
Understanding Complex Systems

Without Bounds: 
A Scientifi c Canvas 
of Nonlinearity 
and Complex 
Dynamics

Ramon G. Rubio · Yuri S. Ryazantsev
Victor M. Starov · Guo-Xiang Huang
Alexander P. Chetverikov · Paolo Arena
Alex A. Nepomnyashchy · Alberto Ferrus
Eugene G. Morozov Editors



Springer Complexity

Springer Complexity is an interdisciplinary program publishing the best research and
academic-level teaching on both fundamental and applied aspects of complex systems –
cutting across all traditional disciplines of the natural and life sciences, engineering,
economics, medicine, neuroscience, social and computer science.

Complex Systems are systems that comprise many interacting parts with the ability to
generate a new quality of macroscopic collective behavior the manifestations of which are
the spontaneous formation of distinctive temporal, spatial or functional structures. Models
of such systems can be successfully mapped onto quite diverse “real-life” situations like
the climate, the coherent emission of light from lasers, chemical reaction-diffusion systems,
biological cellular networks, the dynamics of stock markets and of the internet, earthquake
statistics and prediction, freeway traffic, the human brain, or the formation of opinions in
social systems, to name just some of the popular applications.

Although their scope and methodologies overlap somewhat, one can distinguish the
following main concepts and tools: self-organization, nonlinear dynamics, synergetics,
turbulence, dynamical systems, catastrophes, instabilities, stochastic processes, chaos, graphs
and networks, cellular automata, adaptive systems, genetic algorithms and computational
intelligence.

The three major book publication platforms of the Springer Complexity program are the
monograph series “Understanding Complex Systems” focusing on the various applications
of complexity, the “Springer Series in Synergetics”, which is devoted to the quantitative
theoretical and methodological foundations, and the “SpringerBriefs in Complexity” which
are concise and topical working reports, case-studies, surveys, essays and lecture notes of
relevance to the field. In addition to the books in these two core series, the program also
incorporates individual titles ranging from textbooks to major reference works.

Editorial and Programme Advisory Board
Henry Abarbanel, Institute for Nonlinear Science, University of California, San Diego, USA

Dan Braha, New England Complex Systems Institute and University of Massachusetts Dartmouth, USA
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France

Janusz Kacprzyk, System Research, Polish Academy of Sciences, Warsaw, Poland

Kunihiko Kaneko, Research Center for Complex Systems Biology, The University of Tokyo, Tokyo, Japan

Scott Kelso, Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, USA

Markus Kirkilionis, Mathematics Institute and Centre for Complex Systems, University of Warwick,
Coventry, UK

Jürgen Kurths, Nonlinear Dynamics Group, University of Potsdam, Potsdam, Germany

Andrzej Nowak, Department of Psychology, Warsaw University, Poland

Linda Reichl, Center for Complex Quantum Systems, University of Texas, Austin, USA

Peter Schuster, Theoretical Chemistry and Structural Biology, University of Vienna, Vienna, Austria

Frank Schweitzer, System Design, ETH Zurich, Zurich, Switzerland

Didier Sornette, Entrepreneurial Risk, ETH Zurich, Zurich, Switzerland

Stefan Thurner, Section for Science of Complex Systems, Medical University of Vienna, Vienna, Austria



Understanding Complex Systems

Founding Editor: S. Kelso

Future scientific and technological developments in many fields will necessarily
depend upon coming to grips with complex systems. Such systems are complex in
both their composition – typically many different kinds of components interacting
simultaneously and nonlinearly with each other and their environments on multiple
levels – and in the rich diversity of behavior of which they are capable.

The Springer Series in Understanding Complex Systems series (UCS) promotes
new strategies and paradigms for understanding and realizing applications of
complex systems research in a wide variety of fields and endeavors. UCS is
explicitly transdisciplinary. It has three main goals: First, to elaborate the concepts,
methods and tools of complex systems at all levels of description and in all scientific
fields, especially newly emerging areas within the life, social, behavioral, economic,
neuro- and cognitive sciences (and derivatives thereof); second, to encourage novel
applications of these ideas in various fields of engineering and computation such as
robotics, nano-technology and informatics; third, to provide a single forum within
which commonalities and differences in the workings of complex systems may be
discerned, hence leading to deeper insight and understanding.

UCS will publish monographs, lecture notes and selected edited contributions
aimed at communicating new findings to a large multidisciplinary audience.

For further volumes:
http://www.springer.com/series/5394



Ramon G. Rubio � Yuri S. Ryazantsev
Victor M. Starov � Guo-Xiang Huang
Alexander P. Chetverikov � Paolo Arena
Alex A. Nepomnyashchy � Alberto Ferrus
Eugene G. Morozov
Editors

Without Bounds:
A Scientific Canvas
of Nonlinearity
and Complex Dynamics

123



Editors
Ramon G. Rubio
Dpt. Quimica-Fisica-I
UCM
Madrid, Spain

Yuri S. Ryazantsev
Instituto Pluridisciplinar
UCM
Madrid, Spain

Victor M. Starov
Dpt. of Chemical Engineering
Loughborough University
Loughborough, United Kingdom

Guo-Xiang Huang
Physics Dpt.
East China Normal University
Shanghai
China, People’s Republic

Alexander P. Chetverikov
Faculty of Physics
Saratov State University
Saratov, Russia

Paolo Arena
Dpt. di Ingegneria Elettrica
Elettronica
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Preface

It is with great pleasure that we have gathered the chapters of this book on
Nonlinearity and Complex Dynamics to honor our colleague and friend Prof.
Manuel G(arcı́a) Velarde, offered to him as a token of friendship, on the occa-
sion of his seventieth anniversary. The contents are a follow-up of a Week of
Science celebrated in September 2011 at Instituto Pluridisciplinar (IP), Universidad
Complutense of Madrid (UCM), Spain. With four other UCM professors he was
co-founder and there he had been for the past 20 years of his scientific career
as (PROPIO) professor of physics [www.ucm.es/info/fluidos]. The IP-UCM was
possible, thanks to an adventurous action of the then UCM Rector Gustavo
Villapalos, a professor of law.

The Week of Science was also dedicated to honor several of his fellow colleagues
at Prof. Velarde’s request, as they were celebrating birthdays about the same week.
They are Prof. Werner Ebeling (Berlin), Prof. Ivan B. Ivanov (Sofia), Prof. Grégoire
Nicolis (Brussels), Prof. John J. Kozak (Chicago), Dr. Benoit Scheid (Brussels),
Music composer Maestro Tomás Marco, and Dr. Rafael Garcı́a Serrano, Museum
Curator of “Museo del traje” (Madrid), formerly Curator of “Museum of Santa
Cruz,” Toledo. All of them have been frequent visitors of IP-UCM.

The Week of Science was an opportunity to appreciate the broad spectrum of
interests of Prof. Velarde, both in science and culture. Surfer and architect Pablo
Dı́az offered a fascinating talk on surf waves all around the world. It was also the
opportunity to learn about his love of Music, not just J. S. Bach (Cello suite ]1,
BWV 1007 in G major, was played by Maestro Angel Ga. Jermann, Professor at
Real Conservatorio Superior de Música, Madrid). Here it follows a song much loved
by Manuel:

Folks call me a maverick.
Guess I ain’t too diplomatic...

Well, I have been accused
Of makin’ my own rules.
There must be rebel blood

Just a runnin’ through my veins.

v

www.ucm.es/info/fluidos
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But I ain’t no hypocrite
What you see is what you get.

And that’s the only way I know
To play the game.

Old Noah took much ridicule
For building his great ark.

But after forty days and forty nights
He was lookin’ pretty smart.

Sometines it’s best to brave the wind and rain
By havin’ strength to go against the grain.

(“Against the grain”, lyrics by Bruce Bouton, Larry Cordle, and Carl Jackson; sung
by Garth Brooks.)

It was then naturally fitting well with his approach to life that in September
2007 Manuel organized a conference in Toledo for the Academia Europaea [www.
acadeuro.org] with the theme of “The Dialogue of Three Cultures and our European
heritage. Toledo crucible of the Cultures at the dawn of the Renaissance” [www.
ucm.es/info/fluidos, see Int. Conf. Toledo 2007]. The conference covered topics
from geography, history, poetry, linguistics, art, medicine, pharmacology, geometry,
mathematics, astronomy, and hydraulics. The conference started at the Cathedral
of Toledo in a large room (the Sacristy) covered with more than a dozen paintings
by El Greco and a cieling decorated by L. Jordaens. The inaugural speeches were
delivered in Latin. As he has said, one thing he wanted to understand was what
brought Toledo then (1200) for quite some time at the cultural and scientific zenith
in Europe, to almost vanishing in a rather short time interval.

In 2002, a special issue of the International Journal of Bifurcation and Chaos
(vol. 12, n. 11, 348 pp.) was edited by Prof. G. Nicolis to celebrate Manuel’s
sixtieth birthday. Under the topic tittle Spatio-Temporal Complexity, it included 28
original research papers contributed by 67 scientists from Europe, the Americas,
Asia, Africa, and the Middle East. This book follows the same path celebrating his
seventieth birthday.

Finally, we have received with joy the news of his appointment as director of
a newly created “Research Chair” at Universidad Alfonso X el Sabio [www.uax.
es] where Prof. Velarde is starting yet another period of his life. This has been
made possible, thanks to Rector Jose Domı́nguez de Posada, a professor of civil
engineering, Dr. Juan José Montoya, MD, Director of the UAX Foundation, and
UAX President Don Jesús Núnez Velázquez.

The editors wish to express their appreciation to Manuel’s secretary Mrs Marı́a
J. Martı́n for her kindness and her endless patience in the preparation of this book
with a dedication well beyond the call of duty.

The Editors

www.acadeuro.org
www.acadeuro.org
www.ucm.es/info/fluidos
www.ucm.es/info/fluidos
www.uax.es
www.uax.es


Preface vii





Contents

Part I Personal Reminiscences

M.G. Velarde: Succint Biography. Doing Science in Spain
as a Maverick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Yu.S. Ryazantsev

M.G. Velarde: Highlights of Research Achievements . . . . . . . . . . . . . . . . . . . . . . . . 7
Yu.S. Ryazantsev

Gallery of Portraits and Other Pictures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
M.G. Velarde

Thirteen Years of Collaboration with Manuel on Complexity
in Biorobotics and Brain Science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
P. Arena

My Relation with Professor Manuel G. Velarde . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
X.-L. Chu

My Scientific and Personal Relation with Manuel G. Velarde . . . . . . . . . . . . . . 43
E. del Rio

Manolo Garcı́a Velarde: Three Relevant Traits of His
Multifaceted Persona . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
F. Mayor-Zaragoza

Reminiscences from an Expatriate Scientist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
C. Montes

An Extraordinary Year of My Life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
A.Ye. Rednikov

Reminiscence of My Time in Manuel’s Group at the Instituto
Pluridisciplinar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
A. Wierschem

ix



x Contents

My Year with Manuel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
W. Zimmerman

Our Adventure with Manuel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
W. Zimmerman

Part II Scientific Contributions: Flows, Instabilities
and Convective Patterns

A Peculiar Observation Arising from the Stokes Approximation
in Certain Closed Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
W. Guo, R. Narayanan, and G. Labrosse

Influence of Periodic and Quasi-periodic Gravitational
Modulation on Convective Instability of Reaction Fronts
in Porous Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
K. Allali and M. Belhaq

Genesis of Bénard–Marangoni Patterns in Thin Liquid Films
Drying into Air . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
P. Colinet, F. Chauvet, and S. Dehaeck

Pattern Formation Emerging from Stationary Solutal
Marangoni Instability: A Roadmap Through the Underlying
Hierarchic Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
H. Linde, K. Schwarzenberger, and K. Eckert

Observation of the Thermocapillary Motion of a Droplet
in a Laser Beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
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M.G. Velarde: Succint Biography. Doing Science
in Spain as a Maverick

Yu.S. Ryazantsev

Professor Manuel G(arcı́a) VELARDE, born in Almerı́a, Spain (1941), graduated in
Physics from Universidad Complutense (UCM, Madrid, 1963), got the Ph.D. from
the same university in November 1968 (following guidance by Prof. M. Castans,
Prof. I. Prigogine and Prof. G. Nicolis) and in January 1970 (under guidance
of Prof. P. Résibois) from the Université Libre de Bruxelles (ULB). His first
paper was published in 1968. Since then, until 2012, Prof. Velarde has published
over 330 research papers, over 140 book chapters or contributions to Conference
Proceedings, about 20 books (12 as author and 12 as scientific coordinator) and
more than 135 lay audience articles [cf.: www.ucm.es/info/fluidos]. Such a prolific
research output covers a wide spectrum of phenomena, problems and several
disciplines. It embraces kinetic theory, statistical mechanics, thermodynamics,
fluid physics, geophysics, optics and lasers, ferromagnetism, electron transport
theory, acoustics, elasticity, wave theory, reaction-diffusion science, biophysics,
active lattice dynamics, and neuro-dynamics, all phenomena and methodologies
treated from the unifying perspective of nonlinear dynamics. Particular problems he
studied were the foundations of nonlinear non-equilibrium thermodynamics of
transport processes and instabilities (with J. Ross and X.-L. Chu); various aspects
of phase transitions and cooperative phenomena in spin systems and in Bose–
Einstein condensates (with G.-X. Huang); cross-transport (Soret and Dufour)
processes and their role coupled to flows and instability (research initiated with
R.S. Schechter); thermo-hydrodynamic instabilities leading to convective patterns,
their defects and their evolution; the motions of active self-propelling drops (with
Yu.S. Ryazantsev and Alex Ye. Rednikov); wetting and spreading dynamics of liq-
uids over other liquids or over solid substrates, porous or not (a long lasting and still
ongoing collaboration with V.M. Starov, recently augmented with the collaboration
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of R.G. Rubio); interfacial phenomena, also leading to pattern formation or waves;
non-linear interfacial waves and interfacial solitons; solitons in elastic rods; internal
waves in the atmosphere and the ocean with special attention paid to the phenomena
observed in the Straight of Gibraltar (a lasting collaboration with E.G. Morozov);
oscillatory phenomena in lasers; oscillatory processes in bio–physico–chemical
systems and in reaction-diffusion systems, continuous and discrete; pattern and
wave formation and their replication in synergetic active lattices (a decade of col-
laboration with V. I. Nekorkin); models of the cerebellar dynamics and other brain
dynamic functions (learning, memotaxis) with potential for application in robots
(with V.A. Makarov in a collaborative research sponsored by an EU Consortium); a
new form of soliton-mediated (solectron) electric conduction in crystal lattices, etc.

The above mentioned research was done during three distinct periods of time.
From 1965 to 1972, it was a training period, first as a Ph.D. student at ULB
(Belgium) and, subsequently, as a postdoctoral researcher at the University of Texas
at Austin (USA). As Manuel has confided me his approach to science and beyond
was shaped by the influence of three extraordinary persons and scientists: Ilya
Prigogine, Grégoire Nicolis and Pierre Résibois.

The second period (1971–1992) refers to teaching, research and a heavy admin-
istrative endeavor. In the Fall of 1971 he was appointed Associate Professor
of Physics at the recently created Universidad Autonoma de Madrid (UAM).
Subsequently, there he became Full Professor. At UAM, under the leadership
of Prof. Nicolás Cabrera, he participated with a group of enthusiastic scientists
in the building up of the Department of Physics. While at UAM, Prof. Velarde
published three major papers, one in Advances in Chemical Physics (1974, with
R.S. Schechter, and J.K. Platten: The two-component Benard problem), another in
Reviews of Modern Physics (1977, with C. Normand and Y. Pomeau: Convective
Instability. A physicist’s approach), and the third in Scientific American (1980, with
C. Normand: Convection). In retrospect, it can be said that those three publications
helped establishing a research area in Physics. It was also at that time that appeared
his (pioneering, at least in Spain) interest in carrying, close to experiment, pluri-,
inter-, and trans-disciplinary research using nonlinear dynamics. Among his papers
is worth mentioning one in Journal of Mathematical Biology (1979, with V. Fairén)
where a simple, albeit nonlinear mathematical model accounts for the time periodic
oscillations in the aerobic/anaerobic respiratory process of a bacterial culture
experimentally studied by H. Degn in Odense.

During 1982–1992, Prof. Velarde worked at UNED, the Spanish Open
University, where he created the Department of Physics, reaching soon international
standard. He supervised there more than a dozen Ph.D. students. He also spent much
effort and time in carrying science to the lay audience by traveling and delivering
hundreds of public lectures for the lay audience, elementary and high schools, all
over Spain. For this endeavor, Prof. Velarde was awarded the Capire Prize (1987)
and for his research achievements the Physics Prize of the Spanish Royal Academy
of Sciences (1991).

The third period (1993–2011) has been his most productive one due to the
exceptional circumstances offered by his appointment as PROPIO Professor of
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Physics (a program similar to the Royal Society Chairs in the UK) at the Insti-
tuto Pluridisciplinar of the Universidad Complutense de Madrid (UCM). Besides
numerous regular scientific publications, Prof. Velarde coauthored several research
frontier books: 2001: Nonlinear Dynamics of Surface-Tension-Driven Instabili-
ties, Wiley-VCH, N.Y., 512 pp. (with P. Colinet and J. Cl. Legros); 2002: Interfacial
Phenomena and Convection, Chapman & Hall/CRC, Londres, 365 pp. (with
A. A. Nepomnyashchy and P. Colinet); 2002: Synergetic Phenomena in Active
Lattices. Patterns, Waves, Solitons, Chaos, Springer-Verlag, Berlin, 357 pp. (with
V. I. Nekorkin); 2003: Liquid Interfacial Systems. Oscillations and Instability,
M. Dekker, Inc., N.Y., 367 pp. (con R. V. Birikh, V. A. Briskman and J. Cl. Legros).
2007: Wetting and Spreading Dynamics, Taylor & Francis, N. Y., 515 pp. (with
V. M. Starov and C. J. Radke); and 2012: Falling Film Flows, Springer-Verlag,
London, 440 pp. (with S. Kalliadasis, Ch. Ruyer-Quil and B. Scheid).

Guess and improve, or otherwise trial and error, seems to have been all along his
life a powerful drive in Manuel’ scientific exploration. This together with the idea
that past a threshold a new state worth exploring was there. Take the love problem
it was for him the self-propulsion of a drop, among the many others he explored in
hydrodynamics. The problem has a long history. When a solid body, say a sphere, or
a drop moves in a fluid it experiences drag and its behavior follows a law established
by G.G. Stokes (1851), and J.S. Hadamard (1911) and W. Rybczynski (1911). The
law was subsequently extended by B.G. Levich (1962) to account for the role of
surfactants. The new idea was that if the drop acts as an engine in a car, reacts upon
receiving energy or matter from outside, then past a threshold in the reaction rate
strength above a critical value of the surface tension non uniformity, the initial state,
motionless or other, gives way to selfpropulsion as the drag can be overcome. This
is a consequence of the broken symmetry induced by a spontaneous fluctuation.
Such symmetry breakdown and new state could be sustained with an appropriate
dynamic input-output energy balance. I had the pleasure of exploring this problem
with Manuel and a young fellow friend Alex. Ye. Rednikov. We still today keep an
eye on the problem though our joint papers date to 1994!

Noteworthy also is that in about a dozen papers (including theory, numerics,
and experimental data), in collaboration with X.-L. Chu, A.A. Nepomnyashchy,
C.I. Christov and H. Linde, Prof. Velarde developed the “dissipative soliton”
concept (his coinage), showing its ubiquity in fluid physics and beyond. This was
a significant generalization of the original soliton concept introduced for integrable
systems. The soliton may be a consequence of a suitable initial nonlinear excitation
(velocity depends on amplitude) that in balance with dispersion (velocity depends on
color/wavelength) survives for ever in a conservative system. Manuel suggested that
in a driven-dissipative system an appropriate input–output energy dynamic balance
could sustain the above mentioned soliton. Experiments carried by A. Wierschem
and H. Linde confirmed his prediction. It was a breakthrough in our understanding
of nonlinear waves in dissipative flows and other systems.

Since 2005 a new concept, he also invented, is being developed with W. Ebeling
and A.P. Chetverikov, and several other international colleagues. It is the “solec-
tron” quasiparticle, a bound state of an electron to a lattice soliton, as a natural
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generalization to anharmonic crystal lattices of the (nowadays textbook) polaron
concept long ago introduced by L.D. Landau and S.I. Pekar for the harmonic
cases. His theory points to the possibility of supersonic electron transfer and a kind
of electric superconduction that for biomolecular wires and the like, synthetic or
otherwise, would be at ambient temperature.

He was awarded the Honorary Doctorate from the Université de Provence
(Aix-Marseille I) in 1994 and from the University of Saratov in 2010 (ceremony in
2011). At the former he had been Visiting Professor over extended periods of time.
He also received the Rammal Medal of the Société Francaise de Physique and the
Fondation de l’Ecole Normale Supérieure (1996), the Dupont Science Prize (2003)
[www.premiodupont.org] and the Medal of the Spanish Physical Society (2009).
He was elected to membership of the Academia Europaea (1993; Council member,
2002), to Rector of the International Center for Mechanical Sciences (CISM, Udine,
Italy [www.cism.it]; 2002–2004) and (as cofounder) to the Scientific Board of the
recently created International Center “Nonlinear Dynamics and Complex Systems”,
Pescara, Italy [www.nodycosy.unich.it]. He has been research scientist or invited
professor in several universities and institutions (CEN-Saclay, Los Alamos National
Laboratory, U. Paris VI, XI, Marne-la-Vallée, Grenoble and CNRS, Marseille/I, II,
III, NTH-Trondheim, Cambridge U., UC Berkeley, UC Santa Barbara, UC Irvine,
Stanford U., Academia Sinica and Normal U. Beijing, HUST-Wuhan, ECNU-
Shanghai, etc.).

Professor Velarde has served the international scientific community and the
profession as member of several committees and editorial boards (IUPAP, IUTAM,
EPS, NATO, EU, ESA, ELGRA/Vice President and President, LABEX Jury
(France) President, etc.).

www.premiodupont.org
www.cism.it
www.nodycosy.unich.it


M.G. Velarde: Highlights of Research
Achievements

Yu.S. Ryazantsev

For a list of publications with full details see www.ucm.es/info/fluidos, under
Personnel, Manuel G. Velarde, cv.

1965–1969–1971: Established domain of validity of Gibbs local equilibrium
assumption at the core of the Non-Equilibrium Thermodynamics of L. Onsager
and I. Prigogine.

1966–1973: Studied the core nature of non-analytic density expansions of trans-
port coefficients, like self-diffusion, originating in the BBGKY hierarchy and
I. Prigogine’s non-equilibrium Statistical Mechanics.

1971–1973: Theory of convective instability and criteria to eliminate undesirable
effects when measuring the cross-transport thermal diffusion coefficient (Soret
effect). Verified in numerous experiments first by H.J.V. Tyrrell (Chelsea College,
London) [Trans. Faraday Soc. 71 (1975) 42]. Criteria still used in 2002 and later
on by J.V. Sengers (Maryland, College Park), etc.

1972–2011: Theory of instability for fluid systems (nematic liquid crystals,
EHD, MHD, falling liquid films, etc.), including features of transverse and
longitudinal/dilational interfacial waves.

1979: Mathematical model description of aerobic-anaerobic alternance in the
respiration process of Klebsiella aerogenes (bacterial culture) motivated and in
agreement with experiments by H. Degn (Odense).

1981–1982: Theory providing known and new features of Q-switch laser with
absorber. Agreement with experiments by E. Arimondo (Pisa), by C.O. Weiss
(Braunschweig), and others using CO2-SF6 laser.

1994: Non-linear non-equilibrium thermodynamic theory of convective instabil-
ity in agreement with experiment by M. Zamora (Seville) [J. Fluid Mech. 167
(1986) 427].
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1994: Thresholds for self-propulsion of drops due to surface tension gradients,
variable effective gravity, micro-gravity and g-jitter, thus illuminating the path
for space experiments. In agreement with experiments by J.W. Bush (Cambridge)
[J. Fluid Mech. 352 (1997) 283] and by A. M-Tatsis (Imperial College, London)
in microgravity experiments. Theory has been incorporated in ESA and NASA
specialists books: in 1997 by S.S. Sadhal (USC, LA) and in 2001 by R.S.
Subramanian (Clarkson College, Potsdam, NY).

1995: Introduction of the “dissipative soliton” concept to describe onset and
features of non-linear surface waves due to surface tension gradients (Marangoni
effect). It has proven to be of universal value well beyond its original hydro-
dynamics context, as there are now books and international meetings organized
with precisely that same title. Although he had used this concept in several papers
already in 1991, it was in a paper published in 1995 in Physica D where the term
appeared in the title of the paper.

1996: Avalanche-collapse model for “excitability” in non-linear dynamics, in
agreement with laser experiments by F.T. Arecchi (Florence) using a laser with
intracavity absorber [Europhys. Lett. 38 (1997) 85].

1996: Theory about the onset of form by replication (with controllable degree of
fidelity) in active systems. Results incorporated in books in 1999 and in 2003
by A.C. Scott (Tucson U., AZ) with discussion supporting their significance to
understand early stages of prebiotic evolution.

1997–Present: Theory describing universal laws of wetting and spreading pro-
cesses over smooth and porous, isothermal and heated substrates, verified by
experiments.

1999: Theory describing features of huge internal waves (100 m amplitude along
the pycnocline) in the Strait of Gibraltar and other straits, in agreement with field
data from several authors.

2001: Theory of generalized stochastic (coherence) resonance: there are systems
with excitability-oscillatory behavior that take advantage of noise to operate
meaningfully with no need of external drive, in agreement with experiment by
O. Piro [Phys. Rev. Lett. 92 (2004) 073901], who has proposed a thermo-optical
device.

2001: Theory of universal features of wavy phenomena, leading to dewetting
and film rupture over smooth and porous, isothermal and heated substrates.
Agreement with the available data of 1949 by P. Kapitza, by G. Reiter (1992–
1993), and by J. Becker (2003).

2001–2003: Theory of significant features of solitonic collisions in Bose–Einstein
condensates.

2002–2011: Mathematical models of neurons, cerebellar function and CPGs
(memory and learning) in agreement with available data.

2009–2012: Theory of “memotaxis”, a novel strategy concept for search and
survival. Observed by R. Strauss in Mainz in Drosophila melanogaster under
humidity and/or temperature gradients. Implemented in robots by P. Arena and
engineers in Catania (EU Consortium SPARK).
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2010–2011: Theory of “internal representation layers” in mathematical brain
models of perception for action. Implemented in robots by P. Arena and engineers
in Catania (EU Consortium SPARK).

2005–Present: Theory of a new form of fast, long range electron transfer assisted
by solitons (e.g. a transition from Ohmic to field-independent non-Ohmic,
generally, supersonic conduction). Coined the concepts of electron “surfing” and
“solectron” (2005) to account for the coupling of nonlinear elasticity to quantum
mechanics, as a generalization of Landau and Pekar’s “polaron” (nowadays
textbook) concept. The theory predicts a kind of ballistic/losses-free electric
transport at ambient temperatures. It also leads to a new form of “electron
pairing” both in momentum space and in real space (accounting for Coulomb
repulsion and Pauli’s exclusion principle).



Gallery of Portraits and Other Pictures

M.G. Velarde

The pictures illustrate how science is part of culture, and the cosmopolitan life at
the Instituto Pluridisciplinar of Universidad Complutense of Madrid (Spain).

Fig. 1 A portrait of the
scientist as a senior man
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Fig. 2 With wife Marı́a del
Pilar

Fig. 3 “Slow down you fool you might win” (Pugh). With Marı́a del Pilar and daughter
Esther-Adelaida on the way from Santa Fe to Taos, in New Mexico

Fig. 4 With a local folk in the wild West a year in the 1980s when Manuel was Consultant to
the Los Alamos National Laboratory in New Mexico. The town is Fort Sumner where Billy the
Kid (William H. Bonney) was assassinated by former fellow friend and then Sheriff Pat F. Garrett.
Daughter Esther-Adelaida is inside the stage coach



Gallery of Portraits and Other Pictures 13

Fig. 5 Will Zimmerman and Manuel at the farewell party for Will and fiancée Julia Rees, after
their postdoc stay in Madrid. At present both are professors at Sheffield University. The picture at
the center in the hands of Manuel was done by Will’s mother, an accomplished artist who had only
ever done one portrait of any of Will’s mentors or collaborators

Fig. 6 With Guoxiang
Huang at Manuel’s home in
Madrid

Fig. 7 With Werner Ebeling
at Institut für Physik,
Humboldt Universität in
Berlin
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Fig. 8 With Takuji
Kawahara in Kyoto. The
Kinkaku-ji temple is seen in
the back

Fig. 9 With S. Kaliszky, his
predecessor as Rector of
CISM (Udine, Italy)

Fig. 10 Trading books and
knowledge about fluids for
coffee and knowledge about
coffee and complexity with
chemist Ernesto Illy (owner
of Illy-Caffè) at the XVIIth
Century Palazzo del Torso
(Udine, Italy). On December
15th, 2004, Dr. Illy gave the
invited lecture at the farewell
ceremony of Manuel as
Rector of C.I.S.M.
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Fig. 11 G. Nicolis and
Manuel during the “Week of
Science”, September, 2011,
synchronizing watches trying
to make sure the impossible
task of precluding the
schedule becoming chaotic

Fig. 12 With astronaut
Claude Nicollier at a public
lecture at Ateneo de Madrid,
where Manuel had a chair
following the tradition of
S. Ramón y Cajal,
J. Echegaray and others, who
also held chairs at the same
learned institution

Fig. 13 With violonist Igor
Oistrach at Manuel’s home in
Madrid

Fig. 14 With Michael Berry
at a discussion with painters,
musicians, and literary people
in Madrid
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Fig. 15 With I. Prigogine,
poet Carlos Bousoño (right to
IP) and sculptor Eduardo
Chillida far right, left of
Manuel, at the home of MD
Neurophysiologist Alberto
Portera (with the camera)

Fig. 16 With (left to right)
former UCM Rector
R. Puyol, Maestros Tomas
Marco, Cristobal Halffter and
Luis de Pablo, and MD
Alberto Portera, after
ceremony of award of
Honorary Doctorate to the
three music composers

Fig. 17 With (left to right)
sculptor Eduardo Chillida,
Marı́a del Pilar and other
friends
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Fig. 18 Ceremony of Honorary Doctorate (1985) offered to Prof. Ilya Prigogine by the Spanish
Open University (UNED). Noteworthy is that the Rector of UNED presiding was the first lady ever
Rector of a University in the history of Spain, Prof. Elisa Pérez Vera, at present a member of the
Supreme Court (Tribunal Constitucional) of Spain

Fig. 19 With W. Ebeling (left) and A.P. Chetverikov (right) after Manuel was awarded an
Honorary Doctorate. They are besides the statue of N.G. Chernyshevsky, after whom is named
the Saratov State University, a friend of F.M. Dostoyevski and author of a celebrated book “What
is to be done”, where he argues about “rational egoism” leading to solidarity, a motto later on taken
up by V.I. Lenin

Fig. 20 With Ivan B. Ivanov
(left) and Marı́a del Pilar
(center) at Rila Monastery in
Bulgaria (1986)
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Fig. 21 With Orlin D. Velev
(left), Victor M. Starov and
wifes Marı́a del Pilar (center)
and Nadia (right) in Sofia
(1986)

Fig. 22 With E.G. Morozov
(left) and K. Trulsen (center)
at IP-UCM

Fig. 23 With Milton Van
Dyke and their wifes, Sylvia
(center right) and Marı́a del
Pilar (center left) in
Santander (Spain)

Fig. 24 With V.A. Briksman
(left) and V.Ya. Shkadov
(center) in Moscow at the
home of the latter
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Fig. 25 With (left to right):
H. Haken, A. Fdez.-Molina,
W. Ebeling and R.R. Llinás,
at IP-UCM

Fig. 26 With John B. Fenn (center left), Rudolph (Rudy) Marcus (center right), and Vicente
López (left, former postdoc of the latter), at the time Manuel was Rector of the International Center
for Mechanical Sciences (CISM, Udine, Italy). John was awarded the Nobel Prize for Chemistry
in 2002 for experimental discoveries made past 70 and after being “forced” to retire from Yale
University to Commonwealth University of Virginia at Richmond. Rudy was awarded the Nobel
Prize for Chemistry in 1992 for his theory of electron transfer (ET) a topic now of Manuel’s love
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Fig. 27 Very serious
planning of a trip to Granada,
Spain, to visit the Alhambra,
with, from left to right,
Roberto Lima (Brazil),
Renate (Mrs) Röpke and
Gerd Röpke (Germany) and
Barbara (Mrs) Ebeling

Fig. 28 Sacred tradition:
black/white board
discussions, here with
G. Tsironis (left), W. Ebeling
(center) and A.P. Chetverikov
(right) at IP-UCM

Fig. 29 Portrait of the
scientist as a donkey on duty
for Masters Y. Pomeau (left)
and P. Clavin (center). Or are
they following Manuel? And
for what curious purpose? Is
it because of the ongoing
economic crisis also affecting
scientists? Paul did the
babysitting for Manuel’s
children four decades ago in
Brussels
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Fig. 30 With a group of participants at one of the CNRS meetings organized by P. Clavin and
Y. Pomeau in the French, rebuilt by Belgians, village of Peyresq, in the Provence, South of France.
Manuel’s wife, Marı́a del Pilar, is standing at the center of the picture (with dark glasses) together
with Marie-Christine (Micrie, Mrs) Clavin (below left above Manuel) and Chantal (Mrs) Pomeau
(right besides Yves). Len Pismen is seated on the right. Recently, Len, Yves, Manuel with Eshel
Ben-Jacob, under the guidance and coordination of Springer Editor Dr. Chris Caron, have launched
a forum of Discussion and Debate in the European Physical Journal, Special Topics Series (www.
epj.org)

Fig. 31 Lecturers at the first
NATO-ASI held in Spain
(1983) at El Escorial. Left to
right first row: P.C. Fife,
M.O. Scully, G. Nicolis,
P. Clavin, and several other
colleagues

Fig. 32 With P.G. de Gennes
(center, smoking), composer
T. Marco (right to Manuel),
Yuri S. Ryazantsev,
C.I. Christov, A. Ye
Rednikov, among others,
at IP-UCM

www.epj.org
www.epj.org
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Fig. 33 With P.G. de Gennes
and wife Annie at a most
typical olive oil based
restaurant, “Casa Juanito” in
Baeza (Andalucı́a). Also in
the picture Y. Pomeau,
P. Clavin and V. Sánchez.
Juanito (next to Micrie
Clavin) and his wife Luisa
(next to de Gennes) both
dressed white are at the
center of the picture

Fig. 34 With J. Laskar
(standing extreme left),
B. Mandelbrot, A. Libchaber,
H. Linde and several other
colleagues. Seated below
A. Wierschem next to
G. Nicolis (right). Katy
Nicolis is seated at extreme
left, at IP-UCM

Fig. 35 With (left to right):
R.S. MacKay, Marı́a del Pilar
(center), an MD lady friend,
W. Ebeling and A.A.
Nepomnyashchy, in Madrid

Fig. 36 Left to right
(standing): V.I. Nekorkin,
W. Ebeling, L. Fortuna,
P. Arena, V.A. Makarov,
A. Giaquinta, U. Thiele.
Seated: H. Cruse, R.V. Birikh,
at IP-UCM
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Fig. 37 From left to right
with R.V. Birikh, G.R. Sarma,
J.C. Legros, R. Narayanan,
P. Colinet, V.A. Briksman,
U. Thiele and J. Bragard at
IP-UCM

Fig. 38 The 3rd
Physicochemical
Hydrodynamics Conference
held in Madrid (1980) and the
first Benjamin G. Levich
attended after being allowed
to emigrate from the former
Soviet Union. BGL is at the
center in the picture next to
S. Ostrach (left) and
B. Spalding (right) next to
Manuel

Fig. 39 Group photo of lecturers and other participantes at a School on Fluid Physics and
Nonlinearity held in Marrakech in April 1998. Coorganzied with Mohamed Belhaq (Professor of
Mechanics at Hassan II University in Casablanca), who appears third row from top, fourth from left.
It was sponsored by the European Physical Society (EPS), the Third World Academy of Sciences
(TWAS), the UNESCO and the cooperation bilateral treaty of Morocco and Spain (Minister of
Foregin Affairs of Spain)
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Fig. 40 Birthday dinner during the “Week of Science” (September 2011) in the garden of the
“Museo del traje”, Ciudad Universitaria, UCM Campus. Standing: from left to right P. Schuster
(Austria), A.P. Chetverikov (Russia), Michèle Vignes-Adler (France), P. Gaspard (Belgium),
Larissa Brizhik (Ukraine), Leonor Cruzeiro (Portugal) with singers W. Ebeling and G. Röpke.
Seated: from left to right Annie Steinchen-Sanfeld (Belgium and France), A. Acrivos (Greece and
USA), Jennie (Mrs) Acrivos (Cuba and USA). Seated seen from the back, left to right: Marı́a del
Pilar, Mrs. Garcı́a Serrano and Museum Curator Rafael Garcı́a Serrano

Fig. 41 Right to left:
M. de Leener, J. Brocas and
MGV, all from the School of
Ilya Prigogine (ULB,
Belgium), on their way to
Copenhagen to attend the
IUPAP Statistical Physics
Conference in 1966
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Fig. 42 With M. de Leener
(right)—both students of
P. Resibois—in Copenhagen
at the week of the IUPAP
Statistical Physics
Conference in 1966

Fig. 43 With the President of
University of Aix-Provence
(Marseille I) at the ceremony
of his Honorary Doctorate in
1994

Fig. 44 With (left to right)
Yu. S. Ryazantsev, Cuban
Cosmonaut A. Tamayo and
J. Padday, at the IUPAP
Conference on Teaching
Thermodynamics and
Statistical Physics held in
Badajoz (Spain) in 1992



26 M.G. Velarde

Fig. 45 With Zhang Ji-Yue
(Northwestern University) at
a Museum in Xian in January
1986

Fig. 46 At the Great Wall
near Beijing, in 1986

Fig. 47 With Hao Bai-Lin at
the Yellow Crane Tower, a
pagoda by the Yangzi river,
near Wuhan in January 1986

Fig. 48 With N. F. Ramsey
and their spouses, Ellie and
Maria del Pilar, in the garden
at the Queen Sofia Museum
of Modern art in Madrid
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Fig. 49 At the ceremony of
Honorary Doctorate offered
by UNED to Hermann Haken
in 1987

Fig. 50 Left to right:
F. de Elzaburu, E. de Bono,
P. Manzelli, MGV and
J. P. Changeux, after the
reception of the Capire prize
in 1987 (awarded to dB, C
and V)

Fig. 51 With V.
Anishchenko and W. Ebeling
at the dasha of the first by the
Volga river, near Saratov, in
2011
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Fig. 52 With G. Z. Gershuni
and E. M. Zhukhovitsky
when attending a Conference
held on a ship from Perm
to Moscow

Fig. 53 Left to right:
E. Riande, A. Acrivos, MGV,
A. Sanfeld, G. I. Barenblatt
and M. Van Dyke during a
Summer School held in
Almeria (Spain)

Fig. 54 Left to right:
J. Alaez, Y. Pomeau, MGV,
H. Peregrine and
D. G. Crighton, during a
Summer School held in
Almeria (Spain)



Thirteen Years of Collaboration with Manuel
on Complexity in Biorobotics and Brain Science

P. Arena

This contribution aims at testifying a long history of mutual and really fruitful
collaboration of myself with Prof. Manuel G. Velarde: a history based on our
common interests in complex adaptive systems, intelligence in Biology and in
Robotics.

I remember as it were yesterday my first phone conversation with Manuel.
I received his call towards the fall of 1999. At that time he was in contact with Leon
Chua (one of the most brilliant minds I’ve ever met), regarding his interest in neural
dynamics and robots. Leon was enthusiastic with my implementation of cellular
nonlinear networks applied to analog locomotion control in artificial robots [1].
I was working with Prof. Luigi Fortuna, former teacher in my undergraduate
studies, subsequently my PhD supervisor and now my colleague (this is a honour
for me indeed!). We had implemented this robot control structure in analogue
hardware under the Cellular Nonlinear Network (CNN) paradigm, introduced by
Leon. The real demonstrations and accompanying videos of the walking multipode,
showing also a real time gait adaptation, were shown worldwide by Leon as one of
the best examples of simple brain dynamics implemented really working prototypes.
In one of those occasions Leon stimulated the brilliant Manuel’s mind to contact
myself, as a potentially suitable counterpart for exploring working solutions for
models of biological intelligence.

The first meeting together as a result of our phone conversation, without loosing
time, as his habit, he invited Luigi and me to a meeting in Madrid entitled “Dinámica
Cerebelosa, Sistemas Dinámicos y Robots neuro-motivados” (Fig. 1). Luigi and
I brought our Rexabot with us, showing its capabilities (Fig. 2). We were proud to
show one the first examples of reaction-diffusion systems in action and interaction.
The meeting was highly rewarding for myself, since I discovered Biology as a kind
of treasure from which to draw a lot of inspiration for technology. Manuel gave me
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Fig. 1 Workshop-discussion
meeting at IP-UCM over
week-end days (1999)

Fig. 2
ReXabot:reaction-diffusion
CNN controlled robot
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the opportunity of meeting Prof. Holk Cruse, one of the most important biologists
interested in animal and artificial locomotion. At that meeting Prof. Joseph Ayers,
the worldwide expert in lobster neurobiology, was also invited. All of us together
found a large interest convergence on trying to model and subsequently implement
in artifacts the biological principles of locomotion, with the aim to go up from
a purely mechanistic approach to the implementation of a embryonic form of
intelligence.

Manuel was convinced of the fact that a real intelligent robot should be able to
make mistakes, not only to take good decisions, that are for the large majority of
cases a result of pre-programmed actions. Intelligence has to draw its basis from the
capability to learn from wrong decisions and, even after learning, the robot has to
be given the possibility to commit mistakes, and from then to gain opportunities to
learn more. We completely agreed with that view. The unique problem was given
by the potential problems to the robot mechanics and electronics caused by letting
it making wrong decisions. On the other hand, learning on line from the results of
own actions in a real environment could have been a real mean to test the real robot
capabilities and the joint behavior of algorithms and hardware. This rule guided us
in the following years of our collaboration.

These very rewarding meetings continued, thanks to Manuel’s initiative. He
invited me again the following year, together with Prof. Sten Grillner, one of the
most important neuroscientists, the father of Lamprey neurobiology and Orian
Ekeberg, his collaborator in charge of implementing the biological model into
dynamic robot simulations. This was across the year 2000, when our students,
Luigi and myself in Catania had just developed our artificial lamprey underwater
robot. Our Lamprey brain was loosely inspired by the basic locomotion generation
principles proposed by Grillner.

Also at that time I became associate Professor and the influence of these meetings
was really important for my future research. I soon realised that, in order to
maximise the search for new results, minimising the time needed to obtain them,
a tight collaboration among the different scientific fields present at those meetings
was necessary.

In 2002, as reported in the leaflet below (Fig. 3), Manuel succeeded in organising
an impressive meeting within the “2ı Ciclo de invierno de ciencia y tecnologı́a”.
There Luigi and myself showed again one of our robot prototypes. One of the invited
speakers was Prof. Walter Freeman, the father of the modern view of olfactory
neurodynamics in mammals, whose idea on the arousal of concepts as the result
of competition among different attractors in a multidimensional chaotic landscape
formed by the neuronal population, fostered a lot my ideas on complex neural circuit
architecture modelling.

The discussion at that meeting was quite stimulating: we had both formal and
informal discussions with Manuel and Walter: the latter, looking at our walking
machine showing a number of different locomotion patterns in real time, was
positively surprised but pointed out a critical comment that was providential,
since it largely stimulated my future research: “your robots”—he said—“succeed
in locomotion, but do show neither attention nor intentionality, the fundamental
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Fig. 3 Program flyer of
Workshop (2002)

ingredients to go up from a purely reflex based adaptive system to a perceptual
machine”. Walter was convinced that our approach of using complex systems,
implemented through adaptive analogue circuits mimicking neural dynamics, could
have been a suitable tool to approach the perception process. Complex dynamics
are able to generate an impressively large number of different solutions, that
subsequently can be shaped to fit the body–environment interaction, from the level
of reflexes, to that one of cognitive interaction. These ideas, focalised in the course
of those meetings, were subsequently deepened and developed.

The CISM School in Udine. In 2003 an interesting single partner project, funded
to our group in Catania from the Office of the Naval Research, allowed us to invest
resources to build more efficient legged prototypes and neural circuits. In those years
Manuel was the Rector of the International Centre for Mechanical Sciences (CISM),
in Udine (Italy). He invited me to coordinate an International School on “Dynamical
Systems, wave-based computation and neuro-inspired robots”: this title summarises
the new emerging scientific field that we were going to introduce (Fig. 4). At that
school all the results produced in the past few years were efficiently summarised
and presented, and also other key persons that could complete the panorama and
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ACADEMIC YEAR 32003
The Palacios Session

Udine, September 22 - 26, 2003

International Centre for Mechanical Sciences
Centre International des Sciences Mècaniques

P.Arena, Università degli Studi di Catania, Italy

Advanced School
Coordinated by

DYNAMICAL SYSTEMS,
WAVE BASED COMPUTATION

AND NEURO-ISPIRED ROBOTS

CISM

Fig. 4 Flyer announcing
School (2003) at CISM
(Udine, Italy)

help us to more deeply understand the future directions of this stimulating research
gave interesting invited talks. Among them were Dr. Tatiana Deliagina, a close
collaborator of Sten Grillner, and Prof. Barbara Webb, whom I had met for the
first time in 2000 at an SPIE conference in Boston. The former gave interesting
lectures on the neurobiological basis of Central Pattern Generator, whereas the
latter talked about sensory motor integration in insects and the related models.
A number of students from all over Europe were also able to attend. They were
allowed to develop practical applications, using Lego Mindstorm, of the model
presented during the lectures. This was very rewarding and stimulating both for
students and for us, involved with them in the implementation and discussions.
At the suggestion and sponsorship of Manuel, Luigi and I offered a public lecture
with robot demonstrations at the beautiful Palazzo della Provincia in Udine. A book
was later on published, with the lecture notes of this school [2].

The SPARK Project. The overall participation and organisation of that school
convinced me that it was time to submit a proposal for a grant to the European
Commission. There was a recently announced call on “Cognitive systems, interac-
tion and Robotics”, where one of the main issues to cover for a successful proposal
was to address a new type of adaptive interaction with the environment: nothing
better than our emerging approach based on complex dynamics generating complex
activity patterns. Moreover, through all those meetings organised by Manuel and
together with him, a good consortium, with really competent scientists, in charge
for working towards the same direction from different scientific fields, was ready to
be formed.

I personally worked really a lot, for a number of months to carefully prepare the
proposal which we called Spatial-temporal Patterns for action-oriented perception
in roving robots (acronym SPARK). This was an ambitious project aimed at
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implementing our ideas on the new approach of using complex dynamics to
represent a new paradigm for action-oriented perception. The consortium comprised
six partners, who personally knew one another and I was sure of their willingness
of working at the different sides of that puzzle of complex nonlinear dynamics and
perception in algorithms and animals. The heart of the consortium was composed by
our group in Catania, Manuel’s knot in Madrid, Holk’s group in Bielefeld and
Barbara’s team in Edinburgh; two small companies ANAFOCUS and ANALOGIC,
devoted to develop, respectively, hardware and software tools, based on cellular
nonlinear networks, took part in this adventure. The proposal was successful and we
were allowed to work together with enthusiasm. I have to acknowledge and thank
the wonderful character of our project Officer, Dr. Hans-George Stork, who contin-
uously encouraged us to make good research while maintaining the project outline
and deadlines. He himself participated non only in our meetings but also in other
initiatives, like schools, and this demonstrates his approach: as a mathematician
checking the project development by very professionally following also technical
activities. During the project activities I worked a lot together with Manuel, and also
against his volcanic character to think about a lot of things simultaneously. At that
time I remember that he was going to loose his primary interest in Spatial Temporal
Dynamics and reaction-diffusion systems (which was the main common argument
in SPARK): he was more and more involved in studying superconductivity! But
I convinced him to continue to work on the reaction-diffusion side, which led
to important breakthroughs within the project. The SPARK activities were really
intense and full of significant results on spatial-temporal dynamics applied to
perceptual robots: one of them was the reformulation of the “Winnerless Com-
petition” principle into the Cellular Nonlinear Network paradigm [3, 4], for the
subsequent application to the generation of perceptual behaviors into a roving robot.
The wandering of state variables among a number of saddle nodes, maintaining,
at the same time, an overall stable trajectory was used for the representation of
perceptual states in moving machines. This strategy followed a “twin” approach
which used the paradigm of Turing Patterns in reaction-diffusion cellular Nonlinear
Networks. This computational structure, able to generate hundreds of different
patterns and steady state attractors in nonlinear cellular circuits, even constituted by
a relatively small number of cells, gave the possibility of implementing emerging
solutions to the perception-for-action cycle in our robot prototypes. The practical
evaluation of the capabilities of the robot to find new solutions to solve a given
job in front of unforeseen drawbacks was a real success. The SPARK project was
considered by the EU reviewers a show-case in the panorama of the EU funded
projects. Three years of joint efficient research, together with Manuel and other
impressively active neuroscientists led to a really well settled consortium. We were
used to meet every 4 months and every half year a 1-week meeting, called SPARK
brainstorming week was organised, where to discuss theoretical results, but also to
create links to biology and to robotic implementation. The SPARK project started
with the idea of applying complex dynamics to represent brain dynamics from a high
level perspective, but the lessons learned from Neurobiology led both Manuel and
myself to realise that, whatever perspective from which to face with the problem
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Fig. 5 Manuel and myself at
one of our SPARK meetings
in Madrid in wintertime

of intelligence, we had to take in large consideration the brain functions. And,
most important, the continuous meeting with Holk and Barbara convinced us that
the basics of intelligence, considered not only as a purely, fixed reflex, adaptive
behavior, but as the capability of decision making, resolving contradictory cues,
and so on, could be found not only in sophisticated mammal brain, but also in tiny,
ganglionic assemblies of neural cells, as insect brains are made of. Insects became
our main source of inspiration for our immediate future research activity. Most
importantly, some basic brain functions are better to be focalised and characterised
in small brains than in larger ones. Moreover models genetic tools were available
to control behavioral repertoires, to try to close the feedback among brain structure,
function and behaviors in the insect brain. To proceed in this direction we needed
a neurogenetics expert. Holk suggested us to meet and discuss with one of the
worldwide experts in the Drosophila melanogaster brain neurobiology and genetics,
Prof. Roland Strauss.

The SPARK II Project. At that time, the beginning of 2007 (Fig. 5), strong from
the really positive experience with SPARK, I was also encouraged by Manuel and
Holk to submit another EU initiative, that, building upon the acquired experience,
could be focused on the high risky but at the same time mostly fascinating proposal
to design an insect brain computational model: the SPARK II project was conceived,
submitted and approved. SPARK II started at the beginning of 2008, with the
collaboration of Roland as a new partner.

One of the most important steps towards understanding and modelling brain
functions is spatial working memory and the capability to take decisions on the
basis of previous experience, especially in front of noisy and incomplete sensory
information. Manuel started formalising the following, simple but efficient idea: if
someone took a decision based on a certain actual information, and pursues this
decision for a certain amount of time, even in front of contradictory and noisy
cues, he, for a while continues to maintain that decision notwithstanding sensory
information that could suggest different responses. Manuel formalised this principle
which generalised the phenomenon of bacterial chemotaxis introducing the concept
of memotaxis. The first mathematical model was published in early 2008 in the
“Revista Espanola de Fı́sica” (Fig. 6), together with some preliminary results on our
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Fig. 6 Part of front page of
paper on “memotaxis” (in
Spanish)

Fig. 7 Manuel, Giacomo
Rizzolati and myself
(standing in the right) at the
school on nonlinear dynamics
and robots at El-Escorial

robots, but the complete methodology is still under development and we have really
interesting results in biological experiments which are currently under investigation
to assess the presence of this phenomenon at the decision level in animals.

The following summer Manuel and myself organised, with the support of
the European network for the advancement of artificial cognitive systems “EU-
Cognition”, a summer school entitled: “Non-Linear Dynamics and Robots: From
Neurons to Cognition” (Figs. 7, 8 and 9). The School was organised within the
“Cursos de Verano” at El Escorial, a wonderful place in the neighborhood of Madrid.
This was 1 week of intense scientific work: mornings and early afternoons were
devoted to teach to students and applicants. Those served as stimulus for the evening
meetings within our SPARK II consortium. The school hosted invited speakers
like Prof. Giacomo Rizzolati, who gave an interesting lecture on mirror neurons,
stimulating our ideas on the possible counterpart in the insect brain. The picture
(Fig. 7) illustrates one of the moments of the seminars organised within such a
school at El Escorial, with Manuel as the Chairperson. The following successful
joint collaboration within the SPARK II project led to the formalization of an insect
brain computational model endowed with Memotaxis, neural spiking networks and
the capability of on-line learning in robot prototypes. Practical demonstrations were
really stimulating for interesting future collaborations which are still continuing,
even if informally.
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Fig. 8 Myself and MiniXex

Fig. 9 School “Nonlinear dynamics and robots: From neurons to cognition”: El-Escorial, summer
2008

There are men which are able to strongly influence research interests and
scientific careers: they represent true bifurcation points. This was Manuel in my
past 13 years of research.
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Manuel for a long period, acted as a kind of modern “mecenas”, inviting several
experts together for the only interest in science, and I was honored to join many
times his interesting meetings, with the opportunity to meet outstanding people who
contributed in shaping my actual interests in bio inspired systems, neurodynamics
and Robots. Thanks Manuel for all of this and, last but not least, for your friendship,
a basic element of our successful joint activity (Fig. 9).
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My Relation with Professor Manuel G. Velarde

X.-L. Chu

I first knew Manuel by his scientific work. In 1983 when I started my postgraduate
study, Prof. Bailin Hao, my advisor in China, who is also a good friend of Manuel,
gave me a few topics to choose as my research direction. As the introduction to one
of the possible research areas, a review article on the stability of fluid motion by
Normand, Pomeau and Velarde in Review of Modern Physics caught my attention.
This review article became not only the introduction to my research career, but
also the introduction to my relation with Manuel, who eventually became my Ph.D.
thesis advisor, a father-like tutor of life and a great friend.

After reading the research papers published by Manuel’s team, I did a few
small pieces of follow-up work on fluid interface stabilities in 1983 and 1984.
Through the connection of Prof. Hao, Manuel and I started to exchange preprints of
research papers. In December 1985, Manuel came to China at Prof. Hao’s invitation
and arrangement. Our first meeting in person was at Beijing Airport. I remember
that Prof. Hao, who met Manuel not long ago, asked about Manuel’s newly kept
moustache and beard. Manuel said that it was common in Spain that people start
to keep them at early age and shave it at age of 60 as symbol of starting new life.
I didn’t have chance to see Manuel at his 60th birthday, but, Manuel, you are at 70
now and you have never slowed down a little bit in your path pursuing exploration
at the forefront of science.

In recent years my connections with Manuel are through emails. In every mail
from Manuel, he talks with great enthusiasm about his recent works and recent
published papers, just like the way he talked when I was in Madrid. From the words
and lines in Manuel’s mail, I can always feel slashing out of his energy, which have
been inspirational for me and motivated me to take challenges in my work and life
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all the time, whether the time I was doing my Ph.D. research at the Spanish Open
university (UNED) in Madrid, or later research and development in industry.

In his first trip to China, Manuel visited Beijing, Xi’an and Wuhan. He lectured
at all three places, and visited opera houses, music schools, museums and historical
monuments. In my home town Wuhan, the university (HUST) had organized a
Winter school. Manuel and Prof. Hao gave series of talks on non-equilibrium
systems to young scientists and graduate students from different places of China.
In this school, they brought in the new ideas and research forefront at that time.
Manuel’s broad knowledge in science and his lecture full of energy impressed all
participants.

In the summer of 1986, I arrived in Madrid and started working on my Ph.D.
thesis under Manuel’s guidance. I still remember Manuel’s words, “you are the
first Ph.D. student in science from China to Spain and we have to make this a
success thus setting the standard”. Indeed, he had put all types of efforts to help
me overcome hurdles of working and living in a totally new environment. When
I arrived, Manuel sent me to a Summer school in the University of Salamanca to
learn Spanish. He wrote to the Rector of the University to get my tuition waived.
After I finished 4 weeks intense Spanish courses and came back to Madrid from
Salamanca, Manuel used his relations to find a Colegio Mayor (campus student
dorm) close to the office. In order to get the best computing facilities, Manuel called
his colleagues in the Atomic Energy Center (JEN) in Madrid, to setup an account
for me to use the fastest available computer at that time. This was no easy matter
due to my Chinese citizenship. But Manuel managed to overcome the difficulty.

In about 3 years, I had chance to work closely with Manuel. Like many other
people around him, I was immediately impressed and infected by his passionate
style of working. His broadness in knowledge, his persistence in pursuing the best
results and his sensitivity in capturing new ideas has made him always steps ahead of
others. Remember once Manuel invited a great experimental scientist from Berlin
(former GDR-Germany), Dr. Harmut Linde to Madrid. Dr. Linde showed us his
experiment results, movies of spontaneous surface waves of liquid layer. Manuel
immediately pointed out that the waves in Linde’s experiments were “solitary”
waves, a special kind of non-linear waves. In the next a few months, Manuel started
to guide us in the direction of solitary waves. We kept discussing all the time on
solitary waves, read all the available literature on the subject and tried different
approaches to formulate mathematically the onset of spontaneously growing solitary
waves. Finally we found a simple and intuitive way to combine the linear stability
theory and the Korteweg-de Vries equation, providing a qualitative explanation of
Linde’s experiments.

Weekend and holidays could be home-sick time for a person away from family.
To help me deal with this, Manuel and his family often invite me to spent time
with them. During my staying in Spain, I don’t remember how many weekends
and holidays I had been with Manuel’s family, where I was treated as one of them.
Together we went to swimming pool, watching classic movies in the home theater,
ate in the community restaurants (kind of country club), partying with relatives and
family friends. Maria del Pilar, Alberto, Uriel and Esther (their three children) thank
you all for making me feel the family warm while I was away from my family in
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China. I love all you. Still miss the charcoal grilled lamb ribs made in Manuel’s back
yard, without any BBQ sauce, but only drops of juice squeezed from fresh lemon
and a pinch of salt.

During my 3 years staying in Spain, one of the most memorable activities besides
research, is to go with Manuel in a tour-program, schools and cultural centers all
around Spain, called “Barraca de la Ciencia”. This was an invention of Manuel.
He drove out to the high schools all over the Spain, pulling a trailer packed with
equipments for lectures with demos (with participation of the audience), projection
of films and slide projections. In many cases, we had to drive through country side
roads to small towns and villages far from cities. As an internationally well-known
scientist and leading researcher of the field he was working, I believe his words had
sew seeds of science in many hearts of high school students, and motivated young
people to choose the research career.

To give lectures to elementary or high school students is not part of work of
a normal university professor, and intense travel and lecturing stretched Manuel’s
already busy schedule. It’s hard to image anyone can take the extra duty like this
and insist for many years, without taking education as a mission of his life. I had
some discussions with Manuel on why and how he invented this program. After
a long talk starting from the word “Barraca” and through the history of science
education all over the world, Manuel concluded in a cold way, “It’s fun to travel and
talk to children and young people”. I have to say that, those trips with Manuel added
a lot of fun to my life in Spain. I had chance to see not only big cities and tourist
hot spots in Spain, but also a lot of small villages. I had chance to dine in village
restaurants, and eat partridges with lead bullets in it. I had chance to taste all kinds
of house wines from different restaurants. After about 3 years, I learnt more about
Spain than many other foreign students who just spent time in school and big cities.
I felt Spain was my second homeland.

Manuel always treated his students in a father like way. He cares about his
students not only the courses taken, progress in research, but also the student’s
career and life beyond the period of study. During my study in Spain, Manuel
sent me to visit many research labs and institutes in Europe to start collaboration.
He also sent me to several international conferences to broaden my knowledge
base, to meet other scientists and show up myself alone in self-defense. When
preparing defending my thesis, Manuel organized an international jury committee,
with scientists from many different countries, including Prof. Hao who chaired the
Jury (Ph.D. granted in October 1988). After I finished my study in Spain, I returned
home to meet wife, child and family. I prefer to skip saying how he managed using
the old fashion telex communication with the Rector of HUST to get me again out of
China in a quite difficult situation, as Manuel wanted me to do postdoc research at
Stanford University, with Prof. John Ross, whom he knew for a long time. I was
lucky to serve as a bridge between these two great scientists, as we published
together several papers originating from work done while Manuel visiting Stanford
and John visiting Madrid. After Stanford Manuel secured another postdoc period at
Illinois Institute of Technology, with Professors Darsh Wasan and Alex Nikolov,
who also were old acquaintances of him.
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Manuel made his best efforts to pave a way for me to become an independent and
critical mind and a qualified researcher in science. Although I eventually changed
career to the industry, my education, especially the training as Ph.D. student in
Spain, has helped me to deal with all possible tasks in my everyday’s job. Three
years spent in Spain is a portion of the best memory in my life.

Happy 70th birthday, Manuel.



My Scientific and Personal Relation
with Manuel G. Velarde

E. del Rio

I knew Manuel through a call for potential Ph.D. students in 1987. A number of
students applied for and fortunately I passed the selection process, then Manuel was
my Ph.D. supervisor and I joined Manuel’s group. We were several Ph.D. students
and quite a number of postdocs and a number of visitors coming from all around the
world. Since Manuel works in non-stop regime, the whole environment of Manuel
stayed at a high energy state with no chance to fall into a low energy level. It was a
extraordinary experience from scientific, cultural and personal points of view.

It is impossible to mention all people that I met in the IP-UCM, but Christo
Christov (Uncle Christo for us) has a special place in my memory. Uncle Christo
used a PC-486, at that time, the Intel most powerful central processing unit. Using
Linux the suitably tuned 486 by Uncle Christo worked as fast as a Cray.

I worked on various aspects of the dynamics of the nonlinear (cubic) Helmholtz
and (quadratic) Duffing oscillators subjected to external forcing. The former is the
underlying dynamical system of the (soliton-bearing) Boussinesq-Korteweg-de
Vries (B-KdV) equation. Manuel was interested in understanding all about it as
he was searching for all possible aspects of the evolution of a liquid surface driven
by external constraints. A liquid surface is like a membrane and hence a potential
oscillator with asymmetry where the Helmholtz dynamical system unfolds in space-
time. I was amazed by learning that he is recently using the same nonlinear models
and concepts, we discussed together so long ago, in a new theory of electron
transport in anharmonic crystal lattices in solid state physics.

Manuel introduced me to Nikolai Rulkov and one of problems we worked was
the chaotic synchronisation problem. I made an analog circuit (analog computer) to
test the theory. By the way, I still have the circuit in my lab. It might be interesting
to check if the circuit still works. I remember when President Boris Yelsin was on a
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tank in Moscow and all of us were waiting for Nikolai to ask what was happening
in Russia.

I recall Dr. Harmut Linde visiting the IP-UCM to show us experimental results
on waves in liquid layers. Suddenly in the middle of the seminar presentation
Manuel pointed out that the Linde waves were solitons like those he knew of the
B-KdV wave equation mentioned above and we all were involved in a scientific
discussion on solitons. I observed the discussion without understanding what they
were talking about, because it was for me the first time that I heard the soliton
word, but I understood that was a privilege for my to be there. This line of thought
and the consideration of a liquid surface as a vibrating membrane led to the Ph.D.
research later done by A. Wierschem. Eventually, I wrote papers with Manuel
on dissipative solitons and dynamical ratchets. Recently, Manuel pushed me to
investigate the connection between solitons and the gaits generator in insects and
also the possibility to make a mechanical insect based on this idea, so I expected
that my next paper with Manuel will be about a legged soliton!

I also remember Dr. Linde giving to Manuel a portion from the “Berlin wall”
when it fell. Years ago nobody couldn’t imagine what, two decades after the fall of
the Berlin wall, the main task of the European democracies would be to obey the
markets against of the dreams born when it fell.

It is impossible to forget Prof. Ilya Prigogine visiting the IP-UCM and his
exciting lectures and scientific discussions.

Aspects of an anecdote show Manuel’s character and the way he treated his Ph.D.
students. Doing the research and getting the Ph.D. was not the problem save that he
used to have with the candidate a private hearing, closed doors, with the Jury. It was
something he had learned at ULB in Brussels where he got one of his Ph.Ds. The
problem was that the respective duration of the presentation and the discussion were
not fixed, a priori, and my hearing lasted some 3 h. I was awarded my Ph.D. in 1993.
Since then we have collaborated for about a decade within an European Consortium
SPARK on nonlinear dynamics for robots and we have published papers on subjects
different from that of my Ph.D. work.

Besides the research activities, Manuel organized a number of Summer Schools
first in Almerı́a, later in Santander, and, more recently, at El Escorial. Manuel’s
schools were characterized by lectures given by high qualified speakers followed
by long scientific discussions with students and speakers. Usually, the discussion
ended just before the dinner time. Too much time and master classes for the actual
Bologna framework!!

In spite of Manuel being 70 years old, he is a young pioneer in science and
culture.



Manolo Garcı́a Velarde: Three Relevant Traits
of His Multifaceted Persona

F. Mayor-Zaragoza

1 Highly Unusual

He is infrequent in his ways, in his focus, in his opinions. He is the essence of
non-linearity.

His appearance, mostly because his spiked hair, almost electric, is impressive.
When looking at him, one may rapidly think that someone like him must do amazing
things. For sure, complexity requires to be addressed by this kind of people.

From the physics of fluids, interfaces, and wetting dynamics, . . . to science as a
part of culture, to science as a tool for academic training, a tool for creative activities
with children.

Like Federico Garcı́a Lorca with his theatre “on his back” (and Manuel Bar-
tolomé Cossı́o with his “misiones pedaggicas”), Manuel Garcı́a Velarde traveled,
with his science “on his back”, across Spain.

Off the common tracks. He is highly unusual.

2 Excessive

Progress mainly consists of believing—and endeavoring—that the impossible today
could become possible tomorrow. In 2011, Dilma Roussef, President of Brazil, said
in her investiture speech that, “For our dreams to become true we must know how
to overcome the frontier lines of what it is possible”. Nothing is inexorable. The
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creative ability that distinguishes every human being can, if capable of seeing the
invisible, of making real the impossible. Whatever is coming next needs to be made.
For that, we all have to work together and follow the guidelines of those whom, in
the scientific context, have gone farthest. Reality needs to be deeply understood
in order to be deeply transformed. Otherwise, changes may be just superficial,
epidermic. Manolo Garcı́a Velarde knows that one must flee from the spotlight of
the media to be able to know the scenery as a whole. As stated by Bernard Lawn
in 1985 when he received the Nobel Peace Prize, “Only to the extent in which we
are capable of seeing the invisible, we are capable of doing the impossible”. Only
excess is historic, only excess allows, with a great deal of human tension, to create,
to invent a future, to the nobleness of human dignity.

3 Perseverant

To all of the above, he sums up tenacity. Manuel Garcı́a Velarde is not discouraged.
He can sometimes, feel deceived. Nonetheless, he is never hopeless. He does come
back once and again. In his seventees, he continues engaged projecting from the
highest level of physics research, to reach the lay citizenry, to conquer the audiences
of children. Let it be for many years to come.

Manuel Garca Velarde, unusual, excessive, perseverant, . . . and much more.



Reminiscences from an Expatriate Scientist

C. Montes

The Workshop “A WEEK OF SCIENCE” celebrating the 70th birthday (September
7th, real; 14th, legal; 2011) of Prof. Manuel G. Velarde, was an outstanding meeting.
For me, Carlos Montes, Directeur de Recherche au CNRS (emeritus since 2006),
was the best opportunity to embrace my friend Manuel. I know him from the
early seventeens because we have a strong common history. We are both Spanish
physicists emigrating from our country in order to carry out research in physics.
At the end of the sixteens this was not possible in Spain. Both fulfilled research
in nonlinear physics and we meet together many times in international conferences
and workshops devoted to this area. However our careers deviated in the sense that
he choosed to return to Spain in order to develop the research from the bottom,
which represented an immense task, and to become the leader in hydrodynamics
and nonlinear physics, and I take the chance of developing the research in France
as a fellow of the Centre National de la Recherche Scientifique, which remains for
me the best research institution in the world. We only do work for the scientific
community, like the artists, without thinking about material fallouts. This is a
privilege and a singularity which compel us to an exemplary behaviour. Velarde’s
work on dissipative solitons, hydrodynamic instabilities and convection remains
a reference for me in my field of plasma physics and nonlinear optics. I will not
enumerate here all the research work done by Manuel but my purpose is to testify
his honesty. He was the first Spanish physicist who invited me to lecture on kinetic
theory in plasmas in the University Autonoma of Madrid in the Spring of 1976.
I remained grateful to him and I can assert that besides considering him as one of
the best Spanish physicists he is “un autentico caballero”.

C. Montes (�)
Laboratoire de Physique de la Matière Condensée, CNRS, Université de Nice - Sophia Antipolis,
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An Extraordinary Year of My Life

A.Ye. Rednikov

Most of the time, life goes on at a regular pace. This does not mean that nothing
interesting happens. It is just regular, normal happy daily life. But there are times
when things accelerate and impressions overflow. The periods like this leave a deep
impact on one’s life. For me, the first year of my postdoc with Manuel, in 1992, at
Instituto Pluridisciplinar (IP) of the Universidad Complutense of Madrid (UCM),
was definitely one of such occasions. In a word, it was a shock, in a good sense
of the word, both scientific and cultural. Well, why it was also cultural, it can be
easily understood by imagining someone from Russia (then part of Soviet Union)
at the heyday of her post-communist crisis suddenly finding himself in the splendid
Madrid. The scientific part of the shock was no less strong. Here it is first of all my
sudden and unavoidable exposure to a constant need to cope with new problems and
ideas constantly discussed around, to communicate with an increasing number of
scientists staying with Manuel either on a long-term basis or just coming as short-
term visitors. For someone like me, who is generally predisposed to working quietly
in his corner on his small problems, it was quite an enlightening challenge.

Manuel’s team was rather diverse. It happened that quite a number of scientists
coming from different countries started their stay with Manuel nearly at the same
time as me, so that I was directly submerged into a remarkable ambience. For
such diversity, we even used to be jokingly called a Zoo by the locals. Each one
was a unique personality. The Spanish part of the team was, among other things,
of an invaluable help in all aspects of the new life. Juan Luis Valero remained
closely associated in my mind with the word “because”, which he used in each
second phrase and whose pronunciation he accentuated by lifting a finger. From this,
I decided for myself that the Spanish people had a strong feeling for the cause and
effect relationship. Angel Rodrı́guez Lozano was perceived by me as a true Spanish
nobleman, hidalgo. Ezequiel del Rı́o, constantly laughing and joking around, finally
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turned out to be quite a serious man with a continuing scientific career. At a later
stage, we were joined by another colorful Spanish guy, Juan Antonio Mendez
(simply Ivan Antonych between Russian speakers), the first experimentalist-in-chief
of Manuel’s new lab at the IP-UCM. I could not imagine my time in Madrid without
Christo Christov, a person of multiple talents, not only scientific, always ready to
lend a helping hand, which I often abused. “Uncle Christo knows”, he used to repeat
when asked a scientific question, which turned into “Uncle Christo helps everyone”
when asked for computer help. I was deeply impressed by the personalities of
George Khomenko, with his elitist but at the same time friendly style and perfect
(at least to my ears) English, of whom I retained in the memory a fancy word
“helicity”, Xiao-Lin Chu, who used to speak with the calm confidence of a person
sure of having made a great job, Will Zimmerman, with his Macintosh, symbolic
software and viscous fingering, all new to me at the epoch, and the mysterious
Julia Rees, with an awesome experience of Antarctic expeditions. Hartmut Linde
was capable of endlessly discussing his extensive experimental results on waves
and convective patterns. Each time we finally had the impression of more or less
grasping what was going on and the discussion was turning to an end, he would be
able to pull out of his vast archive yet another figure that mercilessly undermined
our conclusions. At the epoch, I used to think of him, “Wow, what amazing working
capacity and vivid interest in science at his age!” Now that I met him at the Week
of Science (September 2011) in Madrid nearly 20 years later, I cannot help but
state that he is still the same! Marcel Hennenberg was a classic from the beginning
of my thesis. No, I had not known him personally before Madrid. It was just his
papers on Marangoni instability of drops that I had had to read. My Moscow Ph.D.
thesis supervisor Yuri S. Ryazantsev, who recommended me to Manuel, was also
among us, and we were even closer than in Moscow. Yuri Sergueevich now taught
me not only his rigorous approach to science, but also life, the latter sometimes
together with his wife Petra, of whom I was always a little bit afraid perceiving
her as too a strict lady. We often joked that it was Petra who was at the origin of
the chain of events that brought me to Madrid. A “child of the war”, as they use
to call the children evacuated from Spain to the Soviet Union during the Spanish
Civil War, she returned to Spain, already a M.D. in gynecology, in the beginning
of the 1990s. At the top of this team was Manuel, who amazed me from the very
beginning by his style and personality. His active and fruitful involvement in so
many scientific subjects, insatiable interest in science, inexhaustible energy, multiple
organizational activities (e.g. public physics lectures at the “Ateneo” of Madrid)
were truly incredible, and nothing of this has changed since then.

We enjoyed close ties, both scientifically and administratively, with the group
of Amable Lian at the nearby Aeronautics School of the Polytechnic University
of Madrid (UPM). Paco Higuera from this group and Amable himself were always
considered by me with reverence for their mastering of fluid dynamics, the reverence
increasing even more after Amable once pointed out to me a mistake during a
weekly seminar we used to have in common between the two groups.

Somewhat paradoxically, I had to come to Madrid with Manuel in order to make
acquaintances of many scientists from my own country and even from my native city
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of Nizhny Novgorod. I studied in Moscow and had little scientific contacts at home.
In Madrid, I met representatives of the famous Nizhny Novgorod scientific school
in the field of nonlinear dynamics, Nikolai F. Rulkov, Mikhail I. Rabinovich and
Vladimir I. Nekorkin, the latter becoming a close friend. I also met representatives
of a no less famous Perm scientific school in the field of hydrodynamic instability,
Gregory Z. Gershuni, Vladimir A. Briskman and Rudolf V. Birikh. The latter two
used to come on short visits and seemed to me as brothers, even though they were
not. I knew the famous Birikh solution from my student years and in Madrid I got
an occasion to meet the classic himself. Alex A. Nepomnyashchy, also originally
from Perm but by then already from Haifa in Israel, impressed me right away by his
profound knowledge and by an all-on-blackboard lecture-seminar on the derivation
of a long wave equation for Marangoni–Bénard convection. I also had occasions
to meet high-ranking Russian Academicians, to whom in Moscow I would not be
allowed even at a gunshot distance, but there at the IP-UCM in Madrid, I found
them surprisingly accessible. In particular, I was delighted to meet academician
Belotserkovsky, the Rector of the Moscow Phystech (the MIT equivalent in Russia)
at the time I started my studies there. Also the late Alex. G. Golovin younger than
me at Phystech and another of Yuri’s former students was one of the visitors at
IP-UCM then coming from the Technion in Haifa.

We lived as a really close community, sharing lunches, seminars, frequent
discussions at the blackboard (a sacred tradition with Manuel, however busy he
might be), spending a lot of our leisure time together, visiting each other at home,
going to workshops and summer schools organized by Manuel, of which a summer
school in Almerı́a, the native land of Manuel, was truly unforgettable. It was intense
as never again. On top of that, with Hartmut, Xiao-Lin and George (later, Marcel),
we were renting together a mansion in Pozuelo de Alarcon, quite near Manuel’s
home, in the suburbs of Madrid, where discussions about waves and solitons often
recommenced with a new enthusiasm during the evenings we spent in the chimney
corner. Frankly speaking, I did not understand too much in the beginning, which
was quite an incentive to learn and later to contribute to these subjects. We were
often invited to Manuel’s house. Once we even had a weekend seminar over there
in Manuel’s home office by a Japanese visitor who happened to be in Madrid just
for a few days. I remember his spacious loft office, where not so much space was
actually available due to tons of books lying about everywhere on the floor. After
the seminar, we were served lunch by Manuel’s charming wife Marı́a del Pilar.

So was my first year with Manuel. Later, I was lucky enough to enjoy a few
more years in Madrid, but it became more like a regular life, while the first year
remained in my memory as especially extraordinary. Papers on self propulsion of
drops, Marangoni-driven instabilities, nonlinear waves, . . . came from tough, deep,
detailed, infinitely long blackboard’s discussions with him and Yuri Sergueevich,
and after on joined by Pierre Colinet and Vadim N. Kurdyumov, another former
student of Yuri.



Reminiscence of My Time in Manuel’s Group
at the Instituto Pluridisciplinar

A. Wierschem

I joined Manuel’s group at the Instituto Pluridisciplinar (IP) in April 1994. The
year before, Manuel had been one of its cofounders at Universidad Complutense de
Madrid (UCM). Although up to then I had not worked in fluid dynamics, he accepted
me under the condition to build up a lab from scratch to carry out experiments on
convection. I agreed enthusiastically, yet not every Ph.D. student has the opportunity
to carry out his research in a new lab—and on top of this, a lab one has a lot of
freedom to design.

Once arrived at the Instituto Pluridisciplinar, I soon realized what a tremendously
vivid and international group Manuel headed. In addition to Ph.D. students and
postdocs there were numerous visitors from different parts of the world, engaged in
diverse subjects. Some stayed for a few days, some for several months—and many
came back regularly. Many of the visitors that were at that time young researchers
are now established scientists, others were at that time already well established and
well known—and here they presented their new studies and one could discuss with
them! For me as a young Ph.D. student this was great! I remember pretty well the
inspiring and lively discussions. There were tough arguments, and tremendous (or
better terrific!) blackboard discussions on the scientific topics that at the same time
were always full of respect for the person. Here science counted and arguments, not
personal belief or the like.

So this is where I started to learn about fluid mechanics, convection, nonlinear
dynamics and many analytical and experimental methods. But one could also pick
up things about lasers, neurons, making maps, . . . . It was an invaluable experience to
see the wealth of ideas and the crosslinks between the diverse subjects that Manuel
and all the others in his group elaborated. But Manuel was not only a very dedicated
scientist and teacher; he also created a lot of opportunities. As a student of his, one
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could participate in summer schools he organized, visit laboratories of collaborators
and friends of him all around Europe, to learn also from their expertise.

In this vibrant environment that Manuel created and pushed forward, there was
also a close link between experiment and theory. It helped me a lot to better
understand what I observed in my system. Due to the quick feedback between
the two lines of action, experiments could be designed to check new theoretical
predictions. Most remarkable was Manuel’s prejudicial approach, deep insight, by
suggesting what he thought was to be seen in experiments. On the other hand,
the experimental observation helped him in what to take into account and what to
focus on.

Another anecdote yet vital for my academic career was the following. I went to
Madrid with a fellowship of the Daimler-Benz Foundation. At Manuel’s suggestion,
I registered in one of the Ph.D. programs of UCM. Due to unexpected (or may be
not so) I had to withdraw from it. When he knew about the problem, he phoned
his friend Prof. W. Ebeling at Humboldt University in Berlin and in a matter of
days I was registered in their Ph.D. program, and there I got my doctoral degree in
October 1977.

When I was asked to participate in the week of science in Madrid to celebrate
Manuel’s 70th birthday, I did not hesitate an instant. I was delighted to meet again
him and so many other persons again, to which I owe so many things. Now, if
you ask me, how did my stay in Manuel’s group affect my professional life, I may
answer: “Well, quite much. I learned a lot from him and deeply enjoyed the fruitful
interaction in a stimulating environment. Besides, Manuel introduced me to fluid
dynamics, something I still deal with almost 20 years later”.



My Year with Manuel

W. Zimmerman

It really started 20 months earlier, when Manuel gave a seminar to the Homsy
research group at Stanford University. Manuel captivated me with his description of
the “solitary” wave and the new nonlinear wave equation he was deriving in active
media. He came to my seminar not long after, where I was declaring my intention
to finish my doctorate soon. I considered myself a new breed of fluid dynamicist—
a computational modeller. Manuel could see the utility of our collaboration, so he
invited me to Madrid. I had not yet made plans for my career nor life after the
submission of that life changing document—the doctoral thesis—so I agreed to go
if we could secure funding. Thus I applied to NATO for a fellowship, which had to
be held in a NATO member state. When I learned it was successful, I accelerated
my analysis and writing of the thesis so as to start the fellowship within the window
of opportunity.

Academic colleagues and friends tried to talk me out of going, for two sensible
reasons. First, Silicon Valley was nirvana for my type—geeks. I had the best com-
puting facilities in the world on my doorstep, and access to clever people through my
networking. Second, I was not a traditional fluid dynamicist—a theorist—so how
would I cope without top notch computers and with the expectation of contributing
on theory? I was really very worried about this, so I bought every book on fluid
dynamics theory in the Stanford Bookstore, while hatching a plot. I did not have
to accept the fellowship. I could always decline if I found it too difficult dealing
with the cultural differences and the lack of facilities for my expertise. I would also
take my trusting Macintosh desktop with me, which I could programme at low level
and had a very useful range of software I had acquired over the years for analysis.
So I decided to visit Madrid as a tourist, without telling Prof. Velarde, and see if
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I could make the necessary arrangements for living. I had travelled in Europe as a
student, so surely would be able to brave Spain alone, wouldn’t I?

When I arrived at the Madrid airport, I found that my usual strategy of reporting
to the Youth Hostel was completely insufficient. No vacancies at either site, so
I started calling the list of cheap hotels recommended by the Hostel. No luck.
Everything was full, even though it was early afternoon. So I had a problem.
Who did I know in Madrid? Only Prof. Velarde, but I was completely unexpected.
So I had to call him. He was surprised that I turned up without warning, but very
helpful. He arranged a room for me at the Residencia of the Research Council
(CSIC) for that night, and gave me the contact of his travel agent who then booked
me a hotel for the week. His research group then hunted around among their contacts
for a vacancy for a room among friends, and showed no end of hospitality. I did not
have the heart to tell anyone that I, a kid from the “sticks”, was anxious about staying
in a foreign country, language and culture, so was not really committed to staying
the course. I was overwhelmed by kindness. Manuel invited me to his house some
evenings and weekends, and did not mind that I stayed for hours playing their piano.
Marı́a del Pilar was always concerned for my well-being, and tried to include me
in her circle. The group and my flatmates kept including me in social events and
outings, which built that feeling of belonging.

Of course it was a seminal year for my outlook and philosophy as a researcher as
well. The ensemble cast of visitors that Prof. Velarde assembled was fascinating.
He had co-founded a new institute (Instituto Pluridisciplinar) at Universidad
Complutense de Madrid (UCM) which included visiting researchers, typically on
sabbatical, with global reach and excellent track records in their fields, but of course
overlapping with his interests, yet that was hardly any limitation. The size and the
scope of experts assembled was simply breath-taking. Fortunately for me, I had a
skill, practically born with it, which put me at the center of the team at a vantage to
overlook this breadth of ideas and explosion of creativity—I was a native English
speaker, and modestly a good writer. So practically every manuscript for publication
produced in the team that year was passed by me to check the English. I read them
carefully for grammar and spelling, but also content. I did background reading
with my trove of books and acquired relevant journal articles to understand these
manuscripts. I was proud when I caught a conceptual error. I preened when I noticed
a whole page was missing from a manuscript.

But I learned, from this experience, and from observing Prof. Velarde’s modus
operandi, probably the single most important formative lesson for my research
career. Every researcher has to build their own philosophy of how to research, but
also what to research. I was under the misapprehension that research is what the
community of researchers do, so one simply picked a spot that seemed unworked
on, and pushed it along. Yet, Prof. Velarde had a completely different approach. He
would have a new idea (at least daily), discuss it with the great minds about him, and
see who would pick up on it. And the idea was not a simple advance on what was
done previously. It would draw connections that had never been made before, and
try to leap to a new paradigm for what should be done. I am certain that he invented
his recent groundbreaking concept of the “solectron” is this style.
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So I had learned what was a viable topic for research—anything you like, as
long as you can dream up why your new concept could be a paradigm shift, and
as long as you can resource the project by convincing someone else to push along
the first few steps with you. Since then, I have never seen the point of incremental
research. The idea may brash, it may be wholly wrong, but it has to be new and
have a plausible story. After that, perhaps you cook it yourself, your perhaps
you convince a colleague, research associate or student to take up the baton for
awhile. You create a project by assembling the resources and thinking through what
experimental plan or theoretical/computational developments are necessary to add
support and grow momentum. But it starts with your own enthusiasm for the idea.
I have started literally hundreds of projects since. Manuel had shown me how to
be bold. My previous training had taught me how to be a careful researcher, but not
what to research. Manuel demonstrated that you follow your inner muse, wherever it
leads. As long as you conduct the research carefully, and choose targets that matter
if your research idea pans out, then there really are only limits of the imagination.

Of course the wider team that Manuel assembled was terrific too. I will be forever
indebted to the late Christo Christov and George Khomenko for their collaboration,
and brilliant ideas, which we continued to develop for the rest of their lives. Manuel,
unwittingly, introduced me to my wife-to-be, which has had the most profound
effect of all. Indeed, Julia Rees had been invited by Manuel to lecture on her
fascinating work on the atmospheric boundary layer at Antarctica. Yet, my most
compelling engineering science advances I owe to my year with Manuel, and his
subsequent nurturing of my understanding of nonlinear waves that Manuel fostered
over the next several years with return invitations to Madrid and several summer
schools which were like family reunions. Eventually, the pressures of my family
life made it difficult to keep up our meetings, and my research took a profoundly
practical and now commercial bent, but with nonlinear waves at the core of my
biggest achievements so far.

Without going into details, my first two patents (and three and four, which
are confidential at the moment), exploit nonlinear wave dynamics in an essential
fashion. As Manuel encouraged and collaborated with my exploration of the
theory of nonlinear wave dynamics in fluid systems, with the derivation of new
propagation equations and computational/theoretical solutions, I started imagining
how nonlinear wave phenomena could be exploited in the chemical and process
industries. I took up the study of fluidics so that I could design and engineer
oscillating systems easily, and then use them as components in more complicated
physicochemical systems.

I had noticed that the sector was very conservative, and most conventional
systems were designed to work at steady state. But a steady state could be viewed as
performance that is limited by two (or more) generalized opposing forces being
held in balance. One such force might lead to a beneficial outcome, but the
opposing force constrained the benefit or provided a countervailing disadvantage.
But oscillations change that balance—perhaps re-establishing it with an order
of magnitude better performance. Or perhaps making it worse, but that would
depend on the parameters controlling the oscillation: frequency, amplitude, and
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sometimes phase. I have made a series of discoveries exploiting nonlinear fluidic
oscillations inducing beneficial change. The headline invention was energy efficient
microbubbles (which won the 2009 IChemE Moulton Medal and the 2010 Royal
Society Innovation award), but I imagine my second invention of low power plasma
microreactors will make an even bigger impact. All because Manuel instilled the
desire to understand the theory of nonlinear waves more deeply, and the engineer
in me seeking to answer the question of “what good is that?” I am not sure that
I would have had courage enough to try, if I had not seen Manuel’s example of what
boldness could achieve.



Our Adventure with Manuel

W. Zimmerman

The European Geophysical Society Annual Congress was held in Edinburgh in April
1992. It was my first international conference as a “grown up” researcher—a post-
doc. As Manuel was planning on attending, he suggested that we take a contingent
from the nascent Instituto Pluridisciplinar. His support letter was essential to the
conference waiving my fee as a young academic to present a paper on our joint
work—a mathematical analysis of dissipative solitary waves in situations that occur
in oceans and atmospheres.

The solitary wave has received substantial attention since first noticed by John
Scott Russell in 1834 when he reported sighting the phenomenon while walking
along the Grand Union Canal outside Edinburgh. I am aware that Manuel has
organized symposia to celebrate the widespread of its applicability in science and
engineering as a paradigm for nonlinear wave propagation, is a regular public
speaker on its importance and history, as well as deep expert in the underpinning
concepts, which has influenced his creation of the “Solectron” theory.

Since we had a free afternoon in the conference, Manuel proposed that he,
Julia Rees (a British applied mathematician on sabbatical in Madrid, whom Manuel
introduced me to, and later became my wife) and I take an excursion to the Grand
Union Canal to pay homage to the site, as well as to hunt up a memorial to it that
he heard existed. So we looked on as Manuel went to the conference information
desk, and enquired of two undergraduate students manning it, whether they could
direct him to the site on the Grand Union Canal where John Scott Russell first
discovered the solitary wave (in 1834). They did not know, but helpfully told us
of a nice restaurant on near the canal which was in the conference information pack,
and where to pick up a taxi.
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Fig. 1 Manuel posing along
the Grand Union Canal in
April 1992. The photo has
been blown up into a poster
and occupies a prominent
spot in my office in the Kroto
Research Institute

When we entered the taxi, Manuel asked the driver, could take us to the site on
the Grand Union Canal where John Scott Russell first discovered the solitary wave?
When he looked puzzled, I said that we knew of a restaurant near there, and he
recognized that, so the taxi duly delivered us to the restaurant. After having a nice
lunch, when the waiter came to take orders for afters/coffees, Manuel asked him, a
young lad, whether he could direct us to the site on the Grand Union Canal where
John Scott Russell first discovered the solitary wave. Amazingly, the waiter said that
as a youngster, he used to play along the canal, and he knew precisely where the
dedication plaque was, but that was the only memorial he knew of. Furthermore, he
was just getting off work, so he was delighted as a Scotsman to host our international
contingent to see it.

So we traipsed along the canal, and eventually crossing stiles, over a pedestrian
overpass, and then down a ladder below the overpass to find a small, gold coloured
plate embedded in the stone wall of the canal (see Fig. 1). Fortunately, I had my
camera along for the excursion and recorded Manuel posing next to the memorial
plaque. The photo was blown up into a poster by my parents, and occupies a
prominent spot in my office in the Kroto Research Institute. I tell this tale to new
research students as a parable for how a scientist pursues his objectives. Quite
what we hope to find may be blurred in intention, questioned by others as offbeat
and unlikely to yield any progress. Nevertheless, the chase itself was enjoyable
(it was a nice lunch and excellent scenery), the going may be rough and you
might wonder whether the effort is all worth it, and sometimes all you get out of
actually achieving your goal is the equivalent of a footnote. But you pursue it with
dogged determination, as the “game is worth the candle.” Sometimes you do uncover
nuggets of gold.

I do have to be careful who I tell this story to, as there is no intent to belittle the
plaque, but it really is quite insignificant in size as a memorial, and only the natives
know where it is. Nevertheless, it is important to some people. I told this story to
Norman Zabusky when I visited Rutgers in June of 1992, and I am afraid he did not
find it humorous at all. It seems he was there for the dedication of the plaque as the
guest of honor, so why shouldn’t people be making pilgrimages to see it?
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As I write this, a research student of Julia’s, co-supervised by me, is defending
her doctorate on some experimental work on solitary waves in a micro device
I designed, as well as some nonlinear wave analysis and inverse methods, which may
someday lead to the device being utilized in process monitoring/control systems.
Who is to say that our “little” excursion along the Grand Union Canal is not still
bearing fruit?



Part II
Scientific Contributions:

Flows, Instabilities and Convective
Patterns



A Peculiar Observation Arising from the Stokes
Approximation in Certain Closed Flows

W. Guo, R. Narayanan, and G. Labrosse

1 The Stokes Eigen Problem

The Stokes approximation is one which is applied in the creeping flow limit to a
number of fluid mechanics problems (cf. for example, Shankar and Deshpande [1],
Pan and Acrivos [2], Duda and Vrentas [3], Subramaniam and Balasubramaniam
[4] etc.) and can often give satisfactory explanations for a number of phenomena.
For example, the prediction of Moffatt eddies in a two dimensional driven cavity,
the prediction of branching behavior in nonlinear Rayleigh–Bénard convection
when the inertial terms are dropped as in the large Prandtl number limit and the
migration of drops in a microgravity environment due to thermocapillary forces
are all examples of where the Stokes approximation in closed flows gives a good
prediction of qualitative behavior.

However in making the Stokes approximation, there are instances in which
spurious phenomena arise. The objective of this very brief communication is to give
one such example.

Consider a rectangular 3-D cavity with all walls, save one which moves at a
constant low speed, to be stress free. After a steady flow is established let the moving
wall be suddenly replaced by a stress free boundary too; all boundaries then become
stress free. Now the fluid in the container continues to flow though it dies down
exponentially in time on account of its kinematic viscosity. This surely comes as
no surprise, and can be particularly seen if we assume that the entire flow regime
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could be computed from the modeling equations using only the Stokes equations.
However what might be surprising is that the companion pressure field instantly
becomes a constant in time everywhere in the flow field. In other words the flow
dissipates in time but the pressure field equilibrates instantly to its average value
regardless of the size of the container.

The problem can be traced algebraically to the fact that the Laplacian of the
pressure field is zero in this creeping flow limit while the normal gradient of the
pressure is zero on the entire boundary, it being vorticity-free, yielding a constant
value for the pressure field everywhere. In physical terms there are really two
reasons for this anomalous behavior and both act together. The first is that a
recirculating flow must mean that the fluid has to come to a stop as it makes a
turn and this conjures an image of local acceleration or deceleration whether or not
the flow is steady. But the Stokes model does not accommodate any local inertial
acceleration or deceleration that would ordinarily arise from the term, for it only
allows a time dependent acceleration. Now if the inertial terms were included it
would cause the pressure field to decay in a manner similar to the velocity field
whether or not there is a source of pressure from the boundary. In other words, in
order to get the pressure field to decay when the flow field in an incompressible
fluid decays, either the inertial terms need to be included or the boundary must have
a source of pressure as in the case of a non-vanishing vorticity boundary condition
or both must occur. In our example neither is the inertial term included nor is there
a source of pressure. Another reason for the strange behavior when the driving wall
is replaced by a constant stress wall is that the flow is assumed to be incompressible
and all pressure signals must travel at unbounded speed thus leading to a situation
where the pressure field equilibrates instantly and becomes a constant no matter
how far the flow field is from the erstwhile moving wall. However if the flow were
assumed to be compressible with the Stokes approximation, the pressure field would
not instantly become a constant.

Now the above example is given in a rectangular cavity and it follows without
much thought that in every case, where the normal component of the pressure
gradient on the surface is zero, the pressure field must instantly become a constant.
However it does not follow that the zero vorticity wall condition leads to the
vanishing of the normal gradient of pressure in any three-dimensional container
of arbitrary shape.

2 Some Computations and Inferences

To give the reader a graphical idea of the flows and pressure fields we have
performed some computations, solving the Stokes problem with a consistent
Spectral Stokes solver [5]. The steady flow in a driven 2-D rectangular cavity is
computed where the upper wall is in motion with a speed .1 � x2/2. Note that this
boundary condition pertains to the regularization of the boundary in such a manner
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Fig. 2 Converged pressure profiles for Utop D .1� x2/2

that there is no singularity in the no-slip condition at both corners. More on the
regularization condition can be seen in [6] and [7].

Having computed the steady profile (see Figs. 1 and 2) the moving wall is then
assumed to be suddenly replaced by a half-speed wall. All other walls are assumed
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to have their tangential components free of vorticity. By computing the norm of
the velocity in the mid plane at various transverse positions we can see in Fig. 3
the decay in velocity in scaled time. The corresponding pressure field (Fig. 4) acts
likewise.
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Fig. 6 Pressure vs. dimensionless time where the moving upper wall is suddenly replaced by a
stress free wall. The three curves represent the pressure change with dimensionless time at three
different horizontal locations in the middle z plane

A second case is considered when the moving wall is replaced by a constant
vorticity boundary but something different is seen here. While the velocity at the
mid plane still decays exponentially (Fig. 5) the pressure field approaches a constant
value almost instantly in time (Fig. 6) with any deviation arising from numerical
approximations. The calculations were compared with a series solution.
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It may be noted that the vorticity-free boundary conditions are certainly not
realizable in an experiment but many classical problems routinely assume these con-
ditions to understand physical phenomena. One example is the Bénard problem [8].
While the proof that leads to the peculiarity discussed in this short note is trivial,
the observation is nonetheless curious as the problem is mathematically well-posed.
This does not mean that the Stokes approximation ought to be discarded for it is, as
noted earlier, useful in studying a number of problems. But it certainly means that
it comes with its baggage.
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Influence of Periodic and Quasi-periodic
Gravitational Modulation on Convective
Instability of Reaction Fronts in Porous Media

K. Allali and M. Belhaq

1 Introduction

Various kinds of instabilities that can influence the propagation of reaction fronts
can be encountered in several physical problems, including the thermo-diffusional
instability, the hydrodynamical instability as well as the convective instability.
For instance, the thermo-diffusional instability appears as a result of competition
between the heat production in the reaction zone and heat transfer to the cold
reactants. To investigate this type of instability, the density of the medium can be
taken as constant to remove the influence of hydrodynamics and to simplify the
model. The stability conditions in this case were studied in [1–5]. In hydrodynamic
instability of reaction fronts, the density of the medium is variable and usually
considered as a given function of the temperature. In this case, the instability is
caused by heat expansion of the gas or liquid in a neighborhood of the reaction
zone [6–10]. Due to the fact that instabilities of reaction fronts are undesirable
phenomena, several works have been devoted to studying the effect of a periodic
vibration on the convective instability of these reaction fronts. For instance, it was
shown that high-frequency vibrations can influence stability of various convective
flows, namely periodic modulations can have a stabilizing effect for low frequencies
and a destabilizing effect for high ones [11].

It is worth noticing that the case of reaction fronts with liquid reactant and solid
product was considered in [12], while the case where the reactant and the product
are liquids was analyzed in [13, 14]. It was concluded in these cases that a periodic
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vibration can affect the onset of convection. Specifically, it was indicated that the
case where the polymerization front in liquids is different from the case when the
polymer is solid. The difference is that in liquids, the convective instability may
exist also in descending fronts [15].

The case of reaction fronts in porous media has also been tackled and the
influence of periodic vibration on convective instability has been investigated.
The linear stability analysis and direct numerical simulations were performed and
the effect of vibration on the onset of convection was examined. In addition, in the
case of a porous medium saturated by a fluid, the effect of vertical vibrations on
thermal stability of a conductive solution was examined in [16]; for other directions
of vibration, depending on the vibrational parameter and the angle of vibration,
stabilizing and destabilizing effects were discussed [17].

Mechanical and thermal vibrations have also been studied in connection with the
Rayleigh–Bénard convection [18,19], directional solidification [20,21], and doubly
diffusive convection [22]. In spite of numerous results on the influence of vibrations
on convective instability, some questions still remain open. In particular, normal
vibrations cannot stabilize the conductive state in an unbounded domain [23], while
tangential vibration is only effective for vibration frequencies that are not too
large [24].

It is worth noticing that the problem of convective instability under the influence
of periodic gravity or periodic heating of a liquid layer or the effect of periodic
magnetic field on magnetic liquid layer has been widely analyzed during the last
decades; see for instance [18, 25–34] and references therein.

While the influence of a periodic modulation on the convective instability was
extensively studied in various physical problems and using different types of
modulation, only few works have been devoted to study the effect of a quasi-periodic
(QP) vibration on such a convective instability. To the best of our knowledge, Boulal
et al. [35] were the first who investigated the effect of a QP gravitational modulation
with two incommensurate frequencies on convective instability from analytical view
point. They considered the problem of stability of a heated fluid layer. The threshold
of convective instability was determined in the case of heating from below or
from above, and it was shown that the frequencies ratio of QP vibration strongly
affects the convective instability threshold. Motivated by the successful treatment
in studying QP convective instability in the later problem, similar studies were
performed. The influence of QP gravitational modulation on convective instability
in Hele-Shaw cell was examined in [36], and its influence on thermal instability in a
horizontal Newtonian magnetic liquid layer with non-magnetic rigid boundaries (in
the presence of a vertical magnetic field) was analyzed in [37]. It was shown that
in the case of a heating from below, a QP modulation produces a stabilizing or a
destabilizing effect depending on the frequencies ratio.

In these works [35–37], the original QP partial differential equations modeling
the problem are reduced to a QP Mathieu equation using Galerkin method truncated
to the first order. Due to the fact that the Floquet theory cannot be applied in the QP
forcing case, the approach used to obtain the marginal stability curves was based on
the application of the harmonic balance method and Hill’s determinants [38, 39].
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Recently, the effect of QP gravitational modulation on convective instability of
reaction fronts in porous media was studied in [40]. The QP modulation has been
chosen as a sum of two modulations having two incommensurate frequencies. It was
concluded that in a certain regions corresponding to small values of the amplitude
vibration, a stabilizing effect can be achieved, whereas large amplitudes of vibration
induce a destabilizing effect. The results also shown that for a given value of the
critical Rayleigh number and for large frequencies, the front can undergo abrupt
change of stability by varying the amplitude of vibration.

The aim of this chapter is to give an overview on the effect of different
gravitational modulations on the convective instability of reaction front. We first
consider the case where the amplitude of the periodic vibration is modulated. In this
situation, two cases are considered. In the first case, the frequency of the modulation
is assumed to be twice the frequency of the vibration itself, while in the second case,
the frequency of the modulation is supposed to be half that of the vibration. In a
second case, we discuss the effect of QP gravitational modulation on the convective
instability of reaction front. These studies are motivated by applications arising in
some physical problems, as for instance, frontal polymerization [41] or problem
related to environmental pollution [42]. The QP vibration may eventually result
from a simultaneous existence of a basic vibration applied to the system with a
frequency �1 and of an additional residual vibration having a frequency �2, such
that �1 and �2 are incommensurate. Indeed, this residual vibration may come from
various sources as machinery, friction or just a modulation phenomenon leading to
the modulation of the amplitude of the basic vibration.

It what follows we consider a periodic vibration and QP one with two incom-
mensurate frequencies in the vertical direction upon the system containing a
reaction reactant and a reaction product. This excitation causes the acceleration, b,
perpendicular to the reactant–product interface. In order to investigate the influence
of different vibration (periodic, QP and with modulation of amplitude), we consider
the time dependence of the instantaneous acceleration acting on the fluids given by
g C b.t/, where g is the gravity acceleration and b.t/ can be a periodic, modulated
periodic or QP force. In other words, wa shall consider the following three cases:
b.t/ D �sin.�t/, b.t/ D �1sin.�1t/C �2sin.�2t/ and b.t/ D �cos.�2t/sin.�1t/

where �; �1; �2 and �; �1; �2 are respectively, the amplitudes and the frequencies of
the considered vibration. Here, we consider reaction fronts in a porous medium with
the fluid motion described by the Darcy law and the Boussinesq approximation,
which takes into account the temperature dependence of the density only in the
volumetric forces.

It is worthy to notice that the problem of reducing the original Navier–Stokes
equations to a standard QP Mathieu equation using Galerkin method, harmonic
balance method and Hill’s determinants [35–37] cannot be exploited here due to the
coupling of the concentration and the heat equations (reaction-diffusion problem
coupled with the Darcy equation). Therefore, to obtain the convective stability
boundary, we first reduce the original reaction-diffusion problem to a singular
perturbation one using the so-called matched asymptotic expansion (see Appendix),



74 K. Allali and M. Belhaq

we perform a linear stability analysis, and then solve the reduced interface problem
using numerical simulations.

This chapter is organized as follow. Section 2 is devoted to state the problems
and to perform the linear stability analysis. In Sect. 3, we analyze the influence of
different gravitational modulation on the convective instability of reaction front, and
we conclude in the last section.

2 Governing Equations and Linear Stability Analysis

2.1 The Model

We consider an upward propagating reaction front in a porous medium filled by an
incompressible reacting fluid submitted to a periodic or QP gravitational vibration,
as shown in Fig. 1. The model of a such process can be described by a reaction-
diffusion system coupled with the hydrodynamic equations under the Darcy law:

@T

@t
C v:rT D ��T C qK.T /�.˛/; (1)

@˛

@t
C v:r˛ D d�˛ CK.T /�.˛/; (2)

v C K

�
rp D gˇK

�
�.T � T0/.1C b.t//�; (3)

r:v D 0: (4)

with the following boundary conditions:

T D Ti , ˛ D 1 and v D 0 when y ! C1; (5)

T D Tb , ˛ D 0 and v D 0 when y ! �1: (6)

Here T is the temperature, ˛ the depth of conversion, v D .vx; vy/ the fluid
velocity, p the pressure, � the coefficient of thermal diffusivity, d the diffusion, q
the adiabatic heat release, g the gravity acceleration, � the density, ˇ the coefficient
of thermal expansion,� the viscosity and 	 is the unit vector in the upward direction.
In addition, T0 is the mean value of temperature, Ti is an initial temperature while
Tb is the temperature of the burned mixture given by Tb D Ti C q. The function
K.T /�.˛/ is the reaction rate where the temperature dependence is given by the
Arrhenius law [10]:

K.T / D k0 exp
�
� E

R0T

�
(7)
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front propagation

where E is the activation energy, R0 the universal gas constant and k0 is the pre-
exponential factor. For the asymptotic analysis of this problem we assume that the
activation energy is large and we consider zero order reaction for which

�.˛/ D
(
1 if ˛ < 1

0 if ˛ D 1
: (8)

The gravitational modulation force b.t/ is given depending of the nature of
modulation. If it is periodic, b.t/ D �sin.�t/, and if it is QP, b.t/ D �1sin.�1t/C
�2sin.�2t/.

2.2 The Dimensionless Model

In order to write down the dimensionless model, we now introduce the spatial

variables x0 D xc1

�
, y0 D yc1

�
, time t 0 D tc21

�d
, velocity

v
c1

, pressure
p��

K
with

c1 D c=
p
2 and frequency 
 D �

c21
�. Denoting � D T � Tb

q
and keeping for

convenience the same notation for the other variables, we obtain the system

@�

@t
C vr� D �� CWZ .�/ � .˛/ ; (9)

@˛

@t
C vr˛ D ��˛ CWZ .�/ � .˛/ ; (10)

v C rp D Rp .� C �0/

 
0

1

!
.1C bd.t//; (11)

div .v/ D 0 (12)



76 K. Allali and M. Belhaq

with the following conditions at infinity:

� D �1 , ˛ D 0 and v D 0 when y ! C1; (13)

� D 0 , ˛ D 1 and v D 0 when y ! �1: (14)

Here � D d=� is the inverse of the Lewis number, Rp D Kc21P
2R

�2
, where R is

the Rayleigh number and P the Prandtl number that are defined by R D gˇq�2

�c31

and P D �

�
. In addition, we use the parameters ı D R0Tb

E
and �0 D Tb � T0

q
. The

reaction rate is given by:

WZ.�/ D Z exp
� �

Z�1 C ı�

�
; (15)

where Z D qE

R0T
2
b

stands for Zeldovich number. The dimensionless modulation

force is given by bd.t/ D �sin.
 t/ in the periodic modulation case, or bd .t/ D
�1sin.
1t/C �2sin.
2t/ in the QP modulation case.

2.3 Linear Stability Analysis

2.4 Approximation of Infinitely Narrow Reaction Zone

To study the problem analytically, we reduce it to a singular perturbation problem
where the reaction zone is supposed to be infinitely narrow and the reaction
term is neglected outside the reaction zone. This method, called Zeldovich–Frank-
Kamenetskii approximation, is a well-known approach for combustion problems

[10, 43]. We will carry out a formal asymptotic analysis with  D 1

Z
taken as a

small parameter to obtain a closed interface problem. Let us denote by �.t; x/ the
location of the reaction zone in the laboratory frame reference. The new independent
variable in the direction of the front propagation is written as

y1 D y � �.t; x/: (16)

We introduce new functions �1, ˛1, v1, p1 as follows

�.t; x; y/ D �1.t; x; y1/; ˛.t; x; y/ D ˛1.t; x; y1/;

v.t; x; y/ D v1.t; x; y1/; p.t; x; y/ D p1.t; x; y1/
(17)
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and we re-write the equations in the form (the index 1 for the new functions is
omitted):

@�

@t
� @�

@y1

@�

@t
C v:er� D e�� CWZ.�/�.˛/; (18)

@˛

@t
� @˛

@y1

@�

@t
C v:er˛ D WZ.�/�.˛/; (19)

v C erp D Rp.� C �0/.1C bd .t//� ; (20)

@vx
@x

� @vx
@y1

@�

@x
C @vy
@y1

D 0; (21)

where we have set

e� D @2

@x2
C @2

@y21
� 2 @�

@x

@2

@x@y1
C
� @�
@x

�2 @2
@y21

� @2�

@x2
@

@y1
; (22)

er D
� @
@x

� @�

@x

@

@y1
;
@

@y1

�
: (23)

We use the method of matched asymptotic expansions. To do so, we assume that
the outer solution of the problem can be written in the form

� D �0 C �1 C : : : ; ˛ D ˛0 C ˛1 C : : : ;

v D v0 C v1 C : : : ; p D p0 C p1 C : : : :
(24)

Here .�0; ˛0; v0/ is a dimensionless form of the basic solution.
In order to obtain jump conditions in the reaction zone, we consider the inner

problem and we introduce the stretching coordinate � D y1=, with  D 1=Z. On
the other hand, the inner solution is sought in the form

� D  Q�1 C : : : ; ˛ D Q̨ 0 C  Q̨1 C : : : ;

v D Qv0 C  Qv1 C : : : ; p D Qp0 C  Qp1 C : : : ; � D Q�0 C  Q�1 C : : : :
(25)

Substituting these expansions into (18)–(21), we obtain the first-order inner prob-
lem: �

1C
�@ Q�0
@x

�2�@2 Q�1
@�2

C exp
� Q�1
1C ı Q�1

�
�. Q̨ 0/ D 0; (26)

� @ Q̨ 0
@�

@ Q�0
@�

� @ Q̨ 0
@�

�
Qv0x
@ Q�0
@x

� Qv0y
�

D exp
� Q�1
1C ı Q�1

�
�. Q̨ 0/; (27)

@ Qp0
@�

D 0; (28)
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Qv0x C @ Qp0
@x

� @ Q�0
@t

@ Qp1
@�

D 0; (29)

Qv0y C @ Qp1
@�

D �Rp�0.1C bd.t//; (30)

� @Qv0x
@�

@ Q�0
@x

C @Qv0y
@�

D 0: (31)

Then, the matching conditions are

� ! C1 W Q�1 � �1jy1D0C C �
@�0

@y1
jy1D0C; Q̨ 0 ! 0; Qv0 ! v0jy1D0C; (32)

� ! �1 W Q�1 ! �1jy1D0�; Q̨ 0 ! 1; Qv0 ! v0jy1D0�: (33)

From (28) we obtain that Qp0 does not depend on �, which implies that the pressure
is continuous through the interface. Next, denoting by s the quantity

s D Qv0x
@ Q�0
@x

� Qv0y; (34)

we obtain from (31) that s does not depend on �. Finally from (29), (30) and (34)
we easily obtain that Qv0x and Qv0y do not depend on �, which provides the continuity
of the velocity through the interface.

We next derive the jump conditions for the temperature from (26), in the same
way as it is usually done for combustion problems. From (27) it follows that Q̨ 0 is
a monotone function and 0 < Q̨0 < 1. Since we consider zero-order reaction, we
have �. Q̨ 0/ � 1. We conclude from (26) that Q�1 is also a monotone function. Thus,

multiplying (26) by
@ Q�1
@�

and integrating, we obtain

�@ Q�1
@�

�2 ˇ̌
ˇ
�DC1�

�@ Q�1
@�

�2ˇ̌
ˇ
�D�1D � 2

A

Z �1

�1
exp.

�

1C ı�
/d�; (35)

where we have set

A D 1C
�@ Q�0
@x

�2
: (36)

Next, subtracting (26) from (27) and integrating, we obtain

@ Q�1
@�

ˇ̌
ˇ
�DC1�@

Q�1
@�

ˇ̌
ˇ
�D�1D � 1

A

�@ Q�0
@t

C s
�
: (37)
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Using now the matching conditions and truncating the expansion as:

�0 � �; �1jy1D0� � Z� jy1D0 �0 � �; v � v0; (38)

we obtain the jump conditions

� @�
@y1

�2ˇ̌
ˇ
y1D0C

�
� @�
@y1

�2ˇ̌
ˇ
y1D0�

D 2Z
�
1C

� @�
@x

�2��1

Z � jy1D0

�1
exp.

�

Z�1 C ı�
/d�; (39)

@�

@y1

ˇ̌
ˇ
y1D0C

� @�

@y1

ˇ̌
ˇ
y1D0�

D �
�
1C

� @�
@x

�2��1�@�
@t

C .vx
@�

@x
� vy/

ˇ̌
ˇ
y1D0

�
: (40)

2.5 Formulation of the Interface Problem

Let us summarize the interface problem. We have for y > � (in the unburnt medium)

@�

@t
C v:r� D ��; (41)

˛ � 0; (42)

v C rp D Rp.� C �0/.1C bd .t//� ; (43)

r:v D 0: (44)

The equations in the burnt medium (y < �) lead to the following system:

@�

@t
C v:r� D ��; (45)

˛ � 1; (46)

v C rp D Rp.� C �0/.1C bd .t//� ; (47)

r:v D 0: (48)

We finally complete this system by the following jump conditions at the interface
y D �:

Œ�� D 0;
h@�
@y

i
D

@�

@t

1C
�
@�

@x

�2 ; (49)

h�@�
@y

�2i D � 2Z

1C .
@�

@x
/2

Z �.�/

�1
exp

� s

1=Z C ıs

�
ds; (50)

Œv� D 0: (51)
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Here we denote by Œ � the quantity

Œf � D f j��0 � f j�C0: (52)

The above free boundary problem is completed with the conditions at infinity:

y ! C1; � D �1 and v D 0; (53)

y ! �1; � D 0 and v D 0: (54)

2.6 Travelling Wave Solution

In this subsection we perform the linear analysis of the steady-state solution for the
interface problem. This problem has a travelling wave solution:

�.t; x; y/ D �s.y � ut/; ˛.t; x; y/ D ˛s.y � ut/ and v D 0; (55)

where

�s.t; y/ D
(
0 if y < 0

e�uy � 1 if y > 0
; (56)

and

˛s.t; y/ D
(
1 if y < 0

0 if y > 0
: (57)

where the number u stands for the wave speed. It can easily be computed using the
jump conditions of the free boundary problem.

We now introduce the coordinates in the moving frame defined by y1 D y � ut .
In this referential, the above travelling wave is a stationary solution of the problem

@�

@t
C u

@�

@y
C v:r� D ��; (58)

v C rp D Rp.� C �0/.1C bd .t//� ; (59)

r:v D 0; (60)

together with the jump condition found in the previous subsection.
We now consider a small perturbation of this stationary solution. For that purpose

we consider a perturbation of the reaction front of the form

�.t; x/ D ut C �.t; x/; with �.t; x/ D 1.t/e
ikx: (61)
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To study the stability of the solution of our problem, we look for a solution of the
problem in the form of the perturbed stationary solution:

� D �s C Q�; v D vs C Qv; (62)

where

Q�.t; x; y/ D �j .y; t/e
ikx ; for j D 1; 2;

Qv.t; x; y/ D vj .y; t/e
ikx; for j D 1; 2:

(63)

Here the index j D 1 corresponds to functions for z < 0 and j D 2 for z > 0.
We exclude the pressure p and the component vx of the velocity from the

interface problem applying two times the operator curl . Thus, we obtain the
following problem:

For the burnt media (y < 0 ):

v00
1 � k2v1 D �Rpk2.1C bd .t//�1; (64)

@�1

@t
� � 00

1 � u� 0
1 C k2�1 D 0: (65)

For the unburnt media (y > 0 ):

v00
2 � k2v2 D �Rpk2�2.1C bd .t//; (66)

@�2

@t
� � 00

2 � u� 0
2 C k2�2 D u exp.�uy/v2; (67)

go back to the margin where u stands for the stationary front velocity. Taking into
account that

�
ˇ̌
�D˙0 D �s.˙0/C �� 0

s.˙0/C Q�.˙0/; (68)

and

@�

@y

ˇ̌
�D˙0 D � 0

s.˙0/C ��
00

s .˙0/C @ Q�
@y
.˙0/; (69)

we obtain the following jump conditions:

�2.0; t/ � �1.0; t/ D u1.t/; (70)

� 0
2.0; t/ � � 0

1.0; t/ D �1.t/u2 � 0
1.t/C v1.0; t/; (71)

1.t/u
2 C � 0

2.0; t/ D �Z
u
�1.0; t/; (72)

v.i/2 .0; t/ D v.i/1 .0; t/ i D 0; 1: (73)
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3 Numerical Results and Discussion

3.1 Case of Periodic Vibration

In this case, bd .t/ D �cos.
 t/. To find the convective instability boundary, we
solve numerically the problem (64)–(67) with the jump conditions (70)–(73). The
numerical accuracy is controlled by decreasing the time and space steps.

For fixed Z and k we vary Rp. If the Rayleigh number Rp is less than a critical
valueRc , the solution is decreasing in time. If Rp > Rc , the solution increases, and
for Rp D Rc it is periodic in time (Fig. 2, bottom). Similar behavior is observed
in the case without vibrations (Fig. 2, top). When the Rayleigh number exceed
the critical value the perturbation grows in time and when the Rayleigh number is
bellow the critical value the perturbation decays. There are no oscillations because
the amplitude of vibrations is equal to zero.

Figure 3 shows the critical value of the Rayleigh number as a function of
the amplitude of vibrations for different frequencies. If � D 0, we obtain the
same value Rc D 26 as in the absence of vibrations [44]. For small positive �,
vibrations stabilize the solution:Rc is an increasing function. For larger values of �,
vibrations destabilize the solution: Rc is a decreasing function. When we increase
the frequency 
 , the front becomes more stable.

Figure 4 shows the critical value of the Rayleigh number as a function of the
frequency of vibrations for different amplitudes. If � D 0, the curve takes a constant
value Rc D 26 corresponding to the absence of vibration. If � ¤ 0, all curves
are increasing functions, i.e. when the frequency increases the front become more
stable. It can be seen that all curves have a asymptotic behavior when the frequency
is sufficiently large, which means that high-frequency vibration can stabilize the
front.

3.2 Case of Periodic Vibration with Modulation of Amplitude

In this case, bd .t/ D �cos.
2t/sin.
1t/where now the amplitude of the vibration is
modulated and is written as �cos.
2t/. The interface problem is solved numerically
leading to the critical Rayleigh number. Figure 5 shows the critical Rayleigh number
as function of the amplitude for some different choice of the frequencies ratio. It is
worth noticing that in the absence of vibration modulation (
2 D 0), we find the
same result as in [16] which is consistent with the current analysis. Results in Fig. 5
indicate that for relatively small values of the modulation amplitude � and for a
value of the frequency modulation equal to half the frequency of the vibration (
2 D

1=2), the reaction front undergoes a destabilizing effect. In contrast, a stabilizing
effect is gained when the frequency modulation is twice that of the vibration (
2 D
2
1). In other words, the front is less stable when (
2 D 
1=2) and it is more stable
when (
2 D 2
1).
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Fig. 2 Temperature maximum as a function of time for k D 3:14, Z D 8, u D 1:4142, � D 0

(top) and for k D 3:14, Z D 8, u D 1:4142, � D 5, 
 D 50 (bottom)

Figure 6 depicts the critical Rayleigh number as function of the frequency of the
vibration, 
1, in the case where (
2 D 2
1). This figure shows that when 
2 D 2
1,
increasing the frequency of the vibration, 
1, causes the critical Rayleigh number to
increase stepwise leading the reaction front to substantially gain stability.

3.3 Case of Quasi-periodic Modulation

In this case, the form of the QP gravitational modulation is written as bd .t/ D
�1sin.
1t/ C �2sin.
2t/, where �1, �2 and 
1, 
2 are the amplitudes and the
frequencies, respectively. Figure 7 depicts the variation of the maximum of tem-
perature as function of time. It can be seen from these plots that if the Rayleigh
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Fig. 3 Convective instability boundary: critical Rayleigh number as a function of the amplitude
of vibrations for k D 3:14, Z D 8 and u D 1:4142 and for different values of the frequency 
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Fig. 4 Convective instability boundary: critical Rayleigh number as a function of the frequency
of vibrations for k D 3:14, Z D 8 and u D 1:4142 and for different values of the amplitude �

number Rp is less than a critical value Rc , the solution is decreasing in time which
corresponds to a stable (bounded) variation of the maximum of temperature. For
values of Rp larger than Rc , the maximum of temperature presents unbounded
oscillations which corresponds to unstable solutions. To detect this instability, we
start our computations with small Rayleigh numbers and then we increase it slowly
until the critical value of the Rayleigh number is captured. The figure shows that
the maximum of temperature variation is decreasing for Rp D 26 and increasing
forRp D 28 indicating that the critical Rayleigh number is approximatively located
between, i.e. Rc Ð 27.
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Figure 8 shows, for �1 D 5 and 
1 D 500, the variation of the critical Rayleigh
number as function of the amplitude �2. The plots indicate that for small values of
the frequencies ratio 
 D 
2=
1, as the amplitude �2 increases, the critical Rayleigh
number decreases from a certain value ofRp.� 325/. If 
 is increased substantially,
a stabilizing effect appears in a region corresponding to small values of �2. In this
zone, one can expect a regaining of stability of reaction fronts. For higher values of
�2 the critical Rayleigh number decreases for different 
 indicating that large values
of �2 induce a destabilizing effect. Figure 9 illustrates similar results for 
1 D 250.
It is seen in this figure that for higher values of 
 , a stabilizing effect appears in two
successive regions corresponding, respectively, to small and moderate values of the
amplitude �2. This result means that increasing 
 , stability may be gained in certain
specific intervals of �2.

Finally, Fig. 10 shows, for given amplitudes and for different values of the
frequencies ratio 
 , the critical Rayleigh number as function of 
1. This figure
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indicates clearly that in the absence of QP vibration (
1 D 0; 
2 D 0), the
curves start at the value Rc D 26 corresponding to the unmodulated case, which
is in good agreement with the previous works [16, 44] and hence validating the
numerical simulations. This figure also depicts an interesting phenomenon, that is, in
a certain interval of 
1, the value of the critical Rayleigh number increases from the
unmodulated case Rc D 26 with oscillatory variation. Increasing 
 , the oscillating
variation of the critical Rayleigh number increases creating a repeated alternating
zones where stability is gained. At a certain value of 
1 � 700, the critical Rayleigh
number suddenly drops to meet the unmodulated case, Rc D 26. Above 
1 � 700,
the frequencies ratio has no effect on the critical Rayleigh number and the problem
becomes equivalent to the unmodulated case.

We have shown that in the presence of a QP vibration, the convection instability
of reaction fronts in porous media can be controlled and the reaction fronts may
remain stable in certain regions, and for certain combinations of the amplitudes and
the frequencies ratio of the QP vibration.

4 Summary

In this chapter we have presented an overview on the effect of a vertical periodic
and QP gravitational modulation on the convective instability of reaction fronts in
porous media. Attention was focused on two cases. The case where the gravitational
vibration is periodic and its amplitude is modulated, and the case where the
vibration is QP having two incommensurate frequencies. In both cases the heating
is acted from below such that the sense of reaction is opposite to the gravity
sense. To approximate the convective instability threshold, the original reaction-
diffusion problem is first reduced to a singular perturbation one using the matched
asymptotic expansion. Then, the linear stability analysis of the steady-state solution
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for the interface problem is performed. The obtained reduced problem is solved
numerically.

In the case where the modulation of the vibration is periodic, it was shown that for
relatively small values of the modulation amplitude and for a value of the frequency

modulation equal to half the frequency of the vibration (
2 D 
1

2
), the reaction

front undergoes a destabilizing effect. In contrast, a stabilizing effect is gained when
the frequency modulation is twice that of the vibration (
2 D 2
1). It was also
shown that increasing the frequency of the vibration, 
1, causes the critical Rayleigh
number to increase stepwise leading the reaction front to substantially gain stability.

In the case of QP gravitational modulation, it was shown that for relatively
small values of the amplitudes �1 and �2 of the QP vibration, an increase of the

frequencies ratio 
 D 
2


1
has a stabilizing effect. The results also revealed that

for given values of �1 and �2 and below a critical value of the frequency 
1, an
increase of the frequencies ratio 
 produces a stabilizing effect. In this interval
of 
1, the convection threshold grows from the critical Rayleigh number of the
unmodulated case, Rc D 26, with oscillating variation. This alternating variation
of the critical Rayleigh number indicates that for appropriate values of parameters,
a more pronounced stabilizing effect can be gained. At a certain critical value of 
1,
the critical Rayleigh number drops to the unmodulated case. Above the critical value
of 
1, the frequencies ratio has no effect on the critical Rayleigh number showing
that for higher values of the frequency 
1, the QP vibration has no effect and the
problem tends to the unmodulated case. The results of this work shown that in the
presence of a QP vibration, the convection instability of reaction fronts in porous
media can be controlled and the reaction fronts may be sustained in stability regions
for appropriate values of the amplitudes and frequencies of the vibration.

5 Appendix

5.1 The Method of Matched Asymptotic Expansions

In a large class of singular perturbed problems, the domain may be divided into
two subdomains. On one of these, the solution is accurately approximated by an
asymptotic series found by treating the problem as a regular perturbation. The
other subdomain consists of one or more small areas in which that approximation
is inaccurate, generally because the perturbation terms in the problem are not
negligible there. These areas are referred to as transition layers, or boundary or
interior layers depending on whether they occur at the domain boundary (as is the
usual case in applications) or inside the domain.

An approximation in the form of an asymptotic series is obtained in the transition
layer(s) by treating that part of the domain as a separate perturbation problem. This
approximation is called the “inner solution,” and the other is the “outer solution,”
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named for their relationship to the transition layer(s). The outer and inner solutions
are then combined through a process called “matching” in such a way that an
approximate solution for the whole domain is obtained. More details can be found
in [45, 46].

5.2 Simple Example

Consider the equation
y00 C .1C /y0 C y D 0;

where y is a function of t , y.0/ D 0, y.1/ D 1 and 0 <  � 1.

Outer and Inner Solutions

Since  is very small, the first approach is to find the solution to the problem

y0 C y D 0;

which is
y D Ae�t

for some constant A. Applying the boundary condition y.0/ D 0, we would have
A D 0; applying the boundary condition y.1/ D 1, we would have A D e. At least
one of the boundary conditions cannot be satisfied. From this we infer that there
must be a boundary layer at one of the endpoints of the domain.

Suppose the boundary layer is at t D 0. If we rescal � D t=, the problem
becomes

1


y00.�/C .1C /

1


y0.�/C y.�/ D 0;

which, after multiplying by  and taking  D 0, is

y00 C y0 D 0

with the solution
y D B � Ce��

for some constants B and C . Since y.0/ D 0, we have C D B , so the inner
solution is

yI D B .1 � e�� / D B
�
1 � e�t=� :
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Matching

Notice that we have assumed the outer solution to be

yO D e1�t :

The idea of matching is for the inner and outer solutions to agree at some value of t
near the boundary layer as  decreases. For example, if we fix t D p

, we have the
matching condition

lim
!0

yI
�p

� D lim

!0
yO
�p

�
;

therebyB D e. Note that instead of t D p
, we could have chosen any other power

law t D k with 0 < k < 1. To obtain our final matched solution, valid on the
whole domain, one popular method is the uniform method. In this method, we add
the inner and outer approximations and subtract their overlapping value, yoverlap. In
the boundary layer, we expect the outer solution to be approximate to the overlap,
yO � yoverlap. Far from the boundary layer, the inner solution should approximate
it, yI � yoverlap. Hence, we want to eliminate this value from the final solution. In
our example, yoverlap � e. Therefore, the final solution is,

y.t/ D yI C yO � e D e
�
1 � e�t=�C e1�t � e D e

�
e�t � e�t=� :

Accuracy

Substituting the matched solution in the differential equation yields

y00 C .1C / y0 C y D 0;

which implies, due to the uniqueness of the solution, that the matched asymptotic
solution is identical to the exact solution up to a constant multiple, as it satisfies the
original differential equation. This is not necessarily always the case, any remaining
terms should go to zero uniformly as ! 0. As to the boundary conditions, y.0/D 0

and y.1/ D 1 � e1�1= , which quickly converges to the value given in the problem.
Not only does our solution approximately solve the problem at hand; it closely

approximates the exact solution. It happens that this particular problem is easily
found to have exact solution

y.t/ D e�t � e�t="

e�1 � e�1=" ;

which, as previously noted, has the same form as the approximate solution. Note
also that the approximate solution is the first term in a binomial expansion of the
exact solution in powers of y.1/ D e1�1= .
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Fig. 11 Convergence
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Figure 11 shows convergence of the exact solution for various  and the outer
solution. Note that since the boundary layer becomes narrower with decreasing ,
the approximations converge to the outer solution pointwise, but not uniformly.

Location of Boundary Layer

Conveniently, we can see that the boundary layer, where y0 and y00 are large, is
near t D 0, as supposed earlier. If we had supposed it to be at the other endpoint
and proceeded by making the rescaling � D .1 � t/=, we would have found it
impossible to satisfy the resulting matching condition. For many problems, this kind
of trial and error is the only way to determine the true location of the boundary layer.
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Genesis of Bénard–Marangoni Patterns in Thin
Liquid Films Drying into Air

P. Colinet, F. Chauvet, and S. Dehaeck

1 Introduction

Significant progress in the understanding of pattern formation in spatially extended
systems has been possible thanks to well-controlled detailed experimental studies of
Rayleigh–Bénard convection, i.e. the buoyancy-induced hydrodynamic instability
of a fluid layer heated from below (see e.g. the classical reviews [1, 2]). Roll-like
cellular patterns and their transitions to more complex structures and turbulent-like
behavior were indeed extensively studied, with or without additional effects [3],
sometimes up to very high Rayleigh numbers (see [4] and references therein). In
parallel, surface-tension-driven (thermo- or soluto-capillary) instabilities have also
been studied in details (see e.g. [5–7], as well as the contributions of H. Linde,
K. Eckert and A. Wierschem in this volume), providing a wide variety of new
structures and transitions, even though eventually covering a more narrow range
of supercriticalities than buoyancy-driven convection.

Not much attention has been devoted however to pattern forming systems in
which the typical wavelength (measured, say, by the spatial period of the fastest
growing mode, or by a nonlinearly determined spatial scale) is continuously varied
in time. As Bénard convection cells typically scale with the depth of the liquid
layer, one could think of varying the latter by injecting/retracting fluid or, as done
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here, by allowing the liquid layer to evaporate. Indeed, during the evaporation
of a pure liquid layer into dry air, the liquid/gas interface is cooled because of
the energy consumption for the phase change. This temperature difference across
the liquid layer can generate surface-tension-driven convection and/or buoyancy-
driven convection in the liquid, depending on the layer thickness. Here, as in [8],
we mostly focus on surface-tension-driven convection or Bénard–Marangoni (BM)
convection arising typically for 1 mm thick (or thinner) liquid layers, even though
one cannot exclude an influence of buoyancy for the thicker liquid layers we initiate
the experiments with. The continuously decreasing liquid depth forces an increase
of the number of convection cells per unit area, and it is of primary interest to
investigate how these are created and which kind of dynamical regimes such process
leads to. Other questions addressed here, even though not always in full details, are
the following: (i) can the observed pattern dynamics be considered as quasi-steady,
i.e. instantaneously (or adiabatically) adapting to the continuously decreasing liquid
depth? (ii) what is the level of disorder of the observed patterns and on which
parameters does it depend? (iii) is the problem of an evaporating liquid layer
formally equivalent, possibly under some well-controlled hypotheses, to that of a
non-volatile liquid layer heated from below (i.e. the classical BM instability)?

Note that the last of these questions has recently been investigated by the
authors [9], who showed that the instability threshold is quite accurately described
by a generalized Pearson’s theory [10], provided the heat transfer coefficient at the
free surface (i.e. in dimensionless form, the Biot number) is suitably defined to
incorporate heat spreading along the interface by vapor diffusion in the gas and
associated latent heat exchange. Interestingly, this effect formally turns out to act
as an effective thermal conductivity of the gas phase, which can be quite large
for very volatile liquids [9]. Such reduction to a one-sided approach is actually
possible thanks to the smallness of relaxation time scales in the gas (compared
to those in the liquid layer), allowing to slave the dynamics of temperature and
concentration fluctuations in the gas to the interfacial temperature fluctuations (see
also [6,11]). Note also that contrary to the original Pearson’s theory, the free surface
Biot number is found to depend on the wavenumber of the fluctuations, hence
rendering the stability problem non-local. When the gas phase is much thicker than
the liquid depth, as considered hereafter, the Biot number is simply proportional
to the wavenumber, with a coefficient depending only on thermo-physical properties
of the fluids involved (including the diffusion coefficient of the vapor in the air) and
on ambient temperature and pressure. In view of these recent results, the preliminary
answer to question (iii) above seems to be positive, in that the two-layer problem of
a liquid evaporating into a non-soluble inert gas can indeed be reduced, under quite
reasonable assumptions [9, 11], to a much simpler problem involving liquid phase
quantities only. The only noteworthy difference compared to the Pearson’s problem
of a liquid layer heated from below is that the free surface heat transfer is described
by a (non-local) generalization of Newton’s cooling law accounting for the phase
change process.

The paper is organized as follows: the experimental set-up and procedures are
described in Sect. 2, while the main results obtained in this preliminary study are



Genesis of Bénard–Marangoni Patterns in Thin Liquid Films Drying into Air 97

reported in Sect. 3, together with discussions allowing to bring some elements of
answer to the questions raised above. Further conclusions and perspectives follow
in Sect. 4.

2 Experimental Set-Up and Procedures

Each experimental run is started by pouring a certain amount of volatile liquid
in a cylindrical container to form an approximately 1 mm thick liquid layer.
Volatile liquids used are Hydrofluoroethers, HFE-7000, 7100, 7200 and 7300
from the company 3M, which have similar physical properties except for their
saturation pressure at ambient temperature. The HFE-7000 is the most volatile
with psat.24

ıC/ D 0:61 bar and the less volatile is HFE-7300 with psat.24
ıC/ D

0:06 bar. The container is made of a PVC cylinder glued to a 10 mm thick aluminum
plate. The height of the cylinder is H D 1 cm, its diameter is 63.5 mm and its
thickness is 6 mm.

In addition to the effect of volatility (dependent on the HFE used), we also vary
the evaporation rate independently by changing the “transfer distance” H in the
gas, roughly equal to the height above which the residual concentration of vapor
is negligible (the HFE vapor, being heavier than air, spills over the container wall
and is entrained downwards by gravity). Variation ofH is accomplished by topping
another PVC cylinder (of the same diameter) on the one glued to the plate, wrapping
them with a scotch tape in order to avoid any vapor leak. Using additional cylinders
of various heights allows setting H to 1–5 cm. In these conditions, the evaporation
process is limited by diffusion of vapor into air (implying in particular that the
gas may be considered as saturated near the interface, and that the temperature
drop across the liquid layer may be neglected when evaluating the corresponding
interfacial vapor pressure [11]) and the evaporation rate remains quasi-constant until
the layer is too thin and dewetting begins.

The liquid film thickness e and evaporation rate E are measured by weighting,
using a precision balance. As described in [9], the mass of the liquid meniscus
against the lateral wall has to be taken into account, together with the mass of
the vapor contained within the cylinder, in order to obtain an accurate estimation
of the instantaneous liquid thickness e.t/. The evaporation rate itself, E , is simply
computed from the time derivative of the total mass, using a linear fit.

As convection in the pure liquid is necessarily associated with temperature
variations, we use a Focal Plane Array IR camera-type (Thermosensorik, InSb 640
SM) facing the liquid/gas interface, to follow the time evolution of the whole cellular
pattern. IR images and liquid mass are recorded at a frequency of 1 Hz during
the drying of the liquid layer. Occasionally, the pattern evolution is also recorded
using a Schlieren set-up, such as shown in Fig. 1, depicting the typical sequence
observed. Convection appears right after filling and the pattern is strongly time-
dependent (chaotic or “turbulent” regime), evolving into more stable hexagonal-like
arrangements when the thickness decreases, until the convective state turns into a
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e ≈ 1.4 mm e ≈ 0.4 mm e ≈ 0.2 mm

a b c

Fig. 1 Typical patterns (here observed using a Schlieren set-up working in double transmission
through the film and reflection on the bottom mirror) generated during drying of a liquid film (the
thickness e is indicated for each snapshot). The IR pattern evolution is qualitatively similar

“conductive” one (not shown in Fig. 1). During the convective regime, the number
of cells sharply increases and their size decreases, partly due to a rapid process of
cell nucleation/mitosis (see later).

Having recorded the pattern evolution, the wavenumber q.t/ is extracted as the
mean position of the fundamental peak in the azimuthally averaged FFT spectra
of the images. Then, it is possible to compute the dimensionless wavenumber
k.t/ D q.t/e.t/. From the measurement of e it is also possible to estimate the
temperature difference across the liquid layer (neglecting heat coming from the air
and lateral losses) as �T D EL e=�S , where L is the latent heat of vaporization,
� is the liquid thermal conductivity and S is the container cross-section. This
estimation assumes a linear (purely conductive) temperature distribution in the
liquid layer, which actually corresponds to the usual definition of the Marangoni
number Ma D �	T�Te=�� (where 	T is the surface tension variation with
temperature, � is the liquid dynamic viscosity and � is the liquid thermal diffusivity)
characterizing the destabilizing effect of thermocapillarity. The supercriticality can
then be computed as  D .Ma�Mac/=Mac , whereMac is the critical Marangoni
number corresponding to the transition between convective and conductive states
(observed at the critical thickness ec , see [9] for details).

3 Preliminary Results and Discussions

The dimensionless mean wavenumber k as a function of the supercriticality  is
plotted in Fig. 2a for all the liquids and all the evaporation rates tested. For a given
liquid the curves corresponding to different evaporation rates coincide rather well,
evidencing that wavenumber selection does not depend on the evaporation rate, but
rather on the particular liquid tested.
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Fig. 2 (a) Dimensionless wavenumber k as a function of the supercriticality ". (b) Concentration
of defects pd as a function of the supercriticality " (fluctuations at high supercriticality are due to
an insufficient number of cells). Results are given for all the HFEs and all the evaporation rates
tested

This observation clearly suggests a quasi-static evolution, where the wavenumber
of the pattern adiabatically adjusts to the instantaneous value of the supercriticality
".t/. This could indeed be expected as the timescale for liquid depth variation � e= Pe
turns out to be much larger than the thermal “vertical” time scale � e2=�, for all
cases investigated here. Yet, the fact that e= Pe remains much smaller than the “lateral”
time scale � L2=� (where L is the container diameter), representative of the
time needed for global wavenumber adjustments and defect elimination, seems in
contradiction with this hypothesis. Another puzzling observation is that, in addition
to being unusually fast, the wavenumber selection appears to be rather sharp, i.e.
the value of k."/ is quite well determined (while relatively wide bands of stable
wavenumbers are typically predicted by nonlinear theories [2]), independently of
the history of the pattern (for a given liquid). These experimental facts certainly
deserve further investigation, including theoretical and numerical analysis.

Note in this respect that the shape of the curves in Fig. 2a has a striking similarity
with numerical predictions of Merkt and Bestehorn [12], even though the latter
are based on a constant (wavenumber-independent) value of the Biot number. In
particular, our experimental results always yield a maximum value of k at small "
for the less volatile liquids (HFE-7100, 7200 and 7300), while Merkt and Bestehorn
[12] also observe this non-monotonic behavior at small values of the Biot number.

Now, using an image processing algorithm detecting the centers of the convective
cells, the Voronoi diagrams are constructed for each image, allowing to determine
the geometry of each convective cell in the pattern. Some of these diagrams are
shown in Fig. 3 at the end of the convective regime. As usual, typical defects
consisting of pentagons-heptagons pairs are visible, although they here seem to
naturally form chains of variable length, probably as a result of the particular pattern
genesis observed here. Looking attentively, it seems that most of these penta–hepta
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Fig. 3 Voronoi diagrams of the patterns at the end of the convective regime (" ' 0:1) for all the
HFEs and three evaporation rates (inversely proportional to the container height H ). Hexagonal
cells are in white, pentagonal cells are in green and heptagonal cells are in red

chains form grain boundaries between hexagonal patterns rotated by about 30ı with
respect to each other. Moreover, some localized defects as a “flower defect” are
observed for the HFE-7300 and H D 3 cm case.

From these Voronoi diagrams, a “degree of disorder”, pd , can then be defined
as the number of defects (pentagons and heptagons) divided by the total number of
cells. This concentration of defects is plotted in Fig. 2b, versus the supercriticality
". Figures 2b and 3 show that the more a liquid is volatile, the more the pattern is
disordered (at a given value of the supercriticality). Counter-intuitively however,
just as for the wavenumber selection in Fig. 2a, the degree of disorder appears
not to depend on the evaporation rate, but rather only on the type of liquid used.
Again, this goes in favor of a quasi-static evolution of the patterns, which appear
to adapt to the instantaneous value of the supercriticality (note that this is the only
parameter which varies with the thickness e.t/, as will be discussed in the next
section).

During the drying of the liquid layer, a rapid process of nucleation of new
cells is observed, as expected, together with much less frequent cell collapse (and
disappearance) processes. Using a specific image processing algorithm to detect the
location of these events, it appears that cell nucleation and collapse occur much more
frequently near the defects than in areas consisting of “islands” of quasi-perfect
hexagonal cells. Furthermore, the cells undergoing a split, or “mother cells”, turn out
to be mostly heptagonal (some splits of hexagonal cells are observed, but they are
always connected to defects) and never pentagonal. The “daughter cells” were found
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to be in most cases pentagonal and sometimes hexagonal but never heptagonal. The
overall process seems to allow the collective shrinkage of hexagonal cells organized
in “islands” separated by chains or assemblies of defects playing the role of a kind
of “friction zone” perpetually adapting to the morphology of hexagon islands.

Finally, we have computed the net rate of nucleation of new cells (cells created
by nucleation minus cells lost by collapse), divided by the rate of increase of the
total number of cells in the pattern. This dimensionless quantity, denoted by �d , has
been calculated at the end of the convective regime for the case of HFE-7200 and
for the five evaporation rates, and is represented in Fig. 4.

It is seen that the larger the evaporation rate (i.e. the faster the film thickness
decrease), the larger the ratio �d , indicating that most of the new convective cells
originate from splitting/mitosis (i.e. from defects already present in the pattern).
This proportion reaches more than 80% at the largest evaporation rate studied
here. For smaller evaporation rates, wavenumber adjustment is rather achieved by
another mechanism consisting in a drift and a compression of islands of defect-
free hexagonal cells. In that case, the new cells are actually mostly created at
the periphery of the container (it is quite well visible on accelerated videos), and
subsequently drift towards its center.

4 Further Conclusions and Perspectives

To conclude, we first stress that global wavenumber selection and defect concen-
tration here appear not to depend on the pattern quenching rate (as demonstrated
in Fig. 2), while the relative proportion of mechanisms allowing these pattern
modifications (i.e. nucleation and drift) do depend on it (see Fig. 4). This surprising
observation casts some doubt on the positiveness of the answer to the first question
raised in the introduction, namely about the quasi-steady character of the evolution
of the patterns while the liquid layer decreases. As already mentioned in the previous
section, it might also appear unusual that the pattern would relax to some “unique”
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state (determined by the instantaneous value of the supercriticality) on a time scale
much shorter than the lateral diffusion time. One way to reconcile these observations
might therefore be that averaged characteristics such as the mean wavenumber or
the defect concentration indeed appear to be independent of the quenching speed,
while more local characteristics of the patterns do depend more visibly on it. This
is currently under detailed investigation, and will be reported elsewhere.

