’s work [9] in the description of the amplitude of PBs on an atom
in the Born-Bethe approximation the dynamic polarizability of an atom was used
for the first time, which was an essential step in the development of the PBs theory
since this has opened a possibility to use well-developed methods of calculation of
atomic polarizability for description of the polarization channel.
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The description of PBs in plasma in the approach of V.N. Tsytovich [2] was
based on the use of the classical formalism for nonlinear current arising in scatter-
ing of charged particles in plasma. Nonlinear current radiation as a result of
scattering processes of two types, Compton and transient, was considered. Compton
scattering is accompanied by transfer of the momentum excess during radiation to
plasma electrons and corresponds to ordinary Bs. Transient scattering is connected
with transfer of the momentum excess to plasma ions, when a photon is emitted by a
coherently vibrating charge of the Debye sphere, and corresponds to PBs. The
consideration of PBs in plasma within the framework of the quantum-mechanical
approach was given in the thesis [3] with the use of the method of the dynamic form
factor of plasma components that was finally expressed in terms of different
components of the plasma dielectric permittivity.

PBs on an amorphous target within the framework of the approach based on
classical electrodynamics was studied theoretically in the paper [11]. A similar
method was used in the work [12] in calculation of the spectrum of Bs of relativistic
electrons in a polycrystal with account for of the polarization channel. In the cited
paper it was shown that the PBs spectrum contains maxima corresponding to the
fulfilment of the Bragg condition in scattering of a virtual photon to a real photon by
a polycrystalline target. The position of the maximum is defined by the electron
velocity and the vector of the reciprocal lattice of the polycrystal. With increasing
velocity of an incident electron the spectral maximum is shifted towards higher
photon energies. The PBs intensity at the maximum exceeds the intensity of
ordinary Bs.

PBs of a nonrelativistic heavy charged particle on a thin polycrystalline target
was calculated in the work [13] by the methods of quantum mechanics without
considering photoabsorption and loss of energy of an incident particle in a sub-
stance. In this case the OBs intensity is negligible since it is inversely proportional
to the squared charge mass. It was shown that in contrast to the relativistic case the
significant contribution to the photon yield by the polarization channel is made by
the incoherent summand in the PBs amplitude connected with transfer of the
energy-momentum excess in binary collisions. The contribution of the coherent
mechanism of PBs, when a momentum is transferred to the whole crystal lattice as a
unit, is the most essential in the low-frequency part of the spectrum. An important
feature of PBs of a nonrelativistic charge in a polycrystal is the presence of
frequency steps in the spectrum connected with “turning-off” of the contribution
of one of the reciprocal lattice vectors to the process. The position of the frequency
step is defined by the reciprocal lattice vector and the velocity of an incident particle
and thus carries information on the target properties.

PBs of a nonrelativistic electron in a thin polycrystalline target was calculated in
the paper [14] in the stripping approximation with account for of the contributions
of both channels to the process. It was shown that the spectrum of total Bs contains
“frequency steps” arising due to the contribution of the coherent part of PBs to
radiation.

As already noted, experiments on investigation of PBs in a condensed medium
were carried out mainly with the use of relativistic electrons with an energy of
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several MeV. In this case the polarization channel shows itself as maxima on the
spectral dependence of bremsstrahlung photon yield. For example, in the work [15]
the spectrum of Bs of an electron with the energy of 2.4 MeV scattered in a
polycrystalline aluminum target was recorded. The position of the spectral maxi-
mum of radiation falling on photon energy of 4 KeV was clearly located. The
comparison with the calculation based on the approach [12] showed a good
conformity between the experimental and theoretical data. In the process of this
work in the paper [16] the measurements of the PBs spectra for electrons with the
energy of 7 MeV scattered in polycrystalline films of aluminum, copper, and nickel
were carried out, and the detailed quantitative comparison of the experimental and
calculated data was presented. A good conformity between the theory and the
experiment was obtained, which is demonstrated for a copper target by Fig. 1.2.

In the central part of this figure the major peak caused by the polarization
channel is located. The low-frequency part of the spectrum is an exponential
background. In the high-frequency wing there is a peak of the copper K-line with
a maximum at 8.025 eV. In the spectrum there is also a background peak of the
K-line of iron at 6.4 KeV. On the right side of the central peak of PBs there is a
second peak. Fitting the spectrum with the Gauss distribution gives the position of
peaks: 4.267 eV and 4.886 eV. The third peak of PBs should show itself according
to calculations in a range of photon energies about 7 KeV. However, in this case it is
difficult to discern this peak in the spectrum in view of its position at the rise of the
copper K-line peak that surpasses PBs in intensity by more than two orders of
magnitude.

Thus in case of scattering of relativistic electrons in polycrystalline targets a
reliable experimental evidence of substantiality of the PBs contribution to the yield
of X-ray photons is obtained, and the characteristic features of the polarization
channel spectrum are reproduced by calculation within the framework of a
corresponding theoretical approach [12].

The initial stage of theoretical and experimental investigations of PBs and
a number of related processes was summed up in the review [17] and the mono-
graph [18].
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The book [18] (Chap. 7) contains also the theoretical description of PBs in
collisions of electrons with metal clusters and fullerenes. The emphasis is on the
spectra in the visible wavelength range, where radiation has characteristic maxima
connected with collective excitations of the electron subsystem of a target. These
collective excitations are caused by variations of the electron density of valence (in
case of fullerenes) and delocalized (in case of metal clusters) electrons, by which a
virtual photon of an incident particle is scattered to a real bremsstrahlung photon.
The said variations occur in a thin near-surface layer of the target, the thickness a of
which is of the order of the atom size and is supposed to be much lesser than the
cluster radius R. In the interior of the cluster electron density is compensated by
the positive charge of ions. The construction of the theory in the case under
consideration is significantly simplified due to the presence of the small parameter
a/R that makes it possible to use a simple model expression for the form-factor of
the target F(g).

The generalized polarizability of the target «(w, ¢) necessary for calculation of
the PBs cross-section in the Born approximation, as a rule, is calculated in the

multiplicative approximation, in which a(w,q) = a(w) F(g), where a(w) is the
dipole dynamic polarizability, F (¢) is the normalized form factor of the target
representing a spatial Fourier transform of electron density distribution. The above
equation was proved in the paper [19] with the use of calculations made within the
framework of the quantum-mechanical random phase exchange approximation for
a case of multielectron atoms.

The dynamic polarizability of metal clusters and fullerenes was calculated in the
resonant approximation [18, 20], when the function o(w) has a resonance at the
plasma frequency wp:

0)2

=R ——-"—— 1.1
#() o~ —iol’ (1.1

where I" is the damping constant. The plasma frequency is defined by the number of
delocalized electrons N, and the target radius R. The formula for plasma frequency
used in [18, 20] in case of a metal cluster in atomic units (e = m, = /i = 1) looks
like: w, = \/N./R3, in case of a fullerene w, = /2N, /3 R>.

For metal clusters the photon energy at the plasma frequency depending on the
size of a cluster changes from 2 to 5 eV. For the fullerene Cg this energy is much
more and is 19 eV.

It should be noted that the radius of the fullerene Cgg is 0.35 nm (about 6 a.u.),
and the radius of a carbon atom is less than 0.1 nm. The form factor for cluster
targets can be calculated in the general form in view of the fact that PBs results from
scattering of a virtual photon of the incident particle eigenfield in a thin near-surface
layer. Substituting the equation |r,| = R (r, is the radius vector of a cluster atom) in

the expression for the form factor, we can find: F(q) = %;131?) (Jj1(x) is the first-

order spherical Bessel function). This expression is true for the transferred vectors ¢
of not too high magnitudes that satisfy the inequality: ¢ << 1/a.
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The expression for the spectral cross-section of PBs of a nonrelativistic electron
on a nanocluster (in atomic units) looks like [18, 20]:

de’® 16 w*

2
w do = 332 |O‘(w)| [SI(R Jmin) — SI(R ‘Imax)]v (1.2)

where gin = 2% (1 — /1 — 219 =2 (] +,/1 —222) are th itud.
Ymin 7 mv2 > qmax 7 v2 ) are the magnitudes

of the minimum and maximum wave vectors transferred from an incident particle to
the target, and

RIS PP #— 4 sin (2) = (6 - '
Sl(x)_8x6 [64+9x* — (12x 42> —4x%) sin (2x) — (6 — 3x* +2x*) (1.3)

X COS (Zx) —8x° Ci(2x)]

is the function arising after integration with respect to the momentum transferred
X

from an electron to the target, Ci(x) =y + Inx + I% dt is the integral cosine
0

(v = 0.577 is the Euler constant). According to the formula (1.2), the function S; (x),
together with the target polarizability (1.1), defines the dependence of the PBs cross-
section on the size of a nanocluster.

It should be noted that far from the kinematic boundary, when 1w << m v2 /2,
we have gmin = @/ v and g = 2m v /h In this case ¢min << ¢max and according to
the plot of Fig. 1.3, the inequality S; (R gmin) >> S1(R ¢max) 18 true, so it is possible
to retain only the first summand in the square brackets on the right of the Eq. 1.2. In
the limitR gmin << 1the formula (1.3) givesS; (x) &~ —In(2R ¢umin) = In(v/2 0 R),
and (1.2) and (1.3) give the result known from the theory of PBs on an atom.

Presented in the book [18] and the review [20] are the results of calculations (in
the first Born approximation for interaction of an incident particle with a target) of
spectral cross-sections of PBs arising in scattering of electrons by metal clusters and
fullerenes.

For a case of collision of an electron with fullerenes it was shown that the
maximum of the spectral PBs cross-section is reached in fulfilment of the condition
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V = Vmax = R w,, where v is the initial velocity of a scattered electron. The value of
the optimum velocity vy, for the fullerene Cg is about 3.5 a.u., which corresponds
to the energy of 167 eV. At such an electron energy the maximum of the spectral
cross-section of PBs on the fullerene Cg falls on a photon energy about 19 eV, and
the calculated value of the cross-section o do/dw at a corresponding frequency is
about 107" cm? (about 3.6-10~> atomic cross-section units). The width of the
maximum in the spectrum of PBs on the fullerene is defined by the value of the ratio
r / w, =~ 0.6. The high value of this ratio is caused by the fact that the energy of
plasmon resonance in a fullerene is more than the potential of ionization of its
atoms, so the ionization processes (bound-free transitions) make a substantial
contribution to damping of collective oscillations in a fullerene.

With decreasing electron velocity the maximum of the PBs cross-section is
shifted towards lower photon energies. Thus at an electron velocity of 1.5 a.u. (an
energy of 30.6 eV) the cross-section maximum is reached at a bremsstrahlung
photon energy of 11.5 eV and is about 1.8-1072° cm?. With increasing electron
velocity the cross-section maximum is shifted to the high-frequency range. In this
case the right resonance arm is amplified since the suppression of the PBs spectrum
(due to the influence of the target form factor) occurs then at higher frequencies.
The calculation of the spectral cross-section of PBs on a fullerene for an electron
velocity of 7 a.u. gives a maximum cross-section value of 7-107%° cm? at a
bremsstrahlung photon energy of 20 eV. At low velocities the process cross-section
as a function of the bremsstrahlung photon energy oscillates. These oscillations are
connected with the diffraction of the incident particle eigenfield on the target and
are seen on the plot of Fig. 1.3 for the function S (x).

The calculation of the velocity dependence of the cross-section of PBs on a
fullerene shows that the cross-section maximum at the plasma frequency is reached
at an electron velocity of 3.5 a.u. A corresponding curve shows a sharp dip with
decreasing velocity, which is caused by the influence of the target form factor. At
high velocities rather smooth reduction of the cross-section occurs, which is
connected with the presence of the squared electron velocity in the denominator
of the expression for the PBs cross-section.

The numerical analysis presented in [18] and [20] shows that the angular
distribution of PBs in scattering of an electron by a fullerene depends on electron
velocity. At the maximum of the frequency and velocity dependences (i = 19
eV, v = 3.5 a.u.) this distribution has a maximum at a radiation angle of 90°. At
low velocities including the optimum velocity PBs is defined mainly by plasmon
oscillations occurring in parallel with the velocity of an incident electron. At
high electron energies the main role is played by transferred momenta perpendic-
ular to the direction of incident particle motion, which corresponds to the maxi-
mum of PBs along or antiparallel to the electron velocity (the radiation angle is
0° or 180°).

The results of calculations of spectral, angular, and velocity dependences of the
cross-section of PBs of an electron scattered by a metal nanoparticle are presented
in the publications [18] and [20]. In particular, a cluster was considered that
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contained 40 sodium atoms (Nayg). In this case the relative width of resonance is
I / @, =~ 0.2. The small value of this ratio is caused by the fact that the energy of
plasmon resonance in a metal cluster is less than the potential of ionization of its
atoms. So bound-free transitions (ionization) do not make a contribution to the
process of plasma oscillation damping. As a result, the frequency dependence of the
cross-section of PBs on a metal cluster near the plasmon resonance is defined
mainly by the dynamic polarizability of a target.

The numerical analysis [18, 20] shows that the optimum value of electron
velocity to reach the maximum in the spectral cross-section of PBs on the cluster
Nay at the plasmon resonance frequency (7w, = 2.85¢eV) is 1.5 a.u. (30.6 eV). In
this case the value wdo/dw is 2.8:107" cm? (0.01 atomic cross-section units).
With changing velocity the position of the maximum practically does not change,
and the cross-section value decreases. Thus in case of twofold decrease or increase
of incident particle velocity the cross-section of PBs at the maximum of the spectral
dependence decreases approximately by half. Also given in the cited works are the
calculations of the cross-section of PBs of an electron with the energy of 13.6 eV
scattered by clusters containing 10%, 10°, 10%, and 10° atoms. The photon energy at
the maximum is practically the same for all types of clusters, and the maximum
cross-section grows from 8:107'? to 41077 cm?.

From the presented results it follows that the number of spectral oscillations of
the cross-section grows with increasing size of the cluster, and these oscillations are
most manifested in the low-frequency wing. With increasing size of the cluster the
optimum value of the velocity of an incident electron at which the cross-section has
maximum also increases.

It should be noted that the use of the model expression for polarizability in the
region of plasmon resonance (1.1) in description of PBs on metal clusters with a
great number of atoms (10 and more) seems inadequate. In this case it is more
preferable to use the Mi theory based on the introduction of the dielectric permit-
tivity of a target substance.

The ratio of the PBs cross-section to the ordinary bremsstrahlung cross-section is
given by the expression [18, 20]:

do’® wp\ 2 w, R
a0 < Ve (F)'5 <—> a4

that is, is defined mainly by the number of delocalized electrons and by the ratio
w, /T that for fullerenes is 1.67, and for metal clusters is five and more. The
argument of the function S;(x) in case of optimum values of parameters for a
fullerene is 1.3, and the value of the function itself is about 0.36. In case of metal
nanoclusters the argument of S (x) does not exceed 0.2, and accordingly the value
of the function itself is S; (x) > 2.

In view of the presented values of the magnitudes included in the formula (1.4),
it is possible to conclude that PBs of electrons on fullerenes and metal nanoclusters
in the region of plasmon resonance surpasses the contribution of ordinary
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bremsstrahlung in order of magnitude. The proportionality of the ratio of the PBs
and OBs cross-sections to the number of delocalized electrons following from
Eq. 1.4 is a consequence of coherent reradiation of a virtual photon of an incident
particle by fullerenes and nanoclusters in the wavelength range under
consideration.

PBs as a means of diagnostics of the fullerene structure was discussed in the
paper [21] on the basis of calculation of the form-factor defining the intensity of
radiation by the polarization channel. In contrast to the publications [18, 20], the
work [21] considered the kiloelectron-volt range of bremsstrahlung photon
energies, where the oscillations of PBs intensity increasing with decreasing photon
energy should also show themselves. These oscillations are explained by the
interference of contributions to the process from different sites of a fullerene. The
calculations carried out in the paper [21] are based on the approximate approach,
the main disadvantage of which is the absence of integration with respect to the
wave vector q transferred from an incident particle to a target as well as inexact
recording the value of the latter: ¢ ~ 2 (w/c) sin(6/2), where 6 is the radiation
angle. Actually, in calculation of the total PBs intensity it is necessary to sum the
contribution to the process from all angles of electron scattering by a target, which
corresponds to integration with respect to the wave vector magnitude from w/v to
mv /h. Another assumption made in the cited work consists in neglecting the bond
of fullerene electrons with the nuclei of carbon atoms. This assumption in the
spectral range under consideration is quite correct if valence electrons of atoms
making a fullerene are concerned. But it is not so obvious for electrons of inner
shells (K-electrons).
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Chapter 2

Quantum-Electrodynamics Approach

to Description of Bremsstrahlung of a Fast
Charged Particle on an Atom with Account
for the Polarization Channel

In this chapter with the use of the consistent quantum-electrodynamic approach the
cross-section of bremsstrahlung of a fast charged particle on a one-electron and
multielectron atom was obtained and analyzed within the framework of the first
Born approximation.

In this section, unless otherwise indicated, we use the relativistic system of units,
in which 77 = ¢ = 1 (% is the Planck constant, c is the velocity of light in vacuum).

2.1 Amplitude of Bremsstrahlung of a Relativistic Charged
Particle on a One-Electron Atom

In this paragraph the expression for the amplitude of Bs of a relativistic incident
particle (IP) on a one-electron (hydrogen-like) atom is derived within the frame-
work of the consistent quantum-electrodynamic approach.

Let us consider the collision of a relativistic charged particle (the charge e, the
mass my, the initial energy ¢ = \/p? + m3) in the state | p;) with a hydrogen-like
atom being in the state |n;) with the energy E;. (It will be recalled that the symbol |i/)
means the Dirac ket vector corresponding to the wave function 1.)

As a result of collision, the IP goes to the state ‘nf> with the energy & =

£/ pj% + m3, a bremsstrahlung photon with the frequency  and the wave vector k

is emitted, and the atom goes to the state |nf> with the energy Ef.

We assume that the incident particle satisfies the Dirac equation. Besides, we
consider satisfied the Born condition for IP velocities before (v;) and after (vy)
collision with a target (Z is the atomic nucleus charge):
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Fig.2.1 The diagrams describing the amplitude of bremsstrahlung on an atom in the third order of
the perturbation theory

In this case the IP is described by a plane wave in contrast to the exact solution of
the Dirac equation in the external nuclear field that is necessary to describe a bound
electron of an atom. In the case that an incident particle is an electron, this makes it
possible also to neglect exchange summands in the process amplitude.

Let us use the standard quantum-electrodynamic perturbation theory for a
scattering operator [1]. In its lower order of interaction between an IP and an atomic
electron with an electromagnetic field we have a graphic expression for the Bs
amplitude (Fig. 2.1).

In Fig. 2.1 the single lines correspond to the wave functions and the propagator of
an incident particle, the double lines correspond to an atomic electron in the nuclear
field, J5 is the Kronecker symbol. It will be recalled that the propagator (or the
propagation function) describes the amplitude of probability of particle propagation
from one spatio-temporal point to another. The wavy line means the electromagnetic
field: the photon propagator and the wave function of a free photon Ak, (K is the wave
vector, ¢ is the photon polarization index).
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The analytical expression for the amplitude of total Bs corresponding to the
diagrams shown in Fig. 2.1 represents the sum of static and polarization terms:

Mp = M}} + M} (2.2)

The first summand in Eq. 2.2 corresponds to the ordinary (static) channel, its
expression looks like:

4neoe

My = AL 28 (£10) = 73(@)] Guulor,p2), 23)

where

7 +m + m U;
w(p1,pa) = —2 [”’2 O+ 7, B! 0} 2.4)

=T b e
28f 2 H p12 28,

Yy
p3 — mg
is the propagator of a free electron. In the formulas (2.3) and (2.4) the following
designations are used:

q1 =pr —Pi»q=q1+k p2=pr+k pi =pi =k Axe = \/21/ 0 ex g,
u(p,s) . .

|p) = \/’_b exp(—ipx), jt, (K) = (n'|y* exp(—ikr)|n), a = a" = {aO,a},

ab = a"b, = a bo—ab,u,v:0+3.

The metric, normalization and designations in the formula (2.3) are analogous to
those used in the book [1]: g, is the metric tensor, y* are the Dirac matrices. The
normalization of bispinors: iiu = uu = 2 my corresponds to the normalization of the
wave function of an incident charge to one particle in the main region with a unit
volume. The wave function of a photon A, is also normalized to one photon in the main
region, e is the polarization 4-vector that in the laboratory system of coordinates
satisfies the three-dimensionally transverse gauge: ex, = {0; ek, }, kex, = 0.1, f, i is
the set of quantum numbers defining a stationary state of an atom.

The second summand in the formula (2.2) corresponds to the polarization
channel. We have for it [2, Chap. 5]:

MPOI 7T Z Jn,n Jnn, (ql) Jﬁfn(ql )jgn, (k) ﬁf'y#ui
i T \k

2.5
Er—E,+oXxi0 E —E,—wxi0|2,/F 2:5)

The sum over intermediate states extends both to the positive (4 0) and to the
negative (—i0) energy spectrum of an atomic electron.

Let us analyze the diagrams of Fig. 2.1 and their associated formulas (2.3) and
(2.5). The first four graphic summands and their associated expression for the static
amplitude (Eq. 2.3) in the case that an atomic electron does not change its state give
the classical Bethe-Heitler result [3] — bremsstrahlung of a relativistic electron in



20 2 Quantum-Electrodynamics Approach to Description of Bremsstrahlung. . .

the static nuclear field and the atomic electron field screening it (the screening
approximation). If in these terms of the process amplitude all possible final states of
an atomic electron are taken into account, we will obtain the Lamb and Wheeler
result [4]. The Fourier transform of the time part of the transitional current 4-vector
atf = i gives an ordinary form factor of charge screening. Its space part is a current
(magnetic) summand of screening and can be essential in Bs with excitation of deep
atomic shells for high nuclear charges.

It should be noted that the consistent electrodynamic approach to the relativistic
problem of Bs on an atom even in the ordinary static part of the process amplitude
leads to results supplementing the Bethe-Heitler theory: to taking into account a
possibility of change of an atomic state and to appearance of a current additive in
the form factor caused by the space components of the transitional current 4-vector
for an atomic electron.

The last two graphic summands in Fig. 2.1 and their associated expression (2.5)
describe the emission of a bremsstrahlung photon by an atomic electron in collision
of an IP with an atom. These terms appear if an atomic electron is considered as a
peer dynamic particle interacting with an electromagnetic field, including the
electromagnetic field of vacuum. The contribution to total bremsstrahlung given
by these summands is called polarization bremsstrahlung since it is defined by the
dynamic polarization of an atom in the IP field.

A characteristic feature of the polarization summand of the amplitude of Bs on
an atom is the presence of sums over intermediate states of an atomic electron with
resonant energy denominators. And the relativistic (for a bound electron) problem

in addition to the resonance in the electronic spectrum of atomic states has a

resonant denominator in the positron part of the sum, when o = ¢; — 8,<f>

However, we will restrict ourselves to the frequency range w << m.

The total Bs cross-section contains also the interference contribution of the static
and polarization channels. But, as it will be seen from the following, its value for a
relativistic IP is small.

It is of interest to trace two passages to the limit in the expression (2.2). Let us
assume at first that a nucleus is absent (Z = 0). In this case the first two diagrams
presented in Fig. 2.1 will disappear. In the remaining four diagrams it is necessary
to replace the double lines describing an atomic electron in the nuclear field by
single lines (describing a free electron). Then these diagrams go to the graphic
representation of the process of IP emission on a free electron that is well known in
quantum electrodynamics. In this case the first pair of diagrams describes
the contribution of an incident particle to Bs in its scattering by an electron, and
the second pair of diagrams describes the contribution of a recoil electron to the
process.

In the high-frequency range (@ >> m) in case of an incident electron a result is
obtained that is known from quantum electrodynamics: recoil electron emission can
be neglected, in this case a fast electron emits at a slow unit charge as at an
immobile one. It should be noted that to obtain the said passage to the limit, it is

~ 2m.
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necessary to take into account all possible excitations of an atom both in the discrete
spectrum and in the continuous spectrum.

In another limiting case, when an atomic electron is absent, the last four
diagrams in Fig. 2.1 disappear, and the process amplitude comes to bremsstrahlung
on a “bare” nucleus.

From the diagrams of Fig. 2.1 it is seen that the ordinary (static or Bethe-Heitler)
and polarization summands of the amplitude differently depend on the mass and
charge of an IP. Really, M} o ege/my, and Mjﬁ’l-”l o ege?/m, and static Bs disappears
with the IP mass tending to infinity, while the polarization summand remains finite.
The change of the sign of the incident particle charge does not change the static
amplitude and changes the sign of the polarization amplitude, which results in
changing sign of the interference summand of the total cross-section of Bs on an
atom.

Let us consider a case of a nonrelativistic atomic electron (Z<<137, |E; y — m’
<< m). If, besides, w << m, the expression (2.5) can be transformed to the form
containing only nonrelativistic characteristics of an atomic electron.

Really, at Z << 137 we have the following passage to the limit for the
components of the current 4-vector:

i (ay) = Jdr {1, 3}, exp(—iq,r)

~ {Jdr ©r exp(—i qr)p,; Jdr w}f(qlm} (2.6)
here
, —iV)  (=iV
jia) = exp(iar) SV CV e gy @)

is the nonrelativistic expression for the spatial Fourier transform of the current
density operator, V is the vector differential operator.

The approximate Eq. 2.6 corresponds to the formal expansion of atomic
bispinors to the large (~ 1) and small (~ v,) spinors and to following neglect of
spin additives.

Thus in the polarization term of the amplitude (Eq. 2.5) in the sum over
intermediate states with positive energy the transition to the nonrelativistic descrip-
tion comes to replacement of relativistic expressions for transitional currents by
their nonrelativistic analogs. The sum over intermediate states with negative energy
can be transformed if it is assumed that the main contribution to it is made by states,

the energy of which satisfies the inequality ||E£f)| — m|<<m. In view of the fact
that |Ef_,- — m|<< m and @ << m, the energy denominators in the summands with
negative energy can be replaced by the value 2 m. Further, using the projection
operator (m — ﬁa) /2m (Ha is the atomic Hamiltonian) for the space of wave
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functions with negative energy, it is possible to extend summation to the whole
energy spectrum of an atomic electron. For this purpose we assume:

(m —I-?a)/2m =(1—-9)/2
Plnt) = £|n%),

then

~ 1 . R (17‘)}0) v ,‘v(l*yo)q .
> N%O‘exp(—lqr)(/" 5V /“)Il% (2.8)

E, <0

and in view of the permutation relation y*y” + y'y* = 2 6"" we will obtain:

o o
>~ (flexp(—iar)li) = — i’ (a). 29)

E,<0

Thus the polarization term of the amplitude for a nonrelativistic atomic electron
looks like:

2
Mpol _ dmege AVE
o ) ko
91 E,>0

Jh(K)jni(dy) (1 )i o .0( ) e
W+ o +i0  w), — o410 2.\ /e

(2.10)

The expression (2.10) in case of a nonrelativistic IP leads to the known result of
the nonrelativistic theory of PBs [2]:

4neoe 2n €odsn (K) jui(d1) | ji(dy) exl,i (K)
Mol — I nliad o : m . 2.11
fi Z{O)f,1+w+lo N Oip — @ + 10 ( )

To derive the formula (2.11) from (2.10), it is necessary to suppose (neglecting
spin effects):

s " Mi/z Ve = {1, vo}, |Q1|<<}Pi,f|~

2.2 Amplitude of Bremsstrahlung of a Fast Charged Particle
on a Multielectron Atom

The consistent quantum-electrodynamic consideration of PBs of a relativistic IP on
a multielectron atom is complicated by the necessity to take into account the
interaction between atomic electrons in the relativistic formalism as well as by



2.2 Amplitude of Bremsstrahlung of a Fast Charged Particle on a Multielectron Atom 23

the problem of summation over states with negative energy for a multielectron
system. At the same time calculation for nonrelativistic atomic electrons can be
considerably simplified if from the very beginning a nonrelativistic atomic Hamil-
tonian is used and an incident particle is replaced by the electromagnetic field it
produces (by a set of virtual photons).

Let us justify a possibility of such a replacement. Let the free IP field operator
@(x) (x = {t,r}) satisfy the Dirac equation:

(v p —mo)p(x) = 0. (2.12)

We will assume that for the operator of the electron-positron field of atomic
electrons l/A/(X) the Dirac equation with interaction is true:

[V (P + e A% (x) + eAae) — m} Y(x) =0, (2.13)

where A%(x) is the potential of the external nuclear field, A“*(x) is the operator of
the electromagnetic field produced by atomic electrons that satisfies the Maxwell
equation:

~ae |

0'0,A

~aev

(x) — 0"9,A" (x) = 4mej (x), (2.14)

where /" (x) = /(x) 7" ¥ (x) is the operator of atomic electron current, summation is
supposed over twice-repeating indices.

Thus it is supposed that the interaction between atomic electrons is taken into
account in v (x).

Let us represent the state vectors for the system of fields (of atomic electrons, an

incident particle, an electromagnetic field) as the product: ’(I)j> = | j>|g0j>\nka>,

<Pj>
is the state vector for a free incident particle, |ng,) is the state vector for an

electromagnetic field. The equation for the system state vector |®) in the interaction
representation looks like:

where | j) is the state vector for atomic electrons interacting among themselves,

i0]®) /0t Jdr e (1) — ' ()] Au() @),

where

AV .

J(x) = ()" p(x)
is the four-dimensional vector of the operator of incident particle current density.

S=T exp{—i deAv(x) [eof"(x) s j"(x)} } 2.15)

where T is the chronological ordering symbol.
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The PBs amplitude in the lower order of the perturbation theory is described by

the third term in the expansion of the scattering operator S (here for short we use the
designation x; = i):

S5 = (—i)> e? e Jdl d2d3T{ S (DA, (2)”‘(2)&(3)1“(3)}. (2.16)

In obtaining this formula similar summands resulting from rearrangement of
integration variables were reduced. Hereafter we consider that there is no exchange
between an incident particle and atomic electrons. Using the commutativity of
corresponding operators, the expression (2.16) for the scattering operator in the
third order of the perturbation theory can be rewritten as:

Sy = (—i)zjdldz&,(l) {ezj "(1),7"(2)} Jd3eODM(2,3)ﬂ(3), (2.17)

where D,,;(2,3) = iT(0|A,(2) A;(3)|0) is the photon propagator.

In the formula (2.17) one unpaired A -operator is retained, which corresponds to
the one-photon change of the electromagnetic field.

By matrixing the scattering 0perat0r§ with respect to the initial and final states of
the system we obtain:

St = ()" [ d1azag, () L2 AG @) @18)
where
L(1,2) = (AT 7 @ i (2.19)

is the relativistic analog of the tensor of electromagnetic field scattering by an atom;

A;(%(Z) = *€0Jd3Dm (2,3) <saf]J )e;) (2.20)

is the 4-potential of a virtual photon produced by an incident particle in the process
of scattering: |¢,) — ’cpf>. It should be noted that the potential of a virtual photon
A(O)ﬁ could be found from the Maxwell equations (2.14) if on their right side the
matrix element of the IP transitional current operator <<pf | J 3) |¢;) is substituted.

The formula (2.18) for the amplitude of PBs allows its interpretation as a process
of scattering (conversion) of a virtual photon A(O)ﬁ by atomic electrons to a real
photon.
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It is easy to show that the same expression for the PBs amplitude can be obtained
from another form of the interaction Hamiltonian:

V= —e Jdr {Av(x) +A(f‘),(x)}j"(x). 2.21)

(0)

Here an incident particle is replaced by the electromagnetic field A,

it produces
and thus it is excluded from consideration as a dynamical degree of freedom.

The field A;IO ) can be considered a specified field determined by the Eq. 2.20 — the

prescribed current approximation. Then the PBs amplitude is obtained by the
standard method in the second order of the perturbation theory. After calculation
of a corresponding matrix element we find for it:

sty = (-0 [ar2ag, {7 @ A%, @2

From comparison of the formulas (2.18) and (2.22) it follows:

pol __ alpol
S3,fi = Sz‘ﬁ.

Thus the PBs amplitude can be calculated (with fixed initial and final IP states)
with replacing an incident particle by the field it produces with the help of formula
(2.20). Then in the case under consideration for nonrelativistic atomic electrons a
single relativistic degree of freedom — an incident particle — will be excluded, and it
is possible to use the nonrelativistic formalism to calculate the Bs amplitude.

It should be noted that replacement of a particle by its field is widely used also in
calculation of Bethe-Heitler Bs by the equivalent photon method, when in the IP
rest frame the atomic field is replaced by equivalent photons that are Compton-
scattered to bremsstrahlung photons by an incident particle.

Let us calculate, replacing an IP by its field, the PBs amplitude for a nonrelativ-
istic multielectron atom (Z<<137) with neglected exchange of incident and bound
electrons. We use the axial gauge of the electromagnetic potential (Ag = 0). The
nonrelativistic Hamiltonian of perturbation of atomic electrons by the electromag-
netic field looks like:

¢ oA N . )
=5 {p,-A(rj,z) +A(rj,7)p;+eA (r,,z)}, (2.23)
J
p, = —i A=A" (0) ; ~ph
where p;=—1 Vi, A=A + Aﬁ is the sum vector-potential, the operator A

describes the photon field (kx = wr — kr, o = |K|),

) 2
A" =37y /E” {ers Cko eXp(—iky) + €'k o ¢Thp explikn)},  (2.24)
k,o



26 2 Quantum-Electrodynamics Approach to Description of Bremsstrahlung. . .
where ey , is the unit vector of photon polarization, cl’: - Ck,o are the operators of birth
(0)

and destruction of photons; A" is given by the formula (2.20) — this is an external
field produced by an incident particle.

Going to the interaction representation Vi = exp(iH,t) V exp(—iH,t) (the
photon field is already written in the interaction representation), we have for the

scattering operator:

S =T exp —iJVim(t) dy. (2.25)

—00

The contribution to the PBs amplitude in the lower order of the perturbation
theory (in the second order with respect to an electron charge) is made by the first
and second terms of the expansion S, the zeroth term of this expansion — one —
corresponds to the unchanged state of the system. In the first-order term the
contribution to the process is made by the summand containing the squared sum
vector potential, in the first-order term in perturbation the contribution is made by
the summand containing f)A + Af) According to the physical picture of PBs, it is
necessary to take into account terms containing the mixed product Aph and A}?). So
the matrix element of the process is represented as

S =S+ 57

oo 5 N
. . N .
S}il) = —i(®y| J dtexp(lHat);—m El 24" (rj,t)A;?) (rj, 1) exp(—iH,t)|®;),
e =

(2.26)
with |(I)j> =/ |nkﬁ> since an incident particle is already taken into account in A(io )
From the relation (2.26) we find
1) . 2T (0 Al . Na
Sy = =2ind (g + Ef + © — & — E;) > e Ay (q1)(f] Zexp(—zqrj) |i) o
=
(2.27)

where A;?) (¢1) is the spatio-temporal Fourier transform of the incident particle field
calculated on the four-dimensional vector ¢; = < & — &;, p; — P, - Spin effects are
Iculated on the four-di ional y f ; - Spin eff

neglected. By analogy, for S;I-z) we have the expression:
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1 . .
s}f) =3 (¥|T J Jdt dt’ Vigg (1) Vie ()| D7) (2.28)

After simple transformations the matrix element of the scattering operator S (»,-2 s

brought to the form:
21
3 = ~2m0(AB)| 27 i AR (@) [ deexplion)j (o) (@)l 229)
where

N
7' (k1) = exp(iH,7) ﬁ 121:{ plexp(—ikr;) + exp(—ikr;)p }exp(—zHar)

is the spatial Fourier transform of the operator of atomic electron current in the
interaction representation.

Summing the matrix elements S;il) and S;lz ), we obtain the PBs amplitude as:

01 . 2 2 Als
S = 2mid (e + B+ 0 — o — E) ()| ei o A @) (16 (k@) i), (2:30)
where

0
g1 =& — &

is the change of IP energy during the process.

In the expression (2.30) ¢*(k,q,) is the operator of electromagnetic field
scattering by an atom in the nonrelativistic (for atomic electrons) approximation
that can be represented in the following form:

s e T o
Mk, qp) = — | J drexp(iwt) T{j K, 7)j%(q,, 0)} — Fa(q)|, .31)
m(q?) e

N
where 7i(q) = Zexp(—iqrj) is the Fourier transform of the operator of atom
i=1

electron density.

Analyzing the initial relativistic expression, from which Eq. 2.31 follows, it can
be said that the first summand in the square brackets in Eq. 2.31 arises from the sum
over the positive part of the atomic electron spectrum and describes scattering of an
electromagnetic field by the atomic electron current. The second summand in
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Eq. 2.31 arises after folding of the sum over states of the negative energy spectrum
and describes field scattering by the atomic electron charge.
Let us write the matrix element c}j (k,q,) in terms of the sum over intermediate

— 5]S I’lf,(q) } .

(2.32)

states of atomic electrons:

Cj[fzs'(kv(h) = 6—0)2 {mz

m(q1 7

.]_.;'n(k)j;i(ql) j;h(ql)jizi(k)
wp +o+i0  w), — o400

In case of the spherically symmetric state |i) and within the framework of the
dipole approximation (for f = i, k = q; = 0), from the formula (2.32) it follows:

2 .
ci(ay k= 0) = x(0) 8" = 6" = Zh (2.33)

where o() is the dipole polarizability of an atom, f;, is the oscillator strength for the
transition { — n. In the formulas (2.30), (2.31), (2.32) and (2.33) it is implied that
the bremsstrahlung photon frequency detuning A from resonance is great enough,
so that: A = }co - cof(,»>,1’>>r #(iyn» Where L'z, is the line width for the transition
n — f(i). Otherwise in these expressions it is necessary to take into account the line
width for corresponding transitions.

It is well seen that the obtained expression for the PBs amplitude (Eq. 2.30)
corresponds to its interpretation as a process of scattering of the incident particle
eigenfield by atomic electrons to a bremsstrahlung photon.

Now let us calculate the amplitude of static (ordinary) bremsstrahlung (due to
emission of a photon by an incident particle) taking into account possible excitation
of atomic electrons. We use again the interpretation of bremsstrahlung as a process
of scattering of a virtual photon to a real photon. Now virtual photons are produced
by an atom (by a nucleus and bound electrons). For an atom at rest and nonrelativ-
istic atomic electrons, virtual photons produced by them are mainly longitudinal. In
this case it is convenient to use the Coulomb gauge of the electromagnetic potential
(divA = 0) since then it is possible to take into account only its time component.
The space components describe in the Coulomb gauge the transverse part of the
field and in the case under consideration are small. The time component of the
potential of a virtual photon produced by an atom according to Eq. 2.20 is

A = = [ D11 1), (2.34)

where

fo(l) =Zed(ry —rg) — ezN:5(l’1 - l’j)
=1

J
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is the atomic charge density operator in the coordinate representation (ro is the
radius vector of a nucleus). According to the standard rules of quantum electrody-
namics [1], it is easy to obtain the expression for the static bremsstrahlung
amplitude:

2
St = —2mi Eﬂ et on T (Pris K)AN(9)0 (e + Er + 0 — & — E;). (2.35)

Here the following designations are introduced:

L— L_lf {W v Pf"/ + 'sz+ mo .0 + 0 pl’y - Vk + mo V} ﬁi s (236)
V2 | (pr+k) —m} (pi = k)" =" | V28
Aji(a) = (47/q?) {05Ze — en(a)}- @37

Physically Eq. 2.37 describes the screened potential of a nucleus, and Eq. 2.36
describes scattering of an electromagnetic field by an incident particle.

Thus the total amplitude of Bs of a relativistic incident particle on a nonrelativ-
istic atom (Z <<137) in view of the polarization mechanism and possible excita-
tion of atomic electrons with neglected spin effects looks like:

(2.38)

Br !
SBr = S + S,

where Sj’;-oz and S;} are given respectively by the formulas (2.30) and (2.35).

2.3 Total Bremsstrahlung of a Fast Charged Particle
on an Atom

2.3.1 General Expression for the Process Cross-Section

Based on the obtained expression for the amplitude, we will write the expression for
the spectral Bs cross-section [1]:

do®( Z ko ‘Sﬂ ( 5Pf.,i5k)’ 239

da Ip,l e T ’

here dQ) is the solid angle around the direction of the photon wave vectork, T is the
parameter having time meaning, summation is made over polarizations of an
emitted photon (o) and final states of an atom (|f)). As before, we consider an
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incident particle to be a Born particle, and the initial state of an atom to be
nondegenerate.
In view of the explicit form of Sﬁ" the formula (2.39) can be rewritten:

do” () _ 6§~ o 0 Ay sy
do il <= (2n)’ (2n)’
><2a’)I ;:M{ 27! 4_(ze5ﬁ ens()) + (g )cﬁAf”}2 (2.40)
or
M_d(f" doP?!  dgint 2.41)

do do Tdo | do

The last term in Eq. 2.41 describes the interference of the static and polarization

Bs, T! and cf’f are given by the formulas (2.36) and (2.32) of the previous paragraph.

Hereafter we assume that |q;|<< ‘pfﬁi‘ — the motion of an IP is weakly disturbed

during bremsstrahlung. So in the following formulas we use one value of IP

velocity: v; 2 v¢ = vq. Then for the vector potential of the virtual photon field A](c?)
we have the expression:

4mey Vo q0/62 —q

@ (¢°/c) —

A (g) ~ 3(¢° - qv), (2.42)

where vy is the velocity of an incident particle.
In the same approximation for the function T (see the definition (2.36)) we
obtain:

q,

y (B T
mo 7y (@ — Kkvo)

) = &/mo. (2.43)

The obtained expression (2.40) for the cross-section of bremsstrahlung on an
atom is the most general. With neglected internal degrees of freedom for an IP and
an atomic nucleus it describes consistently the contribution of atomic electrons to
the Bs process.

For the static Bs cross-section from Eq. 2.40 after simple transformations we
find:

de Jkoqu " 0
_ dt el (w+q,) e
a0 o) 2

4 2
x 0T (i(Z — i(—q)) (Z — A(q, 1)]i)- (2.44)
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If the energy of excitation of atomic electrons can be neglected in comparison
with the frequency of an emitted photon w, then in the formula (2.44) it is possible
to assume 7i(q, 1) = 7i(q, 0):

do" A0y dq
do VOJ(ZTC) oldi + o)

k
o (illz = a@P, =7 @45

In derivation of (2.45) the equation was used: > kgl Chas = O1s — Ny N.
~ :

The expression (2.45) agrees with the result of Lamb and Wheeler [4] who for
the first time consistently took into consideration the contribution of excitation of
atomic electrons to static bremsstrahlung.

In case of a heavy IP (my >>m) the first summand under the modulus sign in
the formula (2.40) can be neglected in comparison with the second summand since
|T| o 1/mo, while A) (q) and ¢* (k, q, ) do not depend on the IP mass. Then the total
cross-section of Bs on an atom comes to the PBs cross-section, for which from
Eq. 2.40 we find:

dor! dQyd £t asl o A5 L
e oy (O (@) A a0 A ) [are e 00 o,
(2.46)

where

(1) = exp(iH, t) ¢ (0) exp(—iH, t) (2.47)

is the operator of electromagnetic field scattering by an atom in the Heisenberg
representation.

Thus the polarization bremsstrahlung cross-section summed over all final states
of atomic electrons is expressed in terms of the correlation function of the operator
of electromagnetic field scattering by an atom that can be written as

Kei(t) = (ile™(0) &' (1)),

where summation is supposed over twice-repeating indices.

2.3.2 PBs Without Excitation of a Target

Let us consider PBs without excitation of an atom (“elastic” PBs). Its cross-section
is given by the summand withf = iin the second term under the modulus sign in the
formula (2.40):

(01— mns) (a9)* AR (a1) A (q1) 8 (a) + ) (e i) (16 ).

(2.48)

o' Jko dq
dw (2 n)4
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At first we consider the spectral range ® << p,vo (pa ~Z73me* is the
characteristic atomic momentum). Then the main contribution to the process
under consideration will be made by the moduli |q, |<< p, permitted by the energy
conservation law. Otherwise (|q;|>>p,) PBs with excitation and ionization of an
atom should prevail. So in this case for the scattering tensor the dipole approxima-
tion can be used:

it (k,qp) — 6" (@) 0(pa — |ay ), (2.49)

and instead of Eq. 2.48 we will obtain:

~

2
— [nA®(q)]"3(4") 0pa — las) [ (@), @ < pavo.

(2.50)

do?” o Jko dq
(2m)*

It should be noted that the used approximation corresponds to the Born-Bethe
approximation in the theory of atomic excitation by electron impact.

From the formula (2.50) we find the following expression for the frequency-
angular distribution of elastic PBs in the frequency range under consideration:

do‘;’i"l(a)ﬁ) _2¢do | 2 2 . YPa Vo
o v e |@? 0(w)|” (1 4 cos®d) sind) dvy hl(T)’ .51)

where 9 is the angle between the initial IP velocity vector and the bremsstrahlung
photon wave vector (radiation angle).
In derivation of the formula (2.51) summands of the order of one were neglected
in comparison with the large logarithm (the large logarithm approximation).
From the expression (2.51) two corollaries follow:

1. In contrast to static Bs, polarization Bs of an ultrarelativistic IP (y >> 1) in the
frequency range w < p, v is not directional, but is of a dipole nature,

2. The PBs cross-section grows logarithmically with IP energy in the ultrarela-
tivistic limit at w < p, vo.

These characteristic features of PBs of a relativistic IP allow descriptive physical
interpretation. The logarithmic growth of the PBs cross-section with IP energy is
connected with the features of the spatial structure of the electromagnetic eigenfield
of a relativistic charged particle. The spatial distribution of the potential of this field
at the frequency o is given by the formula:

A0 ()  ex (iﬂ Z— Vot —iﬂ), 252
(@) scexp (12 (= vor) 22 @.52)

here z, p are the cylindrical coordinates of the IP field.
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Thus we obtain the lateral dimension of the field p,,, &~ y vo/®, and accordingly
for the minimum transferred transverse momentum we have |q , |,.., = ®/7 vo. Hence
from the formula for the spectral PBs cross-section (in the Born approximation): d
o) o< In(|q_ | ax /10 [;min) the second PBs property follows that is noted here. It
should be noted that in case of static Bs on a neutral atom the maximum size of a field
scattered by an IP to a bremsstrahlung photon is defined by the size of an atom.

2.3.3 High-Frequency Limit

Now we will consider “elastic” PBs (without change of an atomic state) in the
frequency range I <<w<< m (I is the atomic ionization potential). In this case it is
possible to use the high-frequency asymptotics for the scattering operator:

I s
"k qp) ~ — i(q) {5“ +M}, [<<w<<m (2.53)

2mw

The formula (2.53) is obtained with the use of the expansion into a series of the
matrix element c)’tj (Eq. 2.32) in terms of the powers of the ratio |w;, | /o (j =f, i),

the summands in the sum over intermediate states with ‘a)jn} > » making a small
contribution to cf’f at w>> . Substituting the formula (2.53) in Eq. 2.48, we find:

0 [ 500) () o (A<0><q>+—“' (“'Aw)(‘“))ﬂ ,

do vy ) (2 77;)4 2mm

I<<w<<m.

(2.54)

To simplify the calculations, we consider that y >> 1, then the IP field is mainly

transverse and A0 (q;) = 0. We use the approximation of exponential screening
of an atomic nucleus to calculate the spectral PBs cross-section. Then:

N
nii(q) = ( (2.55)

L+a/p2)
Here N is the number of atomic electrons (for a neutral atom, naturally, N = Z).
The value n;;(q) represents the (static) form factor of the atomic core in the state |i).
Using Eq. 2.55 and the relation o;(w) — o (@) = —N €? /m @? to estimate the

spectral PBs cross-section in a high-frequency range, we find for three spectral
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ranges after integration with respect to the solid angle of photon escape and the
transferred momentum the following expressions:

de? 16 Ye2 1 Pa
o _ 16 ¢ e ln(/P ) I <<w<<pyg, (2.56)
dw 3 m2w w
dGROl 64 82 2
ﬁ =2N? mz—:; (%) In(y) pa<<w<<y*pa, (2.57)

pol 4 2 2 2
A9 _4n2 % (&)2 (Vp“> PPa<<m << m. (2.58)
do mo \o )

The formulas (2.56), (2.57), and (2.58) are low-sensitive to a specific type of
nucleus screening by atomic electrons. The spectral cross-section (2.56) can be
obtained from the formula (2.51) since in this frequency range the dipole approxi-
mation for interaction of an IP with an atomic core (and especially with a photon) is
still true.

The spectral cross-section of PBs of a relativistic electron on a hydrogen atom in
a high-frequency range calculated by the formulas (2.56) and (2.57) is presented in
Fig. 2.2 for two values of the relativistic factor 7.

From the given figure it follows that the cross-section of PBs of a relativistic
electron in the high-frequency range w>p, decreases with growing frequency.
Physically this is a consequence of coherence loss for interaction of a virtual photon
of the IP field with an atomic electron. From mathematical point of view, this
decrease is defined by reduction of the atomic form factor n;(q) with growing
magnitude of the transferred wave vector |q|>p,. Another conclusion of Fig. 2.2 is
the growth of the PBs cross-section with increasing energy of a relativistic incident
particle (of the relativistic factor y).
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The frequency range of Eq. 2.57 is characteristic for ultrarelativistic incident
particles. In this range the compensation of a momentum transferred from an IP
to an atom due to a photon momentum is possible. As the analysis shows, this is
true only for small enough radiation angles: ¥ < \/p,/® ~ \/./R., R.=~p,'.
This inequation follows from the condition of smallness of a
momentum transferred to a target during Bs in comparison with an atomic
momentum: o (1 — vq cos(?)) < p, vo.

Thus in the frequency range of Eq. 2.57 PBs gains directionality, and in
calculation of the process cross-section it is necessary to take into account a photon
momentum.

The angular diagram of PBs of a relativistic electron on a hydrogen atom in the
high-frequency limit is presented in Fig. 2.3 for different values of bremsstrahlung
photon energy.

It is seen that with growing energy of a bremsstrahlung photon the angular
distribution of PBs of a relativistic electron is narrowed.

In the frequency range of Eq. 2.58 (if it exists) a momentum transferred from an
IP to the atomic core at any radiation angles is more than the characteristic atomic
momentum, and PBs is strongly suppressed as it follows from the form of the static
atomic form factor (2.57). Physically this means that with large momenta trans-
ferred to an atom (|q|>>p,) that are characteristic for this frequency range inelastic
PBs channels prevail that are accompanied by excitation and ionization of an
atomic electron.

It should be noted that in the above “elastic” PBs the contribution of all atomic
electrons to radiation is coherent, so the process cross-section is proportional to the
squared number of atomic electrons. This circumstance can be explained as follows.
During elastic PBs, when the state of the atomic core does not change, an electron
charge, remaining localized in the atom, shows itself as the charge of one particle Ne
(at A>R,). Therefore the amplitude of its interaction with an electromagnetic field is

proportional to Ne, and the cross-section is proportional to (Ne)z.
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Let us return to the total PBs cross-section that takes into account excitation of
atomic electrons — the formula (2.46). To obtain the spectral PBs cross-section in
the explicit form in the general case does not seem possible. Let us consider some
particular, but practically important situations.

Let the frequency w be such that the main contribution to the cross-section that is
differential with respect to a transferred momentum is made by |q;|<<p,. (This in
particular takes place in experiments on agreement (see [5]) if a scattered electron is
observed at small scattering angles). Then the dipole approximation for interaction
of an IP with the atomic core is true, and it is possible to integrate with respect to q in
view of the explicit form of A(O)(q) (Eq. 2.42). Taking into account the spherical
symmetry of the state |i), we obtain after a number of transformations for the spectral
PBs cross-section the following expression (we assume that wg<p, vy — ®):

4’ 164
dw 9v§ vy}

@B (). 2

It should be noted that the summand in the formula (2.59) with f = i gives the
spectral cross-section of elastic PBs following also from the formula (2.51) after
integration with respect to the angle of photon escape.

2.3.4 Near-Resonant PBs

Let us consider a case of the near-resonance frequency ®, when the following
inequation is satisfied: T,y<<|w —w,|<<w, here ®, and T, are the
eigenfrequency and the line width for the transition n — f between two states of
the discrete spectrum of the atomic core. Then in the expression for the matrix
element from the operator of electromagnetic field scattering by an atom (Eq. 2.32)
one resonant summand can be separated that makes the main contribution to the
amplitude, and the imaginary part of the scattering tensor can be neglected in
comparison with the real part. Then in the sum over f on the right side of the
Eq. 2.59 one resonant summand remains.

After summation over the projections of the total momentum of resonant states
we find for a singlet initial state:

dog™  4ede* joN\2 f; YPaV
fi _ 0 (7) Jin_ 27 1 1 Y Pa Vo A= _ ‘
do — 3vim? \A m,( 7+ 1) fi In o + W @ Onf

o >>|A[>>Tp,

(2.60)

here f; is the oscillator strength for the transitioni — k,Jr is the quantum number of
the total angular momentum of an atom in the state | f).



2.3 Total Bremsstrahlung of a Fast Charged Particle on an Atom 37

Following from the expression (2.60) for f = i is the formula for “elastic”’ near-
resonance PBs that was studied in detail earlier [2].

The case f #i was studied in the paper of V.M. Buimistrov and L.I
Trakhtenberg [6] from the standpoint of the prospect of obtaining radiation ampli-
fication based on the PBs effect.

Given in the author’s work [7] is the generalization of the spectrum of near-
resonant PBs to the case of the energy-band structure of a target in the elementary
isotropic effective mass approximation.

In this situation the scattering tensor can be represented as:

di e jh(kR) /(g K)
Mk a) — J Z _Jve\® M Jev D . 2.61
c"(k, q) (27) O @ — 0(®) +iTe/2 (2.61)

Qp,

Here integration is performed with respect to the quasi-momentum of electrons ¥
in the Brillouin zone Qg,, ., (K) = ¢&.(K) — &,(K) is the difference of electron
energies in the conduction band and in the valence band. Then we will assume that
transitional current weakly depends on an electron quasi-momentum. In the general
case it is necessary to perform integration in the formula (2.61) in view of the
dispersion law ¢ ,(x). We will consider the approximation of parabolic bands, in
which: ¢, (K) = 88‘1, F i / 2 m, ., m, . are the effective masses of electrons near the
valence band top and the conduction band bottom. Then after averaging over
photon polarizations for the spectral intensity of PBs the following expression
can be obtained:

awr!
S =BV, (2.62)
where
2
B(w) = (2"‘; 12, e (6)] (Alg)j(@)

—\/‘—A—‘arc —a_
Ja) - 1 - tg<ﬂ>, A<O

a=vVA
a+VA|’ A>0

1+¥8n

A:w—(s?—e?,), ‘uc’vl:mgl—i—m;l, a%N‘l,ﬂ/ul/2 n =k/[Kk|,

cv )

N, is the concentration of the valence band electrons. The target parameter is a,
it is proportional to the energy of localization of a quasi-particle with the reduced
mass (i, in the volume N !, its value is accordingly of the order of the permitted
band width.
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In the formula (2.62) it is assumed thata® # |A|, otherwise it is necessary to take
into account the imaginary additive in the expression for the scattering tensor
(2.61).

The function B(w) has no resonance peculiarities for the case under consider-
ation: w<vo/d (d is the lattice constant), so the frequency peculiarities of the PBs
spectrum are described by the function [J(A)[?, the plot of which is presented in
Fig. 2.4 for the case of practical interest A<a® (a®> = N*/3/u,,).

From this figure it follows in particular that the spectrum of near-resonance PBs
for the energy-band structure of a target has a pronounced asymmetry: for
frequencies smaller than the energy gap width (negative detunings from resonance A)
the PBs intensity falls more steeply than for positive detunings. This circumstance is
quite expected since positive detunings correspond to the virtual transition to the
conduction band, and negative detunings correspond to the virtual transition to the
band gap.

The function J(A) itself for detunings under consideration is positive (A<a?),
which corresponds to destructive interference with the static Bs channel. For high
detunings A>a® this function is negative, and interchannel interference is
constructive.

It should be noted that in the limit a®?<<|A| in the expression (2.62) the
multiplier |w,, / A|2 appears that is characteristic for near-resonant PBs on one atom.

It is significant that if o<w,, and |A|>T,,, a cascade process connected with real
filling of the conduction band is impossible.

2.3.5 PBs with Target Excitation

Now we will calculate the PBs cross-section with excitation (including ionization)

of an atom for m>>w>>I. Substituting the expression for ¢
Eq. 2.53 in the formula (2.48), we find

in this spectral range
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n, (A(m(ql)—&—M)] Sii(q). (2.63)

2mo

o ® Jko dq (e_2)2
do  vo ] (2m)* \m

Here the value is introduced:
1 o
Si(q) = 7 J dr exp (lqot) (i|A|(—q)7(q,1)|i)| (2.64)

that we will call the dynamic form factor according to the terminology accepted for
description of effects in a media. For simplicity we assume further ¢; =~ ¢, so
neglecting summands of the order of (p,/ w)2 in comparison with one at w>>p,; at
w<p, the dipole approximation is true, so the magnitudes |q| and |k| can be
neglected in comparison with p,. As seen from Eq. 2.63, for calculation of the
spectral PBs cross-section it is necessary to know the explicit form of the q and ¢°
functional dependence of S;;.

With further tracing only qualitative moments in mind, here we use for
calculations the simplest analytical approximation of S;;(¢):

2
$3() = 0al = p) 3+ 511 ) N 0, Do) N2 (269)

where N is the number of electrons in an atom.

The approximate Eq. 2.65 can be obtained after a number of transformations,
taking into account the explicit form of the electron density operator being
an operator of shift in the momentum space and corresponding permutation relations.

The physical meaning of two summands in Eq. 2.65 is transparent: the first
summand describes processes with ionization of the atomic core, when a transferred
momentum is large, in this case the contribution of bound electrons is incoherent
and part of energy is carried away by a knocked-on electron. The second summand
describes the coherent process, when a momentum transferred to the core from an
IP is small, and the atom remains in the former state. In the latter case the recoil
momentum takes over a massive nucleus, and coherence takes place since the phase
of electromagnetic interaction of the IP with the target core changes little at
distances of the order of the atomic radius.

From the formulas (2.63) and (2.65) it is easy to find the spectral PBs cross-
section in the approximation under consideration:

da??'  16e3et Wa
= 6’082 {0(]7(1V() — o) [Nz ln(LwVO) +Nln (mov())]

do  3m2v} Pa

2
+ 0(w — pavo) N ln</mc(;v0> }

(2.66)
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The obtained expression allows descriptive physical interpretation. At w<p,vo
(the summand in the square brackets) PBs proceeds both without excitation of an
atom (if |q|<p,) and with its ionization (at |q|>p,). And in the first case PBs is
coherent by the contribution of atomic electrons to the process (the cross-section
is proportional to N?), in the second case PBs is incoherent (the cross-section is
proportional to the number of atomic electrons N). In the spectral range w>p,vo —
the second summand in the braces in Eq. 2.66 — the law of conservation of energy-
momentum permits only |q|>p,, so PBs proceeds mainly with atomic ionization,
and its cross-section is proportional to N.

It is essential that the total PBs cross-section (2.66) taking into account excita-
tion and ionization of an atom admits a correct passage to the limit to the case Z = 0,
corresponding to which is the equation p, = 0 in the formula (2.66). Then the
summand in the square brackets describing “elastic” PBs disappears, and the
remaining last term in the braces describes emission of a slow free recoil electron
in collision with a relativistic charged particle as it must be according to the
physical picture of the process. It should be noted that this passage to the limit
does not take place for the “elastic” PBs cross-section since in the absence of a
nucleus the process becomes fundamentally inelastic — an atomic electron takes
over a momentum excess and increases its energy.

Let us compare integrated (with respect to the scattering and radiation angles)
cross-sections of the polarization and static Bs channels. Corresponding cross-sections
look most simple in the quasi-classical (&f ;>>w) and ultrarelativistic (y>>1) limits
and in the region of frequencies exceeding the atomic ionization potential.

Thus in the spectral range p,vo>w>>I the main contribution to both Bs
channels is made by the “elastic” summands (without excitation of the atomic
core) (we assume Z, N>>1):

de?”  16N%¢  /yp

i I ( ) 2.67
dw 3mlw n w ( )
dost  16Z%¢° m

L In( — 2.68
do  3mio n<pa>’ (2.68)

that (in case of Z = N) differ only by logarithmic factors, though they have (in the
ultrarelativistic case) essentially different radiation patterns.

Let us write out the cross-sections of inelastic static and polarization Bs in the
spectral range where the main contribution to PBs is made by the processes with
atomic ionization:

d GPOI

nonel __

16Ne® &
—1 2.69
dw 3miw n( ) ’ ( )
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da!! 16Ne
O onel — 6Ne In ﬁ , y>> 2 (270)
dw 3miw a Pa

Thus in the frequency range p, vo < < @ << m the cross-sections of elastic static
and elastic polarization Bs differ only by logarithmic factors, and inelastic summands
of the cross-section corresponding to them are close in value up to w ~ m.

At w>>m the space part of the 4-momentum transferred to an atom is great, and
atomic electrons can to a good accuracy be considered free, which gives the result
known in quantum electrodynamics when a recoil electron emits w/m times less
than a fast electron. Thus the contribution of the polarization summand to the total
cross-section of Bs of an electron on an atom in the region of high (@ >>m)
frequencies is negligibly small in comparison with the contribution of the static
summand.

All aforesaid is true also for the case of Bs of an ultrarelativistic positron on an
atom, when the sign of the polarization summand of the amplitude changes to the
opposite. But, as for an electron, due to different dependences of the static and
polarization summands on radiation angles their interference can be neglected and
thereby the total cross-section of Bs of an ultrarelativistic particle can be
represented as the sum of two summands (polarization and static).

2.3.6 Channel Interference

Now let us consider the summand in the cross-section of Bs on a neutral atom
describing the interference of the static and polarization channels. As follows from
the analysis of angular dependences, this interference is low for an ultrarelativistic
incident particle. So here we will consider an incident particle to be nonrelativistic,
but still a Born particle. Let us neglect excitation of an atom during bremsstrahlung.
Then from Eq. 2.40 in view of Egs. 2.42 and 2.43 it can be obtained for the
interference summand in the cross-section:

. (91 |imax
do™t 326%(1}3 |€€()‘ d|q1|

iy Re{ci:(w: 7 — nj; . 2.71
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In derivation of Eq. 2.71 it was taken into account that for a nonrelativistic
IP |q,| > w/vo>>]k|. We call attention to the fact that the contribution to
interference is made only by the real part of the diagonal matrix element from
the operator of electromagnetic field scattering by an atom (Eq. 2.31). For the
elementary approximation of the scattering tensor (2.49) from the formula (2.71)
we have approximately:
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. pa
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P

p* = max{pmn, ®/Vo}, where pui, is the characteristic momentum of outer shell
electrons, p, is the characteristic momentum of atomic electrons making the main
contribution to atomic polarizability at the frequency under consideration . From
Eq. 2.72 it follows that the interference term in the Bs cross-section can be noticeable if
the greatest contribution to polarizability is made by the inner atomic shell with compara-
ble cross-sections of PBs and SBs. This takes place, for example, for Bs of electrons on
neutral xenon for frequencies near the potential of ionization of the 4f -subshell.

The radiation spectrum of xenon in case of passage of an electron beam through it
was recorded in the work [8]. A shift of the frequency maximum from the value
calculated without considering interference to 20 eV was found. This discrepancy
was explained by the fact that the velocity of electrons in a beam is probably not high
enough for the Born approximation to work “well”. On the other hand, a reason of
shift can be an interference term in the total Bs cross-section that was not taken into
account. And if an IP is heavy or ultrarelativistic, the expected value of shift should
be small due to the smallness of the interference summand in these cases.

For an ultrarelativistic IP the theory results in an additional possibility of
interest: the value of shift of the Bs frequency maximum relative to the potential
of ionization of a corresponding atomic subshell sharply depends on the angle of
photon emission, which is caused by essentially different patterns of the static and
polarization Bs channels in the ultrarelativistic case.

It should be noted that the above brief analysis of channel interference relates to
Bs of a Born IP on a neutral atom, where, generally speaking, interference effects in
the Bs cross-section integrated with respect to the angle of incident particle
scattering are low due to different regions of space of channel formation:
corresponding to the static channel are large angles of IP scattering and respectively
small distances to a nucleus, corresponding to the polarization channel are small
scattering angles and large distances.

Thus interference effects in Bs on a neutral atom can show themselves most
strongly in the Bs cross-section differential with respect to the angle of IP scatter-
ing, which was shown in the work [9]. The situation is different for Bs on ions for
strongly inelastic scattering of electrons of moderate energies, when channel
interference is found to be essential also in the integrated process cross-section.

2.4 Polarization Bremsstrahlung of a Fast Charged Particle
on an Atom in the Local Plasma Approximation

The spectral PBs cross-sections in the high-frequency limit obtained in the previous
paragraph in Egs. 2.56, 2.57, and 2.58 are true for the frequencies w >> I, where [ is
the characteristic atomic ionization potential (it will be recalled that in this chapter
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we use the relativistic system of units, in which Z=c=1). In case of a
multielectron atom this value is of rather indefinite nature, so the domain of
applicability of the high-frequency approximation requires its refinement.

At the same time it is for a multielectron atom that polarization effects in Bs
should be the most essential. And the calculation of the dynamic polarizability of a
multielectron atom defining the PBs cross-section is an intricate quantum-
mechanical problem that has to be solved anew for each specific target.

In this connection it seems to be useful to apply simple universal models suitable
for estimation of the value of the polarization Bs cross-section and for revealing
general qualitative regularities of this process.

One of such models is the method of local electron density (or local plasma
frequency) that was first proposed by Brandt and Lundqvist for calculation of the
cross-section of photoabsorption by multielectron atoms [10].

In this section this method is used to describe PBs of a fast (including relativis-
tic) charged particle on a neutral multielectron atom, the distribution of electron
density in which is given by the statistical Thomas-Fermi model.

It should be noted that the use of the local plasma frequency method for
calculation of the polarizability of a Thomas-Fermi atom is intrinsically consistent
since the physical representations underlying both models are analogous.

The advantages of the used approach are also that it is most adequate just for
those frequencies and distances, at which the significant role is played by
multielectron effects, the description of which within the framework of the consis-
tent quantum-mechanical consideration is difficult and laborious.

2.4.1 Polarizability of a Thomas-Fermi Atom in the Local
Plasma Frequency Approximation

Within the framework of the Brandt-Lundqvist model the expression for the
dynamic polarizability of an atom looks like:

wlz, (r)r*dr

w(w) = J —w; ) —a? =10 (2.73)
0

where w,(r) = \/4me?n(r)/m is the local plasma frequency depending on the
local electron density of the electron core n(r), r is the distance from a point under
consideration to an atomic nucleus.

Hereafter for the function n(r) the Thomas-Fermi approximation will be used
that gives [11]:

O\ 32
n(r) = np(r) = 22 f(r/rre),  f(x) = 32 (X( )> , (2.74)

oOm3 \ x
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where 77 = bag/Z'/? is the Thomas-Fermi radius (b = (9 712/128)1/3 =~ (0.8853,

ag is the Bohr radius, Z is the nuclear charge), y(x) is the Thomas-Fermi function.

The expression (2.71) can be transformed to the form revealing the scaling law
(scaling) with respect to the parameter v =% w/2RyZ (Ry = 13.6 ¢V) having the
meaning of dimensionless (reduced) frequency:

3 b’ ag

a(v) = 13 Bv) = (). (2.75)
Here the dimensionless complex function f(v) (the reduced polarizability of a

Thomas-Fermi atom) is introduced, the imaginary part of which is (the prime means

differentiation with respect to the argument x):

o

m{f()} == % , (2.76)

and the real part can be calculated by the “punctured” Kramers-Kronig relation:

oo

Re{f(v)} = 2 J [Im{B(v)} — Im!zgﬁ(v)}] vdy
0

(2.77)

vZ—9

Q

In the formulas (2.76), (2.77) the value x, is determined by solution of the
equation:

dnf(x) =+ (2.78)

that describes the resonance of the radiated frequency with the local plasma
frequency at some value of the parameter x (the reduced distance to a nucleus).

The expression (2.76) is obtained from the determination of the dynamic
(Eq. 2.73) and reduced (Eq. 2.75) polarizabilities with the use of the known
Sokhotsky formula.

It should be noted that the numerical calculation of dimensionless polarizability
directly by the formulas (2.73), (2.74), and (2.75) is found to be difficult for low
frequencies (v<1) in view of the singularity of a corresponding integrand and slow
decrease of Thomas-Fermi electron density (2.74) with distance. As a result, the
numerical integration loses accuracy. So it is proved to be preferably to use the
formulas (2.76), (2.77), and (2.78) for calculation of the reduced polarizability S(v).

The ratio g(v) of the modulus of the function f(v) to the modulus of its high-
frequency limit (B (v) = —b~3v~2) is presented in Fig. 2.5.

Given in the same figure is the corresponding ratio for a krypton atom restored
by the data of the work [12], in which the dynamic polarizability of an atom was
calculated by the quantum-mechanical method within the framework of the random
phase exchange approximation.
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It is seen that the function g(v) = v* |B(v)| for a Thomas-Fermi atom smoothly
describes the spectral peculiarities of the dynamic polarizability of a krypton atom
connected with the shell structure of an atom and approaches its high-frequency
limit for v>10.

However, it should be remembered that in the range of low frequencies v<0.1 the
used approximation becomes inadequate since, on the one hand, the local plasma
frequency approximation “works” badly for polarizability of an atom Eq. (2.73),
and on the other hand, the contribution to polarizability at these frequencies is made
by the peripheral regions of an atom, where the statistical model is inapplicable.
Really, calculation by the formula (2.78) gives: xo; = 3.4, x; = 0.64, and
X190 = 0.053, at the same time the region of truth of the statistical model in the
variable x is determined by the inequation Z~%/3 << x << Z'/3.

So in further consideration we will restrict ourselves to the range v>0.1. It should
be noted that for Z ~ 50 this corresponds to the photon energies w>130 eV, which
exceeds considerably the potential of ionization of the outer electron shell of a
neutral atom, so the electron core can be considered “defrozen”. Besides, in this
frequency range, as seen from the above values of x,, the inequationx, < 3.41is true.
The boundary reduced radius of a neutral atom calculated in the Thomas-Fermi-
Dirac model (with consideration for exchange) according to the paper [13] is well
approximated by the formula xo = 4 Z%*. Thus in our case (Z>>1) x,<<xg, and
conclusions of further consideration practically do not depend on refinements of the
initial statistical Thomas-Fermi model, they are also true for ions with low enough
degree of ionization if the condition x(Z;/Z)>>x, is satisfied, which is confirmed
by calculations carried out.

Good agreement of the magnitude of the dynamic polarizability of a Thomas-
Fermi atom calculated in the local electron density approximation with the results
of quantum-mechanical calculations [12], as seen from Fig. 2.5, takes place for the
values of the dimensionless frequency: v>>2. Both approaches give the same value
of frequency for the maximum of the function g(v): viax = 0.5 0r i pmax = 490 €V,
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so that /1 . >> [1,(Kr) = 14 eV, and the electron core of a krypton atom can be
considered “defrozen”.

The latter circumstance serves as a qualitative justification of adequacy of using
the local plasma frequency approximation for calculation of the dynamic polariz-
ability of an atom in the spectral range under consideration: v > vyax.

It is interesting to note that even in the region of the maximum of the function
g(v) = v} |B(V)| (vmax = 0.5), where, generally speaking, the quantum features of
motion of atomic electrons are essential, the distinction in the results of quantum-
mechanical and statistical calculations of the dynamic polarizability of a krypton
atom is less than 30 %.

The most distinction in results (about 47 %), as seen from Fig. 2.5, takes place
for v = 1, that is, for frequencies near the potential of ionization of the 2 p -subshell
of a krypton atom. This fact is quite natural since neither the statistical model of a
Thomas-Fermi atom nor the local plasma frequency approximation takes into
account the shell structure of an atom, but they render the smoothed behavior of
corresponding dependences.

Thus it can be stated that the model approximations used in this section for
calculation of the dynamic polarizability of an atom are in good conformity with the
results of quantum-mechanical calculations and at the same time are of a universal
nature.

2.4.2 Cross-Section of Polarization Bs of a Fast Charged
Particle on a Thomas-Fermi Atom

The spectral cross-section of polarization Bs of a fast electron on an atom within the
framework of the first Born approximation is described by the expression (2.46) that
for a process without excitation of a target, as it was shown in the previous
paragraph, can be simplified to the form:

do™® & j i da |(o2, q + K) [0 A(q)]>6(e + qv) (2.79)
do — (27)v n 4 ! e .

here d€, is the solid angle in the direction of photon emission, k, @ are the wave
vector and the frequency of a bremsstrahlung photon, q = p; — p; is the change of
an incident particle momentum, A (q) is the spatio-temporal Fourier transform of the
vector-potential of the incident particle electromagnetic field that in the axial gauge
(Ap = 0) is given by the expression (2.42).

The key value in the formula (2.79) — a(w, q + k) — is the nondipole dynamic
polarizability of an atom, to calculate which the above approach is used.

It should be noted that the formula (2.79) is of a classical nature, it does not
include the Planck constant, and it can be obtained within the framework of the
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classical calculation of the PBs cross-section for a uniformly moving charge after
summation over the impact parameter.

Hereafter for calculation of the Bs cross-section we will restrict ourselves to the
Born-Bethe approximation, in which it can be assumed:

OC(GL CI) = OC((U) 9(pa - Q)7 (2.80)

here 0(x) is the Heaviside function (a unit “step”). As a characteristic atomic
momentum, we will use the Thomas-Fermi momentum p, = Z'/3/( bay).

In the Born-Bethe approximation (2.80) the integral in the formula (2.79) is
calculated analytically. The result, however, is found to be cumbersome. So we
will give here the formula in the general writing representing the spectral cross-
section of polarization Bs in terms of the single integral with respect to the
value of a transferred momentum. In this expression there are two characteristic
frequency ranges that are explicitly separated: w<p,v is the “low-frequency”
range and w > p, v is the “high-frequency” range:

o™ 40} oV
== |oc(a>)|2{0 (lp? - w) [H (@, pq — ) + Ha()]

+0 (w - 1inV>H1 (.2) }

2.81)

where
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__ Pa — \4— %) 1 _= -~
3 ( 2 wq * T75@ +2q2v2
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Gr=20 [V =2) +2 ¢
2 CO(V 3>+3C]

The formula (2.81) in the frequency range w<p, v, when the contribution to the
cross-section is made by the first summand in the braces, is reduced to the known
expression for the spectral cross-section of polarization Bs of a relativistic incident
electron [2] (see also the formula (2.51) for the spectral-angular PBs cross-section):

do™  160° a(w)? 1n< 29pav

= . 2.82
do 3v2 w(1+v))’ W<PaV 282)
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Here y = (1— vz)fl/2 is the relativistic factor, o(w) is the dipole dynamic
polarizability of a target atom.

Going in the formula (2.82) to dimensionless variables with the use of the
Eq. 2.75 and the determination of the Thomas-Fermi radius, we obtain the follow-
ing expression for the spectral cross-section of polarization Bs:

16 Z% p° 2 dv

2yv
PB 2
dO' (V) = 3 V2 ‘V ﬂ(v)| 7 ln (W

) =72dé"™(v). (2.83)

In the formula (2.83) the function dG"2(v) is introduced that is naturally can be
called the reduced cross-section of the process since for this function in the case
under consideration for polarization Bs of a fast incident particle approximate
scaling with respect to the parameter w/Z takes place, while the nuclear charge
dependence is only logarithmic.

From the expression (2.83) it follows in particular that the spectral cross-section
of polarization Bs of a Thomas-Fermi atom (accurate to the logarithmic factor)
grows quadratically with increasing nuclear charge if in this case the dimensionless
frequency v does not change.

It should be noted that in case of a hydrogen-like ion, when scaling with respect
to the parameter vy = / Z? takes place, the spectral cross-section of PBs of a fast
particle in the Born approximation does not depend at all on a nuclear charge for the
specified value of the dimensionless frequency vy, while the spectral cross-section
of static Bs grows quadratically with increasing Z (accurate to the logarithmic
factor).

Thus the used model predicts amplification of polarization effects in Bs of a fast
particle on a neutral atom with increasing charge of the nucleus of the latter.

The spectral cross-section of ordinary (static) Bs in view of screening of the
nuclear field [2] in case of weakly inelastic electron scattering is given by the
expression:

167% do

dJOB(w)f " o

ln{v}, W < Pav. (2.84)

a

The ratio of the cross-sections determined by the formulas (2.83) and (2.84)
makes it possible to find the R-factor in the frequency range under consideration
(w < pgv) and in the relativistic limit (v = 1):

da"B 61 2 2 ln{jé—z/g} 137
R(V, Z, V) = ngB =b |V B(V)| m7 v< ﬁ (285)
7173

The results of calculation of the R-factor as a function of the dimensionless
frequency v for different values of the charge Z and the relativistic factor y in the
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Fig. 2.6 The dependences of the R-factor on the reduced frequency v calculated for Bs of a fast
electron on a Thomas-Fermi atom with the nuclear charge Z: (a) solid curve —y = 10, Z = 60;
dotted curve —y = 10, Z = 30; (b) solid curve — Z = 60, y = 3; dotted curve —Z = 60, y = 10

range v<137 / 72/3 are presented in Fig. 2.6. It should be noted that corresponding to
these values of the dimensionless frequency v (for the nuclear charges Z ~ 50) are
the photon energies /i < 14 keV.

It is seen that the value of the R-factor of a relativistic incident electron in a wide
frequency range is about one and for w ~ ZRy (v = 0.5) reaches its maximum
value about 2.5 + 3. In this case the “sublogarithmic” influence of a nuclear charge
on scaling with respect to Z is vanishingly small, and the influence of the relativistic
factor is more significant.

