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1 Introduction

Various kinds of instabilities that can influence the propagation of reaction fronts
can be encountered in several physical problems, including the thermo-diffusional
instability, the hydrodynamical instability as well as the convective instability.
For instance, the thermo-diffusional instability appears as a result of competition
between the heat production in the reaction zone and heat transfer to the cold
reactants. To investigate this type of instability, the density of the medium can be
taken as constant to remove the influence of hydrodynamics and to simplify the
model. The stability conditions in this case were studied in [1–5]. In hydrodynamic
instability of reaction fronts, the density of the medium is variable and usually
considered as a given function of the temperature. In this case, the instability is
caused by heat expansion of the gas or liquid in a neighborhood of the reaction
zone [6–10]. Due to the fact that instabilities of reaction fronts are undesirable
phenomena, several works have been devoted to studying the effect of a periodic
vibration on the convective instability of these reaction fronts. For instance, it was
shown that high-frequency vibrations can influence stability of various convective
flows, namely periodic modulations can have a stabilizing effect for low frequencies
and a destabilizing effect for high ones [11].

It is worth noticing that the case of reaction fronts with liquid reactant and solid
product was considered in [12], while the case where the reactant and the product
are liquids was analyzed in [13, 14]. It was concluded in these cases that a periodic
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vibration can affect the onset of convection. Specifically, it was indicated that the
case where the polymerization front in liquids is different from the case when the
polymer is solid. The difference is that in liquids, the convective instability may
exist also in descending fronts [15].

The case of reaction fronts in porous media has also been tackled and the
influence of periodic vibration on convective instability has been investigated.
The linear stability analysis and direct numerical simulations were performed and
the effect of vibration on the onset of convection was examined. In addition, in the
case of a porous medium saturated by a fluid, the effect of vertical vibrations on
thermal stability of a conductive solution was examined in [16]; for other directions
of vibration, depending on the vibrational parameter and the angle of vibration,
stabilizing and destabilizing effects were discussed [17].

Mechanical and thermal vibrations have also been studied in connection with the
Rayleigh–Bénard convection [18,19], directional solidification [20,21], and doubly
diffusive convection [22]. In spite of numerous results on the influence of vibrations
on convective instability, some questions still remain open. In particular, normal
vibrations cannot stabilize the conductive state in an unbounded domain [23], while
tangential vibration is only effective for vibration frequencies that are not too
large [24].

It is worth noticing that the problem of convective instability under the influence
of periodic gravity or periodic heating of a liquid layer or the effect of periodic
magnetic field on magnetic liquid layer has been widely analyzed during the last
decades; see for instance [18, 25–34] and references therein.

While the influence of a periodic modulation on the convective instability was
extensively studied in various physical problems and using different types of
modulation, only few works have been devoted to study the effect of a quasi-periodic
(QP) vibration on such a convective instability. To the best of our knowledge, Boulal
et al. [35] were the first who investigated the effect of a QP gravitational modulation
with two incommensurate frequencies on convective instability from analytical view
point. They considered the problem of stability of a heated fluid layer. The threshold
of convective instability was determined in the case of heating from below or
from above, and it was shown that the frequencies ratio of QP vibration strongly
affects the convective instability threshold. Motivated by the successful treatment
in studying QP convective instability in the later problem, similar studies were
performed. The influence of QP gravitational modulation on convective instability
in Hele-Shaw cell was examined in [36], and its influence on thermal instability in a
horizontal Newtonian magnetic liquid layer with non-magnetic rigid boundaries (in
the presence of a vertical magnetic field) was analyzed in [37]. It was shown that
in the case of a heating from below, a QP modulation produces a stabilizing or a
destabilizing effect depending on the frequencies ratio.

In these works [35–37], the original QP partial differential equations modeling
the problem are reduced to a QP Mathieu equation using Galerkin method truncated
to the first order. Due to the fact that the Floquet theory cannot be applied in the QP
forcing case, the approach used to obtain the marginal stability curves was based on
the application of the harmonic balance method and Hill’s determinants [38, 39].
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Recently, the effect of QP gravitational modulation on convective instability of
reaction fronts in porous media was studied in [40]. The QP modulation has been
chosen as a sum of two modulations having two incommensurate frequencies. It was
concluded that in a certain regions corresponding to small values of the amplitude
vibration, a stabilizing effect can be achieved, whereas large amplitudes of vibration
induce a destabilizing effect. The results also shown that for a given value of the
critical Rayleigh number and for large frequencies, the front can undergo abrupt
change of stability by varying the amplitude of vibration.