As for the second question raised in the introduction, namely about the type of
disorder in the continuously quenched patterns observed here, it is also certainly too
early to reach definitive conclusions. Yet, our experiments have allowed to evidence
the genericity of chains of penta–hepta defects in such patterns, as well as their role
as grain boundaries between islands made of hexagonal structures with different
orientations. To our knowledge, these structures have not been theoretically studied
in details in the past, which might be undertaken on the basis of amplitude equations,
or model order-parameter equations such as (generalized) Swift–Hohenberg and
Sivashinsky-type PDEs (suitably modified to mimic the effect of varying liquid
layer thickness). In addition, these chains of defects also appear to act as nuclei
for the creation of new convection cells, via splitting/mitosis of (mostly heptagonal)
mother cells, to yield (mostly pentagonal) daughter cells. It would also be of interest
to discuss these observations in view of earlier results about the hexagons/squares
transition (and associated lines of pentagons) obtained by K. Nitschke-Eckert for
BM convection in non-volatile liquids [13, 14].

Finally, as far as our last question is concerned, it was already mentioned in
the introduction that in view of recent results [9, 11], a formal equivalence indeed
appears to exist between the full two-phase problem of a drying liquid film and
the one-phase model first proposed by Pearson [10]. Namely, defining the free
surface heat transfer coefficient such as to account for evaporation processes and
vapor diffusion in the gas phase (including the associated latent heat exchanges
between hot and cold regions of the free surface), the simplest of such generalized
one-sided models has been convincingly validated by accurate experiments, as far
as the threshold of instability is concerned [9]. Importantly, under quite reasonable
assumptions (including a flat free surface, small gas viscous stresses, and a large gas-
to-liquid thickness ratio), the influence of evaporation can be accurately described
using a single additional dimensionless parameter, independent of liquid and gas
depths (actually, this is the coefficient of the dimensionless wavenumber in the
expression of the Biot number, as mentioned in the introduction). Hence, in addition
to the usual Prandtl and Marangoni numbers, one has an additional dimensionless
number, which actually turns out to allow a quantitative description of the cross-over
between non-volatile liquids (critical Marangoni number of about 80) and volatile
liquids in contact with their pure vapor (very large critical Marangoni number, due to
the fact that the interfacial temperature is homogeneous in a one-component system,
unless small kinetic effects are taken into account).

Therefore, a natural prolongation of the present work will be to examine
whether the nonlinear patterns observed experimentally in drying liquid films can
be rationalized in terms of these three numbers only. In particular, for a given
liquid evaporating into air at ambient temperature and pressure, only the Marangoni
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number (hence the supercriticality ") is expected to vary with time (through the
variation of the liquid film thickness). Provided the rate of liquid loss is not too
fast (as in our experiments), the pattern transitions should be observed at values of "
independent of the evaporation rate (controlled, as in the present study, by modifying
the “diffusion length” in the gas). This includes the threshold of transition between
quasi-steady patterns and “interfacial turbulence” (see e.g. the time-dependent
polygonal patterns with sharp boundaries predicted or observed in [5–8, 12], and
also Fig. 1a), which is far from being completely understood. Such promising
perspectives are associated with quite interesting fundamental questions, such as
the role of (viscous and thermal) dissipation in highly supercritical surface-tension-
driven convection, the direction of energy transfer between short and large-scale
structures, the role of external length scales such as the liquid depth or the lateral
size of the container . . .
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Pattern Formation Emerging from Stationary
Solutal Marangoni Instability: A Roadmap
Through the Underlying Hierarchic Structures

H. Linde, K. Schwarzenberger, and K. Eckert

1 Introduction

The complexity of interfacial convection has long exerted a pull and, at the same
time, is the reason why this type of flow still belongs to the class of problems in
chemical engineering and non-linear physics which are not fully resolved. This flow
arises from the Marangoni instability which typically occurs when surface-active
solutes, or heat, undergo a mass or heat transfer across an interface. During these
processes various types of both quasi-steady and time-dependent flow structures
have been observed [1–12]. This enormous diversity of patterns is responsible for
the common but fuzzy term “interfacial turbulence”. The foundation for a theoretical
understanding of such structures was laid by Sternling and Scriven in their seminal
paper in 1959 [13]. According to them, Marangoni instability can set in either via
a stationary or an oscillatory mode. While most of the earliest studies show pho-
tographs of such structures emerging from the stationary mode, only the oscillatory
regime has received an in-depth characterization: Linde and co-workers [14–19] first
succeeded both in their heat- and mass-transfer-experiments in clearly identifying
the oscillatory regime, showing signs of anomalous dispersion, and called them
“Sternling–Scriven-oscillation”. The main feature of these oscillatory modes is their
wavelike character with three different dispersion relations (anomalous dispersion,
normal dispersion and dispersion-free waves), cf. the overview given in [18, 19].
It has been proved that waves with anomalous dispersion relation—and even
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dispersion-free waves—behave at moderate and highly supercritical conditions like
dissipative solitons. This classification is based on the phase shift which they
experience during collisions. This phase shift is negative for acute angle collisions
and positive for obtuse angle collisions, i.e similar to Mach reflections at the walls.
It was possible [18] to measure experimentally the critical Marangoni number
in gas/liquid-systems for this oscillatory regime during stationary heat transfer
following the theory of [20]. The experimental value of the critical Marangoni
number Macr � 105 for the onset of the instability in the nitrogen/biphenyl-system
showed a good agreement between experiment and theory. It was determined for
heat transfer from above when the thickness of the liquid phase was smaller than
that of the boundary layer.

In contrast, the route towards the complex convection patterns starting from
stationary primary Marangoni instability has been much less explored and is not
as well understood, although several instability analyses are available [20–26]. Of
those the theory developed by Reichenbach and Linde [20] correctly determined a
critical Marangoni number of � 100 for the onset of Marangoni cells in the thermal
case with a thin liquid layer. This corresponds with the classical value by Pearson
[27] for the roll cell regime. The calculations were based on the material parameters
of the nitrogen/biphenyl-system, which was already suited for a comparison of
theory and experiment concerning the oscillatory regime, now with heat transfer
from below. However, the validity of these theoretical works is restricted to the
threshold of the Marangoni instability while typical experiments operate at high
supercriticality.

The correlation between the mass transfer coefficient and the driving force for
interfacial convection was estimated in numerous experimental studies in chemical
engineering which are reviewed by Golovin [28]. Using scaling analysis he showed
that the chaotically pulsating cells obey a linear scaling of the Sherwood number as
a function of the Marangoni number, i.e. Sh � Ma �Sc�1=2. By contrast, the spatially
ordered convective cells which are arranged in cellular networks follow a reduced
Sh � Ma1=3 � Sc1=6 dependence. Scaling experiments laying between 1/3 and 1 are
attributed to a combination of both chaotic and regular cells.

By critically reviewing a wide range of experimental systems sensitive to the sta-
tionary mode of the primary Marangoni instability, we propose a new classification
system for highly complex and unsteady patterns. It allows us to sort all pattern
classes known from the literature, such as regular or pulsating Marangoni cells
[1,3,4,7,9,28] or what [1] termed “ripples” into a unified classification, consisting of
a low number of generic patterns occurring at different hierarchies. We claim that a
considerable part of what is called “interfacial turbulence” arises from the periodic
decay and re-amplification of these structures, resembling someone climbing up
and down along a step ladder. Note that other types of convection, such as density-
driven instabilities, can result in complex interactions with Marangoni instabilities
[9, 29–34]. For example, not only forced convection but also Rayleigh–Taylor
instability can activate irregular interfacial convection both in Marangoni-unstable
and even in Marangoni-stable systems [4, 9, 35]. The chaotic appearance of these
coupled instabilities is another important feature falling under the topic “interfacial
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turbulence”. However, the concept of this report is exclusively based on systems
where the density stratification remains stable during the experiment.

Most of the photographs in this work rest on published [4, 9, 36, 37] and
unpublished material [38] in systems with mass transfer. The structures were made
visible by means of the shadowgraph technique operating in transmission [36]
through the superposed liquid–liquid systems. The non-trivial superposition of the
two liquids in large three-dimensional cuvettes was conducted by means of a special
apparatus [9, 16, 36]. For a low number of experiments a Hele–Shaw cell was
also used [3, 39]. To characterize the system’s driving force the solutal Marangoni
number Ma is used as the determining parameter for interfacial convection

Ma D d
=dc � dc=dx � ı2
� �D ; (1)

where d
=dc, dc=dx, ı, D and � refer to the change of interfacial tension 


with concentration c, the concentration gradient, the characteristic length, the
diffusion coefficient and the dynamic viscosity. If the acting driving force is beyond
the critical condition for its onset, i.e. Ma 	 Macr, a nonlinear evolution of the
stationary primary Marangoni instability towards the formation of the observed
superstructures is possible [40].

The paper is organized as follows. In Sect. 2 we postulate our understanding of
this nonlinear evolution in the form of four theses. The three main types of pattern
and their different hierarchy levels are explained in Sect. 3. By choosing one system
as a representative example, we demonstrate in Sect. 4 that these patterns evolve
over time via periodic decays and subsequent re-amplifications. Finally, unresolved
issues are summarized in Sect. 5.

2 The Central Theses

Based on a critical analysis of our own experiments and a review of the literature we
claim to have identified four main pieces making up the puzzle of interfacial con-
vection in such systems with a stationary primary Marangoni instability according
to [13]:

1. Interfacial convection in these systems is built up of three basic structures:
(a) Marangoni roll cells, (b) relaxation oscillations and (c) synchronized relax-
ation oscillation waves. Marangoni roll cells are the canonic structure which
probably possess the highest kinetic energy. As the driving force decreases the
cells can degenerate in either relaxation oscillations or synchronized relaxation
oscillation waves.

2. Each of these structures may occur in n different hierarchy steps of different size,
which we call the nth order, referring to the number of substructures which are
embedded into it. Substructure(s) of all three types can occur in any of the three
patterns.
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Fig. 1 (a) Large-scale Marangoni cells with a substructure in the form of second-order
relaxation oscillation waves which are again sub-structured with smaller cells in the system
acetone/(glycerol–water mixture) and acetic acid as the diffusing species. (b) Small-scale
Marangoni cells in the center (encircled) as substructures of the spreading of third-order relax-
ation oscillations, surrounded by fast-moving first-order relaxation oscillations and disturbances
resulting from the foregoing lively spreading in the system benzene/water with dioxane as the
diffusing species

3. The driving force of all these structures is the Marangoni shear stress, d
=dc �
@c=@x, operating on different length scales.

4. Interfacial convection can consist of numerous periodic cycles of amplification
and decay of the three basic structures. The complexity in large containers,
whose size exceeds the largest wavelength, arises from the fact that structures of
different types or of a different hierarchy might occur simultaneously in different
regions of the container.

In anticipation of what we are about to demonstrate, Fig. 1 illustrates some of
these theses by showing

• Large-scale structures into which small-scale structures are embedded.
• The parallel existence of different sorts of pattern. In Fig. 1a these are large-scale

cells and relaxation oscillation waves (again sub-structured with small cells)
while in Fig. 1b cells and highly unsteady relaxation oscillations coexist.

The following four chapters substantiate these theses.

3 The Building Blocks of Interfacial Convection

3.1 Roll Cells

The quasi-stationary Marangoni roll cells are the basic structure. They are driven
by a concentration difference in the transferring solute between the cell center
and periphery along the interface. A higher solute concentration implies a lower
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Fig. 2 Left: Visualization of the flow structure of Marangoni roll cells in a Hele–Shaw cell by
means of tracer particles. Right: Network of Marangoni roll cells at an extended interface

0 0

a b

Fig. 3 Schematic showing the concentration profile normal to the interface for an active
Marangoni roll cell (a) and shortly after the decay of the Marangoni convection (b). For simplicity,
the partition ratio of the solute concentration between the two liquid phases was assumed to be
equal to unity

interfacial tension 
 for the solutes of interest there. The resulting Marangoni shear
stress, d
=dc � @c=@x, is the driving force of convection. It can be directed both
from the center towards the periphery, i.e. 
c < 
p , or vice versa. In the first case, a
c cell, the flow at the interface is from the center towards the periphery. In the second
one, a p cell, the interfacial flow is directed from the periphery to the center. In
three-dimensional cuvettes, the c cell case is the most frequent [5] while the p cells
appear only for very high Marangoni numbers. Irrespective of the orientation of the
Marangoni shear stress, a toroidal Marangoni convection is driven, the boundaries
of which form the cell border. Adjoining convection cells at the extended interface
form a spatially fixed and dense network of polygonal cells as shown in Fig. 2b. In a
two-dimensional situation, such as that in the Hele–Shaw cell, the torus degenerates
into the double vortex structure, cf. Fig. 2a.

The concentration profile which feeds the active Marangoni roll cell is shown
schematically in Fig. 3a. Small fluctuations create a concentration increment at the
interface, which is reinforced when the Marangoni number exceeds the critical
one, leading to the roll cell convection described. This convection provides an
intense mixing which enhances the mass transfer and simultaneously flattens the
concentration gradients. Therefore, after a while, the driving Marangoni stress falls
to a sub-critical level and the roll cell breaks down, cf. Fig. 3b. In the subsequent
relaxation time the concentration gradient is restored by diffusion and the cycle
starts again. This process is particularly noteworthy if the experimental container
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0,III

0,II

0,I

Fig. 4 Schematic showing different orders of Marangoni roll cells with their corresponding
concentration profiles normal to the interface

Fig. 5 Marangoni roll cells of the first (a) and second order (b) in the system cyclohexanol/water
with butanol as the diffusing species

matches the wavelength of the convection unit, i.e. the roll cell occupies the whole
interface. In that case, the decays and re-amplifications succeed in a strictly periodic
manner.

Depending on the characteristic length scales across which significant 
 differ-
ences occur, different hierarchy levels are attained, schematically depicted in the
cartoon in Fig 4. The arrows which are drawn in some cells mark the quasi-
stationary flow from the center to the periphery. Marangoni roll cells of the first
order, in the following abbreviated as RC-I, are the smallest ones and not sub-
structured, as can be seen in Fig. 5a. They occur when the critical Marangoni
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Fig. 6 (a) Third-order Marangoni roll cells in the system acetone/(glycerol–water mixture) (b) and
different concentrations of acetic acid as the diffusing species

number is exceeded. The typical size distribution ranges from 0.1 to 5 mm. As the
Marangoni number increases, second- or third-order roll cells may appear. The
RC-IIs (Fig. 5b) are characterized by the presence of one substructure in its interior.
This can be an RC-I or equally a first-order relaxation oscillation or a first-order
relaxation oscillation wave (see later). This substructure is instantaneously formed
at the place where the bulk flow driven by the Marangoni stress impinges on the
interface. From there it is advected by the larger-scale Marangoni convection of the
higher hierarchy level, here of the second order, towards the periphery (in case of
a c cell). Thereby, the size of the advected substructure increases with its residence
time at the interface. Finally, in the region where the downflow from the interface to
the bulk occurs, the substructure is compressed.

The third-order roll cells (RC-III) underlie the same mechanisms as RC-IIs.
However, they now host two drifting substructures. Figure 6 shows two examples
for the case where the substructure consists exclusively of RC-Is and RC-IIs.
In contrast to RC-IIs, the stronger interfacial convection leads to a ladder-like
structure elongated along the flow direction. Furthermore, distinct deformations
of the concentration distribution and, to some extent, of the interface itself occur
around the place where the bulk fluid impinges on the interface (cf. Fig. 6b). This
figure also shows clearly the coarsening which the substructure undergoes during its
advection from the center towards the periphery.
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Fig. 7 Schematic showing relaxation oscillations (RORCs) of the first to third orders. The arrows
indicate the direction of the spreading motion

3.2 Chaotic Relaxation Oscillations

The second pattern we have identified is the relaxation oscillation of Marangoni
roll cells (RORC) which appear in a chaotic manner if the container size is much
larger than the size of the individual convection units. Again, different hierarchy
levels can be attained, the basic features of which are shown schematically in Fig. 7.
In principle, RORC-Is to RORC-IIIs are considered as higher-frequency decays and re-
amplifications of individual RCs of the same hierarchy class, i.e. RC-I to RC-III.
In other words, the toroidal flow of the RCs cannot develop completely and it
degenerates into a spreading motion along the interface. Therefore, the appearance
of the chaotic RORCs differs in several respects from that of the quasi-stationary
RCs. In contrast to the RCs, the borders of contiguous RORCs are round instead of
polygonal and move unsteadily in space. If this spreading motion is locally limited
by external walls, the frequency spectrum of these RORCs can be tuned from a multi-
mode chaotic one into a more regular one consisting of a few number of modes, only,
e.g. see [33].

The spreading motion is indicated with arrows in some convection units in
Figs. 7 and 8. After the spreading area reaches its maximum extent, the forcing is
insufficient to sustain a further spreading and the motion ceases. Thus, the RORCs

can either occur as an eruptive interfacial motion arising autonomously in time
and space or as a pulsating network, as nicely shown in Fig. 8a. In that case,
individual relaxation oscillations lose the competition with neighbouring RORCs and
are compressed by their spreading motion. Because the relaxation oscillations in
Fig. 8a are free of any internal substructure we identify them as a first-order pattern,
i.e. RORC-I, placed on the lowest level of the hierarchy. The RORC-IIs in Fig. 8b
host small Marangoni roll cells which are advected by the large-scale spreading
motion. An example of a RORC-III with a substructure of RC-IIs and RC-Is is
shown in Fig. 8c wherein the superimposed interfacial flow again leads to a ladder-
like alignment of the embedded RC-I, most notably in the middle of the image.
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Fig. 8 (a) Pulsating RORC-Is in the system isoamyl alcohol/water with sodium dodecyl sulfate
as the diffusing species. (b) RORC-IIs in the system benzene/water with dioxane as the diffusing
species. The spreading direction is indicated by arrows. The substructure in the form of RC-Is is
visible. (c) RORC-IIIs in the same system as in (b). The substructure consists of RC-IIs and RC-Is

The RORCs have a considerably shorter lifetime than their quasi-stationary RC
counterparts. The reason is probably that the timespan for which the Marangoni
stress can be sustained is shorter or of the order of the eddy-turnover time of the
Marangoni torus in the RC. This may occur when the delivery of the diffusing
species is not sufficient to sustain the critical condition for the stationary state
any more [37, 40]. Therefore, we assume that the RORCs require a smaller driving
Marangoni shear stress than the RCs and hence locate this type of pattern on a lower
level in the order of regimes.

3.3 Synchronized Relaxation Oscillation Waves

The most peculiar structure, significantly differing from the foregoing ones, is that
of what we call synchronized relaxation oscillation waves, ROWs. Figure 9 shows
examples of ROW-Is. The waves are free of any substructure in between, therefore
being termed first-order. Mostly, they appear as planar (a) or concentric waves (b),
the latter being nothing else than what [1] termed ripples. Both types are divided by
nearly equidistant relaxation zones and can occur either as the prevailing structure
or in the form of a substructure. The ROWs feature another interesting phenomenon
depicted in Fig. 9c. Disturbances from surrounding structures, such as chaotic
RORC-Is, cause the broken wave fronts to adopt a spiral form. A trend towards spiral-
shaped waves is also observed at the open ends of ROW-Is generated by nucleation.
The existence of a tendency to form spirals is already known from the chemical
waves of reaction-diffusion systems such as the Belousov–Zhabotinsky reaction
[41, 42]. This analogy supports the classification of the ROWs as an essentially new
category of interfacial convection.

This wavelike type of Marangoni convection can also develop under sub-critical
conditions when disturbing eddies are absent, i.e. if the driving force is too low
for cellular convection. Typically, the ROWs appear either as a product of ageing
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Fig. 9 (a) Planar ROW-I, in the system cyclohexanol/water with butanol as the diffusing species.
(b) Substructure of concentric ROW-I in the system acetone/(glycerol–water mixture) and acetic
acid as the diffusing species. (c) Spiral chaos due to broken waves in the system isoamyl
alcohol/water with sodium dodecyl sulfate as the diffusing species

0 0 0

Fig. 10 Schematic showing
basic features of the
synchronized relaxation
oscillation waves (ROWs) and
the underlying concentration
profiles normal to the
interface

and decaying RCs or through a synchronization of RORCs. Another possibility is
the nucleation of ROW-Is in relaxation zones after the decay of other structures.
Obviously, they are an efficient way to exploit weaker Marangoni stresses which are
not sufficient to drive either RCs or RORCs. Figure 10 shows elementary features
of the waves, which differ from the cellular convection typically considered as
the embodiment of stationary Marangoni instability. The flow profile is considered
asymmetric in the direction of travel. Indeed, the shape of the ROWs might be more
complex than the scheme in this drawing. For instance, there are signs of a secondary
convection on a larger scale around a cluster of travelling ROWs. Note e.g. the
dark line in Fig. 9a which appears at the back of one such cluster going through
the middle of the individual waves. Furthermore, boundaries between clusters of
ROWs have been observed in some experiments. Both lines indicate a concentration
gradient which may force a convection directed towards the interface at the back
line and into the phases at the periphery of the ROWs.
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ROW-I
ROW-II ROW-III

Fig. 11 Schematic showing
the route of progressive
sub-structuring of ROW’s

The interfacial convection underlying the ROWs consumes its driving concentra-
tion gradient while travelling along the interface. The relatively small concentration
gradients needed for this sort of pattern are easily restored by diffusion along the
relaxation way so that the next wave follows after a short distance, as depicted in
Fig. 10. The process of the consumption and regeneration of the driving force was
already discussed for simple Marangoni roll cells in Sect. 3.1. However, there is a
difference in the periodicity for the travelling ROWs. While the cells are re-amplified
after a certain relaxation time of sub-critical Marangoni stress, the progression of the
Marangoni driving force in the ROWs now depends on their location.

A sub-structuring of ROWs takes place either by the amplification of lower-order
ROWs or by a transition from higher-order RCs and RORCs. Figure 11 overviews the
route of progressive sub-structuring until the third order, ROW-III, is reached. The
wavelength of the ROWs grows along this route. Together with the formation of the
sub-structure, the visual impression of this process resembles the development of a
feather. ROW-II is sub-structured by RC-Is with a ladder-like alignment due to the
higher-order interfacial convection. According to the asymmetric flow (cf. Fig. 10),
the sub-structure is mainly located ahead of the wave front with a smaller part behind
it. For ROW-III an additional sub-structuring occurs in the relaxation zones where
smaller clusters of ROW-II are formed. Examples of ROW-II and ROW-III are shown
in Figs. 12 and 13. Note the existence of the nearly equidistant relaxation zones at
every hierarchy level, with the driving force being exhausted behind the waves and
restored in front of them.

4 Time-Sequence of Structure Formation

Based on the three canonic structures, RC, RORC and ROW, it is possible to describe
any experiment with solvents/solutes sensitive to stationary primary Marangoni
instability according to [13] if other types of density-driven convection such as the
Rayleigh–Taylor instability are absent. This affords the possibility to characterize
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Fig. 12 Different examples for ROW-II in the system isoamyl alcohol/water with methanol as the
diffusing species. The direction of travel is indicated by arrows

Fig. 13 ROW-III in the
system isoamyl alcohol/water
with methanol as the
diffusing species. Black
arrows show the direction of
travel

the sequence of patterns with the help of a diagram as depicted in Fig. 14. This
scheme contains the generic structures in their different hierarchy levels ordered
qualitatively according to the probable level of the Marangoni stress which we
assume to be responsible for the respective structure. Generally, the type of structure
which can be attained depends on the Marangoni stress acting on the system.
Furthermore, some structures may also be skipped during the re-amplification or
decay of the convection. Due to the extension of the interface, the intensity of the
large-scale Marangoni convection varies locally. This allows for new branches of
temporal evolution in a single experiment whereby diverse structures may coexist
in different regions of the interface. Hence, the scheme in Fig. 14 should not be
considered as a fixed chronology but rather as a roadmap where every system
follows its own path in the course of its nonlinear evolution.

The first excitation of the instabilities after the shock-like superposition of both
phases is omitted in the description of a system’s cycle. Here, extremely high
concentration gradients operate in a small boundary layer. As a result, an “initial
oscillation” can be observed in many systems. This oscillation acts for a short time
span in the form of spreading movements without a substructure, which decay and
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RC-I

RC-II

RC-III

Fig. 14 Schematic showing
the order of structures
according to their underlying
driving force. Routes for
different experimental
systems are inserted

revive in a high frequency. The wavelength of these spreadings roughly matches the
thickness of the boundary layer.

The fading of the initial oscillation is usually succeeded by the instability cascade
moving up and down several times at which point the re-amplifications start via the
lower-order structures. The decays can either be complete, i.e. falling below the
critical condition for the onset of any interfacial convection, or they can cease at
intermediate states. As this repeating process comprises several hierarchical levels,
we refer to it as a hyper-cycle. The lines in Fig. 14 describe examples of different
hyper-cycles. One of those characteristic sequences, the solid line, is detailed by
the corresponding shadowgraph images in Fig. 15. The relevant material data of the
underlying chemical system benzene/water with dioxane as the diffusing species, is
summarized in Table 1.

Vivid eruptive motions in the form of third-order relaxation oscillations,
RORC-IIIs, cover the interface in Fig. 15a, then they decay in Fig. 15b. In Fig. 15c,
the relaxation oscillations are replaced by patches of ROW-II. In between, there
are regions of a calm interface where a further nucleation of waves can occur.
The motion of the waves can be seen nicely in Fig. 15d, e. The waves are already
distorted in Fig. 15f by the re-excitation of the chaotic relaxation oscillations RORC-II

which become dominant in Fig. 15g. Figure 15h shows the amplification of the
relaxation oscillations until the third order, RORC-III, is reached again in Fig. 15i.

By tuning the driving force, hyper-cycles of a higher order (dashed line) or lower
order (dotted line) can be achieved in Fig. 14. For instance, by choosing a high
solvent viscosity, one restricts the system to the lowest steps. In turn, increasing the
surface activity or the concentration of the diffusing species, more hierarchy levels
become accessible.
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6 min 10 min 15 min

15 min 25 sec 15 min 40 sec 15 min 55 sec

16 min 1 sec 16 min 8 sec 16 min 27 sec

a b c

d e f

g h i

Fig. 15 Time series of pattern formation in the system benzene/water with 10% dioxane. The time
after the contact of the phases is indicated under the respective images

Table 1 Material data for the system benzene/water with dioxane as the diffusing species at 20ıC:
kinematic viscosity �, density � and interfacial tension at phase equilibrium 
eq with benzene as
the second phase

�
�
10�6 m2=s

�
�
�
103 kg=m3

�

eq

�
10�3 N=m

�

Benzene saturated with water 0.74 0.879
Water saturated with benzene 1.00 0.999 31.3
Water + 5% dioxane saturated with benzene 1.11 1.004 24.8
Water + 10% dioxane saturated with benzene 1.22 1.008 21.4
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5 Outlook

In this work, structure was given to several aspects of interfacial convection, thereby
providing a clearer overview of the sometimes confusing diversity of the so-called
“interfacial turbulence”-problem. However, several questions remain open. The
hierarchy of the basic structures according to their underlying driving force was
proposed based on ideas suggested by experimental observation, but shall not be
regarded as a proven fact. One of the most exciting issues is the selection of
distinctly different sorts of pattern, such as RORC and ROW, during the nonlinear
evolution. It is likely that those structures are preferred which dissipate available
resources most effectively. However, neither the transition between these pattern,
nor the velocity field of the RORCs and ROWs are really understood. Detailed
velocity measurements [43] have the potential to advance our understanding of the
corresponding internal processes.
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Observation of the Thermocapillary Motion
of a Droplet in a Laser Beam

P. López, Yu.S. Ryazantsev, R.G. Rubio, F. Ortega, M.G. Velarde,
and J.M. Redondo

1 Introduction

The motion of drops and bubbles due to the thermocapillary effect is a quite known
phenomenon and has been observed long before the beginning of its scientific study.
The information on history and main results of the researches of the thermocapillary
effect can be found, for example, in [1]. Firstly, it was studied experimentally in [2]
where the approximate formula for the thermocapillary force acting on a bubble
which was placed in a temperature gradient was obtained. After the pioneering
work by Young et al. [2], the thermocapillary effect for drops and bubbles was
studied theoretically and experimentally in many works (see, for example, [3]).
A comprehensive analysis of the problem can be found in the monograph by
Subramanian and Balasubramanian [4].

The thermocapillary motion is caused by the temperature dependence of the
surface tension. The presence of a temperature gradient on the fluid interface causes
the appearance of the gradient of the surface tension and the motion of the interface
which, due to viscosity, gives rise to the motion of the fluids close to the interface.
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In the general case, the non homogeneity of the temperature distribution on
the interfaces causes different types of fluid flows near the interface depending
on the form of the surface and the temperature distribution. The resulting motion
and the characteristics of the flow also depend on the presence of body forces, for
example, gravity.

In case of a free droplet or bubble placed in other liquid, the droplet can move
as a whole. The source of the traction is the gradient of the surface tension which
appears due to the non-uniformity of the temperature at the liquid interface. The
thermocapillary motion of the drop with constant velocity can be observed when the
thermocapillary force compensates totally the hydrodynamic forces due to viscous
stationary flow of the fluid out and inside the drop. The general case of such effect
is the motion or quiescent state of the drop or bubble in the fluid in the presence
of gravity when the sum of the thermocapillary, mass and hydrodynamic forces is
equal to zero.

Up to now, most of experiments on thermocapillary movement of a single drop
have been carried out in a system where the motion was initiated by an external
temperature gradient (for example, the non-uniform distribution of temperature
was created by solid surfaces with different temperature). But the source of the
temperature gradient which causes the thermocapillary motion could be different
and the non-uniform temperature field could appear due to not isothermal processes
inside or at the drop surface [5, 6]. Lasers are quite effective energy sources,
allowing to create the necessary non-homogeneous distribution of temperature in
non-uniform liquid systems with drops and bubbles. The laser beam can supply
the thermal energy at the interface surface and generate and control the gradient
of the temperature which in its turn can induce the thermocapillary motion in the
chosen zone [7–9]. But, apparently, in the literature there is no data on study of
the movement of a single drop in a laser beam in strictly controllable conditions
close to the ideal. Such data will help to specify a design procedure of processes in
which laser is used as the tool for moving, crushing and coalescence of drops.

An approximate theoretical analysis of the movement of a drop or bubble in
a laser beam has been made, and a simple expression for the velocity of such
motion was obtained in [8, 10, 11]. The rough estimation of the velocity of the
thermocapillary motion can be given using the following approximate formula
[10, 11]:

U D 1

6


T J

6.2�1 C �2/.2�1 C 3�2/
; 
T D

�
d


dT

	

surface

(1)

where index 1 corresponds to salt solutions and index 2 correspond to drop. The
drop velocity U is expressed in terms of drop diameter per unit time (second), J is
the intensity of the laser radiation flux (cal/cm2 s), �1;2 is the thermal conductivity
of the two fluids (cal/cm s ıC), �1;2 is the shear viscosity of the two fluids (g/cm s),

 is the surface tension (g/s2), T is the temperature (ıC), and a is the radius of the
drop (cm).
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The expression (1) for the velocity is based on the use of some important
simplifications of the problem. The movement of the droplet is steady and it
moves in an infinite space which is filled with an homogeneous fluid of constant
temperature and zero velocity at infinity. The flux of the laser radiation is totally
absorbed by the droplet surface, and the reflection and refraction of the rays on its
surface are considered negligible. The non homogeneous distribution of the laser
intensity in the cross section of the beam is supposed to be negligible. And, finally,
the physical characteristics of the fluid system (viscosities, densities and thermo
conductivities) are considered to be constant. Apparently, the roughest one is the
assumption of the full absorption of the radiation on the surface. These simplifying
assumptions show that although the simple model takes into consideration the most
important characteristics of the phenomenon, it can give only a rather approximate
qualitative picture of it.

2 Experimental Methodology

The experimental study of the thermocapillary motion needs experimental condi-
tions maximally free of complicating factors and gravity places the main limitations
on the kind of experiments to do (vertical temperature gradients and relatively small
drops in order to minimize buoyant convection in the fluid and the gravitational
contribution to the drop motion).

The buoyant convection is one of the main perturbing factors which should be
avoided or compensated in the experimental research of thermocapillary movement
of drops. One of the ways to avoid the natural convection is the choice of
such experimental conditions in which the normal convection does not appear.
It corresponds to cases which are characterized by a sufficiently small gradient
of the temperature [2, 3]. Or to compensate the natural convection by the use
of limiting walls [12]. Or the weightlessness condition in drop towers, sounding
rockets and space laboratory, which also permit to avoid the natural convection due
to microgravity conditions.

We study experimentally the thermocapillary motion of a drop in a laser beam
in terrestrial conditions using the Plateau configuration: the liquid drop is placed
inside a fluid system in which there is a vertical gradient of density with a very
stable density interface (see Fig. 1). In this case, the drop will be suspended in a
thin horizontal fluid layer of equal density and can move in it under the influence
of the thermocapillary force which is provoked by the non homogeneous heating of
the drop due to the thermal action of the laser beam. The use of the Plateau method
makes it possible to reduce drastically the influence of buoyancy.

Figure 1 illustrates the set-up, where T1 and T2 are the temperatures in two
opposite points of the drop, U is the thermocapillary velocity and J is the flux
of laser radiation. In general, the surface tension decreases with the growth of
temperature and the drop moves towards the laser beam. This figure also shows
schematically the geometry of the experimental fluid system which consists of two
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Fig. 1 Scheme of the experimental fluid system with the stable density interface and the aniline
droplet on it. To zoom in the marked square shows the thermocapillary migration of the droplet
under a laser beam of intensity J

liquid layers that are at rest inside a glass container with height H , longitude L
and cross section b of 6 cm, 8 cm and 3 cm respectively. The upper layer is a
low concentration salt solution of height 3 cm and density 1:019 g/cm3 which is
supposed to be not contaminated by surfactants. The bottom layer is a denser salt
solution with density 1.44 g/cm3 and height 3 cm. This experimental fluid system is
characterized by a stable density interface, an horizontal plane corresponding to the
density jump which will retain its position and over which a droplet will be located.
The fluid of the drop is aniline, which is a colourless liquid of density 1.022 g/cm3.
The solution of the upper layer is lighter than the aniline and, therefore, the aniline
drop placed in any point of the upper layer falls slowly down to reach the stable
interface and, finally, stays on it.

To prepare this two fluid layer system, a thin metal tube with curved lower end
(at 90ı) and diameter 3 mm was introduced into the experimental container. The
other end of the tube was fitted to a glass recipient with a tap. First, the glass
recipient is filled with the lighter solution. Then the faucet is turned on and the
lighter solution is deposited inside the experimental container. The tap is turned off.
Second, the empty glass recipient is filled with the denser salt solution. The tap
is turned on again, the lighter solution rises up inside the experimental container
while the denser one stays down. Finally, the experimental fluid system is made
by two homogeneous fluid layers separated by a stable density interface. The
thermocapillary effect for aniline drops of different diameters (from 3 to 10 mm)
can be studied with this experimental setup. And it can be seen that the smaller drop
is spherical but the biggest one is slightly deformed. To observe the thermocapillary
motion of the drop in the conditions described above, the experimental setup should
satisfy a number of special requirements.

In this Plateau system with a salt concentration jump, the thermal buoyant force
acting on the drop will be compensated by the step distribution of the density of
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the working liquid. The initial abrupt jump of concentration between up and down
fluid layers is diffused very slowly with time owing to molecular diffusion and the
aniline drop will be retained very close to the horizontal stable interface. Therefore,
we have a suspended drop in a brine gradient and the horizontal laser beam comes
to this aniline drop, heats it non homogeneously and modifies its surface tension
which induces the thermocapillary migration of the drop.

At a given choice of laser frequency, its absorption by the experimental salt
solutions in the container can be sufficiently low and their heating during the
experiment will be negligible and lesser than the absorption by the drop. However,
the coefficient of absorption of the drop should be high enough so that the drop
heating becomes non-uniform with a maximum on the forward surface of the drop.
And also, the intensity of the laser beam should be sufficiently high to assure a high
drop absorption.

The thermocapillary motion of the drop should be initiated by its strongly non
homogeneous heating by the flux of the laser radiation coming to its surface. As a
source of radiation we used the coherent Verdi V5 Laser system with a wavelength
of 532 nm (green colour), an output power up to 2 W and a beam divergence less
than 0.5 mrad. The initial diameter of the laser beam is equal to 2.25 mm (˙10%)
and it can be increased with the use of suitable optics.

As mentionated before, the roughest estimation is the assumption of the full
absorption of the radiation by the drop surface. To obtain the optimal conditions
for the observation of the thermocapillary motion, the absorption of laser radiation
by the liquid of the drop should be as much as possible to ensure a strongly non
homogeneous distribution of temperature on the surface drop. The working liquid
aniline appears to be a suitable liquid for use in the proposed experiment because is
almost immiscible in water (and salt solutions) and its absorption coefficient can be
modified by adding some chemical substance.

First, we obtained the aniline absorbance spectra. A Hewlett Packard 8452A
Diode Array Spectrophotometer was used which is capable of acquiring complete
UV/Visible absorbance spectra. The system is a single beam instrument which
permits to obtain the dependence of the absorption coefficient on wave length in
standard form

A.�/ D log

�
Io.�/

I.�/

	
: (2)

Here, I0 and I are the initial flux and the final flux of laser radiation which
passed through the cuvette with the tested liquid respectively.A.�/ is the absorption
coefficient (1/length) as a function of the wave length �.

The absorbance spectroscopy of aniline shows that pure aniline absorbs in the
K (220–250 nm) and the B (250–290 nm) bands and has a very intense absorption
peak at �max �310 nm. The aniline absorption of radiation with wavelength 532 nm
corresponding to the Verdi V5 Laser is comparatively low (see Fig. 2).

To obtain a liquid of greater absorption, nigrosine can be added to aniline because
it colours in black. Nigrosine is a dark black pigment which is used in dying
of the leather, wood, inks and textiles. There are water-, alcohol- and oil-soluble
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curve)

Table 1 Absorbance of liquids used in the experiment for 532 nm

Substance Absorbance (cm�1)

Pure aniline (cuvette 1 cm width) 4.79 10�2

Nigrosine–aniline (2.5 g/l, cuvette 1 cm width) �3.786
Nigrosine–aniline (0.5 g/l, cuvette 0.1 cm width) 5.514
Water (cuvette 1 cm width) 7.63 10�5

nigrosines. The alcohol-soluble one, which is a black uniform smooth powder,
seems to be the more suitable in our case. When nigrosine powder is added to
aniline, it colours in intense black but undissolved particles should be removed
by appropriate centrifugation. The nigrosine–aniline solution has a high absorption
(Fig. 2) and can be used as the liquid of the drop in the proposed experiment.

Figure 2 shows three absorbance spectra. The black line corresponds to the pure
aniline absorbance spectra in a test cell with 1 cm of longitudinal dimension. The
absorption peak can be seen, which is narrow and located at 330 nm.

The red curve corresponds to a nigrosine–aniline solution with 2.5 g/l with the
longitudinal dimension of the probe cell equal to 1 cm. It is seen that absorption
is so high that saturation is attained. Blue curve corresponds to a nigrosine–aniline
solution with 0.5 g/l; the longitudinal dimension of the cell is equal to 0.1 cm. In the
case of the nigrosine–aniline solution the zone of strong absorption appears located
in the interval from 330 to 820 nm which includes the green line � D 532 nm of the
laser.

The analysis of the absorption of laser radiation with wavelength 532 nm
shows that the absorption of the solution strongly grows with the increase of the
concentration of nigrosine. Table 1 shows the absorbance coefficient of different
liquids used in experiment for � D 532 nm.

Approximate extrapolation of data about absorption of laser radiation for a
solution with nigrosine concentration 0.5 g/l shows that the factor of absorption
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can change from 5.514 cm�1 to a value of an order of 20 cm�1 in the range of
concentration 0.5–2.5 g/l. Such level of absorption of laser radiation by aniline–
nigrosine drop could make a strongly non homogeneous distribution of temperature
inside it as well as at its surface and causes the thermocapillary motion of the drop.

3 Results and Discussion

The thermocapillary movement of a single droplet of nigrosine–aniline solution
caused by a laser beam was observed. The experiment was filmed by a video camera.
The diameter of the droplet was 5 mm. The concentration of the nigrosine–aniline
solution was 0.5 g/l. The radius of the laser beam was equal to 1.125 cm, the laser
power was about 700 mW and the wave length is 532 nm (a green beam).

Figure 3 shows a time sequence of frames corresponding to the experiment
carried out. In the beginning the droplet has been placed on a level of neutral
buoyancy and began to move after a short relaxation time due to the inclusion of
the laser beam. The thermocapillary migration of the aniline droplet is evident in
the time sequence of frames. During the movement the droplet keeps its spherical
form and remains very close to this zero buoyancy plane in spite of its temperature
change. Simple approximate estimations show that the density of the drop will be
decreased. However, vertical displacement of the drop during the time interval of
order 10 min will not be more than 0.4 mm.

The vertical gradient of density in the vicinity of the zero buoyancy plane was
very high, because the salt concentration gradient on the drop trajectory decreases
in time very slowly because of diffusion of the initial jump.

Figure 4 shows the time evolution of droplet velocity along its trajectory
during the experiment. The experimental value of the drop velocity is of the same
order of magnitude obtained by other studies. For example, the velocity of the
thermocapillary migration is about [0.2, 0.3] mm/s under low Reynolds and thermal
Marangoni numbers [12]. Finally, drop velocity is not constant or uniform in time
and it follows a linear behaviour. Therefore, there is a drop acceleration which is
about 3.10�5 cm/s2.

The experimental conditions do not correspond exactly to the conditions in which
the simple formula (1) for the velocity of the thermocapillary motion of the drop in
laser beam is based. The main differences are: on the one hand in the experiment
the cross section of the beam is smaller than the cross section of the drop. Secondly,
the absorption coefficient of the liquid in the drop is not very high. Therefore the
absorption of radiation takes place in the bulk of drop but not on the surface. Thirdly,
the symmetry axes of the drop and the laser beam do not coincide all the time during
the motion. In view of the above, the comparison of other experimental data on
the drop velocity with the theoretical estimate based on formula (1) is not to be
expected. A rough evaluation indicates that the difference can be one-or-two orders
of magnitude.
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Fig. 3 Time sequence with
several frames. The aniline
droplet, located on a stable
density interface, moves
towards the green laser beam,
that is, in the direction of the
temperature gradient
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Fig. 4 Velocity of the aniline droplet related to the thermocapillary migration due to the laser
heating. Drop diameter is 5 mm and laser intensity is about 700 mW. The straight line is fitted by
least squares

4 Conclusions

The main result of this test experiment is that we observed the thermocapillary
movement of a single droplet of nigrosine–aniline solution caused by a laser beam
heating. This experiment seems to be the first one in which the thermocapillary
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motion of a single droplet is initiated by a laser and observed in a pure form
because the phenomenon was not complicated by the natural convection, gravity,
the presence of other droplets, the drop vaporization or the presence of limiting
walls.

The experimental velocity of the drop was about U D 0:8 � 2:0 diam/min.
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Influence of Heat Flux Modulation
on Thermocapillary Instability in a Binary
Mixture with the Soret Effect

I.S. Fayzrakhmanova, S. Shklyaev, and A.A. Nepomnyashchy

1 Introduction

Since the pioneering paper by Faraday [1], the behavior of fluids under external
periodic actions has been a focus of interest. One of the reasons of this persistent
attention is a variety of eigen-oscillations inherent to fluids and, therefore, a
possibility of excitation of different kinds of resonances. In the context of the
Marangoni convection these researches were initiated by Gershuni et al. [2], the
survey of the results can be found in [3].

As one of the above-mentioned eigen-oscillations, the longwave Marangoni
oscillatory convection in a binary liquid layer [4] can be mentioned. In [5] and [6]
we studied the behavior of this system under low-frequency vibration. However,
modulation of a heat flux on the lower boundary, which is the subject of the present
paper, can be simpler accomplished experimentally and studied theoretically.

The chapter is organized as follows. We start with the problem statement in
Sect. 2; the base state is found and the stability problem is formulated. Sections 3
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and 4 are devoted to the analysis of the problem for longwave and shortwave
perturbations, respectively. Brief summary of the results is presented in Sect. 5.

2 Problem Statement and Governing Equations

We consider an infinite layer of an incompressible binary liquid of thickness d .
At the lower rigid boundary (z D 0) the heat flux is modulated with an amplitude
kthB and frequency ˝ about its mean value ktha. (Here kth is the thermal con-
ductivity, therefore �a has the meaning of the mean vertical temperature gradient
and B is the amplitude of its oscillation.) At the upper free nondeformable surface
the thermal flux is kept equal to ktha. When the deviations of the temperature
and concentration from their respective reference values C� and T� are sufficiently
small, the surface tension 
 can be linearized as follows:


.T; C / D 
0 � 
T .T � T�/C 
C .C � C�/: (1)

The temperature gradient induces a gradient of solute concentration owing to the
presence of the Soret effect.

We choose �=d , d2=�, d , ad , 
T ad=
C , ���=d2 as the scales for the veloc-
ity, time, length, temperature, solute concentration, and pressure, respectively.
Here �, �, and � are the thermal diffusivity, kinematic viscosity, and density of
the mixture, respectively.

The dimensionless boundary value problem governing the motion of the binary
liquid reads

r � v D 0; (2)

@v
@t

C v � rv D P
��rp C r2v

�
; (3)

@T

@t
C v � rT D r2T; (4)

@C

@t
C v � rC D L

�r2C C �r2T
�
; (5)

v D 0; @zT D �.1C b cos!t/;

@zC D �.1C b cos!t/ at z D 0; (6)

w D 0; @zu D �Mr2 .T � C/ ; @zT D �1; @zC D � at z D 1;

(7)

where v D u C wez, r2 stands for a two-dimensional projection of the gradient
operator onto the plane x � y, the rest of notations are conventional.
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The boundary value problem (2)–(7) is governed by six dimensionless parame-
ters

P D �

�
; L D D

�
; M D 
T ad

2

��0�
; � D ˛D
C


T
; b D B

a
; ! D d2˝

�
; (8)

which are the Prandtl, Lewis, Marangoni, Soret numbers, the amplitude and
frequency of the heat flux modulation, respectively. Here D is the mass diffusivity,
˛D is the Soret coefficient.

This boundary value problem has a solution corresponding to the quiescent fluid

v0 D 0; T0 D �z C bRe



ei!t

cosh˛.1 � z/

˛ sinh ˛

�
;

C0 D �z C b�Re

�
ei!t

˛2 � 	2


	 cosh 	.1 � z/

sinh 	
� ˛ cosh˛.1 � z/

sinh˛

�
; (9)

where ˛ D p
i!, 	 D p

i!=L. Below we are interested in the stability analysis of
this state for a low-frequency modulation, ! � minf1; P;Lg. Therefore, omitting
O.!/ terms one can reduce (9) to

T0 � �z C b
sin!t

!
C b cos!t

2 � 6z C 3z2

6
;

C0 � �z � �b cos!t
2 � 6z C 3z2

6
: (10)

The first term in the oscillatory part of the temperature is large (� !�1); its origin
is clear: during the first (last) half of the period 0 < t < �=! (�=! < t < 2�=!),
which is large, the heat flux on the bottom directed to the layer is positive (negative),
leading to a strong increase (decrease) in the mean temperature. However, this term
is spatially uniform and therefore it does not influence the layer stability.

In order to study the stability of the base state (9) with respect to infinitesimal
two-dimensional disturbances, we linearize (2)–(7) around the base state and
represent an arbitrary field f of perturbations in the form

f .t; x; z/ D eikx Qf .t; z/; (11)

with a wavenumber k. The evolution of small perturbations is governed by the
following boundary value problem:

@� Q 
@t

D P�2 Q ; (12)

@ QT
@t

D ik Q @T0
@z

C� QT ; (13)
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@ QC
@t

D ik Q @C0
@z

C L
�
� QC C �� QT � ; (14)

Q D @z Q D @z QT D @z QC D 0 at z D 0; (15)

Q D @z QT D @z QC D 0; @2z
Q D �ikM. QT � QC/ at z D 1; (16)

where � � @2z � k2 and the stream function Q is introduced according to the
relations Qw D �@x Q , Qux D @z Q .

Depending on the wavenumber we classify the disturbances as longwave
(k2 � !) and shortwave (k2 	 !) ones. For the longwave perturbations (Sect. 3)
the Prandtl number is unimportant, in Sect. 4 (the shortwave mode) we assume
P D 2. Although for most binary liquids the Lewis number is rather small, we do
not assume it to be asymptotically small; in computationsL D 0:01 is set.

3 Longwave Approximation

The boundary value problem can be substantially simplified for the longwave
instability, which plays an important role in the absence of modulation. To study
the evolution of longwave perturbations, we introduce the following rescalings:

� D !t; k D p
!K; Q D p

! Q�; (17)

and expand the fields of perturbations into power series in small !

. Q�; QT ; QC/ D . Q�0; QT0; QC0/C !. Q�2; QT2; QC2/C : : : : (18)

The derivation of the amplitude equation is similar to that carried out in [5],
therefore here we present only milestones of the calculations, referring to the cited
paper for the details.

The solution in the zeroth order is given by

QT0 D a1.�/; QC0 D a2.�/; Q�0 D iKM

4
. QT0 � QC0/z2.1 � z/; (19)

where a1.�/ and a2.�/ are yet-to-be-determined. The solvability condition in the
second order results in the following amplitude equation:

Rh �K2mA.�C 1/.h cos �/� � PhK2˛ �K4h .� Cm�LA cos �/ D 0; (20)

where a dot denotes the derivatives over � , h D a2 � a1 is the surface tension
perturbation,m D M=48, A D 2b=5, �L D �C LC �L, ˛ D m.�C 1/� L � 1,
� D m�L � L. If � < 0, this second order ordinary differential equation for h is
similar to the well-known Mathieu equation with damping [7].
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According to the Floquet theory, the solution of (20) is represented in the form:

h.�/ D es�H0.�/; (21)

where H0.�/ is periodic with the period 2� , s is the complex Floquet exponent;
below we discuss only the perturbation with the largest sr . (Hereafter subscripts r
and i denote the real and imaginary parts, respectively.) At the stability boundary
sr D 0 and the perturbations are classified according to the value of si in the
following way: (1) subharmonic mode with si D 1=2; (2) synchronous mode with
si D 0; (3) quasi-periodic modes with 0 < jsi j < 1=2.

The Floquet exponents are calculated analytically in several limiting cases and
numerically for arbitrary values of the parameters.

Analysis of limiting cases is similar to that performed in [5], therefore the results
are discussed briefly. First, at small A and

� 1 < � < �o; �o D � L2

1C LC L2
; (22)

when the longwave oscillatory mode is critical for the unmodulated heat flux [4],
the resonant excitation of subharmonic (SH) mode takes place. Namely, for a
perturbation whose wavenumber is close to the resonant one

K2˝k � 1

2
CO.A/; ˝k D

s
��.1C LC L2/C L2

1C �
; (23)

(K2˝k is the frequency of neutral oscillations for A D 0) a destabilization takes
place. The correction to the Marangoni number of the oscillatory mode [4]

mo D 1C L

1C �
; (24)

is negative and proportional to A. There also exists a synchronous mode, but the
corresponding correction to mo is proportional to A2.

Secondly, beyond the interval given by (22) or at negativem, when the monotonic
mode is critical for A D 0, the stability threshold for True Longwave (TLW) mode
with K D 0 remains the same as it was found in [4]:

mm D L

�C LC �L
: (25)

Finally, in the opposite limiting case, K 	 1, the Wentzel-Kramers-Brillouin
method can be applied. To that end we represent the solution to (20) in the form:

h D exp
�
K2˚.�/

�
;
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Fig. 1 Neutral stability curves for the longwave perturbations. Lines 1, 2, and 3 correspond to
A D 0:2; 0:5, and 1, respectively. The domains of stability are marked with “S.” (a) Competition
of the subharmonic (the dashed lines), synchronous (the solid lines), and quasiperiodic (the dashed-
dotted line) modes for � D �0:05. Note, that the quasiperiodic mode is shown for A D 0:2 only,
for higher values of A the breaks in the dashed-dotted lines increase; (b) the synchronous mode
for � D �0:05 at negative m; (c) � D 0:1, the synchronous mode

which results in the following quadratic equation for the rescaled “growth rate”
� D P̊ (an actual instantaneous growth rate in the unrescaled time t is �k2, see
Sect. 4):

�2 �� ŒmA.�C 1/ cos � C ˛� � Œ� Cm�LA cos �� D 0: (26)

At the stability boundary the real part of the Floquet exponent vanishes:

sr D K2

2�
˚r.2�/ D 0; (27)

˚.2�/ D �˛

C1

2

Z 2�

0

q
Œm.�C 1/A cos � C ˛�2 C 4 Œm�LA cos � C��:

(28)

The corresponding stability boundary is sought numerically. Depending on the value
of ˚i.2�/ the mode is termed as either Intermediate Longwave Synchronous mode
(ILW-S) for ˚i.2�/ D 0 or Intermediate Longwave Quasiperiodic mode (ILW-Q)
otherwise. As it will be shown in Sect. 4, these modes match with the shortwave
perturbations.

For numerical computations the shooting method is applied; results of calcu-
lations are shown in Figs. 1 and 2. It is clear that at � satisfying the condition
(22), the SH mode is critical, even though the destabilization for the synchronous
mode also occurs. Between the SH and synchronous modes there are islands
of the quasiperiodic mode, for which the Marangoni number is given by (24)
independently of A. Similarly to Ref. [5], with the increase in A only si changes,
see Fig. 2b in the cited paper. As the amplitude of the modulation grows, the
intervals in K , where the quasiperiodic mode is critical, shrinks because of the
strong destabilization with respect to both the SH and synchronous modes.
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Fig. 2 Results of numerical calculations within the Floquet theory at AD 0:5. (a) Stability
domain in the plane � � mc; the solid, dotted, and dashed lines correspond to the longwave
perturbations: the true longwave (TLW), intermediate longwave (ILW-S) (both are synchronous),
and subharmonic (SH) modes, respectively; the dashed-double-dotted line corresponds to the
shortwave quasiperiodic mode, see Sect. 4. The grey lines show the stability boundaries for the
monotonic (the solid lines) and oscillatory (the dashed line) longwave modes and oscillatory
shortwave mode (the dashed-double-dotted line) at AD 0; (b) the zoomed in fragment of panel
(a) with a competition between TLW and ILW-S modes and emergence of the SH mode shown.
The dashed-dotted line corresponds to the ILW-Q mode; (c): the critical rescaled wavenumber Kc

for the SH mode (the dashed line, left axis) and the critical wavenumber kc for the shortwave
quasiperiodic mode (the dashed-double-dotted line, right axis)

Neutral stability curves corresponding to synchronous perturbations for negative
m or beyond the interval (22) always attain the critical (maximum at m < 0 and
minimum otherwise) value either atKD 0 (TLW mode) or atK	 1 (ILW-S mode).

Variation of the critical Marangoni number with � is demonstrated in Fig. 2a; for
the sake of comparison, the results in the absence of modulation are also presented.
It is clear, that the destabilization of the layer takes place mainly within the range of
� given by (22), when the SH mode is critical. There is also a weak destabilization at
small j�j, shown in Fig. 2b, when the ILW-S mode is critical. It is worth noting, that
the SH mode emerges from the point of intersection of ILW-S and ILW-Q modes,
see Fig. 2b; the critical wavenumber for the SH mode is large in the vicinity of this
point (Fig. 2c).

4 Shortwave Instabilities

For finite values of k and low frequency !, the WKB method is efficient for the
numerical study of (12)–(16). To that end the solution is represented in the form

Qf D
� Of C ! Of1 C : : :

�
exp

�
!�1�.�/

�
;

where Qf D . Q ; QT ; QC/ and � is an analog of the eikonal function in geometric optics.
Substituting this ansatz into (12)–(16), in the zeroth order with respect to ! one
arrives at the boundary value problem, which can be produced from (12)–(16) by
replacing the time-derivatives with a “growth rate” � D P�. Indeed, for the low
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frequency the variation of the heat flux is so slow, that a perturbation has enough
time to tune to the instantaneous value of the heat flux and, therefore, it evolves
with the momentarily growth rate �.�/.

Applying the Floquet theory, one treats the layer to be stable, if the mean value
of the growth rate over the modulation period is purely imaginary:

Z 2�

0

�r .�/d� D 0; (29)

where the branch with the maximal growth rate should be chosen (in fact, the choice
of the branch can be a little more complicated, see the detailed analysis in [6]).

It should be emphasized that for k� 1 this stability criterion reduces to (28),
i.e. the ILW modes indeed ensure matching between longwave and shortwave
modes. Numerical simulations (the shooting method is used) demonstrate that for
AD 0:5 and �>� 0:4 either ILW-Q or ILW-S mode is always critical within the
WKB theory; perturbations with nonzero k provide larger values of the Marangoni
number. Therefore, the competition of longwave modes, shown in Fig. 2a, deter-
mines the stability boundaries in that case. However, for negative Soret numbers
with sufficiently large absolute values [either a strong negative Soret effect for
positive 
C or negative 
C and a strong positive Soret effect, see (8)], �<� 0:4,
the shortwave quasiperiodic mode becomes critical instead of the SH one. The
corresponding stability boundary is also shown in Fig. 2a. This shortwave mode
stems from the shortwave oscillatory mode found in [8]. It is clear from Fig. 2a
that the heat flux modulation slightly changes the stability boundary for this mode,
whereas for the longwave SH mode the resonant destabilization is well-pronounced.
Therefore, the modulation augments the interval of �, where the SH mode is critical.

Note that (29), which is called “asymptotic stability criterion” [9], assumes that a
perturbation is introduced initially and after that evolves without any energy supply.
However, in any realistic system, some kind of noise takes place, which serves as an
energy source for the initially excited perturbation. This noise becomes especially
important for a low-frequency modulation, when the time periods of growth and
decay of perturbations last for a long time and the noise, for instance, is able to stop
an exponential perturbation decrease during the decaying stage. It is clear that the
asymptotic theory operates with an idealized system and therefore overestimates the
stability threshold.

Generally speaking, in the presence of noise there is no standard criterion of
the stability, a threshold should depend on such factors as the amplitude of noise,
system nonlinearity, etc. However, in the limiting case of finite noise one can use the
so-called “empirical” criterion [9], according to which the system is treated as
unstable as soon as �r.��/ becomes positive at certain time moment ��. Finite
level of noise instantaneously makes this perturbation growing fast and therefore
the system leaves the vicinity of the base solution. It is intuitively clear that this
criterion provides an underestimation of the stability threshold.
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Fig. 3 Panel (a) Stability map for the system with noise at A D 0:5. The solid and dashed lines
correspond to the longwave monotonic, (30), and longwave oscillatory modes, (31), respectively;
the dashed-double-dotted line depicts the stability boundary for the shortwave oscillatory mode.
The grey lines depict the stability boundary for A D 0, longwave monotonic mode (the solid
line), (25), longwave oscillatory mode (the dashed line), (24), and shortwave oscillatory mode
(the dashed-double-dotted line). The domain of stability is marked by “S.” Panel (b) Variation of
the wavenumber kc (the right axis) and frequency (the left axis) of critical perturbations for the
shortwave oscillatory mode with �

Again, further simplification is possible for k! 0. In this case (26) is still valid
and the real part of �D�=k2 vanishes at the stability boundary. Both monotonic
and oscillatory modes are possible with their respective stability thresholds given by

m.e/
m D L

.1C A/.�C LC �L/
(30)

and

m.e/
o D 1C L

.1C A/.1C �/
: (31)

In both cases �� D 0. Longwave oscillatory mode takes place, when the squared
frequency of marginal oscillations ˝2

k [see (23)] is positive, i.e. under condi-
tion (22); both the frequency and the interval of existence for this mode are exactly
the same as for the unmodulated heat flux [4]. Moreover, the stability thresholds
given by (30) and (31) differ from the respective values for A D 0, (25) and (24),
only by an additional factor .1 C A/ in the denominators. Note, that in view of
the relation A D 2b=5 (see Sect. 3), this result does not coincide with a naive
prediction based on the introduction of the instantaneous Marangoni number via
the time-dependent heat flux. The difference originates from the different variation
with z of the mean and oscillatory parts of T0 and C0, (10). The stability region in
the plane � �m for the longwave perturbations is shown in Fig. 3.

Similarly to the noise-free case, numerical simulations indicate that for AD 0:5

and � greater than a certain value �
.e/
c , the critical perturbations are materi-

alized at kD 0, see Fig. 3. In contrast to the noise-free system, this �.e/c is
almost independent of the modulation amplitude A. Moreover, a destabilization
for the shortwave oscillatory mode is well pronounced. The naive assumption
that mc.A/Dmc.AD 0/=.1 C A/, though it is not exact, provides a fairly good
prediction for the dashed-double-dotted line in Fig. 3a. The critical wavenumber
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and frequency of neutral oscillations become smaller in presence of modulation, see
Fig. 3b, but they vary with � in a qualitatively similar manner to that found for the
shortwave oscillatory mode in [8].

5 Conclusions

The influence of a low-frequency modulation of a heat flux on the surface-tension-
driven convection in a layer of a binary mixture is investigated. Applying the
Floquet theory (the asymptotic stability criterion), we demonstrated that for the
Soret number � larger than a certain negative value �c , the instability of the layer
can be caused by each of the following three longwave modes: Subharmonic mode
(SH) and two synchronous modes, True Longwave mode (TLW) and Intermediate
Longwave mode (ILW-S). The increase in the modulation amplitude A leads to a
strong destabilization with respect to the SH mode, for ILW-S the destabilization
takes place as well, whereas the stability threshold for the TLW mode does
not depend on A at all. At negative and rather small values of � < �c , the
shortwave quasiperiodic perturbations become critical. The modulation of the heat
flux increases the critical value of j�cj.

We also have applied the so-called empirical criterion, when the layer is assumed
unstable as soon as the instantaneous growth rate becomes positive during the
vibration period. Again, destabilization of the layer is found; longwave disturbances,
either monotonic or oscillatory, are critical. Similarly to the Floquet analysis, at
0 > �

.e/
c > � the shortwave oscillatory mode dominates; but in presence of noise

j�.e/c j does not change much as the amplitude of modulation increases. This makes
the destabilization for the noisy system more pronounced.
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Onset of Stationary Flows of a Cohesive
Granular Material in a Channel

A. de Ryck and O. Louisnard

1 Introduction

Bulk solid handling is still an affair of concern in process industry due to its lack of
reliability and assessed constitutive equations to describe and predict powder flows.

The behaviour of gravitational flows are given by the competition of the
following forces: the weight of the grains, the particle–particle friction, their non-
overlapping and the attractive forces between them (van-der-Waals or capillary
forces).

Using a continuum mechanics frame, we adopt, as constitutive equation to
describe such a flow, a co-linear relationship between the stress and strain-rate
tensors (
 and P	 respectively):


 D �PI C Œc C �.I /P �
P	

j P	 j ; (1)

where P D 
ii is the mean pressure and j P	 j D p P	ij P	ij =2. This relation extends the
model developed by Jenike [1] (Coulomb failure criterion generalized into a conical
yield criterion, pressure isotropy) to the case of cohesive powders. The cohesion c
is supposed constant.

Some viscosity is introduced by a dependency of the coefficient of friction �
with the deformation rate. Following Da Cruz [2], � is supposed to vary with the
Inertial number I , given by the ratio of the inertial time scale to the macroscopic
deformation time scale (j P	 j�1):
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Fig. 1 Side view of a
stationary parallel flow in a
channel

I D j P	 j dp
P=�

; (2)

where � is the apparent specific mass of the powder and d the particle size.
This rheology, proposed by Jop et al. [3] is applied in the case of a surface flow

(the depth of the flowing layer is supposed less than the depth of the granular bed),
stationary and parallel to the direction of the free surface greatest slope (inclination
angle �). The flow is maintained between two vertical parallel walls with a gap
distance 2a between them. �w is the grain-particle coefficient of friction.

2 Liminary Results

2.1 Set of Equations

Under the conditions set in introduction, the equation for the dynamics reduces

to the equilibrium equation
�!r 
 D ��!g . In the normal and along the channel

slope (Oy and Oz in Fig. 1), it leads respectively to an hydrostatic mean pressure:
P D � gy cos � and to:

@

@x
..c C �P/ sin ˛/C @

@y
..c C �P/ cos˛/ � �g sin � D 0; (3)

where ˛ is the local angle of an iso-velocity line, w.x; y/ D constant, with respect

to the horizontalOx (tan˛ D @w
@x

@w
@y

�1
).

This last equation leads to a parametric ordinary differential equation for the iso-
velocity lines in plane normal to the flow direction (x-y plane), see de Ryck [4] for
details.

Together with the appropriate boundary conditions on the lateral walls or the free
surface, the velocity field may be obtained with the set of iso-w lines.
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2.2 Constant Coefficient of Friction

In the case of a constant coefficient of friction, the system may be integrated and we
obtain for the iso-velocity lines [5]:

x D .hC `��/
s C R

k
sin.ks/

1CR
; (4)

y C `�� D .hC `�� /
RC cos.ks/

1CR
: (5)

These equations are those of a trochoid parameterized by s, whose maximal depth
(for x D 0) is h. In order to shorten the expressions, we introduce `�� D `

� cos � D
c

��g cos � , RD tan �
�

and k D p
R2 � 1.

The depth h is determined by the boundary conditions. The iso-velocity may
attain the free surface with an angle ˛ D �=2, or the lateral walls of the channel
with an angle ˛ D �=2 if the walls are rough, or ˛ D ˛w if the walls are smooth.
In all these cases, there is only one single solution. Therefore, it is deduced that
the flow has the form of the sliding of two rigid blocks along this unique interface,
which description corresponds to the rigid-plastic model by Coulomb. This result
comes from, as shown in Blumenfeld and Edwards [6], that in the case of a parallel
and steady-state flow with a constant coefficient of friction, it is not possible to have
an extremum in the velocity profile. As a consequence, only plug flows occur in
such conditions.

2.3 Flow for � D Constant

To fully describe the flow, the localization of this iso-velocity line is obtained by
writing the force balance on the plug sliding on it. Three cases may be distinguished.

2.3.1 Iso-velocity Attaining the Free Surface

The equilibrium is written by equating the shear force integrated along the boundary
iso-velocity line between the plug and dead zones, with the weight per unit z-length:

Z sw

0

.c C ��g cos �y/

s�
dx

ds

	2
C
�
dy

ds

	2
ds D

Z sw

0

�g sin �y
dx

ds
ds; (6)

Using .h C `�� /
2 D �

dx
ds

�2 C
�
dy

ds

�2
and (4) and (5), y may be written as y D

1
R
. dx
ds

C �/, with:
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� D .R � 1/h� `�� ; (7)

so that (6) becomes: Z sw

0

�
dy

ds

	2
ds D �a: (8)

At the free surface, the no-stress condition leads to dx
ds

jyD0 D 0. Then, we have
� D 0. As a consequence, from (8), y � 0. There is no flow with such a boundary
condition. If a plug flow exists, it has to occur on a sliding surface which attains the
lateral walls at a finite depth. Thus, there is a parietal sliding on a depth hw.

2.3.2 Rough Lateral Walls

For a rough wall, we have �w.hw/ D �.˙a; hw/, then dx
ds

jxD˙a D 0 and conse-

quently hw D �
R

. We also have a D hC`��
1CR .1 C sw/ where sw D arccos.�1=R/=k.

The equilibrium equation leads to a third relation between h, hw and R. It contains
a new term compared to (6) due to the frictional stress at the lateral walls:

Z sw

0

�
dy

ds

	2
ds C

Z hw

0

.`�� C y/dy D Rhwa: (9)

This leads to an implicit relationship between the inclination angle � and both the
coefficient of friction and the cohesion c scaled by �ga :

`

a
D sin �

0
@1�

s
sw CR�2
sw C 1

1
A : (10)

The latter equation shows that there is a unique slope angle �o allowing a stationary
flow for a given cohesive length ` D c

�g
< a. For � < �o, the flows are decelerated.

Above this value, they are accelerated. If the cohesive length ` is greater than the
half-width of the channel, there is no more steady-state flows feasible. Figure 2
presents this angle versus `=a for different bulk friction angle �, given by � D
tan�. As soon as this slope is obtained, the dimensionless depth of the flowing zone
h=a, and the dimensionless depth at the walls hw=a are easily determined (Fig. 3).

These depths tend towards zero when c ! 0. For a non-cohesive powder, the
minimal inclination angle is given by the bulk friction angle � and the flow at this
threshold is superficial (h ! 0). With rough channel walls, there is no more flow
for ` 
 a and the depth of the flow at this limit diverges.
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Fig. 2 Minimal slope angle
for a steady-state flow in a
channel of width 2a versus
the dimensionless cohesion
c
�ga
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Fig. 3 Depth of the flow at
the centre h (top bundle of
curves) and at the walls hw

(bottom bundle) scaled by a,
versus the cohesion c scaled
by �ga. In each bundle, from
bottom to top, � D 20, 30,
40, 50 and 60ı

2.3.3 Smooth Lateral Walls

For smooth and non-adhesive walls, the friction condition, using the relation sin˛ D
k sin ks
RCcos ks , leads to dy

ds
jw D ��w

�
hw. The equilibrium equation writes:

Z sw

0

�
dy

ds

	2
ds C �w

�

h2w
2

D �a; (11)
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Fig. 4 Minimal slope angle
for a steady-state flow in a
channel of width 2a versus
the cohesion c scaled by �ga,
for � D 30ı. The upper curve
is for the rough case. The
three others are for the
smooth case with, from
bottom to top, �w D 10, 20
and 30ı

leading to the following set of equations:

�w

�
hw.`�� C ka

sin ksw
/ � 2R`��a D 0;

`�� D ak
RC cos ksw � �

�w
k sin ksw

ksw CR sin ksw
;

hw D a
k2 sin ksw

ksw CR sin ksw
:

(12)

The results is described without loss of generality using an internal angle of
friction � D 30ı. They are displayed in Figs. 4 and 5. Figure 4 shows the slope
angle for a steady-state flow as a function of `=a for respectively �w D 10, 20 and
30ı from bottom to top (where �.w/ D tan�1 �.w/). The highest curve corresponds to
the rough case (cf. Fig. 2) and is displayed for comparison. The absence of adhesion
at the walls reduces the minimal slope to obtain the stationary flow in the channel,
and flows may occur for ` > a. The less the wall friction is (compared to the bulk
friction), the less the slope is. Figure 5 gives the corresponding depths.

3 Flow for a Non Constant Coefficient of Friction

For a cohesive powder and a coefficient of friction depending on the inertial number,
we obtain a sheared zone between a dead zone below it and a plug on it. Figure 6
illustrates this for a given instance. It displays the depth velocity profile on the
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middle plane of the channel, for the particular relationship � D �s C �1��s
Io=IC1 . The

exact form of the velocity profile depends on the relation�.I /, but the boundary iso-
velocities with the dead and plug zones only depend on the behaviour of the friction
coefficient close to I ! 0. The full study on the localisation of these limits is done
in de Ryck and Louisnard [7]. It emerges that the minimal slope to obtain a steady-
state flow corresponds to the situation where the thickness of the sheared zone tends
toward zero. It formally corresponds to the case � D constant. The results obtained
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in Sect. 2.3 then apply and give the minimal slope and depth at threshold for all the
cases described by a �.I / rheology using � D �.I ! 0/.

4 Weak and High Cohesions

In the case of a weak cohesion, i.e. ` � a, (10) or the set of (12) may be developed
to yield the analytical expressions of the minimal inclination angle (in radians) and
of the depths. These quantities, in the limit of weak cohesion, do not depend on the
nature of the lateral walls, except for hw, which depends on the ratio �=�w in the
smooth case:

�o � � C sin 2�

�
�

4 sin�

`

a

	2=3
;

h �
�

16

�2 sin�
`a2

	1=3
;

"
hw � `

sin� rough case

hw � 4.�=�w/
2 `

sin� smooth case
:

(13)

For high cohesion, the rough and smooth cases must be distinguished, and it is
obtained:

�o D �

2
� 2

� tan�
.1 � `=a/2 ;

h � �

2
a.1 � `=a/�1;
h� hw � a;

(14)

when ` ! a� (rough case) and:

�o D �

2
�
�
2�w

`

a

	�1
;

h � 2`;

h � hw � �w

�
a;

(15)

when ` ! 1 in the smooth case.

5 Conclusions

For the description of cohesive granular parallel and steady-state flows in channels
of finite width, using a rheology based on a dependency of the friction coefficient
with the inertial number, we obtain that the minimal slope is independent on the
�.I / relationship and only depends on three parameters: � the internal friction
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angle, `=a, the ratio of the cohesive length on the (half)-width of the channel and,
in the smooth and non-adhesive wall case, on the ratio of wall to internal friction
�w=�. The depths at this threshold depend on the same set of parameters.

Finally, it can be noticed that the size of the grains do not explicitly appears in
that study. It has an influence through the cohesion c. Nevertheless, if the channel
width becomes of order the size of the particles, the confinement effect has to be
taken into account [4].
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Thermography Applied to Interfacial
Phenomena, Potentials and Pitfalls

M. Antoni and K. Sefiane

1 Introduction

The IR technique is an advanced non-contact and non destructive test method.
It is based on the fact that all objects, above absolute zero, emit infrared, radiant
heat, at a rate that is directly related to the temperature of the object. The radiant
incident energy on a surface is partially reflected, partially absorbed and partially
transmitted through the material. The sensors of a thermographic IR camera detect
the wavelength of the energy emitted by an object and, by the use of integral
equations, the temperature can be obtained once the body material and surface
properties are known. It is recognised that there are a few affordable materials
(still quite expensive) transparent to IR radiation like germanium and zinc selenide,
and all lenses must be made of these materials to work with IR cameras. What
the IR camera measures is the heat flux emitted by a body. By this measurement,
and knowing the body emissivity and surface characteristics, one can infer the body
temperature. When the emissivity of a body is low (typically smaller than 0.1), as for
metals, and its temperature is close to ambient, it is very likely that the IR camera
will detect the transmitted and reflected components characteristic of the ambient
surrounding the target material. In order to avoid this, it must be remembered that
the radiant heat flux is proportional to the fourth power of temperature; therefore,
the ambient could be masked if the body temperature is sufficiently above ambient.
This is the reason why it is common practice to mount the object whose temperature
must be measured, on a heated stage set at a temperature sufficiently higher than the
ambient one.
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IR technique is a suitable solution to measuring interfacial temperature of
systems undergoing heat and mass transfers. In the past, this technique has been used
to measure surface temperature of liquids but, in some physical phenomena, geomet-
rical configurations can make things slightly more difficult. For example droplets
and menisci interfaces are usually curved objects and the accurate determination
of the emissivity of such systems must be solved. Despite these difficulties, IR
thermography has proven to be a powerful tool in measuring absolute temperature
in many studies in particular for evaporating and boiling systems where phase
change is present. For a better understanding of these phase changes processes,
the interfacial temperature is a key facto, especially at small scales. The access to
the interface temperature at the micro-scale has been a challenging task. The use
of conventional thermocouples has been pushed to the limit using miniaturisation.
Fang and Ward [1] have investigated the cooling effect resulting from the evapo-
ration of water in a reduced pressure environment by using micro-thermocouples
near the interface. They show an increase in the cooling effect with the increase
in the evaporation mass flux. It is interesting to note that with the thermocouple
used (the smallest one of 80:3 �m diameter) they were able to read temperature
within 30�m from the interface. This clearly shows that in this area there is
an important need for experimental techniques with higher resolution and less
interference. Despite this attempt, the acquisition of information near interfaces
remains quite difficult, because of small sizes and usually curved geometries. In this
context, IR thermography is a potential candidate for bridging thus gap and allowing
measurements that are very difficult to perform with conventional techniques.

IR thermography has been used recently, coupled with high-speed imaging, for
local heat transfer measurement of mini and micro channels by Hetsroni et al.
[2, 3]. IR thermography has also been used for local heat transfer measurement
in complex geometry like plate finned tube heat exchangers as described in [4], to
detect transition and separation regions of the boundary layer that strongly influence
the heat transfer for such applications. Because of the fast time response of more
recent cameras, IR technique is successfully applied also to study boiling (see [5,6])
and evaporation [7, 8]. The equipment used to perform such measurements is at
the heart of the reliability and accuracy of these measurements. During the last 2
decades different types of IR cameras have been developed in order to meet the
needs of always more demanding applications. It must be pointed out that most of
efforts made in this area were for military application where detecting objects of a
certain nature and/or live organisms in the dark is crucial. Detailed and exhaustive
information on different technologies can be found in [9–12]. The most important
part of the IR camera is undoubtedly the detector. There are two technologies
being in use: single and multi detector. In single detector cameras a rotating prism,
scanning the field of view line-by-line, records the flux emitted by the target object
on the single detector that is therefore heavily loaded; moreover, the scanning
mechanism introduces some noise in the system [12]. Focal Plane Array (FPA) IR
cameras have lowered the price, raised both the resolution and the sensitivity of
IR thermography compared to the single detector technology [9]. The drawback is
that the detectors on the matrix receive an unwanted heat flux from the surrounding
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objects in the ambient and from the detectors themselves as pointed out in [10, 11].
Besides, in FPA cameras, there is no internal temperature reference, like in the
single detector thermal scanner, to which the signal is constantly compared [10,11].
These two limitations could make the FPA technology a less useful tool for
quantitative analysis in heat transfer studies where accuracy is among the crucial
requirements. In the single detector camera, a cold shield (at around 70 K) is placed
in front of the detector in order to remove all the unwanted flux not coming from the
object under investigation. This low temperature can be controlled through the use
of Peltier elements or liquid nitrogen. Because of its temperature, the flux produced
by the cold shield can be neglected with respect to the incoming flux from the object
being studied. In the array detectors the cold shield is also used but does not remove
entirely the unwanted flux; in particular, the flux produced by the ambient inside
the IR camera between the detector array and the lenses. In IR cameras used for
quantitative measurements, a temperature sensor is placed on the lenses in order to
correct this effect.

As outlined in [10], the FPA cameras can successfully be used for quantitative
measurement only if they are calibrated frequently. The latest IR thermographic
cameras have a spatial resolution of about �3�m, this performance starts to
compete with other techniques used to map temperature such as unsealed ther-
mochromic liquid crystals [13, 14] and polymer dispersed thermochromic liquid
crystals [15]. The time response of IR cameras with photon detectors is of the order
of micro-seconds as shown by Conn and Avery [16] whereas the time response
of thermochromic liquid crystals has been evaluated to be in a range of a few
and hundreds of milliseconds [17, 18]. The limitations of conventional techniques
such as thermocouples and tedious procedures with some new techniques like ther-
mochromic liquid crystals, make a strong argument for adopting IR thermography
to study interfacial phenomena. But in order to understand the opportunities and
limitations associated with the use of IR thermography technique, one has to recall
the fundamentals of this latter.

2 Radiation and Heat Transfer Theory

The signal acquired by the IR camera is an electromagnetic energy transferred
through radiations. IR electromagnetic radiations are emitted by all objects with a
temperature above absolute zero. Together with conduction and convection, they
correspond to one mechanism of heat transfer from hot to cold regions. The higher is
the temperature of the objects the larger is the intensity of the IR radiations and they
are out of the visible range of the electromagnetic spectrum for temperatures below
500ıC. Above, this temperature objects are glowing in the red range of the visible
spectrum and energy emission is not lying any more only in the IR wavelengths.
Besides emitted radiation, objects also react to incident light by absorbing or
reflecting part of it or allowing it to cross through them. As a result, the perception
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we have of an object is a combination of three different mechanisms: absorption,
reflection and transmission each of them being characterized by the specific physical
properties of the target object. The absorption of materials result from the exchanges
between molecular vibrations and IR waves and the fraction of the incident energy
it involves is described by its absorptivity ˛. The incident energy fraction reflected
off the surface is given by the reflectivity �. Finally the one transported across the
object is fixed by the transmissivity � . As they correspond to fraction of the incident
energy, coefficients ˛; � and � are dimensionless quantities but that all depend on
both wavelength and working temperature. They hence take values between zero
and one depending on how an object absorbs, reflects or transmits the energy of the
incident radiation.

Common objects are usually far from these limits since they are never ideal
absorbers (˛D 1), reflectors (�D 1) or transmitters (� D 1) although important
examples, like black bodies or perfectly polished silver surfaces, come very close
to limit situations (respectively ˛ � 1 and �D 0). Due to the conservation of total
energy, ˛; � and � are not independent quantities and they obey the relation:

˛ C �C � D 1: (1)

The temperature of an object is evaluated by measuring the intensity of the
emitted IR radiation by a thin surface layer where interactions between the object
and the radiation take place. Reflected and transmitted radiations represent therefore
potential sources of errors that have to be accounted for. For direct interfacial
temperature measurements, thermography should hence ideally make possible to
discriminate the contribution of interfaces from all others. This is technically
possible only for those objects with the specificity to isotropically radiate the
largest possible fraction of the energy they have absorbed regardless of the radiation
wavelengths and the working temperature. Such ideal objects are known as perfect
black bodies. According to Kirchhoff’s point of view, perfect black bodies have
absorbing layers of infinitely small thickness. But this requires severe conditions
on light scattering. This view has been modified by Planck who demonstrated the
necessity for the interfacial regions to have a sufficiently large thickness to prevent
re-emission of the radiation and simultaneously limit scattering effects that could
also contribute to help the radiation escaping back out.

One fundamental condition for temperature measurements to be relevant is
thermal equilibrium between the considered object and the radiation field. This
imposes that the amount of energy absorbed by a given area of the target object
is the same than the one emitted by this same area when the object is completely
opaque (� D 0). Absorption is then completely balanced by emission imposing
the absorptivity ˛ and the emissivity, noted  in the following, to be the same.
This condition, ˛D D 1 is known as Kirchhoff’s law. It is true for all radiations
and assumes the existence of a unique underlying equilibrium distribution of the
radiation energy. For thermal radiation, this distribution, called spectral radiance,
has been established by Planck for a perfect black body. It depends on both absolute
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Fig. 1 Spectral radiance obtained from Plank’s law for several values of temperature

temperature T and wavelength � and is equivalent to an electromagnetic energy flux
falling in a given solid angle per unit time and unit wavelength and writes:

I D .�; �/ D 2hc2

�5
1

exp
�

hc
kt�

� � 1 (2)

where I D .�; �/ is the spectral radiance, hD 6:6210�34 Js Planck’s constant,
c speed light, kD 1:3810�23 J/K Boltzmann’s constant.

The behavior of I D .�; �/ as a function of � is illustrated in Fig. 1 showing the
emission curves for a black body at different temperatures. The emitted radiation
intensity increases with temperature and the maximum is reached for wavelength
�max given by Wien’s displacement law: �max D b=T where bD 2:89810�3 mK is
the Wien’s displacement constant. The Wien law states that this maximum shifts to
the lower wavelengths when increasing the temperature and Fig. 1 clearly illustrates
this effect. I D .�; �/ rapidly decreases away from this value. This is actually one
of the limitations of (2) since a black body at room temperature would almost
present no radiation in the visible spectrum. In Fig. 1 it is also clear that the emission
intensity of a specific wavelength � is also a function of temperature. For example,
at T D 5; 800K, like on the surface of the sun, �max � 0:5 �m. This corresponds to
a peak in the centre of the visible spectrum and explains why the sun’s perception is
white (it is actually turned to yellow due to the scattering of blue light in Earth’s
atmosphere). Conversely, for objects at 300 K, �max D 9:7 �m, and no human
eye detectable visible-spectrum radiation is emitted in this case. The total energy
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radiated per unit surfaceWbb of a black body is obtained after integration of (2) and
is given by the Stefan–Boltzmann law,

Wbb D 
T 4; (3)

where 
 D 5:6710�8 Js�1 m�2 K�4 is the Stefan-Boltzmann constant. Equation (3)
demonstrates that the energy radiated by a black-body increases with temperature
to the fourth power.

Equations (1)–(3) provide the fundamental relations for the measure of temper-
ature from the emitted radiation of perfect black bodies. So far, no considerations
were made about the geometry of the radiant surface and it is important to keep in
mind that (2) holds for any convex back bodies. Another important condition here
is their surface temperature to be throughout the same for equilibrium conditions
to be satisfied. In practice, real objects are never perfects emitters or reflectors
and their thermal energy radiation W is always smaller than that of a black body.
The grey body approximation is one possibility to describe such systems. Grey
bodies are those objects with an emissivity smaller than one ( < 1) and taking
sometimes constant value in a given wave length band. Stefan-Boltzmann’s law is
then modified in,

W D 
T 4 (4)

indicating that the total energy of a grey body is that of the black body at the
same temperature but reduced in proportion of the value of the emissivity of
the target material. The grey body model is of first importance in thermography
measurements that generally operate in spectral windows within which emissivity
can be considered as a constant. As it can be obtained from either emissivity charts
or experimental calibrations they provide, in addition to the measurement ofW , the
necessary input for (4) from which temperature can finally be evaluated.

It is important to note here that if the grey body model provides better
descriptions of real objects, it is still an approximation that is too restrictive with
respect to true materials that are usually neither black bodies nor grey bodies.
In most real cases, materials act as selective radiators in the sense that they can
behave either like black, grey bodies or even as ideal reflectors depending on the
considered wavelength and temperature ranges. In modern materials, emissivity
can for example be controlled not only for specific wavelengths ranges but also
monitored to become even temperature dependent. A sketch of the shape of the
�-dependence of the spectral radiance of these different materials is proposed in
Fig. 2.

For experimental purposes, it is necessary to image a target object using a
waveband that does not transmit through its surface. If this condition is satisfied
then the temperature measurement represents conditions at the target surface. But if
it is not, the measurement is made over a volume extending from the surface into
the target. As discussed above, Planck demonstrated the necessity of such a non-
zero thickness for the interface that must be sufficiently large for spectral radiance
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Fig. 2 Sketch of the wavelength dependence of the spectral radiance for a black body (at T D
3; 000K), a grey body and a selective radiator. All are supposed to be at the same temperature

of (2) to hold. The extent of radiation penetration and the temperature profile within
the target may be approached by considering the equation of optical depth [19] also
often called skin effect,

I� D I exp.��x/; (5)

where I� the spectral radiance at distance x inside the target material, I is the
radiance given in (2), x is distance into the target material and � is optical
penetration depth that is known for most classical materials. The distance d� D 1=�

is the penetration distance (i.e. the value of x such that I�=I D 1=e with e D 2:718

the Euler constant). At this distance there is only 36.8% (ie. 1/e) of the initial
radiance left. At five penetration distances into the target, the radiance has declined
to 0.67% of its initial intensity. Conversely, the radiation of a molecule existing five
penetration distances into the target has declined to 0.67% of the emitted radiance
when it reaches the surface. If the volume bounded by the plane of the target
surface and the plane 5d� into it are lumped together, it may be considered as
a single opaque target over which the temperature measurement is made. If the
target is thicker than 5d� and has no or negligible temperature variation with
depth then the target may be estimated to be opaque and IR thermography may
be safely applied. This was the case with Greenberg et al. [20] investigation
into thin film polymer casting. It was first determined that the polymer film
did not transmit radiation from objects behind it (in other words the lumped
opaque approximation was valid). Secondly, modelling showed that for the films
investigated, the temperature profile was a function of time only and did not vary
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with depth. This allowed for accurate temperature measurements of the target
despite it being partially transparent in the considered IR spectrum range.

IR thermography would not be a suitable technique for measurements into a
penetration volume where there is a significant temperature gradient. For example,
in evaporative cooling, a liquid interface becomes cooler than the liquid bulk. If this
liquid is transparent an IR camera imaging the scene will measure high-temperature
emissions from the bulk that are seen through the interface and will therefore show
an erroneously high temperature. Several options can be followed to overcome this
problem. (a) If d� is small, temperature averaging can be safely used. (b) If the
temperature gradient within the liquid is known, the high-temperature contributions
may be subtracted from the signal by considering differential transmission volumes.
(c) If the transmitting medium is a solid, painting its interfacing surface with a
thermally thin layer of matt black paint could be another solution. (d) Operate at
a different IR wavelength where the target object is opaque. Option (a) is acceptable
if its condition holds. Option (b) is infeasible for most experimental situations.
Option (c) is a simple solution that has been successfully applied by many authors
in the investigation of the liquid-solid interface transient temperature during cooling
by droplets. However, the technique is limited to obtaining only solid interface
temperatures and may be unsuitable when surface coating are being investigated.
Finally, option (d) is the simplest, least error prone and most desirable solution
and should be attempted if possible. The use of IR filters that corresponds to IR
absorption bands of the target material would be a suitable way to achieve this.

As just discussed, the surface temperature of materials strongly depends on
intrinsic properties but they’re also modified by the conditions around them. For
example air flows will modify the heat transfer coefficients that will affect the
results of IR imaging. Determining a material temperature from thermographic
measurements hence implies a number of fundamental parameters to be accounted
for. Among them: angle dependency and, as will be discussed below, the influence
of the transmitting medium. In the construction of (2) one important condition is
that the black body is a diffuse emitter (its thermal energy radiation is hence emitted
equally in all directions). But an IR camera, like any common optical device, collects
energy from within a conical field-of-view that is fixed by the optical capabilities of
the camera (focal distance, optical resolution, lens geometry, camera sensors, etc.).
The radiation that impinges on the camera corresponds hence to a projection onto
its 2D FPA detector of a 3D measured object within this conical field of view. This
means that the IR response of a given point of an object interface might strongly
depend on the viewing angle. Objects with complex 3D geometries can indeed
generate overall IR signals strongly distorted because of the different optical paths
followed by the IR radiations within them. As a result, in IR thermography non
zero viewing angle can lead to serious misinterpretations. Viewing the object with a
normal incidence is however not always the optimal solution. Experiments actually
suggest that the best IR signal quality is achieved when measurements are within
the cone of maximum emissivity. This discussion indicates that in real materials,
precise temperature measurements have to account for the angle at which the surface
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is observed. In the models, this directional dependence is included in the value of
the emissivity . It is still assumed to be wavelength independent but now includes
a dependence of the viewing angle � . In general dielectric materials, emissivity is
almost constant as long as � < 60ı and drops to zero when � > 60ı as shown in
Fig. 3. Conductors and molten metals have generally much smaller emissivity and
often display minimal values for normal incidences � D 0ı. But for such materials
the emissivity can remain constant up to viewing angles as large as 85ı.

There are some situations where the effect of viewing angles is too important
to be neglected. The investigation of Walsh et al. [21] involved temperature
measurements on the surface of a piece of pipe. In order to avoid viewing
angle emissivity errors, the thermograph images were analyzed digitally by an
edge detection algorithm. With the edges of the pipe recognized by the high-
temperature area showing up against the background. Temperature measurements
were taken from the centre of the pipe, where the viewing angle would be at or
close to 0ı. The same approach has been followed for measuring the contact line
location in evaporating water droplets [22]. A more difficult situation to resolve is
in the application of IR thermography to explore interfacial temperature of menisci
evaporating inside capillary tubes. In situations where the IR camera is situated such
as it is looking into the capillary onto the meniscus, there exists the potential for
low contact-angle fluids to possess emissivities with high radial variation. In studies
where the temperature profile of a liquid which undergoing evaporative cooling is
investigated, such as by Buffone et al. [23] there is an expectation for the wetting
fluid to be coolest at the outer capillary radius. An example of such a result is shown
Fig. 4. The radial temperature profile near the capillary wall obtained in this figure
is consistent with a target with a decreasing emissivity as viewing angle increases
but this uncontrolled variable can seriously increase the complexity of obtaining the
true emissivity. There is no simple solution to this problem. Accurate determination
of emissivity as a function of viewing angle for all wetting fluids could be paired
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Fig. 4 IR image of a 900�m diameter heated capillary and methanol as liquid. Left figure:
Temperature difference with ambient along the horizontal sections of (right figure) for various
tube size [23]

with modelling of the meniscus shape. Image processing could then identify the
viewing angle as a function of radius and apply the correct corresponding emissivity
value. Such data is not available in the literature however, and obtaining this data
experimentally adds significant extra work and complexity.
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Fig. 5 Atmospheric transmission spectrum at sea level for saturated air

As stated above, the surface temperature of materials strongly depends on the
conditions around them. For example a gas flow above a solid surface or the
evaporation of a liquid will modify the heat transfer coefficients that will in turn
affect the results of IR imaging. In this context, transmitting medium plays a key
role in the relevance of the final interpretation of thermography images. It has to
be transparent in the operating wavelength band otherwise the measured apparent
temperature will be underestimated. This underestimation will be accentuated for
large focal distance and will not be compensated by atmosphere radiation (remem-
ber that if an object absorbs radiations, it will also emit according to Kirchhoff’s
law). For a perfectly transparent transmitting medium, � D 1, no radiance is lost in
its transmission and the target material radiation entirely reaches the camera. For
standard experiments, this medium is air for which radiance attenuation depends
unfortunately strongly on the wavelength. Water molecules and carbon dioxide are
the main absorbing molecules and working in such conditions imposes the use
of the so called atmospheric windows where atmospheric attenuation is minimal.
These windows are mainly situated in three wavelength bands: 1.7–2.5, 3.4–4.1 and
7.5–11.5�m as can be seen in Fig. 5 representing the absorption spectrum of air at
sea level and for saturated air. The two first windows are commonly considered
as Medium Wavelength Infrared (MWIR) and the third as Long-Wave Infrared
(LWIR). The main components of air, N2 and O2, have no interactions with IR
waves while polar species such as CO2 and ubiquitous H2O do have interactions.
For this last reason the humidity and temperature of air are important parameters in
obtaining the air transmissivity coefficient. This is also why the main gaps of Fig. 5
correspond to H2O vibrational transitions that results in low air transmissivity. It
is worth noting that suspensions in air like dust or particles also do contribute to
lower the transmission quality due to scatting in both MWIR and LWIR. Most of
commercial IR camera softwares packages take ambient temperature and humidity
as inputs in order to automatically calculate and account for air transmission [24].
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But particles are too specific to be accounted for. This is why clean air conditions
are also usually required for reliable thermography measurements.

The non negligible effect of air clearly indicates that to measure the correct
target object temperature from IR radiations, it is necessary to account for not
only the emissivity of the material itself but also the impact of the transmitting
medium attenuation and the radiation of surrounding objects. Depending on the
working conditions these last contributions can overcome the target object signal
and considerably hinder the interest of IR thermography techniques. The estimation
of the impact of these contributions constitutes actually one essential step in the
calibration procedure of the IR cameras. It is indeed only a careful control of these
latter that will allow a one to one link between the measured emitted energy and the
temperature of the target object. In the following, we assume for simplicity that all
the surrounding of the object is at the same temperatureTsur. If Tto is the target object
temperature and �tm the medium transmissivity, the emission of the object itself
generates at the level of the IR camera detectors the radiation intensity �tmWbb.Tto/

whereas the contribution of surrounding diffuse (unfocussed and homogeneous)
sources writes (1 � ) (here, the emissivity is assumed to be same for all emitting
objects). Emission from atmosphere due to the object and surrounding radiation
sources is moreover given by where is the temperature of the transmitting medium.
The balance of radiant sources and losses yields the following equation:

Wcam D �tmWbb.Tto/C .1 � /�tmWbb.Tsur/C .1� �tm/Wbb.Ttm/; (6)

where Wcam is the radiation intensity measured by the FPA sensors of the IR
camera and Wbb the one of the black body equivalent given by Stefan-Boltzmann’s
law. In most experiences, air is the transmitting medium and focal distances are
relatively short (few centimeters). Air attenuation and surroundings radiations
are then negligible and one can reasonably assume Wcam D �tmWbb.Tto/ without
significant loss of accuracy. This is clearly not true for long focal distances where,
depending of the circumstances, reflected emission from ambient sources and
emission from the atmosphere may become so important that the target object signal
will be completely modified. The use of engineering lookup tables becomes then
essential. Reflection from ambient non-black and opaque body results in an ambient
temperature radiance being detected by the IR camera sensors that will result in an
incorrect target temperature calculation. As discussed above, the second term in (5)
is one way to account for surrounding reflection sources assuming the temperature
and emissivity to be uniform. But a scene may contain many sources of diffuse
and specular reflections potentially composed of different materials and at different
temperatures. As already discussed, the most direct way to tackle these reflections is
to minimize the reflectance of both the target and its surroundings by a painting with
a high-emissivity paint (typically matt black). This has been applied for example
by Chauvet et al. [25] in obtaining the temperature profile along a square capillary
containing an evaporating liquid. The outer surface of the capillary was painted matt
black and, as the capillary thickness was small, temperature measurements could be
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made on the outer surface that would be equal to the internal sold-liquid, solid-
liquid-vapour and solid-vapour interfaces along the capillary’s length. Nevertheless,
it was required to employ imaging techniques (here an image subtraction method) to
account for remaining reflected radiances. A method employed by Howard et al. [26]
and also by Mori et al. [27] saw both the target painted matt black (a section of pipe
and a rotating blade, respectively) along with surroundings. In the example of Mori
et al. [27], areas near the experiment apparatus were painted matt black. Walsh et al.
[21] were achieved even greater control over reflectance by placing the small section
of pipe inside a matt black box. This is not an ideal solution and potentially hinders
accessibility to the apparatus, but is very simple to implement. A disadvantage of
this technique is that the use of the high-emissivity paint coating can potentially
change the heat transfer resistance of the system and influence the experimental
results, [21]. Alternative methods to correct unwanted reflectance effect is also to
use imaging techniques. But this requires specific image treatment software often
supplied by IR camera providers.

One particular aspect of ambient disturbances shows up for short focal length
optics when an IR camera is facing a reflective target surface. In such situations,
it detects a radiance originating from the camera detector itself. This is known
as the “Narcissus effect”. It is particularly noticeable in cooled cameras where a
concentrically increasing temperature gradient can be seen originating in the centre
of the image, as shown in Fig. 6, for a quasi-perfect mirror. This is due to the
centre sensors of the FPA array that detect a greater radiance from IR camera
apparatus than outer ones which instead measure more ambient reflections. Image
processing allows to monitor this effect by simple image subtractions. More refined
processing techniques are able to remove the influence of the Narcissus effect from
an image through consideration of the sources of reflected IR radiation. A pixel-
by-pixel calibration can for example be achieved by the fitting of a standardization
function [11].
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3 Example of Applications: Evaporating and Boiling Liquids

The evaporation of liquids has been subject to an increasing interest in the scientific
community and the full understanding of physical and chemical mechanisms
involved in such two phase systems are still nowadays in many aspects open
problems. One example among others is the description of the heat and mass
exchanges occurring at liquid/vapor and liquid/solid interfaces. This interest has
been driven by an increase in the range of applications underpinned by this phe-
nomenon. The interaction of liquids with solids like in micro channel evaporating
meniscus or in deposited droplet on a heated substrate impinges on a wide range of
applications such as, spray cooling, nuclear applications and coating technologies.
Many different scenarios show up in two phase evaporating systems, depending
on the considered liquids, their temperature, the boundary conditions (like the
capillary or the substrate temperature and geometry), etc. Fluid motion driven by
temperature gradients imposed along a free liquid-gas interface is for example
a well-documented phenomenon in micro-channels [28]. Transient regimes due
to temperature differences have also been evidenced and explored as discussed
below [22].

Liquid evaporation investigations use most frequently optical techniques that
do not require complex calibration procedures. But they have many limitations,
especially in the cases where thermal properties are important and must
therefore be carefully monitored. In most cases indeed, complex liquid flows
and temperature fields are at the origin of the overall boiling and/or evaporating
dynamics. These phenomena clearly cannot be explained using conventional
optical techniques that give access only to geometrical properties like contact
angle or contact line location. Such measurements would indeed be limited by
the optical resolution and the optical properties of the liquid. As a result, for
small contact angles optical techniques cannot detect the presence of the then
very thin liquid films often present in the wetting region. Nonetheless, these
films must be precisely investigated since they are then main actors of contact
line dynamics where evaporation rates are known to be the largest [7]. When
investigating evaporation of liquids, IR thermography offers many advantages:
e.g. Local temperature measurements, new approach to characterize contact line
evolution and its location and the possibility to estimate local heat fluxes from
simple models [7]. As usual optical techniques, IR thermography is a non-
contact and non destructive measurement method with finite resolution. But as
IR thermography gives access to temperatures it allows the study of evaporation
sequences even when contact angles become very small (� < 10ı) like it occurs
for example in the case of a droplet sitting on a solid substrate at the very end of
its lifetime [7]. This section will focus on two examples of two phase systems:
evaporating droplets deposited on substrates and boiling in micro channels. Both
examples involve free evolving interfaces but in different geometries. In the
first case, wetting films are horizontal and the droplet is not fed by incoming
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Fig. 7 (a) IR image of a 1.4�L water droplet interface short after its deposition on a copper
substrate at temperature Ts D 60ıC. Radial coordinate is noted by r and temperature is given by
the color scale. Dashed line is a circle of radius r D 0:3mm with centre the droplet apex. (b) Time
evolution of the interfacial temperature in radial coordinate [7]

liquid whereas in the case of microchannels, geometry is confined and liquid is often
introduced in order to maintain the relevant phenomena in the field of view if the
camera.

The IR camera used in the present investigation is a FLIR ThermaCAM
SC3000 that has a thermal sensitivity of 20 mK at 30ıC, an accuracy of 1%
or 1 K of full scale for temperatures up to 150ıC and 2% or 2 K of full scale
for temperatures above 150ıC. The system provides for automatic atmospheric
transmission correction of temperature based on the input distance from the object,
atmospheric temperature and relative humidity. The field of view at minimum focus
distance (26 mm) is 10 mm � 7.5 mm and the instantaneous field of view is 1.1 mrad.
The system can acquire images in real time and high speed (with a reduction
of the picture size). The images acquired are transferred to a dedicated PC with
a special built in ThermaCAM research software (by FLIR System). The spatial
resolution of this equipment depends essentially on the IR camera spectral range
(8–9�m for the camera used), the field of view of the camera and the microscope.
The IR images were obtained with an experimental set up where the IR camera
was mounted directly above the systems under consideration, facing vertically
downwards onto them.

As discussed in Sect. 2, emissivity is the key parameter in thermography since
it is the one that will allow or not the evaluation of a temperature from the emitted
radiations of a material. When investigating the properties of systems like the one
in focus in this section, emissivity differences can be used not only to evaluate
temperatures but also to discriminate opaque liquids from solids. Liquids and solids
have indeed different emissivity and this makes possible a simple and accurate
detection of liquid-solid coexisting regions allowing for example the study of
contact angle and contact line dynamics. When calibrating the IR camera on the
emissivity of the evaporating liquids, the resulting IR map will display important
dips (or peaks) in temperatures for the solids (see Fig. 7b). In the case of copper
substrates this can even give rise to negative absolute temperatures that clearly
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indicate measurements out of the calibration of the IR camera. Therefore special
care has to be devoted to this calibration and to the choice of the liquids. In the
case of deposited droplets, transparent liquids will for example integrate IR radiance
contributions of the substrate. This will make the analysis of the IR maps in term of
temperatures completely arbitrary if adapted emissivity models are not used.

4 Evaporating Droplets

When a water droplet of few micro liters is deposited on a moderately heated
copper or aluminum substrate, it rapidly spreads and reaches a maximum contact
radius depending on its composition and on the substrate properties. This spreading
process is usually very fast and occurs within few milliseconds. After this first
sequence, water droplets exhibit a quasi steady evolution where contact line radius
remains constants. This second regime is called pinned droplet regime and, for water
droplets on aluminum or copper substrates, it is also the longest since it corresponds
to the evaporation of more than 80% of the initial volume. This second regime
clearly depends on the substrate temperature Ts and the characteristic times of its
evolution is slow enough (about 50 s when T s D 60ıC) to assume a well established
equilibrium between the water droplet and the radiation field for the Boltzmann
distribution to be valid. Droplets are millimeter sized and hence have spherical cap
geometry as a result of the negligible effect of gravity regarding to capillary forces.
Evaporation takes place as a result of the non-saturation of the vapour in the semi-
open boundary domain. At the free surface, the vapour concentration is assumed to
be the saturation concentration, in the vapour phase a steady diffusive regime sets in
from the saturated layer to the unsaturated region. In practice, such microliter water
droplets when deposited on a copper substrate can be deformed as illustrated in
Fig. 7a despite the control of the copper substrate properties. Wetting of the copper
by water differs from one experiment to the other even when realized in the same
conditions. The main origin of these reproducibility limitations and of the resulting
non axi-symmetry of the droplets is the deposition procedure that is used. It consists
here in a micro syringe delivering the required amount of water in a pending
droplet configuration. This pending droplet in then captured and deposited on the
substrate using a micrometer translating table moved manually. This procedure is
the simplest and the most precise that can be achieved by hand. Automated droplet
deposition devices could probably improve significantly the reproducibility level of
the experiments.

Right after the deposition of the droplet, the IR images reveal temperature
gradients along the water-air interface with the apex being colder than the contact
line as illustrated in Fig. 7a. This temperature profile evolves with time and is found
to be consistent for all investigated substrate temperatures. As the water used for this
droplet was initially at room temperature (here 20ıC), a finite time is necessary to
heat it up but its temperature remains smaller than Ts for the complete evaporation
duration. Due to this and to a far field temperature, also smaller than Ts, the droplets’
apex (r D 0mm) remains cooler than the contact line region (r � 1mm) as
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Fig. 8 Radial droplet interface temperature as a function of time for r D 0:3mm and for different
values of Ts . Several experiments are displayed for each value of Ts (but for Ts D 30ıC). The
straight lines are linear fittings of the temperature rise of the ensemble averaged measurements in
the pinned droplet regimes [7]

can be seen in Fig. 7b. Although true for the experiment of Fig. 7, this observation
cannot be generalized since viewing angle and depth of field of the IR cameras
optics come into play. The focus is often performed, for practical reasons, onto the
contact line and not on the droplet’s apex and, due to finite depth of field, this can
lead to underestimated temperatures at the apex. For the experiments of Fig. 7, the
complete droplet interface is in the camera’s depth of field and viewing angles are
small enough for the temperatures to take relevant values.

Sequences of images like the one of Fig. 7a are obtained for each experiments
and dedicated image treatment software is used to extract the time evolution of the
radial temperature profiles. One interesting measurement here is the time evolution
of the droplet interfacial temperature for a given value of r in the pinned regime.
Figure 8 displays this temperature at radial position r D 0:3mm for different values
of Ts . It is important noting here that the ones obtained here results from the
averaged temperature along the circle of radius r D 0:3mm (white dashed line in
Fig. 7a). For each value of Ts , several experiments are represented to illustrate their
reproducibility, and the linear fittings are obtained from ensemble averages in the
pinned regime are also plotted to better visualize the heating trends. Figure 8 shows
that interfacial temperature is linearly rising with a slope that increases with the
substrate temperature. Simple scaling laws have been evidenced to describe this
behavior [7]. The sharp decline of these curves for later times indicates the complete
evaporation of the droplet and reveals the bare copper surface from which the
droplet lifetime and contact line evolution can be studied. The same measurements
for other values of r show almost identical trends as long as r <0:7mm [7].
This demonstrates that far from the contact line, temperature rising rates do not
significantly depend on r and that the substrate inflowing energy yields a quiet
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Fig. 9 (a) 3D plot of the droplet interface temperature as a function of time t and radial coordinate
r when Ts D 60ıC. Full black line is the contact line. (b) Evolution of the contact line radius R
for different substrate temperatures. Several experiments are shown in this figure and full lines are
hyperbolic tangent interpolations of ensemble averaged data [7]

homogeneous heating up at least in this region of the interface. But this behavior
is no more true for r > 0:7mm where the growth rate of interfacial temperature
becomes strongly r dependent. This is due to different heat transport mechanisms.
The main reason here is reducing droplet thickness when approaching the contact
line that makes heat transfers easier as thermal resistance is reduced. But the
important observation here is that thermography now makes possible to provide
quantitative analysis of the local outgoing mass flow as will be discussed next. It is
worth noting that the data of Fig. 8 are space-averaged along the circle r D 0:3mm
as just mentioned. All temperature fluctuations like for example hydrothermal waves
are hence smoothed out and cannot be detected any more. Such waves have been for
example evidenced with IR thermography in the case of FC-72 evaporating droplets
on titanium substrates (see next).

IR thermography also allows the tracking of the time evolution of the contact line.
Figure 9a shows a 3D plot of the interfacial temperature as a function of time and r
when Ts D 60ıC. It indicates a global heating of the droplet from about 48ıC up to
59ıC. The contact line location is also displayed in this figure. A careful inspection
of it shows mainly two regimes. A pinned regime when t < 50 s where the contact
line radius is constant and a depinning regime when t > 50 s where contact line
moves rapidly before complete evaporation of the droplet. In this very last period of
the droplet life time, temperature in the vicinity of contact line is almost constant
and takes value 59ıC. The contact radius evolution R.t/ is shown in Fig. 9b for
several substrate temperatures and shows that the droplets remain pinned for most
of their lifetime for sufficiently large values of Ts . This result is in a good agreement
with the measurements performed with optical techniques. But with the interest here
that the use of IR thermography in this specific case allows the detection of water
even when the droplet is reduced to a very thin film which is no more accessible to
optical techniques.
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Fig. 10 (a) Evaporating methanol droplets, thermal waves numbered across the droplet circum-
ference. (b) Evolution of the patterns observed during the evaporation of a FC-72 droplet on a
titanium substrate. Contact line diameter is about 3 mm in these images [8]

IR thermography technique has also been used to study temperature pattern
formation driven by the spontaneous evaporation of sessile droplets and interpreted
in terms of hydrothermal waves. We present in what follows some key findings
for droplets of methanol, ethanol and FC-72 and made possible by the use of this
technique. New results were obtained showing the influence of the temperature and
the thermal conductivity of the substrate on the number of waves observed at the free
surface of such evaporating droplets in the pinned regime [8]. A correlation was in
particular evidenced between the influence of the liquid volatility and the number
of hydrothermal waves that can be seen in Fig. 11. These experimental data reveal
the presence of traveling waves that have been described with a three-dimensional
stability analysis in spherical coordinates. New scaling factors and dimensionless
numbers were introduced in order to account for the thermal diffusivity in the
substrate as well as the evaporation rate [29]. Similar experiments for water show
only a very weak hydrothermal activity. This is due to the fact that for water droplets,
the temperature gradients on the interface are only about 1ıC. In contrast, the
results obtained for the other liquids tested were more interesting since temperature
gradients could reach values larger than 5ıC. Methanol and ethanol appeared
to show distinct thermal fluctuations that were observed to vary temporally as
illustrated in Fig. 10a for methanol. These spoke like wave trains appear to move
in a direction that is parallel to the droplet periphery, rotating around the droplet.
For ethanol, the number of waves observed and the respective travelling velocities
were found to vary depending on the substrate that was used [8]. As the droplet
evaporated, their number decreased, whilst the temperature fluctuations for each
wave increased. The more volatile methanol droplets were found to display much
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higher numbers of waves than ethanol ones, when tested using the same procedure.
For example, in the case of a titanium substrate, held at 26ıC, the number of waves
visible in methanol droplets ranged from around 40 at an early stage in the droplet
evaporation, down to 20 at the latter stage of its lifetime. In comparison, ethanol
displayed a wave range only between 14 and 7.

In the case of FC-72 a rather different hydrothermal pattern was observed as
illustrated in Fig. 10b. Hydrothermal cells emerge from the apex region of the
droplets and then drift toward the edge. The size of these cells is found to be smaller
for those closer to the edge of the droplet as can be seen in Fig. 10b for different
times. The pattern formation was analyzed further by examining the dependence of
the size of the cells on the local height of the droplet. It was shown that the size of
the cells increases, approximately linearly, with the droplet height [8, 30].

5 Boiling and Two-Phase Flows in Micro-Channels

IR thermography finds also important applications in measuring temperatures on
the walls of channels with boiling taking place within. Conversely to evaporating
droplets, it is the temperature of a solid, here glass, that will be investigated in
this section. Illustrations with ethanol and FC-72 will be presented below for glass
microchannels. We present in what follows some key findings made possible by the
use of IR technique in such microchannels and refer the reader to specialised texts
on two phase flows and boiling phenomena [31].

Two-phase flow instabilities in single high-aspect-ratio rectangular micro-
channels were experimentally investigated using FC-72 and ethanol in micro-
channels with varying hydraulic diameters (noted dh in the following) and in a
wide range of heat fluxes and liquid mass fluxes (noted q) [32]. One interesting
result from these studies is the identification of low-frequency fluctuations (resp.
high-frequency fluctuations), the flow patterns corresponding to these situations are
illustrated in Fig. 11a (resp. Fig. 11b) depending on the mass flux, on dh and q.
Based on direct visual inspection it appears that the low-frequency fluctuation is the
major fluctuation mode at lower mass flux and resulted from the periodic reverse
and rewetting flow, Fig. 11. The high-frequency fluctuation, on the other hand,
is caused by the vapour slug cluster passage during the rewetting flow and the
vapour collision at downstream. One example of flow regimes for FC-72 boiling
in a micro-channel is illustrated in Fig. 12 where vapour collision with large-scale
nucleation and droplet evaporation are clearly visible. The two phase flow within
microchannels exhibit three-phase contact lines where heat/mass transfer is intense.
Around these regions there are large temperature gradients on the wall. These
temperature gradients are picked up when using the IR camera from the outside
because of the small thickness and good conductivity of the channel walls.

Micro-channel surface temperature is fluctuating because of the periodic reverse
and rewetting flow and the consequent local partial dry-out. IR thermography
measurements established that the low frequency pressure drop and the averaged
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Fig. 11 Flow regimes of ethanol boiling in a micro-channel with dhD 1; 454�m, (a) slug and
annular flow at G D 11:2 kg m�2 s�1 and q D 11:0 kW m�2, (b) wispy-annular flow at G D
11:2 kg m�2 s�1 and q D 15:0 kW m�2 [33]

Fig. 12 Flow regimes of
FC-72 boiling in the channel
with dh D 1; 454�m at
G D 44:8 kg m�2 s�1 and
q D 18:31 kW m�2 [33]

channel wall temperature (noted Tw) fluctuations are in-phase. Temperature fluctu-
ation amplitude is higher at downstream where the vapour phase exists. In addition,
micro-channel wall temperature distribution of FC-72 is remarkably different from
ethanol. Ethanol flow boiling shows stable fluctuation mode where the pressure drop
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Fig. 13 Infrared sequences of channel surface temperatures and the 3-dimensional plot;
dh D 571�m, G D 11:2 kW m�2, q D 2:07 kW m�2; FC-72 [33]

and temperature oscillate regularly. Very high Tw fluctuation amplitude is reached,
implying much longer recoiling and re-wetting period of ethanol than FC-72. The
channel wall temperature gradient is lessened by increasing heat flux. For FC-72,
Tw fluctuates chaotically with low amplitudes while the wall temperature gradient
exists in the channel axial direction. For ethanol, however, Tw fluctuates regularly
with high fluctuation amplitudes and low channel wall temperature gradient appears
during the rewetting period. These differences are explained by the very low surface
tension of FC-72 and its complete wetting of glass walls.

The channel surface temperature distributes differently depending on the flow
regime taking place within it. A high-frequency low-amplitude fluctuations mode
is present in the flow, as illustrated in Fig. 13 in the case of FC-72. A higher
heat flux is applied on the channel surface, temperature gradually grows along
the channel stream-wise direction and high values of Tw are achieved near the
channel exit where large amount of vapour exists. Nucleation is taking place
within the liquid film, vapour collision is then the major fluctuation source and the
entrained liquid in the vapour core is evaporating fiercely due to high heat flux.
Because the reverse flow is largely suppressed by higher mass flux, the vapour-
occupied portion in the channel constantly exists. In this circumstance, the high
temperature area should be monitored with special attention because the constantly
high channel wall temperature could easily result in surface destruction. The channel
wall temperature fluctuations indicate that the temperature fluctuation amplitude is
higher at downstream. This is because the downstream channel is more likely to be
occupied by the vapour phase, thus is easier to be affected by the liquid and vapour
distribution.

Thermographic results corresponding to the regular temperature fluctuation are
exhibited in Fig. 14 still for FC-72. The low-frequency high-amplitude instabilities
are resulted from the recoiling and rewetting mechanism. Uniform temperature



Thermography Applied to Interfacial Phenomena, Potentials and Pitfalls 179

Fig. 14 Infrared sequences of channel surface temperatures and the 3-dimensional plot;
dh D 571�m, G D 11:2 kW m�2, q D 4:30 kW m�2; FC-72 [33]

profiles during rewetting can be found. In addition, more intense fluctuation level
is triggered by increasing the heat flux. Meanwhile, the temperature gradient along
the channel is lessened. As the heat flux increases, the pressure drop fluctuation
and channel wall temperature oscillation become increasingly chaotic. There appear
some low-amplitude instabilities, which are caused by the random bubble nucleation
and vapour collision.

The above section illustrates the use of IR thermography in investigating and
understanding multiphase flows and heat transfer at the microscale. In the specific
case presented above, the IR technique allowed spatial and temporal monitoring of
wall temperature. The data acquired helped understanding and quantifying two flow
instabilities taking place inside the microchannel.

6 Conclusions

While much of the discussion in this chapter has focussed on methods of applying
IR thermography and accounting for the many and complex sources of measurement
distortion, it is important to present this in context of the advantages to be gained
from the technique’s use. The two key advantages of IR thermography are (a) the
non-intrusive nature of the temperature measurements and (b) the two-dimensional
temperature measurements obtained. It is this first characteristic that has allowed
the IR thermography technique to be applied extensively in the investigation of
thermo-fluid-dynamics, as it allows evaluation of the entire flow system without
any alteration in the flow dynamics. The technique has also found increasing
applications in experiments outside of convective heat transfer investigations, such
as its application in examining boiling heat transfer and systems undergoing phase
changes. Here the use of an IR camera allows evaluation of temperature at the solid-
liquid interface of the heater in flow boiling as well as mass flows in the case
of deposited droplets. It is this ability to produce images that allow for powerful
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visualisations of complex systems that is perhaps one of the strongest, albeit
somewhat intangible, merits of IR thermography. Investigations into heat transfer
situations involving pool or channels flow boiling, micro-channels and mass transfer
have the highest potential to be gained from the application of IR thermography,
as the evaluation of interfacial temperature allows for evaluation of heat and mass
fluxes and contact line dynamics.

Sources of errors and the methods used to account for them have been discussed.
Digital recording of results allows for significant flexibility in the identification
and correction of errors through signal processing. However, there are some
issues which remain as yet unsolved for the purposes of interfacial tempera-
ture measurements. The largest of these is the influence of target emissivity (or
absorptivity), reflectivity and transmissivity on measured temperatures. This chapter
aimed to provide basic elements for quantifying the penetration of IR temperature
measurements through the concept of penetration depth; however their application
relies only on the availability of optical data. The availability of data on the
IR spectrum properties of material is limited and exacerbates this problem. IR
penetration for non-opaque materials cannot be quantified, and the planning of
an experiment is hindered if the IR camera operating wavelength required of the
apparatus materials is not known. Future work aiming to resolve this shortcoming
could examine the potential for extensively available IR spectroscopy data to be
applied to IR thermography experiment design. Additionally, it may be possible to
predict material IR properties from vibrational and rotational transition energies.
The growth of use of any new technique depends strongly on the ease of its
uptake, and in this regard IR thermography requires further work to mature.
A final limitation is the requirement for experimental arrangements that minimise
background reflection and maximise target emissivity in order to obtain accurate
readings is an additional limitation. In the examination of large pieces of apparatus,
painting the surroundings in matt black paint may be an undesirable imposition.
In experiments involving smaller apparatus, accuracy considerations requiring the
use of a “black box” reduce accessibility and visibility. Furthermore, painting
solid interfaces in matt black paint is infeasible in investigations involving surface
treatments and may cause error in the alteration of heat transfer characteristics.

IR thermography presents a number of limitations as any other investigation
techniques. But it is up to date the most powerful tool for obtaining interfacial
temperatures within large field of views and, when experimental conditions are
favourable, a technique able to provide great details for the studied systems. The
accuracy of temperature measurements requires consideration of sources of error,
including the Narcissus effect, reflected IR waves from background sources and
obtaining the target emissivity. These are accounted for through calibration and
signal processing. On top of this, the impressive range of temperature covered by
the IR cameras (from �20 to 2,000ıC) makes it very easy to analyze situations such
as the ones with an extra heating provided when large temperature variations are
expected. IR thermography has been extensively applied for the measurement of
convective heat transfer coefficients but due to its great potential its use outside of
this field is nowadays rapidly growing.
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Shear Rheology of Interfaces: Micro Rheological
Methods

A.J. Mendoza, R.C. Jordán, F.M. Pedrero, H. Agogo, R.G. Rubio, F. Ortega,
and M.G. Velarde

1 Introduction

Many of the diverse properties of soft materials (polymer solutions, gels, filamen-
tous proteins in cells, etc.) stem from their complex structures and dynamics that
have multiple characteristic length and time scales. A wide variety of technologies,
from paints to foods, from oil recovery to processing of plastics, evaporation of com-
plex fluids, design of multiphase chemical reactors, rely heavily on understanding
the flow of complex fluids [1, 2]. The viscoelastic responses of complex materials
depend on the time scale at which the sample is probed. Measurements of the
complex shear modulus, G�.!/, as a function of frequency are most frequently
used for obtaining the elasticity and viscosity. Typical experiments using standard
rheometers for bulk systems apply a small oscillatory strain on the sample, and
usually probe frequencies from mHz up to tens of Hz.

Although standard rheological measurements have been very useful in character-
izing soft materials and complex fluids, they suffer from some drawbacks, e.g. the
need of sample volumes larger than one milliliter, which make them unsuitable for
rare or precious materials, and for biological samples that are available in minute
quantities. Furthermore, only average measurements of the system response are
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obtained using conventional rheometers due to the typical size of their probes,
which makes them useless for local measurements in inhomogeneous systems.
Microrheological techniques are being used during the last two decades for probing
the material response on micrometer length scales, and using microliter sample
volumes. The following advantages over macrorheology are worth mentioning:
(a) much higher range of frequencies available without using the time-temperature
superposition that is valid only for a limited number of systems [2]; (b) the
capability of measuring material inhomogeneities that cannot be studied using
macrorheological methods, and (c) rapid thermal and chemical homogenization that
allow the transient rheology of evolving systems to be studied [3]. Microrheology
methods typically use embedded nano- or microparticles to locally deform the
samples hence macro- and microrheology probe different aspects of the material.
Macrorheology measurements explore extremely long (macroscopic) length scales
compared to the characteristic length scales of the system, microrheology effectively
measures material properties on the scale of the probe itself (since flow and
deformation fields decay on this length scale). Detailed descriptions of the methods
and applications of microrheology to the study of bulk systems have been given in
review articles published in recent years [4–11]. In the present work we will focus
on techniques that use micron-size particles, and their application to the study of the
dynamic behavior of fluid interfaces.

Interfaces play a dominant role in the behavior of many complex fluids.
Interfacial rheology has been found to be a key factor in the stability of foams
and emulsions, compatibilization of polymer blends, flotation technology, fusion
of vesicles, mass transport through interfaces, drug delivery from micro- and
nanocapsules, etc. [12,13]. In most cases interfacial rheology has been controlled by
a careful selection of surfactants. However, the environmental regulations in the EU
are becoming stricter, and conventional synthetic surfactants have to be substituted
by environmentally friendly chemicals. One of the most promising possibilities is
to stabilize the interfaces using natural or biodegradable particles trapped at the
interfaces, due to the high trapping energy of microparticles at fluid interfaces [14].

The dynamics of fluid interfaces is a rather complex problem because, even
for the simplest fluid–fluid interface, different dynamic modes have to be taken
into account: the capillary (out of plane) mode, and the in-plane mode, which
contains dilational (or extensional) and shear contributions. For more complex
interfaces, such as thicker ones, other dynamic modes (bending, splaying) have
to be considered [15]. Moreover, the coupling of the above mentioned modes
with adsorption/desorption kinetics may be very relevant for interfaces that contain
soluble or partially soluble surfactants, polymers or proteins [16–18].

Till recently interfacial shear rheology has been studied using macroscopic
interfacial rheometers which have a lower sensibility limit of about 10�6 N s m�1
[16, 19–21], however many important systems have surface shear viscosities below
this limit, and microrheological techniques have been developed to overcome this
limit down to values as low as 10�10 N s m�1. In spite that the measurement of
diffusion coefficients of particles attached to interfaces is relatively straightfor-
ward with modern microrheological techniques (see below), one has to rely on
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hydrodynamic models of the viscoelastic surroundings probed by the particles in
order to obtain variables such as monolayer elasticity or shear viscosity. The more
complex the structure of the interface the stronger are the assumptions of the model,
which reduces its range of applicability and makes more difficult to test its validity.
In the present work we will briefly review two experimental techniques frequently
used to study the dynamics of microparticles trapped at interfaces, and the use of
microparticles as probes for studying the shear rheology of monolayers at fluid
interfaces. We will also summarize two of the available theoretical approaches
for calculating the shear microviscosity of fluid monolayers from particle tracking
experiments. Finally the relatively few experimental results available for fluid
interfaces using the two techniques will be discussed and analyzed using the two
theories. The results will show that we are far from understanding microrheology
results, and therefore more experimental and theoretical work is necessary.

2 Experimental Techniques

For studying the viscoelasticity of the probe environment there are two broad types
of experimental methods: active methods, which involve probe manipulation, and
passive methods, that relay on thermal fluctuations. Passive techniques are typically
more useful for measuring low values of predominantly viscous moduli, whereas
active techniques can extend the measurable range to samples with significant
elasticity modulus. In this work we will focus on one passive technique: particle
tracking by video microscopy, and one active technique: optical tweezers.

2.1 Fundamentals of Video Microscopy Particle Tracking

The main idea in particle tracking is to follow the trajectories of probes introduced
into (onto) the system by video microscopy. The trajectories of the particles, either
in bulk or on surfaces, allow one to calculate the mean square displacement, MSD,
which is related to the diffusion coefficient, D, and the dimensions in which the
translational motion takes place, d , by

˝
�r2.�/

˛ D 2dD�˛; (1)

where the brackets indicate the average over all the particles.
In case of diffusion in a purely viscous material (or interface), ˛ is equal to 1, and

the usual linear relation is obtained between the MSD and the lag time � . For highly
viscous materials or interfaces (like condensed surfactant or lipid monolayers and
dense polymer monolayers), or when the system is dominated by the probe particles
interactions (being this particularly important at high particle surface coverage) (1)
does not fully apply. The movement of nano- and micro-particles in these solid-like
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Fig. 1 Typical particle tracking setup for 2D microrheology experiments: (1) Langmuir trough;
(2) illumination; (3) microscope objective; (4) CCD camera; (5) computer; (6) thermostat; (7)
electronics for measuring the surface pressure

interfaces cannot simply be interpreted assuming sub-diffusivity ˛ < 1. In fact if
we consider a Maxwell viscoelasticity model the mean square displacement adopts
the form of ˝

�r2.�/
˛ D 
=E C 
�=�; (2)

where 
 is the stress, E is the elasticity modulus and � the viscosity coefficient
and all of them refer to pure shear deformations. The characteristic Maxwell time
is given by �c D �=E . Anomalous diffusion ˛ < 1 has been invoked in many
systems of biological interest where the Brownian motion of the particles is hindered
by obstacles, or even constrained to defined regions (corralled motion) [22]. The
diffusion coefficient is related to the friction coefficient, f , by the Einstein relation

D D kBT

f
: (3)

In 3D f is given by Stokes law, f D 6��, and for pure viscous fluids the shear
viscosity can be directly obtained from the diffusion coefficient. However, as we
will discuss below, Stokes law does not apply to interfaces.

Figure 1 shows a sketch of a typical setup for interface particle tracking
experiments. A CCD camera (typically 30 fps) is connected to a microscope that
permits to image the interface prepared onto a Langmuir through. The series of
images are transferred to a computer to be analyzed and to extract the trajectories of
a set of particles. A common problem is that the Brownian motion of the particles
is often superimposed to a collective motion of the fluid arising from thermal
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gradients, and then it is useful the use of the relative mean square displacement
of pairs of particles defined by

MSDrel � ˝
�r2rel.�/

˛ D
D�
�rij.t C �/��rij.t/

�2E D 4dD�: (4)

The above averages are taken over all the pairs of particles and initial times, t, of
the system. In this way any collective motion is eliminated or reduced.

Figure 2 shows a typical set of results for the MSD of a system of latex particles
(1�m of radius) spread at the water/n-octane interface at low particle surface
densities (gas-like phase) [23]. The analysis of MSD and MSDrel in terms of (1)
and (4) and in the linear range allows one to obtain D. However, it must be taken
into account that for laden interfaces, even below the threshold of aggregation or
fluid–solid phase transitions, the MSD shows a sub-diffusive behavior (˛ < 1 in
(1)). Therefore, only physically meaningful values ofD can be obtained in the limit
of short times, and this should be taken into account when extracting the surface
microrheology parameters from D.

When the samples are heterogeneous at the scale of particle size (a situation
rather frequent, specially in biological systems [22,24–26]), single particle tracking
gives erroneous results and the so-called “two-point” correlation method is recom-
mended [27]. In this method the fluctuations of pairs of particles at a distanceRij are
measured for all the possible values of Rij within the system. Vector displacements
of individual particles are calculated as a function of lag time, � , and initial absolute
time, t : Then the ensemble averaged tensor product of the vector displacements is
calculated [9]:

D˛;ˇ.r; �/ D
D
�ri˛.r; �/�r

j

ˇ .r; �/ı
�
r �Rij .t/

�E
i¤j;t

�r
i;j

˛;ˇ.r; �/ D r
i;j

˛;ˇ.t C �/ � r
i;j

˛;ˇ.t/; (5)

where i and j label two particles, ˛ and ˇ are coordinate axes and Rij is the
distance between particles i and j . The average corresponding to i D j represents
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the one-particle mean-squared displacement. Two-point microrheology probes
dynamics at different lengths from distances much larger than the particle radius
down to the particle size which reflects extrapolation of long-wavelength thermal
fluctuations of the medium to the particle size [28].

For the case in which the particles are embedded in a viscoelastic fluid, particle
tracking experiments allow one to obtain the viscoelastic moduli of the fluids.
Manson and Weitz first in an ad-hoc way, and later Levine and Lubensky in a more
rigorous way, proposed a generalization of the Stokes–Einstein equation (GSE)
[29, 30]: ˝

�Qr2.s/˛ D 2kBT

3�as QG.s/ ; (6)

where QG.s/ is the Laplace transform of the stress relaxation modulus, s is the
Laplace frequency, and a is the radius of the particles. An alternative expression
for the GSE equation can be written in the Fourier domain [31]. Different methods
have been devised to obtain QG.s/ from the experimental MSD [31–35]. The GSE
equation is valid under the following approximations: (a) the medium around the
sphere may be treated as a continuum material, which requires that the size of
the particle be larger than any structural length scale of the material; (b) no slip
boundary conditions; (c) the fluid surrounding the sphere is incompressible; and
(d) there are no inertial effects. Very recently, Felderhof has presented an alternative
method for calculating the shear complex modulus from the velocity autocorrelation
function, that can be calculated from the particle trajectories [36].

For interfaces the situation is more complex, and the calculation of the surface
shear viscosity has relied on the use of hydrodynamic models of the interface (see
below). Only very recently Song et al. [37] have performed computer simulations
that indicate that the GSE can be applied to fluid interfaces. Furthermore, the same
group has applied the GSE to the study of interfaces in oil–water emulsions [37–39].
So far, no comparison has been made between the surface shear viscosity calculated
by hydrodynamic models and the GSE.

2.2 Fundamentals of the Optical Tweezers Technique

This technique uses a highly focused laser beam to trap a colloidal particle, as a
consequence of the momentum transfer associated with bending light. The most
basic design of an optical tweezers is shown in Fig. 3a: A laser beam (usually in
the IR range) is focused by a high-quality microscope (high numerical aperture
objective) to a spot in a plane in the fluid. Figure 3b shows a detailed scheme of how
an optical trap is created. Light carries a momentum in the direction of propagation
that is proportional to its energy, and any change in the direction of light, by
reflection or refraction, will result in a change of the momentum. If an object bends
the light, conservation momentum requires that the object must undergo an equal
and opposite momentum change, which gives rise to a force acting on the subject.
When the light interacts with a bead, the sum of the forces acting on the particle
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Fig. 3 (a) Basic design of an
optical tweezers instrument;
(b) Details of the physical
principles leading to the
optical trap

can be split into two components: Fsc , the scattering force, pointing in the direction
of the incident beam, and Fg, the gradient force, arising from the gradient of the
Gaussian intensity profile and pointing in the plane perpendicular to the incident
beam towards the center of the beam. Fg is a restoring force that pulls the bead
into the center of the beam. If the contribution to Fsc of the refracted rays is larger
than that of the reflected rays then a restoring force is also created along the beam
direction and a stable trap exists. A detailed description of the theoretical basis and
of modern experimental setups has been given in [40–42] that also include a review
of applications of optical tweezers to problems of biophysical interest: ligand–
receptor interactions, mechanical response of single chains of biopolymers, force
spectroscopy of enzymes and membranes, molecular motors, and cell manipulation.
A recent application of optical tweezers to study the non-linear mechanical response
of red-blood cells is given by Yoon et al. [43]. Finally, optical tweezers are also
suitable for the study of interfacial rheology [44].

3 Dynamics of Particles at Interfaces

3.1 Diffusion Coefficient of Particles Adsorbed at Fluid
Interfaces

A problem that appears to be ignored in the analysis of particle dynamics at
interfaces is the strong influence of the interactions with other particles that leads to
a decrease of the apparent D, so in what follows we will only refer to the infinite
dilution diffusion coefficient. We have already mentioned that quite frequently one
finds a subdiffusive behavior of the MSD of particles trapped at fluid interfaces.
Figure 4 shows an example of the results obtained by tracking the trajectories of a
single particle at an octane/water interfaces in an optical trap. Since no linear range
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Fig. 4 Up figure: Typical
trajectory observed for a latex
macroparticle (radius 1�m)
in an optical trap at the
octane/water interface and
25ıC; x and y are the
displacements from the center
of the trap in the x and y axis.
Down figure: Example of
subdiffusive dynamics of
latex microparticles of
2:9�m of radius obtained by
video microscopy particle
tracking, PT, at different
particle surface densities, and
for a single particle in an
optical trap. The continuous
lines are the fits to the
Langevin equation (8). All
the results were taken at the
octane/water interface
at 25ıC

is observed, D has been obtained by fitting the MSD results to the solution of the
Langevin equation including an elastic force:

m
dv

dt
D ��v C f .t/ � kx; (7)

where m is the mass of the particle, v its velocity, � the friction coefficient, k the
characteristic force constant of the elastic force acting on the particle, and f .t/ is the
random force, so that time average < f .t/ >D 0. Even though the potential well
is not strictly parabolic, it is a very good approximation for laser intensities such
that the particle are trapped relatively deep inside the potential well. The solution of
(7) was given by Chandrasekar [45], and fits very well the data shown in Fig. 4. An
important point is that the fits allow one to obtain the diffusion coefficient at infinite
dilution, D0. For diluted particle monolayers in which a linear dependence of the
MSD is observed in the particle tracking experiments, the agreement with the values
of D0 obtained using the optical tweezers technique agree within the experimental
error. This is a very important result because, as discussed below, the interfacial
shear viscosity is calculated, using hydrodynamic theories, fromD0. Therefore, the
fact that two different microrheological techniques lead to the same values of the
diffusion coefficient, ensures that the viscosity obtained will also be the same.
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3.2 Fischer’s Theory for the Shear Micro-Rheology
of Monolayers at Fluid Interfaces

For particles trapped at interfaces Einstein’s equation, (3), is still valid. Nevertheless,
Stokes equation for f is no longer valid because at interfaces f is a function of
the viscosities of the phases .�0s/, the geometry of the particle (e.g., the radius
“a” for spheres), the contact angle between the probe particle and the interface
(�), etc. There is no rigorous solution for the slow viscous flow equations for
steady translational motion of a sphere in an ideal 2D fluid, e.g. a monolayer
(Stokes paradox), hence we will briefly describe one of the most recent theoretical
approaches for describing f .

Fischer et al. [46] assumed that a surfactant monolayer behaves as incompress-
ible because Marangoni forces (forces due to surface tension gradients) strongly
suppress any motion at a surface that compress or expands the interface due to any
gradient in the surface pressure. Such gradients are instantly compensated by the fast
motion of the surfactant at the interface, thus leading to a constant surface pressure,
and therefore the monolayer behaves as an incompressible body (Fischer assumes
that the velocity of the 2D surfactant diffusion is faster than the motion of the beads).
The fact that the drag on a disk in a monolayer is that of an incompressible surface
has been verified experimentally [47, 48], although this hypothesis could fail for
highly viscous polymer monolayers.

Fischer et al. have numerically solved the problem of a sphere trapped at an
interface with a contact angle � moving in an incompressible surface [46]. They
showed that contributions due to Marangoni forces account for a significant part
of the total drag. This effect becomes most pronounced in the limit of vanishing
surface compressibility. They solved the fluid dynamics equations for a 3D object
moving in a monolayer of surface shear viscosity, �s between two infinite viscous
phases. The monolayer surface is assumed to be flat (no electrocapillary effects).
Then the translational drag coefficient, kT , was expressed as a series expansion of
the Boussinesq number, B D �s=..�1 C �2/a/, a being the radius of spherical
particle:

kT D k0T C Bk1T CO.B2/: (8)

For B D 0, and for an air–water interface .�1; �2 D 0/, the numerical results for
k
.0/
T and k.1/T are fitted with an accuracy of 3% by the following expressions:

k0T � 6�

s
tanh

�
32

�
d

R
C 2

	
= .9�2/
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Fig. 5 Friction coefficients
calculated from the
experimental diffusion
coefficients measured by
particle tracking experiments
(symbols), by Fischer’s theory
(dashed line), and by the
corrected Fischer’s theory
(continuous line)

where d is the distance from the apex of the bead to the plane of the interface
(which defines the contact angle). Note that if d goes to infinity, k0T D 6� , which
is the correct theoretical value for a sphere in bulk (Stokes law). They found that,
even in the absence of any appreciable surface viscosity, the drag coefficient of an
incompressible monolayer is higher than that of a free interface.

Figure 5 shows the friction coefficient for latex particles at the water–air interface
obtained from single particle tracking for polystyrene latex particles. It also shows
the values calculated from Fischer’s theory, pointing out that the theoretical values
are smaller than the experimental values over the whole � range. An empirical factor
of f .�/exp=f .�/Fischer D 1:8˙0:2 brings the values calculated with Fischer’s theory
in good agreement with the experiments at all the contact angle values. A similar
situation was found for the water-n-octane interface with a smaller correction factor
f .�/exp=f .�/Fischer D 1:2˙ 0:1. So far the physical origin of this correction factor
is unknown.

4 Particle Tracking Results

Sickert and Rondelez were among the first to calculate the surface shear vis-
cosity of monolayers by tracking the trajectories of spherical particles embedded
in Langmuir monolayers at the air/water interface [49]. They have measured
the surface viscosity of three monolayers formed by pentadecanoic acid (PDA),
L-˛-dipalmitoylphosphatidylcholine (DPPC) and N-palmitoyl-6-n-penicillanic acid
(PPA) respectively. The values of the shear viscosities for PDA, DPPC and PPA
reported were in the range of 1 to 11:10�10 N s m�1 in the liquid expanded region of
the monolayer, that, as already said, are beyond the range of macroscopic mechani-
cal methods. More recently, Bonales et al. have calculated the shear viscosity of two
polymer Langmuir films, and compared these values with those obtained by canal
viscosimetry [50]. Hilles et al. [51] studied the glass transition in Langmuir films.
Figure 6 shows the results obtained for a monolayer of poly(4-hydroxystyrene) at
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Fig. 6 Temperature
dependence of the surface
shear viscosity of a
monolayer of
poly(4-hydroxystyrene) at the
air–water interface obtained
by particle tracking (the
insets show the corresponding
values measured with a
macroscopic canal
viscometer. Experiments
done at ˘ D 8mN � m�1

Fig. 7 Surface shear
viscosity for monolayers of
poly(t-butyl acrylate) as a
function of the molecular
weight and for a surface
pressure ˘ D 16mN � m�1.
The lower curve corresponds
to data obtained from video
microscopy particle tracking.
The upper curve was obtained
from conventional oscillatory
interfacial rheometers

an air–water interface. For all the monolayers reported in Refs. [50, 51] the surface
shear viscosity calculated from Fischer’s theory using the D values obtained from
the MSD results was lower than that measured with the macroscopic canal surface
viscometer. Similar qualitative conclusions were reached at by Sickert et al. for
their monolayers [52]. These authors have later reanalyzed their original data [49]
and they found that the relation D0=D!0 (D0 being the diffusion coefficient of
the beads at a free compressible surface, and D!0 the value of an incompressible
monolayer which surface concentration is tending to zero) is, theoretically, not equal
to 1 but to about 0.8, which is confirmed by their experiment, and also confirms the
observations of Barentin et al. [19] and Lee et al. [3] for different systems. In spite
of the apparent success of Fischer’s theory, the surface viscosity values are rather
low when compared to the results obtained by macrorheology methods (see below).

As above mentioned there is a quantitative inconsistency between macro and
micro-rheology results. Figure 7 shows clearly the large difference found between
micro- and macrorheology for monolayers of poly(t-butyl acrylate) near the collapse
surface concentration, � �� [16]. The macrorheology results have been obtained
using two different interfacial oscillatory rheometers [21].



194 A.J. Mendoza et al.

Fig. 8 Surface concentration
dependence of the surface
shear rheology for a
monolayer of poly(t-butyl
acrylate). The symbols are
experimental results obtained
by video microscopy particle
tracking using particles of
different chemical nature and
size and using both Fischer’s
theory and the Generalized
Stokes Einstein theory (Weitz
method)

Figure 8 shows that the interfacial shear viscosities obtained with particles of
rather different chemical nature and size agree within the experimental uncertainty.
This discards that the origin of the discrepancies between macro- and microrheology
can stem from the interactions between the particles and the monolayer molecules.
Moreover, the values calculated from the modified-Fischer’s theory or by direct
application of the GSE equation lead to almost indistinguishable surface shear
viscosities.

This discrepancy between micro- and macrorheology in the study of monolayers
seems to be a rather frequent situation and no clear theoretical answer has been
found so far for this fact. This type of disagreement has been also found in 3D
systems, where in some cases the origin of the problem has been identified to be
the inhomogeneity of the system [25, 26]. In the analysis of the particle tracking at
interfaces shown above, it has been assumed that systems are homogeneous, which
might not be the case. Prasad and Weeks have applied the two-particle correlation
method (5) to the motion of particles trapped to the air–water interface covered
with a Langmuir monolayer of human serum albumin (HSA) as a function of
surface concentration [53]. They found that for high surface concentrations the one
and two particle (correlated) measurements give different values of the viscosity.
They explained this by suggesting that the monolayer was inhomogeneous. Both
methods agree when the particle size is of the same order than the scale of the
inhomogeneities of the system. However, the authors did not compare particle
tracking results with macrorheology. In conclusion we need to be very careful when
extracting surface viscosities in this kind of systems from single particle tracking,
and whenever possible one should use two-particle correlated analysis.

However, the problem might be not only due to the length scale of the rheology
but also because the active or passive character of the technique used. In fact, Lee
et al. [3] combined active and passive microrheology methods to study protein
(ˇ-lactoglobulin) layers at the air–water interface. They used magnetic nanowire
microrheology and particle tracking with correlated analysis as a function of
adsorption time, and found that the surface viscosity obtained is about one order
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of magnitude larger when measured with the active technique. Both techniques are
micro-rheology methods but give quite different values for the surface viscosity.
However, as indicated above, in our case both video microscopy and optical
tweezers give the same values of D0 from which the interfacial surface viscosity
is calculated, therefore the use of passive or active techniques does not seem to be
the source of the discrepancy between macro- and microrheology.