It should be noted that the interference of the polarization and static Bs channels
in case of a relativistic charged particle is small in view of different radiation
patterns: the ordinary channel gives high-directivity radiation to a cone with an
angle of the order of 1/y [1], and the angular distribution of polarization Bs for the
frequencies w<p, v is of a dipole nature [2].

In the case under consideration for weakly inelastic scattering of a Born charged
particle in the frequency range w<p, v the main contribution to Bs is made by small
scattering angles, when the influence of effects of penetration of an incident particle
into the electron core of an atom is small.

The said circumstance results in different frequency dependences of the polari-
zation Bs cross-section for different degrees of inelasticity of incident electron
scattering. In case of the process considered in this chapter, the spectral maximum
of the polarization Bs cross-section is considerably shifted to the region of high
frequencies and falls with growing Bs frequency more slowly than corresponding
spectral dependences in emission of photons of threshold energies.

In the frequency range w>p, v the law of conservation of energy-momentum
conditions the necessity of penetration of an incident charged particle into the
electron core of a target. So reradiation of a virtual photon of the scattered electron
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eigenfield to a real photon on atomic electrons loses coherent behavior. As a result,
the spectral cross-section of polarization Bs is found to be suppressed in compari-
son with the cross-section of ordinary Bs.

It should be noted that in the high-frequency region w>p, v the dimensionless
frequency v satisfies the inequation v > 10 (we assume that Z > 30), and, as seen
from Fig. 2.5, the reduced polarizability of a Thomas-Fermi atom is close to its
high-frequency limit: B(v) &~ B, (v) = —b~3v~2. The frequency dependence of the
polarization Bs cross-section in this case is defined mainly by the integral with
respect to the angular variables and the value of the transferred momentum ¢ in the
formula (2.79).

The formula (2.82) in the frequency range w>p,v becomes untrue, and for
determination of the polarization Bs cross-section it is necessary to proceed from
the general expression (2.81). In this case the contribution is made by the second
summand in the braces of Eq. 2.81. The analysis shows that in the expression for the

spectral cross-section the multiplier (p,/ a))2 appears that defines the smallness of
the polarization channel contribution to the total spectral Bs cross-section. How-
ever, the spectral-angular cross-section of polarization Bs in the region of photon

emission angles 7! < < \/p,/w exceeds the corresponding cross-section of the
static channel.

The carried out consideration shows in particular that the characteristic poten-
tial of ionization of a multielectron atom included in the definition of the region of
truth of the high-frequency approximation (see Eq. 2.53) can be represented as:
I(Z) = 2 Z Ry, that is, increases linearly with growing charge of the nucleus of a
target atom. In this formula the constant { > 5 is introduced, the exact value of
which is not determined and depends on accuracy, with which it is required to
calculate the process cross-section.

Thus in this paragraph within the framework of the local electron density method
and the Thomas-Fermi model the universal description of polarization Bs of a fast
Born charged particle on a multielectron atom (Z>>1) in the region of energies of
bremsstrahlung photons w>100 eV is given. It is shown that the R-factor defining
the relative value of the polarization channel contribution to the total Bs cross-
section has approximate scaling with respect to the parameter w/Z and at the
frequencies wmax & Z Ry reaches its maximum value Ry« (y) = 2.5 =+ 3 that grows
logarithmically with the energy of an incident particle.

The decrease of the R-factor with growing energy of an emitted photon in the
low-frequency region w<p, v is most pronounced up to frequencies of the order of
20ZRy, when the magnitude of the polarizability of a Thomas-Fermi atom
decreases when going to its high-frequency asymptotics.

In the spectral range 10 Z Ry<w<p, v the decrease of the R-factor and polariza-
tion Bs intensity has weak logarithmic behavior and is caused by reduction of the
maximum impact parameter.

In the high-frequency range w>p, v the frequency change of polarization Bs
intensity is defined mainly by kinematic factors and by violation of coherence of
reradiation of a virtual photon to a real photon on atomic electrons. In this case the
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decrease of spectral intensity becomes power-like. At the same time the pattern of
radiation by the polarization channel is narrowed, so that ¥ < \/p,/w, and in the
frequency range p,<w<7’p, there is the region of Bs angles: y~!'<¥ < /p,/w, in
which the polarization mechanism prevails over the ordinary (static) mechanism of
radiation.

2.5 Incoherent Polarization Bremsstrahlung of a Fast Charged
Particle on an Atom in the High-Frequency Approximation

In this paragraph within the framework of the high-frequency approximation for the
operator of electromagnetic field scattering the universal description of incoherent
polarization Bs of a fast charged particle on a multielectron atom is obtained. The
PBs cross-section is expressed in terms of the Compton profile of X-ray scattering,
for which a voluminous calculation material is available. The obtained universal
representation for the process cross-section is justified both for the statistical atom
model and on the basis of established approximate scaling of Hartree-Fock
Compton profiles.

This paragraph is the refinement, supplement, and generalization of the consid-
eration of PBs with atomic ionization carried out in the Sect. 2.3 to the case of
taking into account atomic electron binding in the initial state.

2.5.1 Connection of the Dynamic Form Factor with the Compton
Profile of an Atom

In Sect. 2.3 the expression (2.63) was obtained for the cross-section of high-
frequency PBs (m>>w>>I) of a fast charged particle in terms of the dynamic
form factor (DFF) of a target (Eq. 2.64).

The approximate expression for the DFF (2.65) and the formula following from
it for the PBs cross-section (2.66) give a qualitative idea of the process, separating
two characteristic frequency ranges.

In the low-frequency range (w < p, vo) PBs is coherent by the contribution of
atomic electrons, the process proceeds without excitation of a target, and the cross-
section is proportional to the squared number of atomic electrons.

In the high-frequency range (w > p, Vo) radiation with ionization of a target
prevails, and the PBs cross-section is proportional to the number of electrons in an
atom.

In the latter case the (incoherent) DFF of an atom is represented as the sum of the
DFF of electron subshells of the atom:

S(q) = Su(q). (2.86)

n,l
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Let us transform the expression for the dynamic form factor of the electron subshell
(Eq. 2.64) using the expansion in terms of the total system of wave functions.

Then we will use the fact that in the frequency range under consideration w>p, vq
momenta transferred from an incident particle to a target far exceed the characteristic
atomic momentum. Then the wave functions of the continuous spectrum making the
main contribution to the DFF can be to a good accuracy approximated by plane
waves, and the expression for the DFF of the electron subshell is represented as:

d N2
Su(q) = / ﬁ 0 <q° + w — sn;> IRu(p)|?, (2.87)

here ¢° = w + q, v + q} /2 m is the energy of a nonrelativistic IP transferred to the
target, (m is its mass); q, = p{’ —p;” is the change of the incident particle
momentum (here the upper index is introduced for IP momenta to distinguish
them from atomic electron momenta), q = q, + k is the momentum transferred
to the target; ¢, is the energy of the electron subshell under consideration (n, / are
the principal and orbital quantum numbers). In the formula (2.87) the function
R,(p) is introduced that represents the spatial Fourier transform of a normalized
radial wave function of the nl-state determined by the formula:

2 o0
Ru(p) = \/E JRnl(r) ji(pr)ridr, (2.88)

0

Ji(pr) is the spherical Bessel function of the first kind.

2.5.2 Impulse Approximation

The delta function in the formula (2.86) describes the law of conservation of energy
in the PBs process with target ionization. In the expression (2.86) we went from
summation over the finite momentum of an atomic electron to summation over the
momentum of the Fourier expansion of the wave function of the electron subshell
under consideration. In the impulse approximation this value coincides with the
initial momentum of an atomic electron. Thus, if it is assumed that:

P*/2 = tu, (2.89)

we come to the impulse approximation widely used in calculations of the Compton
effect on atoms.

Really, in fulfilment of Eq. 2.89 the DFF of the electron subshell (Eq. 2.86) can
be represented as:
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Here the Compton profile of the electron subshell J,,(Q) [14, 15] is introduced
that is determined according to the formula:

Jnl(Q)

N|~

J IRu(p)*p dp. (2.91)
(9]

This value is tabulated for all subshells of all elements in [14] with the use of the
Hartree-Fock and Dirac-Hartree-Fock wave functions.

The formulas (2.86) and (2.90) give the representation of an incoherent DFF in
terms of the Compton profile in the impulse approximation.

Beyond the framework of the impulse approximation instead of the formula
(2.90) it is possible to obtain from Eq. 2.86 the following representation for the
dynamic form factor of an atom in terms of its Compton profile:

Sule) = 577 {1l + VEEAT20) ~Ju(jal + VI F o)) |

(2.92)

Using the tabulated values of the Compton profile [14] makes it possible with the
formulas (2.86), (2.92), and (2.63) to calculate the cross-sections of incoherent PBs
of various elements.

2.5.3 Compton Profile Within the Framework of Statistical Atom
Models

For universalization of the dependence of PBs cross-sections on the charge of an
atomic nucleus, it is of interest to obtain an expression for the Compton profile
within the framework of the statistical model.

Let us introduce an “effective” one-electron radial wave function of an atom in
the statistical model, connecting it with the radial density of distribution of the
electron charge p,,, (r) by the formula:

RWU( ) pvtat( )/Z (293)

Then, considering the distribution of electron density in an atom spherically
symmetrical, it is possible to obtain from Eqs. 2.88, 2.91, and 2.93 for the Compton
profile in the statistical approximation (in terms of one electron) the following
expression:
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1
1
Js(m)z(CI) =27

d

Oyae (1) sin(pr) rdr| . (2.94)
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In the elementary case of exponential screening, when the radial electron density
in an atom looks like:
4Z .
Pexplr) = 721", (2.95)
Trr

the following expression for the Compton profile (Eq. 2.94) can be obtained:

8r 1
() (q) = 21TE . (2.96)

erl? 3n (1 + (CII‘TF)2>3

By analogy, for the reduced Compton profile of an atom in the Thomas-Fermi
model we have:

~ 1T
Jrr(q) = = Jf D, (2.97)
q

introduced here is the spatial Fourier transform of the square root of the normalized
Thomas-Fermi density:

err(p) = J (2(x))*"* sin(p x) x/*dx. (2.98)
0

The obtained reduced Compton profiles satisfy the necessary normalizing
condition:

Jiw<c7> dg = Jlﬁ&(q) dg = 0.5. (2.99)
0 0

As seen from the formulas (2.96), (2.97), the normalized Compton profile of an atom
in statistical models depends only on the reduced momentum ¢ = g rrr = q/prr.

Presented in Fig. 2.7 are the dependences of normalized Compton profiles of an
atom on the reduced momentum ¢ calculated within the framework of statistical
models and by the data of the Hartree-Fock calculations [14] for argon and krypton
atoms. It is seen that the Thomas-Fermi Compton profile in the region of small
transferred momenta exceeds appreciably values obtained within the framework of
other models, which is explained by not fast enough decrease of the Thomas-Fermi
electron density with distance. At the same time the exponential screening model
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Fig. 2.7 The dependences of ()
the normalized Compton 1.0
profile on the reduced
transferred momentum
obtained within the
framework of different
models: (/) exponential
screening; (2) Hartree-Fock
calculation for an argon atom;
(3) Hartree-Fock calculation
for a krypton atom;

(4) Thomas-Fermi model

gives quite satisfactory approximation to the results of more exact calculations [14]
with the use of the Hartree-Fock wave functions.

Following from this figure, in particular, is approximate scaling of normalized
Hartree-Fock Compton profiles as functions of the reduced momentum.

2.5.4 Cross-Section of Incoherent PBs of a Nonrelativistic Born
Particle

The expression for the spectral cross-section of PBs of a nonrelativistic Born
charged particle in the high-frequency range m>>w>> I integrated with respect
to the solid angle of photon emission can be obtained from the formula (2.63). In the
ordinary (Gaussian) system of units it looks like:

8 e dw
do(w) :—nmzjdeqqu(qo, q), (2.100)
e

where ey = Zj e is the IP charge.

In derivation of (Eq. 2.100) the expression for the vector potential of the
eigenfield of a nonrelativistic IP in the axial gauge was used, and it was assumed
that q = q;.

It should be noted that in the approximation of quasi-free (at rest) atomic
electrons the incoherent DFF of a target is given by the equation:

2
Snrce(;h(q) :£ 5(w+qv+q /(2:“)>7 (2.101)
qv qv
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where  is the reduced mass of an electron and an IP, Z is the number of atomic
electrons equal to the nuclear charge.

Substituting the expression (2.92) for the incoherent DFF summed over all
electron subshells of an atom in the formula (2.100), we come to the following
representation of the spectral PBs cross-section in the frequency range w>p, vo:

do(w, v, m) = /ZZ2 d&(p‘;, v m) (2.102)

TF PTF

Introduced here is the reduced cross-section dé depending on the frequency of an
emitted photon and the IP velocity normalized accordingly to the characteristic
momentum of a Thomas-Fermi atom.

The reduced cross-section is expressed in terms of the normalized Compton
profile of an atom by the formulas:

b? da
e (@, ¥, m) = 9 — %’ (@, ¥, m) (2.103)
v
Gmax —Vm
da - -
I(®, v, m) = J ?q J {J(t}Jr \/ 23" J(c} +1/ 2670) } d(v cos(qV)),

(2.104)

here v,, = (@ + ¢*/2m) /G, b = 0.8853.
The upper and lower limits of integration with respect to the magnitude of the
transferred momentum in the integral (2.104) are defined by the condition v, <v.
The dimensional cross-section ¢ included in the expression (2.103) is:

_16 e®
7= 3 m:hc’

=2.074-10%a.u. (2.105)

Here we used the Gaussian system of units.

Thus the formulas (2.102), (2.103), (2.104), and (2.105) reveal the scaling law
for the cross-section of incoherent PBs of a fast (but nonrelativistic) charged
particle on a multielectron atom and express the process cross-section in terms of
the normalized Compton profile of X-ray scattering. This cross-section (accurate to
the multiplier v/Z) depends on the frequency of an emitted photon and the IP
velocity nondimensionalized with the use of the Thomas-Fermi momentum.

It should be noted that though, strictly speaking, scaling Eqgs. 2.102, 2.103,
2.104, and 2.105 is obtained within the framework of the statistical model of an
atom, it is also approximately true for a Hartree-Fock atom in view of the above
approximate scaling of normalized Compton profiles (see Fig. 2.7).
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We will give for comparison a corresponding expression for the cross-section of
incoherent PBs on a hydrogen-like ion with the charge Z:

doy(w, v, m) =2 b2 d&(pﬂz, Al m) (2.106)
H PH

where py = Z a.u. is the characteristic momentum of a hydrogen-like atom.

The found expression (2.102) for the cross-section of high-frequency PBs with
atomic ionization refines and supplements the result of Eq. 2.69 obtained with the
use of the DFF in the model of free atomic electrons (Eq. 2.101) that can also be
represented in the form (2.102) and (2.103), if it is assumed that:

1+4/1=20/(uv?)
Ifl'ee((ba Va Au) =In
L—y\/1=20/(uv?)
do

Shown in Fig. 2.8 are the spectral dependences of the value w do calculated

(2.107)

within the framework of different approximations, including the model of free
atomic electrons, for incoherent PBs of a proton. It is seen that the main difference
of the models shows itself in the frequency range w>w* = pv?/2, that is, behind
the “cutoff” frequency for PBs on free electrons.

From kinematic considerations it is clear that the “cutoff” frequency for PBs of
an electron, other things being equal, is half the value for PBs of a proton (because
of the difference in reduced masses), this situation supplements the conclusion
drawn earlier about the PBs cross-section independence of the mass of an incident
particle.

The reduction of the cross-section with growing PBs frequency in the exponen-
tial screening model occurs appreciably faster than for the Hartree-Fock Compton
profile, which follows also from Fig. 2.7. For frequencies smaller than the “cutoff”
frequency the Hartree-Fock consideration of binding of atomic electrons in the
initial state results in a somewhat smaller cross-section value in comparison with
the model of free atomic electrons.

Let us note the close similarity of the dependences in Fig. 2.8 with corresponding
spectral cross-sections for radiation ionization from the theoretical work [16]. In
this work for description of incoherent PBs (radiation ionization) a similar approach
was used, based on the use of the nondiagonal atomic form factor F,, y (¢) that was
calculated earlier in connection with the problem of ionization of atoms and
excitation of characteristic X-rays.

Shown in Fig. 2.9 are the dependences of the value w dg/dw of incoherent PBs
of a proton on a krypton atom on the proton velocity for three values of bremsstrah-
lung photon energy — 3.78 keV, 7.57 keV, and 11.35 keV.

It is seen that the velocity dependences of cross-section have maxima. These
maxima are shifted to the region of higher velocities with growing bremsstrahlung
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Fig. 2.8 The spectral cross- ® do/dw, bam
section of incoherent PBs of a 1.0
proton with an energy of

34 MeV on a krypton atom
near the “cutoff” frequency
calculated within the
framework of different
approximations for the
electron density of an atom:
Hartree-Fock calculation
(curve 1), exponential
screening (curve 2),
approximation of free atomic
electrons (curve 3)

0.5

fio, keV

photon energy. A corresponding formula relating the bremsstrahlung photon
frequency and the optimum value of proton velocity in atomic units looks like:

Vop = 1.89 (2.108)

It is essential that the relation (2.108) does not depend on the charge of an atomic
nucleus in contrast to the analogous dependence for coherent PBs, when there is a
linear connection between the optimum velocity and radiated frequency through the
radius of the atomic subshell making the greatest contribution to the process.

2.5.5 Comparison of Cross-Sections of Incoherent and Coherent
PBs

Now we will analyze the relation between the cross-sections of coherent and
incoherent PBs.

We will calculate the cross-section of the coherent process within the framework
of the exponential screening model for the electron density of the target core.
A corresponding expression can be obtained from the formula (2.63) if it is taken
into account that the DFF of an atom in this case is reduced to the ordinary static
form factor being a Fourier transform of electron density.

After standard transformations including integration with respect to the solid
angles of an emitted photon and a transferred momentum, for the cross-section of
coherent PBs of a nonrelativistic Born particle we have the following expression
(in atomic units):
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Fig. 2.9 Incoherent PBs of a o do/dwm, barn
proton on a krypton atom as a 6
function of the proton velocity
for three values of

bremsstrahlung photon energy:
ho = 3.78 keV (curve 1), 4+
ho = 7.57 keV (curve 2),
ho = 11.35keV (curve 3)
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In the integral of the expression (2.109) there are the same limits of integration
with respect to the transferred momentum as in the formula (2.104). “Tilde” above
the sign of the transferred momentum and of the IP velocity, as before, means
normalization to the momentum (velocity) of a Thomas-Fermi atom.

The integral in the Eq. 2.109 is taken in quadratures, but a corresponding
expression is rather cumbersome. For a heavy IP the upper limit of integration
can be replaced by infinity, then for the integral with respect to the reduced
transferred momentum we have:

~\ 2 ~\ 4
n+s4($) +72 (9 o

P o ! 7\ ?
159 (6, %) — -5+ 1n<1+2 (%) ) (2.110)
12 <1+2 %) )

N

It should be noted that in the limit v prr<<® (*) from the formula (2.110) the
asymptotics follow:

19P(@, %) =2 (V/@)*. 2.111)
The inequation (¥) can be rewritten as: » >> 0.125Z?/3 keV, whence it follows
that it is satisfied for all Z in the kiloelectron-volt range of bremsstrahlung photon
energies.
From the formulas (2.109), (2.110), and (2.111) we obtain for the coherent PBs
cross-section in the exponential screening approximation and the high-frequency
limit @ >> 0.125 7%/ keV:
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32p7 Ve d
_ 220 a3 Y49 2.112)

(exp)
dogy () = 3¢3 @ o

coh

For correct estimation of the relation between the cross-sections of coherent and
incoherent processes it is important to emphasize that a simple exponential approx-
imation underestimates considerably the contribution of the K-shell to coherent PBs
on a multielectron atom in a high-frequency range. Really, the radius of the orbit
nearest to the nucleus is approximately Z?/? times less than the Thomas-Fermi
radius, so the corresponding integral in the formula (2.109) results in reduction of
the spectral cross-section at higher frequencies than this takes place for the Thomas-
Fermi radius.

To take into account the contribution of the K-shell, we rewrite the formula
(2.109) as follows (Z>>1):

4/3
exp)g oy _ 10277 5 dO [oexp) = oy 4 exn) s o
da(‘olz (CU) - ? \72 3 b ; ]coh ((’0? V) +? ]cnh ((1), v (PK(Z)/PTF)) 5

(2.113)

introduced here is the momentum of the atomic K-shell pk(Z).

The expression (2.113) is a universal (common for all nuclear charges) repre-
sentation of the cross-section of coherent PBs of a fast particle obtained in the
exponential electron density model with individual consideration of the contribu-
tion of the K-shell to radiation.

The results of calculation of the spectral cross-sections of coherent and incoher-
ent PBs of a proton on a krypton atom for two values of proton velocity are
presented in Fig. 2.10.

From this figure it follows in particular that the prevalence of the incoherent
process over the coherent process can take place at high enough velocities of an
incident particle since in this case the “cutoff frequency” for radiation ionization is
shifted to the region of high frequencies, in which the contribution of most of
atomic electrons to coherent PBs is already small.

Thus in this paragraph within the framework of the high-frequency approxima-
tion for the operator of electromagnetic field scattering the universal description of
incoherent PBs of a fast charged particle on a multielectron atom was obtained. The
process cross-section is expressed in terms of the Compton profile of X-ray
scattering.

The basis for the obtained universal description is approximate scaling of the
reduced Compton profile of X-ray scattering by a neutral atom for high enough
nuclear charges (Z > 20) that was found in this work.

Based on the derived formulas and within the framework of different
approximations for electron density of the electron core of a target, the spectral
and velocity dependences of the cross-section of incoherent PBs of a proton on a
multielectron atom were analyzed.
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Fig. 2.10 The spectral cross-sections of coherent (curves 1) and incoherent (curves 2) polarization
bremsstrahlung of a proton on a krypton atom for different proton velocities: (a) v/f = 10vyr = 3
7.3 au., (b) v =3vyr = 11.2 au

It was shown that for a specified PBs frequency there is an optimum velocity of
an incident particle, at which the process cross-section has maximum. The value of
optimum velocity grows as the square root of frequency.

The carried out comparison of the cross-sections of coherent and incoherent
processes has shown that for high enough velocities of an incident particle there is a
frequency range of prevalence of PBs with atomic ionization over coherent PBs.
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Chapter 3
Quasi-Classical Theory of Bremsstrahlung
on an Atom and an Ion with a Core

The quasi-classical theory of Bs on atoms and ions plays an important role in a
number of applications such as radiation in partially ionized plasma, low-
temperature plasma, gas discharge, absorption of radiation by plasma media, etc.

Stated in this chapter is the theory of spontaneous Bs, including the polarization
channel, in scattering of electrons by atoms and ions with a core with fulfilment of
the quasi-classical condition

Ze?

- >1, (3.1
where Z is the charge number of an atom (ion), v is the electron velocity. In this
chapter the Gaussian system of units is used.

As seen from the formula (3.1), a quasi-classical electron should be rather slow
in contrast to a Born electron, for which the inequation (2.1) reverse of the relation
(3.1) is true. It should be noted that the Born inequation is “strong”, and the quasi-
classical inequation is “weak”.

The condition (3.1) is realized, for example, for low-temperature plasma. In this
case by the charge number of an atomic (ion) nucleus and the electron velocity their
average values defined by the state of a substance should be meant.

3.1 Classical Consideration in the Approximation of Straight
Trajectories

3.1.1 Ordinary (Static) Bremsstrahlung

As is known, emission of a photon in scattering of a charged particle on an atom
(ion, molecule, cluster, etc.) is called bremsstrahlung. The initial and final states of
an emitting particle in this process belong to the continuous spectrum, and radiant
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Fig. 3.1 The diagram of
electron scattering by a
nucleus in the approximation
of straight trajectories, p is the
impact parameter

energy is got from its kinetic energy. Let us consider at first the most simple case,
when a nonrelativistic electron is scattered by a “bare” nucleus (that is, a nucleus
without bound electrons) with the charge number Z. We use the classical expression
for the power of dipole radiation Q in terms of the acceleration of a scattered
electron w (the acceleration of a nucleus can be neglected due to its large mass) [1]:

2
_2e o

(1) =55 W0, (3.2)

The total energy of bremsstrahlung for the whole time of collision is:

46‘2 T 2 do

AE = — — .
3¢3 J'W( ) 2n (3-3)

0
In derivation of Eq. 3.3 the relation was used:
Pod=2 || £ 5 (34)
T
—00 0

where f(¢) is the real function of time, f(w) is its Fourier component.

To calculate the Fourier component of the acceleration w(w), it is necessary to
concretize the character of motion of a particle. It is well known that in case of a
central force field the moment of momentum of an electron isM = m v p, where v is
the electron velocity (infinitely far from the nucleus), p is the impact parameter (see
Fig. 3.1).

Thus the motion of a particle in the potential U(r = |r|) is characterized by two
values: the initial velocity and the impact parameter, so the Fourier component of
acceleration depends also on p: w(w) — Ww,(w). For the last value we have:

W, (@) =~ E(w, p), (3.5

where E(w, p) is the Fourier component of the intensity of the nuclear electric field
acting on a scattered electron with a specified impact parameter.
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Let us calculate E(w, p) in the approximation of straight trajectories of electron
motion. This approximation is true for “distant” collisions, when p > ac¢ (ac =
Ze? / mv? is the Coulomb length). It should be noted that this approach was used by
E. Fermi in calculation of excitation of atoms by charged particles [2]. Using the
elementary electrodynamic formulas, we find for the Fourier component of nuclear
electric field intensity:

E(o,p) = 22¢ {F(w p) _iF (a;p) ef}, (3.6)

oV v

where e, . are the normal and tangent (with respect to the velocity vector v) unit
vectors (see Fig. 3.1);

o0
cos
(3.7)
J 1+ 22) 3/2

the prime designates differentiation with respect to the argument.
From the formula (3.3) in view of Eq. 3.5 the following expression for brems-
strahlung energy differential with respect to the photon frequency:

dE, 2 ¢t

do = Fame PN 68

The probability of bremsstrahlung in scattering of an electron with a specified
impact parameter and frequency is related to the energy of Eq. 3.8 by the relation:

dw, 1 dE,

do  ho do’ (39
and spectral cross-section of the process is:
p max

3—2:271 J %pdp, (3.10)
pmin

where p.. Prmax are the minimum and maximum impact parameters. Assembling
the formulas (3.8), (3.9) and (3.10), we obtain:

p max

J [E(w, p)|* pdp. (3.11)

p min

da_ 4 ¢4
do 3m*3ho
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Hence in the approximation of straight trajectories we have for the spectral
cross-section of bremsstrahlung of an electron on a “bare” nucleus:

p max

do 1627 0 dp ( ,(0p 2/ P

do 162 dp gpa(@0) g0

do 3m*viciho J p{ v + v (3.12)
p min

where the function F({) is given by the formula (3.7).

The classical consideration is found to be not sufficient to determine the limits of
integration in Eq. 3.12 with respect to the impact parameter. For this purpose it is
necessary to involve quantum considerations. Thus the minimum value p;, is
defined by the de Broglie wavelength of a scattered electron:

o (3.13)
myv

a

Pmin ~ ADB =

The relation (3.13) reflects the fact that the location of a quantum particle can not
be determined more precisely than the spatial “diffusiveness” of its wave function
that is characterized by the de Broglie wavelength. To determine the maximum
impact parameter p,,, . it is necessary to use the energy conservation law in
bremsstrahlung and the connection of change of a momentum of an incident
electron with the value p: Ap = 1i/p, then it is possible to obtain:

(3.14)

v
Pmax ~ W'
In derivation of Eq. 3.14 the energy conservation law was used in the form 7w = v
Ap true for small changes of the electron momentum |Ap| < p, which corresponds to
the approximation of straight trajectories. This approximation realized in case of distant
collisions p > ac implies the weakness of interaction of an incident particle with a
target nucleus. It is natural that in weak interaction mainly low-frequency photons will
be emitted. It can be shown that a corresponding condition looks like: w < w¢, where
wc = v/ac is the Coulomb frequency. In the low-frequency region the argument of the
function F({) and of its derivative F'({) is less than one: { = wp/v < 1, so, as it
follows from the definition (3.7), it is possible to use the following approximate
equations: F({) ~ 1 and F'({) ~ 0. As a result, instead of Eq. 3.12 we have:

do _ 1622 ¢ (P
do 3m*viho \p,.,/)

(3.15)

It is easy to generalize the obtained expression to an arbitrary scattered charged
particle, for which the used approximations are fulfilled. For this purpose in the
formulas (3.2) and (3.5) it is necessary to make replacements: e — e,, m — m,,
where ¢,,, m,, are the charge and the mass of an incident particle. Then in view of
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Egs. 3.13 and 3.14 we come from Eq. 3.15 to the final expression for spectral
bremsstrahlung of a nonrelativistic charged particle on a “bare” nucleus in the low-
frequency approximation (A w<<m, v?/2):

(3.16)

do 1672 2 62 | my, v2
n ho .

do 3 m%v2c3ha)

From the obtained equation it follows that the bremsstrahlung cross-section is
inversely proportional to the squared mass of an incident particle. Thus, when
going from light charged particles (electron, positron) to heavy particles (proton,
alpha particle, etc.), the cross-section of the process under consideration decreases
more than million times. This conclusion led to the well-known statement that
heavy charged particles do not emit bremsstrahlung photons. As it will be clear
from the following, this statement needs considerable correction.

The spectral intensity of emission is equal to the process cross-section multiplied
by the incident particle flux and the energy of an emitted photon, so Eq. 3.16 gives:

dIl 1672 &2 ¢é* 2
P (m”V ) (3.17)

do 3 m2v ¢ ho

As was already said, the formulas (3.16) and (3.17) were obtained in the
approximation of distant collisions corresponding to emission of low-frequency
photons. The contribution to bremsstrahlung of high-frequency photons w > w¢ is
made by close collisions p < ac corresponding to strongly curved trajectories. The
spectral cross-section and the intensity of bremsstrahlung of an electron in this case
are described by the Kramers formulas:

d (Kram) 16 172 o°
c e e (3.18)
dw 3V3mAvid ho
d[(Kmm) 16 w72 ¢f
ne e (3.19)

dw :3\/§mzvc3 '

The right side of the Eq. 3.19 does not include the Planck constant, which is
indicative of the purely classical nature of this expression.

The formulas for bremsstrahlung of an electron scattered by the Coulomb center
beyond the approximation of straight trajectories can be obtained by corresponding
replacement of the Fourier transform of the electric field intensity E(w, p) by the
function corresponding to motion in the Coulomb potential. This problem for a case
of static Bs is considered in detail in the review [3] within the framework of so-
called Kramers electrodynamics for motion of electrons along strongly curved
trajectories.
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It is interesting to note that the Kramers formulas (3.18) and (3.19) describe not
only bremsstrahlung, but also photorecombination, when the final state of an emitting
electron belongs to the discrete ion spectrum, that is, is bound. The said circumstance
is a consequence of the fact that emission in the high-frequency limit w > w¢ is
“gathered” from a section of the trajectory of the most approach to a nucleus, so an
emitting electron “does not know” where it gets after emission of a photon.

The expressions (3.16) and (3.17) are obtained within the framework of the
classical consideration with quantum “insertions” (3.13) and (3.14). It is clear that
such an approach is not consistent, but its important advantage is physical transpar-
ency and mathematical simplicity. It is pertinent to note here that the use of the
quantum-mechanical formalism within the framework of the Born approximation
results in the same formulas for the cross-section and intensity of bremsstrahlung of
low-frequency photons as Eqgs. 3.16 and 3.17.

The criterion of the Born approximation (in the Gaussian system of units) is
given by the inequation:

Z‘eep’

<<, (3.20)
hv

that is, corresponds to fast enough incident particles. The condition (3.20) allows
calculation of the scattering cross-section by the perturbation theory with the ratio
Z |e ep’ /v serving as a small parameter of the theory. The possibility of classical
consideration is given by the inequation reverse of (3.20), so the above agreement
of results is connected with the use of the approximation of straight trajectories,
when the influence of a target on an electron is low as in the case of the Born
approximation.

When going to bremsstrahlung on an atom, it is necessary to take into account
the screening effect of bound electrons, which results in the replacement

Pmax — Min(v/w, r,), (3.21)

(r4 is the atomic radius) in the expressions for the cross-section and intensity of
the process. Really, for the impact parameters p > r, the atomic field is close to
zero, so the acceleration of an incident particle is negligible, and together with it,
according to Eq. 3.2, bremsstrahlung is also absent. It is clear that screening is
essential for low enough frequencies @ < v/r,, otherwise an incident particle
should fly close enough to a nucleus to emit a photon of a specified frequency.

In case of bremsstrahlung on multielectron atoms, when the Thomas-Fermi model
“works”, the Thomas-Fermi radius can be used as an atomic radius: r, =~ rrp =

agb / V/Z, whereag =~ 0.53 A is the Bohr radius, Z is the charge number of the atomic
nucleus, b =2 0.8553 is the constant.

The replacement of Eq. 3.21 corresponds to the screening approximation in the
bremsstrahlung theory used by Bethe and Heitler [4] in generalization of formulas
for the process cross-section to an atomic case.
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Physically the screening approximation means the replacement of atomic
electrons by the distribution of electrostatic charge screening a nucleus. Thus
bound electrons are excluded from consideration as a dynamic degree of freedom
that can be excited during bremsstrahlung and can reradiate the electromagnetic
field of an incident particle. Actually in emission of high-energy photons the
energy-momentum excess can be transferred to atomic electrons, resulting in
their excitation and ionization.

3.1.2 Polarization Bremsstrahlung

Besides the above real excitation, atomic electrons in case of collision of an atom
with a charged particle can be excited virtually. Virtual excitation corresponds to
appearance of a variable dipole moment in the atom that, according to the
fundamentals of electrodynamics, should radiate electromagnetic waves. Such a
process is called polarization bremsstrahlung since it is connected with the
dynamic polarizability of an atom. The dynamic polarizability of an atom is
considered in detail in Appendix 1. The dynamic polarizability of an atom together
with the external variable field defines a radiating dipole moment.

Another interpretation can be given to polarization bremsstrahlung as a process
of scattering of the eigenfield of an incident particle (a virtual photon) to the
radiation field (a real photon) by atomic electrons. Polarization bremsstrahlung is
an additional channel of radiation in charge scattering by a target having a system of
bound electrons. We will call ordinary bremsstrahlung existing also on a “bare”
nucleus ordinary or static bremsstrahlung. The last term implies that this channel is
a single channel in the model of static distribution of electron charge of bound
electrons.

Let us derive the formulas for polarization bremsstrahlung of a fast charged
particle on an atom, considering the atom to be an elementary dipole with the
polarizability o() (see Appendix 1, the formula (A.3) for connection of an induced
dipole moment and the electric field strength).

For description of motion of an incident particle we use, as above, the classical
approach and the approximation of straight trajectories. Again we proceed from the
formula for the power of dipole radiation, but this time we will write it in terms of
the dipole moment of the radiating system:

2 .
0 =55 ld(r)]. (3.22)

Here two dots designate the second time derivative. Integrating the Eq. 3.22 with
respect to time and using the formula (3.37) for the squared second derivative of the
dipole moment, we come to the expression for the total energy of polarization
bremsstrahlung for the whole time of collision corresponding to the impact
parameter p:
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2 dw

— 2
> (3.23)

A )
AE =34 |? |o() EP) (e, p)]
0

where E?) (w, p) is the Fourier component of the intensity of the electric field of an
incident charged particle at the location of the atom. In derivation of this formula
the relation was used: d(w) = —w? d(w) that follows from determination of the
Fourier components.

Going from the total radiated energy to the spectral cross-section, as it was done
in derivation of the formula (3.11), we obtain for polarization bremsstrahlung the
following expression:

p max

J [E?) (0, p)| pdp. (3.24)

p min

do™ 40} o))’
do  3c3n

The upper limit of integration in this formula following from the energy conser-
vation law is determined by the Eq. 3.14, the same as for static bremsstrahlung. The
lower limit of integration is much different. In the elementary dipole approximation
under consideration it is defined by the size of an atom:

A— (3.25)

As the analysis shows, scattering at low impact parameters p < r, makes a small
contribution to the polarization bremsstrahlung cross-section since then coherence
in reradiation of the eigenfield of an incident particle by atomic electrons to a real
photon is lost.

From Fig. 3.1 it is easy to see that the Fourier component of the intensity of the
electric field of an incident particle in the approximation of straight trajectories can
be calculated by the formula similar to Eq. 3.6 with replacement of the nuclear
charge by the incident particle (projectile) charge. As a result, for the intensity E®
(o, p) we have:

EP) (o, p) = % {—F(?) e, +iF (?) er}, (3.26)

where e, e; are the normal and tangent unit vectors, the function F({) is given by the
Eq. 3.7. Shown in Fig. 3.2 is the modulus of the normal and tangential components

of the electric field Eq. 3.26 as well as the entire spectrum H (v) = /F2(v) + F'*(v)

as a function of the dimensionless frequency v = w p/v.

From Fig. 3.2 it is seen that the main contribution to the spectral function H(v) in
the region of its high values is made by the normal component of the electric field of
an electron, and the spectrum width is of the order of the ratio v/p.
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Fig. 3.2 The spectrum of the Hv) T T T T T ]
electric field of an incident

particle (Eq. 3.26) as a function X
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the field, 3 — of the tangent

component of the field

vV =wp/v

Substituting Eq. 3.26 in Eq. 3.24, we obtain the spectral cross-section of polari-
zation bremsstrahlung in the used approximation:

v/
d;:)B B 162%5;3!:c;w)|2 Jw‘;_ﬂ {PER)+r(ER)) 62

ru

Hence for intensity we find:

2 v/o

T Tl G CO RV COI R

Ta

It should be noted that the formula (3.28) does not contain the Planck constant,
which is indicative of its classical nature.

In the limit of low frequencies, when F({) ~ 1 and F'({) ~ 0, the formula (3.27)
gives:

PB 162 w3 |a(w)|
do’? _ 16¢, 0" |r(w)| ln< v ) (3.29)

do ~— 3v2C3h W I,

This expression is true for the frequencies w < v/r,, otherwise it is necessary
to use the formula (3.27). Calculation, however, shows that in the frequency range
w>v/r, polarization bremsstrahlung is low.

The cross-section of Eq. 3.29 can be obtained within the framework of the
quantum approach in case of truth of the Born approximation Eq. 3.20, that is, for
fast (but nonrelativistic) incident particles.

It must be emphasized that the polarization bremsstrahlung cross-sections
(3.27), (3.29) do not depend on the mass of an incident particle in contrast to the
static bremsstrahlung cross-section (3.17). Thus the statement long existing in
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physics that heavy charged particles do not emit bremsstrahlung photons does not
extend to the polarization channel. This circumstance is connected with the fact that
the static bremsstrahlung cross-section is proportional to the squared acceleration of
an incident particle, while the polarization channel cross-section the does not
depend on this acceleration.

The polarization bremsstrahlung cross-section (3.29) can be obtained from the

static process cross-section (3.16) with the use of replacementsm, — m, et — e? e,

P
Pmin — Pmin> and

Z = Zpo(0), (3.30)
where
mw?
Zpot(@) = o |or(w)] (3.31)

is the effective polarization atomic charge (in the units of the electron charge e).

The polarization charge characterizes the ability of the electron core of an
atom to emit a photon under the action of an ac field. In contrast to an ordinary
charge, the polarization charge depends on the radiation frequency. The fre-
quency dependence of the polarization charges of silver and krypton atoms is
presented in Fig. 3.3.

From this figure it is seen that in the high-frequency range the polarization
charge is equal to the number of bound electrons of an atom (or the charge number
of its nucleus). This circumstance follows from the definition (3.31) and the formula
for high-frequency polarizability (A.16). In the region of low frequencies w — 0
the polarization charge according to Eq. 3.31 decreases quadratically since then
the atomic polarizability is equal to its static value (A.15), that is, does not
depend on frequency. Finally, in the intermediate spectral range the polarization
charge is a nonmonotonic function that reflects the features of the energy spectrum
of an atom. For example, a wide “dip” on the dashed curve of Fig. 3.3 in a range
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of 1,600-1,750 eV corresponds to the energy of binding of 2p -electrons in a
krypton atom. The minimum in the region of low frequencies corresponds to virtual
excitation of subshells of an atom with the principal quantum number n = 3. Thus
the spectral cross-section of polarization bremsstrahlung reflects the dynamics of
the atomic core as a function of frequency.

In the high-frequency limit, when w>>w, (v, is the characteristic frequency of
excitation of an atom in the discrete spectrum), but still o <v/r, ,
a(w) = —Z ez/m @? (Zyo1(w) = Z), and the formula (3.29) gives:

PB 1672 ¢* &2
do P ( M ) (3.32)

do  3m*v23ho wr,
Curiously, in case of an incident electron (positron) the obtained expression
differs from the formula for the static bremsstrahlung cross-section (3.17) only by a
logarithmic factor.
Now we will consider a resonant case, when the bremsstrahlung frequency is

close to one of eigenfrequencies of an atom w =~ wg, and dynamic polarizability
looks like:

oc(awco)ué fo (3.33)
Oimw%—w2—2iw50' )

This expression for resonant polarizability follows from the general formula
(A.14), if in it one resonant summand is retained, in which w,,,, = wo, fn = fo and
Oum = V0. Substituting the formula (3.31) in Eq. 3.29, we obtain:

res 4 €2 w2 2 £2
do” _2% ) _relooo (V) (3.34)
( wr,

do ~ 3 he \v wo,w)2+5g

where r, = ez/m c? ~ 2.8 -10713 cm is the electron classical radius.

From the expression (3.34) it is seen that resonance polarization bremsstrahlung
has a sharp maximum at the frequency @ = wy if do<<wy. The last inequation is
satisfied in case of excitation of electrons of the outer atomic shell in the discrete
spectrum, so for a neutral atom the energies of resonant photons are about 10 eV
and less. In case of multiply charged ions having a system of bound electrons
(an electron core) these energies can be much higher and reach a value of the
order of several keV. Then, however, the transition damping constant equal to
the Einstein coefficient A,,, is also great, and therefore the resonance becomes
not such sharp. At frequencies corresponding to virtual excitation of inner
atomic shells the resonance structure in the spectral dependence of the dynamic
polarizability o(w) disappears. Instead of it, on the spectral curves “dips”
arise that correspond to the beginning of photoionization of the atomic subshell
(see Fig. 3.3).
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3.2 Bremsstrahlung of Quasi-Classical Electrons in the Local
Plasma Approximation for the Electron Core of a Target

The local plasma model (the Brandt-Lundqvist approximation [5]) for the polariz-
ability of a multielectron target was considered in Sect. 2.4 (Sect. 2.4.1). This model
was proposed for description of multielectron atoms, in which the electron—electron
interaction in a specified (wide enough) spectral range can play a role comparable to
the electron-nucleus interaction.

The Brandt-Lundqvist approximation can be considered as an elementary clas-
sical analog of the quantum-mechanical random phase exchange approximation
widely used for taking into account electron—electron correlations in atomic phys-
ics. The main idea of this method is that electron—electron correlation effects are
expressed in terms of the dynamic polarizability of the atomic core.

Such calculations in respect to the problem of calculation of the cross-section of
polarization bremsstrahlung on an atom in a wide frequency range were carried out
in the work [6] for electrons of kilovolt energies scattered by a krypton atom. It
should be noted that such calculations represent a rather intricate numerical prob-
lem since wave functions of atomic electrons already in the zeroth approximation
are the solutions of the Hartree-Fock integro-differential equations.

The high reliability of results obtained within the framework of the random
phase exchange approximation shows the reverse side of the medal in necessity to
carry out laborious calculations for each specific target and in difficulty of obtaining
qualitative regularities “working” in a wide enough range of variation of problem
parameters.

The purpose of this chapter is to develop semiquantitative methods of calcula-
tion of polarization effects in radiative processes on multielectron targets and to
carry out the analysis of qualitative regularities of the said processes on their basis.

The main advantage of the used approach consists in its calculating simplicity
and physical obviousness. Making no pretence of the exact quantitative description
of the phenomenon, the method used in this chapter can be considered as an
additional (to consistent quantum-mechanical calculations) method of description
of polarization-interference effects on multielectron systems.

3.2.1 Polarizability of an Atom in the Brandt-Lundgqvist Model

The dipole polarizability of an atom (or other multielectron system) is given within
the framework of the local plasma frequency model by the formula (2.73) that can
be rewritten as

Ry

() rtd

J % = JﬁBL(n ) dr, (3.35)
0 )4
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where w, (r) = \/4ne?n(r)/mis the local plasma frequency depending on the local
electron density of the electron core n(r), r is the distance from a point under
consideration to the atomic nucleus, Ry is the atomic radius. Here and further the
spherical symmetry of the system is assumed, so n(r) = n(r).

The Eq. 3.35 gives the expression for dynamic polarizability as the volume

integral of some dimensionless function - (r, w):

2
P = T
X (r) —w* —io
that is natural to be called the spatial density of the dynamic polarizability of a
target in the Brandt-Lundqvist approximation. This value in the local approxima-
tion under consideration is a liaison between the induced atomic polarization at the
specified frequency P(r,®) and the strength of the external electric field E(r, w)
causing this polarization, the cause and effect being taken at one point of space
(local approximation):

P(r,w) = B(r,w) E(r,w). (3.36)

In writing Eq. 3.36 it is assumed that the target has a spherical symmetry.

It should be noted that the expression (3.35) can be rewritten as the frequency
integral if the spectral density of the oscillator strength is duly introduced by the
formula

df ma? ,  dry(o)
— = 3.37
do e P (@) do ’ (3-37)
where the function r,(w) is determined by solution of the equation
o = wp(r). (3.38)

Thus the dynamic polarizability in the Brandt-Lundqvist model can be formally
presented in the characteristic quantum-mechanical form. The remaining difference
consists in the fact that the Eq. 3.35 does not describe the contribution of the
discrete spectrum to the atomic polarizability, which is natural since the local
plasma frequency approximation is an essentially classical approximation. It should
be noted that the contribution of the discrete spectrum is most essential for alkali-
like ions and is small for systems with filled electron shells.

As easily seen from the formula (3.35), the high-frequency dynamic polarizabil-
ity in the Brandt-Lundqvist model has correct asymptotics agreeing with the result
of the quantum-mechanical calculation:

e’ N,

OChf((D) = me )

(3.39)

where N, is the full number of target electrons (see Appendix 1, the formula (A.16))
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Table 3.1 Static polarizabilities of atoms and ions with filled shells (a.u.)

Atom (ion) Arl Kirl Xel KII RbII CslI SrlIl Balll
0P 11 17 27 7.5 12 16.3 6.6 11.4
oo 19.3 26.8 30.9 9.1 14.3 17.8 8.7 11.4
o Sh 21.1 255 6.6 11.9 15.3 7.5 9.7
e 22 24 27 8.6 11.6 13.5 7 8.4
20
o’ Re{d” ().
(a.u.)
? Im{ @)}, 10
(a.u.)

-10 | | |

®, a.u.

Fig. 3.4 The frequency dependences of the real (solid line) and imaginary (dotted line) parts of
the dynamic polarizability of the iron ion calculated within the framework of the local plasma
model

Given in Table 3.1 is the comparison of the values of static polarizabilities of
atoms and ions (in atomic units) with filled electron shells calculated by different
methods within the framework of the statistical description of an atom with
experimental data (o™*F).

Here: o' is the calculation by the variational method [7], o " is the calcula-
tion of Vinogradov and Shevel’ko [8], oot = Ry*/3 is the calculation in the
Brandt-Lundqvist model [5].

In calculations of static polarizability in the Brandt-Lundqvist model the radius
of an atom (ion) was used that was calculated in view of the correlation allowance
in the Thomas-Fermi-Dirac model.

From the given table it follows that in most cases for static polarizability the
Brandt-Lundqvist method gives a satisfactory fit to the experiment for atoms (ions)
with filled shells.

So from the analysis of low-frequency and high-frequency limits it can be
expected that the use of the Brandt-Lundqvist model in the first approximation
gives a reasonable approximation for the dynamic polarizability of an atom (ion).

Given in Fig. 3.4 are the frequency dependences of the values w? Re{a(w)} and
? Im{a(w)} for a FeVI ion calculated in the Brandt-Lundqvist approximation in a
wide frequency range. The comparison with analogous dependences calculated in
the random phase exchange approximation for a multielectron atom [6] shows that
the calculation in the Brandt-Lundqvist model qualitatively correctly describes the
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smoothed functions m? Re{a(w)}, »? Im{a(w)} without considering peculiarities
caused by the shell structure of an atom (maxima and minima near the thresholds of
ionization of subshells).

Besides the Thomas-Fermi model for description of distribution of electron
density of an atom, a number of improved models is used, such as the Thomas-
Fermi-Dirac model and the Lenz-Jensen model [7]. Within the framework of these
models the radius of a neutral atom Ry is found to be a finite quantity in contrast to
the Thomas-Fermi model, in which Ry — oc. Moreover, for description of electron
subshells the Slater wave functions are used that are distinguished by simplicity and
ease in carrying out analytical calculations. These functions look like:

P,(r)= L prehr, (3.40)

wherey = (nl) is the set of quantum numbers characterizing an electronic state, 8, u
are the Slater parameters that are chosen in a special manner to satisfy the experi-
mental data on the energy of corresponding shells. The wave functions (3.40) are
normalized, have correct asymptotics at long distances. With the use of the
functions (3.40) the radial distribution of electron density of an atom in the Slater
approximation can be obtained as

n(r)=>_N,P}(r). (3.41)

The Slater electron density as well as the densities of other models of the atomic
core can be used in calculation of the dynamic polarizability of an atom in the local
plasma frequency approximation (3.35).

In more detail the methods of description of the core of multielectron atoms and
ions, including statistical models, are stated in Appendix 2.

The results of calculation of the real and imaginary parts of the dipole dynamic
polarizability of a krypton atom within the framework of the local plasma fre-
quency method by the formula (3.35) with the use of electron density according to
Slater and Lenz-Jensen are presented in Fig. 3.5. Shown in the same figure are the
results of calculation of corresponding values in the quantum-mechanical random
phase exchange approximation carried out in the work [6].

It is seen that the dynamic polarizability of a krypton atom calculated in the
local plasma frequency model for Lenz-Jensen electron density in a smoothed
manner renders the quantum-mechanical features of the frequency behavior of
dynamic polarizability that are most pronounced near the potentials of ionization of
electron subshells. Using the Slater wave functions within the framework of this
model makes it possible to detect to some extent spectral fluctuations of polariz-
ability near the potentials of ionization of electron subshells. In this case, however,
the universality of description characteristic for the statistical model of an atom is
violated.
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With the use of the formula (3.35) and the statistical model of an atom (see
Appendix 2) for dynamic polarizability the following expression can be obtained:

W, Z) = rpd (%) b;“" &(2>, (3.42)

5(v) :J 4nf(x)x?dx (3.43)

4nf(x) —v:—i0
0

where rrr = bay /Zl/ 3 is the Thomas-Fermi radius, Z is the charge of the atomic
nucleus, a is the Bohr radius, b 2 0.8853,4(v) is the dimensionless polarizability as
a function of the reduced frequency v = 7iw /2Ry Z, (Ry = 13.6 eV), xg = Ry /rrr is
the reduced atomic radius, f(x) is the universal function describing the distribution
of the electron density n(r) in an atom within the framework of the statistical model
according to the formula n(r) = Z*f(r /rrr).
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The explicit expressions for the function f (x) for a number of statistical models,
including the Thomas-Fermi and Lenz-Jensen models, are given in Appendix 2. For
example, for the Lenz-Jensen function the formula (A.46) is true. Though the
Thomas-Fermi function y(x), in terms of which the concentration of atomic
electrons (A.45) and the atomic potential are expressed, has no analytical represen-
tation, for this formula there are good approximations obtained by A. Sommerfeld.
These approximations, both for neutral atoms and for multielectron ions, are also
given in Appendix 2 (see the formulas (A.48), (A.49) (A.50)).

It must be emphasized that the dimensionless polarizability &(v) does not depend
on the charge of an atomic nucleus. Thus the representation of the dynamic
polarizability of a statistical atom (3.42) and (3.43) reveals the scaling law for
this value with respect to the parameter v.

Let us give the high-frequency asymptotics of the dimensionless polarizability
following from the formulas (3.42) and (3.43) with the help of the explicit form of
the functionf (x) for the distribution of the Thomas-Fermi and Lenz-Jensen electron
density (see Appendix 2). For the imaginary part of the dimensionless polarizability
a(v) we have:

Im{&" (v —o00)} — 4‘%, (3.44)
4.61
Im{a"~(v = 00)} — V64 2 (3.45)

From the formulas (3.44) and (3.45) it is seen that the above statistical models
give a close result for the imaginary part of polarizability. The high-frequency
asymptotics of the real part of the dimensionless polarizability &(v) in both models
of electron density of the atomic core look like

b73

Re{a(v — 00)} — —a (3.46)

which is in the qualitative agreement with the general formula (3.39). From
comparison of the expressions (3.44), (3.45) and (3.46) it follows in particular
that at high frequencies the imaginary part of polarizability decreases much more
rapidly than its real part.

Thus using the Brandt-Lundqvist model seems justified for the qualitative
description of polarization effects on multielectron ions and atoms for frequencies
o ~ Z and more.

In the low-frequency range the use of the plasma-statistical approach can require
some correction due to the fact that the potential of ionization of an atom within the
framework of statistical models has an underestimated value, especially for targets
with filled shells, so the characteristic features of the frequency dependence o(w)
are found to be shifted to the region of low frequencies. So in calculation of cross-
sections in the low-frequency range with the use of the Brandt-Lundqvist model for
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the dynamic polarizability of a target it is worthwhile to shift the frequency
dependence of polarizability to the region of high frequencies, so that the maximum
of its imaginary part falls on the potential of ionization of an atom.

3.2.2 Polarization Potential in the Bremsstrahlung Theory

For calculation of the polarization bremsstrahlung cross-section we will introduce
into consideration the potential of interaction of an incident particle with an ion
being in the external uniform electromagnetic field E(w). This potential looks like

op(r, »)

i Sk e’ 4
R’ (3.47)

Vo (R, ) = Jdr

here dp(r, ) is the spatial density of perturbation of an electron charge induced in
the ion core under the action of the external field, R is the radius vector of an
incident particle (IP).

It should be noted that the proposed approach is suited also for calculation of
spontaneous processes: in this case by E(w) the field of quantum fluctuations should
be understood.

The electron charge density perturbation dp(r, w) is related with the polarization
density induced in the ion core:

op(r,w) = div P(r, w). (3.48)

The value P(r, ®) in the local approximation is given by the formula (3.36).

The distribution of electron density in an atom (ion) everywhere in what follows
we will assume to be spherically symmetric.

Assembling the written-out formulas and using the expansion of the reciprocal
distance |r — R|71 in terms of spherical harmonics, after simple algebraic
transformations and integration with respect to angular variables we obtain for
the polarization potential in the local approximation the following expression:

Vo (R,0) = e B (r,w) 4nridr. (3.49)

RE(w) |
o |

It is essential that this formula describes the nondipole potential of interaction of
an IP with a perturbed ion core, which manifests itself in the presence of the
magnitude of the IP radius vector in the upper limit of integration. This circum-
stance has a simple electrostatic interpretation: an external charge interacts only
with part of the electron cloud inside the sphere of radius R.
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Thus the obtained polarization potential (Eq. 3.49) describes the effects
connected with penetration of an IP into the ion core.

Presented in Fig. 3.6a, b are the results of calculation of the real and imaginary
parts of the polarization potential normalized to the amplitude of the external
electric field for a KII ion. The calculation was made in the local plasma approxi-
mation with the use of the electron density of the ion core in the Thomas-Fermi-
Dirac model for two frequencies of the electromagnetic field ® = 0.9 a.u. (a), 3 a.u.
(b) by the formula (3.43). In both cases the real part of the polarization potential has
a maximum at a distance determined by the Eq. 3.38. At this distance the local
dielectric permittivity of a target becomes zero and at the same time an imaginary
additive to the polarization potential appears. It is seen from the figure that the
distance r,(w) (see Eq. 3.38) decreases with growing frequency. The function r, (w)
in the Thomas-Fermi-Dirac model is monotonically decreasing since the spatial
density of electron distribution in this model grows monotonically.

It is interesting to note that for any finite frequency (0 < w < 00) there is some
distance to a nucleus ro(w) (and ro(w) > r,(w)), at which the real part of the
polarization potential changes a sign. If it is taken into account that the interaction
force is equal to the derivative of the potential taken with the minus sign, it can be
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concluded from the form of the curves in Fig. 3.6 that at short enough distances
from the nucleus an IP is effectively attracted to the target under the action of its
polarization. At the same time at long distances the polarization interaction
corresponds to repulsion.

Using the expression for the polarization potential (Eq. 3.49), it is possible to
obtain the formula for a dipole moment induced in the ion core by a scattered
particle if it is taken into account that:

Vool(R, ) = —E(0) Dpo(R, o). (3.50)

From comparison of Egs. 3.49 and 3.50 we find
R R
D,.i(R,w) = ~C 3 Jﬁ(r, w)4n rdr. 3.51)
0

The dipole moment D,,;(R, w) induced in the atomic core is a function of the
external field frequency and the radius vector of an incident particle R.

In view of the explicit expression for the spatial density of polarizability (3.35)
from the formula (3.51) we find for the real and imaginary parts of the polarization
dipole moment

R 20 20
R pr(i)rdi

Re{D" (v, R)} = e V.P. 20) = (3.52)
0
Im{D*(»,R)} = R _n©) 0(R — ry(w)) (3.53)
’ R¥2 " |dw,(ry)/dr| P

where 0(x) is the Heaviside theta function, V.P. is the symbol of the principal
integral value.
The total radiating dipole moment of the system IP + atom (ion) is:

R
R
Dii(R, ) = ¢, R~ ¢ o3 J B(r,w)4n r*dr. (3.54)
0

It should be noted that following from the Eq. 3.54 is the simple relation between
the static and polarization dipole moments in the approximation under consideration:

R
1
D,,(R, ) = — Jﬁ(r,w)4nr2dr D, (R, o).
0
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The formula (3.54) is a primary formula for carrying out numerical calculations
of polarization effects in the local approximation. It corresponds to consideration of
two channels of the process: static (the first summand in Eq. 3.54) and polarization
(the second summand). Since these summands enter into the expression for the total
radiating dipole moment of the system target + IP, the expression (3.54), being
substituted in the standard formula for the process cross-section or corresponding
intensity, will describe also interference effects connected with the interaction of
channels.

3.3 Polarization Bremsstrahlung on a Multielectron Ion
in the Approximation of Classical Motion of an Incident
Particle

As was already noted, the Born parameter 7 characterizing the motion of plasma
electrons under conditions of thermodynamically equilibrium plasma is more or of
the order of one:

ZZ
n=%2 1. (3.55)

The inequation (3.55) is the reverse of the Born condition and corresponds (in
the strong inequality limit) to the quasi-classical approximation for IP motion. It is
within the framework of quasi-classics (or, more precisely, of the semiclassical
approach) that V.I. Kogans with coworkers [9, 10] have carried out the detailed
analysis of the static channel of bremsstrahlung on multielectron atoms and ions.
The so-called rotation approximation has been developed that allows rather simple
calculation of spectral cross-sections of main radiation processes including
photorecombination as well.

The comparison with quantum-mechanical numerical calculations [11] has
shown high accuracy of the semiclassical approach and in particular of the rotation
approximation in the theory of static Bs.

So it seems natural to use the semiclassical approach also in investigation of
polarization Bs on a multielectron ion and to design on its basis the generalization
of the rotation approximation including the description of the polarization channel.

As known [12], in classical consideration of a collisional-radiative process the
value « is introduced that is called effective radiation by the formula

K= J AE(p)2mpdp, (3.56)
0

here AE(p) is the total radiation of one IP with the specified impact parameter p.
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Further we will be interested also in spectral effective radiation di(w)/dw, the
expression for which in the dipole approximation for interaction with an electro-
magnetic field for a spontaneous process looks like

dr(w 4 * T
) 2% [ p@.)fpap, (3.57)
0

where D(w, p) is the Fourier transform of the radiating dipole moment of the system
at the frequency w calculated along the trajectory of an IP characterized by the
impact parameter p.

Between the value di/dw and the spectral cross-section of bremsstrahlung
do /do there is a simple connection:

b, do
do  do’

To take into account interference-polarization effects, asD(w, p), further we will
use the temporal Fourier transform of the total dipole moment

+00
Dtot(wa ,0) = J Dlot(R(ta P Vi)7 w)eiwldt; (358)

—00

in which the function D,,(R, ) is given by the expression (3.54). It should be noted
that the dimensionalities of D,,, (R, ®) and D,,,(®, p) do not agree: the first value has
the dimensionality of the electric dipole moment, and the second value has the
dimensionality of its Fourier transform.

Thus in classical calculation of spectral effective radiation it is necessary to
know the law of IP motion:

R =R(¢,p,vi), (3.59)

here v; is the initial IP velocity.

In investigation of strongly inelastic processes of scattering corresponding to IP
motion along strongly curved trajectories it is convenient to express the temporal
Fourier transform of the dipole moment of an IP (the first summand of the formula
(3.54)) in terms of the Fourier transform of the force acting on the IP on the side of a
target. Then from Eq. 3.54 the following expression for the Fourier transform of the
total radiating dipole moment of the system (the formula (3.58)) can be obtained:

sz(w,P) — ép {E dU(R)

R 2
o R W}w‘p — e g J/)’(r, w)4nridr . (3.60)
0

,p
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Here the braces designate taking the Fourier transform in view of the depen-
dence Eq. 3.59.

Thus the expressions (3.56), (3.57), and (3.60) give the formal solution of the
problem under consideration. Further simplification of these formulas is impossible
since the dependence Eq. 3.59 for IP motion in the Thomas-Fermi potential (and its
modifications) has no analytical description (in contrast to motion in the Coulomb
field).

To carry out numerical calculations, it is convenient from the independent time
variable (7) to go to the independent variable R — the distance from an IP to the
nucleus. For this purpose we will use the standard representation of trajectory time
and angle of rotation of the IP radius vector in terms of R and the parameters p and v;:

R
dR
HR, p,v;) = & 3.61)
( p ) J Vr(R»P7Vi)
rmin(ﬂsvi)
T dR
R i) =pvi _ 3.62
P(R, p,vi) = pVi J R p V) RE (3.62)
Tmin(0,Vi)

here v, (R, p, v;) is the radial IP velocity, the expression for which looks like

vi(R, p,vi) = \/vi2 +2|U|/m, — v2p?/R?, (3.63)

min (0, Vi) is the minimum distance of IP approach to the center of the scattering
potential determined by solution of the equation

vi(R, p,vi) = 0. (3.64)

Using the Egs. 3.60, 3.61, 3.62, and 3.63, it is possible to calculate the Cartesian
projections (on the focal axes of coordinates — see Fig. 3.7) of the Fourier transform
of the radiating dipole moment of the system according to the formulas:

o]

(D) (0.0) =2 | cos(il ) cos(w (R p)) Dy, R

Tmin

. (3.65
wkpy O

where D, (w, R) is the magnitude of the vector (3.51).
The expression for (D,,(,;)y is obtained by replacement in Eq. 3.65 of cosines by
sines.

The diagram of IP scattering by an atom (ion) with indication of the coordinate
axes and the angle ¢ is presented in Fig. 3.7.
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We will give the results of calculations of spectral effective radiation for electron
scattering by a KII ion for the following values of parameters v; =1.4 a.u.,0 = 0.9 a.u.
The choice of these values is caused by the fact that under conditions of thermody-
namically equilibrium plasma of most interest is emission of thermal energy electrons
(of the order of the ion ionization potential) of photons with an energy close to the
initial IP energy. (The potential of ionization of a KII ion is 1.16 a.u.)

To calculate the dipole moment induced in the ion core, we will use the target
polarizability density in the Brandt-Lundqvist approximation (the formula (3.35))
shifted in frequency to the value Aw = 0.6 a.u. towards high frequencies. Then the
frequency dependence of the dynamic polarizability of the ion core will be
approximated to its quantum-mechanical analog.

The electron density of the ion core defining the local plasma frequency was
calculated on the basis of numerical integration of the Thomas-Fermi-Dirac equa-
tion (with exchange and correlation allowances) with the use of the reduced ionic
radius xo = 8.91 relative units. It will be recalled that the reduced ionic radius is the
ratio of the ionic radius R to the Thomas-Fermi radius azr = 0.8853 / Z'3 au. In
this case the “local plasma radius” (see Eq. 3.38) is r,(w) = 2.77 a.u.

Let us introduce into consideration the characteristic radius of radiation in the
Kramers limit — r,s(w, v;) — (see [13]), being the solution of the equation

2.2
i WO (3.66)
m, 2

(Y

This value defines the effective distance of radiation by the static channel. It is
essential that in the Kramers limit the value r,s(w, v;) grows with initial velocity.

For the reduced values of parameters and the distribution of electron density of
the ion core of a KII ion in the Thomas-Fermi-Dirac model we have: ref(a), Vi) =
1.98 a.u.

To clarify the appropriateness of using the quasi-classical approach, it should be
noted that besides the “global” criterion of quasi-classics (Eq. 3.55), there is also a
local criterion that in a three-dimensional case looks like:
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_ i div(p(r))

loc r
() pA(r)

<<1. (3.67a)

The expression for the local parameter (3.67a) can be rewritten within the
framework of the rotation approximation [10] as follows:

0" (rer) = Arer) frep <<1, (3.676)

here 7, is given by the formula (3.66). The value (Eq. 3.67b) in the case under
consideration is: 7 (r,r) = 0.22.

For a special case of a Thomas-Fermi atom (ion) in [10] the analog of the
“global” parameter (3.55) was obtained, the reciprocal of which ¢ = 1/n is given
by the formula

(3.67¢c)

Hence for the IP velocity v; = 1.4 a.u. we find: ¢ = 0.017<<1.

Thus the values of the parameters of motion of an IP and a target ion under
consideration satisfy the conditions of the quasi-classical approximation for the
static Bs spectrum.

The condition of subline quasi-classicity (radiation from the trajectory with a
fixed impact parameter p) can be written as:

pvim VIT+1) ~ 1+ 1/2>>1. (3.68)

The condition (3.68) in our case gives p>>1 a.u.

Shown in Fig. 3.8 are the dependences of integrands in the definition of the
Fourier transforms of the x- and y-components of the dipole moment induced in
the core of a KII ion (the real part) on the distance to the nucleus for two values of
the impact parameter: (a) p = 1.75 a.u. and (b) p = 3 a.u.

In the first case the y-projection of the real part of the induced dipole moment is
maximum (ReD, = 2.92 a.u., ReD, = 1.1 a.u.), in the second case the x-projection
is maximum (ReD, = 2.4 a.u., ReD, = 1.59 a.u.).

From Fig. 3.8 it follows in particular that the maximum of the x-component of
the dipole moment is reached at the minimum (for the given impact parameter)
distance to the ion nucleus. The maximum of the y-component falls on the distance
equal to the “plasma” radius r,(w) (for those impact parameters, for which the
inequation rmin(p) < r,(w) is satisfied).

From Fig. 3.8b it is seen that the integrand for the x-component sharply grows
if the equation rmin(p) = r,(®) takes place. This equation separates the trajectory
of IP motion, at which polarization Bs caused by the x-component of the dipole
moment induced in the ion core has maximum.

Let us represent the dependence of the projections of the dipole moments on the
impact parameter p as a table (Table 3.2).
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Table 3.2 Projections of dipole moments as functions of impact parameter [a.u.]

P 1 15 2 25 3 4 5 6
Tonin 0163 08 1.58 22 274 376 475 5.7
ReDp, 0.1 1.48 1.0 148 24 073 036 016
ReDp,  —1.59 2.1 2.9 24 1.7 086 033 017
ImDp,  —037 115 —003  -022 105 08 029 013
ImDp, -1 0.54 1.1 1.25 133 068 03 0.14

The parameters of calculation were corrected by the conformity of results for the
Coulomb potential to exact analytical expressions for the scattering angle.

The calculation in the statistical Thomas-Fermi-Dirac potential shows that for
impact parameters lesser than 1.4 a.u. the scattering angle exceeds 180°, which
corresponds to beginning of the phenomenon of IP twisting around the target.

On the other hand, for these impact parameters the condition of subline quasi-
classical condition is violated, which nevertheless is found to be inessential for
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P, a.e.

Fig. 3.9 The dependences on the impact parameter of the x- (solid curve) and y- (dotted curve)
components of the dipole moment induced in the KII ion core (the real part) at the frequency
® = 0.9 a.u. in the Brandt-Lundqvist model [5] and the quasi-classical approximation for IP
motion

Table 3.3 Effective radiation by the static and polarization channels [a.u.]

Projections, x-projection real y-projection real Total for each
channels imaginary imaginary channel

Static 8.84.10°° 29-10°° 1.17-1073
Polarization. 53107° 1.5107° 54107% 2.4.107° 1.46-107°

calculation of the polarization channel since small distances to the nucleus make a
small contribution to it.

The contribution of these impact parameters (p < 1.4) to effective radiation by
the polarization channel is about 1 %.

The obtained dependences of the Fourier transforms Re D,,(w, p) on the
impact parameter p are presented in Fig. 3.9. From this figure it follows in
particular that the maximum of the x-component of the induced dipole moment
in the ion core falls on the impact parameter p,,,, that is approximately equal to the
“plasma” radius 7;,.

The results of calculation of the values of effective radiation (in atomic units) by
the static and polarization bremsstrahlung channels with subdivision to the
contributions of the x- and y-projections are given in Table 3.3.

From Table 3.3 it is seen that in the polarization channel the contribution of the
y-projection of the dipole moment induced in the core is comparable (and even
somewhat exceeds) the contribution of the x-projection in contrast to the relation of
these contributions to radiation by the static channel. This circumstance is a conse-
quence of the effect of penetration of an IP into the core of a target. This penetration
more strongly acts on the x-projection, reducing it, than on the y-projection. Formally
this can be explained by the fact that in motion of an IP along one of the halves of its
trajectory its x-coordinate changes a sign when crossing the abscissa of the point of
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location of the target nucleus, and the y-coordinate is constant-sign and approaches its
zero value only at the point of turn of radial IP motion (see Fig. 3.7).

Let us introduce the R-factor characterizing the relative contribution of the
polarization channel to bremsstrahlung by the formula:

_di (o)

R(w) —m.

(3.69)

From the data of Table 3.3 the value of the R-factor in the case under consider-
ation can be determined:

{(R%E (0 =109 au., pp, = 1.4a.u) = 1.24. (3.70a)

It should be noted that in the value of effective radiation by the static channel an
uncertainty remains that is connected with the problem of choosing the lower limit
of integration with respect to the impact parameter in the formula (3.36).

For comparative estimation of the relative value of the polarization channel we
will use the result of calculation of the static channel contribution within the
framework of the rotation approximation (see the paper [10]).

The calculation in the Thomas-Fermi-Dirac model for spectral effective radia-
tion by the static channel gives:

d rot
{&} (KII, © =09 a.u.) =546 x 10 a.u.
do ) rrp

Hence it follows that the R-factor within the framework of the rotation approxi-
mation is:

{RYSTep (KIT, @ =09 au.) = 2.67. (3.70b)

However, it should be remembered that the Thomas-Fermi-Dirac model within
the framework of the rotation approximation somewhat overestimates the result just
for frequencies @ < 1 a.u. since in this case the effective radius of radiation . (see
3.66) is found to be of the order of the boundary size of an ion, where the statistical
model has the greatest error.

So for more correct estimation of effective radiation within the framework of the
rotation approximation we use the ion potential in the Slater approximation. Then
instead of Eq. 3.70b it can be obtained:

d rot
{ K } (KII, » =09 au.) =472 x 10 a.u.,
do Slater
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and correspondingly:

{RY et Starer (KI, 0 =09 a.u) =3.1. (3.70c)

Thus it can be concluded that the classical estimation for the above values of
parameters gives the following lower boundary for the value of the R-factor at a
frequency near the potential of ionization of a KII ion for IP of threshold energies
(T is the IP energy):

R(KIl, ho =1, ~T) >2 (3.71)

and therefore the contribution of the polarization channel exceeds appreciably the
contribution of the static channel to effective radiation of bremsstrahlung.

This conclusion is rather essential since it relates to characteristic “plasma”
frequencies (of the order of the ion ionization potential) and a strongly inelastic
process, when radiated energy is of the order of the initial IP energy. It is just the
situation that is characteristic for Bs in plasma.

3.4 Polarization-Interference Effects in the High-Frequency
Limit

From the consideration of effective radiation in collision of an IP with a structural
target that was carried out in the previous paragraph within the framework of the
classical description of IP motion it follows that the calculation by the obtained
formulas is a multistep problem requiring trivariate integration with a singular
integrand even for the spectral cross-section. The calculation of the total brems-
strahlung loss, accordingly, results in a quadrivariate integral.

As is known, for static Bs the calculation of total effective radiation is simplified
considerably since it is possible to carry out a number of integrations analytically,
and the resultant expression (in case of the central potential of scattering) is a single
integral, from which all temporal characteristics of IP motion dropped out.

If the polarization channel is taken into account, the situation changes cardinally
since the frequency dependence of target polarization in the general case does not
allow frequency integration in the expression for total effective polarization
radiation.

Assembling the formulas (3.56), (3.57), (3.58), (3.59), and (3.60), we obtain for
the total bremsstrahlung loss by the polarization channel in the local plasma
frequency approximation:

4 mpvi2/2h 00 400 R R(1,p) :
e , ¢
Kpol :# J w“dwjpdp J dtel‘“’# J B(r,w)dnridr| . (3.72)

0 0 —00 0
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The upper limit of frequency integration reflecting the presence of a short-
wavelength limit in Bs is a corollary of quantum relations (the semiclassical
approximation [9]) introduced into the classical consideration.

It should be noted that in calculation of the temporal Fourier transform in the
formula (3.72) it is possible from time integration to go to integration with respect
to the variable distance of an IP to the nucleus R if the radial velocity of IP motion
by the formula (3.63) is introduced and the dependences (3.61), (3.62) for the
trajectory time and the angle of IP rotation are used.

The description of polarization-interference effects in Bs on a multielectron ion
(atom) is simplified considerably in the high-frequency limit, that is, for frequencies
much more than the characteristic frequencies of electrons of a target ion. As a
result, it appears to be possible to carry out analytical transformations of the
formulas describing polarization Bs and to give their descriptive physical
interpretation.

Most considerably simplified is the expression for total effective radiation (total
bremsstrahlung loss of energy).

Really, in the high-frequency limit the spatial density of the polarizability of the
target electron core will be written as:

2 -
B (r,0) = - em';();) . (3.73)

It should be noted that the value (3.73) is dimensionless since the concentration
of the electron core n(r) has the dimensionality of the reciprocal volume.

For the radiating dipole moment of the core (the polarization channel) with the
use of the formulas (3.51) and (3.73) we find the following simple expression:

2
e
Dﬁj;z(R’ w) = i N(R), (3.74)
here
R
N(R) = Jn(r)47zr2 dr (3.75)
0

is the number of target electrons inside the sphere of the radius R. It should be
recalled that R is a distance from an IP to the nucleus of the target.

The physical meaning of Eqgs. 3.74 and 3.75 is that the contribution to polariza-
tion Bs is made only by the electron density of the target inside the said sphere. The
latter is the reflection of the electrostatic fact that a charge placed inside the
uniformly charged spherical layer will not experience the Coulomb force. This is
true for the process under consideration without real excitation of target electrons
since then the core electrons are equivalent to the charge distribution that does not
change its geometrical form.
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Substituting Eqs. 3.73 in 3.72 results in reduction of frequency degrees, and as a
result, changing the order of integration, we obtain:

Vi2/2

L depJJdtdt’ J efw<f—f’>dwl%zv(1e<z))N(R(r’». (3.76)
0

Then we use the equation
o
Re J N dw Y = 1ot —1).
0

The upper limit here is assumed to be equal to infinity according to the quasi-
classical condition 7—0. Going in the formula (3.76) to the integration variable R
(after such a replacement the lower limit of integration becomes equal to rmin(p),
and the result is multiplied by 2 due to the parity of the integrand in the formula
(3.76) relative to the change of a time sign) and performing integration with respect
to the impact parameter p, we find:

i sne? [ ) 2U(r) ,
xpf;,:m £2,(r) I—Wrdr. (3.77)

The value f,,(r) appearing here, that is natural to be called polarization force, is
determined by the equation:

N
Tpol(r) = ¢pe r(zr ), (3.78)

This force (repulsion) acts on an IP on the side of target electrons located inside
the sphere of the radius R. With the same force (according to the Newton’s third
law) the IP accelerates target electrons moving as a single cloud of negative charge,
causing polarization Bs.

Let us give here also the expression for total effective radiation by the static
channel (see [9]):

8ne2 [ (dU(r)\? 20(r)
= 4 1 - 2dr. 3.79
=3 m2v; J < dr ) myv? na (3-79)
0

It is well seen that the formulas (3.77), (3.79) have a quite similar structure, only
the last expression includes the ordinary “static” force:

fa(r) = — d(éir) . (3.80)
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In spite of significant similarity of the Eqgs. 3.77 and 3.79, there is also a
significant difference between them: the integral of Eq. 3.77 is divergent at the

lower limit (in a quasi-classical case as fr’s/ 2dr) and requires a “cutoff”.
0

The “polarization” integral of Eq. 3.79 at the lower limit is convergent. This is a
corollary of taking into account the penetration of an IP into the target core, with the
result that the effective electron charge of a ion defining radiation by the polariza-
tion channel in the high-frequency limit under consideration decreases.