The aim of this chapter is to give an overview on the effect of different
gravitational modulations on the convective instability of reaction front. We first
consider the case where the amplitude of the periodic vibration is modulated. In this
situation, two cases are considered. In the first case, the frequency of the modulation
is assumed to be twice the frequency of the vibration itself, while in the second case,
the frequency of the modulation is supposed to be half that of the vibration. In a
second case, we discuss the effect of QP gravitational modulation on the convective
instability of reaction front. These studies are motivated by applications arising in
some physical problems, as for instance, frontal polymerization [41] or problem
related to environmental pollution [42]. The QP vibration may eventually result
from a simultaneous existence of a basic vibration applied to the system with a
frequency �1 and of an additional residual vibration having a frequency �2, such
that �1 and �2 are incommensurate. Indeed, this residual vibration may come from
various sources as machinery, friction or just a modulation phenomenon leading to
the modulation of the amplitude of the basic vibration.

It what follows we consider a periodic vibration and QP one with two incom-
mensurate frequencies in the vertical direction upon the system containing a
reaction reactant and a reaction product. This excitation causes the acceleration, b,
perpendicular to the reactant–product interface. In order to investigate the influence
of different vibration (periodic, QP and with modulation of amplitude), we consider
the time dependence of the instantaneous acceleration acting on the fluids given by
g C b.t/, where g is the gravity acceleration and b.t/ can be a periodic, modulated
periodic or QP force. In other words, wa shall consider the following three cases:
b.t/ D �sin.�t/, b.t/ D �1sin.�1t/ C �2sin.�2t/ and b.t/ D �cos.�2t/sin.�1t/

where �; �1; �2 and �; �1; �2 are respectively, the amplitudes and the frequencies of
the considered vibration. Here, we consider reaction fronts in a porous medium with
the fluid motion described by the Darcy law and the Boussinesq approximation,
which takes into account the temperature dependence of the density only in the
volumetric forces.

It is worthy to notice that the problem of reducing the original Navier–Stokes
equations to a standard QP Mathieu equation using Galerkin method, harmonic
balance method and Hill’s determinants [35–37] cannot be exploited here due to the
coupling of the concentration and the heat equations (reaction-diffusion problem
coupled with the Darcy equation). Therefore, to obtain the convective stability
boundary, we first reduce the original reaction-diffusion problem to a singular
perturbation one using the so-called matched asymptotic expansion (see Appendix),
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we perform a linear stability analysis, and then solve the reduced interface problem
using numerical simulations.

This chapter is organized as follow. Section 2 is devoted to state the problems
and to perform the linear stability analysis. In Sect. 3, we analyze the influence of
different gravitational modulation on the convective instability of reaction front, and
we conclude in the last section.

2 Governing Equations and Linear Stability Analysis

2.1 The Model

We consider an upward propagating reaction front in a porous medium filled by an
incompressible reacting fluid submitted to a periodic or QP gravitational vibration,
as shown in Fig. 1. The model of a such process can be described by a reaction-
diffusion system coupled with the hydrodynamic equations under the Darcy law:

@T

@t
C v:rT D ��T C qK.T /�.˛/; (1)

@˛

@t
C v:r˛ D d�˛ C K.T /�.˛/; (2)

v C K

�
rp D gˇK

�
�.T � T0/.1 C b.t//�; (3)

r:v D 0: (4)

with the following boundary conditions:

T D Ti , ˛ D 1 and v D 0 when y ! C1; (5)

T D Tb , ˛ D 0 and v D 0 when y ! �1: (6)

Here T is the temperature, ˛ the depth of conversion, v D .vx; vy/ the fluid
velocity, p the pressure, � the coefficient of thermal diffusivity, d the diffusion, q

the adiabatic heat release, g the gravity acceleration, � the density, ˇ the coefficient
of thermal expansion, � the viscosity and 	 is the unit vector in the upward direction.
In addition, T0 is the mean value of temperature, Ti is an initial temperature while
Tb is the temperature of the burned mixture given by Tb D Ti C q. The function
K.T /�.˛/ is the reaction rate where the temperature dependence is given by the
Arrhenius law [10]:

K.T / D k0 exp
�
� E

R0T

�
(7)
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Fig. 1 Sketch of the reaction
front propagation

where E is the activation energy, R0 the universal gas constant and k0 is the pre-
exponential factor. For the asymptotic analysis of this problem we assume that the
activation energy is large and we consider zero order reaction for which

�.˛/ D
(

1 if ˛ < 1

0 if ˛ D 1
: (8)

The gravitational modulation force b.t/ is given depending of the nature of
modulation. If it is periodic, b.t/ D �sin.�t/, and if it is QP, b.t/ D �1sin.�1t/ C
�2sin.�2t/.

2.2 The Dimensionless Model

In order to write down the dimensionless model, we now introduce the spatial

variables x0 D xc1

�
, y0 D yc1

�
, time t 0 D tc2

1

�d
, velocity

v
c1

, pressure
p��

K
with

c1 D c=
p

2 and frequency 
 D �

c2
1

�. Denoting � D T � Tb

q
and keeping for

convenience the same notation for the other variables, we obtain the system

@�

@t
C vr� D �� C WZ .�/ � .˛/ ; (9)

@˛

@t
C vr˛ D ��˛ C WZ .�/ � .˛/ ; (10)

v C rp D Rp .� C �0/

 
0

1

!
.1 C bd .t//; (11)

div .v/ D 0 (12)
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with the following conditions at infinity:

� D �1 , ˛ D 0 and v D 0 when y ! C1; (13)

� D 0 , ˛ D 1 and v D 0 when y ! �1: (14)

Here � D d=� is the inverse of the Lewis number, Rp D Kc2
1P 2R

�2
, where R is

the Rayleigh number and P the Prandtl number that are defined by R D gˇq�2

�c3
1

and P D �

�
. In addition, we use the parameters ı D R0Tb

E
and �0 D Tb � T0

q
. The

reaction rate is given by:

WZ.�/ D Z exp
� �

Z�1 C ı�

�
; (15)

where Z D qE

R0T
2
b

stands for Zeldovich number. The dimensionless modulation

force is given by bd .t/ D �sin.
 t/ in the periodic modulation case, or bd .t/ D
�1sin.
1t/ C �2sin.
2t/ in the QP modulation case.

2.3 Linear Stability Analysis

2.4 Approximation of Infinitely Narrow Reaction Zone

To study the problem analytically, we reduce it to a singular perturbation problem
where the reaction zone is supposed to be infinitely narrow and the reaction
term is neglected outside the reaction zone. This method, called Zeldovich–Frank-
Kamenetskii approximation, is a well-known approach for combustion problems

[10, 43]. We will carry out a formal asymptotic analysis with 
 D 1

Z
taken as a

small parameter to obtain a closed interface problem. Let us denote by �.t; x/ the
location of the reaction zone in the laboratory frame reference. The new independent
variable in the direction of the front propagation is written as

y1 D y � �.t; x/: (16)

We introduce new functions �1, ˛1, v1, p1 as follows

�.t; x; y/ D �1.t; x; y1/; ˛.t; x; y/ D ˛1.t; x; y1/;

v.t; x; y/ D v1.t; x; y1/; p.t; x; y/ D p1.t; x; y1/
(17)
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and we re-write the equations in the form (the index 1 for the new functions is
omitted):

@�

@t
� @�

@y1

@�

@t
C v:er� D e�� C WZ.�/�.˛/; (18)

@˛

@t
� @˛

@y1

@�

@t
C v:er˛ D WZ.�/�.˛/; (19)

v C erp D Rp.� C �0/.1 C bd .t//� ; (20)

@vx

@x
� @vx

@y1

@�

@x
C @vy

@y1

D 0; (21)

where we have set

e� D @2

@x2
C @2

@y2
1

� 2
@�

@x

@2

@x@y1

C
� @�

@x

�2 @2

@y2
1

� @2�

@x2

@

@y1

; (22)

er D
� @

@x
� @�

@x

@

@y1

;
@

@y1

�
: (23)

We use the method of matched asymptotic expansions. To do so, we assume that
the outer solution of the problem can be written in the form