It is also needed to bear in mind that ideal 2D systems do not exist; the interface
is a region of certain thickness which makes the interpretation of the results quite
slippery. For example, Prasad et al. [54] have measured the surface viscosity of a
commercial dishwasher surfactant (soluble) in a soap film by single and correlated
particle tracking as a function of the film thickness. They found unphysical values
for the surface viscosity for thickness larger than a certain value. Above this critical
thickness, single particle tracking gives negative values for the surface viscosity,
and two-particle correlated MSD gives large positive values compared to the values
found in thin films. It would be possible to extend this idea to thick monolayers
(for example, for some polymer monolayers), and consider that the motion of the
beads does not take place in a 2D environment but in a quasi-3D one. This would
make quite tricky the interpretation of the particle tracking results obtained using
the theories outlined in the previous paragraphs.

It has also been shown that sometimes for very dense layers of polymers, the
probes move faster than they do in layers formed at lower surface concentrations of
the same polymer [3]. In these cases we can imagine that the particle probes could
be expelled out of the interface and keep under (onto) the layer giving erroneous
values of the diffusion coefficient, and of the surface viscosity calculated from the
MSD.

5 Conclusions

Microrheology techniques, and specially particle tracking, are probably the only
suited techniques for the study of the rheology in many systems of interest, as
for example the dynamics inside cell membranes or in the expanded region of
monolayers. However one must be very careful in interpreting the results obtained
from single particle tracking and the available theories. Whenever possible the
correlated two-particle MSD should be used. It is clear from the results that for
fluid interfaces much more experimental and theoretical work is needed to explain
why the shear surface microviscosity is much smaller than the one measured
with conventional surface rheometers. Despite all the problems mentioned, in our
opinion it is worth continuing working on this microrheological techniques for its
potentiality in the study of the dynamics of systems of biological importance.
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Cohesive and Non-cohesive Adsorption
of Surfactants at Liquid Interfaces

R.I. Slavchov, I.M. Dimitrova, and I.B. Ivanov

1 Introduction

Long ago, Adam showed that the spread monolayers of nonionic surfactants
exhibit a state with the properties of a two-dimensional (2D) liquid [1], e.g., with
compressibility intermediate between that of the 2D gaseous and the 2D solid states
of the adsorption layers. Consequently, he called this 2D phase “liquid expanded
(LE)” [1–3]. The reasons for its existence and its basic structure were revealed by
Langmuir [2]. He argued that the hydrocarbon tails of the surfactant in the LE state
form a very thin liquid oil film spread over the interface.

The concept of LE monolayer is not widely accepted for the most important from
technological point of view soluble adsorption layers at liquid interfaces. The most
popular adsorption isotherms used in the literature for soluble surfactants (Volmer,
de Boer-van der Waals, Langmuir’s isotherm for soluble surfactants, Frumkin) do
not involve the LE state and the phase transition from 2D gas to LE. The reason of
the neglect of such phase transition is the fact that it is not easy to observe it with
surface tension data: it occurs as a small kink (discontinuity of the first derivative)
in the dependence of the surface tension 
 on the concentration C which is often
obscured by the experimental error. Several studies exist which give evidence that
LE state is, in fact, common feature not only of insoluble, but also to soluble
monolayers [4–7]. Still, to the best of our knowledge, answers have not been given
to the following basic questions: which soluble surfactants exhibit the LE state and
which ones do not? How to prove the existence of LE state and when to expect it?
How are the parameters of the LE state related to the surfactant structure and the
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medium properties (temperature, composition, etc.)? A previous work of ours dealt
with the LE state in monolayers of ionic surfactants [6]. In this work, we turn to
uncharged adsorption layers of soluble nonionic surfactants.

Two types of surface pressure isotherms (surface pressure �S � 
0 � 
 vs.
concentrationC ) will be considered in this chapter: cohesive and non-cohesive. The
non-cohesive type of isotherms start at �S D 0 and C D 0 with a linear portion.
At larger concentrations, the dependence �S vs. C smoothly becomes curved, with
negative deviations from the ideal behavior, corresponding to repulsion (cf. Figs. 2a
and 3 below).

In the case of cohesive type of isotherm, the initial linear portion starts again
at �S D 0 and C D 0. Then, at relatively low concentrations, �S.C / undergoes
a kink, followed by a second linear portion of larger slope and negative intercept
��coh (cf. Fig. 2a). The first linear portion corresponds to 2D gaseous layer, where
Henry’s adsorption isotherm holds. The second linear portion corresponds to LE
layer. With insoluble surfactants, the LE layer at larger compressions undergoes
phase transition to a solid like layer [1–3,8]. With soluble surfactants, the adsorption
isotherm eventually curves due to repulsion between the hydrophilic heads and
�S stops changing when the critical micelle concentration (cmc) is reached. These
events will be discussed in details in Sect. 3.

Langmuir’s suggestion for the structure of the LE layer was that, in fact, an oil-
like film is formed by the surfactant hydrophobic tails at which the hydrophilic
groups are “adsorbed” [2]. He argued that this layer “must be regarded as essentially
a typical hydrocarbon liquid in which the molecules possess all natural freedom
of motion of such liquids” [2]. Kaganer et al. also pointed out that the LE
layer is structureless and “there is no detectable X-ray diffraction signal. In this
phase, the heads of the molecules are translationally disordered and the chains are
conformationally disordered” [8]. Langmuir showed that his model explains the
main feature of the 2D equation of state (EOS): the existence of what he called
“spreading pressure of the monolayer” (we prefer the notion cohesive pressure,�coh,
introduced later by Davies [9, 10]). Later, Langmuir’s model was extended several
times. For example, the repulsion between the surfactant polar head-groups was
treated by Smith [11], and the dependence of the cohesive pressure on the adsorption
was analyzed by Davies [9, 10]. In soluble monolayers, first order phase transitions
of the LE phase both to 2D-gaseous and to 2D-solid state were directly observed by
Brewster angle microscopy and dynamic surface tension measurements [5]. For the
current state of the art of the phase behavior of insoluble monolayers, the reader is
referred to the available reviews in the literature [8, 12].

Langmuir analyzed further the equation of state (�S vs. surface area A) of films
of myristic acid spread on a dilute HCl solution around the point of phase transition
to the solid-like layer. He argued that the data for this region can be explained if
one assumes that surface aggregates (micelles) of 13 molecules are in equilibrium
at the surface with single molecules [2]. Kumpulainen et al. [4] applied this idea
to explain their tensiometric data obtained for soluble surfactants. Large surface
aggregates were detected experimentally by optical methods, e.g., fluorescence
micrography [13].
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In this paper we are interested mainly in the linear part of the LE adsorption
isotherm �S.C /. Its linearity suggests that the adsorption is of Henry’s type, i.e., the
adsorbed layer can be considered as being ideal but with adsorption constant larger
than that of the gaseous layer. By using this assumption, we analyzed thoroughly
the experimental data for 50 systems and obtained reasonable and self-consistent
results. This would have been impossible, had the nature of the LE adsorbed layer
have been different.

In Sect. 2, we will briefly present a model and an equation for the adsorption
constant Ka of nonionic surfactant at liquid interface. This model turns out to be
a useful instrument for the analysis of the tensiometric data for these surfactants.
In Sect. 3, we present our concept for cohesive and non-cohesive isotherms. The
equations of state and the procedures for processing tensiometric data for both types
of isotherms are described in Sect. 3.3. In Sect. 4, the dependence of the adsorption
constant of cohesive and non-cohesive systems on the surfactant structure and
on temperature is interpreted with our model for the adsorption constant. The
dependence of the cohesive pressure on the surfactant hydrocarbon chain length
is also discussed.

2 Henry’s Adsorption Constant, Adsorption Energy
and Thickness

2.1 Henry’s Adsorption Isotherm

Consider an ideal nonionic surfactant solution of concentration C in equilibrium
with an ideal gaseous adsorbed monolayer of the same surfactant with adsorption � .
The surfactant chemical potentials in the two states are

�B D �B0 C kBT lnC; (1)

�S D �S0 C kBT ln�: (2)

Here superscripts “B” and “S” denote bulk and surface phase, and �S0 and �B0 are
the corresponding standard chemical potentials. At equilibrium,�B and �S must be
equal, which leads to Henry’s adsorption isotherm:

� D KaC; (3)

where, the adsorption constant Ka of the surfactant in the gaseous adsorption layer
is defined by the relation

kBT lnKa � �B0 � �S0 : (4)
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As it is obvious from the derivation, Henry’s adsorption isotherm (3) is valid only
for adsorption layer consisting of non interacting surfactant molecules, i.e., in a very
dilute adsorption layer.

Davies and Rideal [10] proposed the following relation ofKa with the molecular
parameters of the surfactant:

Ka D ıa exp .Ea=kBT / ; (5)

where ıa is referred to as “thickness of the adsorbed layer”, and Ea as adsorption
energy. They proposed to use for the thickness ıa the length of the surfactant’s
hydrophobic tail, an assumption adopted later by others (e.g., [4, 14–16]). For the
adsorption energy Ea of surfactants with straight hydrocarbon chain Davies and
Rideal used the expression

Ea D E0 C uCH2nC : (6)

Here nC is the number of carbon atoms in the hydrophobic chain and uCH2 is the
(positive) free energy of transfer of a methylene (-CH2-) group from the solution
into the adsorption layer. E0 is the nC -independent part of Ea which was ascribed
solely to the adsorption energy Ehead of the hydrophilic head (cf. (4.3) in [10]).
Both assumptions of Davies and Rideal for ıa andEa are disputable. More rigorous
treatment based on classical statistical thermodynamics was given in [17] based
on Gibbs definition of adsorption. We will re-derive the results from [17] using an
alternative, quantum mechanical approach.

2.2 Geometry of a Surfactant Molecule

A detailed molecular adsorption model should involve the geometrical parameters
of the surfactant hydrophobic chain: cross-sectional area ˛? and length lCH2 per -
CH2- group in the stretched hydrocarbon chain. Therefore, it is pertinent to discuss
first their values. The area per molecule of dense-packed molecules, measured in
insoluble monolayer of alcohols at the point of collapse, is 18 ˙ 0:5 Å2 [11, 18].
This is in good agreement with the crystallographic radius of solid alkanes, 18.5 Å2

[19, 20]. If at the point of collapse the structure of the dense adsorption layer is
hexagonal, the area of collapse must be larger than the actual cross-sectional area
˛? of the surfactant by a factor of 1.10 (the ratio of the area of a hexagon and
the circle inscribed inside it). With this correction, the value 18.5 Å2 cited above
becomes ˛? D 16:5 Å2. The corresponding cross-sectional radius is R? D 2:29 Å.
For the length lCH2 per -CH2- group of a stretched hydrocarbon chain, the value
1.26 Å is accepted [21]. The lateral area (along the chain) per -CH2- group is then
˛k D 2�lCH2R? D 18:1 Å2, which is close to ˛? D 16:5 Å2.
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2.3 Interaction Potential of a Surfactant Molecule
with the Interface

To evaluate the general expression (4) for Ka, we must find the change in the
standard Gibbs free energy of a surfactant molecule when it is transferred from
the solution to the interface. The interaction potential u.z/ between the surfactant
molecule and the interface was modeled by Ivanov et al. [17] by assuming that the
surfactant is a solid cylindrical rod, approaching the interface by keeping its normal
orientation with respect to it. While its head is at distance z > nC lCH2 , the rod
is in the bulk solution and do not interact with the interface (state I in Fig. 1). At
z < nC lCH2 , the surfactant penetrates the interface, where according to [17] the
following effects contribute to u.z/:

• (i) When the cap of the hydrocarbon chain touches the surface, a portion of the
waterjhydrophobic phase interface, of area ˛?, disappears (Fig. 1, state II). The
contribution of this process to u.z/ was modeled in [17] as a contact potential at
z D nC lCH2 :

u.i/.z/ D
�

0˛?; z < nC lCH2;
0; z > nC lCH2;

(7)

where 
0 is the surface tension of the pure waterjhydrophobic phase interface.
For waterjalkane interface at room temperature, 
0 � 50mN/m, so the energy

0˛? is about 2 � kBT , which is by no means negligible. This contribution was
first accounted for independently by Ivanov et al. [17] and Kumpulainen et al. [4].

• (ii) For the energy uCH3 of transfer of the -CH3 group, we assume proportionality
to the contact area of this group with water [22]. To calculate this area, one
can approximate the shape of -CH3 as a cylinder with a cap. The lateral area
of the cylinder is assumed equal to that of a -CH2- group, ˛k, and the cap area is
assumed equal to the cross-sectional area ˛? of the hydrocarbon tail. The two
areas are almost equal and the energy corresponding to each is uCH2˛k. The
energy pertaining to the cap only can be represented as a contact potential with
the same z-dependence as u.i/ in (7):

u.i i /.z/ D
�

uCH2; z < nC lCH2;
0; z > nC lCH2;

(8)

The second part of uCH2 (pertaining to the lateral area of -CH3) is not included
in (8); it will be included in the next term, the potential u.i i i /.

• (iii) Assuming for simplicity that the carbon chain remains normal to the
interface, one can model the hydrophobic energy due to -CH2- adsorption (plus
the lateral energy of the -CH3 group) as linear function of the distance z between
the surfactant head and the interface:

u.i i i /.z/ D uCH2z=lCH2; nC lCH2 > z > 0: (9)
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Fig. 1 Molecular interaction potential u.z/ of a surfactant molecule with the interface as a function
of the distance z between the polar head-group and the interface, cf. (10). According to our model,
at distances z > nC lCH2 (state I) there is no significant interaction. At z D nC lCH2 (state II), energy
is gained due to the disappearance of clean water surface of area ˛?, and the transfer energy of the
cap of the -CH3 group, cf. (8). At shorter distances (state III), there is linear dependence of u on z
related to the energy of transfer nCuCH2 of the hydrocarbon chain from water to the hydrophobic
phase, cf. (9)

• (iv) Although the hydrophilic head remains immersed in the hydrophilic phase,
it also interacts with the interface. This interaction involves probably both short-
ranged and long-ranged (such as van der Waals and electrostatic) forces and is
strongly specific. Since these forces are not yet fully understood, we will account
for their contribution to the adsorption energyEa by an empirical constantEhead .

• (v) One finally assumes that the surfactant cannot desorb into the hydrophobic
phase, i.e. u.z/ D 1 at z < 0.

We made above implicitly a simplification of the stage of the penetration of the
interface by the -CH3 group. In fact, stages (i) and (ii) above cannot be separated.
They are part of a continuous process starting in the moment when the -CH3 group
touches the interface and ending when the whole group is in the hydrophobic phase.
It is hardly possible to describe correctly this process at least because the exact
geometry of the -CH3 group is unknown. That is why we used the approximate
model described in paragraphs (i) and (ii) above.

Combining the contributions (i)–(v), one obtains an approximate expression
for the interaction potential of a surfactant molecule with the interface [17]
(see Fig. 1):

u.z/ D
8<
:

1 0 > z;
�Ea C uCH2z=lCH2; nC lCH2 > z > 0;

0; z > nC lCH2;
(10)



Cohesive and Non-cohesive Adsorption of Surfactants at Liquid Interfaces 205

where the adsorption energyEa is given by

Ea D Ehead C ˛?
0 C uCH2.nC C 1/: (11)

In (10), the free energy of the surfactant in the bulk solution is used as reference
state. Comparison of (11) and (6) leads to an explicit expression for the empirical
constant E0 of Davies and Rideal [10]:

E0 D Ehead C uCH2 C ˛?
0: (12)

It encompasses not only Ehead as assumed by Davies and Rideal, but also the other
contributions toEa, unrelated to the adsorption of the -CH2- chain (namely, uCH2 C
˛?
0).

2.4 Partition Functions of a Surfactant Molecule
at the Interface

We will account now for the effects of the kinetic energies on the adsorption by
investigating the partition function of the surfactant molecule at the interface. We
use the model (10) for the interaction potential u.z/. Since the “width” of the
potential well is very small (in fact zero as z goes to zero), one might expect quantum
mechanical effects to play certain role for the value of Ka. Therefore, we adopt a
quantum mechanical approach to the problem.

Let us denote the energies of interaction of the surfactant molecule with the
medium in the bulk and at the surface by uB and uS respectively (with account
to Fig. 1, uB � uS D Ea). For ideal systems one can deduce the standard chemical
potentials in the bulk and at the surface, �S0 and �B0 from Eqs. (4.26) and (7.8) of
Hill [23]:

�B0 D uB � kBT ln qBtrans � kBT ln qBrot ; (13)

�S0 D uS � kBT ln qStransq
S
vibr;z � kBT ln qSrot ; (14)

where qB and qS are the respective quantum partition functions. We account for
the translational and rotational degrees of freedom in the bulk and at the surface
(indicated with subscript), and for the partition function qSvibr;z standing for the
vibration of the molecule at the surface in the potential well defined by u.z/, (10).

• (i) Translational degrees of freedom. A surfactant molecule in the bulk moves
freely in 3 directions, while at the surface transition is possible only in x and y
directions. Therefore,

qBtrans D ��3; qStrans D ��2; (15)
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where � D h=.2�mkBT /
1=2 is de Broglie thermal wavelength [23], m is

molecular mass and h is Planck constant.
• (ii) Vibration in z direction. For the potential in Fig. 1, the surfactant molecules

oscillate in a triangular potential well:

u.z/ D
�

uCH2z=lCH2; z > 0;
1; z < 0:

(16)

For vibrations in such potential, one can apply the Wentzel–Kramers–Brillouin
approximation [24] for the energies v of the quantum states with quantum
numbers v D 1� 1:

v D 1

�
4v � 1

3

	2=3
; (17)

where the energy of the basic state 1 is given by

1 D 34=3h2=3

8m1=3

u2=3CH2
l
2=3
CH2

: (18)

If 1 � kBT , the Euler’s summation formula can be used to calculate the
partition function qSvibr;z (e.g. (44.5) and (44.6) in the book of Levich [25]):

qSvibr;z �
1X

vD1
e�v=kBT �

Z 1

1

e�v=kBT dv C 1

2
e�1=kBT : (19)

The integral in the right side can be taken analytically. Thus one obtains:

qSvibr;z D 9
p
�

16

�
1

kBT

	�3=2  
1C

s
4

�

1

kBT
e�1=kBT � erf

r
1

kBT

!
C 1

2
e�1=kBT ;

(20)

where “erf” is the error function. By taking now the limit 1 � kBT one obtains

qSvibr;z D kBT

�

lCH2
uCH2

� 1

4
: (21)

The first term in the right hand side of (21) coincides with the result of Ivanov
et al. [17] obtained by classical mechanical derivation and Gibbs’ definition of
adsorption. The 1/4 is a quantum mechanical correction. For a hydrocarbon chain
at waterjoil interface (WjO), uCH2 D 1:39 � kBT [21] and the value of the
first term is about 12 for hexanol at 25ıC. Therefore, the quantum correction
is typically less than 2% and can be neglected. Then,

qSvibr;z D kBT

�

lCH2

uCH2
: (22)
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This justifies the classical derivation of the adsorption constantKa in Ref. [17].
• (iii) Rotation. In order to estimate the contribution of the rotation to the

adsorption constant Ka, it is sufficient to calculate the partition functions for
the initial (in the bulk) and the final (at the surface) states. For simplicity we
will assume that the molecule rotates as a solid stick of inertial moment I . The
Hamiltonian of a freely rotating stick in spherical coordinates (r; #; ') is [23]:

H D 1

2I

�
p2# C p2'= sin2 #

�
:

Here p# and p' are the corresponding momenta of the stick. This corresponds to
bulk partition function ( (8)–(27) of [23]):

qBrot D 1

h2

Z 1

�1

Z 1

�1

Z �

0

Z 2�

0

e�H=kBT d'd#dp'dp# D 8�2kBTI=h
2: (23)

We will assume also that the rotation of the surfactant at the interface z D 0

is again free but restricted to the semi-space z < 0. This yields for the surface
partition function qSrot :

qSrot D 1

h2

Z 1

�1

Z 1

�1

Z �=2

0

Z 2�

0

e�H=kBT d'd#dp'dp# D 4�2kBTI=h
2: (24)

• (iv) It is difficult to calculate the contribution of all intramolecular vibrational and
rotational states to the adsorption constantKa. We believe, however, that they are
implicitly accounted for in the empirical values of the transfer energy uCH2 and
in the constant Ehead in (12).

Substituting the results (15), (22)–(24) into the expressions (13) and (14) for
the standard chemical potentials, we obtain

Ka � exp
�B0 � �S0
kBT

D kBT lCH2
2uCH2

exp
Ea

kBT
: (25)

Comparison with (5) yields for the adsorption thickness ıa the expression

ıa D kBT

2

lCH2
uCH2

: (26)

This differs from the corresponding expression in [17] with the factor 1/2
originating from (24) for qSrot . With the values lCH2 D 1:26 Å and uWOCH2 �
1:39kBT (cf. [21] and Sect. 4.2 below), one obtains for simple surfactants at
WjO ıa D 0:45 Å. For waterjgas surface (WjG), uWGCH2 � 1:04kBT , so that
the adsorption thickness is higher: ıa D 0:63 Å. These values of ıa are quite
different from those based on the assumption of Davies and Rideal that ıa is
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Fig. 2 (a) Surface pressure isotherm (�S vs. C ) of C10H21OH at Wjdodecane and WjG interfaces.
At WjG, the decanol behaves as a cohesive surfactant and demonstrates �S .C/ isotherm of LE-
type. The LE line is a regression with quadratic polynomial with non-zero intercept, cf. (32). In
the Henry region, (30) is followed, indicating gaseous state of the monolayer. At WjO the same
surfactant follow the HFL isotherm with ˛ D 16:5 Å2. Adsorption constant was the only fitting
parameter (Ka D 6:54 � 10�3 m). (b) The corresponding adsorption isotherms, � .C/, obtained
as � D d�S=dkBT lnC . Marked by dots are the points of phase transition of the gaseous and the
LE phase (� G

pt and � LE
pt respectively)

equal to the length of the hydrophobic chain (e.g., for dodecanol they recommend
ıa D 12 � lCH2 D 15 Å/

3 Cohesive and Non-cohesive Adsorption of Surfactants

We analyzed numerous experimental data for surface pressure �S.D 
0 � 
/ vs.
concentration C and found that at low concentrations virtually all of them exhibit
one of two distinctive types of behavior. In some cases (Fig. 2a, line WjO), the
plot starts with a linear section with zero intercept. In other cases (Fig. 2a, lines
WjG) there are two sections: one with intercept zero and a second one having finite
negative intercept (��coh/, the two region divided by a distinctive kink. For reasons,
which will become clear in this section, we will call the first type of adsorption
behavior non-cohesive, and the second one -cohesive.

3.1 Non-cohesive Adsorption and Helfand–Frisch–Lebowitz
Model

The governing molecular property of the surfactant in the non-cohesive case is
its actual molecular area ˛ (i.e., the effective cross-sectional area, cf. Sect. 2.2).
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The most widely used models for non-cohesive adsorption of surfactants at liquid
surfaces are the Langmuir model (rigorously valid only for localized adsorption at
solid surfaces [23, 26]) and Volmer model (which is in fact the exact solution of the
problem for one-dimensional fluid of rods [27,28] but not for adsorption of circular
discs at planar interface). A more natural model for the non-cohesive adsorption
layer of small molecules seems to be a two-dimensional fluid of hard discs. A nearly
exact surface equation of state (EOS) of this system was derived by Helfand, Frisch
and Lebowitz (HFL) [29, 30]:

�S

kBT
D �

.1 � ˛� /2
: (27)

From (27), the dependence of the chemical potential �S of the surfactant at the
interface on the adsorption � can be obtained by integration of the Gibbs isotherm,
d�S D � d�S . This yields:

�S D �S0 C kBT ln 	S�; ln 	S D � ln .1 � ˛� /C ˛� .3 � 2˛� /
.1 � ˛� /2

: (28)

Here 	S is the surface activity coefficient. The condition �S D �S0 C kBT ln� at
� ! 0 was used for the determination of the integration constant. The adsorption
isotherm� .C / corresponding to HFL model follows from the equilibrium condition
�S D �B , where �S is given by (28) and the chemical potential of the surfactant in
an ideal bulk solution is �B D �B0 C kBT lnC ; the result is:

KaC D �

1 � ˛�
exp



˛� .3 � 2˛� /

.1 � ˛� /2
�
: (29)

For non-ideal bulk solution, the concentration C in (29) must be replaced with
activity 	C , where 	 is the bulk activity coefficient. The adsorption isotherm (29)
was derived first by Ivanov et al. [17] (Helfand et al. derived in fact only the
EOS (27) [29]), but since (29) is based on HFL model, we will still call it “HFL
adsorption isotherm”. Equations (27) and (29) define parametrically the surface
tension isotherm �S.C / (with parameter � ). When both (27) and (29) are used
for the interpretation of �S.C / data, we will term their combination “HFL model”.

The HFL model is suitable especially for the case of adsorption at WjO, where
attraction between hydrocarbon chains is known [9, 22] to be very small. We will
show below that non-cohesive behavior is not rare also at WjG, although there is no
guarantee that attractive interaction is completely absent in this case. Nevertheless,
we will use (27) and (29) for non-cohesive surfactants at WjG as a tool for analysis
of their adsorption constant Ka. At that, we will obtain also values of the actual
molecular area ˛, but will not analyze them since it is possible that they depend
significantly on the neglected attractive interactions.
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3.2 Cohesive Adsorption: Phenomenological Relations

As already mentioned, a typical feature of the cohesive isotherms is the existence
of a kink in the �S.C / isotherm at low concentration (cf. Fig. 2, octanol at
WjG). The lack of such kink is indicative of non-cohesive adsorption (cf. Fig. 2,
octanol at WjO). Henry’s region before the kink corresponds to gaseous state of
the monolayer. The behavior right after the kink is close to linear, with negative
intercept, ��coh. Cohesive adsorption behavior was discovered by Adam [1,3] who
noticed that, with insoluble surfactants, between the gaseous and solid-like state of
the adsorption layer, a state with intermediate compressibility occurs. He called it
“liquid expanded (LE) state”. Langmuir showed that the quantitative interpretation
of the experimental EOS needs the introduction of a negative surface pressure,
which he called “spreading pressure” [2]. Although our analysis of the adsorption
behavior of soluble surfactants is rather different from that of Langmuir, we will
still call the adsorption layer “liquid expanded”, but we will use for the negative
intercept the notion cohesive pressure �coh introduced by Davies [9, 10].

3.3 Processing of Experimental Data

Since the data interpretation in the two cases (cohesive and non-cohesive) involves
a number of steps, we will now illustrate in details the computational procedures on
the examples in Fig. 2, decanol at WjG and Wjoctane.

a. Non-cohesive Adsorption

The interfacial tension data of Aveyard and Briscoe [31] for fatty alcohols at WjO
interface were presented by the authors as function of the concentration CO of
the surfactant in the oil phase, where the alcohols are more soluble. In order to
be able to compare the adsorption in these systems with adsorption at WjG, we
recalculated the corresponding concentration CW of octanol in the water by using
the equilibrium condition CW D 	OCO=Kp, where Kp is the partition coefficient.
The activity coefficient 	O cannot be neglected for the alkane solutions, as they
were concentrated and alcohols are known to tetramerize in oil solutions [32].
For dodecanol in octane at 30ıC the tetramerization constant is K1;4 D 780M�3
[32]. We assumed that this value is valid for all considered alcohol solutions in
alkanes, since the tetramerization is probably determined by the interaction between
the hydrophilic heads. The activity coefficient 	O was calculated by solving the
equation CO D 	OCO C 4K1;4

�
	OCO

�4
following from the monomer–tetramer

model [32]. The partition coefficient for the transfer of a surfactant molecule from
oil to water follows an exponential dependence on nC [33]. Data for alcohols are
concordant with the equation lnKp D �4:90C1:31�nc (Kp D 3; 700 for decanol
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Fig. 3 Surface pressure
isotherm (�S vs. C ) of
C12H25Me2NCCH2COO� at
WjG interface. An example
for non-cohesive isotherm at
WjG. Line: HFL isotherm
according to (27) and (29)
with ˛ D 19:6 Å2 and
Ka D 1:83 � 10�4 m.
Experimental data is from
[34]

in Fig. 2a). The so-obtained �S vs. CW data are perfectly fitted by the HFL model
(line “WjO” in Fig. 2a), by using fixed actual molecular area ˛ D 16:5 Å2 of the
hydrocarbon chain. The adsorption constant Ka is the only free parameter in (27)
and (29): Ka D 6:54 � 10�3 m. The Ka values, determined by such one-parametric
fit, have a very small error (less than 1% for lnKa).

Only surfactants of relatively large head-groups follow non-cohesive behavior at
WjG. In the cases of non-cohesive adsorption at WjG, the data processing does not
require calculation of activities, as all investigated solutions were diluted (Fig. 3).
Unlike the case of alcohols at WjO, for surfactants at WjG there is no independent
source of information for ˛. Besides, it is not certain that HFL model is exact in
this case since the disregarded intermolecular attraction may affect the value of
the ˛-parameter of HFL. Therefore, we could not use the HFL model with only
one parameter as it was with WjO, and instead we determined both Ka and ˛
as adjustable parameters at WjG. The typical error in the values of these two
parameters is ˙7% for lnKa and ˙2 Å2 for ˛ in cases when sufficient experimental
data are disposable. The errors could be even higher (up to ˙20% for lnKa) when
no measurements in the low-concentration region are available (this is usually the
case).

b. Cohesive Adsorption

The WjG data in Fig. 2, which are typical example for cohesive adsorption, refer
again to adsorption of decanol. Before the kink, a close-to-linear dependence of �S

on C without intercept is observed. This is the gaseous region, which is treated by
using the Henry’s EOS, cf. (3):

�S D kBTK
G
a Cs: (30)

The data in the gaseous region are scarce and rather scattered; therefore, lnKG
a is

determined with a high error, ˙10% at best.
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After the kink, at intermediate concentrations, a second region is observed
(Fig. 2). Some measurements exhibit in this region enough experimental points
to depict a well-defined linear dependence �S.C /, but with negative intercept
[4]. Denoting this intercept by �coh, one can write the following surface pressure
isotherm for this linear region:

�S D ��coh C kBTK
LE
a C: (31)

In cases when the experimental data are scarce or scattered and the linear region is
not well visible, we preferred use a square polynomial fit (LE curve in Fig. 2) with
the equation:

�S D ��coh C kBTK
LE
a C C kBTB2

�
KLE
a

�2
C 2; (32)

which is, in fact, a virial expansion of the surface pressure isotherm (B2 is the second
virial coefficient). We believe that when the quadratic fit with (32) of given set
of surface tension data yields a negative intercept ��coh, the respective surfactant
forms a liquid expanded layer. The value of lnKLE

a determined by this fit is typically
with error of the order of ˙15%. The accuracy of the �coh value is also ˙15%.
However, sometimes the error of �coh can be due, at least in part, to systematic error
of the surface tension measurements (cf. [6] for discussion).

From the phenomenological surface pressure isotherms (30) and (32), and the
Gibbs isotherm one can calculate the respective adsorption isotherms of the gaseous
and the LE state:

� D KG
a C for gaseous state; (33)

� D KLE
a C C 2B2

�
KLE
a

�2
C 2 for LE state: (34)

In Fig. 2b, the isotherms (33) and (34) for C10H21OH at WjG are plotted along with
the result obtained for the same surfactant at WjO by means of HFL adsorption
isotherm (29). The adsorption parameters for this plot were determined from the
�S.C / data in Fig. 2a. The break of the curve � .C / corresponds to phase transition
from gaseous to LE state (dashed line in Fig. 2b).

4 Analysis of the Experimental Data for the Cohesive
Pressure �coh and the Adsorption Constant Ka

Let us now consider the experimental results for the adsorption of some homologous
series of nonionic surfactants, analyzed in the framework of the ideas presented in
the previous Sects. 2 and 3. We have processed the tensiometric data for 46 nonionic
surfactants from nine homologous series at different interfaces and conditions
(Fig. 6; cf. “List of symbols and abbreviations” (Table 1) for surfactants’ names).
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Table 1 List of symbols and abbreviations

B2 Second virial coefficient
C Surfactant concentration in the aqueous solution
Ea Adsorption energy
Ehead Energy of transfer of surfactant’s head from the bulk to the

interface
kB Boltzmann constant
Ka Henry’s adsorption constant .� D KaC/

lCH2 Length per -CH2- group (1.26 Å/
nC Number of carbon atoms in surfactant’s hydrophobic chain
q Partition function
T Temperature
uCH2 Free energy for transfer of -CH2- from water to

hydrophobic phase
z Cartesian coordinate
˛ Actual area of a molecule
ˇ Attraction parameter
	 Activity coefficient
� Surfactant adsorption
ıa Adsorption thickness
� Chemical potential
�coh Cohesive pressure
�S Surface pressure, �S D 
0 � 



 Surface tension

0 Surface tension of the pure interface in the absence

of surfactant

2D Two-dimensional
cmc Critical micelle concentration
EOS Equation of state
HFL Helfand–Frisch–Lebowitz model
LE Liquid expanded state of the adsorption layer
WjG Water–gas interface
WjO Water–oil interface

-CH2- Methylene group
-CH3- Methyl group
CnH2nC1OH Alkan-l-ol
Cn�1H2n�1COOH Alkanoic acid
CnH2nC1Me2PO An-alkyl dimethyl phosphine oxides
C8H17SOC2H4OH Octylsulfinylethanol
C10H21Mal n-Decyl ˇ-maltopyranoside
C10H21Glu n-Decyl ˇ-glucopyranoside
C10H21SMal n-Decyl ˇ-D-thiomaltopyranoside
CnH2nC1Me2NCCH2COO� N-n-alkyl-N, N-dimethylglycine
C8H17PEM Maleic acid mono [2-(4-n-alkylpiperazinyl)ethyl ester]
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All investigated surfactants (CnH2nC1OH) display at WjO non-cohesive adsorption
behavior. There are some surfactants, mainly with short hydrocarbon chains and
bulky head-groups (CnH2nC1Me2NCCH2COO�, short-chain CnH2nC1Me2PO etc.),
which behave non-cohesively even at WjG interface. Cohesive (LE) type of surface
pressure isotherms were found with most surfactants at WjG, like Cn�1H2n�1COOH
at low pH, CnH2nC1OH, long-chained CnH2nC1PEM. Moreover, two homologous
series of surfactants, CnH2nC1Me2PO and CnH2nC1Me2PEM, exhibit transition
from non-cohesive to cohesive behavior with the increase of the hydrocarbon chain
length: for the WjG adsorption layers of CnH2nC1Me2PO with nC D 8�10 there is
no LE region, while the homologues with nC D 11� 15 exhibit gaseous-LE phase
transition. The behavior of CnH2nC1PEM is similar to that of CnH2nC1Me2PO:
nC D 8 is non-cohesive, nC D 9� 11 are cohesive.

4.1 The Cohesive Pressure �coh

We will base our interpretation of the cohesive isotherms and the phenomenological
equations (31) and (32) on Langmuir’s concept for liquid expanded monolayer [2].
Langmuir’s idea for the origin of the intercept ��coh (e.g. [3]) can be quantified
as follows. Let 
WO0 be the interfacial tension of the pure WjO interface, and 
OG0
be the oiljgas surface tension. The surfactant hydrophobic tails are adsorbed at the
WjG interface and form a structureless oil-like film whose total tension must be

WO0 C 
OG0 . The hydrophilic heads are adsorbed at the WjO interface of this oil
film. In the initial part of the LE region of the dependence�S vs.C , the “adsorption”
of the heads must be ideal. Then, one can write for the tension of the adsorption
layer [4]


 D 
OG0 C 
WO0 � kBTKLE
a C: (35)

Here, the last term, stemming from (3), is due to (ideal) adsorption of surfactant’s
hydrophilic heads. However, by definition, the surface pressure at WjG is �S D

WG0 �
 . Inserting here 
 from (35), and comparing the result with (31), one obtains

�coh D 
WO0 C 
OG0 � 
WG0 (36)

According to these simple considerations, the intercept ��coh coincides with
the spreading coefficient of a hydrocarbon on water [2]. Therefore, the negative
cohesive pressure ��coh was at first referred to as spreading pressure; the term
“cohesive pressure” was introduced by Davies [9].

The simple considerations above give correctly only the order of the value of
�coh, but in fact they cannot explain the dependence of �coh on the surfactant
tail-length and head-group. The experimental dependence of �coh on nC is plotted
in Fig. 4. The cohesive pressure increases with e.g. ��coh D 0:7mN/m per -CH2-
group. This increment corresponds to surface energy per -CH2- group equal to
˛?��coh � kB � 8, in good agreement with the experimental finding that “the
effect of each additional CH2 group in the chain is equivalent to a lowering of
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Fig. 4 Dependence of the
cohesive pressure �coh on
hydrocarbon chain-length nC
for 3 homologous series:
alkanols (circles), alkanoic
acids (triangles) and
alkyldimethyl phosphine
oxides (crosses). The
dependence is close to linear.
For CnH2nC1Me2PO, the
value of nC at which
�coh D 0 corresponds well
with the transition length at
which this homologous series
becomes non-cohesive: the
isotherm of C10H21Me2PO
has no LE region.
Tensiometric data from
[35–37] were used to
calculate �coh

temperature of about 8ıC” [2]. It is remarkable that the transition from cohesive to
non-cohesive behavior of CnH2nC1Me2PO coincides with the value of nC at which
�coh becomes zero (nC between 10 and 11: C11H23Me2PO forms cohesive layers
and C10H21Me2PO is non-cohesive). With alkanols and alkanoic acids, the values
of �coh are rather uncertain due to the insufficient experimental data. However,
their behavior appears to be similar. One can predict from Fig. 4 that pentanol and
pentanoic acid will form non-cohesive monolayers.

4.2 Effect of the Surfactant Structure on the Adsorption
Constant Ka

The data for non-cohesive adsorption of CnH2nC1OH (nC D 8 � 18) at WjO (oil
phases are various alkanes) were processed by means of HFL model, (27) and (29),
with ˛ D 16:5 Å2, as explained in Sect. 3. The adsorption constantKa was the only
free adjustable parameter. The dependence of lnKa on nC is shown in Fig. 5. It is
linear with slope uCH2=kBT D 1:39, corresponding to the known energy of transfer
from water to oil phase [21]. For non-cohesive adsorption at WjG interface, again
HFL model was used, but with two free parameters, ˛ and Ka. The values obtained
for ˛ depend only on the head-group of the surfactant:

CnH2nC1Me2NCCH2COO
� with nC D 8� 16 W ˛ D 18:8˙ 1:5Å2;

CnH2nC1Me2PO with nC D 8� 10 W ˛ D 22˙ 1Å2;

C8H17PEM W ˛ D 25Å2:
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Fig. 5 Dependence of the logarithm of the adsorption constant lnKa on the chain length nC . (a)
Non-cohesive adsorption: results from fit of tensiometric data with HFL model (similar to the fits
in Figs. 2a and 3). The lines represent fits with (37) with fixed slopes (uCH2 =kBT D 1:39 for WjO
and 1.04 for WjG data). (b) Cohesive adsorption, gaseous region. All data fall on a single line with
slope 1.04 and intercept ln.Kı

a =Œm�/ D �20:7, cf. (37). (c) Cohesive adsorption, LE-region. Lines
are fits with fixed slopes, 1.39. Data for alkanoic acids at low pH and alkanols fall on a single curve
with intercept �22:2, while the intercepts for CnH2nC1Me2PO and CnH2nC1PEM are significantly
smaller. The tensiometric data used is from different sources (cf. Fig. 6 for the complete list)

In contrast to CnH2nC1OH at WjO, the linear dependence of lnKa on nC for
CnH2nC1Me2NCCH2 COO� and CnH2nC1Me2PO at WjG has slope uCH2=kBT D
1:04 (Fig. 5a), typical for the transfer of a methylene group from water to gas [21].

Cohesive surface tension isotherms are observed only at WjG. Data for
CnH2nC1OH, Cn�1H2n�1COOH, long-chained CnH2nC1Me2PO and CnH2nC1PEM,
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C8H17SOC2H4OH, C10H21SMal, C10H21Mal and C10H21Glu were processed. The
experimental data for lnKG

a vs. nC for the gaseous region of all these surfactants fall
on a single straight line with slope uCH2=kBT D 1:04 (Fig. 5b), and with intercept
ln.Ko

a=Œm�/ D �20:7. The LE region was processed with (32). With all these
surfactants, the slope of the dependence of lnKLE

a on nC is uCH2=kBT D 1:39

(Fig. 5c), i.e., the same as for the adsorption at WjO interface. This is certainly due
to the fact that the transfer of -CH2- is from water to LE adsorption layer, i.e., into
an oil-like environment. The value of the intercept lnKı

a of this dependence is the
same for CnH2nC1OH and Cn�1H2n�1COOH. However, the CnH2nC1Me2PO have
significantly lower values of lnKı

a than the corresponding acids and alcohols, and
with CnH2nC1PEM, lnKo

a is even smaller (Fig. 5).
We now turn to the interpretation of the value of the intercepts lnKı

a of the lines
in Fig. 5. To compare the statistical model of Ka to the experimental data in Fig. 5,
it is convenient to represent (5), (11) and (26) in logarithmic form:

lnKa D lnKı
a C nCuCH2=kBT; (37)

where the intercept lnKı
a of the experimental dependence of lnKa on nC is given by

lnKı
a � ln ıa C .Ehead C uCH2 C ˛?
?/=kBT: (38)

Here ıa is the adsorption length, (26). The experimental value of the intercept
lnKı

a can be determined directly when data for several members of a homologous
series are available (cf. Fig. 5). However, in few cases (e.g. for C8H17SOC2H4OH,
C10H21Mal etc.), data were available only for a single surfactant. Then, lnKı

a was
calculated from (37) with the known value of uCH2=kBT (1.39 or 1.04) and the
experimental lnKa for this surfactant. The results for lnKı

a for nine homologous
series are presented in Fig. 6. The following comments of these results seem
pertinent:

• 1. For all non-cohesive surfactants at WjG and for the gaseous region of all
cohesive surfactants, the difference between theoretical and experimental values
of lnKı

a is about uCH2=kBT (cf. Fig. 6). One possible reason for this difference
is that the first carbon atom from the hydrocarbon tail is immersed in the water—
that is why we called it “immersion energy”. Such position of the surfactant
molecule is natural for -COOH, where there is one C-atom in the carboxylic
group. For the other examples in the Fig. 6, the immersion of the first C-atom
might be due to the interaction of the head-group with the interface, i.e. to the
neglected term Ehead in (38). The analysis of this effect is complicated and will
be postponed to a subsequent publication.

• 2. The comparison of the experimental and theoretical values of Ka in the
LE region for the surfactants in Fig. 6 at WjG was done with intercept lnKı

a

calculated with 
0 D 50mN/m instead of 72.2 mN/m, as if the surfactant adsorbs
at WjO interface. This in accord with Langmuir’s interpretation of LE state.
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Fig. 6 Experimental and theoretical intercepts of the linear dependences ln ka vs. nC for different
homologous series
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• 3. With cohesive surfactants of bulky head-groups (e.g., CnH2nC1Me2PO and
CnH2nC1PEM), the value of lnKı

a in the LE region is considerably lower than
the one predicted by (38). The immersion energy for these surfactants is about
2� 3 � uCH2 .

• 4. The only nonionic surfactants at WjO for which we had truly reliable data
are the fatty alcohols. Their adsorption constants was found somewhat larger
than the theoretical value predicted by (38) (again with one immersed C-atom):
the experimental ln.Kı

a=Œm�/ is �19:0 vs. the theoretical value �21:7.

One way to check the reliability of the values of the transfer energy uCH2
determined from the slopes of the lines in Fig. 5 is the following analysis of the
experimental dependence of the surface pressure on the surfactant concentration
and chain-length nC for the two types of adsorption: cohesive and non-cohesive.
Any adsorption isotherm can be written as:

	S.˛�; ˇ/� D KaC I (39)

here 	S is surface activity coefficient and ˇ is attraction parameter [30]. Accounting
for (37) for Ka, one obtains:

	S.˛�; ˇ/� D Kı
a exp .uCH2nC =kBT /C: (40)

To simplify the analysis of the dependence � .C InC /, let us for the time
being neglect the dependence of ˛ and ˇ on nC . Then, one concludes from (40)
that � D � ŒC � exp .nC uCH2=T /�. If one substitutes this dependence into the
EOS �S.� /, one concludes that the surface pressure will depend on nC mainly
through the productC exp .nC uCH2=T /, with uCH2 D 1:04�kBT for non-cohesive
adsorption and uCH2 D 1:39 � kBT for the LE region of cohesive isotherms. This
hypothesis is checked in Fig. 7 on the examples of CnH2nC1Me2NCCH2COO� at
WjG (non-cohesive) and Cn�1H2n�1COOH at WjG at low pH (cohesive). The data
were normalized to dodecyl hydrophobic chain by subtracting 12 from nC in the
exponent, i.e., by plotting C exp ŒuCH2 .nC � 12/ =T � on the x-axis of Fig. 7. As
seen from the Figure, the results fall on a single master curve for each type of system.
The slight deviations from these master-curves are due to the dependence of ˛ and
ˇ, and �coh in the case of LE, on the hydrocarbon chain length nC , which turns out
to be weaker than the main dependence on nC in (40), as assumed above.

4.3 Temperature Dependence of the Adsorption

The transfer energy of a -CH2- group from water to hydrophobic phase was
extensively discussed in the classical studies on the so-called “hydrophobic effect”
[21, 22]. The thermodynamic analysis of data for the temperature dependence of
a large number of “hydrophobic” phenomena, such as solubility of alkanes in
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Fig. 7 Scaling of the surface
tension isotherms (�S vs. C )
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water, cmc of surfactants, etc., showed that this transfer energy is predominantly
of entropic origin. It seems obvious that the nature of the free energy uCH2 for
adsorption of a methylene group in our expressions (37) and (38) is also related
to the “hydrophobic” phenomena. We will use this fact to predict the temperature
dependence of the adsorption constant Ka, by analyzing the tensiometric data of
Vochten and Petre for the adsorption of heptanol at WjG interface [36]. The surface
tension isotherms of heptanol in Fig. 8 exhibit non-zero intercepts: therefore, they
are of the cohesive type. Hence, we processed the data according to the procedure
outlined in Sect. 3.3 (cf. also Fig. 2a) in order to obtain the adsorption constants
in the LE region at various temperatures. The results are shown in Fig. 9. We will
interpret them now by using our (37) and (38) above.

The adsorption constant Ka involves large enthalpic contributions from two
terms in (37) and (38), namely, the hydrophobic term .nC C 1/uCH2 and the surface
contribution ˛?
0.T /=kBT . The hydrophobic term .nC C 1/uCH2 in (37) and (38),
which is the transfer free energy of the heptyl chain from water to the LE adsorption
layer, must be very close to the Gibbs energy, ��0;hept , for transfer of a heptane
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Fig. 9 Temperature
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molecule from water to heptane. The relation between these quantities must be
obviously

��0;hept D kBT ln xs � �.nC C 1/uCH2; (41)

where xs is the heptane molar fraction in a saturated aqueous solution. The last
equation allows expressing uCH2 by the measurable quantity xs . Substituting the
result in our (37) and (38) forKa, one obtains:

lnKa D Ehead

kBT
C ln ıa C ˛?
0.T /

kBT
� lnxs.T /: (42)
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It is convenient to normalize this equation to the standard temperature 298 K:

lnKa.T / D lnK298
a C ˛?

kB

�

0.T /

T
� 
2980

298

	
� ln

xs.T /

x298s

: (43)

Here we have neglected the weak temperature dependence of the term ln ıa C
Ehead =kBT in (42). This normalization minimizes the error coming from the
approximation (41). For heptanol, all quantities in the right-hand side of (43) can
be easily found. The value of the constant ln

�
K298
a =Œm�

� D �12:08 was determined
from the surface tension data at 25ıC of Vochten and Petre [36]. For the LE state,
the tension 
0.T / of the clean interface can be calculated from the equation:


0 D 
2980 � s0.T � 298/; (44)

which is based on tensiometric data for waterjalkane interface [39]. Here s0 D
0:09mJ/Km2 is entropy and 
2980 D 50mJ/m2 is the interfacial tension of Wjalkane
at 25ıC [39]. The molecular area is ˛? D 16:5 Å2. Finally, from [40], the
temperature dependence of lnxs in the range 20ıC�70ıC is:

ln xs D lnx298s C �h298s � 298�cp;s
R

�
1

T
� 1

298

	
� �cp;s

R
ln

T

298
; (45)

where x298s is the solubility at 298 K (lnx298s D �14:61),�h298s D 2149 J/mol is the
molar enthalpy of dissolution at 298 K,�cp;s D �473:6 J/molK is the heat capacity
of dissolution [40], R is gas constant. Substituting (44) and (45) in (43) yields an
explicit expression for lnKa.T /. The results for lnKa.T / calculated in this way
from (43) are shown by continuous curve in Fig. 9 and compared with experimental
results. The agreement is good.

From (43), the enthalpy of adsorption�ha can be calculated according to Gibbs–
Helmholtz relation:

�ha D �kBT 2 @ lnKa

@T
D ˛?h0 ��hs=NA; (46)

where h0 D 
0 C T s is the enthalpy per unit area of the WjO interface and �hs D
�h298s C.T �298/�cp;s is the molar enthalpy of dissolution of heptane. The second
“hydrophobic” term on the right hand side of (46), �hs=NA, is a linear function of
T ; it is zero at 30ıC, and reaches 6 � 7 � kBT at 70ıC. The first “surface” term,
˛?h0 D 1:3�10�20 J, is about 3�kBT . Therefore, the surface term is by no means
negligible. On the contrary, it is the leading effect at room temperature.

The cohesive pressure �coh of heptanol also varies with T . It can be shown that,
starting from 3.0 mN/m at 20ıC, it decreases with slope 0:044mN=m � K. One
can then expect that �coh will become zero at 90ıC and the LE state will cease to
exist, and the adsorption layer will become non-cohesive. This effect is similar to
the effect of the decrease of the number of -CH2- groups on �coh in Fig. 4.
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5 Conclusions

Our analysis of the experimental data for the surface and interfacial tension of
more than 50 nonionic surfactants revealed that the data can be described by
one of two characteristic isotherms: of cohesive and non-cohesive type. Three
phenomenological criteria were formulated for relating given set of tensiometric
data to one of these types.

The most important first criterion is the existence of a kink in the cohesive
isotherms at low concentration (cf. Fig. 2a). The low-concentration region before
the kink corresponds to gaseous state of the adsorption layer [4]. The �S.C /-
dependence after the kink exhibits negative intercept ��coh (Fig. 2a). This intercept
��coh is in fact Langmuir’s cohesive (spreading) pressure [2, 10]. The kink itself
probably corresponds to a first order phase transition [4,5]. If no kink is present, the
surface tension isotherm is non-cohesive.

Unfortunately, it is often problematic to obtain reliable measurements in the
gaseous region of a cohesive isotherm, and consequently it is not always easy
to observe the kink. If such is the case, a second criterion can be used: all
surfactants which form non-cohesive monolayers follow (at least qualitatively) the
HFL isotherm, with area parameter equal or very close to the actual area of the
surfactant tail (˛ D 16:5 Å2 for surfactants with linear hydrocarbon tail and small
polar head-group), cf. Fig. 2. In contrast, the data for cohesive films cannot be
interpolated satisfactory with HFL model.

The third criterion is related to the linear dependence of the logarithm of
adsorption constant lnKa on the number nC of carbon atoms of the surfactant,
cf. (Fig. 5a). The slope of this dependence for non-cohesive type of isotherms is
d lnKa=dnC D 1:04. For the LE region of cohesive isotherms at WjG, the slope is
1.39 (Fig. 5c)—a value typical, in fact, for the WjO interface. The different slopes
are related to the different transfer energies uCH2 of a methylene group from water
to gas and from water to LE adsorption layer. The latter is in fact a transfer to an
oil-like environment.

The adsorption at WjO interface always exhibits non-cohesive behavior. Cohe-
sive isotherms are typical for WjG only. However, not always the adsorption at
WjG is cohesive (cf. Fig. 6), e.g., the isotherms of CnH2nC1Me2NCCH2COO�
at WjG exhibit no LE region (Fig. 7a). We have also found that within certain
homologous series of surfactants, both types can be found: short-chain homologues
are non-cohesive, while long-chained ones are cohesive (a typical example is
CnH2nC1Me2PO, cf. Fig. 5). The chain-length at which the transition from cohesive
to non-cohesive behavior occurs corresponds to zero cohesive pressure (Fig. 4).

We further compared in Fig. 6 the experimentally determined adsorption con-
stants to the model, previously developed by us (presented in Sect. 2). The model
does not involve adjustable parameters. In most cases, the comparison is satisfac-
tory, if one assumes that one C-atom from the hydrocarbon chain remains immersed
into water (Fig. 6). We further checked our model by comparing its predictions
to experimental data for the temperature T dependence of the adsorption constant



224 R.I. Slavchov et al.

(Fig. 9). Independent data for the dependence on T of the transfer energy of the
hydrocarbon chain from water to oil phase were used to model the transfer from
water to liquid expanded monolayer at WjG. The agreement reached without using
adjustable parameters is very good. This proves beyond doubt both Langmuir’s
concept for the LE state, and our model of the adsorption constant.

We also observed couple of effects which are waiting for explanation. The first
one is the dependence of the cohesive pressure on the surfactant’s chain-length and
head-group (Fig. 4). An important open question is the equation of state of dense LE
monolayer of nonionic surfactants. The comparison between results presented here
for the nonionic surfactants and those obtained previously in [6] for ionic surfactants
is also forthcoming.
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Surface Wetting: From a Phenomenon
to an Important Analytical Tool

V. Dutschk

1 Theoretical Concepts of Wetting

Surface wetting as a physical phenomenon has been known for a long time and is the
ability of a liquid to keep a contact with a solid surface resulting from intermolecular
interactions. The degree of wetting is called wettability and is determined by a force
balance between adhesive forces, acting between the liquid and solid phases, and
cohesive forces, acting in the wetting liquid.

Some 100 years ago, Gibbs [1] elaborated the fundamentals of the thermody-
namic theory of capillary; his paper On the equilibrium of heterogeneous substances
was taken as a basis for all subsequent theoretical and experimental wetting work.
Since then, diligent work has been done to describe the wetting behaviour of
heterogeneous systems, thereby to determine the surface energies of liquid and solid
bodies, and in this manner to predict the adhesion behaviour. Over a period of years,
heaps of literature have been accumulated on these problems, proposing various
measurement techniques and different evaluation possibilities, including criticism
of one or other computational algorithm or fundamental idea.

Following is a brief discussion of the fundamental results.

1.1 Surface Tension and Surface Energy

It is common knowledge that inside a liquid a molecule undergoes a different
equilibrium position than at the liquid surface, due to its neighbours, and that
work has to be done to direct this molecule toward the surface. As this takes
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place, the surface will increase by this molecule which now has a potential energy
elevated by the amount of this work. The corresponding increase in energy, being
related to the unit of area, is referred to as specific surface energy. The force
needed to do this work and related to the unit of length is referred to as surface
tension. Most textbooks assume the surface tension to be identical to the specific
surface energy. Strictly speaking, these terms are not identical. While the term
surface tension (a unit of measurement: force per length, the force being determined
by specifying amount and direction) originates from classical mechanics, the
term surface energy (a unit of measurement: energy per area, the energy being
fully considered by specifying a number) results from the energy approach. The
thermodynamic definition of the surface tension 	 expresses it in terms of the change
in free energy (F) as the interfacial area (A) of two coexisting phases is changed at
constant volume (V)

	 D
�
@F

@A

	

T;V

: (1)

In the theory of capillarity, the surface tension is associated with the tension of
two-dimensional membrane located at the boundary between two phases. In the
absence of a field, the tensor of excess surface stresses (which is used to introduce
the surface tension) is two-dimensional for plane surfaces. However, for a spherical
surface, the transverse surface tension appears, i.e. the normal component of the
tensor of excess surface stresses, which can be nullified by a simple selection of the
position of the dividing surface as a tension surface [2]. In the presence of external
field, even such simple as gravitational, the transverse surface tension can hardly be
eliminated by some conditional procedures. As a result of the permanent presence
of three-dimensional aspect, the theory of interfacial phenomena begins to lose its
inherent simplicity and attractiveness.

Liquids with high surface tension, usually reflecting strong intra-molecular
bonds, or liquids on low-energy solid surfaces, usually form nearly spherical
droplets, whereas liquids with low surface tension, or liquids on high-energy
surfaces, usually spread over the surfaces. This phenomenon is a result of min-
imization of interfacial energy. Thus, if a surface has a high free energy, most
liquids will spread on the surface since this will usually lower the free energy.
Wetting phenomena have been widely studied both theoretically and experimentally
in connection with the physics of surfaces and interfaces.

1.2 Young Equation

Whether a liquid will wet a solid depends on the surface tension of the solid 	SG ,
that of the liquid 	LG , strictly speaking interfacial tension since wetting describes
a displacement of a solid–gas (air) interface with a solid–liquid interface, and
the interfacial solid–liquid tension 	SL. These quantities are connected with the
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Fig. 1 Liquid drop on a solid surface: �Y is the Young contact angle; 	LG is the interfacial tension
liquid–gas; 	SG and 	SL are interfacial tensions solid–gas and solid–liquid, respectively: ideal
wetting situation

contact angle �Y by the Young [3] equation where the contact angle stands for
the equilibrium angle with the lowest energy state (Fig. 1)

	SG D 	SL C 	LG � cos�Y: (2)

Since the quantities 	SG and 	SL are generally inaccessible to experiments, as
opposed to 	LG , the Young equation is often used for solving the inverse problem,
i.e. to determine the difference (	SG � 	SL, which is referred to as wetting tension
or adhesive tension, by means of the experimental values � and 	LG . This is the free
energy gained when a unit of the solid surface is wetted without changing the size
of the liquid surface. The wettability directly depends on the interfacial tension 	SL:
the stronger the interfacial interactions, the lower the interfacial tension; the lower
the interfacial tension, the better wetting.

1.3 Adsorbed Water Film

Contact angle estimation by means of the Young equation (2) is additionally
complicated by the fact that the solid surface is able to adsorb water vapour from the
air. The values of 	SG depend on the thickness of the adsorbed water film. Adsorbed
layers can change the interfacial behaviour by influencing adhesion due to the
adsorption of electrolyte ions. Since water is also a weak electrolyte solution, which
often forms a film on “dry” surfaces as an adsorbed layer under normal conditions,
research into the relations between surface potentials or surface charges of solids
acquires a particular meaning in the presence of an adsorbed water film. Studies in
this direction was particularly initiated by Jacobasch [4]. Frumkin, Derjaguin and
Churaev [5–8] wetting theory based on the surface forces seems to be best suited in
this respect.

Relations between charged surfaces and molecular interaction forces are dis-
cussed in the context of this theory. Varying the balance of surface forces, it is
possible to control the wetting behaviour. In 1938, Frumkin introduced the term film
tension 	f , which is equivalent to the term solid surface tension 	SG and depends
on the film thickness h [7] as shown in Fig. 2
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Fig. 2 Schematic
representation of a solid
surface with a thin wetting
film

	f D 	SG.h/: (3)

With a very large h (several hundred nanometers) is valid

	SG D 	SL C 	LG:

Assuming that the free energy determination of liquid films is based on a very thick
liquid film, with

	f D 	SL C 	LG;

rather than on the “dry” solid surface, Frumkin analysed the dependence 	f D
	f .h/. From this, the possibility of metastable states of liquid films was obtained
with an incomplete wetting situation

	f < .	SL C 	LG/;

and the condition of a complete wetting was defined as

	f 
 .	SL C 	LG/:

At this point, the possible existence of 	f values was postulated, which exceed
the value .	LG C 	SL/ must be emphasised, while the Young equation lacks such a
possibility.

1.4 Work of Adhesion

The work of adhesion between liquids and solids is described by the Dupré–Young
equation

WA D 	LG.1C cos �/: (4)

The surface energy of solids can be, at least tentatively, determined by measuring
the contact angle.

A different possibility to determine work of adhesion is to represent surface
energy as a sum of two components: dispersion component 	di (effect of London
dispersion forces) and polar component 	pi (due to forces of a different kind). No
less than two test liquids (a polar and a non-polar one) have to be used. This method
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is based on Fowkes approach [9] which was later converted by Owens and Wendt
[10] to the following form

	12 D 	1 C 	2 � 2

q
	d1 � 	d2 � 2

q
	
p
1 � 	p2 :

For work of adhesion, hence, follows

WA D 2

q
	d1 � 	d2 C 2

q
	
p
1 � 	p2 :

The surface tension of solids can be calculated by means of Young equation (2).
However, the interfacial tension, 	SL (or 	12), as a result of the interactions between
liquid and solid, cannot be determined directly in a wetting experiment. There are
approaches which try to bypass the problem.

1.5 Critical Surface Tension

Since the state of surfaces is capable of influencing their wettability Zisman [10]
introduced critical surface tension 	c . Zisman examined the linear relation

cos � D a � b � 	LG;

with various test liquids. Then, 	c results by linear extrapolation

	c D lim
�!0

	LG:

Measurements with non-polar liquids allow determination of the dispersion compo-
nent 	di and those with polar liquids determination of the polar one 	pi .

Based on the critical surface tension concept, Neumann [11] suggested to esti-
mate surface free energies of solid substrates 	SG from experimentally determined
advancing contact angles of a known liquid (e.g. water) using the equation of
state for solid–liquid interfacial tension developed in the frames of semi-empirical
theory

cos � D �1C 2
p
	SG=	LG � e�0:0001247.	LG�	SG/2 :

1.6 Fowkes and Good Theories

Fowkes proposed the possibility of splitting the surface energy into four terms 	di
and 	pi already mentioned in Sect. 1.4 as well as additional terms 	ii and 	Hi (for
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London, Debye, Keesom and hydrogen bond interactions1). For determination of
the dispersion adhesion energy component, the Fowkes idea leads to the Good–
Girifalco approach [12]2

W d
A D 2

q
	d1 � 	d2 : (5)

For wetting non-polar liquids such as alkanes on rather non-polar polymers, surface
energy is determined only by van der Waals forces: 	non�polar D 	d .

Fowkes also pointed out that “polar” forces (orientation and induction forces)
hardly contribute to work of adhesion if contact formation happens between a polar
liquid (i.e. water) and a non-polar liquid or solid surface. To determine the surface
energy of polymers one then needs two liquids with the highest possible surface
energy and the lowest possible tendency to formation of acid–base bonds, e.g.
diiodomethane (	 D 	d D 50:8mJ/m2) and 1-bromonaphthalene (	 D 	d D
44:4mJ/m2). According to Fowkes, the contribution of Keesom and Debye forces
to work of adhesion can be neglected, permitting the whole work of adhesion to be
presented as a sum of two components: W d

A and W ab
A , where W d

A is the work done
by non-specific van der Waals forces (mainly by dispersion forces) and W ab

A the
work done by specific interactions (so-called acid–base interactions).

Contrary to the work done by non-local dispersion forces, the component W ab
A

of the work of adhesion is due to the formation of local donor–acceptor bonds at the
interface. Because of its local nature, such an interaction can occur only with a direct
contact of both bodies. Furthermore, the adhesion of rather non-polar polymers,
such as polyolefin polymers or fluoroplastics, is only caused by the action of the
van der Waals forces, whereas the contribution of the acid–base interactions to the
total value of the work of adhesion of polar polymers can reach 70–80% [13].

The formation of an electric double layer in the contact area of two solid surfaces
due to the formation of donor–acceptor bonds between them is the subject of
Derjaguin’s semi-empirical electric theory of adhesion [14, 15]. According to it,
an exchange of electrons takes place at the contact site, which is due to different
electronic structural levels of the contacting material.

Functional groups, such as hydroxyl group OH, carboxyl group COOH, phenyl
ring, nitrile group CN, and amino group NH2, act at the polymer surface as carriers
of their adhesion activity much as they determine the mechanical properties of
the polymer inside the latter.3 The relation between the presence of the functional
groups and the adhesiveness of some polymer materials is certainly no accident.
Based on investigations of the semiconductor-polymer system, Jacobasch and
Freitag [16] made up the following succession of donor–acceptor properties of the
functional groups contained in polymers:

1Subsequently, Fowkes used the index “ab” (for acid–base) instead of “H”. Hydrogen bonding is
a special case of acid–base bonding.
2This one resulting from calculations according to Lifschitz theory.
3E.g. the presence of COOH, OH, or NH2 groups which interact with polar groups of adjacent
chains is responsible for a higher mechanical strength of the polymer.
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–CN >D CO > –COOR > –C6H5 > –OR > –OH > NH2;

where by the donor–acceptor properties change from left (donor) to right (acceptor).
Moreover, the same authors concluded that, in vacuum, the electrostatic com-

ponent is predominant for the adhesion of polymers. The question was raised by
Jacobasch [17] as to the validity of this deduction for actual interacting systems, i.e.
for the contact formation in humid atmosphere (whereby conduction of the charge
carriers is possible) and it still remains open. Generally speaking, functional groups
in polymers may be made up in series according to their donor properties. Each
previous member of the series functions as an electron pair donor with regard to the
following member, which then acts as an electron pair acceptor.

Combining polymers, which are to interact with one another adhesively accord-
ing to the acid–base principle, with consideration of the fact that the possibility
of a non-symmetric electron density distribution in the contact area grows as the
functional groups move away from one another in a series, makes it possible to
derive the following empirical rule: to attain a good adhesion, thus great bond
strengths, polymers must be purposefully combined with one another in such a
way that their functional groups in a donor–acceptor series are as far as possible
apart.

In view Fowkes’s ideas, Berg called Fowkes a “pioneer” and the latter was highly
esteemed for the development of his theory as well as its applications with practical
problems of wetting and adhesion [18]. Fowkes’ notion of necessary consideration
of specific acid–base interactions was improved by Good [19, 20], who assumed
that 	ab , again, can be divided into two components by analogy with KA and KB

constants according to Gutmann [21]: 	C (acidic surface parameter or Lewis acidic
component) and 	� (basic surface parameter or Lewis basic component).

(i) If both components 	C and 	� of a substance can be neglected this substance
is referred to as non-polar or inert (e.g. diiodomethane).

(ii) If either of both components is dominant this substance is defined as mono-
polar or mono-functional (e.g. ether).

(iii) If neither of both components can be neglected this substance is referred to as
bipolar or bifunctional (e.g. water).

Table 1 shows that a considerable differences exist between the theoretical and
experimental value for surface energy of water and glycerine.

For surface energy of water being a polar liquid, the following results [18]
	p C 	i D 1:4mJ/m2 and 	d D 21:1mJ/m2. The surface energy of water
determined experimentally amounts to approximately 73 mJ/m2. Hence, it follows
that the contribution of the specific acid–base interaction to the total surface energy
of water comes to 	ab D 73 � .21:1 C 1:4/ D 50:5mJ/m2. With water both
components 	C and 	� are uniform in size [18] 	C D 	� D 25:25mJ/m2.

Surface energy of chloroform, CHCl3, and that of non-polar tetrachloromethane,
CCl4, are approximately equal (	 D 29mJ/m2), work of adhesion with regard to
water is, however, differentWA (CHCl3/H2O) D 68.3 mJ/m2 andWA (CCl4/H2O) D
54.7 mJ/m2. The difference of 13.7 mJ/m2 resulting from the formation of hydrogen
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Table 1 Hamakera constants and surface energies of some materials, calculated and determined
experimentally [22]

Surface energy 	 , mJ/m2

Substance
Hamaker constant,
�10�20J Theoretical Experimental

Polystyrene (PS) 6.6 32.1 33.0
Polytetrafluoroethylene

(PTFE)
3.8 18.5 18.3

Water 3.7 18.0 73.0
Glycerine 6.7 33.0 63.0
aThe Hamaker constant is a interacting system specific parameter representing Van der Waals
interaction between bodies

Table 2 Comparison between the surface energies of PS according to data found in the literature

Determination method

Surface energy, mJ/m2 1 2 3 4 5 6 7

	d 42:0 44.0 26:5 26:5

	p 8:1 8:3

	ab 1:1

	 43:1 42.6 32.8 32:6 34:8 34.9
Reference [23] [24] [25] [25] [17] [17] [26]

	d being the dispersion component, 	p polar and 	ab acid–base component of the surface energy;
	 is the entire surface energy; measurement technique or theoretical approach, respectively: (1)
Sessile drop method (geometric mean); (2) Owens–Wendt (harmonic mean); (3) according to
Zisman; (4) according to Fowkes; (5) Owens–Wendt (geometric mean); (6) estimated from Tg
value; (7) estimated through measuring surface forces between two polystyrene surfaces

bonds between chloroform and water—Cl3C-H. . . OH2—can be interpreted accord-
ing to these ideas [19].

Surface energy of polystyrene, which is mono-polar, may be presented according
to this approach as follows [18] 	d D 42mJ/m2; 	C D 0; 	� D 1:1mJ/m2.

Bibliographical values for the surface energy of polystyrene are summarized in
Table 2.

Furthermore, significant non-dispersion contributions to the surface energy
were found for polymethylmethacrylate (PMMA), polyvinylchloride (PVC),
polyvinylchloride (PET), polyamide (PA 6) and none for polytetrafluoroethylene
(PTFE), polyethylene (PE) and paraffin [18].

To determine acidic and basic components of work of adhesion, we need already
three liquids. A new computational algorithm was proposed for this purpose by
Good and Hawa [27] as an improvement of their own work. Therein, the acceptor
	C and donor 	� parameters are calculated as solution of a system of nine equations
for nine unknowns by means of three polar liquids at three solid surfaces.

Then work of adhesionWA can be calculated as follows:

WA D 2

q
	d1 � 	d2 C 2

q
	C
1 � 	�

2 C 2

q
	�
1 � 	C

2 :
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The behaviour of liquids on smooth solid surfaces is rather well understood.
However, for rough solid surfaces the situation is much less clear, even though
roughness occurs on practically all real surfaces of engineering or biological
interest. The contact water angle is widely used as a criterion for evaluating
surface hydrophobicity/hydrophilicity. However, recognition of the importance of
surface hydrophobicity is growing in various industries, such as those of glass,
automobiles, and electronics. To date, the contact angle and contact-angle hysteresis
(the difference between the receding contact angle and the advancing contact angle)
have been commonly employed as criteria for assessing the hydrophobicity or
hydrophilicity of solid surfaces. An extensive overview about several models for
predicting wetting behaviour can be found in [28].

2 Contact Angle Measurements

Two methods proved to be useful for characterisation of surfaces—sessile drop
method and Wilhelmy plate method [29]. With the sessile drop method, a drop of
test liquid or of melt is placed on the solid. After reaching equilibrium, the contact
angle is read on an enlarged picture of the resting drop. With the Wilhelmy plate
method, a sample with well-determined geometry is dipped in the test liquid, then
the contact angle is determined from the changes in force occurring in the process.
This method is especially suitable to characterise wetting kinetics on fibres by
polymer melt. Velocity and degree of fibre wetting by polymer melt can be directly
followed, allowing consideration of the rheological aspect when characterising
strength properties of actual composite materials.

2.1 Quasi-static Contact Angle Measurements

The sessile drop method is used to investigate wetting of pure liquids on real
surfaces in order to characterize the solid surfaces, or of aqueous solutions of
surfactants, polymers and other water-soluble substances on model solid surfaces in
order to characterize the solutions. The measurement data are the contact angle � ,
drop base “d” and drop height “h” of the drop as shown in Fig. 3.

In an effort to obtain a more precise description of the surface energy, measure-
ments of advancing angle �A and receding angle �R are increasingly used. The
difference between the advancing and the receding angle is referred to as contact
angle hysteresis (�A � �R). The latter provides additional information on surface
morphology and chemical composition as well as on surface roughness. However,
it should be remembered that contact angle measurements only allow determination
of changes as against the standard.

It is well known that the state of a surface affects crucially its wettability.
Therefore, controlling the surface properties such as roughness, surface structure
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Fig. 3 Droplet “sitting” on a
surface: sessile drop method

Fig. 4 Measurement of the advancing and receding contact angle of a fixed particle layer using
the Wilhelmy plate method

and chemical composition is of great importance. Only in exceptional cases it is
possible to infer the kind of surface alterations (roughness, chemical differences,
charges, etc.) directly from contact angle alterations.

Advancing and receding contact angle measurements are possible force-driven
if the drop volume will be increased or decreased. Since work of adhesion is by
definition reversible, speaking in terms of thermodynamics, wetting and de-wetting
should be identical, if there is enough time for balancing out the contact angle. There
might not be any hysteresis if, beside van der Waals forces between liquid and solid
surfaces (which are always present), no additional forces would participate in con-
tact formation. Thus, a contact angle hysteresis can provide important information
on molecular processes progressing at the interface (acid–base interactions).

An alternative method to evaluate wettability of a surface is to raise the liquid
level gradually until it touches the handing plate or cylinder such as a single
fibre suspended from a balance. The increase in weight is then noted, and this
method is known as the Wilhelmy plate technique. The modified Wilhelmy plate
method is gaining importance in view of the growing interest in determining the
contact angles on nanoscalic materials—particles, fibres, nanotubes being added
to polymeric compounds and other complex fluids [30, 31]. The principle of this
method is balancing a thin plate immersed in liquid. If this technique is performed
as a dynamic method, the partial contact angle values are attained reaching its
maximum value—advancing contact angle �A, by immersing the plate into the
liquid. If the plate is moved out of the liquid, receding contact angle �R is obtained
(as shown in Fig. 4).
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Based on the modified Wilhelmy plate method, wettability of porous media such
as powders can be characterised by spontaneous capillary penetration of a liquid into
pores spaces. Two experimental techniques are most commonly employed. The first
one, height-time technique, see e.g. [32], measuring the height to which the liquid
front advances in porous solids during the capillary rise process, and the second
one, weight-time technique developed by Chwastiak [33], studying the increase
in the weight of porous solids caused by the progression of the liquid inside their
pores. In both cases, the experimental results were described by means of Washburn
equation [34]. The literature on this topic is vast. The complex geometry of particle
pore spaces creates numerous combinations of interfaces, capillaries, and wedges
in which a liquid is retained, and results in a variety of air–liquid and solid–liquid
configurations, making the interpretation of the results extremely difficult.

2.2 Dynamic Wetting Measurements

Contact angle as a thermodynamic equilibrium property, virtually all the published
data for which reproducibility is claimed, are measurements of advancing contact
angle within a minute of three-phase contact (TPC) line displacement. The second
category is that of truly dynamic contact angles. If the TPC line as a phase boundary
liquid–solid simultaneously moves relative to the adjacent solid surface, a dynamic
contact angle will be observed. Dynamic contact angle means the contact angle as a
function of time, which can significantly differs from the static contact angle.

Dynamic wetting measurements are possible either force-driven, if the drop
volume will be increased/decreased or as time-dependent contact angle measure-
ments with a constant volume. In the former case, advancing or receding angles4

are formed to analyze the contact angle hysteresis, i.e. analysis of chemical
and mechanical heterogeneities (as described in Sect. 2.1). In the latter case, the
temporal contact angle change because of spontaneous spreading of the liquid is
measured. If the spreading velocity is limited by the resistance of the TPC line,
this phenomenon is referred to as wetting dynamics or wetting kinetics as shown
in Fig. 5. The contact angle depending on the contact time of solid surface with
measuring liquid is called dynamic contact angle.

For many applications, surfactants are introduced into the aqueous phase to
increase the rate and uniformity of wetting. Despite their enormous technical
importance, there is a lack of data in the literature about the spreading dynamics
of aqueous surfactant solutions. The knowledge of how surfactant adsorption at the
surfaces involved affects the spreading mechanism and dynamics is also limited.
For more detail on wetting dynamics see [35–38]. Dynamic wetting measurements
allow studying surfactants, polyelectrolytes or other surface-active substances as
well as their mixtures and engineered surfaces [39].

4Strictly speaking, these are quasi-static measurements in the physical sense.
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Fig. 5 A water drop containing surfactant molecules simultaneously spreading over a surface

3 Wetting Measurement in Technological Applications

Characterization of materials based on wetting measurements/interfacial thermo-
dynamics is the most frequently used method in technological applications.

3.1 Fibre Wetting in Composite Processing

In fibre-reinforced composite processing, characterization of both—fibre surface
properties and wetting behaviour of polymer on fibre is important [40]. From the
experimentally determined contact angles of water, the surface free energies of
fibre surface can be estimated using the equation of state for solid–liquid interfacial
tension as described in Sect. 1.5. The modified Wilhelmy technique is also used to
measure diameter of fibres [41].

Since the contact formation between fibre and matrix during composite process-
ing occurs from the melt or solution, it is necessary to investigate fibre wettability
for optimization of interfacial adhesion properties. Most thermoplastic polymers
used in practice have a relatively high melting point, high softening temperature and
high viscosity of the melt. This can cause an incomplete wetting of the reinforcing
material by the melt and thus hamper the contact formation due to the fact that
the actual contact zone becomes relatively small after the consolidation of the
melt (the larger the contact area created the stronger the adherence). However,
wetting measurements are indispensable as additional source of information for a
comprehensive analysis of the interfacial properties of some practically relevant
systems.

As described in [42], a Wilhelmy high-temperature wetting apparatus was
used to study the adhesion between polymer blends and unsized glass fibres by
determining the polymer melt wetting tension. The measurable quantity in the
Wilhelmy experiment is the wetting tension 	L cos � at the polymer melt/solid
interface, which equals the force F per unit length of the perimeter p of the solid
sample:

	L cos � D F

P
D g�m

p
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where 	L is the surface tension of polymer melt, � is contact angle, g is the
gravitational constant, �m is the change in mass before and after the fibre is
immersed into the polymer melt. The high-temperature wetting apparatus [43]
consists of a highly sensitive Sartorius microbalance (sensitivity of 1�g), which
is connected to a high-temperature cell through a stainless steel tube with an inner
diameter 8 mm. The thin glass fibres used as solid probes are attached (using epoxy
glue) to a metal wire, which is hooked onto another longer wire. The latter is fixed
to the microbalance. In the high temperature cell the blends are heated under an
inert gas flow. The temperature can be controlled with an accuracy of ˙0:5ıC. The
polymer is brought into contact with the fibre by moving a motor-driven table at a
constant velocity of 0.15 mm/min. The temperature in the cell, the velocity of the
motor-driven table, recording of the change in mass by the microbalance before and
after the fibre is immersed in the melt, and the atmosphere in the cell (inert gas
pressure) are controlled by a computer. Before the fibre touches the polymer melt
surface, its weight contribution is zeroed by the calibration routine of the balance.
After the fibre has contacted the melt surface, the balance records the gain in weight
caused by the wetting of the fibre.

The main difficulty in this experiment is the high viscosity of the polymer
blend. Consequently, not only surface tension effects have to be considered in the
Wilhelmy experiment but also hydrodynamic effects. Due to the forced fibre/liquid
motion, non-negligible force contributions result from the shear stress exerted by
the viscous flow of the liquid on the fibre. To exclude these hydrodynamic effects
in wetting measurements, the fibre is held stationary at a constant penetration depth
until viscous relaxation occurs. It is assumed that the meniscus of the liquid returns
to equilibrium when a constant weight is reached. Only under these conditions, the
measured force per unit length equals the wetting tension of the solid/polymer melt
system. The fibre was immersed into the melt to a penetration depth of 0.15 mm. At
this depth it was held stationary for 2 min, then the fibre was immersed to 0.30 mm
depth and again held stationary for 2 min. At the last immersion stage, 0.45 mm
depth was reached, glass fibre was held stationary for 5 min and after that it was
emerged using the same sequence (0.15 mm/min emersion rate, two stops for 2 min
each, at 0.30 and 0.15 emersion depths). Such immersion/emersion sequence allows
polymer blend meniscus to relax, which results in a constant weight difference.
Complete wetting was assumed when no weight difference was observed after the
fibre was immersed and emerged at a given temperature. On average, the time
required for one measurement was 30–45 min. A typical curve from a Wilhelmy
balance experiment with the blends and a thin unsized glass fibre is shown in
Fig. 6. Negligible weight differences between immersed and emerged states confirm
a complete wetting mentioned above. This means that cos � D 1 and surface tension
of the blend 	L (not wetting tension 	L cos �) was measured.

Temperature coefficients were determined from 	L vs. T relationships as the
slope of the curves.

In order to understand the processes that occur at the epoxy resin–
polysulfone/glass fibre interface, surface tension of such blends was studied.
The aim was to determine the temperature dependence of the blends surface
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tension at the interface with glass fibres and how it was influenced by polysulfone
concentration. It was found that surface tension decreases as the temperature
increases which is quite typical for 	L vs. T relationships and was already observed
for different liquids, oligomers and highly viscous polymer melts. Temperature
dependencies (Fig. 7) also contain information about the surface entropy, which is
defined as -(d	L=dT ). It was found that incorporation of polysulfone significantly
changed the surface entropy. In most cases, temperature coefficients of the blends
were markedly lower than that of pure epoxy resin. It is also very interesting
that incorporation of 5 wt% polysulfone resulted in the maximal decrease of -
(d	L=dT ), while the surface entropies for the blend with 10 wt% modifier as well
as that obtained for epoxy resin-15% polysulfone blend are closer to the -(d	L=dT )
value for epoxy resin. However, two -(d	L=dT ) values were obtained for epoxy
resin-10% polysulfone blend. Its surface entropy, calculated for the 170–190ıC
temperature interval, is the highest, even when compared with the unmodified
epoxy resin. It could be possibly explained by the unstable structure of the blends.
It is assumed that the driving force for a good flow of a polymer is low viscosity,
whereas for a good wetting of a substrate a low surface tension of the polymer is
needed. In our case, the viscosity of the blends increased with polysulfone content
increase which could possibly result in the retardation of the fibres impregnation
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during composites production. On the other hand, surface tension values of the
blends, except for 5 wt% polysulfone, were close to that of epoxy resin, so they
should not lead to significant changes in the fibres wetting.

Overall conclusion of the studies can be drawn as follows, underlining the
importance of wetting measurements in composite processing: A combination of
wetting measurements based on the modified Wilhelmy plate method and rheolog-
ical investigations in the system epoxy resin–polysulfone/glass fibre revealed that
(1) activation energy for viscous flow as well as surface tension vs. polysulfone
concentration relationships are nonadditive; (2) no significant changes in the
kinetics of fibres wetting by the blends with increase in polysulfone content were
observed; (3) all the ternary blends (epoxy resin–hardener–polysulfone) required
at least 30 min at 180ıC to achieve ultimate levels of the properties measured; (4)
sea-island morphology of the blend with 5 wt% polysulfone and morphology with
co-continuous phases in the case of blends with 10–15 wt% polysulfone were found
after curing.

3.2 Wetting Studies on Human Hair

Dynamic penetration studies on differently modified human hair makes it possible to
estimate the possibilities of water-soluble polymers to act as care components both
in conventional shampoo formulations (free of the oil component) and in micro-
emulsions. To estimate the spreading behaviour of water in terms of penetration
rate, the capillary penetration method was used and improved. Methodological
studies were accompanied by a study to determine water-absorbing capacity, water
release by evaporation, topographic properties such as roughness and lustre of hair
surfaces treated compared to the reference hair available as damaged (bleached) and
undamaged.

The development was done with three different formulation concepts—a clas-
sical hair shampoo formulation, a micro emulsion based formulation and three
market formulations claiming conditioning effects. Each formulation concept was
represented by three different samples. The developed method is derived from a
classical Washburn approach [34] originally developed to measure powder wetting.
A bundle of parallel hair fibres in a measurement tube is connected to a micro
balance. Water fills the measurement tube due to capillary effects once the hair gets
in contact with the water and the weight of the tube increases. The weight increase
over time is measured. It is dependent to the hydrophilic/hydrophobic properties of
the surface. The influence of a hair care formulation on the surface of the hair can
be detected by comparing untreated and modified hair samples.

The analysis can be made in an apparatus usually used for the measurements of
surface tensions. The instrument has to offer a micro balance and the capability for
time dependent measurements.

The hair of Asian type was purchased from Kerling International Haarfabrik in
Backnang. Since healthy hair is by a sebum layer protected, hair under study was
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Fig. 8 SEM images of a reference hair (left) and a hair after bleaching (right)

damaged (roughened and hydrophilized) through bleaching in order to investigate
the effect of individual polymer as additives in a care shampoo formulation. 10 ml
of a 30% solution of H2O2 and 90 ml of a 30% solution of NH3 were mixed. For
deactivation of the mixture after hair bleaching NaHSO4 was used. In Fig. 8, a
reference hair as purchased and a hair after bleaching is shown.

The hair was cut into bundles of 10 cm lengths which are approximately
two times longer than the measurement glass tubes. The hair was washed three
times in a 1g/l solution of Marlipal 242/28 (Fatty alcohol-(C12-C14)-polyethylene
glycol-(2 EO)-ether sulphate sodium salt, INCl: sodium laureth sulfate) kindly
provided by Sasol (Marl, Germany) in deionised water at 25ıC (reference hair).
After washing, the hair is reconditioned by pure deionised water until no traces of
surfactant can be detected. Finally, the hair bundles are dried at 40ıC in a vacuum
oven for at least 2 h followed by drying overnight at room temperature.

For measurement glass tubes with an inner diameter of 2 mm and a length of
4 cm, hair portions of about 100 mg are separated. Every portion is arranged to a
parallel hair bundle and pulled through the measurement glass tube with a sling. The
hair is cut perpendicularly to the fibres at the bottom and the top ends of the glass
tube. The hair bundle juts 3 mm out from the bottom end. The prepared measurement
glass tubes are clearly marked and stored in a temperature-controlled laboratory
maintained 24 ˙1ıC and 40 ˙3% humidity.

A major drawback of the approach is the difficulty to get a constant packing (i.e.
identical capillaries) in every glass tube especially with inhomogeneous fibres like
human hair because small differences in the packing result in poor reproducibility
of the experiments. Therefore, a calibration measurement with reference hair is
required to scale measuring results to a comparable level. Thus, every tube is
characterised by a calibration measurement with pure water. First, the weight of all
filled glass tubes is determined. Then every sample is measured using the capillary
rise technique according to the modified Washburn approach with deionised water.
A typical graph for the weight vs. time curve is shown in Fig. 9.

The penetration rate is determined from the linear part of the weight vs. time
curve by averaging at least 10 measurements. Next to the calibration measurement,
the hair was reconditioned for the treatment with the hair care formulation. The
measured sample is wetted completely with deionized water. After calibration,
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Fig. 9 Experimental set up (left) and single calibration measurement with pure water (right)

glass tubes are reconditioned at 40ıC in an vacuum oven for 2 h followed by drying
overnight at room temperature until the prior determined sample weight is reached
again.

A solution of desired formulation was solved in deionized water to a concen-
tration of 1 g/l. Each of 10 glass tubes is immersed into an usual test tube with
9 ml of the formulation solution for 30 min. After treatment, glass tubes containing
hair bundles were rinsed several times with deionized water and dried according
the drying procedure described above. The procedure was repeated 3 times until the
surface tension of the rinsing water is identical with those of the pure water. Finally,
the penetration rate of pure water is determined again as in the calibration procedure.

A comparison of the parameters investigated reveals that some polymers under
investigation are well suitable as care components in a shampoo formulation.
Moreover, it is possible to evaluate the influence of the oil component (paraffin,
jojoba and silicone oil) in regard to the care effect. Jojoba and paraffin oil, in
connection with the “care polymers” bring a positive effect for damaged hair, i.e.
a considerable increase in the surface hydrophobicity, an improvement in lustre
accompanied by surface smoothing and a time reduction in drying the hair. In the
case of damaged hair, the conventional formulation with a care component gave
better results than a micro-emulsion.

Additionally, contact angle of water on differently modified single hair was
measured using the Wilhelmy plate method. In Fig. 10a, advancing and receding
contact angles of pure water as well as their average values for reference hair
were presented. In Fig. 10b, water contact angles as well as the water contact angle
hysteresis for differently modified hair are summarized.

3.3 Wetting Measurements in Textile Characterization

It is well-known that the qualities of fabrics are closely dependent on their structure.
Particularly, construction parameters, such as fineness of filaments and yarn, warp
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Fig. 10 Advancing and receding contact angles of water for reference hair cleaned with sodium
laureth sulphate measured using the Wilhelmy plate method: the water advancing contact angle
�A D 87:5ı and the water receding contact angle �R D 73:8ı (a), and contact angles for differently
modified hair in comparison (b)

and weft density as well as the type of weave, control the texture and surface
topography of fabrics. The fabric texture affects the porosity and strongly influences
the textile characteristics such as fabric mass, thickness, draping ability, stress-
strain behaviour or air permeability [44–46]. The surface topography of fabrics
is responsible for their functionality—appearance and handle, wettability, soiling
behaviour and cleanability [47, 48], abrasion resistance and wear [49]. There are
very few systematic investigations of quantitative relations between construction
parameters, topography of fabrics and their wettability, however.

The interaction between liquids and textile surfaces depends on the wettability
of fibres, their surface geometry, the capillary geometry of the fibrous assembly, the
amount and chemical nature of the liquid as well as on external forces. A randomly
rough textile surface possesses pores, crevices, capillaries or other typical structures
with their own characteristic wetting and penetration properties. As a consequence,
the apparent contact angle on these surfaces will be affected by thermodynamics
and kinetics associated with such intrinsic structures.

Wetting measurements in textile characterization are useful to evaluate changes
before and after their modification in every respect. Dynamic contact angle measure-
ments of aqueous surfactant and polymer solutions were used on textile surfaces in
order to examine their soil-release properties [47, 48, 50].

Wetting measurements was used to estimate the degree of both, oily dirt sticking
on the fabric after impregnation with different soil release polymers (SRP) and soil
removal after washing. Cleanability of soiled textiles was evaluated as well by the
soil additional density (SAD) analysis. The results demonstrated the application of
dynamic wetting measurements in characterising both textile materials and inter-
actions between them and aqueous solutions of soil release polymers. Differences
between individual SRP were determined with respect to their spreading velocity
on fabrics despite the similarity of their chemical composition and of the surface
tension of their aqueous solutions. The weft-knitted double jersey fabric with the
markedly higher filament fineness and surface porosity was found to show higher
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t = 0.00 s t = 0.02 s t = 0.04 s t = 0.06 s

Fig. 11 Image sequence of a water drop applying to the surface of weft-knitted double jersey
fabric treated with SRP [47]

Fig. 12 Dynamic contact
angles for the woven fabric
F2 after soiling and washing
with and without
pre-treatment with SRP:
(circle) untreated; (light gray
square) after treatment with
SRP; (black square) stained
after treatment; (gray square)
washed after treatment and
staining; (black triangle)
stained without treatment;
(gray triangle) washed after
staining without treatment

relative cleanability in soiling tests if treated with soil release polymers. In the case
of untreated stained one, washing dramatically affects its cleanability (i.e. stain
spreads over the whole surface) comparing with other textile materials.

The results for the spreading velocity (dr=dt) are conform with the data for the
surface porosity for knitted fabrics: higher porosity leads to faster spreading. In the
case of the woven fabric, the spreading velocity is, however, higher than that for
knitted ones at comparable porosity, demonstrating the dependency of spreading
characteristics on the kind of fabrics used. After treatment with SRP, recording of
water contact angles was hardly possible due to complete hydrophilization of the
fabrics surfaces. Figure 11 illustrates the image sequence of a water droplet applied
to the surface of weft-knitted double jersey fabric treated with SRP. It is clearly seen
that the water droplet completely penetrate into the textile surface after only 20 ms.
Others SRP used show the same tendency.

Figure 12 shows (as an example) the dynamic water contact angles for a
woven fabric. For the rather hydrophilic woven fabric, soiling hydrophobised its
surface in both cases without and with pre-treatment with SRP. The fabric remains
hydrophobic after its washing.

The SRP treatment of warp-knitted fabric and woven one also results in lowering
their surface energy and improving their water absorptivity. The differences between
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Fig. 13 Microscopic images of (cross-sectional view) of round (left) and cruciform (right) cross-
sectional shaped filaments [51]

untreated and impregnated states were here, however, less marked than those for
weft-knitted double jersey. It should be noted in this case, the weft-knitted double
jersey fabric was made from textured “super-hydrophobic” properties to the fabric’s
surface.

In other studies [50–52], it was shown that the wetting, soiling and cleanability
properties can be affected by using yarn of the same chemical nature with different
structure and differently profiled polyester fibre, different types of weave and differ-
ent weft density keeping the warp density constant. It is well known, that synthetic
fibres which are predominantly spun by the melt spinning method with spinnerets
having the non-circular hole geometry are called profiled or non-circular fibres.
Various types of non-circular fibres have been developed to add functionalities and
aesthetics to synthetic fibres leading to the change of their surface properties. The
cross section of a synthetic fibre produced by the melt-spinning method can be easily
varied by changes in the spinneret hole shape. In general, fibres consisting of non-
circular cross-sectional shaped filaments show properties different from those of
fibres with circular cross-sectional ones, including the bending stiffness, coefficient
of friction, softness, lustre, comfort, pilling, bulkiness, handle, and performance.
Microscopic images of different filament cross sections are illustrated in Fig. 13.

Variations in interlacing are also reflected in the fabric wettability considered in
terms of the spreading rate as reported earlier [53]. The spreading rate decreased
with increasing waviness for the plain weave, whereas it increased in the case of the
twill one. It was concluded that the fabric wettability could be adjusted (in certain
limits) by variation of density and interlacing keeping in mind the same chemical
nature of microfilaments. Noticeable differences in the wetting behaviour of water
are seen between the two types of weave if changes in porosity are considered. In
the case of the plain weave, higher weft density leads to lower porosity and to higher
water absorption time, as a consequence, shown in Fig. 14.

Moreover, water penetration into the plain texture is slightly slowed down with
increasing porosity, reaches a maximum value of the absorption time (about 16 s) in
the porosity range of approximately 1�m3/�m2, and then accelerates towards the
higher porosity values. It can be speculated about a “critical” value of the fabrics
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Fig. 14 Absorption time vs. surface porosity calculated as the ratio between the real pore
volume and the corresponding geometric surface for (white square) plain and (black square) twill
structures. Reprinted from [52], Copyright (2008), with permission from SAGE publications

porosity. Presumably, below this value water percolates with low velocity and above
this with high a value. On the contrary, higher weft density of the twill weave results
in higher porosity. The values of absorption time obtained for the twill texture are
generally very low in about 2–5 s and almost independent of the porosity.

The differences in the penetration behaviour of water observed on two predeter-
mined pattern of interlacing are caused by the different topographical structure since
the chemical nature of filaments used was kept constant. It is noted, that the lateral
distance between the threads is about 120 and 300�m for the twill and plain weaves,
respectively. The vertical dimension of the surface features is measured up to 20�m
for the plain topography and 40�m for the twill topography. It is well known that in
the case of moderately hydrophobic surfaces the complex internal geometry of real
porous systems could enhance liquid penetration. The fabrics used were woven from
polyester yarn. As reported earlier [35], this polymer is moderately hydrophobic
with the water contact angle of 77ı on its flat surface. The results obtained in the
present study would suggest that water advanced in a stable flood (wicking regime)
is observed [54]. The difference in the penetration behaviour (lower for the plain
weave and faster for the twill weave) arises with the difference in the shape and size
of the pores.

In essence, to achieve a more hydrophobic fabric texture, the technological
parameters could be changed as follows: for both plain and twill structure, the weft
density and filament fineness should be increased, and the yarn fineness should
be reduced. Alternatively, the use of profiled fibres, e.g. cruciform, the fabric
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Fig. 15 Woven structures: (a) plain weave; (b) twill weave; and weft-knitted structures: (c) face
side and (d) reversed side

manufacturing could lead to a more hydrophobic fabric texture on the basis of
different roughness length scales [52].

An alternative method to evaluate the wettability of a textile surface is to raise
the liquid level gradually until it just touches the hanging plate (or cylinder like
single fibre) suspended from a balance. The increase in weight is then noted (cf.
Sect. 2.1). Major advantages of the Wilhelmy plate technique are (1) the conditions
of measurements are highly reproducible; (2) the speed of movement of the three-
phase boundary is readily controlled; (3) the sensitivity of the technique is very
high. Close agreement can be obtained between the Wilhelmy technique and careful
measurements by the sessile drop technique. The plate method is especially useful
when kinetic effects (adsorption, desorption, etc.) are important.

The liquid uptake measurements by means of the Wilhelmy plate technique
were carried out with differently enzymatic treated fabrics of different type. A
fabric sample is connected to a micro balance. Before the fabric sample touches
the water surface, its weight contribution is zeroed by the calibration routine of
the balance. After the fabric sample has penetrates into a liquid (defined depth of
1 mm), the balance records the gain in weight caused by the wetting of the textile
and liquid uptake into the fabric due to capillary effects. Images of fabrics with the
woven structure are illustrated in Fig. 15. The weight gain over time is measured.
It is strongly dependent on the hydrophilic/hydrophobic properties of the surface.
The influence of the fabrics modification can be detected by comparing differently
modified samples. The liquid uptake rate is determined from the linear part of the
mass square vs. time curve by averaging at least 3 measurements. The measurements
were carried out with water and paraffin oil.

Comparing water and oil uptake rates with fabric surface topography parameters
(roughness, surface porosity), it is possible to conclude about the effectiveness of
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Fig. 16 Water (left) and paraffin oil (right) uptake rate of plain weaved fabric

modification in respect to cleanability and water evaporation capacity, i.e. drying
rate.

A comparative analysis between different ether carbon acids with respect to
wettability of fabrics, surface topography parameters and mechanical treatment by
abrasion was done using the modified Wilhelmy plate method. To estimate the
degree of hydrophobicity of textile surfaces before and after impregnation with
protective finishes, dynamic wetting measurements were carried out with a dynamic
absorption and contact angle tester. The water uptake rate is determined according to
Washburn from the linear part of the mass square vs. time curve as shown in Fig. 16.
Surface topography of fabrics was examined using an imaging measuring instrument
for the optical analysis of roughness, MicroGlider (FRT, Germany), operating on
principle of chromatic abberation. The measuring method was described in more
detail in [47].

In Fig. 16, water and oil uptake is shown.
Some topography parameters such as mean roughness depth (Rz) and surface

porosity (porosity of fibre surfaces without spaces between fibres) were obtained
from the images with a size of 1 mm � 1 mm. The porosity is calculated as the ratio
between the real pore volume and the corresponding geometric surface excluding
spaces between fibres.

After impregnation of polyester materials with protective finishes carried out
through immersion of these in the corresponding aqueous protective finish solution
for 5 min, polyester fabrics were abrasively treated by using an abrasion test instru-
ment APG 1000 (Maag Flockmaschinen, Germany). After abrading, wettability and
surface topography of tested fabrics were re-examined (Table 3).

The modification of knitted fabrics with a finishing agent leads to a significant
increase of the porosity, which is threefold higher for their unmodified face side than
that for the modified one. Comparing macroscopic roughness parameters obtained
for the modified twill woven fabric, a decrease is ascertain after its mechanical
treatment by abrasion, and vice versa for the plain one. Differences between changes
in roughness of three polyester textile materials with different initial topographic
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Table 3 Topography parameters for fabrics used before and after abrading

Surface porosity, �m3/�m2

Modified with 2, Modified with 2,
Type of fabrics Unmodified before abrading after abrading

Plain 1.2 0.6 1.9
Twill 0.7 1.2 0.9
Knitted, face side 1.8 5.4 1.9
Knitted, reversed side 2.1 2.4 2.2
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Fig. 17 Dynamic water contact angle for differently modified fabrics: (a) before their abrading;
(b) after their modification by abrasion

structures being modified with a protective finish being ether carboxylic acid
(isotridecanol ethoxylated carboxymethylated with pH 2.94 and surface tension of
26.4 mN/m) before and after their mechanical abrasion were determined despite
the similarity of their chemical nature in the case of the soiling behaviour of such
fabrics.

Figure 17a shows water contact angles for the fabrics before and after impreg-
nation with different ether carbon acids (7 different substances obtained by Sasol
Germany, Marl detailed in [49]) as measured using sessile drop method. The
treatment of fabrics with these finishing agents results in lowering their water
absorptivity. No significant differences were seen between different finishes with
respect to hydrophilization of the fabrics. Water dynamic contact angles for unmod-
ified fabrics and after their mechanical abrading are shown in Fig. 17b. A decrease
of the water contact angle for unmodified fabrics indicates dramatic decreasing
their abrasion resistance. Obviously, fabrics abrading, especially for knitted fabrics,
results in increasing porosity followed by changing the wetting behaviour from
highly hydrophobic to penetrating one.

Water uptake rate of the fabrics measured before and after abrading are summa-
rized in Table 4 for the fabrics used. Interestingly, water penetrates fourfold faster
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Table 4 Water uptake rate for differently modified fabrics before and after their abrading

Water uptake rate �105, g2/s

Before abrasion test After abrasion test

Knitted

] Plain Twill Knitted Plain Twill f l

0 0.04 0.15 1.84 8.01 1.39 99.83 174.0
1 0.03 0.02 1.71 0.60 0.71 5.96 23.17
2 0.04 0.02 9.97 0.65 1.0 120.0 151.0
3 0.03 0.06 35.4 8.79 10.0 254.0 140.0
4 0.01 0.01 0.34 7.79 7.59 5.46 33.95
5 0.1 0.06 20.8 0.69 1.7 112.0 137.0
6 0.1 0.14 53.4 7.68 1.36 314.0 492.0
7 0.002 0.02 0.73 7.84 7.63 270.0 160.0
(f) after abrading the face side of knitted fabric; (r) after abrading the reversed side of knitted fabric

into the woven fabric than into the knitted fabrics. The difference in the penetration
behaviour arises from the difference in the shape and size of pores. From water
uptake results, which are in agreement with dynamic contact angle measurements,
the finishing agent 1 is the “best” for woven fabrics with the twill type of weave.

The finish 2 is also suitable with respect to changes in the wettability after
abrading: the changes will be marginal. For knitted fabrics, the finish agents 1 and 4
seem to be the most suitable. From the contact angle measurements, the finishes
4 and 5 were obtained to be appropriate for this kind of polyester fabrics. In contrary
to the wetting results describe above, the most suitable protective finishes for woven
fabrics with the plain type of weave are not 3 and 7, but 1, 2 and 5.

As differences between the wetting characteristics obtained from water uptake
measurements are larger than those from the dynamic contact angle measurements,
the water uptake rate seems to be more significant in estimating the “best” finishing
agent. For all fabrics, the “best” finishing agent was revealed to be 1 in respect of
changing the wetting characteristics.

The mechanical treatment of the fabrics by abrasion results in a decrease in
hydrophilicity due to fuzzing (also called fuzzy and hairy, is a fabric condition
characterized by a hairy appearance due to broken fibres or filaments.) caused by
abrasive testing. To prevent unwanted changes in appearance of the fabrics usually
occurring during washing, cleaning or in wear, fabrics can be modified with the
following protective finishes: for plain woven fabrics, the finishing agents 3 and 7
would be the most suitable; for twill woven fabrics, the finishes 1 and 7 seems to be
the “best”; for knitted fabrics, the finishes 4 and 5 can be used for modification. This
analysis was done by assuming the slightest changes in fabrics wettability compared
before and after abrading. A significant decrease of wettability indicates that some
fuzzing defects appeared. A significant increase of wettability might be caused by
gaping defects caused by irregular shrinkage of the yarns due to abrasive testing.

To explore the influence of different ether carboxylic acids provided by Sasol
Germany as spin finishes for polyester fibres as well as protective finishes for
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polyester fabrics, friction coefficient of polyester yarn produced by melt-spinning
process and abrasion resistance of fabrics, respectively, were determined.

From friction measurements of fibre against steel, the spin finish 2 (Isotridecanol
ethoxylated carboxymethylated) is evaluated as “the best” among other finishing
agents with respect to decreasing the fibre friction.

The influence of textiles surface properties such as their topographical structure
and degree of hydrophobicity on spreading and penetration behaviour of water
before and after treatment with protective finishes as well as before and after
mechanical treatment by abrasion was investigated.

The dynamic wetting and water uptake measurements were carried out to
check the wetting characteristics of differently modified fabrics—impregnated with
protective finishes and mechanically abraded. From these measurements, the water
uptake rate seems to be a suitable parameter to estimate the abrading degree. The
time of total absorption of water from the dynamic contact angle measurements
as a wetting measure indicates changes in absorbing capacity after modification of
fabrics with different protective finishes. The results described in this study support
the usefulness of imaging techniques based on the principle of chromatic aberration
as well as wetting measurements in characterising the surface of textile materials
before and after their surface modification.

3.4 Wettability of Engineered Nanoparticles

A conceptually new methodology to collect information about wetting properties of
technologically relevant nanoparticles using the Wilhelmy plate method along with
modern optical techniques for surface roughness analysis is presented in brief. The
results are based on several differently modified synthetic alumina particles as sun
blockers for sunscreen products.

Emulsions are common formulation concepts employed to build stable systems
consisting of two immiscible or partly immiscible liquids. They can be formed
and stabilized only in the presence of well selected surfactants, polymers, proteins
and their mixtures. Traditionally, surfactants composed of a hydrophilic and a
hydrophobic part within the same molecule are used as emulsifiers. With increasing
legal and consumer requirements to the emulsifiers being non-toxic, biodegradable,
mild to skin and mucous, and with an attractive price/performance ratio, degrees of
freedom in selecting and designing classical emulsifiers are limited. Consequently,
industries such as cosmetics and pharmaceutics with high standards for product
safety are seeking for alternatives to the conventional formulation concepts.

A new alternative approach uses nanoparticles according to the well-known
principle of Pickering [55]. Especially, for products which contain particles in
their formulation an additional or even complete stabilization by these particles
will be a new and interesting concept. The key factor for the use of particles as
stabilizing agent is their wetting by the two phases, namely the oil and aqueous
phase. However, the affinity to each of the two phases should be different and is
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Fig. 18 Measurement of the advancing (left) and receding (right) dynamic contact angle of a fixed
particle layer using the Wilhelmy plate method

expressed by the contact angle. The contact angle is an excellent measure describing
the wettability of particles and their affinity interacting with liquids. Furthermore, it
affects the stability of the emulsion through the energy of attachment in particles at
the interfaces. In general, factors that affect surface chemistry and contact angles,
will impact the stability and characteristics of the emulsion [56, 57].

Wettability of powders can be characterized by spontaneous capillary penetration
of a liquid into pore spaces, however, the complex geometry of particle pore
spaces creates numerous combinations of interfaces, capillaries, and wedges in
which a liquid is retained, and results in a variety of air–liquid and solid–liquid
configurations, making the result interpretation extremely difficult.

Pickering emulsions require sufficiently small particles which are usually at least
tenfold smaller in size than the dispersed droplets of the emulsion. However, existing
methods to characterize the particle wettability such as microsphere tensiometry,
film and gel trapping techniques, and drop shape analysis fail in view of such
small particles all with a similar size of less than 200 nm. In this study, wetting
properties of differently modified alumina nanoparticles have been investigated by
means of the modified Wilhelmy plate. This method seems to be suitable for a quick
wettability characterization, and, therefore, this method may become a significant
surface analytical tool in analyzing interfacial properties of powder materials.

Dispersible colloidal Boehmite alumina powders are used in this study, which are
manufactured by Sasol (Brunsbüttel, Germany). The aluminas were modified by the
manufacturer with p-toluene sulfonic acid (1) and alkylbenzene sulphonic acid (2).
The surface coverage by two various modifying agents, the size of powder particles
as well as of their primary aggregates in dispersion was investigated earlier in [58].

Water contact angles were measured to obtain the wettability of unmodified and
modified alumina powders by the modified Wilhelmy plate method illustrated in
Fig. 18.

The modified Wilhelmy plate method is gaining importance in view of the
growing interest in determining the contact angles on nanoscalic materials—
particles, fibres, nanotubes being added to polymeric compounds and other complex
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Table 5 Values of advancing contact angles measured by the modified Wilhelmy method and
sessile drop method as well as the ones corrected

Modified Wilhelmy plate Sessile drop method

Particle type Wenzel factor � , measured � , corrected � , measured � , corrected

1 1.994 18 62 10 60
2 3.815 54 81 91 90

Fig. 19 Topography images of modified plates (left) and (right) with particles 1 and 2, respectively

fluids [30, 31]. The principle of this method is balancing a thin plate immersed
in liquid. If this technique is performed as a dynamic method, the partial contact
angle values are attained reaching its maximum value—advancing contact angle,
by immersing the plate into the liquid. If the plate is moved out of the liquid,
receding contact angle is obtained. In our measurements, alumina powders were
attached to a double-sided adhesive tape. The measurements are performed at room
temperature with deionized water. The air contained in pores cannot be displaced,
as the plate roughness governed by attached particles is unavoidable, therefore,
several immersion-emersion cycles were carried out. The receding contact angle
seems to be more reliable because of its invariability during three measuring cycles.
In addition, quasi-equilibrium contact angels were measured using the sessile drop
method shown in Table 5.

The contact angle values measured using both methods seem to be underesti-
mated because of the plate roughness, actually desired. The water-in-oil (W/O) a
type of stable Pickering emulsion achieved using particles 2 cannot be explained
with values lower than 90ı. Assuming the Wenzel regime [59] during wet-
ting, values measured were corrected using the Wenzel roughness factor rs D
cos �measured = cos �smooth. This factor was estimated from topographic images,
shown in Fig. 19, taken with an image measuring instrument for the optical analysis
of roughness MicroGlider (FRT, Germany). The roughness factor of a surface is
the ratio between the real surface area and the geometric one. The correction of the
measured contact angles with the roughness factor includes the assumption that the
measured surface is completely wet, up to the scale of it’ resolution. It is obvious
that the determined roughness factor is bound by the resolution of the measuring
device.

It is known that Wenzel regime is often not favoured energetically in the case
of wet surfaces with roughness on many different length scales. It is likely that air
is trapped in grooves of the surface and only a fraction of the surface comes into
contact with the liquid. This case is referred to as the Cassie state [60]. It was shown
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that the incomplete liquid–solid contact is driven by the surface slope [61]. Below
a certain critical slope that depends on the true flat surface contact angle, Wenzel
regime is favoured whereas above that value the Cassie state prevails.

Hence, slope distribution of the measured surface should be taken into account
for further corrections of the measured contact angle on rough surfaces in order to
determine wetting properties of the powder particles.

A theory for wetting was presented recently considering a Gaussian random
surface [62]. Within the theory the average slope as well as the roughness factor
are determined by the same parameter that is connected with the surface roughness
power spectrum.

The results described above demonstrate the application of wetting measure-
ments by the modified Wilhelmy plate in characterising dispersible colloidal
powders. The difference between unmodified and modified alumina particles were
determined with respect to their hydrophobicity/hydrophilicity. Analysing this in
comparison with other properties of particles such as their electrical surface proper-
ties, the particle size in the dry and wetted states, and in an aqueous suspension, is
an important factor in a development and mechanistic understanding the stability of
emulsions.
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Wetting Transition and Line Tension of Oil
on Water

H. Matsubara and M. Aratono

1 Introduction

Originally, wetting has attracted wide attention in the field of applied chemistry
because of its crucial importance in industrial operations such as coating, painting,
and lubrication. However, since the pioneering theoretical work of Cahn [1], it has
become one of central academic research subjects in the field of soft matter science.
In his theory, when two phases are sufficiently close to their critical solution point,
the coexisting third phase must spread on the interface between these two phases.
This theory is based on the scaling law of the interfacial tensions of coexisting
phases near a critical point [2, 3] and has been verified by Cahn himself for a
vapor/methanol/cyclohexane system [4]. Subsequently, this wetting transition has
been extensively explored in the three-liquid-phase coexistence region of the water–
oil–nonionic surfactant mixtures [5–17]. These experiments suggest an important
relation between wetting transition and the structures of surfactant aggregates in
bulk solutions. Widom, Gompper, and Schick have reviewed the theoretical works
on wetting transition in ternary liquid mixtures based on the lattice model [18, 19].

In 1991, Brochard and co-workers classified wetting transition in a more simple
and general manner by using the initial spreading coefficient and the long-range
surface forces between the interfaces on both sides of the wetting film [20]. They
showed the existence of three thermodynamically different possibilities for a wetting
film: partial wetting, pseudo-partial wetting, and complete wetting (Fig. 1).

In the partial-wetting state, a liquid droplet placed on another material (substrate)
does not spread even on the molecular level and remains as a lens as a result
of a negative initial spreading coefficient (Si ). Both pseudo-partial wetting and
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partial-wetting pseudo-partial wetting complete wetting

Si < 0 Si > 0

A > 0 A < 0

Si > 0

a b c

Fig. 1 A schematic representation of (a) Partial wetting, (b) pseudo-partial wetting, and (c)
complete wetting of oil on water. Si is the initial spreading coefficient introduced in (1) and A
is the Hamaker constant

complete wetting have positive initial spreading coefficients, but are distinguished
by their attractive (positiveA) and repulsive (negativeA) long-range surface forces.
In pseudo-partial wetting, the competition between a positive initial spreading
coefficient, which favors a thick film, and an attractive long-range surface force,
which favors a thinner film, allows the formation of a molecular film (normally up
to 100 nm). In complete wetting, a drop spreads as a uniform film.

In the following section, we will first summarize fundamental understandings of
wetting transition of oil on water and then discuss the difference between existing
wetting systems and the surfactant-assisted wetting which we have found and
studied for the last 10 years. Mixing of oil molecules in surfactant adsorbed films
triggers another first-order transition, freezing of pseudo-partial wetting film, upon
cooling. Unique monolayer and bilayer solid film formations which depend on the
chain length of oil and surfactant are also focused in Chap. 4. Finally, the close
relation between above mentioned wetting and freezing transitions and the stability
of the three-phase contact line is discussed in terms of the line tension of oil lenses.

2 Free Energy Profile Approach to Thin Liquid Film
Formation

Cahn theory predicts the occurrence of the first-order wetting transition from the
equilibrium spreading coefficient. However, wetting transitions are further classified
into several different scenarios based on the initial spreading coefficient and the
long-range van der Waals potential. For an oil droplet at the air–water interface, the
initial spreading coefficient is given by

Si D 	AW .0/� �
	OW C 	AO

�
; (1)

where 	AW .0/ is the air–water interfacial tension in the absence of the oil film.
By combining the initial spreading coefficient and van der Waals potential, the free
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Fig. 2 Schematic representation of free energy F.h/ of the air–water interface as a function of the
thickness h of an oil film. The long-range potential is shown as a dotted line. (a) Si < 0 and A > 0
(partial wetting), (b) Si < 0 and A < 0 (partial wetting), (c) Si > 0 and A > 0 (pseudo-partial
wetting), (d) Si > 0 and A < 0 (complete wetting)

energy required to create a unit area of wetting film of an arbitrary thickness h from
the complete wetting film (h D 1) can be expressed as

F.h/ D 	OW C 	AO � A=12�h2; (2)

where A is the Hamaker constant of air and water through the oil film [20]. This
equals the sum of 	AO and 	OW for an infinitely thick film and 	AW .0/ for zero
thickness. Hence, the initial spreading coefficient and the equilibrium spreading
coefficient respectively correspond to the intersection of y-axis and the global
minimum of the free-energy profile when the sum of 	AO and 	OW is taken as
the origin of the free energy.

The four possible free-energy profiles are depicted in Fig. 2. When the long-
range potential is attractive (positive A), the free energy of the film decreases with
decreasing film thickness. This leads to a minimum in the free energy at a finite
thickness with a positive initial spreading coefficient (Fig. 2c) or at h D 0 with a
negative initial spreading coefficient (Fig. 2a). In this case, the transition between
partial wetting (a) and pseudo-partial wetting (c) can be induced by controlling
the initial spreading coefficient. On the other hand, the transition between partial
wetting (Fig. 2b) and complete wetting is also expected to occur by controlling
the initial spreading coefficient when the long-range potential has a negative
(repulsive) value. The later situation corresponds to the wetting transition discussed
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in Introduction. Another type of transition to complete wetting can be achieved by
changing the Hamaker constant from positive (Fig. 2c) to negative values (Fig. 2d).

3 Wetting of Alkane on Water

A second type of complete-wetting transition was first discovered by a French group
for pentane on water [21]. The Hamaker constant of a pentane film on water has
a positive value at room temperature because the dispersion contribution of the
Hamaker constant

A1 D 3hve

8
p
2

�
�
n23 � n21

� �
n23 C n22

�
�
n23 C n21

�1=2 �
n23 C n22

�1=2 h�
n23 C n21

�1=2 C �
n23 C n22

�1=2i ; (3)

is superior to the zero-frequency contribution [22]

A2 D 3

4
kBT



3 � 1

3 C 1

� 

3 � 2
3 C 2

�
; (4)

where j and nj are the static dielectric constant and the refractive index of
substance j , respectively, and ve denotes the characteristic absorption frequency.
However, the absolute value of the dispersion term gradually decreases and the
minimum in the free energy becomes shallower as the temperature increases.
Finally, the thickness of the film diverges to a macroscopically thick film at 53ıC
where the total Hamaker constant changes sign.

With the same experimental system, Ragil et al. also found a first-order wetting
transition from partial to pseudo-partial wetting at 25ıC where the initial spreading
coefficient passes through zero, corresponding to a change in the free energy profile
depicted in Fig. 2a, c. A sequence of two transitions has also been experimentally
observed with varying temperature for hexane on brine [23] and with varying
salinity for heptane on brine [24]. A continuous transition from pseudo-partial to
complete wetting for octane on glucose solutions has been induced by varying
the glucose concentration [25]. The addition of electrolytes or glucose lowers the
wetting-transition temperatures through the change in dielectric constant of aqueous
phase.

Brochard theory correctly predicts whether a spread oil film thickens to macro-
scopic dimensions (complete wetting) or remains as a microscopic layer (pseudo-
partial wetting), however, it does not explain the order of the wetting transitions.
For example, according to the theory, the transition from partial wetting (Fig. 2a)
to pseudo-partial wetting (Fig. 2c) should be a second-order transition because
the initial spreading coefficient varies smoothly with temperature, salinity or
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glucose concentration; this is in contrast to the experimental observation of first-
order transitions. An investigation of the influence of the surfactant adsorption on
the pseudo-partial wetting provides useful information regarding the short-range
interaction and origin of the first-order transition because the initial spreading
coefficient can be varied much more widely by the addition of a surfactant [26–31].
Increases in the carbon number of the oil give rise to the higher air–oil interfacial
tension, whereas they do not significantly affect the dispersion interaction. As a
result, liquid alkanes with chain length longer than that of octane do not spread
on water surfaces because their initial spreading coefficients become negative. For
longer alkanes, increasing the surfactant concentration, m, in the aqueous phase
causes a first-order transition from partial wetting to pseudo-partial wetting. Figure 3
shows ellipsometric data for the cationic surfactant, dodecyltrimethylammonium
bromide (DTAB), in the presence and absence of hexadecane [27]. The coefficient
of ellipticity, N�, is related to the thickness of the surfactant/oil film. On the right-hand
axis of Fig. 3, the initial spreading coefficients determined by interfacial tensiometry
were plotted.

An analysis of data obtained using ellipsometry and tensiometry indicates that
the thickness of the film above the wetting transition is approximately constant
at a value of 0.7 nm, which is typical for an expanded monolayer of the pure
surfactant. The mole fraction of the oil in this mixed monolayer, determined from
a combination of the ellipsometric thickness (proportional to the total amount of
oil and surfactant) and interfacial density of the surfactant molecules calculated by
the adsorption equation, is found to vary from 2/3 just above the wetting transition
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to 1/5 at the critical micelle concentration of the DTAB (m D 15mmol kg�1).
To explain the first-order nature of the wetting transition, a theoretical model was
proposed [29], in which the surface free energy consists of a long-range interaction
and a short-range interaction described by a two-dimensional-lattice gas, taking into
account the interaction between the oil and surfactant molecules (Fig. 4). The model
provides quantitative agreement with the wetting-transition concentrations and the
variation in composition of the wetting film with the bulk surfactant concentrations
of alkanes on surfactant solutions.

The generality of wetting transitions of alkanes (decane, dodecane, hexade-
cane, butylcyclohexane, and squalane) on surfactant solutions (DTAB, tetrade-
cyltrimethylammonium bromide (TTAB), hexadecyltrimethylammonium bromide
(CTAB), dibucaine hydrochloride) has been explored by ellipsometry and interfacial
tensiometry [30, 31]. These experiments suggest that the surfactant molecules
adsorbed at the air–water interface cause wetting transitions by decreasing the
required enthalpy for transferring oil molecules from the lens to the film by increas-
ing the lateral dispersion interaction between hydrocarbon chains of the surfactant
and oil molecules and by increasing the mixing entropy in the film. The wetting-
transition concentration increases with increasing the surface tension of the oil
for linear alkanes on the same surfactant solutions and decreases with increasing
surfactant chain length for the same oil. The introduction of cyclohexane rings in
the oil molecules contributes to lowering the wetting-transition concentration and
the introduction of branches has the opposite effect (Fig. 5).
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4 Freezing Transition of Wetting Film

Cooling of the mixed monolayer of surfactant and alkane leads to another first-order
phase transition whose character depends on the relative lengths of the hydrocarbon
chains of the surfactant (k) and alkane (n). Wilkinson et al. and Sloutskin et al.
showed that, for k D 16 and 11 < n < 17, the low-temperature phase was a
hexagonally packed solid phase with upright, conformationally ordered chains
[32,33]; however, for n > 18 , an unusual bilayer phase was formed in which a solid
layer of pure alkane rested on a liquid-like lower phase [34]. Whether the ordered
phase is of the monolayer or bilayer type can be readily determined by ellipsometry:
the change in the coefficient of ellipticity at the phase-transition temperature is
roughly three times as large in the latter case.

It is well known that longer members of alkane show the surface freezing, in
which a crystalline monolayer is formed on top of the liquid bulk at temperatures
above the bulk freezing point [35, 36]. For 16 < n < 30, these monolayers are
hexagonally packed, upright chains and exist at temperatures up to 3ıC above the
bulk freezing point depending on n [37–43]. From the fact that the crystallographic
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Fig. 6 The temperature–surfactant concentration diagrams for (a) DTAB/hexadecane and (b)
TTAB/tetradecane systems. Each plot is the point where the ellipsometry was performed. The
arrow on vertical axis of (a) indicates the surface freezing point of hexadecane and that on the G–S
phase boundary is the bulk freezing point of hexadecane. These diagrams were reproduced from
data published in [44] and [45]

structure of the ordered-phase of the bilayer determined by the grazing incidence
X-ray diffraction was essentially the same as that of the surface-frozen phase of
pure alkanes, Sloutskin et al. proposed that the mixed monolayer in the pseudo-
partial wetting phase behaves like a liquid alkane that is wet by the solid alkane
phase at temperatures below the surface freezing point of the alkane. For alkanes
with chain lengths similar to or shorter than the surfactant, this wetting transition is
pre-empted by freezing of the mixed monolayer.

The same conclusions have been drawn from the temperature-concentration
diagrams of the surface phases determined by the discontinuous change in the
ellipticity and the kink in the surface tension curves [44, 45]. The surface phases
that exist for alkane molecules on a surfactant solution can be compared with the
three phases of a two-dimensional fluid: gas (partial wetting), liquid (pseudo-partial
wetting at high temperatures), and solid (pseudo-partial wetting at low temperatures)
and, for brevity, we will use the terminology G, L, and S to identify these three
phases.

The G/L transition has been identified by variation of the surfactant concentration
at fixed temperature as seen in Fig. 3, and the L/S transition by variation of
temperature at fixed surfactant concentration, therefore, one would expect these
two phase boundaries to meet at a triple point. The triple point for the hexadecane
film on DTAB solutions is located at T D 17:3ıC and m D 0:75mmol kg�1
as shown in Fig. 6a. It is important to note here that the L–S transition occurs
at the temperature just below the surface freezing point of pure hexadecane and
almost independent of the surface composition of DTAB. We introduced in the
previous section that the composition of the mixed monolayer is rich in alkane
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at low surfactant concentrations and rich in surfactant at high concentrations,
therefore, the weak concentration dependence together with the similarity between
the temperatures of the freezing transition and surface freezing in pure hexadecane
provides supporting evidence that the lower mixed monolayer does not freeze at the
L–S phase transition. On the contrary, the L–S phase boundary can be changed by
the surfactant concentration principally in the tetradecane film on TTAB solutions,
in which a mixed monolayer of alkane and surfactant freezes (Fig. 6b). It seems that
the slope of the L–S phase boundary between these two systems is rather similar,
however, the increase in the hydrocarbon chain length of surfactant by a carbon
number of two (CTAB) gives rise to a much stronger dependence of the freezing
temperature on the surfactant concentration [45].

5 Relation Between Wetting Transition and Line Tension

In general terms, line tension is the one-dimensional analogue of interfacial tension
and can be interpreted as excess free energy associated with the line [46, 47]. For
example, the stability of liquid-condensed (LC) domains surrounded by a liquid-
expanded (LE) film in an insoluble monolayer is discussed from the viewpoint
of the competition between the positive line tension acting on the edge of LC
domains and the entropic loss associated with complete LC film formation [48,49].
An important difference between line tension and interfacial tension is that the
former can be negative in some situations; that is, the growth of the line becomes
a thermodynamically acceptable process. The negative line tension deserves special
attention because it promotes the fusion of cells [50] and the coalescence of
emulsions [51, 52].

Rusanov classified line tension into three different types: the line tension
in two-dimensional heterogeneous systems, the line tension at the three-phase
(interface) contacts, and the effective line tension on deformable solids [53]. In two-
dimensional systems, two interfacial phases are separated by a boundary line as two
bulk phases separated by an interface. In this case, the mechanical definition of line
tension becomes a simple expansion of that of interfacial tension. Consequently the
line tension is always positive, as is the case for the interfacial tension.

On the other hand, the origin of the line tension in latter two cases involves
the deformation of the interfacial profile near the three-phase contact. For an oil
droplet on a solid substrate, the microscopic profile of the droplet is deviated
from the macroscopic profile determined by the interfacial tensions near the
three phase contact region because of the surface force between air–oil and oil–
substrate interfaces [54–60]. When the surface force is attractive on the whole, the
displacement of the interfacial profile occurs, bringing the two interfaces closer,
and the length of the boundary line is increased due to the increase in the attractive
interaction between the two interfaces (Fig. 7). The opposite situation is true in the
case of repulsive surface forces.
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In the interface displacement model, the line tension is expressed as a functional
of the interfacial profile h.x/

� D
Z
dx

"�
	LV

2

	�
dh

dx

	2
C F .h .x//

#
; (5)

where the first term in the integrand accounts for the increase in the interfacial area,
and the second term accounts for the surface forces acting through the liquid of
thickness h. The integration proceeds from the thickness of the film in equilibrium
with a lens (x D �1) to an infinitely thick film (x D 1). By minimizing equation
[55–57], the equilibrium line tension can be expressed as

� D
Z
dl ŒF .h .x//�1=2 ; (6)

In the original paper of Indekeu, the square root of the free-energy profile,
F.h/, is defined as the interface potential V.h/. Experimentally, the line tension
is determined from the dependence of contact angle, � , on the radius of the contact
line, r , on the basis of a modified Young equation

	SV D 	SL C 	LV cos � C �

r
; (7)

where 	SV , 	SL, and 	LV are the solid–vapor, solid–liquid, and liquid–vapor inter-
facial tensions, respectively. The line tension is considerably small and is normally
negligible as compared to the surface tension; however, since the line tension is
proportional to the inverse of the radius of the lens, it plays an increasingly important
role as the lens becomes smaller. Unfortunately, the line tensions measured by
different researchers are still quite different and controversial [61–71]. Currently,
this problem is being addressed by performing experiments on ideally smooth
silicon wafer [72–75] or liquid surfaces [31, 76–79].
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6 Line Tension at Wetting Transition

Indekeu successfully explained the theoretical connection between the line tension
and wetting behavior of three-phase systems based on the interface displacement
model and the surface free-energy profile [55–57]. For a first-order wetting tran-
sition to complete wetting (Fig. 8a), two minima exist at a finite and an infinite
film thickness on the interfacial potential. Before the wetting transition, the negative
contribution J1 in the integral of (6) exceeds the positive contribution J2. However,
the magnitude of J1 reduces as the transition point is approached, and finally, only
the positive contribution remains in the integral. Hence, the line tension should
be positive at the complete-wetting transition point. On the other hand, when the
wetting transition occurs between two microscopic films of different thicknesses,
the line tension changes sign from positive to negative, as expected from Fig. 8b.
For a second-order transition from a film of finite thickness to a thick film, the line
tension is negative and approaches zero at the wetting transition.

Using interferometry, Law and co-workers measured the contact angle of
n-octane and n-octene droplets on a silicon wafer as a function of temperature
[72, 73]. The silicon wafer was coated with hexadecyltrichlorosilane to control the
wettability of the surface. They demonstrated that the line tension changes sign from
negative to positive with a diverging slope near the first-order wetting transition. If
the long-range surface force decays slowly as a function of the thickness, the line
tension would be allowed to diverge at the transition point. Pompe measured the
line tension of hexaethylene glycol on a silicon wafer and obtained positive values
below a contact angle of 6ı and negative values above [74]. In his experiment,
the line tension was calculated from the profile of the liquid–vapor interface, as
measured by high-resolution SFM imaging in tapping mode [80,81]. The measured
interfacial profile was fitted with a nonretarded van der Waals and exponentially
decaying interactions.

There are a few experimental verification of the interfacial displacement model
for wetting transitions on liquid surfaces. Dobbs calculated the line tension of
shorter alkanes (butane to octane) by applying Cahn theory and showed that the
magnitude of the line tension is of the order of 10�12 N, rising to a maximum of
5 � 10�12 N in the vicinity of first-order wetting transitions. Close to the critical
wetting transitions, the line tension becomes negative and vanishes at the wetting
transition [82]. We have recently confirmed the reversal of the sign of line tension
associated with the wetting transition for a hexadecane lens on aqueous solutions
of DTAB [77, 78] by using an interferometer originally developed by Aveyard and
co-workers [76]. From the relation between the free energy profile and interface
potential, it can be understood that a positive line tension in the partial-wetting
regime corresponds to the maximum in the free-energy curve in Fig. 4a. The
line tension assumes less-positive values as the wetting transition is approached;
subsequently, in the pseudo-partial wetting regime, the integration along the van
der Waals potential from the thickness of the mixed monolayer to an infinite
thickness leads to a negative line tension (Fig. 4b). The images of hexadecane lenses
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obtained for two specific concentrations are shown in Fig. 9. Before the wetting
transition (partial wetting), the small lenses formed by stirring merge spontaneously
into a large lens as the equilibrium is approached. The behavior of the oil lens
after the wetting transition (pseudo-partial wetting) leads to a remarkable contrast;
large lenses break into small lenses without stirring. The manner in which the
negative line tension promotes the spontaneous rise of the three-phase contact line is
analogous to the stabilization of emulsions by the addition of surfactant molecules.
From such a viewpoint, a surfactant that induces a wetting transition from partial to
pseudo-partial wetting may be considered as a kind of line active agent.

Interestingly, the both L–S transitions again reverse the line tension sign [79]: oil
lenses merge spontaneously in the S regime as well as the partial wetting regime (G).
We are expecting that positive line tension values in the S regime results from the
change in the long-range van der Waals potential due to the existence of the ordered
monolayer; however, the precise shape of the interface potential is still unknown.
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Fig. 9 Dynamics of lens coalescence (a) and fission (b) observed respectively in the G and L state.
White bar shows 50 mm. The behavior of lenses in the S state is alike to (a) but takes quite long
time to be equilibrated as mentioned in the text. Reprinted with permission from [79]

The coalescence of lenses proceeds quite slowly in the S regime, suggesting that a
considerable increase in the surface viscosity occurred at the air–water (and air–oil)
interface(s).

7 Conclusion

Throughout this chapter, we have summarized recent clarifications of the mech-
anisms of the first- and second-order wetting transitions developed by Cahn,
Brochard, de Gennes and Indekeu. Short-range interactions determine whether the
middle phase spreads or not and the long-range interactions determine whether the
spreading film thickens to macroscopic dimensions or remains as a molecular or
microscopic layer.

When three liquid phases (or two liquid phases and one gas phase) coexist, a first-
order complete-wetting transition from partial wetting or pseudo-partial wetting
occurs as the system approaches the consolute point of two of the liquid phases.
For short-chain alkane droplets placed on water, the wetting transition from partial
wetting to pseudo-partial wetting caused by varying the temperature is a first-
order transition, and the subsequent thickening to a complete-wetting film is a
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second-order transition. Drops of alkanes longer than octane exist solely in the
pseudo-partial wetting state because of the positive initial spreading coefficient.
This situation can be changed by adding salt or surfactant molecules to the aqueous
phase.

Finally, a close relation between wetting transition and line tension, which
theoretically equals an integral of the square of the free-energy profile of the
wetting film, was discussed. In particular, the sign of the line tension changes at the
transition between partial wetting, pseudo-partial wetting and freezing films, and
as a result, a spontaneous rise of the three-phase contact line is thermodynamically
allowed.

According to the aforementioned contributions, a much greater understanding
has developed for the wetting transition of oil on water surface, including the
freezing transition of wetting films, however, there are some problems that remain
regarding the experimental and theoretical treatments of line tension. For example,
we have not achieved convincing expression of one dimensional adsorption equation
in spite of much effort of many researchers [83, 84]. Baumgart et al. recently
showed a correlation between the domain composition and local curvature of a
giant unilamellar vesicle by using high-resolution fluorescence imaging [85] and
discussed the phase separation (raft formation) in lipid membranes and fission of
cells from the viewpoint of the effect of line tension. Moreover, with respect to
the line tension at three-phase contacts, experiments inherently have relatively large
errors because of the small change in dihedral angles as a function of lens radius
[86]. Further extension of the fundamental studies on the relation between molecular
structure and the resultant line tension may reveal a new perspective for the fields of
nanotechnology and nanoscience as well as the improved experimental techniques
of line tension measurement.
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Dynamics of a Complete Wetting Liquid
Under Evaporation

C.-T. Pham, F. Lequeux, and L. Limat

1 Introduction

Wetting phenomena have been extensively studied theoretically and experimentally
(see [1–4] for reviews and discussions) and much attention has been drawn
recently to the case of the dynamics of liquid droplet under evaporation. This
problem is motivated by applications (for instance coating [5, 6], deposition near
contact line [7], heat exchangers [8, 9]) and by fundamental issues [10]. The local
description of a moving contact line is a complicated problem for it involves a
singularity of the viscous stresses due to no-slip boundary condition of the liquid
on the substrate. The second phenomenon involved in the problem of evaporating
contact line is the way the liquid evaporates. Two regimes shall be distinguished: on
the first hand, evaporation of the liquid into its own vapor [9, 11, 12]; on the second
hand, purely diffusive evaporation of the liquid in an inert surrounding gas [13–16].

In this paper, we restrict ourself to the isothermal problem of a liquid evaporating
into inert gas like air. Evaporation is then driven by diffusion. We describe in details
a model of contact line under evaporation and total wetting conditions [14] taking
into account van der Waals interactions and the divergent nature of evaporation near
the border of the liquid as evidenced by Deegan et al. [7, 17] (Sect. 2). We then
apply this result to study the dynamics of an evaporating droplet in complete wetting
situation (Sect. 3) and compare the results with typical scaling laws of the dynamics
of retraction of small droplets found in experiments [13, 18].
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2 Low Constant Speed Model

In this section, we study the shape of the free surface of an evaporating liquid corner
moving at a constant velocity V along a totally wetting solid surface, both under the
effect of a fluid motion U.x; z/ linked to pressure gradient, and of an evaporation
flux J.x/. The edge of the liquid is set at x D 0 (see Fig. 1(left) for notations). We
suppose we have translation invariance along the transverse direction.

Standard lubrication theory in the limit of low Reynolds numbers and small
interface slope leads to a mean local velocity of the liquid given by: hU i D
1
h

R h
0
U.x; z/dz D � h2

3�
@P
@x

where h.x/ is the liquid thickness, � the liquid viscosity,
and the pressure term is

P D Pa C Pc C Pd (1)

with Pa, the ambient pressure, Pc the capillary pressure and Pd, the disjoining
pressure (we assume van der Waals interactions) playing a role at the edge of the
liquid. Both latter pressures read respectively Pc D �	hxx and Pd D C A

6�h3
; 	

is the surface tension and A < 0 the Hamaker constant. In this problem, gravity
will be neglected. For a liquid moving at constant velocity V , mass conservation
imposes that the local thickness h.x � V t/ satisfies

@thC @x.hhU i/C J.x/ D 0; (2)

which leads to:
@

@x
Œh .hU i � V /�C J.x/ D 0 (3)

to be combined with the previous expression of hU i.
One now needs an approximation of the local evaporation rate distribution J.x/.

For a sessile axisymmetric drop, Deegan [7] assumed an analogy between vapor
diffusion in air and an electrostatic problem, the vapor concentration near the liquid
surface being supposed to saturate at the mass concentration in air csat. In analogy
with this work, we assume that very near the edge of the liquid J.x/ diverges as
J.x/ D J0x

�.�=2��/=.���/ where x is the distance to the edge. This yields for very
small values of angle � :

J.x/ � J0=
p
x (4)

in which J0 is given by

J0 D Dgp
�

csat � c1

�
(5)

whereDg is the diffusion constant of evaporated liquid in air, and � its mass density.
The length scale � can be either the thickness of a diffusive boundary layer, or the
typical curvature of the contact line. For instance, for the sessile drops of in-plane
radius R with low contact angle considered in [7] one has exactly � D 2R. For
volatile alkanes or silicon oil drops of millimetric size evaporating in ambient air
one typically has J0 � 10�9 m

3
2 � s�1. Note that we are here treating the limit of a
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Fig. 1 (Left) Notations for the model studied in Sect. 2 of a liquid moving at constant speed V on
a totally wetting substrate and undergoing evaporation. (Right) Notations used in Sect. 3: R is the
droplet radius and � the apparent contact angle of the spherical cap

liquid evaporating in the presence of air. It is also important to note that the activity
of a thin film of liquid is approximately that of the bulk up to the last molecular
layer of liquid.Thus the divergence of the evaporative flux holds at the border of the
precursor film. In our purely diffusive model, Marangoni and thermal gradients will
be neglected.

After integrating once (3) with respect to x, one gets: .< U > �V /h D �2J0px
that can be written as:

V D 2J0

h

p
x C 	

3�
h2hxxx C A

6��

hx

h2
(6)

The local thickness of liquid h.x/, is supposed to vanish or at least reach micro-
scopic values at the tip of the liquid placed by hypothesis at the location x D 0.

The physical meaning of this equation is that the displacement of a liquid at
velocity V involves migration under capillary and disjunction pressure gradient
together with evaporation itself. This adds new terms to the ordinary differential
equation governing h.x/, considered years ago by Voinov [19], that reads in this
specific case:

hxxx D 3Ca

h2
� 6�J0

	

p
x

h3
� A

2�	

hx

h4
(7)

where Ca D �V =	 is the capillary number built upon the velocity V (Ca > 0 in the
receding case and Ca < 0 in the advancing case).

In the framework of this model, it is convenient to set a typical horizontal length
scale x0 and a typical height h0 that respectively read

x0 D
� jA j
12�J0�

	 2
3

; h0 D x
1
2

0 �
� jA j
2�	

	 1
4

D jA j 712
.2�/

7
12 .6�J0/

1
3 	

1
4

(8)

Setting J0 D 10�9 m3=2 � s�1; A D 10�19 kg � m2 � s�2; � D 10�3 kg � m�1 � s�1
yields typical lengths x0 ' 2�m and h0 ' 30 nm. These values have the same
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order of magnitude as those found experimentally by Kavehpour et al. [20] in the
advancing regime without evaporation for Ca D 3 � 10�4. The horizontal length x0
corresponds in our model to the typical length of the precursor film at zero velocity.

Equation (7) is third order in derivatives and the uniqueness of its solutions
requires the specification of three boundary conditions at the border of the domain
"  x  Lmax. At large scale Lmax, we impose zero curvature (hxx.Lmax/ D 0).
Two other boundary conditions are needed.

A solution vanishing at x D 0 that connects to a macroscopic liquid corner
hmac.x/ D �mac � x can be found at leading order in the neighborhood of zero as

h.x/ D ˛
p
x with ˛4 D 2

3�

jA j
	

(9)

This expression yields a crossover length

`cross � 1

�2mac

�
2

3�

jA j
	

	 1
2

: (10)

This class of solution has been found as well by Poulard et al. [13] but appears to be
non physical [14].

We can search for a second class of solutions that start flat (h0.0/ D 0) at the
origin at the given height h.0/ D h0. We can then obtain analytically, the expression
of a precursor film the expression of which can be written as

H.X/ D 1C �1X
2 C cX3 � 8

105
X7=2 C 1

12
�1X

4 C o.X4/ (11)

with constants c depending on the capillary number and �1 insuring zero curvature
at large scale. This precursor film connects to a large scale liquid corner profile, the
expression of which is

‚3.X/ D ‚3
m � 9Ca

�
x0

h0

	3
ln
X

�
C 4

‚m

�
1

�1=2
� 1

X1=2

	
C ˇ.X � �/ (12)

where X D x=x0;H D h.x/=h0;‚.X/ D H 0.X/ with ‚m ' 1. Constant
� ' 3:4 is the matching coordinate between precursor and liquid corner. Constant
ˇ ensures the adequate boundary condition Hxx.Lmax/ D ‚X.Lmax/ D 0 (for
calculations details, see [5, 14]). Both analytical solutions (9) and (12) can be
confirmed numerically using shooting methods. They are plotted in Fig. 2. The
agreement is very good [14].

From (12), one can deduce the following expression for the apparent contact
angle �app

�3app D �3m � 9Ca

�
log

Lmacro

`micro
C 1

	
C 24J0�

	�m

1p
`micro

(13)
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Fig. 2 Numerical solutions of (7) in non dimensional units. (Left:) Assuming vanishing height at
origin: plot ofH.X/ (Ca D C10�7). Two distinct scalings are observed: linear in the macroscopic
domain and parabolic in the microscopic one (see straight lines). (Right:) Assuming vanishing
curvature at large distance (here Xmax D 104) and flat film at the edge of liquid: plot of angle
‚ versus X (non dimensional unit). Inset: Corresponding H.X/ profile (receding case, same
parameter): a macroscopic wedge is connected to a flat precursor film

or in a more simplified way

�3app D
�
1C 4p

3:4

	
�3m � 9Ca

�
log

Lmacro

`micro
C 1

	
(14)

where `micro ' 3:4x0 is a microscopic length corresponding to the length of the
precursor film, Lmacro a macroscopic length and

�3m D
�
h0

x0

	3
D
�

2�

	3jA j
	1=4

6�J0 (15)

corresponding to the apparent contact angle at zero velocity [21]. This law general-
izes Tanner’s law in the presence of evaporation.

In a study of an evaporating meniscus in complete wetting situation where
the coupling between the liquid and the gas is explicitly accounted instead of
considering Deegan’s electrostatic analogy as we do in this paper, Doumenc et al.
derived a similar scaling for the apparent contact angle at zero velocity [16]. In this
study, the authors splitted the liquid domain into different parts depending on the
magnitude of the different physical effects involved in the problem (evaporation,
capillary forces together with van der Waals forces). If we compare our model to
theirs, our precursor film corresponds to the region they identify as the precursor
film. The zero coordinate that we set as being the edge of the liquid corresponds to
the beginning of their adsorbed film region. Note that the thickness we choose is
one order of magnitude larger than theirs.
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3 Evaporating Sessile Droplet

In this section, we will generalize our previous model and apply it to the study
of an evaporating sessile droplet in total wetting condition. As already stated, the
expression of the evaporative flux of a spherical cap of liquid of radius R, in the
limit of small contact angle � (see Fig. 1(right)), reads J.r/ D j0=

p
R2 � r2 with

the following correspondence with previous section: x D R� r , J0 D j0=
p
2R and

Ca D �� PR=	 . Substituting directly these expressions into (14) and (15) yields
the following wetting law without any adjustable parameters (but a logarithmic
contribution)

�3 D Ap
R

CB PR (16)

with

A D 6
��
2

�1=4 �
1C 4p

3:4

	
�j0

	3=4jA j1=4 and B D 9
�

	

�
log

Lmacro

`micro
C 1

	
:

(17)

This is the same kind of expression as that found by Poulard et al. using other
arguments [13], hence we recover the same scaling for apparent angle at zero
velocity (that is at maximum radius) �max � R

�1=6
max while experimental power law is

�max � R�0:45
max .