As a cutoff radius for static effective radiation (3.79), the effective radius of
radiation (the formula (3.66)) r.s(w) at a frequency corresponding to the initial IP
energy is chosen: im = mv? /2.

The formulas (3.76) and (3.77) describe the contribution of each channel to the
effective cross-section individually. In fact, in the high-frequency limit under
consideration interchannel interference is found to be rather considerable. For
total effective radiation of an electron the following expression can be obtained
in much the same way as this was done above:

: 8ne? [ 2 2U(r
Kl = 3oy, J (Fu(r) = Fpot(r)) ™41 — —(2);~2dr. (3.81)

mvs;
0

If an effective static charge for an incident electron is introduced by the formula:

d
Zop(r) = €72 ue) 2, (3.82)
2 dr
then instead of Eq. 3.81 we have:
gnes [ 20(r)
W _ 2 =2
Kiot = 303 2 " J (N(r) —|—Z€f(r)) 1- m—vfl dr. (3.83)
0

Hence it is seen that total effective radiation including interchannel interference
in the high-frequency limit is defined by the total charge

Z = N(r) + Zys(r) (3.84)

that is equal to the charge of the ion nucleus.

To illustrate this fact, given in Fig. 3.10 are the radial dependences of effective
polarization (curve 1), static (curve 2), and total (curve 3) charges for a KII ion
calculated in the Slater model. It is seen that the total charge (3.84) is really equal to
the charge of the ion nucleus.

This circumstance is an analog of the effect of atom “stripping” that was for the
first time established in the Born approximation [14] for a case of quasi-classical IP
motion with penetration into the target core.
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From Fig. 3.10 it is seen also that the values of effective static and polarization
charges are compared for a KII ion at a distance about 0.6 a.u. from the nucleus. At
longer distances the “polarization” force prevails, at shorter distances the “static”
force prevails. In this case it should be remembered that the high-frequency
approximation under consideration is true for high enough frequencies

> m.

The analysis shows that the characteristic frequency @ for a KII ion is about
15-20 a.u. (for higher frequencies the polarizability of the target core is close to its
high-frequency limit). The effective radii of radiation determined by the Eq. 3.66 in
this frequency range satisfy the inequation r,; < 0.4 a.u. So the “static” force
always exceeds the “polarization” force in the region of truth of the high-frequency
approximation.

3.5 Description of Polarization Effects Within the Framework
of the Generalized Rotation Approximation

The aim of this paragraph is to simplify the expression for polarization Bs to simple
enough calculation formulas. This will allow carrying out numerical estimations of
the process cross-sections by the order of magnitude in a wide frequency range in a
single manner for any nuclear charges and degrees of target ion ionization and,
moreover, it makes it possible to establish qualitative regularities of a phenomenon
without resorting to cumbersome calculations. The consistent approach (naturally,
within the framework of the plasma model for polarizability) does not allow
obtaining simple calculation formulas for spectral effective radiation even in the
high-frequency limit.
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At the same time, as was already said above, in the theory of static Bs there is a
rather effective method of approximate calculation of intensity of radiation of a
quasi-classical particle, so-called rotation approximation [10], that from the stand-
point of the result was found to be more adequate than the consistent classical
consideration.

The physical basis of this approach is in the space limitation of a region
responsible for radiation by an IP of photons with high enough frequency. The
high-frequency behavior, more precisely, the “Kramers behavior”, is understood
from the standpoint of fulfilment of the inequation [3]:

3
my,vs;

o> o =L (3.85)
: Zef ep

In this case an IP radiates mainly near the point of turn of its radial motion. It
should be noted that quantitatively the rotation approximation also gives a reason-
able result in the case v ~ a)ecfo"l .

For the Bs cross-section integrated with respect to the impact parameter the
effective distance (7, ) depends only on the radiated frequency and the target
potential and is determined by the Eq. 3.66.

Formally the rotation approximation corresponds to “introduction” into the
Eq. 3.60 for total effective static Bs of the delta function of the difference of

frequencies w and the IP rotation frequency at the distance r,:

\/vi2—|—2 ’U(r)/mp|.

/4

Oror(r) = (3.86)

Thus we come to the following formula for spectral effective radiation in the
rotation approximation [10]:

szz(G)) 8 €I% T dU(I’) 2 U(I‘) X
= 1 _ _ ) . 5 ‘.
{ dw }mt 3¢3 m[% \'A dr mpvi2/2 5(0) wiot(’ ))’ dr
0

(3.87)

It seems attractive to generalize the rotation approximation for taking into
account radiation by the polarization channel as well.

This is hardly possible to be done strictly since even the static rotation approxi-
mation Eq. 3.87 is obtained on the basis of intuitive considerations. So the approach
developed below is qualitative, pretending only to the numerical estimation of
cross-sections by the order of magnitude.

In the formula (3.87) the information on the vector nature of the radiating dipole
moment of an IP is lost. It is connected with the fact that in the high-frequency
approximation Eq. 3.85 the main contribution to the process cross-section is made
by the x-component of the IP dipole moment. The situation is different for the
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polarization channel: for the parameters given in Table 3.3 the contributions of both
projections are approximately equal. Therefore in generalization of the rotation
approximation for taking into account the polarization channel it is necessary to
take into account the features of spatial formation of both Cartesian projections of
the dipole moment of the ion core on the axis of the focal system of coordinates.

As seen from Fig. 3.9, the Fourier component of the y-projection of the radiating
dipole moment of the target core is defined by the distances of the order of r,(w)
(see the formula (3.38)), while the x-component is defined by the distances of most
IP approach to the target 7, (the Eq. 3.66).

So it is natural to do the following generalization of the rotation approximation
to the polarization channel:

dicpor (o) | dipu (o) T (drpor ()
o m ) ew

y

here
ro. 2
dip "' _ 87> || R)[ ViR, p=0) (3.882)
do | 3m?3v? |d,or/dR)| R () '
=re(@
and
] 2
degl roti 8 TC€2 ‘f)})?o (va)‘ Vr(Rv p= 0) (3 88]3)
do [, 3m? v} |dew, /dR| .
R=r)(w)

The expression for the projection depending on the polarization force frequency
is the generalization of the high-frequency analog:

R
fP (0, R) = ey ——> Jﬁ(r, w) 4nridr. (3.89)

Quantitatively the use of the formula (3.89) instead of Eq. 3.78 means elimina-
tion of the abnormally great contribution of low frequencies to the cross-section of
polarization Bs arising in case of using the high-frequency approximation near the
threshold of target ionization.

It should be noted that the formula (3.89) can be also rewritten in the form
similar to Eq. 3.78:

R,
W =eep—i Ny (R, 0), (3.90)
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here

R
2
Ny (R, w) =2 Jﬁ(r,w)4nr2 dr (3.91)
0

e2

is the effective electron charge depending on the frequency and distance to the
target nucleus and defining the cross-section of Bs by the polarization channel.

The above formulas for the polarization Bs channel correspond to the simple
physical interpretation of this process in the spirit of classical electrodynamics as
radiation arising due to acceleration of the effective electron charge of a target
under the action of a force from the side of a scattered IP.

According to subdivision of spectral effective radiation by the polarization
channel into the sum of contributions of two projections of the induced dipole
moment of the target for the spectral R-factor determined by the relation (3.69),
within the framework of the generalized rotation approximation it can be written:

1 4
R (o) =3 (R';”(co) +Rj;”(w)). (3.92)

The numerical coefficient in Eq. 3.92 arose due to approximate replacement of
the mean squares of sine and cosine of the angle of IP rotation (see Eq. 3.62) by 0.5.

Given in Fig. 3.11a are the frequency dependences of three types of the R-factors
appearing in the formula (3.92) for a KII ion and threshold energies of an IP. It is
essential that the values of the R-factors are compared far from the threshold of
target ionization. Near the threshold (for IP energies under consideration) the
contribution of the y-component prevails.

The analysis within the framework of the approximation under consideration
shows that with growing IP energy the relative contribution of the x-component
increases, reaching its maximum value at the energy (T = mj, v /2) determined by
the equation:

Tef(@,T) = rp(w) (3.93)

The physical meaning of the formula (3.93) is clear: the generalized rotation
approximation predicts the optimum value of initial energy of an IP, at which the
effective radius of radiation by the static channel coincides with the “plasma”
radius corresponding to the maximum of the spatial density of target polarizability
at the given frequency . For7i = 24.5 eV the IP energy satisfying the Eq. 3.93 is
T, = 75 €V in scattering by a KII ion.

Using this model makes it possible to answer an important question: beginning
from what frequencies does the high-frequency approximation for the polarization
Bs channel work? The comparison of calculation results in the generalized rotation
approximation with the high-frequency spectral R-factor is given in Fig. 3.11b.
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From this figure it is seen that the high-frequency approximation in scattering of an
IP of threshold energy by a KII ion is true for @ > @™ = 20 a.u. With growing IP
energy the value o™ increases.

Let us give the results of calculation of total effective radiation by the polariza-
tion channel with the use of the generalized rotation approximation. The
corresponding expression (in a somewhat simplified version) looks like:

4

o 8mel e UR) . _
% ’(T):W J N2 (R, @ror(R,T)) lfTdeR, (3.94)

rmin(T>

here rmin(T) = rep (T, T).
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Table 3.4 Effective radiation by different channels of a quasi-classical electron on a KII ion
depending on IP energy

T, a.u. IP energy 3 4 5 10 20
min(T), a.u. 1.9 095 085 0.6 0.42
x*(T) 10°, a.u. rotation approximation 0.58 074 086 1.12 126
1P°/(T) 10°, a.u. generalized rotation approximation 0.56 073 086 1.14 115
xP°/(T) 10°, a.u. high-frequency approximation 13.2 10 9 5.4 32

Though the integral in the formula (3.94) is convergent, we introduced a “cutoff”
at the same lower limit as for the static channel since the “non-classical” region of
small distances to a nucleus makes a significant contribution for Thomas-Fermi
electron distribution overestimating the real electron density near the nucleus. The
results of numerical estimations on the basis of the obtained expressions are
presented in Table 3.4

In the second line of the table the values of the lower limit in the integrals of
Egs. 3.80 and 3.60 determining total effective radiation by the polarization and
static channels are given. It is characteristic for the quasi-classical limit that this
value rather weakly decreases with growing IP energy. This defines the weak
dependence of total effective radiation on IP energy.

From the calculations carried out within the framework of the generalized
rotation approximation it follows that for quasi-classical energies of an incident
particle (in terms of fulfilment of the inequations (3.55)) the values of total effective
radiation of an electron on a K/I ion by the static and polarization channels are much
the same. The high-frequency approximation overestimates considerably the con-
tribution of the polarization channel, in particular for low IP energies.

The developed approach allows numerical estimations of the contributions of
both Bs channels for a wide range of parameters: the charges of ion nuclei Z, the
degree of their ionization ¢ = Z;/Z, the frequency of radiation. For this purpose it is
convenient to use the Sommerfeld analytical model for the Thomas-Fermi function
[7] (see the formulas (A.48) and (A.49)) that makes it possible to carry out
calculations rather simply. The results of calculations of the spectral Bs
characteristics in the generalized rotation approximation for a wide frequency
range and IP of threshold energies (i ~ T) are presented in Fig. 3.12a, b.

Following from Fig. 3.12 are the important corollaries of calculations within the
framework of the generalized rotation approximation. The contributions of the
polarization and static channels to the spectral cross-section of Bs on a KII ion
for electrons of threshold energies are compared (R = 1) at the frequency
® = 10 a.u. The maximum of the R-factor is reached for frequencies of the
order of the target ionization potential. In this case the generalized rotation approx-
imation gives the following value for the R-factor: R[%\, ~ 3. It should be noted that
this value represents a lower estimate since the Brandt-Lundqvist model
underestimates the value of polarizability.

In the model under consideration the R-factor depends on IP energy (T), growing
with T. This has a simple qualitative explanation. With the increase of energy
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(limited by the conditions of usability of the rotation and quasi-classical
approximations) the effective radius of the static channel increases: as a result,
the effective charge of an ion decreases, the effective electron charge of the core
grows.

Given in Fig. 3.12a are the frequency dependences of effective radiation by the
polarization (solid curve) and static (dotted curve) channels for a Thomas-Fermi ion
(the charge of the nucleus is Z = 60, the degree of ionization is ¢ = 0.05) up to the
kiloelectron-volt energy of a bremsstrahlung photon. It is seen that both
dependences have a maximum, and for the polarization channel it is shifted towards
lower frequencies. With growing energy of a bremsstrahlung photon effective
radiation by the polarization channel (after achievement of the maximum)
decreases faster than by the static channel. This is connected with the effect of
penetration of an IP into the electron core of a target ion, which, on the one hand,
results in increase of the effective charge of the ion defining static Bs, and on the
other hand, reduces the dynamic (nondipole) polarizability of the ion core causing
polarization Bs.

Presented in Fig. 3.12b are the spectral R-factors for two values of degree of ion
ionization: ¢ = 0.1 (solid curve), ¢ = 0.2 (dotted curve) and the charge of the ion
nucleus Z = 60. It is seen that the maximum of the R-factor for an ion of lower
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charge is reached at lower frequencies, the value of the maximum R-factor is more
in magnitude for an ion of a lower degree of ionization. This is explained by higher
effective charge and lower nondipole polarizability for an ion of higher charge.
With growing photon energy these distinctions (for a multielectron ion) are
smoothed, and the values of the R-factors of ions under consideration at higher
frequencies are equalized.

Thus it is possible to make a conclusion about the important role of effects of
penetration of a radiating electron into the target core for correct description of Bs
on multielectron ions of IP of threshold energies. Without considering this phe-
nomenon a qualitatively incorrect result is obtained. For example, the R-factor with
growing frequency will tend to the value 1 — ¢ (equal to the ratio of the number of
bound electrons to the nuclear charge), but not to zero as it should be according to
the physics of the process.

Presented in Fig. 3.13a, b are the dependences of the spectral R-factor on the ion
charge for different Bs frequencies (a) and nuclear charges (b) calculated for IP of
threshold energies. This figure demonstrates the presence (within the framework of
the generalized rotation approximation used here) of the optimum ion charge Z;” ‘e,
at which the value of the R-factor (at a frequency characteristic for a given ion) is
maximum. This circumstance is a nontrivial fact. Really, for a one-electron ion (and
in the case ¢ ~ 1) the function R(Z;) is monotonically decreasing since then the
value defining the R-factor is proportional to the reciprocal ion charge:
w?a(w)/Zi(w) o< 1/Z; (for frequencies of the order of the ion ionization potential).

For a multielectron ion the behavior of this dependence is unobvious, and in the
general case an answer can be given only within the framework of the approximate
description of Bs.

From Fig. 3.13a it follows that the optimum charge Z” " ¢ grows with decreasing
frequency of radiation, and the maximum value of the R-factor in this case
somewhat decreases. With growing charge of the ion nucleus (Fig. 3.13b) the
value Zf” "¢ is shifted to the region of high values, and the value of the R-factor
appreciably increases. At the same time for low ion charges the R-factors calculated
at corresponding (different!) characteristic frequencies do not depend on the
nuclear charge.

Let us apply the obtained formulas for calculation of spectral effective radiation
in scattering of an electron with an energy of 1 and 10 keV by tungsten ions with
different charges. The corresponding diagrams are given in Figs. 3.14 and 3.15.
From the given figure it follows that the static channel prevails over the polarization
channel throughout the region of frequencies.

With growing IP energy, as seen from Fig. 3.15, a spectral range from 350 to
750 keV takes place, in which the polarization channel prevails over the static
channel. According to Figs. 3.14 and 3.15, effective radiation by the polarization
channel has a maximum in the low-frequency region of the spectrum that is shifted
to the region of high photon energies with increasing IP energy.

Presented in Fig. 3.16 are the calculations of the spectral R-factor (3.69) for Bs of
different energies on tungsten ions.
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Fig. 3.15 The spectrum of effective radiation in scattering of an electron of energy 10 keV by a
tungsten ion with the charge Z; = 38: solid curve — static channel, dotted curve — polarization channel

8 T T T
R
6F it .
4F i .
2r ."’ 1
':'I _/'; “\‘____,:‘-'\:_ _________________________
0 500 1x103  1.5x103 2x103
o, eV

Fig. 3.16 The spectral R-factor for Bs on tungsten at different ion charges and IP energies: solid
curve — Z; =20, E = 1 keV,; dotted curve — Z; =38, E = 1 keV; dashed curve — Z; =20,
E = 10 keV; dash-and-dot curve —Z; =38, E =10 keV

It is seen that with growing IP energy (10 keV) the contribution of PBs grows
especially for rather low ion charges Z; =20, when the maximum R,,,, = 6.8 is
observed in a low-frequency range of the order of 200 keV. With increasing ion
charge (at the same IP energy of 10 keV) the maximum of the spectral R-factor is
shifted to the region of high photon energies (about 500 keV), becoming in this case
more wide. In case of low IP energies (1 keV) the R-factor is less than one
throughout the spectral range for the considered tungsten ions. This is explained
by deep penetration of an IP into the ion core for emission of a photon at a low IP
energy (1 keV).

Thus the use of the generalized rotation approximation in the description of
polarization effects for IP of threshold energies on multielectron ions is found to be
rather effective for revealing qualitative regularities of behavior of both Bs channels.
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At the end of this paragraph we will make a useful remark on determination of
the effective charge of an ion in the rotation approximation Z;'ji” e (eis the elementary
charge) that, in particular, can be used in estimation of effective radiation by the
static channel on the basis of the known Kramers formula:

ram 6
do 33 mvicd '

The matter is that the simple use of the formula (3.79) with substitution of the
effective radius of radiation in it leads, generally speaking, to an incorrect result.
The correct expression for the charge number ZZ;’ can be obtained from Eq. 3.87

with the use of simple algebraic transformations, it looks like:

ot _ 2 |dU dr|

, 3.96
: e \/e2 +au/dr|/(mw?r) (3-96)

r=rq(w,T)

where e is the elementary charge.
For Bs on a KII ion in the Thomas-Fermi-Dirac model from Eq. 3.96 we find:

Z(w=09au, T=1au)=183 and, accordingly, dk (w,Zy) Jdw =
6.3 x 107% a.u..
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Chapter 4
Bremsstrahlung in Plasma with Account
for the Polarization Channel

4.1 Total and Spectral Intensities of Radiation of Quasi-
Classical Electrons on Atoms and Ions

At the beginning of this chapter we summarize the general expressions describing
bremsstrahlung of quasi-classical electrons on targets both having an electron core
and representing a “bare” atomic nucleus.

4.1.1 Main Expressions

According to classical electrodynamics, the instantaneous (at a given instant of
time ¢) power of dipole radiation of the charge e is expressed by the formula

0(r) =¥, 4.1)

where c is the velocity of light in free space, ¥(f) is the charge acceleration. The
dipole behavior of radiation means that its wavelength is much longer than the
characteristic dimensions of the radiating system. In this section we will be inter-
ested in radiation in infinite motion of a charged particle. Then the trajectory of
motion will be characterized by the impact parameter p: r = r(¢, p). Knowing the
instant radiation power, it is possible to calculate the total energy of the electro-
magnetic field radiated in charge scattering by the external potential with the
specified impact parameter p:

o0
av(p) = | oltpar (42)
—00
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In classical physics for characterization of the radiative process the special value k is
introduced that is called effective radiation and is determined by the following equation:

K= JAE(p)andp. (4.3)
0

Appearing here is the total energy AE(p) radiated during charge scattering that is
given by the expressions (4.1) and (4.2). Effective radiation describes the contribu-
tion to the process of all possible trajectories of charge motion characterized by
different impact parameters and orientations of orbit planes (the multiplier 2 ). For
transformation of the formula (4.3) we will use the known relation:

Q| ~

T f)de = T If () do, (4.4)
—00 0

where f(f) is the real time function, f(w) is its Fourier transform. In our case
f(t) = [¥(1)], then f(w) = w*r(w)| according to the property of the Fourier
transform of a derivative. In view of Eq. 4.4, the formulas (4.1), (4.2), and
(4.3) give

T dk

= | —d 4.5

* Jdco @ “.5)
0

where dic/dw is spectral effective radiation, for which the equation is true:

dx  4etat T
= aa J Ir(w, p)|* pdp. (4.6)

0

As seen from the above formulas, effective radiation has a dimensionality of
energy multiplied by area. To obtain the expression for radiation power, effective
radiation should be multiplied by the density of the flux of charged particles
(electrons) scattered by the potential j = nv (n is the concentration of incident
particles, v is their velocity far from the scattering center):

dQ/dw = (dx/dw)j.

Then for the spectral radiation power we obtain

d_Q74ezw4
do  3¢3

nv J|r(w,p)|2pdp. 4.7)
0
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The total radiation power in charge scattering by the external potential will be
obtained after taking an integral of Eq. 4.7 with respect to positive frequencies up to
the maximum frequency wma.x = E/h defined by the energy conservation law:

Omax

_ [ e
0= J o do. (4.8)
0

In case of a spherically symmetric potential it is possible to obtain a closure for
the total radiation power with the use of the formulas (4.1), (4.2), and (4.3). For this
purpose we will use the Newton’s second law that in the field of central conserva-
tive forces looks like

() = —— - (4.9)

Substituting Eq. 4.9 in Eq. 4.1, we find

22

W' (r(1)], (4.10)

o(r) =

where r(¢) is given by the motion trajectory, and the prime means a derivative with
respect to the radius vector magnitude. Then for the total radiated energy from
Eqgs.4.10 and 4.2 we have

dr
vi(r,p)

4¢? T 2
AE(p) =35 J U] (4.11)

Tmin

In this equation we went from time integration to integration with respect to the
radius vector magnitude using the replacement dt = dr/v,, where v; is the radial
velocity of a particle (3.63) depending on the distance to the potential center and the
impact parameter p. Substituting Eq. 4.11 in Eq. 4.3, integrating with respect to dp,
and going to the radiation power by multiplying by the density of the flux of
incident electrons j, = n, v, we find

8me’n, T 2
Q:xneve:mwvg ]U’| A/ V2 (4.12)

Here is taken into account that E = mv? /2. For the Coulomb attractive potential
the formula (4.12) gives

o0

270
sz V2422 (4.13)

mer

6
8me’n,

Ocoul =

3micdv,
0
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Hence it is seen that the total intensity of radiation of charge scattering by the
Coulomb potential calculated within the framework of classical physics diverges at
small distances from the potential center as 7—/2. This difficulty of the classical
theory is a matter of principle since it results from neglect of wave properties of
particles. To overcome it, the lower limit of integration in the formulas (4.12) and
(4.13) should be replaced by the de Broglie wavelength for an electron:

h

me Ve

#pp = (4.14)

’min =

This replacement means taking into account the fact that the distance between an
incident particle and the potential center can not be determined more precisely than
its de Broglie wavelength #pg. This value characterizes the diffusiveness of a
particle trajectory due to its intrinsic wave properties. It should be noted that in case
of the Coulomb repulsive potential, when the potential energy is positive, the
minimum distance will be determined from the non-negativity constraint for the
radicand on the right side of the Eq. 4.12, that is

27Z¢%

Mg V2

(4.15)

’min =

4.1.2 High-Frequency Radiation. Kramers Electrodynamics

In scattering of an electron with the initial velocity v, by the external potential U(r)
it is possible to determine scale distances and frequencies characterizing this
scattering. The scale distance » = a is determined by the relation (£ = m, v? /2)

E ~|U(a)|. (4.16)

The formula (4.16) has a simple physical meaning: at a characteristic distance
the initial energy of an electron and the magnitude of its potential energy are
compared. At distances r>>a the effect of the potential on the electron motion is
low. In the opposite limit < <a the initial energy of an electron can be neglected in
comparison with its potential energy. In case of the Coulomb potential the charac-
teristic length scale is called the Coulomb length:

4.17)

The squared Coulomb length defines the cross-section of elastic scattering of
charges and a number of other collisional characteristics. It can be separated in the
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formula (4.13) describing the radiation power in scattering in the Coulomb field.
The Coulomb length (accurate to the multiplier) is equal to the minimum distance
in scattering in the repulsive potential (4.15).

The characteristic scattering frequency is given by the ratio of the initial velocity
of an electron and the characteristic length: @ = v, /dac,,. In case of the Coulomb
field this gives

mv
Ze?'

3
_ e
W = Wcoul =

(4.18)

The Coulomb frequency (4.18) defines the characteristic frequency of electron
radiation in the Coulomb field. High-frequency radiation

W>>WCoul 4.19)

has its specific features. Let us consider them by the example of the Coulomb
attractive potential. Rigorous analysis based on the exact solution of the
equations of charge motion in the Coulomb field shows that radiation in the high-
frequency range Eq. 4.19 is “gathered” from the trajectory section near the turning
point r /& rpyin, where the acceleration of a particle is maximum. Then the radiated
frequency is close to the frequency of rotation (the angular velocity) of a charge on
the section of the trajectory of the most approach:

V(rmin) .

T'min

(4.20)

@ R Oror(Fmin) =

It should be noted that on the section under consideration the radial electron
velocity is equal to zero, so it coincides with the azimuthal velocity, therefore

pVe

Tmin

V(Fmin) = 4.21)

The Eq. 4.21 follows from the angular momentum conservation law in the
spherically symmetric potential. For the Coulomb field of attraction we have

142
+——1]. (4.22)
ACoul

If Eqs. 4.21 and 4.22 are substituted in the right side of the Eq. 4.20, then in view
of the definition (4.18) it can be seen that the inequation (4.19) is satisfied only for
low impact parameters:

Tmin (,0) = dcCoul

p<<dcoul- 4.23)

Thus high-frequency radiation of Eq. 4.19 occurs on trajectories of charge
motion with a low impact parameter, when a particle at the point of the maximum
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approach has a high enough rotational velocity (4.20) to radiate an electromagnetic
wave of a specified frequency.

It should be noted that in the case (4.23) charge scattering occurs at large angles
0 ~ m. The last relation follows from the connection between the impact
parameter and the angle of scattering in the Coulomb field ac,y = ptg(6/2).
Thus corresponding to high-frequency radiation of Eq. 4.19 is the motion along
strongly curved trajectories with low impact parameters. The features of
collisional-radiative processes under such conditions are described by the Kramers
electrodynamics. From the above it follows that in the case (Eq. 4.19) under
consideration, when the inequation (4.23) is satisfied, for the minimum distance
from a scattering particle to the potential center the approximate equation is true:

2

Tmin(P<<acour) = <<p. (4.24)

2 AcCoul

The obtained relation follows from Eq. 4.22. Substituting Eqs. 4.21, 4.24 in the
formula (4.20), we come to the following estimation:

3
® % Oror(Fin) ~ 4 (%) OCoul- (4.25)

Since p<<ac,, are considered, from Eq. 4.25 the inequation (4.19) follows, that
is, radiation really occurs at a frequency much higher than the characteristic
Coulomb frequency.

4.1.3 Total Radiation Power

The expression for the total (throughout the spectral range) power of radiation
arising as a result of electron scattering by an atom (ion) can be obtained by
integrating the expression (3.87) with respect to frequency in view of the presence
of a delta function and by multiplying it by the electron flow density. As a result, in
the quasi-classical approximation for plasma electron motion we find

o0
8me’n, 2 2 2
Q = m J r lf(r)‘ Vg — mi‘g U(")dr, (426)
7'%DB

where f(r) is the force causing radiation of electromagnetic waves. In the case that
this is the ordinary (“static”) force f,(r) = —dU /dr, the expression (4.26) describes
the intensity of radiation by the “static” channel, when the core of a target is
supposed to be “frozen”. And if f(r) is the polarization force (3.78), the power
(Eq. 4.26) corresponds to the polarization channel of radiation. It will be recalled
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that in the quasi-classical limit bremsstrahlung and recombination radiation are
described by a common expression, and the difference is that the photon energy in
recombination radiation is more than the initial electron energy.

4.2 Bremsstrahlung of Thermal Electrons on the Debye Sphere
Around an Ion in Plasma

In plasma, besides polarization bremsstrahlung of electrons on atoms and ions, it is
necessary, generally speaking, to take into account radiation caused by the presence
of the Debye sphere around ions. This radiation arises with impact parameters that
are more than the ion size that in this case can be considered to be the point size.
The point ion together with the Debye sphere formed by plasma electrons is a
peculiar atom, with the essential difference that instead of bound electrons its
“nucleus” (ion) is screened by plasma electrons that are free. Nevertheless, the
said analogy makes it possible for description of PBs on the Debye sphere to use the
approach developed for radiation in electron-atom collisions.

PBs on the Debye sphere was for the first time considered by V.N. Tsytovich and
A.V. Akopyan for a case of fast (superthermal) electrons moving along straight-line
trajectories. This kind of polarization Bs in the original works [1, 2] was called
transient Bs.

In this section we will consider polarization Bs in the limit opposite in electron
motion velocity (when the inequation (3.1) is satisfied), which is more adequate for
plasma electrons, the characteristic velocity of which is of the order of the thermal
velocity.

To obtain effective radiation by the polarization channel, we use the expression
(4.26), in which it is necessary to substitute the formula for the polarization force
(3.78) and the Debye potential of an ion in plasma:

Z; e
Up(r) = — re exp(—r/rp), 4.27)

here rp is the Debye radius. After simple algebraic transformations with the use of
the relation Q = k n, v,, assuming that mfvg /2 = T (T is the temperature of plasma
electrons in energy units), the expression for effective radiation by the polarization
channel can be written as:

8 e® 7? 2a
D i T
L Ome A g2, 428
Fpol 3m, c32m,T rp (rD ) (4.28)

here the function is introduced:

O(x) = Jf—; [1—e"(1+7r)] 2, /1 —|—§e—”. (4.29)
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Fig. 4.1 The function O(x) 0.65 T T
defining PBs of thermal
electrons on the Debye sphere
in plasma
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The parameter ar = Z; e?/2T is the Coulomb length in scattering of an electron
with the energy T by an ion with the charge Z;e. The plot of this function is
presented in Fig. 4.1.

It should be noted that the ratio & = 2ar/rp is proportional to the nonideality
parameter (the ratio of average potential energy to average kinetic energy) for
plasma. For ideal plasma one has << 1. And if ¢>1, the condition of idealness
(ner3>>1) is violated, and the nature of screening of an ion in plasma will change
too.

As seen from Fig. 4.1, the function (4.29) grows very slowly with its growing
argument, its derivative at zero is: @'(0) = 0.025, so for all cases of practical
interest it is possible to suppose @ = 0.5. Therefore from the expression (4.28) it
follows:

47 e® 72
KD i

pol = 3m, 3N2m, T rp

The formula (4.30) that is true for arbitrary quasi-classical motion of an electron
after multiplication by the electron flow density coincides (in terms of one ion) with
the expression for the total power radiated by the polarization channel that for the
first time was obtained by V.N. Tsytovich for straight-flight electrons [1].

Thus it can be concluded that under conditions of ideal plasma the nature of
motion of an electron weakly influences its radiation by the polarization channel.

For effective static radiation in the Coulomb field of the ion from the formula
(4.12) in view of the integral “cutoff” at the lower limit of Eq. 4.14 it can be obtained:

Z:¢5 \/T/R 32
_8rZie VT/Ry (x’””) —1, 431)
Xm

=T me h
where x,, = (ZN/T/Ry/Z,-)z/S, Ry = 13.6 eV. In the limit x,,<<1 the expression
(4.31) is simplified to the form:

(4.30)
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4.32)

It should be noted that the Planck constant in the quasi-classical equations
(4.31 and 4.32 arose because of its presence at the lower limit of the “cutoff” of
the integral in Eq. 4.12 with respect to distance (Eq. 4.14). The expression (4.32)
differs from the Kramers formula for effective radiation that can be obtained from
Eq. 5.76 by the multiplier 1/2/3 ~ 0.816.

From the formulas (4.32) and (4.30) with the use of the expression for the
electron Debye radius rp = /T /4 we? n, we find for the ratio of the contributions
of the polarization and static channels:

D

R (1, T) = 201 o 3 VNl Ma (4.33)
Kyt (T/2Ry)

where n, = az® ~ 6.8-10%* cm ™ is the atomic concentration. As seen from

Eq. 4.33, for the appreciable contribution of polarization effects to Bs on an ion

with Debye screening plasma should be as dense and cold as possible.

Let us perform a numerical estimation of the value ‘R for laser plasma with
the following parameters: n, ~ 7-10'® cm >, T ~ 1 eV, then R ~ 10 %. And if
n, ~ 7-10%° cm73, then R =~ 100 %, but then the plasma parameter becomes less
than one, and plasma becomes nonideal.

It is of interest to estimate the contribution of polarization Bs for plasma of the
inner regions of Sun: n, ~ 5.7- 10% cm*3, T ~ 1,550 eV. For these values with the
use of Eq. 4.33 we find: R ~ 15 %.

Let us write out the expression for the ratio R in terms of the Debye number
(the parameter of plasma idealness) Np = (4n/3) r} ne:

(n/ng)"°

R(n,Np) ~ 1.24
Ny

(4.34)

Hence it is seen that for the fixed parameter of plasma idealness Np the ratio ‘R is
a very weak function of the concentration of plasma electrons.

From the consideration carried out it follows that the contribution of polarization
effects to the total bremsstrahlung loss of plasma electrons on the Debye sphere
surrounding an ion in nondegenerate plasma can be comparable with the contribu-
tion of ordinary (static) Bs only for cold and dense enough plasma, when the
idealness parameter Np is of the order of one. Otherwise the ratio of the
contributions of the polarization and static channels does not exceed 10-15 %.

For spectral effective PBs within the framework of the rotation approximation
(3.88a) (neglecting the y-component of the polarization force) and the explicit
expression for the derivative |dw,,/dR| following from the formula
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\/V%, +2 ‘UD(R)/me|

Wror(R) = R (4.35)
the expression can be obtained:
dK(r()I) 8 h 2 r4 (UJ)
pol _ T V}’Ol( ‘f )> ’ ef (436)

dw 3m2c3\/2T/m, 1+|UD(pf )|/(me60 T (@ ))7

where U}, =dUp/dr, ryq(w) is the effective distance, at which radiation of
electromagnetic waves of a specified frequency occurs, it is given by solution of
the Eq. 3.66, in which it is necessary to suppose U — Up, m, — m, and v; — V,.

To calculate the polarization force f,,;(r) determined by the formula (3.78), we
will use the expression for electron concentration in the Debye sphere as a function
of the distance to an ion:

Z; exp(—r/rp) '

= 4.37
el(r) 4nrd r (4.57)
Hence for the effective electron charge causing PBs — N,;(R, ) we find:
R
Npot(R, @) =N,(R) =4n Jne(r) rdr =
0
= Zi[1 = (14 R/rp) exp(—R/rp)]. (4.38)

Here the value R is a current distance from a radiating electron to an ion in
electron motion in its orbit. The physical meaning of Eq. 4.38 is that PBs is formed
by the part of an electron charge screening a plasma ion that is in the sphere of
radius R since this charge interacts with an incident electron in a coherent manner
(as a unit). It should be noted that in this case the polarization charge does not
depend on frequency and N, (R>>rp, ) = Z,, that is, at long distances between a
radiating electron and an ion the whole electron charge of the Debye sphere takes
part in formation of PBs.

The expression for spectral effective radiation by the static channel within the
framework of the rotation approximation will be determined by the equation similar
to Eq. 4.36 accurate to the replacement of the polarization force by the ordinary
(“static”) force representing the derivative of the potential (4.27) with respect to the
radius vector (fy, = U ):

d;cg"’>_87rh|U2)(ref(w))|2 rop(w)
do 3m2c3\/2T]m, 1+ |Up(re(w))]/(me ?rep(w))

(4.39)
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Here and further the condition w>>w), providing propagation of a transverse
electromagnetic wave in plasma is supposed to be satisfied.

For the quantitative characteristic of the PBs contribution to bremsstrahlung in
electron scattering by a point ion in plasma we will introduce the spectral R-factor
in the rotation approximation:

Ne(’"ef(w)) ’
2 () Ub(nf(w))] G40

R(l‘ot)(w) = dKI(;Zt>(w) _ |;fP01 ('f’f(w))] ’ =

ac (@) | fa(rg (@)

Substituting here the expressions for N, (R) (Eq. 4.38) and Up, (Eq. 4.27), we find

R () = {1 —WY ~ (rep(w)<rp) ~ 1 ('”ef (w)>4. (4.41)

L+ re(@)/rp 4\ m

In derivation of Eq. 4.41 the inequality r.s(w)<rp is used that is true for ideal
plasma in the frequency range @ > wcyy, Where ey, is the Coulomb frequency
determined by the formula (4.18).

The numerical estimation based on Eq. 4.41 indicates that in the case under
consideration the contribution of the polarization channel to bremsstrahlung is
small and is about 1 %.

With the use of the above expressions it can be shown that

dK(r[)t)

d’:’; x @1, (4.42)

This dependence somewhat differs from the similar dependence given in
the book [2] for fast superthermal electrons in the frequency range w>y2(v/vr,)
wpe (v is the velocity of a fast electron, vy, is the thermal velocity of plasma
electrons, w), is the electron plasma frequency)

dKal _

o (4.43)

4.3 Bremsstrahlung of Fast Electrons in Plasma

Radiation in scattering of electrons by ions in plasma was considered in Chap. 3
within the framework of the quasi-classical approximation, the criterion of which is
given in the general case by the inequation (3.67a) and by the relation (3.1) in case
of the Coulomb potential. In the quasi-classical approximation it can be considered
that the motion of an electron in radiation of electromagnetic waves occurs along a
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specified trajectory defined by the potential of a target. This situation is typical for
low-temperature plasma, in which the condition of quasi-classicity (Eq. 3.67a) is
satisfied.

In consideration of bremsstrahlung of fast (superthermal) particles, including
relativistic particles, an opposite approximation is adequate that is called the Born
approximation, the criterion of which is the inequation that is inverse for Eq. 3.1:

Z 2
h—ev <<, (4.44)

where v is the electron velocity, Z is the charge number of the nucleus of an atom
(ion). It should be noted that the inequation (4.44) is strong, and the inequation (3.1)
is weak. Physically the Born condition corresponds to the weak disturbance of
motion of a scattered particle under the action of the target potential.

4.3.1 Polarization Bremsstrahlung of a Fast Charged Particle
in Plasma

As was already noted in Chap. 1, PBs can be considered as the conversion of a
virtual photon of the eigenfield of an incident particle to a real photon on electrons
of a medium. This interpretation becomes especially obvious for fast charged
particles, the eigenfield of which approaches the field of a free electromagnetic
wave. Plasma electrons in the frequency range w>>w),, are quasi-free. (Here we do
not consider bound electrons of ions, and plasma is considered to be ideal.)
Therefore for description of PBs of a fast charged particle in plasma it is possible
to use the results obtained in Chap. 2 for bremsstrahlung on an atom in the high-
frequency limit (2.54). Really, for quasi-free electrons the eigenfrequency can be
assumed to be equal to the plasma frequency, and then the condition of high-
frequency in the spectral range under consideration is satisfied automatically.
From the aforesaid it follows that in going from an atom to plasma, in the
expression for the PBs cross-section (2.54) instead of the dynamic form factor of
an atom it is necessary to put the DFF of the electron component of plasma and to
neglect the second summand in the parentheses of the formula (2.54). As a result,
we have

do??! d ~ )
plas 2 W q ) 0
=7 A S v 4.45
dwdQ,  “veh J (2n)* {n, (q‘)} (¢ a)V, (4.45)

where V is the volume of plasma, in which PBs is generated, .&(p) (¢1) is the vector
potential of an incident particle (without a frequency delta function).
The normalized dynamic form factor of the electron component is [3]
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2

; M%@r L C) 2
S.(q) = on, + 22— |oni(q)[7, (4.46)
(9) () |0ne(q)] 70 |6n:(q)]
where
0 2
0N, : :Lex _(617) 4.47
‘ ’ (q)‘ \/EVTe |q‘ p( 2qzv%e,i ( )

are the spatio-temporal Fourier transforms of the squared thermal fluctuations of the
electron and ionic components of plasma calculated on the four-dimensional wave
vector ¢ = (¢°,q), n,, are the average concentrations of electrons and ions.

The functions &'¢)(q), ¢')(q) and &'(q) represent the longitudinal part of the
dielectric permittivity of plasma components (electrons and ions) and of the whole
plasma.

The DFF of plasma components and the longitudinal part of the dielectric
permittivity of plasma are considered in detail in Appendix 3.

In the spectral range under consideration w>>w),, the dielectric permittivity of
plasma at the frequency of an emitted photon w is close to unity. Nevertheless, in
case of relativistic particles, when the Lorentz factor y>>1, in description of an
electromagnetic field in a medium the dielectric permittivity, generally speaking,
should be taken into account due to the presence of a resonant denominator in the
formula for the vector potential (4.48). In the case under consideration it can be
supposed that ¢)(¢q1) =2 £¥)(g;) = ¢(¢?) since the inequality ‘q(l)‘ ~ w>>|Kk|vr, is
satisfied. Then the vector potential of the electromagnetic field of an IP is given by
the formula (2.42) from the second chapter with the replacement ¢ — ¢; and in
view of the dielectric permittivity of a medium:

() - dncey &lq1) (4Y/?) v —q 0o
AT (%’8(%)) e (@2)c) — @ o(q) —ayv). (4.48)

The first summand on the right side of Eq. 4.46 after substitution in the
expression for the cross-section (4.45) corresponds to bremsstrahlung with transfer
of the momentum excess to a plasma electron. Let us call this radiation Compton Bs
by analogy with Compton X-ray scattering by an atom, when the energy-
momentum excess is carried away by an ionized atomic electron. In the case
under consideration the role of X-radiation is played by a virtual photon of the
eigenfield of an incident particle. It should be noted that the term Compton Bs in the
works [1, 2] was used in a different sense — for description of static Bs in a medium.
In view of the aforesaid, our use of this term seems more adequate.

The numerical analysis shows that in calculation of the cross-section of PBs in
plasma the replacement can be made to a high accuracy:

1 (qo)z 0
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Then the expression for the cross-section of Compton Bs takes the form

do'P) _ N2 el ¢
do dQy ““hwv
dq n, ve(o)(o/c) —q]2 [ @3, \’
[ S oy oy ) ZalT (A )
n (g2 —2qk) 14+q°rp,
(4.50)

where N, is the number of plasma electrons in the volume of interaction, 7p, is the
electron Debye radius, [k| = (w/c) y/¢(). It should be noted that the last multi-
plier on the right side of this equation “cuts off” integration with respect to the
transferred wave vector from below: |q|>rp,!. Physically this means that scattering
with low transfer of a momentum does not make a contribution to Compton Bs
since then an IP interacts not with an individual plasma electron, but with the Debye
sphere as a single formation.

Integration with respect to the solid angle of the transferred wave vector dQq in
Eq. 4.50 can be performed in the general form if the function is introduced:

3 s 1
Iw(q,v,w,e):% n,wve(w)/c* —q .

(2 —2kq)’

Jqu 8(w — kv + qv) 4.51)

Then instead of the Eq. 4.50 we have:

xmax(w) 2
do(CB) 2 e ¢ 2 (wrpe/c)? . dx
_2n 2l J O/ N g ). @52
dodQ 7 ho v o 1+ 22 (wrpefc)’ o 0) x #2

Here Xpax = 1 c? B/h o, Xmin = qminé = [371 — cos 0, the function Ilg(x, p,0) is

given by the formula

x2f1(x,/3,9) +)C_2

N p,0) " 4 #9

i99(x’576) =

f2(x7.870) 1
AP g0y |

where

fi = (* +2 cos(6) xiin) [(x2 — Xmin”) €08%0 + (Xpin — ﬁ)zsinzﬁ}

+ 4 sin?0 cos 0 (xpmin — B) (x2 — xminz)
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and
c _
Hh=x>+2 c0s(8) Xmin, Xmin = qmi"; =p ' cos 0,

2
A= ( 22(1C°ﬂ59>) +41;f)2 sin”0).

It should be noted that in the nonrelativistic limit v<<c the integral of Eq. 4.51
looks like:

I,(q,v,0,0) =

1 2 21_ 2
+cos€+<ﬁ> 30030. 4.533)

2 qv 2

Compton bremsstrahlung in case of an atomic target corresponds to PBs with
atomic ionization.

The second summand in the equation for the normalized DFF of the electron
component of plasma (4.46) after substitution in the expression for the cross-section
(4.45) corresponds to polarization Bs on the Debye sphere around a plasma ion.
This radiation in the original works [1, 2] was called transient bremsstrahlung. In
the process of transient Bs the energy-momentum excess is transferred to a heavy
ion, and emission of a photon occurs as a result of interaction of the electron Debye
sphere as a whole with the electromagnetic field. In view of the explicit form of the
longitudinal part of the dielectric permittivity of plasma (A.68), (A.69) and the
passage to the limit (4.50) for the spectral-angular cross-section of transient Bs
from Eqgs. 4.45, 4.48 we obtain

do(TrB) , e ¢
do dOy =Nz
[l o)) A ik
m (¢ — 2qk)’ (1+4q%r3,)

where N; is the number of plasma ions in the volume of interaction. Hence it is seen
that the main contribution to transient Bs is made by low values of the transferred
wave vector |q|<rp,! that correspond in the classical pattern of the process to high
impact parameters p>rp,. It is in such a case that a fast electron interacts in a
coherent manner with electrons screening an ion in plasma. The coherence of
interaction manifests itself in the fact that the process cross-section (4.54) is propor-
tional to the squared number of electrons of the Debye sphere equal to the charge of a
plasma ion. Thus transient Bs can be interpreted as radiation of the Debye sphere
oscillating in the ac field produced by a fast electron during scattering.
For the spectral cross-section of transient Bs from Eq. 4.54 we have:

deB) 1 )
—(; =N zlzrg hl ‘g g™, (4.55)
) T
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where the dimensionless integral is introduced:

[0, v(@e(@)/) —a]? 3(a—K)v+ )

4.56
(q2—2qk)2 (1+q2}%e)2 (430

3™ =v J dq J Ay

To calculate the integral of Eq. 4.56, it is convenient to make the replacement of
the variable: q =k +k, where x = (pf — pi) /h. Then after integration with

respect to the angular variables we have:

L 2m? dx @V ki w? 1
x(Tr) — De 2 _ 7 -
T bk ﬁ@@—#f{ & (K \ﬂ>“@+ZMﬁf“%’
/v
4.57)
(1) : : (4.58)
K) = — , )
§ 1—|—rl2)€(;c—k)2 1+r12)g(;c+k)2
o’V , o 3o
= —_— — 2 S —
f () ( 28 N T AT K2)
, (4.59)

1+ rp, (k — k)
1+ 1, (i + k)

)

X [4;ckrlz)e +(1+7rp, (*+4)) In

where ¢ = ¢/+/¢is the phase velocity of light in a medium, knox = uv/hk = ew/c.
The analysis of the expressions (4.55), (4.56), (4.57), (4.58), and (4.59) shows

that it is possible to separate three characteristic frequency ranges for the spectral

cross-section of transient Bs of a relativistic (v ~ c¢) incident particle.

1. In the spectral range w,.<<w<V/rp, = (V/Vr.) Wy (strong screening) that
exists in case of a fast particle (v>>vr,), the integral of Eq. 4.57 is simplified
to the form

ST ~ E 7% In ¢
3 )
I'De (C/V)z - 8((0)

and the cross-section (4.55) in the relativistic limit is:

da™®) 16 2 . .
a7 _1° N; Ziz ,,3 Lo % In| —7C%pe (4.60)
dw 3 ho v Vre 4 02 + 72 w;e
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In derivation of Eq. 4.60 it was assumed that &(w)=1— (wp. /a))2 and
I'De = VTe/wpe'
2. In the range (V/vre) Wpe <<w<y*(V/Vr.) wp, (intermediate screening) we have:

d (TrB) 2 2 2
T _aN2R A C (”"pe) {22 |, (4.61)

i'e 2
dw ho v2 \vr, o /w2+y2w[27€

3. In the high-frequency range y(v/vr,) wpe << (weak screening) the equation is
true:

Iy 2 ?
do™) _ 4N; 22 [ (V a),,e) (VZV w_W) . (4.62)

Ve W Ve W

Let us comment the expressions (4.60), (4.61), and (4.62) that for the intensity of
Bs of an ultrarelativistic electron in plasma were for the first time obtained in the
work [2].

In the low-frequency spectral range (1) for all radiation angles 6 the inequality
(the case of strong screening) takes place:

Gmin rDe<1- (463)

It will be recalled that gunin = /v —k cos@ is the minimum wave vector
transferred from an incident particle to plasma. The condition (4.63) within the
framework of the classical picture of the process means that the law of conservation
of energy-momentum permits such impact parameters, at which a particle during
radiation flies at distances from an ion that are more than the Debye radius. In such a
case the coherent interaction of the IP with the Debye sphere takes place: the
electron charge screening an ion in plasma oscillates as a unit under the action of
the alternating field of the incident particle and emits a bremsstrahlung photon. The
phrase “strong screening” means that the Debye radius is small enough from the
standpoint of fulfilment of the inequation (4.63).

In the spectral range (1) the intensity of transient Bs

dI(TrB) da(T/'B)
xhw

dw dw

weakly depends on frequency: in the range w <y w), there is no frequency dependence
at all, and for the high frequencies y w,. <w<(v/vr.) wp. (under the assumption that
v/vr.>7) this dependence is only logarithmic.

In going to the second (2) spectral range (V/Vr,) 0y <<0<y*(V/V1.) Wpe —
intermediate screening — the inequation (4.63) providing the coherence of interac-
tion of an IP with the Debye sphere is satisfied only for small radiation angles
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V Wpe

0< (4.64)

Ve ®w'

which results in appearance of the small multiplier (V Ope /VTe w) ®in the formula for
the cross-section. As a result, the intensity of transient Bs in the range under
consideration decreases as the squared frequency. Physically (4.64) separates the
region of radiation angles, for which a considerable part of the transferred wave
vector is carried away by a photon, sO gpin ~ ® / (7>v). As a result, the impact
parameter permitted by the law of conservation of energy-momentum exceeds the
Debye radius, and the interaction of the IP with the Debye sphere is of a coherent
nature.

Finally, in the high-frequency range (3) — weak screening — the law of conserva-
tion of energy-momentum permits only small impact parameters, lesser than the
Debye radius. In this case, “from the point of view of an IP”, for all radiation angles
the Debye sphere is a rather friable formation, so the interaction of a radiating
particle during PBs occurs most likely with each plasma electron taken separately.
The process loses coherence, the intensity of radiation decreases as the fourth
power of frequency.

4.3.2 Static Bremsstrahlung of a Fast Charged Particle in Plasma

We will give the formulas for the spectral cross-section of static Bs (ordinary
bremsstrahlung) in the limits of weak and strong screening obtained in the work
[1] for a relativistic incident electron. These expressions can also be derived within
the framework of the formalism stated in Chap. 2 in view of the influence of the
dielectric permittivity of a medium on an electromagnetic field.

Static Bs represents scattering of the eigenfield of a target (a virtual photon) by
an incident particle to a bremsstrahlung photon. Hence it is seen that in SBs there is
no analogy with Compton scattering as in PBs with ionization of an atom. Therefore
the term Compton Bs in relation to SBs introduced in the works [1, 2] seems to us
not quite appropriate. As stated above, we use this term to designate polarization Bs
on plasma electrons in case of a high transferred momentum that can be interpreted
as Compton scattering of a virtual photon by the Debye sphere. It should be noted
that this analogy can not be understood literally since plasma electrons are free, and
atomic electrons are bound.

In the limit of weak screening g, 'pe>1, wheny? (v /vr,) 0pe <<, for the spectral
cross-section of static Bs to the logarithmic accuracy the expression is true [2]:

da) 16 22 2. 2
o7 10520 (’”) e(’cln(y = ) (4.65)

dw 3 mog) how v? ho
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Implied by the logarithmic accuracy is the approximation, in which the value of
the order of one is neglected in comparison with a large logarithm. In this case the
argument of the logarithm on the right side of Eq. 4.65 is supposed to be much more
than one.

It should be noted that in case of an incident electron (my = m) the SBs cross-
section (4.65) only by the logarithmed expression differs from the cross-section of
transient Bs (4.60) that, however, “works” in another spectral range.

In case of strong screening ¢min 7'p.<1 corresponding to the frequency range
Wpe <<O<<Y?(V/VTe) 0, for the static Bs cross-section it can be obtained [2]:

de") 16 &2 m\? ¢ ? mcvr,
=_— NP2 (=) = | ). 4.66
dw 3 Ve my) V2 w?+yro?, ! h wpe (.60

In derivation of Eq. 4.66 the expression ¢(w) = 1 — (wpe / a))2 for the dielectric
permittivity of plasma was used.

Let us pay attention to the multiplier (m/mg)? in the expressions for the SBs
cross-section (my is the IP mass) that makes SBs of heavy particles negligible. This
multiplier is absent in case of PBs since then the conversion of a virtual photon to a
real photon occurs on electrons (either atomic or plasma electrons).

An important point in the formula (4.66) is the presence of the multiplier

w? / (w2 +9? 0),2;@) that for the frequencies w<y wp, reduces the cross-section of

SBs in plasma (y Wpe/ a))2 times. This circumstance is called the density effect in
bremsstrahlung in a medium (or the Ter-Mikaelyan density effect [4]) since the
reduction of the cross-section is proportional to the electron concentration in a
substance (co;e ~ n,). The density effect under consideration is connected with the

increase of the phase velocity of light in plasmac¢ = ¢ / 1- (cojz,g / wz) >c, which

results in reduction of the time of detachment of a bremsstrahlung photon from the
eigenfield of a relativistic charged particle.

As seen from the expression (4.60), the density effect in transient Bs does not
show itself. This is explained by the fact that in case of PBs the conversion of a
virtual photon to a real photon occurs on nonrelativistic electrons of plasma, so the
increase of the phase velocity of light in a medium has no effect on the cross-section
value.

Thus in the spectral range o< min{y wpe, (V/Vre) @y, } transient Bs of relativis-
tic electrons in plasma surpasses static Bs suppressed by the density effect.

In case of Bs of thermal electrons in plasma (v ~ vr,) the static channel of
radiation, as a rule, prevails since the characteristic distance, at which radiation of a
bremsstrahlung photon occurs, is found to be less than the Debye radius
(see Eq. 4.41).

It should be noted that the obtained expressions for the cross-sections of PBs
and SBs are applicable not only for plasma, but also in the high-frequency range
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w>>1,/h (I, is the potential of ionization of substance atoms), when the plasma
formula for the dielectric permittivity of a medium “works”, accurate to replace-
ment of plasma parameters by substance parameters.

4.4 Bremsstrahlung in Dense Plasma in the “Hard-Sphere”
Model

In case of dense and rather cold plasma, when the electron concentration reaches
solid-state values, the Debye model of electron distribution (4.38) defining Bs on a
screened plasma ion becomes inadequate, so it is necessary to use other approaches.
One of the most popular recent methods of description of dense plasma is so-called
“hard-sphere” model that will be used in this paragraph for calculation of Bs in the
local plasma approximation [5].

4.4.1 Hard-Sphere Model in Dense Plasma

Under the action of short energy momenta of high intensity on a solid body fast
ionization of atoms occurs, in which the electron-ion system has no time to shatter
forming plasma with a particle concentration up to 10> cm™>. Under these
conditions Debye screening of an ion by plasma electrons is modified, so the formula
(4.37) for the distribution of the electron concentration around a plasma ion fails.

In the hard-sphere model it is supposed that plasma consists of ions screened both
by bound and by free electrons, and the radial derivative of the electron concentra-
tion on the sphere surface is equal to zero. This boundary condition corresponds to
the zero electric potential on the sphere surface in contrast to the Debye distribution
(4.37). The electric charge of the hard sphere is also equal to zero. The hard spheres
in plasma form a close-packed ensemble similarly to the solid-state case. The radius
of the hard sphere depends on the ion concentration n; by the formula

Ro =4/ 3 . (4.67)
47mn;

-3

For example, for the solid-state ion concentration n; = 10%2 ¢cm ™ we have
Ry =12.88 A. In this case the electron plasma frequency is w,, ~ 13.4 eV
(naturally, plasma is assumed to be electrically neutral). In contrast to the

Debye radius (rp, = v/T./4me*n,), the hard sphere radius does not depend
on plasma temperature. Presented in Fig. 4.2 in the log-log scale are the
dependences of the values of the hard sphere radius and the Debye radius (for
two temperatures) as functions of the ion concentration. From this figure it
follows that the Debye radius decreases faster with growing ion concentration
than the hard sphere radius, which, however, immediately follows from the
definition of these radii.
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The distribution of the electron density inside the hard sphere around an ion with
the charge number Z; is determined ab initio by solution of the quantum-mechanical
problem [6] with specified boundary conditions and the temperature T defining the
velocity distribution of free electrons inside the hard sphere. Within the framework
of this model, generally speaking, two types of electron distributions take place:
nﬁi(r, T,Z;) for bound electrons and n}’j(r, T,Z;) for free electrons that depend on
plasma temperature.

The most simple model using the concept of hard sphere is the model of the
uniform distribution of electron density:

nZi(r) =n.0(Ro — 1), (4.68)
where 0(r) is the Heaviside step function, n, = Z; n; is the average concentration of
plasma electrons.

The Debye distribution of the electron concentration around an ion in plasma is
given by the formula (4.37)

Z;  exp(—r/rpe)
nD(r):4n;’% r/ :

)

where rp, = \/T./4me?n, is the Debye radius, that can be obtained from the
Poisson equation for the Debye potential (4.27).

Shown in Fig. 4.3 are the radial distributions of the electron concentration
around an Al'*" ion calculated within the framework of different models and
temperatures for the average ion concentration n; = 102 cm . It will be recalled
that the atomic unit of concentration is n, =£ 6.8 x 10** cm >, The distribution of
the electron concentration in the hard-sphere model for different temperatures and
average ion concentrations used in this chapter is kindly given by Xiangdong Li
(private communication). From the figure it follows in particular that with growing
temperature the electron distribution inside the hard sphere approaches the uniform
distribution (Eq. 4.68).
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Fig. 4.3 The radial dependence of the electron concentration inside the hard sphere around an
AI* jon in plasma calculated in different models: solid curve (I) — hard-sphere model,
T = 0.3 a.u., dotted curve (2) — hard-sphere model, T = 3 a.u., dashed curve (3) — hard-sphere
model, T = 50 a.u., dash-and-dot curve (4) — Debye model, T = 3 a.u.
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Fig. 4.4 The radial dependence of the electric potential inside the hard sphere in plasma:
solid curve — hard-sphere model, T = 0.3 a.u., dotted curve — hard-sphere model, T = 3 a.u.,
dashed curve — hard-sphere model, T = 50 a.u., dash-and-dot curve — Debye model, T = 3 a.u.,
top dotted curve — Debye model, T = 50 a.u.

13+ ion inside the

The radial distribution of the electric potential around an A
hard sphere in plasma with 7; = 10?2 cm ™ is also shown in Fig. 4.4 for the hard-
sphere model and the Debye model for different temperatures.

It is seen that, as it follows from the definition of a hard sphere in dense plasma,
the electric potential at its boundary tends to zero, while the Debye potential at the

boundary of this sphere differs from zero.

4.4.2 Form Factor of the Hard Sphere in Dense Plasma

The cross-section of polarization bremsstrahlung is defined by the generalized
polarizability of a target o(w, q;) (for example, see the formula (2.79)), where w
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is the frequency of a bremsstrahlung photon, q; = q+k is the wave vector
transferred to the target, q = (pf — p,«) /1, p; s are the initial and finite momenta

of an IP. The calculation of the generalized polarizability of the target is an intricate
quantum-mechanical problem, so in case of fast incident particles so-called multi-
plicative approximation is used:

a(w, q;) ~ a(w) F(q,), (4.69)

where o(w) is the dipole dynamic polarizability of the target, F(q,) is the
normalized form factor of the target F (0) = 1 representing the spatial Fourier
transform of the electron density of the target:

~ 1

F(q,) = 7 Jn(r) exp(iq, r)dr, (4.70)

where Z; is the charge number of a plasma ion, n(r) is the distribution of the electron
concentration in the hard sphere.

It should be noted that in case of atoms, ions and a hard sphere in plasma the
spherical symmetry takes place, so vectors appearing in the Eq. 4.70 can be
replaced by their magnitudes.

Thus according to Eq. 4.70, the normalized form factor of the target is defined by
the distribution of the electron density in it.

It should be noted that in the Born-Bethe approximation the normalized form
factor of the hard sphere in plasma is given by the simple formula:

Fq) =0, — aq1), @4.71)

where 6(x) is the Heaviside function.
In the model of the uniform distribution of electrons (Eq. 4.68) the normalized
form factor of the hard sphere can be calculated in the analytical form:

M7 4.72)

= Ji
Fula) =3 q1 Ry

where jj (x) is the spherical Bessel function of the first kind.
The form factor for the Debye distribution of electrons (Eq. 4.37) looks like

- 1
F = 4.73
D(ql) 1 N (ql rDe)za ( )

where 7p, is the electron Debye radius.
Presented in Fig. 4.5 are the results of calculations of the squared function F(q )
of the hard sphere for different distributions of the electron concentration for the
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Fig. 4.5 The squared normalized form factor for the distribution of free electrons in the hard
sphere calculated in different models, the X-axis in a.u., the Y-axis is dimensionless: (/) — ab initio
calculation for T = 0.3 a.u., (2) — ab initio calculation for T = 50 a.u., (3) — for uniform
distribution of electrons inside the hard sphere, (4) — Debye model for T = 3 a.u., (5) — Debye
model for T = 50 a.u., n; = 102 cm ™3

average concentration of Al'** aluminum ions equal to n; = 10> cm ™ and for
several temperatures.

It is seen that the form factor of ab initio calculation for high temperature
(T = 50 a.u.) practically coincides with the form factor of the uniform distribution
of the electron concentration inside the hard sphere (4.68). The fastest decrease with
growing transferred wave vector takes place for the form factor corresponding to
the Debye distribution for high temperature. The slowest decrease of the form
factor takes place for ab initio calculation of the electron concentration at the
lowest considered temperature (T = 0.3 a.u.).

4.4.3 Polarization Charge Around an Ion in Dense Plasma

As was noted in Chap. 3, for description of polarization bremsstrahlung by analogy
with ordinary Bs it is convenient to introduce a dimensionless quantity (the polari-
zation charge of a target) characterizing the efficiency of reradiation of a virtual
photon to a real photon of PBs by the electron core of a target. The polarization
charge can be determined with the use of the formula

l’l’l(}\)2

Zpol(®) = =5~

|or(w)] (4.74)
that includes the dynamic polarizability of the target a(w). In contrast to the
ordinary charge number of the target nucleus, the polarization charge is a function
of the frequency of a photon emitted by the polarization channel. These
dependences for silver and krypton atoms are presented in Fig. 3.3. It is seen that
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they have a nonmonotonic behavior with peculiarities near the potentials of ioniza-
tion of electron shells of atoms.

The spectral dependences of the polarization charge of the hard sphere around an
AI"** aluminum ion in plasma with the concentration n; = 10?> cm > calculated
within the framework of different approaches are presented in Fig. 4.6.

It is seen that ab initio calculations (Xiangdong Li, private communication)
predict the presence of a spectral maximum in a range from 10 to 14 eV (depending
on plasma temperature). With growing temperature the spectral maximum of the
polarization charge is shifted to the high-frequency region, and at the temperature
T = 50a.u. (1,360 eV) the spectrum of the polarization charge obtained on the basis
of ab initio calculations practically coincides with that for the uniform distribution
of the electron charge inside the hard sphere (Eq. 4.68). In this case the position of
the spectral maximum of the polarization charge is practically equal to the electron
plasma frequency at the specified concentration wp, ~ 13.4 V. It is seen that the
polarization charge in the Debye model (curve 3) is a monotonically increasing
function of the photon energy without a maximum.

4.4.4 Cross-Sections of Polarization and Static Bs of Fast
Electrons in Dense Plasma (in the Hard-Sphere Model)

Looking most simply is the cross-section of PBs of a nonrelativistic Born electron on
the hard sphere in plasma in the Born-Bethe approximation for the form factor (4.71).

do®=B 16 Z2 () e®
o Dot _ 16 Zp(@) € ( M ) (4.75)

do 3 m>2hc3 ® Ry
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where v is the initial velocity of a fast electron, Z,,/(®) is the polarization charge of
the hard sphere (4.74). It is obvious that the formula (4.75) is true if the logarithmed
expression is more than one:

(4.76)

which imposes restriction on the PBs frequency in the Bethe-Born model.

The expression for the cross-section of SBs of a fast electron in the Bethe-Born
approximation is obtained by replacement on the right side of the Eq. 4.75 of the
pmax

Prmin

squared polarization charge wal(w) — Z? in the prelogarithmic factor and

v mvR
=
(6] Ro

Another restriction of our consideration is inequality w>>w,, where w,, is
plasma frequency corresponding to average electron concentration. In opposite case
(w =~ wp,) it is necessary to account for dielectric permittivity ¢(w,k) in the
calculation of Bremsstrahlung cross-section in plasma.

As already noted, the formula (4.75) is true in the low-frequency limit w<v/Rg
(Eq. 4.76). For higher frequencies the use of the form factor (Eq. 4.71) in the Born-
Bethe approximation becomes inadequate. Then it is necessary to apply the Born
approximation and the normalized form factor of the hard sphere in the general
form Eq. 4.70. The corresponding expression looks like

% in the logarithmed expression.

41 max
do® 16 Z% (w)e® . d
o Dt 16 Zal0) J Flg) 2, @.77)
dw 3 m*vihcl q1
41 min

where ¢imax =mvV/h and ¢qmin = ®/v are the maximum and minimum wave
vectors transferred from a fast electron to the target.

For ordinary (static) Bs of an electron on the hard sphere in the Born approxi-
mation the formula is true:

de8 16 Z?¢° ~ 2 dqy
=2 4 | (1-F aan 478
@ dw 3 m2vihcl ( (ql)) q1’ ( )
91 min

where the limits of integration are the same as on the right side of the Eq. 4.77.

The expression (4.78) for static (ordinary) Bs can be obtained from the formula
(2.45) with the function T (Eq. 2.43) in the nonrelativistic limit.

The formulas for PBs and SBs (4.76), (4.77), and (4.78) relate to arbitrary
spherically symmetric targets with a specified polarization charge and the static
form factor. The specificity of the situation under consideration consists in the
concrete form of the functions Z,zwl(o)) and F(q, ) that for the hard-sphere model in
plasma were studied in Sects. 4.4.3 and 4.4.2.
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Fig. 4.7 The spectral cross-
section of Bs on neon-like
aluminum in dense plasma in
a wide spectral range: solid
curve (1) — total Bs, dashed-
dotted curve (2) — sum Bs,
dashed curve — SBs

o, eV

As follows from the results of Chap. 2 (see Sect. 2.3), besides the polarization
and static channels, in bremsstrahlung on targets with an electron core there is,
generally speaking, an interference summand (the third summand in the equation
below):

datot(w) o dast dapol daim

dw do  do do (4.79)

Neglecting the interference of the polarization and static channels, we have:

M _ dast do_pol
do  do do’

(4.80)

where the total cross-section means the sum of the contributions of two Bs channels
without the interference term.

Neglecting the interference summand in the cross-section of total spectral Bs can
be justified for relativistic electrons, when the angular distribution of radiation of
the polarization and static channels differ sharply. In the general case, taking into
account the interference summand may be essential and influence the value and
form of the spectrum of total Bs on targets with a core.

Presented in Fig. 4.7 are the spectral cross-sections of Bs in a wide range of
bremsstrahlung photon energies corresponding to total (1), sum (2), and static
(3) Bs of a fast electron (v = 50 a.u.) on a neon-like aluminum ion in dense plasma
(AP, n; = 10%° cm ) calculated within the framework of the Born approximation
and the local plasma frequency model for the polarizability of the hard sphere.

From Fig. 4.7 it follows that taking into account the polarization channel results
in this case in appearance of a spectral maximum in the Bs cross-section at a
frequency of several hundreds of electron-volts, corresponding to virtual excitation
of the electron core of a neon-like ion under the action of the fast electron field. It is
seen that the interference of channels plays an appreciable role: when it is taken into
account, at the maximum of the frequency dependence the cross-section of total Bs
on a neon-like aluminum ion in dense plasma is approximately three times more
than the cross-section of static Bs.
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Fig. 4.8 The cross-section of total Bs of a fast electron (v = 50 a.u.) on neon-like aluminum in a

wide spectral range for two values of plasma concentration: solid curve — n; = 102 cm™2, dotted
curve — n; = 102 ¢cm ™2, plasma temperature T = 50 a.u.
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Fig. 4.9 The same as in Fig. 4.8 in the kiloelectron-volt range of bremsstrahlung photon energies

The spectral cross-section of total Bs of a fast electron (v = 50 a.u.) on neon-like
aluminum in plasma with different values of ion concentration (7; = 10> cm > and
n; = 1020 cm ™) and the temperature T = 50 a.u. in a wide spectral range (from 0 to
4 keV) is presented in Fig. 4.8.

The similar data are given in Fig. 4.9 in a range of bremsstrahlung photon
energies from 1 to 4 keV, where the effect of the plasma electron concentration
on the total Bs spectrum shows itself distinctly.

The calculation was carried out within the framework of the local plasma
frequency method and the Born approximation for a fast electron with account
for the interference between static and polarization Bs channels on the basis of ab
initio data on electron distribution in the hard sphere in plasma. From Figs. 4.8 and
4.9 it follows that the calculation of total Bs of a fast electron on neon-like
aluminum within the framework of the used approximations predicts an insignifi-
cant effect of plasma concentration on the process cross-section in the kiloelectron-
volt range.

The local plasma frequency method makes it possible to describe in a single
approach the contribution of bound and free electrons of the hard sphere to Bs.



4.4 Bremsstrahlung in Dense Plasma in the “Hard-Sphere” Model 135

wd%’a'u. 1x107° T T T T
dw

8x1077

6x1077 [

_7 I I I I
007500 400 600 800 1x10°

o, eV

Fig. 4.10 The spectrum of total Bs of a fast electron on aluminum ions of different multiplicities
in dense plasma: curve I — neon-like aluminum, curve 2 — helium-like aluminum, curve 3 — fully
ionized aluminum

1><104 T T T T T
1x103 |
100
10
1
0.1
0.01
1x1073

1x107%

1 -5 1 1 1 1 1

x10741x1073 0.01 0.1 1 10 100
r, a.u.

n, ,dau.

101>

Fig. 4.11 The results of ab initio calculations of the distribution of the electron density inside the
hard sphere in plasma with the concentration z; = 102° cm™ and the temperature T = 10 a.u. for
different degrees of ionization of aluminum: curve I —neon-like aluminum, curve 2 — helium-like
aluminum, curve 3 — fully ionized aluminum

The results of calculation of the spectral cross-section of total Bs of a fast electron
(v = 50 a.u.) on aluminum ions of different multiplicities are presented in Fig. 4.10
for the ion concentration n; = 10%° cm > and the plasma temperature T = 10 a.u.

Presented in the following Fig. 4.11 in the log-log scale (by both axes) are the
distributions of total electron density for the same plasma concentration and
different charge states of an aluminum ion.

Seen in Fig. 4.11 is the contribution of the second electron shell of neon-like
aluminum on the background of the electron concentration of an Al''* ion. The
peripheral charge concentration is connected with free electrons inside the hard
sphere. It is seen that at distances7>1 a.u. the concentration of free electrons in case
of a fully ionized aluminum atom coincides with that for a helium-like aluminum
ion. At the same time the contribution of free electrons in case of a neon-like
aluminum ion at the periphery of the hard sphere is approximately an order of
magnitude less than in two other cases.
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From Fig. 4.10 it follows that in the spectral cross-section of total Bs of a fast
electron on neon-like aluminum a maximum is found with the center at a photon
energy about 350 eV. This peak is caused by the conversion of a virtual photon of a
fast electron to a real photon on the electron core of an A" ion. The spectral
dependence of total Bs on a helium-like Al''* ion in the approximation under
consideration represents a monotonically decreasing curve without peculiarities. It
is curious that the Bs spectrum in scattering of a fast electron by fully ionized
aluminum has a peculiarity as a weak maximum at a bremsstrahlung photon energy
of 190-200 eV. The growth of the Bs cross-section in the low-frequency range
is connected with the contribution of free electrons to the polarization channel
of the process (see Figs. 4.6, 4.7, 4.8, and 4.9). But the low-frequency spectral
region (w ~ wp,) is beyond the validity of our cross-section calculations as it was
pointed above.

References

1. Tsytovich, V.N., Akopyan, A.V.: Bremsstrahlung in a nonequilibrium plasma. Sov. J. Plasma
Phys. 1(4), 371 (1975)

2. Tsytovich, V.N., Akopyan, A.V.: Transition bremsstrahlung of relativistic particles. JETP 44,
87 (1976)

3. Lifshitz, E.M., Pitaevskii, L.P.: Statistical Physics, part 2. Pergamon Press, Oxford (1984)

4. Ter-Mikaelian, M.: High Energy Electromagnetic Processes in Condensed Media. Wiley,
New York (1972)

5. Nguyen, H., Grumberg, J., Caby, M., et al.: Line broadening by hot and dense plasmas. Phys.
Rev. A 24, 438 (1981)

6. Xiangdong Li, Zhizhan Xu, Rosmej, F.B.: Exchange energy shift under dense plasma
conditions. J. Phys. B. 39, 3373 (2006)



Chapter 5
Bremsstrahlung of Fast Charged
Particles in a Solid Body

5.1 Polarization Bremsstrahlung in a Single Crystal

5.1.1 General Expression for the Cross-Section of a Radiative
Process on an Atomic Ensemble

The cross-section of a photoprocess on an atomic ensemble (in case of a monatomic
target) can be represented in the following form [1]:

2

do, arget — dG atom, (5.1)

Z exp(iqr;)

J

where summation is performed over all atoms of the target being in the volume
of interaction, do ., is the differential cross-section of the process on one atom
under consideration,

q= (pf—pf)/thk

is the wave vector transferred from an incident particle (IP) to the target, p;, p;
are the initial and final momenta of the IP, k is the wave vector of a photon. For a
substance consisting of atoms of different kinds the formula (5.1) is obviously
generalized.

The expressions for the cross-sections of bremsstrahlung of fast charged
particles on an atom are given in Chap. 2 both for the static channel (see the
formulas (2.43), (2.45)) and for the polarization channel (see Egs. 2.42 and 2.50).

In the state of thermodynamic equilibrium the squared absolute value in the
formula (5.1) should be correspondingly averaged:
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- (Sontiats-m)). 52

Z exp(iqr))

The angle brackets on the right side of the Eq. 5.2 imply thermodynamic
averaging.

5.1.2 Structure Factor of a Three-Dimensional Crystal

The structure factor of a medium in a three-dimensional case (a three-dimensional
single crystal, the angle brackets mean averaging over atomic positions) is [1]:

(Seswlat5)) =0 - o )
+Nng (1) > e IS(g)) 6% (q—g), (5.3)
g

where N = Ny N, is the full number of atoms in the volume of interaction, Ny is
the full number of cells in the volume of interaction, N..; is the number of atoms
in a unit cell, g is the wave vector of a reciprocal lattice, 1, = Neeii/Acerr is the
volume concentration of atoms, A, is the volume of a unit cell.

In the formula (5.3) the value S(q) is introduced — the normalized structure
factor of a unit cell of a crystal on the wave vector q, S(q =0) =1, 6®(q)
= 5(qx) 6(gy) 6(q¢-) is the three-dimensional delta function of the wave vector
transferred to the target.

The first summand on the right side of the equation (5.3) describes incoherent
scattering of an electromagnetic field by the atoms of a lattice. It is proportional to
the number of atoms in the volume of interaction in the first degree. The second
summand on the right side of (5.3) describes coherent scattering proportional to the
squared concentration of atoms since N = n, V.

As can be seen from the formula (5.3), coherent scattering takes place only when
a wave vector transferred to a medium is equal to the reciprocal lattice vectorq = g.
Formally this circumstance manifests itself as the presence of delta functions in the
coherent term. From the formula (5.3) it follows that in the limit of high transferred
momenta, when u? ¢> > 1, the incoherent component of the structure factor of the
medium prevails. In case of fulfilment of the opposite inequation, the main contri-
bution to the process is made by the coherent part of the structure factor of (5.3).

For a face-centered cubic lattice that corresponds to a number of metals such as
aluminum, iron, copper, silver, and gold, the geometrical structure factor of a unit
cell is equal to [2]:
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S(g) = —[1 +cos[n (n + n2)] + cos[n (n3 + na2)] +cos[n (ny +n3)]], (5.4)

B

where g = n; by + np by 4+ n3 bs; by, by, bs are the basis vectors of the reciprocal
lattice; ny, np, n3 are the integers. In case of a lattice with the diamond structure
that silicon and germanium also have, instead of (5.4) we have:

1
S(g) =1 cos % (m + ny + n3)

X [1 + cos[n (n; + ny)] + cos[n (n3 + nz)] + cos[n (ny +n3)]].  (5.5)

5.1.3 Cross-Section and Yield of Bremsstrahlung Photons

For convenience of comparison with an experiment, it is advisable to go from the
cross-section of Bs on an atom to the differential yield of a number of photons per
unit crystal length to the unit solid angle and in the unit frequency range:

dN B do
dodQupdx  VdwdQy’

(5.6)

where V is the volume of interaction, N is the number of bremsstrahlung photons.
Hence with the use of the following formula

| 2 Ymax

~ d.
j 1,(q.v,0,0) F(q) ;q (5.7)

Gmin

da??' 26} | o wi(w)
dodQy  wv2c3ho

for the cross-section of PBs on an atom, where the integral /,(¢, v, w, 0) is given by
the Eq. 4.53, in view of the coherent part of the structure factor of the medium
(Eq. 5.3), the following expression can be obtained for the coherent part of PBs in a
single crystal in case of a nonrelativistic incident electron (a nonrelativistic electron
is considered here for simplicity of the formulas):

sz(;;h) _ ”?zez 2(a) S Kk 3 2 2 2\ f2 [Sag]z
dxda)ko_nhvc3zg: (8) (e +gv—kv) o’ [a(e)[" exp (-1 ) Fils) =5
(5.8)

where s is the unit vector in the direction of propagation of a photon, F, is the
normalized form factor of a medium atom. The delta function appearing on the right
side of this equation gives the relation between the frequency and the angle of
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photon emission 6 = v’k for the specified reciprocal lattice vector g. As a result, the
relationship is true:

gv

I—Xcose.
c

w=— (5.9)

Here for generality the term with the ratio v/c in the denominator is retained.