� D �0 C 
�1 C : : : ; ˛ D ˛0 C 
˛1 C : : : ;

v D v0 C 
v1 C : : : ; p D p0 C 
p1 C : : : :
(24)

Here .�0; ˛0; v0/ is a dimensionless form of the basic solution.
In order to obtain jump conditions in the reaction zone, we consider the inner

problem and we introduce the stretching coordinate � D y1=
, with 
 D 1=Z. On
the other hand, the inner solution is sought in the form

� D 
 Q�1 C : : : ; ˛ D Q̨ 0 C 
 Q̨1 C : : : ;

v D Qv0 C 
 Qv1 C : : : ; p D Qp0 C 
 Qp1 C : : : ; � D Q�0 C 
 Q�1 C : : : :
(25)

Substituting these expansions into (18)–(21), we obtain the first-order inner prob-
lem: �

1 C
�@ Q�0

@x

�2�@2 Q�1

@�2
C exp

� Q�1

1 C ı Q�1

�
�. Q̨ 0/ D 0; (26)

� @ Q̨ 0

@�

@ Q�0

@�
� @ Q̨ 0

@�

�
Qv0
x

@ Q�0

@x
� Qv0

y

�
D exp

� Q�1

1 C ı Q�1

�
�. Q̨ 0/; (27)

@ Qp0

@�
D 0; (28)
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Qv0
x C @ Qp0

@x
� @ Q�0

@t

@ Qp1

@�
D 0; (29)

Qv0
y C @ Qp1

@�
D �Rp�0.1 C bd .t//; (30)

� @Qv0
x

@�

@ Q�0

@x
C @Qv0

y

@�
D 0: (31)

Then, the matching conditions are

� ! C1 W Q�1 � �1jy1D0C C �
@�0

@y1

jy1D0C; Q̨ 0 ! 0; Qv0 ! v0jy1D0C; (32)

� ! �1 W Q�1 ! �1jy1D0�; Q̨ 0 ! 1; Qv0 ! v0jy1D0�: (33)

From (28) we obtain that Qp0 does not depend on �, which implies that the pressure
is continuous through the interface. Next, denoting by s the quantity

s D Qv0
x

@ Q�0

@x
� Qv0

y; (34)

we obtain from (31) that s does not depend on �. Finally from (29), (30) and (34)
we easily obtain that Qv0

x and Qv0
y do not depend on �, which provides the continuity

of the velocity through the interface.
We next derive the jump conditions for the temperature from (26), in the same

way as it is usually done for combustion problems. From (27) it follows that Q̨ 0 is
a monotone function and 0 < Q̨0 < 1. Since we consider zero-order reaction, we
have �. Q̨ 0/ � 1. We conclude from (26) that Q�1 is also a monotone function. Thus,

multiplying (26) by
@ Q�1

@�
and integrating, we obtain

�@ Q�1

@�

�2 ˇ̌
ˇ
�DC1�

�@ Q�1

@�

�2ˇ̌
ˇ
�D�1D � 2

A

Z �1

�1
exp.

�

1 C ı�
/d�; (35)

where we have set

A D 1 C
�@ Q�0

@x

�2

: (36)

Next, subtracting (26) from (27) and integrating, we obtain

@ Q�1

@�

ˇ̌
ˇ
�DC1�@ Q�1

@�

ˇ̌
ˇ
�D�1D � 1

A

�@ Q�0

@t
C s

�
: (37)
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Using now the matching conditions and truncating the expansion as:

�0 � �; �1jy1D0� � Z� jy1D0 �0 � �; v � v0; (38)

we obtain the jump conditions

� @�

@y1

�2ˇ̌
ˇ
y1D0C�

� @�

@y1

�2ˇ̌
ˇ
y1D0�D 2Z

�
1 C

� @�

@x

�2��1

Z � jy1D0

�1
exp.