A small sessile droplet can be considered as a spherical cap. At small contact
angle � , its volume V reads V D �

4
R3� . Under diffusive evaporation, mass

conservation reads dV
dt D � R 2�

0

R R
0
J.r/rdrd' D �2�j0R. Combining these two

results yields the following relation

3R� PRCR2 P� D �8j0: (18)

With (16) and (18) we then obtain a closed set of ordinary differential equations of
variables R and � that entirely governs the dynamics of evaporation of a droplet.
We will now study this set of equations numerically.

Given the initial conditions Ri D RjtD0 and �i D �jtD0, we can see using
(16) that, whether .�i/

3
p
Ri is larger or smaller than constant A, the droplet starts

spreading then retracts, or directly starts with retraction. Experiments show that,
if tf is the time at which the droplet vanishes, the radius of a droplet of completely
wetting alkane on mica follows the scalingR.t/ � .tf �t/˛ with exponent ˛ close to
1=2 [13,18]. During the retraction sequence, the contact angle � has little variations
up to late times before total evaporation [13]. Suppose thatR.t/ scales like .tf � t/ˇ ,
(16) implies that ˇ D 2=3 if � is to remain bounded, which is not the case as we
will see in the following.

We have performed numerical simulations of (16) and (18) using same physical
quantities as in experiments. Results are shown in Fig. 3. The dynamics of spreading
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Fig. 3 (Top) Plot versus time
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followed by the retraction sequence of the droplet is recovered with correct orders
of magnitude compared with experiments. As in the experiments [13], we recover
the steep decrease of the contact angle during the spreading and the beginning of
the retraction. Radius vanishes at a given final time tf. In contrast, contact angle �
vanishes at time t 0f < tf (the spherical cap then becomes flat) and eventually becomes
negative which is physically incorrect. This vanishing angle singularity is intrinsic to
our wetting law model but experiments by Cazabat et al. also display sharp decrease
of the contact angle at late times.

If one looks carefully at the decay of the radius R.�/ with time � D tf � t (see
Fig. 3(top)), one can see that the radius follows two regimes with distinct exponents.
At the beginning of the retraction, R.�/ � �˛ with ˛ ' 0:33, then, once the values
of � becomes negative, we have R.�/ � �ˇ with ˇ ' 0:11. These scalings are in
disagreement with the experiments where exponents are close to 1=2. Nevertheless,
by choosing a shifted reference final time Tf (see inset of Fig. 3(bottom)), one can
recover an exponent ˛0 ' 0:45 in agreement with experiments, as did Poulard et al.
in their numerical simulations as well [13].

Note that our wetting law (16) contains a logarithmic term depending on a
macroscopic scale Lmacro, at which contact angle is defined. Replacing the latter
length scale by a fraction of radius R modifies the wetting law and shall delay
the singularity (the smaller Lmacro � R, the smaller constant B). We performed
numerical simulations of the dynamics using this modified wetting law and found
no major changes in the dynamics: the final time of singularity is slightly shifted but
the scaling exponents remain the same (data not shown).
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The wetting law described by (14) only catches the early dynamics of spreading
and retraction of the droplet. Indeed this analytical model was derived in the
hypothesis of translational invariance along transverse direction, constant speed
limit and zero curvature at large scale which is not realistic for a spherical cap.
Moreover, small capillary numbers were assumed whereas speed of retraction
diverges at late times. In this context, the apparent contact angle in our model cannot
remain finite. Yet simple, our model shall be modified in order to properly solve the
whole dynamics of evaporation.

As a comparison, note that Eggers et al. [15] numerically studied the evaporation
of a sessile droplet by coupling the hydrodynamics of the droplet with a self-
consistent description of evaporation from the drop and the precursor film in a
similar approach as Doumenc et al. [16]. They recovered the scaling of the late
time radius R � .t0 � t/˛ with ˛ ' 1=2. However, no wetting law for apparent
contact angle was proposed. In some cases, dominant drying from the middle of the
drop is even found at late times, the drops loses its spherical shape and is depleted
at the center. This phenomenon is reminiscent of the negative values of apparent
contact angle found in our model.

4 Conclusion

In this paper, we have described a model for completely wetting liquid under
diffusive evaporation taking into account the divergent nature of the evaporative
flux. A wetting law relating the apparent contact angle to the speed of the contact
line was proposed and tentatively used to numerically study the dynamics of an
evaporating droplet in total wetting conditions. This model correctly describes
the early stages of spreading and retraction of a droplet. However, at late times,
the contact angle vanishes before the radius vanishes itself, yielding non-physical
scalings. Usual dynamical scalings found in experiments can only be recovered by
extrapolating a final reference time.
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Evaporation of Sessile Droplets of Liquid
on Solid Substrates

S. Semenov, V.M. Starov, M.G. Velarde, and R.G. Rubio

1 Introduction

The process of evaporation of sessile droplets is of interest for both industry
and academia. It is often difficult to study the evaporation process and related
effects experimentally [1], as this phenomenon is controlled by a number of exter-
nal conditions. Thus computer simulations are used alongside with experimental
investigations to study this complex phenomenon. There are also a number of
other general problems related to evaporating droplets. Some of them require a
consideration of a droplet as an integral part of a wider problem, such as spray
dynamics [2]. Sometimes it is required to predict the solidification in the course
of evaporation including formation of hollow shells [3]. Also the residue from
dried drops [4–6] has implications for a number of applications, including painting,
coating processes, ink-jet printing, DNA chip manufacturing [7], formation of arrays
of organic materials for video displays and photo sensors, fabrication a variety of
micro-electro-mechanical (MEMS) devices [8]. The analysis of the influence of
properties of solid substrates on the evaporation rate of sessile droplets can be used
for production of various materials providing an optimal regime of work for air
conditioners, dryers and cooling systems [9].
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2 Stages of Sessile Droplet Evaporation

Evaporation starts immediately after a deposition of a liquid droplet onto a solid
substrate in non-saturated vapour atmosphere. In the case of complete wetting
(equilibrium contact angle � is zero) the evaporation process is accompanied by
spreading. The whole process can be subdivided into two stages: (a) an increase of
the solid–liquid contact area cause by spreading, and (b) a decrease of the solid–
liquid contact area caused by evaporation. Stage (a) is usually proceeds much faster
than stage (b).

In the case of partial wetting (contact angle 0ı < � < 90ı) after a deposition of a
droplet onto a solid surface, the whole process can be subdivided into the following
four stages. Stage (0): a short spreading stage, when the solid–liquid contact area
increases until contact angle, � , reaches its static advancing value, �ad . This stage
is accompanied by the evaporation, but due to different time scales of spreading
and evaporation processes (spreading is much faster) the influence of evaporation
during the spreading stage is negligible. Evaporation cannot be neglected during
next stages. In the presence of contact angle hysteresis the latter process occurs in
three stages [10, 11]. (i) During the first stage evaporation proceeds with a constant
radius of the contact line, L, and decreasing contact angle, � , until the contact angle
reaches the static receding value, �r . (ii) The next stage of evaporation develops
with a constant contact angle, �r , and decreasing radius of the contact line, L.
(iii) During the third stage both the radius of the contact line, L, and the contact
angle, � , decrease until the droplet disappears. Stages (i) and (ii) are usually the
longest ones, while the last third stage is the shortest one and is the most difficult
for experimental investigations.

3 Dependence of Evaporation Flux on the Droplet Size

Most of the theoretical and computer simulation studies [12–17] assume the
spherical shape of the cap of a sessile droplet. This is true only for small enough
(L < 1mm) droplets, when the capillary forces dominate over the body forces (e.g.
gravity forces). In the case of diffusion controlled evaporation the latter model give
the following equation for the evaporation rate of a sessile droplet:

dV

dt
D �ˇLF.�/; (1)

F.�/ D
8<
:
.0:6366 � � C 0:09591 � �2 � 0:06144 � �3/=sin�; � < �=18

.0:00008957C 0:6333 � � C 0:116 � �2 � 0:08878 � �3
C 0:01033 � �4/=sin�; � > �=18

(2)
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where V is the droplet volume; t is time; F is a function of contact angle,
derived by Picknett and Bexon [13], which equals 1 at � D�=2 (� is in radians
in (2));ˇ D 2� DM

�

�
csat .Tsurf / � c1

�
; D is the diffusion coefficient of vapour in

air; M is the molecular weight of the evaporating substance; � is the density of the
liquid; csat is the saturated value of the molar concentration of vapour, considered
as a function of uniform temperature, Tsurf , of the droplet’s surface; c1 is the
molar vapour concentration in the ambient air far away from the droplet. Note that
(1) is deduced using the model which takes into account only vapour diffusion in
the surrounding air and ignores the temperature distribution along the droplet–air
interface. If contact angle, � , is constant (evaporation stage (ii) in case of contact
angle hysteresis), then (1) gives the evaporation rate proportional to the first power
of the contact line radius, L.

We showed earlier [18] that proportionality of the total evaporation flux, J, to
the droplet perimeter has nothing to do with a distribution of the local evaporation
flux, j, over the droplet surface. Let us reproduce the derivation of that statement by
considering a stationary diffusion equation for vapour in air:

1

r

@

@r

�
r
@c

@r

	
C @2c

@z2
D 0; (3)

where, r and z are radial and vertical coordinates, respectively; c is the molar vapour
concentration. The local flux, j, in normal direction to the droplet’s surface is

j D �D@c
@n

ˇ̌
zDh.r/ D �D

 
@c

@r

ˇ̌
ˇ̌
zDh.r/nr C @c

@z

ˇ̌
ˇ̌
zDh.r/

nz

!
; (4)

whereD is the diffusion coefficient of vapour in the air; n, nr and nz are unit vector
normal to the liquid–air interface (pointing into the air), and its radial and vertical
components, respectively; h.r/ is the height of the droplet surface. Let us introduce
dimensionless variables using the same symbols as the original dimensional ones but
with an over-bar: Nz D z=L, Nr D r=L, Nh D h=L, Nc D c=�c,�c D csat .Tsurf /�c1.
Then (4) can be rewritten as:

j D �D�c
L

 
@ Nc
@Nr
ˇ̌
ˇ̌
zD Nh.Nr/nr C @ Nc

@Nz
ˇ̌
ˇ̌
zD Nh.Nr/

nz

!
D D�c

L
A.Nr; Nz/; (5)

where A.Nr; Nz/ D � @ Nc
@Nr
ˇ̌
ˇzD Nh.Nr/nz . Hence, the total flux is

J D 2�

Z L

0

rj

s
1C

�
@h

@r

	2
dr D 2�LD�c

Z 1

0

NrA.Nr; Nz/
vuut1C

 
@ Nh
@Nr

!2
d Nr: (6)
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The latter equations show that the total flux, J � L, and the local flux j � 1=L.
Note, those properties do not depend on the distribution of the local evaporation
flux, j, over the droplet surface. The latter conclusions agree with the previous
consideration by Guena et al. [19]. Note, that the latter properties are valid only
in case of diffusion controlled evaporation.

4 Distribution of Evaporation Flux at the Droplet Surface

It was shown above that the proportionality of total evaporation flux, J, to the
radius of the contact line, L, and accordingly its proportionality to the perimeter
of the droplet does not necessary mean that evaporation occurs mostly at the
droplet perimeter. However, a number of researches showed that in case of contact
angles � < 90ı the evaporation indeed is more intensive in a vicinity of the three
phase contact line. Several different principles were utilised in order to explain this
phenomenon: (a) non-uniform distribution of vapour flux over the droplet surface
due to the diffusion controlled process of vapour transfer to the ambient air [4–6];
(b) action of Derjaguin’s (disjoining/conjoining) pressure at the three phase contact
line [20–23]; (c) evaporative cooling of the liquid–gas interface (due to latent heat
of vaporization) and formation of the temperature field leading to a comparatively
more intensive evaporation at the three phase contact line [24].

Deegan et al. [4, 5] studied the distribution of density of vapour flux over the
spherical cap of a sessile droplet, solving the diffusion equation and neglecting the
latent heat of vaporization and thermocapillary flow inside the droplet. The obtained
solution for the droplets with contact angles � < 90ı shows an infinite increase of
the vapour flux in a vicinity of the three phase contact line. Such distribution of the
flux, according to the authors, generates the flow inside the droplet, which transports
particles to the edge of the droplet and results in a ring-like stain formation (coffee
rings).

Starov and Sefiane [24] suggested a physical mechanism of redistribution of
evaporation flux which is controlled by the temperature field rather than by the
process of vapour diffusion into air. According to their model, there is convection
in the ambient air, so that vapour diffusion occurs only in a boundary layer. If the
thickness of the boundary layer, ı, is constant then the vapour diffusion across the
layer is controlled by the difference of vapour concentrations in the ambient air and
at the droplet surface. The latter is a function of the local temperature of the droplet’s
surface. In the model under consideration [24] the surface of a droplet is cooled by
the evaporation; meanwhile due to the high heat conductivity of the substrate the
temperature of the contact line is stayed equal to the ambient one. As a result the
higher temperature at the three phase contact line gives higher vapour concentration
and more intensive evaporation flux at the droplet’s perimeter (see Fig. 1).
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Fig. 1 Temperature distribution over the droplet surface, Ts.r/. r is the radial coordinate; T0 is the
temperature of the substrate; Ts1 is the temperature of the droplet surface at which the evaporation
flux vanishes; l is the contact line radius; � is a tiny area within the vicinity of the three phase
contact line, where evaporation mostly takes place [24]

5 Thermal Marangoni Convection

Studies of evaporation of droplets with contact angles � < 120ı were performed by
Girard et al. [12, 14–17] and Hu and Larson [25–28]. Girard et al. investigated the
influence of substrate heating [16, 17], air humidity [16] and Marangoni convection
[12]. They concluded that contribution of Marangoni convection to the total vapour
flux is negligible, whereas heating of the substrate is important. Hu and Larson
investigated the process of particles deposition and ring-like stain formation during
the droplet evaporation [25–27]. They concluded that the density profile of the
particles deposit substantially depends on the Marangoni convection within the
sessile droplet [28]. If Marangoni convection is present, then it results in a particle
deposition at the droplet centre rather than at the edge. According to authors, the
suppression of Marangoni convection is the one of the important conditions for ring-
like deposit formation.

Ristenpart et al. [29] investigated the influence of the substrate conductivity on
reversal of Marangoni circulation within evaporating sessile droplet. They neglected
the thermal conductivity of the surrounding air. The authors used predefined
distribution of evaporation flux over the droplet surface:

j.r/ D j0
�
1 � .r=L/2��1=2C�=� ; (7)

where j0 is a constant determined by the diffusivity of vapour in the ambient air
and the ambient humidity, r is the radial coordinate. This expression for j.r/ (a) is
not applicable for contact angles � > �=2, and (b) introduces the singularity at the
three phase contact line: j.L/

ˇ̌
�<�=2 D 1. Despite of these assumptions made by

authors, their quantitative criteria for the circulation direction was experimentally
confirmed.
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Earlier [18, 30] we used numerical simulations to investigate instantaneous
distribution of heat and mass fluxes in the system consisting of a single sessile
droplet of a pure liquid, substrate, and surrounding air. Self-consistent system
of equations was solved including Navier–Stokes equations inside the droplet;
heat transfer equations in substrate, droplet and gas; and vapour diffusion in the
surrounding air. Latent heat of vaporization and thermal Marangoni convection were
taken into account. It is shown in [18, 30] that presence of Marangoni convection
results in deviations from the earlier deduced laws for both local evaporation flux
j L�1 and total evaporation flux, J L. Note, the latter dependences were deduced
for isothermal evaporation. If the mean temperature of the droplet surface is used
instead of the temperature of the surrounding air for the vapour concentration on
the droplet surface then the calculated dependences for the total evaporation flux
coincide with those calculated for the isothermal case [18, 30].

6 Influence of Heat Conductivity

It is well known that evaporation process consumes heat due to the latent heat of
vaporization. Because of that the droplet’s surface cools down and a heat flux from
the surface is generated to compensate for heat losses. As the heat conductivities of
the droplet liquid and substrate material are much higher than that of air then the
major part of the heat flux goes through the droplet and substrate. Thus the heat
conductivities of liquid and substrate define the temperature drop at the droplet
surface. From the other hand the temperature of the droplet surface defines the
value of saturated vapour concentration (in case of diffusive model of evaporation)
and hence the evaporation rate. Dunn et al. [31, 32] solved the coupled problem of
vapour diffusion and heat transfer for the evaporation of sessile droplets of different
liquids on substrates with different thermal properties. They demonstrated both
experimentally and numerically that the heat conductivity of the substrate strongly
influences the evaporation rate. Decreasing the heat conductivity of the substrate
causes a decrease of the evaporation rate.

7 Ring-Like Stain Formation

The formation of ring-like stains during the droplet evaporation has been studied
by a number of scientists. Deegan et al. [5] studied deposition of particles in a
vicinity of the three phase contact line contact line and reasons for this phenomenon.
The authors concluded that formation of ring-like stains requires “a weakly pinning
substrate and evaporation”. Hu and Larson [28] reported that formation of such
deposits requires not only a pinned contact line but also suppression of Marangoni
flow. They demonstrated of deposit in the centre of the droplet.
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Bhardwaj et al. [6] solved numerically a complex problem of drying of droplets
of colloidal solutions and deposits formation. Their model takes into account
the Navier–Stokes equations, convection and conduction heat transfer equations,
Marangoni convection and receding of the three phase contact line. The interaction
of the free surface with the peripheral deposit and eventual depinning were also
simulated. The diffusion of vapour in the atmosphere was solved numerically,
providing an exact boundary condition for the evaporative flux at the droplet–
air interface. The formation of different deposit patterns both theoretically and
experimentally the possibility of Marangoni flow reverse and formation obtained
experimentally is explained by their simulations.

8 Complete Wetting

In the case of complete wetting droplets spread out completely over a solid
substrate, and contact angle decreases down to zero value. Lee et al. [33] considered
process of simultaneous spreading and evaporation of sessile droplets in the case
of complete wetting. In order to model the spreading they [33] considered Stokes
equations under a low slope approximation. For the modelling of evaporation
the proportionality of the total evaporation flux, J, to the contact line radius, L,
was assumed. The whole process of spreading/evaporation was divided into two
stages: (a) a first fast but short stage spreading stage, when the evaporation can be
neglected, and the droplet volume, V, is approximately constant; (b) a second slower
stage, when the spreading process is almost over, contact angle approximately
constant, and evolution is determined by the evaporation. On the basis of this
analysis the contact line radius,L, is considered as a function of the droplet volume,
V, and contact angle, � . Time derivative of L.V; �/ gives two velocities of the
contact line:

dV.V; �/

dt
D @L.V; �/

@�

d�

dt
C @L.V; �/

@V

dV

dt
D vC � V�; (8)

where vC is the spreading velocity, and v� is the “shrinkage” velocity due to the
evaporation:

vC D dL.V; �/

dt
jV�const D @L.V; �/

@�

d�

dt
; (9)

v� D �dL.V; �/
dt

j��const D �@L.V; �/
@V

dV

dt
: (10)

The spreading velocity of the contact line, vC, is obtained by Starov et al. in [34]:

vC D 0:1

�
4V

�

	0:3 �
10	!

�

	0:1
1

.t C t0/
0:9
; (11)
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where 	 is the surface tension of the liquid; � is the dynamic viscosity of the liquid;
! is the effective lubrication parameter [35]; t0 is the duration of the initial stage of
spreading when the capillary regime of spreading is not applicable [34]. Equation
(11) is derived from (9) using the formula for L.t/ obtained by Starov et al. in [35]:

L.t/ D L0 .1C t=�/0:1 ; (12)

where L0 is the droplet base radius after the very fast initial stage is over; � D
3�L0
10	

�
�	L30
4V

�3
; � is the dimensionless constant [35] connected to the effective

lubrication parameter ! [35]. The velocity v� is obtained from (10) using (1):

v� D ˇF.�/L2

3V
: (13)

Substituting (11) and (13) into (8) leads to the following equation:

dL

dt
D 0:1

�
4V

�

	0:3 �
10	!

�

	0:1
1

.t C t0/0:9

�ˇF.�/L2

3V
: (14)

The latter gives a system of two differential (1) and (14) with following boundary
conditions [33]:

V.0/ D V0; (15)

L.0/ D L0 D
"
10	!

�

�
4V0

�

	3#0:1
t0:10 ; (16)

where V0 is the initial droplet volume and L0 is the contact line radius after the
very fast initial stage is over. Solution of this system of equation in non-dimensional
form gives a universal law of process of simultaneous spreading and evaporation for
the case of complete wetting, which was validated against experimental data from
various literature sources [33] (see Figs. 2 and 3).

9 Partial Wetting and Contact Angle Hysteresis

Earlier in [36] we discussed the evaporation of sessile water droplets in the presence
of contact angle hysteresis. Model presented in [36] describes non-isothermal
diffusion limited evaporation. It takes into account latent heat of vaporization, heat
transfer in solid, liquid and gas phases, and thermal Marangoni convection in water
droplet. The rate of diffusion limited evaporation depends on vapour concentration
in the ambient air and on concentration of the saturated vapour over the droplet’s
surface. The latter depends on surface temperature. Thus we decided to compare
evaporation rate, J, from our computer simulations [18] with the one calculated
using (1), but substituting the average temperature, Tav, of the droplet’s surface
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Fig. 2 Spreading/evaporation in the case of complete wetting: dimensionless radius against
dimensionless time comparing different liquid droplets spreading/evaporating on solid substrates.
Experimental points from various literature sources and the solid line according to the theoretical
prediction [33]

obtained from computer simulations, instead of Tsurf . These two evaporation rates
coincide within the simulation error bar [18]. Thus (1) with new parameter ˇ

ˇ2�
DM

�
Œcsat .Tav/� c1� ; (17)

where Tav is the average temperature of the droplet’s surface, provides a very good
approximation of the droplet’s evaporation rate for non-isothermal case.

The average temperature, Tav, of the droplet’s surface depends on thermal
conductivities of all phases, on ambient temperature, T1, air humidity, H , and
contact angle, � , formed by the droplet in contact with a substrate. In absence
of external heating or cooling of the substrate, Tav can be approximated with the
following expression (when T1 is close to 20ıC) [36]:

Tav D Tsurf
ˇ̌
ksD0�D�=2 C T1 � Tsurf

ˇ̌
ksD0�D�=2

1C F.�/ Œ.ka=kw/ .sin� � 0:75� C 4:61/�
; (18)

where function F.�/ is defined by (2); ka, kw and ks are thermal conductivities of
air, water droplet and substrate, respectively; Tsurf

ˇ̌
ksD0�D�=2 is the root of (19)

with respect to Tsurf :

�D
�
csat

�
Tsurf

� �Hcsat .T1/
� D ka

�
T1 � Tsurf

�
; (19)
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Fig. 3 Spreading/evaporation in the case of complete wetting: dimensionless contact angle against
dimensionless time curve for the behaviour of the droplet radius (see Fig. 2) comparing theoretical
(solid curve) and experimental data (symbols) [33]

where D is the diffusion coefficient of vapour in air, � is the latent heat of
vaporization (in J/mol). Equation (19) represents the relation between diffusive
evaporation rate and conductive heat flux through the air (air convection is neglected
in [36]), in case when thermal conductivity of the substrate, ks , is zero and contact
angle is 90ı, which results in absence of heat transfer through the substrate and the
droplet.

Using (1) with the new parameter ˇ, see (17), and assuming that ˇ is almost
constant during the process of droplet evaporation [36], allowed us to develop a
theory describing stages of the process of sessile droplet evaporation in case of
contact angle hysteresis (i), constant radius of the droplet base, L D L0, but the
contact angle decreases over time from the static advancing contact angle down to
static receding contact angle; and (ii), constant contact angle, � , equals to the static
receding contact angle but radius of the droplet base decreases over time. Results
have been compared with the experimental data from literature for evaporation of
water droplets on different substrates. First, experimental data for stage (i) have
been fitted with the theoretical curve by adjusting unknown parameter ˇ. Then the
same values of ˇ have been used for plotting theoretical curves of stage (ii), which
showed very good agreement with experimental data (see Fig. 4).
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Fig. 4 Evaporation of sessile
droplets of water on different
substrates in case of partial
wetting with contact angle
hysteresis: comparison of
theoretical curves (solution of
(1) with ˇ from (17)) with
experimental data. (a) stage
(i) of the evaporation process,
when contact line radius is
constant L D L0. (b) stage
(ii) of the evaporation
process, when contact angle
is constant and equal its static
receding value �r . ` D L=L0
is the non-dimensional
contact line radius. Q� and N�
are non-dimensional times for
stages (i) and (ii) respectively.
Redrawn from [36].
Experimental data are taken
from [10, 37, 38]

In Fig. 4 non-dimensional times are defined as follows:

Q� D � C B .�ad / ;

N� D 2F.�r/

3f .�r/
.� � �r / ;

where � D tˇ=L20;L0 is the value of L during the first evaporation stage (i);B.�/ DR �=2
� f 0.�/=F.�/d� ; f 0.�/ � df .�/=d� ; F.�/ is defined by (2); �r is the value of
� at the beginning of stage (ii), when receding of the contact line starts; f .�/ D
V
L3

D �
3

.1�cos�/2.2Ccos�/
sin3�

under assumption of a spherical cap shape of the droplet.
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10 Kelvin’s and Kinetic Effects

Below we studied the influence of kinetic effects on evaporation of pinned sessile
water droplets of submicron size on copper substrate. The model takes into account
the influence of curvature of the droplet’s surface (Kelvin’s equation for the pressure
of saturated vapour above a curved liquid–gas interface) on total evaporation rate, J .

Kinetic effects are included into model using Hertz–Knudsen–Langmuir
equation, (20), for local evaporation/condensation flux at the droplet–air interface
as a boundary condition for the diffusion equation of vapour in air:

jm D ˛m

r
MRT

2�
Œcsat .T / � c� ; (20)

where jm is the surface density of mass flux across the droplet–air interface in
direction from liquid to air; ˛m is the mass accommodation coefficient (probability
that uptake of vapour molecules occurs upon collision of those molecules with the
liquid surface); R is the universal gas constant; T and c are the local temperature
in ıK and molar vapour concentration at the liquid–gas interface, respectively;M is
the molecular weight of the evaporating substance; csat is the molar concentration
of saturated vapour at the droplet–air interface.

Equation (20) is based on the kinetic theory of gases and it links evaporation flux,
jm, with local vapour concentration, c, and local temperature, T, at the liquid–air
interface.

The model also includes thermal effects: latent heat of vaporization and thermal
Marangoni convection, whose presence reduced evaporation rate for less than 5%
(water on copper substrate) as well as thermal conductivity in all phases. It is shown
that Stefan flow, generated in air by the evaporation process, reduced evaporation
rate by less than 0.2%.

Results of computer simulations are presented in Fig. 5. The model used is valid
only for droplet size bigger than the radius of surface forces action, which is around
10�7 m D 0.1�m. Results for contact line radius L < 10�7 m have no physical
meaning, as additional surface forces have to be included into the model at this
scale (disjoining/conjoining Derjaguin’s pressure). The range of sizes L < 10�7 m
is shown only for the demonstration of curves tendencies.

Figure 5 shows that kinetic effects become important only for submicron droplets
(L < 10�6 m), therefore a deviation from the pure diffusion model of evaporation
can be neglected for the droplet size bigger than 10�6 m. Kelvin’s effect influences
the evaporation rate, J, only for droplets of size L < 1:1 � 10�8 m, and can be
neglected for droplets of size L > 10�7 m.

The latter shows that a consideration of evaporation of microdroplets completely
covered by the surface forces action (that is less than 10�7 m) should include both
deviation of the saturated vapour pressure caused by the droplet curvature (Kelvin’s
effect) and the kinetic effects.
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Fig. 5 Influence of Kelvin’s equation and kinetic effects on evaporation rate, J, of pinned sessile
droplets of water on copper substrate. L is the contact line radius

Though the influence of above mentioned effects on total evaporation flux, J, is
negligible for droplets of sizeL > 10�6 m, they may be important for the calculation
of a local evaporation flux at the three-phase contact line.

11 Derjaguin’s (Disjoining/Conjoining) Pressure

From theoretical point of view two singularities have to be coped with simulta-
neously [39] at the three-phase contact line. The first problem is associated with
the well-known problem of a singularity at the moving three phase contact line: a
singularity of the viscous stress caused by an incompatibility of no-slip boundary
condition at the solid–liquid interface with boundary condition of moving liquid–
air interface. The second problem is associated with the specific behaviour of the
evaporation flux at the perimeter of the droplet. The latter singularity is caused by
an incompatibility of a boundary condition for vapour flux at liquid–air interface
with the boundary condition of no vapour penetration at the solid–air interface.

In order to overcome the problem of singularities at the three-phase contact
line it is necessary to replace mathematically inconsistent boundary conditions by
physically correct ones. It can be done using Derjaguin’s (disjoining/conjoining)
pressure concept. This approach does not introduce a three-phase contact line and,
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therefore, rules out any singularity problems in a vicinity of the otherwise apparent
three-phase contact line [20].

Surface forces (Derjaguin’s pressure) act in a vicinity of the apparent three-phase
contact line so called transition zone [20]. The presence of the Derjaguin’s pressure
disturbs the initial special profile of the liquid droplet in a vicinity of the three phase
contact line. It is also known that a very thin adsorbed film forms on a solid surface,
which is at the thermodynamic equilibrium with the vapour concentration in the
surrounding humidity. That is, in the humid air, water vapour forms a thin water
film on the surface of a solid substrate. Thus, a liquid–air interface of a sessile
liquid droplet is actually in a contact with this adsorbed water film (or a film of
other substance); thus, in this approach there is no true three-phase contact line.

First models of evaporation in a vicinity of the three phase contact line based on
consideration of Derjaguin’s (disjoining/conjoining) pressure action were developed
by Potash and Wayner [22], and Moosman and Homsy [21], who used the
Derjaguin’s pressure to model the transport phenomena in an evaporating two-
dimensional meniscus (both in the case of complete wetting). In [22] the authors
calculated the meniscus profile, heat flux profile, and pressure gradient profile. In
[23] the authors deduced a meniscus profile changes relative to the static isothermal
one, as well as an evaporation flux from the interface using a perturbation theory.
Both [22] and [23] demonstrated that a large heat and evaporation fluxes occur in
the transition region between the capillary meniscus and the adsorbed layer. Stephan
et al. [40] investigated experimentally evaporation in heat pipes with grooved
walls. They confirmed the theoretical conclusions by Moosman and Homsy [21] on
prediction that significant part of the evaporation flux is localized at the three-phase
contact line.

Ajaev et al. [23] studied both static and dynamic values of the apparent contact
angle for gravity-driven flow of a volatile liquid down of a heated inclined plane. The
authors investigated macroscopic boundary conditions which could be used with
a conventional continuum approach and agreed with the micro scale phenomena
at the contact line. They found the profile of the liquid–vapour interface in the
region of the apparent three-phase contact line and determined the dependence of the
macroscopic contact angle on the temperature of the contact line and the velocity
of its motion. The interface profile in the region was determined by a disjoining
pressure action and asymptotically approaches the adsorbed thin liquid film. It was
found that the curvature of the interface at that transition region is very high. Authors
[23] also investigated the effect of evaporation on moving contact line in the case
of partial wetting. They proposed a generalization of the approach of Moosman and
Homsy [21] and Ajaev et al. [41, 42].

Diaz et al. [43] studied a static puddle taking into account capillarity, gravity and
disjoining pressure. They found an analytical solution for the shape of the vapour–
liquid interface in the transition zone between adsorbed liquid layer and capillary
region.

Eggers et al. [44] studied the evolution of a droplet of pure liquid on a solid
substrate in case of complete wetting and intensive evaporation. They coupled
viscous flow with evaporation from droplet’s surface and its precursor film. The
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evaporation was limited by a diffusion of vapour into the surrounding atmosphere.
Authors found that their model describes well the final stage of evaporation when
drop radius goes to zero like L .t0 � t/˛ , where ˛ has value close to 1/2, which is in
agreement with experiments.

All the above examples of disjoining pressure action at the apparent three-
phase contact line gave the evidence of possibility to construct physically consistent
macroscopic boundary conditions at the contact line taking into account microscopic
phenomena.
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Superspreading: Role of the Substrate
Surface Energy

A. Nikolov and D. Wasan

1 Introduction

The quick wetting of solid surfaces with the desired liquids is necessary to many
commercial processes. The trisiloxane surfactant containing 7.5–8.0 mol of ethylene
oxide groups (e.g., Silwet L-77) has been found to be one of the best spreading
agents with the ability to spread quickly on difficult-to-wet surfaces (e.g., hydropho-
bic ones like polystyrene and leaves), and is an excellent adjuvant for completely
spreading an aqueous solution on leaf surfaces. Trisiloxane-ethoxylate surfactants
(superspreaders) are biodegradable and understanding their ability to spread a liquid
quickly on a solid surface is an important step in building a strong foundation
for developing novel technologies and devices; superspreaders can be used in
surface coating (e.g., to develop optical devices with desirable surface properties),
heat transfer devices, painting, printing compositions, agricultural adjuvants, fabric
manufacturing, cosmetics, surface cleaners, and oil removal.

Surfactants have been known to assist the spreading of liquid on a solid surface
by lowering the liquid–vapor surface tension. The classical theory of wetting (e.g.,
Young’s (1805) and Dupre (1869) equation) teaches that the resulting imbalance
of forces at the contact line may cause the drop to spread outwards on a smooth
horizontal substrate surface when the spreading coefficient is S 
 0. The validation
of the concept of the positive spreading coefficient (S 
 0) requires the accurate
measurement of the spreading dynamics (e.g., the decrease in the contact angle,
and the surface and interfacial tension at the solution/solid interface at the droplet’s
spreading edge). The infrared spectroscopy (FTIR/ATR) applied by Kumar et al. [1]
for monitoring the adsorption at the solid/solution is a good approach for obtaining
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information for the rate and adsorption at the solid/solution interface. However, the
scale of measurement for the rate of adsorption at the solid/solution interface has to
be compatible with the time scale of the spreading dynamics.

A model for the spreading driven by the Marangoni flow was proposed when
the spreading coefficient at the spreading edge could be (S  0). It was assumed
that the Marangoni flow was located along the drop surface–a high surface tension
at the drop edge and a low surface tension at the droplet surface apex [2, 3]. In
this article, we discuss the role of the Marangoni flow in enhancing spreading. It is
important to notice that the two proposed concepts, the spreading due to S 
 0 and
the Marangoni flow, cannot apply at the same time because S 
 0 requires a low
surface and/or interfacial tension at the spreading edge while the Marangoni flow
requires a high surface tension at the spreading edge. Put simply, the two proposed
concepts for explaining superspreading are mutually exclusive.

Another option for explaining the superspreading phenomenon is to assume
that the dispersed surfactant aggregates may disintegrate and the product of this
disintegration somehow contributes to the formation of a bilayer (e.g., “ziplock” or
self-hydrophilicity) on a substrate at the air/solid interface, air/liquid surface, and/or
on the substrate solution. Such a generalized concept was proposed [4–8], but the
detailed mechanism of surfactant aggregate disintegration leading to the formation
of a bilayer on a substrate (or at the air/solution surface) and that enhances spreading
has never been proven or presented with reliable physical evidence supporting its
occurrence. The reader has to guess how and where the bilayer formed and how it
triggers spreading. If the bilayer formation is the requirement for superspreading,
why does the optimum of spreading rate vs. concentration exists? No experimental
evidence has been presented for the role of bilayer formation on superspreading,
although it has been commonly discussed in the literature.

The goal of our previously published paper was to discuss and debate the
commonly presented superspreading mechanisms in the literature. The purpose
of this study is to present an understanding of what drives superspreading and
present a simple model to explain the experimental data reported in the literature.
It was observed that the optimum in the rate of spreading vs. substrate wettability
corresponds to a wetting angle between 60–65ı, but this has never been explained.
We would like to discuss and explain two main features: the spreading rate has a
maximum vs. concentration, and the value of the concentration corresponding to a
maximum rate of spreading does not depend on the substrate’s wetting angle.

2 Surface Activity of Superspreader Silwet L77:
Data Analyses

Superspreaders are commercial surfactants and are not a single chemical com-
ponent, but rather are a mixture of siloxane polyether polymers. Superspreaders
are produced by several companies and their chemical formulation and surface
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activity vary. So it is not surprising that the data for the rate of spreading vs. substrate
wetting nature and optimum concentrations published in the literature vary. How to
choose which published data are reliable is no easy task. In this paper, we focus
our attention on the commercial product Silwet L77 (with a general composition
of methyl-trisiloxane with 8 ethoxylated groups capped with a methyl group).
L77 is mostly used by researchers studying superspreading. Before analyzing
the data on superspreading (e.g., the rate of spreading vs. optimum surfactant
concentration and the role of the substrate’s surface energy), we will briefly discuss
the molecular state of superspreaders at the surface and in the bulk. The surface
tension isotherm of superspreader L77 at room temperature (25ıC) has a CAC
(critical aggregation concentration) at 1:210�4 mol/l and this concentration is its
solubility limit in an aqueous solution. Above this concentration, the superspreader
molecules tend to form vesicle-type aggregates with different sizes rather than form
less dispersed micelles as the classical surfactants do. The value of the surface
tension at CAC is about 20–21 mN/m and the area per molecule at the surface
saturation (d
=d lnC Dconctant) is 60–65A2. No pre-CAC type of aggregate was
observed to form. After CAC, there was no observable change in the isotherm’s
slope indicating the unlikely formation of a multi-layer at the air/surfactant solution
interface. The CAC value of L77 at the surface saturation is of the same order as that
for a nonionic surfactant with good surface activity (e.g., hydrocarbon ethoxylated
alcohol surfactant with a straight paraffin chain containing 13 carbon atoms and 30
ethylene-oxide groups has a CMC at 10�4 mol/l. The value of the surface tension at
CMC is 43 mN/m and the area per molecule is 70–74A2 [9,10]. The surface tension
of L77 at CAC is lower than the more conventional nonionic hydrocarbon-based
surfactants, and the area per molecule is also less. These differences in the surface
tension and area per molecule at the aggregation concentration are likely due to the
specific molecular structure of L77. The molecular structure of L77 is like that of
conventional hydrocarbon nonionic surfactants and has two parts: hydrophobic and
hydrophilic. Despite the fact that L77 is a mixture of siloxane polyether polymers,
the molecular structure of L77 has specific features; it enhances the surface activity
at the air/surfactant interface as well as the spreading. The role of the ethoxylated
chain on the spreading area has already been studied [11]. An optimum in the
spreading area vs. degree of ethoxylation was observed. Trisiloxane with 8 ethoxy
groups had the best spreading ability. The methyl trisiloxane chain, the hydrophobic
part of the molecule, occupied the air space of the surface phase; the methyl group
ending the ethoxylated chain (the hydrophilic part of the molecule) plays a role
on the molecular vertical position at the surface. For example, at the optimum
concentration of 0.1 wt%, the spreading rate of L77 is almost two times faster on
Parafilm than on the methyl trisiloxane with the 8 ethoxylated groups end-capped
with a hydroxyl group [6, 12]. The type of the end-capped group (hydrophobic or
hydrophilic) anchors the molecular vertical position at the air/aqueous surface and
has an impact on the surface activity (e.g., the lateral intermolecular interactions)
and causes the rate of spreading of L77 to be higher compared with the same
molecule end-capped with a hydroxyl group.
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Many researchers investigating superspreading have assumed that the vesicle
type of clusters rather than micelles are present in the bulk and that these are a
requirement for superspreading (see [4, 6, 8]), however, this assumption has never
been proven.

3 Superspreading: Concepts and Models

Before discussing commonly presented concepts in the literature for the mech-
anisms of superspreading, data for the spreading rate of L77 vs. concentration
and substrate surface energy will be presented and analyzed. The data for the
spreading rate of L77 vs. concentration and substrate surface energy were reported
by Hill [5] and are presented in Fig. 1. The specific spreading features of the
L77 superspreader are that the spreading rate has a maximum vs. surfactant
concentration and vs. substrate wettability (substrate surface energy). Intriguingly,
the value of the concentration corresponding to maximum rate of spreading did not
depend on the substrate wettability, and the spreading rate had a maximum at a
substrate wetting angle between 60–65ı. The substrate wettability was quantified
by the water phase’s ability to wet the substrate [5].

Overall, the spreading rate for L77 (Fig. 1) had an optimum of 0.5 cm/s (or
80 mm2/s) at a surfactant concentration of 0.45–0.50 wt% and at a substrate
wettability between 60–65ı.

To provide an explanation and propose a model predicting why the optimum of
the spreading rate was at a substrate’s wettability of 60–65ı (intermedium substrate
wettability) is a challenging task. The correct way to validate a proposed model or
concept is to apply and predict the value of the substrate’s wetting angle on the
spreading optimum.

So far, no model has been presented in the literature that explains the optimum
rate of spreading vs. substrate wettability. As was discussed, of the concept of the
bilayer formation on the substrate/air interface or the substrate/solution interface
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was proposed as possible explanation for what drives superspreading. Here, we will
briefly debate the validity of this concept. More details on the validity of the bilayer
concept on superspreading were recently discussed by Nikolov and Wasan [3].

Hardy [13] suggested that the presence of a precursor water film at the solid vapor
interface ahead of the spreading droplet edge and fast surfactant adsorption onto
the substrate/solution at the droplet meniscus causes the surface tension gradient
between the precursor film and meniscus; this generates the Marangoni flow in the
direction of the precursor film on the solid, causing the droplet to spread on the
substrate until the surface tension gradient diminishes. Hardy’s spreading concept
due to the water precursor film on the substrate was modified and instead of the
existence of a precursor water film on the solid/vapor substrate, it was assumed
that a surfactant bilayer existed at the solid/vapor interface [6, 7]. Ruckenstein [7]
proposed that the surfactant bilayer formed at the solid/vapor interface and water
molecules could infiltrate into the surfactant’s bilayer to promote the surface tension
gradient. The weakness of this concept lies in the lack of evidence and/or physical
reasons for bilayer formation on the substrate with an intermediate wettability
(Fig. 1). In order to present an explanation and model describing the superspreading
process, it is necessary to continuously monitor the rate of spreading and the contact
angle dynamics [2].

When a droplet of L77—0.1 ml aqueous solution with a concentration of 0.1wt%
(e.g., 10 times CAC)—formed on the tip of the capillary, its surface was quickly
covered with surfactant molecules. When the droplet was placed on a smooth flat
polystyrene surface with a water wettability of 75–80ı, a humidity of 45–50%
and a temperature of 25ıC, the droplet began to spread quickly over the substrate
in a circular manner and its initial contact radius increased. During the initial
spreading time (e.g., 3–4 s), the spreading rate was fast (e.g., 0.25–0.3 cm/s) and
constant. During this time, the droplet spread over 60–65% of the total area of
spreading. Then, the spreading rate with time diminished; after 30–35 s, it stopped.
The micrographs posted in Fig. 2 depict the initial spreading evolution of L77 at a
concentration of 0.1 wt% spreading over a smooth flat polystyrene surface.

The droplet spontaneously spread over the substrate, and the droplet surface
tension in the spreading direction became non-uniform. At the spreading edge, the
surface concentration was expected to drop and have a high surface tension; at the
apex, the surfactant concentration remained high and surface tension remained low.
The advancing contact angle during the initial fast rate of spreading was 30–40ı and
the covered area increased by 40 cm2 [2]. After the period of fast spreading, the rate
of spreading slowly decreased; the droplet spreading rim broke into crown droplets
and after 20–25 s, completely stopped. After some time, the surfactant molecules
should begin to adsorb at the air/solution interface from the bulk and maybe even on
the substrate also if the interactions between the substrate and surfactant molecule
promote the adsorption. The optional surfactant adsorption on the substrate with
an intermediate wettability (e.g. of 50–80ı) and role on the spreading rate will be
discussed later when the role of the substrate surface energy on spreading rate will
be finalized.
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Fig. 2 The sequence of micrographs depict the early-time of Silwet L-77 droplet radial spreading:
shape (curvature) and wetting over a smooth flat polystyrene surface at a concentration of 0.1 wt%,
and droplet volume of 20�l. The initial droplet constant size with substrate was about 1.7 cm

First, we will discuss the effect of the surfactant concentration on the optimum of
rate of spreading. The rate of spreading during the initial time is the faster than the
later rate of spreading, remains constant, and then ends with the breakup of the rim
into droplets (fingers); these facts, paired with the information that the spreading
rate vs. concentration had a maximum, suggest that the driving force of spreading is
the Marangoni flow. It is known that the fast spreading of a liquid on a solid is driven
by the surface tension gradient at the air/liquid interface, which acts as a shearing
stress on the underlying liquid (the Marangoni flow) (see [14, 15]). To maintain a
sufficient surface tension gradient to generate flow driven by the tangential stress on
an expanding droplet surface requires an optimum in the surfactant concentration
in the bulk. At low and high surfactant concentrations in the bulk, the surface
gradient diminishes quickly with spreading. The forces operating per unit area on a
droplet with a surfactant that is placed on a substrate with an intermediate substrate
wettability are presented in Fig. 3.

Nikolov et al. [2] assumed a linear increase of the surface tension along the
expanding droplet surface, and proposed a simple model for the average velocity
of spreading (Uav) based on the lubrication approach

Uav D h

2�

�
d


dr

	

V;�
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� h�g
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The average spreading rate considers the role of the viscosity: the first term
represents the role of the surface tension gradient (the driving pressure), the second
term is the capillary resistance driven by the droplet curvature, and the third term is
the hydrostatic pressure. Based on experimental evidence that the rate of spreading
on horizontal and vertical substrates is the same as the contribution of the hydrostatic
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Fig. 3 The forces per unit
area on a droplet with a
surfactant placed on a
substrate with an inter
medium wettability

pressure on the spreading rate, it can be neglected [16]. A simple model based on
(1) was proposed to predict the initial faster spreading rate. The model predicted
well the value of the optimum velocity, assuming that the capillary term in (1)
is smaller than the Marangoni flow term. The proposed simplified model did not
take into consideration the effect of the droplet curvature on the Marangoni flow;
the role of the substrate’s wettability was neglected. As noted earlier, the data
presented in Fig. 1 reveal that the spreading rate had an optimum at an intermediate
substrate wettability of 60–65ı. The position of the optimum of the spreading
rate vs. substrate wettability was independent of the surfactant concentration, but
its magnitude depends on the surfactant concentration and has an optimum at a
concentration of about 0.5–0.55 wt% (Fig. 1). For example, the highest spreading
rate at a substrate wettability of 60–65ı was at a surfactant concentration of 0.5 wt%.
This is quite intriguing because it has been proposed that the superspreader’s
molecule adsorption and formation on the bilayer on the substrate are necessary
for superspreading to occur [4–8]. It is expected that the superspreader molecule
will adsorb in different manners on hydrophobic and hydrophilic substrates. Driven
by the specific molecular interactions, the hydrophobic part of a molecule tends to
adsorb on a hydrophobic substrate surface. The same rule applied to the hydrophilic
part of the surfactant molecule will tend to adsorb on the hydrophilic substrate rather
than on the hydrophobic one.

In summary, based on the concept of specific molecular interactions, it is unlikely
the molecule of L77 will adsorb on the substrate with an intermediate wettability of
60–65ı where the optimum of spreading was observed.

In order to verify that the molecule of L 77 is unlikely to adsorb on the substrate
with an intermediate wettability, we conducted a simple experiment. A 10�l droplet
containing an aqueous solution of L77 with a concentration of 0.4 wt%, at 25ıC
and a humidity of 45–50%, was placed on a smooth flat polystyrene surface. The
droplet spreading was monitored and after 30–35 s, the spreading stopped. Then,
the spreading surface was washed 2–3 times with Millipore purified water. The
polystyrene surface was dried at room temperature for 20 min and a droplet of
purified water was placed on an area where the spreading was performed; the three-
phase contact angle was measured using the goniometric side-view method. The
value of the measured three-phase contact angle was 75–80ı. The value of the
contact angle was in very good agreement with the measured value of the three-
phase contact angle between the purified water drop on the polystyrene surface.
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The optional bilayer formation at the air/solution surface was also examined. It is
well known that an accurate measurement of the surface tension adsorption isotherm
provides useful information for monitoring changes inside the surfactant adsorbed
layer vs. concentration; this information includes the molecular area, structural
transitions, transition from mono- to bilayer, and when the surfactant molecules tend
to begin to aggregate into the bulk [17]. The detailed examination of the surface
tension isotherm of L77 did not provide evidence that the bilayer could form at
the air/solution surface. The formation of the bilayer at the air/surface is quite an
unusual phenomenon. The assumption made by some investigators that the faster
rate of spreading is driven by the bilayer’s or monolayer’s specific adsorption at the
droplet spreading edge (e.g., the precursor layer or bilayer film) on solid surfaces
with an intermediate wettability remains not only an unproven assumption, but is
also a physically unrealistic phenomenon.

In summary, the formation of a surfactant bilayer at the air/solution interface or
on the substrate with an intermediate wettability is unlikely to occur; it should not
be considered a factor triggering the superspreading phenomenon, as was proposed
in the literature by Stoebe et al. [6], Ruckenstein [7], Karapetsas et al. [8], but it
has to be attributed to the adsorbed layer surface dynamic property to maintain the
Marangoni flow over the droplet surface during spreading. Exploring the concept
of the spreading driven by the Marangoni flow over a curved surface requires
a model that predicts the superspreading vs. substrate wettability as well as the
spreading rate.

4 Modeling Spreading vs. Substrate Wettability

In the case of Marangoni-driven spreading over a curved surface, rapid spreading
on a substrate with a high hydrophobicity (e.g., 100–180ı) is not expected because
the surface area is stretched less and the Marangoni flow will diminish quickly;
furthermore, it will not contribute to the direction of the spreading (Fig. 4). On
a hydrophilic (water-wetted) substrate, the spreading rate is expected to be low
because the liquid film on the substrate and the frictional viscous force will oppose
the spreading flow. There is certainly an optimum rate of spreading vs. substrate
wettability, if we assume that the surface tension gradient operates along the radial
direction of the spreading. To propose a model predicting the spreading rate requires
knowledge of the droplet surface curvature (shape) evolution.

Here, we will discuss the contribution of the surface tension gradient, capillary
and friction on the rate of spreading vs. substrate wettability during the initial
spreading time. The faster rate of spreading occurred during the initial time, and
during that time the three-phase contact angle between the solution and substrate
was not small. In the case of spreading on a polystyrene substrate at an optimum
concentration, the advancing contact angle during the faster rate of spreading was
30–40ı. The role of the droplet curvature has to be considered to evaluate the
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Fig. 4 The sketch depicts the
surface tension gradient
contribution on spreading
over a curved surface
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droplet curvature depends on the substrate wettability. The degree of droplet surface
stretching (a surface increase) when the droplet is placed on a substrate depends on
the substrate’s wettability. At a wettability of � ! 180ı, the surface stretching
is much less than that on the substrate with a wettability of � ! 0ı. As an
approximation, we assumed that, depending on the wettability of the substrate,
the surface tension gradient along the radial direction of the spreading follows the
droplet surface’s slope and has a value the same as the substrate wetting angle � .
This assumption, however, is not quite correct. We will discuss the role of the
dynamic contract angle on the spreading rate later. The contribution of the surface
tension gradient on the rate of droplet spreading on a curved surface is given by the
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�
V;C

. cos � needs to be considered in the role of the droplet surface
curvature of the gradient contribution on the spreading rate. The substrate wettability
also contributes to the viscous friction. At a substrate wettability of � ! 180ı,
the friction term

�
�@u
@z

�
V;C

! 0, and at � ! 0ı (a liquid film on substrate);�
�@u
@z

�
V;C

! 1.
The spreading equation driven by the surface tension gradient on a curved surface

due to the substrate’s wettability at a constant drop volume (v) and concentration (C )
is given by the expression:

Uav � hgrad

2�

"
cos�

�
d


dr

	

V;C

#
: (2)

For simplicity, it was assumed that the droplet shape during the faster time of
the spreading was that of a spherical cap. The micrographs taken during the initial
time faster spreading rate support such an assumption (Fig. 2). The parameter (hgrad)
in (2) is the thickness of the spreading layer corresponding to cos�

�
d

dr

�
V;C

. The
height of a droplet cap with a spherical shape can be expressed as a function of the
drop radius (R) and substrate wettability (�) with the expression: h D R.1�cos�/.
The value of (h > hgrad), but the optimum of Uav.�/, is independent of the value of
(h) and contributes only to the magnitude of Uav.�/. The role of h.R/ on the rate
of spreading will be discussed later. The expression for (h) was substituted in the
above equation for the average velocity of spreading, Uav.�/V;C :

Uav.�/ � R.1 � cos�/

2�

"
cos�

�
d


dr

	

V;C

#
: (3)
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Fig. 5 The prediction of the
droplet average spreading rate
optimum vs. substrate
wettability for droplet with
surface radius of R D 1 cm,
viscosity 10�2 P, and surface
tension gradient
0.04 dyne/cm2

We examined the average spreading velocity at a constant droplet volume (V ) and
concentration (C ) vs. (�) at a droplet surface curvature R D 1:0 cm and different
values of

�
d

dr

�
. It had an optimum at � D 60ı (Fig. 5).

This prediction of the optimum rate of spreading vs. substrate wettability is in
very good agreement with the data for the optimum rate of spreading vs. substrate
wettability reported by Hill (Fig. 1). The data presented in Fig. 1 predict an optimum
of the spreading rate of 0.5 cm/s (or 80 mm2/s) of the substrate with a wettability 60–
65ı corresponding to a surfactant concentration of 0.5–0.55 wt%. As was expected,
the value of the parameters of R (the drop surface curvature at a constant and
concentration C ), � and

�
d

dr

�
V;C

will not contribute to the value of the optimum
� but will contribute to the magnitude of the spreading rate at an optimum
� . In order to validate the spreading rate vs. (�), we substitute data for R and K�
from experiment into (3). For a droplet with a surface radius R D 1 cm, viscosity
� D 10�2P and for

�
d

dr

�
, it was assumed that the value of 0.04 dyne/cm2 had the

corresponding surface tension gradient of 0.02 dyne/cm over 0.5 cm. The prediction
of the spreading rate (velocity) vs. substrate wettability is presented in Fig. 5. The
value of the spreading rate had an optimum and was 0.5 cm/s when the experimental
value of the spreading rate at an optimum reported by R. Hill was also 0.5 cm/s.
The (R), and respectively (h), and

�
d

dr

�
are parameters in (3); this equation requires

augmentation when using the proposed values to calculate the magnitude of the
spreading rate. The optimum of the spreading rate vs. substrate wettability � was
independent of the value of these parameters and concentration, but its magnitude
was a function of the value of these parameters.

Equation (3) was used to analyze the rate of spreading vs. � for different values of
the surface tension gradient over a droplet surface with the same (R). Equation (3)
predicts a linear relation between the rate of spreading and the surface tension
gradient (Fig. 6).

The effect of the droplet surface radius (R) on the spreading rate was also
analyzed. When a larger droplet is placed on a solid at the same three-phase
contact angle of the substrate and the same concentration, the local film thickness
along the substrate is high and the frictional force has to be lower and spreading
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Fig. 6 Equation (3) predicts
a linear relationship between
the average spreading rate vs.
surface tension gradient.
Droplet radius: R D 1:0 cm

Fig. 7 The effect of the
droplet surface radius R
(respectively curvature 1=R)
on the spreading rate vs.
substrate wettability (� ) at a
surface tension gradient of
0.02 dyne/cm2 , and
� D 10�2P

fast. Figure 7 depicts the effect of the droplet surface radius (drop size) on the
spreading rate vs. � at a surface tension gradient of 0.02 dyne/cm over 0.5 cm, and
� D 10�2P .

At the optimum wettability, the values of the parameters (h, R, and
�
d

dr

�
)

contribute only to the value of the spreading rate and not the value of � . The
questions naturally arise: is the wetting angle � the same during the faster rate of
spreading? Is the value of the surface gradient cos.�/

�
d

dr

�
over the curved surface

constant? The visual observation reveals that, during the time of the faster rate of
spreading, the wetting angle did not change much. However, the value of the slope
over the droplet surface is unlikely to be the same as the value of the equilibrium
three-phase contact angle of substrate. The contribution of the surfactant to the
substrate wetting has to be considered when analyzing the rate of spreading. To
correctly predict the spreading rate vs. substrate wettability, we have to consider
not a water-wetting substrate (static angle), but a surfactant solution wetting the
substrate during the time of the faster spreading rate. The right way to do this is to
conduct an experimental observation of the wetting angle during the spreading rate.
Based on our observations, superspreading on a smooth flat polystyrene substrate
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Fig. 8 Evaluation of the role
of the dynamic constant angle
on the droplet spreading rate.
Due to the presence of the
surfactant, was assumed that
the value of angle wetting the
substrate was reduced by
factor of 0.3. The calculation
was performed assuming
R D 1 cm, surface tension
gradient of 0.01, 0.02 and
0.05 dyne/cm2 , � D 10�2 P
and the optimum rate of
spreading shifted from 60ı to
75ı

with a water wettability of 75ı resulted in a monitored dynamic wetting angle of
40–45ı. If we consider that the actual spreading angle is 30–35% less than the water-
wetting substrate, the value of the optimum spreading rate shifts from � D 60ı to
� D 75ı (Fig. 8).

In summary, the proposed model correctly elucidates the effect of the substrate
wetting, surface tension gradient, and droplet surface curvature on the optimum rate
of spreading during the time of the faster spreading rate.

The role of vesicle-type aggregates on superspreading has been discussed for
some time [4–7]. Despite that, no experimental evidence has been presented to
support the role of aggregates on spreading. Very recently, Karapetsas et al. [8]
attempted to explain superspreading by proposing a basal adoption model. The
model considers the curtailed role of the surfactant adoption dynamics from the
air/solution interface to the substrate/solution interface on spreading. The aggre-
gates’ disintegration supplies the air/solution surface with surfactant molecules. The
surfactant molecules adsorbed on the air/solution surface at the spreading edge
transferred quickly and adsorbed on the substrate/solution interface. Marangoni
stress close to the droplet edge promotes very fast spreading. The weakness of the
Kakavetsis model is that the faster rate of spreading (superspreading) was observed
at a substrate wettability corresponding to � D 60ı. At this wettability (surface
energy) of the substrate, it is unlikely that the superspreader molecules will tend to
adsorb on the substrate. We noted earlier that the theory of adhesion teaches that
a specific adsorption between biphilic molecules such as surfactants and substrates
could occur on a substrate, either with hydrophobic or hydrophilic substrates, and
is unlikely to occur on a substrate with an intermediate wettability where the
optimum spreading rate was observed. The authors of the proposed model need
to provide evidence for why and how the superspreader molecule tends to adsorb
on the substrate (which is neither hydrophobic nor hydrophilic). However, the role
of vesicle-type aggregates could play a role in superspreading, but not on the faster
rate of spreading; the aggregates would instead be promoting the maximum area of
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spreading. The goal of the presented research is to elucidate what drives the faster
rate of spreading at the optimum substrate wettability, and not to discuss what drives
the optimum of the wetting area.

5 Conclusions

The less-understood feature of the superspreading phenomenon for the role of
the substrate surface energy (characterized by wetting) on the optimum rate of
spreading was discussed. Observations reveal that the faster rate of spreading over
the substrate occurred during the initial time. A simple model was presented to
predict the optimum of the spreading rate vs. substrate wettability. The role of the
surface tension gradient

�
d

dr

�
V;C

over a curved surface was elucidated when the
value of the wetting angle was considered. The model predicted the optimum rate of
spreading vs. � at � D 60ı. This value is in good agreement with the experimental
observations.

The values of R, � and
�
d

dr

�
V;C

had no effect on the position of the optimum
vs. � , but contributed to the magnitude of the rate of spreading. The predicted value
of the spreading rate at the optimum of wetting was also in a good agreement
with the experimental observation. The effect of the surfactant on the substrate’s
wettability and its contribution to the surface tension gradient on the optimum
spreading rate was also discussed.
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Coupled Korteweg–de Vries Equations

R. Grimshaw

1 Introduction

In inviscid fluid flows instability can often be interpreted as a resonance between
two waves. Thus, as some external parameter is varied, the phase speeds of two
waves coincide at some critical parameter value. The generic unfolding of this
resonance yields either a stable “kissing” configuration, or a “bubble” of instability
in the space of the external parameter (see Fig. 1). There are many examples of
this situation, see for instance, the monograph by Craik [1] for shear flows, or
Baines and Mitsudera [2] for a discussion of the physical processes involved. Our
concern here is with the unfolding of this resonance in the long-wave limit. There
are two generic canonical models (see, for instance Grimshaw [3]). For the case
when the corresponding wave modes coincide at criticality, the canonical model is
the Boussinesq equation

Att ��2Axx C 1

2
�.A2/xx C �Axxxx D ıAxx (1)

Here� is the aforementioned external parameter, ı is an unfolding parameter, while
� and � are the nonlinear and dispersive coefficients respectively. In the linear, long-
wave limit the dispersion relation for waves of speed c is just c2 D �2 C ı which
is just that sketched in Fig. 1. Resonance occurs for � D ı D 0, and the flow is
linearly stable, or unstable, according as ı > 0; ı < 0. Equations of this form have
been derived by Hickernell [4, 5] for Kelvin–Helmholtz instability, and by Helfrich
and Pedlosky [6] and Mitsudera [7] for certain geophysical flows.

R. Grimshaw (�)
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Fig. 1 Plot of the schematic dispersion relation c2 D �2 C ı; the stable case ı > 0 is blue; the
unstable case ı < 0 is red

However, our main interest here is with the alternative scenario, when the wave
modes remain distinct at criticality. In this case a suitable canonical model consists
of coupled Korteweg–de-Vries (KdV) equations, such as

I1 .A1t C�1A1x C �1A1A1x C �1A1xxx/C �A2x D 0; (2)

I2 .A2t C�2A2x C �2A2A2x C �2A2xxx/C �A1x D 0; (3)

Here �1 � �2 is the detuning parameter, � is an unfolding parameter, I1;2 are
normalising integrals, and �1;2, �1;2 are nonlinear and dispersive coefficients
respectively. In the linear long-wave limit the dispersion relation for waves of speed
c is

.c ��1/.c ��2/ D �2

I1I2
: (4)

This is equivalent to that for the Boussinesq equation (1) if we put �1 D ��2 D
� and ı D �2=I1I2. There is instability if I1I2 < 0, and stability if I1I2 > 0.
Equations of the form (2), (3) have been derived by Mitsudera [7] and Gottwald and
Grimshaw [8,9] for certain geophysical flows, and by Grimshaw [10] and Grimshaw
and Skyrnnikov [11] for a three-layer stratified shear flow.

In the coupled KdV system (2), (3) the only coupling terms are those with
coefficients �. In general, there will also be cross-coupling linear dispersive terms
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and nonlinear terms. That is, we can anticipate the presence of terms A2xxx and
A1xxx in (2) and (3) respectively, and a full suite of nonlinear termsA1A1x; .A1A2/x
and A2A2x in both equations. Our primary purpose in this paper is to demonstrate
that is indeed the case for long waves in a stratified shear flow, and the outcome is the
coupled system (58), (59) (see Gear and Grimshaw [12] who derived a coupled KdV
system of this kind for linearly stable internal waves in a density stratified fluid). In
the absence of coupling, it is well known that weakly nonlinear long waves in a
stratified shear flow are described by the KdV equation (see [13–15] for instance).
Here we extend the asymptotic expansion method used to derive the KdV equation
to the case when there are two long waves in close resonance. The development
follows that of Gear and Grimshaw [12] but now allows for a background shear
flow, and hence the possibility of instability. Although our focus here is on coupled
KdV equations, we note that similar systems have been studied, in which the KdV
dispersion is replaced by alternative forms valid when the density stratification has
some deep layers (see [16] and the references therein).

In Sect. 2.1 we present the problem formulation, and in Sect. 2.2 we describe how
linear mode coupling can lead to instability. In Sect. 3 we present an outline of the
asymptotic development, and in Sect. 4, we present a brief account of leapfrogging
solitary waves, one of the interesting solutions of coupled KdV equations. We
conclude in Sect. 5.

2 Derivation

2.1 Formulation

We assume that the fluid is inviscid and incompressible, and in the basic state
has depth h, a density stratification �0.z/ and a horizontal shear flow u0.z/ in the
x-direction. Further we assume that the flow is two-dimensional, and so all variables
depend only on x; z where z is the vertical co-ordinate, and the time t . Using the
long-wave variables

X D x ; T D t ; (5)

the full equations for the perturbation variables are, in standard notation, and
expressed to the required order,

�0.uT C u0uX C wu0z/C pX D F1 D ��0.uuX C wuz/� �.uT C u0uX C wu0z/ ;

(6)

pz C g� D �2�0.wT C u0wX/C � � � ; (7)

uX C wz D 0 ; (8)

�T C u0�X � w D J1 D �u�X � w�z ; (9)

�t C u0�x C w�0z D �u�X � w�z ; (10)
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and the boundary conditions are

w D 0 ; at z D �h ; (11)

p C p0 D 0 ; at z D � : (12)

� D � at z D � : (13)

Here we have replaced w with w. The density equation (10) can be solved by
�0.z/C � D �0.z � �/, so that

� D ��0z� C �0zz�
2

2
C � � � : (14)

Then the vertical momentum equation (7) becomes

pz C �0N
2� D G1 D �g�0zz�

2

2
� 2�0.wT C u0wX/C � � � ; (15)

where �0N 2 D �g�0z: The free surface boundary conditions (12), (13) are expanded
so that

p � g�0� D g��C g�0z�
2

2
C � � � ; � C ��z C � � � D � ; at z D 0 ;

and can then be combined to give

p � g�0� D �0N
2�2

2
C g�0��z C � � � ; at z D 0 : (16)

Thus the variables �; � are formally eliminated.

2.2 Coupled Modes

At leading linear order, the X; T -variables separate from z, and the latter yields the
modal equation

.�0W
2�z/z C �0N

2� D 0 ; (17)

� D 0 at z D 0 ; and W 2�z D g� at z D 0 : (18)

Here W D c � u0. Suppose that this has two nearly coincident solutions for c, say
c1 D c; c2 D c C 2�, with two distinct modal functions �1.z/; �2.z/. Note that it
is readily shown that, when� ¤ 0,
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Z 0

�h
�0Œc1 C c2 � 2u0��1z�2z d z D 0; so that

Z 0

�h
�0W�1z�2z d z � 0 ; (19)

where the error is O.2/.
Next, unfold the coupling by expanding u0 as u0.z/ C 2u.1/0 .z/. A similar

expansion could also be done for �0 but will be omitted here for simplicity. Then in
the modal equation, expand � as �C2�.1/ and c as cC2c.1/, so that (17) becomes

.�0W
2�.1/z /z C �0N

2�.1/ D �2.�0W .1/W�.1/z /z ; (20)

�1 D 0 at z D 0 ; and W 2�1z � g�1 D �2W1W�z at z D 0 : (21)

Here W .1/ D c.1/ � u.1/0 and � D A1�1 CA2�2. The compatibility condition is that
the right-hand side is orthogonal to both �1;2, and so

Z 0

�h
2�0W

.1/W.A1�1z C A2�2z/�j z d z D 0 ; j D 1; 2 ; (22)

which leads to, noting the orthogonality relation (19),

I1.c
.1/ ��1/A1 � �A2 D 0; I2.c

.1/ ��2/A2 � �A1 D 0: (23)

Here the coefficients are defined by

Ij�j D 2

Z 0

�h
u.1/0 W�

2
j z d z ; j D 1; 2 ; (24)

� D 2

Z 0

�h
u.1/0 W�1z�2z d z ; j D 1; 2 ; (25)

Ij D 2

Z 0

�h
W�2j z d z ; j D 1; 2 : (26)

The system (23) is a linear homogeneous algebraic system for A1;2 whose determi-
nant is zero, yielding the dispersion relation

I1I2.c
.1/ ��1/.c

.1/ ��2/ D �2 : (27)

It follows that the basic flow is unstable, that is c.1/ is complex-valued when

.�1 ��2/
2 C 4�2

I1I2
< 0 : (28)

This can only occur when I1I2 < 0 which is thus a necessary condition for
instability. In turn, this requires that the basic flow u0.z/ have a critical level, that



322 R. Grimshaw

is there exists a zc;�h < zc < 0 such that u0.zc/ D c. Of course this is expected,
and well-known. But when there is a critical level, in general � will be singular at
that level, and hence the theory described above needs a more careful examination.
Also, note that instability also requires that the Richardson number N2=u20z < 1=4,
and then, in general, the singularities in � are such that the integrals in (24)–(26)
do not exist. The exception to this will occur when there is a layer, including zc in
which u0 is a constant, for example a layered fluid, and in that case, the theoretical
development above holds. For stable flows with no critical levels, we can assume
that c > u0.z/ for all z, and then I1;2 > 0. In this case, there is no real need to
introduce this unfolding.

3 Asymptotic Expansion

Next we introduce the variables

s D X � cT; ; � D 2T : (29)

and seek a solution of the form

Œ�; u;w; p� D 2Œ�1; u1;w1; p1�C 4Œ�2; u2;w2; p2�C � � � : (30)

At the leading order, we suppose that

�1 D A1.s; �/�1.z/C A2.s; �/�2.z/ : (31)

To leading order, the analogous expressions for the other variables are

u1 D A1.W�1/z C A2.W�2/z ;

w1 D �A1sW�1 �A2sW�2 ; (32)

p1 D A1�0W
2�1z C A2�0W

2�2z:

In the variables s; �; z the system (6)–(9) becomes

�0.�W us C wu0z/C ps D QF1 D F1 � 2�0u� ; (33)

pz C �0N
2� D QG1 D �g�0zz�

2

2
C 2�0W ws C 22�A2.�0W�2z/z ;

(34)

us C wz D 0 ; (35)

�W �s � w D QJ1 D J1 � 2�� : (36)
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The boundary condition (11) is unchanged, while (16) becomes

p�g�0� D H1 D �0N
2�2

2
Cg�0��z C22�A2�0W�2z C� � � ; at z D 0 : (37)

Note that in the expressions for the second mode, W has been replaced with W2 �
2� ;W2 D c2 � u0, and this generates the 2� terms on the right-hand side. Using
the expansion (30) we get the system

�0.�W u2s C w2u0z/C p2s D QF1 ; (38)

p2z C �0N
2�2 D QG1 ; (39)

u2s C w2z D 0 ; (40)

�W �2s � w2 D QJ1 : (41)

while the boundary conditions are

w2 D 0 ; at z D �h ; (42)

p2 � g�0�2 D H1 ; at z D 0 ; (43)

where F1 ; � � � etc. are evaluated at the leading order solution, u1 ; � � � . Note that
eliminating u2 yields

�0.w2u0z CW w2z/C p2s D QF1 ;

and then eliminating w2 gives

��0W 2�2sz C p2s D F2 D QF1 C �0.u0z QJ1 CW QJ1z/ :

Finally eliminating p2 yields

.�0W
2�2sz/z C �0N

2�2s D I2 D QG1s � F2z ; (44)

with the boundary conditions

W �2s D 0 at z D �h ; (45)

�0W
2�2sz � g�0�2s D H2 D H1s � F2 at z D �0 : (46)

The compatibility conditions are

Z 0

�h
I2�1;2 d z � Œ�0�1;2H2�.z D 0/ D 0 : (47)
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These can be written in the form

Z 0

�h
QG1s�1;2 d z C

Z 0

�h
F2 �z1;z2 d z � Œ�0H1s�1;2�.z D 0/ D 0 : (48)

When there is no shear flow, the modes �1;2 are orthogonal, and these conditions
are easily established. In the presence of a shear flow, they are clearly necessary
conditions, but more work is needed to show that are sufficient. When only one
mode is present, the derivation proceeds as follows with A D A1. For two modes it
is similar, with a set of similar terms for A2 and some mixed terms.

For a single mode. the expressions for QG1; F2;H1 are in the Appendix. Making
the substitutions into the compatibility condition (47) or (48) yields the KdV
equation

A� C �AAs C �Asss D 0 ; (49)

where the coefficients are given by

I� D 3

Z 0

�h
�0W

2�2z d z ; (50)

I� D
Z 0

�h
�0W

2�2 d z ; (51)

I D 2

Z 0

�h
�0W�

2
z d z : (52)

Next, when there are two modes, the corresponding expressions are also in the
Appendix, and applying the compatibility condition (47) yields the coupled KdV
equations

I1.A1� C �1A1A1s C �1A1sss/C �1ŒA1A2�s C �2A2A2s C �A2sss D 0 ; (53)

I2.A2� C �2A2A2s C �2A2sss C�A2s/C �2ŒA1A2�s C �1A1A1s C �A1sss D 0 :

(54)

The coefficients are given by (50)–(52) for �1;2; �1;2 with indices inserted as
appropriate, and by

� D
Z 0

�h
�0W

2�1�2 d z ; (55)

�1 D 3

Z 0

�h
�0W

2�21z�2z d z ; (56)

�2 D 3

Z 0

�h
�0W

2�22z�1z d z ; (57)

for �1;2; �.
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4 Interacting Solitary Waves

To allow for possible instability, as discussed in Sect. 2.2, it is easily shown that the
system (53), (54) is replaced by

I1.A1� C�1A1s C �1A1A1s C �1A1sss/C �A2s C �1ŒA1A2�s C �2A2A2s C �A2sss D 0 ;
(58)

I2.A2� C�2A2s C �2A2A2s C �2A2sss/C �A1s C �2ŒA1A2�s C �1A1A1s C �A1sss D 0 :
(59)

The symmetry in the nonlinear coefficients ensures that the system is Hamiltonian.
Indeed the Hamiltonian form is

J
@A
@�

D � @

@s

�
ıH

ıA

	
; (60)

where A is the vector .A1; A2/, J is the symmetric matrix

J D


I1 0

0 I2

�
(61)

and the Hamiltonian H is given by

H D
Z 1

�1
H dx ; (62)

where

H D I1

2
.�1A

2
1 � �1A

2
1s C 1

3
�1A

3
1/C I2

2
.�2A

2
2 � �2A22s C 1

3
�2A

3
2/

C �A1A2 � �A1sA2s C 1

2
�2A

2
2A1 C 1

2
�1A

2
1A2 : (63)

The Hamiltonian is an invariant, that is H is conserved, and can be interpreted as
energy. Another invariant is

P D
Z 1

�1
Pdx; (64)

where
P D I1A

2
1 C I2A

2
2; (65)

which can be interpreted as momentum. Two other conserved quantities are the
Casimirs,

A1 D
Z 1

�1
A1 dx; A2 D

Z 1

�1
A2 dx ; (66)
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which can be interpreted as mass. Note here, that if I1I2 < 0 then P is sign-
indefinite, and this is precisely the criterion for linear instability, see (28). On the
other hand if I1I2 > 0, then P is sign-definite, and its conservation ensures a form
of stability; thus the criterion for linear stability and nonlinear stability coincide. An
appropriate Poisson bracket for the Hamiltonian system (60) is

ŒF;G� D
Z 1

�1
ıF

ıA
J�1 @

@x

�
ıG

ıA

	
ax; (67)

for which all the usual properties, including the Jacobi identity, can now be readily
verified.

It is not our purpose here to discuss solutions of the coupled KdV sys-
tem (58), (59) in any detail. Indeed, it would seem that when compared to the
single KdV equation, very little is known about the possible solution sets. Grimshaw
and Iooss [17] determined the class of all steady solitary wave solutions for the
reduced system (2), (3). Gear and Grimshaw [12] and Gear [18] reported numerical
experiments demonstrating two principal kinds of solutions, namely either phase-
locked solitary waves in each system, or leapfrogging solitary waves, analogous to
those reported by Nitsche et al. [16] in a deep-fluid coupled system (see also the
references therein). Leapfrogging is a term used to describe oscillatory behaviour
in which solitary waves in each component of the coupled system, exchange energy
with the other component in an apparently periodic manner. Malomed [19], Kivshar
and Malomed [20] and Gottwald and Grimshaw [8, 9] presented an asymptotic
analyses of interacting solitary waves, and leapfrogging behaviour. Recently Wright
and Scheel [21] studied the stability of solitary waves in certain special coupled
KdV systems, and showed that leap-frogging is a form of instability, in which the
component solitary waves eventually separate. A similar conclusion was reached
by Nitsche et al. [16] in a study of interacting solitary waves in three-layered fluid
system with a deep middle layer.

As an indication of how leapfrogging may arise, we briefly re-examine the
simplified system (2), (3), using an asymptotic analysis similar to that described by
Gottwald and Grimshaw [8, 9]. An alternative approach is to use the Hamiltonian
formulation directly, combined with this slowly-varying hypothesis, see Malomed
[19] and Kivshar and Malomed [20]. Thus, we suppose that � is a small parameter,
and can be neglected at the leading order. Indeed when � D 0, the system (2), (3)
reduces to two uncoupled KdV equations, and then has the solitary wave
solutions

A D a1 sech2.	1.x � V1t � x1// ; B D a2 sech2.	2.x � V2t � x2// ; (68)

where
V1 ��1 D �1a1

3
D 4�1	

2
1 ; V2 ��2 D �2a2

3
D 4�2	

2
2 : (69)
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In the uncoupled limit, there is no connection between the solitary wave speeds V1;2
and phases x1;2. But in the weakly coupled case, it is clear that we require that these
should be approximately equal.

For the weakly coupled system, we seek an asymptotic expansion in the form of
slowly varying solitary waves, that is

A D a1 sech2.	1.x � ˚1.t// ; A2 D a2 sech2.	2.x � ˚2.t// ; (70)

where
�1a1 D 12�1	

2
1 ; �2a2 D 12�2	

2
2 : (71)

and

˚1t D V1Cc.1/1 D �1C�1a1

3
Cc.1/1 ; ˚2t D V2Cc.1/2 D �2C�2a2

3
Cc.1/2 : (72)

Here a1:2.t/ are slowly varying functions of t , and c
.1/
1;2 are O.�/ correction

terms, determined by a direct asymptotic expansion, as described by Gottwald and
Grimshaw [8, 9]. The outcome is determined by the momentum expressions

d

dt

Z 1

�1
I1A

2
1

2
dx D ��

Z 1

�1
A1A2x dx ;

d

dt

Z 1

�1
I2A

2
2

2
dx D ��

Z 1

�1
A2A1x dx : (73)

The sum of these two expressions yields the momentum invariant (65). Substitution
of the slowly varying solitary waves (70) into (73) yields

I1a1a1t

	1
D �� @J

@˚
;

I2a2a2t

	2
D �

@J

@˚
; (74)

where

J D
Z 1

�1
a1a2 sech2.	1.s �˚//sech2.	2s/ ds ; ˚ D ˚1 �˚2 : (75)

These are supplemented by the velocity relations (72), which can be rewritten in the
form

˚t D �C �1a1

3
� �2a2

3
C c

.1/
1 � c.1/2 ; � D �1 ��2 : (76)

The speed correction terms are found from higher-order terms in the asymptotic
expansion, and are given by Grimshaw and Mitsudera [22] or Grimshaw et al. [23],



328 R. Grimshaw

c
.1/
1;2 D �1;2a

.s/
1;2

6
C �

	1;2

a1;2

@J

@a1;2
; where

�1;2a
.s/
1;2

3
D signŒ�1;2�

a1t;2t

a1;2	1;2
(77)

Here a.s/1;2 is the amplitude of the shelves generated by the failure of the slowly-
varying solitary waves to conserve the mass invariants (66), and the respective signs
correspond to whether the shelf lies behind or in front of the solitary wave. The
second term is that expected from a Hamiltonian formulation, where we note that
substitution of the ansatz (70) into the Hamiltonian (62), (63) yields

H � H0 C �J ;

where H0 D I1

�
2�1a

2
1

3	1
C 2�1a

3
1

15	1

	
C I2

�
2�2a

2
2

3	2
C 2�2a

3
2

15	2

	
: (78)

Note that then

V1;2 D a1;2

	1;2

@H0

@a1;2
: (79)

Using the relations (71), we see that J D J .a1; a2; ˚/ and so (74), (76) form
three first order ordinary differential equations for the three unknowns a1; a2; ˚ .
However, (74) have the integral

2I1a
2
1

3	1
C 2I2a

2
2

3	2
D constant D M0 ; (80)

which can also be deduced directly from the momentum invariant (65). Thus the
system can be reduced to two first order ordinary differential equations which can
then be analysed using phase plane methods.

This system remains still rather complicated, and so here we make a further
simplification. Let a1;2 D a

.0/
1;2; ˚ D 0 be a steady-state equilibrium solution, and

set

a1;2.t/ D a
.0/
1;2 C b1;2.t/ ; where �C �1a

.0/
1

3
� �2a

.0/
2

3
D 0 ; (81)

where b1;2 are small perturbations. Omitting the higher-order speed correction terms
c
.1/
1;2 , (76) becomes

˚t D �1b1

3
� �2b2

3
; (82)

while (74), (75) becomes

I1b1t D ��	.0/1 a
.0/
2

@K

@˚
;

I2b2t D �	
.0/
2 a

.0/
1

@K

@˚
; (83)
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where

K .˚/ D
Z 1

�1
sech2.	.0/1 .s �˚//sech2.	.0/2 s/ ds : (84)

Note that a.0/1 a
0
2 K is just J evaluated at the equilibrium solution for the

amplitudes. Also, the relation (80) becomes

I1	
.0/
2 a

.0/
1 b1 C I2	

.0/
1 a

.0/
2 b2 D constant D M1 ; (85)

Although the resulting system is linear in b1;2 it is advantageous to keep the full
dependence of ˚ in K . Then elimination of b1;2 yields a single equation,

˚tt � C
@K

@˚
D 0 ; (86)

where

C D �

3

 
�1	

.0/
1 a

.0/
2

I1
C �2	

.0/
2 a

.0/
1

I2

!
D 4�

 
�1�1	

.0/
1 	

.0/2
2

I1�2
C �2�2	

.0/
2 	

.02/
1

I2�1

!
:

(87)
This reduced equation has an integral

˚2
t

2
� CK .˚/ D E1 ; (88)

which can be shown to be a consequence of the Hamiltonian invariant described
above. Since K .˚/ is a bounded function of ˚;�1 < ˚ < 1, it follows that
regardless of the sign of C , ˚2

t is also bounded, and there is nonlinear stability in
all cases.

For (86) ˚ D 0 (when also b1 D b2 D 0) is an equilibrium point, corresponding
to two phase-locked solitary waves. Near ˚ D 0, (86) becomes

˚tt C˝2˚ � 0 ; (89)

where

˝2 D �C @
2K

@˚2
.˚ D 0/ D 4C	

.0/
1 	

.0/
2 I0

and I0 D
Z 1

�1
sech2.	.0/1 s/sech2.	.0/1 s/ tanh .	.0/1 s/ tanh .	.0/2 s/ ds : (90)

Since I0 > 0, it follows that the steady-state equilibrium solution is locally stable,
or unstable, according as C > 0, or C < 0. In the phase plane, the origin is then
a centre or a saddle point. The former corresponds to leapfrogging, since the orbits
around the centre form a family of periodic solutions with period 2�=˝ near the
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Fig. 2 Plot of the phase plane (88) for 	.0/1;2 D 1 and C D 0:5 (upper panel) and C D �0:5 (lower
panel)
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origin, while the latter represents an immediate splitting apart of the two solitary
waves. Note that since I1;2�1;2 > 0, see (51), C > 0 when ��1�2 > 0. Using
the relations (71), this corresponds to the case when the perturbation Hamiltonian
�J > 0;< 0. according as either I1;2 > 0, when the system (2), (3) is linearly
stable, or I1I2 < 0, when the system (2), (3) is linearly unstable. Thus local stability
of the interacting solitary waves is not related directly the linear stability of the zero
state of the original system, see also [8]. The reason for this is that here instability
of the coupled solitary waves is just separation, and this is not necessarily related
to instability in the usual sense. When the higher-order speed correction terms c.1/1;2
are restored, the Hamiltonian part leaves the centre and saddle point classification
unchanged, but the non-Hamiltonian part proportional to a.s/1;2 changes a centre into a
focus, while leaving a saddle point unchanged. The focus can be stable or unstable,
corresponding to either the eventual phase-locking of the leapfrogging solitary
waves, or to their eventual splitting apart. These possible scenarios are discussed
in more detail for related systems by Gottwald and Grimshaw [8], Wright and
Scheel [21] and Nitsche et al. [16]. We conclude this brief summary of interacting
solitary waves, by exhibiting in Fig. 2 a schematic phase plane defined by (88) for
the reduced system (86). In the case of a saddle point, we see that the except for two
exceptional orbits, all orbits pass to infinity, either as passage, or as reflection. For
the case of a centre, there is a family of periodic orbits surrounding the centre, but
this is itself bounded by a separatrix, outside which all orbits correspond to passage.

5 Summary

As we noted in the Introduction, coupled KdV systems can be expected to arise
generically when there is a long wave resonance with near coincident phase speeds
and two distinct modal functions. In this paper we have briefly reviewed the
literature on such systems. In Sects. 2, 3 we have sketched the derivation for a
stratified fluid, extending the derivation of Gear and Grimshaw [12] to the case when
there is a background shear flow. The purpose here is to allow for the possibility
that the long-wave resonance may lead to linear instability. Then in Sect. 4, we
have revisited the asymptotic analysis developed in the cited literature to describe
the phenomenon of leapfrogging solitary waves. It is clear that this approach has
more potential to explore this phenomenon, especially when the first-order speed
correction terms are restored. This was the method used by Nitsche et al. [16]
to interpret their numerical results for leapfrogging solitary waves in a deep fluid
context, but its exploitation in the present shallow fluid context has yet to be fully
realised. In conclusion it is clear that coupled KdV systems have rich dynamics,
which has not yet been fully explored.
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Appendix

For a single mode

QG1s D .�0N
2/z�

2AAs � �0W 2�Asss ;

F2 D �2�0W�zA� C .�.�0W 2/z��z � �0W 2Œ�2z � ��zz�/AAs ;

H1s D .�0N
2�2 C 2�0W

2�2z /AAs :

Hence QG1s� C F2�z D �2�0W�2zA� � �0W 2�2Asss CKAAs ;

K D .�0N
2/z�

3 � �0.2WWz��
2
z CW 2�3z �W 2��z�zz/ � �0zW

2��2z ;

K D .�0N
2�3 C 2�0W

2�2z �/z CM ;

M D �0Œ3.W
2�z/z��z � 2.W 2�2z �/z � 2WWz��

2
z �W 2�3z CW 2��z�zz� ;

and so M D �3�0W 2�2z :

Note that H2 D H1s � F2 D 2�0W�zA� C .3�0W
2�2z � 2�0W 2��zz/AAs ;

and I2 D QG1s � F2z D .2�0W�z/zA� � �0W
2�Asss CLAAs ;

L D .3�0W
2�2z /z CD ; D D �.2�0W 2��zz/z � �0W 2.�2z /z :

For two coupled modes, the calculations follow those for a single mode, and the
outcome is

I2 D QG1s � F2z D I 12 C I 22 C I 122 C .2�0W�2z/z�A2s ;

where I
j
2 D .2�0W�j z/zAj� � �0W 2�jAjsss CLjAjAjs ; j D 1; 2 ;

and I 122 D L12ŒA1A2�s ;

Lj D .3�0W
2�2j z/z CDj ; Dj D �2.�0W 2�j�j zz/z � �0W

2.�2j z/z ;

L12 D .3�0W
2�1z�2z/z CD12 ;

D12 D �.�0W 2Œ�1�2zz C �2�1zz�/z � �0W
2.�1z�2z/z :

Also H2 D H1s � F2 D H1 CH2 CH12 C 2�0W�2z�A2s ;

Hj D 2�0W�j zAj� C .3�0W
2�2j z � 2�0W 2�j �j zz/AjAjs ; j D 1; 2 ;

H12 D .3�0W
2�1z�2z � �0W

2Œ�1�2zz C �2�1zz�/.A1A2s C A2A1s� :
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Water Waves and Time Arrows in Conservative
Continuum Physics

P.A. Tyvand

1 Introduction

A time arrow in a conservative physical system seems to be a paradox. Yet it is a
well-known phenomenon in many-body physics. The collective behavior of many-
body systems in elastic collisions exhibits a time arrow if the number of degrees
of freedom is sufficiently large and the system starts from an unlikely initial state.
This is the case even when each body is finite, has regular shape and performs an
individual motion according to Newton’s laws without dissipation.

Time arrows are implicitly established in conservative continuum physics, espe-
cially in connection with turbulence. The well-known energy cascade that transfers
energy from greater turbulent vortices to smaller vortices is basically inviscid on
most length scales, apart from the shortest ones. This time arrow of energy cascade
can be observed in the transient degradation of smoke vortices of a campfire that is
suddenly extinguished. There is no general consensus on the causality behind the
non-dissipative time arrow that changes turbulent vortices into smaller ones. Bejan
[1] has suggested a fully inviscid mechanism for this irreversible energy cascade
in turbulence: The buckling instability of cylindrical vortices under compression,
which bends the fluid cylinders and prevents their radii from increasing in time.
This time arrow rests on the asymmetry of unstable compression versus stable
stretching: There is no instability mechanism preventing the diameter of a vortex
from decreasing when it is being stretched. The time arrow of the turbulent energy
cascade is thereby explained qualitatively as an inviscid instability phenomenon.
These conservative processes of fully developed turbulence contrast its dissipative
onset with a balance between inertial and viscous forces.
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In the present note, water waves is chosen as a field for reviewing and developing
some basic notions of time arrows in conservative continuum physics. We will
limit ourselves to the classical theory of nonlinear water waves, which assumes
irrotational flow in an inviscid and incompressible fluid of constant density. The
water waves are subject to constant free-surface pressure without surface tension.

2 Eulerian Equations of Nonlinear Water Waves

The strictly Eulerian description of nonlinear water waves captures all phenomena
except for overturning waves where the surface elevation �.x; y; t/ becomes multi-
valued. The governing equation for inviscid irrotational flow is

r2˚ D 0: (1)

The exact nonlinear free-surface conditions, ignoring surface tension effects, are
given by

@�

@t
C r˚ � r� D @˚

@z
; z D �.x; y; t/; (2)

@˚

@t
C jr˚ j2

2
C g� D 0; z D �.x; y; t/: (3)

˚ is the velocity potential, t is time, and g is the gravitational acceleration. It is
evident that the equations are conserved under the time-reversal transformation

.x; y; z; t; ˚; �/ ! .x; y; z;�t;�˚; �/: (4)

The time reversal means that the spatial coordinates are fixed and the elevation is
unchanged, while the time and the velocity potential change sign. This conservation
of the set of equations holds for the exact nonlinear system, and also for its linearized
version. We will discuss various examples of time arrows in water waves, assuming
that the full set of equations is applied.

The Lagrangian description of motion offers an alternative framework for
studying water waves theoretically. It captures overturning waves, where the surface
elevation becomes multi-valued and forbids a fully Eulerian description. It is
also suitable for phenomena with an explicit first cause, because it numbers all
particles by their initial position. The Lagrangian description of motion is physically
equivalent to the Eulerian description.

The application of the full equations is essential for the time reversibility. As
a contrast, some of the established simplifications of the nonlinear water-wave
equations are not invariant under the time-reversal transformation. These are the
type of equations that allow only one direction of wave propagation because they
work with only one time derivative instead of two: The Korteweg de Vries equation
for shallow-water waves and the cubic Schrödinger equation for deep-water waves.
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These simplified nonlinear equations have explicit time arrows, and they may give
computational advantages when we work with nonlinear wave groups. These time
arrows are nevertheless artificial, because they rest on the removal of one of the
two time derivatives from the full second-order mathematical problem in the time
domain.

First we give two examples where free-surface nonlinearities are essential. Next
we give additional examples of time arrows that arise within strictly linear theory.

3 Time Arrow in Nonlinear Wave Breaking

It ie easy to realize that a time arrow exists in the spectacular nonlinear phenomenon
of breaking water waves. A plunging breaker is a wave where the tip of the
crest bends over while the flow is still inviscid and irrotational. In the pioneering
theoretical paper by Longuet-Higgins and Cokelet [2], the time arrow for nonlinear
wave breaking with infinite water depth was initiated by an asymmetric pressure
distribution P.x; y; t/ applied directly on the surface. The externally imposed
surface pressure was traveling with the phase speed of the deep-water wave, and
it lasted for half a wave period, varying harmonically with time. After that, the
external pressure was turned off, while its imposed free-surface asymmetry evolved
further into wave breaking. The applied external pressure broke the symmetry in
time, and served as a first cause for the later evolution of wave breaking.

The process leading to wave breaking is an indirect way of revealing a time
arrow. During the stage when overturning of the wave crest takes place, the time
arrow becomes visible, in spite of the fact that the process is then time-reversible.
The manifestation of the time arrow is delayed in time compared with its cause:
the external pressure work. The final process where the tip of the plunging breaker
performs an almost perfect free fall in the gravity field, is a strictly one-way process
in time: It is impossible to reverse this free fall by generating an initial condition of
a triple-valued surface elevation that later moves in a well-ordered manner upwards
in the gravity field and evolves smoothly into a single-valued surface elevation.

Now we include an external pressure P.x; y; t/ in the dynamic boundary
condition (3)

@˚

@t
C jr˚ j2

2
C g� D �P.x; y; t/

�
; z D �.x; y; t/: (5)

The equations can be now be conserved under the time-reversal transformation

.x; y; z; t; ˚; �; P / ! .x; y; z;�t;�˚; �; P /: (6)

The external pressure distribution P.x; y; t/ must be preserved under the time-
reversal transformation in order to maintain the formal reversibility. The question
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is whether it is realistic to achieve a time reversal of a real process towards wave
breaking. The first cause for inviscid wave breaking is the asymmetric external
pressure. To reverse this process would be to put the effect ahead of its cause, which
is impossible.

We recognize two basic causes behind natural wave breaking in the sea.
(1) Energy transfer from wind stress to waves in the open sea. The build-up of wave
amplitude from wind may enable breaking. (2) A wave that does not break in the
open sea can do so after it has entered shallow water. This is due to the concentration
of energy per fluid volume, which increases the amplitude in the surface elevation.

(1) Real generation of ocean waves by turbulent wind stress has an explicit time
arrow because it involves entropy production. In a fully inviscid model, one
may mimic the energy input from wind stress by a variable and uneven pressure
P.x; y; t/ applied on the surface.

(2) Tidal waves and tsunamis are transient long waves that may turn into bores
due to the reduced sea depth near the coast. These bores may break when the
sea depth becomes sufficiently small. The early breaking of an undular bore
on a sloping beach is an inviscid phenomenon, caused by the increasing wave
energy per volume of fluid. The time arrow for an individual wave is here a
result of a spatial gradient in the water depth. One may say that the spatial arrow
of the depth gradient serves as the cause behind the time arrow of a transient
wave packet that breaks on a sloping beach. The time arrow caused by a spatial
arrow is somewhat paradoxical because this time arrow might turn into periodic
recurrence if the fluid depth is periodic. However, if the wave is steep enough
on a periodic bottom, it will break before the depth reaches its minimum. Then
there is an effective time arrow, because the possible recurrence could not be
completed.

Breaking of bores on constant depth is a different phenomenon, that can only be
modelled by allowing transient fluxes of mass and energy into the system. This
was the procedure of Landrini and Tyvand [3] who gave an explicit first cause
for the time arrow of breaking bores: A concentrated 2D bottom source turned on
impulsively at time zero, maintaining a constant mass flux to develop an undular
bore that can possibly break. The free-surface conditions remain fully reversible,
and the time arrow is due to the steady input of energy and mass from a concentrated
bottom source suddenly turned on at time zero. It is not possible to reverse this
process in time, because of the accumulation of potential energy in the bore after
the source has been turned on. To assume that a bore with its potential energy exists
without a cause, and try to run its generation process backward in time, would be to
drain energy that came from nowhere. The undular bore at constant depth therefore
owes its existence to a first cause that continues as a lasting cause: The source
that was suddenly turned on at time zero, and it remained constant thereafter. This
causation has an explicit time arrow, even though the governing system of equations
is reversible in time.
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4 Time Arrow in Nonlinear Merging of Bores

A bore is a propagating change of water level in a channel. There must be a cause for
the rising water level, or a source delivering the added flux of water coming in. The
simplest mathematical device for generating a bore is a submerged 2D mass source
that is turned on at time zero [4]. Explicitly or implicitly a time arrow will be present
in all theories of undular bores. In his pioneering paper, Peregrine [5] introduced
a time arrow in three implicit ways: (i) By applying a set of nonlinear shallow-
water equations that are not time reversible. (ii) By giving a somewhat artificial
initial condition where there is a smooth continuous transition between a uniform
incoming bore and still water. (iii) By feeding net fluxes of mass and energy into the
computational domain, so that the bore can progress with the given height.

The time arrow of a bore is obvious because the bore needs a steady input of
energy and fluid mass. There is also a time arrow in the undulations that grow
slowly with time. The time arrow of a bore is due to initial conditions and kinematic
boundary flux conditions applied to the full nonlinear equations that are reversible
in time.

We may search for an explicit time arrow in the nonlinear merging of two bores
in a channel with constant depth. When a greater bore rides on a smaller bore from
behind and overtakes it, the result will be a merged bore that is essentially dominated
by the bore that came from behind. The time arrow means that bore merging is a
one-way process: one bore could not split into two separate bores.

A convenient way of generating two merging bores mathematically, is to change
the strength of a bottom source. The time arrow of the merging bores is then a
combined effect of two primary causes with a mutual time delay. The first cause
is a bottom source with a small steady flux that is started at time zero to establish
an undular bore with a small height. After a certain time, the second cause is the
suddenly increased steady flux of the bottom source, to producing a higher bore
than the one already established. This higher, second bore propagates faster than the
first bore, since its effective depth is greater. Therefore the higher second bore comes
from behind and rides on the smaller first bore until it overtakes it. The computations
by Bestehorn and Tyvand [6] show how two such bores merge into one common
bore.

5 Time Arrow in a Cauchy–Poisson Problem

We have considered time arrows that involve free-surface nonlinearities. Now
we turn our attention to time arrows that arise in linear theory of water waves.
A classical case of a time arrow in linear water waves is the dispersive Cauchy–
Poisson problem on infinite depth. Lamb [7, p. 384] described the large-time
asymptotics of the transient wave produced by a concentrated initial elevation.
There are three reasons for the time arrow in the 3D Cauchy–Poisson problem.
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(1) The initial condition is a first cause for the process that follows. (2) The strong
dispersion of a deep-water wave group will smear out the initial disturbance over a
spatial domain that broadens with time. (3) There is outward propagation of energy
from the concentrated disturbance.

It would not be possible to go backwards from a dispersed state to generate ring
waves that propagate in the inward radial direction in order to form a concentrated
state near the center.

It is intuitively obvious that there will be a time arrow for the ring waves
generated by a stone that is thrown into a pond. During the stage of entrance of
a stone thrown into a pond, the dynamic condition (5) is applicable. To reverse
the stone-throwing process would be to take a wave pattern that has no cause and
to combine it with a mysterious pressure distribution that has the exact variation
in space and time to match the inward-going waves and finally kill them. This is
impossible, because causation of this phenomenon is forward in time, which means
that one cannot collect the sufficient information for a backward simulation.

A different class of Cauchy–Poisson problems are surface elevations released
from rest. When a surface elevation is released from rest at t D 0, the process
would be the same if we run it for time t positive or negative. Nevertheless, an
axisymmetric ring wave from a released concentrated disturbance could not be
restored fully by backward simulation based on the instant wave data at a late time.
The first cause for a deep-water ring wave would not be fully detectable from the
evolution at large values of time after the release. Thus a basic reason for time arrows
appearing in the Cauchy–Poisson problems is that an effect cannot come before its
cause.

6 A Radiation Condition Posing a Time Arrow

If the Cauchy–Poisson problem is 2D and restricted to hydrostatic shallow-water
waves, there is no dispersion and no radial spreading of energy. Then the time arrow
for a concentrated surface deflection released from rest at time t D 0 is very simple.
It just expresses the fact that two equal wave pulses travel in opposite directions,
away from the initial heap. There is no loss of information, and the time arrow
expresses nothing but the outward propagation from the place of the first cause of
released energy.

We leave the transient Cauchy–Poisson problem and go further to consider a
time-periodic problem where a concentrated disturbance varies harmonically in
time. Assuming that all the emitted wave energy comes from a harmonically
oscillating source, one needs to formulate a radiation condition that ensures that
the wave energy radiates out from the source and not into the source. Wehausen [8]
pointed out that a radiation condition for a floating body is causal, which means that
it guarantees that the forces on the oscillating body do not have effects that come
before their causes in time.
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An elementary description of a time arrow in radiation of 2D linearized water
waves is given by writing the radiation conditions as follows

k
@�

@t
˙ !

@�

@x
D 0; x ! ˙1; (7)

where ! is the angular frequency of the forced oscillations and k is the resulting
wave number for the emitted free waves at an infinite distance from the radiating
object. The relevant 2D version of the general time-reversal transformation (4) can
be written

.x; t; �/ ! .x;�t; �/: (8)

We see that the radiation conditions (7) are not conserved under this transformation,
which means that the radiation conditions have an explicit time arrow. Mathemat-
ically, this time arrow comes from the fact that the radiation conditions are of first
order in time, while a time-reversible system requires a consistent second-order
system in time. Physically, these radiation conditions are man-made algorithmic
restrictions importing a time arrow into an otherwise time-reversible system. This
constructed condition makes sure that the wave energy emitted by the oscillating
system is transported out from the system at infinity, with no energy being imported
into the system from infinity.

Alternatively, one may derive the radiation condition from a first cause: If a
floating or submerged body starts its forced harmonic oscillation at time t D 0,
then the conditions (7) appear asymptotically as t ! 1 and jxj ! 1.

We see that the implicit time arrow of a first cause in a time-evolving system may
turn into an explicit time arrow in a time-periodic system. However, this is only true
in the asymptotic limit of infinite time, which allows some of the information of
the initial condition to be wiped out of the system by being transported beyond the
spatial infinity where the radiation conditions are to be applied.

7 Time Arrows of Resonance and Instabilities

In a radiation problem, the phenomenon of resonance cannot be described quan-
titatively when we assume the flow to be oscillatory in time. Resonance will then
disguise itself as an infinite amplitude. Within linear theory, resonance can therefore
only be studied after we have relaxed the constraint of strictly time-periodic flow.
This is important for the radiation of water waves from a submerged oscillating
source in a current. At the critical frequency, it is impossible to determine a steady
finite amplitude for the radiated waves unless nonlinear effects are taken into
account [9].

There are time arrows both in forced resonance and in parametric resonance.
However, a forced resonance that is imperfect in the sense that it misses the resonant
angular frequency by a small amount�!, loses its time arrow as it degenerates into
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a recurrent beating phenomenon. The beating does not have a time arrow, since it is
harmonic in time. It has a relatively long time period 2�=�!, and the limit�! D 0

represents exact linearized resonance, where the amplitude grows steadily in time
from any small initial value.

Parametric resonance is a kind of instability. In the context of hydrodynamic
stability, it is obvious that an individual single mode of linearized instability has a
time arrow. This is because the time reversal of an exponentially growing mode gives
an anti-symmetric exponential damping in time. Hydrodynamic instability theory is
mostly concerned with dissipative systems where the time arrows exist within the
general system of governing equations [10]. The simplest conservative instability
mechanism related to water waves is the Rayleigh–Taylor instability of an inviscid
fluid. The governing equations of nonlinear Rayleigh–Taylor instability are identical
to (1)–(3), with the only exception that gravity is turned in the opposite direction
(g ! �g). This replacement changes nothing concerning the time reversibility. The
full governing equations for the Rayleigh–Taylor instability are therefore reversible
in time. In order to discuss the time arrow for the Rayleigh–Taylor instability,
we consider the linearized dispersion relation for traveling waves, which gives
imaginary phase velocities. Physically these imaginary phase velocities are rates
.˙
/ of (positive) exponential growth and (negative) damping, governed by the
dispersion relation


 D p
gk tanh.kH/; (9)

where H is the thickness of the undisturbed fluid layer. The instability for a
disturbance with given wave number k reveals itself as a time-reversible pair: one
positive 
 and one negative 
 , with equal absolute values. Reversing time in the full
linearized Rayleigh–Taylor instability problem simply means that the mode with
exponential growth will change into a mode with exponential damping, and vice
versa.

The evolution of a surface Fourier mode eikx can be expressed by the field at
t D T as follows

�.x; t/ D .
�.x; T /C P�.x; T //e
.t�T / C .
�.x; T / � P�.x; T //e�
.t�T /

2

; (10)

P�.x; t/ D .
�.x; T /C P�.x; T //e
.t�T / � .
�.x; T / � P�.x; T //e�
.t�T /

2
; (11)

where �.x; t/ is the surface deflection, and P�.x; t/ is the surface velocity.
Two particular cases are worth noting. The first particular case is

Case (i): 
�.x; T / D P�.x; T /: (12)

This case gives pure exponential growth for t > T , and pure exponential decay if
time is reversed for t < T . The second particular case is
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Case (ii): 
�.x; T / D �P�.x; T / (13)

This case gives pure exponential decay for t > T , and pure exponential growth if
time is reversed for t < T .

These two particular cases have time arrows, with exponential growth in one time
direction and exponential decay in the opposite time direction. Note that these two
conditions must be exactly satisfied to have any relevance. In all other cases we
have 
 j�.x; T /j ¤ j P�.x; T /j, which gives exponential growth both in the forward
direction of time as well as the backward direction of time.

The general meaning of T is a point in time from which we start or restart
simulating the system either forward or backward in time. Imagine that we start
a simulation of this linearized Rayleigh–Taylor system with an arbitrary initial
condition at T D 0 and let time go forward until T DT1. At T DT1 we restart
a backward (or forward) simulation of the system, assuming small errors in the
starting conditions .�.x; T1/; P�.x; T1//. These errors will blow up exponentially
as we simulate the system further in time, because it is practically impossible to
hit exactly the two cases (i) and (ii). This means that all forward or backward
simulations of a linearized Rayleigh–Taylor system will have a time arrow in
the sense that perturbations grow and accumulate. The system will in practice go
irreversibly away from its initial state, in spite of being governed by mathematical
equations that are explicitly time reversible. The system will soon become nonlinear,
which will accelerate the processes of instability further, leading to irreversible
drop formation. The time arrow of the conservative Rayleigh–Taylor instability
is essentially chaotic, because it is based on the sensitivity with respect to initial
conditions. This chaotic time arrow does not rely on any nonlinear effects, as it
starts within linear theory.

There are other inviscid instability phenomena in continuum physics. In the
theory of water waves we have the Benjamin–Feir instability, which is usually
studied with a reduced system of equations that are of first order in time. This means
that it has an explicit time arrow, unlike the Rayleigh–Taylor instability.

8 Time Arrow of Spiral Water Waves

Dalrymple and Dean [11] invented spiral water waves and described a rotating
wavemaker that can generate such waves. Mei [12] performed a further investigation
of spiral water waves. Perfect spiral waves have two intriguing properties. (i) They
possess a time arrow that is detectable from the snapshot of a surface wave pattern.
(ii) Their shape is steady seen from an observer in a non-inertial coordinate system
that rotates with the same angular velocity as the given angular frequency of the
spiral waves. No other water wave system than the spiral waves will look steady
from a rotating coordinate system.

Natural spiral waves occur in geophysics, but they always have vorticity. Spiral
water waves without vorticity are fundamentally algorithmic, and can only be
generated by intelligent beings. It is interesting to link spiral water waves to basic
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algorithmic theory [13]. All algorithms can be broken down to three types of
commands: (1) Choice. (2) Sequence. (3) Repetition.

The spiral wavemaker possesses all these three characteristics: (1) The choice
of rotation, either clockwise or counter-clockwise. (2) The sequence of orientation
angles of the steadily rotating wavemaker. (3) The repetition of the orientation angle,
with a period of 2� .

9 Time Arrow of the Impulsive Time Scale

Perhaps the least recognized time arrow of water waves is the time arrow of the
incompressible impulsive time scale. It is of fundamental importance in the fields of
tsunami generation and liquid sloshing starting from rest in open containers.

It is essential that the incompressible impulsive flow starts from rest with a flat
free surface in the gravity field

� D 0; t D 0C: (14)

The initial dynamic condition for impulsive flow is then

u D v D 0; z D 0; t D 0C: (15)

We let u; v and w denote the velocity components in the x; y and z directions. The
physical explanation for condition (15) is that there are no horizontal forces that can
induce horizontal velocities during the sudden impulsive start. The early flow after
the impulsive start is governed by the linearized free-surface conditions, which we
derive from the full conditions (2)–(3) to find

@�

@t
D w; z D 0; (16)

@.u; v/

@t
C gr� D 0; z D 0: (17)

It is important to note that the early impulsive flow takes the degenerate condition
(15) as dynamic condition instead of (17). During the impulsive time scale after
the start, the kinematic condition (16) builds up a nonzero surface deflection, while
the influence of gravity is still negligible. The governing equations will then have a
time arrow, as long as they are of first order in time, with the surface velocity in the
kinematic condition (16) representing the only time derivative.

The second dynamic condition (17) makes the flow again reversible in time after
the impulsive time scale, because it changes the system of equations from a first-
order system in time into the full second-order system. Equation (17) shows that
a surface particle slides freely tangentially along the free surface, accelerated with
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the tangential component of the gravitational acceleration. Thus gravity converts
any nonzero surface slope into horizontal acceleration of the surface particles along
the projection of the surface slope. This means that it is impossible to restore a
flat undisturbed free surface from an established wave field generated from an
impulsive start. After the early impulsive time interval, any later gradient of the
surface deflection �.x; y; t/ must generate horizontal surface acceleration as time
progresses. There will be an irreversible time arrow from the flat initial surface with
zero horizontal velocity, via the early impulsive build-up of a surface deflection to
the continuous oscillations in surface velocity. There is a signature on the later flow
from the early impulsive stage. In a finite container, this signature will persist. In an
infinite fluid domain, however, this impulsive signature is likely to disappear from
any finite domain as time goes.

The investigation of the time arrow due to impulsive flow has concentrated on the
wavemaker problem, starting with the work by Peregrine [14]. Here the time arrow
manifests itself in a dramatic way as a free-surface singularity at the waterline where
the solid wall meets the initially undisturbed free surface. Waterline singularities can
in principle be resolved mathematically by matched asymptotic expansions, but this
is very difficult to do.

The waterline singularities of incompressible flow show that a time arrow exists.
We do not discuss these waterline singularities further here, since they are only
sufficient but not necessary for the existence of a time arrow. There are classes of
container shapes that allow impulsive flow fields that are regular and do not contain
waterline singularities.

10 Conclusions

The field of water waves is illustrative for revealing time arrows within conservative
continuum physics. There are no statistical averaging procedures involved in the
examples that have been shown. There is no chaotic behavior, except for the
Rayleigh–Taylor instability. A basic explanation for several of these phenomena
is offered by the concept of a first cause.

Let us consider a deep-water free-surface process that had a first cause at t D 0.
If one tries to reverse this process in time from its state at a later time t D T ,
there are three obstacles: (i) The specific surface elevation �.x; y; T / that one has to
choose does not have a cause. (ii) The associated surface velocity .@�=@t/.x; y; t/
has to be chosen in perfect fit with the elevation, but there are no conditions for this
choice. (iii) The sharp final state at t D 0will not be attainable because of the strong
dispersion, which will make the backward integration sensitive with respect to the
initial state at t D T .

A time arrow in a conservative system may occur when the system becomes
algorithmic as a result of human intervention. Basic algorithmic theory reduces all
algorithms to the basic elements of selection, sequence and repetition. In the spiral
water waves this means: (1) Selection is the choice of clockwise (or anti-clockwise)
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direction of rotation for the wavemaker. (2) Sequence is the steadily increasing angle
of rotation. (3) Repetition is the periodicity of the rotation angle.

All mathematical modeling of water waves must contain at least one algorithmic
element: The choice of an initial state. This choice is explicit if the full time
evolution is modelled, but it may be implicit if we are looking for an oscillatory
solution of a linearized problem. The implicit algorithmic choice of an initial
condition will then offer a consistent derivation of the radiation conditions at infinity.

All spiral water waves are caused by designed algorithms, so they can never be
produced by natural processes alone. A snapshot of a spiral wave pattern is enough
to tell which way it rotates: In the direction opposite to the outward winding of the
spiral. We remark that a spiral wave pattern does not have to be produced in its
center. The spiral waves can be produced by a oscillating ring source with constant
radius and a continuous phase shift.

No information gets lost in a finite continuum system that is integrable and has
zero entropy production. The signatures from an initial condition have to remain
within a finite system. In an infinite system, information from the initial condition
can be lost by outward radiation to infinity. Allowing infinite time in a spatially
infinite conservative system is therefore to allow a possible loss of information.
In quantum mechanics there is an interesting analogy: The physical solution of
the time-dependent Schrödinger equation is reversible in time, but if ionization of
an atom is modeled by allowing an electron to escape to infinity, a time arrow is
introduced into the quantum mechanical system.

Will a time arrow lead to loss of information? There is no information loss in
the sense of entropy production. However, the initial information may gradually
be concealed. A wave in the late stage of inviscid breaking does not give full
information of its origin. A merged bore does not offer full information on the
individual bores that merged to form it. A late stage of a deep-water Cauchy–Poisson
type initial-value problem may hide its exact initial condition. The strong deep-
water dispersion is the main reason for the seemingly great loss of information in
the evolution of the Cauchy–Poisson problem. In the cubic Schrödinger modeling
of nonlinear deep-water waves [15], an explicit time arrow is introduced through
the single time derivative. Also the Korteweg de Vries equation for shallow-water
waves has an explicit time arrow through the single time derivative. The present
work is restricted to the full equations for linear and nonlinear water waves.

One may ask whether this overview of time arrows in water waves applies to
other fields of conservative continuum physics. Some notions of time arrows are
exclusive for water waves, because of the unique free-surface nonlinearities and also
the strong dispersion. Nevertheless, two of the above examples of time arrows can
be carried over to standard non-dispersive waves in electromagnetics, acoustics and
elastic waves: (1) The time arrow of the standard radiation condition for outgoing
waves from an oscillating source or physical object. (2) The time arrow of a spiral
wave. It is possible to generate spiral electromagnetic and elastic waves, although
this may be difficult and perhaps not of practical use. On the other hand, spiral
acoustic waves are well-known as an idealized type of model for the noise from
propellers.
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Surface Wave Damping

M.A. Herrada, J.M. Montanero, and J.M. Vega

1 Introduction

Manuel G. Velarde has made an impressive amount of contributions to interfacial
phenomena. Although none of us has worked directly with him, we have benefited
from both the specific results in his published work and some discussions with him,
which have been always a source of inspiration. The main goal of this paper is to
account for some old and new work on the calculation of surface wave damping,
which involves some phenomena (e.g., Marangoni stresses, surface viscosity, and
contact line motion) that Manuel has greatly helped to uncover.

Surface wave damping is an essential ingredient for various purposes associ-
ated with the linear and weakly nonlinear descriptions of the wave dynamics.
Unfortunately, the calculation of wave damping is a subtle matter, especially in
finite containers. This is because several, essentially different phenomena (namely,
contact line dynamics and surface contamination), may contribute to damping. The
presence of these phenomena in turn may have dynamic consequences, namely they
may produce essentially new dynamic behaviors. In other words, both contact line
motion and the presence of surfactants may lead to qualitative (not only quantitative)
changes in the surface wave dynamics response. Measurements on surface wave
damping in turn may be used to identify the above mentioned sources of damping
and to calculate the associated physical parameters.
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2 Early Developments

The story begins with the linear theory by Stokes [1], who calculated the viscous
damping rate of harmonic waves in a laterally infinite liquid layer over a flat plate.
Viscous damping rate produces both temporal attenuation of standing waves and
spatial attenuation of traveling waves and Stokes formulae allowed to calculate
both. In fact, one of the goals of the pioneering work by Stokes was the possibility
of determining viscosity (non-invasively) from measurements of viscous wave
attenuation, as it had been pointed out by Stokes himself [2].

Stokes theory was subsequently extended to account for both three dimensional
effects and lateral walls ([3] and references there in). Earlier theories usually
assumed that the free surface intersects a vertical lateral wall normally. This bound-
ary condition allows for separating variables in a fairly standard way. Assuming
fixed contact line, instead, requires a more sophisticated analysis, which was
undertaken by Graham-Eagle [4] (a similar solution was obtained independently
by Sanz [5] for the liquid bridge geometry), after the suggestion by Benjamin
and Scott [6] that it is more appropriate to assume a fixed contact line in brimful
containers. Unfortunately, the attempts to match theory based on viscous dissipation
and experiments in finite containers failed and promoted the search for additional
sources of damping. Three sources were identified:

1. Viscous dissipation. At low viscosity, viscous dissipation in the various regions
is readily estimated by a standard order of magnitude analysis. It turns out
that dissipation in the oscillatory boundary layers attached to the solid walls
is asymptotically dominant since it behaves as the square root of viscosity.
Dissipation in the bulk behaves as the viscosity itself and dissipation in the
boundary layer attached to the free surface goes to zero as the viscosity to the
power 3=2. Thus, only dissipation in the boundary layers attached to the lateral
walls and the bottom of the container was accounted for in early studies.

2. Contact line motion is a subtle and still not well understood process. It was
early recognized as a source of damping [3, 7–10]. Appropriate handling of the
associated stress singularity (beyond the classical formulation by Moffatt [11])
to derive a slip condition was subsequently clarified, among others, by Huh and
Scriven [12], Dussan and Davis [13], and Dussan [14]; see also [15, 16] for
further references. Based on these, Hocking [17, 18] used a linear contact line
motion law to derive specific damping ratio formulae, which depended on a free
parameter (treated as a tunable parameter), namely a slip length. The resulting
calculation showed a reasonable agreement with the former experiments by
Benjamin and Ursell [7], Case and Parkinson [8], and Keulegan [9].

3. Surface contamination is also a not completely understood process. The
simplest model includes Marangoni elasticity and surface viscosity (both dilata-
tional and shear). Marangoni elasticity refers to the tangential stress on the free
surface produced by surface tension gradients, as first noticed by Marangoni
[19]. Surface tension gradients in turn can be induced by either temperature or
surfactant concentration gradients. The effect of the latter to promote motions
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along the free surface had been previously noticed by Thomson [20]; see
[21, 22] for a further historical review. The concept of surface viscosity seems
to have been first suggested by Plateau [23] and used by Boussinesq [24]
to explain some anomalous behavior observed in the bubbles velocity. The
mathematical formulation is due to Scriven [25]. As it happens with contact line
motion, accounting for surface contamination in realistic conditions involves
some tunable parameters (namely, the Marangoni elasticity and the shear and
dilatational surface viscosity coefficients) that must be adjusted, especially
when the nature of surfactants is completely unknown, as it usually happens in
water, which is quite easily contaminated. Along this line, the effect of surface
contamination on damping was recognized and modeled via phenomenological
formulae [3, 26–28].

3 Isolating Effects

Combining the above mentioned effects to explain damping rate measurements
required to fit tunable parameters, which made the analyses not conclusive enough.
In order to isolate effects, Henderson and Miles [29] conducted a series of
experiments with ultra-pure water (distilled, micro-filtered water was seen to
be not pure enough [29]) in a brimful cylindrical container, with the contact
line fixed at the upper edge of the lateral wall. Thus, both contact line motion
and surface contamination were eliminated. But comparison with theory was not
satisfactory.

A similar discrepancy had been simultaneously solved for the liquid bridge
configuration by Higuera et al. [30], who included the effect of viscous dissipation
in the bulk to the asymptotically dominant dissipation in the Stokes boundary layer,
obtaining quite good agreement for the experimentally measured damping rate.
As explained in [30], the reason for the necessity of including dissipation in the
bulk is that the Stokes boundary layer attached to the solid supports is somewhat
weak, namely, the jump of the tangential velocity across this boundary layer is
somewhat small, especially when the contact line is fixed. Of course, dissipation
in the bulk is higher order as viscosity goes to zero and thus it can be neglected for
sufficiently small viscosity, but not necessarily for small, but fixed viscosity, such as
that of water in centimeter devices. This emphasizes that some care must be taken
when using asymptotic results, as some parameter goes to either zero or infinity,
on actual experimental conditions, in which the parameter may be small/large, but
is fixed. If discrepancies appear, a good candidate to fix them is to estimate the
neglected higher order terms. Following [30], Martel and Knobloch [31] illustrated
the effect, discussing the balance between viscous dissipation in the boundary layers
and the bulk in a laterally unbounded layer. And Martel et al. [32] calculated
the damping rate for the experimental conditions in [29], obtaining a quite good
agreement in the whole range of frequencies; a similar analysis (in the light of
[32]) was simultaneously performed by Miles and Henderson [33]. The theory in
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[32] was extensively checked by Howell et al. [34] in a battery of fixed-contact-line
experiments using several types of silicone oils, in which surface contamination was
not expected.

Once the discrepancies concerning volumetric viscous damping had been solved,
the additional experimental runs by Henderson and Miles [29] using contaminated
water were considered by Nicolas and Vega [35], who added the effect of Marangoni
elasticity with insoluble surfactant, leaving the Marangoni elasticity as a tunable
parameter. The results highly improved some previous calculations in [29] (under
the assumption of inextensible free surface) and matched fairly well for the whole
set of measurements. As a byproduct, an estimate of the Marangoni elasticity was
obtained. These results suggested that Marangoni elasticity could be considered as
the main source of damping in contaminated water, as already conjectured by Van
Dorn [36].

4 New Experiments on Millimetric Liquid Bridges

A liquid bridge is the configuration that appears when an isothermal liquid mass is
held by capillary forces between two solid supports. This configuration is considered
to be of both scientific and industrial interest in, e.g., fluid physics experiments
on board of space platforms and the crystal growth technique known as floating
zone. Vibrations of the liquid bridge are unavoidable in space platforms due to
machinery and crew maneuvering, and have a significant effect on the liquid
bridge stability and dynamics. Also, the liquid bridge configuration is useful to
experimentally analyze interfacial phenomena since the free surface deformation
can be measured quite precisely by optical means, using sub-pixel rendering
techniques [37–39]. Its cylindrical shape scatters the light used to illuminate it,
which produces a silhouette effect ideal for imaging the free surface deformation.

A liquid bridge of length L between two parallel coaxial equal disks of radiiR is
defined by the following nondimensional parameters: the slenderness� D L=.2R/,
the volume V D V �=.�R2L/, the Bond number B D �gR2=
 , and the volumetric
Ohnesorge numberC D �.�
R/�1=2, where V � is the dimensional volume, � is the
density, 
 is the surface tension, and � is the viscosity. These properties are fairly
well known for several liquids, such as hexadecane. Surface contamination will be
modeled below using only the surface shear viscosity, whose nondimensionalization
leads to the superficial Ohnesorge number

CS D �S.�
R3/�1=2; (1)

where �S is the surface shear viscosity. These parameters result from using R
and .�R3=
/1=2 as units for length and time, respectively, to nondimensionalize
the axisymmetric governing equations and boundary conditions. With the usual
notation, these are
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.ru/r C rwz D 0; (2)

ut C uur C wuz D �pr C C Œurr C .u=r/r C uzz�; (3)

wt C uwr C wwz D �pz C C Œwrr C wr=r C wzz�; (4)

in 0 < r < F.r; z; t/;�� < z < �, where subscripts stand hereafter for partial
derivatives, and

Ft C Fzw � u D 0; (5)

C
Œ1 � F 2

z �.wr C uz/C 2Fz.ur � wz/

.1C F 2
z /
1=2

D CS



.F Ovs/s
F

C F 2
s � FFs
F 2

Ov
�
; (6)

p � B z C FFzz � 1 � F 2
z

F.1C F 2
z /
3=2

� 2C Œur � Fz.wr C uz/C F 2
z wz�

1C F 2
z

D 0; (7)

at the free surface, r D F ; the subscript s denotes the derivative with respect
to an arch length parameter along the meridians of the free surface and Ov is the
tangential component of the velocity along the free surface. In addition, noslip
boundary conditions are applied at the supporting disks, z D ˙�, and the usual
regularity conditions u D wr D pr D 0 are imposed at the axis r D 0. Explicitly
imposing conservation of volume is also convenient, even though it is a consequence
of the continuity equation and the kinematic compatibility boundary condition (5).

In the results quoted below, this problem is discretized as follows. The time-
dependent fluid domain is mapped onto a fixed square domain .0  �  1; 0 
�  1/ through the coordinate transformation � D r=F.z; t/ and � D z=.2�/. The
resulting square is discretized (after some calibration) using n� D 25 and n� D
11 Chebyshev collocation points along the � and � directions, respectively, which
yields a high accuracy with a relatively small number of mesh points. The (implicit)
time advancement is performed using second-order backward-differences, with a
fixed time step �t D 0:05=!, where ! is the nondimensional forcing frequency,
see below. At each time step, the resulting set of 3n� � n� C n� discrete nonlinear
equations are solved iteratively using the Newton–Raphson method implemented in
the MATLAB subroutine FSOLVE. The initial guess for the iterations at each time
step is the solution at the previous instant.

Liquid bridges are usually studied in microgravity conditions, but the effect of
gravity is also small on ground experiments using millimetric liquid bridges. In the
latter case, viscosity must be quite small to obtain small damping ratios, similar
to those for larger sizes in space platforms. Water is usually avoided for various
reasons, including the fact that it is easily contaminated in a somehow unpredictable
way. Experimental measurements of the damping ratio in millimetric liquid bridges
are scarce. Mollot et al. [40] performed in the nineties some damping measurements,
but (as acknowledged by the authors) these were obtained using an experimental set-
up that did not allow for a precise determination of the damping ratio. See also the
more recent damping measurements by Thiessen et al. [41].
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More recently, Montanero et al. [42, 43] performed a series of experiments on
millimetric liquid bridges using hexadecane and compared with the current theory
on viscous dissipation. The conclusion was that the natural frequencies of the
free oscillations were well predicted, but the damping ratio was underestimated
by a factor of about 0.6. Specifically, the so-called Cosserat one-dimensional
model (which results from the full Navier–Stokes equations in the limit of slender
liquid bridges) was used in [42]. A further comparison using the full Navier–
Stokes equations (without any simplification) [43] did not improve the results,
even modifying the formulation to account for some geometrical details of the
experiment, such as a part of the injection device used in the experimental set-
up to vary the liquid bridge volume. Thus, it became obvious that some physics
(producing additional damping) could be lost in the theoretical model.

Contact line motion was to be excluded because the contact line appeared to be
quite well attached to the edge of the supporting disks. Thus, surface contamination
was the obvious candidate, which was not expected in principle in hexadecane. As
explained above, modeling surface contamination requires in principle to consider
the effects of Marangoni elasticity and shear and dilatational surface viscosities,
which involve three free parameters (not available in the literature for hexadecane)
whose determination is a subtle matter [44, 45]. Thus, these parameters must be
determined by empirically fitting the available experimental data. The results in [42]
were obtained in two experimental campaigns, which produced 17 experimental
points with a limited precision. Thus, fitting with three free parameters would not
be convincing enough. Therefore, an appropriate explanation required selecting only
the effect that was most likely present. After a preliminary analysis, the surface
shear viscosity was selected. Accounting for the remaining surface effects would
require a more extensive experimental campaign, which is currently under research.

Luckily enough, surface shear viscosity alone produced a fairly good fitting
[46]. This is illustrated in Fig. 1, which shows that the first natural frequency is
well predicted by the simulation based on the full Navier–Stokes equations, as
anticipated, but the damping rate exhibits a systematic O.1/ error if only viscous
damping is accounted for (filled squares). Adding an appropriate value of the
superficial Ohnesorge number, namely

CS D 2:5 � 10�2; (8)

instead, produces a fairly good fitting (plain squares) for all available experimental
points. Note that the fitted value of the interfacial Ohnesorge number is of the order
of the volumetric Ohnesorge number, C D 2:26 � 10�2. This was to be expected,
invoking the boundary condition (6), from the experimental observation that surface
contamination and volumetric viscous effects produce comparable contributions to
the damping ratio. Also note that the fitted value of CS is maintained in all runs,
which is consistent with the fact that both the liquid and the disks radii were the
same in all experimental runs. This value of CS provides the following value of the
surface shear viscosity of hexadecane
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Fig. 1 Damping rate (a) and oscillation frequency (b) in a liquid bridge for the first natural mode,
with B D 0:312 and C D 2:26 � 10�2: as experimentally measured (plain circles), and as
numerically calculated with CS D 0 (filled squares) and CS D 2:5 � 10�2 (plain squares). Left
plots: varying volume for � D 1:83; right plots: varying � for V D 1

�S D .�
R30/
1=2C S D 3:3 � 10�3gm=sec; (9)

where the following experimental data have been used: �D 0:773 gm/cm3,

 D 23:66 dyn/cm, and R D 0:0985 cm. Thus, a means to calculate the surface
shear viscosity results from the analysis, which is being checked using a more
complete set of experimental measurements. The performance of this method (as
well as the analysis of the role of additional surface contamination effects, such as
dilatational viscosity and Marangoni stresses, which seems to be higher order in the
present experiment but could be dominant in other configurations) requires a more
complete experimental campaign, which is being planned.

In order to further check the ability of the proposed value of the surface
shear viscosity to match experimental measurements, the spatial dependence of
the oscillation amplitude calculated numerically is compared in Fig. 2 with its
experimentally measured counterpart. Note that the agreement is again quite good.

The results quoted above suggest that some care must be taken when using
millimetric liquid bridges to predict the damping ratio of larger liquid bridges. This
is because of surface contamination, which does not play a significant role at larger
sizes. According to (6), the ratio of the effects of shear surface viscosity to bulk
viscosity is measured through the ratio

CS=C D �S=.�R/;

which is O.1/ for hexadecane when R is of the order of one millimeter. Thus, if
R were of the order of, say, 30�m (a typical size of micro-fluidic devices [47]),
then CS=C would be multiplied by 30, and interfacial effects would be dominant,
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Fig. 2 Nondimensional
oscillation amplitude for
� D 1:83, V D 1, ı D 0,
B D 0:312, and
C D 2:26 � 10�2: as
numerically calculated with
CS D 2:5� 10�2 (filled
circles) and as experimentally
measured (plain circles)

producing not only quantitative but also qualitative changes in the dynamical
response of the device (see next section), and allowing to calculate other interfacial
phenomena, such as Marangoni elasticity and surface dilatational viscosity, which
were masked by shear viscosity in the experiment accounted for above.

Determining the role played by surface effects on micrometer capillary shapes
is not an easy task. One must solve the experimental difficulties associated
with the small spatio-temporal scales that are involved. Concerning the spatial
resolution, this must be precise enough as to appropriately monitor the free surface
evolution, determining the instantaneous free surface shapes with a reasonable
uncertainty. Concerning the temporal scale, the free surface typically evolves with
a characteristic time comparable to the capillary time, which is proportional to the
capillary bridge radius to the power 3/2. This fact entails a drastic increase of the
temporal resolution in the experimental analysis of micrometer configurations.
The combination of high-speed imaging and a super-resolution image processing
techniques allows one to meet both the spatial and temporal resolutions required to
analyze surface phenomena under favorable conditions.

This is the object of our current research. We have designed and assembled
an experimental setup to study surface effects on a micrometer liquid bridge,
with a radius of 100�m. A quasi-cylindrical (the Bond number is virtually zero)
hexadecane liquid bridge is formed between two calibration rods of the same
diameter. One of the rods is fixed, while the other one can be vibrated in the axial
direction with an electrodynamic shaker with the desired amplitude and frequency.
Digital images of the liquid bridge are acquired and processed to precisely determine
the free surface position as a function of time; see Fig. 3, which provides some
images from one of the experiments. Precise quantitative measurements will be
presented elsewhere.

An additional difficulty is that the superficial Ohnesorge number is now about
0:79, which produces strongly damped oscillations whose associated free surface
deformation is extremely small. In other words, resonances are no longer present.
This is illustrated in Fig. 4, which provides some preliminary simulations that
have been performed using the numerical tool described above. The nondimen-
sional parameters have been chosen consistent with the experiment. Note that the
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Fig. 3 Some snapshots of an experimental run in a micrometric liquid bridge for the indicated
values of t

Fig. 4 Numerical simulation of the response of a liquid bridge subject to a nondimensional axial
vibration amplitude A D 0:08, with B D 0:0028, V D 0:963, � D 2:3, and C D 0:064,
comparing the cases CS D 0 (plain circles) and CS D 0:79 (filled circles). Left: Free
surface deformation (measured as the difference between its maximum and minimum values, after
disregarding an initial transient) vs. the nondimensional forcing frequency !; right: a representative
evolution for ! D 0:5

resonance is completely suppressed for CS D 0:79, while some weak resonance
would be present at CS D 0.

Summarizing, the role of surface effects at micrometric sizes is expected to be
dominant, which has obvious consequences in the dynamics of microfluidic devices
with interfaces [48].

5 Consequences on the Surface Wave Dynamics

Precise calculation of surface wave damping allows for obtaining an asymptotically
correct, weakly nonlinear theory on surface waves dynamics at small viscosity.
This is a quantitative effect. But surface contamination (which is detected through
damping measurements) has additional qualitative effects on the dynamics. These
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are associated with the generation of viscous mean flows, which are produced by
the oscillatory boundary layers induced by the surface waves. The viscous mean
flow (also called streaming flow, or acoustic streaming) was first detected by Lord
Rayleigh [49] in his explanation of some anomalous accumulation of both dust in
the walls of acoustic Kunt tubes and sand in the bottom of vibrating containers
[50]. The generation of this mean flow in the boundary layer attached to a solid
wall and a free surface was uncovered through the work by Schlichting [51] and
Longuet-Higgins [52], respectively. Streaming flows have received a continuous
attention in the literature in connection with a variety of fluid flows, ranging
from the generation of mean motions in the ear [53] to the analysis of Langmuir
circulations in the ocean [54]. The streaming flow was also used to counterbalance
undesirable thermocapillary convection in materials processing in microgravity
([55] and references there in). But the streaming flow was considered in the early
nineties mainly a byproduct of the oscillatory flow, and thus not included in the
weakly nonlinear analyses of surface waves [56]. Nicolas and Vega [57], instead,
pointed out (for the liquid bridge geometry) that the dynamics of the surface waves
themselves may be affected by the generated streaming flow. This observation was
subsequently followed to conclude that the streaming flow is also coupled in the
weakly nonlinear analysis of surface waves in vibrating containers, which resulted
in a complete asymptotically correct theory for both 2D large aspect ratio systems
and moderate aspect ratio 3D containers, see [58–60] and references there in.
A similar theory for large aspect ratio, three dimensional containers remains to be
done.

Now, it turns out that surface contamination highly affects the structure of the
boundary layer attached to the free surface. In other words, the new boundary
layer structure produces a mean flow topology that is qualitatively different from
that generated by a clean free surface, and this has qualitative consequences
in the surface waves dynamics. As an example, adding Marangoni elasticity
(which is expected in tap water, as explained above) allowed to explain [61] the
appearance of drifting states in vertically vibrated annular containers, which had
been experimentally observed by Douady et al. [62], and could not be explained in
the absence of contamination [63].

6 Concluding Remarks

The various efforts to both calculating the damping rate of surface waves and
explaining experimental measurements have been reviewed. In particular, the
combined effects of volumetric viscous damping and interfacial effects, such as
Marangoni elasticity and surface viscosity have been discussed.

Some recent experiments on millimetric liquid bridges using hexadecane showed
that the role of surfactants is essential already in the scale of millimeters and
could be also significant in other liquids as well. This means that surfactants will
have a dominant effect in promoting damping at smaller sizes, which has obvious
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implications in microfluidics. As a byproduct, a method was suggested to measure
surfactant properties using micrometric liquid brides, which is currently under
research.

In addition, several consequences associated with the generation of mean
flows (which are well known today to affect the surface waves dynamics, both
qualitatively and quantitatively) have been briefly discussed.
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Shadowgraph Contrast of Internal Wave Trains
During Absorption

A. Wierschem and H. Linde

1 Introduction

The shadowgraph method is a standard technique for visualizing flow patterns. It is
noninvasive and easy to implement. In general, the contrast can be generated by the
deformation of an interface between media with different refractive indices and by
refractive-index gradients within a medium. The simultaneous occurrence of two
mechanisms for the shadowgraph contrast makes it difficult to obtain quantitative
information from the light intensity distribution. In general, this is only possible
where one of the two effects is negligible. Jenkins [1], and later Thess and Orszag
[2] have derived a description of the shadowgraph intensity distribution for the
case of a flat interface and a small refractive-index gradient within a liquid. This
report discusses the visualization of internal waves, which have been described
by Wierschem et al. [3] with the shadowgraph method and tackles the question
what mechanism produces the shadowgraph contrast. To this end shadowgraph
images obtained in reflection and in transmission are first compared to each other
qualitatively. Thereafter, the shadowgraph images are compared to surface elevation
measurements carried out with a laser beam.
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Fig. 1 Side-view of the experimental setup: two quartz-glass rings form an annular container that
is placed concentrically in a circular reservoir made of glass. The annular ring is filled with toluene
and the bottom of the reservoir is covered with liquid pentane

2 Experimental System and Methods

A side-view of the experimental system is sketched in Fig. 1. It consists of a
cylindrical glass container in which two quartz rings are placed concentrically. The
annular gap between the two quartz rings is filled with toluene. The rest of the
container is covered with liquid pentane, which has a high vapor pressure at room
temperature and a surface tension much lower than toluene. The vapor concentration
of pentane rises rapidly until a stationary value is obtained. This gives rise to a strong
concentration difference between the vapor phase and the liquid in the annular gap.
This difference decreases with time due to the absorption of pentane in the liquid.
Because the surface level rises due to the absorbed pentane the annular container
is not filled brimfully. Further details concerning the setup and the parameters are
given by Wierschem et al. [4]. In an initial stage surface waves are generated, on
which has been reported elsewhere [4, 5]. The internal waves, with are of interest
here, are observed at a later stage of the absorption process when the liquid in the
annular container has already absorbed a considerable amount of pentane. They
have been described by Wierschem et al. [3].

The internal waves have been visualized by applying the shadowgraph method.
We carried out shadowgraph experiments in transmission and in reflection. The
light coming from a monochromatic light source of 1 mm diameter is collimated
to a parallel beam of 100 mm diameter. In the transmission mode it traverses the
hydrodynamic system from underneath and then it is focused by a lens on the chip
of a CCD camera. In the reflection mode, a beam splitter turns the divergent beam
downwards where it is collimated by a lens. The collimated beam arrives at the free
liquid surface that reflects a part of it. The reflected light is captured by a CCD
camera on the other side of the beam splitter. The setups are shown in Fig. 2. In
the transmission mode, the contrast could be due to surface deformation or due
to a concentration modulation within the bulk. In the reflection mode, to prevent
that the concentration modulation in the liquid contributes to the shadowgraph
contrast, the glass bottom is covered with a thin sheet of paper that mainly acts to



Shadowgraph Contrast of Internal Wave Trains During Absorption 365

Mercury
Lamp

Lens 1 Lens 2 Lens 3

Lens 4

Lens 5

Dia-
phragm 1

Dia-
phragm 2

Inter-
ference
Filter

Mirror 1

Mirror 2

Container

ZoomCCD-
Camera

Videotape
Recorder

Lens 4

Container

Zoom

CCD-
Camera

Videotape
Recorder

Mercury
Lamp

Lens 1 Lens 2 Lens 3

Dia-
phragm 1

Dia-
phragm 2

Inter-
ference
Filter

Beam
Splitter

a b

Fig. 2 Shadowgraph setup in transmission (a) and in reflection (b)

diffusely scattering the incoming light. With the focus of the camera zoom chosen
beyond the surface level, the virtual image is visualized, which corresponds in
principle to the image obtained in the transmission mode. In other words, this virtual
image corresponds to a situation where the surface elevation serves as a lens to focus
the light from a source behind the surface level.

The surface deformation provoked by the waves is detected with a laser beam
reflected at the free liquid surface. The laser beam is aimed at the surface from
above at a small angle with respect to the vertical and the position of the reflected
beam is recorded with a CCD camera at a distance on a recording plane. From the
shift of the laser spot on the recording plane, we calculate the surface deformation
gradient. Integration with the phase velocity of the waves, which is obtained from
simultaneous shadowgraph experiments, yields the shape of the free surface. The
setup is sketched in Fig. 3a. A 0.95 mW helium–neon laser is focused by a lens of
350 mm focal distance on the liquid surface in the center of the annular container.
The beam diameter at the surface is about 300�m. The small angle between the
laser beam and the surface normal is adjusted by a mirror. At about 1 m distance
from the surface the reflected beam arrives at a recording plane where it is recorded
with a CCD camera.

Figure 3b shows the geometry of the detection from which the surface-
deformation gradient is determined in the following manner: The gradient in
x-direction hx , corresponding to the azimuth direction in the annular gap, is equal to
the tangent of the inclination angle ˇ. The reflected angle 	 is twice the inclination
angle. From Fig. 3b follows that the following geometrical relations hold:

tan
��
2

� ˛r
�

D b � h

a
; (1)

tan
��
2

� ˛r � 	
�

D b � h

a C�a
: (2)
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Fig. 3 Experimental setup for measuring the surface deformation with a reflected laser beam (a)
and sketch of its geometrical properties (b)

Solving (2) for 	 and using (1) yields:

	 D arctan
.b � h/�a

.b � h/2 C a.a C�a/
: (3)

Replacing 2ˇ by 	 given by (3) yields for the surface deformation in x-direction:

hx D �tan

�
1

2
arctan

.b � h/�a

.b � h/2 C a.aC�a/

	
: (4)

This equation can be simplified for typical parameter values of our experiment.
The vertical distance b between the recording plane and the surface is about 1 m
and the horizontal one, a, is about 30 cm. The horizontal shift �a a due to the
deformation is less than 5 mm. Thus, the surface elevation h is in the sub-millimeter
range. Therefore, on the right hand side of (4) h can be neglected relative to b and
in the denominator also �a a relative to a. The argument of the arctangent is of the
order of 10�3. In this case the arctangent function is equal to its argument. The same
holds for the tangent function so that we finally arrive at:

hx D �1
2

b

b2 C a2
�a: (5)

Because the liquid volume increases due to absorption, the surface level rises
continuously. During a complete experimental run the surface level rises up to
about 1 mm. Its influence on b and a can be neglected, but not that on �a,
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which point of reference also shifts. However, this shift is very small during the
time a single wave passes the laser spot and thus can be neglected for a single wave.
For each wave the point of reference is determined independently. The surface shape
is obtained by the partial sum over the single measuring points:

h.t/ D
tX

t 0Dt0
hx.t

0/vx.t 0/�t 0; (6)

where�t 0 denotes the time interval between the measured points, which is 0.04 s at
video frequency. t0 is the starting point of each wave and vx is the wave velocity in
the x-direction, which is measured simultaneously with the shadowgraph technique.

The neglected contributions that led to (5) are of the same order or less than
the uncertainties of the parameters. The vertical and horizontal distances a and b
are determined with an uncertainty of 5 mm. The displacement �a of the center
of the laser spot can be determined to within 0.12 mm. It is the main error in
this experiment. Therefore, the absolute uncertainty of the gradient is 5 � 10�5.
The velocity is determined with an error between 0.3 and 1.7%, depending on its
magnitude.

3 Results and Conclusions

Figure 4 shows space-time diagrams of the internal waves visualized with the two
shadowgraph setups. Diagram (a) displays a train in the transmission mode and
diagram (b) in the reflection mode. The image taken in reflection is noisier than in
the transmission mode. Besides this, it shows the same qualitative characteristics,
i.e. bright localized areas on an otherwise dark background traveling through the
container. The sharp contrast seen in Fig. 4b is due to a larger distance between the
focal plane and the surface.