The relation (5.9) defines the frequency-angular distribution of coherent PBs in
scattering of a charged particle in a three-dimensional single crystal.

In the geometry of the process shown in Fig. 5.1 for the frequency of coherent
PBs from the formula (5.9) we have in the nonrelativistic limit:

2
Wy = %V [n1 coso — sina (np cos ¢ + n3 sin )], (5.92)

d is the crystal lattice constant, ny, ny, ns are the integers specifying the reciprocal
lattice vector.

In the high-frequency spectral range, when a(w) — —Z e? /m w?, the expression
for coherent PBs in a single crystal (Eq. 5.8) passes into the formula for X-ray
parametric radiation [1].

With the use of the incoherent component of the structure factor of the crystal
(Eq. 5.3) the incoherent part of PBs can be obtained. As a result, for the frequency-
angular distribution of photon yield per unit trajectory length we have for a
nonrelativistic incident electron:

incoh) 2

dN](m, _ i |w?a(w)]

dodQdx " “ho wviel
.

x (1+ 00520) J (1- exp(—u2 qz)) F(q) %, (5.10)

Gmin

where Gmin ~ ®/V, gmax = 2mv/h are the minimum and maximum wave vectors
transferred from an incident electron to the medium.

Given in Fig. 5.2 are the intensities of different channels of PBs of an electron
with a velocity of 1.5-10° cm/s scattered in a silicon single crystal as functions of
the input angle o for @ = m (see the definitions of the angles o and ¢ in Fig. 5.1). In
Fig. 5.2 the solid curve represents coherent PBs; the dotted curve is for coherent
PBs calculated with the high-frequency polarizability of atoms; the dashed curve is
for incoherent PBs averaged over frequency with a relative resolution of 0.3 %.

It is seen that the intensity of coherent PBs calculated with the high-frequency
polarizability «(w) = —Ze?/mw?* does not depend on the angle of electron
incoming into a single crystal. This circumstance is explained by the fact that in
the high-frequency limit the polarization charge number proportional to |w?e(w)|
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Fig. 5.1 The geometry of PBs in a single crystal
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Fig. 5.2 The intensity of PBs of a nonrelativistic electron in a silicon single crystal as a function

of the input angle (see the text)

does not depend on the radiation frequency. In calculation of the curves shown
in Fig. 5.2 the contribution of 4-vectors of the reciprocal crystal lattice giving

the identical dependence of radiation frequency on the input angle according to

the Eq. 5.9 was taken into account.
Let us give here also the expressions describing total Bs of a nonrelativistic

electron in a single crystal in view of the polarization and ordinary channels. For the
coherent component of photon yield per unit trajectory length we have:
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AN n2 72

= X
dodQxdx nhovm?cd

% Z S2(g) 5(w + gv — kv)exp(—u2 gz)
g

2 2 2
- maw I [S, g]
X l_Fa(Q)_Z—eza(w)Fa(g) g4 . (511>
The incoherent component of total Bs of an electron is:
. Gmax
AN{o) Z2e% (1 + cos®0) s 2
= Ng, 1 —_ —_
dw dQy dx " re avmd J( exp( . q))
Gmin
2 2
~ mao ~ dq
x |1 =Fu(q) - T () Fa(q) VR (5.12)

On the right side of the Eqgs. 5.11 and 5.12 the first two summands under the
modulus sign describe the contribution of ordinary Bs to the process, and the third
summand corresponds to PBs.

It should be noted that the coherent and incoherent components of bremsstrah-
lung do not interfere with each other.

From the formulas (5.11) and (5.12) it follows that in the high-frequency limit
(a(w) — —Ze*/mw?) the second and third summands under the modulus sign
cancel out, which corresponds to the descreening effect (or the effect of atom
“stripping”) in the process of Bs. It should be noted that this effect takes place
only for a nonrelativistic incident electron.

For relativistic electrons in the most part of the spectral range the main contri-
bution to the process is made by the coherent component of Bs, when the momen-
tum excess from an incident particle is transferred to the crystal lattice as a whole.
In the nonrelativistic case, generally speaking, the contributions of the coherent and
incoherent Bs channels are comparable in value.

5.2 Polarization Bremsstrahlung in a Polycrystal

Serving as initial expressions for calculation of PBs of a fast charged particle in a
polycrystal are the formulas (5.8) and (5.9). Going from a single crystal to a
polycrystal consists in averaging the expression for the coherent component of
PBs (5.8) over the solid angle of the reciprocal lattice vectors £, according to the
equation

dN B J dN  dQ (5.13)
dodQdx) ., ) dodQdx 47’ '
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It is obvious that such an averaging for the incoherent component of PBs (5.10)
will not change the initial expression that does not depend on the vectors of the
reciprocal lattice of a polycrystal. Therefore the expression for incoherent PBs in a
polycrystal is given by the same formula (5.10) as in the case of a single-crystal target.

It should be noted that averaging by the formula (5.13) assumes that crystallites
forming the polycrystal are of large enough size, so for each of them the expression
for the structure factor of Eq. 5.3 is true.

After averaging the right side of the Eq. 5.8, with the use of Eq. 5.13 we obtain
for the coherent component of PBs of a fast particle with the charge Z,e the
following expression:

( dN ) 4nn§Z§e2a)3
coh

dw dQy dx vZc3h
o) Falg)|”
X ZN o exp(—g>u?) I,(g,v,w,0)
x@(gv—w(l—;cos())), (5.14)

where © (x) is the Heaviside theta function that is equal to zero at a negative value of
the argument and to one at a positive value. The theta function arose as a result of
averaging over the solid angle Q, of the delta function é(w + gv — kv) appearing in
the expression (5.8). The kinematic integral /,,(g, v,w, 0) is given by the formulas
(4.53), and in the nonrelativistic limit by the formula (4.53a). Introduced into the
expression (5.14) is the charge number of an incident particle Z, to describe PBs of a
multiply charged ion, whenZ, > 1. It is obvious that in case of an electronZ, = —1.
Instead of summation over the reciprocal lattice vectors in the formula (5.8), on the
right side of the Eq. 5.14 summation is carried out over the magnitudes of the
reciprocal lattice vectors g = |g|, N(g) is the number of reciprocal crystal lattice
vectors with a specified magnitude.

From the expression (5.14) it follows that in the spectrum of coherent PBs in a
polycrystal spectral “steps” appear at frequencies defined by the magnitude of the
reciprocal lattice vector g;, by the velocity of an incident particle v and the radiation
angle 0 according to the equation:

wi(v.0) =—S" (5.15)
1-— - cos 0

Hence it is seen that in the nonrelativistic case v << ¢ the frequency of the
spectral step (Eq. 5.15) does not depend on the radiation angle and is directly
proportional to the velocity of an incident particle.

An example of spectral steps in PBs on a polycrystalline target is presented in
Fig. 5.3, in which the spectral dependence of PBs for scattering by a silver atom of
an ion with the charge number Z, = 30 and the velocity v = ¢/3 is also given [3].
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Fig. 5.3 PBs of a multiply charged ion in a silver polycrystal (solid curve) and on a silver atom
(dotted curve)

For specified values of problem parameters (ion velocity and radiation angle), in
the frequency range shown in Fig. 5.3 there are three frequency steps, the position
of which is determined by the equation (5.15). For frequencies more than w; the
contribution of the specified magnitude of the reciprocal lattice vector g to the
process probability is equal to zero since the law of conservation of energy-
momentum is not followed for it. As a result, a “frequency step” appears on the
spectral dependence of yield of PBs photons. Since the frequency w; is defined by
the magnitude of the vector g, for which §(g) # 0, the form of the spectrum of PBs
in a polycrystal depends on the crystal structure of a target. For example, for a
diamond-type crystal lattice the number of frequency steps will be less than for a
face-centered lattice corresponding to silver. Really, in case of a diamond lattice
there is an additional restriction for reciprocal lattice vectors, for which the struc-
ture factor of a unit cell is nonzero according to the formula (5.5).

The “manifestation” of the spectral step depends on the relation between the
coherent and incoherent contributions to PBs. If incoherent PBs prevails, the
frequency step will be “slurred over”. To avoid this, the fulfilment of the condition
is necessary:

g < % (1 —Ecos 9), (5.16)

where u is the root-mean-square deviation of medium atoms from the equilibrium
position. From the given inequation it follows that the stepped structure in the PBs
spectrum for the specified magnitude of the reciprocal lattice vector will be more
contrast for wide radiation angles 0. Really, with growing angle 0 the minimum
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Fig. 5.4 The spectrum of PBs in a silver polycrystal for different radiation angles: solid curve —
90°, dotted curve — 60°, dashed curve — 120°

momentum transferred to a target increases and the contribution of the incoherent
component of PBs decreases.

For reference we will give the formula for the root-mean-square deviation of
crystal lattice atoms from their equilibrium position:

Tp/T

30 T\’ ydy
D= [1+4(— J 1
W=z |14 g “—| (5.17)

where Tp is the Debye temperature in energy units, M, is the mass of substance
atoms. The Debye temperatures for aluminum, silicon, iron, and copper are respec-
tively 418, 658, 467, and 339 K [1].

The dependence of the spectrum of PBs in a silver polycrystal on the angle of
bremsstrahlung photon radiation is shown in Fig. 5.4.

From this figure it is seen that with increasing radiation angle the relative value
of the “frequency jump” increases, and its position is shifted to the region of lower
frequencies according to the formulas (5.15), and (5.16). Really, if the radiation
angle is obtuse (the cosine is a negative value), then, as seen from the Eq. (5.16), the
condition of “manifestation” of the spectral step is satisfied better than for smaller
angles, when the cosine is equal to zero or takes on positive values. Physically this
is connected with the fact that with growing radiation angle the relative contribution
of the coherent component of PBs increases (in comparison with the incoherent
component), and spectral steps, as seen from the expression (5.14), are caused just
by coherent PBs. Thus the spectral steps are more noticeable for a radiation angle of
120° and are poorly discernible for a angle of 60°.
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Fig. 5.5 PBs of an ion with the charge Z, = 30 and the velocity v = ¢/3 in a silver polycrystal
(solid curve) and on a silver atom (dotted curve) in the low-frequency range

In calculation of the spectrum of PBs in a silver polycrystal the following value of
root-mean-square deviation of lattice ions from their equilibrium values ux, = 0.087A
was used. In the sum over the vectors of the reciprocal lattice with equal
magnitudes that defines coherent PBs 50 summands were taken into account, for
which S(g) # 0. It should be noted that in taking into account 40 summands the result
for photon yield (in an energy range from 1 to 10 keV) changes less than by 1 %.

Shown in Fig. 5.5 is the spectrum of PBs of a multiply charged ion Z, = 30 with
the velocity v = ¢/3 for a radiation angle of 90° in a silver polycrystal and on a
silver atom in the low-frequency range.

In this case spectral steps are absent since the argument of the theta function in
the formula (5.14) is positive for all g # 0. It is also seen that in this frequency range
PBs in a polycrystal is suppressed in comparison with PBs on an isolated atom. This
fact can be explained by superimposition of two circumstances. First, as seen from
the formula (5.10), in the region of low frequencies w < v/u the incoherent
summand it small, and PBs is defined by the coherent component (Eq. 5.14).
Second, momenta transferred to a target do not all make a contribution to coherent
PBs in a polycrystal, but only those momenta, the magnitudes of which are equal to
the magnitude of one of reciprocal lattice vectors. It is this fact that reduces the
process intensity in comparison with radiation on an isolated atom, when the

contribution to the process is made by all momenta transferred to a target that are
permitted by the conservation law. For example, for the frequencies w << v g the
transferred momenta of small magnitude w/v < ¢ < g do not make a contribution

to coherent PBs in a polycrystal, while it is just these momenta that play an
important role in formation of PBs on an isolated atom.
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Fig. 5.6 The yield of PBs photons per unit trajectory length for an ion scattered in polycrystalline
aluminum for different ion velocities: solid curve —v = c¢/3 (the ordinate is increased five times),
dotted curve —v = ¢/20

The maxima of the frequency dependence in Fig. 5.5 are connected with the
maxima of the imaginary part of the silver atom polarizability for photon energies
close to the potentials of ionization of the shells N and M.

Presented in Fig. 5.6 is the dependence of the spectrum of PBs in an aluminum
polycrystal on the velocity of an incident particle. The solid curve represents the
radiation spectrum for a rather high value of the ion velocity (v = ¢/3).

With decreasing velocity, first, the contribution of the incoherent process
increases, and second, the position of frequency steps is shifted to the low-frequency
range.

Thus the position of a frequency step in the PBs spectrum can serve as a measure
of energy of a scattered ion, and by the frequency shift w; it is possible to judge the
energy loss for an incident particle. The dashed curve in Fig. 5.6 corresponds to
the ion velocity equal to the velocity of protons with an energy of 1 MeV used in the
experiments [4]. It is seen that in such an event the PBs spectrum does not contain a
characteristic solid-state structure, but coincides with the spectrum of radiation on
an isolated atom. It was this fact that took place in the experiments [4], in which no
stepped spectrum structure was observed. This is explained by the fact that in case
of low ion velocities the incoherent component of PBs prevails over the coherent
component beginning with a photon energy of 500 eV. As a result, the stepped
spectrum structure is found to be completely hidden behind the incoherent
background.

Presented in Fig. 5.7 is the ratio of the contributions of the coherent and
incoherent PBs channels for two values of energy (50 and 10 keV) of an electron
scattered in polycrystalline copper, the radiation angle is 90°.

It will be recalled that coherent PBs corresponds to transfer of a momentum from
an incident particle to a crystal lattice as a whole, and incoherent PBs arises during
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Fig. 5.7 The ratio of the coherent channel to the incoherent channel in PBs of an electron with an
energy of 50 keV (solid curve) and 10 keV (dash-and-dot curve) scattered in copper

pair collisions between a scattered charge and target atoms. It is seen that in the
low-frequency range coherent PBs prevails over incoherent PBs, for 50 keV
electrons the contributions of both channels being compared at 7io = 6.1 keV and
for 10 keV electrons at i = 3 keV. Thus the more is the velocity of an incident
particle the wider is the spectral range of prevalence of coherent PBs over incoher-
ent PBs.

In the high-frequency region of the PBs spectrum (Ao > 10 keV) characterized by
high values of the momentum transferred to a target (or low values of the impact
parameter) incoherent PBs prevails. Therefore the solid-state spectrum structure
caused by the coherent interaction of an incident particle with the target becomes
poorly discernible. As a result, the spectrum of PBs in a polycrystal approaches the
spectrum on an isolated atom as it must be according to the physical picture of the
process.

Thus for observation of frequency steps in the spectrum of PBs on a polycrystal
it is necessary to use charged particles of high enough energy and to watch in the
intermediate region of photon energy: from 1.5-2 to about 6 keV.

In the relativistic case in the PBs spectrum, instead of spectral steps, peaks are
observed that correspond to the fulfilment of the Bragg condition for a virtual
photon scattered by a polycrystalline target to a real photon. The maximum
condition can be obtained from the formula (4.53) in the limit A — 0. Then we
have xmax = 2 sin(0/2) or w, =~ gc¢/2 sin(0/2) — the frequency of a peak in the
spectrum of PBs of a relativistic particle corresponding to the magnitude of the
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reciprocal crystal lattice vector g. An analogous result was obtained in the N.N.
Nasonov’s work [5] within the framework of classical electrodynamics. Experi-
mentally, the maxima of PBs of relativistic electrons in a polycrystalline target were
for the first time recorded in the work [6] (see Fig. 2 of Chap. 1).

As was already said, the maxima in the spectrum of coherent PBs of a relativistic
electron in a polycrystal correspond to Bragg scattering of virtual photons of its
electromagnetic field by atomic planes. The Bragg condition for PBs in a polycrys-
tal in the limit is expressed by the equation

A\
k—Jk -=g (5.18)

In writing Eq. 5.18 it was assumed that the wave vector of a virtual photon is
directed along the velocity of an incident particle and is equal in magnitude to the
wave vector of a real bremsstrahlung photon. This assumption is substantiated by
the fact that the structure of the ultrarelativistic charge field is close to a plane wave
with a wave vector parallel to the velocity of a particle. The graphic representation
of the Eq. 5.18 is given in Fig. 5.8.

It should be noted that in case of a polycrystalline target for any radiation angle
there will always be a crystallite, one of crystallographic planes of which is the
bisector of the angle between the vectors k and v as shown in Fig. 5.8.

5.3 Polarization Bremsstrahlung in an Amorphous Medium

In case of PBs on an amorphous target, instead of the crystal structure factor (5.3) in
the formula for the Bs cross-section (5.1) the following expression should be used:

S(q) = g Z <exp(iq (r_,- — r;))> =1+n, J [g(r) — 1] exp(iqr)dr. (5.19)

The second equation in Eq. 5.19, where g(r) is the pair correlation function for
atoms, relates to an isotropic medium. For the structure factor of an amorphous
substance in the “hard-sphere” approximation, when g(r) = ®(r — D,) (D, is the
mean diameter of an atom, O (x) is the theta function), from Eq. 5.19 it follows:

(5.20)

31 (qDa)] _dmn, DS}
b - 3 b)

Samor (@) = [1 g

where j; (x) is the first-order spherical Bessel function. The second summand in the
square brackets of the second equation (5.19) reflects the fact of destructive
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Fig. 5.8 The graphic representation of the Bragg condition for PBs of a relativistic particle
scattered in a crystal

interference of the contributions of amorphous medium atoms to the total PBs
intensity, with the result that the suppression of PBs occurs. It is obvious that the
effect of PBs suppression connected with this interference is essential in the case
that the parameter ¢ is close to one. Besides, for manifestation of this effect it is
necessary that the argument of the spherical Bessel function x = ¢ D, is less than
one. Hence in view of the expression for the minimum momentum transferred to the
medium gmin = (1 — (v/c) cos0) (w/v), we obtain:

A\
@S Da(1=(v/3) cos0)’ (5.21)

where ¢ is the velocity of light in the target material. This inequation (with
fulfilment of the condition ¢ ~ 1) determines the spectral range of suppression of
PBs in an amorphous medium depending on the IP velocity and the angle of photon
emission. Physically, corresponding to the condition (5.21) are such parameters of
the problem, with which the contribution of small transferred momenta (high
impact parameters) to the process is essential. Then PBs is of a collective nature,
and mutual screening of different atoms reducing the process intensity occurs. This
screening can be interpreted also as destructive interference of elementary PBs
fields formed by individual atoms.



5.3 Polarization Bremsstrahlung in an Amorphous Medium 151

L5

0.5+

0= | | | | | -
0 1 2 3 4 5 6
q, a.u.

Fig. 5.9 The structure factor of amorphous silicon: solid curve — quantum-chemical calculation
[71, dotted curve — calculation by the formula (5.20)

The use of the “hard-sphere” approximation (Eq. 5.20) for calculation of PBs
intensity requires knowledge of the parameter ¢ = 4 nn, th /3. And if the concen-
tration of atoms can be easily estimated from the known density of a substance, in
determination of the mean atomic radius D, being a model value there can be
difficulties, especially in case of a medium with high atomic concentration. Let us
illustrate the aforesaid by the example of the structure factor of liquid silicon, for
which in the work [7] the results of quantum-chemical calculations are given.
Calculated in [7], the dependence of the structure factor on the momentum trans-
ferred to the medium ¢ at the melting temperature for silicon T = 1410°C is
presented in Fig. 5.9 by the solid curve. Given in the same figure is the structure
factor of liquid silicon calculated in the “hard-sphere” model for ¢ = 1 (dotted
curve). This value of the parameter ¢ for the real density of liquid silicon n,
= 5.446 x 10?2 cm > corresponds to the mean D, = 1.64 A that was used in
construction of the dotted curve of Fig. 5.9. At the same time the tabular value of
the silicon atomic diameter is D, = 2.36 A [8]. (It should be noted that the
doubled Wigner-Seitz radius for the above concentration of silicon atoms is
3.27 A). But with such a value of D, the parameter g = 3,50S(¢ — 0) < 0, which
is in contradiction with the positive definiteness of the structure factor of
the medium.

A similar conclusion can be made for amorphous carbon and other condensed
media of light atoms, when the model structure factor (5.20) causes a contradiction
with the numerical values of the problem parameters. It should be noted that the pair
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Fig. 5.10 The spectral intensity of PBs of an electron with ¥ = 10 on a target of amorphous
silicon at the angle of radiation 8 = 18°: solid curve — radiation in amorphous silicon, dash-and-
dot curve — PBs on an individual silicon atom

correlation function g(r) used in the work [7] for determination of S(g) differs
noticeably from the theta function of the “hard-sphere” model. This difference is
especially great at short distances r ~ D,, where there is a maximum of the
correlation function: g ~ 2. The last circumstance is indicative of the presence of
a short-range order in liquid silicon at melting temperature.

Presented in Fig. 5.10 are the results of calculation of the spectrum of PBs in
liquid silicon normalized to the concentration of medium atoms 7, and in scattering
of an electron by an isolated atom. The plots of Fig. 5.10 are constructed for a

~1/2
relativistic electron with the Lorentz factor y = 10 (y = (1 - (v/ 6)2) ) and the

angle of bremsstrahlung photon radiation 6 = 18°. The maximum of the spectral
dependence for an isolated atom is caused by increasing polarization charge of a
silicon atom, when the bremsstrahlung photon energy approaches the energy of
ionization of the K-shell.

It is seen that the intensity of PBs in liquid silicon is much less than in the
monatomic case throughout the range of photon energies due to destructive inter-
ference of contributions of different atoms discussed above. The calculation shows
that for the larger radiation angle 8 = 90° and the same other parameters the effect
of PBs suppression takes place in the low-energy range 7 w < 3 keV. This fact
corresponds to the inequation (5.21) determining the region of essentiality of
destructive interference in PBs. In the relativistic case with growing radiation
angle the minimum momentum transferred to a medium increases and, as a result,
the role of cooperative effects causing destructive interference decreases. Therefore
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Fig. 5.11 The spectral intensity of PBs of a relativistic electron (y = 10, 6 = 45°) on a carbon
target: solid curve — radiation on a target of amorphous carbon, dotted curve — PBs on a carbon
atom, dash-and-dot curve — PBs on amorphous carbon in the high-frequency approximation

the effect of suppression of PBs intensity for large radiation angles occurs at lower
frequencies, when the minimum transferred momentum is low enough, and in an
elementary radiative act several medium atoms are involved.

In the experiment [9] that has shown the effect of suppression of PBs in an
amorphous medium, radiation of an electron with an energy of 5-7 MeV scattered
by a thin-film target of amorphous carbon was recorded. It is of interest to calculate
the PBs intensity for experimental conditions [9] within the framework of the
approach under consideration. The corresponding results are given in Fig. 5.11 for
the Lorentz factor of a scattered electron y = 10, the radiation angle 45°, the target
density p = 2.4 g/em’, and the mean diameter of a carbon atom D, = 1.258 A,
(at which ¢ = 47tn, D3 /3 = 1).

Shown in the same figure are the results of calculation of the PBs intensity in
amorphous carbon in the high-frequency approximation. From the form of the
curves it follows that the suppression effect is most pronounced in the range of
bremsstrahlung photon energies e < 5 keV, which corresponds to the experimen-
tal data of the work [9]. The maxima of the spectral dependences correspond to the
binding energies for electrons of the K — and L-shells of a carbon atom — 296 and
16.6 eV. It is seen also that the high-frequency approximation well describes the
process in a wide spectral range up to photon energies of 300 eV.

The analysis shows that the error of calculation of PBs intensity caused by
inaccuracy of the model used for the structure factor of a medium depends on
problem parameters. This error is most essential in the low-frequency range for
large radiation angles, besides, it grows with increasing energy of an incident
electron. The comparison of the results of calculation of PBs in liquid silicon
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Fig. 5.12 The suppression ratio for PBs in amorphous silver as a function of the energy of an
incident particle for the radiation angle 6 = 18° and three values of bremsstrahlung photon
energy: solid curve —ho = 300 eV, dotted curve — ho = 1 keV, dashed curve — ho = 3 keV

obtained in the “hard-sphere” model and with the use of the quantum-chemical
structure factor [7] gives a characteristic error no more than 20 % for y = 10 and
0 = 18°. With growing radiation angle the calculation error increases, but the effect
of PBs suppression itself decreases.

The effect of suppression of PBs in an amorphous medium in the X-ray range is
essential only for relativistic incident particles. In case of a nonrelativistic electron
beam it can be neglected, at least for bremsstrahlung photon energies more than
1 keV. This circumstance is illustrated by Fig. 5.12, where the X-axis corresponds
to the energy of an incident particle normalized to the rest energy (for an electron to
511 keV), the Y-axis is the ratio of the intensity of PBs in an amorphous medium to
the intensity of PBs on an atom.

Also shown in Fig. 5.12 is the straight line corresponding to the value of the
PBs suppression ratio obtained in the limit of low transferred momenta: K =1 — o
= 0.417. The suppression effect more strongly shows itself for lower photon
energies, when the role of destructive interference of contributions of different
atoms to the intensity of the process is great. In the low-frequency range PBs
suppression occurs also for nonrelativistic incident particles, when y — 1<<1.
For photons of high energies (w > 1 keV) the PBs intensity decreases noticeably
only in case of high Lorentz factors y. A characteristic feature of the curves in
Fig. 5.12 is the presence of such inflection points y* that for y > y* the effect of PBs
suppression begins. It should be noted that for large values of the Lorentz factor
7 > 10* the suppression ratio becomes less than its limiting value K = 1 — ¢ = 0.
417 (calculated to the logarithmic accuracy). This is connected with the density
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effect in PBs, when the intensity of the process decreases as a result of screening of
the IP eigenfield at ¢(w) < 1 (¢(w) is the dielectric permittivity of a medium).
The last inequation for a silver target is satisfied in the range of photon energies:
ho>50eV.

A similar effect of suppression of PBs intensity in the low-frequency range takes
place in scattering of a charged incident particle in a polycrystal [3] as was said in
the previous section. As in case of an amorphous medium in a polycrystal for low
transferred momenta g < 27/d (d is the lattice constant), the interference of the
contributions of substance atoms to the intensity of the polarization channel is of a
destructive nature, reducing the intensity of radiation. It should be noted that the
appreciable value of the suppression ratio in an amorphous medium is possible only
for relativistic incident particles (Fig. 5.12), while in a polycrystal the PBs intensity
considerably decreases (times) in comparison with an isolated atom and in the
nonrelativistic case [3].

The obtained expressions for the cross-section of Bs in different solid-state
targets can be also used for estimation of intensity of radiation of secondary
electrons produced in the target material by a primary electron beam, with
corresponding replacement of kinematic parameters (velocity, photon energy, and
radiation angle).
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Chapter 6
Bremsstrahlung of Fast Charged Particles
with an Electron Core in a Medium

6.1 Polarization Bremsstrahlung of a Hydrogen-Like
Ion in a Crystal

6.1.1 Introductory Remarks

In scattering of a fast ion in a medium, ordinary (static) bremsstrahlung caused by
acceleration of an incident particle (IP) in the field of a target is suppressed because of
the high mass of an ion. So the prevailing mechanisms of photon emission in this case
are connected with excitation (real or virtual) of electronic degrees of freedom of
colliding particles. In emission of high-energy photons with an energy of the order of
the IP kinetic energy, when a momentum transferred in collision is great in comparison
with the characteristic momenta of bound electrons, considered as main mechanisms
of radiation, as a rule, are processes with changing state of an electron subsystem.
Among these processes are radiation ionization, emission of secondary electrons, and
radiation electron capture [1]. In the spectral region far from the kinematic limit, when
the characteristic transferred momentum is not great, and the photon frequency is of
the order of the frequencies of excitation of bound electrons of colliding particles, it is
necessary to take into account radiation caused by virtual excitation of electronic
degrees of freedom without change of an electronic state. This kind of radiation
defined by the dynamic polarizability of a target and an IP was called polarization
bremsstrahlung [2].

PBs is a fundamental radiative process representing the conversion of the
electromagnetic eigenfield (a virtual photon) of one of colliding particles to a real
photon on the electron shell of another particle. In the case that both particles have
electronic degrees of freedom, radiation can proceed by two channels according to
on whose bound electrons the conversion of a virtual photon occurs. Thus, generally
speaking, “target” PBs caused by the polarizability of target atoms (channel 1) and
PBs of an incident particle caused by virtual excitation of an IP electron (channel 2)
take place. The schematic representation of two PBs channels is shown in Fig. 6.1. It
should be noted that the first PBs channel was studied by different authors both for a
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Fig. 6.1 (a) PBs by the first channel (target PBs), (b) PBs by the second channel (PBs from an IP)

case of collision of a pair of particles and in scattering in a medium [3—8]. The role
of the second PBs channel is studied much less. Both PBs channels were first
calculated in the works of M.Ya. Amus’ya with co-authors [2, Chap. 7].

In going to consideration of PBs of an ion with an electron core in a crystal, it is
necessary to take into account collective effects caused by a possibility of coherent
interaction of an IP with a target. This problem becomes especially urgent in
connection with further improvement of methods of producing fast ion beams
with specified characteristics including beams of multiply charged hydrogen-like
ions [1]. Various aspects of interaction of such ions with a substance have been
intensively studied in recent years [9, 10]. In particular, coherent excitation of a
hydrogen-like argon ion in a single crystal was investigated experimentally [11], in
which a momentum multiple of the momentum of a reciprocal lattice is transferred
to a target (the Okorokov effect). Since PBs can be considered as a process of
virtual excitation of a subsystem of bound electrons with their following radiation
deexcitation, it is natural to expect that coherent effects such as the Okorokov effect
are to show themselves in polarization bremsstrahlung as well.

6.1.2 Bremsstrahlung in a Polycrystal

The expression for PBs on a target due to virtual excitation of a medium electron in
a polycrystal was derived in [5]. In this case the frequency-angular distribution of
photon yield per unit length is given by the sum of the incoherent and coherent
contributions:

dN, B dNt(incoh) . dNt(mh)
dldodQy  dldodQy — dldwdQy

6.1)
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Incoherent PBs on a target is described by the formula:

sz(mwh) B e? M

dldwdQy " re avie

Gmax

X J (1 - exp(—u2 qz)) [Zp,.oj - F,,,,,j(qlc)}thZ(q) Ip(g,v,m,0) %, (6.2)

Gmin

where n,, o, (w), F,(¢q) are the concentration, the dynamic polarizability, and the form
factor of target atoms; v, Z o, Fproj are the velocity, the nuclear charge number, and
the form factor of an incident ion (IP); w, k are the frequency and the wave vector of
radiation in the target rest frame, 0 is the angle between v and k in the same rest
frame; fiq is the momentum transferred from an IP to the target, /iq; is the change of
the IP momentum, 7q;,. is the same value in the IP rest frame; u is the root-mean-
square deviation of target atoms from the equilibrium position; c is the velocity of
light; gmin = (1 — (v/c) cos0) (0/V), gmax = 2 v, uis the target IP reduced mass;

s,ov/c? —q|?
Ip(q,v,0,0) = 2n JdQ o(w — kv + qv) ﬁ, s=ck/w, (6.3)

is the integral with respect to the solid angle connected with the momentum transfer
vector. This integral in the nonrelativistic limit takes the form

Ip(g,v<<c,w,0) =

1 + cos?d n (2) 213 00520. 632)

2 qv 2

The formula (6.2) describes PBs on a target without excitation of bound
electrons of the target and an IP — so-called “elastic” PBs.
The coherent part of PBs on a target is given by the following expression [5]:

(coh)
dN; & |o® w(w v
A R i I VP ( _ (1—— 0))
didod " R 7rV2c3 Z gV T oL T st )X

2n

22

xa(p(g;lg)th(g)I@(g,v,w,G) J [mej_Fproj(glf(d)))]zdd)' 6.4)
0

There is the sum over the magnitudes of the reciprocal lattice vectors g, N(g) is
the number of these vectors with a specified magnitude g; ¢ is the azimuth angle of g.
In Eq. 6.4 averaging over the g direction is made to describe the contribution of all
polycrystalline cells to the process. The theta function ®(x) expresses the law of
conservation of energy-momentum in radiation.

The expression for PBs of an IP (projectile) in a polycrystal can be derived with
the use of the approach proposed in [2, Chap. 7] for description of PBs in atom-atom
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collisions in the relativistic case. Generalization of this approach to scattering in a
polycrystalline medium gives the following expression for the incoherent channel:

pl oj

didodQ " ho vl

(1+ cos? 0.) %
qmax
F(@0)lZ— Filq)] (1 2 42)) 4 (6.5)
X projq“[t_ Zq] ( —exp(—uq) ;7 .
Gmin
where ¢, (@) is the dynamic polarizability of an IP at the frequency in the IP rest

frame and 0, as a radiation angle in the IP rest frame. These values are connected
with their analogs in the target rest frame according to the relations:

cos —v/c
w.=yw(l—(v/c) cosb), COSH":TC)C/OSO’ (6.6)
where y = 1/4/1 — (v/c)*..
The coherent channel of PBs of an IP is described by the formula:
dN'en e | tproi(@ )!2
proj 2 ¢ “proj c 2
— P (] 0.
ddod " he  avia (Heosl)x
252
« S N() ©(gv — o (1 - ¥ cos0 exp(—ug”)
c g
g
2n
< (2= Flo) | Fouy(ere(#)) dor. (67)
0

Total PBs on an IP is given by the sum of Egs. 6.5 and 6.7 as in the case of PBs
on a target Eq. 6.1.

Let us consider a hydrogen-like incident ion. The eigenfrequencies of its bound
electrons are given by the Bohr formula (the initial state of an IP electron is
supposed to be the ground state):

=27 Ry(1—n?), (6.8)

proj
where Ry =13.6 eV and n is the principal quantum number. The IP form factor is

1
(1 + (aprqul/2)2)2 7

Furoj(q1) = (6.9)
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Fig. 6.2 The ratio between the coherent and incoherent contributions to PBs of an incident Ar'* ion
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where a,,; = i / (Zp,.(,_,-mez) is the Bohr radius. The general expression for the
dynamic polarizability of an IP has the usual form:

o (w)—izzfi” (6.10)
P m — 02 — w?’ '
where f, are the oscillator strengths that in case of a hydrogen-like ion have
universal values independent of the charge number Z,,,,,;. Small imaginary additives
in the denominators on the right side of the Eq. 6.11 are omitted since further we do
not consider the exact resonance when o, = w,,.

At first, let us compare the contributions of the coherent and incoherent channels
to PBs on a target and an IP. Figure 6.2 demonstrates this comparison for two values
of radiation angles in case of scattering of a hydrogen-like argon ion in polycrys-
talline aluminum (R = dN“") /dN{incoh),

The ratio R in Fig. 6.2 is shown as a function of the IP kinetic energy T for the
specified photon energy 7ico = 6 keV. The curves 1, 2 correspond to PBs on a target,
the curves 3, 4 correspond to PBs on an IP. It can be seen from Fig. 6.2 that in case
of PBs on a target the coherent channel prevails over the incoherent channel
(R > 1), while for PBs on an IP there is an opposite situation (R < 1). The latter
is due to the fact that in case of PBs on an IP an incident ion should approach the
target nucleus to interact with it. But at such small distances the coherent interaction
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Fig. 6.3 The spectra of PBs of an Ar'”* ion in polycrystalline aluminum: 7/ — PBs on an IP, 2 — PBs
on a target, 3 — electron bremsstrahlung; T = 390 MeV/u (y = 1.42), 6 = /6

between an IP and the solid target is weak. During PBs on a target an incident ion
interacts with target electrons. This interaction occurs at long distances (if the
radiation frequency is not very high), so then coherent IP scattering by the target
is strong enough. Coherent PBs leads to appearance of a distinct stepped structure
on the curve 1. This structure is due to the presence of theta functions in the
formulas (6.4), (6.7) that correspond to turning of the additional reciprocal lattice
vector in the process with increasing IP kinetic energy.

Figure 6.3 demonstrates the spectra of PBs of an Ar'’* ion scattered in polycrys-
talline aluminum for the IP (curve 1) and target (curve 2) channels. There is also the
spectrum of electron bremsstrahlung on the same target (curve 3).

In Fig. 6.3 the presence of sharp and relatively wide maxima in the spectrum of PBs
on an IP can be seen (curve 1). These maxima correspond to fulfilment of the resonant
conditions in the denominators of the expression for the dynamic polarizability of an
IP (Eq. 6.10) in case of a hydrogen-like incident particle. Due to the Doppler effect
(the first equation in Eq. 6.6), the resonance frequencies in the laboratory reference
system depend on the IP energy and the radiation angle according to the formula

Wp

wmax(na V,Q) = y (1 _ (V/C) cos 0) ’

(6.11)

where w, is the eigenfrequency of a bound electron of an IP (Eq. 6.8), v is the
Lorentz factor. The first spectral maximum in Fig. 6.3 corresponds to virtual
excitation of an IP electron to the excited state with n = 2. According to the formula
(6.11), the resonant photon energy in this case (for specified values of T and 6) is
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Fig. 6.4 The angular dependence of PBs on scattering of an Ar'”* ion in polycrystalline aluminum,
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6,041 eV, while in the IP rest frame it is equal to 3,305 eV. As can be seen from
Fig. 6.3, in the vicinity of the maxima PBs on an IP strongly prevails over PBs on a
target and electron bremsstrahlung. In the high-frequency limit the curves 1 and 3
coincide. This has a simple physical interpretation. A bound electron interacts with
high-frequency radiation as a quasi-free electron. Therefore scattering of the IP
eigenfield by an IP electron to a real high-energy photon occurs as by a free electron.

The angular dependence of PBs on scattering of an Ar'’* ion in polycrystalline
aluminum (7w =6 keV) is shown in Fig. 6.4 for two values of IP kinetic energy.

There are also sharp maxima due to dependence of the resonance frequency in
the target reference system on the radiation angle (Eq. 6.11). Radiation angles
corresponding to the maxima in the angular PBs distribution are given by the
formula:

Omax (1, @, v) = arccos{% (1 i )}, (6.12)

Y Wn

where w, is the eigenfrequency of an IP electron (Eq. 6.8). It can be seen from
Fig. 6.4 that the angles of the maxima increase with increasing IP kinetic energy.
Presented in Fig. 6.5 is PBs from hydrogen-like argon as a function of the IP
kinetic energy for two values of the radiation angle. There are also sharp maxima in
these dependences that have the same reason as in the case of the spectral-angular
distribution of PBs. In this case, however, the first excitation frequency (Eq. 6.8)
(n = 2) in the sum (Eq. 6.10) corresponds to the high-energy peaks on the curves 1, 2.



164 6 Bremsstrahlung of Fast Charged Particles with an Electron Core in a Medium

dn ,, 10 I | T | |
dewdQdl’ :
eV lstrtem™ 1 : 2 _
[ ]
[ |
'
0.1 H —
N
[ |
[ |
0.01 [ -
n
n
n
-3 1
110 1y

100 200 300 400 500 600 700
T, MeV/u

Fig. 6.5 PBs from an Ar'”* ion in polycrystalline aluminum as a function of the IP kinetic energy,
o =6keV:1-0=m/6,2-0=mn/10

This is due to the fact that the radiation frequency in the IP rest frame decreases with
increasing IP kinetic energy according to the first formula (6.6).

It is shown that scattering of a fast multiply charged hydrogen-like ion in a
polycrystalline target results in intense radiation that has a sharp frequency and
angular dependence. This radiation arises due to scattering of the electromagnetic
eigenfield of a target to a real photon by a bound electron of an IP (IP polarization
bremsstrahlung). The PBs channel studied earlier due to scattering of the IP field to
areal photon by target electrons may be called PBs on a target. In contrast to PBs on
a target, the main contribution to PBs on an IP is made by the incoherent channel of
the process. In this item it is demonstrated that the frequency-angular features of
PBs on an IP strongly depend on the IP energy.

6.1.3 Bremsstrahlung in a Single Crystal

In this section we will consider a situation when a fast hydrogen-like ion with the
velocity v is scattered in a single crystal and emits a PBs photon with the wave
vector k in the geometry shown in Fig. 6.6.

The axes of the Cartesian coordinate system presented in this figure coincide
with the crystallographic axes of the target. The ion velocity is supposed to be high
enough, so that the first Born approximation for interaction of an IP with the target
can be used. As was mentioned at the beginning of Chap. 6, in the case under
consideration PBs proceeds by two channels: Eq. 6.13 due to virtual excitation of
target electrons and Eq. 6.14 as a result of virtual excitation of the electron core of
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an IP. In the first case scattering of the electromagnetic eigenfield of an incident ion
to a real photon by target electrons occurs, and in the second case, on the contrary,
there is scattering of the target eigenfield to a real photon by the electron core of an
IP (Fig. 6.1). The expressions for the cross-sections of these channels can be
obtained by summation of the contributions of PBs on different atoms (ions) of a
substance. In the case under consideration with a crystalline target for each of the
channels two types of the process are possible: the coherent process, when a
momentum from an incident particle is transferred to the crystal lattice as a
whole, and the incoherent process in case of pair interaction of an IP with atoms
(ions) of a medium. Thus there are four kinds of PBs in consideration: coherent PBs
on a target and an IP and incoherent PBs on a target and an IP.

To estimate the PBs value, it is convenient instead of the cross-section to use the
number of photons emitted by an IP per unit length in the unit frequency range and
to the unit solid angle. Then for coherent PBs by the first channel (Fig. 6.1a) the
following expression can be obtained:

dNt(mh) n{g e

dldodQy  mhv

2
3 ZSZ(g) 3w+ gv — kv) @ |o(w)]*x
g

s,a)v/c2 —g] 2

X exp(—u2 gz) Frz(g) [Zproj - Fpro_/‘(glc)]z [ (& —2 kg)2 - (6.13)

Here the following designations are introduced: 7, is the concentration of target
atoms, e is the elementary charge, ¢ is the velocity of light, S(g) is the geometrical
structure factor of the crystal, g is the reciprocal lattice vector,  is the frequency of
a bremsstrahlung photon, o,,() is the dynamic polarizability of target atoms, u s the
root-mean-square deviation of target atoms from the equilibrium position, F (q) is
the normalized form factor of medium atoms, Z,,,; is the charge number of the IP
nucleus, F p,.oj(q) is the form factor of the IP electron core, s = ck/w is the unit
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vector in the direction of photon emission, g, = g — kK, g, is the reciprocal lattice
vector in the reference system connected with an IP.

In derivation of the formula (6.13) integration with respect to the transferred
wave vector q was performed in view of interaction of an IP with the target, which
resulted in the equation q = g. The squared concentration of target atoms on the
right side of the Eq. 6.13 is indicative of the coherent behavior of the process.
The presence of the dynamic polarizability of target atoms in the formula (6.13)
reflects the fact that photon emission results from induction of a variable dipole
moment in target atoms during IP scattering. From the obtained expression it
follows also that in the limit # g > 1 coherent PBs is low since then the coherence
of IP interaction with a crystal lattice is violated.

The expression for incoherent PBs by the first channel looks like:

inco Fmax
—dNt(Im ! =2n i 7|w2a;(w)|2 (1 —ex (— 2))
dldod® "o v P
qmln
2 =~ d
[Zprr)j - Fpr()j(qlc)] th(‘I) 1$(q,v,,0) ;C], (6.14)

where gmin = (1 — (v/c) cos0) (w/V), gmax = 2 ptv/h are the minimum and maxi-
mum transferred vectors, [ is the reduced mass of an IP and an electron,

s,ov/c? —q]?
Ip(q,v,w,0 JdQ o(w — kv +qv [— (6.15)
( =% ( e 2k
is the dimensionless integral that in the nonrelativistic limit is equal to:
1 20 1 —3cos0
I$(g,v<<c,m,0) =50 (3) ooy y (6.16)
2 qv 2

0 is the angle between the IP velocity vector and the wave vector of a
bremsstrahlung photon (the radiation angle).

In contrast to coherent radiation (Eq. 6.13), incoherent PBs (Eq. 6.14) is propor-
tional to the concentration of medium atoms in the first degree and grows with the
parameter u.

With the use of the formulas for the cross-section of atom-atom PBs given in
[2, Chap. 7] itis possible to obtain the following equation for the number of photons of
coherent PBs in a single crystal by the second channel (Fig. 6.1b):

dN(u)h 222
proj 1 52 K 2
dldwdQy = h vor (14 cos’ Z 5w+ gv —kv) 0 o

X ‘(xproj wt‘)|2 exp( g ) pm](glz [ ] /g ? (617)
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where Z, is the charge number of nuclei of medium atoms. Appearing in the formula
(6.17), in contrast to coherent PBs by the first channel, is the dynamic polarizability
of the IP electron core o,,,j(w.) at the photon frequency in the reference system
connected with an incident particle:

o, =y (1= (v/c) cosB), (6.18)

where y = 1/4/1 — (v/c)’. is the Lorentz factor. The expression (6.17) includes
also the cosine of the angle of photon emission in the IP reference system:

cosf —v/c
0, =————F"—. 6.19
ST = T (v/c) cos (6.19)
The formula for incoherent PBs by the second channel looks like:
dN"<o) 2 | 0 o)
ke [N Y. [ 2 2oy () (1 + cos0,)
dl dw dQy hw nv?c3
Gmax
~ 2 dq
x J Ffai) 1= Fi@)] (1= exp(—ie 7)) L. (6.20)

Gmin

It should be noted that the form factors of medium atoms and IP are included in
the formulas (6.17), (6.20) for the second PBs channel differently than in the
analogous expressions (6.13), (6.14) for the first channel, which reflects the distinc-
tion in the processes of radiation by these channels (see Fig. 6.1).

The appreciable difference between the coherent and incoherent PBs channels is
that in the coherent case the radiation frequency is fixed for specified IP velocity,
angle of photon emission, and reciprocal lattice vector. This fact manifests itself in
the presence of a delta function in the formulas (6.13), (6.17), whence the equation
for the coherent radiation frequency (“‘coherent” frequency) follows:

_ —8oNv
0g(N) = 1—(v/c)cosB’ ©621)

where the integer vector N = (Ny, Np, N3) is introduced that is related to the
reciprocal lattice vector by the formula g = go (N}, N2, N3), where go =27/d
(d is the lattice constant).

Since in the experiment the recording of photons is carried out with the use of a
photodetector with a finite frequency resolution, let us integrate the obtained
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expressions for coherent PBs (6.13), (6.17) using the spectral function of the
photodetector that we will choose in the form [8]:

fopl®) = = ex (— M) (6.22)
sp - \/7_'5 p sz 9 .

where , = re¢ is the central frequency of the rth channel, Aw is the spectral
resolution of the photodetector (¢ < Aw).

After the said frequency integration we obtain the following expression for
coherent PBs by the first channel (see Fig. 6.1) recorded in the rth channel of the
photodetector [12]:

dN,(mh) 2 ) -
dlko n\/_hvc3 ZS (N) | (g (N)) | eXp(—(ugo) N)

X exp &%) F7(40INI) [Zyroj = Foros(20IND)]?

G(S, v, N7 gO) ®(_VN)5
(6.23)

[s, wg(N)v/c? — go N]2

G(S»V»Nvg()) = 2
(89N = 2 g0 wg(N) (sN))

(6.24)

and O (—vN) is the Heaviside step function providing the positiveness of frequency
of an emitted photon.

The expression for coherent PBs by the second channel integrated with the use of
the spectral function of the photodetector (Eq. 6.22) looks like:

dN (coh) 22 ) 2
proj _ ;1€ 807 (1 n COSZQC)
dl dQy ny/Thved 1—(v/c)cosl
2
ZSZ ) ( VN |O(p10j —Y 8o VN)|
2
w, — wg(N)
exp (f(u go)2 Nz) exp < %)
x F;%/'oj(gl(:) [1 Ft gON ] /N2 (6.25)

Here the photon frequency in the reference system connected with an IP in the
argument of the dynamic polarizability of an IP is written out in the explicit form in
view of the Egs. 6.18 and 6.21. In the formulas (6.23), (6.25) summation over the
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reciprocal lattice vectors are replaced by summation over the components of the
integer vector N = (Ny, N2, N3).

For incoherent PBs by the second channel after frequency integration with the
spectral function of the photodetector (6.22) the following approximate expression
can be obtained:

dN[%j-Oh) N Z2n, e (5)2 (1+ cos?0,) r? Wy P
dlko g 2\/%7’7 Cc \V ﬂ))z(l — (V/C) CcOS 0)2 - Awn "
2uv
— o) (v 0)1?
w, — o) (v,
X exp{— [ Anwz( ) J(l —exp(—q°u?))
OOAY
=2
Fproj(@ic) [1 —Fia)]" da/q, (6.26)
where () (v,0) = WW is the IP eigenfrequency in the laboratory reference

system connected with a target, r, = e> / mc? is the electron classical radius. The
derivation of the formula (6.26) was carried out under the assumption that Aw,<<Aw
(Aw, is the spectral width of the line of the bound-bound transition in the electron core of
an IP). Besides, in Eq. 6.26 the cross terms appearing in squaring the magnitude of the IP
polarizability are omitted. For the polarizability of a bound electron the following
standard expression is used:

e’ W
Tproj () = — Z - wzi T Ao (6.27)
where f,,, w, are the oscillator strengths and the eigenfrequencies of transitions of a
bound electron of an IP from the ground state to the exited states. We assume that
the IP core during the process is invariably in the 1 s-state.

The spectral dependence of incoherent “target” PBs (the first channel) is rather
weak, so integration of its spectrum with the tool function of the photodetector
(Eq. 6.22) will result in multiplication of the primary expression (6.14) by the
parameter Aw.

Let us use the obtained formulas for calculation of spectral, velocity (on the IP
velocity), and angular dependences of four kinds of PBs arising in scattering of a
hydrogen-like Ar!’* argon ion in a silicon single crystal. In this case for the
geometrical structure factor of the crystal the equation is true [13]:

1
S(g) = - cos T (N1 + Nz + N3)| {1 +cos(nN;) + cos(nNa) + cos(nN3) },

4714
(6.28)
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where N; are the integers that mark out nonzero terms in the sum over N in the
expression for coherent PBs (6.23), (6.25).

For the parameters of the polarizability of a bound electron of an IP being in the
ground 1s-state and of its form factor we use the known hydrogen-like formulas [14]:

nt—1 2B (n—1)"""*
n — Z2~ i U, Jp = R . A— 6.2
» proj 2}’12 a.u f n 3 (n + 1)2n+4 ? ( 9)
1
Fproj(q1) = 20 Gproj = hz/(mejm e ) (6.30)

(1 + (apwj 511/2)2>

In the formulas (6.29) n is the principal quantum number of the electron core of
an IP. Fine splitting of energy levels is neglected. To be specific, in calculations the
natural broadening of transitions of an IP electron in the discrete spectrum is
assumed, then

2n(n—1)""7
Aw, = Ay =27, o (1 ((n N 1;2"“ a.u., (6.31)
where A, is the Einstein coefficient for a spontaneous transition.

It should be noted that using the formulas (6.29) that take into account only
transitions in the discrete spectrum is justified by the fact that the contribution of the
second PBs channel from bound-free transitions in the IP core is small.

The calculation of the dynamic polarizability and form factors of target atoms is
described in detail in the work [5].

Presented in Fig. 6.7 are the dependences of four kinds of PBs at the
central frequency of the photodetector , calculated by the formulas of the previous
section for a case of scattering of a hydrogen-like Ar!’* argon ion (the IP velocity
v =4 6.65 a.u.) incoming along the crystallographic axis 2 (the input angle o« = 0,
see Fig. 6.2) into a silicon single crystal. For short, we will call these dependences
spectral. The radiation angle 0 is supposed to be 120°, and the spectral resolution
of the photodetector is taken equal to 3 a.u. (Aw=81.6 eV). From the figure it
follows that the spectra of coherent PBs by the first and second channels are sets
of maxima, the position of which, according to the formula (6.21), is defined by
the reciprocal lattice vector transferred from an IP to the target during PBs, by the
IP velocity and the radiation angle. The width of these spectral maxima is
connected with the width of the spectral resolution of the photodetector Aw,
and the value is defined by the magnitude of the polarizability of target atoms and
an IP electron at the coherent frequency (6.21).

The spectrum of incoherent PBs by the second channel is defined by the spectral
dependence of the IP polarizability having sharp peaks at frequencies that in the IP
reference system are close to the eigenfrequencies of excitation of a bound electron
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Fig. 6.7 The dependence of four kinds of PBs on photon energy at the central frequency of the
photodetector in scattering of a hydrogen-like argon ion in a silicon single crystal (the ion velocity
v = 46.65 a.u., the radiation angle 6 = 120°, the IP input angle o = 0, the resolution of the
photodetector Aw=381.6 €V): I —coherent PBs on a target, 2 — coherent PBs on an IP, 3 — incoherent
PBs on a target, 4 — incoherent PBs on an IP

of a hydrogen-like ion. A corresponding condition for the frequency of a maximum
in the spectrum of incoherent PBs by the second channel looks like:

Wp

Omax (1, V,0) = y(1 = (v/c) cos0) .

(6.32)

The formula (6.32) is a condition of coincidence of the eigenfrequency of a
bound electron of an IP in the laboratory reference system with the frequency of
PBs recording. Owing to the Doppler effect, the eigenfrequency of the electron core
of an IP in the laboratory system depends on the IP velocity and the radiation angle.
The width of the discussed maxima, as in the coherent case, is defined by the value
of the spectral resolution of the photodetector Aw.

It should be noted that in case of fast enough ions, following from the expression
(6.32) is a possibility of radiation frequency tuning at the expense of change of the
radiation angle, which may be found to be rather essential in practical applications
of the phenomenon under consideration.

The spectrum of incoherent PBs by the first channel in the frequency range under
consideration is described by a line weakly decreasing with growing frequency,
close to the horizontal straight line. This is connected with the fact that the dynamic
polarizability of target atoms defining this kind of PBs according to the formula
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Fig. 6.8 The dependence on the velocity of an incident particle for four kinds of PBs in scattering
of a hydrogen-like argon ion in a silicon single crystal (the photon energy at the central frequency
of the photodetector 7iw, = 2,448 eV, the radiation angle 6 = 135, the IP input angle o = 0, the
resolution of the photodetector Aw = 81.6 eV): I — coherent PBs on a target, 2 — coherent PBs
on an IP, 3 — incoherent PBs on a target, 4 — incoherent PBs on an IP

(6.14) depends rather weakly on the frequency in the spectral range presented in
Fig. 6.7.

Figure 6.8 demonstrates the dependence of four kinds of PBs under consideration
on the IP velocity for the bremsstrahlung photon energy at the central frequency of
the photodetector i®, = 2,445 eV and a radiation angle of 135°. The input angle is
supposed to be equal to zero, and the spectral width of the line of the photodetector
resolution Aw = 81.6 eV.

From the figure it is seen that incoherent PBs by the first channel weakly depends
on velocity. The velocity dependence of coherent PBs of the same channel is defined
by the condition of equality of the frequency of recording the radiation and frequency
of coherent radiation (Eq. 6.21). The maxima of the discussed dependence are
connected with different reciprocal lattice vectors transferred from an IP to the target
during coherent PBs. The width of these maxima is defined by the width of the
spectral function of the photodetector (Eq. 6.22), and the value is defined by the
dynamic polarizability of target atoms at the coherent frequency (6.21). It is seen that
in the presented range incoherent PBs by the first channel everywhere prevails over
coherent PBs.

The velocity dependence of incoherent PBs by the second channel has a wide
maximum caused by the Doppler effect and the finite width of the spectral line of the
photodetector. This maximum is connected with the fact that in view of fulfilment of
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the condition Aw, < <Aw the radiation frequency in the reference system connected
with an IP is fixed and equal to one of the eigenfrequencies of a bound electron of an
ion. When going to the laboratory reference system, the dependence of this reso-
nance frequency on the IP velocity and the radiation angle appears, resulting in this
maximum. The presented reasoning immediately follows from the expression (6.26).

A characteristic feature of Fig. 6.8 is the presence of sharp peaks in the velocity
dependence of coherent PBs by the second channel. These peaks appear in case of
equality of the coherent frequency (6.21) and one of the eigenfrequencies of a
bound electron of an IP (the first equation in Eq. 6.29) converted to the laboratory
reference system. This condition looks like:

Wy _ . —goNV
7(1 —(v/c) cos0) 0g(N) = 1 —(v/c)cosf’

Omax (1, v,0) = (6.33)

Hence the condition for the velocity value at the maximum of the velocity
dependence follows:

c

Vmax(na N» o, SD) =

2
\/1 + (%) [N sino cos ¢ + N, sina sin — N3 cos o)’

(6.34)

It should be noted that the velocity at the maximum does not depend on the angle
of bremsstrahlung photon emission. In case of IP incoming along the crystallo-
graphic axis of the target (o = 0) the expression (6.34) is simplified: the depen-
dence only on the integer N3 connected with the value of the transferred reciprocal
lattice vector and on the eigenfrequency of an ion electron remains.

For maxima defined by the first eigenfrequency of an Ar!’* ion (w,—, = 3305eV),
from the Eq. 6.34 it is possible to obtain the table of values of IP velocity at
the maxima of the velocity dependence of coherent PBs by the second channel
(see Table 6.1).

Given in the second line of Table 6.1 are the values of coherent frequency (6.21)
calculated for a radiation angle of 135°. The distinction of these values from the first
eigenfrequency of an Ar!’* ion is connected with the Doppler effect.

In Fig. 6.8 four maxima corresponding to the values of IP velocity are well
visible that are given in Table 6.1: 38.13, 46.656, and 59.579 a.u.. Also present in
this figure are additional maxima of lesser values that are connected with equality of
the coherent frequency (6.21) and other eigenfrequencies of the electron core of an
IP (at n>2). The lesser value of these maxima is explained by the lesser value of
oscillator strengths for virtual transitions to bound states of an IP electron with n>2.

The width of “velocity” maxima, as seen from Fig. 6.8, is rather small. It is
defined by the value of spectral broadening of the line of the electron transition in
the IP core that in the present calculation is supposed to be natural (see Eq. 6.31).
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Table 6.1 Coherent N; 1 2 3 4 5
frelq“?tnc,y asa f}m““’? of Viao @ 112751 80372 59.579  46.656  38.13
VeTocty 1h maximum for hog, keV 1,187 1,892 2276 2505 2,652

various N3 values

Taking into account the additional mechanisms of broadening will result in broad-
ening of corresponding velocity dependences.

From Fig. 6.8 it follows that for the parameters under consideration in the range
of low velocities (v < 42 a.u.) incoherent Bs by the first channel prevails. For high
IP velocities the main contribution to the process is made by incoherent PBs by the
second channel, with the exception of rather narrow ranges near the values given in
Table 6.1, where coherent PBs by the second channel prevails.

It should be noted that now rather high energy monochromaticity of an ion beam
is achievable, at which the relative spread of IP velocity is fractions of a percent [1].
Therefore averaging over the spread of velocities in an ion beam should retain the
main conclusions following from the given analysis of velocity dependences of
different PBs kinds.

Presented in Fig. 6.9 are the angular dependences of considered kinds of PBs of an
Ar'7* jon incoming into a silicon single crystal at a zero angle to the crystallographic
axis for the IP velocity v = 46.65 a.u. and the bremsstrahlung photon energy
ho, = 2,448 eV. The angular dependence of incoherent PBs by the first channel
is manifested rather weakly.

The angular distributions of coherent PBs by both channels are similar: they have
two maxima, and for wide angles maxima are more flat. The widths of these maxima
are defined by the spectral resolution of the photodetector: they grow with Aw.
Incoherent PBs by the second channel has a maximum in the region of wide radiation
angles connected with fulfilment of the resonant condition in the polarizability of
the electron core of an IP, when the conversion of the eigenfield of a target to a
bremsstrahlung photon on a bound electron of an IP proceeds most effectively.
On the whole, for specified values of IP velocity and bremsstrahlung photon energy
incoherent PBs prevails in the angular dependence, and only in a rather narrow range
of radiation angles near 8 = 82° prevailing is the contribution of coherent PBs by the
first channel.

From the form of the angular dependences in Fig. 6.9 it follows that integration of
the obtained expressions for PBs with the angular tool function of the photodetector
may not change significantly the obtained result.

With increasing charge of the nucleus of a hydrogen-like ion the contribution of the
second PBs channel to total radiation will decrease. This is connected, first, with growth
of the IP eigenfield, which increases PBs by the first channel (see Egs. 6.13, 6.14), and,
second, with reduction of the polarizability of a bound electron of an IP. Really, in case
of the natural broadening of the line (6.31) the sum over the principal quantum number
in the formula (6.26) will contain the multiplier f,, /w, decreasing as Zl;.gj. On the other
hand, with growing Z,,,,,; the spectral region of essentiality of PBs by the second channel
will be shifted to the high-frequency region because of growing resonance frequencies
of the polarizability of a hydrogen-like ion, whereas for low Z,, this region
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Fig. 6.9 The angular dependence of different kinds of PBs in scattering of a hydrogen-like argon
ion in a silicon single crystal (the ion velocity v = 46.65 a.u., the photon energy /i, = 2,448 eV,
the input angle o = 0, the resolution of the photodetector Aw» = 81.6 eV): I — coherent PBs on a
target, 2 — coherent PBs on an IP, 3 — incoherent PBs on a target, 4 — incoherent PBs on an IP

corresponds to vacuum ultraviolet radiation and soft X-rays. With growing charge of
the nuclei of target atoms the relative contribution of the first and second PBs channels
practically will not change, and radiation by each of the channels will increase
proportionally.

6.2 Polarization Bremsstrahlung of a Fast Ion
with an Electron Core in Plasma

In this paragraph within the framework of the first Born approximation polarization
bremsstrahlung of a fast hydrogen-like ion in plasma is calculated and analyzed.
The contribution of two channels to the process is taken into account: Eq. 6.35 of
radiation due to conversion of the electromagnetic field of an ion to a real photon on
plasma electrons and Eq. 6.36 of radiation as a result of virtual excitation of a bound
electron of an ion (see Fig. 6.1a, b).

It is shown that the second channel of polarization bremsstrahlung has sharp
peaks in the narrow spectral-angular range near the eigenfrequencies of the electron
core of a fast ion, the spectral-angular dependence of radiation significantly
depending on the velocity of an incident particle. The influence of plasma
parameters on both polarization bremsstrahlung channels was investigated.
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PBs of fast charged particles in plasma called transient Bs was for the first time
investigated in the works of V.N. Tsytovich and A.V. Akopyan [15]. Further it was
shown that this type of radiation is analogous to Bs in case of collision of charged
particles with an atom that is caused by a variable dipole moment induced in the
electron core of the atom by a scattered charged particle [2, Chap. 6]. PBs can arise also
as a result of collision of neutral atoms or ions having an electron core. Then two
channels of radiation are possible according to in which electron shell a radiating
dipole moment is induced. Corresponding formulas for cross-sections in nonrelativis-
tic and relativistic cases were obtained by M.Ya. Amus’ya with co-authors [2, Chap. 9].

Let us consider the process of emission of a transverse photon in scattering in
plasma of an ion having a subsystem of bound electrons. By a transverse photon is
meant the transverse mode of an electromagnetic field in plasma propagating also in
vacuum in contrast to the longitudinal mode (plasmon). We assume that the ion
velocity exceeds significantly the characteristic velocities of plasma particles and
that the condition of the Born approximation for interaction of an IP with plasma
particles is satisfied. Besides, we consider that the photon frequency w > y w, (y is
the Lorentz factor of the IP, w), is the plasma frequency), then the influence of the
density effect on Bs can be neglected.

As was already noted, the ordinary mechanism of Bs caused by acceleration of an
IP in the target field is suppressed because of the high mass of an ion. As a result, the
main radiative process is connected with the polarization mechanism of Bs. PBs in
the case under consideration can proceed by two channels: (6.35) due to scattering of
the IP eigenfield to a real photon on plasma electrons and Eq. 6.36 as a result
of conversion of the eigenfield of plasma charges to a real photon on bound electrons
of an IP. In both cases the energy of electromagnetic radiation is got from the kinetic
energy of an IP, and the energy-momentum excess during the radiative process is
absorbed by plasma ions. This interpretation assumes that the energy of plasma ions
is insufficient to generate radiation of frequencies considered below.

6.2.1 Polarization Bremsstrahlung Due to Virtual Excitation
of Plasma Electrons (the First Channel)

The expression for the differential cross-section of PBs in plasma by the first
channel can be obtained within the framework of the approach described in
[2, Chap. 6] that is based on the use of the formalism of the dynamic form factor
of plasma components. The dimensionless PBs amplitude caused by the contribu-
tion of the jth plasma electron to the process under consideration is

. 2 2 (e Al -
TP =27 d( + o + qv) (fﬁ)ﬂ/%ﬁ (e, A™(g1)) exp(iary),

(6.35)
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where V is the volume of quantization, v is the IP velocity and charge, ig = 7i(¢°, q)
is the four-dimensional energy-momentum vector transferred to plasma, 7iwy; is
the energy of excitation of a plasma electron during Bs, ¢ =¢q¢—k=

(1 /h){sf — &, Pr— pi} is the four-dimensional wave vector proportional to the

change of the IP energy-momentum, k = (w/c, K)is the four-dimensional wave vector
of a bremsstrahlung photon, ey , is the unit vector of photon polarization,

_Amcey Vq?/CZJrql
-0 2
aVo(qY/c)” —ai

A" (qy) . @ =qv (6.36)

is the vector-potential of the IP field, e,, = Z,.e s the IP charge. The axial gauge of
the electromagnetic field is used, in which the scalar potential is equal to zero.

Summing the amplitude (Eq. 6.35) over all final states of a plasma electron |f),
plasma electrons in the volume of quantization and polarizations of a bremsstrah-
lung photon o, we find the following expression for the number of bremsstrahlung
photons emitted by the first channel per unit IP trajectory length to the range of
wave vectors dk:

dN arg 1 ,c¢é J' 2 [s,0v/c? —q]? (ee) (.0
0 — a2l T )r_Fr —t =g\ y d,
dldodd 7 ¢vho (Z r(q)) (@ —2kq)’ (¢".a) dq
(6.37)
where Z,,, F p,(q) are the charge number and the electron form factor of an IP,

r, = €2 / mc? is the electron classical radius, s is the unit vector in the direction of
photon emission,

$0(g) =5 | dre (i @0 (~a)) (638)

is the dynamic form factor corresponding to absorption of the four-momentum
fig = 1i(q°,q) by plasma through interaction of the plasma components j and /.
(For more details of the DFF of plasma components, see Appendix 3.)

PBs by the first channel is defined by the electron—electron DFF:

€ (g) = 5¥(g) + 51 (q). (6.39)

The first summand in the electron DFF (6.39) describes processes with transfer
of the energy-momentum excess to the electron subsystem of plasma, the second
summand does the same for the ionic subsystem. In the first case the conversion of
the IP eigenfield occurs on individual plasma electrons (the incoherent process),
and in the second case the conversion occurs on the Debye sphere screening a
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plasma ion (the coherent process). Further we will be interested in coherent PBs.
(ee)

A corresponding component of the dynamic form factor of plasma S, (¢) in the
limit v>>vr; can be represented as:
11— (q)|’
5 (g) = n 22 |——L| 5(¢"), (6.40)
@ ¢(q) (@)

where Z;, n; are the charge number and the concentration of plasma ions, glle) (q),
¢'(g) are the longitudinal dielectric permittivities of an electron plasma component
and of plasma as a whole. The delta function in the Eq. 6.40 describes the energy

conservation law with neglected recoil of a plasma ion. The coherent nature of the

process is reflected in the quadratic dependence of S,(“) (¢) on the number of

electrons in the Debye sphere equal to Z;. In the case under consideration for a
fast IP (v>>vre.>>vr;) we have

1
#9g) =g = 0,0) = 1+ 5., 4D
hq
where rp is the Debye radius. Then
S€q) = m | — G 25(610) = n; [Fi(a)]* 6(¢")- (6.42)
i 1+ 73 ¢?

Here the form factor of the Debye sphere screening an ion in plasma is
introduced by analogy with the atomic case that is by definition equal to:

Z;

Fi(q) :Trﬁqz’

(6.43)

so the spatial Fourier transform of the charge of a plasma ion on the wave vector qin
the units of elementary charge is Z; — F;(q). Substituting the expressions (6.42),
(6.43) in the formula (6.37) and dividing by the concentration of ions, we obtain the
expression for the differential cross-section of PBs on the Debye sphere (“target”
PBs) with transfer of the energy-momentum excess to a plasma ion:

PB 2
A0y 2727 v, C

qmax
J (Zp,. - Fp,.(q))21¢(q,v,w, 0) dg

2
_ . : (6.44)

dodQy nw V2 2 (1+2¢2) ¢
where v, = ¢?/h, ¢ = |q|, 0 = K"V is the radiation angle, and

3 2 2
v [s,0v/c* —q]
14(q,v,®,0 :—JdQ S(w—kv +qv) 2L~ 5 (6.45)
o v, 0,0) =T [ a0, 5 ) e
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is the kinematic integral that in the nonrelativistic limit is

1+00520+ <w>2 1 —3cos?d

Iy(q,v<<c,o,0) = 5 p > (6.46)

6.2.2 Polarization Bremsstrahlung as a Result
of Virtual Excitation of the Electron Core
of an IP (the Second Channel)

For the differential cross-section of the second PBs channel with generalization of
the formulas obtained by M.Ya. Amus’ya with co-authors [2, Chap. 9], in case of
atom-atom and ion-ion collisions the following expression can be obtained:

de®®. 72 v, 0 w? 2
dw Zék - ?l V23 ‘ ’“ij(w(’)’ (1 + 005290) Lpi(rp), (6.47)

where o,,;(¢,) is the dynamic polarizability of an incident particle,

cosf —v/c

1 —(v/c) cosB (648)

w.=y0(1—(v/c) cosb), cosl. =

are the frequency and the cosine of the radiation angle in the reference system
connected with an incident particle,

'D dmax
X2 Fpp(x/rp) dx
Li(rp) = J W (6.49)
D qmin
w 2uv
qmin = *(1 - (V/C) Cos H)a dmax = Ta (6.50)
v

where u is the reduced mass of an IP and a plasma ion. In derivation of the formula
(6.47) the expression for the form factor of the Debye sphere (Eq. 6.43) was used,
by which the above generalization of the formulas of the work [2, Chap. 9] to the
plasma case is achieved.

Further we will consider a case of a hydrogen-like incident ion. Then for the
dynamic polarizability of an IP we have:

2
Apro(@) = % > Y/ 6.51)

2 o2 — i
— ), — ©F — W0,

where
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R 1
w, =22 % <1 - ﬁ> (6.52)

are the eigenfrequencies of a bound electron of an IP, f; are the oscillator strengths,
0, are the damping constants. A characteristic feature of the dynamic polarizability
of a hydrogen-like ion is the presence of sharp resonances atm =~ @, since w, >> J,.
The electron form factor for the ground state of a hydrogen-like IP is

1
Fpr(q) = ——3, (6.53)

(1+(@a/2y)

where a = I* / (Z,,r me? ) Substituting Eq. 6.53 in the formula (6.49), we find

7 qmax
’ X3 dx
I[,I(I'D7 a) = . (654)

e (14327 (14 (a/2 rD)2x2)4

It should be noted that in the limit rp>>a characteristic for nondegenerate
plasma the approximate equation is true:

(6.55)

2r 17 + 1172 g%,
Ipl(ro>>a)zln< i ) 117D Ginin

a1+ ¢, ) 12+123¢,

The cross-section of ordinary Bs of an electron in plasma in the frequency range
under consideration mv2?/2h >> w >y w), can be obtained if in the formula (6.47)
the function o,,,;(w,) is replaced by the dynamic polarizability of a free electron,
and instead of the integral 1,,(rp), In(mvrp/h) is substituted. As a result, we find

—_— r)
dodQ 7w ¢ Vv: 32(1 = (v/c) cosb)?

de®® 7 ,v,c 1 + cos?0, (mv rD) 6.56)
h
Now let us consider some limiting cases of the above expressions for the cross-
sections of PBs by the first and second channels. In the nonrelativistic case (v) in the
frequency range @ < v/rp the formulas (6.44), (6.46) give

doti (w<v/rp) 272 (Z, — 1)2 v
g i \Lpr 2

= 1 0)1 . 6.57
dw dQy T ViAo (1+ cos0) n(w rD) 6.57)
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In the opposite case of high enough frequencies w > v/rp, for the differential
cross-section by the first channel we have

daff (w>v/rp) 272 2 v2

rg _ 4 2

—ddor g G = 1) (14 c0s’0) g .
D

6.58
dow ko 2n ( )

The obtained expression contains the small multiplier (v/w rp )4 that describes the
suppression of PBs on the Debye cloud in the frequency range under consideration.
This suppression is connected with the loss of coherence of conversion of a virtual
photon to a real photon on the electron charge of the Debye sphere if A<rp (4 is the
wavelength of a bremsstrahlung photon).

In the low-frequency limit @ < v/rp in case of nondegenerate plasma the
inequation w<Z§,,Ry is satisfied. Then for the IP polarizability it is possible to use

the static approximation that for a hydrogen-like ion gives 0,,,;(0) = a} / Z;fr, where

ap is the Bohr radius. Substituting this expression in the formula for the cross-section
of PBs by the second channel (Eq. 6.47), we obtain:

dops, (w<Z§rRy) 81 22 (0 v, (1—(v/c) cos0)’
dw dQy C4n Z, B2 1—(v/c)?

(1 4 cos?0.) ln(r—D).

a
(6.59)

In case of fulfilment of the inequation J,<<|w, — w,|<<w, for the dynamic
polarizability of an IP the resonant approximation “works”. Then for the differential
cross-section of PBs by the second channel the formula is true:

do’ (0.~ w,) 7212 v,c 2
AOproj\We = On)  Zi Ty Va ,1 )
dw dQy Tonwm V2 [(L B y(l % cos 0)}2 (1 + cos 9(.) Ly(rp),

()

(6.60)

following from which is the presence of sharp peaks in the frequency-angular PBs
distribution caused by conversion of fluctuations of the electric field of plasma to a
real photon on a bound electron of a hydrogen-like IP. The frequency of a peak
depends on the angle of photon emission the and IP energy according to the equation:

Wy
v (1= (v/c)cos )’

Omax (1, v,0) = (6.61)

At a fixed PBs frequency the maximum in the angular distribution of the process
is defined by the angle

Omax (1, 0,v) = arccos{% (1 - >} (6.62)

Y Wy
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Fig. 6.10 The spectrum of PBs by the first channel (curve 1), by the second channel (curve 2) of a
He" ion and the spectrum of ordinary Bs of an electron (curve 3) in nondegenerate plasma
(p = 5-10"%cm): v = 1.98-10"° cmys, 6 = n/3

From the Eq. 6.62 it follows in particular that the angular maximum occurs in
fulfilment of the inequations

V(l—g)wngwﬁv(lﬁ%)wn- (6.63)

Beyond the said spectral range the angular dependence of the cross-section of
resonant PBs by the second channel has a monotonic behavior.

Calculated by the formulas (6.44), (6.47) the spectra of two PBs channels
in scattering of a hydrogen-like helium ion (v = 90a.u.) in nondegenerate plasma
(rp = 10° a.u.) (curves 1, 2) are presented in Fig. 6.10 together with the spectrum of
ordinary Bs of an electron (curve 3) for the radiation angle 6 = /3.

It is seen that PBs caused by conversion of the electric field of a plasma ion on a
bound electron of an IP to a bremsstrahlung photon (the second channel) has sharp
maxima at frequencies described by the formula (6.61), corresponding to resonances
of the dynamic polarizability of an IP. PBs by the second channel prevails every-
where, with the exception of the narrow region of low frequencies. At @ — 0 the
spectral cross-section of the second channel decreases according to the formula
(6.59) as the third power of frequency. At the same time the cross-section of the
first PBs channel rapidly decreases with growing frequency because of the loss of
coherence in reradiation of the IP eigenfield by electrons of the Debye sphere to a
bremsstrahlung photon. This circumstance is connected with the high value of the
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Debye radius in nondegenerate plasma rp >> ap, so the inequation w > v/rp is
satisfied in the overwhelming part of the spectral range, and the low value of the
process cross-section in this case is predicted by the formula (6.58). Thus the spectral
regions of essentiality of two PBs channels in nondegenerate plasma are much
spaced due to the high value of the Debye radius. It should be noted that in the
region of high frequencies, when the inequation w, > Zgr Ry is satisfied, the cross-

sections of PBs of a hydrogen-like ion by the second channel and of ordinary Bs of an
electron are close in value. This is connected with the fact that in the region of high
frequencies the dynamic polarizability of an IP is close to that for a free electron.

With growing IP velocity the spectral maxima of PBs by the second channel are
shifted to the region of lower frequencies, and the cross-section of the second
channel decreases not so rapidly. Similar changes of the spectra occur with reduction
of the radiation angle.

The spectral Bs cross-sections in scattering of a hydrogen-like carbon ion in
degenerate plasma are presented in Fig. 6.11. Since in this case the Thomas-Fermi
radius is much less than the Debye radius of nondegenerate plasma, the spectral
ranges of essentiality of both PBs channels intersect. The second PBs channel, as
before, prevails near the resonances of the dynamic polarizability of an IP.