�

Z�1 C ı�
/d�; (39)

@�

@y1

ˇ̌
ˇ
y1D0C� @�

@y1

ˇ̌
ˇ
y1D0�D �

�
1 C

� @�

@x

�2��1�@�

@t
C .vx

@�

@x
� vy/

ˇ̌
ˇ
y1D0

�
: (40)

2.5 Formulation of the Interface Problem

Let us summarize the interface problem. We have for y > � (in the unburnt medium)

@�

@t
C v:r� D ��; (41)

˛ � 0; (42)

v C rp D Rp.� C �0/.1 C bd .t//� ; (43)

r:v D 0: (44)

The equations in the burnt medium (y < �) lead to the following system:

@�

@t
C v:r� D ��; (45)

˛ � 1; (46)

v C rp D Rp.� C �0/.1 C bd .t//� ; (47)

r:v D 0: (48)

We finally complete this system by the following jump conditions at the interface
y D �:

Œ�� D 0;
h@�

@y

i
D

@�

@t

1 C
�

@�

@x

�2
; (49)

h�@�

@y

�2i D � 2Z

1 C .
@�

@x
/2

Z �.�/

�1
exp

� s

1=Z C ıs

�
ds; (50)

Œv� D 0: (51)
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Here we denote by Œ � the quantity

Œf � D f j��0 � f j�C0: (52)

The above free boundary problem is completed with the conditions at infinity:

y ! C1; � D �1 and v D 0; (53)

y ! �1; � D 0 and v D 0: (54)

2.6 Travelling Wave Solution

In this subsection we perform the linear analysis of the steady-state solution for the
interface problem. This problem has a travelling wave solution:

�.t; x; y/ D �s.y � ut/; ˛.t; x; y/ D ˛s.y � ut/ and v D 0; (55)

where

�s.t; y/ D
(

0 if y < 0

e�uy � 1 if y > 0
; (56)

and

˛s.t; y/ D
(

1 if y < 0

0 if y > 0
: (57)

where the number u stands for the wave speed. It can easily be computed using the
jump conditions of the free boundary problem.

We now introduce the coordinates in the moving frame defined by y1 D y � ut .
In this referential, the above travelling wave is a stationary solution of the problem

@�

@t
C u

@�

@y
C v:r� D ��; (58)

v C rp D Rp.� C �0/.1 C bd .t//� ; (59)

r:v D 0; (60)

together with the jump condition found in the previous subsection.
We now consider a small perturbation of this stationary solution. For that purpose

we consider a perturbation of the reaction front of the form

�.t; x/ D ut C �.t; x/; with �.t; x/ D 
1.t/e
ikx: (61)
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To study the stability of the solution of our problem, we look for a solution of the
problem in the form of the perturbed stationary solution:

� D �s C Q�; v D vs C Qv; (62)

where

Q�.t; x; y/ D �j .y; t/eikx ; for j D 1; 2;

Qv.t; x; y/ D vj .y; t/eikx; for j D 1; 2:
(63)

Here the index j D 1 corresponds to functions for z < 0 and j D 2 for z > 0.
We exclude the pressure p and the component vx of the velocity from the

interface problem applying two times the operator curl . Thus, we obtain the
following problem:

For the burnt media (y < 0 ):

v00
1 � k2v1 D �Rpk2.1 C bd .t//�1; (64)

@�1

@t
� � 00

1 � u� 0
1 C k2�1 D 0: (65)

For the unburnt media (y > 0 ):

v00
2 � k2v2 D �Rpk2�2.1 C bd .t//; (66)

@�2

@t
� � 00

2 � u� 0
2 C k2�2 D u exp.�uy/v2; (67)

go back to the margin where u stands for the stationary front velocity. Taking into
account that

�
ˇ̌
�D˙0 D �s.˙0/ C �� 0

s.˙0/ C Q�.˙0/; (68)

and

@�

@y

ˇ̌
�D˙0 D � 0

s.˙0/ C ��
00

s .˙0/ C @ Q�
@y

.˙0/; (69)

we obtain the following jump conditions:

�2.0; t/ � �1.0; t/ D u
1.t/; (70)

� 0
2.0; t/ � � 0

1.0; t/ D �
1.t/u2 � 
0
1.t/ C v1.0; t/; (71)


1.t/u
2 C � 0

2.0; t/ D �Z

u
�1.0; t/; (72)

v.i/
2 .0; t/ D v.i/

1 .0; t/ i D 0; 1: (73)
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3 Numerical Results and Discussion

3.1 Case of Periodic Vibration

In this case, bd .t/ D �cos.
 t/. To find the convective instability boundary, we
solve numerically the problem (64)–(67) with the jump conditions (70)–(73). The
numerical accuracy is controlled by decreasing the time and space steps.