To obtain the amplitude of the shadowgraph contrast, the space-time plots in the
transmission mode have been demodulated. The demodulation procedure has been
described by Wierschem et al. [3]. A comparison between the surface elevation
amplitude as measured with the reflected laser beam and the amplitude of the
shadowgraph contrast in an experimental run shows Fig. 5. The correspondence
between the results of both experimental methods is in line with the interpretation
that the shadowgraph contrast is mainly due to the surface deformation, which was
already suggested by the shadowgraph experiment in the reflection mode.

For further quantitative comparison, we compare the shadowgraph contrast in
transmission to the one that would be expected from the surface deformation, as
it is measured with the reflected laser. Due to the surface inclination of the liquid
with the refractive index nL, the vertical light beam arrives at the surface under the
inclination angle of the deformed surface ˇ. There, the light ray is deflected and
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Fig. 4 Space-time diagrams along the central line of the annular container, obtained by the
shadowgraph method working in transmission (a) and in reflection (b)
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leaves the surface under an angle ı with respect to the vertical. Setting the refractive
index of the air–vapor phase equal to one, Snelius’ law of refraction reads:

nL sinˇ D sin.ˇ C ı/: (7)

The experiments with the reflected laser beam have shown that the surface defor-
mation is very small. Therefore, with nL > 1, we may take all angles small and
approximate the cosine by unity. Thus (7) now reads:

sin ı D .nL � 1/ sinˇ: (8)

Furthermore, as the angles are small the tangents become equal to the sine functions
and sinˇ can be replaced by hx.x/. For the deflection angle we obtain then:

tan ı D .nL � 1/hx: (9)
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A ray that traverses the surface at a horizontal position x0 arrives after a vertical
distance z1 from the liquid surface at the horizontal position x1. The vertical distance
z1 is much larger than the surface-deformation amplitude and the later can therefore
be neglected:

x1 D x0 C�x D x0 C z1 tan ı D x0 C z1.nL � 1/hx.x0/: (10)

The shadowgraph method, on the other hand, detects the light-intensity distribution.
A light ray that originates at x0 and arrives on the recording plane at x1 contributes
there to the light intensity while no light arrives at x0. The light intensity at the point
x1 is then the sum over all points of the illuminated area that are mapped on it. This
mapping changes the intensity per unit area. But, neglecting light absorption, the
overall intensity remains unchanged. Thus, the product of the intensity at recording
plane I.x1; z1/ and the local coordinate scale is equal to that of the former intensity
at the former scale:

I.x1; z1/�x1.z1/ D I0�x0; (11)

hence, the relative light intensity at the recording plane is the inverse of the Jacobian
[1]. Taking the derivative of (10) we arrive at:

I0

I.x1; z1/
D @x1

@x0
D 1C .nL � 1/z1hxx.x0/: (12)

The second derivative of the surface elevation in azimuth direction hxx.x0/ can
be determined from the measurements with the reflected laser beam by differen-
tiating the measured surface-elevation gradient. Figure 6 compares the intensity
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relative to the homogeneous state as measured with the shadowgraph method
in transmission, to that calculated with (12) from the laser-beam measurement.
The scaling is the same for both measurements. The measurements are in good
agreement, although a better temporal resolution would be desirable.

We conclude that the shadowgraph contrasts in the reflection mode and in the
transmission mode are qualitatively the same. Even in the transmission mode its
contrast is mainly produced by the surface deformation. In principle the surface
deformation can be calculated from the shadowgraph images by applying (12). It is
possible to deduce from the mean contrast of the shadowgraph image on the mean
surface elevation and how it changes in time. On the other hand, extrapolation of
this result to where the laser-beam method is not applicable is of special interest
for the study of wave interaction. However, there one should only expect rather
qualitative results, yet the double integration of the relative shadowgraph contrasts
makes it difficult to recover the precise surface elevation from the data field due to
the sensitivity of the integration to the zero-level [6].
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Formation of Mach-Stems on Shock Fronts
and Cellular Detonations

P. Clavin

1 Introduction

Detonations are supersonic and exothermic waves propagating in reactive mixtures.
They were discovered during the nineteenth century. Early experiments of the
mid twentieth century showed that these reacting fronts are cellular with triple
points propagating transversely in both directions in two dimensional geometry.
An analytical description of this cellular structure was obtained much later in a
limiting case by the nonlinear analysis of [1]. The underlying mechanism was shown
to be a pulsating instability resulting from the coupling of the longitudinal (one-
dimensional) dynamics of the reaction zone with the two-dimensional dynamics of
the wrinkled lead shock, see [2] and [3]. The mechanism of spontaneous formation
of triple points in inert shock waves is an open question.

Plane shock waves propagating in gas are known from a long time to be stable.
However their relaxation mechanism is not clearly understood. The first theories
and experiments considered what occurs when a plane shock propagating along
a parallel channel encounters a disturbance on the wall of the channel, see [4].
Few years later, the study of [5] concerned shock waves reflected normally from
perturbed flat walls. The theoretical analysis of [6] described the interaction of a
cylindrical or spherical pressure wave with a shock wave. These studies reported a
decay law which is not exponential in time, but follows power laws t�1=2 or t�3=2.
No attention was payed at that time to the formation of triple points which, however,
appeared clearly in all the experiments.
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The stability analysis of shock waves differs from that of usual dissipative
structures. Dissipative transports are localised inside the thickness of the shock wave
which is considered in the analysis as a discontinuity, separating non dissipative
flows. Therefore, the damping mechanisms are resulting only from the boundary
conditions at the shock waves (Rankine–Hugoniot conditions). Normal mode
analyses of shock waves have been performed for general materials by DYakov [7]
and Kontorovich [8]. Without natural length scale in the problem the complex linear
growth rate 
 is proportional to the wave number of the wrinkle k, 
 / Dk, where
D is the propagation velocity of the planar front. The complex scalar s � 
=.Dk/
depends on the shape of the Rankine–Hugoniot curve. The case of neutral oscillatory
modes, Re(s) D 0, 
 D i!, Im.!/ D 0, deserves further attention. In this
case the stability property was associated with the non-divergence of the reflection
coefficient of pressure waves impinging the shock from the shocked material, see
Appendix 1. The stability character is then directly related to the radiating or non-
radiating nature of the pressure waves which are associated with the eigenmodes.

In this context, there exist two different types of stable shock fronts, those with
an exponential decay (Re.s/ < 0) and those with neutral modes (Re.s/ D 0)
whose pressure waves are non-radiating. The transition separating the two types
of stability in the space of parameters was not investigated for real shock waves,
even though the two possibilities were mentioned very early by DYakov [7] and
Kontorovich [8], and also by Majda and Rosales [9]. Surprisingly, even the case of
shock waves propagating in an inert polytropic gas was not clarified. As we shall
see, these shock waves have neutral non-radiating eigenmodes, contrarily to what
is reported in the more modern literature without solving explicitly the problem.
The confusion results from a misinterpretation of the general result of [9], see for
example [10] and [11] who reported that disturbances are damped exponentially.

The formation of triple points in reacting shock fronts, called spontaneous Mach
stem formation, was addressed by Majda and Rosales [9]. Their weakly nonlinear
analysis showed that the formation of singularities on the reacting fronts is described
by a Burgers equation. The reacting shock front being considered as a discontinuity,
the patterns of cellular detonations cannot be fully represented by their analysis. The
main reason is that the unsteadiness of the reacting zone is essential for introducing
both an instability with an exponential growth rate and a cutoff in the wavelengths,
see [2] and [1]. Furthermore, in contrast to inert shock waves, the eigenmodes
of reacting shock fronts are characterised by radiating pressure waves (outgoing
acoustic waves). Since the existence of these radiating pressure waves is a basic
ingredient of the analysis of [9], the formation of Mach stems in inert shock waves
requires a different analysis. This is the purpose of the present paper.

In the first part, we reconsider the stability of shock waves with a particular
attention to polytropic gases. In the second part we performed a nonlinear analysis
in the limiting case of strong shock and Newtonian limit, leading to the formation of
singularities representative of a triple points. The results will be discussed in relation
to the cellular structure of detonations.
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2 Stability Analysis of Shock Waves

The shock wave is considered as an hydrodynamic discontinuity of zero thickness.
Consider a planar shock wave standing perpendicular to the x-axis at x D 0. The
shocked gas flows at a constant and subsonic flow velocity uN > 0 in the x > 0

direction. Let x D ˛.y; t/ represents the perturbed shock position at transverse
position y at time t in the reference frame of the unperturbed planar shock. For
saving the notation we use only one transverse coordinate, the generalization to two
transverse coordinates is straightforward.

2.1 Formulation

For any physical quantity f we introduce the decomposition f D f C ıf ,
where f represents the unperturbed solution. The upstream flow is unperturbed,
and u D uN C ıu and w D ıw are the x and y components of the flow velocity in
the shocked gas, written in the reference frame of the unperturbed shock. The flow
is considered as inviscid and the heat conduction is neglected. The linearized Euler
equations yield

1

�N

D

Dt
ı� C @

@x
ıu C @

@y
ıw D 0; (1)

�N
D

Dt
ıu D � @

@x
ıp; �N

D

Dt
ıw D � @

@y
ıp; (2)

D

Dt
ıs D 0 ) D

Dt
ıp D a2N

D

Dt
ı�; (3)

where p is the pressure and the material derivativeD=Dt takes the simple form

D=Dt D @=@t C uN@=@x;

since the unperturbed flow is uniform. Eliminating ı� from (1) and (3) give

1

�N a
2
N

D

Dt
ıp C @

@x
ıu C @

@y
ıw D 0: (4)

Eliminating ıu and ıw from (2) and (4) we get the d’Alembert equation for the
pressure fluctuations of acoustic waves propagating in a fluid moving at constant
velocity uN ,

D2

Dt2
ıp � a2N

�
@2

@x2
C @2

@y2

	
ıp D 0: (5)

In other words, in an homogeneous flow and in the linear approximation, all the
fluctuations of pressure are associated with acoustic waves.
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A boundedness condition should be used at infinity in the shocked gases,
x ! 1. Boundary conditions at the shock, x D 0 W ıu D ıuN .y; t/, ıw D
ıwN .y; t/, ıp D ıpN .y; t/, are given by the Rankine–Hugoniot relations across
the wrinkled shock in Sect. 2.4, the subscript N denoting the Neumann state (just
behind the shock wave).

2.2 Pressure and Entropy–Vorticity Waves

Due to the shock wrinkling, acoustic waves are generated by the pressure fluctu-
ations at the Neumann state x D 0. Moreover isobaric shear waves and entropy
fluctuations are also generated at x D 0, since the Hugoniot curve differs from an
isentropic curve. The solution to (2) may then be decomposed into acoustic waves,
superscript .a/, and an entropy–vorticity wave, superscript .i/, see Fig. 1. The flow
velocity in the acoustic waves is obtained from (2) where the pressure is solution
to (5) with the boundary condition at x D 0, ıp D ıpN .y; t/. On the other hand the
flow of the entropy–vorticity wave (ıu.i/, ıw.i/) is solution to (2) with ıp D 0. It is
an isobaric shear flow generated at the Neumann state, x D 0, propagating with the
unperturbed flow,

Dıu.i/=Dt D 0; Dıw.i/=Dt D 0:

The flow disturbances may thus be written as

ıp D ıp.a/; ıu D ıu.a/ C ıu.i/.y; t � x=uN /; (6)

ıw D ıw.a/ C ıw.i/.y; t � x=uN /: (7)

According to continuity (4), the flow of the entropy–vorticity wave is incompress-
ible

@

@x
ıu.i/ C @

@y
ıw.i/ D 0;) @

@t
ıu.i/ D uN

@

@y
ıw.i/: (8)

Density variations ı�.x; y; t/ are obtained from the pressure fluctuations ıp.x; y; t/
propagating with the acoustic waves and from the propagation (3) of the entropy
fluctuations which are generated at x D 0 by the wrinkled shock ısN ¤ 0, ıpN ¤
a2N ı�N ,

ıp � a2ı� D ıpN .y; t � x=uN / � a2N ı�N .y; t � x=uN /: (9)

The problem may be solved by using a normal-mode analysis

˛.y; t/ D ǪeikyC
t C c:c:; ıf .x; y; t/ D Qf .x/eikyC
t C c:c: (10)

where k is the transverse wave vector (a real quantity), and 
 D sCi! is a complex
quantity, its real part s measuring the growth rate (damping rate if s < 0) and its
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Fig. 1 Sketch of the flow
field associated with an
eigenmode. It is composed of
an isobaric shear flow
propagating at the subsonic
velocity of the flow uN and a
pressure wave propagating
with the sound speed aN
relatively to the shocked gas
flowing with the velocity uN .
In this figure the pressure
wave is non-radiating since
the propagation velocity of
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imaginary part ! being the frequency of oscillation in time. The pressure, solution
to (5), is looked for in the form of Fourier decomposition

ıp D QpNeil˙xCikyC
t C c:c:; (11)

where QpN is a constant of integration obtained from the boundary condition
x D 0 W ıp D ıpN .y; t/ D QpNeikyC
t C c:c: The quantities l˙ are solutions of the
second-order algebraic equation associated with (5),

.
 C i l˙uN /
2 C a2N .l

2˙ C k2/ D 0; (12)

resulting in,

i l˙
jkj D MNS ˙ p

1C S2q
1 �M2

N

with S � 


aN jkj
1q

1 �M
2

N

; (13)

expressing i l˙ in terms of jkj and 
 . Equation (13) may also be written

i l˙uN .1 �M2

N /�M
2

N
 D ˙jkjuN
q
.1 �M

2

N /C .
=aN jkj/: (14)

The ˙ sign in (13) and (14) must be chosen to enforce boundedness of acoustic
waves for x ! 1, thereby requiring that the real part of i l˙ be non positive,

ReŒMNS ˙
p
1C S2�  0: (15)
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This is right for unstable modes in the senseRe.S/ > 0. However for neutral modes,
Re.S/ D 0 with 1C S2 < 0, as it is the case for shock waves in a polytropic gas
studied in the next section, the sign in (13) is determined in a different way, see the
discussion below (42). The quantity 
=.aN jkj/may be expressed in terms of l˙=jkj
from (12) or (13). In the particular case of neutral modes, 
 D ˙i! with ! > 0

and l˙ real, this leads to the well-known result of the frequency shift by the Doppler
effect,


 D i!; ! > 0 W ! D aN

q
l2˙ C k2 � uN l˙ > 0; (16)


 D �i!; ! > 0 W ! D aN

q
l2˙ C k2 C uN l˙ > 0: (17)

In the limit of infinite sound speed, MN ! 0, 
=aN jkj ! 0, (13) leads to the low
Mach number approximation i l˙ D ˙jkj, �ıp D 0.

The velocity field associated with the acoustic modes is, according to (2),

Qu.a/ D � i l˙uN

 C i l˙uN

QpN
�N uN

eil˙x; Qw.a/ D � ikuN

 C i l˙uN

QpN
�N uN

eil˙x; (18)

and the entropy–vorticity wave may be written as,

Qu.i/ D



QuN C i l˙uN

 C i l˙uN

QpN
�N uN

�
e�
x=uN ; (19)

Qw.i/ D



QwN C ikuN

 C i l˙uN

QpN
�N uN

�
e�
x=uN ; (20)

where QpN .k; 
/, QuN .k; 
/ and QwN .k; 
/ are obtained by the Rankine–Hugoniot
relations, see (31) and (32) below.

For strongly unstable cases, s � Re.
/ > 0, the entropy–vorticity wave is
damped when x increases. For strongly stable cases, s < 0, there is no real
divergence since, according to the initial value problem for t > 0 and x  uN t ,
the quantities ıu.i/.y; t � x=uN / and ıw.i/.y; t � x=uN / are bounded by the initial
condition at t D 0 and x D 0, ıu.i/.y; t D 0/ and ıw.i/.y; t D 0/.

2.3 Compatibility Condition

The entropy–vorticity wave must satisfy the incompressible condition (8),

� .i l˙
 C uN k2/

.
 C i l˙uN /

QpN
�N uN

� 

QuN
uN

C ik QwN D 0: (21)
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The first term may be written in a simpler form as follows. Equation (12) yields

� .i l˙uN 
 C u2N k
2/ D 
2 C i l˙
uN C .a2N � u2N /.l

2
˙ C k2/

D 
2 C i l˙
uN � .1 �M
2

N /.
 C i l˙uN /
2

D �.
 C i l˙uN /
h
i l˙uN

�
1 �M2

N

�
� 
M

2

N

i
; (22)

where the bracket may be expressed using (14). Equation (21) may then be written

˙ jkj
q
.1 �M

2

N /C .
2=a2Nk
2/. QpN=�N uN /C 
.QuN=uN /� ik QwN D 0; (23)

or, in non dimensional form,

˙
p
S2 C 1

QpN
�NaN uN

C S
QuN
uN

� ik QwN
jkjuN

MNq
1 �M

2

N

D 0; (24)

where the ˙ sign is the same as in (13) and has to be chosen to satisfy (15). In
the case of neutral modes, 
 D i!, the ˙ sign depends on the parameters defined
below in (29), see Appendix 1. Equation (23) was first written by Buckmaster and
Ludford [12], except for the ˙ sign. It is valid for any supersonic discontinuity when
modifications to the inner structure are neglected. Equations (23) or (24) lead to an
equation for the non dimensional complex growth rate 
=.aN jkj/, as soon as the
quantities QpN=.�N uNaN /, QuN=uN and QwN =uN are expressed in terms of 
 and k by
using the Rankine–Hugoniot relations at the shock x D 0.

2.4 Boundary Conditions at the Shock

The conditions for the flow velocity at the Neumann state are obtained from the
equation for conservation of transverse momentum and of mass (78) where D and
uN should be replaced by the normal shock velocity and the normal flow velocity
relative to the wrinkled shock respectively. Conservation of transverse momentum
leads to conservation of the transverse component of the flow velocity. This yields

�N .uN � @˛=@t � wN @˛=@y/ D �u.D � @˛=@t/; (25)

.D � @˛=@t/ cos � D wN sin � C .uN � @˛=@t/ cos �;

where cot � D @˛=@y, so that the second equation may be written

D@˛=@y D wN C uN@˛=@y (26)
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In the linear approximation, one gets

ı�N uN C �N .ıuN � @˛=@t/ D ��u@˛=@t; (27)

ıwN D .D � uN /@˛=@y: (28)

The Hugoniot relation (80) in Appendix 2 provides the slope of the Rankine–
Hugoniot curve at the Neumann state dpN=d�

�1
N . It is useful to introduce two

non dimensional parameters,

r � � .�uD/2

dpN=d�
�1
N

; n � �N
�u

M
2

N�
1 �M

2

N

� : (29)

For wrinkled shock front, (79) in Appendix 2 is still valid whenm is replaced by the
normal mass flux m D �u.D � @˛=@t/=

p
1C .@˛=@y/2, ım D ��u@˛=@t . Using

the first equation in (29) in the form

ıpN D 1

r

�
�u

�N

	2
D
2
ı�N ; (30)

Equation (79) leads to the variations of pressure and density at the Neumann state
in terms of the variation of shock velocity, @˛=@t ,

ıpN

pN
D �2

�
1 � pu

pN

�

.1 � r/

@˛=@t

D
;

ı�N

�N
D �2

�
�N
�u

� 1
	

r

.1 � r/

@˛=@t

D
: (31)

Using these results, (27) and (28) provide the variation of the flow velocity
fluctuations at the Neumann state,

ıuN
uN

D
�
�N
�u

� 1

	
.1C r/

.1 � r/

@˛=@t

D
;

ıwN
uN

D
�
�N
�u

� 1

	
@˛

@y
: (32)

2.5 General Case

Introducing (31) and (32) into (24), yields

˙ 2MNS
p
1C S2 D .1C r/S2 C .1 � r/n; (33)

where the ˙ sign is the same as in (13). The complex linear growth rate of the
normal modes, 
=.aN jkj/; are expressed in terms of r and n, from the solutions of
the quadratic equation for S2 corresponding to (33),
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radiating radiating
non

Re (s) < 0Re (s) = 0Re (s) > 0

rr* 1− (1 + 2 M N ) n − 1

n + 1

Fig. 2 General stability limits for shock waves, 
 is the complex linear growth rate, e
t , the
inverse of the reduced slope of the Hugoniot curve at the Neumann state r , and the parameter
n are given in (29). The critical value r� is given in (35)

aS4 C 2bS2 C c D 0; (34)

a � .1C r/2 � 4M2

N ; b � .1 � r2/n � 2M
2

N ; c � .1 � r/2n2 > 0:

The roots to be retained are those which satisfy (15) and (33). The problem reduces
to discuss the roots of a quadratic equation for S2. This simplification comes
from (22) and was not used in the original works, see for example the text book
of [13]. The fact that 
 is proportional to aN jkj is due to the absence of reference
length scale in the problem since the shock is considered as a discontinuity in the
solutions of the Euler equations.

The discussion of the general case is tedious but straightforward. The results are
summarized in Fig. 2. The more striking feature is that the domain of stability with
an exponential damping, Re.
/ < 0, is separated from the domain of instability
with an exponential growth rate,Re.
/ > 0, by a wide domain of neutral oscillatory
modes,Re.
/ D 0, Im.
/ ¤ 0, in which at least one of the roots of (34) is negative,
S2 < 0. Depending on the sign of the quantity a one may have either a single neutral
mode and a stable mode with an exponential relaxation, or a pair of neutral modes,
as it is discussed below for polytropic gases.

The critical values �.1C2MN / and .n�1/=.nC1/ for the parameter r in Fig. 2
have been obtained by DYakov [7] and Kontorovich [8]. They play an important role
in the stability limits. Other authors, following Fickett and Davis [14], introduced
the Gruneisen coefficient � instead of r . The above mentioned critical values for
r correspond to the critical values .1 C MN/=� and 1=.1C � / for the parameter

.
�N
�u

� 1/M
2

N .
The critical value r� separating the domain of neutral oscillatory modes from the

domain of exponential relaxation has not been reported before. It corresponds to the
double roots S2 D �b=a < 0, b2 D ac,

r� D
n �

r
.1 �M2

N /
�
1 � �u

�N

�

nC 1
: (35)

In the linear approximation, the amplitude of the neutral oscillatory modes in the
range �.1 C 2MN /  r  r� are damped as power laws in 1/t. This is shown
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by the initial value problem solved by using the Laplace transform. According
to (33), a square root appears in the denominator of the inversion formula of the
Laplace transform. This introduces branch points in the complex plane leading
to power laws when integrating along the branch cuts. The stability of shock
waves characterised by neutral oscillatory normal modes has been discussed by
Kontorovich [8] and Landau and Lifchitz [13] in a different manner, by considering
the reflection of acoustic waves impinging the front from the shocked gases. The
reflection coefficient diverges when the pressure wave of a normal mode is radiating,
that is when it propagates from the shock front towards infinity in the shocked gases,
see Appendix 1. Such a divergence never appears if the pressure wave of normal
modes are non-radiating. Therefore the critical value r D .n � 1/=.n C 1/ was
considered as the stability limit.

2.6 Polytropic Gases

For a polytropic gas, according to the Rankine–Hugoniot relations (81)–(84) in
Appendix 2, the parameters r and n in (29) are related to the Mach number

M u � D=au > 1, r D 1=M
2

u and n D M
2

u=.M
2

u � 1/, .1� r/n D 1. Equation (33)
reduces to

˙ 2SMN

p
1C S2 D S2

�
1CM

�2
u

�
C 1; (36)

and the linear modes of shock waves in polytropic gases are neutral, Re.
/ D 0,
with non-radiating pressure waves since

M u > 1; 	 > 1 ) .n � 1/=.nC 1/ < r < r�;

see Fig. 2. A different result, Re.
/ < 0, is reported by Rosales [10] and Short
[11]. In order to clarify the problem, and also to prepare the nonlinear analysis it is
worth re-considering in details the stability analysis of shock waves propagating in
polytropic gases from the beginning.

2.6.1 Neutral Modes

Density and pressure fluctuations at the Neumann state are obtained from the
linearised version (81) and (82) using ıMu D �.@˛=@t/=au

ı�N

�N
D � 4

.	 C 1/

1

M u

1h
1C .	�1/

.	C1/ .M
2

u � 1/
i @˛=@t

au
; (37)

ıpN

pN
D �

4	

.	C1/M uh
1C 2	

.	C1/ .M
2

u � 1/
i @˛=@t

au
: (38)
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Velocity fluctuations at the Neumann state are obtained from (27) and (28)
using (81), (82) and (37),

ıuN
uN

D
2

.	C1/ Œ2C .M
2

u � 1/�

M
2

u

@˛=@t

uN
;

ıwN
uN

D
2

.	C1/ .M
2

u � 1/h
1C .	�1/

.	C1/ .M
2

u � 1/
i @˛
@y

: (39)

Equation (36) is obtained directly by introducing (38) and (39) into (24). Equa-
tion (34) then takes the form,

aS4 C 2bS2 C 1 D 0; S2
˙

D Œ�b ˙ p
b2 � a�=a; (40)

a 	
�
1CM

�2

u

�2 � 4M
2

N ; b 	
�
1CM

�2

u

�
� 2M

2

N ;
p
b2 � a D 2MN

q
M

2

N �M
�2

u

where M
2

N < 1 is expressed in terms of M
2

u > 1 and .	 � 1/ > 0 by using (84) in

Appendix 2. The quantity b2�a D 4.	�1/.MN=Mu/
2.M

2

u �1/2=Œ2	M2

u �.	�1/�
being positive, the two roots in (40) are real numbers. It is also easy to see that the

quantity b D .1 �M
�2
u /Œ2M

2

u C .	 � 1/�=Œ2	M
2

u � .	 � 1/� is positive and larger

than a since b � a D .1 � M
�2
u /M

�2
u Œ2.	 � 1/M

4

u C 2M
2

u � .	 � 1/�=Œ2	M
2

u �
.	 � 1/� is positive. The quantity a may be written a D .1�M�2

u /2Œ2.2� 	/M2

u �
.	 � 1/�=Œ2	M

2

u � .	 �1/�, so that, for all values ofM u > 1, the condition a > 0 is
verified for 	 < 5=3, while the condition a < 0 is verified for 	 > 2. In the interval
5=3 < 	 < 2 the quantity a is positive for sufficiently fast shocks,

M
2

u >
.	 � 1/

2.2� 	/
> 1 W a > 0; 1 < M

2

u <
.	 � 1/

2.2 � 	/ W a < 0: (41)

The signs of the quantities a and �b C p
b2 � a being opposite, (40) yields

a > 0 W S2� < 0; S2C < 0I a < 0 W S2� > 0; S2C < 0:

The ratio of specific heat is 	 D 5=3 in monoatomic gases, and 	 < 5=3 in ordinary
gases so that a > 0. The relevant S solutions (40) are those that are the solutions
to (36) which satisfies condition (15). Consider first the usual case a > 0. The two
solutions S˙ are purely imaginary,

a > 0 W SC D ˙i˝1; S� D ˙i˝2;

˝2
1 D b � p

b2 � a

a
; ˝2

2 D b C p
b2 � a

a
; ˝2 > ˝1 > 1; (42)

where the last relation˝1 > 1 is easily verified since b > a and .b � a/2 > b2 � a.
The right hand side of (36) being real, the quantity ˙S˙.1C S2˙/1=2 should be also
real. This has two consequences;
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• Firstly one should have .1C S2/  0, S D ˙i˝ with ˝ 
 1. This condition is
verified by the two roots ˝1 and ˝2 > 1 in (42) and the right hand side of (36)
is negative.

• Secondly, with the choice S D i˝ one should take ˙p
1C S2 D i

p
˝2 � 1 in

(36) and (13), while for S D �i˝ one should write ˙p
1C S2 D �ip˝2 � 1,

in order to get a negative contribution of the left hand side of (36),

� 2MN˝
p
˝2 � 1 D �˝2

�
1CM

�2
u

�
C 1 < 0: (43)

This corresponds to a single absolute value of i l˙ in (13) for each ˝ . One gets
i l˙ D i l for S D i˝ (˝ > 0; 
 D i!, ! > 0) and i l˙ D �i l for S D �i˝
where

l

jkj D

2
64MN˝ C p

˝2 � 1q
1�M

2

N

3
75 > 0; ˝ � !

aN jkj
1q

1 �M2

N

> 0;

(44)

The frequency ! > 0 expressed in terms of l and k from (44) is

! D aN
p
l2 C k2 � uN l: (45)

which corresponds to (16) for 
 D i! and to (17) for 
 D �i!. To summarize,
for ordinary shock waves in gases, a > 0, there are two neutral oscillatory modes
associated with every wavelength 2�=jkj. Each of them involves a pressure wave
whose frequency ! is given by (42) and satisfies (16).

Consider now the unusual case a < 0. The solution SC is still purely imaginary
while the other S� is real,

a < 0 W SC D ˙i˝1; ˝1 > 1; S� D ˙˙2; ˙2 > ˝1;

˝2
1 D

p
b2 � a � b
.�a/ > 1; ˙2

2 D b C p
b2 � a

.�a/ > ˝2
1 : (46)

The SC normal mode is neutral and oscillatory. The solution S� D C˙2 > 0 has to
be rejected because it would correspond to the C sign in (36) and condition (15)
could not be satisfied. The second normal mode is thus stable and damped
exponentially, S� D �˙2 < 0.

2.6.2 Non-radiating Condition

The end result does not depend on the choice of the ˙ sign of 
 D ˙i! in (11),
let’s take 
 D Ci! ) i l˙ D i l , see the text just above (44). Introducing the vector
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k � lex C key , the unit vector ek � k=
p
l2 C k2 and the position r � xex C yey ,

k:r D lx C ky, the frequency (45) may be written ! D aNk:ek � uNk:ex and (11)
yields

ıp D Qpeik:Œr�.uN ex�aN ek/t/� C c:c: (47)

This shows that the propagation velocity of the pressure wave is uN ex �aN ek in the
referential frame of the planar front of the unperturbed shock. The acoustic wave
propagates in the shocked gas with the velocity aN in the direction �ek , see Fig. 1.
In other word its wave vector is �k. The component of uN ex � aN ek along the
x-axis is uN � aN l=

p
l2 C k2: There are two possibilities:

radiating waves W uN � aN lp
l2 C k2

> 0

non-radiating waves W uN � aN lp
l2 C k2

< 0:

The radiating condition is always fulfilled for l < 0 while for l > 0 one has,

radiating waves W l

jkj
q
1 �M2

N < MN ; (48)

non-radiating waves W l

jkj
q
1 �M2

N > MN : (49)

Therefore, according to (44), the pressure waves associated with the normal modes
of shock waves propagating in a polytropic gas are non-radiating since ˝ > 1, see
(42) and Fig. 1.

3 Weakly Nonlinear Analysis

The problem consists in solving the Euler equations (86)–(88) in the shocked gas,
see Appendix 3. The boundary conditions at the shock front are given by the
Rankine–Hugoniot equations (81)–(85) in Appendix 2 for the pressure and density,
and by (25)–(26) for the components of the flow velocity. A boundedness condition
is introduced at infinity. For performing a nonlinear analysis, it is more convenient to
use a coordinate system attached to the front .�; y; t/ with � D x �˛.y; t/, see (90)
in Appendix 3, since the boundary condition at the front corresponds to � D 0.

A general method of weakly nonlinear analysis of fronts has been performed by
Majda and Rosales [9]. Their analysis is based on the two following assumptions;
the pressure waves associated with the normal modes are radiating, and the inner
structure of the front is quasi-steady. The last assumption is not convenient for
gaseous detonations and the first one does not hold for shock waves in polytropic
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gas. We present below a weakly nonlinear analysis of shock waves in polytropic gas
in the limit of strong shocks in the Newtonian approximation.

3.1 Strong Shocks in the Newtonian Limit

We consider the limit

M
2

u ! 1; M
2

u.	 � 1/ D O.1/: (50)

According to (84) in Appendix 2, the flow of the shocked gas is strongly subsonic
in this limit, and it satisfies a low Mach number approximationMN � 1,

M
2

N � .	 � 1/=2CM
�2
u ; .	 � 1/ D O.M

2

N /; M
�2
u D O.M

2

N /:

(51)

According to (40) and (42), the two roots ˝1 and ˝2 collapse and go to unity in

the limit (50), ˝1 � ˝2 � 1, ˝2 � 1 � .	 � 1/=.2 � 	/DO.M
2

N /, ! � aN jkj.
Then, according to (44), l=jkj D O.MN/, and luN=! D O.M

2

N /, the pressure
wave propagates in a direction quasi parallel to the unperturbed front, and has an

amplitude smaller than that of the shear wave by a factor M
2

N . This is obtained
from (18) and (38)–(39),

Qu.a/=uN
. QpN=�N u2N /

� � luN
!

D O.M
2

N /;
QuN=uN

. QpN =�N u2N /
� �2; (52)

Qw.a/=Qu.a/ D k=l D O.1=MN /; QwN=QuN � 1=MN ; (53)

jQu.a/=Qu.i/j D O.M
2

N /; j Qw.a/= Qw.i/j D O.M
2

N /: (54)

Therefore, to leading order in the limit (50), the flow generated by the front
wrinkling is an isobaric shear flow, with, according to (19)–(20) and (39),

Qu.i/ � QuN e�i!x=uN ) ıu � P̨ t .y; t � x=uN /; (55)

Qw.i/ � QwN e�i!x=uN ) ıw � D˛0
y.y; t � x=uN /; (56)

where we have introduced the short notations ˛0
y � @˛.y; t/=@y and P̨ t �

@˛.y; t/=@t .
By using the relation uND � a2N , obtained from (81)–(84) to leading order,

M
2

NM
2

u � T N=T u D a2N =a
2
u D O.1/, the continuity equation (8) then shows that

the wrinkles of the front are solutions to the wave equation
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@2˛

@t2
� a2N

@2˛

@y2
D 0; (57)

yielding ! D aN jkj, in agreement with what has been said below (51). For simple
waves one has simply P̨ t D ˙aN˛0

y , valid to leading order.

3.2 Perturbation Method

We perform a perturbation analysis in the limit (50) by using the small parameter ",

" � j˛0
y j=MN ; M

2

N � " � 1: (58)

Equation (58) means that we consider front wrinkles of small amplitude, j˛0
y j D

MN � 1. For example, the inequality in (58) is verified if we choose " D O.MN/,

˛0
y D O.M

2

N /. In the perturbation analysis we will retain corrections of order , and

neglect correction terms of order M
2

N . The corrections introduced by the nonlinear
terms of the type u@u=@x may be evaluated from the linear approximation (55),

.u � uN /@u=@x

@u=@t
D O."/: (59)

According to (54), the pressure waves introduce smaller correction terms, of order

M
2

N . According to (58), they are negligible in the perturbation analysis limited to
correction terms of order ". Therefore, the acoustic waves do not appear in the
analysis. The nonlinear terms in pressure and density at the Neumann state coming
from (85) lead to even smaller corrections that are negligible. The density variations
being of the same order as that at the Neumann state, ı�=�N D O.ıMu=M u/ D
O.MN˛

0
y/, they are also negligible. Therefore, the flow is incompressible up to

first order corrections in ".

3.2.1 Isobaric Approximation

To simplify the presentation it is more convenient to anticipate that the pressure
variations are also negligible in the analysis limited to the first order correction in ".
This will be easily proved afterwards for simple waves propagating on the shock
front. The Euler equations (86)–(88) in Appendix 3, written in the reference frame
attached to the flame (90), yield

@

@�
.u � P̨ t � w˛0

y/C @w

@y
D 0; (60)
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@u

@t
C .u � P̨ t � w˛0

y/
@u

@�
C w

@u

@y
D 0; (61)

@w

@t
C .u � P̨ t � w˛0

y/
@w

@�
C w

@w

@y
D 0: (62)

The boundary conditions are given by (25)–(26),

� D 0 W .u � P̨ t � w˛0
y/ D uN ; w D wN D D˛0

y ; (63)

valid up to first order in ". The terms .�u=�N / P̨ t in (25) and ıuN˛0
y in (26) have

been neglected since, according to (81) in Appendix 1 and j P̨ t j D aN j˛0
y j; they

correspond to corrections of orderM
2

N in the limit (50) and (58).
Integrating (60) from � D 0, using the boundary condition (63), yield

u.�; y; t/ D uN C P̨ t .y; t/C w.�; y; t/˛0
y .y; t/ �

Z �

0

@w

@y
d�: (64)

Therefore (61) and (62) take the form

.
@

@t
C uN

@

@�
/u � @u

@�

Z �

0

@w

@y
d� C w

@u

@y
D 0; (65)

.
@

@t
C uN

@

@�
/w � @w

@�

Z �

0

@w

@y
d� C w

@w

@y
D 0: (66)

3.2.2 Compatibility Condition

Without pressure term in (65)–(66), the two unknown functions u.�; y; t/ and
w.�; y; t/ should satisfied a system of three equations (64)–(66). The solution
implies a compatibility condition which leads to an equation for the shock front.

The quadratic terms in (64)–(66) correspond to corrections of order ". They can
be computed from the leading order terms (55)–(56) in which x is replaced by
�. They are source terms in the equations for the flow, valid up to the first order
correction in ". Equations (61), (62) and (64), then reduce to

u.�; y; t/ D uN C P̨ t .y; t/C D˛0
y.y; t/˛

0
y.y; t � �=uN / �

Z �

0

@w

@y
d� (67)

@u

@t
C uN

@u

@�
D � 1

uN
R̨ t t .y; t � �=uN / P̨ t .y; t/C 1

2

@H.y; t � �=uN /

@t
(68)

@w

@t
C uN

@w

@�
D � D

uN
P̨ 0
ty.y; t � �=uN / P̨ t .y; t/C D

2

@H.y; t � �=uN /

@y
; (69)
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where H.y; t/ � Œ P̨ t .y; t/�2=uN � D Œ˛0
y.y; t/�

2. In the quadratic terms, the
function ˛.y; t/ is the leading order solution which satisfies the wave equation
R̨ t t � a2N˛

00
yy D 0. Correction terms of order " are expected to introduce a two-time

scale problem. It is convenient to not introduce this formalism too early and to wait
Sect. 3.3.3. The method proceeds as follows. An expression of .@u=@tCuN@u=@�/ is
obtained from (67) where the last term in the right hand side is computed from (69).
Comparison with (68) then leads to the compatibility condition.

3.3 Result for Simple Waves

In the following we will limit the attention to simple waves, ˛.y; t/ / AŒ.y ˙
aN t/= l; .aN =l/t �, so that, the leading order solution is P̨ t D ˙aN˛0

y and the last
term in the right hand side of (68) and (69) disappears,H D 0.

3.3.1 Isobaric Analysis

An expression of .@u=@t C uN@u=@�/ is obtained from (67)

@u

@t
C uN

@u

@�
D R̨ t t .y; t/C D P̨ 0

yt .y; t/˛
0
y.y; t � �=uN /� .

@

@t
C uN

@

@�
/

Z �

0

@w

@y
d�;

(70)

where the last term in the right hand side is computed from (69),

.
@

@t
C uN

@

@�
/
@w

@y
D � D

uN

@

@y
Œ P̨ 0
ty.y; t � �=uN / P̨ t .y; t/�

.
@

@t
C uN

@

@�
/

Z �

0

@w

@y
d� � uND˛00

yy.y; t/ D � D

uN

@

@y

"
P̨ t .y; t/

Z �

0
P̨ 0
ty.y; t � �=uN /d�

#

where the second equation in (63) has been used and where

Z �

0

P̨ 0
ty.y; t � �=uN /d� D uN Œ˛

0
y.y; t/ � ˛0

y.y; t � �=uN /�:

The last term of (70) may then be written

� uND˛00
yy.y; t/C D

@Œ P̨ t .y; t/˛0
y .y; t/ � P̨ t .y; t/˛0

y.y; t � �=uN /�

@y
: (71)

Introducing this result into (70), and comparing the resulting expression with (68)
where R̨ .y; t � �=uN / in the right hand side is replaced by a2N˛

00
yy.y; t � �=uN /, the
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terms involving the time through t��=uN cancelled, and the compatibility condition
takes the form G.y; t/ D 0 where

G.y; t/ � @2˛.y; t/

@t2
� uND

@2˛.y; t/

@y2
C D

@Œ P̨ t .y; t/˛0
y.y; t/�

@y
: (72)

The linear part of the compatibility condition corresponds to the linear result (57),

since, according to (81) and (84), uN=D D M
2

N C O.M
4

N /, uND=a2N D 1 C
O.M

2

N /. The nonlinear term is effectively a correction of order " as it can be
checked by using P̨ t D ˙aN˛0

y and (58).

3.3.2 Validity of the Isobaric Approximation

The pressure variations which could have been generated by the nonlinear terms
of the incompressible flow ıp � �.ıu/2 � �N a

2
N˛

02
y would introduce correction

terms of order ". Therefore the pressure term should have been retained in principle
in the right hand side of (61)–(62) and (68)–(69), even though there is no such small
pressure corrections at the Neumann state. Following the same method as above we
would have obtained an equation for the pressure of the form,

@p

@�
C
Z �

0

@2p

@y2
d� 0 D �NG.y; t/ ) @2p

@�2
C @2p

@y2
D 0: (73)

The boundary condition � D 0 W p D 0 (pN introduces smaller order terms)
and the boundedness condition at infinity lim�!1 p bounded, implies p D 0, and
G.y; t/ D 0. This proves the validity of the isobaric approximation in the weakly
nonlinear analysis limited to corrections of order ".

3.3.3 Burgers Equation

By using the relations

@. P̨ t ˛0
y/

@y
D P̨ 0

ty˛
0
y C P̨ t ˛00

yy D 1

2

@˛
02
y

@t
C 1

a2N
P̨ t R̨ t t D 1

2

@

@t

"
˛

02
y C P̨ 2t

a2N

#
D @

@t

�
@˛

@y

	2

the compatibility conditionG D 0 where G.y; t/ is defined in (72), takes the form

@2˛

@t2
� uND

@2˛

@y2
C D

@

@t

�
@˛

@y

	2
D 0: (74)

For a simple wave, this equation may be analysed by a two-time scale method.
Introducing an arbitrary length scale l , for example the wavelength of the initial
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wrinkles of the front, one introduces the fast time scale of the simple wave l=aN
and the slow time scale l=."aN / for the evolution of the amplitude. One then looks
for a solution in the form ˛.y; t/=."MN l/ D A.�; �/, where � D .y C aN t/= l and
� D aN t= l and where, according to the ordering in (58), A D O.1/. Using the
change of variables @=@y ! l�1@=@�, @=@t ! .aN =l/.@=@�C "@=@�/, @2=@t2 !
.aN =l/

2Œ@2=@�2 C 2".@=@�/@=@�CO.2/�, (74) then reduces to a Burger equation,

@A

@�
C 1

2

�
@A

@�

	2
D 0; (75)

which is well known to produce a singularity of the derivative @A=@� after a finite
time.

4 Conclusion

The results of the present paper are twofold. Firstly, the normal modes of shock
fronts in polytropic gases are proved to be neutral with non-radiating acoustic waves.
Secondly, it is found that singularities of the slope of the shock front are formed
after a finite time, starting from small initial disturbances. These singular points
propagate in the transverse direction at the speed of the sound wave in the shocked
gas. The results are obtained for strong shocks in the Newtonian limit. They show
that the mechanism of formation of the singularities is directly associated with the
nonlinearities of the isobaric shear flow induced in the shocked gases by the front
wrinkling. For strong shocks, the singularities are resulting from the nonlinear term
in the boundary condition (63).

These results also shed light into the mechanism of formation of patterns in
cellular detonations. The cellular structure is resulting from the singularities that
are spontaneously formed on the lead shock front. They are fed and sustained by a
longitudinal oscillatory instability of the wrinkled reaction zone described by Clavin
et al. [1, 2] and Daou and Clavin [3].

Appendix 1

The nature of the pressure waves (radiating or non-radiating) associated with neutral
modes, S D i˝ , ˝ > 1 depends on the form taken by the dispersion relation (33)
when expressed in term of˝ ,

radiating waves: l=jkj D
h
MN˝ �

p
˝2 � 1

i
=

q
1 �M2

N ;

2MN˝
p
˝2 � 1 D �˝2 .1C r/C .1 � r/n > 0; (76)
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non-radiating waves: l=jkj D
h
MN˝ C

p
˝2 � 1

i
=

q
1 �M2

N ;

�2MN˝
p
˝2 � 1 D �˝2 .1C r/C .1 � r/n < 0: (77)

This depends on the values of the coefficients r and n which control the existence
and the nature of the modes. The critical value r D .n � 1/=.n C 1/ separating
radiating and non-radiating acoustic waves in Fig. 2, corresponds to the ˝ D 1 for
which the right hand side of (76) and (77) changes sign. In this case, according
to (15) and (33), the other mode, if any, is necessarily stable with S < 0.

Consider an acoustic wave impinging on the shock from the shocked gas
(incoming wave). It is reflected by the shock. The reflected wave (radiating wave)
has the same values of k and ! as the incident wave. Following an analysis similar to
the linear analysis described above, the complex amplitudes Qpr of the reflected wave
and of the wrinkles of the shock, Q̨ , may be calculated in terms of the amplitude of
the incident acoustic wave Qpi ,

Qpr
Qpi D �

h
2MN˝

p
˝2 � 1 �˝2 .1C r/C .1 � r/n

i
h
�2MN˝

p
˝2 � 1 �˝2 .1C r/C .1 � r/n

i

jkj Q̨ .�N � �u/=�N

2.1� r/
� Qpi=�N a2N

� D �ip˝2 � 1=
q
1 �M

2

Nh
�2MN˝

p
˝2 � 1 �˝2 .1C r/C .1 � r/n

i :

This shows that the response of the shock diverges when one of its normal mode
is radiating. This occurs when the reflected wave matches the radiating eigenmode.
This is why a shock is considered as unstable when one of its eigenmode is radiating,
and stable in the opposite case. Shock waves in a polytropic gas are thus stable in
that sense, see Sect. 2.6.2.

Appendix 2

Denoting D and uN the velocity of a plane shock wave and the flow velocity of the
shocked material, relative to the shock, mass conservation yields

m � �uD D �N uN ; (78)

where the subscripts u and N denote the initial state of the material and the
Neumann state of the shocked material, just behind the shock. Equation for the
momentum conservation in the normal direction, pu C m2=�u D pN C m2=�N ,
yields
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pN � pu D �m2

�
1

�N
� 1

�u

	
: (79)

Using (78), D2 D m2=�u, u2N D m2=�N , and introducing the enthalpy,
h D eT C p=�, where eT is the internal energy, conservation of energy across
the shock takes the following form,

hu � hN D m2

2

�
1

�2N
� 1

�2u

	
:

Eliminating m by using (79), we got the Rankine–Hugoniot condition linking the
density and the pressure

h.�u; pu/� h.�N ; pN /C 1

2

�
1

�u
C 1

�N

	
.pN � pu/ D 0; (80)

where the function h.�; p/ is given by the thermodynamics of the material.
For polytropic gases the Rankine–Hugoniot relations take the form

uN
D

D �u

�N
D .	 � 1/M2

u C 2

.	 C 1/M2
u

; (81)

pN

pu
D 2	M2

u � .	 � 1/

.	 C 1/
; (82)

TN

Tu
D Œ2	M2

u � .	 � 1/�Œ.	 � 1/M2
u C 2�

.	 C 1/2M2
u

; (83)

M2
N D .	 � 1/M2

u C 2

2	M2
u � .	 � 1/

; (84)

where Mu � D=au > 1 is the propagation Mach number of the shock wave and
	 � cp=cv > 1 is the ratio of specific heats. Density, pressure and temperature at
the Neumann state of wrinkled shocks are obtained from (81)–(84) by replacingMu

by the Mach number of the normal propagation velocity

Mu ! D � P̨ t
au

q
1C ˛0

y
2
; M 2

u ! D2 � 2D P̨ t C P̨ 2t
a2u.1C ˛0

y
2/

; (85)

where P̨ t � @˛.y; t/=@t and ˛0
y � @˛.y; t/=@y.
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Appendix 3

Written in 2-D geometry, the Euler equations take the form

1

�

D

Dt
�C @

@x
u C @

@y
w D 0; (86)

�
D

Dt
u D � @

@x
p; �

D

Dt
w D � @

@y
p; (87)

D

Dt
s D 0; (88)

where s.�; p/ is the entropy, and

D

Dt
D @

@t
C u

@

@x
C w

@

@y
: (89)

Written in the reference frame attached to the front .�; y; t/ where � � x � ˛.y; t/,
the Euler equation takes the same form as (86)–(88) but with

D

Dt
! @

@t
C .u � P̨t �˛0

yw/
@

@�
C w

@

@y
;

@

@y
! @

@y
�˛0

y

@

@�
;

@

@x
! @

@�
:

(90)
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1 Introduction

It is a pleasure to contribute this talk to the Festschrift celebrating the 70th birthday
of Professor Manuel G(arcı́a) Velarde. One of us (LAL) is proud for a long lasting
friendship with him which started when they met for the first time in a conference
on statistical mechanics in Chicago in 1970. Around 1980, they had an intense
scientific exchange concerning the analogy between the convective instability in a
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Fig. 1 The upper part of the
figure illustrates the concept
of optical pattern formation.
The lower part shows some
examples of optical patterns
observed experimentally [5]

two-component liquid layer heated from below and the laser with saturable absorber
[1]. Manuel and his collaborators provided very important contributions to this topic
[2–4]. Later we met several times in international conferences and especially in
the meetings in Brussels of the Physics Panel of the Human Capital and Mobility
Programme of the European Community.

In this chapter, we present a brief outline of the topic of cavity solitons,
which since more than a decade is attracting the attention of the nonlinear optics
community. In order to do that, we start from the general area of optical pattern
formation (Fig. 1). Let us consider a coherent laser beam with large section
which propagates in the direction z. Usually the beam intensity varies slowly in
the transverse directions x and y, so that the intensity distribution is close to
homogeneous. However under appropriate conditions, when the beam interacts with
a nonlinear medium, the interplay of nonlinearity and diffraction of radiation makes
a spatial structure emerge in the beam profile. The physical principles of optical
pattern formation are illustrated, for example, in [6]. The lower frames in Fig. 1
show examples of spatial patterns observed in sodium vapour [5].

In the typical optical patterns, the elements of the pattern are strongly correlated
to one another (global structures). Under special conditions, however, one can form
independent, isolated intensity peaks (localized structures) called cavity solitons
(CS). Overviews of the subject of CS can be found in [7–9].

2 The Main Properties of Cavity Solitons

Cavity solitons are usually produced by means of optical resonators containing
nonlinear materials (see Fig. 2). The energy is provided to the system by a broad-
area coherent and stationary holding beam which is injected into the cavity and,
in the case of semiconductor amplifiers, also by an electric current. The device
is operated under parametric conditions such that the output is basically uniform.
However, by injecting a localized laser pulse (writing beam), one can write a CS
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Fig. 2 A coherent, stationary, quasiplane-wave holding field drives an optical cavity containing a
nonlinear medium. The injection of narrow laser pulses creates persistent localized intensity peaks
in the output (cavity solitons)

where the pulse passes. It is very important that the CS persists even after the pulse,
until the holding beam is kept on. In this way, by injection of several pulses one can
write a number of CSs. They can be subsequently erased by again injecting pulses
in the locations: where CSs lie; in most cases, the erasing pulses must be coherent
and out of phase by � with respect to the writing pulse.

What are the differences between cavity solitons and standard spatial solitons?
The basic difference is that spatial solitons arise in propagation in conservative
Hamiltonian systems, whereas CSs are dissipative. For example, they appear in the
framework of a model which is paradigmatic for optical pattern formation [10]:

i
@E

@t
C jEj2 E C iE C r2E � iEI D 0; r2 D @2

@x2
C @2

@y2
: (1)

This model is equivalent to a nonlinear Schroedinger equation which includes
a damping term .iE/ and a driving term .iEI /. The dissipative term describes
the escape of photons from the cavity, the driving term describes the electric field
injected into the cavity (holding beam C writing beam). The variable E denotes
the normalized intracavity electric field and the transverse Laplacian describes
diffraction in the paraxial approximation.

Cavity solitons are rigid, in the sense that, once the values of the parameters of
the system have been fixed, their characteristics (height, radius) are fixed. This is
not the case for standard spatial solitons. Figure 3 illustrates the typical scenario for
cavity solitons. The diagram shows the steady-state curve of the intracavity field as
a function of the input field, for the stationary solutions which are homogeneous
in the transverse plane .x; y/. The curve is S-shaped, so that in principle there is
bistability, however all the dotted part of the curve with positive slope is unstable
against the spontaneous formation of a spatial pattern such as a roll pattern or a
honeycomb pattern. In an appropriate range of values of the input field there is the
possibility of forming cavity solitons.

The interest in the subject of cavity solitons was notably enhanced by their
realization in semiconductor microresonators [11], because the miniaturization and
the fast response of the material are promising in view of practical applications.
The experiment used a broad-area driven vertical-cavity semiconductor microlaser
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Fig. 3 Steady-state curve of intracavity field vs. input field for the homogeneous stationary
solutions. In appropriate ranges of the input field one has the formation of a honeycomb pattern
(crosses) or a roll pattern (squares) or cavity solitons (circles, the position of the circle indicates
the value of the peak height of the CS). The three structures are shown in the upper frames (from
right to left: honeycomb, roll, cavity solitons)

slightly below threshold. Two CSs were first written with the help of a writing beam
and subsequently erased by flipping the phase of the writing beam by � . This result
demonstrated the possibility of using CSs as pixels of information.

An extremely important property of cavity solitons is their plasticity, because
they can be put in motion when they are in presence of phase or amplitude gradients
in the holding beam. Usually the motion is counter gradient, for example in the
case of a modulated phase profile each CS moves to the nearest local maximum
of the phase landscape. As a consequence one has the possibility of realizing
reconfigurable arrays of cavity solitons, Fig. 4 illustrates the theoretical simulation
and the experimental realization of this phenomenon [12].

When in the device there is a defect, typically in the Bragg reflectors of the
microlaser, at the position of the defect there is the spontaneous generation of a
cavity soliton. A very interesting situation arises when the holding beam presents a
phase gradient. This circumstance tends to set the CS in motion, so that the CS
is detached from the defect and starts its motion. Once the CS is detached, the
defect generates spontaneously another cavity soliton, which is then in turn detached
and moves away. In this manner, the system generates spontaneously a sequence of
CSs which travel, in an ordered line and at regular intervals, in the direction of the
phase gradient. A numerical simulation of this effect, which has been also observed
experimentally, is shown in Fig. 5 [13]. We have called this phenomenon “cavity
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Fig. 4 Upper row: The leftmost frame shows the initial position of five cavity solitons, the second
frame shows the phase profile of the holding beam, where the white spots correspond to the local
maxima. The CSs move towards the nearest local maxima of the phase profile (third and fourth
frames from the left). Lower row: Experimental realization of arrays of cavity solitons as reported
in Ref. 11

Fig. 5 Cavity soliton tap. Sequence of snapshots showing the spatiotemporal dynamics of drifting
CSs in the transverse section of the device in presence of a defect. Intensity increases from black
to white. The position of the defect corresponds to the high-intensity structure visible in the first
panel and the phase gradient is directed rightwards

soliton tap”, because it is similar to the case of a tap which is not completely closed
so that a droplet of water hangs from it, then the gravity force makes it fall, then
another droplet forms, which falls in turn, and so again and again.

In this case, if one injects the writing beam into the defect, the flux of CSs stops.
Therefore, by repeatedly injecting the writing beam into the defect, one can set into
motion a certain number of CSs, then stop the flux, put into motion some other CSs
at will, then stop, and so on. In this way one can generate a controlled sequence
of 1 and 0 which travel in the transverse plane with a velocity on the order of some
kilometers per second. This principle is illustrated in Fig. 6.
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Fig. 6 Sequence of snapshots illustrating different stages of continuous creation and inhibition of
CSs. The defect position corresponds to the CS in the first frame and the phase gradient is directed
upwards. The injection of the writing beam starts just before frame 5 and stops after frame 6. From
left to right, the frames are taken every 12 ns, starting at the fourth ns (4, 16, 28, 40, 52, 64, 76, 88,
100 ns)

3 Cavity Soliton Laser and Cavity Soliton Billiard

A considerable simplifying step was the realization of a cavity soliton laser (CSL),
a device able to emit CSs even in absence of an external holding beam, so that
the CSs can be seen as self-assembled microlasers existing on a dark, nonlasing
background (see Fig. 7). Three types of CSL have been recently realized that have
a vertical-cavity surface-emitting laser (VCSEL) as the basic element: a VCSEL
with frequency selective feedback [14], two coupled VCSELs in a face-to-face
configuration [15], and a monolithic VCSEL with a saturable stage integrated in
the cavity [16].

The possibility of realizing a cavity soliton laser using a laser with saturable
absorber was first theoretically predicted by Rosanov and his collaborators [17].
Subsequently our group analyzed a model adequate to describe a VCSEL and
analyzed theoretically the behavior of a CSL of the kind realized in [16]. The
dynamical equations are [18, 19]

PF D �
.1 � i˛/D C .1 � iˇ/ d � 1C ir2

�
F; (2)

PD D b1

h
��D

�
1C jF j2

�
� BD2

i
; (3)

d D b2

h
�	 � d

�
1C s jF j2

�
� Bd2

i
: (4)

The amplifying part of the device is described by the population variable D,
the linewidth enhancement factor ˛, the pump parameter �, and the carrier decay
rate b1; the corresponding variables and parameters for the absorber are d; ˇ; 	 ,
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Fig. 7 A cavity soliton laser emits a set of narrow beams (CSs), the number and position of which
can be controlled. The righthand figure shows the shape of a CS in a cavity soliton laser

and b2; F is the slowly varying amplitude of the electric field. The parameter s is
the ratio of the saturation intensity of the amplifier to that of the absorber; the same
coefficient of radiative recombination B is assumed for the two materials. Time
is scaled to the photon lifetime (typically 4 ps), and space to the diffraction length
(typically 4�m). The effects of spontaneous emission noise are simulated by adding
to (2) stochastic terms in the form of Gaussian white noise sources with zero mean
and unit variance, uncorrelated in both time and space.

A very important point is that, since the CS arises from the interaction of light
with the semiconductor, it is a composite structure which appears not only in the
electric field, but also in the carrier density N of the amplifier and in the carrier
density n of the absorber, which are linked in a simple way to the population
variablesD and d , respectively. Figure 8 shows the cavity soliton in its three distinct
components which coexist.

This composite structure of the CS occurs not only in a CSL, but in any system
which generates cavity solitons. Usually this composite structure is overlooked
because one emphasizes the field aspects only.

Very remarkable is that, in appropriate ranges of the parameters in play, cavity
solitons become self-propelled, i.e. they move spontaneously, in absence of any
gradient. The motion is caused by a dynamical instability and, in absence of defects
in the material, is along a straight line in a random direction and with constant
velocity [20, 21].

Since the trajectory of the moving soliton bends in presence of pump boundaries,
if we consider a square pump profile we realize a cavity soliton billiard. In [22] we
show that the CS is reflected when it impinges the boundary and, at regime, the sum
of incidence and reflection angles is 90ı and the CS may cover two trajectories, one
clockwise and the other counterclockwise, as shown in Fig. 9. The resulting scenario
is similar to that exhibited by walking droplets in a vibrated liquid bath [23, 24].

On the other hand, in presence of defects, which act as scatterers for the CS,
the trajectory may become open and may cover ergodically the entire available
square section [22]. If one has just one scatterer located at an intersection of
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Fig. 8 The figure shows a cavity soliton in a CSL with saturable absorber, with its coexisting
components in (a) the electric field, (b) the carrier density in the amplifier, in which one has a dark
soliton, and (c) the carrier density in the absorber, in which one has a bright soliton exactly as in
the electric field. The carrier densities are normalized to their transparency values
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Fig. 10 (a) Time-averaged intensity when the CS moves in the presence of two scatterers,
represented by the white crosses. (b) Time averaged intensity produced by three interacting CSs.
Here the width of the pumped region is (about 188�m). In both figures the average is over 2 � 106
time units

the two closed orbits it is not enough to obtain an open trajectory, because the
trajectory leaves the forbidden square orbits but it ends on the other stable orbit
which lies along one diagonal of the square. The desired open orbit can be realized
only by putting a second scatterer in the center of the square, in such a way
that the orbits on the two diagonals are also forbidden. The averaged output in
the presence of the two scatterers is shown in Fig. 10a. Another method to make
closed orbits unstable consists in switching on more CSs in the device. In this
way the CSs interact nondestructively for at least 2 � 106 photon lifetimes (about
8�s), as our computational power allowed. When two CSs are present, they can
still move on periodic closed orbits, but when there are three CSs, their mutual
interaction leads to open trajectories, and the average intensity profile over long
times produced by the three moving CSs is substantially uniform as shown in
Fig. 10b.

In the case shown by Fig. 10a, the existence of defects (scatterers) in the material
is revealed by the average motion of the CS, so that the device works as a soliton
force microscope based on the spontaneous motion of the CS. A soliton force
microscope has been realized experimentally not in a cavity soliton laser, but in
a device which operates with a holding beam. The CS explores the section of the
device under the action of gradients in the holding beam profile, revealing the
presence of defects [25]. The use of a cavity soliton laser, with the result shown
in Fig. 10, paves the way to the realization of a much simpler and compact soliton
force microscope.
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Three-Wave Backward Optical Solitons

C. Montes, P. Aschieri, A. Picozzi, C. Durniak, and M. Taki

1 Introduction

In nonlinear wave systems, resonance processes may give rise to solitary waves
resulting from energy exchanges between dispersionless waves of different veloc-
ities. Three-wave resonant interaction in nonlinear optical systems [1], plasmas
[2, 3] and gases [4] predict symbiotic three-wave solitary waves in analogy to
self-induced transparency [5, 6]. The structure of them is determined by a balance
between the energy exchanges rates and the velocity mismatch between the three
interacting waves. The three-wave interaction problem has been the object of many
theoretical studies and numerical simulations as we referred in [7, 8]. The non-
conservative problem in the presence of a continuous pump has been integrated by
the inverse scattering transform (IST) in the non-dissipative case [6], giving rise to
backscattered solitons. Our interest has been to study this non-conservative problem
in the presence of dissipation or cavity losses, because this kind of backward struc-
turation has been experimentally obtained in stimulated Brillouin scattering of a
c.w. pump wave into a backward red-shifted Stokes wave in long fiber-ring cavities.
It has been shown in a Brillouin fiber-ring cavity that, spontaneous structuration of
dissipative three-wave solitary waves takes place when the source is a c.w. pump
[9–12]. The periodic round-trip interaction in a long lossy cavity may be associated
to the non-conservative unlimited interaction [8, 11]. The nonlinear space-time
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three-wave resonant model between the two optical waves and the dissipative
material acoustic wave satisfactorily explains the generation and the dynamics of
the backward-traveling solitary pulses in the fiber-ring cavities. Stability analysis
of the inhomogeneous stationary Brillouin mirror solution in the c.w.-pumped
cavity [10] exhibits a one-parameter Hopf bifurcation. Below a critical feedback,
a time-dependent oscillatory regime occurs, and self-organization of a localized
pulsed regime takes place. Experimental results and dynamical simulations confirm
this scenario. A stable continuous family of super-luminous and sub-luminous
backward-traveling dissipative solitary pulses is obtained through a single control
parameter [11, 12]. A parallel analysis in an unbounded one-dimensional medium
shows that the integrable three-wave super-luminous symmetrical soliton is unstable
for small dissipation, and that it cascades to a turbulent multi-peak structure.
The general non-symmetrical and non-integrable case is dependent only on the
exponential slope of the wave front of the backscattered Stokes wave, thus providing
the stable super- and sub-luminous dissipative solitary attractors [8]. An overview of
the experimental results for a large set of input pump powers and Stokes feedback
conditions shows a remarkable agreement with the numerical simulations of the
three-wave coherent partial differential equations model [12]. We will not consider
this topic here and refer the reader to a recent review article [13] where this kind of
dissipative soliton has been discussed in details.

This review article is devoted to the resonant interaction of three optical
waves (called pump, signal and idler) in a nonlinear quadratic material. The
same mechanism, responsible for nanosecond solitary wave morphogenesis in the
Brillouin-fiber-ring laser may act for picosecond backward pulse generation in
a quasi-phase matched (QPM) optical parametric oscillator (OPO) [14–19]. The
dissipative character will rise from the partial reinjection of one wave (in the singly
resonant OPO), two waves (in the doubly resonant OPO) or to the absorption losses
in a backward mirrorless OPO. The resonant condition for the wave vectors is
automatically satisfied in stimulated Brillouin backscattering when the fiber ring
laser contains a large number of longitudinal modes beneath the Brillouin gain
curve. However, in order to achieve counter-streaming QPM matching between the
three optical waves in the �.2/ medium, a nonlinear susceptibility inversion grating
of sub-�m period is required [20–23]. In the non-degenerate three-wave case of a
backward quasi-phase matching configuration in the quadratic media where both
signal and idler fields propagate backward with respect to the direction of the pump
field, the first order quasi-phase-matching pitch is of order �p=2np where np is the
refractive index at the pump wavelength �p . This can be achieved for example by
periodic poling techniques but up to now the polarization inverted grating of sub-�m
period has been only obtained for the backward idler configuration in a KTiOPO4

crystal which allows the realization of a mirrorless optical parametric oscillator
(MOPO) [24] with remarkable spectral properties [25, 26]. Therefore, higher-order
Bragg condition have been suggested [22]. However, the interest of the first order
configuration is that the solitary waves can be spontaneously generated from noise
by a c.w. pump when the quadratic material is placed inside a singly resonant OPO
(where singly stands here for only one wave reinjection).
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Parametric interaction of counter-propagating signal and idler waves has the
unique property of automatically establishing distributed feedback without external
mirrors and thus realizing sources of coherent and tunable radiation. A recent
experimental demonstration of such a mirrorless optical parametric oscillator
(MOPO) has been performed in a 800 nm periodically poled KTiOPO4 (PPKTP)
configuration [24] with a pulse pump. The forward oscillator signal is essentially a
wavelength-shifted replica of the pump spectrum, and the backward generated idler
pulse has a bandwidth of two orders of magnitude narrower than that of the pump
[25, 26]. This sub-�m periodic configuration where QPM is achieved with a pump
and signal waves propagating in the forward direction and the idler wave in the
backward direction (cf. Fig. 1b) opens the way for achieving the shorter periodicity
required for a QPM configuration where both signal and idler backward propagate
with respect to the pump wave (cf. Fig. 1d). As we say, this doubly-backward
configuration is of interest since the three-wave symbiotic solitary waves can be
generated from noise in the presence of a c.w. pump when the quadratic material is
placed inside an optical parametric oscillator [14–19]. With a c.w. pump the singly
backward OPO yields stationarity for the backward wave. Nevertheless when the
pump is a pulse, the demonstrated MOPO experimental configuration generates a
coherent backward pulse in the absence of external feedback. Note that stationarity
of the singly backward configuration in a c.w. pumped short length device is not
contradictory with the theoretical existence of backward solitary solutions when
the initial condition is localized [6]. Moreover, a coherent solitary structure can
be sustained from a highly incoherent pump and a co-propagating wave [27]. This
phenomenon relies on the advection between the interacting waves and leads to
the formation of a novel type of three-wave parametric soliton composed of both
coherent and incoherent fields. In Sect. 5 we will consider this mechanism by
proposing the generation of a coherent backward pulse from an incoherent pump
pulse in two BMOPO configurations, among which the first one refers to the
experimental configuration demonstrated in [24–26].

We thus show that the BMOPO system is characterized, as a general rule, by
the generation of a highly coherent backward field, despite the high degree of
incoherence of the pump field. In substance, the incoherence of the pump is shown to
be transferred to the co-moving field, which thus allows the backward field to evolve
towards a highly coherent state. The incoherent pump in the BMOPO dynamics is
numerically simulated with a new numerical scheme that solves the coupled wave
equations in the counterpropagating configuration in the presence of group-velocity
dispersion (GVD) by combining the trajectories method for the nonlinear three-
wave interaction and fast Fourier transformation (FFT) to account for the GVD
effects. We propose realistic experimental conditions that may be implemented with
currently available technology and in which backward coherent wave generation
from incoherent excitation may be observed and studied.

We have already shown, by both analytical and numerical treatments of the
degenerate backward OPO in the QPM decay interaction between a c.w. pump
and a backward signal wave, that the inhomogeneous stationary solutions are
always unstable, whatever the cavity length and pump power values are above
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Fig. 1 Wave vector diagrams (momentum conservation) for the non-degenerate three-wave inter-
action in: (a) a three-wave forward configuration; (b) a singly backward idler configuration; (c) a
singly backward signal configuration; and (d) a doubly backward (signal and idler) configuration.
As we can see the QPM grating show a decreasing phase-reversal period for the nonlinear
susceptibility represented by the bold broken lines under each configuration

threshold of a singly resonant OPO. Starting from any initial condition, the nonlinear
dynamics exhibits self-pulsing of the backward signal with unlimited amplification
and compression. Above a critical steepening of the backward pulse, dispersion may
saturate this singular behavior leading to self-modulated solitary structures [17,28].

In this paper we show, by a stability analysis of the non-degenerate backward
OPO [18, 19], that the previous particular behavior of unconditional temporal
instability of the degenerate backward OPO is removed for a finite temporal walk-
off between the counter-propagating signal and idler waves, and that we now
obtain a regular Hopf bifurcation like in the Brillouin fiber-ring laser [10]. We will
consider self-structuration of three-wave solitary waves in such a backward OPO
with absorption losses.

For a c.w. pumped OPO near degeneracy a unique control parameter L governs
the dynamical behaviour; it is shown that at a critical interaction length Lcrit the
inhomogeneous stationary solution bifurcates towards a time-dependent oscillatory
solution. This critical length is finite if and only if we take into account a finite group
velocity delay between both backward propagating waves �v D jvs � vi j ¤ 0

(or temporal walk-off ), where vs and vi are the signal and idler group velocities.
Moreover, for longer interaction lengths the dynamics gives rise to the generation
of the backward three-wave soliton, whose stability is also ensured by this finite
temporal walk-off �v, without requiring additional saturation mechanisms like
the dispersion effect. This scenario is confirmed by numerical simulations of the
nonlinear dynamic equations, and an excellent agreement is obtained (near the
degenerate configuration) for the value of Lcrit evaluated from the stability analysis
and that one obtained from the dynamical simulation.
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The general fully non-degenerate configuration involves more complicated
mathematics because a set of control parameters are required and we only show
several dynamical behaviours resulting from the three-wave numerical model.

We will conclude this review by considering some dynamical behaviours of the
backward mirrorless OPO pumped with an incoherent pulse, because up to now
this configuration is the only one in which backward MOPO experiments have been
performed.

The paper is organized as follows. In Sect. 2 we recall the three-wave model gov-
erning the spatio-temporal evolution of the slowly varying envelopes of the pump
and the backward signal and idler waves. We also recall the analytical solutions
in the form of propagating dissipative solitary waves propagating backward with
respect the cw-pump under a QPM three-wave interaction. In Sect. 3 is presented
the stability analysis of the nonlinear inhomogeneous stationary solutions of the
non-degenerate backward OPO for finite temporal walk-off. Numerical dynamics of
the self-structuration of symbiotic three-wave solitons leading to stable self-pulsing
regimes is shown in Sect. 4. Finally, the numerical dynamics of the pulsed BMOPO
under incoherent pump excitation is discussed in Sect. 5.

2 Three-Wave Model and Analytical Solitary-Wave Solutions

The spatio-temporal evolution of the slowly varying envelopes of the three reso-
nant counter-streaming interacting waves Aj .x; t/, for a non-degenerate OPO, is
given by

.@t C vp @x C 	p C iˇp@t t / Ap D � 
pAsAi

.@t � vs @x C 	s C iˇs@t t / As D 
sApA
�
i (1)

.@t � vi @x C 	i C iˇi@t t / Ai D 
iApA
�
s

where Ap.!p; kp/ stands for the c.w. pump wave, As.!s; ks/ for the backward
signal wave, and Ai.!i ; ki / for the backward idler wave. The resonant conditions in
one-dimensional configuration realize the energy conservation,

!p D !s C !i ; (2)

and the momentum conservation,

kp D �ks � ki CKG; (3)

where KG D 2�=�QPM and �QPM is the grating pitch for the backward quasi-
phase matching (cf. Fig. 1d). The group velocities vj .j D p; s; i/ as well as
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the attenuation coefficients 	j and dispersion coefficients ˇj � vj ˇ2;j =2 are
in general different for each wave. Equations (1) also hold for standard forward
phase-matching configurations in which case all the signs of the velocities vs;i
are positive (cf. Fig. 1a). For the singly backward idler (or backward signal)
configuration the momentum conservation (3) must be replaced by (17). These
configurations are shown in Fig. 1b, c. The nonlinear coupling coefficients are 
j D
2�deff vj =.�j nj /, where nj is the refractive index at frequency !j , wavelength
�j and deff is the effective nonlinear susceptibility. The chromatic dispersion
is also taken into account in (1); this is necessary when the generated temporal
structures are sufficiently narrow. The effects of group velocity dispersion (GVD)
are represented by the second derivatives with respect to time, so that the dispersion
parameters are given by ˇj D jvj jk00

j where k00
j D .@2k=@!2/j , k being the wave

vector modulus, k D n.!/!=c.

2.1 Solitary Wave Solution

In the absence of dispersion (ˇj D 0) (1) have been extensively studied in the
literature. Their solitary wave solutions have been first derived in the absence of
dissipation (	j D 0) [2, 3, 6]. In the context of stimulated scattering in nonlinear
optics, the existence of dissipative solitary waves when one of the velocities vs;i is
zero (e.g. vi D 0) has also been shown [9, 29]. More recently, Craik et al. have
proved, for the particular case of degenerate three-wave interaction, that solitary
waves still exist in the presence of dissipation [30]. On the basis of these previous
theoretical works, we have calculated from (1) a particular analytical solution of the
dissipative symbiotic solitary waves of the non-degenerate parametric three-wave
interaction. Looking for a solitary wave structure induced by energy transfer from
the pump wave to the signal and idler pair, we have to assume zero loss for the pump
(	p D 0). It is the only way to keep constant the energy transfer that compensates
here for the signal and the idler losses, so as to generate stationary field structures.
If 	p was not zero, the pump wave would experience an exponential decay giving
rise to a vanishing energy of the three-wave structure that prevents the formation of
a stationary solitary wave state.

When 	p D 0 it is easy to find by substitution the following solution to (1):

Ap D ı � ˇ tanh
�
� .x C V t/

�

As D �� sech
�
� .x C V t/

�
(4)

Ai D �� sech
�
� .x C V t/

�

where ˇ is the only free parameter. All other parameters depend on the material
properties and onˇ. One finds ı D Œ	s	i=
s
i �

1=2, � D ˇŒ
i 
s=.V �vs/.V �vi /�1=2,
� D Œ.V C vp/.V � vi /=
i
p�1=2, � D Œ.V C vp/.V � vs/=
s
p�1=2, and V D
.vs=	s � vi =	i /=.1=	s � 1=	i/. This last expression shows that the velocity V of
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the solitary wave is fixed by the material parameters, unlike in the nondissipative
case where V is undetermined [2]. Let us point out that, in order to keep � real,
the solitary wave must be either superluminous, V > max.vs; vi ), or subluminous,
V < min.vs; vi ). Note that the superluminous velocity does not contradict by any
means the special theory of relativity [9] even if the velocity V becomes infinite
when the signal and idler waves undergo identical losses, 	s D 	i . This can be
easily explained by remembering that the velocity of this type of symbiotic solitary
wave is determined by the energy transfer rate, which depends on the shape of the
envelope of each component. The infinite velocity is here simply due to the fact that
the width of the solitary wave � �1 also becomes infinite for 	s D 	i . However,
we shall see that this symmetrical solution is not the more general one and it is
not an attractor solution for a large variety of parameter values. In Sect. 4 we will
present another self-similar structure for the near-degenerate backward interaction
which does not present a divergence for 	s D 	i . The free wave parameter ˇ fixes,
in combination with the material parameters, the amplitude and the width of the
solitary wave. According to the first equation of (4), ˇ is determined by the initial
pump amplitude Ap D Ep.x D �1/ D ˇ C ı. In practice, this means that, for
a given material, the solitary wave is completely determined by the pump intensity
at the input face of the crystal. Note that if the losses are such that ı > ˇ the
solitary wave no longer exhibits a �-phase change [8], contrary to the nondissipative
case [2].

Figure 2 shows a typical example of such a dissipative symbiotic solitary wave
in a quasi-phase-matched backward three-wave interaction with �p D 1�m,
�s D 1:5 �m, �i D 3�m, �QPM D 2�=KG D 0:233�m, and with a pump
field of amplitude Ep D 0:25MV/m (i.e., a pump intensity of Ip D 10 kW/cm2)
propagating in a quadratic �.2/ material. It is obtained with the following typical
values of the parameters : deff D 20 pm/V, np D 2:162, ns D 2:142, ni D 2:098,
vp D 1:349 � 108 m/s, vs D 1:371 � 108 m/s, vi D 1:363 � 108 m/s, and the loss
coefficients ˛s D 2	s=vs D 0:23m�1 and ˛i D 2	i=vi D 11:5m�1. Note that
these parameters lead to a pulse width of approximately 10 ps. Therefore, with such
pulse durations one can expect that the zero pump loss approximation (	p D 0)
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is valid in practice in the neighborhood of the solitary wave structure. Indeed,
if the characteristic absorption length vp=	p is much larger than the pulse width
� �1, one can anticipate that the solitary wave undergoes adiabatic reshaping during
propagation so as to adapt locally its profile to the exponentially decaying pump
intensity.

3 Self-pulsing in a Backward Doubly Resonant OPO

Let us point out that the self-structuration process requires backward interaction.
The mechanism is similar to the Hopf bifurcation appearing in the counter-streaming
Brillouin cavity [10]. Numerical simulations with the more usual forward phase-
matching conditions only lead to the steady-state regime. This shows that the
distributed feedback nature of the interaction plays a fundamental role in the pulse
generation process. This observation is consistent with the conclusions of [23]
where complex temporal pattern formation in backward-phase-matched second
harmonic generation is studied and of our previous study of the degenerate backward
OPO [28]. But in contrast to this last study, where no regular Hopf bifurcation
was found by starting from the inhomogeneous stationary solutions, since above
the threshold the perturbations always grow in time, we will show hereafter that in
the non-degenerate backward OPO a regular Hopf bifurcation takes place. Below
a critical parameter value, the inhomogeneous stationary solutions are stable, and
above it the bifurcation leads to an also stable self-structured solitary wave. Our
purpose in this section is to prove that in the non-degenerate configuration, the
temporal walk-off, i.e. the group velocity delay between the signal and the idler
waves, ensures a regular Hopf bifurcation and leads to a stable self-structuration of
the three-wave envelopes.

For the sake of simplicity, we will focus here on the near-degenerate OPO
regimes [18, 19]. However, our results are more general and can be extended to
the fully non-degenerate case in a similar way. We present here several dynamical
behaviours.

We start from the dimensionless form of (1) which describe the non-degenerate
backward OPO in the quasi-phase-matching decay interaction between a pump and
counter-propagating signal and idler waves. We write them near the degeneracy with
temporal walk-off on only one field. This is not a restriction but it is more convenient
for mathematical calculations. The general case can be recovered by an appropriate
change of variables.

By introducing the following scalings:

up D
p
1 � d2

Ap

Aop
; us D

p
2.1� d/ As

Aop
; ui D

p
2.1C d/

Ai

Aop
;

� D t=�o; � D x

�
; L D `

�
(5)
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where Aop is the incident c.w. pump, �o D 2=.
pA
o
p/ and � D vp�o are the

characteristic time and length and ` the cavity length, the dimensionless equations
read:

.
@

@�
C @

@�
C �p C i Q̌

p

@2

@�2
/up D �usui

.
@

@�
� @

@�
C �s C i Q̌

s

@2

@�2
/us D upu�

i (6)

.
@

@�
� ˛

@

@�
C �i C i Q̌

i

@2

@�2
/ui D upu�

s

where ˛ D vi =vp; vp D vs; �j D 	j �o; and Q̌
j D ˇj =�o. The full

description of the OPO dynamics is obtained by taking into account, in addition
to (6), the following boundary conditions for the doubly resonant cavity

us.� D L; �/ D �s us.� D 0; �/; ui .� D L; �/ D �i ui .� D 0; �/;

up.� D 0; �/ D
p
1 � d2 (7)

where �s D p
Rs and �i D p

Ri are the amplitude feedback coefficients. Note that
we have introduced the new coefficients 1 ˙ d by setting d D .
s � 
i /=
p and
assuming a near-degenerate OPO configuration, i.e., 
p ' 
s C 
i .

3.1 Inhomogeneous Stationary Solutions

Without optical attenuation (�j D 0) and in the absence of dispersion (ˇj D 0),
inhomogeneous stationary solutions ustj .�/; j D fp; s; ig can be obtained from (6)
by setting @=@� D 0. The assumption of zero loss parameters �j is not restrictive
since the main dissipation in the OPO cavity comes from the finite feedback. In this
case, the following conservation relations, also known as Manley–Rowe relations
[31], hold (

justp j2 � justs j2 D ˙D2
s

justp j2 � ˛justi j2 D ˙D2
i

(8)

For a doubly resonant OPO with the same feedback coefficient for the signal and
idler fields, we haveDs D Di D D. This leads to two types of stationary solutions:
(i) D2 D justp j2 � justs j2 D justp j2 � ˛justi j2 and (ii) D2 D justs j2 � justp j2 D ˛justi j2 �
justp j2.
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In case (i), the following inhomogeneous stationary solutions are obtained

ustp .�/ D D tanh�1
�

arccotanh.
ustp .0/

D
/C D�p

˛

�

usts
2 D ˛usti

2 D D2

sinh2
�

arccotanh.
ustp .0/

D
/C D�p

˛

� (9)

while in case (ii),

ustp .�/ D D
ustp .0/ �D tan. D�p

˛
/

D C ustp .0/ tan. D�p
˛
/

usts .�/ D p
˛usti .�/ D

D

r
1C ustp

2.0/

D2

cos. D�p
˛
/C ustp .0/

D sin. D�p
˛
/

(10)

where ustp .0/ D p
1 � d2:

Let us consider the situation of short enough OPO cavities in order to avoid total
depletion of the pump inside the cavity and to benefit from the monotonous gain
of the singly pumped OPO; otherwise the signal and idler fields oscillate and may
return part of this intensity to the pump. This is achieved by considering D� � 1.
Thus, to the leading order, the inhomogeneous stationary solutions (10) are

ustp .�/ '
ustp .0/�D2 �p

˛

1C up.0/
�p
˛

and usts .�/ D p
˛usti .�/ ' D

q
1C ustp

2.0/

D2

1C ustp .0/�p
˛

(11)

Manley–Rowe relations (8) are used at � D 0 and � D L, together with the boundary
conditions to determine the integration constants. A second order algebraic equation
forD2 is obtained

aD4 C bD2 � c D 0 (12)

with

a D L2=˛; b D .1 �R/.1C
p
1 � d2L=p˛/2 � 2

p
1 � d2L=p˛;

c D .1 � d2/Œ1 � R.1C
p
1 � d2L=

p
˛/2�

OnceD is determined from the above expression, us.0/ and ui .0/ can be calculated
via the Manley–Rowe relations (8).

Note that we will only consider the case (ii) configuration; case (i) can be
analysed in a similar way.
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3.2 Stability Analysis of the Inhomogeneous Stationary
Solutions

Following [18] let us first perform the linear stability analysis of the inhomogeneous
stationary solutions (10) with respect to space-time-dependent perturbations in the
absence of dispersion and optical attenuation, through

uj .�; �/ D ustj .�/C ıuj .�/e
�i!� where j D p; s; i:

It is more convenient to introduce the new variables

P.�/ D ustp .�/; S.�/ D usts .�/; I.�/ D S.�/=
p
˛ D usti .�/;

Z.�/ D ıup.�/; Y.�/ D ıus.�/; X.�/ D ıui .�/;

where P.�/, S.�/ and I.�/ stand for the inhomogeneous stationary solutions
and Z.�/, Y.�/ and X.�/ for the space-time-dependent perturbations. Thus, the
linearized problem associated with (6) reads

@Z

@�
� i!Z D �S.X C Yp

˛
/

@Y

@�
C i!Y D �PX � SZp

˛
(13)

˛
@X

@�
C i!X D �PY � SZ

The stability analysis is performed by solving the perturbative equation (13) with
the inhomogeneous stationary solutions and by taking into account the boundary
conditions for the cavity. This gives rise to an eigenvalue problem with a dispersion
relation for the complex frequency !. Following [10, 28] and [18] we will look for
the stability of the cavity modes with frequency <.!/ ' 2�N=L [N integer and
L being the dimensionless length `=� defined in (5)] yielding to mode instability
whenever =.!/ > 0.

3.2.1 Absence of Walk-Off

Let us first recall the situation in the absence of temporal walk-off; the signal and
idler waves have the same group velocity leading to ˛ D 1 in (13). We proceed as
in the degenerate case [28] and we obtain the following dispersion relation

ao C bo sin.!L/C co cos.!L/ D 0 (14)
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where the expressions of ao, bo and co are given in appendix A of [18]. It should
be noted that (14) generalizes the dispersion relation in [28] for the degenerate case
because it applies to the doubly-resonant backward OPO. The instability of each
mode is determined from (14) when =.!/ > 0. However, in the absence of walk-off,
signal and idler perturbation equations are decoupled from the pump perturbation
equation, and again it leads to unconditional temporal instability. We recall that
this instability leads to the generation of a localized structure exhibiting unlimited
amplification and compression [17,28], whose collapse may be avoided by including
the natural chromatic dispersion which is present in (1).

Since the required grating pitch for first order QPM is extremely small, we
must increase the c.w. pump intensity when using higher order gratings in order
to get an actual experimental configuration. Reference [21] gives a table with the
threshold pump intensities and domain periods for the degenerate backward OPO in
four periodic domain structures (KTP, LiNbO3, GaAs/AlAs). Recently [32], it has
been reported an experiment of first order QPM blue light generation at 412.66 nm,
in a 20 mm long surface-poled Ti-indiffused channel waveguide in LiNbO3 with
c.w. pumping, using periodic domain structures as short as 1�m. The authors have
announced generation of 3.46 mW blue light for 70 mW of fundamental power.
Based on such recent progresses in the poling technology of LiNbO3 one can
likely hope to experimentally realize the backward OPO with the allowed pump
power for so short grating pitch. We will see in Sect. 5 that a periodic domain of
800 nm has been obtained in a bulk PPKTP configuration to achieve for the first
time the pulsed mirrorless OPO. For example, if �QPM D 0:5 �m we may only
use a c.w. pump power ten times higher (i.e. Ip;0 D 1MW/cm2) for the same
cavity length ` D 3:7 cm, same characteristic time �0 ' 0:28 ns, and same low
finesse �s D p

R D 0:46 as that given in the previous example. If we consider
a pulse pump of FWHM of �t D 28 ns instead of a c.w. beam we can even
reach Ip;0 D 100MW/cm2 without optical damage [33] (yielding �0 D 28 ps and
� D 0:37 cm).

3.2.2 Finite Temporal Walk-Off

When taking into account a finite temporal walk-off ˛ ¤ 1, (13) are more
complicated as the dynamics of the pump wave and the signal-idler pair is no
longer decoupled. For the sake of simplicity let us consider D D 0, so that
P D S D p

˛I D 1=.1=
p
1 � d2 C �=

p
˛/. Note that D D 0 requires that

c D 0 in (12). Since d � 1, it is the second factor in the same expression of c
which vanishes leading to the relation R D 1=.1 C p

.1 � d2L=
p
˛/2. The first-

order perturbed system becomes

d
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Fig. 3 Evolution of the
imaginary part of the
pulsation ! as a function of
the length L close to the first
cavity mode (with
Re(!/ ' 2�=L). The
transition from stable to
unstable states is obtained for
Lcrit ' 0:39

This system of equations is numerically solved. Since the group velocity delay
(temporal walk-off) of the signal and idler pair is small, we set ˛ D vi =vp ' 1C .
We expand the solutions up to the second order in the small parameter . The
second order is necessary to match the critical parameter value obtained at the Hopf
bifurcation point by the numerical integration of the normalized governing (6); the
first order in  being insufficient to characterize the bifurcation point.

Through the boundary conditions, we obtain the dispersion relation:

!3y2oyL C
h

� !3y2oyL � i!2yoLC !L
i

cos.!L/C
h
i!3y2oyL C i!yo � !2yoL� 1

i
sin.!L/

� i

8yL.yo�o � yLe�i!L/

n
Aoe

�2i!L C Boe
�i!L C Coe

i!L CDo

o

� i2

24y2L.yo�o � yLe�i!L/

n
A1e

�2i!L C B1e
�i!L C C1e

i!L CD1

o
D 0 (15)

with yo D 1=
p
1 � d2, yL D yo C L, �o D yo=yL is the amplitude feedback

coefficient and L stands for the dimensionless length `=�. The expressions of the
different coefficients Ao;A1; Bo; B1; Co, and C1, which are functions of !D!r C
i!i , yL, and yo are given in appendix B of [18]. First we recover, as it should
be, the dispersion relation (14) when  D 0 and D D 0. However, the non-
degenerate backward OPO dispersion relation (15) shows that, in contrast to the
degenerate case, there exist a stability domain of the inhomogeneous stationary
solutions above threshold. Moreover, these solutions undergo a Hopf bifurcation,
even near the degenerate configuration, for a critical length of the cavity. Figure 3
shows a typical example of a regular Hopf bifurcation with the parameters set to
d D 0:05 and  D 1=128. We have plotted =.!/ from (15) against the propagation
length L near the first cavity mode (<.!/ ' 2�=L). As can be seen from the
figure, Hopf bifurcation occurs at Lcrit ' 0:39. For L  Lcrit the inhomogeneous
stationary solutions are stable (see Fig. 4) whereas if L > Lcrit the perturbations are
amplified generating a new oscillatory localized structure (see Figs. 5 and 6).



418 C. Montes et al.

Fig. 4 Doubly resonant
backward OPO: asymptotic
stationary spatial profiles at
round trip 16384 for
L D 0:35 below critical
length

Fig. 5 Doubly resonant backward OPO: temporal oscillatory regime for L D 0:4 above critical
length

4 Nonlinear Dynamics of the Doubly Resonant Backward
OPO

In the previous section we have carried out the stability analysis of the inho-
mogeneous stationary solutions of the doubly resonant backward OPO near the
degenerate configuration. This behavior may be generalized to the fully non-
degenerate backward OPO provided that a finite temporal walk-off between the
counter-propagating signal and idler waves is present. In this section we proceed
as follows:

(i) We numerically check the previous analytical result in the near-degenerate
OPO regime forD D 0;

(ii) We show that a dynamically critical bifurcation for D ¤ 0 can be obtained
with the same feedback parameter values (�s D �i ) for both signal and idler
waves;
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Fig. 6 Doubly resonant backward OPO: temporal pulsed regime for a length L D 0:5

Fig. 7 Doubly resonant
backward OPO: pulse
maximum amplitude vs.
number of round trips t=tr
(where tr D `=vs is the
round-trip time) at the output
of the backward OPO cavity
exhibiting stable saturation at
a constant amplitude

(iii) We numerically investigate the self-pulsing regime for the doubly resonant
backward OPO with different feedback parameter values (�s ¤ �i ) including
perturbative dispersion.

To this end we have numerically integrated equation (6) with the boundary
conditions (7). In order to better compare the dynamical behavior with the analytical
one, we first neglect dispersion ( Q̌

j D 0; j D p; s; i ) which is only a perturbative
effect in the non-degenerate case, but we include a small dissipation (�j D 10�2).
In order to dynamically investigate the near-degenerate OPO regime for D D 0,
we start from the approximate stationary solutions (11) with a group velocity
difference (temporal walk-off) jvs � vi j=vp D 1=128. In the near-degenerate OPO
case, the feedback R D j�sj2 D j�i j2 is related to the dimensionless length L
through the relation u2p.L/ � Ru2s .L/ D D2, which is now simply reduced to

R D Œ1 C L
p
.1 � d2/=˛��2. Therefore, we may investigate the near-degenerate

OPO dynamics by varying the control parameter L from 0:25 to 0:5. As expected
from the stability analysis, we now find a regular Hopf bifurcation of the stationary
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Fig. 8 Doubly resonant
backward OPO: temporal
evolution of a pulse train at
the output of the OPO cavity.
Pair of two consecutive
pulses at round trip
t=tr D 28608 for L D 0:5

and �s D �i D 0:81. The
amplitude is measured in
jAp;oj=

p
2 units

Fig. 9 Doubly resonant
backward OPO: spatial
profiles for the three wave
amplitudes at round trip
28672

state towards a time-dependent oscillatory state for a critical length Lcrit between
0:35 and 0:4, in contrast to the full degenerate case [28] or to the near-degenerate
case D D 0 in the absence of temporal walk-off (cf. Sect. 3.2.1), where no
Hopf bifurcation exists. The stationary spatial profiles are shown in Fig. 4 after
16384 round trips for L D 0:35. This stationary state bifurcates towards a stable
oscillatory regime as illustrated in Fig. 5 for L D 0:4. For a larger length L (and
correspondingly smaller feedback R) we obtain pulsed regimes as that shown in
Fig. 6 whose stability is ensured by the finite temporal walk-off too, without taking
into account any dispersion effect (cf. Fig. 7).

The dynamical equation (6) allow us to look further forD ¤ 0, while the control
parameter L (since R is only a function of K for D D 0) splits now into two
control parameters L and R related through u2p.L/ �Ru2s .L/ D D2. For L D 0:25

we obtain the Hopf bifurcation between
p
R D 0:80 and 0:81, while for L D 0:5 it

happens between
p
R D 0:81 and 0:82, the pulsed regimes corresponding to lower

feedback favors the localization of the structure [11]. For a typical pulsed regime at
L D 0:5 and

p
R D 0:81, we show in Fig. 7 the saturation of the pulse maximum

amplitude with time when starting from the stationary state, and in Fig. 8 a pair of
two consecutive pulses in the asymptotic stable state (the width ıt is measured in
tr D `=vs units). As can be seen from Fig. 9 the solitary structure is now composed
of two embedded pulses of nearly identical amplitudes moving together, the constant
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Fig. 10 Doubly resonant
backward OPO: temporal
amplitude signal output of the
backward OPO in the stable
asymptotic pulsed regime
measured in cavity round
trips t=tr for L D 1,
�s D 0:90 �i D 0:60 and
Q̌
j D 10�6; j D p; s; i

spatial shift between them corresponds to the temporal walk-off (or different group
velocities). The trapping between the signal and idler envelopes yields the new
self-similar structure moving at a characteristic velocity, which is composed of the
couple of embedded pulses maintaining constant spatial shift between them in spite
of the different velocities of both waves.

Let us consider a physical application. In comparison to the type I (e-e)
polarization interaction in LiNbO3 proposed in [28] for the full-degenerate case, we
may now consider a type II (e-o-e) polarization interaction in order to move away
from the degeneracy and to obtain a finite group velocity delay (or temporal walk-
off) between the signal and the idler waves. For the same quadratic �.2/ material,
same pump wave (e-polarized) at �p D 0:775�m, the same idler wave (e-polarized)
at �i D 1:55 �m, but now a signal wave (o-polarized) at �s D 1:55 �m having a
different refractive index, the group velocity dispersion ensures a finite temporal
walk-off between both backward waves. For a first order QPM in LiNbO3 the
grating pitch is as small as �QPM D 2�=KG D 0:177�m. For a c.w. pump field
Ep D 0:725MV/m (i.e., a pump intensity of Ip D 100 kW/cm2) propagating in this
configuration we have the following values of the parameters [33]: deff D 6 pm/V,
np D 2:181, ns D 2:212, ni D 2:140, vp D 1:317� 108 m/s, vs D 1:323� 108 m/s,
vi D 1:372 � 108 m/s, 	p D 4:6 � 108 s�1, and 	s D 	i D 3:1 � 108 s�1. The
nonlinear characteristic time yields �0 D .
pAp=2/

�1 ' 0:94 ns, and the nonlinear
characteristic length � D vp�0 D 12 cm. We have taken cavity lengths running
from 3 cm (L D 0:25) to 6 cm (L D 0:5) and we obtain a temporal width of the
solitary pulses of the order of 100 ps.

Critical bifurcation parameters for doubly resonant backward OPOs with dif-
ferent nonlinear coupling coefficients 
j and different feedback parameter values
(�s ¤ �i ) may be obtained through the general dynamical equation (1) with
boundary conditions (7). Figure 10 displays a typical self-pulsing regime for

s=
p D 0:675, 
i=
p D 0:350, L D 1, Q̌

j D 10�6, j D fp; s; ig, �s D 0:9 and
�i D 0:6. As can be seen from this figure the predicted stability of the self-pulsing
regime is not affected by the presence of chromatic dispersion.
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5 Backward Coherent Pulse from Incoherently Pumped
Mirrorless OPO

The numerical dynamics of a c.w. pumped singly backward OPO, experimentally
adapted for an integrated cavity or IOPO (see for example [34–38]), either for
counter-propagating signal or for counter-propagating idler does not generate
backward solitary structures. Even for high OPO finesses the laser output is always
stationary. Note that this does not contradict the existence of backward solitons in
singly counter-propagating configurations if the backward wave is initially localized
[2, 3, 27]. It simply means that such solitary waves cannot be spontaneously
generated from quantum noise and a c.w. pump. Nevertheless, we shall see in this
section that the singly backward OPO configuration is interesting from another point
of view, namely the generation of a coherent backward pulse from an incoherent
pump pulse. In this section we will show that recent experimental demonstration of
a backward mirrorless optical parametric oscillator (BMOPO) with a pump pulse
in the quasi-phase-matched (QPM) periodic polarized KTiOPO4 crystal [24–26]
opens the way for achieving ultra-coherent output from a highly incoherent pump
pulse. In a first time we consider a coherently phase modulated pump because in the
experiments the broadening of the pump is done via a coherent chirp [25, 26].

The pump phase modulations are transferred to the co-propagating wave moving
at nearby the same group velocity of the pump through the convection-induced
phase-locking mechanism [27, 39–42]. For the highly incoherent pump we present
the case of perfect group-velocity matching of the pump and the co-propagating
idler wave, which may be achieved in a type I OPO for a pump at 1:060�m, a
counterpropagating signal at 1:676�m and an idler at 2:882�m. We will show that
the degree of coherence of the backward signal field turns to be more than three
orders of magnitude greater than that of the incoherent pump, with approximately
the same pump power and crystal length as in the experiments.

Parametric interaction of counterpropagating optical waves has the unique
property of automatically establishing distributed feedback without external cavity
mirrors; the mirrorless optical parametric oscillator has been the object of several
studies [21, 31, 43, 44]. The recent BMOPO experiments exhibit useful spectral
properties and have been performed in a configuration of type I at �p D 0:8616�m,
�s D 1:2179�m and �i D 2:9457�m with a grating period of �QPM D 0:8 �m.
This singly backward configuration overcomes the extremely low sub-�m grating
periodicity required for the doubly backward OPO (cf. Sects. 3 and 4).

We have already proposed two experimental configurations in type II singly
resonant KTP IOPO’s [40] and in a type I feeeg singly resonant Ti:LiNbO3 IOPO
[42], to show the locking mechanism in standard high finesse forward propagating
OPO’s feeded with a c.w. pump. We will also show in this section the feasibility
of coherent backward generation from an incoherent pump pulse in a mirrorless
BMOPO configuration feeded with a pulse pump.
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5.1 MOPO Threshold and Dynamical Equations

A theoretical model yields an estimate of the MOPO threshold for counterpropagat-
ing plane waves [21], which is reached when the spatial gain exceeds �=2:

Ipth D "0cnpnsni�s�i

2`2d2eff
(16)

where "0 is the permittivity of free space, ` the interaction length, deff the effective
quadratic nonlinear coefficient, and ns;i , �s;i the respective signal and idler refractive
index and wavelength. For example, for a PPKTP crystal of deff D 8 pm/V we
have:

` D 1 cm H) Ipth D 0:64 GW=cm2

` D 6:5 mm H) Ipth D 1:08 GW=cm2

The momentum mismatch for the optical parametric generation process for the
singly backward QPM configuration yields now

kp D ˙ks � ki CKG; (17)

where .Cks;�ki / stands for backward idler propagation and .�ks;Cki / for
backward signal propagation (cf. Fig. 1 respectively Fig. 1b, c), with a resulting
larger QPM grating period as that of the doubly backward OPO configuration. The
schematic vector diagram and periodically domain-inverted ferroelectric crystal of
the counterpropagating interaction are shown in Fig. 1, and (1) become:

.@t C vp @x C 	p C iˇp@t t / Ap D � 
pAsAi

.@t ˙ vs @x C 	s C iˇs@t t / As D 
sApA
�
i (18)

.@t � vi @x C 	i C iˇi @t t / Ai D 
iApA
�
s :

with respectively .Cvs;�vi / for the backward idler propagation and .�vs;Cvi / for
the backward signal propagation.

The input parameters in the model are the properties of the nonlinear medium
and the pump amplitude at the input face, Ap.x D 0; t/, generating outputs of
Ap.x D L; t/, and either for the backward idler configuration (Fig. 1b) As.x D
L; t/ and Ai.x D 0; t/ or for the backward signal configuration (Fig. 1c) As.x D
0; t/ and Ai.x D L; t/, where x D 0 and x D L denote the positions of
the input and output faces with respect to the pump beam. For the numerical
treatment of the coupled wave equations for counter-propagating interactions,
the standard split-step one-directional integration algorithm, usually employed for
co-propagating interactions, is not suitable due to the fact that (18) represent a
problem with two simultaneous, but spatially separate, boundary conditions, i.e., the
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pump wave and the copropagating wave (either the signal or the idler) are initially
given at one end of the medium, while the backward wave (either the idler or
the signal) is input from the other end of the medium. For such problems, there
are two main appropriate numerical methods: the shooting or trajectories method
and the relaxation method. For the problem at hand, the trajectories method is
more convenient, whereby we eventually want to simulate a counterpropagating
three-wave mixing process driven by a pump field with a quasi-random phase
distribution. The trajectories method with the use of a Runge–Kutta algorithm
has been extensively used for the treatment of stimulated Brillouin back-scattering
problems [7, 8]. The linewidth narrowing experimentally studied in Brillouin lasers
[45] has been simulated in a Brillouin fiber-ring laser with the help of this method
[9]. In that case, it is the acoustic wave that absorbs the phase fluctuations of the
pump and allows the backward Stokes wave to increase its coherence. In order to
numerically integrate the nonlinear counterpropagation dynamics in a MOPO in
the presence of group-velocity dispersion (GVD), which introduces second-order
time derivatives, we have developed a new numerical scheme which combines
the trajectories method with fast Fourier transformation (FFT) to account for the
GVD effects in the spectral domain [46]. The scheme accurately conserves the
number of photons and the Manley–Rowe invariants of (18). As in the standard
split-step approach, the evolution of (18) is for each time step (typically 1 fs long)
first treated by linear propagation of the fields in the Fourier domain, thereby
accounting for the GVD effects and the group-velocity difference between the pump
and the co-propagating wave. The originality with respect to the standard split-step
schemes with multiply-repeated FFT and inverse FFT procedures where exponential
spectral cut-off filtering is introduced at the edges of the spectrum, is that we
here introduce smoothed exponentially-decreasing prolongations of the outgoing
complex amplitudes (over a length d) in the x-space of the MOPO crystal of length
L in order to render a periodic problem (cf. Fig. 11). Thus the FFT is correctly
performed in the extended interaction domain of length M D L C 2d without
arbitrary cut-offs. Then, after inverse FFT, the backward nonlinear interaction
with spatially separate boundary conditions is treated by using the trajectories
method. Integration over the trajectories in the nonlinear step of the algorithm was
performed by using a 4th-order fixed-step Runge–Kutta method. The space- time is
discretized in 2N points with N D 16–18, which, for instance, when N D 16 allows
for a total bandwidth of 35 THz with the resolution of 0.5 GHz. The algorithm is
seeded by an appropriate model pump field entering from one side of the nonlinear
crystal and homogeneously spatially-distributed signal and idler fields with powers
corresponding to a half photon per mode and with random phases, representing
quantum noise. During the field evolution, we checked that the Manley–Rowe
invariants were preserved to the accuracy of better than 105, even after numerically
evolving (18) over 6 � 106 time steps. The results obtained with our method were
compared with those obtained using a 4th-order finite-difference scheme. For the
chirped input pump pulse, where differentiability is ensured, the same quantitative
results are obtained with both methods. The latter scheme, however, is not adapted
for incoherent pulses.
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Fig. 11 Scheme for the Runge–Kutta-FFT numerical model for the backward mirrorless OPO

5.2 BMOPO I Actual Experimental Realization

The QPM three-wave resonant coupling in the experimental achieved backward
MOPO of type I in a bulk PPKTP crystal [24–26] correspond to the following
parameters [47]:

�p D 0:8616�mI np D 1:8400I vp=c D 0:5269I ˇ2;p D 0:2473 ps2=m

�s D 1:2179�mI ns D 1:8243I vs=c D 0:5372I ˇ2;s D 0:1343 ps2=m

�i D 2:9457�mI ni D 1:7806I vi =c D 0:5334I ˇ2;i D �0:6413 ps2=m

where
�QPM D �np

�p
� ns

�s
C ni

�i

��1 D 0:8012�m

�v=vs D jvp � vsj=vs D 0:0195;

and the counter-propagation interaction corresponds to Fig. 1b. Let us show the
dynamical behaviours for a BMOPO of 6.5 mm length pumped with a 54 ps pulse
duration of Ip D 2:34GW/cm2 maximum intensity. BMOPO operation in a PPKTP
crystal of period� D 800 nm is simulated with a linearly-chirped pump pulse with a
central wavelength of 861.7 nm. The input pump amplitude is chosen to be Gaussian
and given by

Ap.x D 0; t/ D A0
pexpŒi�p.t/� expf�2 ln 2Œ.t � t0/=�t0�

2 (19)

The spectral and temporal shapes of the pulse are determined by the phase
modulation, �p.t/ and the FWHM temporal length, �t0. With a linear chirp, the
phase modulation is quadratic in time, �p.t/ D ˛2t

2, where the value of the chirp
parameter ˛2 D �0:244 rad/ps2 is chosen to obtain the chirp rate of d!p=dt D
�0:49 rad/ps2. With this chirp, a temporal intensity FWHM of �t0 D 52 ps gives a
FWHM spectral width of 4.04 THz.
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a b c

Fig. 12 BMOPO I: Temporal field amplitude output of pump (a), signal (b) and counterpropagat-
ing idler (c) waves in the achieved experimental configuration [26], for a pump of 52 ps temporal
duration and 4.04 THz chirped pump bandwidth

As the pump pulse enters the crystal, a forward signal and a backward idler are
generated with similar spectral characteristics as those obtained in the experiment
[26]. The temporal pump output amplitude and output co-propagating signal and
backward idler amplitudes are illustrated in Fig 12. The pump and the parametric
spectra at the pump intensity of 2.34 GW/cm2 are illustrated in Fig 13, showing a
backward idler with a spectral width of ��i D 51GHz, which is narrow compared
to the widths of the pump, ��p D 4:04THz, and the forward signal, ��s D
1:78THz. By integrating the spectra, it is found that the conversion into parametric
waves here is Is.L/=Ip.0/ D 0:036 for the signal and Ii .0/=Ip.0/ D 0:014 for
the idler. As expected from the convection-induced phase-locking mechanism, the
phase modulation in the pump is essentially transferred to the forward signal, while
the phase of the backward idler is approximately constant.

By running simulations with pump pulses of different spectral widths, it is
observed that the conversion efficiency decreases as the pump spectrum broadens
when the group-velocity difference between the forward wave and the pump is
the same as in the experiments. This behavior is due to the nonzero convective
velocity jvp � vsj of the co-moving waves, i.e. a finite temporal walk-off, which
makes the spectral components in the signal move past those in the pump. On the
other hand, for perfect group-velocity matching (vs D vp D 0), there is no temporal
walk-off and the conversion efficiency is constant as the pump spectrum broadens,
since the pump and the signal move at the same velocity. The pump depletion,
1 � Ip.L/=Ip.0/, and the conversion efficiencies into signal, Is.L/=Ip.0/, and
idler, Ii .0/=Ip.0/, were systematically investigated for linearly-chirped Gaussian
pump pulses where the temporal pulse shape was held constant with a FWHM length
of 52 ps and a peak intensity of 2.57 GW/cm2. The spectral width was controlled
by varying the chirp parameter ˛2 from 0 to �0:30 rad/ps2, corresponding to a
FWHM bandwidth from the transform limit up to about 5 THz. In Fig. 14, the
three lower curves show how the pump depletion and the conversion efficiency into
signal and idler decrease as the pump bandwidth increases. Each point on the curves
corresponds to a mean value over a set of simulations with random initial phases, i.e.
the phase modulation is given by �.t/ D ˛2t

2 C �0, where �0 is a random number.
The efficiency is slightly different for each choice of �0 and the value typically
varies within the vertical bar of the plus signs associated to each point. At some
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a

b

c

Fig. 13 (a) Undepleted input and depleted output pump spectrum of ��p D 4:04THz, (b) the
forward signal spectrum with ��f D 1:78THz and (c) the backward idler spectrum with ��b D
51GHz

points, there is an apparent increase in the efficiency with an increased pump
bandwidth, which is due to the limited set of random initial phases .n D 6/ used for
the averaging. However, the main behavior is that a broader pump input spectrum
decreases the efficiency of the BMOPO process when the group-velocities of the
forward wave and the pump are not matched. The upper curve in Fig. 14 shows the
pump depletion when the group velocities of the pump and the forward propagating
wave are matched, vp D vs . This gives a direct comparison between the two cases
and shows that the nonlinear interactions in a BMOPO become more efficient in
the case of exact group-velocity matching. Furthermore, the pump depletion (or the
conversion efficiency) then also becomes rather insensitive to the spectral quality of
the pump, due to the absence of temporal walk-off.

5.3 Incoherent Pump Pulse

One question that arises is if a BMOPO can operate when it is pumped with
incoherent pulses. It is not obvious that such pulses can generate a spectrally-
narrow backward-propagating parametric wave which is a characteristic feature of
a BMOPO. In the conventional co-propagating configuration, the generation of a
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Fig. 14 Pump depletion, 1�Ip.L/=Ip.0/, and conversion efficiencies for the signal, Is.L/=Ip.0/,
and for the idler, Ii .0/=Ip.0/, in the MOPO as function of the pump bandwidth for linearly-chirped
pulses at the pump intensity of Ip D 2:57GW/cm2. The three lower curves correspond to the
experimental condition, jvs � vpj=vs D 0:0195, which clearly show a decrease in the efficiency
as the pump bandwidth increases. The upper curve shows that the pump depletion is essentially
independent of the pump bandwidth when vs � vp D 0

temporally coherent wave from a temporally incoherent pump has been numerically
studied for i.e. parametric down-conversion [48] and has been experimentally
verified for second-harmonic generation [49]. In order to answer the question in the
counterpropagating BMOPO configuration, we used a pump pulse with randomly
distributed phase variations, characterized by an exponential correlation function,

˝
Ap.x D 0; t 0 C t/A�

p .x D 0; t/
˛ D ˇ̌

Ap
ˇ̌2

exp .�jt j=�c/ ; (20)

where �c D 1=���p is the correlation time. More precisely, we use a numerical
scheme to generate a Gaussian spectrum with randomly-distributed phases and a
small random variation in the amplitude, which simulates a real laser output where
the amplitude exhibits small fluctuations over its Gaussian shape. In order to obtain a
well-behaved Gaussian input, we impose a Gaussian profile on the Fourier spectrum
and the pump amplitude is entered as the inverse Fourier transform.

As a result of the phase-locking mechanism, the transfer of phase modulation to
the forward wave becomes more efficient when the group velocities of the pump and
the forward parametric wave are exactly matched [39], which was already proposed
for c.w. pumped forward OPO’s [40–42]. This was shown in Fig. 14. For z-polarized
waves in PPKTP, matching of the group velocities can be achieved by designing the
experiment so that the pump and the forward wave are on different sides of the
maximum on the group-velocity curve: the singly backward wave may be now the
signal, the co-propagating pump and idler waves satisfying vp D vi .

However, the combination of exact group-velocity matching and quasi-phase
matching requires either a very short QPM period, which is hard to fabricate,



Three-Wave Backward Optical Solitons 429

or that the pump wavelength is substantially longer, which increases the BMOPO
threshold. One example of a set of wavelengths that fulfill group-velocity match-
ing are

�p D 1:0600�mI np D 1:8298I vp=c D 0:5341I ˇp D 0:1752 ps2=m

�s D 1:6764�mI ns D 1:8129I vs=c D 0:5405I ˇs D 0:0290 ps2=m

�i D 2:8826�mI ni D 1:7826I vi =c D 0:5341I ˇi D �0:5784 ps2=m

where
�QPM D �np

�p
C ns

�s
� ni

�i

��1 D 0:4567�m

�v=vs D jvp � vi j=vs D 0

We perform the numerical dynamics from (18) with (�vs;Cvi ). Around the
point of group-velocity matching, the BMOPO becomes more efficient and the
spectral quality of the pump can be reduced without a large effect on the conversion
efficiency. This is illustrated by running a simulation with a stochastic pump with
a FWHM temporal length of 50 ps and where the spectral width is increased to
23 THz. At the pump intensity of 3.5 GW/cm2, the results are shown in Figs. 15
and 16. The BMOPO starts oscillating after t � t0 D 60 ps and the conversion
efficiencies are Ib.0/=Ip.0/ D 0:025 for the signal and If .L/=Ip.0/ D 0:015

for the idler. Due to the group-velocity matching, the bandwidth of the backward
signal is only 23 GHz. This value is significantly smaller than the bandwidth
of backward wave in Fig. 13c, even though the pump bandwidth here has been
increased by almost a factor of 6. In the case of group-velocity matching under the
stated operational conditions, the spectral width of the backward-generated wave is
reduced by a factor of 1,000 compared to the width of the input pump spectrum.
The random phase fluctuations in the pump are efficiently transferred to the forward
idler, which obtains a spectral width of 10 THz.

For the experimental verification of BMOPO operation with an incoherent pump,
a laser source is required that generates sub-ns pulses of energies around 100�J,
at the same time as the pulses are incoherent. Good candidates for such a pump
source are figure-eight fiber lasers operating in noise-like pulse mode with pulse
lengths around 1 ns [50], which could be amplified to the required energies in fiber
amplifiers.

5.4 Convection-Induced Phase-Locking Mechanism

The coherent properties of the parametric three-wave interaction driven from an
incoherent pump has been the object of an analytical study where the autocorrelation
functions are mathematically evaluated in the presence of dispersion [39] and
the convection-induced phase-locking mechanism has been proposed for forward
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a b c

Fig. 15 Temporal evolution of the amplitudes in a BMOPO with the interacting wavelengths
corresponding to exact group-velocity matching, pumped with stochastic phase modulated pulses
and a bandwidth of ��p D 23THz: (a) the forward pump, (b) the backward signal, and (c) the
forward idler

a b c

Fig. 16 (a) Incoherent pump spectrum with a bandwidth of ��p D 23THz, (b) the backward
signal spectrum with ��s D 23GHz, (c) the forward idler spectrum with ��i D 10THz.
Coherence gain of 1,000

OPO’s configurations [40–42]. Let us present here some simple analytical argu-
ments enlightening the convection-induced phase-locking mechanism from (18) for
the singly backward signal configuration [case (c) of Fig. 1], Let us assume the
dispersionless case (ˇj D 0), 
s D 
i D 
p=2 D 
 , and the linear undepleted pump
limit with 	p D 0.

The incoherent pump may be modeled by a stationary single-variable stochastic
function Ap.z/ of autocorrelation function

hAp.z � z0/A�
p.z

0/i
jAp.0/j2 D exp.�jzj

�c
/

with a coherence length �c in the frame traveling at its group velocity vp ,

z D x � vpt;

the correlation time being £c ' 1= ��p, where ��p is the incoherent (broad)-
bandwidth of the pump spectrum. The role of convection in the coherence of the
generated waves As and Ai may be analyzed by integrating the third equation (18)
along the characteristic of the idler wave. Then, the second equation (18) yields

DAs D 
2
Z t

0

e�	i .t�t 0/Ap.z/A�
p.z

0/As.x0; t 0/dt 0
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where
D D @=@t � vs@=@x C 	s

z0 D z � .vi � vp/.t � t 0/ I x0 D x � vi .t � t 0/

If vi D vp we have z0 D z and we can extract the pump amplitudes from the
integral

Ap.z/A
�
p.z

0/ D jAp.z/j2;
showing that the signal dynamics is independent of the pump phase fluctuations
˚p.z/.

This means that the rapid random phase fluctuations of the pump do not affect
the signal which undergoes slow phase variations and thus evolves towards a highly
coherent state during its parametric amplification.

Let us now consider the idler wave from the third equation (18):

Ai.x; t/ D 


Z t

0

e�	i .t�t 0/Ap.z0/A�
s .x

0; t 0/dt 0:

When vi D vp we have z0 D z and Ap.z0/ becomes independent of t 0 which leads
to an idler amplitude Ai proportional to the pump amplitude Ap i.e., the idler
field absorbs the noise of the co-moving pump field. Note that this pump-idler
phase-locking mechanism does not require an exact matching of the group-velocities
vi D vp . It is indeed sufficient that

jvi � vpj � �c	i D vptc	i ;

to remove the pump field from the integral so that the idler field follows the
pump fluctuations. This phase-locking mechanisms may be demonstrated in realistic
experimental configurations as studied in details in [39].

6 Conclusions

We have shown by a stability analysis of the non-degenerate backward OPO where
both the signal and idler fields propagate backward with respect to the direction
of the pump field that the inhomogeneous stationary solutions regularly bifurcate
towards a time-dependent oscillatory solution contrarily to the degenerate case. We
obtain a regular Hopf bifurcation for a critical interaction lengthLcrit, which is finite
only if a finite group velocity delay between the signal and the idler waves is taken
into account.

This result has been confirmed by numerical simulations of the nonlinear
dynamic equations, and an excellent agreement has been obtained near the degen-
erate configuration. Above Lcrit self-structuration of symbiotic backward solitary
waves—of some ps temporal duration—takes place. The finite temporal walk-off
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between the backscattered signal and idler waves also ensures the stability of the
solitary waves. These short stable and coherent pulses could be very interesting for
optical telecommunication. However, the susceptibility inversion grating of sub-�m
period required for QPM in the nonlinear quadratic materials is still a technological
challenge.

We have also considered mirrorless optical parametric oscillation in a PPKTP
crystal, first by using linearly-chirped pump pulses with bandwidths of up to 4 THz
in order to simulate recent experiments, and second by using highly incoherent
pump pulses up to 23 THz bandwidth. It has been shown that the spectral bandwidth
of the backward-generated pulse is more than two orders of magnitude narrower
than that of the pump. In a general situation, the gain in temporal coherence of the
backward-generated wave is limited by the group-velocity mismatch between the
pump and the forward-generated wave. This mismatch also limits the conversion
efficiency in the BMOPO. Numerically, we proved that the same conclusions are
valid regardless of the nature of the phase modulation present in the pump wave
by simulating operation of a BMOPO pumped by waves containing stochastic
phase distributions. Moreover, we propose a generic BMOPO configuration where
exact group-velocity matching can be achieved, thereby maximizing the gain in
temporal coherence in the backward-propagating wave and making the efficiency
of the device insensitive to the nature of the phase modulation present in the
pump wave. This opens up an intriguing possibility for narrowband generation
in MOPOs pumped with incoherent beams, e.g. derived from several lasers.
Albeit the realization of such a MOPO requires QPM crystals which are slightly
beyond the state-of-the-art of the current poling technology, the requirements are
not unrealistic and can be met with the continuing development in fabrication
techniques of submicrometer-periodicity nonlinear crystals. Improved fabrication
techniques could also lead to the possibility of poling longer crystals. As the
threshold intensity scales inversely to the square of the length of the structured
region, an increase of this length from 6.5 to 18 mm results in a threshold intensity
around 100 MW/cm2, which is comparable to that in conventional co-propagating
PPKTP OPOs (cf. Fig. 1a).
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Rivulet Structures in Falling Liquid Films

B. Scheid

1 First Visit at the Instituto Pluridisciplinar

April 1st 1998 was the day I started my Ph.D. thesis (not a joke!) supervised by
Jean Claude Legros and Pierre Colinet. I do not remember when exactly I started to
hear about Manuel G. Velarde (the G. is for Garcı́a that should never be omitted!),
but I bet it was very soon after the beginning. Pierre was finishing his postdoc with
Manuel and he always looked very happy (and somehow tired) each time he came
back from Madrid. So one day, I had the opportunity to visit a friend who lived
there and I decided to stop by the Instituto Pluridisciplinar to check by myself what
was so unique with this place. Of course my visit was coordinated by Pierre and
Manuel. The goal was to meet Jan Skotheim and Uwe Thiele and discuss about
the experiments I was doing at that time in Brussels with Oleg A. Kabov. Jan was a
student coming from MIT and Uwe was a postdoc. We talked about rivulet structures
arising in localized heated falling liquid films, as shown in Fig. 1. This collaboration
lead us to a nice JFM paper on the stability analysis of a bump arising at the upper
edge of the heater prior to the rivulet instability [1].

I always remember the analogy Manuel did between rivulet formation and crowd
dynamics: if you have a group of people running in one direction (the hydrodynamic
flow) and another group of people running in the perpendicular direction (the
thermocapillary flow), we will soon see the emergence of auto-organized structure
(rivulets) in which people will preferentially run to minimize their loss of energy. . .

That was my first experience at the Instituto Pluridisciplinar.
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Schlieren picture Infrared image

a b

Fig. 1 Experimental images showing rivulet structures arising in a locally heated falling liquid
film: the liquid arrives on a heated zone such as its surface tension decreases. A thermocapillary
stress drives liquid along the interface against gravity, what produces a bump. Above criticality,
this bump becomes unstable and breaks into rivulets as for the tears of wine

2 A Great Experience in Madrid

January 2002, I arrived in Madrid to work on my Ph.D. thesis with Manuel in
the frame of the Marie-Curie European Network ICOPAC. I was told that Manuel
usually prefers hiring postdocs than Ph.Ds. so I had to prove him he made the right
choice. I did not know what to expect exactly but I felt like it was a great opportunity
for me to work there. I took the office in which Jan and Uwe were sited 2 years
earlier. It was facing the mountains around Madrid, very inspiring! On my desk was
the thesis of Christian Ruyer-Quil. I didn’t know about his work before but soon
after I opened it, I understood that it was very important for the course of my own
Ph.D. The first discussion I had with Manuel on the blackboard lasted only 5 min.
He asked me to reschedule a meeting after changing the way I was presenting my
problem. I had to use arguments! All the other meetings lasted much longer. . .

We were modeling wave dynamics in heated falling liquid films, with the aim to
understand the occurrence of rivulet structure, not only with localized heating but
also in the more general case of uniform heating. Since Manuel and Christian had
already started discussing that problem, I naturally went to the FAST laboratory for
6 months with another Marie-Curie fellowship, before I came back to Madrid for 6
more months in 2003. That was probably one of the most stimulating years of my
scientific career; traveling between Paris, Madrid and Brussels.

In August 2003, Manuel organized a crucial meeting with Christian, Serafim
Kalliadasis and Philip Trevelyan. We spent a week during which I presented all the
results of my Ph.D. that I was about writing. By the end of the week, we decided to
prepare a book all together. That was the beginning of another great adventure.

3 The Book

Initially, we thought that the book could be finalized in about 2 years. It was
published in 2012 [2]! So you never know, but what is sure is that Manuel
was the driving force, putting us together several times in Madrid for 1 or 2 weeks
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between 2003 and 2006. I keep an incredible souvenir of the productive time spent
at the Instituto with Manuel, Christian and Serafim. The experience of working
simultaneously on a joint project is unique and the quiet atmosphere at the Instituto
plus the Madrileñan climate surely helped significantly.

The last chapter of the book is precisely about the modeling of uniformly heated
falling liquid film in 2D and in 3D. Let us now recall the main step of this modeling,
since it is representative of the joined effort we have all put together during this
fruitful Madrileñan collaboration.

We proposed a model of four evolution equations for the film thickness h, the
streamwise and transverse flow rates averaged across the film, q and p respectively,
and the interfacial temperature � , all dependent only on time t and in-plane
coordinates (x,z), with x along the main flow and z in the spanwise direction.
Slow time and space modulations of the basic flat-film state have been assumed,
namely @t ; @x; @z �  � 1 where  is an ordering parameter. Having posed self-
similar profiles in terms of the natural similarity variable yD y=h (y being the
cross-stream coordinate), namely a parabolic profile for the velocity f0.y/ D
y C .1=2/y2 and a linear profile for the temperature g0.y/ D y, the model has
been obtained by averaging along the thickness the momentum and energy equations
with weights taken equal to f0 and g0, respectively, like in the Galerkin method
(details of the procedure and results are given in [3, 4] for the 2D case). Provided
the no-slip condition applies on the wall and the viscous stresses balancing the
(thermo)capillary effects at the free surface, the average momentum equation at
order , for the 3D case, has the form

@tq D 5

6
h i � 5

2

q
h2

� 5

4
Mar� C 5

6
� hr .r 2h/C 5

6
Ct hrh

C9

7

�
q � rh
h2

� q
h

� r
	

q � 8

7

r � q
h

q ; (1)

where r D .@x; @z/, q D .q; p/ and i is the streamwise unit vector. The first
five terms of the r.h.s. account for the gravity acceleration, viscous shear stress,
Marangoni effect, surface tension and hydrostatic pressure, respectively, and the
remaining terms are due to inertia. Then, provided the temperature field is uniform
at the wall and satisfies the Newton’s law of cooling at the free surface, the average
energy equation at order  has the form

@t� D 3
.1� � � Bih�/

Pr h2
C 7

40
.1� �/

r � q
h

� 27

20

q � r�
h

; (2)

where the first term of the r.h.s accounts for the in-depth heat transfer and
the remaining terms are due to heat convection. The system is closed by mass
conservation

@thC r � q D 0 : (3)
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Re  =  0.5

Re  =  4  Re  =  5

Re  =  2

a b

c d

Fig. 2 Simulated wave patterns arising in uniformly heated falling liquid films for various
Reynolds numbers. Water properties have been used, with � D 3; 375, Ct D 0, Ma D 25 and
Bi D 0:1. Snapshots are right before rupture, except for (d)

The length scale and time scale are `� D .�2=g sinˇ/1=3 and t� D .�=g sinˇ2/1=3,
with � the kinematic viscosity and g the gravitational acceleration. The governing
dimensionless groups are the Kapitza number � D 
`�=��

2, the inclination
number Ct D cotˇ, the Marangoni number Ma D 	�T `�=��

2, the Biot number
Bi D ˛`�=k and the Prandtl number Pr D �=�, with � the density, 
 the surface
tension and 	 D �d
=dT its variation with temperature, ˇ the inclination angle
of the wall from the horizontal, �T the temperature difference between the wall
and the ambient gas, ˛ the heat transfer coefficient at the liquid–gas interface, k
the thermal conductivity and � the thermal diffusivity. The Reynolds and Weber
numbers appear implicitly through the thickness of the uniform flat film hN as
Re D g sinˇh3N =3�

2 and We D 
=�g sinˇh2N . All numbers are taken of O.1/,
except � � We D O.�2/. For isothermal conditions (Ma D 0), the present model
reduces to the O./-version of the 3D model given in [5], validated against both
DNS and experiments. Notice that the coefficients in the momentum and energy
equations differ from unity because of the non-uniformity of the base state profiles,
precisely represented by f0 and g0. These coefficients are necessary to recover the
Benney-like equation (see e.g. [6]) through a gradient expansion of the present
model in the limit Re � 1.

In the case of vertical wall, we have performed simulations whose results are
shown in Fig. 2 (see [7, 8] for details). For small Reynolds number (Re D 0:5), the
hydrodynamic wave amplitude is negligible as compared to the amplitude of rivulets
induced by thermocapillary flow, while for large Reynolds number (Re D 5) the
hydrodynamic waves dominate the system and prevent the formation of rivulets.
For intermediate Reynolds numbers, there is a region where inertia (hydrodynamic)
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and thermocapillary instabilities are equally important. In this region, we found the
appearance of large solitary waves channeled by rivulets aligned with the flow.

We were very excited by these results, especially as fluid flow settings where 2D
pulses can be stabilized are quite rare. And everyone knows about the interest of
Manuel for solitary pulses. . .

4 Rivulets with Negative Gravity

We also believed that the novelty of the resulting pattern showed in Fig. 2 might
very well be generic for systems exhibiting a competition between monotonic and
oscillatory (or wave) instabilities with anisotropy (here, due to the direction of the
basic flow). In fact another competition of instabilities, embedded in (1), is also
possible in case of negative gravity. This is considering an isothermal liquid film
flowing underneath an inclined wall. In such a case, the dimensionless number
Ct becomes negative, meaning that the hydrostatic pressure plays a destabilizing
role, exactly like in the Rayleigh–Taylor instability that breaks a condensed film on
a ceiling into an array of droplets. The difference with the pure Rayleigh–Taylor
instability is that the flow breaks the symmetry and thus promotes the formation of
rivulets, as shown in Fig. 3.

The rivulet structures shown in Fig. 3 can only be obtained for a given range of
inclination numbers. This range can be identified by tuning the inclination number
such that the contribution of the Rayleigh–Taylor instability to the growth rate of
small perturbations is of the same order of magnitude than the contribution of the
thermocapillary instability in the case of heated falling film shown in Fig. 2. This
argument is inferred from the linear stability analysis of the uniform-film base-
state of the system of equations (1)–(3). It consists in imposing a small harmonic
disturbance writing

h D hN C � exp fi .k x � c t/C s t/g ; (4)

where �, k, c and s are real numbers and represent, respectively, the amplitude, the
wavenumber, the phase speed and the growth rate of the disturbance; hN D hN=`�
is the dimensionless flat film thickness. Inserting this “normal mode representation”
(4) into the two-dimensional form of (1)–(3) and linearizing in � yield the linear
phase speed and growth rate:

cL D h
2

N and s D k2h
3

N

�
2

15
h
3

N � 1

3
C t C 1

2

Bi Ma

hN .1C BihN /2
� 1

3
�; k2

	
:

(5)
The surface waves will grow for s > 0, i.e. for disturbance wavenumbers smaller
than the critical (cut-off) wavenumber kc obtained for s D 0. In (5), one can see that
a negativeC t will be destabilizing with the same contribution to the growth rate than
in the case of a vertical heated wall if C t � BiMa, provided hN � 1. The angle we
finally found this way to obtain rivulet structures is ˇ D 160ı, or Ct D �2:75.
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Re  =  2 Re  =  5

a bFig. 3 Simulated wave
patterns arising in falling
liquid films flowing
underneath an inclined wall.
Water properties have been
used, with � D 3; 375,
Ct D �2:75 and Ma D 0

Concerning the dynamics of the wave pattern consisting of solitary pulses
riding rivulets, we found a fundamental difference between the rivulets formed by
thermocapillary effects and those formed by negative gravity. In the former case,
the rivulets grow until the thin film in between ruptures, while in the latter case,
rivulet growth seems to saturate and yields stabilized pattern. This is at least what
we observe for Re D 2, in Fig. 3a, namely that the wave pattern did not change
during a relatively long time. However, for Re D 5, in Fig. 3b, the largest wave
hump becomes too heavy to saturate and instead detaches after some time. No stable
structure were thus observed in this case. These behaviors and the mechanism of
stabilization are subject to further investigations but the aim was too show here that
the field of 3D wave pattern in falling films under several configurations is still an
active field of research, as illustrated for instance by a recent paper, precisely on
falling films flowing down inverted substrates [9].

5 Marvelous Friendships

The aim of the present article was to show how influential has been the role of
Manuel in my research activity for more than 10 years. It was not only through
direct collaborations and discussions with him but also through the numerous
collaborations that he has encouraged, driven by his enthusiasm to put people
together in order to solve new problems. The result can not only be measured by
the number of joint papers but mostly by the marvelous friendships that come out
of all these collaborations. I’m thus infinitely grateful to Manuel for his indefectible
support he always reserve to his friends in general and to me in particular.
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Towards a Theory of Degenerated Solectrons
in Doped Lattices: Problems and Perspectives

A.P. Chetverikov, W. Ebeling, and M.G. Velarde

1 Introduction

In the polaron theory developed by Landau, Pekar, Fröhlich, Holstein and others,
and successfully used in the study of biomolecules by Davydov, Zolotaryuk and
Scott and others [1–7] the self-trapping of the electrons interacting with linear lattice
oscillations (phonons) dominates. Davydov exploited the possibility of soliton
excitations suitably using the above mentioned nonlinearity. He then identified
quasiparticles (“electrosolitons”) which move in general with subsonic velocity.
Davydov in collaboration with Zolotaryuk also treated the case when the lattice
bears a cubic or quartic nonlinearity [3, 5, 7]. This leads to “supersonic electrosoli-
tons”, or otherwise “lattice polarons”; excitations growing from the nonlinearity of
the lattice itself.

Starting first from semiclassical considerations in several works [8–18] a closely
related soliton-mediated form of supersonic charge transfer and electric conduction
has been proposed by introducing the concept of “solectron” as a natural extension
of both the polaron and the electrosoliton quasiparticles. In the solectron theory
the soliton carrier is obtained before an excess electron is added to the system.
Classical models and plasma-type Hamiltonians [8–13] and quantum-mechanical
models have been studied [14, 18–22]. The quantum theory was developed within
the tight-binding approximation (TBA). Besides the general methods which we
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developed in some earlier work [11,14–16,18] the quantum theory has been applied
to two different kinds of systems:

(a) Conducting polymers, studies of hopping processes in polymers based on a
TBA Hamiltonian [14, 18, 20–26].

(b) One- and two-dimensional plasmas and solid state plasma layers, studies of the
diffusivity and the conductivity by using a plasma Hamiltonian and Pauli-type
kinetic equations [12, 27].

The first line of research was developed in collaboration with Larissa Brizhik,
Leonor Cruzeiro, Dirk Hennig, John Kozak, Oliva Cantu Ros, and Gerd Röpke
concentrating on analytical and numerical studies of solectron bound states and
recently also on bisolectron bound states [21, 22, 25, 26]. The plasma approach
was developed with Gerd Röpke [27, 28]. Here we will study hopping transfer of
charges and hopping conductivity in plasma layers. We are using a particular method
which has been developed recently in the context of applications to plasmas and
charged layers in solids [19, 27, 29–31]. This approach is based on a generalization
of the kinetic equations developed already in 1928 by Pauli [32] and the more
recently developed Monte Carlo procedures of doing simulations of many particle
systems [33]. As we have shown in [27] by using a particular generalization of
the kinetic equations of Pauli-type, the excitations and transport processes based
on the coupling of the nonlinear lattice excitations to the hopping transport of the
charges may be well described by this method. This procedure is particularly useful
for studying the influence of nonlinear excitations of the lattice on electric transfer,
conduction and other transport properties.

Let us succinctly summarize the state of art and discuss some open tasks:
The solectron concept offers powerful methods to understand and to control

the motion of charges in nonlinear atomic lattices. It is in fact a significant
generalization of the polaron concept, extending the latter to nonlinear lattices [47].
This is indeed of some importance, since real atomic interactions are never strictly
linear, there are always some nonlinear contributions to the atomic interactions.

In our view, so far the most important results with respect to possible practical
applications are:

1. Development of tools to manipulate and control the path of charges, including
the so-called vacuum-cleaner effect [20, 23, 31]. This is in fact a new way of
controlling charges providing a method to overcome the spreading of probability
due Schrödinger evolution and bring electrons in a controlled way from point A
to point B in a lattice.

2. Studies of pair formation. It was shown that under appropriate conditions
solectron pairs may be formed [21–23, 25, 26, 34].

3. Extension of the one-dimensional solectron concept to two dimensions, i.e. the
step from chains to layers [28, 30, 31]. One of the results was the detection of
high energetic quasi one-dimensional solectrons running in higher-dimensional
systems along the crystallographic axes [31].
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Problems not yet treated include:

– Studying the influence of density of doping on physical properties [48],
– The study of nonideality effects in diffusion and conductivity,
– The quantitative treatment of percolation effects,
– The study of the influence of Fermion and Boson effects and the role of the Fermi

edge (Fermi net in 2d),
– The investigation of Bose–Einstein condensation in solectron/bisolectron

systems and their role in eventual superconducting systems.

As far as we can see, all known systems with high conductance—ranging
from usual metals to superconducting materials—operate on the basis of degen-
erate charges. For this reason we will discuss here the problems which arise in
generalizing the existing theory of individual solectrons and bisolectrons to many-
body thermal systems.

2 The Temperature-Density Phase Plane and Solectronic
Degeneration Effects

Our aim is to extend the existing theory at first in a qualitative way to finite densities
and to discuss density—as well as temperature effects. Let us start with some
estimates for the relative number of thermal solitons per site Ns=N as a function
of temperature. There are several theoretical estimates for Toda lattices [35, 36] as
well as estimates from computer simulations for Morse lattices [19]. According to
the existing estimates the soliton fraction increases with T 1=3 and has maximum
at certain temperature T0 which may be in the range of a few hundred Kelvin for
biomolecules [19]. For estimates we fitted the existing data with the formula

Ns

N
' A�1=3

1C B�5
; (1)

whereN is the total number of sites, � D kBT=2D and whereA ' 0:5 andB ' 0:1

are two fitting constants. For fitting we used the results from simulations showing
clearly the existence of optimal temperatures for soliton generation [19, 23]. Let us
now study the role of electron density. The electron density can be given in several
units, the simplest is the so-called relative occupation or fraction �e which is defined
as the number of sites occupied by an electron relative to the total number of sites

�e D Ne

N
:

Note that in the simplest model, the electrons are always associated to one of the
sites. The relative occupation is denoted as doping.
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In real systems the fraction or doping may vary within wide limits, however the
fraction/doping will in general not exceed the value 0:2, i.e. not more than 20% of
sites are occupied (doping fraction). The number density in charges per unit volume

ne D Ne

V
;

where V is the volume may depend on the dimension and the lattice properties. In
1d the density is given by

ne D Ne

aN
;

where N is again the total number of lattice sites and a is the equilibrium lattice
spacing. In a 2d triangular quadratic or triangular lattice the density is given by

ne D Ne

Na2
; ne D Ne

Na2.2=
p
3/
:

Let us denote the number of solectrons by Nse. We assume that the number of
solectrons and the number of free solitons N � Nse are related by a Boltzmann
factor.

Nse

N �Nse
D exp



� se

kBT

�
: (2)

Here se is the energy gain in forming a solectron. This energy depends on the
specific physical conditions. Following Davydov [3], the ground state energy of
a strongly supersonic solectron can be estimated at

se ' vse

vsound

me

mse
ŒeV �; (3)

where mse and vse are the mass and velocity of the solectron. For appropriate
parameter values, this energy could possibly reach 0:1 eV, which is a very high
value. Presumably the above given estimate is an upper bound. In our computer
simulations with Morse lattices having a potential well of value D we observe
solectrons in a temperature range of 0.1–1 D. Assuming wells of order 0.1–0.5 eV
we arrive at temperature intervals of 0.01–0.1 eV. In the following we will assume
that the ground state energy is around 0:01 eV. By using this and two smaller values
for the binding energy we can estimate the fraction of solectrons as a function of
temperature and density. The result is shown graphically in Fig. 1. Not that by using
higher values for the binding energy, the densities of solectrons are increasing.

We will now estimate the effects of degeneration assuming that the charges are
electrons or holes and are, as well as the corresponding solectrons, Fermions. Sys-
tems of Fermions show degeneration effects, if the thermal de Broglie wave length
of the charges is about the distance between them. That means the degeneration
effects of the charges will begin to play a role at densities satisfying the condition
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Fig. 1 Estimates of the soliton fraction per site (upper pink curve with maximum) and of the
solectron fraction for 3 given values of the solectron binding energy (lower three curves: se '
0:001; 0:005; 0:01 eV). Left panel: a doping of 20%, right panel: a rather high doping of 50%. The
magenta lines going up as temperature increases show the border of degeneration effects which are
to be expected only above them

nse�
3
se ' 1I �se D hp

2�msekBT
; (4)

wheremse is the effective mass of solectron and nse as before is the solectron density.
The condition of degeneracy provides us a line in the density-temperature plane

nse D const:T 3=2; (5)

which is displayed in Fig. 1. In the left panel we show the case of a quite an usual
doping of 20%, the right panel we have the case of a very high doping of 50%. Only
above the magenta lines the effects of degeneration may be expected.

Let us succinctly explain what we mean with a Fermi surface which is in 2d a
Fermi net. The Fermi net (Fermi surface in 3d) is defined by the condition that the
energy equals the Fermi energy. This corresponds to the transition to degeneration
which happens at nse�

3
se ' 1.

If the degeneration parameter crosses unity, we expect degeneration effects
(Fig. 1). The Fermi net is a set of lines on the plane where, the density corresponds
to the degeneration density at the corresponding given temperature. The electron
density in the field of atoms is in our case nonuniform and may have a quite
complex structure and net structure schematically shown in Fig. 2. As well known
from plasma physics and solid state physics most relevant processes, including
transitions, diffusion and conductivity occur at the Fermi surface. Therefore it is
a primary task, to explore the structure of the Fermi surface. In particular we have
to study questions like: Is the Fermi surface connected (percolated) or consisting of
non-connected pieces of density regions corresponding to solectrons at the Fermi
energy.
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Fig. 2 The Fermi surface
(Fermi net in 2d) is defined
by the condition that the
energy equals the Fermi
energy. In other words, the
density corresponds to the
degeneration density at
the given temperature

Our estimates show that it is not easy the cross the border of degeneration. We
need strong doping or low temperatures. As far as we can see, it is quite difficult to
have conditions for creating degenerate solectrons in real 2d or 3d systems. Probably
we need high doping for temperatures beyond 100 K. However one should note
that these estimates are conservative, the solectron mass was taken as equal to the
electron mass. In reality solectrons are heavier than electrons or holes and tends to
behave more classically than electrons. This question was appropriately raised by
Alexandrov [37].

3 The Hamiltonian of Our Model and the Equations
of Motion

We consider d -dimensional lattices of atoms (d D 1; 2; 3) and (added, excess) free
electrons which may carry electrical currents. In applications we restrict in most
cases to 1d-, or 2d-lattices in order to assess the influence of nonlinear excitations
on the electrical properties. The system consists of N classical atoms and one
ore several electrons. For the heavy atoms we assume that they obey classical
Langevin dynamics. We include a phenomenological damping 	i . In the numerical
simulations we consider the lattice units with mass m. The atomic particles are
described by coordinates rj .t/ and velocities vj .t/, j D 1; : : : ; N . We assume
periodic boundary conditions. The Hamiltonian consists of three parts, the classical
atom/ion Hamilton function Hi , the electron ion interaction function Hie and the
rest He , accounting for the electrons.