The angular dependence of total PBs (the sum of both channels) in scattering of a
hydrogen-like helium ion (v =90 a.u.) in nondegenerate plasma is presented in
Fig. 6.12 for the frequency w = 1.7 a.u. (46.24 eV). From Fig. 6.12 it follows that
the angular dependence of PBs of a hydrogen-like ion in plasma has sharp maxima
corresponding, according to the formula (6.62), to the resonant condition . (v,0) = w,
if only the frequency of a bremsstrahlung photon in the laboratory reference system
satisfies the inequations (6.63). These maxima are shifted to the region of small angles
with growing IP velocity.

The dependence of PBs of a hydrogen-like carbon ion scattered in nondegenerate
plasma on the IP velocity is presented in Fig. 6.13 for two radiation angles: 6 = 7/10
and 0 = 7/6. The bremsstrahlung photon energy is i = 544 eV.

Two sharp peaks on these curves correspond to the resonance of the dynamic
polarizability of a carbon ion in excitation of its bound electron from the ground
state to the first exited condition. It is seen that with growing radiation angle the
position of the maximum is shifted to the region of higher velocities.

This circumstance is a corollary of the formulas (6.52), (6.61) determining the
photon energy at the maximum of the spectral dependence of the PBs cross-section
as a function of the radiation angle and the IP velocity. Following from them is the
expression for the IP velocity at the maximum:

cos0 £ \/0052 0+ [(a),,/co)2 - 1] [(w,,/co)2 + cos? 0}

V)

max_c

6.64
(wn/@)* + cos? 0 7 (069

where w, is the eigenfrequency of a bound electron of an IP that is given by the
formula (6.52). The expression (6.64), naturally, is true for vy.x. Depending on the
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Fig. 6.11 The spectrum of PBs by the first channel (curve 1), by the second channel (curve 2)

of a C*> ion and the spectrum of ordinary Bs of an electron (curve 3) in degenerate plasma
(rrr = 5-107% cm): v = 1.98:10'° cmys, 0 = n/3
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Fig. 6.12 The angular dependence of total PBs of a He' ion (v =90 a.u.) in nondegenerate
plasma (rp =5-10"® cm) for the bremsstrahlung photon energy 7icy = 46.24 eV
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Fig. 6.13 The dependence of total PBs on the velocity of a C™ ion (iw = 544 eV) in
nondegenerate plasma (rp, = 5-10~® cm) for two radiation angles: solid curve —0 = /10, dashed
curve —0 =1/6

value of the ratio (w, /) and the radiation angle 6, the function ¢(v) can have two,

one, or no maxima. For example, if the radicand on the right side of the Eq. 6.64 is

equal to zero, it is obvious that V,({az( = Vgnt& — there is one maximum. Satisfying this

condition is the relationship between the frequency and the radiation angle:

w=2" = 4. (6.65)
sin 0

In fulfilment of Eq. 6.65, following from Eq. 6.64 is a simple relation between
the velocity at the maximum of the cross-section of PBs by the second channel and
the radiation angle: vi,,x = ¢ cos 0. At frequencies @ > ®* the PBs cross-section
sharply decreases since the approximate equation w. ~ w, resulting in a resonance
in the dynamic polarizability of an IP ceases to be satisfied. With decreasing

radiation frequency, when o << w*, from the expression (6.64) the limiting

dependences follow: vﬁn_a; — 0 and vﬁntl — ¢. Then the cross-section of PBs by

the second channel is low in a wide range of IP velocities.
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Chapter 7

Investigation of Bremsstrahlung

of Nonrelativistic Electrons in Thick
and Thin Metal Targets

This chapter is dedicated to presentation of results of theoretical and experimental
investigations of bremsstrahlung in scattering of nonrelativistic electrons with an
energy of several tens of keV by solid-state targets carried out at the Collective Use
Center of the Moscow Institute of Physics and Technology in 2009-2011.

In these investigations in interpretation of experimental results, besides the ordi-
nary (static) mechanism of radiation, the polarization channel, coherent and incoherent
electron scattering by a crystal lattice, electron energy loss in a medium, and absorp-
tion of bremsstrahlung photons in a substance material were taken into account.

7.1 Absorption of Photons in a Target Material

In case of thick enough targets, the thickness of which exceeds the photon absorption
path in a target material, the integrated yield of bremsstrahlung photons that is
recorded by a photodetector will be to a great extent defined by the said absorption.
Therefore for calculation of the integrated yield of bremsstrahlung photons from a
target it is important to know the frequency dependence of the photoabsorption
coefficient u(w) for a given substance.

Presented in Fig. 7.1 is the spectral dependence of the photon path length L, (w) =
1/u(®) and the electron path length in copper for an initial electron energy of 30 keV.
The data for the frequency dependence of the photoabsorption coefficient for copper u(w)
are taken from the site of the American National Institute of Standard [1].

The effect of photon absorption in a target material can be taken into account
using the Bouguer law, following from which is a simple expression for the
dependence of radiation intensity in a medium on the path length x that radiation
has passed in a target material:

I(x) =1(0) exp(—px). (7.1)

The Y-axis (in pm) in Fig. 7.1 is plotted in the logarithmic scale. Shown for
comparison in the same figure as a straight line is the path length of an electron with
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Fig. 7.1 The photon path 100 5
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the energy of 30 keV in copper (3.4 um) to a stop due to inelastic collisions with
medium atoms.

The minima of the photoabsorption path curve correspond to the electron binding
energies for the L- and K-shells of a copper atom (about 1 and 9 keV respectively).
It is seen that up to a photon energy of 4 keV the photoabsorption path in copper is
less than the path length of an electron with the energy of 30 keV, that is, in this
range of energies the photon yield is defined by photoabsorption in a target material.

In thick targets at frequencies near the minima of the photoabsorption curve
presented in Fig. 7.1 the maximum integrated yield of bremsstrahlung photons can
be expected.

7.2 Analytical Approach to Simulation of the Bremsstrahlung
Photon Yield from a Metal Target

The polarization mechanism of Bs was studied rather fully theoretically and
partially experimentally for atomic targets and for radiation of relativistic charges
in thin films [2-7]. In the first case there are no medium effects at all, and in the
second case in calculation of the process this influence was usually taken into
account in the first order of the perturbation theory. The situation is quite different
in consideration of Bs of nonrelativistic electrons in solid-state targets in the soft
and moderate X-ray bands: i = 0.1 + 10 keV. Then the bremsstrahlung photon
yield will experience a significant influence of scattering and electron energy loss as
well as of absorption of electromagnetic radiation in the substance. The said
situation takes place in a number of technical applications (in X-ray tubes, electron
microscopes, microwave devices), when the polarization mechanism of Bs is
usually not taken into account [8].
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7.2.1 Expressions for the Number of Photons per Unit
Target Length

The spectral-angular distribution of Bs photons appearing in scattering of a non-
relativistic electron in a thick metal target was simulated with the use of the following
expression:

~ Eo
dNpy defcdgo exp(—xz) J AN,y (E, m, 0)

dwdQ /7 dw dQy dx
Emin(®,L,Eo)
p(w) x(E, Eo) dx
X exp ( cos B 1B dE, (7.2)

where ¢ is the azimuth angle of the electron trajectory plane, 7 = y / V{x2), x is the

angle of electron scattering in a target material, <}52> is the mean-square angle of
dNy(E, w,0)
do dQy dx
emitted by an electron with the energy E per unit path length in metal in a specified
spectral-angular range, Ej is the initial electron energy, B is the angle between the
normal to the target surface and the direction to the photodetector (the viewing angle).
In the formula (7.2) Enin (@, L, Ey) is the minimum electron energy at the output of the
target, at which emission of a photon of a specified frequency is still possible, () is
the photoabsorption coefficient in the target material, L is the target thickness, dx/dE is
the value of reciprocal loss of electron energy per unit length. As seen from the Eq. 7.2,
in calculation of photon yield integration with respect to the path length is replaced by
integration with respect to the electron energy E, and summation over trajectories is
carried out with the use of the Gaussian function determining the probability of
electron scattering to the specified angle y.

The formula (7.2) is true for distances between the radiation region and the
photodetector that are much more than the size of the interaction region as well as
for small enough electron scattering angles y. In this approximation the angle of Bs
photon emission 6 for the normal incidence of an electron on the target surface is
related to other angular parameters of the problem as follows:

electron scattering, is the full number of photons with the frequency ®

cos(f) cos(¢p) tg(}? v (,{Z(E)>) — sin(f)
1+ (v iEE)

; (7.3)

0B, 9. E,7) = arccos

As a target, we will further take a copper plate with a thickness from several
nanometers to several microns. The mean-square angle of scattering of an electron
with specified energy in copper (here energy is measured in kiloelectron-volts, the
scattering angle is measured in radians) is
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., 0.654
T E

((E)) In(25E), E>>0.3keV. (7.4)

In the general case (z*(E)) E 73

where Z is the charge number of the nuclei of target atoms. The Eq. 7.4 is obtained
with the use of the Born formula for the transport cross-section of electron scattering by
an atom.

The approximation expression for the reciprocal value of energy loss per unit
electron path in copper (the path is measured in centimeters, energy is measured in
kiloelectron-volts) obtained with the use of the Bethe formula looks like:

07223 [230E
2007 ln< 30 ) for E>>0.035Z2 keV,

d
£ & —1.754 xmax (Eo) (E/Eo)*™, (1.5)

where
Xmax (Eo) 22 3.4 - 107 (Eo/30)"7 (7.6)

is the path length in copper (in centimeters) of an electron with the specified initial
energy E (in kiloelectron-volts). From the Eq. 7.6 it follows in particular that for an
initial energy of 30 keV the electron path length in copper is 3.4 pum. For comparison
we will indicate that the path length in copper of an electron of this energy
according to Kanaya-Okayama is 2.89 um [10].

The lower limit of integration with respect to the electron energy in the formula
(7.2) is:

Emin(w,L,Ep) = max{fiw, E(L,Ey)}. (7.7)

The dependence of the energy of an electron scattered in copper on the path
length and the initial energy is given by the approximate equation

x 0.57
E(_X,EQ) = E() <1 —m) . (78)

The inverse of the Eq. 7.8, the expression for the path length in the copper target
of a electron with specified initial energy appearing on the right side of the Eq. 7.2
that can be obtained by solving the Eq. 7.5 looks like:

E 1.754
1— <E_o> ] (7.9)

To calculate the spectral-angular distribution of bremsstrahlung photons emitted by
an electron per unit path length, it is necessary to take into account that the interaction
of an electron with a polycrystalline target can be of a coherent and incoherent nature.

X(Ea EO) = Xmax (EO)
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In the coherent case an electron transfers to a target the wave vector q equal to the
reciprocal lattice vector g, that is, the interaction of an electron with all atoms of the
target as a whole takes place. In the second case a photon is emitted in pair collision of
an electron with a target atom. The detailed consideration of these problems is given in
the work [5] and Chap. 5 of this monograph. Based on the analysis carried out in the
cited paper, in the Born approximation for interaction of an incident electron with a
target the necessary formulas can be obtained. For example, the spectral-angular
distribution of Bs photons emitted per unit path length in the process of coherent
scattering of a nonrelativistic electron in a polycrystal is given by the expression:

dN,(,f,o ") n2 et

dodQydx  mhovm?c3 %

g JZSz(g) 6(w+ gv —kv) exp(—u’¢’)
g

2 2 2
mao ~ S, dQ
S afo)Fule)| BE-TE, 1.10)

where n, is the concentration of target atoms, e is the elementary charge, c is the
velocity of light, mis the electron mass, vis the electron velocity, S(g) is the geometrical
structure factor of a crystal, g is the reciprocal lattice vector,  is the bremsstrahlung
photon frequency. In the formula (7.10) o(w) is the dynamic polarizability of target
atoms, u is the root-mean-square deviation of target atoms from the equilibrium
position (for copper u = 0.077 A at T =293°K), F,(q) is the normalized form-
factor of medium atoms, s = ck/w is the unit vector in the direction of photon
emission, d€ is the element of the solid angle around the direction of the reciprocal
lattice vector g.

On the right side of the Eq. 7.10 averaging over the directions of reciprocal
lattice vectors is carried out, which corresponds to going from a single crystal to a
polycrystalline target.

The expression (7.10) describes Bs of a nonrelativistic electron by the ordinary
and polarization channels as well as inter-channel interference. A corresponding
formula for ordinary Bs can be obtained from Eq. 7.10 if the polarizability of target
atoms is supposed to be equal to zero:

AN n2 b 72

dodQdx — mwhovm?c3 x

< S50 o0+ gk (i) (1 Rt B2
g
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A similar expression for the frequency-angular distribution of coherent PBs per
unit path length of a nonrelativistic electron in a polycrystal is obtained from
Eq. 7.10 in the limit Z = 0.

Indicative of the coherent nature of Bs is the presence of the squared concentration
of target atoms ng in the expressions (7.10) and (7.11).

For incoherent Bs in view of two channels we have:

Gmax

aN " b (14 cos?0) )
— =y — " 1— _
dw dQy dx (I S J ( eXp( u Q))
qmin
2 2
~ maw . d
X Z(l —Fa(q)) T2 a(w) Fa(q) ;q’ (7.12)

gmin = (1 — (v/c) cos0) (0/V), gmax =2mv/h.

The frequency-angular distribution of incoherent ordinary Bs per unit path length
of a nonrelativistic electron in a polycrystal is given by the equation:

X ) Qmax
ng;;wh) B 72 o6 (1 + COS29) ) o 2 dgq
da)kodxfnﬂ ho nvim?2ce3 J (l—exp(—u q))‘(l—Fa(Q)H ;
Gmin
(7.13)

that is obtained from Eq. 7.12 if a(w) = 0 is assumed.

ANy (E, 0, 6)
dw dQy dx
formula (7.2) is equal to the sum of the coherent and incoherent contributions (7.10)
and (7.12). The same is also true for the photon yield without considering the

dN, OB (E , @, 0)
dw dQy dx
The squared value in the formulas (7.10) and (7.12) can be called the effective
charge number of an atom:

The total yield of Bs photons per unit length appearing in the

polarization channel

2
M a(w) Fulq)|. (7.14)

Zeﬁ‘(w7q) = Z(l _ﬁa(Q)) - e

It depends on the photon frequency and the transferred wave vector. The effective
charge number of Eq. 7.14 defines the intensity of Bs of a nonrelativistic electron on
an atom in view of the ordinary and polarization channels as well as inter-channel
interference. It is interesting to note that for high enough photon energiesz w>>1,(,
is the potential of atomic ionization) the approximate equation Z.z(w, ¢) ~ Zis true.
The replacement Z,4 (w, ¢) — Z in calculation of intensity of Bs of a nonrelativistic
electron on an atom is called atom “stripping” [6] or the descreening approximation.
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Fig. 7.2 The spectra of Bs of an electron with an initial energy of 30 keV from a thin (10 nm)
copper target calculated with account for PBs (solid curve) and without its considering (dash-and-
dot curve)

The value

Zpoi(0) =

a(w) ‘ (7.15)

can be called the polarization charge number since it defines the polarization channel
of Bs.

7.2.2 Results of Numerical Simulation

Let us use the obtained expressions for calculation of the yield of Bs photons in case
of normal incidence of an electron beam on a copper target for a viewing angle of
35° with account for absorption of photons, energy loss, and electron scattering in
the target material.

The spectra of total and ordinary Bs in scattering of an electron with an initial
energy of 30 keV by a thin copper foil with a thickness of 10 nm are given in Fig. 7.2.
In this case the target thickness is less than the path length of a photon and an
electron, so photoabsorption and electron energy loss are negligible. From Fig. 7.2 it
is seen that in contrast to the monotonically decreasing OBs spectrum, the spectrum
of total Bs has a dip for photon energies about 1 keV followed by the flat maximum.
These dip and maximum are connected with PBs and reflect the frequency depen-
dence of the polarization charge of a copper atom (Eq. 7.15) near the threshold of
ionization of the L-subshell.

It should be noted that without considering electron scattering in a target the Bs
spectrum has “frequency steps” corresponding to “turning-off” of the contribution of
a given reciprocal lattice vector to the process with growing photon energy [5].
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Fig. 7.3 The spectra of Bs of an electron with the initial energy Ey = 30 (solid curve) and
12.7 keV (dash-and-dot curve) from a copper target with a thickness of 1 um

These steps are connected with the contribution of coherent PBs. For problem
parameters corresponding to Fig. 7.2, the first frequency step in the Bs spectrum
falls on a photon energy about 1.7 keV, the second step falls on a photon energy about
1.9 keV. Electron scattering by target atoms results in “slurring” of frequency steps,
so in Fig. 7.2 they are practically indiscernible.

The spectrum of ordinary Bs in case of a thin target far from the short-wavelength
limit 7 w<<Ey is well described by the dependence E/iiw following from the
simplest Bs consideration based on the use of the Kramers formula. This formula,
generalized to taking into account electron energy loss in a thick target, looks like

[8]:

deh —kZ E() —how

dodQ ho (7.16)

where k is the coefficient of proportionality. It should be noted that the Eq. 7.16 does
not take into account the polarization Bs channel and absorption of radiation in a
target and is true for a target thickness more than the electron path length in this
target.

Presented in Fig. 7.3 are the results of calculation of the spectra of total Bs and
OBs of an electron with an initial energy of 30 keV in a rather thick copper target
(L =1 um), when L>L,,. It is seen that in contrast to Fig. 7.2 both spectra are
similar and differ only by absolute value. This circumstance is connected with the
fact that in this case the Bs spectrum is defined mainly by the frequency dependence
of photoabsorption identical for both Bs mechanisms.

The sharp maximum near a photon energy of 800 eV corresponds to the maximum
of the photon path length in copper. The flat maximum of the Bs spectrum near a
photon energy of 2.9 keV is connected with competition of two processes: the
decrease of the photon yield per unit path length in a target and the increase of
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Fig. 7.4 The spectra of Bs of an electron with the initial energy Ey, = 30 (solid curve) and
12.7 keV (dash-and-dot curve) from a copper target with a thickness of 10 pm

the path length of a photon with its energy growing in a range from 1 to 9 keV. Thus
the behavior of the Bs spectrum changes with changing target thickness from 10 nm
to 1 um, mainly due to the influence of photoabsorption.

In the analysis of experimental possibilities of investigation of the polarization
channel contribution to the total yield of Bs photons it should be remembered that
the strong L-line of characteristic copper radiation will mask Bs in an energy range
of 900 eV-1.1 keV.

With changing initial energy of an electron the length of its path in a substance
changes, which for thick enough targets should modify the Bs spectrum. This
circumstance is illustrated by Fig. 7.4, shown in which are the spectral dependences
of photon yield from a copper target with a thickness of 10 um for electrons with an
initial energy of 30 keV (solid curve) and 12.7 keV (dash-and-dot curve) in a wide
range of photon energies from 1 to 10 keV.

It is seen that the Bs spectra in both cases have maxima, for the lower initial energy
of an electron the maximum being shifted to the region of lower frequencies, and at a
photon energy about 3 keV the spectral dependences intersect. The comparison of the
spectra presented in Figs. 7.3 and 7.4 makes it possible to conclude that the spectral
maxima are better manifested in radiation in a thicker target. The shift of the maxima
of the curves is connected with the fact that at lower initial energy of an electron Bs is
“gathered” from a smaller path length, so the influence of radiation absorption in the
target is found to be weaker, and the photon yield in the long-wave spectral region is
found to be higher. With growing photon energy in a range from 1 to 9 keV the
photon path length becomes more than the electron path length in the target, which
explains a higher photon yield for a higher initial energy of an electron.
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As can be seen from comparison of the path lengths of a photon and an electron
in a substance, the position of these maxima is approximately described by solution
of the equation

Lph(w) = Xmax (E0)7 (*)

that is, the photon absorption length at the maximum of the frequency dependence of
the Bs yield wp,y is equal to the electron path length in a target material. Appearance
of maxima on the spectral curves for Bs in a thick target is explained by competition of
influence of photoabsorption processes and electron energy loss on Bs yield from a
target. For frequencies lower than . the yield of bremsstrahlung photons increases
with growing frequency since the photoabsorption length in a target increases,
remaining less than the electron path length. For frequencies higher than wp,x the
increase of the photoabsorption length is of no further consequence since the trajec-
tory length is limited by the value x,.x (Eo). As a result, the yield of photons begins to
decrease with their growing energies since in this case the photon yield per unit path
length decreases.

The calculation shows that the polarization channel of Bs of an electron with an
initial energy of 30 keV makes the greatest contribution to the yield of a number of
photons from a copper target (about 60 % in view of inter-channel interference) at a
photon energy about 1.5 keV. With increasing photon energy the PBs contribution
monotonically decreases, reaching 10 % for photons with the energy of 10 keV.
With decreasing initial energy of an electron the maximum of the polarization
contribution to Bs is shifted to the region of lower photon energies.

Presented in Fig. 7.5 are the dependences of Bs intensity for photons with an
energy of 1.36 (solid curve) and 2.72 keV (dash-and-dot curve) on the thickness of a
copper target for an initial electron energy of 30 keV. It is seen that for a lower
photon energy the growth of Bs intensity with increasing target thickness goes to
saturation more fast, which is connected with the influence of photoabsorption.
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Fig. 7.6 The technology for production of thin films

The numerical analysis of the ratio of total Bs to the contribution of ordinary Bs
depending on the target thickness, carried out within the framework of this
approach, is indicative of weak dependence of the contribution of PBs of non-
relativistic electrons scattered by a polycrystalline sample on its thickness.

7.3 Procedure of Manufacturing Thin Metal Films

For experiments, samples were required that were thin metal films. To avoid the
negative influence of a substrate on results of measurements of tested object
parameters, particular attention in the work was given to consideration of
possibilities to manufacture free thin-film metal structures or metalized thin films
of organic materials.

The development of technology for production of free films was coming to
optimization of a number of operations reflected in Fig. 7.6.

The film of a metal (1), in particular of copper, was applied by vacuum
evaporation to the polished surface of the substrate (2) of single-crystal potassium
dihydrogen phosphate (KDP) (Fig. 7.6a). The diameter of the substrate was 20 mm,
the thickness was 2 mm.

After coating, the ring (3) of D16T alloy was glued to the sample (Fig. 7.6b) with
K400 adhesive (4). The inner diameter of the ring was equal to the diameter of the
KDP substrate, its thickness was 3 mm, and the hole diameter was 1 mm. The
obtained construction was partially immersed in the bath (Fig. 7.6¢) with distilled
water (5), so that the KDP substrate could be fully dissolved, but the solution did not
get to the other side of the sample (to provide the convenience of following rinsing).
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Fig. 7.7 The frame for 1 2

application of a thin metal
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coating

A substrate material for application of a thin-film coating was chosen from
considerations of its high water solubility. For example, at a temperature of 60 °C
in 100 g of water up to 50 g of potassium dihydrogen phosphate is dissolved. At the
same time it is possible to polish the surface of single-crystal substrates of this
material with high quality necessary for coating.

After removal of the process substrate by etching, the film was carefully rinsed
with distilled water. As a result, a sample of a thin-film membrane on a ring frame
was obtained (Fig. 7.6d).

With the use of the described technology it was possible to obtain free metal
films with a thickness of 1-3 um. In case of large thicknesses there was a problem of
cracking of films and their coming off the KDP substrate in the process of vacuum
deposition. And films of a smaller thickness complicated the process of their rinsing
in the absence of damages in operations of substrate removal.

To produce samples with a more thin metal layer, substrates were used that had
the form of a thin-film lavsan membrane (1) pulled on the metal base in the form of
a ring between the parts (2) and (3) with male and female cones (Fig. 7.7).

The lavsan film as a substrate for application of a metal coating was chosen to
provide its minimum side effect on the results of measurements. This was achieved
both by the minimum thickness of the film (3 pm) and by the nature of its material —
polyethylene terephthalate (a monomer for its synthesis is a benzene ring with two
COOH end groups). The film retains its properties up to 180 °C, which allows its use
in the processes of deposition of metal coatings by the method of vacuum evaporation.

In the work two samples with copper layers deposited on lavsan were studied.
The thickness of a metal layer was determined by the results of measurement of
He-Ne laser light transmission by semitransparent samples.

To estimate the thickness of a metal coating by the known transmission coefficient
T and reflection coefficient R, it is possible to use the formula following from the
Bouguer law:

1 I T
exp(—2 k(_»x[ d) = Tp = 7 —pRI = m, (717)

i

introduced here is the extinction coefficient depending on a radiation wavelength:
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k() = 27 x(3), (7.18)

where () is the imaginary part of the refractive index of copper at a specified
wavelength, d is the coating thickness.

At the wavelength of a He-Ne laser A = 633 nm for copper we have: k = 3.45
according to the data of the work [9], in which optical constants for noble metals
and copper in a spectral range of 0.5-6.5 eV were measured with an error for the
refractive index less than 0.02.

From the formulas (7.17) and (7.18) it is easy to find the expression for the film
thickness:

A 1—-R
d:4m<()v) ln{ T } (7.19)

From the given formula it follows that, as it must be according to the physical
meaning, the target thickness grows with decreasing imaginary part of the refractive
index of a medium and the transmission coefficient of a coating.

In case of the first sample the transmission of the copper coating was 40 %, and
the reflection was 12 %. In view of these data, from the formula (7.19) we find for
the thickness of the first, more transparent, sample d; = 11.5 nm.

For a thicker coating produced by the above method when, according to the
carried out measurements, 7 < 0.0003 and R = 0.4, the Eq. 7.19 gives the follow-
ing lower estimate for the metal film thickness: d,>110 nm.

7.3.1 Methods of Manufacturing Experimental Models

7.3.1.1 Thin-Film Evaporation

A glass substrate, previously washed and dried, is put in the BOC EDWARDS
AUTO 500 vacuum evaporation system. Evaporation was carried out by the
electron-beam method at a pressure of 2:10~> Torr. To obtain a smooth film, it is
necessary to chose a mode, in which evaporation is intensive enough, but there is no
bubble boiling yet. Presented in Fig. 7.8 is an example of an evaporated silver film.

7.3.1.2 Method of Shadow Evaporation

To obtain an island structure on the substrate surface, the method of shadow
evaporation is used (Fig. 7.9).

The method is based on the fact that at the initial stage of formation of a film on
the substrate surface the growth of separate islands of a material being evaporated
occurs. Presented in Fig. 7.10 is an example of a structure obtained by shadow
evaporation of indium.



200 7 Investigation of Bremsstrahlung of Nonrelativistic Electrons in Thick. . .

Fig. 7.8 An Ag film on glass
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Fig. 7.9 Shadow evaporation
7.3.1.3 Technology for Manufacturing Membranes

On the polished surface of a potassium dideuterophosphate (DKDP) crystal a
required film (in our case Ag) is evaporated (Fig. 7.11a). On the surface of the
evaporated film a diaphragm is glued with epoxy adhesive (Fig. 7.11b). The obtained
construction is immersed in water on special holders for several hours (Fig. 7.11c).
Thus there remains a membrane “pulled” on the frame of the diaphragm (Fig. 7.11d).

7.4 Measurement of Bremsstrahlung Spectra for Electrons with
Energies up to 30 keV Scattered in Metal Coatings

To measure spectra of X-radiation of nonrelativistic electrons scattered in a solid-
state target, the FEI Quanta 200 scanning electron microscope was used. As a
target, a standard specimen of copper was used at the preliminary stage of
investigations. The measurements of the X-ray spectrum were carried out with
the use of the EDAX energy dispersion spectrometer with a silicon-lithium crystal.
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Fig. 7.11 Manufacture of membranes

The energy resolution of the spectrometer determined by the half-width of the
characteristic manganese peak is 129 eV.

In Fig. 7.12 the diagram of the experimental system is presented.

An electron beam formed by the optics of the electron microscope after passing
the final lens (1) was focused on the surface of the sample (6) at a right angle to
the plane of the surface. Bremsstrahlung arising in the target was recorded by the
energy dispersion spectrometer (4).

In taking X-ray spectra the flange focal distance (the distance between the
objective lens and the sample) and the pressure in the chamber of the scanning
electron microscope remained constant. The angle between the electron beam (3)
and the direction to the spectrometer (4) was 35°.
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Fig. 7.12 The diagram of the
experimental system: / final
lens, 2 platinum diaphragm,
3 electron beam, 4 energy
dispersion spectrometer,

5 true secondary electron
detector, 6 sample, 7 Faraday
cup, 8§ objective table,

9 Keithley picoamperemeter

One of important parameters in taking X-ray spectra is the beam current. In case
of current instability it is impossible to interpret the results of an experiment
correctly, so for control of this parameter the method with the Faraday cup (7) was
used. The Faraday cup is a fully enclosed, except for a small inlet hole, container.
This construction prevents reflected and secondary electrons arising under the action
of a primary beam from coming out. So the current flowing to the ground is exactly
equal to the current of an incident beam and can be easily measured by a
picoamperemeter. In our system the Keithley 6485 picoamperemeter (9) was used.
The beam current was controlled before and after taking a spectrum. To be sure that
during the experiment there were no jumps and sharp changes of current, an absorbed
current was taken from the sample. In all obtained spectra the deviation of the beam
current from the mean value does not exceed 1.5 %.

The results of measurements for different energies of the primary electron beam
are given in Fig. 7.13 (averaging over five points).

X-radiation was recorded in a quantum energy range from 1 to 7.5 keV to avoid
masking of Bs by an intensive peak of characteristic radiation of copper L,; with the
energy of 933 eV. The peak that showed itself at the beginning of the spectrum
corresponds to the characteristic line K,; for aluminum of 1,486 eV that is caused
by the fact that part of electrons “shoots through” the copper film and begins to
excite X-radiation in the substrate. The intensity of the aluminum peak increases
with increasing energy of the primary electron beam since the depth of penetration
of electrons grows.
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Fig. 7.13 The spectrum of
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In the region of high energies (about 6.3 ke V), most probably, showing itself is an
“escape” peak connected with ionization of the K-shell of a silicon atom in the
detector crystal by a photon of the K-line of copper, owing to which the spectrometer
records a pulse with an energy equal to the difference of the energy of the character-
istic peak of copper Cug,, (8,037 eV) and the energy of ionization of the K-shell of a
silicon atom (1,839 eV).

The bremsstrahlung spectrum has a form of a curve with a smooth maximum, the
position of which is shifted to the region of high energies with increasing energy of
primary electrons as described by the Eq. *. The dependence of intensity for
energies of X-ray quanta to the right of the maximum and an electron beam energy
of 10 keV (the dotted thickened curve in Fig. 7.13) can be approximated by the
Kramers formula I < (Ey — hw)/hiw, where Ey is the energy of the primary beam,
hw is the energy of a X-ray quantum.

Throughout the region the experimental spectrum is approximated by the theo-
retical formula obtained with the use of the expressions of the subsection 7.2, under
the assumption that the target thickness is 2 um at an accelerating voltage of 30 kV
(the solid curve in Fig. 7.13).

The results of measurements of the spectra of electron radiation on a copper film
with a thickness of 100 nm are given in Fig. 7.14. The measurements of the X-ray
spectrum were carried out with the EDAX energy dispersion spectrometer with an
energy resolution of 129 eV. The results of measurements for different energies of
the primary electron beam are given in Fig. 7.14 (averaging over seven points).
X-radiation was recorded in a quantum energy range from 1 to 7.5 keV to avoid
masking of Bs by an intensive peak of characteristic radiation of copper L,; with the
energy of 933 eV.

The peak that showed itself at the beginning of the spectrum corresponds to the
characteristic line K, for aluminum of 1,486 eV that is caused by the fact that part of
electrons “shoots through” the copper foil and begins to excite X-radiation in the
substrate. The intensity of the aluminum peak increases with increasing energy of
the primary electron beam since the number of electrons that passed through the foil
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increases. On the spectrum a titanium peak (Tig,) with an energy of 4,510 eV is
also observed at all accelerating voltages, which is indicative of the presence of a
titanium impurity in the foil. The bremsstrahlung spectrum has a form of a curve
with a smooth maximum at the energy about 1,500 eV and does not depend on the
accelerating voltage of the electron beam.

Presented in Fig. 7.15 is the spectrum of Bs from a massive aluminum sample taken
at an accelerating voltage of the electron beam of 30 kV. The spectrum has a smooth
maximum at the energy about 3,300 eV. At the beginning of the spectrum a section is
seen that corresponds to the characteristic aluminum peak (K,) with the energy of
1,486 eV. At the centre of the spectrum at the energy of 2,978 eV a double aluminum
peak (K,) is seen that is connected with the fact that the crystal of the energy dispersion
spectrometer has no time to divide two quanta that came simultaneously.

Shown in Fig. 7.16 is the X-ray spectrum from a massive manganese target arising
under the action on the target of electrons with the energy of 30 keV (the accelerating
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Fig. 7.16 The spectrum of 10
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voltage is 30 kV). The spectrum has a smooth maximum at a photon energy about
3keV. Atthe end of the spectrum a section is seen that corresponds to the characteristic
manganese peaks (K, and Kg) with energies of 5,898 and 6,489 eV respectively.

Atanenergy of 4,059 eV a peak of loss of the characteristic line MnK,, is seen that
is connected with ionization of the K-shell of a silicon atom in the detector crystal by
a quantum of the K-line of manganese, owing to which the spectrometer records a
pulse with an energy equal to the difference of the energy of the characteristic peak of
manganese Mng,, (5,898 eV) and the energy of ionization of the K-shell of a silicon
atom (1,839 eV).
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Chapter 8
Polarization Bremsstrahlung on Nanostructures

8.1 PBs on Atomic Clusters in a Wide Spectral Range

In Chap. 1 of this monograph the examples of calculation of PBs of an electron on a
nanocluster in the low-frequency range were given, when the photon energy is from
1 to several tens of eV [1]. Here we will consider bremsstrahlung of a relativistic
electron scattered on atomic clusters in a wide frequency range with an emphasis on
the role of cooperative effects in the polarization and ordinary (static) channels of
the process [2].

Let us calculate the intensity of the polarization and ordinary channels of Bs of a
fast charged particle on a cluster within the framework of a simple model. The main
assumptions of the used approach are reduced to the first Born approximation for
interaction of an IP with a target and a jelly model for the form factor of the cluster.

Further we use the quasi-classical formula for the amplitude of static (ordinary)
bremsstrahlung and the approximate expression for the generalized polarizability of
cluster atoms.

With the use of the standard quantum-mechanical procedure (see details in the
work [3]), for the differential intensity of Bs by each of the channels normalized to
the number of atoms in a cluster N the following expression can be obtained:

Gmax

dl 1
=_ T(q)d 1
dodo. ~ N J (4)da, 8.1)

Gmin

where q = p; — p; + Kk is the momentum transferred to the target from an IP, T(q)is
the partial intensity of Bs, dQ2, is the solid angle in the direction of radiation, ®, k are
the frequency and the wave vector of a photon, p; , are the initial and finite momenta
of an incident particle. In this section the atomic system of units 7z =e¢ =m, = 1
is used.

V. Astapenko, Polarization Bremsstrahlung on Atoms, Plasmas, Nanostructures 207
and Solids, Springer Series on Atomic, Optical, and Plasma Physics 72,
DOI 10.1007/978-3-642-34082-6_8, © Springer-Verlag Berlin Heidelberg 2013


http://dx.doi.org/10.1007/978-3-642-34082-6_1

208 8 Polarization Bremsstrahlung on Nanostructures

The partial intensity of PBs within the framework of the used approach can be
represented as

2
27,

T, =
ncdvg

pol (Q)

(g, N) |Zpoi (@, 9)|* 1$(q, v, o, 0), (8.2)

where Z, is the IP charge, c is the velocity of light, v is the velocity of an IP, S(g, N)is
the structure factor of the cluster, Z,,/(®, ¢) is the effective polarization charge of
cluster atoms, I¢(q,v,w,0) is the kinematic integral appearing as a result of
integration with respect to the azimuth angle of the vector q, 6 = p;"k is the angle
of photon emission.

It should be noted that the expression (8.2) was obtained for a range of high
enough frequencies, in which w>>1,, where I, is the potential of ionization of atoms
forming the cluster. An opposite case of low frequencies </, was considered in the
work [4].

For the structure factor of the cluster we will use the following model approximation:

S(¢,N) = N*Fj(q,N) + N (1 — F;(q,N)), (8.3)
where
Jilgr(N))
Fy(g,N) =317/ 8.4
J(Q7 ) qr(N) ( )

is the form factor of the spherical cluster in the jelly model normalized to one atom.

sinx cosx

Ji(x) = (8.5)

x2 X

is the spherical first-order Bessel function, r(N) is the cluster radius depending on
the number of atoms N that can be calculated by the formula:

s/ 3N
4nn,

r(N) = rws VN = (8.6)
where ryy is the Wigner—Seitz radius, n, is the solid-state concentration of cluster
atoms.

The first summand on the right side of the Eq. 8.3 is the coherent part of the
structure factor of the cluster, the second summand is its incoherent part. It should
be noted that the forms factor (Eq. 8.4) is normalized to the number of atoms by the
spatial Fourier transform of probability of distribution of atoms in a cluster in the
jelly model:

3NO(F(N)—r)

wi(rN) = 4nr(N)

; (8.7)

where ©(x) is the Heaviside step function. In case of a monatomic cluster the
structure factor (Eq. 8.4) is equal to one.
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The polarization charge of cluster atoms can be represented as
Zpoi(@, q) = @ |#(0, q)] = o ()| Fulq), (8.8)

where a(w) and F(g) are the dipole polarizability and the normalized form factor of
an atom. These values were calculated by the method proposed in [5]. The imaginary
part of the polarizability was determined with the use of the optical theorem in terms
of the cross-section of photoabsorption of an atom by the data given at the site of the
Berkeley National Laboratory. Then the real part of the polarizability was restored
with the use of the Kramers-Kronig relation. The atomic form factor was calculated
in the Slater approximation by the formula obtained in the paper [6].

The kinematic integral included in the partial intensity of PBs (Eq. 8.2) is
determined by the equation

AD—BE—CD+ CD C
(Dz _E2)3/2 E2/D2 _E2 E%’

1$(q,v,0,0) = (8.9)

where A, B, C, D, E are rather cumbersome functions of the problem parameters,
the explicit form of which is given in [5].

The approximate expression for the partial intensity of ordinary Bs in the quasi-
classical approximation ¢;>>m (¢; is the initial IP energy) and the relativistic limit
(v = c) looks like:

1- (V/C)2> (1 + 00520>
(1 —(v/c) cosB)*

1%

Tsf(q) 9

s (2) 20 -rigy (

3ncdvg b

(8.10)

where m, is the IP mass, Z is the charge of an atomic nucleus. It should be noted that
the relative error of the formula (8.10) for nonrelativistic IP velocities does not
exceed 30 %.

The above formulas describe the intensities of two Bs channels in scattering of a
fast charged particle by a cluster for high enough radiation frequencies w>>1,. We
neglect the inter-channel interference summand due to different dependence of PBs
and SBs amplitudes on a transferred momentum, and in the relativistic case — on a
radiation angle too.

Let us use the obtained formulas for calculation of intensity of Bs by the static
and polarization channels in scattering of a fast electron by polyatomic clusters.

We will characterize the cooperative effects in Bs by the following ratio:

W)
= m7 (8.11)
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Fig. 8.1 Cooperative effects 25 T T T T
in PBs and SBs of an electron EJPOI
scattered by a copper cluster
(y=10,iw=1keV); I - 20 T
PBs, 0 = 1 rad; 2 — PBs,
0 = 0.5 rad; 3 — SBs )
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10 - . =
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where dI is the differential intensity of Bs by one of the channels normalized to the
number of atoms in a cluster. In the absence of cooperative effects it is obvious that
& = 1. In the opposite limiting case of constructive interference of contributions of
cluster atoms to the Bs intensity we have: & = y N, y < 1. The coefficient y takes into
account the fact that transferred momenta essential in the process on an individual
atom do not all make a considerable contribution to the coherent part of Bs on a cluster.

The dependence of the parameter £ on the number of atoms in a copper cluster
for both Bs channels is presented in Fig. 8.1. The bremsstrahlung photon energy is

. N -12
1 keV, the Lorenz factor is y = 10 (y = (1 — (v/c) ) ).

In case of the polarization channel the dependence ¢(N) is given for two values
of the radiation angle 8 = 0.5, 1 rad. From the figure it follows that cooperative
effects are negligible for the static Bs channel and rather substantial for the
polarization channel. The analysis shows that the value of cooperative effects in
PBs grows noticeably with decreasing radiation angle. Besides, their role increases
with growing IP energy and decreasing bremsstrahlung photon frequency. From the
given curves and calculation data it follows that in case of the polarization channel,
beginning from some value Ny, depending on the radiation angle and IP energy, the
saturation of radiation intensity as a function of the number of atoms in a cluster
takes place. The analysis shows that with decreasing radiation angle and growing IP
energy the value Ny, grows.

For explanation of the listed regularities we will take into account the fact that,
as follows from the formulas for the structure factor (Egs. 8.3, 8.4, 8.5 and 8.6),
constructive interference of contributions of different cluster atoms to the process
takes place only for low enough values of the transferred momentum:

q<1/r(N), (8.12)



8.1 PBs on Atomic Clusters in a Wide Spectral Range 211

where r(N) is the radius of the cluster (Eq. 8.6). Otherwise the structure factor of the
cluster (normalized to the number of atoms) is equal to one, and cooperative effects
are absent.

It is essential that the inequation (8.33) is incompatible with the condition

qg>1/r, (8.13)

defining the range of transferred momenta, in which ordinary Bs is not low in view
of the obvious inequation r(N) > r, (r, is the characteristic atomic radius). Hence a
negligible value of cooperative effects in ordinary Bs on a cluster follows.

At the same time the partial amplitude of PBs is great in case of fulfilment of an
inequation opposite to Eq. 8.13, so there is no analogous prohibition of cooperative
effects in the polarization channel. Let us write out the expression for a minimum
momentum transferred to the target from an IP, appearing in the integral (8.1):

Gmin(@, v, 0) _@ (1 —XCOSQ). (8.14)
v ¢
Following from the condition of essentiality of cooperative effects

Gmin < l/iﬂ(N) (8.15)

and the formula (8.6) for the cluster radius is the expression for the saturating value
of the number of atoms in a cluster Ny,;:

4mn,v3

NsaI: 3
33 (1 fﬁcose)

(8.16)

Following from Eq. 8.16 is the strong dependence of the value N, on the radiation
angle and IP energy in the relativistic case. For example, for the parameters of
Fig. 8.1 we have: Ny, (0 = 1 rad) = 27 and Ny,;(0 = 0.5 rad) = 1,312.

The influence of cooperative effects on the angular dependence of PBs on a
cluster is demonstrated by Fig. 8.2. Shown in this figure is the PBs intensity
normalized to its value at a zero angle as a function of the radiation angle for
different numbers of atoms in a copper cluster, including a monatomic case, at the
photon energy of 5 keV and a Lorenz factor of 10.

It is seen that the angular distribution of PBs with growing number of atoms is
narrowed, and its dependence on an angle in the limit of high values of the number N
becomes nonmonotonic. This nonmonotonicity disappears in the nonrelativistic case
with decreasing radiation frequency and grows with increasing number of atoms.

It should be noted that the said dependences in the angular distribution of PBs on
clusters can be found experimentally only for heavy IP. In case of light IP (electron,
positron), at small radiation angles the static channel prevails, cooperative effects in
which are low.
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Lpol(0)/Tpol(0) ' '

Fig. 8.2 The angular dependence of the normalized intensity of PBs of an electron on an individual
atom (Eq. 8.22) and a copper cluster: N = 100 (Eq. 8.23), N = 1,000 (Eq. 8.24); hw = 5 keV,
y =10

To describe the relative contribution of PBs to the process, let us introduce the

R-factor according to the equation:

o dl pol

R = .
dly

(8.17)

The angular dependence of the R-factor of an electron with y = 10 for a photon
energy of 1 keV and different numbers of atoms in a copper cluster is presented in
Fig. 8.3. It is seen that with increasing number of atoms the role of PBs grows.
For example, for a monatomic case the angle, at which the intensities of PBs and
SBs become equal, is 30°, and for N = 100 this angle is 10°.

Figure 8.4 demonstrates the influence of cooperative effects on the relative
contribution of the polarization channel to emission of a fast electron (y = 10)
scattered by a copper cluster at different energies of a bremsstrahlung photon and a
radiation angle of 15°.

The growth of the R-factor with increasing number of electrons in a cluster goes
to saturation more fast for high photon energies according to the formula (8.16) for
the value N, . Following from this figure is the strong dependence of the role of
polarization effects on the cluster size, especially in the low-frequency range.

The condition of essentiality of cooperative effects in the spectrum of PBs on a
cluster can be obtained from the inequation (8.15) in view of the explicit expression
for the minimum momentum transferred to the target (Eq. 8.14). It looks like:

(8.18)
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Fig. 8.3 The angular dependence of the R-factor for different numbers of atoms in a copper cluster
including a monatomic case: 1w = 1 keV,y =10,/ -N =100,2 -N = 10,3 -N =1
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Fig. 8.4 The dependence of the R-factor on the number of atoms in a copper cluster for different
frequencies / — 1w =500¢eV,2 -hw =2keV,3-hw=3keV;y=10,0=15°

For frequencies more than wy,,x cooperative effects in Bs on a cluster are low.
In the nonrelativistic limit v<<c the maximum frequency of manifestation of
cooperative effects does not depend on the radiation angle and is:
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nrel __ v

) =—.
max 3
rWS\/N

(8.19)

The value of the Wigner—Seitz radius for metal clusters varies within
rws = 24, so the characteristic value of frequency (Eq. 8.19) for a mid-size
cluster and an IP velocity about 10 a.u. is 1 a.u.

It should be noted that in the frequency a range @ < 1 a.u. the calculation model
used here becomes inadequate since then the dynamic polarizability of the cluster
will be to a great extent defined by collective excitations of the cluster electrons.
Such a situation for a nonrelativistic IP was considered in the work [7].

In the relativistic limit y>>1 it is convenient to represent the formula (8.18) in
the form:

1 292
rws VN 472 sin2(9/2) +1

(8.20)

Wmax =

clearly demonstrating the dependence of the maximum frequency wmax on the IP
energy. From the Eq. 8.20 it follows that in contrast to the nonrelativistic case, in the
relativistic limit the influence of cooperative effects on the PBs spectrum is essen-
tially defined by the angle of photon emission. For small angles and high values of
the Lorenz factor of an IP the maximum frequency of manifestation of cooperative
effects in PBs can reach high values. However, in this case it should be remembered
that in the angular range 0<y~2 in Bs of an electron (positron) the static channel
prevails. So the question about a role of cooperative effects in the spectrum of Bs of a
light charged particle on a cluster should be decided in view of concrete values of
problem parameters. At the same time for Bs of heavy charged particles, when SBs is
negligible, the spectral restriction on the role of cooperative effects in the relativistic
a case is given by the frequency of Eq. 8.20.

The dependence of the spectrum of PBs on a copper cluster consisting of ten
atoms on the IP energy is presented in Fig. 8.5 for a radiation angle of 0.5 rad.

It is seen that with growing Lorenz factor the intensity of radiation increases, and
the maximum of the spectral dependence is shifted to the region of high frequencies.
These changes are most pronounced in going from fast, but nonrelativistic IP to
weakly relativistic particles. With further growth of the Lorent factor the spectrum of
PBs on a cluster varies not so appreciably. With decreasing radiation angle the
spectrum of PBs of relativistic IP is found to be more pulled into the region of high
frequencies according to the formula (8.20), following from which is also the
decrease of the maximum frequency with growing number of atoms in a cluster.

The intensity of total Bs and PBs in scattering of a nonrelativistic electron on a
copper cluster and an individual atom as a function of the IP velocity is shown in
Fig. 8.6 for the radiation angle 6 = 1 rad and the photon energy im = 200eV. It is
seen that in the nonrelativistic case there is the optimum value of the electron
velocity vp, at which the intensity of PBs on a cluster is maximum. The dependence
of this optimum velocity on the problem parameters is given by the expression:

Vopt = 01(N). (8.21)
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Fig. 8.5 The spectrum of PBs on a copper cluster (N = 10) for different values of the Lorentz
factor and a radiation angle of 0.5 rad: / —y = 10?,2 -9 = 10,3 -y = 1.1
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Fig. 8.6 The dependence of the Bs and PBs intensity on the electron velocity in the nonrelativistic
case for a copper cluster (N = 20) and an individual atom, @ = 200 eV, § = 1 rad. I —total Bs
(N =20),2-PBs (N =20),3—total Bs(N=1),4-PBs (N = 1)
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In case of the process on an individual atom the cluster radius in Eq. 8.21 should
be replaced by the characteristic atomic radius r,. The given formula can be
obtained with the use of the expression for the minimum transferred momentum
(Eq. 8.14) in the case v<<c.

From the Eq. 8.21 it follows that with decreasing frequency and size of a cluster the
value of the optimum velocity decreases. In particular, for the process on an individual
atom and the photon energy 7w = 200eV the value vqy lies beyond the range of
applicability of the Born approximation, so the velocity dependence of the Bs and PBs
intensity looks like a monotonically decreasing curve. With growing number of atoms
in a cluster the value of the optimum velocity increases as seen from the formulas
(8.21) and (8.6).

With decreasing radiation angle the maximum in the velocity dependence of the
Bs intensity disappears, and for PBs it becomes less pronounced. This is connected,
on the one hand, with increasing contribution of the static channel to the process
(see the formula (8.10)), and on the other hand, with growing value of the minimum
transferred momentum (Eq. 8.14).

Figure 8.6 demonstrates the disappearance of cooperative effects with decreasing
IP velocity: for the given photon energy (200 eV) the total Bs and PBs on a cluster
and one atom coincide in the limit of low velocities.

In the high-frequency range the velocity dependence of the PBs intensity becomes
monotonically increasing, which is connected with the natural restriction on the
optimum IP velocity: v,,<<137. The monotonically increasing dependence of
the PBs intensity on the IP energy is characteristic also for the relativistic case (with
the exception of low frequencies not considered here).

Based on the analysis carried out in this section, it is possible to draw a conclusion
about the essentiality of cooperative effects in Bs of a fast (including relativistic)
charged particle scattered by a polyatomic cluster in a wide range of frequencies.
These effects caused by constructive interference of the contributions of atoms to the
process by the polarization channel result in nonlinear growth of the PBs intensity as
a function of the number of atoms in a cluster. At the same time for the static Bs
mechanism the contribution of different atoms to radiation is incoherent, which is
caused by the smallness of impact parameters, on which SBs is formed.

It is shown that cooperative effects result in significant modification of the main
characteristics of Bs on a cluster in comparison with a monatomic case. For example,
in the high-frequency range with growing number of atoms the pattern of PBs is
narrowed, and for large enough clusters the angular dependence of PBs of relativistic
particles becomes nonmonotonic: a maximum appears with nonzero radiation angles.

With growing IP energy the maximum of the spectral distribution of PBs on a
cluster is shifted to the region of high frequencies. The form of the high-frequency
part of the spectrum in the relativistic case strongly depends on the radiation angle.
With reduction of this angle the Bs intensity decreases with growing frequency
much more slowly than for wide angles.
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The analysis of the Bs intensity as a function of the IP velocity has shown that in the
nonrelativistic case this dependence can be of different nature: from monotonically
increasing to monotonically decreasing. In the relativistic limit the PBs intensity
monotonically increases with IP energy. In the limit of low IP velocities the role of
cooperative effects in Bs on a cluster becomes negligible.

The obtained results can be used in interpretation of experimental data on Bs of
fast charged particles on clusters in the range of high enough photon energies.

8.2 PBs on Metal Nanospheres in a Dielectric Matrix

Metal nanoparticles of noble metals find use as nanomarkers for biological objects,
for investigation of behavior of chemical and biological processes, as sensors for
local optical environmental monitoring, for electrical control of light switching, for
measurement of an electric charge, etc. [8]. In the said applications, as a rule, scattering
of electromagnetic radiation in the spectral range corresponding to excitation of
surface plasmons (the photon energy 7ico = 1 <+ 4 eV) is used.

Polarization bremsstrahlung (PBs) is a fundamental radiative process that can be
interpreted as the conversion of the eigenfield of a charged particle on target electrons
to a propagating electromagnetic wave [9]. Following from this interpretation is a
possibility (by analogy with ordinary radiation) to use PBs for substance spectroscopy,
in particular, for determination of parameters of metal nanoparticles.

Inrecent years works have appeared that are dedicated to the study of PBs as a basic
process for nanomaterial diagnostics. For example, in the paper [10] a possibility to use
this process for determination of a fullerene structure on the basis of calculation of a
target form factor was discussed. PBs spectroscopy for diagnostics of polycrystalline
and fine-grained media in the more general context of modification of the energy
dispersion method was considered in the work [11]. We believe that PBs spectroscopy
has also considerable promise as a physical method for metal nanosphere diagnostics.

8.2.1 General Formulas

In the Born approximation for interaction of an incident particle (IP) with a target in
a dielectric medium the differential PBs cross-section is given by the expression [2]
(in this section we use the Gaussian system of units):

do"B 20 e " 2 dq
—=—— I 0) — 8.22
da)ko b C3 hvz J |a(w7Q)‘ ¢(q7v7w7 ) q ) ( )

dmin

where dQy is the element of a solid angle in the direction of radiation, c is the velocity
of light, e, is the IP charge, v is the IP velocity, a(w, ¢) is the generalized dynamic
polarizability of the target, k = /&, (w/c) s is the wave vector of a bremsstrahlung
photon in a medium with the dielectric permittivity ¢,,, 0 is the angle between the
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electron velocity vector and the wave vector of a bremsstrahlung photon (the radiation
angle). The value q = (pf —p; + k) /h is the wave vector transferred from an IP to
the target (p; ; are the initial and finite momenta of an IP). The limits of integration on
the right side of the Eq. 8.22 are gmin = (1 — (v/¢) cos0) (w/V), Gmax = 2 uv/h,
c=c / \/em 1s the velocity of light in a medium. The dimensionless kinematic

integral [4(q,v,®,0) appearing in the formula (8.22) is determined by the
equation

s,wenv/c*—q]?

@ —2 kq)2 , (8.23)

Iy(q,v,0,0) = c12v JdQ o(w — kv + qv) [

where s is the unit vector in the direction of photon emission. The solid-angle
integral of the wave vector transferred to the target in the determination (8.23) can
be calculated in elementary functions [5]. We do not give here a corresponding
expression because of its cumbersomeness.

In the multiplicative approximation that well works for multielectron systems
[12] the equation is true

o(w, q) = o(w) F(g), (8.24)

where o(w) is the dynamic polarizability, F(q) is the normalized form factor of the

target (F (0) = 1). Substituting the relation (8.24) in the formula (8.22) and using the
expression for the radiation scattering cross-section in terms of the target polarizability

8 4
ra(@) =5 (7) la@)f, (825)

we find the representation of the cross-section of PBs on an isolated target in terms
of the radiation scattering cross-section

Gmax
- d
e () J F(q) 15(¢, v, , 0) ;" (8.26)

Gmin

de™® 3 ¢ €,%
dodQy 4m v ho

The convenient use of the expression (8.26) with regard to the analysis of PBs on
metal nanospheres in a range of photon energies of 1-5 eV consists in the fact that
the scattering cross-section oy.,(®) can be calculated using the Mie theory [13].
Within the framework of this theory the cross-section of radiation scattering by a
metal sphere of the radius 7 placed in a dielectric medium looks like

2 &

a%lf o 2n+1) {|a,,(x7 mx, m)|* + |bu(x, mx, m)|2}7 (8.27)

8”‘1

n=1
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where x = kry = \/&, ¢ 1 and m = \/es(w) /e, are the parameters of the Mie
theory, &;(w) is the dielectric permittivity of the nanosphere material. The expansion
coefficients a,, and b, are

/n (y) lpn (.Xf) — mwln ()C) lpn (y)

) = ) — M) bay) (8:28)
X m) = m lﬁ/n(y) l//n(x) - lpln (y) lpln (X)
b = ) @) = Cal) ) (8:29)

06 = 0D = \ [0, 830

((z) = 2hV(z) = ﬁﬂgfvz(z) (8.31)

are the functions coined by Debye; j,(z), Y (z) are the spherical Bessel and Hankel

functions, J,;1/>(z) and Hz(11+)1/2

The formula for the normalized form factor of a spherical target looks like [2]

() are the Bessel and Hankel functions.

(8.32)

From this equation it follows in particular that Fi(g =0)=1 and F(¢>
4/rs)<0.01.

8.2.2 Results and Discussion

The spectral dependences of the PBs cross-section are presented in Fig. 8.7 for
different nanosphere radii and in Fig. 8.8 for different velocities of an incident
electron; the radiation angle in these figures is taken equal to 30°.

The maximum of the spectral dependence of the PBs cross-section shown in
Fig. 8.7 is caused by excitation of a plasmon on the surface of the metal sphere
under the action of the electric field of a scattered electron. From this figure it is
seen that with increasing nanosphere radius the position of the spectral maximum of
the PBs cross-section is shifted to the region of lower photon energies, and its width
increases.

An analogous dependence takes place for the cross-section of radiation scatter-
ing by metal nanospheres [8], which is caused by a change of the resonance
frequency of a surface plasmon w,.; with changing radius of the sphere. Really,
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Fig. 8.7 The differential PBs cross-section for electron scattering by silver spheres with different
radii in glass: solid line —ry = 30 nm, dotted line —ry = 60 nm, dashed line —r; = 90 nm, 0 = 1/6,
v =50 a.u.
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Fig. 8.8 The differential PBs cross-section for electrons with different velocities scattered by a
silver sphere in glass: solid line —v = 20 a.u., dotted line —v = 50 a.u., dashed line —v = 90 a.u.,
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the expression for the resonance frequency of a dipole plasmon on the sphere
surface looks like

(8.33)

where ), is the plasma frequency of electrons of the sphere substance, 7 is the
damping constant of a surface plasmon, ¢, — 1is the contribution of bound electrons
to the dielectric permittivity of the metal. For large enough radii (r; > 30 nm in case
of a silver sphere) the damping constant becomes proportional to the cubed radius of
the sphere y o 2, which defines a shift of the maximum of the radiation scattering
and PBs cross-sections with increasing radius of the metal sphere.

Shown in Fig. 8.8 is the PBs cross-section as a function of the photon energy for
different electron velocities and a silver sphere radius of 60 nm, the radiation angle
is 30°. It is seen that for specified values of parameters the PBs cross-section with
increasing electron velocity increases, and its spectral maximum is shifted to the
region of higher frequencies. For small nanosphere radii r; <20 nm on the spectral
curve of the PBs cross-section additional maxima appear that are caused by
excitation of quadrupole and octupole surface plasmons.

It is seen that with approach of the electron velocity to the velocity of light in the
glass matrix vk = ¢ = ¢ / Vem ~ 91.33 a.u. the velocity dependence of the PBs cross-
section has singularity. Physically the said singularity corresponds to a possibility of
radiation by an electron of a propagating electromagnetic field in a medium without
scattering by a nanosphere. Besides, following from Fig. 8.9 is the presence of maxima
on the velocity dependence of the PBs cross-section for small enough metal sphere
radii. The value of electron velocity vy.x corresponding to these maxima decreases
with decreasing radius according to the relation vy,,x x @ 7.

Oscillations of the PBs cross-section in Fig. 8.9 at low electron velocities arise
due to the contribution to the process of transferred wave vectors of high magnitude:
q > 4/rs, when oscillations of the target form factor (Eq. 8.32) as functions of the
argument x = q r, take place.

The dependence of the differential PBs cross-section on the nanosphere radius for
different energies of a bremsstrahlung photon is demonstrated in Fig. 8.10 for an
electron velocity of 50 a.u. and a radiation angle of 90°. It follows from Fig. 8.10 that
with increasing photon energy the optimum radius of a nanoparticle, at which the
PBs cross-section is maximum, decreases. In this case it turns out that the greatest
value of the cross-section at the maximum of the radius dependence is reached for
ho=2.8¢eV.

Figure 8.11 demonstrates the narrowing of the angular dependence of the
normalized PBs cross-section with increasing nanosphere radius for an IP velocity
close to the velocity of light in a medium: v — ¢. The normalization of the cross-
section was carried out to its value at a zero radiation angle. It is seen from this figure
that for small nanosphere radii (r; = 10 nm) the angular dependence of the PBs
cross-section practically coincides with the angular dependence of linear dipole
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Fig. 8.9 The PBs cross-section for electron scattering by a silver sphere in glass as a function of
the electron velocity for 0 = 7/2,liw = 2.8 €V. Solid line — ry = 20 nm, dotted line —r; = 40 nm,
dashed line — ry = 60 nm
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Fig. 8.10 The PBs cross-section for electron scattering by a silver sphere in glass as a function of
the sphere radius for v = 50 a.u., 0 = /2. Solid line —h v = 2.6 eV, dotted line —h o = 2.8 eV,
dashed line — o = 3.0 eV

radiation. For lower electron velocities the effect of narrowing of the angular PBs
distribution also takes place, though it is not so pronounced.

Thus in this section polarization bremsstrahlung on metal spheres in a dielectric
medium is investigated theoretically with the use of the Mie theory of light scattering.
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Fig. 8.11 The angular dependence of the normalized PBs cross-section for electron scattering
by a silver sphere in glass for v =91 a.u., iw = 2.8 eV. Solid line is the dipole dependence
(1+ 00520)/2, dotted line —ry = 10 nm, dashed line —ry, = 50 nm, dash-and-dot line —r; = 90 nm

The spectral-angular distribution of PBs is calculated in the vicinity of a surface
plasmon resonance for different radii of nanospheres and IP velocities. It is shown
that the spectral line shape for PBs and the angular dependence are modified with the
increase of the target radius. The carried out analysis makes it possible to determine
an optimum region of parametric variation, in which the use of PBs spectroscopy for
investigation of the structure and physical properties of metal nanoparticles in a
dielectric matrix is most promising.

8.3 Bremsstrahlung of Fast Electrons on Graphene

8.3.1 Cross-Section of Bremsstrahlung on Graphene

8.3.1.1 General Expression for the Cross-Section of the Process
on an Ensemble of Atoms

The cross-section of a photoprocess on an ensemble of target atoms looks like
(in case of a monatomic target) [14]:

2
AGrarger = Zexp(iqrj) A6 aiom, (8.34)
j
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where the sum is over all target atoms being in the volume of interaction, do 4y, 1S
the differential cross-section of the process on one atom under consideration,

q= (Pf _pi)/h+k
is the wave vector transferred from an incident electron to the target, p;, p; are the
initial and finite electron momenta, K is the wave vector of a photon.

In the state of thermodynamic equilibrium the squared absolute value in the
formula (8.34) should be properly averaged:

2 - <%;exp(iq (rj — r/))>‘

S expliar)

8.3.1.2 Structure Factor of a Three-dimensional Crystal

The structure factor of a medium in a three-dimensional case (a three-dimensional
single crystal, the angle brackets mean averaging over atom positions) [14]:

<zexp(fq (5 - r,-/>>> N (1 exp(-a )
+Nn, (2n)? Z e e 1S(g)]* 0% (q—g), (8.35)
g

where N = Ny N is the full number of atoms in the volume of interaction, Vg is the
full number of cells in the volume of interaction, N, is the number of atoms in a
cell, g is the wave vector of a reciprocal lattice, n, = Neei/Acenr is the volume
concentration of atoms, A..; is the volume of a unit cell.

In the formula (8.35) the value S(q) is introduced — the normalized structure factor
of a unit cell of a crystal on the wave vector q, S(q = 0) = 1, 3 (q) = 3(¢.) 9(gy)
0(g,) is the three-dimensional delta function of the wave vector transferred to the
target.

It should be noted that in the book [14] the nonnormalized structure factor of a
cell is used.

8.3.1.3 Structure Factor of a Two-dimensional Crystal

In going to a two-dimensional case (we assume that a two-dimensional single
crystal lies in the xy plane, the z coordinate is fixed: z = zp; graphene), when:

qr; =g:z0 +q) p);

for the structure factor of the target by analogy with the three-dimensional case
we have
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Fig. 8.12 The crystal @ @
structure of graphene. A unit
cell (CDEF) and elementary @ ®
translation vectors (e, e,) are
shown (The author Alexander
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@ L ]
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® @ @ &)
; 2 2
(St -00) ) = (1-oo(41)
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2 —u?g? 2 ¢(2
N 2n)* Y e s 0% (4 — ),
g
(8.36)

where p; is the radius vector of an atom in the plane of the two-dimensional crystal,
p=(x,y),o?% (q”> = 5(qx) 6(gy) is the two-dimensional delta function, n, is the

two-dimensional concentration of atoms, u is the root-mean-square deviation of
atoms from the equilibrium position. The case u = 0 corresponds to going to a
perfect crystal.

In Fig. 8.12 the crystal structure of graphene is presented.

The following values are introduced: a = \/§ ap = 0.246 nm is the lattice
constant for graphene, @y = 0.142 nm is the distance between the nearest atoms
(the distance between the atoms in a unit cell, graphene has rwo atoms in a unit cell).

8.3.1.4 Structure Factor of a Unit Cell of Graphene

We assume that an atom A (Fig. 8.12) is at the origin of coordinates, then

1 .
S(q) = 3 [l +exp(iqrg)]. (8.37)
From Fig. 8.12 it follows that
rp = z e +1 e
B — 3 1 3 2

V3a

2

where e; = ( - %) and e; = (0, a) are the basis vectors if the y-axis is directed

straight down. Displacing a unit cell by these vectors, it is possible to reproduce the
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whole crystal lattice of graphene. Then for the graphene reciprocal lattice vectors
we have

g = (4n/\/§a,0), g = (2n/\/§a,2n/a), (8.38)

so €; g; = 27 ;; according to the definition of the reciprocal lattice vector.
In the Cartesian coordinates (yp = 0) it can be written:

8rp = 8«Xp + 8y Y = 8xXp = gxa/\/§7
where the reciprocal lattice vector is:
g=n1g +mg,, (8.39)
ny are the integers and

&y = Ny gix + N2 g0y

Thus the scalar product included in determination of the structure factor of a unit
cell of graphene (Eq. 8.37) is

4 2
grp :?” n +7”n2. (8.40)

Accordingly, the structure factor of a unit cell of graphene is

S(g) :% [1 +exp(i (2 +n2)2{)} (8.41)

Hence for the squared absolute value of the structure factor of graphene we find

IS(g)” = % {1 + cos (%n (2n; + nz))] . (8.42)

The magnitude of the graphene reciprocal lattice vector can be determined in
view of the above expressions:

dn
glny, m) = E \/n? +n3+nin. (8.43)
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Fig. 8.13 The geometry of
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The two-dimensional concentration of graphene atoms that is included in the
structure factor of the two-dimensional crystal is

N(rell

ng = .
Scell

The number of atoms in a unit cell of graphene is N..;; = 2, the area of a unit cell

. 2
is Scenr = \/§2a , SO

4
V3a®

Let us consider bremsstrahlung arising as a result of electron scattering by the
two-dimensional plane of graphene. The geometry of the process is shown in
Fig. 8.13.

(8.44)

ny =

8.3.2 Cross-Section of Polarization Bremsstrahlung
on a Carbon Atom

The cross-section of polarization bremsstrahlung on an atom, differential with
respect to the frequency and the solid angle of photon escape, is

2

(PB) 2 2—q’
= otk B2 (), g

dw dQy - % v (q2 — 2kq)2 c

(8.45)

where a(w, q) is the generalized dynamic polarizability of an atom, s = k/|k| is the
unit vector in the direction of photon emission.
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Fig. 8.14 The normalized form factor of a carbon atom, the X-axis is plotted in atomic units

In the multiplicative approximation the generalized dynamic polarizability of an
atom is expressed in terms of the dipole polarizability and the atomic form factor:

o(w, q) = o(w) Fg), (8.46)

where F(gq) is the atomic form factor normalized by the condition F(g = 0) = 1.

To calculate the atomic form factor F(g) that within the framework of the
multiplicative approximation defines the dependence of the generalized polarizability
of an atom on the value of a transferred momentum (of a wave vector), it is
convenient to use the Slater wave functions of atomic orbitals. As shown in the
work [15], the form factor calculated in such a way differs from its Hartree-Fock
analog by no more than units of percents. Corresponding formulas look like:

2 u
F(q) :% ZNJ'Q(%ﬁfaﬂj)v 0(q, b 1) = % Sin{zuatan(zi)}

where N; is the number of equivalent electrons in the j th atomic shell, f and y are the
Slater parameters of atomic shells.

The normalized form factor of a carbon atom calculated according to the above
formulas is presented in Fig. 8.14 as a function of the magnitude of the transferred
wave vector g. The nonmonotonicity of decrease of the form factor with growing
value gis connected with the shell structure of an atom. Corresponding to high values
of g is the contribution to F(g) of the inner shell of a carbon atom with the principal
quantum number n = 1. Corresponding to small values of ¢ is the second (outer)
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atomic shell. A bend of the dependence F (q) atg =~ 1 corresponds to transition from
one electron shell to another.

Since the dynamic polarizability of an atom is a complex value, the real and
imaginary parts of which are related by the Kramers-Kronig relations, it is convenient
to begin its calculation with the imaginary part. To obtain the frequency dependence of
the imaginary part of the dipole polarizability, we proceed from its relation with the
cross-section of radiation absorption o, () given by the optical theorem:

Im((w)) = % (). (8.47)

In this book, to determine the spectral dependence of the photoabsorption cross-
section o, (), the data on the radiation absorption coefficient given at the Internet
site of the Berkeley National Laboratory are used.

The real part of the atomic polarizability can be restored by the known imaginary
part with the use of the Kramers-Kronig relation that for calculations is convenient
to be presented as follows:

Re(a(w)) = do'. (8.48)

2 T olm(a(w)) — o'Im(a(w’))
T ) 0?2 — w'?

This equation, due to the presence of the second summand in the numerator of
the integrand, allows calculation of the principal-value integral appearing in the
standard form of the Kramers-Kronig relations in terms of a punctured integral with
a “puncture” eliminating the singularity of the integrand, which is convenient in
practical calculations. At high frequencies the imaginary part of the polarizability
decreases as » /2, so the integral on the right side of the equation converges well at
infinity.

The results of calculation of the dynamic polarizability of a carbon atom are
presented in Fig. 8.15. Given for comparison in the same figure is the number of
electrons in a carbon atom, tending to which in the high-frequency limit is the real
part of the atomic polarizability normalized to the polarizability of a free electron
with the opposite sign: a(w) — a(w)/(—e*/mw?).

From this figure it is seen that in the high-frequency limit the imaginary part of the
polarizability tends to zero. The peculiarities on the curves of Fig. 8.15 correspond to
potentials of ionization of electron subshells of a carbon atom.

8.3.3 Polarization Bremsstrahlung on Graphene

If the expression for the structure factor of graphene (Eq. 8.36) is substituted in the
general formula for the cross-section of bremsstrahlung on a polyatomic target
(Eq. 8.34), two terms will appear in the Bs cross-section that correspond to the
incoherent (the first summand on the right side of Eq. 8.36) and coherent (the second
summand on the right side of Eq. 8.36) parts of the structure factor.
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Fig. 8.15 The real (solid curve) and imaginary (dotted curve) parts of the dynamic polarizability
of a carbon atom multiplied by the squared frequency, the Y-axis is plotted in dimensionless units,
minus in the definition of the Y-axis relates to the real part and plus relates to the imaginary part of
the polarizability

8.3.3.1 Incoherent PBs on Graphene

Substituting Eq. 8.36 in Eq. 8.34, we find that the cross-section of incoherent PBs
on a target (in terms of one atom) is

1 do*l(,ii)h e ¢
N doddy mm]“w—k”‘”)
2 2
2 2 [s,wv/cz—q} \?
x (1 —exp(—u” q°)) T - 2%’ (c) a(w, q)| dq.
(8.49)

Integration on the right side of this equation with respect to the angles of the
vector q in view of the presence of the delta function gives:

Gmax

1 dG(PB)h 262 dq 2 2 2
— incoh  __ g v, : 0 (1 -y ) ) , 7
N dwdQy, nv?cdho J q o(g, v, @, 0) ¢ |a) a(w C])|

Gmin

(8.50)

where

Qmin(wav’g) = 8 (1 - X cos 0), qmax = 2:“ V/h,
\'% C
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 is the reduced mass of an electron and a target atom, 0 = angle(k, v) is the
radiation angle,

s,a)v/c2 —q}z

v
[w(q,V,Cl), 0) qz JdQ 5(0) kv + qV) [(qz _9 kq)2 (851)

is the dimensionless kinematic integral calculated in the explicit form in [5], dQq is
the element of the solid angle around the vector q. In the nonrelativistic limit v<<c
the kinematic integral looks like

1 + cos?6 o \? 1—3cos20
I 0) 2 —ouv— _) — 8.52
sb‘(q,V, CL), ) 2 + <q V> 2 ( )

In the general case the kinematic integral can be represented as a function of
three variables /,(q, v, ®,0) = I}(x =gqc/ow,f =v/c,0), where

xzfl (x7ﬁa 6)

i‘ﬂ(x’ﬁve):Ayz(x ﬁ 9) %

(8.53)

f(x,8,0) 1

A (x,8,0) ]

fi=(*+2Fcos0) [( — ) cos?0 + (¥ — ﬁ)zsinze}
2

),

fz—x + 22X cos 0, x—qmm —[3 I — cos,

2
A= ( 2-2(1—”;9)) +41;2ﬁ2 sin0.

In the relativistic limit (f — 1) the function Ila (x, ,0) has a sharp maximum in
fulfilment of the equation Xy, = /2 (1 —cos0/f) = 2 sin(0/2), and the sharp-
ness of the maximum increases for wide radiation angles § — 7. This maximum
corresponds to exit of a photon “to the mass shell” in case of propagation of an
electromagnetic field in a medium.

+ 4 sin?0 cos 0 (¥ — B) (¥* —

8.3.3.2 Coherent PBs on Graphene

The cross-section of coherent PBs on a two-dimensional periodic structure, which
is graphene, (in terms of one atom) is
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1 dogy) & e (2)'n, @y
N dodQ,  ho w2v \¢/ °

Z o (gta,) |S(g)|2 Ja(w —kv+gv+ag.v:)
g

[s, v/ — (g +q,)]°

5 (o, g+ q. )| dg.. (8.54)
(e+a.) —2k(g+a,))

In derivation of this expression it was taken into account that integration with

respect to the two-dimensional delta function o (qH — g) gives:

q =8, (8.55)

and there remains integration with respect to the component of the wave vector dq,
transferred to the target, this component being normal to the graphene plane, the
said integration is also “removed” due to the presence of the delta function
o0(w —kv+gv+ g.v,) under the sign of integration. As a result, we find a fixed
value for the normal (to the graphene plane) component of the wave vector
transferred to the target as a function of the problem parameters:

w—Kkv

¢ = —gtgh + (8.56)

vcosy

This value should be substituted in the expression for the coherent PBs cross-
section (|q, | = ¢,). Taking into account the fact that (q, g) = 0 and in view of the
relation (8.46), we obtain for the differential spectral-angular cross-section of
coherent PBs on graphene the following expression:

coh

N dodQy  cosy

x e s
g

1 de"® dng [\ o! |oe()[*
hiw c3v?

2
P(g’ ka qL)v (857)

()

where

P(g7 ka ql)
_ (“(’—2")2 + g%+ q2 —22% (g siny +q. cosyy) — [2¥ cosO — g sina — g cosoc]2

)

(gz +q>—-22(gsina+gq. cosoc))2
(8.58)
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T
S(g) = cos? (5 @ +m)), lg] = glm, n2) = <= \/md + 13+ nimz

4n

V3a
4

V3a?'

cos = cosa cosy + cos p sina siny, ng =

and

1—(v/c) cosB
L= gty +o—tL
@ 818y v cos Y
Summation over the reciprocal lattice vectors g implies summation over the
integers nj > defining the magnitude of g.
It should be noted that in contrast to coherent PBs in a three-dimensional single
crystal, when the radiated frequency is fixed by the condition

6 ____ 8V 8.59
Dmax 1 —pBcos0’ (8.59)
hence we find for a cubic crystal (1,3 are the integers):
o) = gV (n siny cosp +ny siny sinp +n3 cosy) ’ (8.60)
1—pfcosf

the frequency of coherent PBs in a two-dimensional single crystal is not a fixed value.
Nevertheless, in the two-dimensional case with fulfilment of certain conditions (see
below) the PBs spectrum has sharp maxima. The frequencies of these maxima are
defined by the zeros of the denominator P(g, k, ¢.) in the expression for the coherent
PBs cross-section (Eq. 8.57).

For the denominator P(g, k, ¢,), taking into account the explicit form of ¢,,
we find:

g4

{(g%)zé[é — 23 cosa cos ]
2

+2 @ cos i [cos o sinyy — sinoz—étglp] + 1} , (8.61)
gV B

where the contracted notations 0 = 1 — f§ cos 0, f = v/c are introduced, and the
cosine of the radiation angle is cos @ = cos o cos iy + cos ¢ sina siny.