For fixed Z and k we vary Rp. If the Rayleigh number Rp is less than a critical
value Rc , the solution is decreasing in time. If Rp > Rc , the solution increases, and
for Rp D Rc it is periodic in time (Fig. 2, bottom). Similar behavior is observed
in the case without vibrations (Fig. 2, top). When the Rayleigh number exceed
the critical value the perturbation grows in time and when the Rayleigh number is
bellow the critical value the perturbation decays. There are no oscillations because
the amplitude of vibrations is equal to zero.

Figure 3 shows the critical value of the Rayleigh number as a function of
the amplitude of vibrations for different frequencies. If � D 0, we obtain the
same value Rc D 26 as in the absence of vibrations [44]. For small positive �,
vibrations stabilize the solution: Rc is an increasing function. For larger values of �,
vibrations destabilize the solution: Rc is a decreasing function. When we increase
the frequency 
 , the front becomes more stable.

Figure 4 shows the critical value of the Rayleigh number as a function of the
frequency of vibrations for different amplitudes. If � D 0, the curve takes a constant
value Rc D 26 corresponding to the absence of vibration. If � ¤ 0, all curves
are increasing functions, i.e. when the frequency increases the front become more
stable. It can be seen that all curves have a asymptotic behavior when the frequency
is sufficiently large, which means that high-frequency vibration can stabilize the
front.

3.2 Case of Periodic Vibration with Modulation of Amplitude

In this case, bd .t/ D �cos.
2t/sin.
1t/ where now the amplitude of the vibration is
modulated and is written as �cos.
2t/. The interface problem is solved numerically
leading to the critical Rayleigh number. Figure 5 shows the critical Rayleigh number
as function of the amplitude for some different choice of the frequencies ratio. It is
worth noticing that in the absence of vibration modulation (
2 D 0), we find the
same result as in [16] which is consistent with the current analysis. Results in Fig. 5
indicate that for relatively small values of the modulation amplitude � and for a
value of the frequency modulation equal to half the frequency of the vibration (
2 D

1=2), the reaction front undergoes a destabilizing effect. In contrast, a stabilizing
effect is gained when the frequency modulation is twice that of the vibration (
2 D
2
1). In other words, the front is less stable when (
2 D 
1=2) and it is more stable
when (
2 D 2
1).
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Fig. 2 Temperature maximum as a function of time for k D 3:14, Z D 8, u D 1:4142, � D 0

(top) and for k D 3:14, Z D 8, u D 1:4142, � D 5, 
 D 50 (bottom)

Figure 6 depicts the critical Rayleigh number as function of the frequency of the
vibration, 
1, in the case where (
2 D 2
1). This figure shows that when 
2 D 2
1,
increasing the frequency of the vibration, 
1, causes the critical Rayleigh number to
increase stepwise leading the reaction front to substantially gain stability.

3.3 Case of Quasi-periodic Modulation

In this case, the form of the QP gravitational modulation is written as bd .t/ D
�1sin.
1t/ C �2sin.
2t/, where �1, �2 and 
1, 
2 are the amplitudes and the
frequencies, respectively. Figure 7 depicts the variation of the maximum of tem-
perature as function of time. It can be seen from these plots that if the Rayleigh
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of vibrations for k D 3:14, Z D 8 and u D 1:4142 and for different values of the frequency 
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Fig. 4 Convective instability boundary: critical Rayleigh number as a function of the frequency
of vibrations for k D 3:14, Z D 8 and u D 1:4142 and for different values of the amplitude �

number Rp is less than a critical value Rc , the solution is decreasing in time which
corresponds to a stable (bounded) variation of the maximum of temperature. For
values of Rp larger than Rc , the maximum of temperature presents unbounded
oscillations which corresponds to unstable solutions. To detect this instability, we
start our computations with small Rayleigh numbers and then we increase it slowly
until the critical value of the Rayleigh number is captured. The figure shows that
the maximum of temperature variation is decreasing for Rp D 26 and increasing
for Rp D 28 indicating that the critical Rayleigh number is approximatively located
between, i.e. Rc Ð 27.
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Figure 8 shows, for �1 D 5 and 
1 D 500, the variation of the critical Rayleigh
number as function of the amplitude �2. The plots indicate that for small values of
the frequencies ratio 
 D 
2=
1, as the amplitude �2 increases, the critical Rayleigh
number decreases from a certain value of Rp.� 325/. If 
 is increased substantially,
a stabilizing effect appears in a region corresponding to small values of �2. In this
zone, one can expect a regaining of stability of reaction fronts. For higher values of
�2 the critical Rayleigh number decreases for different 
 indicating that large values
of �2 induce a destabilizing effect. Figure 9 illustrates similar results for 
1 D 250.
It is seen in this figure that for higher values of 
 , a stabilizing effect appears in two
successive regions corresponding, respectively, to small and moderate values of the
amplitude �2. This result means that increasing 
 , stability may be gained in certain
specific intervals of �2.