H D Ha CHie CHe: (6)

The atomic part is

Ha D m

2

X
j

v2j C 1

2

X
ij

Vij.rij/: (7)

The atoms repel each other by strong repulsive forces. The subscript “i” denotes the
number of the atom. Let us assume that the characteristic size of the atoms in the
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lattice is r0. In general we will approximate the potential of the forces between two
atoms by the Morse-potential

V M.r/ D D Œexp.2B.r � 
// � 2 exp.�B.r � 
//� : (8)

We note that the characteristic frequency of oscillations around the minima is

m!20 D V M.
/00: (9)

We introduce now an electron e.g. by doping, and define in TBA the amplitude for
being at site j in state n by cjn and the probability to find the electron at the lattice
site or atom located at xj in state n denoted as pjn by

pn D cnc
�
n : (10)

We will show that any displacement of the atoms changes the energetic situation
of the electrons, the eigenvalues as well as the transition probabilities. The electron
dynamics is influenced by the lattice dynamics and as a result the electron will try to
follow up these changes. This is the basic effect leading to the solectron formation.
So the essential point is the running local compressions which generate a complex
landscape. As shown already by Davydov [3] there exist rather deep potential wells
moving (right to left or left to right) along the lattice that strongly influence the local
dynamics of the electrons and are able to capture the light electrons. In the TBA the
electron Hamiltonian is of hopping type [20–22]

He D
X

jn

Ejnc
C
jn cjn C

X
jj 0n

tjj 0nc
C
j 0ncjn: (11)

Here j denotes the number of the atom and n the quantum numbers of the atomic
states. In our adiabatic approach the atomic and the internal positions are assumed
to be fixed at Rj . The representation is based on a linear combination of atomic
orbitals (LCAO): j jn > which are approximately given by the wave functions of a
free atom at position rj . The matrix elements are related to the operators of kinetic
and potential energy. The energy levels Ejn fluctuate around the levels of the free
atoms. The transition matrix is also a fluctuating quantity depending on the time
varying atomic distances r 0

j � rj . In a simplified version we neglect the electron–
electron interaction. Hence (11) is in fact

He D
X

jn

Ejnc
C
jn cjn C

X
jj 0

tjj 0n.Rj 0 � Rj /c
C
j 0ncjn; (12)

with the matrix elements

Ejn D< jnjH0 C Vejj jn >I tjj 0n D< j 0njH0 C Vejj jn > : (13)
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We may simplify this expression assuming that the index n uniquely defines the
state and set [20–22]

He D
X
n

Enc
C
n cn C

X
nn0

tnn0.rn0 � rn/c
C
n0 cn: (14)

In order to estimate the influence of the lattice on the energy levels we consider now
the electron–atom interaction.

For 1d-lattices one may consider only nearest neighbor coupling and simplify
[20–22]. In the general case the energy landscape shows a complex structure and
the dependence of the energy levels on the position has to be taken into account
[18, 20]. In the 1d-case the linear Holstein model is

En ' E0
n C �0qn C �1 ŒqnC1 � qn�1� : (15)

Here, for convenience in notation, qn denotes a lattice site spatial vibration (relative
displacement) coordinate defined by xn D n
 C qn=B . There is the problem that
for some values of the deviations (and typical parameter values, ˛ D 1 � 1:75/ the
exponents may take on very large values. The term E0

n denotes on-site energy levels
of the unperturbed lattice and ıEn is the perturbation due to the lattice vibrations
(harmonic as well as anharmonic modes may contribute). In the simplest case the
shift is linear in the deformations [38, 39]

ıEn D �.qn=B/; (16)

where the “electron-phonon coupling constant”, �, indicates that the on-site energy
level En, i.e. the local site energy, depends on the displacement of the moving unit;
qn is dimensionless (unit: 1=B). As shown e.g. in [38, 39], this coupling between
lattice deformations and electronic states, leads for large enough values of the
parameter � to the formation of polarons. In view of the above given parameter
values, the value of the coupling constant is in the range � ' 0:1 � 1 eV=Å.
Adapting these assumptions to our model without onsite contributions we have
to recall that our model is translationally invariant and we are considering relative
lattice displacements.

Recall also that the probability to find the electron at the lattice site or atom
located at xn, i.e. the occupation number pn is given by (10). The discrete
Schrödinger equation for the components of the wave function cn is then

i Pcn D ŒE0
n C �1.qnC1 � qn�1/�cn

�V0
X
k

fexpŒ�˛.qnC1 � qn/�cnC1

C expŒ�˛.qn � qn�1/�cn�1g ; (17)

where an over-dot denotes time derivative; the energies are dimensionless (unit: 2D).
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The corresponding equations for the lattice particles are now

Rqn D �1ŒpnC1 � pn�1�

C f1 � expŒ�.qnC1 � qn/�g expŒ�.qnC1 � qn/ �

� f1 � expŒ�.qn � qn�1/�g expŒ�.qn � qn�1/ �

�˛V0
˚
expŒ�˛.qn � qn�1/�.cC

nC1cn C cnC1cC
n /

C expŒ�˛.qnC1 � qn/�.cC
n cn�1 C cnc

C
n�1/

�
: (18)

The problem reduces, in principle, to solving coupled together both (17) and (18).
Let us study now the two-dimensional case. A standard assumption is, that the

interaction is described by a pseudo-potential of polarization type. We assume that
the total potential acting on an electron in the field of atoms at positions r1; : : : rN is

Ve.r/ D �
X
j

Ue

Œ1C .r � rj /2=h2�2
: (19)

Here h is a characteristic cut-off distance and Ue the maximal polarization energy
of the electron. As an estimate we may assume Ue ' 0:1 eV. In earlier work we
used also a different pseudopotential approach [27]. In order to be consistent with
the pseudopotential formula used above to quadratic terms we can make the choice
h ' 0:7
 .

The eigenvalue problem is in general very complicated and practically unsolv-
able, so we will use the simple assumption that the eigenvalues are shifted like the
polarization potential

En ' E0
n �

NX
jD1

Ue�
1C .rn � rj /2=h2

�2 : (20)

The discrete Schrödinger equation for the components of the wave function cn
assumes now the form [28, 30]

i Pcn D ŒE0
n �

NX
jD1

Ue�
1C .Rn �Rj /2=h2

�2 �cn

�V0
X
k

fexpŒ�˛jRk �Rnj�ck: (21)

As before the forces between particles are supposed to be of the Morse kind and
the friction and random forces accounting for a Langevin model bath in the case
of a heated lattice. For convenience in the 2d lattice dynamics we use complex
coordinates Zn D xn C iyn, where xn and yn are Cartesian coordinates of the n-th
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particle. Then the Langevin model provides the equations of motion for the lattice
units

d2Zn

dt2
D
X
k

h
FMnk .Znk/C FPnk .Znk/

i
z nk � ˛V0

X
k

exp Œ�˛jZnkj� .cC
n ck C ckc

C
n /

C


�	 Zn

dt
C
p
2Dv

�
�nx C i�ny

��
;

(22)

where index n identifies a particle among all N particles of the atomic ensemble,
	 is a friction coefficient, Dv defines the intensity of stochastic forces, �nx;y
denotes statistically independent generators of the Gaussian noise; Znk DZn �Zk .
Further z nk D .Zn � Zk/=jZn � Zkj is a unit vector defining the direction of the
interaction force FM

nk , corresponding to the Morse potential, and FP
nk , corresponding

to the polarization interaction, between the n-th and the k-th particles. The Morse
interaction force Fnk is here given by

FM
nk D 2BŒexp.�2BjZnkj/ � exp.�BjZnkj�; (23)

and the polarization interaction force by

F P
nk D 4Uek

pnjZnkj � pkjZknj
Œ1C jZnkj2=h2�3 : (24)

Note that to have dimensionless variables we may consider the spatial coordi-
nates normalized to the length 
 used in the Morse potential. Time may be nor-
malized to the inverse frequency of linear oscillations near the minimum of the
Morse potential well, !�1

M . The energy is usually scaled with 2D, where D is the
depth of the Morse potential well, a different possibility is to use V0 as the unit
of energy. Further the stiffness parameter B defines the strength of the repulsion
between particles. In view of the above only those lattice units with coordinatesZk ,
satisfying the condition jZn �Zkj < 1:5, are taken into account in the sum in (41).
In computer simulations the interaction of particles is considered to take place inside
a rectangular cell Lx � Ly with periodic boundary conditions.

In practice some open problems remain, in particular there is the compatibility
between the quantum-mechanical and the classical part of the dynamics. Due to the
Langevin sources of noise and friction in the classical part of the dynamics, the
dynamics is irreversible. However so far there is no proof that the final distribution
corresponds to the correct Gibbs-von Neumann measures. In the following we
assume a kinetic description which is irreversible from the very beginning and
converges to the correct distributions. The idea we follow is due to Wolfgang
Pauli who focused on pn and not cn hence disregarding phases. Thus the Pauli
averaging excludes a complete description of coherent states hence ruling out a
proper treatment of superconducting states.
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4 Pauli Kinetics for Nondegenerate Solectrons on Nonlinear
Heated Nonlinear Lattices

So far our analysis has been based on the Schrödinger equation for the free electrons
in the TBA which is coupled to the Langevin equation for the classical lattice
particles. This tacitly assumed the existence of a heat bath in which the lattice
particles are embedded. In principle this picture provides a complete description
of the coupled lattice–electron dynamics. The irreversibility is guaranteed by the
friction-noise terms in the Langevin-equations (23). As earlier shown [14, 18, 20]
we may describe this way also irreversible solitonic excitations at finite temperature.
However, a serious problem here is the very long relaxation times of the electrons
due to the large differences between the time scales of the electrons and the lattice
particles. This leads to some difficulties in extensive computer simulations. In
the standard theory of electronic transport this problem is solved by Boltzmann-type
descriptions or by Fokker–Planck-type equations, which introduce an irreversible
behavior [32, 40–43]. The main problem is here to give a correct description of
the coupling to the heat bath [41–43]. In the TBA case, the situation is somehow
simpler due to the discrete character of the electronic states, which allows a descrip-
tion by discrete Markov chain equations [29, 44]. The Markov approach to electron
dynamics goes back to the seminal work of Pauli, Tolman, van Hove and others
[32,40–43]. Pauli started from the Schrödinger equation and derived by perturbation
theory a Markov chain description and an expression for the transition probabilities.
He introduced an irreversible master equation expressing the balance between the
transitions in an ensemble. Pauli’s equation is valid for a microcanonical ensemble
and neglects symmetry effects. Further extensions took into account the symmetry
of the wave functions and offered a description compatible with the statistics
of Bose–Einstein and Fermi–Dirac. Later generalizations are connected with the
development of Metropolis algorithms for canonical ensembles [33]. Applications
to hopping conduction in solids were given since the 1970s of last century by several
authors [44]. First applications of the master equation formalism to electron transfer
in macromolecules appear in [45]. The system we are studying here is rather difficult
and seems to be too complicated to be treated in full detail. We have:

(a) Quantum electrons located in discrete states, which are coupled to a heat bath
and to the classical lattice,

(b) Classical lattice particles coupled to the heat bath and to the quantum electrons.
(c) The heat bath with an unspecified nature.

Simplifying this situation we postulate here that the thermal electrons allow a
Markov description. Thus we proceed from the reversible Schrödinger equation for
the tight-binding model to an irreversible Pauli master equation description [32,
40–43]. Following Pauli’s method [19, 29] we use here a master equation for the
occupation probabilities of electrons pn in a system with the energy levels En:

dpn
dt

D
X

ŒWnn0pn0 �Wn0npn� : (25)
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The transition probabilities were derived by Pauli using perturbation theory
for microcanonical ensembles (transitions in a narrow energy shell). Applications
of this formalism to our Schrödinger equation confronts us with the problem of
applicability of the perturbation approach to our basic equation. Note that the
diagonal part of the interaction operator may not be small in comparison to the
nondiagonal elements. We neglect here this problem and assume that we have found
already an appropriate unitary transformation which makes the nondiagonal ele-
ments sufficiently small to satisfy the conditions of Pauli’s perturbation approach.
With this assumption the transition probabilities for the 1d-tight-binding model read
in a microcanonical ensemble according to Pauli [19, 29, 32] is

Wmicro.n; n
0/ D V0

„ expŒ�2˛jqn0 � qnj�2�V0ı.En � En0/; (26)

where n0 D n˙ 1 and ı.x/ is Dirac’s delta function. The transitions from state n to
a state n0 at one of the nearest-neighbor sites should correspond to the same energy
level (or to a level within a narrow shell). In the case of a dissipative embedding, the
situation is more complicated due the interaction of the electrons with the dissipative
heat bath. For a canonical ensemble we assume the transition probabilities

W.n; n0/ D V 2
0

„ expŒ�2˛jqn � qn0 j�E.n; n0; ˇ/: (27)

Instead of a delta-like shell we have now a Lorentz-like profile around it. In the limit
of narrow profiles these expressions converge to the Pauli formula with a delta-
factor. Temperature effects are to be included. When the electrons are embedded
into a heat bath together with the heated lattice particles, the temperature-dependent
thermal factorsE.n; n0; ˇ/ are not symmetric with respect to the arguments but they
are subject to the condition of detailed balance

W.n0; n/
W.n; n0/

D expŒˇ.En � E 0
n/�: (28)

In other words, the relation of the thermal factors should correspond to the relation
of Boltzmann factors. The property (28) suggests the symmetry

E.n; n0/ D expŒ�ˇ
2
.En � E 0

n/�F .n; n
0/; (29)

F.n; n0/ D F..En �E 0
n//; (30)

where F(n,n’) is an even function. There are several variants for this even function
F.x/ which we will discuss. The simplest is defined by the phenomenological
“ansatz” of the Monte-Carlo procedure, where downhill transitions are weighted
withE D 1 and uphill transitions with a factor less than unity [33]. This corresponds
to the F -function.
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F.En �En0/ D expŒ�ˇ
2

jEn �E 0
nj�: (31)

Proper statistical derivations of the thermal factors may be based on certain
microscopic models of the heat bath. Assuming that the heat bath is a carrier of
phonons which drive transitions by a one-phonon mechanism Böttger and Bryksin
[44] studied hopping systems starting from the von Neumann equation for the
density matrix. The authors give the following general expression

F.En �En0/ D
Z 1

�1
expŒ

i

„� jEn � En0j�K.j� j/d�; (32)

where K.j� j/ is a rapidly decaying memory kernel. The decay of these correlations
is connected with the damping of lattice-particle motion. In the simplest case we
may assume here an exponential decay with the same damping constant as appears
in the above introduced Langevin dynamics. This leads to the Lorentz profile

F.En �En0/ D V0

„
	

	2 C .jEn �En0 j/=„/2 : (33)

In the limit of small damping we come back to the delta-function in the Pauli
expression for the transition probabilities.

The master equation is a useful tool for computer simulations of electron
hopping processes. Since the detailed balance is obeyed, it is guaranteed that in
thermal equilibrium the canonical distribution is solution of the master equation.
In order to simplify our computer simulations we used so far only the simplest
“ansatz”, the Monte Carlo procedure. Our basic system of equations contains several
approximations, however it provides a rather fast and therefore useful tool for the
computer simulations of the electron–lattice dynamics in thermal systems. Figure 3
illustrates results of computer simulations based on this approach. Due to the way
we treat electron relaxation effects there are differences between the methodology
using the coupled Schrödinger equation and Langevin equation system (23) and
that using Pauli’s approach albeit they are minor differences at least for small and
for intermediate values of adiabaticity � � 1. For large � , the electron relaxation
in the heat bath is very fast and the distribution may be approximated by a local
Boltzmann- or Fermi distribution as shown in [23]. For small and intermediate
values of the �-parameter, say for � ' 10 � 20, the approach based on the Pauli
equation (25) is most useful, since it provides informations on deviations from
the adiabatic approximation. Our approximation based on the Pauli method (25)
goes beyond the adiabatic approximation since the lattice dynamics and the electron
dynamics are treated independently including their coupling. Recall that in a strict
adiabatic approximation one assumes that the electron adapts “instantaneously” to
any change in the lattice. In other words one assumes that the electrons follow in
a very fast way to the new lattice configuration and may be described at any time
by the canonical distribution [46]. In the new approach based on Pauli’s method
we take into account that the electrons need time to follow the lattice motions what
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Fig. 3 Time evolution of one-dimensional probability distribution according to Pauli’s equation.
In the upper panel we see the evolution of an initial rectangular distribution, into a uniform
distribution without any coupling to the lattice T D 0, thus illustrating an H-theorem. In the center
panel and in the lower panel two temperatures different from zero are considered: upper case:
T D 0:01: an initially rectangular distribution tends irreversibly towards homogeneous spreading
along the lattice, the wave is weakly structured due to the excitations along the lattice; and lower
case: T D 0:5: the initial rectangular distribution is spreading but at the same time becomes
localized around a few peaks thus illustrating the corresponding local formation of solectrons

leads to certain delay in their response and to some deviations from the stationary
solution. Qualitatively however the picture remains similar to the results obtained in
adiabatic approaches. Figure 3 illustrates how the spreading of the electron density
in the 1d case is diffusion-like and strongly influenced by the excitations of solitons
in the lattice.

5 Kinetic Equations for Fermi Solectrons with Zero Spin

An advantage of the Pauli approach is, that it can be easily generalized to include
the influence of spin and symmetry effects which we have neglected so far, except
when using the Hubbard approximation. Following Pauli and Tolman [32, 40] now



Towards a Theory of Degenerated Solectrons in Doped Lattices: Problems and . . . 457

we take into account that the electrons are Fermions which are not allowed to
occupy a quantum state with more than one particle. In principle there exist the
possibility to form bosons by pairing of two electrons but this effect we will
considered later on. In a first approach we study electrons without spin, or what
is equivalent we consider the case of very low density, where double occupation
cannot occur due to the low probability that two electrons meet at the same place.
Taking into account symmetry effects for (non-interacting) Fermions without spin
the Boltzmann equilibrium distributions are to be replaced by Fermi distributions

p0n D 1

expŒˇ.En � �/�C 1
: (34)

Here the “plus one” in the denominator expresses the Fermion character. The
chemical potential � marks the border between the occupied and the non-occupied
states. Following a procedure described by Tolman and van Hove [40–43] the master
equation may be generalized in such a way that Bosonic or Fermionic symmetry
effects are included. The idea is to change the transition probabilities in dependence
on the occupation of the target state. Let us explain this procedure for Fermions
with zero spin. In order to include the Fermi principle we introduce the modified
transition probabilities

QWnn0 D .1 � pn/Wnn0 : (35)

The prefactor reduces the probability of the transition as a function of the occupation
of the target state. This way we get a nonlinear master equation

dpn
dt

D
X� QWnn0pn0 � QWn0npn

�
; (36)

incorporating the Fermion character. If the spin is different from zero, the prefactor
appears only for transitions to states with the same spin direction. The appearance
of products like .1 � pn/pn0 leads to the fact that effective hopping is restricted to
transitions between states near to the Fermi surface. The meaning is the following:
Consider the transitions n0!n. These transitions occur with the weight pn0 if
and only if the state n is free as expressed by the weight factor .1 � pn/. In
Fig. 4 it is demonstrated that according to this weight factor. The states near to the
Fermi surface are the major contributors to transport. The new probabilities are still
between zero and one i.e. 0<pn < 1 but they are normalized in a different way
namely

NX
nD1

pn D Ne (37)

where Ne <N is the total number of free electrons in the system. Accordingly, pn
expresses the probability to find one electron in the state 1  n  N . Recall that we
assume here one state per atom. This one electronic state per atom may be occupied
or not. The prefactors on the r.h.s. of (36) make sure the probabilitiespn cannot grow
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larger than unity. The transition probabilities remain the same as for the Boltzmann
case discussed above. The only general condition they have to satisfy is

W.n0; n/
W.n; n0/

D expŒ�ˇE 0
n�

expŒ�ˇEn� : (38)

In equilibrium the normalization defines the chemical potential by

X
n

1

expŒˇ.En � �/�C 1
D Ne: (39)

Clearly the states En D � play a very special role not only in equilibrium but also
for transport.

By taking into account the spin we may easily modify the distribution in such a
way that two electrons may occupy the same site. This corresponds to the formation
of a (small) bipolaron. However it is not trivial to take the Coulomb repulsion into
account, which is significant for the formation of bipolarons.

The master equations are not closed, they still depend on the particle coordinates.
The corresponding equations for the lattice particles are in the 1d case given by
Chetverikov et al. [29]

d2qn

dt2
D �1ŒpnC1 � pn�1�C f1 � expŒ�qnC1;n�g expŒ�qnC1;n�

� f1 � expŒ�qn;n�1�g expŒ�qn;n�1� � 2˛V0.expŒ�˛qn;n�1�
p
pn�1pn

C expŒ�˛qnC1;n�
p
pnpnC1: (40)

which are phase-averaged modifications of (18).
In the 2d case the equations of motion are more complicated. Assuming the same

model about forces and friction as earlier done and using also complex coordinates
Zn D xn C iyn, where xn and yn are Cartesian coordinates of the n-th particle we
get the Langevin equations
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d2Zn

dt2
D
X
k

�
FM

nk .Znk/C F P
nk .Znk/

�
znk � 2˛0X

n0

exp
��˛0jRn �Rn0 j�p

pnpn0

C


�	 dZn

dt
C
p
2Dv

�
�nx C i�ny

��
;

(41)

where as above the index n identifies a particle among all N particles of the atomic
ensemble, 	 is a friction coefficient, Dv defines the intensity of stochastic forces,
�nx;y denotes statistically independent generators of the Gaussian noise. Note that
the new Langevin equations (41) are different from the previous ones (22), since
due to the phase averaging only the variables pN and not the cn appear. Further we
note that in the classical equations of motion (40) and (41) appear two terms which
couple the classical dynamics to the quantum master equations. One is due to the
dependence of the energy levels on the coordinates of the atoms and the other on the
dependence of the transition probabilities on the atomic distances. Furthermore let
us insist on that the description by Pauli TBA equations contains less information
than the standard TBA since all phases are lost and only the probabilities pn appear
in the dynamics equations.

6 Spatial Distributions, Energy Spectrum
and Energy Distributions

Numerical simulations of our systems of equations (kinetic and dynamic equations)
provide snapshots of the spatial distribution of Fermi solectrons on a square of 20�
20 triangular lattice at TD 0:01. We studied 3 electron numbers Ne D 16; 200; 300

on a triangular lattice of 400 sites, whose fractional densities are, respectively,
�e D 0:04, 0.5, 0.75. Results are shown in Figs. 5 and 6. The corresponding prob-
ability and energy distributions are shown in Figs. 7 and 8. Note that the solectrons
inside the clusters, stripes or percolated regions are degenerated. Investigating the
spatial distributions shown in Figs. 5 and 10, we see interesting structures. We
see clustering at the lowest density, striping at the moderate density and a kind
of percolation at the highest density. The general trend is that the solectrons tend
to cluster rather than remaining isolated. This means that there is a tendency to
cluster, hence to pairing in space. This is a point which also needs a further analysis.
We have to find the radial distribution function and expect to see a peak at small
distances. This would confirm predictions made by Alexandrov [37]. From the
informations we have on the energies of the Fermi particles we calculated the
distributions by averaging.

Investigating the energy distributions shown in Figs. 7–10, we see also interesting
structures. The general trend is that the probabilities decrease with energies.
The energies are given here relative to the minimal energy and are ordered
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Fig. 5 Snapshot of the
spatial distribution of Fermi
solectrons on a versus sites
20� 20 triangular lattice at a
low temperature T D 0:01.
We study 2 electron numbers
Ne D 16; 200 on a triangular
lattice of 400 sites. This
corresponds to the (fractional)
doping densities
�e D 0:04; 0:5. We see
clustering at the lowest
density and striping on the
moderate density

Fig. 6 Probability distribution of Fermi solectrons on a versus sites 20� 20 triangular lattice at a
very low temperature T D 0:001 for two extreme cases. Left panel for N D 1 shows the expected
equal distribution of quantum probability. In the right panel for N D 395 we see a nearly equal
distribution for the case of a near to full occupation
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Fig. 7 Snapshot of the probability distribution of Fermi solectrons on a versus sites 20 � 20

triangular lattice at a very low temperature T D 0:001 for two intermediate densities. Left panel
N D 16 and right panel N D 200

Fig. 8 Probability distribution for �e D 300=400 D 0:75 at a low temperature T D 0:001. First
we see versus sites and then the distribution versus energies (energy distribution). In the latter we
observe (the lowest energies are left) the formation of a Fermi edge and may identify the Fermi
energy

Fig. 9 Typical probability
distribution versus energies
(energy distribution) of Fermi
solectrons at a low
temperature T D 0:001 for
the moderate doping density
�e D 200=400 D 0:5. We
observe again the formation
of a Fermi edge and may
identify the Fermi energy
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Fig. 10 Another example for the probability distribution versus energies (energy distribution) of
Fermi solectrons at an intermediate temperature T D 0:5 for the moderate doping density �e D
200=400 D 0:5. We observe that the Fermi distribution tends to a Boltzmann distribution. In the
left panel we see a snapshot of the corresponding spatial electron distribution

in a way that on the left are the lowest energies for a given snapshot. At low
temperatures and higher densities (region of degeneracy) a typical Fermi distribution
appears which transforms at higher temperatures into a Boltzmann distribution. This
transition from degeneration to Boltzmann behavior occurs at

ne�
3
e ' 1; �e D hp

2�mekBT
; ne D Ne

Na2=2
:

Besides this general trend we see an interesting fine structure including steps
and gaps. This is a point which needs a further analysis. We cannot exclude the
possibility that the gap-like phenomena are connected with the existence of pseudo
gaps, but this needs more accurate computer simulations.

Our approximations provide a rather fast and therefore useful tool for the
computer simulations of the electron–lattice dynamics in heated systems. Figures 3
and 5 illustrate results based on this approach. Due to the way we treat the
electron dynamics, there are differences between the methodology using the coupled
Schrödinger equation and Langevin equation system and that using Pauli’s approach
albeit they are minor differences. An advantage of the Pauli approach is, that it can
be generalized to include the influence of spin, and Bose effects which we have
neglected so far.

The qualitative difference between the Boltzmann distributions and the Fermi
distributions is that Fermi distributions distinguish sharply between electrons below
and above the Fermi level�. The chemical potential (Fermi level) may be estimated
from our energy distributions.

The states below the Fermi level are occupied and the states above are empty
or weakly occupied. This way the Fermi level acts as the sea level in a country
with many mountains. Lowering the sea level decreases the area occupied by the
sea and increasing the sea level increases the area of the sea and reduces the
part of the mountains. Note that transfer and transport happens only at the Fermi
level (Fig. 2). Finally the “land” consists of separated islands. When this happens
we have a percolation transition as seen in Fig. 11. The possible Fermi levels are
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Fig. 11 Percolation is
illustrated by a snapshot for a
rather high level of doping
density of 75% and a rather
low temperature T D 0:01

given here by the colors. Clearly, for the given potential landscape the Fermi level
�' � 1 hints at percolation. We see that the regions E <�' � 1 are connected,
this is what we mean by percolation. With increasing density the Fermi level
raises, and increasing Fermi levels may lead to percolation of the electronic density
corresponding to a sudden increase of diffusion, conductivity and other macroscopic
transport properties, from side to side of the system like, indeed, in the Italian coffee
percolator when making expresso (Fig. 11). In this respect the 2d- as well as the 3d-
systems are fundamentally different from the 1d-systems.

By analyzing the Pauli equation we see that due to the existence of a factor
.1�pn/pn0 only the states near to the Fermi level the regionsEn ' �may contribute
to transport.

7 Discussion and Outlook

We have investigated the role of Fermi degeneration for a system with nonlinear
anharmonic excitations. This may be significant for a theory of conducting lattices.
Solitons are hard excitations of the lattice which have a long lasting time and
influence the local density and this way the Fermi level. Solitons are local
deformations—peaks of the density—propagating with a supersonic soliton velocity
vsol which strongly increases with the increase in the stiffness of the lattice. As
the soliton velocity is much smaller than the thermal velocity of the electrons, the
interaction between soliton-like waves and electrons is weak, since an effective
interplay requires that the concentration of electron in the region of the soliton
velocity is sufficiently high. In fact electrons captured certain time by solitonic
excitations are only weakly affected by scattering processes. We have used this
property for estimating the contribution of solitonic excitations to the collision
frequency in [31] (Fig. 12).

An evaluation of the influence of solitons predicts for 1d-lattices a conductivity
increase in the temperature region where most thermal solitons are excited. For
2d-lattices we find an eventual percolation transition to connected conducting
regions. We have shown that the Fermi level of the electrons determines the
percolation effects.

A few remarks are worth recalling:

(a) As our simulations show, there is a general tendency for formation of pairs.
In recent work [25, 26, 34] we have shown that the soliton mediated pair
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Fig. 12 The case of high temperatures: Snapshots of the electron density in a 2d Fermi system
with zero spin and N D 400 sites at the temperature T D 2:5 for two different doping situations
Ne D 250I �e D 0:625 and Ne D 300I �e D 0:75

formation is energetically favorable. However as well known this proves only,
that pairs will form at T D 0; at higher T one has to estimate the thermodynamic
probability. This is done for example by our simulations which clearly show
that at moderate T , pairs can be formed. According to Alexandrov [37] the
existence of local pairs is relevant for high Tc superconductors. Therefore the
present study may be useful to start solving this question. However the proper
treatment of pairs at finite temperatures requires first an extension of the theory
to Bose systems [49].

(b) If solectrons (polarons) are dominant, the Fermi surface of the solectrons
determines the electrical conductivity. That means that in order to get high
conductivities, we need high enough densities of solectrons near to the Fermi
surface.

(c) In certain regions (Fig. 3) bi-solectrons may be more frequent than solectrons.
Note that what matters for Bose–Einstein condensation is not the Fermi levels
but the lowest energy levels. Since bisolectrons are bosons, Bose condensation
is then at least in principle possible. However a problem in this respect is the
relatively large mass of solectrons and bisolectrons, which make it difficult to
reach the conditions for Bose–Einstein condensation.
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Surfing Electrons in Quantum Computers?

Y. Pomeau

1 Introduction

A quoi faire la science, si l’entendement n’y est pas.
Montaigne,Essais, chap. 251

Over the last years I received from Manuel electronic versions of articles by
him and his coworkers [1–3] showing how an electron can be carried along by
phonons propagating in atomic lattices. Lately this idea of surf has been used to
experimentally transport single electrons from one quantum dot to another one
[4,5]. The two experimental papers mention a possible use of this device in a future
quantum computer, an elusive machine to say the least. As I understand it, Manuel,
like myself, doubt that this idea of surfing electrons could be used in quantum
computers. In an e-mail exchange with him on this question (transport of electrons
by surface waves from quantum dot to quantum dot) I wrote:

“Concerning the papers you sent to me [4, 5], the ones doing the experiments
of electron transport by surface waves are mistaken, in my opinion, for the part
concerning the coherence of the spin of the electrons: the interactions with the other
electrons depend on spin and kills this coherence so fast that all this is without
interest for a very hypothetical quantum computer”.

1Montaigne made this famous statement in the chapter “Du pédantisme” of Essais.
Approximately—the subtle prose of Montaigne is hard to translate—the meaning of this short
sentence (a translation itself from a Greek author, Stobée), “What is the use of science if
understanding is absent”. By “Science” Montaigne meant “what is known” or “knowledge”, the
original meaning in Latin. This statement is even more remarkable if one thinks it was made before
Newton’s time and even before Galilei.
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I believe it is of general interest to explain why transport of electrons by surfing
cannot help to make quantum computers. This is based on the remark that the
coherence necessary in such a device involves too the space dependent part of the
quantum state, and the related phase fluctuates very fastly. This gives me also a
chance to explain a few points on what is meant by quantum coherence, an often
poorly understood question. The authors of [4] makes the (overoptimistic) claim:
“The ability to separate the two electrons and to bring only one of them to the second
quantum dot is of potential interest for the transfer of quantum information and is
the essence of the quantum teleportation protocol”, the issue being if the “quantum”
part of the transferred information can be actually transferred.

Reference [5] gives a few more details: “To be useful in a quantum information
circuit, the transfer of an electron must not cause its spin state to decohere. Coherent
transfer of a collection of spins has been demonstrated over a distance of 70 mm (for
a particular wafer orientation), with the potential to extend this much further and
coherent oscillations of charge have been shown over a submicrometre distance.
Fluctuations in the magnetic field created by nuclear spins are the main cause of
dephasing in static quantum dots”. A comment [6] on the two aforementionned
articles emphasizes this possibility of using surfing electrons to do quantum
computations. It states “Quantum information processing using photons is already
a well-developed technology—the key to this steady advance being the fact that
photons largely ignore each other. This is in stark contrast to electrons which, when
travelling along a wire, interact with one another and quickly lose any quantum
information they might be carrying”. This last point is actually very unclear, not
to say self contradictory. It does not explain why the “information quickly lost
when traveling along a wire” is better conserved when the electrons are transported
by surface waves instead (I guess) by regular electric current. As we all know,
using the concept/word “information” is full of danger in physics, particularly in
quantum physics, something making pertinent the statement by Montaigne I recall
at the beginning. Indeed one could always argue about what is exactly meant by
“quantum information”. After all, we live in a world where everything is quantum,
macroscopic, mesoscopic or microscopic, so that, in this world, information too
is quantal as well as the rest. I shall mean by quantum information the usual sense,
namely information relying on the quantum coherence of wave functions with a well
defined phase difference. As we know well, a coherent phase difference is very hard
to maintain, as stated in [6]: the interaction between electrons in dense matter makes
lose very quickly phase information. The rate of loss of coherence is a measure of
the strength of the interaction energy with the outside world, because of the Planck–
Einstein relation between energy and frequency. Even a tiny interaction is enough to
dephase the wave function by a random finite angle, reducing so the “information”
to a purely classical one.

To explain my point, I need a bit of formalism. The idea of q-bit, at the basis
of quantum computation, is that, if one can store both the phase and amplitude
of quantum states, and manipulate afterwards the information so stored to make
computations. This is surely a fascinating endeavour, but plagued by one major
difficulty: how to keep the phase of quantum states long enough to use it in
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manipulations? The loss of coherence somehow brings the state from quantum to
classical and makes vanish the magic of q-bit and quantum computation. To set the
stage, let us start from a system with a degenerate background state, state A and
state B with the same energies (this point is not essential, one could also consider
two states with different, but well-defined energies). This can be the up (u later on)
and down (d ) state of a spin-half electron without external magnetic field and with
no interaction with other particles or fields. To understand what is the effect of such
interactions, one should consider the density matrix of the two-state system, namely
the matrix with diagonal real positive entries �AA and �BB and off-diagonal entries
�AB and �BA D �AB , where the overline is for complex conjugation. The diagonal
entries are such that �AA C �BB D 1. The diagonal entries are just the probability
that the system is in the A or in the B state. Because the evolution equation of the
density matrix is

i„d�

dt
D ŒH; �� ;

where [.,.] is the commutation and H the energy operator, the evolution of the
system does not link at all the eigenstates A and B if the density matrix is diagonal
(that is if �BA D 0). This means that, in the evolution of this system, there will be
two disconnected histories, the one with the pure state jA > as initial condition
and the one with jB > as initial condition. This is Everetts idea of separated
histories [7]. When the off-diagonal term has decayed to zero, there is no difference
anymore between a system in state jA > with probability �AA and state jB > with
probability �BB , the word “probability” having its usual “classical” meaning. The
subsequent history will not permit to return to the other state, as in a classical system
which has an unique history. The only difference between quantum physics without
off-diagonal and classical physics is the “existence” of an inaccessible different
Universe with another history in quantum physics, although classical physics yields
an unique history. In particular, once the off-diagonal term has decayed to zero,
no quantum computation can be done. All this (rather standard) discussion, with
no claim of originality, points to the fact that quantum information relies crucially
on non zero off-diagonal terms of the density matrix. Indeed the maximum value
of the off-diagonal component is reached for pure states with a well defined phase
difference between state jA > and state jB >. Notice that the decay of the off-
diagonal element of the density matrix depends on macroscopic objects (or at least
of “many electrons” interacting with the transported electron in the problem of
surfing electrons) interacting with the system. Otherwise this would contradict the
reversibility of quantum mechanics: in a macroscopic object (namely for a system
with many degrees of freedom) most initial conditions are such that the off-diagonal
entries of the density matrix decay to zero. For a large isolated finite system, one
expects a return to non zero values of the off diagonal entries after very long
times, presumably of the order of magnitude of the Poincaré recurrence time of
classical mechanics at least. This also points to the dynamical meaning of the loss
of phase coherence. Consider pure states with the same energy again. They bear a
phase difference that may be random at time zero. In the absence of interactions
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with the surrounding, this (random) phase difference will stay the same forever.
Practically the off-diagonal entry of the density matrix of this isolated system will
not decay to zero with time. It decays to zero when this phase fluctuates in time
because of the interaction with the surrounding, so that time averages of the off-
diagonal density matrix will be close to zero, provided the time scale of the average
(related to the frequency resolution of the measuring devices) is longer than this
typical time scale of the phase fluctuations. As argued below, in the case under
consideration (electron interacting with other electrons in a conductor) the time
scale of the relevant phase fluctuations is far shorter than the time resolution of
any measuring device.

Consider now the transport of electron by surf on elastic waves. The theoretical
predictions of [1–3] are verified in the experiments where this mode of transport
is observed. Starting from a two-electrons state in the singlet spin state, by such a
transport one can effectively prepare a state where one electron with a well defined
spin state is in one of the dots although the other with the opposite spin state is
in the other dot. The quantum coherence necessary to carry quantum computations
requires to consider two quantum states of equal energy. Let L and R denote the
left and right quantum dot. The two eigenstates under considerations are therefore
juL; dR > and jdL; uR >, namely the state where the up spin is in the left dot
and the down one in the right dot and the state where the down spin is on left
and the up on right. Indeed if one forgets the location of the electrons, one finds
a single (reduced) singlet state ju; d >, but this single state does not carry any
phase relation between two states and cannot be used in quantum computations, just
because it cannot be associated to the off diagonal entry of a density matrix. Indeed
this singlet state looses its coherence, as stated in [4] and [5] if by interaction with
nuclear spins one of the spins is reversed, to get to a multiplet state, which makes
the other state needed to define quantum coherence and its eventual loss. This makes
certainly an upper bound for the quantum coherence of the two-electron system. But,
there is another (and far more efficient) way to loose quantum coherence between
the two states juL; dR > and jdL; uR >, which is by changing the phase of the
position part of the wave function of the electrons in each quantum dot. This is
because the location of the electron in one of the dots carries also information about
the phase of this wave function. The interactions with the other (field) electrons
in the same dot destroy very quickly the phase coherence. This is because for a
given state of the (field) electrons, the interaction with the transported (foreign)
electron depends strongly on its spin polarization. Suppose to simplify the matter
that the foreign electron together with the field electrons in the quantum dot make
a dilute gas obeying the Boltzmann-Nordheim kinetic equation. The parameters of
each collision between the field electrons and the foreign electron will depend on the
spin state of the electrons. Therefore, even if the spin of the foreign electron remains
unchanged after the collision, its momentum will change and so change very quickly
its phase. Therefore, because its localization in one of the dots must carry position
information (otherwise transport by surf or by any method is irrelevant for quantum
computing), the phase associated to the off-diagonal part of the two by two density
matrix will decay very quickly, with a time of the order of the coherence time of the
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full wave function of a single electron, spin and position. In dense electron systems,
like the ones in the experiments of electron surfing, this time is very short, likely
in the range of the period of waves functions near the edge of the Fermi surface,
much shorter than any time scale usable in electronics. I suspect that this very
short time scale is often the one pertinent for the quantum coherence of electronic
states envisioned for quantum computers. In this respect it is likely better, at least in
principle, to use photons, interacting much more weakly with their surrounding, and
so able to keep the coherence of their wave functions on decently large times. With
Martine Le Berre, we suggested some years ago to use solitons states in optical
fibers as bound states of many photons and to use them as carriers of quantum
coherence [8], with reasonably persistent quantum coherence.
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Collective Excitations in Superfluid Fermi Gases
in the BCS-BEC Crossover

G.-X. Huang

1 Introduction

In the earlier time of the last century, Onnes [1] obtained a fermionic superfluid
through cooling Hg and other metals by using liquid helium at temperatureT around
4 K. Such fermionic superfluid was later successfully described by the Bardeen-
Copper-Schriffer (BCS) theory. Soon after the finding of H. K. Onnes, Wolfke
and Keesom [2] lowered T further to make the liquid helium enter a bosonic
superfluid state, which can be described principally by the mechanism of Bose-
Einstein condensation (BEC).

By continual effort of nearly 100 years, physicists are now able to obtain
ultracold bosonic atomic gases with T about the order of magnitude of several tens
of nK, thanks to the tremendous progress of laser cooling and trapping techniques
[3–5]. Based on this achievement, the BEC of nearly ideal Bose gases (such as alkali
metallic atoms 87Rb, 23Na), predicted by A. Einstein in 1925 [6], was at last realized
in 1995 [7, 8].

Soon after this breakthrough, the ultralow temperature and superfluid state of
fermionic atoms (such as 6Li, 40K, etc.) were also obtained [9, 10]. In addition, the
crossover from BCS state to BEC was also realized by using Feshbach resonance
technique [9, 10]. These important progresses make the study of ultracold atomic
physics become one of very active research frontiers of physics in the beginning
of twenty first century. More importantly, such study also becomes a cross point
connected with many different physical disciplines, including atomic and molecular
physics, nonlinear and quantum optics, statistical and condensed matter physics,
etc., and even chemistry. A lot of new experimental findings are expected and new
physics will be revealed and many applications are very promising [11–13].
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Roughly speaking, if taking the experimental realization of BEC of alkali
metallic atoms in 1995 as a starting point, the research of ultracold quantum
degenerate atomic gases can be divided as two main stages. (1) From 1995 to
2001, main focus is on the BEC of bosonic atomic gases and their various features
and applications. Because the interaction between atoms is very weak, the most
physical properties of BEC can be described by the Gross-Pitaevskii (GP) equation,
and hence related studies are relatively simple in theory. (2) From 2002 to present,
the focal point is moved into superfluid Fermi gases, after the degenerate fermionic
atomic gases was realized and the interatomic interaction can be manipulated by
using Feshbach resonance. The main research topic is the transition from BEC to
BCS state, and quantum simulation of strongly correlated many-body systems.

The problem of the BCS-BEC crossover is not only of fundamental interest in
condensed matter physics but also closely related to the understanding of physical
mechanism for high-Tc superconductivity. Notice that the study of superfluid
fermionic atomic gases is different from bosonic atomic gases due to different quan-
tum statistical features and the role of interactions. The first important difference is
that dilute Fermi gases at low temperature occupying a single spin state practically
do not interact due to the suppression of s-wave scattering by Pauli exclusion
principle. This provides an possibility for obtaining almost ideal Fermi gases, with
potential applications to precision measurements and quantum information. The
second important difference is that the superfluid in Fermi gases is resulted by
interparticle interaction giving rise to paring effect [9, 10].

At low temperature, collective excitations are most important quasiparticles in a
superfluid system and they can be used to characterize dominant physical property
of system. Since the experimental realization of the BCS-BEC crossover, consid-
erable interest has focused on the study of collective excitations in harmonically
trapped superfluid Fermi gases. By means of the Feshbach resonance, the atom-atom
interaction for dilute gases, characterized by s-wave scattering length, can be tuned
from large positive to large negative values, providing a possibility to investigate
and manipulate the nature of collective excitations in various superfluid regimes.

In recent years, a large body of experimental works on collective excitations in
superfluid Fermi gases in the BEC-BCS crossover have been carried out, especially
at Duke and Innsbruck [14–19]. Theoretically, up to now there exist two approaches
on the collective excitations in superfluid Fermi gases in the BCS-BEC crossover
[20–50]. One of them is microscopic theory, in which single-channel (Fermi-only)
or two-channel (Fermi-Boson) model Hamiltonians with Fermi or Fermi-Boson
degrees of freedom are used. Because in the experiments of superfluid Fermi gases
[51–61] particles are trapped in an external potential, the inhomogeneous feature
of system makes the microscopic approach not easy to handle. However, since at
very low temperature the condensed fermionic atom pairs do not decay into single
atoms due to the existence of energy gap in their excitation spectrum, no single
fermionic atoms appear by the breaking of condensed atom pairs. The dynamics
of such perfect superfluid can be well described phenomenologically by superfluid
hydrodynamic equations, or an order-parameter equation called generalized Gross-
Pitaevskii (GGP) equation when a suitable quantum pressure effect is taken into
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account [34–36, 40–50]. Different superfluid regimes can be characterized by an
equation of state, which can be obtained by a quantum Monte-Carlo simulation
[62–64] or BCS energy-gap equations [32, 33]. The GGP equation captures dom-
inant feature that the superfluid exhibits macroscopically, with its mathematical
framework simple and thus easy to analyze. Consequently, it is reasonable to expect
that the GGP theory is a useful theoretical tool for studying macroscopically the
dynamics of superfluid Fermi gases in the BCS-BEC crossover.

In this article, we summarize the theoretical results on linear and nonlinear
collective excitations in superfluid Fermi gases in the BCS-BEC crossover carried
out recently at Shanghai. The rest of the article is arranged as follows. Section 2
describes the result obtained for eigenvalues and eigenfunctions of linear collective
excitations for systems of three-dimensional (3D) trapping potentials with spherical
and axial symmetries. Corresponding result beyond mean-field and Thomas-Fermi
approximations is also provided explicitly. Furthermore, linear excitations and
sound propagation in a cigar-shaped 3D superfluid Fermi gas is presented and eigen-
value problems of linear collective excitations for quasi 1D and quasi 2D systems
have been solved exactly. Section 3 describes nonlinear excitations, including the
dark solitons in a Q1D condensate and the bright solitons in a cigar-shaped 3D
condensate. The last section contains a summary and some perspectives for further
studies on the excitations in superfluid Fermi gases in future.

2 Linear Excitations

2.1 Superfluid Hydrodynamic Equations and Generalized
Order Parameter Equation

We consider a system of superfluid Fermi (i.e. 6Li or 40K) gas in which fermionic
atoms have two different internal states and atomic numbers in each internal state
are the same. In ground state condensed fermionic atom pair density is n=2, where
n is atomic density. By means of Feshbach resonance the transition from BCS to
BEC regimes can be realized through tuning an applied magnetic field, and hence
changing the s-wave scattering length asc. When asc < 0 (asc > 0), the system
is in a BCS (BEC) regime. By defining a dimensionless interaction parameter
� � 1=.kF asc/, where kF D .3�2n/1=3 is Fermi wavenumber, one can distinguish
several different superfluidity regimes [9, 10], i.e., BCS regime (� < �1), BEC
regime (� > 1), and BEC-BCS crossover regime (�1 < � < 1). � D �1
(� D C1) is called BCS (BEC) limit and � D 0 is called unitarity limit. Both
theoretical and experimental studies show that the transition from BCS regime to
BEC regime is smooth [9, 10], which hints that one can study the physical property
of system in various superfluid regimes in a unified way.

At zero temperature, the macroscopic dynamics of the superfluid is governed by
the hydrodynamic equations [9]
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@n

@t
C r � .nv/ D 0; (1)

m
@v
@t

C r


1

2
mv2 C �.n/C Vext.r/

�
D 0; (2)

where v is atomic velocity, m is atomic mass, and Vext.r/ D .m=2/Œ!2?.x2 C
y2/ C !2z z2� is an external trapping potential. The equation of state (also called
bulk chemical potential) under a local density approximation has the form �.n/ D
@Œn".n/�=@n, where ".n/ is the bulk energy per particle when the trapping potential
is absent. Introducing ".n/ D .3=5/"F
.�/, with "F D „2k2F =.2m/ being Fermi
energy, one obtains �.n/ D "F Œ
 � .�=5/.@
=@�/�. As a function of n, the
expression of �.n/ is very complicated, which prevents us from obtaining analytical
results on the dynamics of the system. A simple approach is to take a polytropic
approximation, i.e., by assuming

�.n/ D �0
�
n=n0

�	
(3)

with 	 D .n=�/.@�=@n/�D�0 , where �0 and n0 are respectively reference chemical
potential and particle number density of the system, introduced here for convenience
[47]. In the following we take n0 to be the equilibrium superfluid density at the
center of the trapping potential. Thus one has �0 D "0F .
.�

0/ � �0
 0.�0/=5/, with
"0F D .„k0F /2=.2m/, �0 D 1=.k0F as/ and k0F D .3�n0/1=3 [47]. There are two well
known limits for the value of the polytropic index 	 . One is 	 D 2=3 at �0 ! �1
(BCS limit) and another one is 	 D 1 at �0 ! C1 (BEC limit). The polytropic
approximation has advantage of allowing one to obtain analytical results for various
superfluid regimes in a unified way. In fact, it is quite accurate because 	 is a slowly-
varying function of �0 and hence widely used in literature [32–36, 40–45].

Notice that at T D 0 the system consists of only condensed fermionic atom pairs.
The order parameter of the condensate can be expressed as h O a.r � �=2/ O b.r C
�=2/i, where O j .r ˙ �=2/ is the Fermi annihilation operator that destroys one
fermion in the internal state j (j D a or b; a ¤ b) located at position r ˙ �=2.
For a superfluid with velocity vs the momentum of each particle is boosted by an
amountmvs and the order parameter h O a.r � �=2/ O b.r C �=2/i will be multiplied
by a factor exp.2i�/ with � D mvs � r=„. Obviously, ˚s � 2� D M vs � r=„ (here
M D 2m is pair mass) is the phase of h O a.r � �=2/ O b.r C �=2/i and one has
vs D .„=M/r˚s. The change in the phase of the order parameter is independent of
the relative coordinate � and thus we can put � to zero [11, 47].

Noting that pair density ns D n=2 and superfluid velocity vs D v, (1) and (2) can
be written into the form

@ns

@t
C r � .nsvs/ D 0; (4)

M
@vs

@t
C r



M

2
v2s C �s.ns/C V s

ext.r/
�

D 0; (5)
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with �s.ns/ D 2�.2ns/ and

V s
ext.r/ D 1

2
M
�
!2?.x2 C y2/C !2z z2

�
: (6)

If a quantum pressure term �„2r2pns=.2Mp
ns/ is included, (4) and (5) can be

transferred into the GGP equation

i„@�s
@t

D


�„2r2

2M
C V s

ext.r/C �s.ns/

�
�s; (7)

where �s.r; t/ D p
ns exp.i˚s/, which is the order parameter of the condensed

fermionic atomic pairs. It is easy to show that in the BEC limit (i.e. 	 D 1) the GGP
(7) coincides exactly with the order-parameter equation obtained in [65] based on an
extended BCS theory. Equation (7) was first presented in [47] and used successfully
to study the interference patterns of a superfluid Fermi gas released from optical
lattices below and above Feshbach resonance [53]. Nearly at same time, Salasnich
and Toigo [66] derived an order parameter similar to (7) by using an extended
Thomas-Fermi density functional theory. Many researches show that the GGP
equation (7) is quite accurate at least between BEC and the vicinity of the unitarity
regimes. In the following, the subscript “s” in (4)–(7) will be omitted.

2.2 Linear Excitations in Three Dimensions

2.2.1 Eigenvalues and Eigenfunctions for Spherically
and Axially Symmetric Traps

Linear collective excitations are investigated in [42] by using the superfluid
hydrodynamic equations (4) and (5). The equilibrium (ground state) solution of the
system (corresponding to v D 0 and @=@t D 0) satisfies Vext.r/C �ŒnG.r/� D �G
and

R
d3rnG.r/ D N (N is fermionic-pair number in the condensate), which for

the chemical potential (3) gives the ground-state density distribution

n D neq.r/ D neq.0/

�
1 � x2 C y2

R2?
� z2

R2z

	1=	
; (8)

where neq.0/Dn0Œ�G=.2�
0/�1=	 ,R? D �

2�G=M!
2?
�1=2

andRz D �
2�G=M!

2
z

�1=2
are respectively radial and axial half-lengths of the condensate at equilibrium,�G is
the chemical potential at the ground state given by Wen et al. [50]
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Setting n.r; t/Dneq.r/Cın.r/ exp.�i!t/Cc:c: and v.r; t/D ıv.r/ exp.�i!t/C
c:c: with ın.r/ and ıv.r/ being small quantities, we obtain the eigenvalue problem
for linear excitations

OH0ın � � 1

M
r �

(
neq.r/r

"�
@�

@n

	

nDneq.r/
ın

#)
D !2ın: (10)

(i) Spherically symmetric trap. In this case !z D !? and hence � D 1. The orbital
angular momentum l , and its projection in z axis, m, are two good quantum
numbers. Therefore, the eigen equation (10) is separable in spherical polar

coordinates (r; �; '), where r D �
x2 C y2 C z2

�1=2
. The linear excitation of

the system is determined by a radial expansion into a polynomial of order nr .
The eigenmodes of the excitation can be labelled by entire quantum numbers
nr ; l andm, but the eigenfrequencies are independent of axial quantum number
m.

By introducing r D R?r, (10) can be written into the dimensionless form

� r � Œneq.r.neq/	�1ın/� D .2!2=	/ın (11)

with ! D !=!?, neq D neq.r/=neq.0/ D .1 � r2/1=	 , with r2 D r2=R2?
(R? D Rz). The solution of (11) has the form ın D rl .neq/1�	P.r/Ylm.�; '/,
where Ylm are the spherical-harmonic functions and the radial function P.r/
can be written as .1 � x/1=	�1Q.x/, where x � r2 and Q.x/ satisfies a
hypergeometric differential equation

x.1 � x/Q00 C Œl C 3=2� .l C 3=2C 1=	/x�Q0 C 1=.2	/.!2 � l/Q D 0:

(12)
Solutions of (12) are a special hypergeometric series [32] Pnr l .x/ D
F.�nr ; nr C l C 1=	 C 1=2; l C 3=2; r2/, i.e. a classical ns th-order Jacobi
polynomials Pnr l .x/ D nrBŒnr ; l C 3=2�P

.lC1=2j;1=	�1/
ns .1 � 2x/ with BŒx; y�

being a beta function. The eigenvalue is given by

!2nr l D l C nr	.2nr C 2l C 1/C 2nr ; (13)

with nr D 0; 1; 2; � � � : and l D 0; 1; 2; � � � . We see that the eigenvalues are
independent of m and hence the eigenfunctions have 2l C 1-fold degeneracy
for a given l .

Notice that the above results cover several important special cases studied
before. In the deep BEC regime, 	 D 1 and thus (13) reduces to !2nr l D l C
nr.2nrC2lC3/, which was obtained by Stringari [67]. In the deep BCS region,
	 D 2=3 and hence (13) becomes !2nr l D l C 4

3
nr .nr C l C 2/, which is the

same as that obtained by Baranov and Petrov [68] (also see [69]). Especially,
in the unitarity limit where as D ˙1 and 	 D 2=3, the spectrum also has the
finite form of !2nr l D l C 4nr .nr C l C 2/=3.
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(ii) Axially symmetric trap. In this case � ¤ 1. Solving (10) for the case of axial
symmetry is not easy like for the case of the spherical symmetry. However,
the axial symmetric case is more important than the spherical symmetric one
because axial symmetric traps are used in almost all experiments made on the
collective excitations in superfluid Fermi gases [14–19]. In this case, for the
axial component of angular momentum, m is still a good quantum number.
In the cylindrical coordinates (s; z; ') (here s2 � x2 C y2, with .x; y/ D
.x; y/=R? and z D z=Rz), eigenfunctions are found to have the following
form [42]

ın.2ns/np
.z; s; '/ D �

1 � s2 � �2z2�1=	�1
sjmjP .2ns/

np
.z; s/eim'; (14)

where the coupled axial and radial function P D P
.2ns/
np .s; z/ satisfies the 2D

partial differential equation

�
1 � s2 � �2z2�



@2

@s2
C .1C 2jmj/ @

2

@s2
C @2

@z2

�

� 2
	

�
s
@

@s
C �2z

@

@z

	
C 2
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P.s; z/ D 0; (15)

and the corresponding eigenfunction takes the form

P .2ns/
np

.z; s/ D
npX
kD0

intŒk=2�X
nD0

bk;nz
k�2ns2n; (16)

where np is the principal quantum number for total energy. From (16) we know
that for a fixed np , ns is the radial quantum number for the series of modes
2ns and ns D 0; 1; 2; � � � ; intŒnp=2�; nz is correspondingly the axial quantum
number satisfying the relation nz D np � 2ns in the cylindrical coordinates.

By using techniques of decoupling and dimensionality reduction, one can
generalize the solution obtained in [70] for 	 D 1 to any value of 	 . The detail
of the calculation has been provided in the Appendix of [42]. For a fixed np
.D 0; 1; 2; � � � /, we can label the excitation spectrum !2 D !2.np;jmj; �2; 	/
by modes .nznsm/. Once the coefficients bk;n are obtained, one can get all
eigenfrequencies and eigenfunctions of the linear collective excitations. Some
eigenmodes in low-excited states are listed below.

1. For np D 0; 1, one has ns D 0 and nz D 0; 1, respectively. The
eigenfrequencies read

!2nz0m
D jmj C �2nz.	nz � 	 C 2/=2; (17)

and the eigenfunctions are given by ın.0/np .z; s/ D .1� s2 ��2z2/1=	�1eim'

bnp;0z
npsjmj.



480 G.-X. Huang

2. For np D 2, we have ns D 0; 1 and nz D 2; 0, respectively. In this case one
gets the following solutions for eigenfrequencies and the eigenfunctions

!2nznsm
D .1C 	/.1C jmj/C .1C 	=2/�2

˙Œ.1C 	 C 	 jmj/2 C Œ�2 � 3	 C 	2

C.�2C 	/	 jmj��2 C .1C 	=2/2�4�1=2; (18)

ın
.2ns/
2 .z; s/ D .1 � s2 � �2z2/1=	�1eim'

�.b0;0 C b2;0z
2 C b2;1s

2/sjmj; (19)

with b2;1=b0;0 D �.jmj�!2/=.2Cjmj�!2/ and b2;0=b0;0 D Œ2C2jmjC
.2C jmj � !2/=	� � .jmj � !2/=.2C jmj � !2/.

In (18), the plus sigh “C”(minus sign “�”) represents either the 20m (01m)
mode for � 
 1 or the 01m (20m) mode for �  1. In these modes, the ratio of
the axial and radial amplitudes is jb20=b21j D j2C2jmjC .2Cjmj�!2/=	 j >
.</1 for � > .</1. Therefore, the condensate oscillates along the z-axial (xy-
plane) direction. Note that the special solutions found by Heiselberg [32] and
Cozzini and Stringari [71] for the breathing modes are the special case here for
m D 0. These m D 0 breathing modes have been investigated experimentally
by Grimm and Thomas groups [14–17]. Figure 1 shows experimental and
theoretical results of the radial and axial breathing modes with � D 0:05.
The dot-dashed lines in the figure are respectively the 1=.kF asc/-dependence
of the eigenfrequencies for the radial and axial breathing modes by using the
theoretical result given above.

Our general solution provided here may give more theoretical predictions
on the character of eigen-excitations of the system, including the density
distributions along the BCS-BEC crossover of the radial (axial) breathing mode
as a function of 1=.kF asc/ and �. For some other concrete examples, see [42].

(iii) Circinally symmetric case. This corresponds a highly anisotropic trap, i.e.
!z � !? and hence � ! 0. Equation (10) in this situation has the solution
with the form ınnsm.s/ D sjmjeim'P.s2/, expressed by plane polar coordinates
(s; '), where the radial function P.x/ (x � s2) satisfies the differential
equation

x.1�x/P 00CŒ.1Cjmj/�.1CjmjC1=	/x�P 0C1=.2	/.!2�jmj/P D 0: (20)

The eigenfunctions of (20) are a special hypergeometric series Pnsm.x/ D
F.�ns; ns C jmj C 1=	; 1C jmj; s2/, i.e. a classical ns th-order Jacobi polynomials
Pnsm.x/ D nsBŒns; 1C jmj�P .jmj;1=	�1/

ns .1 � 2x/. The eigenvalues are given by

!2nsm D 2ns	.ns C jmj/C 2ns C jmj; (21)

where the radial quantum number ns D 0; 1; 2; � � � .
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a

b

Fig. 1 1=.kF asc/

dependence of (a) the radial
breathing mode frequency
!010 and (b) the axial
breathing mode frequency
!200. Dot-dashed line is the
theoretical result for the
eigenfrequency with
� D 0:05, the value used in
most of experiments. Solid
line is the result of
parametrization based on a
Monte Carlo data [36]. Heavy
dots are the results from
experiments [15–17] in (a)
and [14] in (b)

2.2.2 Excitations Beyond Mean-Field and Thomas-Fermi Approximations

In experiments of ultracold atomic physics, excitation spectra of collective modes
can be measured with very high precision, which has been used to test the theoretical
prediction based on various theories on the BCS-BEC crossover. A very intriguing
question in the study of the BCS-BEC crossover is the presence or absence of the
famous Lee-Huang-Yang terms [72, 73] in the equation of state, corresponding to
beyond-mean-field terms of composite bosons. The experimental result reported by
Grimm group [19] demonstrated clearly that the mean-field theory is not valid in the
BCS-BEC crossover and hence a beyond the mean-field approximation is needed.

The polytropic approximation (3) for equation of state is widely used for
obtaining analytical results of oscillating frequencies of collective modes. However,
such approximation works well only in the BEC, BCS and unitarity limits without
the contribution beyond mean-field. In [48], a perturbation method is developed for
calculating the correction beyond mean-field for collective-mode frequencies of a
trapped superfluid Fermi gas in the BCS-BEC crossover for a broad Feshbach res-
onance, generalized the work by Pitaevskii and Stringari [74] where the frequency
corrections of some collective modes in a trapped Bose gas were provided beyond
mean field approximation. The main idea developed in [48] is described below.
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Table 1 Parameters of the
equation of state in different
superfluid limits

Limit 	0 	1 C0 C1

BCS 2/3 1/3 „
2

2M
.3�2/2=3

4asc
.9�/1=3

BEC 1 1/2 �„
2am
2M

32

3
p

2
a
3=2
m

Unitarity 2/3 �1=3 „
2

2M
.3�2/2=3� � 4�

5�
1

.3�2/1=3asc

Following [75], a perturbation expansion is applied to the equation of state in the
BCS-BEC crossover in various regimes in term of the expansion parameter na3sc in
weak interacting regime or 1=.na3sc/ in strong interacting regime, i.e.

�.n/ D C0n
	0 .1C C1n

	1 C � � � / ; (22)

where C0, C1, 	0, 	1; : : : are constants that are different in different superfluid
regimes. For instances, near the BCS, BEC, and unitarity limits their values are
already known [34–36, 76], which have been listed in Table 1. In the table, the
s-wave scattering length in the BEC limit is am � 3asc=5 [77]; parameters �
and � in the unitarity limit are given by quantum Monte Carlo calculations, i.e.
� � 0:42 ˙ 0:01 and � � 1 [63, 64]. In other superfluid regimes that different the
above limits, parameters of 	0, 	1, C0, and C1 are currently not known.

In the expansion of the equation of state (22), the second term on the right hand
side is Lee-Huang-Yang-like term, originated generally from beyond mean field
effect. Such term is assumed to be much smaller than the first term, i.e. jC1�	1 j � 1.
It is easy to get the chemical potential and condensate density in the ground state up
to the first-order approximation

�G D �
.0/
G C �

.1/
G ; (23)

�G.r/ D �
.0/
G .r/C �

.1/
G

	0C0

�
�
.0/
G .r/

�1�	0 � C1

	0

�
�
.0/
G .r/

�1C	1
: (24)

For explicit expressions of �.0/G , �.1/G and �.0/G .r/, see [48].
The eigen equation (10) can be written as the form

. Oh0 C Oh0/ın D !2ın; (25)

with Oh0 D � 1
M
C0	0r � nGrn	0�1G and Oh0 D � 1

M
C0C1.	0 C 	1/r � nGrn	0C	1�1G .

Using the transformation �.r/ D n
	0�1
G .r/ın.r/, (25) is converted into

� OH0 C OH 0
�
� D En

1�	0
G � (26)
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with OH0 D r � nGr, OH 0 D C1.1 C 	1=	0/r � nGrn	1G , and E D �M!2=.C0	0/.
Since both OH0 and OH 0 are Hermitian operators and OH 0 is a small quantity, one
can solve the eigen equation (26) by applying a perturbation method similar to
that developed in quantum mechanics if all eigenvalues and eigenfunctions of the
operator OH0 can be obtained.

Making the perturbation expansion � D �.0/ C �.1/ C�.2/ C � � � , E D E.0/ C
E.1/ C E.2/ C � � � , (26) is converted into

OH0�
.k/ �E.0/n

1�	0
G � D S.k/; .k D 0; 1; 2; : : :/; (27)

with S.0/ D 0, S.1/ D .E.1/n
1�	0
G � OH 0/� .0/, S.2/ D E.2/n

1�	0
G �.0/ C .E.1/n

1�	0
G �

OH 0/� .1/; � � � � � � .
At the leading-order (k D 0), one has OH0�

.0/�E.0/n
1�	0
G �.0/ D 0. Assume �.0/

j

is an eigenfunction of OH0 with eigenvalueE.0/
j . it is easy to obtain the orthogonality

relation Z
d3rn1�	0G �

.0/�
j 0 �

.0/
j D Ij ıjj 0; (28)

where Ij D R
d3rn1�	0G �

.0/�
j �

.0/
j is the normalization constant for the j th mode.

At the next order (k D 1), using the leading-order solution equation (27) takes
the form

OH0�
.1/ � E

.0/
j n

1�	0
G �.1/ D

�
E.1/n

1�	0
G � OH 0

�
�
.0/
j : (29)

Since OH0 is a Hermitian operator, its eigenfunctions constitutes a complete set, and
thus one can make the expansion �.1/ D P

j Aj�
.0/
j . Substituting this expression

into (29) and applying the orthogonal relation (28) we can readily obtain Aj . Then
one has the first-order corrections for the eigenvalue and eigenfunction

E
.1/
j D H 0

jj ; (30)

�
.1/
j D

X
j 0¤j

H 0
j 0j

Ej � Ej 0

�
.0/
j ; (31)

whereH 0
j 0j D .1=Ij /

R
d3r�.0/�

j
OH 0�.0/

j . Similarly, explicit formulas of high-order
corrections for all eigenfrequencies and eigenfunctions can be obtained.

Converting the above quantities to original ones, we obtain expressions of the
eigenfrequency and eigenfunction up to the first-order correction as

!2j D �C0	0
M

�
E
.0/
j C E

.1/
j

�
; (32)

ınj D n
1�	0
G

�
�
.0/
j C �

.1/
j

�
: (33)
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For convenience, we introduce the dimensionless quantities !j D !j =!?,
r D r=R?, 5 D R?5, n.r/ D n.r/=nG.0/, and �.r/ D �.r/=n	0G .0/ D
n
	0�1
G .r/ ın.r/=nG.0/. Then from (32) we obtain the calculating formula for the

first-order correction of !2j

ı!2j D �.�/Qj .�/; (34)

with �.�/ D C1n
	1
G .0I�/, and

Qj .�/ � � .	0 C 	1/
R
d3rn1C	1G �

.0/�
j 52�

.0/

j

2
R
d3rn1�	0G j�.0/

j j2
: (35)

Here the integration domain in (35) is s2 C �2z2  1. The value of nG.0I�/ can be
obtained easily from (23) and (24) by setting r D 0.

The key of the above perturbation theory is to solve the zero-order eigenvalue
problem. Luckily, a similar eigenvalue problem has been solved exactly, and all
eigenvalues E.0/

j and all eigenfunctions �.0/
j have been given in [42], where

j represents a group of quantum numbers. Consequently, one can apply the
perturbation formulas presented above and the results in [42] to obtain explicit
analytical expressions of the frequency and wavefunction corrections for various
collective modes beyond mean-field approximation. For the detail of theoretical
results and their comparison with experiments, see [48].

The above works are based on superfluid hydrodynamic equations (4) and (5),
which are valid for Thomas-Fermi approximation (TFA), i.e. N must be large
enough. When N is finite (which is the case for realistic experiments where N
is typically the order of 105–106), the quantum pressure (or called surface effect
[78]) contributed from the inhomogeneous distribution of condensation due to the
existence of trapping potential must be taken into account. In this case, the superfluid
can be described by the GGP equation (7). There are several other reasons to extend
TFA: (i) At the boundary of condensate the Bogoliubov amplitudes obtained in
the TFA vary quickly and hence the kinetic energy of both the condensate and
excitations contributed by the boundary can not be neglected. (ii) At the boundary of
the condensate singular points appear in the solution of the Bogoliubov amplitudes
which makes the theory uncontrollable. (iii) The existence of the singular points
results also in a divergence for coupling matrix elements describing mode-mode
resonant interaction, which takes dominant role for the damping and frequency shift
of collective modes in superfluid Fermi gases.

The work presented in [45] studied Bogoliubov collective excitations of harmoni-
cally trapped superfluid Fermi gases in the BCS-BEC crossover beyond TFA. Start-
ing from a generalized Gross-Pitaevskii equation, Bogoliubov-de Gennes (BdG)
equations for low-lying collective modes at zero temperature are derived. A Fetter-
like variational ground state wavefunction is used to remove the non-continuity
of slope at the boundary of condensate, which appears in the TFA. The BdG
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equations are solved analytically and explicit expressions for all eigenvalues and
eigenfunctions are obtained, which are valid for various crossover regimes and for
traps with spherical and axial symmetries. The feature of these collective excitations
in the BCS-BEC crossover is discussed and the theoretical result obtained agrees
with available experimental data near and beyond TFA. For detail, see [45].

2.2.3 Linear Excitations and Sound Propagation in a Cigar-Shaped 3D
Superfluid Fermi Gas

If the condensate is a cigar-shaped, and it is very long in axial direction, eigen exci-
tations in the condensate are standing waves in transverse directions but are traveling
waves in the axial direction, with the lowest eigenmode being a sound wave. The
eigenvalue problem for linear excitations is still given by (10) with !z D 0. Then the

ground-state density is simplified into neq.r/ D n0
�
�G=2�

0
�1=	 �

1 � r2=R2?
�1=	

.
Taking ın.r/ D ın.r; '/ exp.ikz/ (k is wavenumber in the axial direction), (10) is
reduced into the dimensionless form

r? �
(�
1 � r2

� 1
	 r?

"�
1 � r2

�1� 1
	
ın.r; '/

#)
� k2.1 � r2/ın.r; '/ D �2!

2

	
ın.r; '/;

(36)

where r? D .@=@r; .1=r/@=@'/, r D r=R?, ! D !=!?, and k D kR?.
In order to solve above equation we introduce the following transformation

�.r; '/ D �
1 � r2

�1� 1
	 ın.r; '/, then (36) is converted into the form

� OH0 C OH 0�� D E w.r ; '/�; (37)

where E D �2!2=	 , w.r; '/ D �
1 � r2� 1	 �1

, OH0 D r? � �1 � r2
� 1
	 r?, and

OH 0 D �k2.1� r2/
1
	 . Notice that both OH0 and OH1 are Hermitian operators.

Solving the eigenvalue problem (37) for all k (0 < k < 1) exactly is not
available. Ghosh and Machida [40] solved (36) by a numerical diagonalization,
which was first used for condensed Bose gas (i.e. for the special case of 	 D 1)
by Zaremba [79]. However, notice that for linear sound propagation problem we are
interested in here, one needs only the result for small k. Thus one can solve (37)
using the perturbation theory by taking OH 0 as a perturbation Hamiltonian [50].

Assuming �j D �
.0/
j C �

.1/
j C �

.2/
j C � � � and Ej D E

.0/
j CE

.1/
j CE

.2/
j C � � � ,

(37) becomes
OH0�

.l/
j � E

.0/
j w.r; '/�.l/

j D S.l/; (38)

.l D 0; 1; 2; : : :/, with S.0/ D 0, S.1/ D .E
.1/
j w.r ; '/ � OH 0/� .0/

j , S.2/ D
E
.2/
j w.r; '/�.0/

j C .E
.1/
j w.r; '/ � OH 0/� .1/

j , etc.
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The zero-order (l D 0) solution of (38) can be solved exactly. The result reads

�.0/
nrm
.r; '/ D Anrmr

jmjP
. 1	 �1;jmj/
nr .2r2 � 1/eim'; (39)

E.0/
nrm

D � 2
	

fjmj C 2nr Œ	.nr C jmj/C 1�g ; (40)

A2nrm D
� .nr C 1/� . 1

	
C nr C jmj/. 1

	
C 2nr C jmj/

�� .nr C 1
	
/� .1C nr C jmj/ ; (41)

where P .a;b/
n is a Jacob polynomial of order n, nr and m are radial and angular

quantum numbers, respectively. The above eigenfunctions satisfy the orthogonal-
normalized relation

Z 1

0

Z 2�

0

rdrd'�
.0/�
n0

rm
0�

.0/
nrm

w.r; '/ D ınrn0

r
ımm0 : (42)

With the zero-order solution given above as an expansion basis for �.l/
j (j D

.nr ;m/) we can easily solve (38) for high-order approximations (l D 1; 2; : : :/. The
first-order solution (l D 1) is given by

E
.1/
j D H 0

jj ; (43)

�
.1/
j D

X
j 0¤j

H 0
j 0j

E
.0/
j � E

.0/

j 0

�
.0/

j 0 ; (44)

where H 0
j 0j D< �

.0/

j 0 j OH 0j�.0/
j >� R 1

0

R 2�
0
drd'r �

.0/�
j 0

OH 0�.0/
j . The second-order

solution (l D 2) reads

E
.2/
j D �

X
l¤j

jH 0
jl j2

E
.0/

l � E
.0/
j

; (45)

�
.2/
j D

X
l 0¤j

1

E
.0/

l 0 �E.0/
j

0
@E.1/

j Al 0 �
X
l¤j

AlH
0
l 0l

1
A�.0/

l 0 : (46)

All high-order approximation solutions can be also obtained explicitly in the same
way.
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Table 2 Expressions of eigenvalues of radial eigenmodes .nr ; m/ D .0; 0/; .1; 0/; .2; 0/, and
.3; 0/

(0,0) (1,0) (2,0) (3,0)

E
.0/
nrm 0 � 4A1;1

	
� 8A1;2

	
� 12A1;3

	

E
.1/
nrm=k

2 � 1
A1;1

� A1;1;2
A1;4;3

� A1;3;8
A1;8;15

� A1;5;18
A1;12;35

E
.2/
nrm=k

4 	3A1;2

4A1;1A
2
1;3;2

� 	3A�3;�1;25;45;�2

4A31;1A
2
1;3A1;7;12

� 	3B1
4

� 	3B2
4

Here Aa;b;c;d;��� 	 aCb	Cc	2Cd	3C� � � , B1 	 A�5;�23;87;611;794;264=.A1;5;6A1;11;30A
2
1;3A

2
1;5/,

and B2 	 A�7;�61;153;2641;6634;4464=.A1;9;20A1;15;56A
2
1;5A

2
1;7/

Fig. 2 Multibranch spectra
of linear collective excitations
for the modes of axial
symmetry (i.e. m D 0 and
nr D 0; 1; 2; 3) as functions
of dimensionless parameter
kr0, with
r0 D .2"0F =.M!

2
?
//1=2.

Solid, dashed, and
dash-dotted lines correspond
to �0 	 1=.k0F as/ D 5 (near
BEC limit), �0 D 0 (unitarity
limit), and �0 D �1 (BCS
regime), respectively

Up to the second-order approximation the expressions of eigenvalues and
eigenfunctions are given by

!nrm.k/ D ˙!?
h
�	
2

�
E.0/
nrm

C E.1/
nrm

C E.2/
nrm

�i1=2
; (47)

ınsnrm.r; 'I k/ D
�
1 � r2

R2?

	 1
	 �1 �

�.0/
nrm

C �.1/
nrm

C �.2/
nrm

�
; (48)

where E.l/
nrm and �.l/

nrm are proportional to k
2l

.
In Table 2 we have listed the analytical expressions of eigenvalues up to the first

three order approximations for modes of axial symmetry (i.e. m D 0 and nr D
0; 1; 2; 3), with corresponding eigenfunctions given in the Appendix A of [50].

Shown in Fig. 2 are the dimensionless eigenfrequencies (multibranch spectrum)
!nrm=!? for these modes as functions of dimensionless wavenumber kr0, with r0 D
.2"0F =.M!

2?//1=2. In the figure, solid, dashed, and dash-dotted lines correspond to
�0 � 1=.k0F as/ D 5 (near BEC limit), �0 D 0 (unitarity limit), and �0 D �1
(BCS regime), respectively. Note that the dimensionless wavenumber k D kR? in
the expressions of the eigenfrequencies in Table 1 is normalized by the radius of
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Fig. 3 The sound speed c of the cigar-shaped, but 3D superfluid gas 6Li atomic gas as a function
of �0 D 1=.k0F as/. The solid line is the theoretical result by using (50), whereas the open squares
are the data measured by the Duke experiment [80]. For comparison, in the figure we have also
plotted the sound speed of Q1D case (dashed line), the propagating velocity Vsol of the subsonic
dark soliton in Q1D (dotted-dashed line), and the supersonic bright soliton in the present 3D case
(the dotted line). All velocities are in unit of corresponding Fermi velocity of vF D .2"0F =m/

1=2

the condensate. However, for the comparison of the eigenfrequencies in different
superfluid regimes, kR? is not good variable because it varies along the BCS-BEC
crossover for the same k. Thus in Fig. 2 we plot the eigenfrequencies as functions
of kr0, where r0 D .2"0F =.M!

2?//1=2 is a fixed number for given atom-pair number
N , and the trapping frequencies !?, !z. From the figure we see that in different
superfluid regimes the eigenfrequencies display different behavior. For .nr ;m/ D
.0; 0/ mode, for a given k the eigenfrequency of the BCS regime is larger than that
of the uinitarity regime. In the BEC regime, the eigenfrequency is lowest. However,
for nr ¤ 0, this property changes, which can be clearly seen from the figure. For
the .nr ;m/ D .3; 0/mode, the eigen frequency of the BEC regime becomes largest.
Such features of oscillatory frequencies of eigen collective excitations have also be
found by Ghosh and Machida in their numerical approach [40], but our result is an
analytical one.

The sound propagation feature can be obtained by the lowest branch dispersion
relation !00.k/, which is shown in Fig. 2 that satisfies !00.0/ D 0 (Bogoliubov
spectrum). By (47) with .nr ;m/ D .0; 0/ one obtains

!00.k/

!?
D
�

	

2.	 C 1/

	1=2 "
1 � 	3.2	 C 1/k

2

4.1C 3	 C 2	2/2

#1=2
k: (49)

Thus the sound speed of the system is

c D
r

	�G

.1C 	/M
: (50)
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The solid line of Fig. 3 is the result of the sound speed (in unit of Fermi velocity
vF D .2"0F =m/

1=2) of the superfluid 6Li atomic gas as a function of �0 D 1=.k0F as/,
calculated by using the experimental parameters of Joseph et al. [80]. That is, N D
3� 105, !? D 2� � 688Hz, !z D 2� � 34:4Hz. Thus one has "F D „2k0F 2=2m D
„.6N!2?!z/

1=3 D kB � 1:4 �K (kB Boltzmann’s constant), and hence 1=k0F D
0:17 �m, and n0 D k0F

3
=.6�2/ D 4 � 1012 cm�3. The experimental data measured

by Joseph et al. [80] are denoted by open squares. We see that our theoretical result
agrees quite well with that of Joseph et al. [80] For comparison, in Fig. 3 we have
also plotted the result of the sound speed of the Q1D superfluid Fermi gas [43],
which is given by the dashed line. One sees that the Q1D sound speed is obviously
lower than the 3D one. The reason is that in the Q1D system there is a very strong
confinement in radial direction, which results in a decrease of sound speed.

2.3 Linear Excitations in Quasi-one and Quasi-two
Dimensions

We now consider Linear excitations in quasi-one (Q1D) system. Q1D means that
the trapping potential in x and y directions is much stronger than in z direction,
i.e. for harmonic potential one has !? >> !z so that the condensate is not only
cigar-shaped but also the motion of atoms in the x and y directions is essentially
frozen and governed by the ground-state wave function (zero-point oscillation) of
corresponding 2D linear harmonic oscillator. On the other hand, due to the strong
confinement in the x and y directions the excitations of the system appear only in
the z direction. Consequently, the superfluid velocity v has only z component, i.e.
v D .0; 0; vz/.

Based on above consideration, one can set
p
n D p

n1.z; t/G0.x; y/, where

G0.x; y/ D 1=.�a2?/
1=2

exp
��.x2 C y2/=.2a2?/

�
is normalized ground state wave-

function of the 2D harmonic oscillator of the potential .M=2/!2?.x2 C y2/, with
a? D p„=.M!?/ being the oscillator length. After integrating the x and y

variables, (4) and (5) becomes [43]

@n1

@t
C @.n1vz/

@z
D 0; (51)

M
@vz

@t
C @

@z



�1D.n1/� �G C 1

2
M!2?�2z2 C 1

2
M v2z

�
D 0; (52)

where �1D.n1/ � „!? C 2�0.n1=n
0
1/
	 is effective 1D equation of state, with n01 D

n0.�a2?/.	 C 1/1=	 .
The ground state of the system described by (51) and (52) under the TFA reads

vz D 0 and
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n1G.z/ D n1G.0/

"
1 �

�
z

Rz

	2#1=	
; .jzj  Rz/ (53)

where �1G.0/ D n01
�
.�G � „!?/=.2�0/

�1=	
, Rz D Œ2.�G � „!?/=.M!2?�2/�1=2,

with �G D „!? C fŒN.2�0/1=	� .1=	 C 3=2/
p
M!2z =2�=Œn

0.�a2?/.	 C 1/1=	

� .1=	 C 1/
p
��g2	=.	C2/ being the ground state chemical potential.

The equations of motion controlling the linear collective modes of the system
can be obtained by setting vz.z; t/ D ıvz.z; t/, n1.z; t/ D n1G.z/ C ın1.z; t/,
where ıvz.z; t/ and ın1.z; t/ are small perturbations. Assuming ın1.z; t/ D
ın1.z/ exp.�i!t/Cc.c., ıvz.z; t/ D ıvz.z/ exp.�i!t/Cc.c., and eliminating ıvz

and keeping only linear terms of ın1.z/, we obtain the linear eigenvalue problem

�M!2ın1.z/ D d

d z

�
n1g.z/

d

d z

�
�0
1D.n1G/ın1.z/

�
; (54)

where �0
1D.n1G/ � .@�1D=@n1/jn1Dn1G D 2�0	n

	�1
1G =.n01/

	 . Equation (54) can be
written as the form

	.1� Qz2/ d
2

d Qz2 ı Qn1 � 2.2	 � 1/Qz d
d Qzı Qn1 C 2.!2=!2z C 1� 	/ı Qn1 D 0; (55)

where Qz D z=Rz and ı Qn1 � ın1=n1G.0/.
Defining new variable s D Qz2, (55) transforms into

s.1 � s/ d
2

ds2
ı Qn1 C



1

2
�
�
5

2
� 1

	

	
s

�
d

ds
ı Qn1 C .!2=!2z � 	 C 1/

2	
ı Qn1 D 0; (56)

which is the standard form of the equation satisfied by hypergeometric function.
Then we obtain the eigenfunctions

ın1.z; t/ D C F.�n; 3=2� 1=	 C n; 1=2; z2=R2z /e
�i!t ; (57)

with the eigenvalues

!2 D !2z
�
2	n2 C n.3	 � 2/C 	 � 1

�
(58)

with n D 0; 1; 2; : : :, where C is an arbitrary constant and F is hypergeometric
function.

Above results cover the known one for the BEC limit (	 D 1), given by Menotti
and Stringari [81]. Notice that the lowest eigenmode (n D 0) has the eigenfrequency
!2 D !2z .	 � 1/. In the BEC limit, this mode allows to exist. However, beyond the
BEC limit (i.e. for 	 < 1), this mode has an imaginary oscillating frequency and
hence is no longer possible in the system.
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An obvious character of the eigenfrequencies given by (58) has a strong 	 -
dependence. We see that the eigenfrequencies of the eigenmodes in the BCS
regime (� < �1) is smaller than ones in the BEC regime (� > 1). In the crossover
regime (�1 < � < 1) the eigenfrequencies increase as � increases. The density
fluctuations ı�1=�1g.0/ of the collective modes are functions of 1=.kF a/ and z=Rz.
In general in comparison with the BCS regime, the density fluctuations are more
significant in the BEC regime.

The collective modes in Q2D can be also obtained in a similar way. The Q2D
means that the trapping potential in x and y directions is much weaker than in z
direction, i.e. !? << !z so that the condensate is disk-shaped and the motion of
atoms in the z-direction is frozen and governed by the ground-state wave function
(zero-point oscillation) of corresponding 1D linear harmonic oscillator. We write
Vext.r/ D M!2z

�
z2 C �2.x2 C y2/

�
=2, with � � !?=!z << 1. In this case,

if writing
p
n D p

n2.x; y; t/G0.z/ with G0.z/ D Œ1=.�a2z /
1=4� exp

��z2=.2a2z /
�

being the normalized ground state wavefunction of the 1D linear harmonic oscillator
in the z-direction with the oscillator length a? D p„=.M!z/, the superfluid
hydrodynamic equations (4) and (5) becomes [43]

@

@t
n2 C r? � .n2v?/ D 0; (59)

M
@

@t
v? C r?



1

2
M!2z �

2.x2 C y2/C 1

2
Mv2

?
C �2D.n2/� �G

�
D 0; (60)

where n02 � n0.	 C 1/1=.2	/.�a2z /
1=2 with az D Œ„=.M!z/�

1=2 being the harmonic
length in z direction, and�2D.n2/ D „!z=2C2�0.n2=n02/	 is effective 2D equation
of state.

It is easy to get the ground state distribution

n2G.z/ D n2G.0/



1 � x2 C y2

R2?

�1=	
; .x2 C y2  R2?/ (61)

where n2G.0/ D n02 Œ.�G � „!z=2/=.2�0/�
1=	 ,R? D p

2.�G � „!z=2/=.M!2z�
2/,

and �G D „!z=2 C f.MN!2?.2�0/1=	 /=Œ2�n0.�a2z /1=2.	 C 1/.1=2	�1/	�g	=.	C1/
(ground state chemical potential).

The eigenvalue problem of linear collective excitations in the Q2D disk-shaped
condensate can be obtained by assuming v?.x; y; t/ D ıv?.x; y/ exp.�i!t/Cc.c.,
n2.x; y; t/D n2G.x; y/C Œın2.x; y; t/ exp.�i!t/Cc.c.]. Equations (59) and (60)
are then simplified as

�M!2ın2.x; y/ D r? � fn2G.x; y/r?
�
�0
2D.n2G.x; y//ın2.x; y/

�g: (62)

To solve (62), it is convenient to introduce the polar coordinates x D r cos � and
y D r sin � . Then (62) can be written as the form
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	.1� Qr2/
�
@2

@Qr2 C 1

Qr2
@2

@�2

	
ı Qn2

�


2.2	 � 1/Qr � 	.1� Qr2/1Qr

�
@

@Qr ı Qn2 C �
2!2=!2z � 4.	 � 1/

�
ı Qn2 D 0; (63)

with ı Qn2 D ın2=n2G.0/, and Qr D r=R?. Solving (63) we obtain all eigenvalues and
eigenfunctions of Q2D collective excitations

!2 D !2?
�
2n2	 C n.2jmj	 � 2C 4	/C 2jmj	 � jmj C 2.	 � 1/� ; (64)

ı Qn2.r; �/ D C r jmjeim�F.�n; 2C jmj � 1=	 C n; jmj C 1; .r=R?/2/ (65)

with nD 0; 1; 2 : : : and mD 0; 1; 2 : : :, where C is a constant and F is hypergeo-
metric function. Notice that when 	 D 1, our general result recover that obtained by
Ho and Ma for the BEC limit [82]. Again the lowest eigenmode (n D 0;m D 0) is
not allowed because this mode has pure imaginary oscillating frequency for 	 < 1.
Like in the Q1D case, for a given normal mode the magnitude of the eigenfrequency
in the BEC regime is larger than that in the BCS regime.

3 Nonlinear Excitations and Their Interaction

Solitons are localized wave packets arising from the balance between dispersion (or
diffraction) and nonlinearity [83], and can be generally classified as being either
dark or bright, relying on the details of effective nonlinearity. A dark soliton is
a notch in ambient background with an associated phase slip across the notch,
in contrast to a bright soliton which represents a peak in intensity. Both dark
and bright solitons in trapped ultracold Bose gases have been studied intensively
both experimentally and theoretically [84–93]. In particular, reduction perturbation
method is successfully used to the study of 1D and high-dimensional solitons in
BEC [94–97].

The experimental availability of superfluid Fermi gases provides an excellent
opportunity to study soliton excitations in fermonic pair condensates, which may
advance atomic optics conceptually, and more importantly, should be different
from its bosonic counterpart, resulting from a different statistical property and a
strong increase in interatomic interaction via Feshbach resonance, by which soliton
properties can also be manipulated in a controllable way. In contrary to the intensive
works on the linear collective excitations, up to now the nonlinear behavior of
collective modes in superfluid Fermi gases is less explored. The work by Antezza
et al. [98] investigated possible dark solitons in a superfluid Fermi gas along the
BCS-BEC crossover (The dynamic evolution of dark solitons is studied by using
BdG equations. See [99, 100]). However, in that work only static dark soliton
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solutions are numerically provided and no dynamical behavior of the dark solitons is
taken into account. In this section, we give a description of two works [49,50] where
dark and bright solitons in superfluid Fermi gases are predicted. In addition, we
also give a simple introduction on frequency shifts and mode coupling of collective
excitations in superfluid Fermi gases [46].

3.1 Dark Soliton Excitations in Q1D Superfluid Fermi Gases

3.1.1 Q1D Approximation and Phonon Spectrum

In [49], a detailed investigation is carried out on the dynamics of the dark solitons
excited in a Q1D superfluid Fermi gas in the BCS-BEC crossover. Starting from
the superfluid order-parameter equation and using a method of multiple-scales, a
Korteweg-de Vries (KdV) equation is derived for (shallow) dark-soliton excitations
under Q1D and long wavelength approximations. The results show that the dark
solitons in the superfluid Fermi gas display very different dynamic characters in
different superfluid regimes. Furthermore, the head-on collision between two dark
solitons is investigated by means of the Poincare-Lighthill-Kuo (PLK) method,
phase shifts due to the collision is shown to have interesting features along the BCS-
BEC crossover.

The GGP equation (7) (when the subscript “s” is omitted) can be written into the
following form

@n

@t
C „
M

r � .nr˚/ D 0; (66)

„@˚
@t

C �.n/C M

2

�
!2?.x2 C y2/C !2z z2

�C „2
2M



.r˚/2 � 1p

n
r2

p
n

�
D 0:

(67)

We pay our attention to nonlinear excitations in a Q1D condensate. Physically, the
Q1D condition implies

a? � l0; „!z � �.n/ � „!?; (68)

where l0 D „=Œ2M�.n/�1=2 is healing length. Under such condition we have: (i)
The energy-level spacing for the motion of fermionic atom pairs in the transverse
directions exceeds largely the interaction energy between the atom pairs. Thus at
sufficiently low temperature the motion of atom pairs in the transverse directions
is essentially frozen and governed by the ground-state wave function (zero-point
oscillation) of corresponding harmonic-oscillator potential. (ii) Because of the
strong confinement in the transverse directions, an excitation can propagate only
in the axial direction, and hence the superfluid velocity has only z-component
(i.e. ˚ D ˚.z; t/ /.
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For convenience, we introduce the dimensionless variables defined by
.x0; y0; z0/ D .x; y; z/=a? , t 0 D !?t , and n0 D n=.Na�3? /. Then (66) and (67)
are reduced into the dimensionless form

@n

@t
C r � .nr˚/ D 0; (69)
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p
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�
D 0; (70)

with � D !z=!? � 1, U0 D 2�0

„!?

�
�

N

a3
?
n0

�	
, and

R
dr nD 1. Notice that primes

are omitted in the above equations.
According to the above arguments we set

p
ns D G0.x; y/ F.z; t/; ˚s D

��Gt C�.z; t/, where G0.x; y/ D exp
��.x2 C y2/=2

�
=
p
� is normalized ground

state wavefunction of the 2D harmonic oscillator with the potential .x2 C y2/=2,
and �G is dimensionless ground-state chemical potential of the condensate. Then
after an integration over radial coordinates x and y (69) and (70) become
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2

@2F

@z2
D 0; (72)

with I D 1= Œ�	 .	 C 1/�. The ground state solution of (71) and (72) reads � D
constant, F.z/ D Œ.�g � 1� �2z2=2/=.U0I /�1=2	 , �g D 1C .G0=G1/

2	=.2C	/, with
G0 D �� .1=	 C 3=2/.U0I /

1=	 and G1 D � .1=	 C 1/.2�/1=2.
The linear sound wave propagation in the system can be obtained by neglecting

the trapping potential in the z-direction and assuming F.z; t/ D F0 C f .z; t/,

with F0 D �
.�g � 1/=.IU0/

� 1
2	 characterizing the ground state and f describing

a small perturbation (the sound wave) excited in the system. Taking .f; �/ D
.f0; �0/ expŒi.kz � !t/�Cc.c., here k is wavenumber and ! is frequency, (71) and
(72) gives rise to the Bogoliubov phonon spectrum

! D k

2

h
k2 C 4	U0IF

2	
0

i1=2
; (73)

Thus the sound speed is given by c D .	U0I /
1=2F

	
0 .

3.1.2 KdV Equation and Dark Soliton Excitations

For weak-nonlinear, long wavelength excitations, one can apply the standard method
of multiple-scales [101] to solve (71) and (72). For the long cigar-shaped trap (i.e.
� � 1), one expects the variation of the order parameter along the z-direction is
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slow. As a first step one can take � as zero to make an analytical approach possible.
The effect of non-zero � is taken into account in numerical simulation.

Introducing the multi-scale variables � D  .z � ct/ and � D 3 t , where  is a
small parameter representing the relative amplitude of the excitations and c is sound
speed, and making the asymptotic expansions

F D F0 C 2f .0/ C 4f .1/ C � � � ; (74)

� D  �.0/ C 3 �.1/ C � � � ; (75)

Equations (71) and (72) are transferred into the following form

c
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�.j / D ˛.j /; (76)

2	 U0IF
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0 f

.j / � cF0 @
@�
�.j / D ˇ.j /; (77)

where explicit expressions of a.j / and ˇ.j / are lengthy and omitted.
At the lowest-order .j D 0/, one obtains �.0/ D .2c=F0/

R
d�f .0/, with f .0/

being a yet to be determined function. In the next order (j D 1), one obtains the
KdV equation @f .0/=@� C Œ.2 C 	/c=F0�f

.0/@f .0/=@� � .1=8c/@3f .0/=@�3 D 0,
which can be written as

@
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@Z
� 1

8c

@3F1

@Z3
D 0 (78)

after returning to original variables, where F1 D 2f .0/ and Z D z � ct .
Equation (78) has the single-soliton solution

F1 D �A0 sech2
� z � Vst � z0

W

�
; (79)

where A0 and z0 are positive constant, Vs D c Œ1 � .2C 	/A0=.3F0/� and
W D f3F0=Œ.4 C 2	/c2A0�g1=2 are propagating velocity and spatial width of the
soliton, respectively.

The phase of the order parameter under the first-order approximation is given by

˚1.z; t/ � �.0/ D �



6A0

.2C 	/F0

�1=2
tanh

�
z � Vst � z0

W

	
: (80)

Consequently, exact to the first-order approximation the order parameter of the
condensate has the form
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Fig. 4 Axial density profile n.z; t / D R R
dx dyj�.x; y; z; t /j2 (normalized by n1 D F 2

0 ) of the
dark soliton as a function ofZ1 	 z�Vst�z0 and the interaction parameter �0. The dotted, dashed,
dot-dashed, and solid lines correspond to �0 D �1 (BCS regime), 0 (unitarity limit), 1 (BEC
regime), and 5 (BEC limit), respectively. The inset shows the corresponding phase function ˚1

�.x; y; z; t/ D 1p
�
F0



1 �D0sech2

� z � Vst � z0
W

��
(81)

� exp



�1
2
.x2 C y2/� expŒi.��gt C˚1.z; t//

�
;

which is a dark soliton with the graynessD0 D A0=F0.
Consider a 6Li Fermi gas confined in a highly elongated trap with !? D 2� �

3; 000Hz and !z D 2� Hz. In order to satisfy the Q1D condition in the whole BCS-
BEC crossover, we choose N D 80. The reference Fermi energy is chosen as that
of trapped, non-interacting Fermi gas, i.e. EF D „2k0F 2=.2m/ D „.6N!2?!z/

1=3,

and hence 1=k0F D 0:7 �m and n0 D k0F
3
=.3�2/ D 5 � 1022 cm�3.

Figure 4 shows the axial density profile n.z; t/ D R R
dx dyj�.x; y; z; t/j2

(normalized by the background density n1 D F 2
0 ), as a function ofZ1 D z�Vst�z0

and the interaction parameter �0 when the dark soliton solution (81) (withD0 D 0:2)
is excited in the system. The dotted, dashed, dot-dashed, and solid lines correspond
to �0 D �1 (BCS regime), 0 (unitarity limit), 1 (BEC regime), and 5 (� BEC
limit), respectively. The inset shows the corresponding phase function ˚1 given by
(80). We see that the spatial width of the dark solitonW is very different in different
superfluid regimes. Generally, the value of W in the BCS side is smaller than that
in the BEC side; it increases as the interaction parameter �0 increases, and becomes
maximum in the BEC limit. The main physical reason for the narrower dark soliton
width (and also for the faster propagating velocity) in the BCS side than that in the
BEC side is due to the fact that the interaction energy between particles in the BCS
side is larger than that in the BEC side. It should be pointed out that for fixedD0, the
phase difference �˚1 D ˚1jZ1D�1 � ˚1jZ1D1 is different for different �0. For a
quantitative comparison, in Table 3 we have listed the values of the soliton widthW ,
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Table 3 Values of the dark soliton width W , propagating velocity Vs , and the phase difference
�˚1 for the grayness D0 D 0:2 in several different superfluid regimes

BEC limit BEC regime Unitarity BCS regime

�0 D 1=.k0F as/ 5 1 0 �1

W .�m/ 4.8 2.6 1.9 1.6
Vs .mm=s/ 1.4 2.5 3.7 4.5
�˚1 1.26 1.25 1.34 1.36

propagating velocity Vs , and the phase difference�˚1 for the graynessD0 D 0:2 in
several different superfluid regimes. We see that the soliton has generally the spatial
width (propagating velocity) of order several �m (mm s�1).

Numerical simulation on the dark soliton propagation in the presence of the
axial trapping potential (i.e. � ¤ 0) has been carried out to check the analytical
prediction. For convenience of the simulation, we define a set of new dimensionless
variables F.z; t/ D Œ!zn

0a3?=.!?N/�1=2�.s; �/, t D .2!?=!z/� , z D .!?=!z/s,
and ˚1.z; t/ D �.s; �/. Then (71) and (72) are transformed into
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with � D 4�0!
	�1
z =Œ„.	 C 1/.�!?/ 	 �.

The ground state solution corresponds to @=@� D 0, � D constant, and � D
�0. From (82) we have

h
�d2=ds2 C s2 C ��

2	
0

i
�0 D .2!?=!z/.�g � 1/�0. An

imaginary time propagation method [102] is used to solve this equation, with the
result represented by dotted lines presented in Fig. 5. For comparison, the ground
state profile from approximated analytical (TFA) result is also plotted by solid lines.
Panels (a), (b), (c), (d) are for the cases �0 D �1 (BCS regime), �0 D 0 (unitarity
limit), �0 D 1 (BEC regime), and �0 D 5 (BEC limit), respectively. We see that the
profile of �0 broadens gradually from the BEC side to the BCS side, with increasing
size of the condensate. The reason of the flatten condensate profile and the large
size in the BCS regime is due to the stronger interaction energy than that in the BEC
regime. Additionally, we see that the TFA is a nice approximation in the BCS side,
but it becomes a poor one in the BEC side, especially in the BEC limit.

The time evolution of dark soliton in the BCS-BEC crossover including the axial
trapping potential is investigated numerically [49]. Such study is necessary because
we need to know how the axial trapping potential affects the propagation dynamics
of the dark soliton. On the other hand, in realistic ultracold Fermi gas experiments,
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a

c

b

d

Fig. 5 Comparison of the ground state profiles between the result obtained by the numerical
simulation (dotted lines) and that from analytical solution under TFA (solid lines). Panels (a),
(b), (c), (d) are for the interaction parameter �0 D 5, �0 D 1, �0 D 0, and �0 D �1, respectively

the axial trapping potential always exists. For this aim, we numerically integrate (82)
and (83) by using the dark soliton solution obtained above as an initial condition.
In the new variables introduced in (82) and (83), the dark soliton solution given by
(79) and (80) takes the form

�ss.s; 0/ D �0

�
1 �D0sech2



�
	
0 .s � s0/
$

�
; (84)

�ss.s; 0/ D �
�
6D0

2C 	

	1=2
tanh



�
	
0 .s � s0/

$

�
; (85)

where $ D .!?=!z/
.	�1/=2Œ3�	 .	 C 1/„!?=.4	.2C 	/D0�

0/�1=2, and s0 is the
initial soliton position.

Shown in Fig. 6 is the result of the numerical simulation for the propagation of the
dimensionless soliton amplitude and phase (with grayness D0 D 0:1) as functions
of the dimensionless time � and distance s along the axial direction. In the figure,
panels (a), (b), (c), and (d) are for the interaction parameter �0 D 5 (BEC limit),
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Fig. 6 Numerical result on the propagation of relative soliton amplitude �0 � � (with D0 D 0:1)
as a function of the dimensionless time � and distance s. Panels (a), (b), (c), (d) are for �0 D 5,
�0 D 1, �0 D 0, �0 D�1, respectively; panels (e)–(h) are results for corresponding soliton phase �

�0 D 1 (BEC regime), �0 D 0 (unitarity limit), and �0 D �1 (BCS regime),
respectively; panels (e), (f), (g), and (h) are their corresponding soliton phase �.
Notice that for a better illustration the vertical coordinate in the panels (a)–(d) is the
relative amplitude �0 � �.

From Fig. 6 we see that there are several interesting features for the dark soliton
propagation in the BCS-BEC crossover in the presence of axial trapping potential.
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(i) In all superfluid regimes the relative amplitude of the dark soliton increases
when the soliton approaches to the boundary of the condensate. (ii) The relative
amplitude �0�� changes drastically when �0 passes over the crossover. In the BEC
(BCS) side, �0 � � is large (small). (iii) The soliton width is much narrower in the
BCS regime than that in the BEC regime. (iv) The soliton generates a small, but
obvious radiation during propagation, especially when it approaches the boundary
of the condensate. The radiation is in fact small-amplitude sound wave and hence
propagates faster than the dark soliton. (v) The travelling velocity of the soliton
in the BCS regime is much larger than that in the BEC regime. These important
differences in the dark soliton propagation dynamics are obvious manifestations of
different physical properties in different superfluid regimes.

3.1.3 Head-On Collisions Between Two Dark Solitons

Collisions of solitons can be divided int two classes. The first one is overtaking
collision and the second one is head-on collision. The overtaking collision of the
dark solitons in the BCS-BEC crossover can be studied by using the two-soliton
solution of the KdV equation, which is omitted here. Here we investigate a head-on
collision between two dark solitons traveling from opposite directions, which can
not be described by a single KdV equation. For the case of � D 0, such collision
can be studied analytically by using the PLK method [101] to solve (71) and (72).
Anticipating that there are phase shifts (i.e. shifts of soliton central positions) due
to the collision, we introduce the asymptotic expansion ((74) and (75)) and the new
coordinate variables

� D .z � cRt/C 2P .0/.�/C � � � ; (86)

� D .z C cLt/C 2Q.0/.�/C � � � (87)

to reflect the change of travelling trajectories of the solitons, with P .0/.�/, Q.0/.�/,
� � � being yet to be determined functions. In order to obtain a valid asymptotic
expansion, the right and left propagating wave speeds should be expanded as
cR D c C 2R1 C � � � and cL D c C 2L1 C � � � . Under these expansions (71)
and (72) become
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�.j / � 2c2f .j / D N.j /; (89)

where explicit expressions forM.j / and N.j / .j D 0; 1; 2; : : :/ are omitted.
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The first order (j D 0) solution of the (88) and (89) reads

f .0/ D a.0/.�/C b.0/.�/; (90)

�.0/ D 2c

F0
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a.0/.� 0/d� 0 �

Z �

�1
b.0/.� 0/d� 0

!
; (91)

where a.0/.�/ (the wave travelling to the right) and b.0/.�/ (the wave travelling to
the left) are yet to be determined functions. A solvability condition requires c Dq
	UIF

2	
0 (i.e. the linear sound speed).

At the following order (j D 1), we obtain the equations for a.0/.�/, b.0/.�/,
P .0/.�/, and Q.0/.�/:

�R1 @a
.0/

@�
C .	 C 2/c

F0
a.0/

@a.0/

@�
� 1

8c

@3a.0/

@�3
D 0; (92)

�L1 @b
.0/

@�
C .	 C 2/c

F0
b.0/

@b.0/

@�
� 1

8c

@3b.0/

@�3
D 0; (93)

@P .0/

@�
D .2 � 	/

2F0
b.0/.�/; (94)

@Q.0/

@�
D .2 � 	/

2F0
a.0/.�/; (95)

with R1 D �.	 C 2/cA0=.3F0/ and L1 D �.	 C 2/cB0=.3F0/, where A0 and
B0 are two positive constants. Equations (92) and (93) are two KdV equations with
travelling-wave coordinates � and �, respectively. Thus we have soliton solutions
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Then using (94) and (95) we immediately obtain
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By (98) and (99) we have the trajectories of the soliton a0.�/ (denoted by A) and
the soliton b0.�/ (denoted by B) given respectively by

� D .z � cRt/ � 2
2 � 	
2c



3B0

2.	 C 2/F0

� 1
2

Œtanh �B.�/C 1�CO.4/;

(100)
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� 1
2

Œtanh �A.�/ � 1�CO.4/;

(101)

with cR D c.1� 2.	 C 2/A0=.3F0//CO.4/, cL D c.1� 2.	 C 2/B0=.3F0//C
O.4/, �A.�/ D Œ2.	 C 2/c2A0=.3F0/�

1
2 �, and �B.�/ D Œ2.	 C 2/c2B0=.3F0/�

1
2 �.

From (100) and (101) we can easily estimate the soliton phase shifts due to the
head-on collision. Assume that the solitons A and B are far from each other at the
initial time .t D �1/; i.e., soliton A is at � D 0; � D �1, while soliton B is at
� D 0 and � D C1, respectively. After the collision .t D C1/, the soliton A (B)
is far to the right (left) of soliton B (A), i.e., soliton A is at � D 0; � D C1 and
soliton B is at � D 0; � D �1. Thus after the collision their corresponding phase
shifts�A and �B are given by

�A D .z � cRt/j�D0;�DC1 � .z � cRt/j�D0;�D�1

D 2
2 � 	

c



3B0

2.	 C 2/F0

� 1
2

; (102)
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2.	 C 2/F0

� 1
2

; (103)

respectively. We see that the phase shift of the soliton A (B) depends on the
square root of its grayness B0=F0 .A0=F0/. Furthermore, the phase shifts are
	 -dependent and hence they are different in different superfluid regimes in the BCS-
BEC crossover. Obviously, there is a relation between the phase shifts of the two
solitons, i.e.

�A

.B0=F0/1=2
D �B

.A0=F0/1=2
� 2�; (104)

where

� D 2� 	

c



3

2.	 C 2/

� 1
2

; (105)

is a relative phase shift.
In order to test the above analytical predictions we have made a numerical

simulation on the head-on collision between two dark solitons in the presence
of the trapping potential in the axial direction. Figure 7 shows the result of the
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Fig. 8 Relative colliding
phase shift (given by (105))
as a function of the
interaction parameter �0. The
solid circles are from
numerical simulations, while
the solid line is by the
theoretical prediction

simulation in the BCS-BEC crossover, which is based on the (82) and (83) by taking
the analytical solution given above as an initial condition. In the figure, the relative
amplitude �0 � � is plotted as a function of � and s. Panels (a), (b), (c), and (d)
are for �0 D 5 (BEC limit), �0 D 1 (BEC regime), �0 D 0 (unitarity limit), and
�0 D �1 (BCS regime), respectively. In all panels the grayness of the soliton A (B)
is chosen as DA

0 D 0:08 (DB
0 D 0:15). For a clear illustration, the initial positions

of the soliton A (denoted by sA) and the solitonB (denoted by sB ) in panels (a), (b),
(c), and (d) are chosen as (sA D �5, sB D 5), (sA D �9, sB D 9), (sA D �13:5,
sB D 13; 5), and (sA D �17, sB D 17), respectively. The other system parameters
are the same as those used in Fig. 5. One can see that in each panel the two dark
solitons, one (the soliton A) propagating to the right and the other one (the soliton
B) propagating to the left, approach each other, collide, and then separate away.
In various superfluid regimes in the BCS-BEC crossover, two-soliton collisions are
nearly elastic.

However, the two-soliton collisions may result in phase shifts. In Fig. 6, we have
shown the numerical result of the relative colliding phase shift � as a function of
the interaction parameter �0 (the solid circles). We see that the relative phase shift
due to the head-on collision is a non-monotonic function of �0. The phase shift is
generally large (small) in the BEC (BCS) regime, but it displays a drastically change
near the unitarity point �0 D 0. The result is fairly in agreement with the analytical
prediction given by the formula (105) (shown by the solid line in Fig. 8).

3.2 Bright Soliton Excitations in a Cigar-Shaped 3D
Superfluid Fermi Gas

Notice that the Q1D condition (68) requires N must be small and is usually hard
to realize in present Fermi-gas experiment. In the Q1D system the dispersion term
in the Bogoliubov excitation spectrum comes from the quantum pressure, which
results in the formation of dark solitons through the balance between interaction-
induced nonlinearity and quantum pressure-induced dispersion. However, up to now
all superfluid Fermi gases realized experimentally, although being cigar-shaped,
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violate the Q1D condition (68). It is natural to ask the following question: Is it
possible to form a soliton in such cigar-shaped, but 3D, superfluid Fermi gas with
large particle number?

A definite answer to the above question is given in [50]. It is shown that it is
indeed available to generate a soliton in a cigar-shaped, 3D superfluid Fermi gas
when the Q1D condition (68) is breakdown. However, the soliton obtained in this
case is not a dark but bright one propagating on a continuous background of the
condensate. Different from the subsonic dark soliton obtained in Q1D the bright
soliton is supersonic one, i.e. its propagating velocity is larger than the linear sound
speed. The formation of such supersonic bright soliton is due to the balance between
inter-particle interaction and a waveguide-like dispersion and hence a large particle
number of the system is needed, which is explained in detail below.

The linear collective excitations in a cigar-shaped 3D superfluid Fermi gas
has been described in Sect. 2.2.3. To investigate long-wavelength, weak nonlinear
excitations for large N , we use the superfluid hydrodynamic equations (4) and (5).
In cylindrical coordinate system, the superfluid velocity vs D .vr ; v'; vz/ satisfy

@n

@t
C 1

r

@

@r
.r nvr /C 1

r

@

@'

�
nv'

�C @

@z
.nvz/ D 0; (106)
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M.v2r C v2' C v2z /C �.n/C Vext.r; z/

�
D 0: (109)

For simplicity we focus our effort here to excitations with cylindrical symmetry, i.e.
@=@' D 0 and v' D 0. For a weak nonlinear sound wave, its linear correspondence
is the mode .nr ;m/ D .0; 0/ with vanishing wavenumber k. In order to make an
analytical approach available, we assume the trapping potential is z-independent,
i.e. Vext.r; z/ D Vext.r/. The effect of axial inhomogeneity will be considered in later
numerical simulation. Introducing the slow variables � D .z � ct/ and � D 3t ,
where  is a small parameter representing the relative amplitude of the excitation
and c is an undetermined parameter, and making the asymptotic expansions n D
neq C2 n.0/C4 n.1/C� � � , vr D 3 u.0/C5 u.1/C� � � , vz D 2 w.0/C4 w.1/C� � � ,
(106)–(109) become
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where �0 � @�.n/=@njnDneq . Explicit expressions of ˛.l/, ˇ.l/ and 	.l/ (l D
0; 1; � � � ) are omitted here. For convenience, we convert (110)–(112) into the
following form

�0n.l/ D Œ�0n.l/�jrD0 C
Z r

0

dr ˇ.l/; (113)

1

r

@

@r

�
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C neq	.l/
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; (114)
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Z
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1

Mc
Œ�0 @n.l/

@�
� 	.l/�: (115)

Equations (113)–(115) can be solved order by order. At the lowest order .l D 0/,
from (113) we obtain n.0/.r; �; �/ D .�0jrD0=�0/F.�; �/, where �0jrD0=�0 D .1 �
r2=R2?/1=	�1 and F.�; �/ D n.0/.0; �; �/ is an envelope function to be determined
yet. By (115) we have w.0/ D �0jrD0=.Mc/F.�; �/.

Integrating (114) (for l D 0) from 0 to r , we obtain
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Because neqjrDR?
D 0, by (116) we obtain
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which yields the sound speed
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agreeing exactly with (50) and also with that obtained by Capuzzi et al. [103] by
using a different approach.

From (116) we obtain u.0/ D � Œ	rc=.2F0/�@F=@�, where F0 Dn0.�g=2�
0/

1
	

is central number density in the ground state. With the above solution, in the next
order equation (114) for l D 1 has the form
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Integrating (118) from 0 to R?, we obtain the envelope equation for F.�; �/, i.e.
@F=@� C �1F @=@� C �2@

3F=@�3 D 0, with �1 D c.3	 C 2/=.2F0/ and �2 D
	3R2?c=Œ8.1 C 	/.1 C 3	 C 2	2/�. Letting G D 2F and using the definitions of
� D Z and � D 3t , the envelope equation becomes

@G

@t
C �1G

@G

@Z
C �2

@3G

@Z3
D 0; (122)

with Z D z � ct . Equation (122) is the KdV equation. Its single soliton solution
reads

G D A0 sech2
� z � Vsolt � z0




�
(123)

with Vsol D cŒ1C .3	C2/A0=.6F0/�, and 
 D R?f3	3F0=Œ.1C	/.1C3	C2	2/

.3	 C 2/A0�g1=2, where A0 is a positive constant and z0 is an arbitrary real constant
depending on initial exciting condition.

Based on above results we obtain
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when exact to the leading-order approximation. We see that the soliton obtained
is indeed a bright one that propagates on a condensate background. This is quite
different from the result in Q1D case where the soliton obtained is a dark one [49].
In addition, the bright soliton is supersonic because its propagating velocity is larger
than the sound speed c, which is also different from the dark soliton in Q1D case
where the soliton obtained is a subsonic one [49].

The physical reason for the occurrence of the bright soliton can be understood
as follows. From the Bogoliubov spectrum (49) we know that the coefficient of k3

(when making an expansion around k D 0) is negative, which is different from
that obtained for Q1D case (see (73)) where the coefficient of k3 is positive. The
difference between the sign of the k3-coefficient for the present cigar-shaped 3D
system and that of the Q1D system is due to the different origin of dispersion. In
the Q1D case the dispersion comes from quantum pressure, whereas in the present
cigar-shaped 3D case the dispersion results from the TF distribution of ground-state
wavefunction in the radial direction, which induces a dispersion for each eigenmode.
It is just due to these different dispersion characters that make subsonic dark solitons
occur in the Q1D system but the supersonic bright solitons possible in the present
3D system [50].

To give a quantitative picture for the feature of the bright soliton predicted above,
in Table 4 we have we presented some numerical values of velocity Vsol, width 
 of
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Table 4 Numerical values of the bright soliton velocity Vsol, axial
width 
 , and condensate radii R? and Rz for A0=F0 D 0:1 in several
different superfluid regimes

BEC limit BEC regime Unitarity BCS regime

�0 D 1=.k0F as/ 5 1 0 �1

Vsol .mm=s/ 12 17 20 24

 .�m/ 3.5 5 6 6.5
2Rz.�m/ 198 284 397 467
R?.�m/ 5 7 10 12

the bright soliton in terms of Duke experimental parameters [80]. The condensate
radii R? and Rz are also given. We see that the bright soliton has different velocity
and width in different superfluid regimes. When passing from the BEC to the BCS
regimes, the propagating velocity and axial width of the soliton increases. This is
contrast to the Q1D dark solitons, for which the soliton width in the BCS regime is
smaller than that in the BEC regime.

For comparison, in Fig. 3 we have plotted the propagating velocity of the bright
soliton for the present cigar-shaped 3D system (the dotted line), and that of the
dark soliton for the Q1D system given (dotted-dashed line). We see clearly that the
former is supersonic and the latter is subsonic.

Because the KdV equation (122) is a completely integrable model, its soliton
solutions are stable to 1D perturbations. Notice that, when obtaining the KdV
equation (122), weak dispersion and weak nonlinear approximations have been
made and the axial trapping potential, i.e. M!2z z2=2, is not taken into account.
However, this may be not the realistic case of ultracold Fermi gas experiments,
where for large-amplitude and narrow-width collective excitations and for a long
propagating distance, effects originated from high-order dispersion, high-order
nonlinearity, and axial inhomogeneity may play significant role, and hence (these
structural perturbations) will destroy the integrability of the KdV equation. For
weak dispersive and weak nonlinear excitations we discussed here, the instability of
solitons is mainly due to the axial inhomogeneity contributed by the axial trapping
potential.

To show the influence of the axial trapping potential on the supersonic bright
soliton predicted above, a numerical simulation starting from the hydrodynamics
equations (106)–(109) by using the bright soliton solution (124)–(126) as an initial
condition has been carried out [50]. The system parameters are chosen as N D
1 � 105, !? D 2� � 3; 000Hz, !z D 2� � 100Hz, and A0=F0 D 0:2. The
result of the simulation for three different regimes are illustrated in Fig. 9. Panels
(a), (b) and (c) in the figure correspond to bright soliton propagation in the BEC
(1=.k0F as/ D 5), unitarity limit (1=.k0Fas/ D 0), and BCS (1=.k0F as/ D �1)
regimes, respectively. One can observe the following propagation features: (i) The
bright soliton is fairly stable near the center of the condensate, but it becomes
broadened and radiates small continuous waves when moving to the boundary of the
condensate. This effect contributes mainly from the weak axial trapping potential
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that confines the condensate in the axial direction, not considered in the theoretical
analysis given above. (ii) The soliton in the BCS regime is more stable than in the
BEC regime. The reason is that, for the same N , !? and !z the axial length of
the condensate in the BCS regime is much larger than that in the BEC regime, and
hence the axial trapping potential plays less important role than in the BCS regime.
(iii) During propagation, the bright soliton radiates a small dip that propagates in
opposite direction. This phenomenon can be understood as follows. Because the
hydrodynamics equations (106)–(109) allow two eigen sound-wave modes, one
propagates with velocity c and another one propagates with velocity �c. Thus an
initial disturbance of the system (106)–(109), though being a soliton solution of
the KdV equation (122), will generally evolve into two parts that having opposite
propagating directions. (iv) In different superfluid regimes the supersonic bright
soliton and associated radiation has different amplitude and propagating velocity.
This is a direct reflection of different physical properties of the superfluid Fermi gas
that can be used to distinguish different superfluid regimes of the system.

Except for the above works, we also studied collective modes and free expansions
of Q1D and Q2D ultracold Fermi gases in the BCS-BEC crossover by using a time-
dependent variational analysis. We solved a superfluid order parameter equation by
employing a time-dependent variational method. We took a trial wave function with
the form of hybrid Gaussian-parabolic type, which not only reflects low-dimensional
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character of the system but also allows an essentially analytical approach for the
problem. We presented Q1D and Q2D criteria that are valid in various superfluid
regimes and show clearly the relation between the maximum condensed particle
number and the parameters of trapping potential as well as atom-atom interaction.
We demonstrated that, due to small particle number in Q1D and Q2D condensates,
the contribution to oscillating frequencies of collective modes by the quantum
pressure in strong confinement direction is significant and hence a Thomas-Fermi
approximation can not be used. We also showed that the free expansion of Q1D and
Q2D superfluid Fermi gases in strong confinement direction is much faster than that
in weak confinement direction [44].

In addition, we investigated the frequency shift and mode coupling of the
collective modes of superfluid Fermi gases in the BCS-BEC crossover based on
a hydrodynamic approach. We solved the superfluid hydrodynamic equations that
describe the time evolution of fermionic condensates in the BCS-BEC crossover
and calculated explicitly the frequency shifts of the collective modes induced
by nonlinear effects using the Lindstedt-Poincaré method. The result shows that
the frequency shifts display different features in different superfluid regimes. We
studied the second harmonic generation of the collective modes under a phase-
matching condition, which can be fulfilled by choosing appropriate parameters of
the system. The analytical results obtained are checked by numerical simulations
and good agreement is found. For details, see [46].

4 Conclusions and Perspectives

We have presented the recent theoretical progress made in Shanghai on the collective
excitations in superfluid Fermi gases in the BCS-BEC crossover. All linear eigenval-
ues and eigenfunctions of 3D traps with spherical and axial symmetries have been
provided and compared with experiments. Corresponding results beyond mean-field
and TF approximations are also given. Furthermore, the linear excitations and the
sound propagation in a cigar-shaped 3D superfluid Fermi gas have been described
and the eigenvalue problems of linear collective excitations for Q1D and Q2D
systems have been solved exactly. In addition, nonlinear excitations, including the
dark solitons in a Q1D condensate and the bright solitons in a cigar-shaped 3D
condensate have been predicted.

Although there have been tremendous progress on the understanding of collective
excitations in ultracold Fermi atomic gases in the BCS-BEC crossover in last years,
many important topics remain to be addressed or investigated deeply, including
linear collective excitations in other external potentials (e.g. optical lattices), non-
linear (soliton) excitations in high-dimensional settings, shock waves and vortices,
and so on. These studies are useful for understanding the linear and nonlinear
properties of fermionic condensates and may guide experimental findings of the
various linear and nonlinear excitations in superfluid Fermi atomic gases in the
BCS-BEC crossover.
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Toward a Complex Systems Approach
to Information

G. Nicolis and C. Nicolis

1 Introduction

It is a great pleasure to dedicate this short note to our colleague and friend of 47
years Manuel Garcı́a Velarde, as a tribute to his brilliant contributions to science.

Manuel’s work spans a wide spectrum of subjects, from statistical mechanics
to the physics of fluids, interfaces, reaction–diffusion systems, neural dynamics
and, more recently, condensed matter physics in connection with the soliton-
mediated electric transport in lattices. In each case a common denominator is
present throughout this diversity, namely, nonlinearity-induced complex collective
behaviors conferring unexpected properties to the system of interest. Here we wish
to present some ideas on the connection between complex systems and information
theory, two concepts that have often be among Manuel’s preoccupations.

One of the principal features underlying the evolution of complex systems is the
multitude of the a priori available states. Clearly, the outcome of an evolution of
this kind comprises an element of unexpectedness, reflected by the ability of the
system to choose among several possible outcomes and the concomitant difficulty
of the observer to localize the actual state in state space on the basis of the data
that are available to him. A natural question to be raised is, then, to identify
quantities serving as measures of choice and unexpectedness, thereby providing
useful indicators of the complexity of the system at hand.

Now this question is reminiscent of a central problem of information and
communication theories, namely, how to recognize a signal blurred by noise.
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The point is that in any real world information source, living or mechanical, choice is
continuously exercised. Otherwise, the messages produced would be predetermined
and completely predictable and there would be no need for communication.
Corresponding to the choice exercised by the message source in producing the
message, there is an uncertainty at the level of the recipient of the message, which
is resolved only when the recipient examines the message. Clearly, the measures we
are looking for must increase with the amount of choice of the source, and, hence,
with the uncertainty of the recipient as to what message the source may produce or
transmit.

2 Information as an Emergent Property

A major result of information theory is that the information entropy [1, 2]

SI D �
NX
iD1

pi lnpi (1)

where pi is the probability of occurrence of state i , provides this measure as it
possesses all the desired properties that one could reasonably assign:

(i) It takes its largest value for pi D 1=N , implying that in the case of equiprob-
able states the uncertainty about the particular state actually realized—and
hence the amount of data necessary to resolve it—is the maximum one;

(ii) Adding an impossible event ˛; p˛ D 0, does not change SI ;
(iii) The information entropy SI .A;B/ of a composite system AB equals the

entropy of subsystem A plus the conditional entropy SI .BjA/ of subsystem
B provided that subsystem A is in a given state.

In fact, one can show that (1) is the only quantity possessing these properties.
The deviation of information entropy from its maximum Smax or, more appro-

priately, the quantity R D 1 � SI=Smax is referred to as redundancy of the signal.
Redundancy reflects the deviation from full randomness and contributes, clearly,
to reducing errors and thus enhancing predictability [3]. In an evolving system SI
and Smax are both depending on time, as new states are being created. It has been
conjectured that in biological evolution and in the evolution of languagesR globally
increases in time, in other words, that local disorder (measured by SI ) increases less
rapidly than the rate of appearance of new states (measured by the time derivative
of Smax).

To apply the above ideas to complex systems, and to use information entropy
as an indicator of complexity one needs to resort to a probabilistic approach [4].
The crux is in the concept of coarse graining—the mapping of the dynamics into
a discrete set of states. Depending on the case, these can be the states introduced
in connection with a mesoscopic level description based on the master equation; or
the phase space cells of a Markov partition involved in the mapping of deterministic
chaos into a symbolic dynamics. The procedure can even be carried out starting
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from the continuous description afforded by the Fokker–Planck equation. As an
example, consider a system that admits two simultaneously stable steady states.
Because of the transitions between states induced by the fluctuations, the system
will spend substantial amounts of time near each of these states. Let us introduce
a more abstract description in which the instantaneous state is labeled “0” or “1”,
according to whether the system is in the domain of attraction of the first or the
second stable steady state. An observer following the evolution at regular time
intervals by noticing the attraction basin in which the system is found will therefore
detect a sequence like 111001100010110: : : which provides a description in terms
of an alphabet involving only two “letters”, 0 and 1.

Conversely, we are entitled on the grounds of the above arguments to view
complex systems as information sources. Equation (1) allows then us to connect
information entropy with different evolution scenarios. Consider, for instance, the
universal phenomenon of bifurcation, one of the “elementary acts” of complexity.
Prior to bifurcation the system possesses a unique macroscopic state. In the absence
of internal fluctuations or environmental noise one has N D 1; p1 D 1 in the
notation of (1), hence SI D 0. Switching to the other side of the bifurcation
point one now has (in the case of the symmetric (pitchfork) bifurcation) two
equivalent macroscopic states. In the absence of fluctuations or noise this means
N D 2; p1 D p2 D 1=2, hence SI D ln 2. The presence of variability will modify
these results slightly by an amount of the order of the variance of the process, but the
essential point is that bifurcation entails a finite jump of SI plus a small correction
that can be discarded to the dominant order,

�SI D ln 2 (2)

This result is universal, as it holds for any dynamical system undergoing this type
of bifurcation [5, 6]. It can be extended to other types of bifurcations, including
bifurcations leading to periodic or to chaotic behavior. Notice that thermodynamic
quantities and other familiar purely macroscopic observables show no universal
trends across bifurcation.

On the basis of these results information may be viewed as an emergent property,
arising through an evolutionary process leading from the state of “no information” to
the state of “information”. Fluctuations are here the natural carriers of information,
as they allow the system to realize the crucial process of transition between the
available states. This suggests that it would be meaningful to revisit information
theory in the light of the progress in complex systems research.

3 Dynamical Entropies and Their Large Deviation
Properties

As a rule, an information source produces sequences of symbols. Since we are
concerned here primarily by complex systems as information sources, this means
that we are letting the underlying dynamics run for a certain amount of time, map the
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trajectory through the process of coarse-graining explained in Sect. 2 into a discrete
sequence of states, and inquire on the restrictions imposed by the dynamics on the
succession of symbols such as: constraints of word frequency, constraints of word
order or, more generally, “grammatical” rules of some sort.

To handle these situations we divide the message into blocks of symbols of
length n. This makes it possible to extend (1), corresponding essentially to an
entropy per symbol, and define the entropy per block of symbols or, equivalently,
the entropy associated to a portion of the system’s history over a window of length
n [1, 2, 4]:

Sn D �
X
i1:::in

Pn.i1 : : : in/ lnPn.i1 : : : in/ (3)

Here Pn.i1 : : : in/ is the probability to generate the particular sequence i1 : : : in and
the sum runs over all sequences compatible with the underlying rules. Its structure
depends crucially on the rules underlying the information processor. Suppose that
the rules amount to choosing a particular symbol out of an alphabet of, say,L letters
independently of the choice made in previous steps (for a two letter alphabet this
would be equivalent to tossing a fair coin). The number of all possible sequences of
length n would then be Nn D Ln D exp Œn lnL� and (3) leads to

Pn � exp Œ�n lnL�

Sn D n lnL (4)

As can be seen, the occurrence of each particular word is penalized exponentially
with respect to its length n, the rate of penalization being lnL. This is a direct con-
sequence of the adopted rules which lead to a combinatorial explosion, associated
with the proliferation of words of increasing length. Clearly, an information source
of this kind—to which one may refer as a Bernoulli processor—is not adequate for
generating complex structures.

Suppose next that the processor generates the sequences via a Markovian
stochastic process, such as in the mesoscopic level description of the fluctuations
afforded by a master type equation. One can prove then the following remarkable
property, known as the Shannon-McMillan-Breiman theorem [2, 4].

For sufficiently large n, all sequences C of length n can be separated into two
groups such that:

(i) The sum of probabilities of all the sequences of the first group is less than an
arbitrarily small prescribed positive number.

(ii) For every sequence C of the second group the quantity �.lnPn.C //=n differs
from h D limn!1 Sn

n
by an amount less than an arbitrarily small prescribed

positive number.

The first group is clearly a low probability group, whereas the second
one contains the sequences that are realized with a non-negligible probability.
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The Shannon-McMillan-Breiman theorem asserts that all sequences of this latter
type have approximately the same probability, given by

Pn � expf�Sng (5)

implying that their number is approximately

Nn � expfSng (6)

Relations like (5) and (6) are referred to as large deviation properties [7, 8].
Now due to the presence of correlations in a typical stochastic process, Sn is
always smaller that or equal to n lnL. In other words, with the exception of fully
uncorrelated sequences for large n the high probability group contains only a
negligible small part of all sequences of length n emitted by the source whose
number is

Nn;max � expfn lnLg
We thus arrive at the important conclusion that correlations and deviations from
equiprobability act like extremely efficient selectors of privileged sequences out of
the huge set of all possible random sequences. Such deviations can for instance
be realized if the system is not isolated but instead is put in contact with an
external environment. Such conditions can lead to nonequilibrium states that can
be sustained indefinitely because of the exchange of matter or energy between the
system and the external world. Nonequilibrium is therefore the natural environment
in which selection may take place.

In writing relations (5) and (6) we have assumed that the system of interest
was giving rise to a stochastic process defined on a discrete (actually finite) set of
states and characterized by the Markov property. In actual fact it turns out that these
remarkable relations are satisfied by the much wider class of ergodic, not necessary
Markovian processes.

4 Algorithmic Complexity Versus Physical Complexity.
Dynamical Systems as Information Sources

The information theory view of complexity holds that rather than being described
in qualitative terms, natural objects are represented as sequences of 0’s and 1’s
stored in the memory of a computer. Likewise, statements on how things are to
follow logically each other are expressed as computer programs and hence also as
sequences of 0’s and 1’s. One is thus gradually led to the view that natural laws are
algorithms implementable in the form of a computing program, that computes sets
of digits as an output starting with a reference set (the initial data) provided by the
experimental observations.
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In the above philosophy, an object is quite naturally deemed complex when
there is no short description of it. More precisely, the algorithmic complexity—also
referred as Kolmogorov–Chaitin complexity, C.K/—of an object in its digitalized
expression of binary sequence of lengthK , will be defined as the size of the smallest
computer program (measured again in number of bits) generating it, no matter how
slow this program might be [9, 10].

Let us give a few examples. Consider a binary sequence K data long displaying
an overall regularity, e.g. 100100100: : : Clearly, the message in it can be consid-
erably compressed. For instance, it could be transmitted to a computer by a very
simple algorithm “Print 100 ten (or 100, or a million, : : :) times”. The number of
binary digits K� in such an algorithm is a small fraction of K , and as the series
grows larger the algorithm size increases at a much slower rate such that K�=K
tends to zero asK tends to infinity. According to the definition this therefore implies
limited algorithmic complexity. Consider next the opposite limit of a sequence of
length K whose digits are set to 0 or to 1 depending on the outcome “heads” or
“tails” of a (fair) coin tossing game. Clearly, this sequence can be recorded or
transmitted only by reproducing it from beginning to end: its algorithmic complexity
K� is equal to its size K .

As it turns out, most of the sequences are incompressible and have a maximum
algorithmic complexity. How many? To answer this question one needs to compute
C.K/, and the quest for a result of this kind leads to a major surprise: there is no
general procedure for computing it in a finite time. Far from being a temporary
drawback related to the lack of sufficiently sophisticated mathematical techniques
this conclusion reflects, in fact, the deep concept of undecidability discovered by
Kurt Gödel in 1931: any formal system built on a set of axioms comprises statements
that cannot be confirmed or rejected on the sole basis of these axioms. Translated in
terms of computing this implies that there is no mechanical procedure allowing one
to know whether a computer program chosen at random will or will not be executed
in finite time. Gregory Chaitin reformulated this “halting problem” in terms of a
halting probability, ˝ and showed that ˝ is an uncomputable number that cannot
be compressed in any way whatsoever [10]. This “openness” in a field usually
considered to be the prototype of definiteness is not unlike the existence of an
unlimited, non-classifiable number of evolution scenarios of a complex system [4].

While algorithmic complexity captures certain features of natural complex
systems, in its basic philosophy it is fundamentally different from the complexity
one is concerned with in nature where one seeks to identify emergent patterns,
concerted behavior and evolution. True, full orderliness in the form of a complete
lack of variability is an extreme case of coherence in which the object is like a
fossil, and its behavior can hardly be characterized as complex. On the other hand,
the strong variability represented by a random sequence—a random noise—and the
concomitant lack of any form of correlations is another, equally non-representative
form of organization. In reality, physical complexity must somehow be sandwiched
between these two extremes, and thus should not be fully identified with algorithmic
complexity. The crux is the role of the dynamics and, in particular, the issue of
selection. Algorithmic complexity is insensitive to the time needed to accomplish a
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program (assuming that the latter will eventually halt). But in nature what matters is
to produce complexity as the system of interest evolves in real time. The probability
to produce a prescribed pattern/sequence out of the enormous number of the a priori
possible ones is usually exceedingly small. But in a dynamical system generating
complex behavior such states may be produced with probability one, being the
result of a physical mechanism built into the evolution law: the problem of selection
simply does not arise. In a way, under appropriate conditions dynamical systems
are capable of exploring their state space continuously thereby creating information
and complexity; at the same time they act like efficient selectors that reject the
vast majority of possible patterns/sequences and keep only those compatible with
the underlying dynamics. Furthermore, dissipation allows for the existence of
attractors that have asymptotic stability and thus reproducibility. It therefore seems
legitimate to state that algorithmic complexity is a static, equilibrium like concept
whereas physical complexity takes its full significance in a dynamic, nonequilibrium
context. To tackle physical complexity, one needs a nonequilibrium generalization
of classical information theory [11–13].

5 Conclusions

The ideas summarized in this note raise the legitimate question of definition
of complexity, beyond its computational aspects formalized by the concept of
the Kolmogorov–Chaitin complexity. Several attempts in this direction have been
reported in the literature [14, 15]. An interesting measure, on the grounds of its
relation to prediction, is the amount of information necessary to estimate optimally
conditional probabilities of the type W.inC1ji1 � � � in/ given the n-fold probabilities
Pn.i1 � � � in/ (cf. (3)). In a quite different vein one associates complexity to “value”
of some sort, for instance, the time required to actually retrieve a message from its
minimal algorithmic prescription. In this view a message is complex, or deep, if it
is implausible and can only be brought to light as a result of a long calculation [16].
This introduces the time element that is so conspicuously absent in the Kolmogorov–
Chaitin complexity. Alternatively, the complexity of a system in a certain state
is identified to the logarithm of the probability that this state has been reached
through a particular path from time step �n, in the past, to the present time zero.
While capturing certain aspects of physical complexity, in our view none of these
definitions/measures manages to fully encompass its multiple facets. The question,
how to define complexity is thus likely to remain open for some time to come. It
may even turn out to be an ill-posed one. Complexity does not reflect any built-in,
immediately recognizable, structure as is e.g. the case of nonlinearity. It is, rather,
a set of attributes springing unexpectedly into life from the laws of nature when
the appropriate conditions are met, raising in turn new issues and introducing new
concepts among which information plays a special role, constituting one of the basic
elements differentiating complexity research from traditional scientific disciplines
and conveying to it its specificity and originality.
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Information-Theoretical Complexity Analysis
of Selected Elementary Chemical Reactions

M. Molina-Espı́ritu, R.O. Esquivel, and J.S. Dehesa

1 Introduction

The application of complexity concepts in physical sciences has acquired increasing
interest over the last years. Since the definition of complexity is not unique,
its quantitative characterization has been an important subject of research and
it has received considerable attention [1–9]. For instance, Anteneodo and Plas-
tino [10] have discussed several notions of complexity and noted that there
is not yet a consensus on a precise definition. Thus, the term complexity has
been referred to different meanings established prior to the recent attempts to
use it as indicative for structure in natural systems. For example, Kolmogorov
[1, 2] complexity or algorithmic information theory [11] are understood from
the point of view of the information content of a string, which is equivalent
to the length of the shortest possible self-contained representation of that string
which is essentially a program. Further, computational complexity theory has
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09340 México D.F., México
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been focused on classifying computational problems according to their inherent
difficulty, measuring the amounts of resources required for the execution of
algorithms [12]. In contrast, statistical complexity theory [8] refers to the measure
of the randomness and unpredictability of a system which adequately captures
the correlation of the system’s components in its behavior. Roughly speaking, the
larger and more intricate the correlations between the systems constituents, the
more structured its underlying probability distribution. A comprehensive study of
the application of complexity measures on atoms and molecules has been recently
published [13].

Fundamental concepts such as uncertainty or randomness are frequently
employed in the definitions of complexity, although some other concepts like
clustering, order, localization or organization and also as general indicators of
pattern, structure, and correlation might be also important for characterizing the
complexity of systems or processes. It is not clear how the aforementioned concepts
might intervene in the definitions so as to quantitatively assess the complexity of the
system. However, recent proposals have formulated this quantity as a product of two
factors, taking into account order/disequilibrium and delocalization/uncertainty.
This is the case of the definition of López–Mancini–Calbet (LMC) shape complexity
[8–10] that, like others, satisfies the boundary conditions by reaching its minimal
value in the extreme ordered and disordered limits.

The LMC measure is constructed as the product of two important information-
theoretic quantities (see below): the so-called disequilibrium D (also known as
self-similarity [14] or information energy [15]), which quantifies the departure
of the probability density from uniformity [16–18] (equiprobability) and the
Shannon entropy S, which is a general measure of randomness/uncertainty
of the probability density [3], and quantifies the departure of the probability
density from localizability. Both global quantities are closely related to the
measure of spread of a probability distribution. On the other hand the Fisher–
Shannon product FS has been employed as a measure of atomic correlation
[19] and also defined as a statistical complexity measure [20–23]. The product
of the power entropy J—explicitly defined in terms of the Shannon entropy—
and the Fisher information measure, I, combine both the global character
(depending on the distribution as a whole) and the local one (in terms of the
gradient of the distribution), to preserve the general complexity properties. As
compared to the LMC complexity, aside of the explicit dependence on the
Shannon entropy which serves to measure the uncertainty (localizability) of the
distribution, the Fisher–Shannon complexity replaces the disequilibrium global
factor D by the Fisher local one to quantify the departure of the probability
density from disorder [4, 5] of a given system through the gradient of the
distribution.

On the chemical perspective, the energetics of reactions [24] has been the
focus of many quantum chemistry studies over the last decades. Particular interest
has been focused on extracting information about the stationary points of the
energy surface. Despite the fact that minima, maxima, and saddle points are
useful mathematical features of the energy surface to reaction-path following
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[25], it has been difficult to attribute too much chemical or physical meaning
to these critical points [26]. Whereas the reaction rate and the reaction barrier
are chemical concepts, which have been rigorously defined and experimentally
studied since the early days of the transition state (TS) theory [27, 28] the
structure of the TS remains as a quest of physical organic chemistry. Understanding
the TS is a fundamental goal of chemical reactivity theories, which implies
the knowledge of the chemical events that take place to better understand the
kinetics and the dynamics of a reaction. On the other hand there has been an
increasing interest to analyze the electronic structure of atoms and molecules
by applying information theory (IT) [29, 30]. For instance, we have recently
shown that information-theoretic measures are capable of providing simple pic-
torial chemical descriptions of atoms and molecules [31–33]. In more recent
studies on the complexity of elementary chemical reactions [34, 35], we have
employed the single information-theoretic functionals D, L, I, J and the composite
information-theoretic measures I-D, D-L and I-J planes and Fisher–Shannon and
LMC shape complexities. These measures were found to reveal all the chemi-
cally significant aspects of the course of the reaction, i.e., the reactant/product
region, the bond cleavage energy region, the bond breaking/forming region and
the transition state. Besides, the information-theoretic concepts of uniformity,
disorder, localizability were useful to reveal the chemical phenomena of energy
accumulation/releasing and to identify the mechanisms for bond forming and spin
coupling.

2 Information-Theoretic Measures and Complexities: Basics

In the independent-particle approximation, the total density distribution in a
molecule is a sum of the contributions from the electrons in each of the occupied
orbitals. This is the case in both r- and p-spaces, position and momentum
respectively. In momentum space, the total electron density, 	.p/, is obtained
through the molecular momentals (momentum-space orbitals) '.p/, and similarly
for the position density, �.r/, through the molecular position-space orbitals
�.r/. The momentals (atomic units are employed throughout) can be obtained
by three-dimensional Fourier transformation of the corresponding orbitals (and
conversely)

'i.p/ D .2�/3=2
Z
drexp.�ip/ � �i .r/ (1)

Standard procedures for the Fourier transformation of position space orbitals
generated by ab-initio methods have been described [36]. The orbitals employed
in ab-initio methods are linear combinations of atomic basis function and since
analytic expressions are known for the Fourier transforms of such basis functions
[37], the transformation of the total molecular electronic wavefunction from position
to momentum space is computationally straightforward [38].
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As we mentioned in the introduction, the LMC complexity is defined through
the product of two relevant information-theoretic measures. So that, for a given
probability density in position space, �.r/, the C(LMC) complexity is given by the
authors of [8–17]:

Cr.LMC/ D Dre
Sr D DrLr (2)

whereDr is the disequilibrium [14, 15]

Dr D
Z
�2.r/dr (3)

and S is the Shannon entropy [3]

Sr D �
Z
�.r/ln�.r/dr (4)

from which the exponential entropy Lr D eSr is defined. Similar expressions for
the LMC complexity measure in the conjugated momentum space might be defined
for a distribution 	.p/

Cp.LMC/ D Dpe
Sp D DpLp (5)

It is important to mention that the LMC complexity of a system must comply
with the following lower bound [39]:

C.LMC/ 
 1 (6)

The FS complexity in position space, Cr.FS/, is defined in terms of the product
of the Fisher information [4, 5]

Ir D
Z
�.r/j�!r ln�.r/j2dr (7)

and the power entropy [20–23] in position space, Jr

Jr D 1

2�e
e
2
n Sr (8)

which depends on the Shannon entropy defined above. So that, the FS complexity
in position space is given by

Cr.FS/ D Ir � Jr (9)

and similarly

Cp.FS/ D Ip � Jp (10)

in momentum space.
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Let us remark that the factors in the power Shannon entropy J are chosen
to preserve the invariance under scaling transformations, as well as the rigorous
relationship [40].

C.FS/ 
 n (11)

with n being the space dimensionality, thus providing a universal lower bound to
FS complexity. The definition in (8) corresponds to the particular case n D 3, the
exponent containing a factor 2=n for arbitrary dimensionality. See [41] for further
rigorous bounds on complexity measures and uncertainty products.

It is worthwhile noting that the aforementioned inequalities remain valid for
distributions normalized to unity, which is the choice that it is employed throughout
this work for the 3-dimensional molecular case.

Aside of the analysis of the position and momentum information measures,
we have considered it useful to study these quantities in the product rp-space,
characterized by the probability density f .r;p/ D �.r/	.p/, where the complexity
measures are defined as

Crp.LMC/ D DrpLrp D Cr.LMC/Cp.LMC/ (12)

and
Crp.FS/ D 2�eIrpJrp D 2�eCr.FS/Cp.FS/ (13)

From the above two equations, it is clear that the features and patterns of both
LMC and FS complexity measures in the product space will be determined by those
of each conjugated space.