For the zero angle of electron incoming into the graphene plane (y = 0) the
expression for the denominator is simplified to the form:



234 8 Polarization Bremsstrahlung on Nanostructures

Den(w, o,y =0,,0 = )
2

2
—g4{<w> (1—ﬁcosa)(1—3ﬁcosa)—2ﬁwsinoc—l—l} .
gv gv

(8.62)

The resonance condition for the coherent PBs cross-section in the general case
looks like

Den(w, a,y, f,0) = 0. (8.63)

If this equation is solved with respect to the radiation frequency, the following
expression for the frequency of a spectral maximum in coherent PBs on graphene
will be obtained:

wmax - g VF(U(O(a Wa Ha ﬁ) (864)

Here the dimensionless function is introduced:

Fo(o,,0, )
cos (B sino + & tgy — B sinyy cosa) + sign(d — 2 fcosa cos ) VD
- 0(6 — 2 Bcosa cosy) ’
(8.65)

where d = 1 — f cos 0, f = v/c,D = cos?yy (f sino + 1g & — f siny cosa)” — &
(0 —2fcosa cosyy) and

1 for x>0
sign(x) =¢ 0 forx=0.
—1 for x<0

In case of the zero angle of electron incoming into a two-dimensional single
crystal (y = 0), we have the following expression for the function determining the
dependence of the resonance frequency of radiation on the electron velocity and the
angle of photon emission:

Fo(¥ =0)

p sino + sign(1 — 3 f cos o) \/(ﬁ sina)® — (1 — f cosa) (1 — 3f cosa)
- (1 =pcosa)(l—3pcosa)

(8.66)



8.3 Bremsstrahlung of Fast Electrons on Graphene 235

l T T T T G
s’
f',
I.a‘
.‘(‘
it
e
0s5r Fi 1
T
-
'
s
’
r
0 — :
l' - ol
I’ ’ e
I" '_l'.
-05F e -
o " L
20 - e
. &£ -
. - Y g
=] POTSL L el 1 1 L
0 02 04 06 08 1
B

Fig. 8.16 The dependence of the discriminant (8.67) defining the resonance frequency of PBs for
the zero angle of electron incoming = 0 on the electron velocity (.y o< r3.) for different radiation
angles a: solid line — oo = 0, dotted line — o. = n/4, dashed line — o. = n/3, dotted-dashed line
o = Tm/2

For the positiveness of the discriminant in this expression
Do, f) = (f sina)® — (1 — f cosa) (1 — 3 cos ), (8.67)

that is, for existence of a resonance frequency of coherent PBs the fulfilment of the
condition is required:

(8.68)

>p> .
2 coso— 1 2 coso+ 1

Following hence is the necessary condition of the presence of a resonance
2 coso+1>1, that is, a<m/2 — radiation should go to the top hemisphere z >0
(see Fig. 8.13).

The dependence of the discriminant (8.67) on the electron velocity for different
radiation angles for the zero angle of electron incoming is presented in Fig. 8.16.

From this figure it is seen that with increasing radiation angle the range of
electron velocity values decreases, in which the discriminant is positive, that is,
there is a resonance in the cross-section of coherent PBs on graphene. For the angle
o = 7/2 this range comes to the point v = c.

If the equation 1 — 3f cosa = 0 is satisfied, then, as follows from the formulas
(8.64) and (8.66), the resonance frequency of coherent PBs becomes infinite, that is,
a resonance is absent. So the equation



236 8 Polarization Bremsstrahlung on Nanostructures

1 1
= >
3cosoc< 2 coso+ 1

p for a < n/2> (8.69)

means the absence of a resonance. In turn, it is possible if o< arccos(1/3).

Thus the analysis of coherent PBs in case of normal electron incoming has
shown in particular that for small enough radiation angles o< arccos(1/3) with the
condition 3 cos o = ¢/v satisfied spectral resonances in radiation are absent since
the resonance frequency becomes infinite.

It should be noted that if the discriminant (8.67) is negative, but is close to zero,
the cross-section of coherent PBs on graphene also has maxima, but not so sharp as
in case of the positive discriminant.

The total cross-section of electron PBs on graphene in terms of one atom is equal
to the sum of the incoherent and coherent parts:

PB PB
l dO-(PB) — l dO—I(nCO)/’l + l do-f‘oh) (8 70)
N dodQ N dodQ N dodQ’ :

8.3.4 Static Bremsstrahlung on Graphene

The expression for the cross-section of static bremsstrahlung of a relativistic
charged particle on an atom (without its excitation) in the first Born approximation
looks like [16]:

daeolB 1

2 2
% oo (Pr) (M _F 2
do dOy A whel e (p> <m,,> Jdg"f [1 = Falq)] J<pr)’ ®.71)

where m,, is the mass of an incident particle and J (pr) is the dimensionless

function determined by the equations:

2 N2
J(pr) = (hcj)4 {(i—;) (4 el — (hqc)z) sin’¢/

Di ? 2 Z(Ew)z
+ <—) (4 sfz — (higc) ) sin?0 + = (pl2 sin0 + p? sin26’)
K; K Kf ’

_ “pipy [2(?,2 + g?)—(hqc)z} sin 0'sin 0’ cos <p},
Ki Kr ’

K= ¢&f/c — c(kp;) /o, 1Ky = ¢ /c — C(kpf) /o,
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hg = \/(hk)z + pi2 + p}% — 2pihik cos 0 + 2pghik cos 0 — 2pipy (cos 0cos @ + sin0sin ' cos <p),

¢’ is the angle between the vectors pr andk, @ is the angle between the planes p; k

and ps Kk, r, = m‘—fz

The approximate formula for the differential cross-section of SBs on an atom
looks like:

v 2 ‘max ~
do98 NLZZ €® (1 + cos?0) (1 -©) ) ! (1 —F(q))2

do dQx T p2hoved (1—%c059)2 q
qmin

dq, (8.72)

where

Qmin(w,v’e) = 9 (1 - X Ccos 0)7 qmax = 2,“ V/ha
\% C

u is the reduced mass of an electron and a target atom, 6 = angle(k, v) is the
radiation angle.

The expression (8.72) has a characteristic error of 10-30 % in comparison with
the formula (8.71). In derivation of Eq. 8.72 the approximate equation for electron
energy change during bremsstrahlung was used:

g — & ~h(q—Kk)v.
In the nonrelativistic limit v<<c from the expression (8.72) the equation follows:
qmax ~
do98 1 7265 (1 + cos?0) J (1 —F(q))2

do dQx ~ n  mPhov?d q

dq. (8.73)

Gmin

For the incoherent part of the cross-section of SBs on graphene (in terms of one
atom) we have:

v 2 max ~
i 409" %lzzw(] +cos?0) (1 - () ) ! (1 —F(q))z(
NdodQx ™ n m2hovied (1-2cos)’ q

Gmin

1— exp(—u2 qz)) dq.

(8.74)

Given in Figs. 8.17 and 8.18 is the comparison of the spectral cross-sections of
PBs and SBs on a carbon atom and incoherent PBs and SBs on graphene for an
electron velocity of 100 a.u. (this velocity corresponds to an incident electron energy
of 240 keV).
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Fig. 8.17 The comparison of the spectral cross-sections of PBs (solid curve) and SBs (dotted
curve) of an electron with a velocity of 100 a.u. scattered by a carbon atom, the radiation angle is
6 = 30°, the abscissa is plotted in electron-volts, the ordinate is plotted in atomic units
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Fig. 8.18 The comparison of the spectral cross-sections of incoherent PBs (solid curve) and SBs
(dotted curve) of an electron scattered by graphene (in terms of one atom), v = 100 a.u., the
radiation angle is 6 = 30°

From Fig. 8.17 it is seen that in case of a carbon atom the PBs cross-section at the
maximum of the frequency dependence is about an order of magnitude less than the
SBs cross-section. This circumstance is explained by relatively low dynamic
polarizability of a carbon atom that defines the value of the PBs cross-section.
With growing electron velocity the relative contribution of PBs will increase since
the role of high impact parameters will increase.

The difference of incoherent channels of PBs and SBs on graphene is even more
(Fig. 8.18) and is about two and a half orders of magnitude at the maximum of the
spectral dependence of PBs. The latter circumstance is connected with the fact that
the polarization channel is formed at long distances from a target, the contribution



8.3 Bremsstrahlung of Fast Electrons on Graphene 239

of these distances to incoherent radiation is suppressed by the multiplier 1 — exp
(—u?* ¢%) that is small for ¢ < 1/u (low impact parameters).

8.3.4.1 Coherent SBs on Graphene

For calculation of the coherent part of SBs on graphene it is necessary to express the
cross-section of the process on an atom in terms of the integral with respect to the
transferred wave vector (:

10" o 72 e® (1 + cos?0) (1 — (%)2> J(l 71*:(‘1))25(00 —kv+qv)dq
7 |
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Then the expression for the differential cross-section of coherent SBs on
graphene (in terms of one atom) looks like:
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The calculation of the integral on the right side of this equation in view of the
delta function gives
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In view of the last equation summation over the reciprocal lattice vectors g in the
formula (8.77) comes to summation over the set of the integers (n;, ny).

q. = —gtgy + o , cos ) = cosocosyy + cospsinasiniy,
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Fig. 8.19 The comparison of the cross-sections (in terms of one atom) of coherent and incoherent
PBs and SBs of an electron on graphene for an electron energy of 30 keV (v = 45 a.u.), y = 0 and
a radiation angle of 30°: solid curve — coherent PBs, dotted curve — coherent SBs, dashed curve —
incoherent PBs, dash-and-dot curve — incoherent SBs
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Fig. 8.20 The same as in Fig. 8.19 for an electron energy of 58 keV (v = 60 a.u.)

8.3.5 Comparative Analysis of Contributions of Different
Bremsstrahlung Channels in Electron Scattering
on Graphene

Let us calculate the contribution of different Bs channels in electron scattering on
graphene with the use of expressions obtained in the previous section. The results of
calculations are given in Figs. 8.19, 8.20, 8.21 and 8.22.

From Fig. 8.19 it follows that in case of a relatively low electron velocity of 45 a.u.,
which corresponds to the energy of 30 keV (at a specified radiation angle), spectral



8.3 Bremsstrahlung of Fast Electrons on Graphene 241

1x10°8 T T T T
1x1077

a.u. 1x10®
11070 1
1x10°10
1x10~M
1x10712

1x10713

110714

1x10-15 1 1 1 1
0 2x10°8 4x10° 6x10° 8x10° 1x10*

o, eV
Fig. 8.21 The cross-section of coherent PBs of an electron on graphene for an electron energy of

58 keV (v = 60 a.u.), y = 0 and different radiation angles: solid curve —30°, dotted curve — 60°,
dashed curve — 120°

O, 1a0~®
au  3g07°

Vv, a.u.

Fig. 8.22 The velocity dependences of coherent and incoherent PBs on graphene for the
normal incidence of an electron, a photon energy of 272 eV, and a radiation angle of 30°: solid
curve — coherent PBs, dotted curve — coherent SBs, dashed curve — incoherent PBs, dash-and-dot
curve — incoherent SBs

resonances in the spectral range under consideration in the coherent PBs cross-section
are absent. In this case coherent PBs prevails in the low-frequency region of the
spectrum /i < 1 < 1 keV, in the rest of the spectrum incoherent SBs prevails.
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With growing electron velocity maxima appear in the coherent PBs cross-section
at frequencies determined by the formulas (8.64) and (8.65) as seen from Fig. 8.20.
Now near resonance frequencies a prevailing radiation channel is coherent PBs.
With further increase of electron velocity the relative contribution of coherent PBs
grows: it becomes comparable with incoherent SBs even far from resonances.

Given in Fig. 8.21 is the comparison of spectra of coherent PBs on graphene for a
fixed electron velocity and different radiation angles.

It is seen that with growing radiation angle the maxima of the cross-section of
coherent PBs in the spectral range under consideration disappear, and the value of
the cross-section in a wide spectral range decreases.

The dependences of the cross-sections of different Bs channels on the electron
velocity are presented in Fig. 8.22. From this figure it is seen that coherent PBs on
graphene has sharp maximum and minimum. The velocity dependence of other Bs
channels is monotonic. Deep minima in the cross-section of coherent PBs on
graphene are caused by zeros of the function P(g, k, ¢.) (see the formula (8.58))
included in the expression for the cross-section (Eq. 8.57).

Thus the carried out analysis shows that the main contribution to bremsstrahlung of
an electron on graphene is made by coherent polarization Bs and incoherent static Bs.
It is found that the spectrum of coherent PBs of an electron on graphene for high
enough velocities and small radiation angles contains sharp maxima corresponding to
the vanishing denominator in the expression for the process cross-section. The spectral
maxima in the cross-section of coherent PBs in a certain region of parametric variation
take place in the angular and velocity dependences of the cross-section.
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Chapter 9
Experimental Observation of Polarization
Bremsstrahlung on Atoms, Clusters and Solids

9.1 Bremsstrahling on Atoms with Account for
the Polarization Channel

9.1.1 Early Investigations

One of the first experiments for PBs on atoms was the work of the E.T.
Verkhovtseva’s group [1], studied in which was the contribution of the “atomic”
component of Bs to the spectrum of bremsstrahlung of electrons with the energy
600 eV scattered by xenon gas in a photon energy range of 70-150 eV. In this
spectral range a “giant resonance” takes place in the xenon photoabsorption g, (),
the said resonance being caused by the 4d-subshell of an atom, which according to
the optical theorem

c

Im{a(w)} opn() 9.1)

:47ta)

is indicative of the high value of the imaginary part and, as a consequence, of the

squared absolute value of the atomic polarizability |o(w)|” that defines the contri-
bution of the polarization channel to the total Bs. The last statement follows, for
example, from the formula (3.24).

It should be noted that in early investigations of PBs several terms for designa-
tion of the polarization channel in bremsstrahlung were used in literature: polariza-
tion Bs, atomic Bs, dynamic Bs, parametric X-radiation, and transient Bs in plasma
(see Chap. 1). For example, in the cited paper the polarization Bs channel was
called the atomic channel.

Given in Fig. 9.1a from the paper [1] is the comparison of the intensity of
polarization Bs on a xenon atom measured in a spectral range of 70—150 eV with
PBs calculated by the formula analogous to Eq. 3.29. In Fig. 9.1b the dynamic
polarizability of a xenon atom in a corresponding region of photon energies is
presented. The squared absolute value of the dynamic polarizability included in
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Fig. 9.1 (a) The comparison of the measured spectrum of atomic (polarization) Bs of an electron
on a xenon atom (solid curve) with the calculated PBs spectrum (dash-and-dot curve), the
photoabsorption spectrum is represented by a dashed curve; (b) the magnitude, the real and
imaginary parts of the dynamic polarizability of a xenon atom calculated by the experimental
value of the photoabsorption cross-section [1]

the expression for the PBs cross-section (Eq. 3.29) was calculated with the use of
the optical theorem (Eq. 9.1) and the Kramers-Kronig relation for the real part of
the polarizability

oo

Rea(w) = % V.P. J

0

Ima(w’) | »

by the cross-section of photoabsorption ,;(w) taken from the experimental
work [2].

It should be noted that the electron energy was limited to the value 600 eV to
avoid ionization of the 3d-subshell of xenon and resulting radiation at the transition
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4p°4d° — 4p°4d® in the spectral range under study. The concentration of particles
in the interaction zone was (5 + 8) x 10" cm ™2, so the absorption of Bs on xenon
atoms did not exceed 5 % in this frequency region.

To determine the atomic contribution to the process, from the spectrum of Bs of
electrons on xenon the spectrum of Bs on argon was subtracted. This method is
justified by the fact that PBs on argon in the spectral range under consideration is
negligible.

From Fig. 9.1 the correlation of the measured PBs spectrum and the frequency
dependence of the magnitude of the dynamic polarizability of a xenon atom in the
spectral range under consideration is seen. In this case the maximum of the PBs
spectrum fell on a photon energy of 113 eV, which considerably exceeds the energy
of ionization of the 4d-subshell of xenon. The FWHM of the measured spectrum
was 47 eV. The PBs intensity at the maximum of the frequency dependence was
70 % of the intensity of ordinary (electron) Bs according to the theoretical estimate
made in the work [3].

PBs in the considered case is formed as a result of virtual excitation of xenon
electrons to an ionization continuum above the threshold of ionization of the
4d-subshell. The authors of the work [1] connected the distinction between the
obtained experimental data and the theoretical PBs spectrum (the dash-and-dot
curve in Fig. 9.1) with a relatively low value of electron beam energy (600 eV) for
validity of the PBs theory based on the Born approximation.

In the work [3] published a year before the paper [1], radiation of electrons with
the energy of 500 eV scattered by metal lanthanum in a photon energy range of
100-140 eV was measured. In this frequency region the photoabsorption of metal
lanthanum is close to atomic, which gave the authors of the cited paper reason to
believe that the radiation spectrum is also of an atomic nature. A satisfactory
agreement of the measured spectrum with the calculation based on the theory of
PBs of fast electrons was found out.

The results of further experimental investigations of PBs of electrons on xenon
atoms carried out by E.T. Verkhovtseva with co-authors are presented in the paper
[4]. In this work the spectrum of radiation arising in electron scattering by xenon
atoms in a photon energy range of 80-220 eV was measured. The energy of an
electron beam varied within 300-900 eV.

In the cited work it was found that the position of the spectral maximum of
radiation w,,x depends on the energy of scattered electrons and the radiation angle
(between the electron velocity and the wave vector of a photon). This dependence is
connected with the large width of the spectral maximum of radiation I that is in turn
caused by a giant resonance in the spectrum of photoabsorption of a xenon atom in
the spectral range under consideration (Fig. 9.2a).

In the Born-Bethe approximation, in the paper [4] the following expression for
the shift of the PBs maximum with respect to the maximum of the frequency
dependence of the squared absolute value of the dynamic polarizability of an
atom  for a radiation angle of 90° was derived:
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where e =mhw / p? (p is the initial electron momentum, 7% is the energy of a

A
2 p2
w* R;

electron velocity, R, is the mean atomic radius, 7y is the factor of the order of one). In
the limit ¢ — O the formula (9.3) for the frequency of the Bs spectrum maximum
gives: Omax — wo + 217 /wo. Thus even in the limit of high electron energies there
is a shift of the Bs spectrum maximum with respect to the spectral maximum of the
magnitude of the dynamic polarizability of an atom. From the obtained limiting
relation it follows also that the spectral shift under consideration is noticeable if the
ratio of the parameters I'/wy is great enough.

Since ordinary (electron) Bs is a smooth function of the photon frequency and
the radiation angle, the shift of the spectral maximum is caused mainly by the
polarization channel.

bremsstrahlung photon), L = In (y ) is the Coulomb logarithm (v is the initial
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From the Eq. 9.3 it follows that the shift of the spectral maximum of PBs for a
radiation angle of 90° is always positive and decreases with growing electron
energy. Both these facts are in conformity with the experimental data obtained in
the work [4] (see Fig. 9.2b).

The plot of the function (Eq. 9.3) (depending on the electron energy) is presented
in Fig. 9.3 for two values of the Coulomb logarithm and the following values of
parameters: iwg = 100 eV, il = 24 eV.

The comparison with experimental data shows that the theoretical shift of the
frequency of the spectral maximum of PBs decreases with growing electron energy
more slowly than it was observed in the work [4], which is apparently explained by
insufficiency of the Born-Bethe approximation for quantitative description of Bs of
electrons with a specified energy.

So experimentally demonstrated in the cited paper was the importance of taking
into account the polarization channel in consideration of Bs on atom in the
frequency range where the dynamic polarizability of an atom is high.

9.1.2 Measurements of the Absolute Value of the Cross-Section
of Bs of Fast Electrons on Atoms

The measurements of the absolute double-differential Bs cross-section (depending
on the frequency and the angle of photon emission) in scattering of electrons with
an energy of 28 and 50 keV on atoms of noble gases were for the first time carried
out in the work [5] in a wide spectral range from 5 keV to the kinematic limit, the
radiation angle was 90°.

The results of experiments were compared with calculations of the cross-section
of ordinary Bs and total Bs (in view of the polarization channel). Corresponding
plots are presented in Figs. 9.4 and 9.5 [5].

The calculation of total Bs was carried out in the so-called “atom stripping”
approximation (stripping approximation) [6]. The main idea of this approximation
is that the PBs amplitude and the screening summand in the amplitude of ordinary



250 9 Experimental Observation of Polarization Bremsstrahlung on Atoms, Clusters. . .

Fig. 9.4 The measured and 25 — . r . r
calculated cross-sections of £ X
e

Bs of an electron with an 20 fig
LLI-fLI T1d

energy of 28 keV scattered by
krypton and xenon atoms [5]:

solid curves — the calculated 15 - B —
cross-section of total Bs in the

stripping approximation; i =x g Kr

dashed curves — the 10 I\ ~— "
calculated cross-section of Emam -
ordinary Bs, black circles —
the experiment [5]

k DDCS (Barns/sr)

0 5 10 15 20 25 a0

Fig. 9.5 The same as in 20
Fig. 9.4 for an electron energy
of 50 keV [5] = Xe

e %I]Eﬁﬂi =

k DDCS (Bams/sr)
S

0 10 20 30 40 50
Photon energy (keV)

Bs on an atom cancel out [7], and the Bs process in the zeroth approximation
proceeds as on a “bare” nucleus.

The cross-section of ordinary Bs was calculated in the relativistic approximation
of partial waves, corresponding data are given in the work [8].

From the given figures it is seen that the measured cross-section exceeds consid-
erably the calculated data, which to the greatest extent shows itself for a xenon atom,
electron energy of 50 keV and in the low-frequency range. The exception is the case
of a neon atom (Fig. 9.6) having a low value of dynamic polarizability, as a result,
the measured contribution of PBs to the total cross-section of the process is
negligible (practically is not visible in the range of an experimental error).

From the given plots it is seen that the experimental value of the total Bs cross-
section, as a rule, exceeds its calculated value in the stripping approximation, which
is most probably indicative of insufficiency of this approximation in the case under
consideration.

As stated by the authors of the paper [5], the results of their work are strongly
indicative of the essentiality of the polarization channel contribution to Bs of fast
electrons on free atoms (with a considerable dynamic polarizability) in a wide
spectral range.
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9.1.3 PBs on Atomic Clusters

Theoretically the role of cooperative effects in Bs on atomic clusters in a wide
spectral range was studied in the author’s work [9] by the example of copper
clusters (see the Sect. 8.1 of this monograph). In particular, it was shown that
cooperative effects are of a considerable importance in PBs of relativistic electrons.

The experimental investigation of Bs of electrons with the energy of 700 eV on
xenon atoms and clusters was carried out in the work [10], in which the influence of
an ambient medium on the PBs spectrum was taken into account.

Under experimental conditions of [10] a cluster on the average consisted of 20
atoms, and the number of clusters in the volume of interaction was less than 2 % of
the total number of particles. In case of changing experimental conditions the
number of atoms in a cluster increased from several tens to 8,500.

The results of measurements and calculations of the cited paper are presented
in Figs. 9.7 and 9.8.

Corresponding to Fig. 9.7 is a concentration of xenon atoms of 10'> atoms/cm”.
The average number of atoms in a cluster corresponding to Fig. 9.8 is 8,500.

From comparison of the plots of Figs. 9.7 and 9.8 it is seen that in case of clusters
the maximum of the PBs spectrum is shifted by 10 eV towards lower photon
energies and has a FWHM lesser than for PBs on individual atoms. In both cases
the spectral maximum is of an asymmetric form.

The analysis of experimental data carried out in the paper [10] has shown that the
reduction of the width of the spectral maximum of PBs with growing number of
atoms in a cluster (N) at first is slow up to values N ~ 200-300. Then (for N > 500)
the sharp reduction of the width of the maximum begins, and the width goes to
saturation when the number of atoms in a cluster is several thousands. In this case
the width of spectral maximum decreases approximately by 30 %.


http://dx.doi.org/10.1007/978-3-642-34082-6_8

252 9 Experimental Observation of Polarization Bremsstrahlung on Atoms, Clusters. . .

Fig. 9.7 The spectrum of I
PBs of an electron with the
energy of 0.7 keV on a xenon
atom: “noisy” curve —
experiment, smooth curve —
calculation in view of the
dielectric permittivity of an
ambient medium

—
oo =]
T

—

odo/dw® (arb. units)
(=)

i =9

100 140 180
Photon energy (eV)

o
<

Fig. 9.8 The spectrum of
PBs of an electron with the .
energy of 0.7 keV on a solid
xenon cluster: “noisy” curve —
experiment, smooth solid
curve — calculation in view of
the dielectric permittivity of
an ambient medium, dashed
curve — calculation in view of
the frequency dependence of
radiating dipole damping in a
medium

wdo/dw (arb. units)
>

60 100 140 180
Photon energy (eV)

The calculations of the cross-section of PBs on xenon atoms and clusters in the
work [10] were carried out under the assumption that an atom/cluster is immersed
in a gaseous or solid medium with a certain dielectric permittivity that influences
the PBs spectrum. As a result, a good conformity between the experimental and
calculated data was established.

So experimentally demonstrated in the paper [10] was the important role of PBs
of electrons on xenon atoms and clusters in a spectral range corresponding to a giant
resonance in photoabsorption, and cooperative effects were recorded that come to
reduction of the PBs spectral maximum width with growing number of atoms in a
cluster.

9.2 Bremsstrahlung on Solid-State Targets

9.2.1 PBs of Fast Electrons on Metal Foils

As was already noted in Chap. 1, one of the first works, in which PBs of fast
(relativistic) electrons scattered by a metal foil was reliably recorded, was the paper
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[11]. In this work the measurement of the spectrum of electrons with an energy of
2.4 MeV scattered in a polycrystalline aluminum target was carried out. The
position of the spectral maximum of radiation falling on photon energy of 4 keV
was exactly recorded (Fig. 9.9).

This maximum, as was predicted in the theoretical work [12], corresponds to the
contribution of the polarization channel to total Bs. It corresponds to scattering of a
virtual photon to a real photon by the crystallographic plane of target crystallites
properly oriented, so that the Bragg condition (Eq. 5.19) is carried out for conver-
sion of a virtual photon to a real photon (see Fig. 5.8). The Eq. 5.19 contains the
target reciprocal lattice vector g that characterizes a crystallographic plane, by
which scattering of a virtual photon occurs. It should be noted that the wave vector
of a virtual photon forming the eigenfield of a relativistic electron is |k| v/v, where v
is the electron velocity.

The maximum in the spectrum of PBs on a polycrystalline target is characteristic
for relativistic electrons. Its central frequency is given by the formula (5.9). It
should be noted that in case of nonrelativistic electrons the spectral maximum under
consideration degenerates into a “frequency step” according to the formula (5.15).

The calculated curve 3 of Fig. 9.9 corresponds to taking into account three
crystallographic planes (111), (220), (222). The spectral maximum at about
6 keV on the experimental curve 4 most probably corresponds to rescattered PBs
from crystallographic planes with a high wave vector magnitude.

Further experimental investigation of the absolute cross-section of PBs of
relativistic electrons with an energy of 7 MeV scattered by metal foils was carried
out in the work [13], in which a source of an electron beam was a microtron. As
targets, polycrystalline films of aluminum, copper and nickel were used. The film
thicknesses were respectively 8.5 um (aluminum), 15 pm (copper), 15 pm (nickel).
The target was mounted at an angle of 45° to the beam axis, the radiation angle was
90°. Bs was recorded with the use of a Si-Li pin-detector. The angular acceptance of
the detector was 1.5 - 10~ sterad. The intensity of the electron beam was measured
by a Faraday cup placed at the end of the experimental system. The system was not
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separated from the microtron as regards vacuum, inside it a pressure no more than
1077 Torr was sustained.

The results of measurements (together with the value of the experimental error)
and calculation of the spectrum of PBs of an electron with the energy of 7 MeV on a
polycrystalline aluminum target are presented in Fig. 9.10. The experimental and
theoretical data of this figure make it possible to separate three maxima in the PBs
spectrum, the central energies of which are 3,782 + 16, 4,560 &+ 36, and
6,273 4+ 19 eV. In the measured spectrum there is also an ambient background
from the microtron that has two sources. The first of them is connected with
incoherent PBs and ordinary Bs, its contribution is negligible. The second source
is caused by secondary photons appearing as a result of reradiation at the inner walls
of the target box and the photon channel. The contribution of this background is
2-4 % of the value of the main maximum in the PBs spectrum presented in
Fig. 9.10. In the third spectral maximum there is the contribution of characteristic
radiation of photons from the K-line of iron with an energy of 6,403 eV that were
produced under the action of scattered electrons of the beam at the inner surface of
the target chamber and the photon channel of the system.

Presented in Fig. 9.11 are the results of measurements and calculation of the
spectrum of PBs of electrons with the energy of 7 MeV on a nickel target.

The experimental data of Fig. 9.11 are indicative of the presence of three
maxima in the spectrum of PBs on a nickel foil, the centers of which have energies
of 4,257 4+ 15, 5,070 £ 16 and 5,735 + 11 eV. There is also the contribution of
the K-line of iron near a photon energy of 6,400 eV. The spectral maximum at the
photon energy of 5,735 eV is of the known instrument origin. It results from
ionization of the detector atoms by photons of the K-line of the nickel target
since its central energy is exactly equal to the difference of energies of the K-line
of nickel (7,475 eV) and silicon atoms (1,740 eV).

Thus in the cited paper the spectra of PBs of relativistic electrons on metal foils
were measured and a satisfactory agreement with theoretical predictions for this
phenomenon was obtained.
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Fig. 9.11 The spectrum of
electrons with an energy of
7 MeV scattered by a nickel
foil: dots — experiment, solid
curve — calculation [13]
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Bs of nonrelativistic electrons with an energy of 53 keV scattered by gold foils
of different thicknesses was studied experimentally and theoretically in the work
[14] for four values of photon energy (15, 25, 35, 45 keV) and a radiation angle of
135°. The calculation was carried out with the use of the PENELOPE computer
code [15] based on the Monte-Carlo method without considering the polarization
channel. The PBs contribution was taken into account within the framework of the
stripping approximation [6].

The results of measurements and the theoretical curves obtained in the cited
paper are presented in Fig. 9.12 for two values of thickness of a gold foil.

It is seen that for a more thin foil the experimental data are satisfactorily
described by the theory of Bs without considering the polarization channel. For a
thicker target the experimental dots lie considerably higher than the predictions of
the theory of ordinary Bs, however, they unsatisfactorily agree with the theoretical
curve describing the PBs contribution within the framework of the stripping
approximation.

It should be noted that from the theory of PBs on an atom it is known that the
relative contribution of the polarization channel to total Bs decreases with growing
energy of a bremsstrahlung photon (see Fig. 2.6). In the experiment of the work [14]
the minimum photon energy, for which the measurements were carried out, is
10 keV. This value is represented by a too high quantity, at which the PBs intensity
is already rather low. This circumstance is especially essential for nonrelativistic
electrons used in the work since the lateral dimension of a virtual photon in this case
is not large enough to excite in a coherent manner fluctuations of bound electrons in
the target that are the source of PBs. Therefore for recording the contribution of the
polarization channel it is preferable to study the low-frequency range of the
spectrum of Bs of nonrelativistic electrons with photon energy not exceeding
10 keV.

The results of the paper [14] are also indicate that in the case under consideration
a more exact theoretical approach to describe PBs should be used than the approach
used in the stripping approximation.
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9.2.2 PBs on Thick Metal Targets Under
the Action of B-particles

In the work [16] bremsstrahlung arising in bombardment of metal targets under the
action of B-particles from a 2**TI radioactive source in a range of photon energies
from 5 to 10 keV was investigated experimentally. To measure the spectral distri-
bution of bremsstrahlung photons, the highly sensitive X-PIPS Si (Li) detector with
an internal efficiency of 100 % and 97 % for photons with the energy of 5 and
10 keV respectively was used. The resolution of the detector was no less than
190 eV for photon energy of 5.9 keV. To decrease the influence of scattered photons
and to restrict the background to a low level, a line of tin fragments and an
aluminum foil was used for screening the detector. To obtain correct information
on Bs from targets, a special method was used that made it possible to remove the
influence of internal Bs and external background. Disks of aluminum (a mass
thickness of 293 mg/cmz), titanium (288 mg/cmz), tin (281 mg/cmz), and lead
(286 mg/cm?), each 4 cm in diameter, were used as targets.

It should be noted that in contrast to the above works, in which monoenergetic
electron beams were used, in the case under consideration the **T1 source emits
B-particles with energies continuously distributed in a range from 0 to 765 keV.

For comparison with the experiment, several Bs theory versions were used: the
Bethe-Heitler theory without considering PBs with a modified Elvert factor for
nonrelativistic particles (EBH), the Bethe-Heitler theory without considering PBs
with a modified Elvert factor for relativistic particles (Foq BH), and the Bethe-
Heitler theory with a modified Elvert factor for relativistic particles with consider-
ation for PBs (F,,q BH + PB). In the latter case PBs was calculated in the stripping
approximation.

The experimental and theoretical results of the cited work for aluminum and lead
targets are given in Figs. 9.13 and 9.14.

As seen from the given figures, the best agreement with experimental data is
provided by the Bethe-Heitler theory with a modified Elvert factor for relativistic
particles with consideration for the polarization channel (the curves 1 in Figs. 9.13
and 9.14).
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Fig. 9.13 The plots of the
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So the experiment carried out in the work [16] confirms the presence of the
appreciable contribution of the polarization channel to total Bs in scattering of
B-particles by thick metal targets. The relative value of the polarization contribution
to Bs in the considered case is small and is on the average 10 % in a specified
spectral range (5-10 keV), decreasing with growing photon energy, especially for
targets of elements with a medium and high nuclear charge.

9.2.3 Proton Radiation on a Solid-State Target

In the work [17] the analysis of radiation arising in scattering of protons with energy
of several MeV by aluminum target was given that confirmed the important role of
PBs in the process under consideration. This analysis was based on the authors’
experimental data on Bs of protons and light ions obtained in [18] and the formulas
for PBs (called by the authors atomic Bs (AB)) and radiation ionization (RI) derived
in the paper [17]. It should be noted that radiation ionization represents simulta-
neous emission of a photon and ionization of a target in collision with a charged
particle. It is characteristic for processes with significant transfer of a momentum in
collision.

In the cited work the contributions of different processes to total radiation were
discussed. In case of light ions two mechanisms were usually taken into account:
bremsstrahlung of secondary electrons (SEB) and Bs of quasi-free electrons
(QFEB), the first of which has the boundary frequency T,, = 2 m, Vg, and the second
has the boundary frequency T, = T,,/4 = m, Vg /2, where v, is the velocity of an
incident particle, m, is the electron mass. Meant by QFEB is radiation of electrons
of a target in their scattering in the field of an incident particle. In collision of heavy
ions with a target the main role is played by molecular-orbital X-radiation and
radiative capture (REC). Nuclear Bs can be neglected in case of fulfilment of the
inequation qa<<my/m, [17], where ¢ is the wave vector transferred from an
incident particle to the target, a is the mean atomic radius, my is the mass of the
target nucleus. This inequation is satisfied in the X-ray range characteristic for
physics of atomic collisions.

A new point in comparison with the previous works on radiation of ions on solid-
state targets was the fact that the authors in interpretation of their experimental data
took into account atomic (polarization) Bs. It was shown in particular that PBs of
protons is essential not only in the spectral range near the potential of ionization of a
target as was noted in the work [19], but also for high photon energies.

In the experiment [18] self-supporting aluminum foils with a mass thickness of
100 pg/cm? were used as a target. The thickness of the targets was measured with
the use of the Rutherford scattering of protons with the energy of 1 MeV. A beam of
incident ions was formed by the Van de Graaff accelerator with a voltage of 5 MV.
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The recording of the X-ray spectrum was carried out with the use of a Si-Li detector
with a resolution of 205 eV at the photon energy of 6 keV and effective area of
12.5 mm”.

The typical spectra of X-radiation obtained in the work [18] with bombardment
of an aluminum target by protons and *He ions with an energy of 1 and 3 MeV per
atomic mass unit (1, 3 MeV/amu) are presented in Fig. 9.15. The measurements
were carried out for an angle of 90° between the velocity of incident ions and the
direction to the photodetector (a detection angle). The angle of incidence of
incident particles on the target surface was 45°.

In plotting in Fig. 9.15 the background spectrum was subtracted, but correction
taking into account the absorption of X-radiation and the efficiency of the detector
was not made. The ordinate was normalized to the squared charge number of an
incident particle Z2, so from Fig. 9.15 it follows that the measured continuous
X-ray spectrum has a scaling with respect to the value Zf,. Seen in the figure are a
maximum caused by characteristic K-radiation of an aluminum atom and a weak
peak (at 2.307 keV) connected with the Ka-line of sulfur impurity atoms.

As was already noted, the analysis of the X-ray spectra obtained in the paper [18]
was given in the work [17] with the use of the concept of polarization Bs that in the
cited work was called atomic. The results of this analysis are given in Figs. 9.16 and
9.17 for two values of energy of protons incident on an aluminum target of 1 and
4 MeV and a detection angle of 90°.

The theoretical curves for PBs and radiating ionization were calculated by the
formulas derived in the paper [17], Bs of free electrons was calculated with the use
of the expression obtained in the work [20].

Arrowed in Figs. 9.16 and 9.17 are the boundary frequency for Bs of secondary
electrons T, and the boundary frequency for Bs of quasi-free electrons T, = T, /4.

From the given figures it is seen that in the high-frequency region of the
measured spectrum the main channel of radiation is PBs. In case of 1 MeV protons
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Fig. 9.16 The comparison of Al
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this statement is true for 7w >T,,. For 4 MeV protons PBs prevails over other
channels of radiation in the range /i @ > T, = T, /4. In the frequency region o < T,
in this case the cross-section of radiation ionization exceeds the PBs cross-section
according to the calculations of the paper [17].

So the analysis of Bs of protons with an energy of 1 and 4 MeV scattered by the
aluminum target that was carried out in the paper [17] has shown that among
possible mechanisms of radiation PBs prevails in the high-frequency region of
the spectrum 7 & > T,,. In the range T,, > /i @ > T, the main contribution is made by
Bs of secondary electrons and, finally, in the frequency region 7> 7 w radiation
ionization prevails.
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9.2.4 Experimental Observation of Coherent Spectral Peaks
of PBs of Relativistic Electrons in a Polycrystal
in Backward Radiation

Theoretically predicted in the work [21] was a sharp increase of the intensity of PBs
of a relativistic electron scattered in a polycrystal, when the angle 0 between the
wave vector of a bremsstrahlung photon and the electron velocity is 180° (backward
radiation). The results of calculations of the PBs spectra carried out in the cited
work are presented in Fig. 9.18 for an electron with the energy of 15 MeV scattered
in an aluminum polycrystal for two radiation angles.

Three spectral maxima on the curves of Fig. 9.18 correspond to coherent PBs
with transfer of the wave vector excess to different reciprocal lattice wave vectors
(see the formula (5.15)).

In the work [21] the following expression was derived that describes the
intensity of PBs of a relativistic electron in a polycrystal in the region of the
spectral maximum as a function of the radiation angle and the electron velocity:

2y, sin(6/2)

Drnax (0, 7,) ~ )
\/c052 (0/2) —cos 0/ (47?)

94)

where 7y, is the Lorenz factor in a medium that takes into account the change of
the phase velocity of radiation in a substance. From the formula (9.4) it follows that
the value of a spectral peak for radiation angles far from 180° is proportional to the
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Fig. 9.20 The calculated spectrum of coherent PBs of a relativistic electron scattered by a copper
polycrystal for two radiation angles: solid curve — 0 = 180°, dashed curve — 0 = 160° (From the
paper [22])

relativistic factor y,; and if 8 = 180°, then ®,x ~ 72, which in the limit y,>>1
means a sharp increase of the PBs intensity.

In the paper [22] the experimental confirmation of the theoretical conclusions of
the work [21] was obtained. The measurements of the spectra of PBs of electrons
with an energy of 7 MeV scattered in a polycrystalline copper target were carried
out for backward radiation. The basic diagram of the experimental system is given
in Fig. 9.19.

Backward PBs was recorded by the PIN detector 9, the energy resolution of
which was 152 eV. Serving as the target 7 was a foil of electrical copper with a
thickness of 25 pm.

The results of calculation of the spectrum of coherent PBs of a relativistic
electron in a copper polycrystal for the above problem parameters are presented
in Fig. 9.20.

From the given figure it is seen that with the radiation angle approaching 180° the
intensity of coherent PBs at the maximum of the frequency dependences sharply
increases, and the width of a spectral peak decreases. Three numbers in the
parentheses above spectral peaks number a crystallographic plane, by which
a virtual photon of the electron eigenfield is scattered to a real Bs photon (see Fig. 5.8).
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It should be noted that the spectrum of coherent PBs presented in Fig. 9.20
corresponds to averaging over orientations of crystallites forming the polycrystal
under the assumption of their isotropic distribution. This fact is expressed by the
formula (5.14), in which the integral with respect to the normalized solid angle of
the reciprocal lattice vector d€y /4 7 describes this averaging. In case of a texture
crystal, when the isotropism of the distribution of the reciprocal lattice vectors g is
violated, the polycrystal becomes partially oriented, it is necessary to introduce into
the integral on the right side of the Eq. 5.14 the distribution functionf (g) reflecting a
concrete texture of a polycrystal. A texture can appear in a polycrystalline sample
such as a thin foil in the process of its manufacturing or by other reasons.

To investigate the microstructure of a target, in the work [22] the measurements
of the spectra of coherent PBs were carried out for different orientations of a sample
of a copper foil with respect to an electron beam. The results of these experiments
are presented in Fig. 9.21a—c).

The comparison of the PBs spectra (Fig. 9.21) measured for a real target with the
calculated spectrum (Fig. 9.20) obtained for a polycrystalline target (without
texture) shows a change of the PBs photon yield (reflection) caused by different
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crystallographic planes. For example, in Fig. 9.21a the (111) reflection yield is
strongly suppressed in comparison with the theoretical data for an isotropic
polycrystal and the (200) reflection yield is practically absent. At the same time
from Fig. 9.21b it follows that at a specified orientation of a target with respect to
an electron beam an increase of the (220) reflection yield is observed with other
reflections suppressed. The PBs spectrum shown in Fig. 9.21c, corresponding to
another abnormal orientation of a target, has another form differing from the spectra
of Fig. 9.21a, b.

The comparison of reflection yields was made on the basis of comparison of the
values of spectral maxima of PBs with the “instrument” spectral maximum at photon
energy of 6.3 keV that in Fig. 9.21 is designated by the symbol ESC. The position of
this spectral maximum is defined by the difference of the energy of a photon of
the K-line of characteristic copper radiation and the energy of the silicon
photoabsorption edge in the X-ray detector. It is seen that the spectral width of the
“instrument” peak is comparable with the widths of peaks of coherent PBs of a
relativistic electron with a specified energy (7 MeV) in backward radiation. Based
on this fact, the authors of the paper [22] made an assumption that the real spectral
width of PBs peaks in backward radiation is close to the spectral width of character-
istic radiation of the copper K-line, which requires additional measurements of
peaks under study by a detector with higher energy resolution.

It should be noted that according to the theoretical analysis carried out in the
work [21], the spectral width for coherent PBs in backward radiation decreases in
inverse proportion to the squared energy of an incident electron (with neglected
saturation effect that is caused by changing phase velocity of radiation in a medium).
For radiation angles less than 180° narrowing of the line of coherent PBs in a
polycrystal is inversely proportional to the electron energy in the first degree.

Thus it can be concluded that narrow spectral maxima of coherent PBs recorded
in the cited work were found to be rather sensitive to the structure of a polycrystal-
line target, which is of interest for development of a new energy dispersion method
for substance structure diagnostics with the use of recording PBs spectra [23].
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Chapter 10

Induced Bremsstrahlung Effect

in an Electromagnetic Field with Account
for Interference Phenomena

Considered in this chapter are spectral, angular, polarization, and amplitude
peculiarities of the near-resonance bremsstrahlung effect on ions with a core in
strongly inelastic electron scattering that arise due to the presence of the polariza-
tion channel of the process and its interference with the static channel. This
phenomenon plays an important role in processes of energy exchange between
plasma and a near-resonance laser field as well as in experiments on triple interac-
tion on electron and atomic beams and storage rings.

The near-resonance case under consideration corresponds to high enough radia-
tion frequency detunings from resonance in the ion core, so it is possible to neglect
real excitation of the core, and yet to low enough detunings to be limited to the
contribution of only one virtual transition of the subsystem of bound electrons to the
process amplitude.

In contrast to the majority of previous works on resonance PBs, considered here
is a bremsstrahlung effect on ions (including multiply charged ions) at relatively
low velocities of a scattered particle, when the Born approximation is inapplicable,
and the IP motion is more likely of a quasi-classical nature.

10.1 Near-Resonance Bremsstrahlung Effect (Including
a Multiphoton Effect) in the Dipole Approximation
for Interaction of a Quasi-Classical Incident Electron
and the Ion Core

In this paragraph the calculation of the cross-section of multiphoton induced
bremsstrahlung (IBs) in the dipole approximation for interaction of an incident
electron with the ion core is carried out. The incident electron motion is supposed to
be quasi-classical. The said limitations are adequate to laser field frequencies, near-
resonance virtual transitions in the ion core with no change of the principal quantum
number, and high enough charges of a target ion.

V. Astapenko, Polarization Bremsstrahlung on Atoms, Plasmas, Nanostructures 267
and Solids, Springer Series on Atomic, Optical, and Plasma Physics 72,
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10.1.1 Prescribed Current Method in the Problem of
Bremsstrahlung of a Quasi-Classical Electron on
a Multiply Charged Ion (MCI)

The consistent quantum-electrodynamic solution of the set problem assuming
summation of an infinite diagram series is connected with great mathematical
difficulties. The approach developed below corresponds to approximate summation
of such a series in a case of interest for us for collisions of a charged particle with a
MCI. This approach is based on a possibility of description of radiative processes in
electron scattering in the MCI field within the framework of the approximation of
prescribed (not necessarily classical!) current. This model has a wide domain of
applicability for a case of IBs in collision of charged particles with a MCI. A key
condition of applicability of this approach is that in a region of space responsible for
photon radiation in a laser mode the IP motion is only weakly disturbed both by the
laser field (in comparison with disturbance of motion by the MCI field) and by an
act itself of photon emission/absorption (of a real photon in static Bs or an
equivalent photon in polarization Bs).

The smallness of the value of the laser field in comparison with the field of an ion
in the region of space responsible for radiation imposes the following limitation on
the amplitude of the intensity of an electric component in the laser beam (Ze is the
ion charge):

Ze

20
)

Ep<

where the parameter r,, is estimated as a characteristic distance, at which emission
of a photon with the frequency ® in the MCI field occurs:

1/3

1. rp, ~ {Z(Ry/hw)z} ag
(here Ry is the Rydberg energy, ap is the Bohr radius) for the case of high-
frequency spectrum asymptotics in the quasi-classical case [1] (p = Z? /hv>1
is the Born parameter, w>>couis Dcou = mv3 /Ze2 is the characteristic
Coulomb frequency), and

2. rp = v/o
for the Born case (n<<1) and low-frequency asymptotics in case of quasi-
classical IP motion (n>1, o<<wcour)-

We will give the results of the works [2] and [3] concerning opposite limiting
cases of the IP motion nature.

The formula for the probability W (n) of a n-photon static process in the Born
case n<<1 that was for the first time obtained in [2] looks like:

W(n) =J}(aq), (10.1)
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where J,, is the n'™-order Bessel function, a = ¢E, / mw? is the amplitude of electron
oscillation in the laser field of frequency w and amplitude Eo, 7iq is the change of an
IP momentum in inelastic scattering by a MCI.

In case of quasi-classical motion (7>>1), in [3] the result is obtained that is
similar in structure:

W(n) =J*(lmw av,/h|), (10.2)

where v, is the Fourier component of IP velocity on the classical trajectory in the
field of an ion.

The relation between the formalism of the quasi-classical description of Bs and
the prescribed current method was traced in [3] at a qualitative level for a radiative
transition of an IP in its motion in the static central field. The rigorous quantum-
mechanical substantiation of the prescribed classical current method for calculation
of multiphoton IP transitions in the static central field in the presence of laser
radiation was for the first time carried out by A.B.. Kukushkin within the frame-
work of the method of two-dimensional quasi-classics [1] by the passage to the
limit # — 0 in the quantum formalism of multiphoton transitions in the joint (with
the author) work [4].

In the limit of fast collision (01.,<<1) corresponding to weak inelasticity of the
process, both results are represented, as was noted in [3], by a single formula of the
form (10.1), in which now the vector /iq is the change of an IP momentum in
scattering by a MCI both at n<<1 and at n>>1.

It turns out that the formula (10.1) can be extended to the region of strong
inelasticity in terms of nonsmallness of the ratio of the total energy of emitted
photons to the value E; of the initial IP energy. In this case an actual limitation of its
applicability is a weak disturbance of IP motion by an act of radiation in the region
of space responsible for photon emission. As a matter of fact, such a generalization
of the formula (10.1) covers, in addition to the said domain of its applicability, the
region of strong inelasticity in case of quasi-classical motion of an IP, specifically
of an electron. In the latter case, as shown by the generalization of the formalism of
Kramers electrodynamics [1] to multiphoton processes [4], an actual condition
of weak disturbance of electron motion is, according to the main conclusions of
Kramers electrodynamics, weak local kinematic inelasticity

= nhw/Ekin(r(u)a

where r, is the characteristic radius of electron rotation around an ion near the point
of the most approach, Ey;,(r,) is the local kinetic IP energy. In case of quasi-
classical electron motion that is characteristic just for collisions of electrons with
multiply charged ions of practical interest, the condition of smallness of y is found
to be satisfiable in a wide range of frequencies. Really, u ~ n{hw/Ry}l/ AL
so for characteristic frequencies of the Coulomb Bs spectrum (w = mv? /Ze2)

we have: u =~ n/&, and for the short-wavelength Bs limit we obtain p ~ (n/ é)z/ ’

(é = w/wCz)ul)-
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The generalization of Eq. 10.1 to the case of strong inelasticity and arbitrary
quanticity of IP motion can be justified from consideration of a matrix element of a
multiphoton transition between true wave functions for IP motion in the static
central field of an ion. Such a generalization is based on joining of descriptions in
different regions of space {/ v / Z e*,nhw/E;}. The first step here is demonstration of
truth of the description (Eq. 10.1) in the low-frequency limit (7 w<<E;, h w<<Ey)
for an arbitrary 7.

For a particular case of radiation of two photons in the Coulomb field this was
done in [5] by difficult calculations developing the approach [6] (it should be noted
that the formula for low frequencies and an arbitrary short-range potential given in
[7]). The second step consists in extension of the low-frequency description to the
case of arbitrary inelasticity within the framework of classical IP motion in the
region n>>1. This is achieved by the above substantiation of the prescribed
classical current method (see Appendix 1 of [4]).

As a result of rigorous substantiations in the said regions of parameters and
interpolation in the intermediate region, we obtain finally — throughout the region of
truth of the prescribed current approximation — the following universal representa-
tion for the probability of multiphoton Bs in the static field of a target ion:

Wogar (1) = J2 [(4n{§§fn;’§f) 1/ 2} . (10.3)

Here /% is the occupation number for photons in a laser mode (n/%>>1), n{'s" is
the occupation number for photons spontaneously emitted by an IP in the static field
of an ion in the laser mode {k, 1} with the wave vector k and polarization A in the
mode of ordinary single-photon Bs in inelastic (radiative) transition from the state
with the initial momentum p; to the state with the direction of a momentum

coinciding with the direction of the momentum ny = p; / |pf| of the exact final

quantum state (the momentum of which is p¢ and the energy is Ey = E; — n hw), and
with an energy differing from the initial energy only by one photon:

it =2 fofe dy) / {V%] (10.4)

where dj; is the matrix element for the radiating dipole moment of an incident
electron between the states |i) and |f1),

i) = ;) = |Ei, mi) = |p} /2m, pi/|pil), If1)

= = o, n=p; /o)), (10.5)

where V is the volume of quantization, do .., / dQ)y is the cross-section of elastic IP
scattering in the ion field from the state |i) to the state | f1).
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As seen from Eq. 10.4, the extension of the prescribed current method (in the
region of its truth) to the case of arbitrary quanticity of IP motion is achieved by
replacement of the classical Fourier transform jé’;'”je""i]" for current produced by an IP
to the quantum-mechanical expression

m<f |jpr0jectile | i>

2nh (, /d‘jg;fa")

Really, at i — 0 by the correspondence principle [1] for single-quantum inelas-
tic transitions of an IP in an arbitrary central field between states described by wave
functions of the continuous spectrum we obtain the Fourier component of the
classical trajectory in the argument of the Bessel function in the formula (10.2).
And in the Born limit (n<<1) the formula (10.6) coincides with the value q/w in the
formula (10.1) in the range of accuracy of this approximation itself based on weak
inelasticity of the transition (a change of energy, that is, of the magnitude of a
momentum vector, makes to /iq the contribution of the second order of smallness in
comparison with the contribution of the angle of rotation of the momentum vector).

The formula for the process cross-section is obtained from Eq. 10.3 by proper
summation over statistical weights of the final state of an IP, which corresponds to
multiplication of the probability of radiation by the cross-section of Coulomb IP
scattering in the MCI field:

(10.6)

do(n) = W(n)docou. (10.7)

10.1.2 Generalization of the Fermi Equivalent Photon Method
to Multiquantum Processes

The basis for the generalization of the Fermi equivalent photon method to the
multiphoton case formulated below is extension of the prescribed classical current
approximation used in [3] for description of multiphoton static IBs at n>>1 to the
process of polarization IBs and, besides, at an arbitrary quanticity of IP motion.
The equivalent photon method is (within the framework of its applicability) insen-
sitive to the quanticity/classicity of motion of a charged particle producing a flux of
equivalent photons. Therefore in the problem of multiphoton induced PBs it seems
natural to take into account interaction of (of necessity quantized) radiated/absorbed
field of real photons not only directly with IP current (as in ordinary static Bs), but
also with polarization current induced by an IP in a target ion/atom. For the case of
prescribed classical current (the generalization to the quanticity of IP motion — see
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below) this gives an additional term in the Hamiltonian, so the equation for the wave
function y of one mode of the laser field in the interaction representation takes the
form:

. 07 2ni\'"? .
gy =~ (wv> (ewid™ ) (awi (1) + @ (1)) 1, (10.8)

where a, at are the operators of annihilation and production of photons in the laser
mode, ey, is the unit vector of polarization of the intensity of an electric component
of laser radiation, e is the electron charge, V is the volume of quantization.

The Fourier transform of total current including polarization current is given by
the following expression:

jigtal _ j[gojecfile _|_j5)olariz (109)
here j7?* is the Fourier transform of IP current calculated at a classical
trajectory, jﬁ)"/“"iz is the Fourier transform of polarization current induced in the

target.

The Eq. 10.9 corresponds to the dipole approximation both for interaction of
laser radiation with a MCI and an incident electron and for interaction of an incident
electron with a MCI. The first two conditions are expressed by the inequations:
2>rp and A>r(w), the third condition is expressed by r(w)>r, (4 is the laser
wavelength, 7, is the radius of the orbit of a bound electron in a MCI, r(w) is the
characteristic distance from an IP to a MCI making the main contribution to
radiation of frequency w). It is can be seen that the dipole approximation is
applicable in a wide range of frequencies.

The last condition (r(w)>r,) defines also the fact that the field of an incident
electron at the location of a bound electron is much less than the field of the MCI
nucleus. Therefore in the rough the relation can be supposed to be satisfied:

j{:}()lanz ~ X(EO)jZ;wecnley (1010)
where y(Eo) is the integral operator of susceptibility of the electronic system of
multiply charged ions (in view of the influence of the laser field of amplitude Eg)
including the contribution of all harmonics of the IP field. This relation defines the
linear connection between IP current and current induced in a MCI under the action
of IP in the process of scattering, which justifies the choice of total current in the
formula (10.10).

Further we will be interested in the case of a “developed” multiphoton nature of
energy exchange between an IP and a laser field (strong enough, but, it will be
recalled, still lower than the Coulomb MCI field in the effective region of radiation/
absorption of a photon), at which the main contribution to polarization IBs is
defined by the presence of single-photon near-resonance behavior of a laser field
with MCI eigenfrequencies. This case corresponds to induced (under the action of a
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laser field) scattering of n equivalent photons, each of energy % w, “emitted” by an
IP in its scattering in the Coulomb MCI field, by the core of a target ion with their
transformation to n real photons. In the consistent quantum-electrodynamic consid-
eration this process is described by the sum of “ladder” diagrams (see Appendix
2 of the work [4]), which results in nth order near-resonance behavior in the
amplitudes of n-photon processes. Actually, corresponding to the said approach is
realization of the principle of inducedness (stimulatedness, preference) of radiation
of energy quanta at a frequency of the external field not only for (real) photons, but
also for virtual photons “waiting” for their transformation to real photons.

The described approach, however, does not take into account the contributions
from resonances in the core of an ion with higher laser frequency harmonics.
Corresponding to this fact would be the appearance of polarizabilities of higher
orders and, accordingly, the conversion of one virtual photon with the energy n#
to n real photons. In terms of diagrams, this process is represented by one (for a
specified n) “comb” diagram and therefore corresponds (1) to disturbance of a
target ion in a much more strict range of frequencies and (2) to a possibility only of
the first-order resonance in the process amplitude.

In the approximation under consideration we obtain

stotal sprojectile spolariz mw2 sprojectile
Jo :.lg) ! +.lf0 =|1- 762 O((CU,E()) ,][(L / ’ (10.11)

where a(w, Ey) is the first-order target polarizability at the frequency ® determined
in view of disturbance of the target by the laser field of amplitude Ey.

10.1.3 Probability of Multiphoton Bremsstrahlung in View
of the Polarization Channel

A corollary of the Egs. 10.8 and 10.9 is the following expression for the
total probability of a n-photon process of radiation/absorption (W(#n)) in the case
n'*>>1 (n" is the occupation number for photons in a laser mode), including the
static and polarization channels:

Wy (n) :Jﬁ{z(n{g';fn;’jf)”z[l - 5}}, (10.12)
where J,, is the n™-order Bessel function, and

maw?o(w, Eq)
=—>1 10.1
o 702 (10.13)
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is the summand describing the contribution of the polarization mechanism of
radiation to the process amplitude. In case of prevalence of radiation by the
polarization channel we obtain:

W, ()—J2 2 ( jylas,, polariz 1/2 .
pol\n) =J, Ny My : (10.14)

lariz . .
where 09" = §%nj®" is the occupation number for photons that are spontaneously

emitted by an IP by the polarization channel in the laser mode {k, A} in collision of
the IP with a MCL

The formula (10.12) is the result of summation over both channels. The separa-
tion of the contribution of radiation by one of the channels in this expression is
achieved by using the addition formula for Bessel functions. This makes it possible
to copy the Eq. 10.12 as:

2
W~ (n) = > Jv< 4n,§gfng;ﬂ'>J”1< 4n,§g_fn,§’f’“"’z)’. (10.15)

v+m=n

The expression (10.12) for the probability of a multiphoton process is the
generalization of the formulas obtained earlier by F.V. Bunkin and M. V. Fyodorov
[2] in the Born approximation and by I.Ya. Berson [3] in the quasi-classical limit.
The generalization is made (1) to the case of strong inelasticity of a multiquantum
transition in a wide region of quanticity/classicity of IP motion covering the regions
of truth of the results of [2, 3] and the whole domain of applicability of the
prescribed quantum/classical current approximation, and (2) to taking into account
the contribution of the polarization channel to the process of radiation in the
prescribed quantum/classical current approximation for current produced by an IP.

It is significant that the result of Eq. 10.12 generalizes to the multiphoton case
the known effect [8] of “stripping” a target ion consisting in partial (for an ion) or
total (for an atom) descreening of a nucleus. This descreening occurs due to
compensation of contributions of polarization radiation and the part of IP brems-
strahlung that is caused by Coulomb interaction of an IP with electrons of the core.
Such a compensation exactly corresponds to disappearance of bremsstrahlung in
the dipole approximation in collision of particles with equal charge-to-mass ratios.

The approach, within the framework of which the formula (10.12) was obtained,
differs from the consideration of the work [9] carried out in the Born approximation
by consistent taking into account the interaction of polarization current induced in a
MCI with a quantized laser field and by generalization to the case of arbitrary
values of the parameter 7 in the domain of applicability of the prescribed current
formalism. However, it should be noted that the result of [9] has a strict physical
analog. The direct comparison of Eq. 10.12 with the formula (10.2) from [9] carried
out at the level of the cross-section of a corresponding process obtained by
multiplication of probability by the cross-section of Coulomb IP scattering in the
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MCT field is indicative of structure similarity. The main distinction consists in the
form of multipliers representing the polarization channel that in [9] are expressed in
terms of nonlinear susceptibilities of a target. This distinction is explained by
different models used as the basis for description of the phenomenon under
consideration.

The result obtained here (Eq. 10.12) corresponds, as mentioned above, to
induced (under the action of a laser field) scattering of n equivalent photons, each
of energy /i w, “emitted” by an IP in its scattering in the Coulomb MCI field, by the
core of a target ion with their transformation to  real photons (here n'™ order near-
resonance behavior arises, see Appendix 2 of [4]). And corresponding to the
approach of the work [9] — in the terms of the equivalent photon formalism — is
the conversion of one virtual photon with the energy n# to n real photons, at which
only the first-order resonance is possible. For considered in this work multiphoton
IBs in collision of a charged particle with a MCI in the presence of a strong laser
field that is near-resonance with respect to single-photon transitions in the MCI
core, the approximation we used is found to be more appropriate.

It should be noted that “odd” lines of virtual photons in “ladder” diagrams
describing the conversion “n to n” increase the number of diagram vertices, but
do not necessarily reduce the value of the process amplitude. In order for such a
reduction to take place actually, an additional inequation should be satisfied that
generalizes the known Born condition for a static scattering potential to a case of a
time-dependent potential. This condition for a case of electron scattering by a MCI
can be written as follows:

a(w)E

Vi

<l. )

The inequation (*) can be called the dynamic Born condition. It was not used in
the work [9].

The distinction of the formula (10.12) from the formulas of the work [10] is
caused by the fact that in the said paper the wave function of a target was taken into
account in the “dipole disturbance” approximation, which has defined taking into
account emission of only one photon by the polarization channel.

The contribution of the polarization mechanism to the total probability of
induced Bs becomes prevailing in case of near-resonance laser radiation. In this
region generally determined by the condition

P<<|w — wp|<<w, (10.16)

where o is the eigenfrequency of a resonance electron transition in a MCI, v is the
total width of the considered transition, it is necessary to take into account the
influence of a laser field on electrons of the MCI core that, as is known, can
approximately be reduced to the known modification of MCI polarizability — to
appearance in the denominator of the expression for the near-resonance MCI
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polarizability of the generalized Rabi frequency: Qg = \/ (dEo/h)* + (0 — o).
The near-resonance MCI polarizability can be described by the expression: o(w,
Eo) = d® sign(wg — w)/hQg, here d is the matrix element of the dipole moment of
the near-resonance transition. In terms of diagrams this can be shown by summation
of a corresponding diagram series describing the interaction of laser radiation and a
core ion. Accordingly, the expression for the value ¢ describing the contribution of
the polarization channel to the total process amplitude can be represented as:

ma?*\ d?* sign(w — wy)
5= <Ze2 ) 0. . (10.17)

Based on the above formulas, it is possible to write out the following condition
of prevalence of the polarization channel over the static channel (in atomic units):

2
Az—i—g—ff—OE2<<]%—w) , (10.18)
g Z
where fj is the oscillator strength, g; s are the statistical weights of the initial and
final states of the resonance transition, A = ® — w( is the detuning of laser

frequency from resonance.
Following from the formula (10.18) is the expression for the saturating value of the

laser field amplitude in the near-resonance case under consideration: Eg;; = /}f’;—}‘; A.

For characteristic values of parameters included in this expression in the soft X-ray
region and laser frequency detunings from resonance 4 ~ 10> (which exceeds the
characteristic value for the Doppler broadening of the transition in the case under
consideration), for the saturating field we have the estimation: E,, ~ 1073 (a.w.).
From the above formulas we obtain the upper boundary for the value of the laser
field for the region of prevalence of PBs over SBs in the near-resonance case:

20| (0f®
E, = fT[(ﬁ) —A]. (10.19)

ForZ=10,w =2 a.u., fy ~ 1 we find: E; ~ 0.1 a.u.
In case of laser fields E<Ej, we have the following condition of prevalence of
PBs over SBs:

|A|<}%w7 (10.20)

from which it follows that in this case a rather wide spectral range is covered.
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Let us estimate the significance of the role of induced Bs, including polarization
IBs, for a case of practical interest of coherent radiation generation in the soft X-ray
band. We will give the numerical estimation for values of parameters reachable in
modern experiments. Such an estimation is most appropriate to be given for the
Kramers case, when o > 0oy = V° /Z.

In this case we obtain the following expression for the cross-section of a
n-photon induced process (o is the angle between the initial IP velocity and the
wave vector of a bremsstrahlung photon):

2 dN (11 =8| (23 .
do | =72 E(=—= N5 F(N 10.21
JO qSJN% n(ng% (\/g) ( 70‘7¢)> ( )

where

4 4
F(N,o,¢) = \/cos2 o K§/3 (§N) + cos2¢ sina Klz/3 <§N>

and K53, K3 are the Macdonald functions.

The analysis of the expression (10.21) shows the importance of interference
effects between the static and polarization radiation channels. They result, in
particular, in “dips” both on spectral and on amplitude dependences of the cross-
section of the induced bremsstrahlung effect. These effects correspond to vanishing
of the argument of the Bessel function in the formula (10.21) for § = 1. The last
case can occur both due to a corresponding shift of the laser field frequency from
the center of the emission line and (for negative detunings from resonance) due to
dependence of the value ¢ on the amplitude of the laser field (see Eq. 10.17 and the
expression for the generalized Rabi frequency).

Since the Bessel function reaches its maximum at the value of the argument
approximately equal to the order of the function, for the probability of a multipho-
ton process to be comparable with the probability of a single-photon process it is
necessary that the argument of the Bessel function in the above formulas is great
enough. At the same time there is a top limitation on the value of a laser field
(the formula (10.19)) for the relative contribution of the polarization channel to be
not too small. So the contribution of PBs to the multiphoton process is noticeable
against the background of the contribution of static IBs for a limited range of values
of problem parameters. This ion-charge dependence for a lithium-like isoelectronic
series of ions is presented in Fig. 10.1.

Given in Fig. 10.2 is the dependence of the differential cross-sections of induced
bremsstrahlung of single-photon (curve 1) and two-photon (curve 2) processes on
the intensity of a linearly polarized laser field for a zero angle between the field
vector and the initial electron velocity vector.

Also given in the figure are the curves corresponding to the contribution only of
the static channel (curves 3, 4) also are given. It is seen that in taking into account
the polarization channel the cross-section of the two-photon process is compared
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Fig. 10.1 The dependence of the argument of the Bessel function in the expression for multipho-
ton IBs near-resonance with respect to the transition 2s-2p in a lithium-like ion on the charge of the
ionic nucleus in case of equal amplitudes of the static and polarization channels. The relative

detuning from resonance 5% /Z for two values of IP velocity: Z/3 a.u. (dotted curve), Z / V3 au.
(solid curve)

1 I
3 PR, U PO
100 F et =
2
L 4 =
)
o
§ ol -
o1f .
Eu au
1 |
001 o 005 0.1 0.15

Fig. 10.2 The dependence of the differential cross-sections of IBs of single-photon, ,(0)
(curve 1) and two-photon, c,(0) (curve 2) processes on the intensity of a linearly polarized laser
field for the angle oo = 0, the ion charge Z = 4, the IP velocity v = 0.447 a.u., the laser frequency
o = 0.37 a.u., the oscillator strength f, = 0.69, the relative frequency detuning A/o ~ + 0.014.
The curves corresponding to the contribution only of the static channel for single-photon (3) and
two-photon (4) processes are also given

with the cross-section of the single-photon process at lower values of laser field
intensity.

10.1.4 Cross-Section of a Single-Photon Process

Let us calculate the cross-section of induced bremsstrahlung/absorption for a
single-photon process for laser field intensities, at which the argument of the Bessel
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function in the formula (10.21) is less than one, so it is possible to retain the first
term in the expansion of the said function. We will consider a case when the
condition of (quasi-)classicity of motion of an incident particle (n = Z e’ Jliv>1)
is satisfied. Then it is possible to perform integration with respect to impact
parameters (or eccentricity of an orbit) in the closed form in the formula for the
differential cross-section as it was for the first time done in [3]. Let us assume also
that the condition of “Kramers behavior” of the process is satisfied, that is, the laser
field frequency is much higher than the Coulomb frequency: w>>wcow (Wcou
=mv3 / Ze?). Under the said assumptions the expression for the cross-section of the
single-photon process takes the form:

n? Z? .
a1(9) = 7 o Eius 11— S [sin? ¥ +2 (3cos® ¥ — 1)], (10.22)

where ¥ is the angle between the vector of the initial velocity of an incident electron
and the laser field intensity vector (E,,), the value ¢ is given by the formula (10.17).

Further we will carry out calculation for a case of relatively cold recom-
bining plasma, the temperature of which can be estimated according to the formula:
T = 0.025 Z>. To be specific, we will consider the distribution of plasma electrons
by velocities to be Maxwellian distribution. Then for the cross-section averaged
over velocities (in the two-level approximation for a target ion) we find:

2

2 jon(A 72 E?

4
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Here the explicit expression of the parameter ¢ for a near-resonance case is used,
fo is the oscillator strength for the near-resonance transition.

We assume that the magnitude of the laser field frequency detuning from the
frequency of the resonant transition in an ion (A = @ — wy) exceeds considerably
both homogeneous and inhomogeneous broadening of the transition under consid-
eration. It should be emphasized that the obtained expression (10.23) essentially
depends on a sign of detuning from resonance, which defines the asymmetry of the
process cross-section.

The cross-section of the static channel of the process under consideration is
obtained from the formula (10.23) in case of dropping the second summand under
the modulus sign. On the contrary, the polarization channel cross-section
corresponds to the second summand under the modulus sign in Eq. 10.23.

We will give the results of calculations by the formula (10.23) for a case of
bremsstrahlung absorption of a near-resonance laser field in scattering of electrons
of relatively cold plasma (T =~ 0.025 Z%) by a lithium-like oxygen ion (O’")
(Fig. 10.3).

2] (Elasa A) =
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Fig. 10.3 The spectral cross-section of the single-photon induced bremsstrahlung effect for a
quasi-classical electron on a OVI lithium-like ion in the laser field E,,; = 0.2 a.u. that is near-
resonance with respect to the transition 2s-3p in the ion core. Curve I — total cross-section, curve
2 — contribution of the polarization channel, curve 3 — contribution of the static channel

We assume that the laser frequency is close to the eigenfrequency of the
transition 2s-3p of this ion, but at the same time the detuning from resonance
exceeds both homogeneous and inhomogeneous broadening of the transition in
magnitude. In the case under consideration the values of the problem parameters are
the following: Z = 5, = 3.037 a.u. (86.2 eV), T = 0.625 a.u., fy = 0.26. Hence
for the initial values of the Born parameter (7)) and the “Kramers behavior”
parameter (& = w/wcyy) we have: 7 =4.47 and & = 10.87. It should be noted
that the final values of these parameters are inessential for applicability of the
approximations used here.

For a possibility to neglect the spin-orbit splitting of the 3p-state it is sufficient
that the magnitude of the relative detuning from resonance (JA|/w) is much higher
than the relative value of this splitting (0.024 %). The relative value of the Doppler
broadening in the case under consideration is about 0.01 %. Thus the two-level
model works for |Al/w > 0.1 %.

For applicability of the prescribed current approximation used here it is neces-
sary that the intensity of the Coulomb field of an ion in a region of space responsible
for radiation (Eecﬁ;u,) exceeds the laser field intensity. The estimation for Eecﬁ;u, gives:
E“Cﬁ;ul ~ 7.5 a.u. By this value the values of the laser field intensities are bounded
above. On the other hand, the performed expansion of the Bessel function is true up
to Ejs <8 au. So in our case the expansion of the Bessel function is true
throughout the region of validity of the prescribed current approximation.

From Fig. 10.3 the asymmetry of the process spectral line shape is well seen.
A “dip” in the low-frequency wing of the line corresponds to cancellation of the
contributions of the polarization and static channels in case of their destructive
interference. In the high-frequency wing of the line, on the contrary, the interfer-
ence of the channels is constructive, and the total cross-section of the process
exceeds the simple sum of the contributions of two Bs mechanisms.
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Also following from this figure is the broadening influence of the laser field on
the resonant transition in the ion core due to the presence of the Rabi frequency in
the expression for the near-resonance polarizability of the target. This influence
results in the fact that the resonance growth of the polarization channel cross-
section is reduced for low enough detunings.

As will be shown in the following paragraphs, the dipole approximation in
consideration of PBs for near-resonance transitions with changing principal quan-
tum number and strongly inelastic electron scattering, generally speaking, is not
sufficient since the penetration of an IP into the target core takes place. The above
analysis can be considered as a zeroth approximation, in which the main features of
the process are the most pronounced.

For near-resonance transitions in lithium-like ions the dipole approximation is
more adequate, but in this case it is necessary to take into account the fine splitting
of a radiating transition.

10.1.5 Taking into Account the Fine Splitting of the Upper
Resonant Level

Here we will consider the influences of polarization of the ion core on induced
bremsstrahlung in a situation when it is necessary to take into account simulta-
neously the influence of a strong near-resonance laser field on the polarizability of
bound electrons and the fine splitting of the resonant transition. This case is
characteristic for a MCI of a moderate charge (Z; ~ 10) and near-resonance
transitions with no change of the principal quantum number (An = 0). Really, for
example, for a lithium-like OVI ion the ratio of the value of fine splitting to the
medium transition frequency for transitions 2s — 2p and 2s — 3p is respectively
0.5 % and 0.024 %.

To describe the process under consideration, it is possible to use the following
expression for the cross-section of the induced single-photon bremsstrahlung effect
in view of polarization of the ion core, being the generalization of the formula
(10.23) to a case of polarizability of the core of the general form:

4 22
T Z7e
Gl(CO,V):— A
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ma*o(w, Ejgs)
6 Rotmv? Lo

1 —
Ze?

F(%), (10.24)

where Ze is the ion charge, v is the velocity of an incident plasma electron,
& = w/wcou, and the function F(£) is given by the expression:

F(&) = eu) o) ie),

where H) and H' are the Hankel function of the first kind and its derivative with
respect to the argument, o(w, Ej,) is the polarizability of the ion core in view of the
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influence of a strong near-resonance laser field. It should be noted that in the
Kramers region (¢>>1): F(¢) =4/(V3n).

So in the case under consideration the resonance Ig> — le;>, le,> takes place,
where le; ,> are the split upper states. We will assume that the magnitude of the
splitting frequency Ap = ®, — ®, is much less than the resonance frequencies o, ,
themselves. However, it can be great enough in comparison with the detunings
A, =0 — ©, and is comparable with the resonance Rabi frequency
Qy = dy E;;5/7. Here d, is the matrix element of the dipole moment of the transition
that we will assume to be the same for transitions to both split states. Further we will
have to calculate the resonant polarizability o(w, Ej,s) defining the contribution of
the polarization channel to the process.

A strong near-resonance laser field results in mixing of lower and upper levels of
the resonant transition and to appearance of so-called “dressed” states, into which
the initial state of the ion core goes in case of adiabatic turning-on of the laser field
(depending on the value and the sign of the detuning A). So three new states 10>,
1>, 12> appear being the coherent superposition of the initial states lg>, le;>,
le,> with coefficients that are time-independent in the condition of applicability of
the rotating wave approximation: IAl/w<<1 that we assume to be satisfied.

With the use of a usual procedure of system Hamiltonian diagonalization (in the
rotating wave approximation) the following characteristic equation for determina-
tion of the energy of “dressed” states can be obtained:

- (A + Az)iz — (29(2) — AlAz)). + (A + Az)Q% =0. (10.25)

In derivation of the Eq. 10.25 it was assumed that <eld;,le,> = 0.

The solutions (Eq. 10.25) can be obtained using the Cardano formula. The
explicit form A; = Xj(A; 5, E,,) is not given here because of its cumbersomeness.

Depending on the value A, the following transitions between the initial and
“dressed” states of the resonant transition take place as a result of adiabatic turning-
on of the laser field:

A<0: |g>=|1>, [er> = 3>, |ea> = 2> (10.26a)
0<AI<Ag: |g> = 3>, |e1> = 1>, |ea> = 2> (10.26b)
Ao<A; : |g> = 12>, o> = |1>, |ea> = [3> (10.26c¢)

From the formulas (10.26a), (10.26b) and (10.26¢) it follows that the polariz-
ability of the resonant transition in the ion core, according to in which electronic
state an ion was before turning-on of the laser field, can be represented in terms
of polarizabilities of the “dressed” states as a function of A; (it is obvious that
A, = Ay — Ap) as follows:

O(g(Al) = O(](A]) @(—Al) + OLQ(A]) ®(A1) @(AO — Al) + 0{,3(A1) @(A] — A()),
(10.27a)
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Fig. 10.4 The spectral cross-sections of the induced bremsstrahlung effect for quasi-classical
electrons on a FVII ion in the laser field with the amplitude E,,;, = 0.01 a.u. (curve 1), E;,; = 0.02
a.u. (curve 2) and a frequency close to the eigenfrequency of the transition 2s — 2p in the electron
core of the ion in view of the fine splitting of the upper level. The calculation is in the dipole
approximation for IP interaction with the target core

OCeI(Al) = O(3(A1) @(—Al) + Otl(Al) @(A]), (10.27b)
O(ez(Al) = OLQ(AI) @(Ao — A]) + O(3(A1) @(Al — Ao) (10.27¢)

Here O(x) is the Heaviside theta function.
For polarizabilities of the “dressed” states «; (j = 1,2,3) the following formulas
are true:

0 (Al ) ELax)

& (Wi(Ar,Epas) B+ M)+ (Wi(Ar, Eras) /Ti+ Ay — Ag) ™

@/ 2P L (WA Erad) /- A1) (Wi (A1, Eran) /1A — 80) } 41
(10.28)

Shown in Fig. 10.4 are the spectral cross-sections for a FVII ion and two values
of the amplitude of the laser field E,,; = 0.01 a.u. (curve 1) and E;,; = 0.02 a.u.
(curve 2) calculated by the formulas (10.24), (10.25), (10.26a), (10.26b), (10.26c),
(10.27a), (10.27b), (10.27c) and (10.28).