Finally, Fig. 10 shows, for given amplitudes and for different values of the
frequencies ratio 
 , the critical Rayleigh number as function of 
1. This figure
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indicates clearly that in the absence of QP vibration (
1 D 0; 
2 D 0), the
curves start at the value Rc D 26 corresponding to the unmodulated case, which
is in good agreement with the previous works [16, 44] and hence validating the
numerical simulations. This figure also depicts an interesting phenomenon, that is, in
a certain interval of 
1, the value of the critical Rayleigh number increases from the
unmodulated case Rc D 26 with oscillatory variation. Increasing 
 , the oscillating
variation of the critical Rayleigh number increases creating a repeated alternating
zones where stability is gained. At a certain value of 
1 � 700, the critical Rayleigh
number suddenly drops to meet the unmodulated case, Rc D 26. Above 
1 � 700,
the frequencies ratio has no effect on the critical Rayleigh number and the problem
becomes equivalent to the unmodulated case.

We have shown that in the presence of a QP vibration, the convection instability
of reaction fronts in porous media can be controlled and the reaction fronts may
remain stable in certain regions, and for certain combinations of the amplitudes and
the frequencies ratio of the QP vibration.

4 Summary

In this chapter we have presented an overview on the effect of a vertical periodic
and QP gravitational modulation on the convective instability of reaction fronts in
porous media. Attention was focused on two cases. The case where the gravitational
vibration is periodic and its amplitude is modulated, and the case where the
vibration is QP having two incommensurate frequencies. In both cases the heating
is acted from below such that the sense of reaction is opposite to the gravity
sense. To approximate the convective instability threshold, the original reaction-
diffusion problem is first reduced to a singular perturbation one using the matched
asymptotic expansion. Then, the linear stability analysis of the steady-state solution
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for the interface problem is performed. The obtained reduced problem is solved
numerically.

In the case where the modulation of the vibration is periodic, it was shown that for
relatively small values of the modulation amplitude and for a value of the frequency

modulation equal to half the frequency of the vibration (
2 D 
1

2
), the reaction

front undergoes a destabilizing effect. In contrast, a stabilizing effect is gained when
the frequency modulation is twice that of the vibration (
2 D 2
1). It was also
shown that increasing the frequency of the vibration, 
1, causes the critical Rayleigh
number to increase stepwise leading the reaction front to substantially gain stability.

In the case of QP gravitational modulation, it was shown that for relatively
small values of the amplitudes �1 and �2 of the QP vibration, an increase of the

frequencies ratio 
 D 
2


1

has a stabilizing effect. The results also revealed that

for given values of �1 and �2 and below a critical value of the frequency 
1, an
increase of the frequencies ratio 
 produces a stabilizing effect. In this interval
of 
1, the convection threshold grows from the critical Rayleigh number of the
unmodulated case, Rc D 26, with oscillating variation. This alternating variation
of the critical Rayleigh number indicates that for appropriate values of parameters,
a more pronounced stabilizing effect can be gained. At a certain critical value of 
1,
the critical Rayleigh number drops to the unmodulated case. Above the critical value
of 
1, the frequencies ratio has no effect on the critical Rayleigh number showing
that for higher values of the frequency 
1, the QP vibration has no effect and the
problem tends to the unmodulated case. The results of this work shown that in the
presence of a QP vibration, the convection instability of reaction fronts in porous
media can be controlled and the reaction fronts may be sustained in stability regions
for appropriate values of the amplitudes and frequencies of the vibration.