3 Complexity Analysis for Elementary Chemical
Reactions

Our complexity study contemplates two elementary chemical reactions. Firstly, the
simplest radical abstraction reaction involving a free radical (atomic hydrogen) as
a reactive intermediate H2 C H � ! H � C H2. This kind of reaction involves
at least two steps (SN1 reaction type): in the first step, a new radical (atomic
hydrogen in this case) is created by homolysis, and in the second one the new radical
recombines with another radical species. Such homolytic bond cleavage occurs
when the bond involved is not polar and there is no electrophile or nucleophile
at hand to promote heterolytic patterns. Bond breaking process requires energy
which should be dissipated by relaxing the structure at the TS. Evidence has been
presented [32] which shows that the two-step mechanism observed for this type
of reaction is completely characterized by the Shannon entropies in conjugated
spaces through a concerted but yet asynchronous behaviour. Secondly, the hydrogen
nucleophilic substitution (SN2) reaction:Ha C CH4 ! CH4 CHb . This chemical
process involves only one step in contrast with the two-step SN1 reaction [31]. In
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the anionic form, the SN2 mechanism can be depicted as Y � CRX ! RY C X�,
which is characterized by being kinetically of second order. For identity SN2

reactions it has been postulated that the observed second order kinetics is the result
of passage through the well-known Walden inversion transition state where the
nucleophile displaces the nucleofuge (leaving group) from the backside in a single
concerted reaction step. Evidence has been presented [32] which shows that the one
step mechanism observed for this type of reaction is indeed characterized by its
synchronous and concerted behaviour.

The technicalities describing the ab initio calculations for the IRC of both
reactions and the information-theoretical analyses for their phenomenological
description has been presented elsewhere [31, 32]. Furthermore, in recent studies
we have performed an information-theoretic characterization of the chemical pro-
cess by use of statistical complexity concepts provided by complementary sources
of information, such as the disequilibrium D, the exponential Shannon entropy L
through the C(LMC) and also with the Fisher information I and the power Shannon
entropy J through the C(FS) measure ((2), (5), (9) and (10)).

In previous studies [31–35], we have employed various single information-
theoretic measures (Shannon, Fisher, disequilibrium) as chemical phenomenolog-
ical descriptors for describing elementary reaction processes. In particular, with
the Shannon and Fisher measures we described regions of chemical interest such
as the bond cleavage energy region (BCER) and the bond breaking/forming one
(B-B/F). From the perspective of the disequilibrium measure (D) a full description
of the chemical phenomena might be predicted, i.e., the BCER, the B-B/F and the
CT processes.

In the present work we extend the previous study of the two chemical reactions
mentioned above by use of several two-component information-theoretic measures;
namely, the information planes of disequilibrium-Shannon and Fisher–Shannon
types and the complexity measures of LMC and Fisher–Shannon kinds. We find that
these composite information-theoretic measures are very useful quantities to grasp
the joint features of uniformity-localizability (D-L) and disorder-localizability (I-J).

3.1 Information Planes

In Figs. 1 and 2 we have plotted (in a double-logarithmic scale) the Dr � Lr
plane for both, the exchange and the abstraction chemical reactions, respectively.
It is worth mentioning that there is a rigorous lower bound to the associated
C(LMC) complexity, given by (6), which is valid for both spaces. From the
figures we may observe that the D-L plane is clearly separated into two regions
according to the inequality (valid for position, momentum as well as product
spaces), and the region below the line (equality) corresponds with the forbidden
region. Parallel lines to this bound represent isocomplexity regions, showing that an
increase (decrease) in uncertainty, L, along them is compensated by a proportional
decrease (increase) of disequilibrium, and higher deviations from this frontier are
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Fig. 1 Disequilibrium-Shannon plane in position space for the IRC of the hydrogenic exchange
reaction

associated with greater LMC complexities. For the hydrogenic exchange reaction
depicted in Fig. 1 two different tendencies are reflected for D � L complexity
in that one can distinguish a zone delimitated by the R/P and BCER regions in
which a quasilinear tendency is observed, that is, this region appears to be more
isocomplex than the rest of the chemical route as compared to the C(LMC) bound
also shown in Fig. 1, indicating the rearranging of the ionic complex molecule
when the reactives approach each other. At this stage, the information-theoretic
description shows that the position space distribution augments its localizability by
lessening its uniformity until the BCER is reached. Beyond this point, from BCER to
B-B/F, the informational behavior departs from quasi-isocomplexity by diminishing
localizability at the expense of increasing its uniformity. Afterwards, the position
density tends to the most delocalized and uniform distribution at the IRC.

From Fig. 2 for the hydrogenic abstraction reaction we may note that from
the R/P to the BCER regions the behavior is isocomplex to the C(LMC) bound,
whereas for the rest of the IRC it behaves in a more complex manner. The general
observations are that the R/P show maximum uncertainty (highly delocalized
structures) and as the reaction evolves, both uniformity and uncertainty decrease
up to the BCER which holds maximum disequilibrium. Then, uncertainty follows
its decreasing path whereas the uniformity increases up to the B-B/F region, which
shows minimum uncertainty (highly localized structures) up to the TS by lessening
disequilibrium at the expense of increasing uncertainty, so as to reach a structure
with maximum uniformity. The chemical analysis goes by noting that as the reaction
develops (forward direction) the position space structures get distorted by loosing
uniformity and gaining localizability up to the BCER in preparation for the bond
cleavage. Then, from BCER up to the B-B/F region we also may observe two stages
of the mechanism: first, the structures acquire both higher localizability and higher
uniformity for the bond rupture at the B-B/F. In the second stage, from B-B/F
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Fig. 2 Disequilibrium-Shannon plane in position space for the IRC of the hydrogenic abstraction
reaction

Fig. 3 Fisher–Shannon plane in momentum space for the IRC of the hydrogenic exchange reaction

to the TS, the spin coupling is achieved by gaining uniformity at the expense of
augmenting uncertainty.

In Figs. 3 and 4 we have plotted (in a double-logarithmic scale) the Ip � Jp
plane for the exchange and the abstraction chemical reactions, respectively. Note
from (11) that there is a rigorous lower bound to the associated C(FS) complexity,
which is valid for both spaces. The analysis for the Ir � Jr plane (not shown,
see [35]), reveals similar features as compared to the plane above discussed in
that two tendencies are clearly shown. From the R/P to the BCER, a quasi-linear
behavior is observed, i.e. increase of localizability and disorder, whereas in the
second stage the complexity pattern is much more intricate and is characterized
by a simultaneous augment of delocalizability and order as the reaction proceeds
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Fig. 4 Fisher–Shannon plane in momentum space for the IRC of the hydrogenic abstraction
reaction

in the forward direction of the reaction. On the other hand, for the complementary
space, we may note some general features from the Ip � Jp plane of the exchange
reaction (and the Dp � Lp , see [34]) from Fig. 3; namely, two energetic stages are
shown: from the R/P to BCER the ionic complex is gaining energy to surmount
the barrier at the TS; i.e., at the beginning of the reaction the electronic momentum
distributions get delocalized by gaining uniformity and diminishing order [35], or
augmenting uncertainty (Ip�Jp). In the second stage, the necessary energy to reach
B-B/F and CT is released from the BCER to the TS by gaining momentum density
localization, augmenting order or diminishing uniformity (see [35]). On the other
hand, in Fig. 4 we have depicted the corresponding measures for the Ip�Jp plane of
the hydrogenic abstraction reaction wherein some general aspects are to be noted: (i)
a remarkable isocomplex behavior (linearity) which is divided in two regions, from
R/P to BCER and from BCER to the TS, and (ii) the B-B/F region is missing for
this plane. Besides, we may note from this figure that the R/P are characterized by
maximum structural order in momentum space which diminishes up to the BCER
that holds maximum disorder and maximum uncertainty. Then the behavior reverts
and the uncertainty as well as the disorder of the process from BCER up to the TS
lessen. This last point possesses the minimum global uncertainty. From a chemical
point of view, the process behaves in such a way that from R/P to BCER the energy
becomes accumulated by gradually delocalizing the momentum space densities.
The opposite is observed from BCER to the TS regions where the energy is being
released in order to achieve the bond cleavage and the spin coupling processes as we
have discussed above. It is worth mentioning that the Ir � Jr plane for this reaction
(not shown, see [34]) indicates an “allowed” (upper) and a “forbidden” (lower) part
as we mentioned above in connection with (11), and that the R/P are characterized
by maximum values for order and uncertainty. As the reaction proceeds, disorder
increases at the expense of lowering uncertainty from the R/P to the B-B/F regions.
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Fig. 5 C(LMC) (blue open triangles) and C(FS) (red open circles) complexity measures in the
product space (r � p) at the IRC for the hydrogenic SN2 exchange reaction

The latter holding highly localized densities, then disorder keeps its decreasing path
at the expense of augmenting its uncertainty from the B-B/F to the TS [34].

3.2 Complexity Measures

In the search of joint patterns of uniformity-localizability through C(LMC) and
disorder-localizability through the C(FS), we have found of interest to collect all the
information-theoretical features analyzed in this work through these complexities
measures in the product space. So that, we can summarize the observations in that, as
complementary sources of chemical information, these complexity measures reveal
all the relevant chemical features at the transient region from the BCER to the TS
[34,35]. For instance, for the SN2 exchange reaction, we have depicted in Fig. 5 the
complexity measures, LMC and FS, in the product space versus the IRC. Hence, we
may observe that all the concurrent processes are present, i.e., BCER, B-B/F, CT
and the TS.

Moreover, by employing both, the C(LMC) and C(FS) in the joint space, we can
assess the differences between the information-theoretical features of the elementary
chemical reactions studied in the present work to that of their total energies at their
IRC. For instance, for the hydrogenic abstraction reaction, we have depicted in Fig. 6
the C(LMC) and C(FS) complexity values in the product space as a function of the
energy.

As it may be observed from the figure, the energy profile holds features of
uniformity-localizability and disorder-localizability in the joint space; therefore,
loosing most of the chemical features of interest; namely, the BCER and the
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Fig. 6 C(LMC) (red triangles) and C(FS) (blue circles) in the product space (r � p) as a function
of the total energy for the hydrogenic abstraction reaction

B-B/F. It has been shown elsewhere [34] that these features are revealed only
when the particular information-theoretical aspects of uniformity, localizability and
disorder are considered. In contrast, it has been observed that the behavior for the
SN2 exchange reaction [35] is totally distinct in that there are more concurrent
processes in this reaction than in the abstraction reaction (SN1) [34] and hence,
the relation between the complexity measure in product space and the total energy
is not as simple as in the SN1 [34] where the Crp(LMC) and Crp(FS) complexity
values as a function of the energy display a monotonic decreasing behavior for both
of them.

4 Conclusions

In this work, we have investigated the complexity of the hydrogenic SN2 exchange
and the SN1 abstraction reactions by means of various single information-theoretic
functionalsD,L, I , J and composite information-theoretic measures (I�D,D�L
and I �J information planes) and the Fisher–Shannon and LMC shape complexity
measures.

The analysis of the information-theoretic functionals of the one-particle density
was performed in position (r) and momentum (p) spaces. These measures were
found to reveal all the chemically significant aspects of the course of the reac-
tion, i.e., the reactant/product region, the bond cleavage energy region, the bond
breaking/forming region and the transition state. Besides, the information-theoretic
concepts of uniformity, disorder, localizability were useful to reveal the chemical
phenomena of energy accumulation/releasing.
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Throughout this study we have described the phenomenological behaviour of
selected elementary chemical reactions through complexity concepts. The analyses
showed that information measures of Disequilibrium, Fisher and Shannon reveal
all the chemical concurrent processes that undergo both reactions through concepts
such as uniformity, order and delocalization. Hence, we can assign the R/P regions
to chemical densities characterized by high uniform and ordered distributions, the
BCER to non-uniform and low ordered local densities, the B-B/F to locally uniform
distributions, the CT to globally non-uniform distributions and the TS by a locally
uniform and a globally ordered distributions.
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Stochastic Oscillators

V.S. Anishchenko, T.E. Vadivasova, A.V. Feoktistov,
and G.I. Strelkova

1 Introduction

Studying the influence of random forces on dynamical systems is an actively
developing scientific direction during the recent years. This research area can be
addressed both to nonlinear dynamics and to the theory of random processes.
Indeed, the response of a dynamical system (DS) to noise essentially depends
both on the properties of the deterministic system and statistical characteristics of
noise. Since any real system of different nature is subjected to random excitations,
the influence of external noise with different characteristics on DS becomes an
interesting research topic both from fundamental and applied viewpoints.

Starting with the well-known monograph by Horsthemke and Lefever [1] a
significant progress has been made in studying effects of noise influence on DS.
A majority of theoretical and experimental works has appeared and is now available
in this direction. One can mention monographes [2, 3] and papers [4–12] where the
authors explore bifurcations of noisy systems (stochastic bifurcations) and noise-
induced transitions (new types of behavior that can initiate in the presence of noise
only). A number of fundamental effects induced by noise in nonlinear systems has
been established, such as stochastic resonance (SR) [13, 14], coherent resonance
(CR) [15, 16], stochastic synchronization (SS) [17, 18].

Nonlinear dynamical systems that possess stochastic oscillations arising from
random excitation (noise) can be referred to a separate class. Without external
excitation, a system is in its stable equilibrium state. Such systems are called
stochastic oscillators and demonstrate the above mentioned phenomena of SR,
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CR and SS. The following question arises: Whether all stochastic oscillators can be
separated into groups with certain properties? Let try to answer this question from
a general viewpoint.

It is known that deterministic dissipative oscillatory systems can be divided
into non-autonomous oscillators with forced oscillations, parametric oscillators and
self-sustained oscillatory systems. Forced oscillations emerge in the presence
of an external force that specifies independent frequencies of oscillations. The
amplitude of forced oscillations is defined by both the external force and system
parameters. A system itself plays the role of a passive inertial converter. Parametric
oscillations result from an external modulation of one of the oscillator parameters,
that leads to the increase of energy and to the growth of the oscillation amplitude
(parametric instability). This growth is bounded by the nonlinearity of a system.
The amplitude of parametric oscillations is significantly larger than the external
signal amplitude and their frequency is defined by the basic frequency of the
oscillator, that is in a certain ratio with the external signal frequency. And finally,
self-sustained oscillations are generated by an autonomous system (without external
signal) that compensates the energy consumption for dissipation by means of a
permanent source. Parameters of self-sustained oscillations are defined by system
parameters [19].

The same classification can be applied to stochastic oscillations. One can distin-
guish forced stochastic oscillations that are similar to those that can be observed,
for example, in a dissipative linear circuit with additive noise. It is also known
that parametric noise in an oscillatory system can lead to the effect of parametric
instability [9, 20]. An opposite situation can also occur when parametric noise
stabilizes an equilibrium, for example, Kapitsa pendulum [21]. We deal with
parametric stochastic oscillations in the case of noise-induced parametric instability.
The definition of stochastic self-sustained oscillations is a more difficult question.
A stochastic oscillator is a non-autonomous system. Stochastic oscillations can arise
in the presence of a random force only. However, unlike forced and parametric
stochastic systems, characteristics of stochastic self-sustained oscillations must be
determined by system parameters and properties of a noisy signal should not be
a dominant factor. Besides, a stochastic oscillator must possess the fundamental
property of self-sustained oscillations—the ability of synchronization [22].

In this paper we distinguish and study two types of stochastic oscillators—
parametric stochastic oscillators and excitable stochastic systems that possess a
set of properties of self-sustained oscillators. We also demonstrate a qualitative
difference between these oscillators.

2 Noise-Induced Parametric Instability and Properties
of Parametric Stochastic Oscillators

Noise-induced parametric instability is rather well known [9, 20, 23–26]. However,
in our opinion, there is no enough literature concerning a consistent comparison of
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the parametric instability effect that is observed in the presence of noise sources
with different characteristics. The problem on properties of stochastic parametric
oscillations in nonlinear oscillators with different nonlinearity types has been unsuf-
ficiently studied. The question of whether noise-induced parametric oscillations are
truly a special type of parametric oscillations or possibly possess certain properties
of a self-sustained oscillatory regime has been discussed in literature [9] but it is not
solved completely yet.

We consider two dynamical models of nonlinear dissipative oscillators for
different characteristics of noisy parametric excitation. The first model is the Duffing
oscillator with a one-well potential:

Rx C ˛ Px C !20 Œ1CK�.t/�x C x3 D 0: (1)

The second one represents the oscillator with nonlinear friction

Rx C ˛ Px C Px3 C !20 Œ1CK�.t/�x D 0: (2)

The latter is a simplified model of the oscillator studied [9]. Both models are written
for the dimensionless variable x and dimensionless time t . In the models the random
signal �.t/ modulates the parameter controlling the basic frequency of a system. !0
is the unperturbed basic frequency (in our calculations we set !0 D 1),K defines the
modulation factor (noise intensity), and parameter ˛ determines linear dissipation.
Systems (1) and (2) differ by a nonlinearity type. The nonlinearity leads to non-
isochronous oscillations in (1), while oscillations in (2) are isochronous.

For weak noise and strong dissipation both systems (1) and (2) have a stable
fixed point in the origin of coordinates .0; 0/ on the plane x; yD Px, and stochastic
oscillations are not observed. When the noise intensity increases, a stochastic
bifurcation of the dynamical type [3] may take place and the fixed point becomes
unstable. The instability threshold can be defined by considering a linear equation
for a small perturbation u.t/ of the variable x in the vicinity of zero point:

Ru C ˛ Pu C !20 Œ1CK�.t/�u D 0: (3)

The threshold value is determined by calculating the maximal Lyapunov exponent
for a certain solution u.t/. Thus, the threshold of parametric instability is indepen-
dent of a particular form of an oscillator (the main condition is a fixed point in the
origin of coordinates) but can essentially depend on the nature of random signal
�.t/. Properties of noise-induced stochastic parametric oscillations will also depend
on a nonlinearity form of the oscillator under consideration.

We use three models of random signal �.t/: white Gaussian noise, one-
dimensional and two-dimensional Ornstein–Uhlenbeck processes. The white noise
is set to be �.t/D p

2Dn.t/, where n.t/ is a normalized Gaussian white noise
(hn.t/i � 0; hn.t/n.t C �/i D ı.�/ is Dirac’s function), and D is a constant
determining the noise intensity.
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An one-dimensional Ornstein–Uhlenbeck process is given by the following
equation:

P�.t/C 	�.t/ D p
2Dn.t/; (4)

where n.t/ is a normalized Gaussian white noise, DD const is the noise intensity.
	 is the dissipation coefficient and represents a Gaussian exponentially correlated
process with the spectral power density in the Lorentzian form:

G�.!/ D 4
2� 	

	2 C !2
; ! > 0:

The maximum of the spectral power density corresponds to zero frequency. The
spectrum width at the half-power level is 	 (taking into account nonnegative
frequencies only), and the variance is given by 
2� DD=	 .

A two-dimensional Ornstein–Uhlenbeck process is determined by the following
second-order equation:

R�.t/C 	 P�.t/C !21�.t/ D p
2Dn.t/: (5)

Here n.t/ is a normalized Gaussian white noise, DD const is the noise intensity,
and 	 is the coefficient of dissipation. Besides, there is the basic frequency !1 that
specifies the spectral maximum. For small dissipation (	 � 1) the process �.t/
represents a harmonic Gaussian noise with an exponentially decaying envelope of
the autocorrelation function and the Lorentzian-like spectrum with the maximum at
frequency !1:

G�.!/ D 
2� 	

.
	

2
/2 C .! � !1/2

; ! > 0:

The spectrum width at the half-power level is 	 , and the variance is determined as

2� DD=.	!21/.

White noise excitation. Consider the case �.t/D p
2Dn.t/,KD 1, where n.t/

is a normalized Gaussian white noise. We fix the parameter ˛ and increase the noise
intensity D. In this case both oscillators undergo a bifurcation resulted in lossing
stability by their equilibrium at the origin and in originating stochastic oscillations.
We integrate (1)–(3) in the presence of parametric white noise and calculate the
maximal Lyapunov exponent �1. Calculation results for �1 as a function of D
are presented in Fig. 1a, b for models (1) and (2). The dependence of �1 of an
arbitrary chosen stochastic trajectory is shown by the solid line (the choice of
a trajectory is not significantly important due to the property of ergodicity). The
dotted line corresponds to the Lyapunov exponent of the equilibrium at the origin,
that is estimated by solving the linearized equation (3). The exponent �1 for an
arbitrary trajectory coincides within a calculation accuracy with the exponent for
the equilibrium until the fixed point is stable (because any trajectory gets into this
point in some time). At some bifurcational value of D the equilibrium losses its
stability and its Lyapunov exponent changes its sign. With this, the exponent of the
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Fig. 1 Maximal Lyapunov exponent �1 as a function of the Gaussian white noise intensity D for
oscillators (1) (a) and (2) (b) at ˛D 0:01 and KD 1. �1.D/ for the trajectory starting from an
arbitrary chosen nonzero initial point is shown by the solid line, and �1.D/ for the equilibrium
(0; 0) is indicated by the dotted line

stochastic trajectory for the oscillator (1) becomes positive, while for (2)—negative.
Thus, depending on the form of nonlinearity stochastic parametric oscillations can
be exponentially unstable (chaotic) as in the model (1) or stable as in (2).

The bifurcational value of D can be estimated theoretically by analyzing
truncated equations for the amplitude and phase of an oscillator. In the
case of linearized oscillator (3) in the presence of Gaussian white noise
one can obtain stochastic differential equations (SDE) for the instantaneous
amplitude and fluctuational phase component by applying standard methods
of averaging and noise transformation [20, 27]. The SDE have the following
forms:

Pa D a

2

�
�˛ C D

2
C p

Dn1.t/

	
; P' D

p
D

2
n2.t/: (6)

The transformated noise sources n1.t/ and n2.t/ can be approximately considered
as independent white Gaussian sources (hn1;2i � 0, hn1.t/n2.t C �/i D ı1;2ı.�/,
ı.�/ is Dirac’s function, ı1;2 is Kronecker symbol). It is seen from the amplitude
equation that the solution aD 0 is stable for D < 2˛ and unstable for D > 2˛.
The value DD 2˛ is bifurcational. At ˛D 0:01 for that the numerical calculations
were performed, the bifurcational value is DD 0:02 that corresponds well to the
numerical results.

Phase portraits and spectra of parametric stochastic oscillations are exemplified
in Fig. 2 for oscillators (1) and (2) in the presence of white noise excitation. Phase
trajectories fill the phase plane area in the vicinity of the origin of coordinates,
although some significant deviations from zero can also be possible because
stochastic oscillations are unbounded in the presence of Gaussian noise. A stationary
probability density p.x; y/ can be defined on a set of stochastic trajectories. The
numerical estimations show that in both oscillators (1) and (2) p.x; y/ grows
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Fig. 2 Characteristics of noise-induced parametric stochastic oscillations. Phase portrait and the
normalized power spectrum of x.t/ oscillations in system (1) (a), (b) and in system (2) (c), (d).
˛D 0:01 and KD 1 are set for both oscillators. The normalized spectrum S.!/ is introduced as

follows: S.!/D 10 lg
�
G.!/

Gmax

�
, where Gmax is the maximal value of the spectral power density

infinitely when approaching the origin of coordinates.1 The set of stochastic
trajectories with the given stationary distribution density can be treated as a
stochastic attractor, although there are another approaches to define an attractor of
noisy DS [3,22]. The attractors presented in Fig. 2a, c cannot provide any qualitative
differences in the behavior of oscillators (1) and (2), although the trajectories are
unstable in (1) and stable in (2).

The spectra of oscillations of both stochastic oscillators (Fig. 2b, d) have maxima
at the frequency !0 or in its vicinity. Otherwise they are essentially different. The
spectrum of (1) is very wide and has a complex shape, while the spectrum of (2) is
rather narrow and very similar to the Lorentzian. Stochastic oscillations in (1) are
broadband because they are non-isochronous and strongly exponentially unstable.

1The phase portraits in Fig. 2a, c, do not demonstrate that. On the contrary, the neighborhood of the
origin is an empty region. However, one should take into account that only sufficiently short parts
of trajectories are shown in the figure and thus, one cannot judge on the probability distribution.
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Fig. 3 Maximal Lyapunov exponent of the equilibrium as a function of the modulation amplitude
K for different noisy signals. Curves 1–4 correspond to the harmonic noise (5) with different
values of the spectral maximum frequency: !1 D 1 (curve 1); !1 D 2 (curve 2); !1 D 3 (curve 3)
and !1 D 0:5 (curve 4). Curve 5 is obtained for the low-frequency noise (4). The other parameters
are fixed: 
� D 1, �!� D 	 D 0:05 and ˛D 0:01

Colored noise excitation. Influence of statistical characteristics of noise on
the parametric instability threshold and properties of stochastic oscillations.
As already noted, characteristics of a noisy signal, particularly, its spectral proper-
ties, can essentially influence on the threshold of parametric instability. In [20] it was
indicated that a low-frequency excitation may increase own losses of an oscillator
and thus, stabilizes the system, while a high-frequency excitation destabilizes it.
It was also concluded that white noise has no effect at all on the stability of
an equilibrium since high-frequency and low-frequency components are mutually
balanced. This conclusion contradicts the numerical results presented above. Our
numerical investigations show that the white noise excitation can induce stochastic
oscillations.

Now we study the case of colored noise excitation by using the harmonic
noise model (5) and the low-frequency noise model (4). The bifurcation of an
equilibrium is found by means of the linearized equation (3) by calculating a depen-
dence of the maximal Lyapunov exponent of the equilibrium on the modulation
amplitude K . Calculation results are shown in Fig. 3. Curves 1–4 are obtained for
the harmonic noise excitation (5) with different values of the spectral maximum
frequency !1. The noise variance 
� and the spectrum width at the half-power level
�!� are fixed as 
� D 1 and �!� D 	 D 0:05. Curve 5 corresponds to the low-
frequency excitation (4) with the same variance 
� D 1 and the spectrum width
�!� D 	 D 0:05. As seen from the dependences �1.K/, the instability arises for
all the noisy signals but the bifurcational value of K (the parametric instability
threshold) is significantly different for the considered cases. The harmonic noise
excitation (5) at the second harmonic of the fundamental frequency !1 D 2!0 D 2

appears to be the most effective (curve 2). This case is identical to a periodic
excitation. The threshold of parametric instability increases (curve 1) when the
harmonic noise acts at the fundamental frequency of the oscillator (!1 D!0 D 1).
Unlike the periodic force, the harmonic noise at the third harmonic !1 D 3!0 D 3
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Fig. 4 The parametric
instability boundary in the
presence of harmonic
noise (5) with 	 D 0:01 and

2� D 1. The dark region
corresponds to stochastic
oscillations, the white
region—to the stable
equilibrium

can also lead to the parametric instability but its threshold grows further (curve 3).
The instability can also be induced by the noise excitation at subharmonics of the
fundamental frequency. Curve 4 in Fig. 3 corresponds to the harmonic noise at the
subharmonic !1 D 1

2
!0 D 1

2
.

The obtained results testify that the equilibrium undergoes the bifurcation leading
to its instability and the onset of stochastic oscillations at low-frequency noisy
excitation (4). It is interesting to note that for the given values of the variance and the
spectrum width of the noisy signal the dependence �1 on K for the low-frequency
signal (4) (curve 5) fully coincides with the similar dependence for the harmonic
noise (5) at subharmonic !1 D 1

2
!0 (curve 4).

For the case of harmonic noise (5) a parametric instability region is plotted on the
parameter plane (K; !1) for the fixed value of the spectral linewidth 	 D 0:01 and
noise variance 
2� D 1 (correspondinglyDD 	!21). Obtained results are presented in
Fig. 4. The dark region in Fig. 4 corresponds to stochastic oscillations. Two tongue-
like parts (Mathieu tongues) of the instability boundary can be distinguished when
the noisy signal is applied at the second harmonic (!1 D 2!0 D 2) and at the basic
frequency (!1 � 2!0 D 2). If condition !1 D 2!0 is fulfilled, the instability has
the least threshold as in the case of harmonic excitation. One can assume that
when ˛ decreases, Mathieu tongues can also be observed for the noisy excitation
at subharmonics of the basic frequency!1 � !0=m;mD2; 3; 4; : : :. However, they
are not appeared for the chosen value of ˛ . When increasing ˛, the observed tongues
become less noticeable and are gradually smoothed out. Our numerical results are in
a good correspondence with the results obtained in [23] by analysing the stability of
linear equations for the second-order moments. In a low-frequency range (!1 < 0:1)
the process (5) cannot be considered as harmonic noise because the spectrum width
becomes comparable with the characteristic frequency !1 and even exceeds it. For
small !1 the parametric instability boundary marked in Fig. 4 is close to the values
obtained for the low-frequency noise (4).

For all the considered cases of colored noise excitation trajectories of stochastic
oscillations in oscillator (1) are exponentially unstable but trajectories in (2) are
stable. Dependences of the maximal Lyapunov exponent �1 for an arbitrary chosen
stochastic trajectory on the parameterK are exemplified in Fig. 5 for oscillators (1)
and (2).
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Fig. 5 Maximal Lyapunov exponent �1 of a stochastic trajectory versus the parameter K for
oscillators (1) (curves 1) and (2) (curves 2) in the presence of low-frequency noise (4) (a) and
harmonic noise (5) at the second harmonic of the basic frequency (!1 D 2!0 D 2) (b). The variance
and the spectrum width of random signal �.t/ were chosen the same in both cases: 
� D 1;
�!� D 	 D 0:05. The dissipation parameter is ˛D 0:01

Our calculations show that the spectrum shape of stochastic oscillations emerging
in oscillators (1) and (2) after the bifurcation of the equilibrium qualitatively
depends on the character of random signal �.t/. In the presence of harmonic
noise (5) (regardless of which harmonic or subharmonic of the basic frequency
!0 the excitation is applied at) the spectrum of both oscillators demonstrates a
peak at the frequency !0 (Fig. 6a, b). In the case of harmonic noise the spectrum
width of (1) (Fig. 6a) is significantly less than in the case of white noise (Fig. 2a).
In the presence of low-frequency noise excitation (4) the spectrum of stochastic
oscillations in (1) becomes wide-band and a low-frequency component is noticeably
manifested itself (Fig. 6c). The spectrum of stochastic oscillations in (2) is entirely
located in a low-frequency range and is basically similar to the spectrum of
random force. The peak at the basic frequency of the oscillator (2) cannot be
practically distinguished (Fig. 6d). Therefore, although in the presence of low-
frequency excitation the equilibrium losses its stability and stochastic oscillations
originate in system (2), such oscillations must be rather classified as forced and
not parametric ones. However, we suggest that this type of oscillations needs to be
studied additionally.

Influence of an external harmonic force on parametric stochastic oscillators.
Stochastic oscillations can be attributed to a stochastic self-sustained oscillatory
regime if they possess the property of partial (effective in the sense of Stratonovich
[27]) synchronization. In this case stochastic oscillators differ from classical deter-
ministic oscillators only in that the latter demonstrate a strong synchronization effect
without noise. For a small mismatch between the basic frequency!0 and an external
frequency !2 and when a harmonic force amplitude C is increased, the effect of
basic frequency locking must be indicated in the spectrum of stochastic oscillations.
With this, !0 is shifted towards !2. Parametric oscillations do not demonstrate the
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Fig. 6 Normalized power spectra of parametric stochastic oscillations x.t/ in oscillators (1) (a, c)
and (2) (b, d) in the presence of harmonic noise (5) at the second harmonic of the basic frequency
(!1 D 2!0 D 2) for KD 0:1 (a, b) and in the presence of low-frequency noise (4) forKD 0:55 (c,
d). The variance and the spectrum width of random signal �.t/were chosen the same in both cases:

� D 1; �!� D 	 D 0:05. The dissipation parameter is ˛D 0:01

synchronization phenomenon in the presence of harmonic excitation. An analogous
suggestion can be also made for parametric stochastic oscillators with noisy
excitation.

Consider oscillators (1) and (2) additively driven by an external harmonic signal.
To do that the term C sin .!2t/ is added to the right-hand part of the corresponding
equations. C and !2 are the amplitude and frequency of the external force,
respectively. We choose such a regime of stochastic excitation that corresponds to
a well-pronounced spectral peak at the basic frequency !0 of an oscillator. Such a
peak can be observed for the oscillator (2) in the presence of any noisy excitation,
except the low-frequency signal (4). In the case of oscillator (1) one can consider the
harmonic noise excitation (5) applied at the second harmonic of the basic frequency
of the oscillator (1). Let the external frequency !2 be close to the basic frequency
!0. Our numerical experiments in the chosen regime of external excitation as well
as for another excitation signals (for example, white noise in the oscillator (2)) have
shown that the basic frequency locking is not observed in the spectrum of parametric
stochastic oscillations. The spectral maximum corresponding to the basic frequency
of stochastic oscillations is not shifted. The obtained results are illustrated by
power spectra for x.t/ oscillations in Fig. 7a, b. For the nonisochronous stochastic
oscillator (1) the harmonic force can essentially change the spectrum shape and
can lead to the appearance of narrower spectral peaks at the basic frequency
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Fig. 7 Power spectra of x.t/ oscillations of the stochastic oscillators (1) (a) and (2)
(b) additively driven by the harmonic signal at frequency !2. Curves 1 are obtained for the external
signal amplitude C D 0:001, and curves 2—for C D 0:05. The oscillators are parametrically
excited by the harmonic noise (5) at the second harmonic of the basic frequency of the oscillators.
For a more convenient comparison the spectral power densities G.!/ are not normalized on their
maximal value

and combination frequencies (Fig. 7a). When the external amplitude C grows, the
maximum at the basic frequency of stochastic oscillations in the oscillator (2)
typically decreases (is suppressed) (Fig. 7b).

3 Excitable Oscillator as an Example of a Stochastic
Self-sustained Oscillator. Properties of Stochastic
Self-sustained Oscillations

One of the actual problems of modern nonlinear dynamics is to study properties
of so-called excitable systems. Excitable stochastic oscillators represent two-state
systems, one of which is a stable equilibrium and another one (excitation state) is a
transient process of return to the equilibrium. The peculiarity of excitable systems
consists in the fact that the relaxation to an equilibrium takes place along phase
trajectories in the form of a nearly closed loop, i.e., they are similar to the motion
on a limit cycle. A system is in its equilibrium state without external forces. An
external driving (kick) can pass the system to its excitation state, afterwards the
system returns itself to its equilibrium. With this, there is a certain typical return
time to the equilibrium. In the presence of relatively weak noise, such systems
can demonstrate excitation and relaxation processes resulted in the appearance
of undamped stochastic oscillations. These oscillations have a high degree of
coherence (regularity) for a certain (optimal) noise intensity. This effect is called as
coherent resonance (CR) [15,16]. A considerable amount of publications is devoted
to the study of excitable oscillators, ensembles of such oscillators and excitable
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Fig. 8 Scheme of the experimental setup with noise source �.t/ and external harmonic force F.t/
(a) and the experimental voltage–current characteristic of the nonlinear element (b). The nominal
values of scheme elements are: RD 100Ohm; LD 6:8 � 10�3 H; C D 6:8 � 10�11 F; Vc D 7:2V

media [28–32]. Excitable oscillatory regimes are typical for neuron activity [33],
therefore, their investigation is very important from the viewpoint of understanding
of how the nerve system of living organisms operates. Properties of a sequence of
excitation impulses (they are called spikes in biophysics) are mostly controlled by
noise presented in a system. Besides, the variation of noise parameters can serve as
an ordering factor that can make the system behavior more ordered. The analysis of
models of stochastic excitable systems testifies an important role that noise can play
in the wildlife.

One of the classical examples of excitable systems is the FitzHugh–Nagumo
oscillator (FHN) [34, 35]. It is a simplified model of the Hodgkin–Huxley neuron
describing spike generation in axons of a large squid. An important fact has been
established: stochastic oscillations in the CR regime can demonstrate the effect
of phase-frequency synchronization [30–32]. It is known that synchronization is
a characteristic feature of self-sustained oscillatory systems. A principal question
arises: Could noise-induced oscillations of excitable systems be considered as
a special type of self-sustained oscillations, namely, as stochastic self-sustained
oscillations? To answer this question, it is necessary to find out what is the difference
between stochastic oscillations in excitable systems and stochastic oscillations
arising from transformations of a random external force by nonlinear systems. The
last mentioned oscillations can be exemplified by parametric oscillations in the
nonlinear oscillators considered above.

For our experiments we choose the original radio-technical model of an excitable
system, that was suggested by FitzHugh and Nagumo. In this model a tunnel
diode is used as a nonlinear element with an N -shaped voltage–current charac-
teristic. We have slightly changed the original scheme to provide a more stable
functioning of the model. Our scheme is presented in Fig. 8. It only differs by
the block that models the N -type nonlinearity in a different way (Fig. 8b) [36].
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The voltage–current characteristic of the nonlinear element is qualitatively similar
to the characteristic of a tunnel diode, can provide a stable functioning of the
scheme and, that is also quite important, allows the simplest approximation in
the polynomial form IN .U /Dg2U

3 � g1U for mathematical simulation of the
dynamical system.

Model equations. Using Kirchhoff’s laws we can write equations describing
the system dynamics in the presence of noise source. The equations read

dU
dt D 1

C

�
g1; U � g2U 3 � I � ;

dI
dt D 1

L
.Vc C U � IR/C A�

L
�.t/;

(7)

where the nominal values of scheme elements, supply voltage and parameters of
the nonlinear characteristic are indicated in Fig. 8 caption. A��.t/ is the voltage
of a wideband noisy generator with Gaussian distribution and the quantity A�
can be regulated. The equations (7) can be reduced to a dimensionless form by
renormalizing the variables and time:

" Px D x � ˛x3 � y;

Py D 	x � y C b C p
2Dn.�/:

(8)

The following designations are used:

U D U0x; I D U0g1y; � D R

L
t;

" D CR

Lg1
; s D I0

U0g1
; ˛ D g2

g1
U 2
0 ; 	

1

Rg1
; b D Vc

Rg1U0
:

The points denote dimensionless time � derivatives and U0 is some constant
potential (for example, U0 DVc). The wideband Gaussian noise source in the
second equation (8) is replaced by the normalized Gaussian white noise n.�/
(< n.�/n.� C ��/ > D ı.��/, ı.��/ is Dirac’s function) with the constant
intensity

D D A2�

Rg1U0

Z 1

0

< �.t/.�.t C �/ > d�: (9)

Consider the behavior of the experimental system excited by noise and without
the external regular force (signalF.t/ is absent). As the noise intensityA� increases,
stochastic oscillations are initially induced with a sufficiently wide power spectrum
(Fig. 9a). Then, a relatively narrow spectral line is formed with the maximum at a
certain characteristic frequency (Fig. 9b) that corresponds to the mean frequency of
spike movement. This line has a minimal width at an optimal noise intensity. When
the noise intensity further grows, its width increases again. The spectral line width at
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Fig. 9 Power spectra of oscillations for different values of the noise intensity: (a) near the thresh-
old of oscillation origin (A� D 900mV), (b) in the regime of coherent resonance (A� D 1; 300mV)

Fig. 10 Dependences of the relative spectrum width (a) and the normalized power spectrum
density at the maximum (b) on the noise level A�

the half-power level and the power spectrum density at the maximum frequency are
experimentally measured depending on the noise intensity. The obtained results are
presented in Fig. 10a, b. The experimental data clearly indicate the effect of coherent
resonance when the spectrum width is minimal and hence the highest degree of
oscillation coherence is achieved.

External synchronization of the FHN oscillator by a harmonic signal in the
regime of coherence resonance. Now we study experimentally synchronization of
stochastic oscillations in the FHN system. For this purpose the external harmonic
signal F.x/ is added to the scheme. The noise level corresponds to the regime
of coherent resonance. To reveal the synchronization effect we fix the external
amplitude Aex D 510mV, vary the external frequency fex and measure the power
spectrum of oscillations (Fig. 11). The observed effect of locking is also illustrated
in Fig. 12 where the frequency ratio �D fex=f0 is plotted as a function of the
external frequency fex for the fixed external amplitude. It is seen from the figure
that there is a finite region of synchronization fex W f0 D 1 (at the basic tone).

The experimental results on external and mutual synchronization of stochastic
oscillations in the FHN oscillator are described in more detail in the paper [37].
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Fig. 11 Effect of frequency locking in the FHN system for different values of the external fre-
quency: (a) no frequency locking is observed (fex D 14; 800Hz), (b) frequency locking when the
spectral line of system oscillations is shifted to the right and coincides with fex (fex D 13; 950Hz);
(c) frequency locking inside the synchronization region when the system frequency follows fex
(fex D 13; 050Hz); (d) exit from the synchronization region (fex D 11; 700Hz)

Fig. 12 Experimental
dependence of the frequency
ratio fex /f0 on the external
signal frequency fex for the
fixed external amplitude
Aex D 510mV

Substantiation of self-sustained oscillatory character of stochastic oscilla-
tions in the FHN system. The experimental data presented above can testify that
inspite of the fact that oscillations in the FHN system can be induced and sustained
only in the presence of external noise, they are characterized by a complete set of
the properties peculiar to self-sustained oscillatory processes. Let us discuss this in
more detail.
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Fig. 13 Phase trajectories of
the FHN system obtained
numerically with different
initial conditions for time
t D 500. The grey region of
the phase plane corresponds
to the positive divergence of
the vector field of system (8)
and negative dissipation.
System parameters are:
"D 0:01; ˛D 1=3; 	 D 1; bD 0:5;

DD 0:0025

First we consider the question: Which attractor corresponds to oscillations in
the regime of coherent resonance. The attractor definition of a non-autonomous
system was introduced in [22] where it was shown that in this case an attractor
is determined as a limit set in a functional (Hilbert) space for all possible solutions�!x Df .�!x0; �/. Unfortunately, such a limit set cannot be pictured geometrically.
However, if there is an attractor in the functional space, any trajectory of the FHN
system tends to the same limit set of points in the phase plane. These points
have a joint probability close to 1. Figure 13 presents a few phase trajectories
numerically obtained for system (8) with different initial conditions. After some
relaxation time, the trajectories fall on the same limit set that resembles a slightly
noisy limit cycle. Thus, Fig. 13 illustrates the fact that the limit set of phase
trajectories is independent on initial conditions. The FHN system has no other
limit sets.

Based on the numerical data, one can conclude that the FHN system possesses an
attractor. Its presence does not yet prove that the oscillatory process in the system is
self-sustained. To prove that we must discuss how the energy is added to the system.
The model (8) can be written in the following oscillatory form:

" Rx C .3˛x2 � 1C "/ Px C .1 � 	/x � ˛x3 � b D p
2Dn.t/: (10)

We get the oscillator with the dissipation coefficient

ı D 3˛x2 � 1
"

C 1 (11)

that depends on the coordinate x and can have both positive and negative values.
The vector field divergence divf of the system (10) is equal to the coefficient ı
taken with an opposite sign and, consequently, also changes its sign depending on

the x value. In the range jxj<
q

1�"
3˛

the dissipation coefficient is negative and the
divergence is positive. Thus, within a certain region of states the energy comes
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to the system, and the excitable oscillator behaves as a self-sustained oscillator.
From the physical point of view, the conditions for energy supply are fulfilled when
the voltage U of oscillations corresponds to values of the negative segment of the
nonlinear elementGN characteristic. At this segment the system is characterized by
a negative resistance and the source energy increases the energy of oscillations.

The presented arguments testify that in the presence of noise the FHN system
sustains an oscillatory regime by carrying out a synchronous nonlinear pumping of
energy from a source. The numerical calculations and experimental measurements
have confirmed the following important fact: the power of the oscillatory process
that is proportional to x2.t/ essentially exceeds the power of noise source.

4 Summary

Our numerical and experimental studies show that among stochastic oscillators two
different groups of oscillators can be distinguished: parametric stochastic oscillators
and stochastic self-sustained oscillators. In both cases oscillations originate only in
the presence of noise. However, their properties are different.

Parametric stochastic oscillators include oscillators with noise-modulated param-
eters. The energy of such oscillations in the presence of dissipation is entirely
replenished by a noise source. In our work we have considered two examples of
dissipative parametric stochastic oscillators with different types of nonlinearity. It
has been shown that the threshold of parametric instability depends on statistical
characteristics of a noisy signal and especially on its spectral structure. The form of
a stochastic attractor and stability of trajectories are determined by the nonlinearity
of a system.

We have also studied the properties of excitable systems using as an example the
FitzHugh–Nagumo oscillator. The carried out investigations convincingly demon-
strate that excitable systems can be treated as stochastic oscillators. Such systems
have an internal energy source and an alternating divergence of the vector field
along phase trajectories on an attractor. Unlike parametric stochastic oscillators,
oscillations in excitable systems can be synchronized in the sense of basic frequency
locking. The presence of synchronization effect is the main reason that enables
to attribute stochastic oscillations of excitable systems to self-sustained oscillatory
regimes. We have demonstrated that a non-autonomous regime of the FHN system
functioning realizes a self-sustained oscillatory process by converting the source
energy to a regime of undamped and nearly periodic oscillations independently on
initial conditions. A noise source presented in the system removes it from its stable
equilibrium to the phase space region where a nonlinear process of energy pumping
is switched on that leads to the origin of self-sustained oscillations.

Acknowledgement This work is supported by the Russian Ministry of Education and Sciences in
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PDEs in Moving Time Dependent Domains

F. Cortez and A. Rodrı́guez-Bernal

1 Introduction

In a standard setting for many partial differential equations of mathematical physics,
one usually assumes that the physical process being described occurs in a fixed
domain of the physical space. This includes many equations describing the motion
of fluids for example, despite the fact that particle fluids and hence fluid subdomains
actually move with time. Of course there are some other problems, such as free
boundary problems, in which the physical domain of the PDE changes with time.
In all these problems the motion of particles or subdomains occurs according to an
unknown velocity field with is actually one of the main unknowns of the problem.

In this paper we assume some intermediary situation in which each point of
a given initial domain ˝0 � R

n, moves in time according to some prescribed
autonomous vector field. Hence at later times the domain ˝0 evolves into a
diffeomorphic domain ˝.t/ (which is not excluded to coincide with ˝0 itself!). In
particular, topological properties of the domain are preserved along time. However
the geometrical evolution of the domain can be very complex; for example one can
consider the evolution of the open set ˝0 in R

3 with the vector field of the Lorenz
equations in a chaotic regime.

Our goal is the to describe some sensible class of PDEs to be consider in such
a family of moving domains. We choose then to describe balance equations in
moving domains, which result from conservation principles and which have natural
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applications to conservation of mass, momentum, energy etc. For such equations
one must then give some suitable definition of solution.

After giving a convenient meaning of solution for both balance and general
parabolic equations, we prove that such equations can be solved using available
results.

Then we investigate, on some particular, although significative examples of
equations in moving domains, basic tools in the analysis of parabolic equations
such as the (weak) maximum principle and energy estimates. In particular we obtain
sufficient conditions on the equations and on the moving domains, that guarantee
that the solutions converge to zero as time goes to infinity.

2 Moving Domains

We assume that each point x of an original given domain (smooth open set) ˝0 �
R
n, starting at time t D 0 moves following a curve t 7�! Y.t I x/, in R

n. Moreover
we assume this curve is a solution of the autonomous system of ODEs

� PY .t I x/ D V.Y.t I x//
Y.0I x/ D x

(1)

for some given smooth vector velocity field V W R
n �! R

n. Even more and for
simplicity we assume that all solutions of (1) are defined for all t 2 R.

Hence, for t 2 R, we have a deformation map

�.t/ W Rn �! R
n; �.t/z D Y.t I z/

which is a diffeormorphism that satisfies the group properties �.0/ D I , �.tCs/ D
�.t/ ı �.s/ for all t; s 2 R. In particular �.�t/ is the inverse of �.t/.

Therefore, the original domain˝0 is deformed into the domains

˝.t/ D �.t/˝0 t 2 R

and the boundaries satisfy @˝.t/ D �.t/ @˝0. Also, any smooth subdomain W0 of
˝0 is also deformed into

W.t/ D �.t/W0; t 2 R

and its boundary is given by @W.t/ D �.t/@W0.
The next results gives geometrical information about the deformations above.

Lemma 1. With the above notations, for x0 2 @˝0 then �.t/x0 2 ˝.t/ and

D�.t/.x0/
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is an isomorphism in R
n that transforms the tangent plane in x0 2 @˝0, that we

denote Tx0@˝0, into the tangent plane to @˝.t/ at �.t/x0, T�.t/x0@˝.t/.

Proof. Just note that if z.s/ is a curve in @˝0 with z.0/ D x0, then z0.0/ D v0 is a
tangent vector at x0 (and conversely). Hence, w.s/ D �.t/.z.s// is a curve in @˝.t/,
with w.0/ D y0 and

w0.0/ D D�.t/.x0/v0

is a tangent vector at @˝.t/.

We also recall the following

Definition 1. A matrix �.t/ is a fundamental matrix of the linear system

X 0.t/ D A.t/X.t/ (2)

iff each column of �.t/ is a solution of (2) and �.t/ is nonsingular.

Observe that in particular, �0.t/ D A.t/�.t/. Then we have

Lemma 2. If �.t/ is a fundamental matrix of (2), then

	.t/ D �
��1.t/

�� D �
��.t/

��1

is a fundamental matrix of the adjoint system

Y 0.t/ D �A�.t/Y.t/

where * denotes the adjoint matrix.

Proof. Differentiate in
��1.t/ ı �.t/ D I

and use (2).

The following result is obtained from classical results in ODEs, see [5].

Proposition 1. i) For x 2 R
n, D�.t/x is a fundamental matrix of

PZ.t/ D A.t/Z.t/

and D�.0/ D I , where A.t/ D DV.�.t/x/.
ii) Denote

jK.x; t/j D det.D�.t/x/; x 2 R
n

then we have the Abel–Liouville–Jacobi formula

@

@t
jK.x; t/j D t r

�
DV

�
.�.t/x/ jK.x; t/j D div

�
V
�
.�.t/x/ jK.x; t/j
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hence

jK.x; t/j D e
R t
0 divV.�.s/x/ds :

In particular, for t 2 Œ�T; T � there exist C1.T /; C2.T / such that

0 < C1.T /  jK.x; t/j  C2.T / 8x 2 ˝0 8t 2 Œ0; T �: (3)

Remark 1. Observe that ifW0 � ˝0 andW.t/ D �.t/W0 then the measure ofW.t/
satisfies

jW.t/j D
Z

W.t/

1 dy D
Z

W0

jK.x; t/j dx D
Z

W0

e
R t
0 divV.�.s/.x//ds dx:

In particular, if div.V/ D 0 then the measure is preserved, that is,

jW.t/j D jW0j 8 W0 � ˝0 8t 2 R:

Also, if div.V/  �d0 < 0 at every point, then

jW.t/j  jW0j e�d0t

and we say the flow of (1) is contractive.
Finally if div.V/ 
 d0 > 0 at every point, then

jW.t/j 
 jW0j ed0t

and we say the flow if expansive.
For example for a linear flow, that is, V.x/ D Mx for a given matrix M , we

have

div.V/ D t r.M/ D
nX
iD1

�i D d0

is the trace of M , that is the sum of all eigenvalues of M .

Then we have the following result that complements Lemma 1.

Corollary 1. Assume x0 2 @˝0 and consider y0 D �.t/x0 2 @˝.t/. Then if n.x0/
is an unitary outward normal vector to ˝0 at x0 then

N.y0/ D ..D�.t/x0/
�/�1n.x0/

is an outward vector at y0. That is, ..D�.t//�x0/�1 is a linear isomorphism in R
n

that transforms the normal space at x0 2 @˝0, which we denote, Nx0 , into the
normal space to ˝.t/ at y0 2 @˝.t/, which we denoteNy0 .
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Proof. From Lemma 1 a normal vector at y0 D �.t/.x0/ 2 @˝.t/, n, must satisfy

< n;D�.t/x0� >D 0 8� 2 Tx0@˝0

which reads
< .D�.t/x0/

�n;� >D 0 8� 2 Tx0@˝0:

Hence we can take n such that ..D�.t/x0/�/n D n.x0/ which gives the result.

3 Balance Equations

The following notations will be used throughout the paper.

Definition 2. If for some T > 0, f is defined in

f W [t2.�T;T /˝.t/ � ftg �! R; .y; t/ 7�! f .y; t/

then we define f in ˝0 as

f W ˝0 � .�T; T / �! R; f .x; t/ D f .�.t/x; t/

Consider W.t/ D �.t/W0 � ˝.t/, a sufficiently smooth region with boundary
@W.t/. Then the time variation of the amount of T in W.t/ is given by

d

dt

Z

W.t/

T .y; t/ dy

which is computed below. Note that this is the classical Reynolds Transport theorem,
[3, 4, 6].

Proposition 2. With the notations above, we have that

d

dt

Z

W.t/

T .y; t/ dy

can be written by either one of the following equivalent expressions

Z

W0

@ T

@t
.x; t/ jK.x; t/j dx C

Z

W0

T .x; t/ divV.x; t/ jK.x; t/j dx (4)

or Z

W.t/

@T

@t
.y; t/ dy C

Z

W.t/

divy.T .y; t/ : V.y// dy (5)
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or Z

W.t/

@T

@t
.y; t/ dy C

Z

@W.t/

T .y; t/V.y/ d s: (6)

Now we will derive the Balance Equations for the quantity T .y; t/. In fact we
have

d

dt

Z

W.t/

T .y; t/ dy D
Z

W.t/

f .y; t/ dy �
Z

@W.t/

J d s

where f .y; t/ represents the rate of production/consumption of T per unit volume
inW.t/ and J is the vector field of the flow of T across the boundary ofW.t/. Hence
the divergence theorem leads to

d

dt

Z

W.t/

T .y; t/ dy D
Z

W.t/

f .y; t/ dy �
Z

W.t/

divyJdy (7)

Hence, (7) and the Proposition above leads to

Proposition 3. Under the assumptions and notations above, the magnitude T
satisfies the balance equations in the moving domains, if and only if the following
equivalent conditions are satisfied:

@T

@t
.y; t/C divy.T .y; t/ : V.y// D f .y; t/ � divy.J/; y 2 ˝.t/; t > 0 (8)

or

@

@t
T .x; t/CT .x; t/ div.V/.x; t/ D f .x; t/� divy.J/.x; t/ x 2 ˝0; t > 0: (9)

Proof. First, equating (5) and (7) we get

Z

W.t/

�
@T

@t
.y; t/C divy.T .y; t/V.y//

	
dy D

Z

W.t/

.f .y; t/ � divyJ/ dy:

Since W.t/ D �.t/.W0/, �.t/ is a diffeormorphism and W0 is arbitrary, we get (8).
Now, using y D �.t/x we get in the right hand side of (7)

Z

W0

f .x; t/ jK.x; t/j dx �
Z

W0

divy.J/.x; t/ jK.x; t/j dx;

equating to (4) and using that W0 is arbitrary, we get (9).
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4 Boundary and Initial Conditions

As we consider Dirichlet boundary conditions and using

y D �.t/x; ˝.t/ D �.t/˝0; @˝.t/ D �.t/.@˝0/

then

T .y; t/ D 0 8 y 2 @˝.t/ , T .x; t/ D 0 8 x 2 @˝0

As for the initial condition we have, since �.0/ D I ,

T .y; 0/ D T0.y/ 8 y 2 ˝0 , T .x; 0/ D T0.x/ 8 x 2 ˝0:

Thus, (8) and (9), with boundary and initial conditions read, respectively,

8
<
:

@T
@t
.y; t/C divy.T .y; t/ : V.y// D f .y; t/ � divy.J/ y 2 ˝.t/

T .y; t/ D 0 y 2 @˝.t/ 8t T .y; 0/ D T0.y/ y 2 ˝0

(10)

8
<
:

@
@t
T .x; t/C T .x; t/ div.V/.x; t/ D f .x; t/ � divy.J/.x; t/ x 2 ˝0

T .x; t/ D 0 x 2 @˝0 8t T .x; 0/ D T0.x/ x 2 ˝0:

(11)

In fact we use (11) to define a solution of (10), i.e.

T .y; t/ satisfies (10) , T .x; t/ satisfies (11):

5 Balance Equations Without Diffusion

5.1 No Flux and No Diffusion: Pure Inertia

With the previous notations, assume divy.J/ D 0 then the following problems are
equivalent

8
<
:

@
@t
T .y; t/C divy.T .y; t/ : V.y// D f .y; t/ y 2 ˝.t/

T .y; t/ D 0 y 2 @˝.t/ 8t T .y; 0/ D T0.y/ y 2 ˝0

(12)
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and

8
<
:

@
@t
T .x; t/C T .x; t/ div.V/.x; t/ D f .x; t/ x 2 ˝0

T .x; t/ D 0 x 2 @˝0 8t T .x; 0/ D T0.x/ x 2 ˝0:

(13)

Then we have

Proposition 4. With the notations above, (12) and (13) have a unique explicit
solution given by

T .y; t/ D T0.x/ e
�

R t
0 divyV.�.r/x/ dr C

Z t

0

e�

R t
s divyV.�.r/x/ dr f .y; s/ ds; y D �.t/x 2 ˝.t/

and

T .x; t/ D T0.x/ e
� R t

0 divV.�.r/x/dr C
Z t

0

e� R t
s divV.�.r/x/dr f .x; s/ ds; x 2 ˝0;

respectively.

Proof. The solution of (13) is obtained by solving a linear nonhomogeneous ODE

Z0.t/C P.t/Z.t/ D h.t/; Z.0/ D Z0

for each x 2 ˝0. From this the solution of (12) is immediate.

Remark 2. Assume in particular that there are no source terms, that is, f D 0.
Hence in (12) we have

T .y; t/ D T0.x/ e
� R t

0 divyV.�.r/x/dr ; y D �.t/x

Thus, if moreover div.V/ D 0 then

T .y; t/ D T0.x/ y D �.t/x;

and T remains constant along the paths of the flow.
On the other hand if the flow is expansive then T .y; t/ decreases along the paths

of the flow, while it increases if the flow is contractive.

5.2 Flux and No Diffusion: Transport Equations

Below we use  .t/ D ��1.t/ D �.�t/.
Proposition 5. If we assume

J.y; t/ D a.y; t/T .y; t/ y 2 ˝.t/
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with a C1 scalar field
a W Rn � R ! R

then the balance equations (10) and (11) read

8
<̂
:̂

@
@t
T .y; t/C divy.T .y; t/ :V.y//C ryT .y; t/ : a.y; t/C divy.a.y; t//T .y; t/ Df .y; t/ y 2 ˝.t/

T .y; t/ D 0 y 2 @˝.t/ 8t T .y; 0/ D T0.y/ y 2 ˝0

(14)
and

8
<̂
:̂

@T
@t
.x; t/C T .x; t/C.x; t/ C rxT .x; t/b.x; t/ D f .x; t/ x 2 ˝0

T .x; t/ D 0 x 2 @˝0 8t T .x; 0/ D T0.x/ x 2 ˝0

(15)

which are equivalent, where

C.x; t/ D divy.V/.x; t/C divy.a/.x; t/; b.x; t/ D D .t/y � a.y; t/:

Proof. Note that (14) follows by direct computation from (10) using

divy.a.y; t/ T .y; t// D ryT .y; t/:a.y/C T .y; t/divy.a.y; t//:

On the other hand, for (15) we have to write divy.a.y; t/T .y; t// in terms of x.
For this we observe that since x D  .t/y we have T .y; t/ D T . .t/y; t/ and then

@T

@yi
.y; t/ D

nX
jD1

@T

@xj
.x; t/

@ j .t/y

@yi
(16)

and ryT .y; t/ D rxT .x; t/D .t/y.
Thus, ryT .y; t/ : a.y; t/ D rxT .x; t/ .D .t/y : a.y; t// and hence

ryT .y; t/ : a.y; t/ D rxT .x; t/.D .t/y � a.y; t// D rxT .x; t/b.x; t/:

Now we show that under some natural geometrical conditions (15) (and
hence (14)) can be solved by using characteristics. Note that we now disregard
boundary conditions.

Proposition 6. Assume that for all time and y 2 @˝.t/, we have

< a.y; t/;n0.y/ > 0

where < �; � > is the scalar product and n0.y/ is the unit outward normal vector
at y.

Then (14) and (15) have a unique solution.
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Proof. For (15) we use the method of characteristics. Hence, for x0 2 ˝0 we define
curves defined on some interval I containing 0

s 7�! X.s/ 2 ˝0; X.0/ D x0; s 7�! t.s/ 2 R
C; t.0/ D 0;

and s 7�! Z.s/ D T .X.s/; t.s//. Then

d

ds
Z.s/ D rxT .X.s/; t.s//X

0

.s/C @

@t
T .X.s/; t.s//t

0

.s/:

So from (15) we choose

t 0.s/ D 1; t.0/ D 0;

X 0.s/ D b.X.s/; t.s//; X.0/ D x0

which gives t.s/ D s and

X 0.t/ D b.X.t/; t/; X.0/ D x0 2 ˝0; (17)

which has a solution because b 2 C1.Rn/.
Hence, from (17) and (15)

�
d
dt
Z.t/C C.X.t/; t/Z.t/ D f .X.t/; t/

Z.0/ D T0.x0/

whose solution is given by

Z.t/ D T0.x0/e
� R t

0 C.X.r/;r/ dr C
Z t

0

e� R t
s C.X.r/;r/ drf .X.s/; s/ ds: (18)

In the computation above we need the solution of (17) not to leave ˝0. Thus,
if X.t/ reaches the boundary of ˝0 at time t0 at the point y0 D x.t0/ 2 @˝0, the
tangent vector to the characteristic curve at this point is X

0

.t0/ D b.x0; t0/, and
therefore if it points inward, that is, if

< b.x0; t0/;n.x0/ >  0 (19)

then it will remain in ˝ . Note now that from (19)

< b.x0; t0/;n.x0/ >D< D .t0/y0:a.y0; t0/;n.x0/ >D< a.y0; t0/; .D .t0/y0/�n.x0/ >D

D< a.y0; t0/; ..D�.t0/x0/�/�1n.x0/ >D< a.y0; t0/; N.y0/ >
 0

where we have used Corollary 1 and the assumption of this Proposition.
With this (18) gives the values of the solution in the moving domain.
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6 Balance Equations with Diffusion

Recalling the equivalent equations (10) and (11) we have

Proposition 7. Assume the flux vector field is given by

J.y; t/ D �kryT .y; t/ y 2 ˝.t/

for some k > 0, then (10) and (11) read

8
<̂
:̂

@
@t
T .y; t/C ryT .y; t/:V.y/C T .y; t/div.V/.y/� k�T .y; t/ D f .y; t/ t 2 ˝.t/

T .y; t/ D 0 y 2 @˝.t/ 8t T .y; 0/ D T0.y/ y 2 ˝0
(20)

and

8
ˆ̂̂
<̂
ˆ̂̂
:̂

@T .x;t/

@t
C T .x; t/div.V/.x; t/� k

0
@

nX
k;iD1

ak;i .x; t/
@2T .x; t/

@xk@xi
C

nX
iD1

@T .x; t/

@xi
:si .x; t/

1
A D f .x; t/

T .x; t/ D 0 x 2 @˝0 8t T .x; 0/ D T0.x/ x 2 ˝0

(21)
where

ak;i .x; t/ D
nX

jD1

@ k.t/y

@yj
:
@ i .t/y

@yj
D ry k:ry i ; y D �.t/x

and

si .x; t/ D
nX

jD1

@2 i .t/y

@y2j
D �y i .t/y y D �.t/x:

Proof. Clearly divy.J/ D �k�T .y; t/ for y 2 ˝.t/ and we get (20). Now for (21),
we have from (16),

ryT .y; t/ D rxT .x; t/:D .t/y:

Hence,

divy.�kryT .y; t// D �k divy.rxT .x; t/D .t/y/ D

�k divy

 
nX
iD1

@ T .x; t/

@xi
:
@ i .t/y

@y1
; : : : ;

nX
iD1

@ T .x; t/

@xi
:
@ i .t/y

@yn

!
:
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Now observe that

@

@yj

 
nX

iD1

@ T .x; t/

@xi
:
@  i .t/y

@yj

!
nX
iD1

 
@

@yj

�
@ T .x; t/

@xi

	
:
@  i .t/y

@yj
C @ T .x; t/

@xi
:
@2  i .t/y

@y2j

!

(22)

and by (16), we get

@

@yj

 
@ T .x; t/

@xi

!
D

nX
kD1

@2 T .x; t/

@xk @xi

@  k.t/y

@yj

and we get in (22)

nX
iD1

  
nX

kD1

@2 T .x; t/

@xk@xi
:
@ k.t/y

@yj

!
@ i .t/y

@yj
C @ T .x; t/

@xi
:
@2 i .t/y

@y2j

!
:

Therefore

�divy.�kryT .y; t// D �k
nX

jD1

nX
iD1

 
nX

kD1

@2 T .x; t/

@xk@xi
:
@ k.t/y

@yj

!
:
@ i .t/y

@yj

�k
nX

jD1

nX
iD1

@ T .x; t/

@xi

@2 i .t/y

@y2j

which leads to

�k divy

 
nX
iD1

@ T .x; t/

@xi
:
@ i .t/y

@y1
; : : : ;

nX
iD1

@ T .x; t/

@xi
:
@ i .t/y

@yn

!
D

�k
nX

k;iD1

@2 T .x; t/

@xk@xi
:

0
@

nX
jD1

@ k.t/y

@yj
:
@ i .t/y

@yj

1
A � k

nX
iD1

@T .x; t/

@xi
:

0
@

nX
jD1

@2 i .t/y

@y2j

1
A :

and we get the result.

Concerning the main part in (21) we have the following

Proposition 8. With the notations above, the term

nX
k;iD1

ak;i .x; t/
@2 T

@xk@xi
.x; t/

can be written in divergence form.
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Proof. Just note that

nX
k;iD1

ak;i .x; t/
@2 T .x; t/

@xk@xi
D

nX
iD1

@

@xi

 
nX

kD1

@T .x; t/

@xi
:ak;i .x; t/

!
�

nX
iD1

@T .x; t/

@xi
:ci .x; t/

with

ci .x; t/ D
nX

kD1

ak;i .x; t/

@xi

Remark 3. Note that now (21) can be written as

8
ˆ̂̂<
ˆ̂̂
:

@T .x;t /

@t
C T .x; t/div.V/.x; t/ � k

 
div.B.x; t// �

nX
iD1

@T .x; t/

@xi
di .x; t/

!
D f .x; t/

T .x; t/ D 0 x 2 @˝0 8t T .x; 0/ D T0.x/ x 2 ˝0

with
B D .Bi /iD1;::;n D A.x; t/rxT .x; t/

A.x; t/ D .ak;i .x; t//; di .x; t/ D si .x; t/ � ci .x; t/:

7 Parabolic PDEs in Moving Domains

Now we consider general parabolic equations in moving domains. That means that
the equations are not necessarily balance equations. Hence, we consider

8̂
<
:̂

@
@t
T .y; t/� k�yT .y; t/C

nX
iD1

@T

@yi
.y; t / : gi .y; t /C c.y; t/T .y; t/ D f .t; y/ y 2 ˝.t/

T .y; t/ D 0 y 2 @˝.t/ 8t T .y; 0/ D T0.y/ y 2 ˝0

(23)

with k > 0 and given smooth c.y; t/ and g.y; t/ D .gi .y; t/; : : : ; gn.y; t//. Note
that this equation contains (20) as a particular case.

Then we have the following result whose proof follows from the computation in
the sections above.

Proposition 9. With the notations above (23) is equivalent to

8<
:
@T

@t
.x; t/� kdiv.B.x; t//C rxT .x; t/:

�
h.x; t /� d.x; t /

�C c.x; t/T .x; t/ D f .x; t/ x 2 ˝0

T .x; t/ D 0 x 2 @˝0 8t T .x; 0/ D T0.x/ x 2 ˝0

(24)
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with

B.x; t/ D A.x; t/rxT .x; t/; A.x; t/ D .ak;i .x; t //; ak;i .x; t / D
nX

jD1

@ k.t/y

@yj
:
@ i .t/y

@yj
;

di .x; t/ D si .x; t/ � ci .x; t/; si .x; t/ D �y i .t/y; ci .x; t/ D
nX

kD1

ak;i .x; t/

@xi

h.x; t/ D .g.x; t/ : ry 1.t/y; : : : ; g.x; t/ : ry n.t/y/; y D �.t/x:

Now we are in a position to proof that (23) is well posed.

Proposition 10. Under the assumptions above, if the initial data satisfies

T0 2 L2.˝0/

then (24) and (23) have a unique solution.

Proof. Observe that in (24)

A.x; t/ D D .t/y:.D .t/y/t y D �.t/x:

Then we show below that this is a positive definite matrix. In fact for � 2 R
n, � ¤ 0,

we have

< A.x; t/�; � >D< .D .t/y/t �; .D .t/y/t � >D ��.D .t/y/t ���2 > 0:

since .D .t/y/t is non singular. Also, from (3), the eigenvalues of D�.t/ are
bounded and bounded away from 0 for all t 2 Œ0; T � and so are the eigenvalues of
D .t/. Therefore there exist ˛ D ˛.T / > 0 such that k.D .t/y/t �k2 
 ˛ k�k2.

Using this, the smoothness of the coefficients and the results in [1, 2], we get
that (24) has a unique smooth solution and so does (23).

8 Maximum Principle

In this section we show that the parabolic equations in moving domains possess
the maximum principle. We will show this on the particular example of the heat
equation

8
<
:

@T
@t
.y; t/ ��T .y; t/C a.y; t/ T .y; t/ D 0 y 2 ˝.t/

T .y; t/ D 0 y 2 @˝.t/ 8t T .y; 0/ D T0.y/ y 2 ˝0

(25)

with a sufficiently smooth coefficient a.y; t/. Then we have
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Proposition 11. With the assumption above, if

T0 2 L2.˝0/; T0.x/ 
 0 x 2 ˝0

and
˛.t/  a.y; t/ 8y 2 ˝.t/ 8t

for some smooth ˛.t/. Then

T .y; t/ 
 0; y 2 ˝.t/; t 
 0:

Proof. We multiply (25) by the negative part of T , T �.y; t/, and integrate in ˝.t/,
to get

Z
˝.t/

@T

@t
.y; t/ : T�.y; t/ dy�

Z
˝.t/

�T .y; t/ : T�.y; t/ dyC
Z
˝.t/

a.y; t/: T .y; t/: T�.y; t/ dy D 0:

Using (6) for .T �/2 and the fact that T �.y; t/ D 0 in @˝.t/, because T .y; t/ D 0
in @˝.t/, we have

1

2

d

dt

Z

˝.t/
.T �/2.y; t/ dy C

Z

˝.t/
jrT �.y; t/j2 dy C

Z

˝.t/
a.y; t/.T�/2.y; t/ dy D 0:

Hence
1

2

d

dt
kT �.:; t/k2L2.˝.t// C ˛.t/ kT �.:; t/k2L2.˝.t//  0

and taking NF .t/ D kT �.:; t/k2L2.˝.t//, we have

d

dt
NF .t/C 2˛.t/ NF .t/  0

and Gronwall’s lemma leads to NF .t/  ��T �
0

��
L2.˝0/

e�2 R t0 ˛.s/ ds D 0, since T �
0 D 0

in ˝0. Therefore T �.y; t/ D 0 for y 2 ˝.t/ and t 
 0 as claimed.

9 Energy Estimates

In this section we derive suitable energy estimates for the heat equation in a moving
domain

8<
:

@T
@t
.y; t/ ��T .y; t/C a.y; t/ T .y; t/ D 0 y 2 ˝.t/

T .y; t/ D 0 y 2 @˝.t/ 8t T .y; 0/ D T0.y/ y 2 ˝0

(26)

with a smooth enough a.y; t/. First, we have for nonnegative solutions
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Proposition 12. Assume

T0 2 L2.˝0/ T0.x/ 
 0; x 2 ˝0

and
˛.t/  a.y; t/ 8y 2 ˝.t/ 8t:

for some smooth ˛.t/ such that

lim inf
t!1

1

t

Z t

0

˛.s/ ds > ˛0 > 0:

Then Z

˝.t/

T .y; t/ dy  e� R t
0 ˛.t/ ds

Z

˝0

T0.x/ dx ���!
t!1 0:

Proof. From (6)

d

dt

Z

˝.t/

T .y; t/ dy D
Z

˝.t/

@T

@t
.y; t/ dy C

Z

@˝.t/

T .y; t/V.y/ d s

and since T vanishes on the boundary, we have

d

dt

Z

˝.t/

T .y; t/ dy D
Z

˝.t/

@T

@t
.y; t/ dy:

Using this, we integrate in (26) in ˝.t/, to get

Z

˝.t/

@T

@t
.y; t/ dy �

Z

˝.t/

�T .y; t/ dy C
Z

˝.t/

a.y; t/ T .y; t/ dy D 0:

Now Green’s formula leads to

d

dt

Z

˝.t/

T .y; t/ dy �
Z

@˝.t/

@T

@n
.y; t/ d s C

Z

˝.t/

a.y; t/ T .y; t/ dy D 0:

By the maximum principle we know that T .y; t/ 
 0 for y 2 ˝.t/ and t 
 0,
and then for y 2 @˝.t/ we have @T

@n .y; t/  0 and then

d

dt

Z

˝.t/

T .y; t/ dy C
Z

˝.t/

a.y; t/ T .y; t/ dy  0:



PDEs in Moving Time Dependent Domains 575

Hence, denoting NY .t/ D
Z

˝.t/

T .y; t/ dy we have

d NY
dt
.t/C ˛.t/ NY .t/  0

and Gronwall’s lemma gives

NY .t/ D
Z

˝.t/

T .y; t/ dy  e� R t
0 ˛.t/ ds

Z

˝0

T0.x/ dx ���!
t!1 0:

since, by assumption

lim inf
t!1

1

t

Z t

0

˛.s/ ds > ˛0 > 0

and then

e� R t
0 ˛.s/ ds D e

�t
0
@1
t

Z t

0

˛.s/ ds

1
A

 e�˛0t ���!
t!1 0:

for t >> 1.

Now without assuming sign on the solutions, we have

Proposition 13. With the notations above, assume

T0 2 L2.˝0/

and the function

	.t/ D ˛.t/ � C0.˝.t//;

is such that for some ˛1 > 0,

lim inf
t!1

1

t

Z t

0

	.s/ ds > ˛1 > 0;

where C0.˝.t// is the Poncairè constant in ˝.t/.
Then

0 
Z

˝.t/

T 2.y; t/ dy  e�2 R t0 	.s/ ds
Z

˝.t/

T 20 .x/ dx ���!
t!1 0:

Proof. Multiply (26) by T .y; t/ and integrate in ˝.t/, to get

Z

˝.t/

@T

@t
.y; t/T .y; t/ dy �

Z

˝.t/

�T .y; t/T .y; t/ dy C
Z

˝.t/

a.y; t/ T 2.y; t/ dy D 0:
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Using (6), the boundary conditions and the Green’s formula we have

1

2

d

dt

Z

˝.t/

T 2.y; t/ dy C
Z

˝.t/

jrT .y; t/j2 dy C
Z

˝.t/

a.y; t/T 2.y; t/ dy D 0:

Now the Poincarè inequality in ˝.t/ gives for any smooth function vanishing on
@˝.t/,

kruk2L2.˝.t// 
 C0.˝.t// kuk2L2.˝.t// :
This and the assumption on a.y; t/ leads to

1

2

d

dt
kT .:; t/k2L2.˝.t// C 	.t/ kT .:; t/k2L2.˝.t//  0: (27)

Thus, denoting NZ.t/ D kT .:; t/k2L2.˝.t//, (27) reads

d

dt
NZ.t/C 2	.t/ NZ.t/  0

and Gronwall’s lemma yields

NZ.t/  kT0k2L2.˝0/ e�2 R t0 	.s/ ds ���!
t!1 0:

since by assumption

lim inf
t!1

1

t

Z t

0

	.s/ ds > ˛1 > 0

and then

e� R t
0 	.s/ ds D e

�t
0
@1
t

Z t

0

	.s/ ds

1
A

 e�˛1t ���!
t!1 0

for t >> 1.
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Asymptotic Scaling for Euclidean Lattices

R.A. Garza-López and J.J. Kozak

1 Introduction

In an earlier contribution to a volume celebrating the legacy of Professor Manuel
G(arcı́a) Velarde [1], V. Balakrishnan and one of the present authors (JJK) presented
an exact analytic expression for the mean time to absorption (or mean walk length)
for a particle performing an unbiased, nearest-neighbor random walk on a finite,
nth generation Sierpinski gasket embedded in d Euclidean dimensions with a trap
at one vertex. Earlier we had obtained an exact expression for the mean walk length,
T .n/, on the gasket embedded in d D 2 dimensions (see Fig. 1),

T .n/ D �
3n5nC1 C 4.5n/� 3n

�
=
�
3nC1 C 1

�
; (1)

where n denotes the generation index of the gasket, and the mean is over a set of
starting points of the walk distributed uniformly over all the other sites of the gasket
[2]. For the nth generation Sierpinski gasket embedded in d D 3 (the Sierpinski
“tower”) the exact expression is given by

T .n/ D 9
�
4n6nC1 C 5.6n/� 4n

�
=5
�
4nC1 C 2

�
; (2)

and for the case of a tower embedded in an arbitrary number of Euclidean
dimensions d the exact result is:
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34 35 36 37 38 39 40 41 42

1

17

Fig. 1 The generation n D 3

Sierpinski gasket (N D 42)

T .n/ D d2
�
.d C 1/n.d C 3/nC1

C.d C 2/.d C 3/n � .d C 1/n� =.d C 2/
�
.d C 1/nC1 C d � 1

�
: (3)

Subsequently, Bentz, Turner and one of the authors (JJK) obtained for the
Sierpinski gasket and tower the eigenvalue spectrum of the stochastic master
equation corresponding to this Markovian problem, and derived exact analytic
expressions for recurrence relations among the eigenvalues [3].

The reason that analytic expressions could be obtained for the finite, nth
generation Sierpinski gasket in arbitrary Euclidean dimension is that the figure is
a self-similar fractal. Once the scaling relation was discovered, the mathematics
unfolded naturally. The triangular Euclidean lattice (d D 2) that is the starting
template for constructing the Sierpinski gasket (via site decimation) is not self-
similar (see Fig. 2). So, there is no reason to suppose that an exact analytic
expression for the mean walk length T .n/ could be obtained. However, over 40 years
ago in a tour de force of mathematical physics, Elliot Montroll derived an expression
for T .n/ for d D 2 dimensional random walks on an infinite, periodic lattices of
uniform connectivity. For the triangular lattice an expression was obtained that was
asymptotically correct [4],

T D N=.N � 1/
h�p

3=2�
�
N lnN C 0:235214021N � 0:251407596

i
; (4)

where N is the total number of lattice points and the valence v (or connectivity)
of all lattice sites is v D 6. Extensive numerical calculations have confirmed the
accuracy of Montroll’s result.

We now come to the question posed in this contribution. Is it possible that if one
were to “set up” the triangular lattice problem in a manner similar to the design
of the Sierpinski gasket problem [2], could one find evidence for “scaling” in the
asymptotic limit of large N ?
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1

17

Fig. 2 The triangular lattice
template (N D 45)

2 Formulation and Results

We follow the design of the d D 2 Sierpinski gasket problem described in [2].
Interior sites of the triangular lattice have the valence v D 6, sites on the boundary
of the lattice have valence v D 4, and vertex sites have v D 2. Note that, in contrast
to Montroll’s formulation, the triangular lattices considered in this study do not have
a uniform valence v, and they are not periodic. A deep trap is placed at one vertex
(for definiteness, at the “top”). Mobilizing the theory of finite Markov processes,
exact numerical results are obtained for the mean walk length for triangular lattices
of increasing size. For emphasis, we reiterate that the results reported here are
numerically exact [4]; otherwise any claims of “scaling” would be problematical.

The observation made in [2] that led, eventually, to the exact result, (2) [via a
resummation procedure which amounted to an exact real-space renormalization]
related to scaling on the gasket. Consider the simplest case, the three sites at the
“top”, the trap labeled “1” and sites “2” and “3” (see Fig. 1). For this case, denoted
n D 0 in [2], the (exact) site specific mean walk length from both sites 2 and 3 is

T2 D T3 D 2;

Overall, T .nD0/ D 2. The first gasket generation n D 1, sites 1 to 6, gives (see
Fig. 1),

T2 D T3 D 8;

T4 D T6 D 10;

so that, T .1/ D 46=5. The first generation that is representative of the gasket is
n D 2, sites 1 to 15, yields

T2 D T3 D 26;

T4 D T6 D 40;
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T5 D 34;

T7 D T8 D T9 D T10 D 48;

T11 D T12 D T13 D T14 D T15 D 50;

and T .2/ D 608=14.
The numerical values above show that

T
.1/
4 D 10 D 5T

.0/
2 ;

T
.2/
11 D 50 D 5T

.1/
3 D 52T

.0/
2 ;

T
.2/
4 D 40 D 5T

.1/
2 ;

T
.2/
13 D 50 D 5T

.1/
5 :

These results and corresponding results for larger gaskets (higher generation
indices n), led to the following observation, quoted directly from [2]: “Doubling
the chemical distance systematically increases the mean time to reach a given point
for the first time by a factor of five: on a given structure (in a given generation), the
mean time to hit any of the four points two lattice constants away from any site,
and along the same directions as its four nearest-neighbor sites, is equal to five time
steps. Exactly the same scale factor occurs in the case of the two corner sites L
andR with coordination number two. This scaling is exact on the Sierpinski gasket,
and is essentially the statement that the random walk dimension of the gasket [5] is
dw D ln 5= ln 2.” Reference [5] in the quote is [6] in this study.

Consider now the data reported in Table 1. Displayed there are the values of T .n/

versus the generation index n for successive triangular lattices with site connectivity
as specified above. Here, the generation index n (an integer) is the shortest chemical
distance from any site on the base of a given triangular lattice to the vertex at the
top. See Fig. 3 for an explicit numeration. The total numberN of lattice sites at each
generation is given by

N.n/ D .nC 1/.nC 2/=2: (5)

For future reference,

N.2n/ D .nC 1/.2nC 1/: (6)

Taking advantage of the insight on scaling (above quote) we present in Table 2
values of the scaling ratio

Ratio D 5T .n/=T .2n/ (7)

Listed in tandem are values of the scaling ratio calculated using the numerically-
exact values of T .n/ reported in Table 1, and values of the ratio calculated using
Montroll’s asymptotic result, (4).
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Table 1 Values of the mean walk length T .n/ vs the generation index
n

n N T .n/ n N T .n/

1 3 2 17 171 1286.369479
2 6 9.8 18 190 1467.525195
3 10 23.047619 19 210 1662.076736
4 15 44.674216 20 231 1870.199245
5 21 74.935121 21 253 2092.059022
6 28 114.513788 22 276 2327.814377
7 36 163.977799 23 300 2577.616364
8 45 223.811851 24 325 2841.609416
9 55 294.438615 25 351 3119.931905
10 66 376.232702 26 378 3412.716633
11 78 469.530428 27 406 3996.384509
12 91 574.636897 28 435 4042.178688
13 105 691.831301 29 465 4379.097411
14 120 821.370975 30 496 4730.961811
15 136 963.494573 31 528 5097.882441
16 153 1118.424604 32 561 5479.966272

N is the total number of lattice sites at generation n

1

2 3

4 5 6

7 8 9 10

11 12 13 14 15

16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31 32 33 34 35 36

37 38 39 40 41 42 43 44 45

46 47 5148 49 50 52 53 54 55

56 57 58 59 60 61 62 63 64 65 66

67 68 69 70 71 72 73 74 75 76 77 78

79 80 81 82 83 84 85 86 87 88 89 90 91

92 93 94 95 96 97 98 99 100 101 102 103 104 105

106 107 108 109 110 111 112 113 114 115 116 117 118 119 120

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153n=16

n=15

n=14

n=13

n=12

n=11

n=10

n= 9

n= 8

n= 7

n= 6

n= 5

n= 4

n= 3

n= 2

n= 1

Fig. 3 The N D 153 triangular lattice. The generation index n is listed to the left of the figure
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Table 2 Values of the
scaling ratio 5T .n/=T .2n/ vs
the generation index n

n Exact Montroll

6 0.996402 1.223900
7 0.998196 1.198177
8 1.000576 1.178100
9 1.003181 1.165341
10 1.005862 1.154432
11 1.008522 1.145814
12 1.011111 1.138888
13 1.013608 1.133242
14 1.016000 1.128583
15 1.018286 1.124701
16 1.020467 1.121439

Fig. 4 The scaling ratio 5T .n/=T .2n/ versus the generation index n. Exact results in blue,
Montroll’s results in red

A plot of these two ratios for generations n D 6 to n D 15 is displayed in
Fig. 4. Although the ratios generated using Montroll’s asymptotic result appear to be
monotonically decreasing, the curve “turns around” and approaches asymptotically
the (exact) limiting value of 5/4, a result which can be seen at once using the
relations (5) and (6) in concert with Montroll’s (4). The convergence to this limiting
value is painfully slow; see Table 3.
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Table 3 Values of the ratio
5T .n/=T .2n/ using Montroll’s
(4) for large n D 10p

p Montroll

1 1.165341
2 1.107156
3 1.139024
4 1.163397
5 1.179497
6 1.190611
7 1.198705
8 1.204859
9 1.209694
10 1.213593
100 1.246250
500 1.249248
1000 1.249624

3 Discussion

We have considered an unbiased, nearest-neighbor, random walk on a finite, nth
generation triangular lattice in d D 2 with a deep trap at one vertex. We have
shown that a scaling relation developed for the self-similar fractal, the Sierpinski
gasket, also holds for this Euclidean lattice. Specifically, if you double the chemical
distance n on a given triangular lattice (the shortest path from any point on the
base of the lattice to the trap at the vertex), one finds that the scaling relation,
Ratio D 5T .n/=T .2n/, is satisfied in the limit of asymptotically large n. This result
stands in contrast to the results presented in [1,2]; there, recognition of scaling on
the Sierpinksi gasket could be coupled with a resummation procedure to derive an
exact, closed-form analytic expression for T .n/ valid for arbitrary n, that is, for finite
lattices of any size. This distinction highlights the fundamental qualitative difference
between the results presented in [1,2] and those presented here.

There is, however, an exact analytic result that can be derived from our numerical
results. Montroll showed that, irrespective of the dimensionality of the Euclidean
lattice, provided the connectivity v was the same for all N lattice sites, if the mean
walk length T .n/M is determined for the v sites that are nearest neighbor to the trap,
then

T
.n/
M D N � 1:

Notice that the right-hand side must be an integer. This result amounts to an
invariance relation which can be used to assess the accuracy of results obtained in
numerical studies, either ones based on Monte Carlo simulations or (as here) via
implementation of the theory of finite Markov processes. In terms of the generation
index n, the above result can be written

T
.n/
M D .nC 1/.nC 2/=2� 1:
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Table 4 Mean walk length T .n/1;2 from the (two) sites nearest neigh-
bor to the trap vs the generation index n

n N T
.n/
1;2 n N T

.n/
1;2

1 3 2 17 171 458
2 6 8 18 190 512
3 10 17 19 210 569
4 15 29 20 231 629
5 21 44 21 253 692
6 28 62 22 276 758
7 36 83 23 300 827
8 45 107 24 325 899
9 55 134 25 351 974
10 66 164 26 378 1,052
11 78 197 27 406 1,133
12 91 233 28 435 1,217
13 105 272 29 465 1,304
14 120 314 30 496 1,394
15 136 359 31 584 1,487
16 153 407 32 632 1,583

The class of triangular Euclidean lattices considered in this study is not of uniform
connectivity; interior points are v D 6, points on the boundary are v D 4 and vertex
points are v D 2. Nevertheless, we find that the numerical results for T .n/1;2 presented
in Table 4 satisfy

T
.n/
1;2 D 3n.nC 1/=2� 1:

Insofar as the authors are aware, this is the first example of an invariance relation
for Euclidean lattices of variable connectivity.
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Present Day Biology seen in the Looking Glass
of Physics of Complexity

P. Schuster

1 The Mathematics of Darwin’s Selection

Darwin’s principle of natural selection is based on three prerequisites: (i) multipli-
cation, (ii) variation, and (iii) limitation of resources. Multiplication follows some
mechanism of reproduction that may also take care for variation since no process
can occur with ultimate precision and replication errors called mutations yield
variants. A nontrivial condition for replication is that a sufficiently large fraction
of error copies has to be able to survive in order to sustain an evolutionary process.
Limitation of resources is simply a consequence of our finite world. As shown in
this section the Darwinian principle can be readily expressed in mathematical form
by means of ordinary differential equations (ODEs).

In 1838, 21 years before the publication of the famous Origin of Species [12],
the Belgium mathematician Pierre-François Verhulst [80] published a kinetic
differential equation, which presumably was not known to Darwin and to most
other scientists. The Verhulst or logistic equation describes population growth in
ecosystems with finite resources:

dN

dt
D N � r

�
1 � N

K

	
and N.t/ D N.0/

K

N.0/C �
K �N.0/

�
e�rt : (1)

The population size N counts the number of individuals I in the population �
and its time dependence is the solution of the ODE (1): ŒI�t D N.t/. N.0/ is the
population size at time t D 0, r is the growth parameter also called Malthusian
parameter after the English economist Robert Malthus, and K is the carrying
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capacity, the maximal population size that can be sustained by the ecosystem.
The interpretation is straightforward: Populations grow by reproduction and the
population size increases proportionally to the number of individuals already present
times the Malthusian parameter,N.t/�r . Growth requires resources, their limitations
is taken into account by the third factor,

�
1�N.t/=K�, which approaches zero if the

population size reaches the carrying capacity, and then no further growth of the total
population size is possible. The solution of Verhulst equation is called the logistic
curve. In the early phase of growth, N.t/ � K (Fig. 1; upper plot, red curve), the
logistic curve starts with unlimited exponential growth and, beginning in the range
around 20% saturation, i.e. populations sizes of N.t/ 
 0:2K , the effect of finite
resources becomes significant.

The Verhulst model of constrained growth is dealing with multiplication, the
first factor of Darwin’s principle. It is implicitly contained in the term leading
to exponential growth. In order to visualize selection the population � is now
partitioned into subpopulations of n classes of individuals Ij (j D 1; : : : ; n) with
ŒIj � D Nj and N.t/ D Pn

jD1 Nj .t/ [68] where each variant has its own specific
Malthusian parameter or fitness value denoted by fj (j D 1; : : : ; n). The result is
the selection equation (2), which describes the evolution of the total population size
and the distribution of variants within the population:

dNj

dt
D Nj

�
fj � N

K
�.t/

	
I j D 1; : : : ; n with �.t/ D 1

N.t/

nX
iD1

fi Ni.t/ :

(2)

Equation (2) is solved by means of normalized variables xj .t/ D Nj .t/=N.t/

and integrating factor transformation zk.t/ D xk.t/ exp
� R t

0 �.�/d�
�

(see [94,
p.322ff.]):

dxj

dt
D xj

�
fj � �.t/

�
; j D 1; : : : ; n I xj .t/ D xj .0/ � exp.fj t/Pn

iD1 xj .0/ � exp.fi t /
; j D 1; : : : ; n :

(2a)
The size of the subpopulations is obtained through multiplication by the total
population size

Nj .t/ D N.t/ � xj .t/ D N.t/ � N.0/ � exp.fj t/Pn
iD1 Nj .0/ � exp.fi t/

I j D 1; : : : ; n ; (2b)

and hence, the knowledge of the time dependence of population size, N.t/, is
required. It can be obtained by means of the integral ˚.t/ D R t

0
�.�/d�

N.t/ D N.0/
K

N.0/C �
K �N.0/� e�˚.t/ : (1a)

Herein exp
��˚.t/� replaces exp.�rt/ in the solution of the Verhulst equation. The

course of selection in the variables Nj and xj is the same [26] and the restriction
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Fig. 1 Solution curves of the logistic equation. Upper plot: The black curve illustrates growth
in population size from a single individual to a population at the carrying capacity of the
ecosystem (1). For comparison the red curve represents the results for unlimited exponential
growth, N.t/ D N.0/ exp.rt/. Parameters: r D 2, N.0/ D 1, and K D 10; 000.
Lower plot: Growth and internal selection is illustrated in a population with four variants (2),
n D 4. Color code: N black, N1 yellow, N2 green, N3 red, N4 blue. Parameters: fitness values
fj D .1:75; 2:25; 2:35; 2:80/, Nj .0/ D .0:8888; 0:0888; 0:0020; 0:0004/, K D 10; 000. The
parameters were adjusted such that the curves for the total populations size N.t/ in the two plots
(almost) coincide

to constant population size, N D K , leaves the results unchanged unless N.t/
vanishes or diverges, or in other words unless the population dies out or explodes. A
typical example is shown in Fig. 2. The interpretation of the solution curves (2b)
is straightforward: For sufficiently long times the sum in the denominator is
dominated by the term containing the exponential with the highest fitness value,
fm D maxffj I j D 1; : : : ; ng, all variables except Nm vanish and the fittest variant
is selected: limt!1ŒNm� D N . Finally, the time derivative of the mean fitness,
d�.t/=dt D varff g 
 0, encapsulates optimization in Darwinian evolution: �.t/
is optimized during natural selection (see, e.g., [68]). The equation for selection is
rather simple, derivation and analysis of the solutions are both straightforward, and
everything needed was standard mathematics at Darwin’s time.

Mechanisms creating new variants are not part of the nineteenth century model
of evolution. Recombination and mutation were unknown and new variants appear
spontaneously in the population like the deus ex machina in the ancient antique
theater. Figure 2 illustrates selection at constant population size and the growth of
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Fig. 2 Solution curve of the
selection equation. The
system is studied at constant
maximal population size,
N D K , and the plots
represent calculated changes
of the variant distributions
with time. The upper plot
shows selection among three
species I1 (yellow),
I2 (green), and I3 (red), and
then the appearance of a
fourth, fitter variant I4 (blue)
at time t D 6, which takes
over and becomes selected
thereafter. The lower plot
presents an enlargement of
the upper plot around the
point of spontaneous creation
of the fourth species (I4).
Parameters: fitness values
fj D .1; 2; 3; 7/;
xj .0/ D .0:9; 0:08; 0:02; 0/,
and x4.6/ D 0:0001

a spontaneously created advantageous variant. With spontaneous input of variants
the simple mathematical model described here encapsulates all three preconditions
of Darwin’s natural selection and reflects in essence the state of knowledge of the
evolutionists in the second half of nineteenth century.

2 Mutation, Quasispecies, and Error Thresholds

Mutation has been introduced by Hugo De Vries as a principle to create variation
at the beginning of the twentieth century [13] but the mechanistic explanation as
incorporation of wrong digits during a copying process has not been possible before
the advent of molecular biology (For a historical account on the concept of mutation
see [8]). In order to introduce mutations into selection dynamics Manfred Eigen [23]
conceived a kinetic model based on stoichiometric equations, which handles correct
replication and mutation as parallel reactions

.A/ C Xi
Qji fi�����! Xj C Xi I i; j D 1; : : : ; n : (3)

The material required to synthesize molecules is denoted by A and put in parenthe-
ses in order to indicate that it is present in excess and its concentration is constant:
ŒA� D a0. Accordingly, the concentration of A can be absorbed as a constant
factor into the rate parameter: ki ŒA� D ki a0 D fi . The factor Qji represents the
frequency at which sequence Xj is obtained as an error copy of Xi . Accordingly,
Qii is the fraction of correctly reproduced copies of Xi .
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Individuals are specified as genotypes or polynucleotide sequences Xi , which
form together a population � D fXi I i D 1; : : : ; ng where they are present in
time dependent concentrations ŒXi � D ci D xi c with c D Pn

iD1 ci . Equation
(3) designates one polynucleotide sequence, Xi , as template whereas the second
one, Xj , is the product. In the language of chemical kinetics the template Xi is a
catalyst, in case of correct direct copying when template and product are the same
molecule it is an autocatalyst. Template action is illustrated in Fig. 3: Completing
the template strand to a full double helix synthesizes a complementary molecule
or a minus-strand. Replication occurs, in essence, by two different mechanisms:
(i) complementary or ˙-replication and (ii) double strand replication. In the first
case the process occurs in two steps like manufacturing a positive and a negative
in silver based photography—a minus strand is synthesized on the plus strand and
vice versa a plus strand is produced on the minus strand—and it is straightforward
to prove that after an initial approach towards internal stationarity of the two strands
the ˙-ensemble grows exponentially with a rate parameter

p
fC f� and the ratio

of the two strands becomes ŒXC�=ŒX�� D p
f�=fC [23]. Here, we shall assume

that internal equilibrium has been established and we shall treat ˙-ensembles as
single entities. Complementary replication is found with several classes of RNA
viruses and with in vitro evolution of RNA molecules. Commonly, only a single
enzyme or very few enzymes are required and the accuracy of the copying process
is limited to about one error in a few thousand nucleobases because the system lacks
proofreading. Extensive kinetic studies on RNA replication by means of a virus
specific RNA replicase were performed [4–6] and conditions were derived under
which the many step reaction can be replaced successfully by the single over-all
reaction (3): The replicase has to be present in excess. As mentioned in the caption
of Fig. 3, complementary replication of single stranded DNA is used in applications
of polymerase chain reaction (PCR). Direct replication of DNA double strands is
the basis of multiplication of organisms in nature from bacteria to men. The process
follows a simple principle: The double strand is separated into the two strands on
the fly and both are completed to yield new double helices by adding nucleobases
consecutively on both sides. In reality, double strand replication of DNA is highly
complex and involves about twenty different enzymes. Nevertheless, even in this
case the single step mechanism (3) leads to a suitable description of the over-all
replication kinetics.

In normalized coordinates the mechanism (3) corresponds to a differential
equation called mutation-selection equation, which has the form

dxj

dt
D

nX
iD1

Qjifi xi � xj �.t/ I j D 1; : : : ; n I
nX
iD1

xi D 1 : (4)

The finite size constraint or dilution flux �.t/ D Pn
iD1 fixi is precisely the same

as in the mutation-free case (2), and the same techniques can be used to solve
the differential equation (see [46, 79] and [94, p322ff.]). Exact solutions of (4) are
derived in terms of eigenvalues �k and eigenvectors bk of the n � n value matrix
W D Q � F D fWji D Qjifi g, where the mutation frequencies are subsumed
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Fig. 3 The principle of DNA and RNA polymerization. Complementarity of nucleobases in
Watson-Crick base pairs is the principle of all polynucleotide replication. Template induced
polymerization of DNA and RNA always proceeds in the direction from the 5’-end to the 3’-end
of the synthesized strand. The process that comes closest to the sketch is template induced DNA
polymerization by a thermostable polymerase from a thermophilic bacterium, Thermus aquaticus
or Thermus thermophilus [62]. Polymerization requires primers, which are oligonucleotides that
bind specifically to the single stranded DNA and which provide a free 3’-OH group that allows
to start polymerization. After the double helix has been completed the two strands are separated
by heating, subsequent cooling leads to binding of primers and the next polymerization round
begins. Polymerase chain reaction (PCR) amplification of DNA stretches is a standard technique
in molecular biology (see e.g. [32])

in the mutation matrix Q D fQjig and the fitness values are the elements of a
diagonal matrix F D fFij D fi � ıi;j g called fitness matrix or fitness landscape.
Transformation of W yields the diagonal matrix � that contains the eigenvalues as
elements

B�1 � W � B D � D f�k I k D 0; 1; : : : ; n � 1g with

B D fbij I i; j D 1; : : : ; ng and B�1 D H D fhij I i; j D 1; : : : ; ng :
(5)

The individual components of the eigenvectors are obtained through solving the
differential equation d	=dt D � 	

	.t/ D exp.�t/ � 	.0/ or �k.t/ D �k.0/ exp.�kt/ I k D 0; 1; : : : ; n :

The solutions are readily expressed in the original variables xj .t/

xj .t/ D
Pn�1

kD0 bjk �k.0/ exp.�k t/Pn
iD1

Pn�1
kD0 bik �k.0/ exp.�k t/

: (6)

For sufficiently long times the term with the largest eigenvalue �0 dominates the
summations and we find for the stationary solutions

Nxj .t/ D bj0 �0.0/ exp.�0 t/Pn
iD1 bi0 �0.0/ exp.�0 t/

: (7)
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The stationary distributions of mutants in populations, N� D . Nxi I i D 1; : : : ; n/,
have been called quasispecies since they represent the genetic reservoirs of asex-
ually reproducing species. A typical quasispecies commonly consists of a fittest
genotype, the master sequence and its frequent mutants (For details see [25–27]).
Several important properties of the quasispecies follow from the applicability of
Perron-Frobenius theorem to the value matrix1 [72]: (i) The largest eigenvalue is real
and positive, �0 > 0, (ii) a strictly positive right eigenvector b0 and a strictly positive
left eigenvector h0 are associated with �0, (iii) �0 > j�kj holds for all eigenvalues
�k ¤ �0, and (iv) the largest eigenvalue is non-degenerate, i.e. the eigenvectors
associated with �0 are unique (up to constants factors) and �0 is a simple root of
the characteristic polynomial of matrix W. Item (ii) is of particular relevance for the
mutation-selection problem: All n variants of the population (Xk I k D 1; : : : ; n) are
present at strictly positive concentrations in the quasispecies or, in other words, no
variant vanishes in the approach towards the stationary distribution.

In order to gain more insight into error propagation over generations we introduce
a mutation rate per site and generation, p.i/k , which denotes the error frequency at
position k of the sequence Xi . For the diagonal elements of the mutation matrix Q
describing correct replication we find:

Qii D .1 � p
.i/
1 / .1 � p

.i/
2 / : : : .1� p.i/� / D .1 � Np.i//� ; (8)

where � is the chain length and Np.i/ the mean mutation rate of the polynucleotide Xi .
The structure of (8) implicitly assumes independence of nucleobase incorporation
as suggested by Fig. 3. For the elements leading to mutants the factor .1 � p

.i/

k /

is simply replaced by p.i/k at every nucleobase where a mutation occurs. We are
now in the position to calculate stationary populations as a function of the mutation
rate: N� .p/. In order to be able to derive analytical expressions we apply the
uniform mutation rate model, which assumes that the mutation rate per site and
generation, p, is independent of the particular template Xi and the position k on the
polynucleotide sequence, and get for the elements of the matrix Q:

Qii D .1 � p/� and Qji D .1 � p/��dij pdij for i ¤ j ; (9)

where the Hamming distance between sequences is expressed by dj i D
dH.Xi ;Xj /.2 Mutational backflow from mutants to the master sequence is neglected,

1Perron-Frobenius theorem in its strict form holds for primitive matrices. A square non-negative
matrix T D ftij I i; j D 1; : : : ; nI tij � 0g is called primitive if there exists a positive integer m

such that Tm is strictly positive: Tm > 0, which implies Tm D ft .m/ij I i; j D 1; : : : ; nI t .m/ij > 0g.
In terms of mutations the matrices Q and W are primitive if every pair of sequences Xi and Xj is
connected by a finite-length path of consecutive mutations.
2The Hamming distance dH counts the number of positions in which two aligned sequences
differ [41].
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and this is denoted in the variables by the superscript ‘.0/’ indicating a kind of zeroth
order perturbation approximation [23, 76]. For the master sequence we find:

dx
.0/
m

dt
D x.0/m .Wmm � �.t// D x.0/m .Qmm fm � �.t// : (10)

From the stationarity condition, dx.0/m =dt D 0, we obtain for the quasispecies N� .0/:

Nx.0/m D Qmm � 
�1
m

1 � 
�1
m

with 
m D fm

.
f �m and f �m D

Pn
iD1;i¤m fixi
1 � xm

;

Nx.0/j D fm

fm � fj
" djm Nx.0/m with " D p

1 � p
:

(11)

An accurate computation of the mean value f �m is quite involved because it
requires a knowledge of the distribution of mutants in form of the xl -values. An
exception makes the single peak fitness landscape, where all sequences except the
master sequence have the same fitness: fm D f0 and fj D fs 8 j D 1; : : : ; n;
j ¤ m with the trivial result f �m D fs .

Although (11) is only a zeroth order approximation, it describes the dependence
of the quasispecies on the mutation rate p remarkably well for sufficiently long
polynucleotides (Fig. 4 shows the case � D 50). According to (11) the stationary
concentration of the master sequence vanishes at some critical mutation rate:

Nxm D 0 H) .1� pcr/
� D 
�1

m and pcr D 1 � 
�1=�
m : (12)

The master sequence and all its mutants—because of Nx.0/j .p/ / "djm Nx.0/m .p/—
vanish at this point. Making use of the approximation ln.1 � x/ � �x we find
two relations for the error threshold

pcr D ln 
m
�

and �cr D ln 
m
�

; (45.12’)

which were used in various applications from developing new antiviral strategies
[21] to questions concerning the primordial origin of replication [27, 28].

Because of Perron-Frobenius the exact solution of the mutation-selection equa-
tion (4) cannot vanish at the critical error rate p D pcr. Instead it undergoes a
remarkably sharp transition to the uniform distribution � .I/: xi D 1=n8 i D
1; : : : ; n. Since n becomes very large already for moderately small chain length—
n D 4� for the natural AUGC-alphabet, the stationary concentration in the
uniform distribution is extremely small Nx0 D n�1 and accordingly the approach
by perturbation theory is a good approximation.
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Fig. 4 The quasispecies as a function of the mutation rate p. The plot shows the stationary
mutant distribution of sequences of chain length � D 50 on a single-peak fitness landscape as a
function of the point mutation rate p. The upper part contains the approximation by perturbation
theory according to (11) and is compared with the exact results presented in the lower part of the
figure. Individual sequences are grouped into classes � .m/

k 	 fXi jdH.Xi ;Xm/ D kg containing
all mutants with Hamming distance k form the master sequence (see Sect. 3). Plotted are the
stationary concentration of entire mutant classes, Nyk D P

i2�k
Nxi : Ny0 (black) is the concentration

of the master sequence, Xm 	 X0 and Ny0 D Nx0, Ny1 (red) is the sum of the concentrations of all
one-error mutants of the master sequence, Ny2 (yellow) that of all two-error mutants, Ny3 (green) that
of all three-error mutants, and so on. In the perturbation approach the entire population vanishes
at a critical mutation rate pcr called the error threshold (which is indicated by a broken gray line
at pcr D 0:04501) whereas a sharp transition to the uniform distribution is observed with the
exact solutions. In the uniform distribution the concentration of class k is given by

�
�
k

�
=2� with a

largest value of Ny25 D 0:1123 and a smallest value of Ny0 D Ny50 D 8:8818 � 10�16. Choice of
parameters: f0 D 10, f D fk D 18 k D 1; : : : ; � referring to classes � .0/

k , and hence f
�0 D 1

It has to be pointed out that modeling by means of differential equations becomes
obsolete beyond the error threshold. Population sizes in nature and in laboratory
experiments commonly vary between a few thousand and 1015 individuals. These
numbers are tiny compared to the possible numbers of different sequences in
sequence space: jQj D �� with � being the number of digits in the alphabet—
250 D 1:13 � 1015 and 450 D 1:27 � 1030. What actually happens at the error
threshold can be studied by means of stochastic models and computer simulation
[24,36,45,55,66]: Because of error accumulation all members of the population go
extinct after some time and the evolution of the population is determined by random
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replication where no correlation exists between the template and the copies in future
generations. The stochastic process is similar to a linear birth-and-death process on
the population level [70]. The population is no longer stationary but migrates in
sequence space and the migration is in analogy to a diffusion process.

3 Sequence Space and Fitness Landscape

The metaphor of a fitness landscape is due to Sewall Wrigh [88]: Populations are
optimizing fitness by climbing on a mountain landscape under the condition that no
downward steps are allowed (Fig. 5). Species occupy local maxima of the fitness
landscape. The process creating variation is recombination rather than mutation,
which was not yet properly understood in the first half of the twentieth century. The
support of the landscape is a recombination space of genotypes [75] in analogy
to a sequence space. Both spaces share the combinatorial principle and high-
dimensionality. Wright’s metaphor is illustrative but is has been strongly criticized
by his contemporaries, in particular by Ronald Fisher (see, e.g., [73]). In Wright’s
time the problem with the landscape metaphor was twofold: (i) the space upon
which evolution takes place could not be handled, and (ii) fitness was an abstract
quantity in the center of population genetics but nobody had at hand a concept
for the determination of fitness independently of the outcome of the evolutionary
process. Later molecular biology shed light on the process of inheritance, the nature
of mutation and recombination became explainable at the molecular level, and the
stage for a scientific analysis of Wright’s metaphor was set. Determining the fitness
of variants, however, remained a great challenge and substantial progress has been
made only recently. Fitness can be measured now in the case of RNA evolution in
vitro [3] and in virus evolution [51]. It can be expected that further progress will
bring the landscape into the focus of evolutionary thinking.

Originating from the application of quantum mechanics to molecular motions
the Born-Oppenheimer approximation gave rise to molecular hypersurfaces upon
which nuclear motion takes place. Meanwhile the landscape concept became also an
integral part of biophysics and in other areas of physics and chemistry. In particular,
conformational landscapes of biopolymers have been and are successfully applied to
the folding problem of proteins [56, 87]. Nucleic acid structures, in particular RNA
in the simplified form of secondary structures, turned out to provide a sufficiently
simple model for the study of basic features of sequence-structure mappings
[59, 60]. What renders nucleic acids accessible to mathematical analysis is the
straightforward and unique base pairing logic, which dominates intramolecular and
intermolecular interactions and accounts for the major fraction of the free energy of
folding. Base pairing logic, for example, allows for the application of combinatorics
in counting of structures with predefined structural features or properties [44, 81].
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Fig. 5 Sewall Wright’s
fitness landscape. The
landscape has been
introduced as a metaphor to
illustrate evolution [88].
Populations or
subpopulations of species are
climbing on landscape with
multiple peaks and optimize
fitness in a non-descending or
adaptive walk until they
occupy local maxima.
Genotype space in Wright’s
original concept is
recombination space and as
such it is high-dimensional

3.1 Sequence-Structure Mappings

In structural biology the relation between biopolymer sequences and functions is
conventionally spit into two parts: (i) the mapping of sequences into structures and
(ii) the prediction or assignment of function for known structures (Fig. 6). If function
is encapsulated in a scalar quantity, for example in a reaction rate parameter or a
fitness value, the second mapping corresponds to a landscape with structure space
as support:

X �! S D ˚.X/ �! f D �.S/ : (13)

The function itself gives rise to the dynamics of a process involving a population
of sequences or genotypes. The underlying concept is based on the assumption
that structures can be calculated from sequences either directly or by means of
an algorithm. Function manifests itself in the structure and should therefore be
predictable. As it turned out after some spectacular successes in the early days (see,
e.g., [82]) both steps are feasible but the mappings are highly complex and not fully
understood yet. The alternative way to determine parameters consists of an inversion
of conventional kinetics: The measured time dependence of concentrations is the
input and parameters are fit to the data either by trial and error or systematically by
means of inverse methods involving regularization techniques [30].

The conventional problem in structural biology is to find the structures into
which a sequences folds under predefined conditions [92, 93]. Solutions to the
inverse problem, finding a sequence that folds into a given structure are important
for the design of molecules in synthetic biology. An inverse folding algorithm has
been developed for RNA secondary structures [43] (for a recent variant see [1])
and turned out to by a very useful tool for studying sequence-structure mappings.
In particular, these mappings are not invertible: Many sequences fold into the



600 P. Schuster

Fig. 6 The paradigm of structural biology. The relations between sequences, structures, and
functions involve three spaces: (i) the sequence space Q with the Hamming distance dH as metric,
(i) the shape space S with a structure distance dS as metric, and (iii) the parameter space Rm

C
form

parameters. Properties and functions are viewed as the result of two consecutive mappings:˚ maps
sequences into structures, � assigns parameters to structures and thereby determines molecular
function (The insert shows fitness values fk and selection as example). The sequence space Q has
a remarkable symmetry: All sequences are equivalent in the sense that the occupy topologically
identical positions having the same number of nearest, next nearest, etc., neighbors linked in the
same way (An example of a sequence space is shown in Fig. 7). The shape space S refers here to
RNA secondary structures. The elements of shape space can be classified by the number of base
pairs and then there is a unique smallest element, the open chain, and depending on � one largest
element for odd � or two largest elements for even �—one with the unpaired nucleobase on the
5’-end and one with it on the 3’-end. Parameter space in chemical kinetics is commonly multi-
dimensional and the elements are rate parameters, commonly nonnegative real numbers fk 2
RCI k D 1; : : :

same structure, and the notion of neutral network has been created for the graph
representing the preimage of a given structure in sequence space [69]:

˚.Xj / D Sk H) Gk D ˚�1.Sk/ � fXj j˚.Xj D Skg ; (14)

The neutral set Gk is converted into the neutral network Gk through connecting
all pairs of sequences with Hamming distance dH D 1. Figure 8 shows a sketch
of a typical neutral network in sequence space. The network consists of several
components with one, the so-called giant component being much larger than the
others. Neutral networks are characterized by a (mean) degree of neutrality

N�k D
P

j jXj2Gk �
.k/
j

jGkj ; (15)
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Fig. 7 Classes in sequence space. The sketch shows the space of binary sequences of chain length
� D 5, Q

.2/
5 , which is a hypercube of dimension 5 housing 25 D 32 sequences. The reference

sequence, commonly the master sequence, is denoted by Xm 	 X0. It is the only element of the
mutant class � .m/

0 	 �0 where the superscript denotes the reference (that is omitted in case it is
zero). Individual sequences are characterized by their decadic equivalents, e.g., 13 	 .CGGCG/
with C D 0 and G D 1. The index k of the mutant class �k counts the number of Gs or 1s

wherein �.k/j is the local fraction of neutral nearest neighbors of sequence Xj in
sequence space (An example is shown in Fig. 8).

Application of random graph theory [31] in order to derive results for neutral
networks [59] yields among other things a theorem on connectedness: A neutral
network is connected if the degree of neutrality exceeds the critical value N�k >
�cr D 1 � ��1=.��1/. The only parameter in this equation is �, the size of the
nucleobase alphabet. For a binary or two letter alphabet we find �cr D 1=2

and for four letters as in nature �cr D 0:370. Connectedness is important for
the evolution of populations, which migrate in random walk like manner on
neutral networks [36, 45]. Although random graph theory provides an appropriate
reference for neutral networks, deviations from the ideal case are found and they
contain information on the specific properties of RNA shape space [39]. Indeed,
special features of RNA structures have direct impact on the distribution of neutral
sequences in sequence space. Readily interpretable structural features may give
rise to two or four equally sized giant components, or to three components with
a size ratio 1:2:1. Structures with such distributions of sequences in sequence space
are formed preferentially when there is an excess of one nucleobase—for example
more G than C or more C than G in the two letter alphabet fC;Gg—and accordingly
the deviation from a homogeneous distribution is large in the sense that the middle
of sequence space where C=G D 1 is depleted of sequences belonging to the neutral
network. Without going into further details we may conclude here that neutral
networks of RNA structures exhibit features that make them different from random
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sequence space shape space

Fig. 8 Sequence-structure mapping. The sketch shows the neutral network Gk as preimage of
structure Sk in sequence space. The giant component (red) is flanked by disconnected components
(red violet). The number of neutral neighbors varies considerably. In the sketch we find: eight
isolated sequences with zero neighbors (�.k/j D 0), four sequences with one neighbor (�.k/j D 1=6;

marked white), three sequences with two neighbors (�.k/j D 1=3), three sequences with three

neighbors (�.k/j D 1=2), nine sequences with four neighbors (�.k/j D 2=3), six sequences with

five neighbors (�.k/j D 5=6), and one sequence with the maximum number of neighbors, six on

this lattice (�.k/j D 1; marked black). The network in total has a (mean) degree of neutrality of
N�k D 0:446

graphs but, nevertheless, random graph theory is suitable as reference for them.
Other features of the RNA model are dealing with suboptimal structures: Every
molecule has a sequence specific spectrum of suboptimal states, which determine
molecular properties when they lie within reach of the thermal energy, and kinetic
effects may give rise to metastability of states when they are separated from the
ground state by sufficiently high energy barriers [67].

The total number of physically acceptable RNA structures formed by all
sequences with a certain chain length �, NS, can be counted by means of combi-
natorics [44] or estimated by an asymptotic expression

QNS.�/ D 1:4848 ��3=2 1:84892� (16)

that represents an upper bound, which becomes exact in the limit of long sequences.
Alternatively, for a given nucleobase alphabet the number of structures can be
obtained through exhaustive enumeration [38, 39, 66]. For � D 100 one counts
NS D 6:89 � 1023 whereas the asymptotic expression (16) yields QNS D 7:3 � 1023.
Although the number of possible RNA secondary structures grows exponentially
with chain length, it is tiny compared to the number of possible sequences, which is
n D 4100 D 1:6 � 1060 for the same chain length (� D 100). Even for a small chain
length � D 17 and 1:7 � 1010 possible sequences we count NS D 530 structures
out of which 414 are realized in the AUGC-alphabet and hence we are dealing with
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many orders of magnitude more sequences than structures: Inevitably, the mapping
from sequence space into structures exhibits a remarkably high degree of neutrality.

The structures in the local environment of a sequence in sequence space
determine the accessibility through evolutionary dynamics. A measure for the
sensitivity to mutations of a given structure is the autocorrelation in sequence space
as a function of h being the Hamming distance from the reference:

�.h/ D 1 �
˝
d2S .h/

˛
˝
d2S
˛ with

˝
d2S .h/

˛ �
D
d2S

�
˚.Xj /; ˚.Xk/

�̌̌
ˇ dH.Xj ;Xk/ D h

E
:

(17)
Herein, dS is the structure distance, in

˝
d2S .h/

˛
the average is taken over all sequences

at Hamming distance dH D h form the reference sequence, i.e. over the error
class �h, and in

˝
d2S
˛

the average is taken over the entire sequence space [35]. The
autocorrelation of structures in sequence space, �.h/, is a measure of the decaying
memory on the structure of the reference sequence along a path progressing into
sequence space: A short correlation length ` means that only a few steps away from
any reference sequence the same average distribution of structures is encountered
everywhere in sequence space. In particular, the correlation length ` measures
the distance at which the fraction of reference structures in the environment of
a sequence has shrunk to 1=e � 0:367879. For secondary structures of AUGC-
sequences the correlation length for � D 100 is about ` � 7:5 and for � D 17 (the
chain length of the sequence example X0 chosen here) it amounts only to ` � 2.
In other words, going to error class three and higher, �k�3, we can expect to find
practically no differences in the distribution of structures with respect to the initially
chosen reference sequence.

In order to illustrate the typical form of the local environment in a biopolymer
landscape we choose a small RNA of chain length � D 17 with the sequence
X0 � AGCUUACUUAGUGCGCU as example.3 At 0 ı C the sequence forms
the minimum free energy structure S0 D ˚.X0/, which consists of an hairpin
with six base pairs and an internal loop that separates two stacks with three base
pairs each (Fig. 9; black structure), and the free energy of structure formation is:
�G

.0/
0 D �6:39 kcal/mole. The molecule is relatively stable and has three low

lying suboptimal conformations with free energies at 0.29, 0.38, and 0.67 kcal/mole
above the minimum free energy structure. These three states differ from the
ground state through opening of one or both external base pairs (see e.g. Fig. 9),
all three suboptimal configurations are lying within reach of thermal energy and
therefore contribute to the partition function of the molecule. The Hamming distance
one neighborhood of X0 consists of 17�3 D 51 sequences, which form 16 different
structures. Out of the 51 sequences 15 form the same minimum free energy structure
as X0 and 10 have also the same minimum free energy implying a local degree of
neutrality of �.0/0 D 0:29 for structures and �.�G/0 D 0:19 for the free energies,

3All polynucleotide sequences are written from the 5’-end at the lhs to the 3’-end on the rhs.
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Fig. 9 Selected RNA structures. Shown are examples of RNA structures in the one-error
neighborhood of sequence X0 ordered by the numbers of base pairs. In total, the 3 � 17 D 51

sequences form two different structures with two base pairs (1,8; the numbers in parentheses refer
to the occurrence of the individual structures), four structures with three base pairs (1,1,2,3), three
structure with four base pairs (1,2,3), four structures with five base pairs (1,1,3,4), two structures
with six base pairs (2,15), and one structure with seven base pairs (3). The three structures on the
rhs have a common folding pattern and differ only by closing and opening of a base pair: (i) the
two bases in the internal loop and (ii) the outermost base pair

respectively. The plot of the free energies of folding �G.0/
0 for all 51 mutants in

Fig. 10 is a perfect illustration of the ruggedness of the free energy landscape: The
stability range of the one-error mutants goes from marginal stability at position 2,
G ! U, to more than twice the absolute free energy of the reference at position 4,
U ! G.

The message of the model studies on sequence-structure mappings and parameter
landscapes derived from RNA secondary structures is twofold: The mappings and
landscapes are (i) rugged in the sense that nearby lying sequences may give rise to
very different structures and stabilities, and (ii) neutral meaning that an appreciable
fraction of individual sequences leads to the same structures with practically
identical properties. What has been shown here for free energies of folding into
minimum free energy structures is valid also for many other functions [34] and thus
represents a generic property of biopolymers.

3.2 From Sequences and Structures to Genotypes and
Phenotypes

Genotypes or genomes are RNA or DNA sequences. The phenotype comprises
structures and functions, both of which are dependent on the specific experimental
or environmental setup. The simplest system capable of selection and mutation
consists of RNA molecules in a medium that sustains replication. Then, genotype
and phenotype are simply the RNA sequence and structure, respectively. In case of
evolution experiments with the bacteriophage Qˇ the functional requirements are
a result of the replication mechanism [4–6]. In order to be replicated the Qˇ-virus
RNA molecules must carry an accessible recognition site for binding to the enzyme
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Fig. 10 Free energy landscape of a small RNA. Free energies of folding, ��G.0/
0 at 0ı C, are

plotted for the individual point mutations, which are grouped according to their positions along the
sequence (from 5’- to 3’-end). The color code refers to the number of base pairs in the structures
(see Fig. 9): powder blue for two base pairs, pink for three base pairs, sky blue for four base pairs,
grass green for five base pairs, black for six base pairs as in the reference structure, and red for
seven base pairs. Mutations in the hairpin loop—positions 8, 9, 10—do not change the structure.
All calculations were performed with the Vienna RNA Package, version 1.8.5 [43]

Qˇ-replicase [2, 83], replication involves a complementary or plus-minus strand
copying mechanism, and hance both strands must carry the recognition site. The
replication rate parameters for plus-strand and minus strand synthesis are f .C/

j and
f
.�/
j , and after internal equilibration the plus-minus ensemble grows exponentially

with an overall fitness constant, which is the geometric mean of the fitness values of

both strands: fj D
q
f
.C/
j f

.�/
j . Thus, the phenotype in the case of Qˇ-replication in

the test tube is the ensemble consisting of both strands.
Outside plant cells viroids are naked, cyclic, and especially stable RNA

molecules whose sequences are the viroid genotypes. Viroid RNAs are multiplied
through transcription by the host cell machinery and carry specific recognition
sites at which transcription is initiated. Replication of Potato spindle tuber viroid
(PSTV), for example, starts predominantly at two specific sites with the closely
related sequences GGAGCGA at position A111 and GGGGCGA at position A325 of
the viroid RNA with a chain length of � D 359 nucleotides [33]—the two positions
are almost on opposite sides of the cyclic RNA, 214 or 145 nucleotides apart.
Viroid RNAs have many loops and bulges that serve two purposes: (i) They allow
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for melting4 of the viroid RNA since a fully double stranded molecule would
be too stable to be opened, and (ii) they carry the recognition sites and motifs
for replication and system trafficking [16, 90], which have also been studied on
the 3D structural level [91]. Although viroid reproduction in nature requires a
highly specific host cell and there was a common agreement that viroids in general
are highly species specific, recent attempts to replicate Avocado sunblotch viroid
in yeast cells have been successful [14]. The viroid phenotype is already quite
involved: It has a structural component that guarantees high RNA stability outside
the host cell, but at the same time the structure has to be sufficiently flexible in order
to allow for opening of the structure and processing the RNA inside the cell. Like
the Qˇ RNA, viroid RNA carries specific recognition sites for initiation and control
of the reproduction cycle.

Viruses, in essence, are like viroids but the complexity of the life cycle is
increased by three important factors: (i) virus DNAs or RNAs carry genes that
are translated in the host cell, yield virus specific factors, and accordingly viruses
have genetic control on the evolution of these coding regions, (ii) the virus capsid
may contain functional protein molecules, for example replicases, in addition to the
virus specific genetic material, and (iii) viruses are coated by virus specific proteins
or proteins and membranes (For a recent treatise of virus evolution see, e.g., [20]).
Because of the relative simplicity compared to cellular life, fast replication, and high
mutation rates virus evolution has been modeled in some detail and the quasispecies
concept was found to be particularly suitable for virus populations (see, e.g., [9,17–
19,29,53,63,64]). Although plenty of fitness data are available, which deal with very
few genetic loci or alleles, comprehensive large scale studies are practically non
existing. A very recent exception is a large scale study on HIV-1 [51]: In essence,
the expectations derived from theoretical studies—ruggedness, neutrality, and the
importance of high dimensionality—are confirmed, although the correlation lengths
appear to be longer than expected.

Bacterial phenotypes are currently to complex for a comprehensive analysis at the
molecular level. An exception are the particulary small and cell-wall free bacteria
of the genus Mycoplasma. In particular, Mycoplasma genitalium is a parasitic
bacterium and was considered to be the smallest organism for quite some time.5 Its
genome consists of one circular chromosome with 582,970 base pairs and 521 genes
of which 482 encode for proteins. Extensive studies aiming at full systems biology
of a cellular organism were performed on the some what larger species Mycoplasma
pneumoniae with a genome size of � � 816; 000 base pairs [40, 52, 89]. For larger
organisms—ordinary bacteria of about tenfold size and small eukaryotic cells—
flux balance analysis [57] rather than full molecular systems biology has been

4The notion melting a stacking region of a polynucleotide means opening of the double helix in
order to yield the two single strands. The analogy to the melting process comes from the fact that
rising temperature leads to opening of stacks.
5The smallness record is currently hold by Nanoarchaeum equitans with a genome size of 490,885
base pairs.
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performed (An early example of flux balance analysis of Escherichia coli is found
in [22]). Another approach to complex phenotypes is based on completely annotated
genomes and information on gene interactions mainly coming from proteomics.
A gene interaction network has been worked out recently for a small eukaryotic cell
with roughly 6,000 genes [10] and it is overwhelmingly complex.

4 Evolutionary Dynamics on Realistic Landscapes

As outlined in the previous Sect. 3.1 two features are fundamental for realistic
landscapes: (i) ruggedness and (ii) neutrality. They were not only found with
landscapes derived from RNA but also with those from proteins [42]. The Japanese
population geneticist Motoo Kimura realized that a large number of mutations
has no influence on fitness [49] and conceived a theory of evolution that is based
on neutrality. Kimura’s theory describes random selection, which is a stochastic
process that is induced by replication and leads to almost homogeneous populations
of a particular sequences chosen at random. Still the interplay of ruggedness and
neutrality is not completely understood yet [11], and almost all information comes
from computer simulations using ad hoc model landscapes[36, 37, 45].

Models for rugged fitness landscapes have been proposed, the most popular
example is the Nk-model due to Stuart Kauffman [47, 48, 84] that is based on
individual loci on a genome and interactions between them: N is the number of
loci and k is the number of interacting loci. A random element, which is drawn
from a predefined probability distribution—commonly the normal distribution—
and which defines the interaction network, is added to the otherwise deterministic
model: N and k are fixed and not subjected to variation. Here, a different approach
is proposed that starts out from the nucleotide sequence of a genome rather than
from genes and alleles and consequently it is directly anchored in sequence space.
Ruggedness and neutrality are introduced by means of tunable parameters, d and �,
and pseudorandom numbers are used to introduce random scatter, which reflects the
current ignorance with respect to detailed fitness values and which is thought to be
replaced by real data when they become available in the near future.

4.1 Realistic Rugged Landscapes (RRL)

A new type of landscapes, the realistic rugged landscape (RRL), is introduced and
analyzed here. Ruggedness is modeled by assigning fitness differences at random
within a band of fitness values with adjustable width d . The highest fitness value
is attributed to the master sequence Xm

:D X0, fm D f0, and the fitness values are
obtained by means of the equation
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Fig. 11 A realistic rugged fitness landscape. The landscapes for 1,024 binary sequences of chain
length � D 10 is constructed according to (18). The band width of random scatter was chosen to
be maximal, d D 1, and s D 637 was applied. The broken blue lines separate different mutant
classes

f .Xj / D fj D
8
<
:
f0 if j D 0 ;

fs C 2d.f0 � fs/
�
�
.s/
j � 0:5� if j D 1; : : : ; � � ;

(18)

where �
.s/
j is the j -th output random number from a pseudorandom number

generator with a uniform distribution of numbers in the range 0  �
.s/
j  1 that

has been started with the seed s,6 which will be used to characterize a particular
distribution of fitness values (Fig. 11). The parameter d determines the amount of
scatter around the mean value Nf�0 D fs , which is independent of d : d D 0 yields
the single peak landscape, and d D 1 leads to fully developed or maximal scatter
where individual fitness values fj can reach the value f0. Two properties of realistic
rugged landscapes fulfilled by fitness values relative to the mean except the master,
'j D fj � fs 8 j D 0; : : : ; � � , are relevant: (i) the ratio of two relative fitness
values of sequences within the mutant cloud is independent of the scatter d and (ii)
the ratio of the relative fitness values of a sequence from the cloud and the master
sequence is proportional to the scatter d :

�j

�k
D �

.s/
j � 0:5
�
.s/

k � 0:5
I j; k D 1; : : : ; � � and (19a)

�j

�0
D 2 d

�
�
.s/
j � 0:5

� I j D 1; : : : ; � � : (19b)

These properties allow for an investigation of the role of random scatter without
changing the fitness relations with the error classes.

6The seed s indeed determines all details of the landscape, which is completely defined by s and
the particular type of the pseudorandom number generator as well as by f0, fs , and d . Here we use
the pseudorandom number generator Legacy of the software package Mathematica [86].
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Fig. 12 Quasispecies on
realistic model landscapes
with different random
scatter d . Shown are the
stationary concentrations
Nxj .p/ on a landscape with
s D 491 for d D 0 (upper
plot), d D 0:5 (middle plot),
and d D 0:9375 (lower plot).
In the topmost plot the curves
for all sequences in class �1
coincide, and so do the curves
in class �2 since zero scatter,
d D 0, has been chosen. The
error threshold calculated by
perturbation theory lies at
pcr D 0:066967 (blue broken
line). Other parameters:
� D 10, f0 D 2:0, and
fs D 1:0. Color code: �0
black, �1 red, and �2 yellow

We are now in a position to explore whether or not the results derived from
simple single peak model landscapes and reported in Sect. 2 are representative
for mutation-selection dynamics on realistic landscapes. The influence of random
scatter on quasispecies and error thresholds on landscapes of sequences of chain
length � D 10 has been studied in detail.7 Despite the short chain length of
� D 10 the plots in Fig. 12 reflect the threshold phenomena rather well, the width
of the transition to the uniform distribution is hardly changing, and the decay of
the concentration of the master sequence is shifted towards smaller p-values with

7The chain length for which diagonalization of the value matrix W can be routinely performed lies
at rather small chain lengths around the � D 10 giving rise to a matrix size of 1000 � 1000. It has
been shown that such a short chain length is sufficient to yield representative results provided the
fitness parameters f0 and fs are chosen appropriately (Fig. 12).
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Fig. 13 Quasispecies on realistic model landscapes with different random seeds s. Shown are
the stationary concentrations Nxj .p/ on landscapes with s D 919 and d D 1 (upper plot), and
s D 637 and d D 1 (lower plot). The upper plot shows a strong quasispecies that is stable from
p D 0 up to the error threshold at p D pcr D 0:0084. The landscape in the lower plot sustains four
different quasispecies, which are separated by three transitions: tr1, �0 $ �1003 at p D 0:0007;
tr2, �1003 $ �923 at p D 0:0018; and tr3, �923 $ �247 at p D 0:0028. The error threshold
lies at pcr D 0:0083 (outside the plot). Other parameters: � D 10, f0 D 1:1, and fs D 1:0.
Color code: �0 black, �1 red, �2 yellow, �3 green, �4 cyan, �5 blue, �6 magenta, �7 chartreuse,
�8 yellow, �9 red, and �10 black

increasing d . For moderate random scatter (d D 0:5; middle plot) the curves for
the sequences of the individual classes form bands, which do not overlap before the
quasispecies approaches the error threshold. At large scatter (bottom plot) the bands
start to overlap already at small p-values.

Differences between individual landscapes at moderate band width d—according
to different seeds s—concerns only the distribution of curves within the bands. At
large band widths d ! 1, however, qualitatively different behavior may be observed
(Fig. 13). Some landscapes sustain the same quasispecies for the entire range of
ordered replication from p D 0 up to the error threshold at p D pcr (upper plot in
the figure) and point at a remarkable stability of the stationary mutant distribution,
which is expressed in the term strong quasispecies that has been coined for such a
scenario. On the majority of landscapes transitions between different quasispecies
are observed (lower plot in the figure). These transitions occur at error rates where
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the difference in fitness between the two master sequences is compensated by the
mutational backflow [71] (13 years later this phenomenon was called survival of
the flattest [85]). At mutation rates p below the transition the master sequence
with the higher fitness value and weaker mutational backflow dominates, and above
the transition the sequence with lower fitness but stronger mutational backflow is
prevailing. The position of the transition, p D ptr, can be calculated by means
of perturbation theory in the spirit of (10), the expressions, however, are rather
complicated and we refer therefore here only to the literature [71].

The evolutionary dynamics on a given landscape can often be predicted from
a few special fitness values. The occurrence of strong quasispecies, for example,
requires four nearest neighbor sequences with high fitness values, which form a
cluster coupled by strong mutational backflow (Fig. 14): One of these sequences is
the master sequence X0, one or two sequences are situated in error class �1 and the
fourth sequences is in error class �2. It turned to be sufficient if one of the two error
class �1 sequences has an especially high fitness value. In the strong quasispecies
shown in Fig. 13 the sequences and their fitness values are: X0 with f0 D 1:1 (by
definition), X4 with f4 D 1:0966, X512 with f512 D 0:9296, and X516 with f516 D
1:0970, and the sequences with the high fitness values are present at the highest
concentrations (X0 black, X4 red, and X516 yellow) (Fig. 14).

4.2 Rugged and Neutral Landscapes (RNL)

In case of neutral fittest sequences of Hamming distances dH D 1 or dH D 2

replication-mutation networks are formed and we shall denote them as master pairs
or master clusters. An important issue of the realistic landscape approach is the
random positioning of neutral master sequences in sequence space, which can be
achieved by means of the same random number generator that is used to compute
the random scatter of the other fitness values obtained from pseudorandom numbers
with a uniform distribution in the interval 0  �  1:

f .Xj / D

8
ˆ̂̂
ˆ̂̂
<
ˆ̂̂
ˆ̂̂:

f0 if j D 0 ;

f0 if �.s/j 
 1 � � ;

fs C 2d
1�� .f0 � fs/

�
�
.s/
j � 0:5� if �.s/j < 1 � � ;

j D 1; : : : ; � � I j ¤ m :

(20)

The rugged and neutral fitness landscape (20) is a straightforward extension of
the purely rugged fitness landscape (18) meeting the condition that several master
sequences with fitness f0 exist. There are two limiting cases: (i) lim � ! 0 yielding
the non-neutral random landscape (18) and (ii) lim � ! 1 leading to the fully
neutral case of Motoo Kimura [50]. The fraction of neutral mutants is determined
by the fraction of random numbers, which fall into the range 1 � � < �  1, and
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Fig. 14 Mutation flow in quasispecies. The sketch shows two typical situations in the distribution
of fitness values in sequence space. In the upper diagram (s D 637) the fittest two-error mutant,
X768, has its fittest nearest neighbor, X769, in the three-error class �3, and the fittest sequence in the
one-error neighborhood of X4 (being the fittest sequence in the one-error class), X68, is different
from X768, the mutational flow is not sufficiently strong to couple X0, X4, and X68, and transitions
between different quasispecies are observed (Fig. 13). The lower diagram (s D 919) shows the
typical fitness distribution for a strong quasispecies: The fittest two-error mutant, X516, has its
fittest nearest neighbor, X4, in the one-error class �1 and it coincides with the fittest one-error
mutant. Accordingly, the three sequences (X0, X4, and X516) are strongly coupled by mutational
flow and a strong quasispecies is observed (Fig. 13). Sequence X512 is also part of this cluster but
because of low fitness plays no role in this particular case
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apart from statistical fluctuations this fraction is �. At small values of the degree
of neutrality � isolated peaks of highest fitness f0 will appear in sequence space.
Increasing � will result in the formation of neutral networks or clusters of sequences
with highest fitness.

Replication without mutation on purely neutral landscapes is a stochastic process
that leads to selection of one randomly chosen sequence. Mutation changes the
outcome of the evolutionary process. Depending on the Hamming distance between
the neutral sequences either a group of master sequences coupled by selection
dynamics is formed or random selection takes place and only one sequence survives
in the sense of Kimura’s theory. The case of vanishing mutation rates, limp ! 0,
has been analyzed for two neutral sequences [71], Xj and Xk , at different Hamming
distance dH.Xj ;Xk/:

(i) dH D 1: limp!0
Nxj
Nxk D 1 or limp!0 Nxj D limp!0 Nxk D 1=2,

(ii) dH D 2: limp!0
Nxj
Nxk D ˛ or limp!0 Nxj D ˛=.1C ˛/, limp!0 Nxk D 1=.1C ˛/,

with some value 0  ˛  1, and
(iii) dH 
 3: limp!0 Nx1 D 1; limp!0 Nx2 D 0 or limp!0 Nx1 D 0; limp!0 Nx2 D 1.

The mutational flow apparently counteracts successfully random selection provided
the Hamming distance is short enough. It is remarkable that the mutational flow
prevails even in the limit p ! 0 and thus selects one particular state at p D 0

where all combinations of concentrations ŒXj �C ŒXk� D 1 are solutions on an equal
footing because of degeneracy.

In order to check the role of the predictions for the limit p ! 0 in the case
of nonzero mutation rates we search for appropriate test cases by inspection of
landscapes according to (20). For small degrees of neutrality we found indeed
suitable neutral clusters on the landscapes (s D 637; � D 0:01; Fig. 15) and
(s D 877; � D 0:01; Fig. 16). In full agreement with the exact result we find that two
fittest sequences of Hamming distance dH D 1 are selected as a strongly coupled
pair with equal frequency of both members and numerical results show that strong
coupling does not occur only for small mutation rates but extends over the whole
range of p-values from p D 0 up to the error threshold p D pcr (Fig. 15). Examples
for the case dH D 2 are also found on random neutral landscapes and again the exact
result for vanishing mutation rate holds up to the error threshold. The existence of
neutral nearest and next nearest neighbors manifest itself by the lack of a unique
consensus sequence of the population has an important consequence for phylogeny
reconstruction (see Fig. 17).

Neutral networks may comprise several sequences and then, all neutral near-
est neighbor sequences form a strongly coupled master cluster in reproduction.
The distribution of individual members of the cluster in the limit p ! 0 are readily
obtained by diagonalization of the adjacency matrix.8 The components of the largest

8The adjacency matrix of a graph, A, is a symmetric square matrix that has an entry ajk D akj D 1

whenever the graph has an edge between the nodes for Xj and Xk and zero entries everywhere else.
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Fig. 15 Quasispecies on a realistic landscape with two neutral nearest neighbor sequences.
The landscape (s D 367; � D 0:01) sustains two neighboring sequences of highest fitness (f0 D
1:1) forming a master pair of Hamming distance dH D 1, X0 and X64. The master pair is surrounded
by 18 single point mutations (red and yellow) in the quasispecies �0;64. A third neutral sequence
X324 (green) is situated at Hamming distance dH D 3 and dH D 2 from the two master sequences
X0 and X64, respectively, and it is more abundant than the single point mutations X68 and X320. The
sketch at the top shows the network of the five coupled sequences. The plots shows the dependence
of the joint quasispecies on the point mutation rate p The plot at the bottom is an enlargement of
the plot in the middle. The concentrations of the two master sequences are practically identical for
all mutations rates. Color code: master sequences (black and red), the colors are standard colors
for all sequences centered around Xm D X0 (see caption of Fig. 13). Further parameters: n D 10,
f0 D 1:1, fs D 1:0, d D 0:5

eigenvector are proportional to the concentrations of elements of the replication
network. Increasing the degree of neutrality � gives rise to the formation of larger
neutral networks. Commonly there is a giant cluster and many small clusters as
predicted by random graph theory and sketched in Fig. 8.
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Fig. 16 Quasispecies on a realistic landscape with two neutral next nearest neighbor
sequences. The landscape (s D 877; � D 0:01) sustains two nest nearest neighbor sequences
of highest fitness (f0 D 1:1) forming a master pair of Hamming distance dH D 2, X518 and X546.
There is also a second neutral network of the same type on this landscape that involves the two
Hamming distance dH D 2 sequences X0 and X132. The sketch on top of the figure shows the
two networks, the diagram on the rhs gives the color code for the enlargement in the plot at the
bottom of the figure. The middle part of the figure presents the solution curves for the quasispecies
�518;546 , which contains the cluster fX0;X132g in the mutant cloud. The plot at the bottom is an
enlargement, shows the quasispecies �518;546 centered around 518 and restricted to the master pair
and all one error mutants (red). The curves for the two intermediate sequences X514 and X550 are
highlighted in pastel blue (see rightmost diagram at the top of the figure). Color code for the plot
in the middle: master sequences (green), the colors are standard colors for all sequences centered
around X0 (see caption of Fig. 13). Further parameters: n D 10, f0 D 1:1, fs D 1:0, d D 0:5
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Fig. 17 Quasispecies and
consensus sequences in case
of neutrality. The upper part
of the figure shows a sketch
of sequences in the
quasispecies of two fittest
nearest neighbor sequences
(dH D 1). The consensus
sequence is not unique and
differs in a single position
where both nucleotides
appear with equal frequency.
In the lower part the two
master sequences have
Hamming distance dH D 2

and differ in two positions.
The two sequences are
present at some ratio ˛ that is
determined by the fitness
values of other neighboring
sequences, and the
nucleobases corresponding to
the differences in the two
master sequences appear with
the same ratio ˛

5 Perspectives and Limitations of the Kinetic Approach

The conventional synthetic theory of evolution considers reproduction of organisms
rather than molecules [54]. In contrast, the kinetic theory of evolution [23,25,26] is
dealing with the evolutionary processes at the molecular level. Correct reproduction
and mutation are implemented as parallel reactions and various detailed mechanisms
of reproduction can be readily incorporated into the kinetic differential equations.
An extensively investigated example is RNA replication by means of an enzyme
from the bacteriophage Qˇ [4–6, 83]. The detailed kinetic analysis reveals precise
conditions for the applicability of the mutation-selection model (4): Given activated
nucleobases are available in excess the RNA concentration has to be smaller than the
concentration of the replication enzyme. Provided the mechanism of reproduction
is known, it can be implemented straightforwardly into replication kinetics based
on ordinary differential equations (ODEs) [58, pp. 29–75]. This is true likewise
for epigenetic effects, which may require the use of delay differential equations.
Furthermore, the kinetic theory rather than the conventional population genetics
approach is the appropriate basis for molecular evolution and molecular phylogeny,
since these concepts deal with genes and genomes as molecules within cells and
organisms and not with the organisms themselves. The molecular approach is able
to account for complex dynamical interactions, and this is indispensable, because
evolution does not care for elegance, simplicity, symmetry or optimality, the only
thing that matters is efficiency.
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Explicit consideration of mutations as parallel reactions to error-free reproduc-
tion is manifested in the structure of stationary populations, no ad hoc assumptions
are required for the appearance of mutants. In addition, high mutation rates as
found, for example, in test tube evolution experiments [3, 7, 74] and in virus
reproduction [20] do not represent a problem and are handled equally well as
low mutation rates. The kinetic model relates evolutionary dynamics directly to
fitness landscapes, which have a straightforward physical interpretation and are
accessible experimentally. Unclear, ambiguous, and wrong results are obtained with
simple models of fitness landscapes and they demonstrate that an understanding
of evolution is impossible without sufficient knowledge on the molecular basis of
fitness. In simple systems fitness is a property that can be determined by the methods
of physics and chemistry, and thus independently of evolutionary dynamics. The
current explosion of harvested data provides a new source of molecular information
that can be used for the computation of fitness values under sufficiently simple
conditions.