From this figure it follows that interference effects for frequencies inside the fine
splitting take place for much larger average cross-sections of the process in
comparison with a dip in the low-frequency wing that occurs also without consid-
ering the fine splitting of upper levels (for a laser field value lower than the
saturating value).

To calculate the total cross-section of the process, it is necessary to perform
averaging over the initial distribution of bound electrons of the ion core by the
states Ig>, le;>, le,>. This averaging in case of the Boltzmann distribution will
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result in slurring of dips in the spectral cross-section of the process. However, for a
temperature range characteristic for MCI, as a rule, the corona equilibrium is
realized, in which the distribution by electronic states of the ion core will be defined
by the ratio of the rates of excitation and deexitation of the states le;>, le,>. The
estimation for the ratio (Ne/Ng)corona 10 (Ne/Ng)poiszm (Ne/Ng) gives:

N./Nq)...

Boltzm

So from the relation (10.29) it follows that for a case of not too dense plasma in
the corona equilibrium the population of the excited state of the resonant transition
can be neglected in comparison with the population of the ground state.

10.2 Near-Resonance Bremsstrahlung of Quasi-Classical
Electrons on Ions in the Coulomb Approximation: Taking
into Account the Effects of Penetration into a Target Core

In this paragraph the interference-polarization effects in near-resonance Bs of
quasi-classical electrons are analyzed in view of their penetration into the core of
an ion, which is found to be rather essential for strongly inelastic processes. The
approximations accepted here — the quasi-classical approximation for IP motion
and the Coulomb approximation for field acting on an IP — are most adequate to
scattering of plasma electrons by multiply charged ions. However, as the quantum
analysis shows (see the following paragraph), the calculation below is approxi-
mately true also for ions of low charge.

The proposed quasi-classical consideration provides physical visualization
making it possible to get the picture of a phenomenon under study that is not so
obvious in the more exact quantum approach.

10.2.1 Main Relations

In the Sect. 10.1 the prescribed current method for calculation of the cross-section
of Bs on multiply charged ions with a core for arbitrary values of the Born parameter
n = Z;/v was justified. For slow enough incident particles, when the relation n > 1
is satisfied, good results are given by the so-called semiclassical approximation, in
which the classical theory of Bs in combination with some quantum restrictions is
used [1]. Here we use the semiclassical approximation also for calculation of the
polarization channel of induced bremsstrahlung or absorption in the part concerning
incident particles; for calculation of characteristics of bound electrons of the core,
naturally, we use the consistent quantum-mechanical approach.
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Within the framework of this picture the spectral amplitude of induced brems-
strahlung or absorption for the IP scattering angle 1} (or the eccentricity of an orbit
¢ = 1/sin(¥/2)) is the sum of two summands, one of which is proportional to the
temporal Fourier transform of the dipole moment of a scattered IP (D¥(w, ¢) is the
static channel), and the other is proportional to the Fourier transform of the dipole
moment induced by the IP in the ion core (D””(w, ¢) is the polarization channel).

Further we will consider induced bremsstrahlung or absorption at the frequency
of outer radiation w close to the eigenfrequency w, of the transition in the electron
core of an ion such as: (n; s) — (n p), however, in this case we assume that the
detuning A = @ — wg exceeds the transition line width, so the real excitation of the
ion core can be neglected.

The corresponding formulas obtained in [11] in view of field broadening of the
near- resonance transition look like:

2 22
de" (v, e) = ?” o IEo D (w, )| ede (10.30)
D" (w,e) = D"(w, &) + D' (w, ¢) (10.31)
ol 1 (n;,l=0][d|nl=1)
Df ((U,S) = a 9)
+00 R ( )
. Ri(t, €
< | e I = e R0)) = 0)
r ) R
ay(r,R)=0(R —r) e +0(r—R) =l (10.32)

here R;(t, ¢) is the 7™ projection of the IP radius vector for a specified eccentricity

of an orbit as a time function; Q = /A% + Qé is the generalized Rabi frequency,

Qy =doEg/# is the resonance Rabi frequency, d, is the matrix element of the
dipole moment of the resonant transition; E, is the amplitude of the electric field in
outer radiation.

The time integral in the formula (10.32) is proportional to the temporal Fourier
transform of the potential of interaction between an IP and the near-resonance
transition in the ion core:

©e(R) = (e|r —R|"|g),

here g and e is the set of quantum numbers of the lower and upper states of the
electron transition under consideration.

In obtaining the formula (10.32), summation over magnetic quantum numbers
and integration with respect to the angular variables of the ion core are performed.
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It should be noted that the operation of taking the Fourier transform in the above
formulas within the framework of the semiclassical approximation being used is
equivalent to calculation of a matrix element from a corresponding operator in the
consistent quantum-mechanical approach. The described procedure is the expres-
sion of the conformity principle for a matrix element of an arbitrary inelastic
process calculated between the wave functions of the continuous IP spectrum
generalized in [4] to a multiquantum case.

In the dipole approximation for interaction of an IP with an ion the formula
(10.32) is reduced to the form:

1L (ml=0]d|nl=1) o?
3 Q 7

D;wl"dip((y,g) Rj(wvg), (10.33)

The expression (10.33) can be obtained from Eq. 10.32 in the limit of the zero
radius of the ion core with the use of the formula:

—w’Ri(w,&)  (Ri(t,¢)

following from the equation of IP motion in the field of a point ion.

Following from the formula (10.33) is an important conclusion that the temporal
Fourier transform of the dipole moment induced by the IP field in the ion core is
proportional to a corresponding Fourier transform of the dipole moment produced
by a scattered IP [8, Chap. 10]. This circumstance, true in the dipole approximation
for IP interaction with an ion, formed the basis of the analysis of induced brems-
strahlung or absorption in the works [4].

Nondipole effects in induced bremsstrahlung or absorption in the work [12] were
studied for a case of isotropic (by initial velocities) IP distribution, when the
dependence of the process on polarization of external radiation disappears. It is
just the purpose of this paragraph to take into account this dependence. Therefore
we will calculate the cross-section of induced bremsstrahlung or absorption without
averaging over the direction of the initial IP velocity. The expression for the cross-
section integrated with respect to the IP scattering angle looks like:

w2 L[
a0 (w.5) =25 283 [ | (10800 )los) + (|05 @0 )t
1

(10.35)

where

£-1_, 2 2 1o
sin“o; fy(a,8) = (67 — 1)cos oz—&—zsm o.

fola, &) = cos®a +
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Fig. 10.5 The distinction of the potential of interaction of an incident particle with the transitions
25-2p (curve 1), 2s-3p (curve 2) of a bound electron in a hydrogen-like ion from its dipole
approximation (Z is the charge of the ion nucleus)

In this formula x, y are the axes of the focal coordinate system specified by the
initial IP velocity vector [3], o is the angle between the initial IP velocity vector and
the vector of the electric field vector of external radiation. In derivation of the
expression (10.35) from the formula (10.30) integration with respect to the azimuth
angle of scattering was performed.

The formulas (10.35), (10.31) and (10.32) are the main formulas for our investi-
gation of polarization-interference effects in induced bremsstrahlung or absorption
of quasi-classical electrons on ions with a core.

10.2.2 Influence of the Nondipole Nature of Interaction
“IP-Target”’ on a Radiating Dipole Moment

A cause of arising polarization-interference effects under consideration is the
nondipole nature of IP interaction with the near-resonance transition in the ion
core. In the dipole approximation the interference summand in the Bs cross-section
does not depend on polarization of external radiation [4]. Thus for appearance of
this dependence the distinction of the potential of interaction “IP-ion core” from its
dipole analog (“IP-point ion”) is essential.

Given in Fig. 10.5 are the dependences of the ratio of the exact interaction
potential to the dipole potential on the parameter x = ZR (where R is the distance
from an IP to the nucleus) in case of IP interaction with the transition 2s-2p and with
the transition 2s-3p in a hydrogen-like ion. The calculation in the model potential
approximation shows that similar dependences take place for transitions of an outer
electron in a lithium-like ion.
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From this figure it follows that the deviation from the dipole nature in IP
interaction with the near-resonance transition occurs at the parameter values
Xo =~ 12 (for An = 0) and x; = 16 (for An = 1), while the value x corresponding
to the radius of the 2p-state of a hydrogen-like ion is about 4. So the dipole nature
begins to show itself already at distances from an IP to the nucleus three times
longer than the characteristic radius of the upper resonant state. As is known (see,
for example, [1]), in the Kramers limit the region of the IP trajectory responsible
for emission of a photon of frequency  is localized at a distance of the order of

R, (Z) =~ (57)1/ } (for the Coulomb field) from the field center (this estimation
corresponds to the “rotation” approximation [1]).

In case of lithium-like ions the eigenfrequency of the transition 2s-2p can be
approximated by the expression: s 2,(Z) =0.0707Z —0.120 a.u. (Z is the
charge of the nucleus of an ion). From the given expressions it is possible to
_ Vasap(¥o)

Vg;[in (*)
= Z; R,(Z)) as a function of the charge of a lithium-like ion Z; for the near-
resonance transition 2s-2p. Simple calculations give: ¥,4(1,2,3,4,5) = 0.25, 0.8,
0.96, 0.99 for An = 0.

So this estimation based on the use of the “rotation” approximation shows that in
lithium-like ions for transitions with no change of the principal quantum number
the parameter of nondipole behavior for high enough charges of an ion (Z; > 4) is
close to one. An analogous estimation for the transition An =1 shows that the
corresponding parameter of nondipole behaviorx,, (Z;)is much less than one for all Z;.

However, it should be remembered that the “rotation” approximation corr-
esponds to replacement of summation over the impact parameter of the contributions
of different IP trajectories by IP radiation at a some effective distance R, (Z;). It is not
obvious beforehand that such a replacement is correct for taking into account the
interference of the static and polarization channels occurring for each fixed impact
parameter, especially in the region of destructive interference of these channels,
where the value of the total cross-section is small. The calculations carried out in
[12] in the prescribed Coulomb IP current approximation show that the “rotation”
approximation, generally speaking, is insufficient for description of fine interference
effects in the region of spectral-amplitude “dips”. It is approximately true in the
region of constructive interference of the static and polarization channels for
transitions with no change of the principal quantum number. Therefore for correct
description of this interference throughout the range of parameter values it is
necessary to proceed from the general nonsimplified formula (10.35).

With the calculation of induced bremsstrahlung or absorption for lithium-like
ions in mind, further we use the Coulomb approximation for IP current, in which the
trajectory of IP motion is specified by the known classical expressions [3] of motion
of a charged particle in the Coulomb field of attraction with the effective charge
Zeﬁc =7+ 1/2.

estimate the parameter of nondipole behavior y,,,(x,) (here x,(Z;)
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The calculation of dependences of focal components of an induced dipole
moment of the ion core on the eccentricity of the orbit of an incident particle — Dy,
(&) — shows that for transitions of bound electrons of an ion with no change of the
principal quantum number the y-projection of the dipole moment is close to its
dipole analog. At the same time the x-projection of the dipole moment for
eccentricities close enough to unity differs greatly from the same value calculated
in the dipole approximation. In particular, for some eccentricity of the orbit of an
incident particle the x-projection of the dipole moment becomes zero and near
¢ = 1 changes sign.

The said difference underlies the dependence (being studied in this work) of
polarization-induced effects in induced bremsstrahlung or absorption on the angle
between the vector of the initial velocity of an incident particle and the vector of
intensity of the electric field in an electromagnetic wave.

The physical cause of these peculiarities in behavior of the functions D,(¢) and
Dy(g) consists in different influence of the effect of penetration of an incident
particle into the ion core on the projections of the Fourier transform of an induced
dipole moment in the focal coordinate system. Penetration into the ion core more
strongly influences the x-component of the dipole moment than the y-component
since it is the x-component of the radius vector of an incident particle that changes
its sign in the process of motion of the incident particle from the point of minimum
approach to the field center to infinity, while the y-component remains constant-
sign at this section of the trajectory.

10.2.3 Polarization, Spectral and Amplitude Dependences of
Induced Bremsstrahlung or Absorption in View of
Penetration of an IP into the Target Core

The results of calculations of the cross-section of induced bremsstrahlung or
absorption within the framework of the approach under consideration are presented
in Figs. 10.6, 10.7 and 10.8. The calculations were carried out for the transitions
2s-2p and 2s-3p in a lithium-like N** jon. As wave functions of a valence electron,
the functions of the model potential method were used.

In all figures the cross-sections of induced bremsstrahlung or absorption
integrated with respect to the angle of IP scattering are given.

The spectral dependences of the cross-section of induced bremsstrahlung or
absorption normalized to the static value near the transition eigenfrequency with
no change of the principal quantum number in the ion core for two values of the
angle o (between the vector of the initial velocity of an incident particle and the
vector of intensity of the electric field in outer radiation) are shown in Fig. 10.6 for
the initial IP velocity v = 0.6 a.u. From this figure it follows that interference
effects are most pronounced for the angle o = m/2, while for oo = 0 they are
considerably reduced. And the distinction is greatest in the region of destructive
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Fig. 10.6 The spectral dependences (A = ® — @) of the induced bremsstrahlung or absorption
cross-section normalized to the static value for a quasi-classical electron on a N** ion for two
values of the angle o (o« = 0 — curve I, o = m/2 — curve 2) between the initial IP velocity vector
(v = 0.6 a.u.) and the vector of intensity of the electric field of outer radiation (£, = 1073 a.u.) for

an outer field frequency near the eigenfrequency of the resonant transition in the ion core with no
change of the principal quantum number (2s-2p)
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Fig. 10.7 The dependences of the induced bremsstrahlung or absorption cross-section normalized
to the static value on the intensity of the electric field in outer radiation for two values of the angle
o between the vectors of the initial electron velocity and of the electric field intensity
(=0 — curve 1, o =m/2 — curve 2), negative detuning from resonance (® — )/
o = —0.3 % near the eigenfrequency of the transition 2s-2p in a N** jon for the IP velocity
v =0.6a.u.
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Fig. 10.8 The dependence of
the cross-section of induced

bremsstrahlung or absorption
averaged over the angle o (for
the angular distribution of the 0.01
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interference of the static and polarization channels (® < ®g), where calculations in
the dipole approximation for interaction of an incident particle with the core
showed the presence of a deep minimum caused by cancellation of the polarization
and static summands in the process amplitude. In the region of constructive
interference (o > wg) the distinction in the spectral dependence of the cross-
sections for two values of the angle o is insignificant.

The cause of considered polarization peculiarities in the spectral cross-section of
induced bremsstrahlung or absorption is connected with the distinction (discussed in
the previous section) in influence of the nondipole nature of interaction of an incident
particle with the near-resonance transition on the focal components of the radiating
dipole moment induced in the ion core: in more strong influence on its x-component
and weak influence (for the transition with An = 0) on the y-component. In case of
o = 0 the main contribution to radiation (for low enough velocities of an incident
particle) is made by D,, which is caused by the form of the functions f ,(c, &) (the
formula (10.34)). Really, if o = 0, then £,(0,¢) = land f,(0,¢) = &* — 1. Ifnowitis
taken into account that for low enough values of the IP velocity (in the Kramers limit
[1]) the main contribution to the process cross-section integrated with respect to the
eccentricity of an orbit is made by ¢ =~ 1 (close collisions), from the previous
equations it follows that f;(0,&) >> f£,(0, ¢).
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The analogous reasoning shows that for o = 7/2 the inverse inequation f; (0, &)
<< f,(0,¢) is true, and, accordingly, the main contribution to the process is made
by the y-component of the radiating dipole moment.

Thus the angle o “controls” the relative contribution of different focal
components of radiating dipole moment. In the case that the main contribution to
radiation is made by D, the strong influence of the nondipole nature of interaction
of an incident particle with the ion core results in the fact that the cancellation of
amplitudes of the static and polarization channels (in the region of their destructive
interference o < wy) takes place only for high enough values of the y of the orbit of
an incident particle. For low enough eccentricities the said cancellation is no more
true. Moreover, beginning with a some value &, the function D, (¢) changes sign,
and the interference of the static and polarization channels gets a constructive
nature. As a result, the interference “dip” in the cross-section of induced brems-
strahlung or absorption integrated with respect to the eccentricity of the orbit of an
incident particle is “slurred over”, which is well seen in Fig. 10.6.

In the high-frequency wing of the spectral line @ > wq the situation is opposite:
high “manifestation” of channel interference results in a higher value of the cross-
section of induced bremsstrahlung or absorption for the angle « = 7/2 in compari-
son with the value « = 0. However, in this case the relative role of the interference
summand is small since the total cross-section of the process is great. This circum-
stance is connected with closeness of the parameter of nondipole behavior y,; to
unity (noted in the previous section) for An = 0 and Z; > 2.

In the low-frequency wing of the spectral line, where the total cross-section is
small, on the contrary, the role of interference is rather essential and the considered
dependence of the cross-section of induced bremsstrahlung or absorption on polari-
zation of outer radiation is most pronounced.

Similar spectral dependences were also obtained for the transition with changing
principal quantum number: 2s-3p. In this situation the distinction of the cross-
sections in the region of destructive interference is not so great as for the transition
with An = 0, which is explained by strong influence of the nondipole behavior on
the value of the y-component of the dipole moment induced in the ion core, caused
by the large radius of the 3p-state in comparison with the 2p-state.

Presented in Figs. 10.7 and 10.8 are the amplitude dependences of the cross-section
of induced bremsstrahlung or absorption (from the intensity of the electric field in
external radiation) integrated with respect to the IP scattering angle, for which
polarization-induced interference effects of interaction of the static and polarization
channels also take place.

Given in Fig. 10.7 is the amplitude dependence of the ratio of the total (including
the polarization summand in the amplitude) cross-section of induced bremsstrah-
lung or absorption to its static analog for two values of the angle o (0 = 0 —curve 1,
o = m/2 — curve 2) in the region of destructive interference of the channels
(0 < o). As seen from the figure, in the first case interference effects are very
low: they show themselves in the fact that with increasing intensity of the electric
field the process cross-section tends to a value that is somewhat lower than the static
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value due to destructive interference strongly suppressed by the nondipole behavior
of interaction of an incident particle with the ion core. For oo = m/2 a strong
interference effect is present: the amplitude dependence of the cross-section of
induced bremsstrahlung or absorption has a wide “dip” caused by cancellation of
the static and polarization summands in the process cross-section that is character-
istic for consideration within the framework of the dipole approximation for
interaction of an incident particle with the ion core [4, 12]. The cause of retention
of “dipole features” in the amplitude dependence of the cross-section is the same as
in the spectral dependence: for the angle oo = /2 the main contribution to radiation
is made by the y-component of the induced dipole moment that is weakly subject to
the influence of the nondipole behavior for transitions with no change of the
principal quantum number.

Given in Fig. 10.8 are averaged over the angular distribution of incident particles
of the type

Dy(2) = cos’a/(p + 1)

amplitude dependences of the total cross-section of induced bremsstrahlung or
absorption for two values of the angular distribution parameter (p = 2, p = 12)
for the angle m/2 between the distribution axis and the vector of intensity of the
electrical field in an electromagnetic wave. The chosen kind of angular distribution
of electrons is characteristic for the process of ablation of a solid-state target under
the action of high-power laser radiation, and the angle o = /2 corresponds to the
normal incidence of radiation on the solid surface.

From the figure it is seen that the interference effect is most pronounced for more
“sharp” (p = 12) angular distribution, which was to be expected since in this case
the average angle o is more close to ©/2.

10.3 Quantum Approach to Description of
Polarization-Interference Effects in Near-Resonance
Strongly Inelastic Electron Scattering

The purpose of this paragraph consists in the quantum (for IP motion) calculation of
spectral cross-sections (integrated and differential with respect to the electron
scattering angle) of strongly inelastic electron scattering (with absorption and
emission of photons) of thermal (relatively slow) electrons in a near-resonance
external field and the analysis of influence of target polarization, channel interfer-
ence, the nondipole nature of IP interaction with a target ion, and exchange effects
on this process.
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10.3.1 Method of Calculation

The primary formula for the cross-section of inelastic scattering of an electron
from the state with the initial momentum p; to the state with the finite momentum p¢
in the solid angle dQ; by an ion under the action of the external field of amplitude E,
and frequency o can be represented as (we use in this section atomic units
h=m=e=1):

1 2 Pf
do(p,) = M2 aqy, 10.36
o0 = 15 1 (M) 2y (1036
here
r Eq
My (@) = (pel = (Vi (r) + Vpou(r, @, Eo)) IPi) — (10.37)

is the matrix element from the operator of disturbance of IP motion in the static field
of the target and in the field of the induced dipole moment of the target. Here fpi7f>
are the wave functions of an IP in the central field of an ion normalized to the unit
flux, pr = \/p7 = 2w is the magnitude of the final IP momentum, the plus sign
relates to absorption, minus relates to emission of a photon as a result of inelastic
scattering.

The expression (10.37) is obtained with neglected exchange effects, the contri-
bution to the cross-section of which will be mentioned below.

In the formula (10.37) the function V(r) is the magnitude of intensity of the
static field of a target ion at the location of an IP, and Vle(r, o, Ep) is connected
with the dynamic polarization of the electron core of an ion at the external field

frequency  and for the near-resonance case under consideration (| — wp| << wy)
looks like:

) ? do
Vot (r, w, Eg) = sign(A) — Vs p(1), (10.38)

A2 1 (doEo)2/3 >

where dy = (ns|d|n'p) is the reduced matrix element of the dipole moment of the
transition, Vm,,,/[,(r) is the reduced matrix element of the potential of IP interaction
with the near-resonance transition ns — n’p in the ion core that is equal to:

Voswp(r) = <ns||0(r — rb)r;,/r2 +0(rp — r)r/r,%“n’p), (10.39)

I, is the radius vector of a bound electron of the ion, 0(x) is the Heaviside function.
Everywhere in the paper the ground s-state of the ion core is considered.
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In calculation of the functions Vi, (r) and Vi, (r) for an outer electron of the ion
core the wave function of the model potential method was used, and for inner
2s-electrons the Slater wave functions were used.

The main distinction of this consideration from previous quantum calculations
of inelastic electron scattering in the near-resonance field is consistent taking into
account the interference of contributions of the static and polarization channels in
case of essentiality of the nondipole nature of IP interaction with a radiating
transition in the ion core. The said nondipole nature is essential if the contribution
of short distances (of the order of an ion size) exceeds the contribution of long
distances or is comparable with it, which takes place in case of strong enough
inelasticity of scattering that we assume in this chapter.

The wave functions of an IP can be calculated in the prescribed quantum IP
current approximation by quantum number expansion of the orbital moment £ h.
The external electromagnetic field is supposed to be weak enough, so the wave
functions of the continuous spectrum of a scattered electron can be found by
solution of a corresponding Schrodinger equation in the central field of a target ion.

The calculation was carried out for lithium-like ions in the ground state and for
external radiation frequencies that are near-resonance with respect to the transition
with no change of the principal quantum number.

The radial wave functions of the continuous IP spectrum were normalized
according to their asymptotic form:

2 Z
u(r — oo,l,p) — = sin (pr +— In(2pr) — gl + 5(1,17)) , (10.40)
r p

here 0(1,p) = 0°(I,p) + AS(l,p) is the total phase shift equal to the sum of the

Coulomb (1, p) and non-Coulomb AJ(/, p) phase shifts, the latter was calculated
by the formula [13]:

sin(80(1.p) = 5 [ (%= W)l ) trdop) a0
0

where u“?“(r,1,p) is the solution of the radial Schrédinger equation with the
Coulomb potential.

As a result, the integrated and differential cross-sections of inelastic scattering
are represented as the sum (over the quantum number of the orbital angular
momentum) of terms containing radial matrix elements of the total potential of
disturbance of IP motion (Vy(r) + Vpu(r, o, Eo)):

Ryt = (u(r,,pi)|Va(r) + Voot (r, 0, Eo) |u(r, 1 £ 1,ps)) (10.42)

and corresponding phase shifts for the IP wave functions.
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10.3.2 Inelastic Scattering Cross-Section Differential with
Respect to Angle

After integration with respect to the directions of the IP radius vector the formulas
(10.36) and (10.37) give:

2
dsy. (10.43)

1 (E\’|<X
Q) =—— (=) DS
J( f) 16pfp,3 <w2) —~ Sl( f)

For parallel polarization (p; // E¢) the summands S, look like:

S;i,pw' —q Pl+lR”JF]ei(é(l‘pi)+5(l+l,p,c)) _ PlRl+l.’lei(é(lJﬁl.,Pi)“ré(l,pf)) . (10.44)

where P;(cosf) are the Legendre polynomials, 6 is the angle of IP scattering,
a=1+1.
By analogy, in case of perpendicular polarization of the external field (p; L Eo):

Sj?’per = 6"5(“1’”)}71 Yiera + Yier -1 {ei'i(l‘p")RzJH + ¢! o2 R1+1,1}, (10.45)

n(1+1)(142)
2[43

Since for strongly inelastic scattering under consideration a considerable contri-
bution to the cross-section is made by short distances to the nucleus of an ion, the
calculation of radial matrix elements took into account the contribution of exchange
processes in the polarization channel for two possible values of the total spin of the
system “IP and ion core”.

The results of calculation of spectral cross-sections normalized to the static
cross-section and averaged over possible values of the total spin of colliding
particles for different angles of inelastic IP scattering and two polarizations of the
external field are presented in Fig. 10.9a, b for the incident electron energy 1 Ry and
the external field strength Eq = 107 a.u., the field is near-resonance with respect to
the transition 2s-2p (i, = 10 eV) in the core of a N** jon.

From Fig. 10.9a it is seen that taking into account the nondipole nature of IP
interaction with the radiating transition in the ion core for the case of parallel
polarization of the external field results in the fact that the minimum in the spectral
cross-section of the process caused by destructive interference of the static and
polarization channels depends considerably on the angle of electron scattering. For
small angles of IP scattering (8 < 90°) the minimum falls on negative detunings
(0 < ), and for wide angles (6 > 140°) it falls on positive detunings (® > ®).

There is also a small range of angles (0 ~ 120°), in which the interference
minimum is absent. Accordingly, the “inversion” of spectral line shape asymmetry
for the process cross-section with growing angle of IP scattering also occurs.

where b, = . Yum (Q) are the spherical functions.
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Fig. 10.9 The spectral cross-sections (averaged over the spin state of the system of colliding
particles) of inelastic scattering (absorption) of an electron by a N** jon for different angles of IP
scattering (I — 0 = 57°, 2 — 120°, 3 — 140°), normalized to corresponding cross-sections of the
static channel. Quantum calculation for IP motion: (a) parallel polarization of the external field
pi // Eo, (b) perpendicular polarization of the external field p; L Eq

In case of perpendicular polarization (p; L E¢) the interference minimum for all
angles of IP scattering lies in the region of negative detunings of the external field
frequency from resonance in the ion core (Fig. 10.9b), shifting to the center of the
line with increasing scattering angle and disappearing at 6 ~ 180°.

The considered features of the spectral cross-section differential with respect to
the IP scattering angle are connected with the dependence of the radial matrix
element of nondipole polarization interaction on the quantum number of the orbital
moment of an IP. The said matrix element changes sign in going from high
moments to low ones. The role of these low moments is most essential in case of
parallel polarization of the external field since then the contribution of an IP orbit
section near the classical turning point increases.

On the contrary, for perpendicular polarization increases the role of long
distances IP — ion (and accordingly, of high orbital moments), where the IP
acceleration is found to be parallel to the vector of the external field strength.

Given in Fig. 10.10a, b are the spectral cross-sections for two angles of elastic IP
scattering with photon absorption and two possible spin states of the system of
colliding particles (without averaging over the total spin).
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Fig. 10.10 The spectral cross-sections of inelastic scattering (absorption) of an electron by a N**
ion for different angles of IP scattering (/ — 8 = 57°, 2 — 172°), for the singlet (S = 0, curves a)
and triplet (S = 1, curves b) states of the system of colliding particles. Quantum calculation for IP
motion: (a) parallel polarization of the external field p; // Eo, (b) perpendicular polarization of the
external field p; L Eg

It is seen that in case of parallel polarization of the external field exchange
effects are most essential for wide angles of electron scattering, and in this case
(8 = 172°) the line shape asymmetry is more pronounced for the singlet state of the
system (S = 0), for the triplet state (S = 1) the spectral shape of a scattering line is
practically symmetric.

But in case of perpendicular polarization the exchange is noticeable also for
small scattering angles and the interference minimum is found to be more deep for
the triplet state. The line shape for a wide scattering angle is practically symmetric
for the singlet state.

These features of the spectral cross-sections of inelastic IP scattering for differ-
ent spin states of the system “IP + ion core” can be explained as follows. The
exchange potential for the singlet state corresponds to effective attraction, so it
reduces the amplitude of the polarization channel for those (high) orbital moments.
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At such angles polarization interaction results from repulsion between an IP and the
radiating transition in the ion core, which is true for perpendicular polarization
(at any scattering angles) and in case of parallel polarization for small scattering
angles.

And if an IP is scattered to wide angles in parallel polarization, polarization
interaction results from an effective attraction between colliding particles, which is
mathematically expressed in a change of the sign of a radial matrix element from
the polarization potential for low €. Therefore the exchange in the singlet state
increases the polarization amplitude of the process. As a result, the asymmetry of
the spectral cross-section of scattering for S = 0 is found to be more than in the
triplet state, and in case of perpendicular polarization — quite the contrary.

It should be noted that the consideration of exchange interaction (only in the
polarization channel) carried out in the work seems quite adequate for high enough
degrees of ionization of a target, when the wave functions of an IP are mainly
defined by the Coulomb attraction. In the opposite case this consideration may be
insufficient. Nevertheless, the qualitative conclusions about the influence of spin
effects on the spectral cross-section of strongly inelastic scattering given here
should be retained.

10.3.3 Inelastic Scattering Cross-Section Integrated with Respect
to Angle

For the spectral cross-section of induced inelastic scattering integrated with respect
to the angle of IP scattering with parallel orientation of the vector of the external
field strength and the vector of the initial [P momentum, after integration with
respect to the solid angle d€)r the following expression can be obtained:

ow (E\* 1 X(+1)P*
dorer =T (20} = NTET Y a5, 10.46
for =3 (5) s S o, o
where
) 2+ 3
T/ (pi, pr) :R12,1+1 +21—+1 R12+1,1
[+2
T Ry R iy cos(8(1,pi) — 8(1+ 2, pi)).

For the integrated spectral cross-section averaged over the polarization of the
external field (or, which gives the same result, over the direction of the initial IP
momentum) we have:
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aver T EO : 1 o (l“r 1) 2 2
Jdap‘ 4 (aﬂ) 2 Z 3 (R1,1+1 JrRl+1,1)- (10.47)

For a case of arbitrary orientation of the vector Ey with respect to the vector p;
(at the angle o) the following expression can be obtained:

3 - 3cos?o— 1 -
Jdapr(oc) = zsinza{Jda;:” } + % {Jdaﬁ‘:’ } (10.48)

It should be noted that the quantum calculation makes it possible to distinguish
between the cross-sections of absorption and photon emission in IP scattering in the
external field, which is important, for example, for the problem of energy exchange
between plasma and radiation.

However, as carried out calculations show, the relative value of a corresponding
difference cross-section (absorption minus photon emission) is maximum for
directed IP motion and considerably decreases in case of averaging over the
angle o between the field vector and the initial IP velocity vector.

The results of calculation of the spectral cross-section integrated with respect to
the angle of IP scattering with absorption and emission of a photon for different
polarizations of the external field are presented in Fig. 10.11. Scattering of an
electron with an energy of 11 eV by a N*' jon in the field that is near-resonance
with respect to the transition 2s-2p in the ion core was considered, Ey = 1073 a.u.

From the given figures it follows that in the qualitative conformity with the
conclusions of the quasi-classical consideration of the previous paragraph interfer-
ence effects in the integrated cross-section of inelastic scattering are most pro-
nounced for perpendicular polarization of the external field. At the same time, a
spectral dip is found to be somewhat more smoothed and less deep in comparison
with the results of the classical calculation.

For high detunings from resonance, where the static channel prevails, the sign of
the difference cross-section corresponds to the results of calculation in the Born
static approximation [14]: absorption exceeds radiation for perpendicular polariza-
tion and vice-versa for parallel polarization.

With decreasing frequency detuning the difference cross-section begins to be
defined by interchannel interference that, as it was already mentioned, in the
integrated scattering cross-section is most pronounced for perpendicular polariza-
tion of the external field. For example, in the frequency range of essentiality of
destructive interference absorption considerably exceeds radiation for perpendicu-
lar polarization, as seen from Fig. 10.11 (bottom diagram) since the spectral
minimum of scattering with photon emission is shifted towards higher detunings
in comparison with absorption. However, the same shift results in the fact that with
decreasing value of frequency detuning in the region @ < wy the cross-section of
radiation begins to exceed the cross-section of absorption. For w > wy (p; L Eo) the
situation becomes opposite.
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Fig. 10.11 The spectral cross-sections (integrated with respect to the scattering angle) of absorp-
tion (curve 1) and radiation (curve 2) in electron scattering (p; = 0.9 a.u.) by lithium-like nitrogen
in the external field (Eq = 10~ a.u.) that is near-resonance with respect to the transition 2s-2p in
the core. Quantum calculation. Top diagram — parallel polarization of the external field p; // Eo,
bottom diagram — perpendicular polarization of the external field p; L Eq

For parallel polarization (p; // E¢) the value of the difference cross-section in the
spectral range of essentiality of interference effects is much less (Fig. 10.11 (top
diagram)) and has an opposite sign: absorption exceeds radiation for negative
detunings low enough in magnitude (w<wg) and vice-versa for ®>®.

The calculation within the framework of the model under consideration shows
that the difference cross-section of inelastic scattering averaged over the angle o
and the total spin has an appreciable value near the resonance, where the process
proceeds mainly by the polarization channel. The sign of the difference cross-
section strongly depends on the IP energy: immediately near the threshold (in IP
scattering with emission of a photon) radiation exceeds absorption, but even in case
of small excesses of the IP energy over the threshold the situation becomes
opposite.
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The standard recalculation of the difference cross-section to the absorption/
amplification coefficient shows that the value of the latter in the frequency range
under consideration and for reasonable values of concentrations of colliding
particles is extremely low and can be made appreciable only for very low detunings
from resonance [15], where the specificity of the phenomenon under consideration
disappears to a great extent. Nevertheless, it is possible that there will be such
conditions, under which the obtained results can help also in the problem of
amplification of electromagnetic radiation.

Thus in this paragraph within the framework of the prescribed quantum current
approximation the spectral angular and integrated cross-sections of strongly inelas-
tic scattering of thermal IP by an ion in the near-resonance external field are
calculated.

It is shown that an essential role in the process under consideration is played by
the nondipole nature of IP interaction with the near-resonance transition in the ion
core. This nondipole nature results in the dependence of the nature of interchannel
interference on such problem parameters as polarization of external radiation, the
value of the initial IP velocity, and (for targets with a spin) on the total spin of the
system of colliding particles.

The calculation of the cross-section differential with respect to the angle of IP
scattering has found out the dependence of the spectral cross-section on the angle of
IP scattering that is most strong for parallel polarization of external radiation, when
with increasing scattering angle a peculiar kind of “inversion” of spectral line shape
asymmetry occurs.

Confirmed on the basis of the quantum calculation was the conclusion of the
quasi-classical consideration of the previous paragraph about the most manifesta-
tion of interchannel interference in the integrated cross-section of inelastic scatter-
ing for perpendicular polarization of the external field manifested in the asymmetry
of the spectral cross-section and the presence of spectral dips.

The role of exchange effects in the spectral cross-section differential with
respect to the angle of IP scattering was analyzed.

The features of the spectral dependences of the cross-section integrated with
respect to the angle of IP scattering with absorption and emission of a photon for
different orientations of the external field strength vector in relation to the initial IP
velocity were investigated.

It was shown that the difference scattering cross-section (absorption minus
radiation) averaged over the direction of the initial velocity is rather sensitive to
the IP energy. In the near-threshold region of energies for frequencies near the
resonance radiation exceeds absorption, but even in case of small excesses over the
threshold the situation becomes opposite.
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10.4 Experiments on Electron Scattering by Atoms in a Laser
Field

In the processes of inelastic electron scattering by targets with a core in the presence
of an external electromagnetic field an important role can be played, as it was
theoretically predicted in [16], by a polarization mechanism, with which the
transfer of energy from a field to an electron proceeds through virtual excitation
of a target. Taking into account the contribution of the polarization channel made it
possible to explain low laser breakdown thresholds for alkali metal vapor [17],
atoms of which have high polarizability.

There is also another group of experiments on inelastic scattering of electrons by
atoms in a laser field, in which the energy spectra of electrons scattered at a certain
angle were measured, and for interpretation of which the calculation of the process
cross-section based on the static approximation in a number of cases is found to be
insufficient.

One of the first works of this kind [18] was dedicated to investigation of
multiphoton processes in scattering of electrons by argon atoms in the presence
of intensive radiation of a CO; laser (a peak power of 50 MW). The initial energy of
electrons was 11 eV. It is essential that electrons were recorded at a wide angle of
scattering (153°). In the experiment the number of scattered electrons with a
specified energy was measured. It was found that the laser field results in significant
redistribution of an originally monoenergetic electron beam by energies. The
central peak corresponding to elastic scattering decreased approximately by
45 %. At the same time there arose additional maxima in the energy spectrum of
scattered electrons, corresponding to absorption/emission of several laser photons
up ton = 3.

The obtained experimental data were found to be in good agreement with
predictions of the semiclassical phenomenon theory developed in [7]. In particular,
it was shown that for the conditions of the carried out experiment the so-called “sum
rule” is satisfied: the total probability of scattering summed over all photonicities of
the process is a constant value.

The influence of target polarization and statistical properties of an electromag-
netic field on the sum rule for multiphoton induced Bs was investigated in the work
[19] within the framework of the first Born approximation. Meant by the sum rule in
this case is a closure arising after summation of cross-sections corresponding to
different numbers of photons emitted/absorbed by a target. This closure, without
considering the polarization channel, is equal to the cross-section of elastic scatter-
ing of an electron by a target in the absence of radiation [20]. In the paper [19] it was
shown that taking into account the polarization channel considerably modifies the
sum rule for small enough angles of electron scattering. From the expression for the
total scattering cross-section obtained in [19] it follows also that going from
coherent radiation to stochastic radiation increases the role of polarization effects.
The contribution of these effects to the transport cross-section of scattering has
maximum for the perpendicular orientation of the external field vector with respect
to the initial electron velocity vector.
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Fig. 10.12 The electronic spectra resulting from scattering of electrons by helium atoms in the
laser field under conditions of the experiment [21]

The experimental investigation of electron scattering by helium atoms in a laser
field was carried out in the work [21]. Radiation of a CO, laser with a power density
of the order of 10® W/cmz, the photon energy 7z = 0.117 eV, and an electron beam
with the energy E; = 9.5 eV were used. The viewing angle was 9°. The electron
energy E; was chosen so as, on the one hand, to satisfy the quasi-classical condition
E; >>hw, and on the other hand, to avoid impact excitation of bound states of a
helium atom with an energy about 19 eV.

As aresult of measurements of the energy of an electronic signal, besides elastic
scattering (with no change of electron energy), in the energy spectrum of scattered
electrons maxima corresponding to absorption or emission of a whole number of
laser photons were recorded. Emission/absorption of a photon in this case is an
induced bremsstrahlung effect in a laser field, in the process of which electrons
decrease or increase their kinetic energy.

The relative contribution of absorption/emission of laser photons in scattering
measured within the first 3 s after beginning of a laser pulse is presented in
Fig. 10.12. The typical temporal shape of a laser pulse is presented in Fig. 10.13.

It was found that the intensity of additional electron peaks corresponding to
absorption/emission of laser photons by electrons in scattering exceeds consider-
ably the values predicted by the theory [7] that does not take into account the
polarization channel. The experimental conditions were chosen in [21] so as to
satisfy to a maximum extent the criteria of applicability of the so-called Kroll-
Watson approximation [7] and to exclude processes of excitation of the electron
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Fig. 10.13 The time dependence of a CO, laser pulse [21]

core of a target. The low value of polarizability of helium assumed also the
minimization of polarization effects. Nevertheless, the results of [21] are indicative
of insufficiency of the Kroll-Watson formula for explanation of the obtained
experimental data and require taking into account additional mechanisms of radia-
tion such as the polarization channel.
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Chapter 11

Review of Possible PBs Applications for
Structure Diagnostics and as an Effective
Source of X-ray and UV Radiation

11.1 Procedure of Nanomaterial Diagnostics Based
on PBs Spectroscopy

11.1.1 General Principles of Spectroscopy Based on PBs

Since polarization bremsstrahlung can be interpreted as scattering of virtual
photons of a charged particle to a real photon by target electrons, PBs spectroscopy
is in essence the generalization of ordinary spectroscopy and therefore has a number
of features inherent in the latter. When the velocity of a charged particle approaches
the velocity of light, this analogy becomes more exact since the electromagnetic
field of a relativistic charge is close to the electromagnetic field of a real photon
(a plane electromagnetic wave). One of manifestations of the said analogy is the
Bragg condition for scattering of a virtual photon by crystal structures agreeing with
the ordinary Bragg condition if it is considered that the wave vector of a virtual
photon is directed along the velocity of an incident particle.

At the same time there is a number of distinctive properties in PBs spectroscopy
that are connected first of all with the fact that the eigenfield of an incident particle
has a continuous spectrum of virtual photons, and the dispersion law for a virtual
photon differs from the dispersion law for a real photon. This allows obtaining a
momentary “scan” of a recorded spectrum by all frequencies and wave vectors
permitted by the energy conservation law. So instead of multiple spectral
measurements by methods of ordinary spectroscopy, it is possible to carry out
one measurement with the use of PBs spectroscopy that will contain the same or
even greater body of information on an object under study.

From the practical point of view, an important distinction between PBs spec-
troscopy and traditional spectroscopy consists also in the fact that sources of fast
electrons having in their electromagnetic field a wide set of virtual photons, as a
rule, are more accessible than generators of real photons. This is especially true if
the case in point is generation electromagnetic radiation in a wide spectral range
including the X-ray wavelength range.
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The next important distinguishing feature of the polarization spectroscopy
method is a possibility of local excitation of a sample on the spatial scale much
lesser than the wavelength of the optical range. Thus it is possible to increase
considerably spatial resolution in comparison with traditional diffraction-limited
spectroscopy.

Another important circumstance considerably enhancing the capabilities of PBs
spectroscopy in comparison with traditional spectroscopy consists in the fact that
the electromagnetic eigenfield of a charged particle contains a set of virtual photons
with different angular momenta. It will be recalled that the angular momentum of a
real photon is equal to one (in units of the Planck constant). This allows excitation
of dipole-forbidden and intercombination transitions in a target under study that are
inaccessible for investigation by traditional methods. Such an example is investi-
gation of singlet-singlet transitions at NV (nitrogen-vacancy) centers in diamond
samples that can not be exited by optical methods from the ground triplet state.

11.1.2 Recommendations for the Use of PBs Spectroscopy

The recommendations for development of a procedure of material diagnostics
based on PBs spectroscopy are based on theoretical and experimental investigations
carried out in the works of the last decade. The obtained expressions for intensity of
PBs of fast electrons scattered by different types of targets, including single-crystal,
polycrystalline, amorphous, cluster, nanostructured, two-dimensional targets, make
it possible to determine a region of parametric variation, in which the use of PBs
spectroscopy is most efficient as well as a procedure itself for investigation of
structural, electronic and other properties of targets.

One of general recommendations for development of methods of nanomaterial
diagnostics with the use of PBs following from theoretical consideration is a
condition for a spectral region, in which the measurements of PBs spectra should
be carried out. The optimum spectral range corresponds to the spectral maximum of
the dynamic polarizability of atoms forming a target, which occurs usually
near eigenfrequencies of target excitation or near thresholds of atomic ionization.
Necessary information on dynamic polarization can be obtained on the basis of
experimental data on photoabsorption with the use of the optical theorem and the
Kramers-Kronig relations. In case of cluster targets, the use of quantum-chemical
methods of calculation for the analysis of the electronic and spatial structure of a
target is efficient. The most optimum approach for such a calculation is based on the
density functional theory with the use of the hybrid three-parameter exchange Becke
functional with the correlative Lee-Yang-Parr functional (B3LYP functional).

Another general recommendation in development of PBs spectroscopy methods
consists in the fact that in spectral ranges corresponding to excitation of character-
istic radiation PBs will be completely masked by it. Therefore, when choosing
frequency ranges to record PBs, it is necessary to avoid proximity to characteristic
peaks.
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The recent works [1, 2], have allowed the development of experimental methods
of nanomaterial diagnostics based on the use of a scanning electron microscope and
photodetectors of different types for recording spectra in a wide spectral range.

The use of a scanning electron microscope makes it possible to realize the
important advantage of PBs spectroscopy in comparison with traditional spectros-
copy — high spatial resolution in investigation of nanostructures and usual materials.
Scanning the surface of a sample allows obtaining a two-dimensional “PBs-image”
of an object for short time intervals. Besides, the developed technology of scanning
microscopy makes it possible to handle micro- and nanoobjects easily, which is an
important advantage in nanostructure diagnostics.

The developed experimental procedure allows carrying out measurements in a wide
temperature range, which is important in the presence of a strong electron—phonon or
electron-vibron coupling in a target material as it is, for example, in case of NV centers
in diamond samples that are promising for many applications of optical informatics.

PBs spectroscopy for investigation of nanomaterials (clusters, fullerenes, quan-
tum dots, nanocoatings, metamaterials with different nanoinclusions, etc.) can be
developed in the X-ray, UV, visible, and IR wavelength ranges with the use both of
nonrelativistic and relativistic electron beams. PBs spectroscopy and spectroscopy
of related radiative processes (ordinary Bs, transition radiation, cathode lumines-
cence) assumes obtaining information on the structure and physical properties of a
target not only on the basis of recording spectral regularities, but also by taking
angular, velocity, and orientation dependences of radiation.

In investigation of the structure and physical properties of nanoinclusions in
metamaterials (metal and semiconductor nanospheres, nanorods, nanodisks, etc.) it
seems advisable to carry out measurements of PBs in the visible and near-UV
spectral regions, where the photon energy varies from 2 to 6 eV. In this range
polarization bremsstrahlung is formed due to excitation of surface plasmons [3].
For example, in case of silver nanospheres with a radius from several nanometers to
several tens of nanometers the plasmon resonance lies in a photon energy range
from 2.4 to 3 eV. The central frequency of the plasmon resonance is shifted to the
region of lower photon energies with increasing size of a metal nanoparticle. The
spectral width of the resonance in this case increases in connection with decreasing
time of plasmon dephasing. Since the plasmon frequency is defined by the concen-
tration of electrons in a target, it seems hardly probable to obtain its shift with
changing target temperature. At the same time the width of the spectral resonance
that depends on scattering of plasmons in a sample can show the temperature
dependence. The optimum value of the electron beam energy for observation of
PBs on metal clusters near the maximum of the frequency dependence, as a rule, is
less than 100 eV. This value is 2 times less than the minimum energy of electrons in
the Quanta 200 SEM (FEI).

PBs spectroscopy for investigation of a Cg fullerene should be carried out in two
frequency ranges: in the low-frequency range (wavelength is 200300 nm), where
dipole-allowed transitions with highest oscillator strengths are concentrated, and
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near the plasmon resonance energy (5@ = 19¢eV ). In the latter case the maximum
PBs cross-section is achieved at the electron energy of 167 eV. With growing
electron beam energy the position of the spectral maximum is shifted to the region
of high photon energies.

X-ray spectroscopy of PBs of structured nanomaterials for a case of nonrelativ-
istic electrons is based on measurement of spectra peculiarities connected with the
presence of optimum conditions for conversion of the IP eigenfield to a bremsstrah-
lung photon on the target structure. In case of a polycrystalline medium the
structure of a target is defined by the crystal lattice of a sample material. Then
the peculiarities of the PBs spectrum show themselves as a sawtooth structure
reflecting “turning-off” of the contribution of the reciprocal lattice vector to the
process, which is caused by the law of conservation of energy-momentum in
coherent interaction (see Fig. 5.3 of this monograph). The energy of the first
“tooth” of the spectral dependence is about 1.5 keV, it is defined by the spatial
scale of the structure and the velocity of an incident particle. To find out this
structure experimentally, it is necessary to use a photodetector with a resolution
no more than 10 eV.

In case of a relativistic electron, in the spectrum of PBs on a structured target
maxima appear with fulfilment of the Bragg condition describing scattering of a
virtual photon of the IP eigenfield to a real bremsstrahlung photon (see Fig. 5.8 and
the formula (5.18) of this book). The width of these peaks is proportional to the
cotangent of the half-angle of radiation, so the PBs intensity is maximum in
back radiation, which defines the requirement to the optimum conditions of the
experiment [4].

11.1.3 PBs Spectroscopy of Nanoobjects

According to the results of carried out investigations and literature data, in scatter-
ing of relativistic electrons by fullerenes in the PBs spectrum in the X-ray range
radiation intensity oscillations caused by interference effects should be observed.
The period of these oscillations is defined by the IP velocity, the radiation angle and
the fullerene radius, and the amplitude is defined by the electron energy [5].
Therefore it is possible to determine the size of a nanotarget by the PBs spectrum
with specified parameters of scattering.

The peculiarities of PBs of fast charged particles on clusters in the X-ray spectral
range are defined by cooperative effects in summation of process amplitudes from
different atoms forming the cluster. In the carried out investigations it was shown
that with growing IP energy the maximum of the spectral distribution of PBs on a
cluster is shifted to the region of high frequencies. The form of the high-frequency
part of the spectrum in the relativistic case strongly depends on the radiation
angle. With reduction of this angle the Bs intensity decreases with growing fre-
quency much more slowly than for wide angles. The analysis of the Bs intensity
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as a function of IP velocity has shown that in the nonrelativistic case this depen-
dence can be of different nature. In the limit of low IP velocities the role of
cooperative effects in Bs on a cluster becomes negligible. The obtained results
can be used in interpretation of experimental data on Bs of fast charged particles on
clusters in the X-ray frequency range and in development of methods of investiga-
tion of the atomic cluster structure with the use of PBs.

The theoretical investigations carried out for the analysis of emission of fast
electrons scattered by graphene [6] have laid the foundation for development of a
PBs spectroscopy procedure in diagnostics of two-dimensional crystal structures.
As shown in the Sect. 8.3 of this book, the spectrum of coherent PBs on graphene
contains sharp peaks corresponding to transfer of a momentum proportional to one
of the reciprocal lattice vectors to the two-dimensional crystal lattice. The relation-
ship of the frequency of these maxima with the electron velocity and the angle of
incident electron as well as with the angle of emission of a bremsstrahlung photon
and the magnitude of the reciprocal lattice vector in the general case is given by the
formulas (8.64), and (8.65), and in case of normal incidence of an electron on the
graphene surface it is given by the formulas (8.64), (8.66). The obtained relation-
ship makes it possible by known kinematic problem parameters to determine the
parameters of a two-dimensional crystal structure, on which scattering and emission
of electrons occurs, that is, to carry out target diagnostics. The condition of
appearance of sharp maxima in the spectrum of coherent PBs is given by the
inequations (8.68), from which it follows that for recording these spectral peaks
two conditions should be satisfied: emission of a bremsstrahlung photon should be
directed to the forward hemisphere, and the electron velocity should be high
enough, though not necessarily relativistic. As follows from Fig. 8.20 of this
monograph, at a radiation angle of 30° the electron energy of 58 keV is sufficient
for appearance of sharp maxima in the spectrum of coherent PBs on graphene that
can be used for target diagnostics. Thus it can be concluded that for diagnostics of
PBs on two-dimensional structures the use of a transmission electron microscope
for recording forward radiation and the use of electrons of high enough energy are
optimum.

11.1.4 Diagnostics of Fine-Grained Media

The analysis of possibilities of fine-grained media diagnostics based on measure-
ment of the spectrum of PBs of a fast electron was carried out in the work [7]. In
motion of such an electron through a fine-grained medium the mechanism of Bragg
scattering of the Coulomb field is not realized because of a small grain size. Under
considered conditions the main thing is coherent scattering on a grain as a whole.
This scattering is most efficient in a frequency-angular region, in which the length
of radiation forming exceeds the grain size. Under considered conditions the use of
the dipole approximation for the tensor of the photon Green function in a medium is
more adequate. In the work [7] the following expression for PBs in a fine-grained
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medium was obtained (here and further the velocity of light is assumed to be equal
to one):
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is the auxiliary function , T(k) = >_ ¢! k™ is the structure factor of a grain (r,, is the
n

coordinate of the n” atom in the grain ), 7. is the grain density, W(r) is the pair
correlation function describing the probability of the centers of two grains being at
the distance r (it is obvious that W(r) = O atr <L and W(r) — Ll atr >>L, Lis the

. L / 2, . S .
characteristic grain size),p = /y~2 + (a)p / co) (yis the relativistic factor, w,, is the

plasma frequency of the medium), the viewing angle 6 exceeds p, the line in (11.1)
means averaging over orientations of grains, k = 2 w sin(6/2)x.

The formula (11.1) makes it possible to propose a new method of determination
of the grain size by the position of a maximum in the spectrum of the coherent PBs
peak (the maximum arises due to the multiplier »* on the right side of Eq. 11.1 that
suppresses the radiation yield in the region of small o, in which the polarizability is
a(w) = const). For simplicity, let us consider a grain in the form of a cube, along
the edge of which N atoms are located, the distances between which are equal (see
Fig. 11.1).

In the case under consideration the value |T(K)|* can be represented as |T(k)|*
= N3Ty, where
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Fig. 11.1 The geometry of
the process
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The spectrum of PBs of 50 MeV electrons in fine-grained monodisperse tungsten
calculated by the formulas (11.1) and (11.2) without considering correlations
between grains (W(r) = 1) is given in Fig. 11.2 for the viewing angle 0 = 0.3 rad
and three different values N.

The clear dependence of the position of a maximum in the spectrum on the size
of a grain is seen. It is necessary to note very strong influence of dispersion of the
dielectric susceptibility y(w) = 4nn. o(w) on the form of the spectrum. To elimi-
nate this influence, in the work [7] the function was analyzed:

(sin? (0/2) AN (& EP©)
O, N) = (wau(w)f) " didewdQ (64n3) NE

where -4 is the value measured in the experiment, ¢ = 2w asin(0/2), P(¢) is
the integral on the right side of the Eq. 11.1.

Given in Fig. 11.3 are the curves of the dependence @ (¢, N) constructed by the
formula (11.1) for fixed values of the viewing angle 0 = 0.8 rad and the parameter
p = 0.01 =~ 77!, but for different values N. According to Fig. 11.3, the proposed
method allows discerning grains of rather close sizes.

It is significant that the dielectric susceptibility y(w) of a medium included in the
function (&, N) was determined experimentally in a wide range of frequencies for
many elements, so it is possible to avoid model distortions of y(w) in experimental
data processing.
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Fig.11.2 The dependence of the spectrum of the coherent peak of PBs in fine-grained tungsten on
the size of a grain. The electron energy is 50 MeV. The radiation angle is 0 = 0.3 rad [7]
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Fig. 11.3 The dependence of the position of a maximum in the spectrum of the modified PBs peak
on the size of a grain [7]
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Fig. 11.4 The influence of 400 T T T
the spread of grains in values
on the position of a maximum

in the spectrum of the 300
modified PBs peak. The |z
curves are calculated with wp
the fixed value o = 3 15 200F

and different values N.
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Fig. 11.5 The scheme of the
experiment on diagnostics of
the structure of a polycrystal
based on PBs. / electron
beam; 2 target; 3 collimators;
4 detector; 5 radiation; 6
proportional chamber; 7
Faraday cup

In real materials grains always have a spread both in values and in form. To
estimate the sensitivity of the method to a medium size of a grain in a polydisperse
material, the dependence was calculated:

=\ 2
N —N
exp -1

®(¢,N) =Y ®(,N) 7

1
=1 o

simulating PBs in a material with the Gaussian distribution of grains by sizes. The
results of the calculation presented in Fig. 11.4 are indicative of retention of high
sensitivity even for relatively high dispersion of the distribution.

The possibilities of the discussed method of diagnostics were checked experi-
mentally by the example of scattering of the Coulomb field of relativistic electrons
in polycrystalline media [7]. The scheme of the experiment is shown in Fig. 11.5 for
the case that the angle between the velocity of a radiating electron and the direction
of PBs photon escape is 90°.

In the experiments the electron beam current was measured, which allowed
carrying out absolute measurements of radiation yield. The electron guide, the
target chamber, and the photon channel for recording PBs were located in vacuum,
which made it possible to avoid distortions of the measured photon spectrum
photons due to absorption in air. The results of these experiments are presented in
Fig. 11.6 for scattering of electrons with the energy of 7 MeV by an aluminum foil.
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Fig. 11.6 The dependence of the position of a maximum in the spectrum of the coherent peak of
PBs in an aluminum polycrystal with an effective thickness of 14 um on the radiation angle. The
electron energy is 7 MeV

The dependence of the position of a maximum of the coherent peak on the
radiation viewing angle following from the theory developed in [7] was checked.
Presented in Fig. 11.6 are the measured and calculated spectra of PBs from an
aluminum film collimated at angles of 90° and 75°. The agreement of these
measurements with theoretical predictions is seen, which proves the prospects for
using the dependence of the position of the structural peak of PBs of relativistic
electrons in polycrystals for identification of such peaks. The proposed method of
measurement of sizes of grains in fine-grained media can be used in the
nanomaterial industry.
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11.2  Prospects for Using PBs for Development of Efficient
Sources of X-radiation and UV Radiation

11.2.1 Near-Resonance PBs on Multiply Charged Ions with
an Electron Core

As is known, a significant obstacle to development of laser sources of X-radiation is
short lifetime of the upper operating level in a multiply charged ion.

In case of traditional lasers there should be real population of the upper operating
level. The main idea of using near-resonance PBs of electrons (see the Sect. 2.42)
on multiply charged ions as a source of short-wave radiation is that in this case real
population of exited energy levels of ions is not required since radiation occurs as a
result of virtual excitation of a target.

Near-resonance PBs with the frequency w on an isolated atomic particle arises in
fulfilment of the condition

Sup<<|w — wy|<<w, (11.3)

where w,s and J, are the eigenfrequency and the width of the line of the transition
n — f between two states of the discrete spectrum of the atomic core of an atom
(ion). Since radiation frequency detuning is much higher than the transition line
width, real population of the level |f) can be neglected.

The expression for the cross-section of near-resonance PBs in case of homogeneous
broadening of the dipole-allowed transition with the oscillator strength fy # 0 on an
atom is given by the formula (3.34) for a nonrelativistic incident particle.

The spectral cross-section of near-resonance PBs of a relativistic electron (v ~ c,
v is the electron velocity) in the Born-Bethe approximation is:

do™ _g ¢ nfio ln< e ) (11.4)

dw hc (CUO_(U)Z"‘(S% wry
where r, = € /mc? ~ 2.8 - 107"% cm is the classical electron radius, y is the Lorenz
factor of an electron, r, is the characteristic radius of the electron core of an atom
(ion).
It should be noted that the formula (11.4) is true in fulfilment of the inequation
ye

< —,
Ta

when the Born-Bethe approximation “works”.

As an example of using the formula (11.4), we will consider an elementary case
of PBs of a relativistic electron on a hydrogen-like ion (with the nuclear charge Z e )
with natural broadening of a spectral line (the line width is defined by the Einstein
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coefficient for spontaneous emission of radiation do = A,,) for the near-resonance
transition 1s — np (1s is the ground state, #n is the principal quantum number of an
exited state).

Then it is possible to use the analytical expressions for all values included in the
formula (11.4). The oscillator strength of the transition under consideration is:

28 —1 2n—4
n (n )

fo=fo=mw ———7 (1L.5)
3 (}’l + 1)2n+4
the eigenfrequency of the transition (in atomic units) is
2
o an—1
Wo = Wn =275 (11.6)

the width of the near-resonance transition line is

S0 = A, = 7* 2n(n= 1) (11.7)
T T 9137 (n - 1) '

and the characteristic radius of the electron core in the exited state is r, ~ r, = n?

ag/Z (ap is the Bohr radius). It should be noted that the oscillator strength of a
hydrogen-like ion (Eq. 11.5) does not depend on a nuclear charge.

From comparison of the formulas (11.6) and (11.7) it is seen in particular that
with growing charge of the nucleus of a hydrogen-like ion in the considered case of
natural broadening the line width grows faster than the eigenfrequency of the
transition: A, / w, x Z2.

Presented in Fig. 11.7 are the diagrams of the spectral cross-section of near-
resonance PBs calculated by the formulas (11.4), (11.5), (11.6), (11.7) for n =2
(the a-line of the Lyman series), y = 100, and different charges of the nucleus of a
hydrogen-like ion: Z 6, 10, 28. The logarithmic scale on both axes is used.

It should be noted that for Z 6 the resonance frequency is 367.2 eV, for Z 10 it
is 1.02 keV and for Z 28 it is about 8 keV. In this case the natural line widths are
respectively: 5.35-107% eV, 4.13-10 > eV and 0.254 eV. Following from Fig. 11.7
are rather high value of the cross-section of near-resonance PBs and a narrow
spectral line.

Besides, it should be noted that the angular directivity of PBs of a relativistic
electron in the considered spectral range w < 7y c/r, is of a dipole nature in contrast
to ordinary Bs directed to a narrow cone with the axis parallel to the vector of the
relativistic electron velocity. This circumstance is rather important for the practical
use of near-resonance PBs.

The above case corresponds to special experimental conditions, when it is
possible to neglect all kinds of broadening, except for natural broadening caused
by spontaneous radiation.
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Fig. 11.7 The spectral cross-section of near-resonance PBs on a hydrogen-like ion calculated by
the formula (11.4) for different nuclear charges: solid curve —Z 6, dotted curve —Z 10, dashed
curve —Z 28

If PBs occurs on multiply charged ions in plasma, it is necessary to take into
account a number of factors defining the form and width of the spectral line, such as
the Doppler effect and the Stark effect. This requires a special consideration in each
specific case, however, the main features of the spectral cross-section of near-
resonance PBs will be retained, at least, at a qualitative level.

11.2.2 Resonance PBs in Crystals and Accompanying Radiative
Processes

As was noted in Chap. 1 (see Table 1.2), coherent PBs of the X-ray range in crystals
is called parametric X-radiation (PXR). This radiation has sharp spectral peaks in
case of relativistic electrons and fulfilment of the Bragg condition for virtual and
real photons (see the formula (5.18) and Fig. 5.8). The frequency of these spectral
maxima is determined by the formula (5.9). The spectral-angular yield of PXR
photons per unit trajectory length for an electron is given by the expression (5.8).

In contrast to the formula (5.8), in theoretical works on PXR (see, for example,
the paper [8]) it is usually supposed that for the dynamic polarizability of an atom
the high-frequency approximation can be used, when (see Appendix 1, the formula
(A.16)):

2N,

- (11.8)

Ooo ((,0) =

where N, is the number of electrons in an atom. This is connected with the
fact that in the X-ray range the frequency of radiation, as a rule, exceeds the
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eigenfrequencies of atomic electrons, except for those that are most strongly bound
with a nucleus. In other words, atomic electrons react to X-radiation as quasi-free
charges.

It should be noted that the formula (11.8) is true in the dipole approximation,
when radiation wavelength exceeds the average size of an atom. Otherwise X-ray
photon (real or virtual) “knocks out” an electron from an atom. This takes place in
the Compton effect and the collision ionization of atoms.

Using the formula (11.8) for description of PBs is equivalent to the approxima-
tion of dielectric permittivity of a medium by the plasma formula in the PXR
theory, which “slurs over” the single physical nature of these radiative processes
that practically describe the same phenomenon.

Experimentally, PXR was for the first time observed in the work [9] with the use
of 900 MeV electrons that were generated at the “Sirius” synchrotron (Tomsk,
Russia). As a target, a diamond crystal of thickness 0.08 cm was used. An electron
beam was directed along the (100) axis of the crystal. The X-ray detector was
located at the double Bragg angle 2 0 = 90° with respect to the electron velocity
vector v in the plane defined by the vectors v and 7, where the vector t corresponded
to the (220) crystallographic plane. For these conditions the photon spectrum
recorded by the photodetector consisted of sharp maxima at frequencies multiples
of photon energy of 6.96 keV. This set of resonance frequencies was determined by
the formula [9]:

(n) nmnc
wp = Zsing;’ (11.9)
where d is the distance between crystallographic axes on which conversion of a
virtual photon of the electron eigenfield to a real PXR photon occurred, 0p is the
Bragg angle, n =1, 2, 3,... is the natural number. (It will be recalled that the
Bragg angle is determined by the equation 2d sinfg = n A, J is the radiation
wavelength).

As a result of the carried out experiment, the angular distribution of PXR
photons was recorded that was in satisfactory agreement with predictions of the
theory of this phenomenon [10].

In the dissertation [11] an extensive investigation of PXR was carried out to
elucidate a possibility and optimum conditions of using this phenomenon for
development of an efficient X-ray source convenient for a number of applications
including medical ones.

Among medical applications, having a significant place is imaging of various
organs with the use of a PXR source, specifically, mammography. In this connec-
tion, in the cited work a special emphasis was made on generation of X-radiation
with the energy of 18 keV that is most convenient for mammographic purposes.

The comparison of the quality of X-radiation obtained with the use of a standard
mammography device and PXR is presented in Table 11.1.

Used for comparison was electromagnetic radiation with an average energy of
17.5 eV, the distance from the source to the receiver, both placed in the vacuum
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Table 11.1 Comparison of PXR and mammography device X-radiation qualities [11]

Quality PXR Mammography device
Energy tunability Continuous None

Polarized Yes No

Directionality 1/y 8.5 mrad 262 mrad

Limit of energy width Photon lifetime K, transition

Yield [photon/e/cm?] 2107 31078

chamber, was 50 cm. PXR was calculated for electrons with an energy of 60 MeV
and a silicon target of thickness 500 pm with diffraction of virtual photons on the
(220) crystallographic plane. Radiation from the mammography device was calcu-
lated by the Monte-Carlo method for electron energy of 30 keV and a molybdenum
anode placed at an angle of 15° to the electron beam.

Used in a standard X-ray source is a rather large flow of electrons (an electric
current of the order of several mA) that, colliding with the anode, cause character-
istic radiation and bremsstrahlung of a target. To image, characteristic radiation is
used that results from radiation filling of a vacancy in the inner atomic shell
produced by an incident electron.

Bremsstrahlung is an accompanying process. In case of nonrelativistic electrons
it has a broad pattern and, as a result, produces a background with a wide spectrum,
an effect of which on living tissues may be adverse.

Thus from the point of view of practical application a PXR source has the
following advantages in comparison with a standard mammography device: a
possibility of X-ray photon energy tuning, specified polarization of radiation,
narrow spectral-angular distribution, minimum bremsstrahlung background, and
high photon yield.

From the above it follows that in the context of medical applications, such as
imaging of a living organ, PXR improves an image contrast, reduces a radiation
doze received by a patient. The last circumstance is connected with a possibility to
obtain PXR photons of optimum energy for specified parameters of an organ under
study [12].

11.2.2.1 Accompanying Radiative Processes

In scattering of relativistic electrons in a crystal, besides PXR and characteristic
radiation, other types of radiative processes also occur [13]: coherent Bs, transition
radiation, channeled electron radiation, Cherenkov radiation.

Given in Table 11.2 is the comparison of three types of radiation from the above-
listed types.

Coherent ordinary bremsstrahlung is not considered here since for this brems-
strahlung much higher photon energy is characteristic.

Cherenkov radiation, on the contrary, is generated in a more long-wave
range than the X-ray range. For its generation the fulfilment of the condition
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Table 11.2 Comparison of three types of radiation [11]

Bandwidth Emission Energy Emission  Intensity [ph/s/
Source Aw/w direction tunability cone mrad?/1%bw]
Transition 50 % Forward Not practical ~ y~! 10°
radiation
Channeling 10 % Forward Not practical y~!/3 10
radiation
PXR 1% 208 Simple L 10

n(w) > ¢/v (v is the electron velocity) is necessary, where n(w) is the refractive
index of a medium at a specified frequency that for X-rays is of the order of one
and less than one.

11.2.2.2 Transition Radiation

Transition radiation (TR), by analogy with PBs, can be also considered as scattering
of the eigenfield of a charged particle by inhomogeneities of dielectric permittivity
of a medium. In case of TR arising at the media interface, reflection or refraction of
a virtual photon of the charge eigenfield with conversion to a real photon takes
place.

Thus PBs and TR belong to the same class of radiative processes that can be
interpreted as conversion of a virtual photon of the eigenfield of a charged particle
to a real photon either on atomic particles (PBs) or on optical inhomogeneities of a
medium (TR).

The formula for the spectral-angular distribution of energy of transition radiation
arising in case of incoming of a charged particle from vacuum (g; = 1) into a
substance with the dielectric permittivity &, = ¢ at a right angle to the flat surface
(Fig. 11.8) looks like:

dEY  Ppsin 2y (- )1+ Ve sin’ )

dodQ 472¢(1 — fPeos? x)2 (l + B/ & — sin® ;{) (b cosy+ve— sin2x) 7

(11.10)

2

where ¢ is the dielectric permittivity of a medium, k is the photon wave vector,
f = v/c, vis the particle velocity, e is the particle charge, y is the angle between the
vectors k and — v.

The formula (11.10) is obtained within the framework of classical electrody-
namics in view of boundary conditions for intensity of the total electric field (charge
field and radiation field) and the vector of electric induction at the media interface.

Transition radiation is polarized in the plane set by the electron velocity vector
and the wave vector of an emitted photon.

The frequency dependence of transition radiation energy (11.10) is defined by
the frequency dependence of the dielectric permittivity of a medium &(®). In the
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Fig. 11.8 Transition B
radiation in normal incidence & =1 &=¢
of a charged particle on the
vacuum/substance interface
e, v
X
|
x ‘\
o, k

high-frequency limit, when ¢ — 1, the transition radiation energy tends to zero
according to the expression (11.10). Really, in the case ¢ =1 the interface
disappears, and along with it transition radiation disappears too.

Let us consider limiting cases of the expression (11.10) that admit
simple analytical representation. At the interface of vacuum with an ideal conductor
|e| = oo, and the formula (11.10) is simplified to the form

dEY B e B* sin® y
dowdQy 2 c(1— B* cos? ;{)2.

(11.11)

It should be noted that the right side of the Eq. 11.11 formally does not depend
on frequency. Actually, the frequency boundary of applicability of this expression
is defined by a spectral range, in which a medium can be considered to be an ideal
conductor.

Shown in Fig. 11.9 is the angular distribution of transition radiation calculated by the
formula (11.11) for different values of the parameter § = v/c. The Y-axis is plotted in
atomic units in the logarithmic scale. It is seen that in the nonrelativistic case (f = 0.6)
the maximum of the angular dependence of radiation falls on  90°. With growing
particle velocity the TR maximum is shifted to the region of small angles . In the
ultrarelativistic limit radiation is directed antiparallel to velocity, that is, 0. It should
be noted that in this limit the charge electromagnetic field is similar to the plane wave
field, and the said angular dependence of TR corresponds to reflection of the particle
eigenfield back from the interface in case of normal incidence as it would be in
reflection of a free electromagnetic field according to the Snell law.

From Fig. 11.9 it follows also that the intensity of transition radiation increases
with charge energy. For nonrelativistic velocities intensity grows linearly with
energy as it follows from the formula (11.11).

For high velocities, when 7 >> 1 and transition radiation is mainly directed
antiparallel to velocity () < 1), the formula (11.10) can be represented as

2
XZ

2 +92

®)
dE &2

tr

dodQy, ~ mic

Ve—1
Ve+1

(11.12)
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Fig. 11.9 The angular distribution of transition radiation energy in case of electron incoming from
vacuum into an ideal conductor perpendicular to the interface for different electron velocities:
solid curve — = 0.6, dash-and-dot curve — § = 0.9, dashed curve — = 0.99; f =v/c

Hence it follows in particular that the width of the angular distribution of TR is

of the order of 1/y (see Table 11.2).
The energy of transition radiation of an ultrarelativistic particle integrated with

respect to the angle (in case of incoming from vacuum into a substance) to the
logarithmic accuracy is equal to

2

Ve—1
Ve+1

dEY  2¢2

=— 1ny, (11.13)
dw c

that is, increases with particle energy (y = E/mc?) logarithmically.

If the plasma formula for the dielectric permittivity of a substance
¢ = 1—(w,/o)” is used, for frequencies » >> w, following from the formula
(11.13) is the decrease of transition radiation energy with growing frequency as
w~*. This means that the main contribution to back transition radiation is made
by frequencies lower than the plasma frequency w, and of the order of it.

Thus TR of a charged particle with back radiation (Fig. 11.8) lies mainly in the
visible and ultraviolet wavelength ranges.

Transition radiation in case of escape of a charged particle from a substance into
vacuum (forward TR) is given by the formula analogous to Eq. 11.10, in which it is
necessary to make the replacement § — —f5. In this case y — 0, where 0 is the angle
between the vectors k and v (the radiation angle).
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In the ultrarelativistic limit f = v/c — 1 a corresponding expression for the
spectral-angular distribution of forward TR takes the form

for) 2
B 1

By~ _ @ Ve , (11.14)
dodQx  m?c (y_z + 92) (1 ) [e2 _ 92)

—1/2
where y = (1 —(v/ c)z) is the relativistic factor. Hence it follows that transi-

tion radiation of an ultrarelativistic particle in case of escape from a medium into
vacuum is concentrated in the region of small angles 6 < 1/y along the direction of
motion. The radiation energy in the region of low frequencies integrated with
respect to the angle, when the dielectric permittivity differs noticeably from one, is

(for) 2

E,. 2

i, _ Iny. (11.15)
dow c

In the plasma dielectric permittivity model the spectral range, in which the
expression (11.15) “works”, is determined by the inequation: w < w,. Within the
framework of this model in the range w, <<w <<y w), the formula (11.14) gives

(for) 2
dE;, 2 1
tr :iln(&)7 (11.16)
do nc w
and in the high-frequency region w>>7 w, we obtain
(for) 2
dE;, 1 4
I :e—(@) . (11.17)
do 6mc \ @
Thus in the case under consideration (y>>1) the frequency a),(,f"" ) = Y w, is the

upper frequency limit for forward transition radiation (in case of particle escape
from a substance into vacuum).

The expressions (11.16) and (11.17) indicate that the main contribution to
forward transition radiation is made by high frequencies @ ~ y w, in contrast to
the above back transition radiation, when in the spectrum the low-frequency range
o < w)p prevails.

The energy of forward transition radiation of an ultrarelativistic particle
integrated with respect to the frequency is given by the simple formula

62

BV = L (11.18)
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Here the Planck constant is introduced to separate the expression for the photon
energy at the plasma frequency /iw),, the characteristic value of which in devices
based on transition radiation is 20 eV.

From the expression (11.18) it follows that the total energy of TR of an
ultrarelativistic charged particle (f = v/c — 1) radiated forward in the direction
of its motion grows linearly with particle energy. The linear growth of the total
energy of forward TR is caused by two reasons: the increase of the spectral energy
(Eq. 11.16) with increasing relativistic factor y and the growth of the upper
frequency limit.

An important role in technical applications is played by X-ray transition radia-
tion (XTR) of relativistic and ultrarelativistic charged particles. In the X-ray range
the dielectric permittivity of a medium is to a good accuracy given by the plasma
formula. Intensive forward XTR arises in case of escape of a charged particle from
a target. Then the total radiation energy is proportional to the relativistic factor 7y
(see the formula (11.18)), and the spectrum extends up to frequencies of the order of
yw,. Thus the XTR energy can serve as a measure of the energy of a charged
particle crossing the interface between media with different dielectric permittivities.
This opens up a possibility to measure energy of elementary particles with the use
of XTR.

The convenience of use of PXR of relativistic electrons in practical applications
in comparison with TR is connected with the fact that the angular directivity of
PXR is not rigidly bound with the direction of electron motion, but can be varied in
a specified manner by changing the Bragg angle (see Table 11.2).

To optimize the PXR source for mammographic applications, in the work [11]
experimental investigations of PXR were carried out with a 60 MeV linear acceler-
ator in a photon energy range from 17 to 20 keV. The value of electron current
varied from 10 nA to 1-1.5 pA. As targets, graphite and LiF, Si, Ge, Cu, and W
single crystals were used. The spectral widths and PXR photon yield in conversion
of virtual photons to real photons on different crystallographic planes of the above-
listed crystals were measured. To determine the spectral width of a PXR line and
photon energy, as a rule, the Si Amptek XR-100CR X-ray detector with a resolution
of 350 eV for a photon energy of 17.5 keV and an area of 9 mm?* was used.

A typical diagram of the experimental system used in the work [11] is given in
Fig. 11.10 for a LiF target and the Bragg angle 6 = 15°.

In the case that the calculated line width was found to be so narrow that it could
not be recorded with the use of the X-ray Si detector, for this purpose near-
absorption edge transmission equipment was used. By this means the FWHM of
the PXR spectrum was determined for a silicon target in conversion of a virtual
photon on the (400) crystallographic plane (134 eV at a photon energy of 9.0 keV)
and a silicon target in conversion of a virtual photon on the (220) crystallographic
plane (540 eV at a photon energy of 17.7 keV).

As aresult of the carried out experiments, it was shown that materials consisting
of light atoms (graphite, LiF) are more suitable for generation of PXR photons since
in them X-radiation is absorbed weaker, the bremsstrahlung background is less, and
the cross-section of electron scattering is less. The highest yield of PXR photons
was recorded in graphite, in a LiF crystal there was a narrowest emission line.
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Fig. 11.10 The typical diagram of the experimental system for recording PXR [11]

Presented in Fig. 11.11 is the PXR spectrum measured on a LiF crystal, resulting
from conversion of virtual photons of the eigenfield of an electron beam with an
energy of 56 MeV on the (220) crystallographic plane.