5 Appendix

5.1 The Method of Matched Asymptotic Expansions

In a large class of singular perturbed problems, the domain may be divided into
two subdomains. On one of these, the solution is accurately approximated by an
asymptotic series found by treating the problem as a regular perturbation. The
other subdomain consists of one or more small areas in which that approximation
is inaccurate, generally because the perturbation terms in the problem are not
negligible there. These areas are referred to as transition layers, or boundary or
interior layers depending on whether they occur at the domain boundary (as is the
usual case in applications) or inside the domain.

An approximation in the form of an asymptotic series is obtained in the transition
layer(s) by treating that part of the domain as a separate perturbation problem. This
approximation is called the “inner solution,” and the other is the “outer solution,”
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named for their relationship to the transition layer(s). The outer and inner solutions
are then combined through a process called “matching” in such a way that an
approximate solution for the whole domain is obtained. More details can be found
in [45, 46].

5.2 Simple Example

Consider the equation

y00 C .1 C 
/y0 C y D 0;

where y is a function of t , y.0/ D 0, y.1/ D 1 and 0 < 
 � 1.

Outer and Inner Solutions

Since 
 is very small, the first approach is to find the solution to the problem

y0 C y D 0;

which is
y D Ae�t

for some constant A. Applying the boundary condition y.0/ D 0, we would have
A D 0; applying the boundary condition y.1/ D 1, we would have A D e. At least
one of the boundary conditions cannot be satisfied. From this we infer that there
must be a boundary layer at one of the endpoints of the domain.

Suppose the boundary layer is at t D 0. If we rescal � D t=
, the problem
becomes

1



y00.�/ C .1 C 
/

1



y0.�/ C y.�/ D 0;

which, after multiplying by 
 and taking 
 D 0, is

y00 C y0 D 0

with the solution
y D B � Ce��

for some constants B and C . Since y.0/ D 0, we have C D B , so the inner
solution is

yI D B .1 � e�� / D B
�
1 � e�t=


�
:
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Matching

Notice that we have assumed the outer solution to be

yO D e1�t :

The idea of matching is for the inner and outer solutions to agree at some value of t

near the boundary layer as 
 decreases. For example, if we fix t D p

, we have the

matching condition
lim

!0

yI

�p


� D lim


!0
yO

�p


�

;

thereby B D e. Note that instead of t D p

, we could have chosen any other power

law t D 
k with 0 < k < 1. To obtain our final matched solution, valid on the
whole domain, one popular method is the uniform method. In this method, we add
the inner and outer approximations and subtract their overlapping value, yoverlap. In
the boundary layer, we expect the outer solution to be approximate to the overlap,
yO � yoverlap. Far from the boundary layer, the inner solution should approximate
it, yI � yoverlap. Hence, we want to eliminate this value from the final solution. In
our example, yoverlap � e. Therefore, the final solution is,

y.t/ D yI C yO � e D e
�
1 � e�t=


�C e1�t � e D e
�
e�t � e�t=


�
:

Accuracy

Substituting the matched solution in the differential equation yields


y00 C .1 C 
/ y0 C y D 0;

which implies, due to the uniqueness of the solution, that the matched asymptotic
solution is identical to the exact solution up to a constant multiple, as it satisfies the
original differential equation. This is not necessarily always the case, any remaining
terms should go to zero uniformly as 
 ! 0. As to the boundary conditions, y.0/ D 0

and y.1/ D 1 � e1�1=
 , which quickly converges to the value given in the problem.
Not only does our solution approximately solve the problem at hand; it closely

approximates the exact solution. It happens that this particular problem is easily
found to have exact solution

y.t/ D e�t � e�t="

e�1 � e�1="
;

which, as previously noted, has the same form as the approximate solution. Note
also that the approximate solution is the first term in a binomial expansion of the
exact solution in powers of y.1/ D e1�1=
 .
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Fig. 11 Convergence
approximation

Figure 11 shows convergence of the exact solution for various 
 and the outer
solution. Note that since the boundary layer becomes narrower with decreasing 
,
the approximations converge to the outer solution pointwise, but not uniformly.

Location of Boundary Layer

Conveniently, we can see that the boundary layer, where y0 and y00 are large, is
near t D 0, as supposed earlier. If we had supposed it to be at the other endpoint
and proceeded by making the rescaling � D .1 � t/=
, we would have found it
impossible to satisfy the resulting matching condition. For many problems, this kind
of trial and error is the only way to determine the true location of the boundary layer.
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