From the given figure it is seen that in the actual spectral range (17-20 keV)
there is a narrow PXR peak with a low background of bremsstrahlung.
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Fig. 11.11 The measured PXR spectrum from a LiF target at the Bragg angle 05 = 15° [11]

Figure 11.12 demonstrates possibilities of imaging with the use of a PRX source
based on a LiF crystal and a CCD camera [11].

The comparison of images obtained with the use of PXR and with the use of
bremsstrahlung (from the same target) shows that in the first case much higher
contrast is achieved. Images of a small fish (a biological object), a plastic electric
switch, and a number of metal objects were also obtained.

In individual experiments the temperature of a target crystal was recorded, and it
was shown that it grows rapidly under the action of an electron beam. Based on the
carried out analysis, a conclusion was drawn that crystal cooling and short exposure
time are required when using PXR for imaging if the beam current exceeds several pA.

Thus in the work [11] it was shown that with the use of a PXR source it is
possible to generate wavelength- (photon energy)-tunable X-radiation with a nar-
row spectrum, with intensity sufficient for imaging objects of a different nature with
the use of a X-ray CCD camera in a reasonable exposure time and with a high
enough contrast.

11.2.3 PBs on Nanostructures

Considered in Chap. 8 of this book was PBs on nanostructures: atomic clusters,
metal nanoparticles, and graphene. It was shown in particular that the spectrum of
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Fig. 11.12 At the left: the photo of a computer chip of length 4 cm with a separated square site of
1.6 cm; at the right: PXR of the image of the separated site of the computer chip obtained with the
use of a (200) LiF target, the electron current is 3.2 pA, the exposure time is 25 s, the active surface
of the CCD camera is 3 x 4 cm [11]

coherent PBs on graphene contains sharp maxima, the frequencies of which in the
general case are determined by the formulas (8.64) and (8.65), and for the zero
(relative to the normal of the graphene plane) angle of electron incoming they are
determined by the more simple formula (8.66). The nature of these maxima is
connected with coherent interaction of an incident electron and a two-dimensional
graphene crystal.

As seen from the mentioned formulas, the resonance frequency of PBs on
graphene is defined both by the reciprocal lattice vector g and by other problem
parameters (see Fig. 8.13): the electron incoming angle v, the radiation angle «, and
the electron velocity v = f ¢ (cis the velocity of light in vacuum). In case of the zero
incident angle, the dependence on the incoming angle v, naturally, disappears (see
the formula (8.66)).

So, operating the above parameters, it is possible to change the resonance
frequency of coherent PBs on graphene, which is very important for possible
practical applications of the phenomenon under consideration.

A criterion for existence of resonance frequencies was also introduced that for
the zero angle of electron incoming is given by the inequations (8.68). From these
inequations it follows in particular that a necessary condition of existence of a
resonance frequency is radiation of a PBs photon to the top hemisphere (Fig. 8.13),
in other words, forward along the direction of electron motion (cos o>0). It should
be noted that the inequations (8.68) can be rewritten in the form that is explicit in
relation to the radiation angle o:
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pl—1
arccos 5 >0 >0. (11.19)

It should be noted that the argument under the arc cosine sign on the left side of
Eq. 11.19 is less than one for f>1/3, that is, an incident electron should be fast
enough, but not necessarily relativistic:

v>§. (11.20)

Following hence is the condition for the minimum kinetic energy of an electron
T, at which sharp resonances in the spectrum of coherent PBs on graphene are still
possible:

T>30.968 eV. (11.21)

For an ultrarelativistic electron (f — 1) the inequations (11.19) give ©/2 > o
> 0, that is, the resonance frequency in the spectrum of coherent PBs on graphene
exists for any radiation angle o.

The calculated spectra of different Bs channels in crossing the graphene plane by
a fast electron are given in Figs. 8.19, 8.20, and 8.21 for different values of problem
parameters. From the presented plots it follows that sharp resonances in the
spectrum of coherent PBs on graphene (in the X-ray wavelength range) take
place for nonrelativistic electrons and wide radiation angles. These characteristic
features of the process under consideration make it very promising for various
applications.

Presented in Fig. 11.13 is the dependence of the resonance frequency of coherent
PBs on graphene on the electron velocity at the zero incoming angle for three values
of the radiation angle o in scattering of a virtual photon by the crystallographic
plane corresponding to the reciprocal lattice vector g (1,1).

It is seen that for each radiation angle « there is its minimum electron velocity,
below which there is no sharp resonance in the spectrum of coherent PBs on
graphene. The value of this velocity for the given radiation angles lies in the
nonrelativistic range and decreases with decreasing angle «. Besides, according to
the formula (8.69) that can be represented as (y is the incoming angle, see
Fig. 8.13):

c

Vinr(y = 0) (11.22)

3 cosa’
for a specified radiation angle o there is an electron velocity, at which the resonance
frequency becomes infinite, that is, sharp peaks in the spectrum of coherent PBs on
graphene are absent.

So, operating the values of problem parameters (the electron velocity and the
angular characteristics), it is possible to control the value of resonance frequency.
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Fig. 11.13 The dependence of the resonance frequency of coherent PBs on graphene on the
electron velocity at the zero incoming angle for three values of the radiation angle: solid curve —
o = 30°, dotted curve — oo = 45°, dashed curve o. = 60°, the reciprocal lattice vector is g (1,1)

To obtain intensive radiation in the UV range, it is possible to use PBs on metal
nanoparticles placed in a dielectric medium. The calculation and analysis of the
cross-section of this process for a case of silver nanospheres in glass are carried out
in the Sect. 8.2 of this book in the spectral range corresponding to excitation of
dipole plasmons on the surface of nanoparticles.

It was shown that the maximum of the spectral PBs cross-section caused by
excitation of a surface plasmon depends on the radius of a nanoparticle. In the
considered case the position of the spectral maximum is shifted from the region of
the near-IR range to the region of the visible spectrum adjacent to the boundary
with the UV range in case of reduction of the radius from 90 to 30 nm.

As follows from the formula for the frequency of the spectral maximum (8.33)
caused by excitation of a dipole surface plasmon, when placing nanoparticles in a
medium with lesser dielectric permittivity, the spectral maximum of PBs will be
shifted towards high photon energies [14].

Presented in Fig. 11.14 are the results of calculation of the spectrum of PBs of
electrons scattered by silver nanoparticles of different radii placed in a substance
with the refractive index n = 1.33. It is seen that in this case the spectra are
somewhat shifted to the region of higher values of photon energies in comparison
with the case n = 1.5.

The X-ray and near-UV radiation sources under development can be used in
X-ray lithography, medical diagnostics, microelement analysis of a substance in
chemical and biological investigations. The advantages of such sources consist in a
possibility of smooth emission line tuning and compactness of the system, which is
caused by using accelerators for relatively low (in comparison with synchrotrons)
electron energies. The trends of development of investigations in the field of X-ray
sources are directed to creation of compact laboratory sources for industrial and
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Fig. 11.14 The spectrum of PBs of an electron (v 30 a.u.) scattered by silver nanoparticles in a
substance with the refractive index n = 1.33, the radiation angle is 30° for different nanoparticle
radii: solid curve — 30 nm, dotted curve — 15 nm, dashed curve — 10 nm

diagnostic applications (a tabletop source). The vacuum ultraviolet range is inten-
sively mastered, which is dictated, first of all, by biological investigations. The
development of nanomaterial industry requires the development of efficient
methods of diagnostics of such materials, so the intensification of research in this
field should be expected.
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Chapter 12
Conclusions

12.1 General Provisions

This monograph considers polarization bremsstrahlung on atoms, nanostructures
and solids with the use of the consistent quantum-mechanical approach in various
regions of parametric variation. The cases both of spontaneous and induced PBs (in
electron scattering by an atom/ion in the external field of radiation), PBs of incident
particles with an own electron core are analyzed in details, the theoretical methods
of description of this phenomenon and the experimental facts confirming a neces-
sity to take into account PBs in a number of important physical situations are
presented.

The main conclusion that can be drawn on the basis of the carried out consider-
ation is that PBs is a fundamental radiative process resulting from scattering of
virtual photons of an IP eigenfield by electrons of a target that should be taken into
account for obtaining a full physical picture of Bs with participation of structural
particles [1].

The material presented in the book demonstrates that the PBs concept covers a
wide range of collisional-radiative phenomena that were earlier considered inde-
pendently of one another, but actually representing the realization of PBs in various
concrete physical situations.

According to its name, PBs of an electron on a target atom is defined by the
generalized dynamic polarizability of a target «(w,q) depending both on the
radiation frequency w and on the wave vector q transferred to the target, so various
methods of calculation of this value play a key role for quantitative description of
the process under study. Together with quantum-mechanical methods of calculation
of dynamic polarizability, presented in the book are simple semiclassical methods,
such as the local plasma frequency approximation [2], that are to a great extent
based on physical intuition, but give (under certain conditions) satisfactory quanti-
tative description.

When going to PBs on ensembles of atoms/ions (in plasma, nanostructures and
solids), for obtaining a quantitative result it is necessary to sum the amplitudes of
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PBs on individual atoms with corresponding phase multipliers, which allows
correct taking into account interference effects in the cross-section of PBs on
nanostructures and in solids. Since (within the framework of the classical picture)
PBs is defined by high impact parameters in scattering of an electron by a target
with an electron core, the role of the above interference effects can be rather great.
This is in contrast with ordinary (static) Bs, for which small impact parameters are
characteristic, and the contribution of coherent interactions to the total SBs cross-
section, as a rule, is insignificant.

For quantitative description of collective effects in PBs in plasma, an approach
was developed that is based on the use of the dynamic form factor of a medium
representing the spatio-temporal Fourier transform of the density-density correlator
for plasma particles. The same approach can be used for PBs in other natural media
and nanostructures in the high-frequency limit, when radiated frequency exceeds
considerably the eigenfrequencies of target electrons.

12.2 PBs on an Atom

Within the framework of the consistent quantum-electrodynamic approach the
expression was obtained for the amplitude of PBs of a relativistic incident particle
on a one-electron atom with an arbitrary nuclear charge Z < 137 in a wide spectral
range.

For frequencies fim<<mc? a rigorous passage to the limit in case of a nonrela-
tivistic atomic electron was carried out, and the expression was obtained for the
amplitude of PBs in the terms of the operator of electromagnetic field scattering by
an atom, taking into account excitation and ionization of an atomic electron.

The equivalent photon method in calculation of the amplitude of PBs of a
charged Born particle scattered by a multielectron atom (ion) was justified.

In the spectral range I < </iw<<m c? (I is the characteristic ionization potential of
atom) the expression for the total PBs cross-section in terms of the dynamic form
factor of a target was obtained that is convenient for carrying out numerical
calculations.

The expression for the spectral intensity of near-resonance PBs for a case of the
band structure of the energy spectrum of a target was obtained.

The regions of essentiality of elastic and inelastic channels of polarization and
static mechanisms of bremsstrahlung were determined.

Based on the analysis of the obtained expressions for the cross-section of total Bs
of a relativistic charged particle, it was found that:

— The angular distribution of photons in the polarization channel of Bs of a
relativistic IP in the region of essentiality of its integral cross-section (for
frequencies p,vo > hiw, p, is the characteristic momentum of an atomic electron,
Vo is the initial IP velocity) is of a dipole nature;
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— In the frequency range /<< hw <<p,vq the spectral cross-sections of Bs on a
neutral atom by the polarization and static channels are approximately equal
(accurate to the logarithmic factor);

— The spectral cross-section of polarization Bs grows logarithmically with the
energy of relativistic IP;

— In the spectral range p,c<< hw <<y*p,c (y >>1 is the relativistic factor) the
angular distribution of bremsstrahlung photons emitted by the polarization
channel gets the orientation along the IP velocity vector;

— In the frequency range %o < p,vo the main contribution to the polarization
channel is made by elastic processes (without excitation or ionization of a
target), and if Ziow > p,vo, the main contribution is made by inelastic processes.

In the Born approximation for IP motion and in the Brandt-Lundqvist model [2],
for the polarizability of the electron core of a target the expression for the PBs
cross-section was obtained in the form of a local density functional for bound
electrons. With the use of the Thomas-Fermi model for electron density of an
atom it was shown that the spectral R-factor — the ratio of the cross-sections of Bs
by the polarization and ordinary (static) channels — reaches its maximum value
(of the order of unity) at the frequency Ay, =~ Z m e* / h? (Z |e| is the charge of an
atomic nucleus).

The universal description of incoherent PBs of a fast charged particle on a
multielectron atom is given on the basis of approximate scaling of the reduced
Hartree-Fock profile of X-ray scattering, for which there is an extensive database
allowing the calculations of corresponding cross-sections for all possible neutral
atoms.

12.3 PBs of Fast Electrons in Plasma

Based on the microscopic consideration, the theory of PBs of a relativistic charged
particle in partially ionized plasma is constructed in view of radiation on the Debye
sphere and the influence of a medium on an electromagnetic field.

It is shown that the process cross-section can be expressed in terms of the
dynamic form factors of plasma components describing the interaction between
different kinds of particles, which allows taking into account mutual screening of
plasma components with different charge signs in the process of bremsstrahlung.

The developed approach makes it possible in a single formalism to describe Bs
of a fast charged particle in plasma with transfer of the energy-momentum excess to
different plasma excitations including collective degrees of freedom.

As aresult of the carried out analysis of the obtained cross-sections, it was found
that:

— Studied earlier in the works of V.N. Tsytovich and A.V. Akopyan [3], transient
Bs and polarization Bs on the Debye sphere around an ion in plasma have the
same physical nature (practically coincide);
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— PBs in plasma (with not too high concentrations) is not subject to the influence of
the density effect suppressing static Bs of relativistic IP in the frequency range
0 <7 Wpes

— The influence of a medium on the cross-section of PBs in plasma counts only in
the logarithmed expression, which leads (for relativistic IP) in the frequency
range o <y wy, to leveling of logarithmic increase of the cross-section with
energy.

Bs of fast electrons in dense plasma in the hard-sphere model was investigated in
a wide spectral range, including the polarization and static channels of the process
and their interference. The cases of fully and partially ionized plasma were consid-
ered. It was shown that the spectra of total Bs have maxima, the position and shape
of which form depend on the density of plasma and the degree of ionization of a
plasma ion.

12.4 Quasi-Classical Theory of PBs of Thermal Electrons
on Atoms and Ions in Plasma

Within the framework of the local plasma model for target polarizability, a semi-
quantitative approach to description of polarization effects in strongly inelastic Bs
on a multielectron ion was developed.

Based on the developed approach, the analysis of the contribution of the polari-
zation channel to spectral and total effective radiation was carried out for quasi-
classical and quantum IP motion in view of penetration of an IP into the target core
for different degrees of inelasticity of the process.

The generalized rotation approximation was constructed that makes it possible
to estimate the value of the PBs cross-section (within the framework of the statisti-
cal model of a target ion) in a common manner for all nuclear charges and degrees
of ionization.

In the high-frequency limit the analytical expression having a visual physical
interpretation was obtained for total effective radiation of a quasi-classical IP on a
multielectron ion in view of the polarization channel. The generalization of the
target “stripping” effect to the case of classical IP motion is given.

A simple expression for total bremsstrahlung loss of thermal plasma electrons on
the Debye cloud around an ion in plasma was obtained that extends the previous
result for PBs of straight-flight superthermal particles and covers a case of nonideal
plasma. It is shown that the ratio of the contributions of the polarization and static
channels is a weak function of plasma electron density for a fixed value of the
plasma perfectness parameter.

On the basis of the carried out analysis it was found that:

1. The contribution of the polarization channel to the cross-section of strongly
inelastic Bs is maximum near the frequency of ionization of a target ion. The
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maximum value of the R-factor (the ratio of the values of the channel
contributions) within the framework of the Brandt-Lundqvist model for the
polarizability of the ion core is approximately equal to two. The spectral
R-factor, growing in the power manner in the region of low frequencies, sharply
falls after reaching the extreme value due to the effects of IP penetration into the
target core. The width of a corresponding maximum grows with inelasticity of
the process. For characteristic frequencies of the order of a ionic charge
(in atomic units) the R-factor is 10-15 %.

2. Interchannel interference in the spectral dependence of the Bs intensity is most
essential near the potential of ionization of a target, being at extrema more than
60 % of the total intensity of the process. For frequencies lower than the
ionization threshold, interference is of a destructive nature, for frequencies
higher than the ionization threshold, it is of a constructive nature. The role of
interchannel interference decreases with decreasing inelasticity of IP scattering
since in this case the spatial regions of formation of Bs channels are more
separated.

3. There is an optimum ionic charge (Z” "), at which the value of the spectral
R-factor at a frequency multiple of the characteristic frequency of ionization of
an ion in the Thomas-Fermi model is maximum. This value Z{”' decreases with
growing Bs frequency and grows with increasing ionic charge.

4. The integral with respect to the magnitude of the radius vector in the expression
for the polarization bremsstrahlung loss of a quasi-classical IP converges at the
lower limit of integration (in contrast to the divergent integral of the static
channel), which reflects taking into account IP penetration into the electron
core of a target. Thereby for polarization Bs the impossibility in principle of
consistent calculation of bremsstrahlung loss by the static channel within the
framework of classical physics is smoothed.

5. The values of the total static and polarization effective radiations calculated
within the framework of the generalized rotation approximation are approxi-
mately equal up to IP energies of the order of an ionic charge (in atomic units)
for targets with a low degree of ionization.

6. The polarization bremsstrahlung loss of thermal electrons on the Debye cloud
around an ion in ideal plasma is about 10-15 % of the value of “static”
bremsstrahlung loss and can be comparable with the latter only in case of
nonideal plasma.

12.5 PBs of Fast Particles in a Solid

The general expression for the cross-section of PBs in a solid in terms of the
structure factor of a medium is obtained, with the use of which it is possible to
describe PBs in a single crystal, a polycrystal, and an amorphous substance. In case
of a polycrystal, in the expression for the process cross-section averaging over the
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direction of the reciprocal lattice vector was carried out, and in an amorphous
medium the pair correlation function of medium atoms was used.

It is found that in the general case the cross-section of PBs in a crystal can be
represented as the sum of two summands: coherent and incoherent. These
summands reflect the nature of interaction of an incident electron with the crystal
lattice of a target. In the coherent case a momentum equal to the momentum of the
reciprocal crystal lattice is transferred to the target, and the radiated frequency is
found to be fixed for specified values of problem parameters. The incoherent part of
the cross-section is analogous to the cross-section of PBs on an individual atom in
view of the Debye-Waller factor.

It is shown that the coherent part of PBs of a relativistic electron in a single
crystal in the X-ray range of frequencies is nothing but parametric X-radiation
theoretically predicted by Ya.B. Fainberg and N.A. Khizhnyak and experimentally
discovered by V.G. Baryshevsky with co-authors [4].

As a result of investigation of PBs of nonrelativistic particles in polycrystals [5],
it was shown that in the region of low photon energies w << 27 v/a (o is the crystal
lattice constant), when the coherent component of the process prevails, PBs in a
polycrystal is suppressed in comparison with radiation on an individual atom. This
suppression is connected with the fact that low momenta transferred to the target
and defining PBs on an isolated atom do not make a contribution to coherent
scattering of a fast ion by a crystal lattice in the low-frequency range.

In the intermediate region of photon energies @ > 2nv/a (2-6 keV) a well-
discernible stepped structure in the PBs spectrum takes place — “frequency steps”.
This structure is connected with coherent scattering of an incident particle by a
crystal lattice, in which a momentum equal in magnitude to one of the reciprocal
lattice vectors is transferred to a target. A frequency step results from “turning-off”
of the contribution of one of the reciprocal lattice vectors (g) to the process, when a
minimum transferred momentum defined by the conservation laws in magnitude
exceeds g. The position and the value of frequency steps reflect the features of the
structure of a target, depend on the incident particle velocity and the angle of photon
emission.

In the high-frequency spectral region @ >>2nv/a (® > 8-10 keV) the inco-
herent component of PBs prevails, and the radiation spectrum approaches the
spectrum on an isolated atom.

The consistent quantum-mechanical calculation of the intensity of PBs of a
relativistic electron in an amorphous medium has shown the important role of the
effect of suppression of radiation of a fast charged particle. This effect is a result of
destructive interference of the contributions to the process amplitude from different
atoms of a substance that are chaotically arranged in the region of formation of an
elementary radiative act. According to this physical picture, the suppression of PBs
should be the more essential, the more atoms of a medium are in the region of
formation of radiation, that is, for low frequencies, high IP energies and small
radiation angles. This conclusion is confirmed by the results of the numerical
analysis carried out in this paper for a number of targets and different problem
parameters.



12.5 PBs of Fast Particles in a Solid 341

In the book different types of PBs of a fast hydrogen-like ion in a single crystal
are calculated and analyzed. It is shown that radiation results from scattering of
eigenfields of colliding charges to a bremsstrahlung photon by bound electrons of a
target and an IP. The presence of a crystal structure results in the fact that the
process of radiation can proceed both due to coherent interaction of an IP with a
target and in an incoherent manner. As a result, four types of PBs take place:
coherent and incoherent PBs on target electrons and coherent and incoherent PBs
on an IP electron. In the coherent case a wave vector equal to one of the reciprocal
lattice vectors g is transferred to a single crystal. In this case radiation occurs at a
fixed coherent frequency (with specified g, IP velocity and angle of photon
emission). The frequency of incoherent PBs is not fixed, and the intensity of
radiation is maximum in the near-resonance region near the eigenfrequencies of a
bound IP electron. From the obtained expressions it follows that with growing
charge of the IP nucleus the contribution of PBs by the second channel to the total
radiation decreases, and the spectral range of its essentiality is shifted to the region
of higher frequencies. At the same time the relative value of the considered types of
PBs weakly depends on the charge of nuclei of target atoms, with increase of which
the intensity of each of them grows proportionally.

By the example of a target of a copper foil, Bs of an electron with an energy of
10-30 keV was studied theoretically and experimentally in view of the ordinary and
polarization channels, interchannel interference, photon absorption, scattering and
loss of electron energy in a target. It is shown that with growing thickness of a target
the nature of the Bs spectrum changes. For a thin target, with increasing photon
energy a monotone decrease of Bs yield takes place with a peculiarity near the
threshold of ionization of the electron shell of target atoms due to the influence of
PBs. In case of a thick target the Bs spectrum is a curve with a maximum that is well
pronounced if the thickness of the target is more than the photon and electron path
length. With increasing initial electron energy the position of a spectral maximum is
shifted to the region of high photon energies. The physical cause of appearance of
maxima in the spectrum of Bs from a thick target consists in the competition of
influences of photon absorption and energy loss by an electron on the Bs process.

It is found that with growing target thickness the yield of Bs photons reaches
saturation faster for lower photon energies. For example, for 71w = 1.36 keV and
an initial electron energy of 30 keV the “saturation thickness” is about 0.4 pm. With
decreasing initial electron energy the “saturation thickness” increases a little.

The contribution of the polarization channel is most essential near the threshold
of ionization of the L-shell of target atoms, that is, in the considered case for a
photon energy about 1.5 keV. The variation of the initial energy of an electron beam
results in a change of the relative PBs contribution to the total photon yield (in view
of interchannel interference) within 45—65 %, and the maximum of the polarization
contribution is reached for the energy Ey = 30 keV. With growing photon energy
the PBs contribution decreases, so for 7w = 10 keV it does not exceed 10 %. The
change of the viewing angle B rather weakly influences the PBs contribution to the
total photon yield. The calculation shows that with a growth of the angle 3 from 10°
to 80° the PBs contribution decreases approximately by 15 %.
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The carried out analysis indicates that the contribution of the polarization
channel depends weakly on the thickness of a target.

The experimental identification of the PBs contribution to the total photon yield
in the considered case is complicated by the fact that the spectra of PBs and Bs of a
nonrelativistic electron, generally speaking, are similar. The distinction in spectral
curve shapes is most essential for thin targets near the threshold of ionization of
atomic shells, where Bs is masked by a strong maximum of characteristic radiation.
Beyond this spectral region the PBs contribution can be recorded by carrying out
absolute measurements of the Bs spectrum. An alternative approach to investiga-
tion of PBs can be based on taking the spectra of radiation in the region of the
threshold of ionization of atomic shells with a temporal resolution for separation of
a practically momentary Bs response from characteristic radiation with a finite
relaxation time.

12.6 PBs on Nanostructures

Based on the carried out analysis of radiation of electrons on nanoclusters, it is
possible to draw a conclusion about essentiality of cooperative effects in Bs of a fast
(including relativistic) charged particle scattered by a polyatomic cluster in a wide
range of frequencies. These effects caused by constructive interference of
contributions of atoms to the process by the polarization channel result in nonlinear
growth of the PBs intensity as a function of the number of atoms in a cluster. At the
same time for the ordinary (static) mechanism of Bs the contribution of different
atoms to radiation is incoherent, which is caused by the smallness of impact
parameters, on which ordinary Bs is formed. The value of cooperative effects as a
function of the number of atoms in a cluster is investigated. The dependence of the
number Ny, (beginning with which the nonlinear growth of the PBs intensity
ceases) on the main problem parameters is established. In particular, it is shown
that for relativistic IP the value N, strongly grows with decreasing radiation angle.

It is shown that cooperative effects result in considerable modification of the
main characteristics of Bs on a cluster in comparison with a monatomic case. For
example, in the high-frequency range with growing number of atoms the PBs
pattern is narrowed, and for large enough clusters the angular dependence of PBs
of relativistic particles becomes nonmonotonic: a maximum appears at nonzero
radiation angles.

With growing IP energy the maximum of the spectral distribution of PBs on a
cluster is shifted to the region of high frequencies. The form of the high-frequency
part of the spectrum in the relativistic case strongly depends on the radiation angle.
With decrease of this angle, the Bs intensity with growing frequency decreases
much more slowly than for wide angles.

An analytical expression was obtained for the spectral-angular cross-section of
PBs of a charged particle scattered by a metal nanosphere placed in a dielectric
medium. The derived formula contains the cross-section of scattering of an
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electromagnetic field, for which in the developed approach the result of the Mie
theory is used.

Within the framework of the proposed method of calculation, polarization
bremsstrahlung on a silver sphere with a radius from 10 to 100 nm in glass and
other matrices was analyzed. A wide range of incident electron velocities from 1 a.u.
to the value equal to the velocity of light in a matrix material was considered. The
calculations of the PBs cross-section differential with respect to the frequency and
the radiation angle are carried out in the region of excitation of a plasmon resonance
on the surface of a silver nanosphere (the photon energy is 1-4 eV), where the
spectral characteristics of the process are most sensitive to the target and matrix
parameters and the polarization channel of radiation prevails. The main spectral,
velocity, and angular regularities of the process under consideration that are neces-
sary for development of PBs spectroscopy are established. In particular, it is shown
that the position and width of the spectral maximum in the PBs cross-section are
defined by the radius of a nanosphere, the dielectric permittivity of a matrix, and the
velocity of a scattered electron. It is shown that for large enough sphere radii in the
high-frequency part of the PBs spectrum an additional maximum appears that is
caused by excitation of quadrupole plasmons.

The carried out analysis makes it possible to establish an optimum region of
parametric variation, in which the use of PBs spectroscopy for investigation of the
structure and physical properties of metal nanoparticles in a dielectric medium is
most promising.

Polarization bremsstrahlung and static (ordinary) bremsstrahlung (SBs) of a fast
electron scattered by graphene are investigated theoretically. Coherent and inco-
herent interactions between an electron and a two-dimensional graphene lattice as
well as the dynamic polarizability and the form factor of the core of a carbon atom
are taken into account.

It is shown that the spectral features of the PBs cross-section depend on the
electron velocity, the angle of IP incidence, and the radiation angle. In the said
region of problem parameters sharp maxima in the PBs spectrum are predicted. For
the normal incidence of an electron on the graphene plane the analytical description
of resonance frequencies as functions of velocity and radiation angles is obtained.

In the low-frequency range coherent PBs is prevailed by the process without
momentum exchange between an IP and graphene. In this range coherent PBs is
comparable with or higher than incoherent PBs. Our analysis shows that prevailing
channels of bremsstrahlung of a fast electron on graphene are coherent PBs and
incoherent SBs.

12.7 Induced Bremsstrahlung Effect in an Electromagnetic
Field

The induced bremsstrahlung effect in a near-resonance laser field in strongly
inelastic scattering of electrons by ions with a core is calculated and analyzed,
including the multiphoton process. The contributions of the ordinary (static) and
polarization Bs mechanisms to the process cross-section are taken into account.
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Particular attention is given to interference effects caused by interaction of the

channels.

It is shown that IP penetration into the target core strongly influences the

interference effects.

As a result of the carried out investigations, it was found that:

Interference between the static and polarization channels in near-resonance Bs
results in asymmetry of the process spectral line shape, so in the low-frequency
wing of the line a “dip” appears;

The form and depth of the spectral “dip” essentially depend on the intensity of
the external field in the region of its “saturating” values and on the energy of a
resonant transition;

An interference “dip” occurs in the dependence of the cross-section of near-
resonance induced Bs on the amplitude of the external electromagnetic field with
negative detuning of radiation frequency from resonance (® < ®);

The effects of IP penetration into the target core result in dependence of the
process spectral line shape on the angle between the vector of the initial IP
velocity and the vector of the electric field of near-resonance radiation, so
interference effects are most pronounced in case of perpendicular orientation
of the said vectors and are strongly reduced in case of their parallel orientation;
In the cross-section of near-resonance Bs differential with respect to the angle of
IP scattering a peculiar kind of “inversion” of process spectral line shape
asymmetry occurs as the angle of IP scattering increases due to the change of
the sign of the nondipole polarization potential;

Based on the quantum calculation, the conclusion of the quasi-classical consid-
eration about the most manifestation of interchannel interference in the
integrated cross-section of inelastic scattering is confirmed for perpendicular
polarization of the external field expressed in the asymmetry of the spectral
cross-section and the presence of spectral dips;

The role of exchange effects in the spectral cross-section differential with
respect to the angle of IP scattering is analyzed;

The features of the spectral dependences of the cross-section integrated with
respect to the angle of IP scattering with absorption and emission of a photon for
different orientations of the vector of the external field strength in relation to the
initial IP velocity are investigated.

12.8 Experimental Investigation of the Polarization Channel
in Bremsstrahlung

The most dramatic proofs of essentiality of PBs were obtained in experiments with
relativistic electrons scattered by solid-state targets, both single-crystal and poly-
crystalline [6] and amorphous, as well as in Bs on atoms in the region of a giant
resonance in photoabsorption [7].
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In case of a single-crystal target, when, as a rule, instead of PBs the term
parametric X-radiation is used, sharp maxima in the radiation spectrum were
recorded that are caused by conversion of virtual photons to real photons on the
crystallographic planes in fulfilment of the Bragg condition. The width and inten-
sity of these maxima were found to be comparable with the spectral width and
intensity of characteristic radiation [8]. In contrast to unpolarized characteristic
radiation having a wide angular distribution and a fixed central frequency of a
maximum, PBs is polarized and has a narrow pattern, and the central frequency of
its spectral maximum can be controlled by changing the problem parameters.

In the experimental spectra of relativistic electrons in polycrystals maxima are
also found that are defined by the Bragg condition for a specified radiation angle
[9]. In contrast to the case of a single-crystal target, these maxima have a large
width and much lower intensity [10] that, however, in the region of the maximum
exceeds the intensity of ordinary Bs (see Fig. 9.9).

The absolute measurements of the cross-section of Bs of nonrelativistic electrons
on atoms of noble gases [11] in a wide spectral range from 5 keV to the kinematic
limit have shown that the obtained results are not described by the standard Bs
theory (without considering the polarization channel) (see Figs. 9.4, 9.5 and 9.6). In
the work [11] it is shown that in the considered case taking Bs into account
improves the agreement between experimental and theoretical data. Based on the
carried out analysis, the conclusion was drawn that the obtained experimental
dependences are unambiguously indicative of the considerable contribution of the
polarization channel to Bs of fast electrons on free atoms.

The absolute measurements of the yield of bremsstrahlung photons in scattering
of an electron with the energy of 53 keV by gold films of different thicknesses were
carried out in the work [12] for a radiation angle of 153°. In this case it was found
that the theory of ordinary Bs (without considering PBs) gives a good agreement
with the experiment in contrast to the results of the work [11] on measurement of Bs
on free atoms and experiments on emission of relativistic electrons on metal foils
[10]. It should be noted that the theoretical data in the paper [11] were obtained
within the framework of the atom “stripping” approximation and, as the authors of
the paper note, for verification of the obtained conclusions a more consistent
theoretical approach is needed. Such an approach for a polycrystalline target is
described in the Sect. 5.3 of this book. Besides, for detection of “frequency steps” in
the spectrum of PBs of a nonrelativistic charged particle scattered by a polycrystal
(see Figs. 5.3 and 5.4) high enough resolution of the photodetector is necessary.
Otherwise the said structure will be “slurred over” by the instrument function of the
photodetector, and characteristic features of PBs predicted by the theory will
disappear in the experiment.

Thus it can be concluded that reliable experiments intended to reveal the PBs
contribution to radiation of nonrelativistic electrons on polycrystalline targets need
the use of more perfect measuring equipment.

The interference of coherent ordinary Bs and coherent PBs in scattering of
nonrelativistic electrons with the energy from 50 to 100 keV by a thin target of a
silicon single crystal was observed in the work [13] in the X-ray range. The
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experiment was carried out for a sliding angle of radiation with respect to the
surface of a target to decrease photon absorption in the target material. Shown in
the cited work was a possibility of frequency tuning of X-radiation due to the
change of conditions of interference between the ordinary and polarization channels
of coherent Bs.

In conclusion it should be noted that the important property of PBs — indepen-
dence from an IP mass — was still insufficiently used in experimental investigations.
The exception is the work [14]. At the same time PBs of multiply charged ions can
have wide practical applications both for obtaining new types of sources of short-
wave radiation and for diagnostics of materials.
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Appendix 1 Dynamic Polarizability of an Atom

Definition of Dynamic Polarizability

The dynamic (dipole) polarizability o(w) is an important spectroscopic characteris-
tic of atoms and nanoobjects describing the response to external electromagnetic
disturbance in the case that the disturbing field strength is much less than the atomic
electric field strength E<<E, = m? ¢° / h*~514-10°V /cm, and the electromag-
netic wave length is much more than the atom size.

From the mathematical point of view dynamic polarizability in the general case
is the tensor of the second order o;; connecting the dipole moment d induced in the
electron core of a particle and the strength of the external electric field E (at the
frequency w):

di(w) = Zcx,j(a)) E;(w). (A1)

For spherically symmetrical systems the polarizability o;; is reduced to a scalar:
oij(w) = a(w) o, (A.2)

where ¢;; is the Kronnecker symbol equal to one if the indices have the same values
and to zero if not. Then the Eq. A.1 takes the simple form:

d(w) = a(w) E(w). (A.3)

The polarizability of atoms defines the dielectric permittivity of a medium &(w)
according to the Clausius-Mossotti equation:

= —an,a(w), (A4)
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where n, is the concentration of substance atoms. For simplicity it is assumed in
Eq. A.4 that a medium consists of atoms of the same kind.

It should be noted that the basis for a number of experimental procedures of
determination of the dynamic polarizability o(w) is its connection with the
refractive index of a substance (that for a transparent nonmagnetic medium is
determined by the equation n(w) = /e(w)).

Dynamic polarizability defines the shift of the atomic level energy AE, in an
external electric field. In the second order of the perturbation theory for the
nonresonant external field E and a spherically symmetric electronic state a
corresponding correction to energy looks like

AE? = —% o (@) E2. (A.5)

The formula (A.S) describes the quadratic Stark effect. In the case that the
external field frequency coincides with the eigenfrequency of an atom, the energy
shift is found to be linear in electric field intensity — the linear Stark effect. The
linear Stark effect is realized also in case of an orbitally degenerate atomic state as it
takes place for a hydrogen atom and hydrogen-like ions.

Static polarizability, that is, polarizability at the zero frequency o(w = 0) defines
the level shift in a constant electric field and, besides, the interatomic interaction
potential at long distances (the Van der Waals interaction potential). Since static
polarizability is a positive value (see below), from the Eq. A.5 it follows that the
energy of a nondegenerate atomic state decreases in the presence of a constant
electric field. The potential of interaction of a neutral atom with a slow charged
particle at long distances is also defined by its static polarizability:

a(0)

EPR (A.6)

Vipor(r) = —e%

where ¢y is the particle charge. With the use of Eq. A.6 it is possible to obtain the
following expression for the cross-section of elastic collision of a charged particle
with an atom in case of applicability of the classical approximation for description
of motion of an incident particle with the energy E:

(0
L 8) = 2men [0 A7

It should be noted that the Eq. A.7 follows (accurate to the factor equal to 2) from
Eq. A.6 if the effective scattering radius rg is determined with the use of the
equation

E = |Vpol(rE)’- (AS)
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Thus the knowledge of dynamic polarizability is very important for description
of a whole number of elementary processes.

Expression for the Dynamic Polarizability of an Atom

Let us calculate the dipole moment of an atom d in the monochromatic field
E(7) = 2Re{E, exp(—i®?)} that by definition is

d(r) = 2Re{o(®) E, exp(—im?)}. (A9)
The Fourier component of the dipole moment is given by the expression
dy, = 2(0) E,. (A.10)

In the formulas (A.9) and (A.10) E, is the complex electric field vector in
monochromatic radiation being a Fourier component of E(r).

The dipole moment of an atom in the absence of external fields is equal to zero in
view of spherical symmetry, so the value of an induced dipole moment can serve as
a measure of disturbance of an atom by an external action. The linear dependence
d(7) on electric field intensity (A.9) is true in case of smallness of the field strength £
from the standpoint of fulfilment of the inequations E<<E,. Thus for low enough
field strengths the response of an atom to electromagnetic disturbance can be
characterized by its polarizability o(®).

For description of the electromagnetic response of an atom — a quantum system —
within the framework of classical physics, it is convenient to use the spectroscopic
conformity principle. It can be formulated as follows: an atom in interaction with an
electromagnetic field behaves as a set of classical oscillators (transition oscillators)
with eigenfrequencies equal to the frequencies of transitions between atomic energy
levels. This means that each transition between the atomic states |j) and |n) is
assigned an oscillator with the eigenfrequency ®;, and the damping constant 6, <
<wj,. The contribution of the transition oscillators to the response of an atom to
electromagnetic action is proportional to a dimensionless quantity called oscillator
strength — f;,, the more is the oscillator strength, the stronger is a corresponding
transition. Transitions with the oscillator strength equal to zero are called forbidden
transitions.

According to the spectroscopic conformity principle, the change of an atomic
state is made up of the change of motion of transition oscillators. The inequation
E<<E, means the smallness of perturbation of an atomic electron state as a result
of action of the electromagnetic field. Thus it is possible to consider the deviations
of the transition oscillators from the equilibrium position under the action of the
field E(7) small, so for a nth oscillator the equation of motion in the harmonic
approximation is true:
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. . e
£+ On0 Fy + 07T, = Efno E(1), (A.11)

where ), is the radius vector corresponding to the deviation of the transition oscillator
from the equilibrium position; d,0, 0, f,0 are the damping constant, eigenfrequency
and the oscillator strength. For simplicity we consider a one-electron atom in the
ground state, the dipole moment of which is equal to d =er. (In case of a
multielectron atom the dipole moment is equal to the sum of dipole moments of
atomic electrons.) In view of the conformity principle the induced dipole moment
of an atom is made up of induced dipole moments of the oscillators of transitions to
the nth state d,: d = > d, = ¢ >_ r,. Going in this equation to Fourier components,
n n

we have

do=¢> Tuo, (A.12)
n

where r,, is the Fourier transform of the radius vector of the transition oscillator
deviation from the equilibrium position. The expression for this value follows from
the equation of motion (A.11):

€ ﬁ?O

- . (ON]
m o, — © —i®dy

(A.13)

Ino =

Substituting the formula (A.13) in the Eq. A.12 and using the definition of
polarizability (A.10), we find for it the following expression:

e f0
=— : . A.14
#®) mzmﬁo—mz—iméno a.14)

n

Hence it follows that the dynamic polarizability of an atom represents, generally
speaking, a complex value with a dimensionality of volume. The imaginary part of
polarizability is proportional to the damping constants of the transition oscillators.
The sum on the right of the Eq. A.14 includes both summation over the discrete
energy spectrum and integration with respect to the continuous energy spectrum.
The imaginary part of polarizability is responsible for absorption of radiation, and
the real part defines the refraction of an electromagnetic wave in a medium. The
expression (A.14) describes not only a one-electron atom, but also a multielectron
atom. The multielectron nature of an atom is taken into account by the fact that in
definition of the oscillator strength the dipole moment of an atom is equal to the sum
of dipole moments of its electrons.

From the Eq. A.14 several important limiting cases can be obtained. For
example, if the frequency of the external field is equal to zero, the formula (A.14)
gives the expression for the static polarizability of an atom:
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J:

62 n0
ocozoc(o)zo):—z 2
m n O‘)nO

(A.15)

Hence it is seen that static polarizability is a real and positive value. It has a large
numerical value if in the atomic spectrum there are transitions with high oscillator
strength and low eigenfrequency as it is, for example, for alkaline-earth atoms.

In the opposite high-frequency limit, when 7Z®>>Ip (Ip is the ionization
potential of atom) and the eigenfrequencies in the denominators of Eq. A.14 can
be neglected, from the formula (A.14) in view of the golden rule of sums, according
to which the sum of oscillator strengths is equal to the number of electrons in an
atom N,, we obtain

2N,
mao?’

Oo () = — (A.16)

Hence it is seen that the high-frequency polarizability of an atom is a real and
negative value that decreases quadratically with growing frequency of the external
field.

If the external field frequency is close to one of eigenfrequencies of the transition
oscillators, so that the resonance condition

|(D — (Dn()| S 5,10 (Al7)

is satisfied and one resonant summand in the sum (A.14) can be retained, then from
Eq. A.14 the expression for resonant polarizability follows:

e2 an
a)'es(m) n (2]’}’1(,0”0> ;0 — O — i 5,,0/2 ' (Alg)

In derivation of Eq. A.18 from Eq. A.14 in nonresonance combinations the
distinction of the external field frequency from the transition eigenfrequency was
neglected. Resonant polarizability is a complex value, the real part of which can be
both positive and negative.

The Eq. A.10 determining dynamic polarizability after the Fourier transforma-
tion can be rewritten as

d(r) = J a(t)E(t — 1) dr, (A.19)
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where o(1) is the real time function, the Fourier transform of which is equal to the
dynamic polarizability o(®). The most simple expression for o(t) follows from the
formula (A.18):

ezfn()

2mc0,70

Olyes (T) (=) 0(7) exp(—i®u T — 90 T/2), (A.20)

where 0(t) is the Heaviside step function. The time dependence of the induced
dipole moment d(¢) coincides with the time dependence of the right side of the
Eq. A.20 for the delta pulse of the field: E(r) = E( (¢), where 5(¢) is the Dirac delta
function. In the general case the expression for $(t) can be obtained by replacement

of the frequency ®,9 — \/®% — (5,10/2)2 and summation over all transition

oscillators. It should be noted that the decrease of the eigenfrequency of oscillations
in view of damping following from the said replacement is quite natural since
friction (the analog of damping) reduces the rate of motion.

Concerned above was dipole polarizability that describes the response of an
atom to a spatially uniform electric field. In the case that the characteristic size
of the spatial nonuniformity of a field is less than the size of an atom, dipole
polarizability should be replaced by the generalized polarizability of an atom
o(w, q) depending on the momentum 7 q transferred as a result of interaction.
The spatial scale of the field nonuniformity / is inversely proportional to the
value of the wave vector A ~ 1/q. With the use of the generalized polarizability
of an atom a(w, ¢) the formula (A.3) is modified to the form

dq

2m)Y

D(w) = Jac(a), q)E(o, q) (A.21)

—~

where E(w, q) is the spatio-temporal Fourier transform of the electric field
vector. For the spatially uniform field E(w, q) = E(®w) d(q) the Eq. A.21 (in case
of a spherically symmetric atomic state) goes to Eq. A.l in view of the fact that
o(w) = a(w, q =0).



Appendix 2 Methods of Description
of the Electron Core of Multielectron
Atoms and Ions

Slater Approximation

For definition of the effective field and the concentration of a atomic core, for
simple estimations, and in a number of applications, in which the behavior of wave
functions of atomic electrons at long distances is essential, nodeless Slater functions
of the following form are used:

2 2u+1
P,(r) = 7F((2ﬁ;3 +1)r“e’f”, (A.22)

wherey = (nl) is the set of quantum numbers characterizing an electronic state, 8, u
are the Slater parameters. The wave functions (A.22) are normalized, have correct
asymptotics at long distances. The main advantage of the functions (A.22) consists
in their simplicity.

To determine the parameters f3, u, Slater proposed empirical rules that for shells
more than half-filled look like

B, = L, (A.23)

where Z is the atomic nucleus charge, S, is the screening constant, the values of
which, together with the parameter 4, and the number of electrons N, for different
electron shells, are given in Table A.1.

For shells that are half-filled or less than half-filled, the best results are given by
another rule:

u = half-integer value nearest to Z/\/2|E|, p=u2lE|/Z, (A24)
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Table A.1 Slater parameters —

of atomic shells Shzell y = (nl) S; I, N,
Is 0.30 1 2
2(sp)° 415 2 3
3(sp)® 11.25 3 3
3d" 21.15 3 10
4Gsp)° 27.75 35 8
44" 39.15 35 10
5(sp)® Ges 4f 45.75 4 3
4(dh** 44.05 35 24
5(sp)® ¢ 4f 57.65 4 3
5d' ¢ 4f 71.15 4 10

where E is the electronic state energy in atomic units.
With the use of the functions (A.22) the radial distribution of the electron density
of an atom in the Slater approximation can be obtained as

p(r) =Y N, P(r). (A.25)

The atomic (Slater) potential corresponding to this electron density is

Us(r) = — CS’(,r) : (A.26)

where (g(r) is the effective charge of the core:

L) =Z — J p(r)dr' — r J P (r'/") dr. (A27)

It is possible to make sure that the potential of Egs. A.26 and A.27 satisfies the
electrostatic Poisson equation with the boundary conditions:

{50) =2, L5(o0) =7, (A.28)

where Z; is the charge of an ion that is equal, naturally, to zero for a neutral atom.
Substituting in Eq. A.27 the formulas (A.22), (A.25) and performing integration,
we find

2u—1 k
Z iy 2u—k (2pr
Cs(r) =7 - 4 N'\’v 1—e 2p ké_() T % . (A29)

y

So the expressions (A.26), (A.29) give the atomic potential in the Slater
approximation.
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Quantum-Mechanical Methods of Calculation of the Structure
of Multielectron Atoms

Consistent quantum-mechanical methods of calculation of the structure of
multielectron atoms are based on solution of the Schrodinger equation with a multi-
particle Hamiltonian taking into account electron-nucleus and electron—electron
interaction that contains direct and exchange components. The multielectron wave
function of an atom ¥ depends both on the spatial coordinates r; and on the spin
variables of atomic electronss;. The general form of the function ¥ for atoms with two
and more electrons is unknown. This reflects the impossibility in principle to solve a
many-body problem. So different approximate methods are used that are based on one
or another choice of a general form of the atomic wave function that is then
substituted in the Schrodinger equation.

With neglected exchange effects, the elementary form of the multiparticle function
Y(r;, s;) is a multiplicative form of the one-particle coordinate wave functions x//},l,
depending on “their” spatial variables. This approach was proposed by Hartree at the
initial stage of the quantum theory of multielectron atoms (the Hartree approxima-
tion). This approximation was extended by V.A. Fock to account for exchange
interelectron interaction. The corresponding approach — the Hartree-Fock method —
has found wide application in calculations of the structure of electron shells of atoms.
In this method the multiparticle wave function is written as the Slater determinant:

w = \/LN_| dety {/,(x)}, (A.30)

where dety designates a determinant of the Nth order (V is the number of atomic
electrons) with the line numberi and the column number k, x; is the set of spatial and
spin coordinates of the kth electron. The representation (A.30) automatically takes
into account the properties of antisymmetry of the full wave function of an atom
with respect to rearrangement of coordinates of electrons (including their spins).
Physically the approximate expression for the multiparticle wave function (A.30) is
connected with the idea of a self-consistent field, according to which each separated
atomic electron moves in a spherically symmetric electric field produced by a
nucleus and other atomic electrons.

In case of the ground nondegenerate state of an atom, its wave function is given
by one Slater determinant such as Eq. A.30 with a specified electron configuration,
that is, with specified distribution of electrons by shells. In the general case it is
necessary to consider the linear superposition of the functions (A.30). For the
ground state, using the substitution of the determinant of Eq. A.30 in the multipar-
ticle Schrodinger equation, the following integro-differential system of the Hartree-
Fock equations can be obtained:
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(A31)

where i,j = 1+ N, N is the number of electrons in an atom, «;(r;) are the one-
electron wave functions, ¢; are their associated one-electron energies. The first and
the second summands in Eq. A.31 are one-particle terms connected with the kinetic
energy operator and the Coulomb potential of an atomic nucleus respectively. The
second two summands describe two-particle electron—electron interaction, the third
summand relating to direct interaction and the fourth summand relating to exchange
interaction. It is essential that the potential of direct interelectron interaction is
local, that is, depending on an electron coordinate at a given point. At the same time
the potential of exchange interaction is nonlocal and is defined by the distribution of
the electron density of the electronic state under consideration in the whole space,
which considerably complicates the solution of the system (A.31). It should be
noted that this system without the last summand on the left side of the equations is a
system of the Hartree equations that does not take into account exchange interaction
between electrons that, generally speaking, is rather essential for correct calculation
of an atomic structure.

Practically for determination of the one-electron orbitals ; and their associated
energies ¢;, instead of the Hartree-Fock equations (A.31), a variational method is
often used that is equivalent to them, in which the minimization of a corresponding
energy functional is carried out by the iterative method. The computational com-
plexity of the Hartree-Fock method grows rapidly with the number of atomic
electrons, so the corresponding calculated time for heavy atoms is found to be too
long even when using modern computers. Another disadvantage of this method is
that it does not take into account the correlation interaction between electrons
depending on the difference of their coordinates. Taking into account the correla-
tion interaction is beyond the scope of the self-consistent field approximation that is
a physical basis of the Hartree-Fock method.

The said disadvantages can be to some extent overcome with the use of
approaches, in which the localization of the exchange potential is carried out. One
of such methods is the local electron density approximation, in which the electron
density n(r) is considered as a basic value defining the properties of the ground state
of an atom. Within the framework of this approximation it is possible to a certain
extent to take into account also the correlation interelectron interaction by introducing
a single exchange-correlation potential. A corresponding system of equations looks
like:

[ (1 /2m) A+ Vo (r)] @i(r) = & ,(r), (A.32)
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OE . [n]
/
r—r’|dr + on(r)’

N

n(r) =" le,(r)l, (A34)

i=1

Ve (r) = -t e

2 /
Ze J|n(r) (A33)

where E,.[n] is the exchange-correlation energy functional depending on the local
electron density. The exchange-correlation energy is obtained as a result of func-
tional differentiation of the functional E,.[n] as seen from Eq. A.33. Since the exact
form of E,.[n], as a rule, is unknown, different approximations are used for this
form. In the method under consideration the exchange-correlation energy is written
as

Ewln] = Jn(r) b n(r)] dr, (A35)

where ¢, is the exchange-correlation energy per one electron. The approximation
(A.35) results in the local exchange-correlation potential:

Vi) = s (8) o ). (A36)

In practice, instead of Eq. A.36, the following simple expression (in atomic
units) is often used:

0.611
rs(r)

11.1
Valr) = _0.0333 ln(l + ) (A37)

rs(r)

where the function r,(r) is determined from solution of the equation (4/3) nr? =
n~!(r). In view of Eq. A.37, the Egs. A.32, A.33, and A.34 become much more
simple than the Hartree-Fock equations A.31, in which the nonlocal exchange
interaction is present.

Statistical Methods of Description of the Structure
of Multielectron Atoms

As noted above, the Hartree-Fock approximation becomes extremely laborious with
growing number of atomic electrons. At the same time, it is for description of
multielectron atoms (N > 20) that there is an alternative approach based on
the statistical model of the atomic core. The most known model of such a kind
is the Thomas-Fermi approximation. There are different methods to derive this



358 Appendix 2 Methods of Description of the Electron Core of Multielectron Atoms and Ions

approximation. Here we will give one of them, based on the plasma model for a
subsystem of bound electrons of an atom. An argument for such an approach is the
fact that plasma models of an atom retain their attractiveness for investigations in the
field of atomic physics for years, in spite of rapid development of computing methods.
An obvious advantage of these models is their simplicity and universality making it
possible to describe many properties of complex atoms and ions on a single basis.
Among such properties are potentials of interaction of atoms with charged particles,
cross-sections of photoionization of atoms, their static and dynamic polarizabilities,
and other parameters.

The Thomas-Fermi distribution for a multielectron atom can be obtained
following the works of A.V. Vinogradov with collaborators, from solution of
the Vlasov self-consistent equations that are traditionally used in plasma physics.
A corresponding system of equations looks like (in this item we use atomic units
h=e=m,=1):

o Oy

7 o 5o =0 (A.38)
AU = 4n[Z 6(r) — n(r), (A39)
n(r,1) = Jf(r, p. 1) dp, (A40)

where f(r, p, ¢) is the electron distribution function, U(r, 7) is the electron energy in
the self-consistent field, n(r,?) is the electron density distribution, Z is the atomic
nucleus charge. In absence of an external electromagnetic field, for the function of
distribution of electrons and their energy we have:f(r, p,t) = fo(r,p), U(r,1) = p(r),
n(r,t) = no(r). Then the solution of the Eq. A.38 can be represented as

folr,p) = (2;3 0Er—E), E=p/2+¢(r) (A41)

In writing Eq. A.41 the presence of the Fermi energy Er for degenerate electron
gas of atomic electrons following the Pauli principle was taken into account.
Substituting Eq. A.41 in the formulas (A.39) and (A.40) gives the Thomas-Fermi
distribution:

3
no(r) = 2 pe(r) = V2 (Er — o(r), (A42)

2’

Z r b 9 n2
Er —p(r) == A(’W) = b= y g = 08853, (A.43)
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where y(x) is the Thomas-Fermi function being a solution of the equation of the
same name

d*y(x)
12 4XX) o \3)2
X a2 7(x)
with the boundary conditions; y(0) = 1 and y(co) = 0; ryp is the Thomas-Fermi
radius.
It should be noted that for a neutral atom the Fermi energy is equal to zero:

Er =0. As a result, from Eqs. A.42 and A.43) we have the distribution of the
electron density of a Thomas-Fermi atom:

nee(r) = 22 frp(x = r/r), (A.44)

where the function of the dimensionless distance to the nucleus is introduced that is

fre(x) : (@) 3/2. (A.45)

T4 \x

The representation of electron density in the form of Eq. A.44 is common for all
statistical models. The form of the function f(x) depends on a concrete approxima-
tion. For example, in the statistical approach proposed by Lenz and Jensen the
following expression for f(x) is obtained (the Lenz-Jensen model):

s (140.2610.7%)°
(9.7x)?

fu(x)=37e (A.46)

It should be noted that for x < 1 the formulas (A.45) and (A.46) give practically
coincident results, at high x the Lenz-Jensen function results in a somewhat more
realistic reduction of the electron density of an atom with distance than the Thomas-
Fermi function.

The most simple statistical model corresponds to the exponential decrease of the
electron density on the Thomas-Fermi radius, in this case

foxp(x) = 7 'b 7 exp(—2x). (A.47)

The model of the atomic core of Eqgs. A.44 and A.47) is often used in consider-
ation of interaction of an electromagnetic field with atoms in solids.

Given in Fig. A.1 is the radial electron density of a krypton atom calculated
within the framework of different approximations.

It is seen that the statistical Lenz-Jensen model (A.44) and (A.46) in a smoothed
manner renders the quantum-mechanical dependence obtained in the Hartree-Fock
approximation, without considering peculiarities connected with the shell structure
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Fig. A.1 The radial density of the electron core of a krypton atom calculated within the
framework of different models: / Lenz-Jensen, 2 Hartree-Fock, 3 Slater

of an atom. The Slater model (A.22), (A.23), (A.24), and (A.25) to some extent
detects the radial fluctuations of electron density, especially in the region of small
distances to a nucleus.

Approximations of the Thomas-Fermi Function
for Neutral Atoms and Multielectron Ions

The Thomas-Fermi function y(x) determining the potential and the electron density of
an atom in the Thomas-Fermi model has no exact analytic representation, but there
are its numerous approximations. Let us give here for the function y(x) the
Sommerfeld approximation describing not only neutral atoms, but also multielectron
ions:

26, q) = 70(x) [1 - (11%2(()2))&/&], 2(x) = (ﬁ) (A.48)

where g = Z;/Z is the degree of ionization, xo(g) is the reduced radius of an ion,
A = (T4 V73)/2, 72 = (=7 + V/73) /2, yo() is the Thomas-Fermi function for a
neutral atom, for which the following expression can be used:
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1

—_—. A49
(1+ z(x))" 2 (A4

Zo(x) =

The parameter xo(¢) can be determined from solution of the transcendental
equation ¢ = —xdy/dx, in which for the function y(x,¢) the formulas (A.48) and
(A.49) are used. For high enough degrees of ionization a good result is given by the
approximation of the reduced radius of an ion obtained in the Thomas-Fermi-Dirac
model:

1 —a\23
xo(q) = 2.96 (Tq> , 02<g<1. (A.50)

The Thomas-Fermi-Dirac model generalizes the Thomas-Fermi approximation
to the consideration of exchange interaction between electrons. This interaction is a
matter of principle for the statistical model of a neutral atom since it results in the
finite size of the atom. It should be noted that in the Thomas-Fermi model the radius
of an atom is equal to infinity. In the Thomas-Fermi-Dirac approximation the
relation is true:

xo(q = 0) =~ 42°4, (A.51)

and thus the radius of an atom within the framework of this model is finite.
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of Plasma Particles

Longitudinal Dielectric Permittivity of Plasma

Longitudinal waves, in which the electric field vector is parallel to the wave
vector can propagate only in a substance. This follows from the Maxwell equation
divD = 0. Really, from this equation in case of vacuum (¢ = 1) for the longitudinal
wave (k | E(k,®)) we obtain (k-E(k,0)) =kE(k,0) =0 — E(k,0) =0.Ina
medium, generally speaking, & # 1, so a longitudinal wave can exist if the
equation is satisfied:

ek, ) = 0. (A.52)

In writing this relation taken into account are spatial dispersion and the fact that
the connection between the longitudinal components of electric induction and
electric field intensity is given by the longitudinal component of dielectric permit-
tivity &) (k, w).

The Eq. A.52 represents the law of dispersion of a longitudinal electric wave in a
medium. Solving it, it is possible to obtain the dependence w(k) being the
characteristic of the wave process in a substance under consideration with a
specified longitudinal dielectric permittivity.

To obtain the dispersion dependence w(k), it is necessary to know the explicit
form of the function () (k, w). In case of plasma the dielectric permittivity is defined
by free charges, the motion of which is subject to the laws of classical mechanics.
To describe an ensemble of classical particles, the distribution function f(r, v, ) is
used that by definition is equal to the number of particles per unit phase volume at a
specified point of phase space and a specified instant of time. In this case meant by
the phase space is the six-dimensional space formed by the geometrical space and
the velocity space. The velocity space integral of the distribution function gives the
concentration of particles at a specified spatio-temporal point:
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and Solids, Springer Series on Atomic, Optical, and Plasma Physics 72,
DOI 10.1007/978-3-642-34082-6, © Springer-Verlag Berlin Heidelberg 2013
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n(r,t) = Jf(r7 v, 1) dv.

The distribution function defines all properties of the ensemble of particles
including the contribution of this type of particles to the dielectric permittivity of a
medium. In case of plasma the dielectric permittivity is defined by electrons and ions.
Further in this section, unless otherwise indicated, by plasma particles we will mean
electrons.

According to the Liouville theorem, the distribution function of the Hamiltonian
system does not vary along any trajectory in the phase space. As applied to plasma,
the Hamiltonian properties mean neglect of collisions. Thus in collisionless plasma
for each kind of particles (electrons, ions) the following equation for the distribu-
tion function (the kinetic equation) is true:

a _of [ Ko _
=S Va4 L0, (A53)

where F is the force acting on a particle, m is the particle mass. For charged plasma
particles F is the Lorentz force

F=cE+< VB,
C

where eis the charge of the kind of particles under consideration, E, B are the electric
field strength and the magnetic induction acting on plasma particles.

If collisions can not be neglected, on the right side of the Eq. A.53 there should
be the collision integral S#{ f } representing an integral operator that is quadratic for
the distribution function.

Let us consider the response of isotropic plasma to the longitudinal electric field of
a plane wave E = E(w, k) exp{i(kr — w)}. Let the wave vector k and the field
intensity E be parallel to the axis x. Then, according to the definition of the electric
induction and the longitudinal component of dielectric permittivity, we have (P is the
plasma polarization):

D,=e"E,=E,+4rnP,, (A.54)
hence
0 _1
p =" E.. (A.55)
4n
On the other hand, from the equation p = —divP for the Fourier component of

polarization the equation is true:
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k
P, k) = —i” (i’ ). (A.56)
where k = k,. The obtained formulas give
(0, k) = 1 4 271 P@.K) (A.57)
’ k E(w k) '

Thus for determination of the explicit form of &) (w, k) it is necessary to find the
density of the polarization charge p(w, k) induced in plasma by the longitudinal
electric field E(w, k). The desired density is connected with perturbation of the
function of the plasma distribution ¢ f arisen under the influence of the field:

p= eJéde. (A.58)

The perturbed distribution function is f =fy +df (fo is the unperturbed
distribution function). Further we assume that J f <<fy. Substituting the perturbed
distribution function f = fy 4+ df in the Eq. A.53, we find

0of 9of e¢E 0fy

o " or . m ov (&.59)
In derivation of Eq. A.59 the product w ¢ f was neglected as a second-order term,
and it was taken into account that the unperturbed distribution function is supposed
to be isotropic, homogeneous and stationary (depends only on the magnitude of
particle velocity and does not depend on the coordinate and time fy (r, 2, v) = fo(Vv)).
In the case under consideration, when plasma is perturbed by a plane wave, the
space-time dependence of perturbation of the function of the distribution of plasma

particles in the approximation linear with respect to field looks like

of o exp{i(kr —w)}.
Substituting this dependence in the Eq. A.59, we find:

_iwdfy/0v

A.
kv—w (A-60)

of
Hence for the density of a polarization charge induced by the external field we
have

2
<R g, (A1)

e
=1—
p m) kv—ow
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Substituting the obtained expression in the Eq. A.57, we find for the longitudinal
component of the dielectric permittivity of plasma:

oo

472 (8f0(vx)/8vx)
mk J kv, —w—1i0 dvy, (A.62)

—00

eD(w, k) =1-

where

folve) = JJfo(v)dvy dv..

The infinitesimal imaginary additive in the denominator of Eq. A.62 is necessary
for integral convergence. Its sign can be determined from the following reasoning. Let
the electric field in the infinite past be equal to zero (E(t — —oo) = 0) and be turned
on infinitely slowly. This means that the time dependence of intensity looks like

E(t) ~exp{—iwt+yt} =exp{—i(w+iy)t},
where y — +0, that is, for taking into account the said field turning-on it is

necessary to make the replacement @ — w + 10 as is done in Eq. A.62.
If the Sokhotsky’s formula is used:

1 1
=VP.—+ino
x—i0 v x—Hn (x)

then for the real and imaginary parts of the longitudinal component of the dielectric
permittivity of plasma it can be obtained:

oo

2 ~
Re{g</>(w,k)} =1- %V.P. J W dv,, (A.63)
4n2e? Ofy(vy = w/k)
) __
Im{s (a),k)} - P (A.64)

It will be recalled that the symbol V.P. means the principal integral value.

The distribution function in the expression for the imaginary part of dielectric
permittivity (A.64) is taken for the x -projection of the electron velocity equal to the
phase velocity of an electric wave v,;, = w/k.

In view of the explicit form of the function of the electron velocity distribution in
Maxwell plasma
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M, N, mev?2
fo(vy) = Nerap exp{— #} (A.65)
e e

from the formula (A.62) the following expression can be obtained for the complex
longitudinal component of dielectric permittivity in view of the electron contribution:

S e
VTe
where
X T exp(—z?)

vre = \/Te/m. is the average thermal velocity of plasma electrons,

rpe = \/Te/(4me?n,) is the electron Debye radius. The plot of the function
(A.67) is presented in Fig. A.2.

Two characteristic ranges of variation of parameters for the dielectric permittivity
of plasma can be separated: (1) the high-frequency range @ >> k vz, and (2) the low-
frequency range w << k vr,. In the first case spatial dispersion is low in comparison
with frequency dispersion. In other words, the electric field is quasi-uniform in space
and essentially nonstationary. In the second case, on the contrary, the field is
practically constant, but essentially nonuniform in space.

In the high-frequency range we have x>>1, and for the function (A.67) the
expansion is true:

1
F(x>>1)%—1—ﬁ 4x4+ ivrx exp(—x?),

the imaginary part being close to zero. This can be seen from the diagrams of
Fig. A.2. Then for the longitudinal part of dielectric permittivity we find:

2
Le) ~ Dpe 2
) 1 - [1+3(/<rDe)]. (A.68)

Hence in the long-wavelength limit £ rp, < <1 the elementary plasma formula for
dielectric permittivity &(w) = 1 — 7 /w? follows.
In the low-frequency range (x<<1) for the function (A.67) it is possible to obtain

F(x) = —2x* +iv/nx.

Hence in the zeroth approximation F = 0, and the formula (A.66) gives
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Fig. A.2 The real (solid curve) and imaginary (dotted curve) parts of the function
(A.67) determining the longitudinal dielectric permittivity of Maxwell plasma

1
(Le) _
gl = 14— (A.69)
e,

that is, the low-frequency longitudinal dielectric permittivity does not depend on
frequency.

The function (A.69) describes screening of the electric field of a static charge
placed in plasma. It is possible to be convinced of this, calculating the spatial
Fourier transform of the potential of a screened charge ¢ = g exp(—r/rp)/r and
dividing it by the Fourier transform of the potential of a point charge in vacuum.
The low-frequency dielectric permittivity (A.69) indicates that long-wave
perturbations (k << rp}) are strongly screened in plasma ¢)>>1, and short-

wave perturbations (k >>r,!), on the contrary, are weakly screened: glhe) ~ 1,
The longitudinal part of the dielectric permittivity of Maxwell plasma in view of
the contribution of ions looks like:

1 w 1 0]
0 _
ewk)=1+——[1+F + l1+Fl——)|, (A70
(@:4) k2 rp, { (\/EkVTe):| k2 rp, [ (\/EkVTi>:| ( )
where the function F(x) is given by the expression (A.67), vy = /T;/m;,

rpi = \/T;/(4me? n;) is the ionic Debye radius (¢; is the charge of a plasma

ion).
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It should be noted that since vy, >>vr;, an electric wave that is high-frequency in
comparison with the ionic component of plasma can be low-frequency in compari-
son with plasma electrons.

Determination and Calculation of the Dynamic Form Factor

Expressed in terms of longitudinal dielectric permittivity is an important characteris-
tic of plasma called the dynamic form factor (DFF) or the spectral density function.
The dynamic form factor defines the probability of electromagnetic interactions with
participation of plasma particles, during which the subsystem of plasma electrons or
ions absorbs the energy-momentum excess. An example of such processes is radiation
scattering in plasma, bremsstrahlung and polarization bremsstrahlung on plasma
particles including an induced bremsstrahlung effect and a number of other
phenomena.
The determination of the DFF of a specified plasma component looks like

S(w, k) :21—7t J dre' " (ii(k, t) i(—K)), (A.71)

where 7i(k), 7i(k, t) are the spatial Fourier transforms of the operator of concentra-
tion of plasma particles of a specified type in the Schrodinger and Heisenberg
representations, the angle brackets include quantum-mechanical and statistical
averaging.

It will be recalled that the Heisenberg representation of quantum-mechanical
operators implies taking into account their time dependence in contrast to the
Schrodinger representation, in which the whole time dependence is transferred to
the wave function of the system. The connection between these representations for

an arbitrary operator 0 is given by the relation:

0(1) = exp(ifl1/1) O exp(~iFi1/n),

where H is the Hamiltonian of the quantum-mechanical system. In this paragraph,
however, the quantum-mechanical formalism will not be used, the quantum terms
and designations are given only for completeness of statement.

The Eq. A.71 can be obtained from the formula

S(o, k) =Y w(i) (o + wp) [na(k)[*, (A.72)
fi

in which in the explicit form averaging over initial |i/) and summation over final | f)
states of plasma particles is performed (w(i) is the probability of a plasma particle
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being in the ith state). The delta function in Eq. A.72 reflects, as usual, the energy
conservation law.

Depending on the type of plasma particles, the DFF can be electron, ionic, and
mixed. In case of the mixed DFF in the definition (A.71) the product of the density
operators for electrons and ions appears.

By its physical meaning the DFF defines the probability of plasma absorption
of the four-dimensional wave vector k = (w, k) in terms of the action of
external disturbance on a specified plasma component. In case of uniform
charge distribution in plasma this probability would be equal to zero since
then the Fourier transform of the density of charged particles is reduced to
the delta function n(k) — nd(k). Thus the DFF is connected with charge
fluctuations in plasma.

The dynamic form factor reflects the dynamics of plasma particles interacting
with each other through the long-range Coulomb forces. In this case the interaction
both in the ensemble of particles of one type and between electrons and ions is taken
into account.

In case of uniform plasma it is convenient to introduce the DFF of the unit
volume (the normalized DFF) by the formula

~ S(w, k)

S(o, k) ==7= (A.73)

where V is the volume of plasma. This equation follows from the fact that for a
uniform medium the pair correlation function of concentration depends only on the
relative distance between spatial points:

Kn(r,r' 1) = (a(r,t) A(r',0)) = Kn(r —1’, 7).

To calculate the normalized DFF, it is convenient to use the fluctuation-
dissipative theorem connecting the DFF of plasma components with the function
of plasma response to the external electromagnetic disturbance. This theorem for
the electron DFF is expressed by the equation:

~ h Im{F,.. (0, k
Se(e, k) = ne? [exp({ha()(;)T) )}1] ’ A7)

where F,.(w, K) is the linear function of the electron component response to the
fictitious external potential acting only on plasma electrons, T is the temperature of
plasma in energy units. The imaginary part of the response function appearing in
Eq. A.74 describes energy dissipation in plasma, which is the reason for the name of
the theorem.

Let us introduce the second linear function of the response to the external potential
F.i(w, k) that describes the response of the electron component of plasma under the
action of the fictitious external potential acting only on plasma ions. Here for
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convenience we use the Coulomb gauge of the electromagnetic field, in which the
divergence of the vector potential is equal to zero (divA = 0) and the charge density is
related only to the scalar potential of the electromagnetic field ¢ via the Poisson
equation. So let the external potential ¢, (k) act on plasma, where k = (w, k) is the
four-dimensional wave vector. Then the density of the electron charge induced in
plasma is expressed in terms of the introduced response functions as follows:

(Pe(k)) = [Fee(k) + Fei(k)] @ (k) (A.75)

<,bj(k)> = ¢; (fi;(k)) is the density of the charge of the jth type of plasma
particles. The Eq. A.75 indicates that the electron density of a charge arises in
plasma both due to direct action on plasma electrons of the external potential
(the first summand in the square brackets of Eq. A.75) and as a result of action of
the external potential on plasma ions that are connected with electrons by Coulomb
forces. If the interaction between particles of the kind i and of the kind j is weak, it is
possible to express F;; in terms of the characteristics of noninteracting particles. For
this purpose the new response function o;(k) is introduced — the function of the
response of particles of the kind j to the fotal potential in plasma. It takes into
account the action on charged particles of the potential ;,;(k) induced in plasma
that appears because of redistribution of charged particles under the action of the
external potential. With the use of the function o;(k) the induced charge density for
the jth component can be expressed in terms of the total potential as follows:

(p1(8)) = 2(K) 1 () (A76)

As the response function (k) describes the action on plasma particles of the
total potential, for its calculation the characteristics of noninteracting particles can
be used since the interaction between them is already taken into account in the total
potential. This technique is widely used in plasma physics in description of screen-
ing and initiation of collective excitations. In the approach under consideration the
response function o;(k) can be expressed in terms of the function Q;(k)
characterizing the noninteracting particles o; = e_% Q;, where

Qj(k) _ J I’lj(p + hk) - nj(p) 2dp (A.77)

Ej(p+hk) —Ej(p) —how—10 (2nh)3

Here nj(p) is the dimensionless function of the distribution of plasma particles of
the kind j by momenta, E;(p) = p* /2 m;,. Further we should know the imaginary
part of the function Q;(k) that can be determined from Eq. A.77 with the use of the

Sokhotsky’s formula. For the Maxwell distribution of electrons by velocities we
find
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b=a(e " 1)y eXp{ /2k2 VT’}. (A.78)

Im{Q;(k) LT

The introduced functions of the response to the total potential are related to the

longitudinal part of dielectric permittivity as follows:

D () = 1 — ‘l‘(_f (k). (A.79)

Now let us solve the set problem: we will find the function F,,.(w, k) expressing
it in terms of the function of the response to the total potential. For this purpose we
will introduce the fictitious external potential ¢}, acting only on electrons. Then
according to the definition F,.(w, k) we have

(Pe(k)) = Fee(k) g (k). (A.80)
On the other hand, <ﬁ:> can be expressed in terms of a,:

(pr(k)) = cte(k) [@h (k) + (k)] (A.81)

where 7 , is the potential induced under the action of ¢}, determined in terms of
the density of all plasma charges with the use of the Poisson equation:

Pina (k) = ‘:f [(pe(k)) + (p7 (K))] (A.82)
where
(07 (k) = i (k) @y (K), (A.83)

since the potential ¢}, is assumed to act only on electrons. Solving the system of the
Egs. A.80, A.81, A.82, and A.83, we find the following expression for F,:

oo (k) [1 = (47/K?) (k)]
1— (47/K?) (oo (k) + 04(k)]

Foo(k) = (A.84)

Substituting Eq.A.84 in Eq. A.74 and using Eqgs. A.78 and A.79, we obtain

Se(k) = M

2
I
] om0 + 5

2
7 16m: (k)| (A.85)
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where

2

2 Ne @
ong; (k)" = —2— exp| - ———— A.86
[ones(0)] V21 vr, K| p( 2k2v§”> ( )

are the spatio-temporal Fourier transforms of the squared thermal fluctuations of
electron and ionic components of plasma calculated on the four-dimensional wave
vectork = (k, ®),z;is the charge number of plasma ions, it is implied that the quasi-
neutrality condition is satisfied, so n, = z; n;.

The expression for the ionic normalized DFF is found in exactly the same way as
for the electron DFF. For this purpose it is necessary to make the replacement of the
indices eI and to take into account the fact that now in the denominator of the
formula (A.74) the ion charge e¢; = z; e appears, then we obtain:

2

<k |one (k)| (A.87)

( )

The mixed normalized DFF is given by the equation:

(O + 22 ®)

Si(k) = -

1— D))
¢l(k)

1 — (k)
él(k)

that follows from the fluctuation-dissipative theorem (A.74) (with the replacement
e?> — ee;) and the formula for the linear response function F,; describing the
initiation of an electron charge induced by the fictitious potential that acts only

on ions. This formula looks like:

Sei(k) = z7! 0 + z (k) (A.88)

1

(47 /K*) o (K)ot (k)

Foi(k) = 1= (47/%2) [ore (k) + o4 (k)]

(A.89)

The Eq. A.89 is obtained with the use of similar reasoning that led to the formula
(A.84).

Let us explain the physical meaning of the expression (A.85) for the electron
DFF. The first summand is connected with the deficiency of electron charge around
the electron density fluctuation caused by electron—electron repulsion. The second
summand in this expression describes the electron charge screening the fluctuation
of the ionic plasma component, it results from electron-ion attraction. By analogy,
in the expression (A.87) for the ionic DFF the second summand describes the ionic
charge screening the fluctuation of electron density, and the first summand
describes the deficiency of ionic charge around the ionic fluctuation. Finally, in
the formula (A.88) for the mixed DFF the first summand describes the ionic charge
screening the fluctuation of electron density, and the second summand describes the
electron charge screening the fluctuation of ionic density.
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Let us consider the explicit form of the electron DFF in fulfilment of the
inequations k vy, >> w>>kvy;, wp.. Then for the longitudinal electron dielectric
permittivity of plasma the low-frequency approximation is true, and for the ionic
component the high-frequency approximation is true. Using the formulas (A.68),
(A.69), (A.70), and (A.85), we find

S.0) = ("—)w OF + —— om0 (A.90)
N A (1+82) '

From this formula it is seen that in case of long-wave fluctuations, when
k? 1*12)e<<1 (k =2m/7), the first summand describing the deficiency of electron
charge around the fluctuation of electron density is small. The second sum-
mand connected with electron screening of ionic density fluctuations is great.
Hence it follows that in the long-wavelength limit the transfer of energy-
momentum to plasma proceeds through the electron charge of the Debye
sphere around a plasma ion that reacts in a coherent manner to the electric
field, that is, the interaction is of a collective nature. In the short-wave case
k*r3,>>1 the situation is opposite: the electromagnetic interaction is realized
through excitation of individual plasma electrons, into which the Debye
sphere “falls apart” because of strong spatial nonuniformity of the electric
field.
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