The quasispecies is the stationary solution of a deterministic, differential equa-
tion based model that, in principle, is bound to constant population size. Analysis
of the basic ODEs, however, has shown that the results in relative concentrations
(xi I Pn

iD1 xi D 1) are generally valid as long as the population does neither die
out (

Pn
iD1 Ni ! 0) nor explode (

Pn
iD1 Ni ! 1) [26]. Then, particle numbers

are not normalizable and the structure of the population cannot be predicted from
solutions of (4). Nevertheless, quasispecies may still exist for vanishing populations
but any rigorous treatment has to start out from the original kinetic equations
with population size being treated as a variable. Variants with zero fitness are
compatible with the error threshold phenomenon [77, 78] but the prerequisites for
the conventional calculation of the quasispecies are no longer fulfilled—not every
sequence can be reached from every sequence by a finite chain of point mutations
and Perron-Frobenius theorem does not hold.

Another question is hard to answer at present: Do populations in nature ever
reach a stationary state? In vitro evolution experiments can be carried out in such
a way that stationarity or mutation equilibrium is achieved, but is this true also in
nature? In virus infections specific mutants appear also within the infected host but
on the other hand the effect of infection and the course of disease is rather similar
with comparable hosts indicating that viruses are in a comparable state at least at
the beginning of an infection.

Two other problems are quite general in biological modeling in particular on
the molecular level: (i) Most models assume spatial homogeneity whereas cells
are highly structured objects with limited diffusion, active transport, and spatial
localization of molecular players, and (ii) many results are derived from differential
equations, which are based on the use of continuous variables, and thereby it is
implicitly assumed that populations are very large. In principle, the definition of
continuous space and time requires infinite population size and this is a reasonable
and well justified assumption in chemistry but not in biology where sample sizes
may be very small. Examples are the often extremely small concentrations of
regulatory molecules. Systematic studies on the very small bacterium Mycoplasma
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pneumoniae in the spirit of systems biology [40,52,89] have shown that in extreme
cases only one molecule per hundreds or even thousands of bacterial cells is present
at a given instant in the population. Also the assumption of a homogeneous space is
questionable: There is very little free diffusion in real cells and even bacterial cells
have a very rich spatial structure. Stochasticity plays an important role and discrete
stochastic rather than deterministic continuous variables should be applied more in
the future. Also a combination of stochastic events with ODE modeling between
individual jumps might well be suitable for modeling in systems biology.

Finally we mention another general problem for evolutionary models. Using con-
ventional modeling with ODEs all populations would extend over whole sequence
space. A drastic example is the uniform distribution of sequences, which is predicted
at mutation rates above the error threshold. Coverage of sequence space can never
occur in a finite world: Even for small RNA molecules of tRNA size we would
need a population size of N D 1046 individuals in order to have one molecule
for every possible sequence whereas the largest populations in in vitro experiments
with RNA hardly exceed N D 1015 molecules. What we have instead are clones
of sequences migrating through sequence space (see, for example, [15, 36, 37, 45].
Truncation of fitness landscapes has been suggested recently as a possible solution
to the problem [61]. Alternatively, one could leave the full landscape and truncate
populations through setting all concentrations less than one molecule per reaction
volume equal to zero and eliminate the corresponding variables [65]. New variables
come into play when their concentration exceeds this truncation threshold similarly
as occurring in stochastic processes.
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Dissipative Structures and Biological Evolution

E.J. Brändas

1 Introduction

In this commemorative volume we honor Professor M. G. Velarde (MGV) on
account of his remarkable achievements in the new and exciting domain of Complex
Systems and Non-Linear Dynamics in general and the study of novel electric trans-
port mechanisms in particular, for recent references see e.g. [1–3]. Our trajectories
first crossed during a workshop, under the chairmanship of Profs. I. Prigogine and
G. Nicolis, to discuss the European Commission’s working document on Prospects
in the Science of Complexity in European Research within the Fourth Framework
Programme in 1994. In these panel reports fundamental problems in complex
systems research were laid down with particular emphasis on viewing phenomena
from the microscopic scale to the macroscopic one including the emergence of
selforganization in the information technology and the biology sectors.

At this time MGV had just started to lay the fundaments of the highly regarded
Instituto Pluridisciplinar besides receiving many awards, i.e. Honorary Doctorate,
the Rammal Medal, the Dupont Science Prize, election (later Council Member)
to membership of the Academia Europaea etc. My own contribution to meet the
criteria for an invitation to review and elaborate on future specific platforms with
scientific specialists and DG XII (Directorate-General for Science, Research and
Development) probably originated from the fact that I was one of the first recipients
of a European Commission (EG-SCIENCE) grant in Sweden [4], a somewhat
overriding yet unfamiliar privilege that took the administration of the oldest
University in Scandinavia with unexpected surprise! Fortunately I was permitted
to accept the grant after guarantees were made that the new type of funding should
not cause the University any extra costs.
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Another “crossing” occasion relates to the Workshop organized at les Trielles
in honor of Ilya Prigogine on the occasion of his 85:th birthday [5]. In this tribute
to the founder of dissipative dynamics and the Brussels-Austin School one may
appreciate the various approaches and strategies from “bottom-up” and “top-down”,
in particular the concept of a coherent-dissipative structure, CDS, as an example of
the former and of dissipative solitons as representing the latter.

As Program Director of the Uppsala Graduate Research School, Advanced
Instrumentation and Measurements, [6], AIM being an associate member of the
FANTOM International Research School [7], MGV was invited to lecture during
the General FANTOM/AIM Study Week: Dynamical processes and structure
formation. Now his research outline incorporated a liable connection between
the dissipative soliton and high-TC superconductivity, an idea today being further
developed into the original conception of the solectron [1–3]. The relationship
continued via other meetings like MGV’s series of Madrid Meetings as well as
various Solvay Symposia. In particular our Madrid-host confronted us as invited
discussion partners to sign a declaration in his “black guest book” which by now
should contain an illustrious list of research ideas extrapolated via the provoked
expectations and imaginings, thoughts and dreams of the contributor in order to
anticipate the challenges of tomorrow!

In order to comment on my reflexive vestiges in the aforementioned guest book I
will, in this tribute, remind of some recent issues, see e.g. [8] for more details. In an
ascending strategical perspective, complexity does emerge calling further attention
to “complex-enough” systems that borderline on biological organization. In the
artistic mode of science including its symbolic significance the present turmoil of
scientific interpretation requests a new beginning, i.e. a conceptual renaissance of
philosophical communication and motivated functionality. To begin with we need to
consider general questions of the following nature: what is the proper framework for
a bona fide science of biology? While physical progress is governed by natural laws
(teleomatic principles), biology is teleonomically goal-directed due to the influence
of an evolved program. In this vein one might ask whether biology naturally and
logically supervenes (characterization of a relation that emergent properties bear on
their base properties) on physics (physicalism)? How do we come to terms with the
contradictory issues troubling micro-macro correlates? To exemplify the latter we
need only to mention concepts like causality, unidirectional and irreversible time,
the controversial nature of the second law not to mention the frenetic avoidance
of Gödel’s inconsistency theorem(s) (the assertion of the inherent limitations of
all non-trivial axiomatic systems) in most enduring philosophical agendas. In more
detail we will advance queries like

what distinguishes living matter from inanimate systems?
do we have a law of microscopic self-organization?
can physical teleomatic laws be transformed into teleonomic rules?
what is the role of temperature in biological systems?
what is the role of gravity in biology?
how to incorporate Gödel’s incompleteness theorem?
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These in turn lead directly to follow-up questions, i.e. in what manner do
we develop new biological natural laws based on self-referentiability, and will
mentalistic-materialistic construals generate mind-body analogies or more specif-
ically structure-matter readings and finally will this environ new positions on
artificial intelligence, AI, and lead to true sentience? As already indicated in the
questions enlisted in italic above, supplementary theoretical details of a more
general accord must be examined and developed, such as

can we profusely merge quantum- and thermal correlations?
what are the cosmological teleological consequences?
can decoherence be prohibited and what does this mean?
can classical and quantum mechanics coexist under common laws?

In the following sections we will briefly discuss this programme as well as call
attention to various situations were we have been able to initiate some steps forward.

2 Complex Forms and the Global Superposition Principle

In order to examine the four questions at the end of the introduction, we will
revisit our extended approach to a generalized theoretical formulation via so-
called complex symmetric forms. As the present tribute will not allow any detailed
accounts in regard to our quest for completeness, we will generally refer to a recent
review [8] and references therein. To begin in a most general fashion we will
consider abstract a particle-antiparticle system characterized by the kets in terms
of the coordinate x and linear momentum p, time t and energy E D mc2 and m is
the mass and c the velocity of light (spin is left although it may be incorporated)

jx; icti ; jp; iE=ci ; (1)

which for a free particle would amount to the general scalar product

hx; �ict jp ; iE=ci D .2�„/�2e i
„
.p�x�Et/: (2)

The minus sign in the “bra” in (2) implies that we have taken a more general scalar
product including all four dimensions. Since furthermore our construction should
be complex symmetric [8], we have included a minus sign before ict. The conjugate
operators defined in (1) and (2) are related as usual e.g.

Eop D i„ @
@t

I p D �i„r (3)

and

� D Top D �i„ @

@E
I x D i„rp: (4)
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Since we consider operator identifications, i.e. with operator spectra distributed over
the full real axis and possibly generalized by analytic continuation to appropriate
complex half planes there are no contradictions associated with their definitions [8].
Employing the operators above one obtains

cH D jm; Nm i
�

m �ip=c
�ip=c �m

	 �
m�
m�

ˇ̌
ˇ̌ ; (5)

with jmi D jp; iE=ci and j Nmi D jp;�iE=ci (note the complex conjugation in the
bra-position, required to characterize a complex symmetric form [8]) and

bT D j�; N�i
�
c� �ix

�ix c�

	 �
��
��
ˇ̌
ˇ̌ ; (6)

with j�i D jx; icti and j N�i D jx;�icti. Since our formulation is very general
we could of course have introduced a new scalar product like the c-product [9],
but since orthogonal and unitary transformations reside alongside each other a
new symbol might only add to the confusion. Although there are many times
convenient to adhere to “real” representation in conjunction with our fourvector
representations yet the “complex conjugate” is a reminder that we are dealing with
biorthogonal constructions. From the ansatz above we derive the following results.
Solving the general secular equation corresponding to (1)–(6) yields trivially with
ˇ D p

mc
D v

c
the well-known relations of special relativity (note that the group

velocity is compatible with special relativity)

m D m0p
1 � ˇ2

I � D �0p
1 � ˇ2 I x D x0p

1� ˇ2
:

The key is the complex form above that mimics the Minkowski metric combining
particle-anti-particle dynamics in accordance with Lorentz invariance. Note that
the interpretation here is different in comparison with the classical formulation
in that the relativistic contractions above carries a realistic interpretation beyond
merely measurements. Another bonus is that the superposition principle of (5), (6)
is valid irrespective of whether we exploit classical or quantum observables as base
ingredient. Finally we note the interplay between conjugate operators (variables),
which becomes of crucial importance in the general theory, see more below.

Before ending this section we emphasize that gravitational interactions are easily
included analogously (G is the gravitational constant, r the radial operator (variable)
and � the gravitational radius for massive object with mass M ).

cH D jm; Nm i
�
m.1� �.r// �ip=c

�ip=c �m.1 � �.r//

	 �
m�
m�

ˇ̌
ˇ̌

m�.r/ D m�=r I � D G �M
c2

: (7)
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One can show, see e.g. [8,10], that the ansatz (7) above, for a spherical black-hole
object leads to the celebrated Schwarzschild gauge with singularities appearing at
the Schwarzschild radius r0 D 2� via coupling between the gravitationally modified
conjugate operators (variables), i.e.

� c2ds2 D �c2dt2.1 � 2�.r//C dr2.1 � 2�.r//�1: (8)

The singular behavior in the covariant formulation above stems from a Jordan block
(of Segré characteristic of order 2) cf. the formula below

cH D jm; Nm i
�
m.1 � �.r// �im�.r/

�im�.r/ �m.1� �.r//

	 �
m�
m�

ˇ̌
ˇ̌ ; (9)

where in comparison with (7) we have included proper boundary conditions for
the spherical system. Not only do we find that the operator matrix (9) is not
diagonalizable for r D r0 D 2�, i.e. Jordan block formation at the Schwarzschild
radius (here a “true” singularity and not dependent as in the classical case on the
coordinate system), but also that, photons (rest mass zero) interacts with massive
objects gravitationally twice as much as prescribed by Newtonian theories. In
addition follows the renown Einstein laws, the gravitational redshift and the time
delay. For more on the associated cosmological scenario, see also [10].

As already stated we find that, see the last sentence in italic at the end of
the introduction, that our formulation supports a global superposition principle,
where quantum realizations (based on operators) coexist with classical idealizations
(variables), from which further significant physical modeling becomes attainable.
Another twist of fate appears from the close relation between (9) and the Gödel
theorems of mathematical logic asserting the inherent limitations of all non-
trivial axiomatic systems [8, 10]. Since the Jordan block signifies a curve crossing
(in the complex form) decoherence to a unique state (classical or quantum) is
protected or code forbidden (leaving the law of decoherence inoperative). Note that
“decoherence” here is more general than usual since the states under consideration
may be both classical and quantum and hence if general decoherence is forbidden
hence it certainly protects decoherence to a classical realization.

3 Subdynamics and Interpretations

In order to come to terms with the challenges phrased in the introduction one needs
to diagnose the dilemma confronting theoretical descriptions of physical events,
i.e. problems related to irreversible behavior and the associated time asymmetry of
entropic increase. In this assessment lies a basic explanation of thermodynamics
from the viewpoint of statistical mechanics, including the emergence of temporal
asymmetry from perfectly time symmetric microscopic dynamics. This cliffhanger,
moreover, persists in the cosmological picture, which, notwithstanding the emer-
gence of modern Big Bang models, is far from adequately resolved [11].
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As is very well known to the present community of researchers, I. Prigogine,
in his theory of time irreversibility [12], offered a radical solution to the puzzle of
the violation of time symmetry, viz. without taking recourse to any approximations
like course graining he took irreversibility to be a fundamental fact due to dynamics
alone. We also know that, while speaking of intrinsic irreversibility he did attract
outspoken criticism from the environment of scientists and philosophers. Although
it may still be premature to finally assess the vision and foresight of Ilya Prigogine,
there have appeared over time various fundamental and also critical objections to his
programme of open dissipative systems, see e.g. [13,14]. Even if some disagreement
were imprecisely formulated [15] the main difference between the construal to be
briefly considered below, see e.g. [8] for details, and the one of the Brussels School
rests in the non probability interpretation of the former, while the latter rests on the
conceptual understanding of the theory of probability.

In short we bring attention to an alternative subdynamics derivation that has its
origin in quantum mechanics, namely the utilization of the dilation group through
a mathematical theorem due to Balslev and Combes [16]. Via a re-derivation of the
Nakajima-Zwanzig Generalized Master Equation [17, 18] in a retarded-advanced
formulation [13] it becomes straightforward to calculate the relevant residue con-
tributions of the non-hermitean collision operator as well as evaluating associated
creation- and destruction operators via apposite analytic continuation rigorously
obtained from the aforementioned mathematical theorem [16]. The subsequent limit
on the real axis yields the dissipativity condition for quantum mechanical systems
with an absolutely continuous spectrum. As already indicated Prigogine’s causal
dynamics [12] differs with the present formulation in that we advocate (i) a retarded-
advanced dynamics permitting the conversion of the time evolution into contracted
semigroups with the positivity preserving condition (probabilistic interpretation)
relaxed [14], (ii) the latter in turn carries with it an inevitable objective loss of
information, (iii) and, as has been amply demonstrated [8, 10, 19], an analytic
extension via Bloch thermalization enabling microscopic self-organization through
integrated quantum-thermal correlations [19, 20]. This development begets a new
concept, viz. the Coherent Dissipative Structure, CDS, which perpetuates micro-
scopic selforganization including a rich variation of timescales as well as code
protection against decoherence [8, 10, 20].

There is no room here to discuss in more detail the non-probabilistic formulation
and its generalization to incorporating complex enough biological systems. We
will, however in the next section, demonstrate its significance as regards biological
organization and in so doing connect with the queries listed in the introduction.

4 Complex Enough Systems

As discernable by our attention to the above generalized formulation, we have
maintained the position of one leg in an operationalist’s rationale based on abstract
operators extended by analytic continuation [8] and at the same time another leg
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in a realist’s thinking (for a recent discussion of the division of researchers into
two camps in the field of quantum foundations, see [21]) in that the description
goes beyond traditional readings of relationships between observable quantities.
The attestation to hold such a view derives from the concurrent interplay between
appropriate conjugate operators, their compatibility and consistency accounting for
tangible assertions of e.g. Einstein’s laws of relativity. In this understanding lies
also a surprising relation with Gödel’s theorem and the appearance of so-called
Jordan blocks in the dynamics as well as the possibility to combine classical and
quantum formulations on a global platform [8, 10]. By necessity the development
sanctions non-probabilistic interpretations, which on a deeper level leads to vital
consequences in the support of an authentic and relevant subdynamics.

We will devote the rest of this section to biological order, organization and evolu-
tion. We have previously discussed the generalization of the “complex symmetric”
theory at several occasions, so we will abbreviate the argument. To sum up we
emphasize (i) that we have incorporated a constructive integration of quantum- and
thermal correlations, which (ii) under appropriate boundary conditions, involving
the temperature, lead to the emergence of so-called coherent-dissipative structure,
CDS, i.e. an optimal spatio-temporal structure formed by specific relationships
between time-, size- and temperature scales and (iii) the realization that CDS
suggests microscopic self-organization, the emergence of higher order codes that
including Gödel-like self-referential traits providing code protection to decoherence
and, counteracting wavefunction collapse in the case of quantum mechanics. As
already brought up above, we will extend the discussion to incorporate hierarchies
of complexity levels. In particular we will show that flexible and robust treatments
of so-called dissipative systems are viable within our analytic approach, but first
some definitions.

We will define an open or dissipative system as follows: a system in which there
exists a flow of entropy due to exchange of energy or matter with the environment.
To go beyond standard considerations of systems traditionally classified somewhat
ambiguously as condensed matter, we will in addition deliberate on a specific order
or organization that will be significant for both condensed matter and complex
enough biological systems.This leads unequivocally to the conditions for the above
mentioned coherent-dissipative structure, CDS, by stipulating that (a) they are
created or destroyed by integrated quantum- and thermal correlations, (b) they
exchange energy with an (partially) entangled environment and (c) they can not
have a size smaller than a critical one.

Important developments in this direction is Yang’s concept of ODLRO (Off-
Diagonal Long-Range Order), see [22], and Coleman’s concept of the extreme
state, see [23]. The intimate connections between these ideas are most simply
expressed as the possibility for a macroscopic system to exhibit ODLRO and for
instance acquire anomalous properties like e.g. superconductivity out of a strongly
correlated extreme configuration as predicted by quantum chemical laws (before
employing the so-called thermodynamic limit). Since the latter can be derived and
generalized as a quantum statistical degenerate structure, we have here at the same
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time a connection with MGV’s solectron [2] and a starting point for our work on
dissipative dynamics.

Summarizing the basics relevant for the present microscopic development, we
consider suitable system operators, or properly reduced density matrices. Subse-
quent dynamical evolution derives under apposite boundary conditions [8, 10] the
aforesaid CDS-ordering-assembly, sustaining characteristic non-exponential decay
as well as signaling microscopic self-organization. This understanding relates
realistic temperature- and inclusive timescales via the Bloch equation. Although
it is sometimes customary to bring together time and temperature into a complex
parameter, it is important to point out that the extended dynamics relies on the
Liouville Equation, while thermalization needs a separate analytic structure based
on the energy super-operator, see e.g. [8,10,19]. Hence thermalization of the system
operator yields temperature-regulated correlations and the appearance of canonical
Jordan forms with sizeable Segré characteristics, n, i.e. the dimension of the largest
Jordan block in the degenerate representation.

To establish the proper time scales, one needs to consider the generator of
the dynamics, providing Hamiltonian and Liouvillian isometric and contractive
evolution, see [8, 10] for technical details. The dimension n is monitored by the
physico-chemical conditions of the dissipative system and as has been shown in
several articles [8,10,19,20], the theoretical formulation centers on the transforma-
tion B given by

B D 1p
n

0
BBBBB@

1 ! !2 � !n�1
1 !3 !6 � !3.n�1/
� � � � �
� � � � �
1 !2n�1 !2.2n�1/ � !.n�1/.2n�1/

1
CCCCCA

I ! D ei�=n; (10)

which connects a preferred orthonormal basis h D h1; h2; : : : hn, on e.g. local sites
representing pairs of light carriers in a nuclear skeleton, cf. superconductivity, base
pairs (or a group) of DNA, elements of protein structures or neural sites in related
to functions of the brain in biological systems etc., to a canonical basis

f D f1; f2; : : : fn;

with special properties and unique dynamics, and in tandem also to a coherent basis

g D g1; g2; : : : gn;

which condense the system operator to proper measure-gauging subspaces which
will communicate an encoding option for ontogenetic evolution via the CDS, see
more below. Hence the tandem becomes

jhi B D jgi I jhi B�1 D jf i : (11)
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Incidentally we note, see [8, 10, 19, 20], that the unitary transformation B connects
the complex symmetric expression Q and the canonical form Jn.0/

Q D B�1Jn.0/BI Qkl D exp

�
i�

n
.k C l � 2/


.ıkl � 1

n
/; (12)

where

Jn.0/ D

0
BBBBBBB@

0 1 0 � � 0
0 0 1 � � 0
0 0 0 1 � 0
� � � � � �
0 0 � � 0 1
0 0 � � 0 0

1
CCCCCCCA

(13)

The underlying relations obtained from the derivation of the CDS via Bloch
thermalization and identified as a Jordan block, disguised as Q in complex
symmetric form, while the original density matrix becomes diagonal under the
transformation B. Although we have many examples of successful mappings of CDS
structures in condensed matter systems, see e.g. [20], we will finish the discussion
by focusing on biological ordering as emanating from the transformation B in (10).
By inspection one finds that B exhibits an interesting factorization property, i.e. the
columns show a particular recurring structure involving precisely correlated groups
of sites and, conditional on the value of n, all conceivable factors develop as closed
cyclic structures. We will exhibit the cyclic order by displaying e.g.

p
12B, i.e. an

array for n D 12 inserted in (10) above. The dimension of the vectors is displayed in
parenthesis. We have eliminated the first vector of one-dimensional units (1), which
leaves the diagram with only 11 columns.

.2/

.3/ .2/ .3/
.4/ .4/

.6/ .3/ .2/ .3/ .6/
.12/ .4/ .12/ .12/ .4/ .12/

.6/ .3/ .2/ .3/ .6/
.4/ .4/

.3/ .2/ .3/

.2/

Generalizing we might e.g. consider a sequence s1s2s3 : : : sk of positive integers
with the numbering, i.e. being the product of the first primes raised to the
corresponding values in the sequence, cf. the Gödel encoding, getting

n.s1s2s3 : : : sk/ D 2s1 � 3s2 � 5s3 � � � pskk :

The corresponding cyclic diagram to this Gödel numeral becomes .nk D n=k/
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.nn
2
/

.npk/ .npk/
.�/� � � �

.�/ .�/
.nn

2
/� � � �

.n2/ .npk/ .npk/ .n2/
.n/ � � .nn

2
/ � � .n/

.n2/ .npk/ .npk/ .n2/� � � �
.nn

2
/

.�/ .�/� � � �
.�/

.npk/ .npk/
.nn

2
/

(14)

Note that in (14), the cyclic structure is interspersed with non-cyclic n-
dimensional columns when the column number is not a divisor of n (for instance
when n > pk where pk is the largest prime above). There are many interesting
cases; e.g. if n is a prime number we have no cycle structure at all and if n D m!
we have an uninterrupted number cyclical columns up-to row m and from then on
the appearance of recurrence becomes sparse compared to columns denoted by (n).

Before concluding this venture and in particular this section we recapitulate
a few themes. First, the essential conception comes from the possibility to map
biological order onto CDS spatio-temporal orderliness. These maps encompass
information stored in the system operator via the transformation B, and which is
communicated mutatis mutandis via the CDS to the environment. The unbiased code
protection to “classical” dynamics leads strictly to suitable time scales for biological
ordering. The map also suggests various ways of encoding depending on the levels
of organization under study. Since the world usually partitions into a mental- and
a materialistic part it is obvious that the present CDS structure signifies both a
teleomatic element (based on natural law) and a teleonomic constituent (governed
by an evolved program), for more details see [24].

5 Conclusion

It is obvious that we have only been able to give an abridged survey of our ideas
to incorporate a unified picture of physics, i.e. whether the different branches of
science can be reduced to physical theory. In this bottom-up approach we have
also noted the prerequisite for coming across top-down strategies, the latter well
exemplified by the concept of the dynamic bound state of the electron by solitons,
the so-called solectron, see [1–3], in electric transport phenomena.

To round off the discussion we return to the conjectures voiced in the introduc-
tion. Although we have not explicitly given the requirements for a living state, for
details see [24], we have here tried to give the physical base for a bona fide science
of biology, i.e. the anticipation of so-called teleonomic processes regulated by an
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evolved program. Furthermore we have referred to the importance of the Gödel
indeterminacy theorem(s) and the analogy between self-references and emerging
Jordan blocks in the equations of motion. We have also described microscopic
selforganization and the importance of temperature in biological systems via
precise incorporation of thermal- and quantum correlations. Further consequences
regarding inferences from gravity, artificial intelligence, universal superposition and
decoherence code protection have been detailed in [8, 10, 24].

With these remembrances the author wants to thank MGV for his vivacious
interest in always trying to tempt his environment to discuss science on the broadest
stage yet appropriately confining the proposals to the proper depth as he did instigate
as the policy at the Instituto Pluridisciplinar.
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8. Brändas, E.J.: In: Nicolaides, C.A., Brändas, E.J. (eds.) Unstable States in the Continuous
Spectra, Part II: Interpretation, Theory and Application, Adv. Quant. Chem. vol. 63, p. 33.
Elsevier, Amsterdam, (2012)

9. Moiseyev, N.: Non-Hermitean Quantum Mechanics. Cambridge University Press, Cambridge
(2011)
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Nonlinear Models for Protein Folding
and Function

L. Cruzeiro

1 Introduction

The first time that I attended a meeting at the group of Manuel G(arcı́a) Velarde
was in November 2008 and I am very glad indeed that I went. The meetings, with
informal but intense seminars, where all aspects of the research can be discussed,
are both lively and informative. I was immediately interested in Manuel’s idea that
electrons can surf on nonlinear waves (the solectron concept) and have learned a lot
from these meetings that include also guest speakers who provide extra expertise
and different outlooks to the core research work. In spite of the many contributions
by many people, it is fair to say that the whole solectron project lives because of
Manuel’s commitment to it and the hope is that someday (soon) solectrons will
be observed experimentally, either in already existing materials or in materials
specially designed to sustain them. In the meantime, I am sure that we will all
continue to learn a lot about charge and energy transport in condensed matter just
by researching the solectron.

While solectrons have now joined my personal list of research interests, protein
folding and function remains at the top of that list. From a physical point of view,
proteins are polymers whose units are the amino acids. Even a small protein,
with something like 60 amino acids, possesses approximately one thousand atoms
which interact via covalent bonds, hydrogen bonds, electrostatic interactions and
van der Waals interactions. Despite the inherent complexity of such a system,
proteins, in cells, are capable of folding reproducibly to a well defined three-
dimensional structure (the native structure) that is generally irregular and lacks
symmetry. How do proteins do it? The current orthodox answer to this question
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is to assume that the native structure of proteins corresponds to the minimum of the
free energy, the so-called thermodynamic hypothesis, first proposed by Anfinsen [1].
According to thermodynamic hypothesis protein folding is a process in which the
protein’s free energy is minimized and which is simply driven by thermal agitation.
There are two types of experimental evidence for this hypothesis, namely, (1) the
reversible unfolding experiments, first performed by Anfinsen on bovine pancreatic
ribonuclease (RNase) [1], and later by many other authors on different proteins, and,
very importantly, (2) the realization soon after Anfinsen’s folding experiments of the
synthesis of RNase by the solid phase method [2], later followed by the chemical
synthesis of other proteins. Both types of experiments seem to indicate that the
amino acid sequence (the primary sequence of proteins) constitutes all the necessary
and sufficient information needed for a protein to fold to the native state. In the late
1980s the thermodynamics hypothesis was complemented by the hypothesis that
the free energy landscape of proteins is funnel-shaped [3–5] in order to explain
how proteins can solve the problem of finding the native state among the configu-
rational maze of possibilities, in a comparatively fast manner (a problem known as
Levinthal’s paradox); the answer provided by the funnel hypothesis is that, if the
free energy landscape is funnel-shaped, with the native state lying at the bottom,
any downward path will lead to the native conformation so that proteins do not have
to explore an enormous number of configurations in the search for the native state.
More recent concepts, like the kinetic hub [6] have been added, which do not seem
to challenge the thermodynamic hypothesis. However, in spite of the improvements
in the accuracy of force fields [7–9] and in the power of computer facilities (http://
folding.stanford.edu/) [10,11], and in spite of the many announcements of a solution
for protein folding “just around the corner” [12–15] it has not yet been possible to
predict a protein structure solely from its amino acid sequence.

The opposite view, that protein folding is a non-equilibrium, kinetic process,
is as old as the thermodynamic hypothesis. Levinthal was the first to propose
it and to design an experiment that confirmed his proposal: he showed that the
protein alkaline phosphatase synthesized in mutants of E. coli at 44ıC does not
show activity, even when the temperature is brought down to 25ıC, and also that
when those proteins were synthesized at 25ıC, they had activity, even when the
temperature was increased [16]. I.e., he showed that alkaline phosphatase can
assume two forms, one active and the other not, and that both forms are stable
between 25ıC and 44ıC. Since then, and in spite of the “rather special conditions
that must hold for kinetic control to be observable” [17], direct experimental
evidence for a kinetic control of protein folding has been demonstrated in a number
of other proteins, such as proteases, subtilisin, serpins, influenza Hemagglutinin,
Luciferase and prions [17–22]. Thus, contrary to most computational work on
protein folding, the hypothesis explored here is that the native state is just one
of the many kinetic traps in which proteins can find themselves in [23]. This
hypothesis is also supported by previous computational work [24–27] which shows
that a protein from a given CATH [29] class can be forced into artificial, non-
native structures that belong to other CATH classes and maintain these structures
for at least 50 nanoseconds. Because such alternative structures have never been

http://folding.stanford.edu/
http://folding.stanford.edu/
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found experimentally, within the thermodynamic hypothesis they should be very
unstable for the proteins considered, contrary to what is observed in the computer
simulations; on the other hand, within a kinetically controlled folding mechanism,
these results favour a multi-funnel-shaped free energy landscape, in which many
different conformations of the same protein, in the same thermodynamic conditions,
have very similar free energies and in which the native conformation is not
necessarily the global minimum (which is itself very ill-defined).

In a multi-funnel free energy landscape, each protein has equal probability of
assuming structures very different from, and yet as thermodynamically stable as,
the native structure, and the thermodynamic hypothesis cannot explain folding to a
well defined three dimensional structure. Instead, protein folding must follow a well
defined pathway, as first proposed by Levinthal [16]; however, and equally impor-
tantly, folding must always start from the same well-defined initial conformation.
Thus, a question that arises when we consider folding as a kinetic process in a multi-
funnel free energy landscape is: what is the initial structure that proteins have when
they are synthesized? Experimentally, it has not yet been possible to determine the
structure of nascent chains, that is, the structure proteins have as they come out of
the ribosomal tunnel but it is known that only fully extended and helical structures fit
into the tunnel dimensions [28]. While a fully extended polypeptide provides many
more possibilities for folding pathways, an initial structure in the form of a helix can
constrain the configurational maze and lead to fewer and more defined pathways,
consequently, in [27] it was suggested that the conformation that all proteins have
immediately after synthesis in cells, is helical and it was also proposed that the first
step in folding is the bending of this initial helix at specific amino acid sites.

The aim of the present study is to make a comparison between the kinetic
pathways followed by two proteins when their initial structure is a helix and when
their initial structure is fully extended. To that end, two proteins, representative of
the mainly ˛ and ˛=ˇ CATH [29] protein classes, were selected and pathways to
the native state were generated using Targeted Molecular Dynamics (TMD) [30].
In TMD simulations, harmonic restraints are added to the protein force field in
order to drive an initial protein conformation to a given target conformation [30,31].
TMD simulations were first applied to the T $ R transition of the protein insulin
[30] and have since been used to study a variety of other problems, including
the conformational changes associated with the functioning of a molecular motor
[32], the elucidation of the reaction steps in the full catalytic cycle of a protein
involved in an electron transfer process [33], as well as in protein folding [34].
Thus, TMD simulations have generally shown their usefulness in the modeling
of large conformational changes. In the present study, TMD simulations are used
to generate folding pathways in order to make a preliminary comparison of the
efficiency of folding from an initial helical conformation, proposed previously
to be the conformation of proteins immediately after synthesis [27], relative to
a fully extended conformation which has also been identified as experimentally
possible [28].
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2 Numerical Simulations

Two proteins, one representative of the mainly ˛ CATH class [29] and the other
representative of the ˛=ˇ CATH class, were chosen and their native structures were
obtained from the Protein Data Bank (PDB) [35]. The first protein (PDB1BDD
[36], 60 amino acids, 941 atoms, mainly ˛) has a native structure constituted
by three ˛-helices, while the second protein (PDB1IGD [37], 61 amino acids,
927 atoms, ˛/ˇ) has a native structure that includes one ˛-helix and a ˇ-sheet. Two
initial conformations, both of which have been identified as viable experimentally
[28], were taken for each of the two proteins, namely, one conformation in
which the backbone is fully extended and a second conformation in which the
backbone is folded into an ideal ˛-helix. The energy minimized versions of these
two conformations were used as initial conditions for the TMD simulations. The
potential energy function used in all simulations was the ff99SB force field [38],
with an implicit solvent, implemented in AMBER 9 [39], which has been shown
to give a better representation of protein secondary structure than previous versions
[40], whose mathematical expression is as follows:

V D
X
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Kr.r � req/
2 C

X
angles
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2 C C
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dihedrals
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C
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qiqj

Rij

�
: (1)

The energy functional V includes harmonic potentials for bond stretching (first
term) and angle bending (second term), a truncated Fourier series to represent
torsions (third term), a Lennard-Jones potential to represent hydrogen-bonds and
other nonbonded interactions (fourth term) and electrostatic interactions between
atoms that are more than two covalent bonds away from each other (fifth term).
Potential energy functionals such as (1), as well as the many parameters they depend
on, have been fitted to a variety of experimental data and continue to be improved
[7–9, 38, 40], but their approximate validity is reflected in the successes that practical
applications by the pharmaceutical and biotechnology industries have had.

For each initial conformation, 20 independent TMD trajectories to the native state
were generated by changing the seeds of the random forces in the Langevin thermal
baths, with T D 298 K in all cases. In TMD simulations the harmonic forces that
drive the initial conformations to the native structure arise from the following term
added to the atomic potential energy function (1):

UTMD D 1

2
kN

�
RMSDN .t/ � RMSDtarget.t/

�2
(2)

whereN is the number of atoms used to calculate the root mean square deviation per
atom (RMSD), RMSDN .t/ being the RMSD, with respect to the native structure,
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Table 1 RMSD, in Å, between the native state and the two initial
conformations of the two proteins

Protein Initially extended Initially ˛-helix

mainly ˛ (1BDD) 55.78 21.54
˛/ˇ (1IGD) 59.76 24.46

of the conformation the protein has at time t , and RMSDtarget.t/ being the target
RMSD at that time. In the simulations reported here, k D 100 kcal/mol/Å2 and N
is the total number of carbons, nitrogens and oxygens in the backbone of the two
proteins selected.

In TMD simulations, RMSDtarget.t/ is a linear function of time, being completely
defined by the values at two time instants. Here, these two times are (1) its initial
value, RMSDtarget.t D 0/, given in Table 1, and (2) its final value, set to 0:1 Å in
all trajectories. As shown in Table 1, for both proteins, the ˛-helical conformation
is more than 2:4 times closer to the native structure than the fully extended
conformation. Preliminary simulations starting from the ˛-helical conformation
showed that the total potential energy (including the TMD term) does not vary much
until RMSDN � 6 Å and so, in order to make the simulations with the two different
initial conformations as equivalent as possible, in all the TMD simulations presented
here, two RMSDtarget.t/ functions were used, i.e., the first 0.1 ns were spent in the
convergence of the initial conformation to within 6 Å of the native structure, that is,
RMSDtarget.t D 0:1 ns/ D 6 Å, and 0.4 ns were allowed for the further convergence
to within 0.1 Å of the native conformation. In this way, a slower rate of change
of the RMSD is imposed in the final stages of convergence to the native state,
allowing more time for the side chains to adjust and avoid steric overlaps, and, most
importantly, making the rate of RMSD change in this latter stage the same for all
simulations. The overall duration of each TMD simulation was 0.5 ns, comparable
to other TMD protein folding simulations [34].

Each of the two initial conformations was taken as an initial condition in 20
independent TMD simulations, as detailed above. Figure 1 shows the average over
the 20 trajectories and the corresponding standard deviations of the total potential
energy as a function of instantaneous value of RMSDN for the mainly ˛ 1BDD
protein [36]. The curve in red is for the trajectories starting with a ˛-helical
conformation and the curve in green is for the trajectories starting with a fully
extended backbone conformation. Included in the values displayed in Fig. 1 is the
contribution of the TMD term (2) which, however, only starts to rise above 0.3% of
the total potential energy when the RMSD distance to the native structure becomes
less than 0.6 Å. This means that, although the local dynamics is dominated by the
TMD forces that drive the initial backbone fold to the native backbone fold, the
global energetics of these folding pathways is determined essentially by the atomic
interactions in the ff99SB AMBER potential (1) [38].

Figure 1 shows that the pathways from the initially extended conformations are
populated by protein conformations which have, on average, a potential energy that
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Fig. 1 Total potential energy (kcal/mol) as a function of the RMSD distance to the native structure
of the mainly ˛ 1BDD [36] protein. Average values over 20 independent TMD simulations are
shown, together with the corresponding standard deviations. The starting conformation is fully
extended for the green curves and an ˛-helix for the red curves. The inset is an enlargement of the
final stages of convergence to the native structure

is much greater than the conformations that arise when the initial conformation is
˛-helical; indeed, even in the final stages of approach to the native state, the protein
conformations sampled in the pathways from an extended initial structure to the
native state have potential energies at least 40 kcal/mol above the conformations
sampled when the initial conformation is a helix. Furthermore, contrary to what
was found in previous folding simulations [34] and also below for the ˛/ˇ 1IGD
protein, all pathways of the mainly ˛ 1BDD protein lead to conformations with a
perfectly folded backbone which is at least within 0.3 Å of the native structure.

To test further the hypotheses put forward in [27], another protein, the ˛/ˇ 1IGD
protein [37], whose native structure includes both an ˛-helix and a four stranded
ˇ-sheet, was also considered. As reported previously for chymotrypsin inhibitor 2
[34], many of the TMD folding simulations of the ˛/ˇ 1IGD protein lead to final
structures that, although apparently close to the native structure, differ from it by
entangled backbone folds such as those highlighted by the red circles in Fig. 2.
Indeed, inspection of the trajectories with the Visual Molecular Dynamics (VMD)
software [41] reveals that 12 (14) of the 20 TMD simulations starting with a fully
extended (˛-helical) conformation lead to such entangled final structures. These
entanglements can be resolved by letting the chains go through each other, an
artificial process enabled by the TMD term (2) but of course penalized by extremely
large values of the potential energy. Thus, in Fig. 3 the averages are made over
viable pathways only, that is, over the TMD trajectories in which such backbone
entanglements did not occur. Although the TMD term contributes a little more than
before to the overall energetics of the pathways, its total amount only rises above
1% when the RMSD distance to the native structure goes below 1 Å, with the larger
values being associated with entangled structures. Figure 3 shows that, also for the
˛/ˇ 1IGD protein, the viable pathways from an initial ˛-helix to the native state are
much less energetic than the corresponding ones from a fully extended structure,
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Fig. 2 The native fold of the
˛/ˇ 1IGD protein is depicted
on the left and on the right the
red circles highlight two of
the most common backbone
entanglements that arose in
the TMD simulations of this
protein. The figures were
made with the VMD software
[41]
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Fig. 3 Total potential energy (kcal/mol) as a function of the RMSD distance to the native structure
of the ˛/ˇ 1IGD [37] protein. Average values together with the corresponding standard deviations
are shown using the non-entangled TMD trajectories (see text). The starting conformation is fully
extended for the green curves, an ˛-helix for the red curves and the embrio (see text and Fig. 4)
for the blue curves. The inset shows the final stages of convergence to the native structure

with the conformations covered by the latter having a potential energy more than
130 kcal/mol greater than the former to start with, and with their values only merging
when the RMSD distance to the native structure is approximately 6 Å.

In [27] it is suggested that the initial conformation of all proteins is a helix and
that the first step in the folding of all proteins is the bending of this helix at specific
amino acid sites. In the case of proteins whose secondary structure is just a set of
helix bundles, as in the mainly ˛ 1BDD protein [36], this first step is the only major
step in their folding pathways. VMD [41] animations of the TMD trajectories of
the 1BDD protein do show pathways of this sort when the initial conformation is
˛-helical. (When the initial conformation is fully extended, on the other hand, the
formation of the ˛-helices constitutes the last step, coming after the backbone has
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Fig. 4 The putative embrio
(see text) built from the native
fold of the ˛/ˇ 1IGD protein
by substituting the native
ˇ-sheets by ˛-helices. This
figure was made with the
software VMD [41]

folded to the native tertiary structure). For proteins whose native secondary structure
includes both helices and sheets, as is the case of the ˛/ˇ 1IGD protein, it was
further suggested [27] that the formation of the ˇ-sheets takes place after the first
step of bending of the initial helix and is triggered by destabilizing interactions
between the amino acid side chains that are thrown together by that first step. VMD
[41] animations of the TMD trajectories of the ˛/ˇ 1IGD protein starting from the
˛-helical conformation reveal pathways that start off in that manner but in which the
helical portions very quickly become distorted because the convergence to the right
secondary structure is mixed with the convergence to the right tertiary fold. This is
to be expected because of the unspecific character of the TMD term (2). In order to
test, in a more direct way, the effect that an intermediate all-helical conformation has
on the folding efficiency of the ˛/ˇ 1IGD protein, such a putative intermediate was
generated by substituting the ˇ-sheets in the native structure of 1IGD by ˛-helices,
as shown in Fig. 4. In the kinetic process proposed in [27], the structure of this
intermediate not only influences the pathway but also determines the nature of the
final, native, structure of the protein and for these two reasons it is here called an
embrio.

Further TMD simulations were run by first driving an initial ˛-helix to the
embrio, and then by driving the embrionic conformations to the native structure
of 1IGD. As the RMSD between the ˛-helix and the embrio is 23.78 Å and the
RMSD between the embrio and the native 1IGD structure is 15.05 Å, in order to
keep approximately the same rate of change of RMSD as before, the first simulations
had a duration of 0.05 ns and the second simulations had a duration of 0.45 ns. In
the first 0.05 ns all 20 trajectories converge to within 0:1 Å of the embrio structure;
furthermore, 17 out of the 20 trajectories from the embrio to the native state lead to
un-entangled final structures. Figure 3, in which the potential energies of the protein
conformations in these 17 viable folding pathways are displayed in blue, shows that
the ˛-helix ! embrio ! native trajectories provide, on average, the lowest energy
folding pathways for the ˛/ˇ 1IGD protein.
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3 Discussion

The folding pathways analyzed in this study were generated by TMD simulations, in
which the total time from initial condition to final state is set a priori, and thus cannot
be used to estimate kinetic rates. In fact, the interest here was to find pathways from
the initial structure to the native state through the protein conformational space and
TMD was used merely as a tool to generate such pathways. Thus, although the
evolution from one conformation to another in those pathways is due to the artificial
TMD terms (2), the fact that the restraint energy of each protein conformation
sampled is, for most part of the trajectory, less than 1% of the total AMBER potential
energy (1) for that conformation means that we can neglect the TMD terms in the
analysis of the relative energetics of the pathways sampled. And from the point of
view of the energetics, the simulations reported here indicate that, of the two nascent
chains that have been identified as experimentally possible [28], that in the form of
a helix is to be preferred to a fully extended conformation.

The a priori advantage of a helix as an initial condition is that a more constrained
structure at the beginning limits the number of possible pathways to the native state
and pathways must be well defined in a kinetically controlled folding process. But
table I shows that helical initial structures have also a second advantage: they are
generally closer to the native structure. Furthermore, from a topological point of
view, the advantage of an initial alpha-helical conformation for the efficient folding
of all-˛ proteins is immediately apparent. On the other hand, in the case of the
˛=ˇ-protein 1IGD, an initial helical structure, in spite of being closer to the native
state in terms of RMSD, is not necessarily an advantage as the simulations showed
that only 30% of the direct pathways lead to a correctly folded native state (the
percentage being actually marginally better (40%) when the initial structure is fully
extended). These results also provide a glimpse of the many entangled states that
can be expected to arise if protein folding is just a random search of the native
structure, driven by thermal noise, especially if the initial structure is also arbitrary.
If, however, we introduce a well defined intermediate/transient structure in the
folding pathway from an initial helix, the odds of reaching the native structure in
a reproducible manner can dramatically increase: with the roughly built embrio
tentatively considered here (see Fig. 4) the probability of reaching the native state
when starting from a helical conformation became 85%! This is because in the
embrio, the amino acids are organized in helical pieces which are much less free
to roam the conformational space that is accessible to the more random chains that
arise in the absence of the embrio. Another important point concerning the embrio
structure is the rule used to build it, namely, the bending of the initial helix at the
same sites where turns are found in the final native state of 1IGD, which implicitly
assumes that the first step in the folding of this ˛=ˇ protein is the formation of an
all-˛ structure. According to that rule, all proteins, no matter which class their native
structure belongs to, first fold to an all-˛ structure and other classes only arise when
the helices that are brought together in this first step are not stable, (for example,
because the interactions between their side chains are globally repulsive).
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The embrio proposed here plays the role of an intermediate. In a review about
the “molten globule” concept [42], Ptitsyn comments on how the dogma according
to which there are no protein intermediates in protein folding persisted well into the
1980s, in spite of ample experimental evidence to the contrary. In fact, intermediates
have been identified in the folding of many proteins [43–45] and may even be
present in proteins that fold in an apparently two-state process [43, 45]. While
according to the thermodynamic hypothesis any trajectory from the high free energy
states to the global free energy minimum leads to the native state, and not just
one, but many intermediates should exist, each set characterizing a different folding
trajectory, in a kinetically controlled folding process, essentially one pathway must
be followed and the intermediates must be correspondingly well defined, as is
observed experimentally.

Implicit in this kinetic approach to protein folding is the notion that folding in
vitro is fundamentally different from folding in vivo because the initial structures
proteins have are different in the two cases. While it was first assumed that denatured
states of proteins were essentially structureless [1], evidence is accumulating for that
they largely preserve the secondary structure of the native state [46]. Thus while
here it is assumed that the initial structure for folding in vivo is an alpha-helix (with
the embrio being a universal intermediate) [27], the initial structure from which
a protein re-folds following chemical or thermal denaturation is possibly an open
structure that preserves much of its previously formed native secondary structure.
In this view, the initial structures in in vitro experiments vary from protein to protein,
something that can account for the difficulty in extracting universal rules for folding
from such experiments.

The purpose of the simulations reported here is to perform a feasibility test of the
kinetic folding mechanism first proposed in [27] according to which all protein have
a helical structure as they come out of the ribosomal tunnel and the first step in the
folding of all proteins is the bending of this initial helix at specific amino acid sites,
with the consequent formation of a compact core, here called an embrio. As pointed
out in [27] such a kinetic mechanism means that ribosomes are not just synthesizing
machines, but they also have chaperone activity, a suggestion that is confirmed by
recent experiments [47]. The simulations here do not prove the kinetic mechanism
but they do demonstrate that it can lead to low energy pathways and therefore that it
is a viable mechanism to explain reproducible folding to the native state.

4 The VES Hypothesis and Solectrons

According to the kinetic mechanism proposed in [27] and explored here, the first
step in the folding of all proteins, immediately after they are synthesized in the
ribosome, is the bending of the initial helix at specific amino acid sites. As it
happens, there is a formal connection between this proposal and the solectron
concept, which is through the VES hypothesis [25, 27, 48]. According to the VES
hypothesis the initial triggers of protein conformational changes are vibrational



Nonlinear Models for Protein Folding and Function 645

excited states (VES). There are many sources of VES for a protein in solution:
excited states of water molecules can be transferred to the protein [49] and the
binding of water molecules, or ions, and other ligands can create excited vibrational
states in peptide groups [50]. According to the VES hypothesis, conformational
changes take place when the energy stored in VES is transferred to the classical
degrees of freedom of the protein leading to the domain motions such as helical
rotations, hinge oscillations, etc, that characterize conformational changes [51].
A model for this kind of energy transfer must contain a quantum Hamiltonian,
to describe the VES and a classical part to describe the conformational degrees
of freedom, just as the solectron Hamiltonian includes a term to describe the
electrons (which, like VES, are quantum particles) and a term that describes the
motions of the lattice sites, usually treated as classical degrees of freedom. One
very important difference between the two systems is that while the number of
electrons is conserved in the usual transport processes, VES in proteins have a short
lifetime that can be just a few picoseconds [52] and the transfer of their energy to the
conformational degrees of freedom involves the annihilation of the quantum particle
[23], a non-conservative process for which models are being developed [53, 54].
However, the short-term dynamics of the two systems, before the annihilation of the
vibrational excited states occurs, i.e. when the quantum particles (electrons or VES)
move under the influence of the classical degrees of freedom, is formally similar and
much can be learn about the one when studying the other. This cross-fertilization
between the research work on protein folding and function and the research on
solectrons is continuously explored in the collaboration with the group of Manuel
G(arcı́a) Velarde.

Acknowledgement Many of these simulations were performed at the Milipeia cluster of the
Laboratory for Advanced Computing of the University of Coimbra, Portugal.
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Study of Cardiac Defibrillation Through
Numerical Simulations

J. Bragard, S. Marin, E.M. Cherry, and F.H. Fenton

1 Introduction

Ventricular fibrillation (VF) is a serious medical condition that requires immediate
intervention. During VF, the electrical activity of the heart is disorganized, leading
to localized and ineffective contraction that renders the heart unable to pump
blood properly. Cardiac defibrillation [1, 2] consists of the application of a very
strong electric shock to restore the correct function of the heart. Unfortunately,
defibrillation is not always successful. Computational studies can help to elucidate
the mechanisms underlying defibrillation. In this study, we construct a realistic
model of the electrical activity taking place inside the ventricles of the heart. Next,
we set the parameter values of the model to produce fibrillatory dynamics. Then, we
test the defibrillation procedure directly on the numerical model.

The numerical model contains two primary fields, the extracellular and intracel-
lular electric potentials. These fields are governed by partial differential equations
that must be solved simultaneously (one is a stiff reaction-diffusion equation and the
other is the Poisson equation). In Sect. 2, we discuss the basic equations that govern
the problem. In Sect. 3, we explain the algorithm used to solve these equations effi-
ciently. In particular, the equations are solved in parallel with the Poisson equation
solved by Krylov iterative techniques implemented with the PETSc package [3]. The
performance of the algorithm and how it scales with the number of processors also
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are addressed. In Sect. 4, we analyze the results of the application of strong electric
shocks using several initial conditions. From these results, it is possible to determine
the energy needed for successful defibrilation. In the conclusions, we suggest ideas
for future studies aimed at designing milder defibrillatory shocks.

2 Governing Equations

The most commonly used model to describe the electrical activity of the heart
during defibrillation is the bidomain model. This model was derived from the basic
Kirchhoff laws applied to cardiac tissue and cardiomyocyte membrane dynamics by
Leslie Tung [4]. The spatial domains where the equations are solved are shown in
Fig. 1. The two fundamental fields of these equations are the intracellular electrical
potential ui and the extracellular electrical potential ue. The two can be combined
to derive the transmembrane potential V D ui � ue, which is the quantity most
accessible for direct experimental measurement.

2.1 Bidomain Model

The complete mathematical expressions for the model are as follows [5–7]:

@s

@t
D f .V; s/ x 2 H (1)

@V

@t
C Iion.V; s/ D r � .MirV /C r � .Mirue/ x 2 H (2)

r � ..Mi CMe/rue/ D �r � .MirV /� Iext x 2 H (3)

r � .MTruT / D 0 x 2 T (4)

where s is a state vector that contains all the variables associated with the description
of ionic currents across the membrane, where all ion transport takes place [2]. The
mathematical description of the opening and closing of the ion channels is described
by a set of differential equations (1). The time scales associated with these equations
vary from 0.1 ms up to 1 s and higher. Furthermore, the vector function f .V; s/ in (1)
is highly nonlinear. Consequently, the equations are stiff and are challenging to solve
from the numerical point of view. Equation (2) is a nonlinear parabolic equation
(reaction–diffusion) that relates the local activity of the membrane at each point in
space to that of its neighbors andMi is the electrical conductivity tensor of rank two.
In general the conductivity tensor is neither homogeneous nor isotropic. Typical
values for the conductivities [8] are D.i/

k D 10�3, D.i/

? D 6:75 � 10�5, D.e/

k D
1:5�10�3, andD.e/

k D 1:575�10�4, all in units of cm2/ms; these correspond to the
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Fig. 1 Heart (H) and torso
(T) mathematical domain
definitions

orthotropic tensors (Mi and Me) [7]. Although we provide the equations associated
with the torso for completeness, we do not include a detailed torso model in the
present study. Therefore, here the value for the electrical conductivity in the domain
where only the extracellular tissue is present is taken as isotropic and is fixed to the
conductivity of blood (i.e.D.T /

k D D
.T /

? D 4:� 10�3 cm2/ms). The large difference
between the conductivities along the fibers (k) and perpendicular to the fibers (?)
allows for a significant difference in the speed of electrical wave propagation.

Equation (3) is the Poisson equation (elliptic PDE) that relates the current inside
the heart to the extracellular electrical potential. Time does not appear explicitly in
the Poisson equation and it must be solved simultaneously with (2) at every time.
Finally, (4) is a Laplace equation (Poisson equation without the source term) and
it must also be solved inside this domain simultaneously with the other equations.
The term Iext allows for the introduction of external current as happens during a
defibrillation event.

In the present study, we use the three-dimensional geometry corresponding to the
rabbit heart ventricles [9].

To solve (1)–(4), the following boundary conditions are imposed:

.MirV CMirue/ � nH D 0 x 2 @H
(5)

.Merue/ � nH D �.MTruT / � nT x 2 @H
(6)

ue D uT x 2 @H
(7)

.MTruT / � nT D 0 x 2 @T
(8)

These equations express the current conservation condition at the boundaries.

2.2 Membrane Models

From a dynamical point of view, the heart, like the brain, is an excitable medium.
This means that a perturbation that overcomes a certain threshold produces an
action potential (nonlinear response) that propagates as a wave throughout the entire
domain with a characteristic shape and velocity. The challenge from the biological
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point of view is to correctly describe and model the dynamics of the opening and
closing of the ion channels embedded in the cell membrane that collectively give
rise to the action potential. This task started from the seminal work of Hodgkin
and Huxley in describing the dynamics of the squid giant axon in the 1950s [10].
More recently, a large number of mathematical models of ventricular myocytes
are available in the literature [11]. For example, the Beeler-Reuter [12] model
contains eight variables including the membrane potential, the intracellular calcium
concentration, and six gating variables. Luo and Rudy produced two widely used
models of mammalian ventricular myocytes (LR1 and LR2) [13,14], with the more
recent containing 24 variables and the detailed descriptions of 12 transmembrane
currents. In 1998, Fenton and Karma [15] reduced the BR and LR1 models into a
simplified three-variable model able to represent quite faithfully the propagation of
the action potential without the numerical burden associated with the large numbers
of variables in the original models. In 2004, Cherry and Fenton [16] improved
the previous model by Fenton-Karma by adding a fourth variable to provide more
flexibility in accounting for action potential shape. In 2010, Cantalapiedra et al.
[17, 18] developed a five-variable model containing a specific formulation for the
transient outward KC current, which is important in describing action potentials
associated with the Brugada syndrome. In general, selecting a model for simulating
the electrical activity of the heart requires finding the appropriate balance of model
complexity and computational speed. In this work, we use a reduced version of the
Cantalapiedra et al. model [17, 18] given in the Appendix.

3 Numerical Method

To solve (1)–(8) numerically, it is necessary to discretize space and time. For
the spatial discretization, the finite volume method is used [19]. This method is
preferred because it conserves exactly the charges moving from a reference volume
to the next. The time discretization uses a simple forward Euler method that
parallelizes easily:

r � ..Mi CMe/rune / D �r � .MirV n/ � I next (9)

V nC1 � V n

ıt
D �Iion.V n; sn/r � .MirV n/C r � .Mirune / (10)

snC1 � sn
ıt

D f .V n; sn/ (11)

The most costly part of the computation comes from (9), which we solve using
the Poisson solver PETSc package [3]. The spatial discretization of the equation
leads to a system of the form

Ax D b; (12)
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Table 1 Propagation velocity of electrical waves in cm/s for different spatial and temporal
discretizations

�x (cm) ıt D 0:005ms ıt D 0:01ms ıt D 0:02ms ıt D 0:05ms

0.01 35.3 35.2 35 34.3
0.02 34.3 34.2 34 33.3
0.04 31 30.9 30.7 30
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Fig. 2 Scalability of the 3D
code with the number of
processors. The horizontal
axis indicates the number of
processors, the vertical axis
indicates the inverse time
spent for a given reference
simulation (speed in min�1).
The two dashed blue lines
indicate how the speed would
increase in the ideal case (i.e.
double the speed when double
the number of processors)

where A is a large sparse positive semi-definite constant matrix and the vector x
contains the unknowns ue of every discretized volume of the system.

We tested three different iterative methods: biconjugate gradient stabilized
(BCG–STAB), conjugate gradient (CG), and generalized minimum residual
(GMRES). All are based on Krylov subspace methods. These methods use
projection processes onto Krylov subspaces to get an approximate solution at
every step of the iterative process [20].

To improve the efficiency of this method, it is necessary to apply a preconditioner.
In this case the preconditioner has been made using an additive Schwarz method
(ASM) with an incomplete factorization ILU(0) applied in each block, where the
zero index refers to the fact that the sparsity of the preconditioner is the same as
the sparsity of the matrix A. Although all three methods give appropriate accuracy,
GMRES with the preconditioner gives the best results in term of computational
speed, so we use this method.

We verified the numerical consistency of the results by changing the spatial
discretization�x and the time steps ıt . In simulations using one spatial dimension,
we measured the propagation velocity of electrical waves at different discretizations.
The results are shown in Table 1.

For the three-dimensional simulations, we chose �x D 0:02 cm and ıt D
0:02ms, which is a good trade-off between accuracy and CPU cost (see Table 1).
The code was parallelized with message passing interface (MPI) in Fortran [21] and
run locally on a dual-quad Mac Intel (see square symbols in Fig. 2) and also on large
clusters at the Pittsburgh Supercomputing Center and Purdue University (see circle
symbols in Fig. 2).
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An important characteristic for parallel codes is how the speed (inverse of
computation time) varies with respect to the number of processors. Figure 2 shows
how the 3D code scales with the number of processors used. It is clear that the
scaling is much better for the large clusters than for the local Intel/Quad workstation
because communication among the processors is much faster for the clusters,
which substantially improves the scaling of computation speed. As the number of
processors increases, the time spent communicating among processes represents
an increased fraction of the workload, causing the performance gain from using
additional processors to be more modest. Performance levels off for a fairly small
number of processors because the rabbit ventricles are themselves rather small;
larger computational domains can benefit more easily from more processors.

4 Results of the Defibrillation Simulations

The main objective of the present study is to quantify the efficacy of defibrillatory
shocks at various energies using our numerical model. We use the rabbit ventricular
anatomical model [9] in conjunction with the membrane model detailed in the
Appendix. The parameter values used with the membrane model are given in
Table 2. For these parameter values, a disorganized electrical state corresponding
to VF is achieved, as shown in Fig. 3.

4.1 Model Initial Conditions

We simulated the model for 3 s, as shown in Fig. 3. During this time the full
dynamical state of the system was saved every 300 ms. These 10 saved states
were then used as 10 uncorrelated initial conditions for testing the defibrillation
procedure. Indeed, we verified that the absolute value of the Pearson correlation
coefficient between any two fields was below 0.2, which indicates that they are
uncorrelated.

The conventional medical procedure for defibrillation consists of applying a very
strong electric field through two electrodes placed on the patient torso. Here, in
our numerical model, two plane electrodes are placed at the limits of the cubic
integration domain in the extracellular region, with the load anode (injecting positive
charge) located close to the left ventricle (LV) and the load cathode located close to
the right ventricle (RV), as depicted in Fig. 3.

Figure 4 shows four stages of a successful defibrillatory shock.

4.2 Dose-Response Curve

In this study, we used monophasic shocks 12 ms in duration. Five levels of shock
intensity were tested corresponding to inter-electrode electric field strengths of
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Table 2 Parameter values for the four-variable model

Parameter Value Parameter Value Parameter Value

gf i 5 ms�1 Vc 0.13 ˇ1 5
gsi 0.01 ms�1 Vf i 1 ˇ2 10
gso 0.022 ms�1 V1 0.3 �w1 180 ms
gito 1 ms�1 Vr 0.2 �w2 40 ms
�s1 10 ms �r1 7 ms
�s2 39.2 ms �r2 5 ms

Fig. 3 Left: Time evolution of the membrane potential Vm and the extracellular potential (denoted
here by �e) measured in the middle of the ventricular septum. Note that here Vm is given in
dimensional units (mV) and has been rescaled and shifted for plotting purposes so that the resting
state is 0 mV. Right: Setup used in this study for quantifying defibrillation efficacy

3.625, 7.25, 10.875, 14.5, and 18.125 V/cm. Using the 10 different initial conditions,
we calculated statistics for the success rate. After the 12-ms shock was applied, the
system evolved for 600 ms. Then the outcome of the numerical experiment was
classified as follows. If the activity stopped directly, it was considered a success
(score 1). If disorganized activity remained after 600 ms, it was considered a failure
(score 0). If only a single beat (ectopic beat) was observed, it was scored at 0.5. The
results of all the simulation are shown in Fig. 5. The analysis of the results can be
made using the well-known dose-response curve [22]:

P.I / D 1

1C expŒk.I50 � I /� (13)

where P indicates the probability of success as a function of the dose intensity I .
A direct fit of the curve given by (13) using the data of Fig. 5 results in the

following values: I50 D 6:6 (V/cm) and k D 0:45 (cm/V). This means that an
energy associated with an electric field above 6.6 V/cm would provide a 50% chance
of efficacious defibrillation. The latter is in good agreement with values found in the
literature [23].
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Fig. 4 Four successive snapshots during successful defibrillation using a monophasic shock of
12 ms duration. (a) Electrical activity before the shock; (b) Strong polarized activity during the
shock; (c) Activity 50 ms after the shock ending; (d) Nearly all activity has disappeared 100 ms
after the shock ending

Fig. 5 Defibrillation success
rate as a function of electrical
shock strength as obtained
through the 50 numerical
simulations. The dashed
curve (dose-response curve)
represents the best fit of the
data through (13). EB: extra
beat. DR: dose-response

5 Conclusions and Further Work

In this study we developed a parallel numerical code to simulate the electrical
activity of the heart and applied the code to study defibrillation. We found that
the shock strength needed to defibrillate the numerical heart agree well with what
has been reported experimentally and clinically [23]. Our next step is optimize our
defibrillation protocol using additional numerical simulations. Our objective is to
reduce the energy content of the shock, thereby reducing the risk of irreversible
tissue damage. Experimental results achieving lower energy by applying multiple
low-energy shocks rather than a single high-energy shock have been published
recently by Fenton et al. [24]. Additional energy reductions are expected to result
from optimizing such parameters as electrode positions and polarity; number,
duration, and frequency of shocks; and shock waveform.

Appendix

Below we give the detailed formulations of the transmembrane currents used in this
study. The membrane potential V is written in dimensionless form and is re-scaled
in the range Œ0; 1�. Note that the hyperbolic tangent functions were evaluated using
lookup tables to improve performance.
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Iion D Jf i C Jsi C Jso C Jto (14)

Jf i D �gf i s .V � Vc/ .Vf i � V /�.V � Vc/ ; (15)

Jsi D �gsi w f1C tanhŒˇ1.V � V1/�gf1C tanhŒˇ2.1 � V /�g�.V � Vc/ ; (16)

Jso D gso

�
V

Vc
Œ1 ��.V � Vc/�C�.V � Vc/


; (17)

Jto D gito r s V ; (18)

where�.x/ is the usual Heaviside function and where the differential equations for
the three ionic gate variables are written as follows:

@s

@t
D �.Vc � V /� r

�s1 C .�s2 � �s1/�.Vc � V / (19)

@r

@t
D �.V � Vr/ � r
�r1 C .�r2 � �r1/�.V � Vr/ (20)

@w

@t
D �.Vc � V /� w

�w1 C .�w2 � �w1 /�.Vc � V /
(21)

The time constants that appear in (15)–(21) are fitted to reproduce specific
mesoscopic characteristics of heart tissue, such as action potential duration (APD)
and the conduction velocity (CV) restitution curves, as well as action potential
(AP) shapes. The present model is a simplification of the model proposed by
Cantalapiedra et al. [17, 18].
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Morphogenesis and Complexity
of the Tumor Patterns

E. Izquierdo-Kulich and J.M. Nieto-Villar

1 Introduction

Cancer is a generic name given to a group of malignant cells which have lost their
specialization and control over normal growth. These groups of malignant cells
are nonlinear dynamic systems which self-organize in time and space, far from
thermodynamic equilibrium, and exhibit high complexity [1] robustness [2] and
adaptability [3].

Transition phenomena, far from being in thermodynamic equilibrium, are related
due to bifurcations, to states characterized by correlations that affect the macro-
scopic behavior of the tumor. Coherence in tumor cells is associated with simulta-
neous reinforcement of fluctuations. A recent work shows that tumors operate close
to an instability threshold [4]. This study shows that tumor cell populations live
close to this threshold at a certain level of genetic instability.

An important characteristic of complex dynamic systems is their stability in front
of external perturbations. We have recently demonstrated that dynamic systems may
or may not be controlled by the effect of periodic external fluctuations, according to
the type of dynamic systems’ complexity [5]. In other words, the sensitivity of the
system to external fluctuations depends on its robustness [3].

In spite of achievements in molecular biology and genomics, the growth mech-
anism for tumor cells and the nature of its robustness are still unknown. Tumor
cell robustness enables a system to maintain its functionality in the face of various
external and internal perturbations [6, 7]. Tumor cells exhibit two aspects of
robustness: functional redundancy, which is enabled by cellular heterogeneity, and
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feedback-control systems [6,7]. Controlling cell robustness by reducing heterogene-
ity is a potential strategy for the development of drugs and therapies.

Tumor cell heterogeneity is manifested by the irregularity of the tumor bound-
aries. Fractal geometry proves to be useful for describing the pathological architec-
ture of tumors and for yielding insights into the mechanisms of tumor growth [8].

Mathematical models represent a manner for formalizing the knowledge of living
systems obtained through theoretical biology. Mathematical modeling of tumor
growth makes possible the description of its most important regularities and is useful
in providing effective guidelines for cancer therapy, drug development, and clinical
decision-making [9, 10].

The goal of this chapter is to give a theoretical framework the mathematical
modeling of tumor growth, based on a stochastic and thermodynamics approaches
that allows improving our understanding of the origin of tumor cell heterogeneity
and thus its robustness. The plan of the paper is the following: In Sect. 2, we propose
a mechanism for the apoptosis regulation by p53 sustained oscillations. This
mechanism was developed taking into account the experimental results reported
being related with the oscillation in the amount of p53 that is present in the damaged
cells [11–14] and the role of oscillation in the biological system. A mesoscopic
approach to be used, to establish cancer’s therapeutic strategies is obtained from the
proposed mechanism [15].

In Sect. 3, formalism is obtained from the master equation (ME) to obtain
the mesoscopic model which describes the tumor growth dynamics in absence of
external fluctuations, taking into account that the tumor grows in a limited area.
The microscopic variable considered to describe the state of the system is the total
number of tumor cells, and the macroscopic variables are the expected value of the
radius and the fractal dimension, which is a result of internal fluctuations.

In Sect. 4, a mathematical model was obtained to describe the relation between
the tissue morphology of cervix carcinoma and both dynamic processes of mitosis
and apoptosis, and an expression to quantify the tumor aggressiveness, which in this
context is associated with the tumor growth rate. The proposed model was applied
to Stage III cervix carcinoma in vivo studies. Finally, in the Sect. 5, the entropy
production rate was determined for avascular tumor growth. The proposed formula
relates the fractal dimension of the tumor contour with the quotient between mitosis
and apoptosis rate, which can be used to characterize the degree of proliferation of
tumor cells. The entropy production rate was determined for fourteen tumor cell
lines as a physical function of cancer robustness.

2 A Mesoscopic Approach to Model Regulation of Apoptosis
by p53

Three decades of p53 research have led to many advances in understanding the
function of p53 in relation to longevity and aging [16], metabolism regulation [17],
tumor suppression and apoptosis process, which are important aspects because
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many human cancers show resistance to apoptosis [18, 19]. The apoptosis process
consists in the programmed cellular death which occurs when DNA damage is
detected, but can not be repaired. In this scenario, the cell may reproduce in a
mutated form, later appearing as cancer.

Experimental studies of p53 and Mdm2 behavior in response to DNA dam-
age show damped oscillation of p53 concentration at cell population level and
undamped oscillation of p53 in single cells [11–14]. Although the oscillatory
behavior is ubiquitous for biological systems [20–22], the significance of p53
oscillations still remains unclear [14].

To obtain a mechanism to predict the dynamics of p53 at cellular level associated
to the apoptosis process, the following considerations were made: (1) the p53
activation is stimulated by a virtual species Dm, which is associated with the DNA
damage level; (2) p53 stimulates the synthesis of Mdm2; (3) Mdm2 stimulates the
p53 degradation and (4) the level of Dm decreases with the increased p53 level.
The increase in p53 retards the mitosis processes while the damage is repaired [14].
This proposed mechanism is shown in Fig. 1.

We assumed that each p processes at microscopic level occurs with a transition
probability per unit time Wp, which must be supposed a priory. So, the following
facts were established:

(1) the synthesis of p53 via DNA has a transition probability given by W1 D
˚1:˝ , where ˚1 is the p53 basal synthesis rate constant; (2) the degradation of p53
because of the Mdm2 action, W 2 D K:˝�1:p53.Mdm2, where K is the p53
degradation rate constant; (3) The synthesis ofMdm2 is stimulated by p53, W 3 D
A.p53, where A is the Mdm2 synthesis rate constant; (4) the inhibition ofMdm2,
W 4 D B:˝�1:Mdm2.Dm, where B is the Mdm2 inhibition rate constant; (5) the
synthesis ofDm is stimulated by the damage magnitude,W 5 D ˚2:˝ , where ˚2 is
a rate constant associated to the damage level and (6) the damage inhibition caused
by the p53 action is,W 6 D C:p53, whereC is a rate constant associated to damage
reparation because of the p53 action.

From the transition probability per unit time established a priori, the obtained
Fokker-Planck equation (FPE) [23, 24], expressed as a function of the macroscopic
variables. From the established considerations, we obtained that the dynamic
behavior of the system [15] is given by the following system ordinary differential
equations:

d Œp53�

dt
D ˚1 �K Œp53� ŒMdm2� (1)

d ŒMdm2�

dt
D A Œp53� � B ŒMdm2� ŒDm� (2)

d ŒDm�

dt
D ˚2 � C Œp53� (3)

With the purpose of analyzing the model predictions we selected as control
parameters the B constant associated to Mdm2 degradation, and the ˚2 constant
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Fig. 1 Proposed mechanism

related to the damage level of DNA. In order to simplify, the rest of the constants
are assumed equal to 1; thus (1)–(3) are written:

dx

dt
D 1 � xy (4)

dy

dt
D x � Byz (5)

d z

dt
D ˚2 � x (6)

where the corresponding stationary state is:

xss D ˚2; yss D 1

˚2
; zss D ˚2

2

B
(7)

If the stationary state is substituted in the Jacobian �

� D
2
4

�Ky �Kx 0

A �Bz �By
�C 0 0

3
5 (8)

we arrive to the characteristic equation as a function of the eigenvalues

B C 2˚2�C 1C ˚3
2

˚2
�2 C �3 D 0 (9)

and we find that the periodic oscillations occur because of a supercritical Andronov-
Hopf bifurcation [25], where:

Bc D 2C 2˚3
2 (10)
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Fig. 2 Bifurcation diagram
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Taken into account that the oscillations number of p53 and the probability of
apoptosis process depend of level damage, we considered as hypothesis that the
apoptosis process is controlled and induced by the sustained oscillations of p53,
whereas this process doesn’t occur when the oscillations are damped, indicating
the survival of the mutated cells.

The bifurcation diagram obtained from (10) is shown in Fig. 2, where the survival
or apoptosis cells are described as a function of control parameters. In this case,
when B < Bc, p53 shows damped oscillations (Fig. 3a) and the stimulated process
is the cells’ survival, while when B > Bc, the stimulated process is the cells
apoptosis, which is just regulated by the p53 sustained oscillations (Fig. 3b). If
the hypothesis proposed is correct, the obtained bifurcation diagram can be used
to establish different therapy strategies against cancer based on the stimulation of
apoptosis.

The protein Mdm2, which is the biological regulator of p53, is overexpressed
in certain types of cancer [26]. Taking into account the bifurcation diagram and
the established hypothesis, if the value of the parameter B , which represents the
Mdm2 degradation, is increased in such way that B > Bc, the apoptosis process is
stimulated and regulated through sustained oscillations. This theoretical result may
correspond to therapeutic strategies recently established by other authors, which
proposed a therapy based on the inhibition of Mdm2 [26–28].

The apoptosis process has been associated with high levels of p53, which is
based on the experimental results which show p53 increase with damage level [29].
In this sense, the absence of p53 observed in certain cancers, seems to corroborate
this hypothesis. Nevertheless, other types of cancer show high level of p53, which
is correlated with a poor prognosis [30, 31]. According to the proposed model,
apoptosis can only occur when ˚2 < ˚2;c for a given value of B , i.e. the cell
survival is induced when the level of p53 is too high, which can explain why a high
level of p53 is not always associated to apoptosis.

We considered as hypothesis that the apoptosis occurs as a result of a non-
linear self-organized process far from thermodynamic equilibrium. Based on it, a
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Fig. 3 (a) (left): Phase plane x; y corresponding to predicted dynamical behaviour; B < Bc ,
damped oscillation, stable focus. (b) (right): Phase plane x; y corresponding to predicted dynami-
cal behaviour; B > Bc , undamped oscillation, limit cycle

stochastic formalism that allows a better understanding of the regulation processes
of apoptosis through p53 sustained oscillations is proposed, where the obtained
deterministic model predicts the reported qualitative experimental results related
with the p53 oscillations when there is a DNA damage. It also predicts that it
is necessary a strict regulation of p53 level for stimulating the apoptosis process,
which depends of both the Mdm2 � p53 and the inhibition of Mdm2 negative
feed-back loops.

3 Morphogenesis of the Tumor Patterns

Most of the mathematical models presented in literature assume by default that they
can describe the phenomenological features of the tumor growth using analogue
systems. Such models include the Gompertzinan model [32, 33], the logistic model
[34], the prey-predator model [35], and so on. On the other hand, such models are
focused on some kind of therapy, such as; immunotherapy [36], radiotherapy [9],
and combinatory therapy [37] or drug administrations [38].

In recent studies [39], experimental evidence has shown been found that the main
mechanism responsible for tumor growth is the competition for space, and not for
nutrients, between the tumor and the host cells, and that the tumor shows a linear
growth in time.

In the previous work [40], a mesoscopic model for tumor growth was has been
presented, considering only the effect of internal fluctuations, in order to improve
our understanding of the origin of tumor cells heterogeneity. In this case, this
stochastic formalism allows us not only to reproduce, but also to obtain a better
understanding of the experimental results presented by Brú [39]. In fact, the internal
fluctuations give an explanation as to the “super-rough” dynamics of tumor growth,
where the change of microscopic entities size is taken into account.
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Another important feature of the mesoscopic model [40] is that it allows us
to predict a range of values for the critical exponents and the fractal dimensions
corresponding to the experimental findings presented by Brú [39] for different tumor
cell cultures.

Our hypothesis is that the rugosity of the interface between the tumor and the host
is primarily the result of two main effects. One of them is related to the fact that the
reproduction and death of cells at the interface occurs with a particular probability,
and therefore it is the results of internal fluctuations [40]; the other is associated
with the randomness of the environment, in particular the interaction between the
tumor and the immune systems and the host, and for that reason it is also associated
with the external fluctuations.

Our objective is to extend the study of the morphogenetic basis of two-
dimensional tumor patterns. In Sect. 3.1, formalism is obtained from the master
equation (ME) to obtain the mesoscopic model which describes the tumor growth
dynamics in absence of external fluctuations, taking into account that the tumor
grows in a limited area. The microscopic variable considered to describe the state of
the system is the total number of tumor cells, and the macroscopic variables are the
expected value of the radius and the fractal dimension, which is a result of internal
fluctuations.

3.1 Mesoscopic Model

To obtain a mathematical model to predict avascular tumor growth, the following
considerations were made:

1. The total number of cells n is the microscopic variable that describes the behavior
of the system, and macroscopic variables considered were the tumor radius r and
the fractal dimension of the interface df , related by the expression:

n D �r2

˝
(11)

df D 2 � 0:5G .y/ (12)

y D lim
l!1

� ln .w/

� ln .l/
(13)

where ˝ is the area occupied by the cell or cell colony in the contour, w is an
adimensional magnitude that expresses the height difference between two points
in the contour separated by an adimensional distance l , and G.y/ is a linear
function of y.
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Geometrically, a tumor has the shape shown in Fig. 4, in which the distance
between the center of the tumor and the point at the interface more distant from
the center H , the expected value of the tumor radius R, and the difference
between the maximum heights of two points in the contour W are useful
variables.

2. As the contour rugosity is a property of the tumor, not all the surface of radius
H is covered by tumor cells. If it is considered that internal fluctuations scale
with the area occupied by the microscopic entities that characterize the tumor
(tumor cells or tumor cell colonies) then the percentage of the host area occupied
by tumor cells depends on the relation between the size of the entity and the
expected value of the area occupied by the tumor, expressed by:

R2

H2
D f

�
˝

R2

	
(14)

where f is a function of the relation ˝
R2

with the following properties:

lim
˝

R2
!0

f

�
˝

R2

	
D 1 H) W D 0; df D 1 (15)

and

lim
˝

R2
!1

f

�
˝

R2

	
D 0 H) W D 1; df D 2 (16)

3. Because the change of n depends of the proliferation death of the contour cells
and if (11) is considered, then the transition probability per unit time Tr

�
t�1
�

is
assumed as:

Tr D �n0:5 (17)

while the transition probability per unit of time Td associated to the apoptosis of
cells on the interface is supposed as:

Td D b .1C Fa/ n
0:5 (18)

where:

b D cte

Fa D r2

D2

D n

N
(19)

In (17) and (18) �
�
t�1
�

is the cell reproduction rate constant, and kd
�
t�1
�

is
the cell death rate constant. The death rate constant kd includes a correction term
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Fig. 4 Geometric
representation of the tumor

Fa, which represents the relation between the tumor radius r and a characteristic
length D of the area and takes into account the finite area of the host. The term
Fa is equivalent to the relation between the total number of cells and the total
sites which can be occupied.

Considering the transition probabilities (17) and (18) the master equation ME
[23, 24] which describes the probability behavior P .nI t/ of having n cells in
time t is written as:

@P .nI t/
@t

D �
E�1
n � 1

�
�n0:5P .nI t/

C �
EC1
n � 1

�
b
�
1C n

N

�
n0:5P .nI t/

P .n0I 0/ D 1 (20)

where Ea
n is the step operator.

Since the reproduction or death of a single cell produces a negligible effect on
the system:

�n

n
� 0 (21)

Then the variable n could be considered continuous. If the step operator is
expressed in its differential form:

E�1
n D 1 � @

@n
C 1

2

@2

@n2

EC1
n D 1C @

@n
C 1

2

@2

@n2
(22)
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Then the Fokker-Planck equation (FPE) is obtained [23, 24] for P .n; t/:

@P .nI t/
@t

D � @

@n

h
�n0:5 � b

�
1C n

N

�
n0:5

i
P .nI t/

C1

2

@2

@n2

h
�n0:5 C b

�
1C n

N

�
n0:5

i
P .nI t/ (23)

If we take into account the following relations between the probability related
to the microscopic P.nI t/ and the one related to the macroscopic variables
P.r I t/ [23]:

@P .nI t/ @n D @P .r I t/ @r (24)

Then the FPE related to the behavior of the macroscopic variable is:

@P .r I t/
@t

D � @

@r



 � �

�
1C r2

D2

	
� ˝

2r2

�
 C �

�
1C r2

D2

		�
P .r I t/

C @2

@r2



˝

2r

�
 C �

�
1C r2

D2

		�
P .r I t/ (25)

in which the relations among macroscopic and microscopic rate constants are:

 D
�
˝

4

	0:5
�

� D
�
˝

4

	0:5
b (26)

In FPE (25), the first term on the right is a convective term related to the
expected or deterministic value, while the second term is a diffusive term related
to the fluctuations value. Taking into account that the macroscopically observed
cell size ˝ is independent of the tumor size r2, we can consider that:

 � �
�
1C r2

D2

	
>>

˝

2r2

�
 C �

�
1C r2

D2

		
(27)

in such a way that (25) can be written as:

@P .r I t/
@t

D � @

@r



 � �

�
1C r2

D2

	�
P .r I t/

C @2

@r2



˝

2r

�
 C �

�
1C r2

D2

		�
P .r I t/ (28)
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From the FPE (28) the expected radius of the tumor R is obtained [41]:

dR

dt
D  � �

�
1C r2

D2

	

dR

dt
D V � �

r2

D2

R .0/ D R0 > 0 (29)

where V D  � �
�
L:t�1

�
is the tumor growth rate macroscopically observed

during the linear growth stage by mitosis and apoptosis processes [39].
For variance 
 associated to the internal fluctuations we obtain from (28):

d


dt
D �2�R

D2

 C ˝

2R

�
 � �

�
1C R2

D2

		


 .0/ D 
0 > 0 (30)

The system of ordinary differential equations given by (29) and (30) repre-
sents the mesoscopic model which describes the tumor dynamics in absence of
external fluctuations considering the finite host area.

The stability analysis [42] shows that the radius grows to a stable stationary
state, also called dormant tumor stage [43].

4. The tumor fractal dimension depends on the physiological condition of active
cells at the interface, and it must include the reproduction and death rate
constants. To determine the characteristic fractal dimension of the tumor, the
right side of (30) is equalled to zero, so:

d


dt
D 0

D D H (31)

and the variance is expressed as:


 D H2

4

˝

R2

�
 

�
C 1C R2

H2

	
(32)

As the height difference between two points at the interface is equivalent to the
magnitude of internal fluctuations, expressed by the square root of the variance [44],
the following adimensional expression is obtained from (32):

w2 D l2

4

�
 

�
C 1C L2

	
(33)
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where:

w D 
0:5

H
; l D ˝0:5

R
;L2 D f

�
l2
�

(34)

In (34) f
�
l2
�

is, according to the pre-established considerations, a scale down
function which takes into account the fact that internal fluctuations will depend on
the size of the microscopic entities and the size of the system.

Also, as there is a linear relation between the expected value of the radius and
the perimeter, the adimensional variable l is equivalent to the distance between two
interface points. Consequently, the following scaling relation can be assumed:

L2 D 1 � l2 (35)

So, (33) is expressed as:

w2 D l2

4

�
 

�
C 2C l2

	
(36)

Substituting (36) in (13) gives:

y D lim
l!1

� ln
�
l2

4

�
 

�
C 2C l2

��

� ln l

D lim
l!1

0
@d ln

�
l2

4

�
 

�
C 2C l2

��

dl

1
A
�
d ln l

d l

	�1

D  C �

�
D �C b

b
(37)

the fractal dimension is given by:

df D 2 � 1

2

�
C1

�
�C b

b

	
C C2

	
(38)

where constants C1 and C2 are evaluated taking into account the interval of values
physically possible that can be obtained by the relation between the reproduction
and endogenous death rate constants. Then two extreme cases appear:

 

�
D 1 H) df D 2 (39)

Because when  

�
D 1 the tumor does not grow so the fractal dimension is equal

to the surface dimension, and:

 

�
D 2 H) df D 2 (40)
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Fig. 5 Predicted dynamics.
1. HT colon adenocarcinoma;
2. C-33 cervis carcinoma; 3.
Saos 2 osteosarcoma; 4. AT5
primary human foreskin
fibroblasts; 5. 313 mouse
fibroblasts [41]

Table 1 Aggressiveness index V for tumor in vitro

Cell line f p V �  �

HT colon adenocarcinoma 1.13 1.93 3.9643 2.0343
C-33 cervix carcinoma 1.25 6.10 24.4 18.3
Saos 2 osteosarcoma 1.31 0.94 5.5411 4.6011
AT5 primary human foreskin fibroblasts 1.23 8.72 31.004 22.284
313 mouse fibroblasts 1.20 1.10 3.3 2.2
�

Experimental results reported by Brú [39]

since when  

�
D 1 the contour roughness is zero and the fractal dimension is equal

to the topological dimension of the contour of a circle of radius H . Taking into
account both extreme conditions given by (39) and (40) the following expression is
proposed to determine fractal dimension df as a function of the quotient between
mitosis and apoptosis rates [41], which quantifies the tumor capacity to invade and
infiltrate healthy tissue [45]:

df D
5 �  

�

 

�
C 1

(41)

To applied the proposed model in for tumor in vitro, five tumor cell lines shown
in Fig. 4 were selected. The features of theses cells are reported by Brú [39]. Table 1
shows the linear growth rates V

�
�m:h�1�, their fractal dimension df [39], as well

as the reproduction  and death � rate constants of these cells, predicted by the
model.

As can be seen, in the absence of external fluctuations, the stochastic formalism
allows formulating a macroscopic model that on the one hand describes the linear
growth of the tumor radius in time and on the other hand its evolution until reaching
a stable stationary state, which seems to be associated with tumor dormant state.

On one hand, it has been experimentally demonstrated that once the tumor
appears, which is considered as a self-organising systems, spatial and temporally
far from thermodynamic equilibrium, it shows a linear growth in the host [39] until
reaching a critical size; then, for reasons not yet clarified, it stops growing for a



670 E. Izquierdo-Kulich and J.M. Nieto-Villar

period known as the dormant state [46]. After this, the tumor metastasizes, invading
other organs, and this is main cause of death for cancer patients.

In summary, in this work, a stochastic formalism that allows a better under-
standing of the morphogenesis of the tumor pattern formation dynamics has been
developed. The stochastic formalism developed not only reproduces the experimen-
tal results observed by Brú [39] but clarifies the physics of the complexity observed
of the tumor patterns.

4 Diagnosis of a Tumor Malignancy and Aggressiveness

In general, benign tumors are well differentiated, while malignant neoplasms
or cancer are composed of undifferentiated cells. Malignant tumors are locally
invasive, infiltrating the surrounding normal tissues and the metastasis is frequently
present [47].

A mesoscopic formalism was used to obtain a theoretical equation that describes
the relation between the fractal dimension of the tumor interface and the quotient
between mitosis and apoptosis rates [41], which quantifies the tumor capacity to
invade and infiltrate healthy tissue [45]. Another result was an empirical scale-up
equation that simulates the macroscopic morphology of the tumor [40].

The diagnosis of a tumor malignancy and aggressiveness is a key factor in
establishing an adequate therapy. The morphology of this tissue is too complex to
be described using Euclidian geometry [45, 48, 49]. Conversely, the morphology of
the tumor pattern can be characterized by its fractal dimension [40], in relation to
the cell density. Thus, experimental studies have been conducted to determine the
relation between tissue fractal dimension [8, 50, 51], cell fractal dimension [52],
interface fractal dimension, and others aspects of tumor malignancy and prognosis,
[53–56]. Most of these studies are based on statistical correlations and do not arrive
at conclusive results.

We propose in this section a new mesoscopic model to describe the behavior of
cells inside the tumor. In this section will: 4.1 establish a relationship between the
fractal dimension of the cell pattern, the fractal dimension of the interface, and the
quotient between mitosis and apoptosis rates; 4.2 develop an equation to describe
the dynamic behavior of the tumor from the cell pattern fractal dimension, which
can explain the Gompertzian dynamics; 4.3 propose indexes to quantify invasion
and proliferation capacities of in vitro tumors.

4.1 Relation Between Cell Pattern Fractal Dimension
and Dynamic Quotient

A mesoscopic formalism [23] is used to obtain the relation between the cell
pattern’s fractal dimension and the mitosis-apoptosis quotient [57]. The following
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suppositions was established: i) the system is an area ˝ of tissue inside the tumor
where there are not necrosis; ii) the microscopic variable is the number n of tumoral
cells with individual area ˛ presents on ˝; iii) the macroscopic variable is the
fraction of tissue ˚ composed by tumoral cells; iv) the relation between n and ˚ is
given by:

˚ D n˛

˝
I (42)

v) the transition probability per unit of time TnC1=n associated to cells reproduction
depends of the constant rate u

�
t�1
�

and it is established a priori as:

TnC1=n D unI (43)

vi) the transition probability per unit of time Tn�1=n related to cells dead depends of
the constant rate b

�
t�1
�

and the available space ˝ , and this probability is

Tn�1=n D b
�
1C n˛

˝

�
nI (44)

vii) because of the area ˝ is considered constant due to limitation of space, the
number n of cells are in a stationary state.

Considering the transition probabilities (43) and (44) the master equation ME
[23, 24], which describes the probability behavior P.nI t/ of having n cells in time
t , is written as:

@P .nI t/
@t

D �
E�1 � 1� unP .nI t/

C �
EC1 � 1

�
b
�
1C n˛

˝

�
nP .nI t/

P .n0I 0/ D 1 (45)

where Ea is the step operator.
The behavior of the expected value h˚i and the variance 
˚ are deduced through

the solution of the master equation (45). Due to the non-linearity of this ME (in
the sense of its transition probability per time unit), an exact analytic solution is not
possible [23], and so it is necessary to use approximate methods. In this case the first
two terms of Van Kampen’s expansion will be used [23,24]. Taking into account the
established suppositions we obtained:

0 D .u h˚i � b h˚i .1C h˚i// (46)

0 D 2 .u � b � 2b h˚i/ 
˚ C
� ˛
˝

�
.u h˚i C b .1C h˚i/ h˚i/ (47)
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and consequently:

h˚i D .k � 1/ (48)


˚ D "

�
.k C 1/ h˚i C h˚i2

�

2 .1 � k C 2 h˚i/ (49)

where:

k D u

b
(50)

" D ˛

˝
(51)

According to (50), the parameter k is related to the relation between mitosis and
apoptosis rate, and therefore it is called dynamic quotient. This quotient physically
represents the proliferation index of a tumor. The parameter " (51) is related to the
observation scale of the system, and therefore it is called mesoscopic scale factor; it
describes the relation between the size of an individual tumoral cell and the size of
observed tissue inside the tumor.

In order to characterize the pattern cells morphology from (48) and (49), the
variance 
 is written as a function of a parameter, which can be related to the fractal
dimensionDf of the cells pattern at the microscopic level. That is why we selected
" in such way that the magnitude of internal fluctuations is similar to the magnitude
of the expected value. Then, we considered:

˚n!1 � " (52)

so (49) can be rewritten as:


˚!1 D "

�
.k C 1/ "C "2

�

2 .1 � k C 2"/
� "a (53)

To obtain a as a theoretical function of the dynamic quotient k and the fractal
dimension Df , we took into account that Df is calculated using the box counting
method within a limit where the size of the observed box is equivalent to the size of
an individual cell. Therefore, a is calculated according to the following relation [41]:

a D lim
"!1

0
BB@
d ln

��
"
..kC1/"C"2/
2.1�kC2"/

		

d"

1
CCA
�
d ln "

d"

	�1

a D .5: 5 � k .k C 0:5//

3 � 0:5k .k � 1/ (54)
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As the system is considered in a stationary stable state, the probability function
P.nI t/ is normal or Gaussian [23, 24], in such way that, when internal fluctuations
are appreciable, this function can be written as:

P˚�" � 1

.2�"a/0:5
exp

 
� .h"i � "/2

2"a

!
: (55)

If P˚�" is visualized from the ensemble viewpoint [23, 24], the expected value
of P˚�" is a measure of the pattern cell density �.Z/ observed on an area ˝ D Z2,
where Z is a characteristic length. Therefore:

� .Z/ �
Z

1

.2�"a/0:5
exp

 
� .h"i � "/2

2"a

!
P ."/ d"

� .Z/ � 1

.Za/0:5
(56)

All tumors have two basic components: (1) cells that constitute their parenchyma,
and (2) supportive stroma made up of connective tissue and blood vessels [47].
The amount � of parenchyma, which is proportional to the number of cells, can be
estimated as:

� � � .Z/˝

� � 1

.Za/0:5
Z2 � ZD (57)

From (54), (56) and (58), the following theoretical equation is obtained:

D D 1

2

k .5� 2k/C 13

.k C 2/ .3 � k/ (58)

4.2 Dynamics Behavior of the Tumor

To determine the relation between � and other macroscopic variables associated
with the tumor growth, the following assumptions are: i) the observed macroscopic
variable r is a virtual line, which is the tumor radius; ii) the microscopic variablem
is the number of cells of length l inside the virtual line:

r D mlI (59)
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iii) the transition probability per unit of time TmC1=m associated with cells prolif-
eration depends only on the mitosis constant rate u

�
t�1
�

associated with interface
cells, and it is established a priori as:

TmC1=m D uI (60)

iv) the transition probability per unit of time Tm�1=m associated with the death
of interface cells depends on the apoptosis constant rate b

�
t�1
�

and the relation
between r and the value˝�, related to the finite size of the host. This probability is
written as:

Tn�1=n D b
�
1C r

˝�
�
: (61)

The master equation ME, obtained from the assumed transition probability per
unit of time (60) and (61), describes the behavior of the probability P .mI t/ of
havingm number of cells in time t , is:

@P .mI t/
@t

D �
EC1 � 1

�
uP .mI t/C �

E�1 � 1
�
b
�
1C r

˝�
�
P .mI t/

P .mI 0/ D 1: (62)

The ME (62) is linear and therefore its solution is a function of normal or
Gaussian distribution [23,24]. The expected value of the tumor radiusR is given by:

dR

dt
D
�
 � � � � R

˝�

	

R .0/ D R0; (63)

where  and �
�
L:t�1

�
are the macroscopic parameters associated with mitosis and

apoptosis rates, respectively, and they are related to the microscopic rates by:

 D ul; (64)

� D bl: (65)

To obtain the solution of (62) we defined the following dimensional variables and
parameters:

� D R

˝� I (66)

�� D �

˝� t I (67)

kc D  

�
; (68)
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where the adimensional parameter kc is the dynamic quotient on the tumor-host
interface and �

˝�

�
t�1
�

is the inverse of a constant related to the time that the tumor
takes to achieve its maximum radius value. Then we obtain to the expected value:

d�

d�� D .kc � 1 � �/

� .0/ � 0 (69)

where the exact solution of (69) is:

�
�
��� D .kc � 1/ �1 � exp

������ : (70)

Taking into account the fractal morphology of the tumor patterns, an expression
which describes the evolution of the parenchyma tumor can be obtained:

x D �
.k � 1/ �1 � exp

�������Df (71)

where x is an adimensional variable describing the quotient between the
parenchyma size and the maximum value of � when t ! 1:

Equation (71) is an exact solution of the following differential equation:

dx

d�
D Dx

�
.k � 1/ x� 1

D � 1
�

(72)

If we define a variable y
y D ln x (73)

then the equation can be expressed as

dy

d�
D Df

�
.k � 1/

�
exp

�
� y

Df

	
� 1

		
(74)

If the right side of equation is expanded in a power series of y and only the first
two terms are hold, turns into:

dx

dt
D �A1x ln

x

A2

A1 D .k � 1/
A2 D .k � 1/D (75)

Equation (75), describing the approximate tumor growth, is analogous to the
Gompertz model, which has been successfully used for the mathematical description
of many types of cancer [45]. The predicted behaviour from both (75) and (72) are
show on the Fig. 6.
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Fig. 6 (– –) Dynamics
predicted from (72) (–)
Gompertz dynamics from
(75)

The next step is to find a relation between the macroscopic morphology of
the tumor, described by the interface fractal dimension df and the microscopic
morphology described by the cell pattern fractal dimension Df : According to the
linear master equation the temporal behavior of the radius variance is given by:

d


dt
D �2 �

˝�
 C l

�
 C �C �

R

˝�

	
(76)

If the equation is expressed as a function of the adimensional variables and
parameters

� D 2�

˝�

ˇ D 


.˝�/2

 D 2l

˝� (77)

and as there is a linear relation between the expected value R of the tumor radius
and the expected value Pe of the tumor perimeter the equation is expressed as:

dˇ

d�
D �ˇ C m .kc C 1C 	/ (78)

ˇ .0/ D 0

where m is the macroscopic scale factor on the interface, related to the interface
scale of observation 	 is an adimentional variable related to the distance between
two points on the interface and ˇ0:5 is an adimensional variable related to the height
difference h between these points. As 	 D � we write:

	 .�/ D .kc � 1/ .1 � exp .��// (79)
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the exact solution of equation is:

ˇ .�/ D 2kcm � m
�
kc � 1 � 	
kc � 1

	�
.kc � 1/ ln

�
kc � 1� 	

kc � 1

	
C 2kc

	
(80)

the term ln
�
kc�1�	
kc�1

�
in equation is expanded in a power series of 	 and the first

term is taken the we arrive to the following expression:

ˇ �
�
m	

3kc � 	 � 1
kc � 1

	
(81)

To characterize the roughness of the tumor-host interface the distance 	 must be
appreciable in comparison with the observation scale:

ˇ � m (82)

and the local roughness exponent ˛loc can be estimated as:

˛loc D lim
m!1

 
d ln

�
h	!m

�

dm

!�
d ln m
dm

	�1

˛loc D 6kc � 5

6kc � 4
(83)

Taking into account that the exponent ˛loc is related to the interface fractal
dimension df according to

df D 2 � ˛loc (84)

the following equation is obtained to relate the fractal dimension df to the dynamic
quotient on the interface kc

df D 1:5
kc � 0:5

1:5kc � 1
(85)

if it is assumed that the dynamic quotient kc on the interface is equal to the dynamic
quotient k inside the tumor, i. e. k D kc the relation between the macroscopic
morphology pattern and the microscopic morphology pattern inside the tumor is
given by:

df D
1:0045

�
Df C 6:6667 � 10�2

q
D2
f � 2:2Df C 1:29 � 1:22

�

Df � 1:2411 (86)
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4.3 Morphogenesis and Aggressiveness of Cervix
Carcinoma

The cervix epithelium is a biological tissue which is kept under constant cell
renewal [47]. The replication of the stem cells (Fig. 7a) produces well-differentiated
cells (Fig. 7b) which replace the apoptosis cells that are on the epithelium surface
(Fig. 7c). Due to the papilloma virus, the stem cells mutate and they produce not-
differentiated cells (Fig. 7d) which divide out of control.

The cervix carcinoma is visualized as a two-dimensional region (Fig. 8) where
tumor cells T proliferate and invade non-tumor tissue N , which usually is inflamed
as a response to the invasion [59, 60]. The considered system to obtain the model
is an area of arbitrary size ˝ inside the tumor, which corresponds to the observed
image used for diagnosis.

The microscopic variable is the total number of cells n inside ˝ , and is suppose
to change due to the following processes: i) the production of epithelium cells
caused by the division of stem cells, where the transition probability per unit of
time W1;nC1=n is written as:

W1;nC1=n D M I (87)

ii) the mitosis process, whose transition probability per unit of time W2;nC1=n is
given by:

W2;nC1=n D k1n (88)

and iii) the apoptosis due to the competition for space and nutrients, and the action
of regulatory mechanisms, where the transition probabilityW3;n�1=n is assumed as:

W3;n�1=n D k2

˝
n2: (89)

whereM is a rate constant
�
t�1
�

associated with the division of stem cells, k1 is the
mitosis rate constant

�
t�1
�

, and k2 is the apoptosis rate constant
�
t�1
�
.

The master equation [23] that describes the temporal behavior of the probability
P .nI t/ of having cells n at time t is written from the transition probabilities per
unit of time established a priori:

@P .nI t/
@t

D �
E�1 � 1

�
MP .nI t/

C �
E�1 � 1

�
k1nP .nI t/

C �
EC1 � 1� k2

˝
n2P .nI t/

P .1I 0/ D 1: (90)
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Fig. 7 Normal tissue and
cervix carcinoma in situ

Fig. 8 Histopatological
imagen of cervix carcinoma

If ˝ is selected sufficiently large in such way that n can be considered as a
continuous variable, then the step operator Ea can be expressed as [24]:

Ea D 1C a
@

@n
C a2

@2

@n2
C : : : :; (91)

and substituting (91) in (90), the following Fokker-Planck equation is obtained:

@P .nI t/
@t

D � @

@n


�
M C k1n � k2

˝
n2
	
P .nI t/

�

C1

2

@2

@n2


�
M C k1nC k2

˝
n2
	
P .nI t/

�
: (92)

The observed macroscopic variable is defined as the percentage x of ˝ which is
occupied by the cells:

x � 
n

˝� ; (93)

where ˝ D ˝


and  is a constant which is related to the size of individual cell;
taking into account the following relation between the probability P .nI t/ and the
probability˘ .xI t/ associated with the macroscopic variable [23]:

P .nI t/ @n D ˘ .xI t/ @x; (94)
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a change of variable was carried out on the Fokker-Planck equation (92), in such
way that:

@˘ .xI t/
@t

D � @

@x

��
M C k1x � k2x

2
�
˘ .xI t/�

C1

2

1

˝�
@2

@x2

��
M C k1x C k2x

2
�
˘ .xI t/� : (95)

is obtained.
Equation (95) is non-linear; therefore it is not possible to obtain an exact solution.

Nevertheless, an approximate analytical solution can be obtained when we consider
the dynamic behavior of the system in the vicinity of the stationary state, where
˘ .xI t/ is normal or Gaussian [23, 24]. In this case, the expected value is given by
the differential equation:

d hxi
dt

D M C k1 hxi � k2 hxi2

hxitD0 D x0; (96)

and the variance 
 associated with the internal fluctuations is expressed as:

d


dt
D 2 .k1 � 2k2 hxi/ 
 C 1

˝�
�
M C k1 hxi C k2 hxi2

�


 .0/ D 
0: (97)

Defining the non-dimensional time � and non-dimensional parameters ˛ and ˇ:

� D tM (98)

˛ D k1

M
; (99)

ˇ D k2

M
; (100)

the differential equations (96) and (97) are written as:

d hxi
d�

D 1C ˛ hxi � ˇ hxi2

hxitD0 D x0; (101)
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d


d�
D 2 .˛ � 2ˇ hxi/ 
 C 1

˝�
�
1C ˛ hxi C ˇ hxi2

�


 .0/ D 
0; (102)

where:

˘ .xI �/ D 1

.2�
/0:5
exp

 
� .x � hxi/2

2


!
(103)

Equations (101)–(103) describe the mesoscopic temporal behavior of the system
in the vicinity of the stationary state [23].

As the temporal averages are constant in the stationary state, we can assume
that the stochastic process is ergodic [23, 24], in such way that temporal averages
are equivalent to spatial averages. If the probability ˘s .x/ D lim�!1˘ .xI �/ is
visualized by an ensemble then the expected value h˘s .x/i is proportional to the
cell density inside ˝�, so [57]:

� D h˘s .x/i

D
Z
.˘s .x//˘s .x/ dx

D 1

.2� exp .1/ 
/0:5
(104)

If the mathematical definition of box counting fractal dimensionDf is taken into
account [8], then we arrive to:

Df � lim
x!1

 
lim
˝!x

d ln �

d ln 1
x

!

� lim
x!1

�
lim
˝�!x

d ln .2� exp .1/ 
/

d lnx

	
(105)

where it was considered that the minimum box size is x D 1 corresponding to one
individual cell and the system is visualized in a mesoscopic scale, where ˝� ! x

[57].
In order to express Df as a function of the parameters ˛ and ˇ, it is necessary

to write 
 as a function of x. For this, the following differential equation is obtained
from (101) and (102):

d


dx
D 2 .˛ � 2:0ˇx/ 
 C 1

˝�

�
1C ˛x C ˇx2

�

1C ˛x � ˇx2


 .0/ D 0; (106)
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where the series solution of (106) is:


 .x/ �
�
1

˝�

	
x C ˛

˝�x
2 C

�
�0:000 01

˝�
�
˛2 C 66666:ˇ

�	
x3

C
�

�: 333 33 ˇ
˝�˛

	
x4 CO

�
x5
�

(107)

Substituting (107) in (104) the following approximate relation amongDf , ˛, and
ˇ is obtained:

Df ' 1C 2˛ � 2ˇ

1C ˛ � : 666 67ˇ
(108)

where the pattern cells fractal dimension Df can be calculated with a suitable
software for image processing. Besides Df , another morphological parameter is
necessary to be determined, because there are two unknown quantities, ˛ and ˇ. If
we assume that hxis is associated with the percentage of black pixels � of the binary
histopathological images of the tumor tissue, where the nucleus cells are black, then:

� � hxis

� 1

2

0
@˛
ˇ

C
s�

˛

ˇ

	2
C 4:0

ˇ

1
A (109)

Therefore, the dynamic parameters ˛ and ˇ can be estimated from the morpho-
logical parameters � and Df , according to:

˛ D : 666 67D � 2C �2 � �2D

.�D C 2 � 2� � : 666 67D/� (110)

ˇ D �D � �C 2 �D
.: 666 67D � �D � 2C 2�/�

(111)

The histopathological image of a cervix carcinoma tissue and both, its corre-
sponding black and white binary image and the cell pattern are shown in Fig. 9.

In this context, the tumor aggressiveness is related to the tumor growth rate V ,
which depends on the values of ˛ and ˇ. In order to obtain an expression to quantify
the aggressiveness, the temporal behavior of x is obtained from the analytical exact
solution of the differential equation (101) for x .0/ D 1:

x .�/ D 1

2

 
˛

ˇ
C
p
.˛2 C 4ˇ/

ˇ

�
tanh

�
1

2
�
p
.˛2 C 4ˇ/C 	

		!
(112)

where 	 D arctanh 2ˇ�˛q
.˛2C4ˇ/

:
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Fig. 9 Histopathological
image of cervix carcinoma
(a), its binary image (b) and
cell patterns (c)

If the tumor growth rate V is defined as dx.�/

d�
, then V can be obtained from the

temporal derivative of (112) :

V .�/ D �0:25
ˇ

�
˛2 C 4:0ˇ

� �
tanh2

�
	 C 0:5�

p
˛2 C 4:0ˇ

�
� 1:0

�
(113)

As V changes with the time � , the aggressiveness index is related to the value
of V for an arbitrary time � D �. Taking into account that V reaches its maximum
value when x .�/ ' hxis

2
, � is selected from the solution of the equation:

hxis
2

D 1

2

 
˛

ˇ
C
p
.˛2 C 4ˇ/

ˇ

�
tanh

�
1

2
�
p
.˛2 C 4ˇ/C 	

		!
(114)

in such way that:

� D 2p
˛2 C 4ˇ

0
B@arctanh

.˛ � 2ˇ/p
˛2 C 4ˇ

� arctanh
˛ � 1:0ˇ

q
1
ˇ2
.˛2 C 4:0ˇ/

4
p
˛2 C 4:0ˇ

1
CA

(115)

Substituting � D � in (113) we proposed an index � to quantify the cervix
carcinoma aggressiveness:

� D : 125
˛2 C ˛

p
.˛2 C 4:0ˇ/C 6:0ˇ

ˇ
(116)

where � represents the maximum cell proliferation rate in a region ˝ inside the
tumor and, therefore, it must be related to the tissue growth rate.

The proposed formalism was applied to quantify the cervix carcinoma aggres-
siveness in vivo [59, 60]. For this, 35 cases of stage III patients were selected, and



684 E. Izquierdo-Kulich and J.M. Nieto-Villar

considered the patients’ age as the clinical parameter. The histopathological images
of both the tumor tissues and healthy cervix epithelium tissues, which were treated
with hematoxilin-eocin tincion, were taken with a microscope Olympus CX21FS
.�40/ and an 8 mega pixels Canon digital camera. Each image was processed
with the ImageJ 1.40g software by Wayne Rasband, National Institute of Health,
USA (http:rsb.info.nih.gov/ij/). For each case, 9 images were analyzed, where the
maximum relative error associated to both � andDf was 2% and 4.5%, respectively.

The average values of � andDf corresponding to each case were used to estimate
both the experimental value of ˛ and ˇ from (115) and (116). As the only considered
clinical variable was the patient age g and many factor are known to influence
the cancer aggressiveness [60, 61] cases were grouped according to their ages and
g, ˛ and ˇ averages were calculated for each group. Then we applied statistical
methods using the software STATGRAPHICS Plus 5.1 with the objective to study
the correlation among g, ˛ and ˇ. The obtained results are shown on Figs. 10
and 11.

The value of ˛ average taking all cases is 0:9024, slightly greater than the one
corresponding to a healthy epithelium cervix .˛ D 0:888 5/. Nevertheless, the total
average ˇ is 0:035 for tumor tissues, whereas ˇ D 0:2163 for the healthy tissues;
the calculated apoptosis rate was significantly smaller in the tumor tissues. It is well-
known that the expression of the protein p53 is inhibited by papilloma virus gene
E6 and, as p53 plays an important role in the DNA reparation and the induction of
the apoptosis process [61, 62] we must expect that the calculated apoptosis rate of
the tumor cells must be smaller than the one corresponding to healthy cells, as it
was found in this study.

The obtained statistical model for the relation between g and ˛ is:

˛ D 1

.0:781604C 0:00760981g/
(117)

The statistical analysis indicated that there is a significant statistical relation at
the 95% confidence level, with a correlation coefficient of 0:812723, indicating a
moderately strong relationship between ˛ and g. The standard deviation of the
residuals is 0:135176 and the statistical Durbin-Watson indicated that there is not
serial correlation between residues. Therefore, the statistical model was accepted.
According to this result, in this study we found that ˛ decreases with the patient age,
and it is interesting to observe that ˛ corresponding to younger patient .g  45/ is
greater than of a healthy cervix.

For the relation between ˇ and g we found the statistical model:

ˇ D 0:0309435C 0:280417

g
(118)

where the correlation coefficient is 0:20212, indicating a relatively weak relation-
ship between ˇ and g and there is not a significant statistical relations between and

http: rsb.info.nih.gov/ij/
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Fig. 10 Experimental
behaviour between ˛ and
patient age

Fig. 11 Experimental
behaviour between ˇ and
patient age

at the 90% or higher confidence level. Therefore, the statistical model (118) was
rejected, and it is considered:

ˇ D hˇi
D 0:035 (119)

Equations (117) and (118) were substituted in (116) to find the relation between
both proposed aggressiveness index � and the patient’s age g. The obtained
quantitative predictions are showed on Fig. 12.

The obtained behavior predicts the following facts: i) the tumor tissue of cervix
carcinoma has a growth rate at stage III ranging from 2: 2 to 4: 5 bigger than the
corresponding to a healthy tissue. This result is logical if it is considered that the
invasion of the normal tissue only is possible if the tumoral cells growth faster than
the normal cells and ii) cervix carcinoma in older women is less aggressive, which
corresponds with the clinical observation [58]. This fact can be explained as a result



686 E. Izquierdo-Kulich and J.M. Nieto-Villar

Fig. 12 Experimental
behaviour of  with respect
to patient age a

that the tumor mitosis rate decreased with age, according to the quantitative results
obtained from the proposed equations. Therefore, we do not find enough evidence
to reject the proposed model, at least for the cases in vivo considered in this study.
Nevertheless, it is important to point out that this model has limitations, because
only the patient’s age was considered as a clinical factor, and there are many others
such as the immune response, virus type, sociological aspects, clinical stage, etc.,
which can influence the aggressiveness and prognosis [63].

5 Entropy Production Rate for Avascular Tumor Growth

We know from classic thermodynamics that if the constraints of a system are the
temperature T and the pressure P ; the entropy production can be evaluated using
Gibbs’s free energy [64], as:

ıSi D � 1

T
dGTP (120)

If the time derivative of .5:1/ is taken, we have that:

ıSi

dt
D � 1

T

dGTP

dt
(121)

where represents the entropy production rate. The term can be developed by means
of the chain rule as a function of the degree of advance of the reaction as:

dGTP

dt
D
�
@G

@�

	

TP

d�

dt
(122)
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where
�
@G
@�

�
TP

according to De Donder and Van Rysselberghe [65] represents the

affinity A, with opposed sign, and the term d�

dt
is the reaction rate. Taking into

account (121) and (122), we get:

ıSi

dt
D PSi D 1

T
A P� (123)

The affinity can be calculated as [64]:

A D RT ln

 
Kc

˘C
v.k/
k

!
(124)

where Kc D KC=K� is the Guldberg-Waage constant (KC andK� are the forward
and backward rate constants), Ck is the concentration of the component k, whose
stoichiometric coefficient is v .k/, and are rate constants. The reaction rate P� can be
evaluated according to the difference between the forward and backward reaction
rates P�C and P��, as:

P� D P�C � P��

D kC˘C v.k/
k.C/ � k�˘C v.k/

k.�/ (125)

Substituting (125), (124) and (123) is obtained [66]:

PSi D 1

T

� P�C � P��
�

ln
P�C
P�� (126)

If (126) is applied to describe the tumor, taking into account the results presented
in Sect. 3 we obtained [67]:

PSi � R . � �/ ln
 

�

D R . � �/ ln

�
5 � df
1C df

	
(127)

In the expression (127) it was included two properties observed in tumour
growth. The first is its growth rate V D . � �/, which is associated to their
invasive capacity. The second is its complexity, a morphology characteristic, such
as fractal dimension of the tumor interface df , which quantifies the tumor capacity
to invade and infiltrate the healthy tissue.

The entropy production rate was determined by tumor cell lines as a physical
function of cancer robustness and results are shown in Table 2 [67]. PSi
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Table 2 Entropy production
rate for tumor in vitro Cell line d�

f Growth rate V �

�
�m
h

� PSi
h

J:�m
mol:K:h

i

Mv1Lu 1.23 11.50 50.11
AT5 1.23 8.72 38.05
B16 1.13 5.83 30.08
C-33A 1.25 6.40 27.26
Vero C 1.18 5.10 23.77
McA3D 1.09 3.73 19.45
C6 1.21 2.90 13.46
HT-29 1.13 1.93 9.64
CarB 1.20 2.06 9.39
HT-29M6 1.12 1.85 9.31
3T3K-ras 1.32 1.89 7.23
HeLa 1.30 1.34 5.32
3T3 1.20 1.10 4.99
Saos 2 1.34 0.94 3.49
�

Experimental results reported by Brú [39]
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O., Nieto-Villar, J.M.: Predicción de la agresividad del cáncer de cervix a partir de la
morfologı́a del tejido tumoral. Revista Cubana de Fı́sica 26, 246–250 (2009)
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Quantitative Neuroimaging: What You can Say
and What You can Believe About the Brain

M. Desco

1 Quantitative Neuroimaging. Introduction to the Problem

For many years, medical images have been simple pictures examined by a doctor at
the lightbox. With the introduction of modern image modalities (X-Ray Computed
Tomography, Positron Emission Tomography, Magnetic Resonance Imaging), imag-
ing has turned into a measuring instrument able to provide quantitative information
about many aspects of biological systems, including brain function.

Nowadays we can quantify many different properties or features of the
brain. Regarding anatomy, the volume of the different structures can be accu-
rately measured, and its shapes quantitatively characterized. White matter tracts
can be located and depicted, and its degree of structuring can be measured using
magnetic resonance diffusion imaging. Regarding function, there is an impressive
span of techniques to measure features such as electrical activity, blood flow,
number and localization of different neuroreceptors, energy metabolism (glucose
consumption), etc.

Procedures to extract numbers from brain images can be collectively called
quantification or post-processing algorithms. A few years ago, the only way for
many researchers to extract quantitative information from the images was to develop
their own algorithms. At this moment, the situation is completely different because
of the widespread availability of algorithms and software packages intended to
provide such quantitative information in a semiautomatic way (Fig. 1). These
algorithms are usually applied following “pipelines”, which depend on the particular
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Fig. 1 Table representing different software packages (in black) and the algorithms they offer (in
red), together with smaller complementary processing tools (in blue). This is just a survey of the
more common ones; it is possible to download from Internet hundreds of other algorithms and
packages

type of analysis the user wishes to conduct. Most of these pipelines are fairly
complex and involve many steps performing advanced mathematical methods for
image geometrical warping, kinetic modeling, automatic identification of structures
(segmentation), shape and volume quantification, etc. As an example, Fig. 2 shows
one possible pipeline for structural (morphological) assessment of brain magnetic
resonance images. It is not uncommon to make use of components from different
software packages to implement a given workflow, in such a way that the user has
to develop some pieces of software to implement the connectors.

There is a significant overlap between software packages, since several of them
are intended to achieve similar goals and contain equivalent algorithms. However,
one puzzling fact is that they do not necessarily reach identical outcomes, since
their approachesarediverse. Subtle differences between algorithms and assumptions
realized with each approach may lead to noticeable differences in the results.
Unfortunately, it is not easy to discern which packages are more accurate or reliable,
since the ground truth remains unknown. There are reports about alteration of
the results derived from using different versions of the software or even different
operating systems (Windows, Linux) [1]. In practice, it is mostly matter of taste
to choose one or another package, and there are “schools” of followers of the
different approaches. Sometimes, researchers make use of new in-house developed
approaches, which they consider more advanced from a technical standpoint. Being
this a positive fact that promote new advances in the field, it also has a negative
side, as it contributes to the publication of inconsistent results that cannot be easily
compared with previous ones.
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Fig. 2 Example of pipeline to process structural magnetic resonance images of the brain.
It includes many sophisticated mathematical methods to correct image artifacts, to identify
tissues and structures (segmentation, parcellation), to render 3D images, to quantify geometrical
differences between different brains (voxel, deformation- and tensor-based morphometry), or to
force a spatial matching of images from different subjects (normalization)

To sum up, any researcher interested in the brain who has relevant questions
from a medical or biological point of view has to face the fact that there is a
large (although still manageable) number of available imaging techniques, together
with a huge (unmanageable) number of packages, algorithms and post-processing
techniques, all of them apparently able to perform the different tasks involved in
quantification processes. Even worse, the final results achieved with each of these
competing approaches are frequently inconsistent.

To further support this standpoint, we could mention the work titled “Puzzlingly
high correlations in fMRI studies of emotion, personality, and social cognition” [2],
where the authors state that “[. . . ] we are led to conclude that a disturbingly large,
and quite prominent segment of social neuroscience research is using seriously
defective research methods [. . . ] producing a profusion of numbers that should not
be believed”.

Of course, it is not my purpose to transmit the idea that this exciting research
field is so seriously defective that it should be rejected as a whole. But it is evident
that something is going wrong, and it is of the utmost importance to identify the
problems in order to enable further scientific progress by producing reliable and
replicable results instead of creating confusion.
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2 An Example: The Assessment of Mental Processes
Through fMRI Studies

The non-invasive study of regional brain activity is an extraordinarily interesting
tool to assess brain function under different cognitive or pathological situations.
Electrical (EEG-based) approaches show some advantages, such as its excellent
temporal resolution, but its potential is severely limited by significant shortcomings,
mainly derived from its low spatial resolution (unless invasive direct cortical
recordings are obtained). Brain activity has also been assessed by means of nuclear
imaging techniques, particularly positron emission tomography (PET) which offers
a relatively good spatial resolution. The most common approach is to study the
uptake of 18F-Fluoro-desoxy-glucose (FDG), a radioactive labeled analogue of
glucose whose distribution reveals the map of brain energy consumption. This
compound is widely available because of its use in clinical oncology, but its
long uptake period (about half an hour) prevents performing fast experiments and
severely restricts its application to assess brain function. Another approach is the use
of 15O-water as a radioactive tracer. Its distribution reflects regional cerebral blood
flow, and its short radioactive half-life (about 2 s) allows for much faster studies
than 18F-based radiotracers (half-life of about 110 min). Nevertheless, the short life
of 15O heavily hampers its practical application, as it can only be used in the very
few places where a cyclotron is available near a PET camera, at an immoderate cost.
Finally, another drawback of all nuclear imaging techniques is the use of ionizing
radiation, potentially harmful for the subject, which prevents replication of studies
and limits its use on healthy volunteers.

In the early 1990s a new contrast mechanism was introduced in MRI: the
so-called “BOLD” (blood-oxygen-level-dependent) contrast opened a new sub-
modality within MRI, known as fMRI (functional MRI). This variety of MRI
allows assessing cerebral regional blood flow with relatively good spatial resolution
(millimeters) and acceptable temporal resolution (few seconds). These features,
together with the absence of ionizing radiation, make this technique very suitable
for experimental research on brain function, and its use in Neuroscience has grown
exponentially. Presently, almost any state-of-the-art clinical MRI scanner can be
used to obtain fMRI studies.

The process that links BOLD contrast to brain activity is relatively indirect:
through a mechanism called “neurovascular coupling”, brain activity induces an
increase in regional blood flow, in order to boost the energy supply to the activated
area. This increase in blood flow usually exceeds the actual requirements, in such
a way that the blood oxygenation level raises and consequently the proportion of
oxy-hemoglobin versus deoxy-hemoglobin increases too. This difference can be
sensed with MRI because of the different magnetic properties between both forms
of hemoglobin (deoxy-hemoglobin is paramagnetic, oxy-hemoglobin is not).A good
review of the topic of fMRI and its limitations can be found in [3].

Interestingly, the changes in image intensity derived from the BOLD effect are
tiny and impossible to notice with the naked eye (Fig. 3). This makes it necessary
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Fig. 3 fMRI images of a
brain slice in activated (left)
and rest (right) states. Notice
how the difference is
negligible with the naked eye

Fig. 4 Statistical Parametric Map resulting from an fMRI experiment. Areas in red color
represent activation areas in a group of mathematically-gifted children when performing certain
cognitive task (as compared to a control task). Areas in green depict activation under the same
circumstances in an aged-matched control group. Color intensity represents the p-level of the
statistical comparison, overimposed on an average high-quality structural image. (Data taken
from [4])

to apply statistical techniques to detect the differences. The procedure consists in
repeating a number of times a so-called “paradigm”, in which the subject alternates
(at least) two states, usually called “activation” and “rest”. Statistical tests on
the subtraction image (activation minus rest) allow the researcher to detect small
differences which are solely due to the “activation” state. These “real” differences
consistently add up in a coherent way while noise only grows with the square
root of the number of repetitions, thus leading to an increased the signal-to-noise
ratio. Statistically significant differences are usually over imposed on a good-
quality anatomical image following a process called “statistical parametric mapping
(SPM)” (Figs. 4 and 5).

Sometimes, paradigms are more sophisticated than just comparing two states,
and require a more complex statistical assessment, based on Analysis of Variance
(ANOVA). It is interesting to note that the assumption of additivity of the effects
which underlies the whole analysis is more likely to be violated when dealing with
complex designs.The entire workflow is fairly complex, and includes numerous
adjustable parameters in the different processing steps (Fig. 5).

Many fMRI studies lead to very consistent results, particularly when mapping
relatively low-level sensorial or motor functions, analyzed through straightforward
paradigms. However, things become harder when dealing with more complex
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Fig. 5 Workflow of fMRI image processing with the SPM free software package ([http://www.fil.
ion.ucl.ac.uk/spm/]). Each step (represented in squares) has several parameters that may require
tuning for different types of experiments

paradigms involving higher mental functions. It is easy to find contradictory results
in the literature, together with studies which suffer from severe methodological
flaws or propose too speculative conclusions which do not derive from the actual
results obtained. To illustrate these problems we can cite two examples, presented
at the Human Brain Mapping Conference in 2005 [5]. The first one intended to study
the perception of “Beauty”, by assessing “Specific Activation of Aesthetic Judgment
of Affective Pictures”. In this study eleven subjects saw 300 photographs from the
International Affective Picture System for 3 s. Each picture was rated as beautiful,
ugly, or neutral. The authors conclude that the main effect of beauty is associated
with one system of neural activations, whereas making an aesthetic judgment is
associated with other neural structures.

Besides the paradigm itself, which is debatable, the main flaw in this study is the
extremely low number of pixels reported as associated to the perception of beauty
(Fig. 6). Most authors would never publish a result like this, especially considering
that the minuscule size of the areas detected makes them very sensitive to any
change in the processing parameters, particularly the degree of smoothing applied.

The second example is a study titled “Virtuous and evil: an fMRI study of
different moral circumstance”. In this case, besides the debatable identification
between “good and bad” words and a moral circumstance, the authors concluded

http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/
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Fig. 6 Orbital activation
purportedly associated with
the main effect of beauty.
Notice the small size of the
reported activations

Fig. 7 One of the results
reported in a study on moral
circumstance with fMRI.
Activation appears at the
cerebellum, according to the
authors

that “It also suggests morality is a behavior internalizing the social rules, but also an
inherent behavior”. In the reported results (Fig. 7) the authors report “activation” in
the cerebellum, derived from being exposed to evil words.

Stretching the situation to the limits, we can witness how some commercial
companies sell fMRI services, for instance for lie detection. Some of them claim
that, for an affordable price, they can elucidate whether you vote democrat or
republican, you are homo- or heterosexual, you are prone to be a criminal, etc. As a
matter of fact, economy moves the world and no opportunity of making money will
be wasted because of “subtle” technical problems or “superfluous” validations.

3 The Roots of the Problem

The reasons for the sometimes dubious reliability of quantitative neuroimaging
results of studies assessing complex mental processes come from two main sources:
Firstly the fact that imaging implies anatomical localization and secondly, the use
of what could be called “accommodating” methodology. In the following sections
we discuss these two sources of unreliability.

3.1 Localization of Brain Functions

Imaging implies, by definition, spatial localization. Regarding low-level brain
functions, the existence of a topographical distribution is well known since a
long time ago, because of the consequences of head traumas. The studies of
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Penfield-Rasmussen in 1930 provided a very detailed and nice description of the
localization of sensory and motor functions,introducing the idea of their famous
“homunculus”.

In this way, a strict localization of these low-level functions of the brain is widely
accepted. However, what about higher-level mental activities? Should we assume
that religion, courage, friendliness, anxiety, etc. are localized in certain regions of
the brain? Probably, most researchers would answer this question negatively.

An example can illustrate this point: Consider a personal computer running
a word processing software and somebody asking which is the “computer area”
responsible for setting the margins of the document. It is not necessary to be an
expert in Computer Science to see that such a question makes no sense, because
many (almost all) the computer components are implied in that task. Similarly, it is
evident that no hardware component has to be necessarily blamed if the program
“hangs”. Nowadays, everybody would identify these issues as software-related,
because there is a clear awareness of the difference between hardware and software.
Actually, software engineering is a discipline completely different from “regular”
engineering. Surprisingly, in the case of the human brain, a much more complex
‘computer’ than a PC, questions similar to these are not uncommon. This may be
because the notion of “cerebral software” simply does not yet exist. The closer
concepts to that idea in neuroscience are those relative to brain circuitry, still very
related to the brain “hardware”. Of course, this upcoming new discipline studying
the “brain operating system” has little to do with what present psychology studies.

Another important question is to what extent we can assume an exact homology
between subjects for functions with a clear spatial localization. The noticeable
intersubject anatomical variations in the cerebral cortex makes it impossible to
accept the existence of a perfect spacial correspondence between different subjects.
Therefore, it is hard to determine the scale, or degree of detail, at which we can
accept the existence of such intersubject homology.

Brain plasticity is another fascinating feature of the brain that contributes to
our difficulties with imaging. Brain plasticity can be defined as the capacity of the
central nervous system to reorganize itself even performing structural changes as a
reaction to environmental feedback. This amazing ability constitutes the basis for
the rehabilitation after brain injuries. It is well known that not all brain functions
can be easily relocated to a different area and that plasticity decreases with age.
There are classical works about the activation of primary visual cortex in blind
subjects when performing a reading task in Braille alphabet [6], or activation of
the auditory cortex in congenitally deaf people when they view signs or sign-like
movements [7]. Thus, even primary sensory areas, whose anatomical localization
was first discovered and is more consistent among subjects, can be recruited for
other tasks, particularly in young people.

Looking back at the history of Medicine and Neuroscience, we can realize
that this fascination for localizing functions in the brain has been recurrent. By
the dawn of the nineteenth century, phrenologists attempted to locate different
mental faculties on the brain (actually, on the skull), obviously on very weak
scientific grounds [8] Again, by the dawn of the twentieth century and thanks to
the discovery of X-rays, there was an attempt to characterize and detect criminals
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by over imposing and averaging skull X-ray films. Nowadays, by the dawn of the
twenty-first century, those nave efforts are ridiculed in the light of modern science,
while at the same time scientists make efforts to locate morality, make a commercial
case of fMRI-based lie detection or use powerful mathematical techniques to
average and superimpose brain images of different subjects. History is condemned
to repeat itself.

3.2 ‘Accommodating’ Methodologies

Postprocessing of neuroimaging studies to draw quantitative results makes use
of a complex methodology, which relies on many experimental and statistical
hypotheses. Researchers have an opportunity to tune the results thanks to the myriad
of parameters involved, whose selection and validation is rarely explained in their
papers as it is not usually required by the journals, even the most prestigious.

As in any statistical design, data are supposed to be collected through an unbiased
random sampling, assumption which seldom holds in practice. The statistical
conclusions reached in these types of analyses are also very demanding in terms
of mathematical assumptions. Most designs require data independence, linearity,
additivity, normality, homoscedasticity, no interaction, no colinearity, absence of
confounded effects, etc. It takes a substantial effort and a long time to verify all these
conditions, whose fulfillment most of the times cannot be assessed with a simple yes
or no, but with an intermediate degree of certainty. This explains why, in practice,
many authors do not spend enough time validating the assumptions involved in the
models used.

Another crucial difficulty involved in statistical neuroimaging studies is how
to choose a proper p-value threshold to accept a result as statistically significant.
The huge number of regions (or even individual pixels) simultaneously tested lead
to the arduous problem of how to correct the significance level for the multiple
comparisons performed. Several statistical strategies are available to address this
issue, but they lead to different results and it is not uncommon that just uncorrected
results are provided, under the argument that exploratory analyses do not require
such a correction. This originates a strong bias towards positive results. In a recent
review of this problem [9] the authors conclude that “After more than 25 years of
research in this field, further progress requires stronger guarantees of reliability for
the ensuing results”. In the meantime, the problem of choosing a sensible p-value
threshold for neuroimaging studies remains largely unsolved.

There is a remarkable paper on Biostatistics titled “Data Torturing” [10] which
explains how subtle statistical manipulations can be used to obtain the desired
results. From that paper, “If you torture your data long enough, they will tell
you whatever you want to hear” and “like other forms of torture, it leaves no
incriminating marks when done skillfully”. Neuroimaging designs are very prone to
this type of manipulation because they usually comprise many variables, strongly
associated, together with few cases (subjects).This leads to instability of the
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Fig. 8 SPM representation of the result of a PET experiment comparing two groups of patients
(data not published). In red, significant areas detected when applying a smoothing of 12 mm, in
green the smoothing was 4 mm

mathematical methods in such a way that small variations of some parameters may
drastically change the outcome.

Besides these problems, which are common to many complex biostatisti-
cal designs, modern neuroimaging processing algorithms have numerous tun-
able parameters whose values need adjustment. By tuning these parameters the
researcher has many opportunities for “steering” the analysis towards preconceived
ideas or, at least, to force obtaining “statistically significant” results. As an example,
Fig. 8 shows a quantitative analysis of a PET neuroimaging study comparing two
groups of patients with schizophrenia. In this case we could report the areas in
red or green (or any intermediate result), depending on the degree of smoothing
selected by the operator (4–12 mm). It is remarkable that many published studies
use different smoothing values within this range with no further explanation.Notice
the huge difference in number and size of “detected” areas, depending on the actual
decision made by the operator.

There are many examples in the scientific literature which may further illustrate
this problem. A relatively classic work [11] performed a meta-analysis of 15 studies
assessing volume deficits in brain structures in patients with schizophrenia. All
the studies made use of the same technical approach (voxel-based morphometry,
VBM). Only two out of 50 areas reported consistently appeared in more than 50%
of the studies, while 9 of the regions appeared in only one study. This diversity of
results was mainly attributed to different choices of parameters during the automated
process. In more recent reviews on this topic, things do not seem to have improved
significantly. In [12] the authors concludes that “There is limited high quality
evidence supporting grey or white matter changes in schizophrenia, which has
previously been obscured by a large volume of conflicting lower quality evidence”.

In summary, the exceedingly sophisticated algorithms and procedures required to
process quantitative neuroimaging studies are plenty of tunable parameters whose
values may drastically change the outcome of the study. Setting aside the possibility
of interested manipulations, it is clear that comprehensive explanations should be
required by the journal reviewers before publishing this type of studies, at least
in order to allow for a confirmatory replication of the results by other groups.
Regrettably, this is not yet the case.
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4 Conclusions

We should revisit the title of this work “Quantitative neuroimaging: What you
can say and what you can believe about the brain” before attempting to reach
some conclusions. It is clear that we can say many things about the brain and its
functioning using neuroimaging. Powerful techniques and quantification algorithms
allow us to measure with amazing precision many aspects of brain physiology and
to characterize many psychological or cognitive processes. However, a high level
of caution is necessary when interpreting the results. Many authors do not report
on the assumptions they have used, on the exact set of parameters used, or on the
depth of the validations they have performed on their data. These omissions may
explain the extreme variability of results we can find in the scientific literature, and
the difficulty to replicate studies. The inspired title of the work “If neuroimaging
is the answer, what is the question?” [13] gives us a clue on how to proceed. If
research is conducted on the grounds of sounding biological hypotheses, which are
validated or rejected with neuroimaging techniques, then Neuroscience will benefit
from these new powerful techniques. If its power is used to set up “data fishing”
expeditions or to support preconceived ideas, then it will be progressively more
difficult to distinguish real scientific advances from noise, only useful to increase
the curriculum of the authors. This conclusion is in line with the editorial opinion
of many prestigious journals [14].
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Part VII
Scientific Contributions: Geophysical

Flows and Other Geo-problems



Strong Flows of Bottom Water in Abyssal
Channels of the Atlantic

E.G. Morozov

1 Introduction

Due to the cold temperatures in Antarctica cold water mass is formed over the
Antarctic slope as a result of mixing of the cold and dense Antarctic Shelf Water
with the lighter, warmer, and more saline Circumpolar Deep Water [1]. Antarctic
Shelf Water is formed over the Antarctic shelf in the autumn-winter season due
to the cooling of relatively fresh Antarctic Surface Water and increased salinity
caused by the ice formation. The salinity of the mixed water is relatively high and its
temperature is low; thus, the resulting water mass with increased density descends
and reaches the ocean floor. The water resulting from this process is called Antarctic
Bottom Water. Formation of Antarctic Bottom Water is confined to a few regions
along the perimeter of the Antarctic slope. In the Atlantic Ocean, the regions of
dominating Antarctic Bottom Water formation are in the southern and western parts
of the Weddell Sea.

Antarctic Bottom Water occupies a bottom layer approximately 1,000 m thick.
The thickness decreases in the northern direction. Munk and Wunsch [2] estimated
that without mixing, Antarctic Bottom Water would fill the entire ocean within a
few thousand years and turn it into a stagnant pool of cold water. Only a thin upper
layer of warm water (approximately 100 m thick) would remain at the surface due
to wind mixing. Internal tide is the main source of ocean mixing, especially at hot
spots over slopes of bottom topography.

In this paper we analyze the propagation of Antarctic Bottom water in the
Atlantic Ocean. Antarctic Bottom Water (AABW) is the coldest and deepest layer
of the South Atlantic. According to the definition, AABW is the water with potential
temperature cooler than 2ıC [3]. During the World Ocean Circulation Experiment
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Fig. 1 Scheme of antarctic bottom flow in the Atlantic Ocean

(WOCE) one of the WOCE core projects was focused on the role of deep passages
that make possible the far northward propagation of AABW. The pathways of
AABW in the Atlantic Ocean are shown in Fig. 1. Everywhere, AABW occupies
the bottom position in the oceanic stratification.

2 Vema Channel

The Rio Grande Rise is the boundary between the Argentine Basin in the south and
the Brazil Basin in the north. It is a high topographic obstacle for bottom water
propagation to the north. There are two meridional gaps in the Rio Grande Rise
at 39ıW and 28ıW (Vema and Hunter channels, respectively). The depth in the
Vema Channel exceeds 4,600 m, while the background depths are approximately
4,200 m. The Hunter Channel is much shallower and the greatest depth does not
exceed 4,000 m.

Numerous observations in the Vema and Hunter channels indicate that the role
of the Vema Channel for the transport of Antarctic Bottom Water is dominating
compared with the Hunter Channel in the east and the Santos Plateau in the
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Fig. 2 Bottom topography of the Vema Channel

west. Approximately 7 Sverdrups of the total flow of Antarctic Bottom Water is
transported across the Rio Grande Rise and Santos Plateau (1 Sv is 106 m3=s).
On the average, two thirds of this volume passes through the Vema Channel. The
remaining part of bottom water flows over the Santos Plateau and through the Hunter
Channel.

The bottom topography around the Vema Channel is shown in Fig. 2. The Vema
Channel is the deepest passage for Antarctic Bottom Water. Therefore, the coldest
part of this water (Weddell Sea Deep Water) can flow from the Argentine Basin
in the equatorward direction only through this channel. The shallowest spot in the
Vema Channel is the Vema Sill. The depth of this sill is approximately 4,614 m and
the width of the channel in the narrowest point is 18 km.

According to the moored measurements at anchored buoy stations, the mean
transport of Antarctic Bottom Water (layer below 2ıC isotherm) through the Vema
Channel is estimated at 3.5 Sv. The greatest velocities reach 60 cm s�1. However,
the instantaneous transport measured by LADCP instruments (five profiles) appears
lower and fluctuates between 2.5 and 3.5 Sv. Usually, the jet core is vertically mixed
in a layer approximately 150 m thick. Owing to the Ekman friction the coldest core
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of the flow in the Vema Channel is usually displaced to the eastern slope of the
channel.

The most intense studies in the Vema Channel were carried out along the
so-called “standard” section across the channel at a latitude of 31ı12’ S. There
were 22 expeditions to this location. The current measurements in this channel
and in particular a section in 2009 using lowered acoustic Doppler current profiler
(LADCP) demonstrated the existence of a counter-current of Antarctic Bottom
Water above 4,200 m directed to the south. A conclusion that not all bottom water
that flows in the Vema Channel discharges into the Brazil Basin was made even
earlier based on hydrographic CTD measurements [4].

In 2010, a Russian expedition carried out the measurements of the currents
in the region where Antarctic Bottom Water flows from the Vema Channel to
the Brazil Basin at a latitude of 26ı40’ S. Let us compare the sections at the
standard section (31ı12’ S) and in the northern part of the channel. The sections
are presented in Fig. 3. The black line shows the location of the zero isotherm of
potential temperature. In the extreme northern part, the channel becomes deeper and
narrower. In the northern part, the isotherms of the temperature greater than 2ıC do
not reach the slopes of the channel as in the south. This means that the flow with a
temperature of � D 2ıC and even with a temperature of � D 0:2ıC becomes wider.
Using the available data we can compare only the water flows with temperatures
less than � < 0ıC. The mean velocities of the flow with such temperatures at the
standard section are 23 cm/s, while at the northern section they decrease to 11 cm/s.
Antarctic Bottom Water with higher temperatures flows above the western slope of
the channel with velocities exceeding 20 cm/s, but we could not extend the section
to the west in this expedition for a more precise calculation of the transport.

The square of the standard section for the water below 0ıC is 6 � 106 m2, while in
the north the similar square (below 0ıC) is almost four times smaller (1:4 � 106 m2).
A large amount of the coldest water does not reach the northern section remaining
beyond the topographic obstacles and mixes with the overlying waters. The transport
of water with temperatures less than 0ıC across the standard section is 1.4 Sv, while
the transport across the northern section is 0.16 Sv, which is almost 10 times smaller.

We studied the time variation of the bottom flow in the Vema Channel. During
the period from 1979 to 2003, a temperature increase was observed in the coldest jet
in the Vema Channel. The temperature increased from –0.18ıC to –0.12ıC. In the
end of 2004, this warming stopped and temperature fluctuations with an amplitude
of 0.02ıC were observed. Thus, we observed a general warming trend of Weddell
Sea Deep Water with slight fluctuations over a period greater than 30 years.

We studied the variability of the flow along the Vema Channel over a distance of
700 km. The temperature in the jet increases, while the flow propagates from south
to north in the Vema Channel due to mixing with the overlying North Atlantic Deep
Water.



Strong Flows of Bottom Water in Abyssal Channels of the Atlantic 711

Fig. 3 Distributions of velocities normal to the sections. Positive values indicate flow to the north.
The currents across the standard section are shown on the left (31ı12’ S). The currents in the
northern part of the channel are shown on the right (26ı40’ S). The heavy line shows isotherm 0ıC

3 Romanche and Chain Fracture Zones

The bottom topography of the Atlantic Ocean allows propagation of Antarctic
Bottom Water to the northern latitudes of the East Atlantic only through the
Romanche and Chain fracture zones (at the equator) and the Vema Fracture Zone
(11ı N) [5, 6]. Other small and shallower passages are less significant.

The Romanche Fracture Zone is a deep passage in the Mid-Atlantic Ridge
800 km long and 10–40 km wide (Fig. 4). Together with the Chain Fracture Zone
they form an equatorial pathway for Antarctic Bottom Water to the East Atlantic.
The main sill across the Romanche Fracture Zone is located at a depth of 4,359 m
(13ı40’ W). The Vema Deep (7,856 m) is the deepest place in the Romanche
Fracture Zone. The Chain Fracture Zone is located south of the equator, 200 km
south of the Romanche Fracture Zone. The main sill of the Chain Fracture Zone is
located at a depth of 4,050 m (12ı22’ W). Both fracture zones are the channels for
the water flow between the Brazil and Guinea basins

The Antarctic Bottom Water (� < 2ıC) flow through the Romanche and Chain
fracture zones based on moored velocity measurements is estimated at 0.5 Sv in
each channel [7]. The mean velocities are 10–20 cm s�1. Velocities measured by
current meters on moorings in 1991–1992 and using LADCP measurements in 2009
are very close. The bottom water passing through the Romanche and Chain fracture
zones spreads only to the southeastern and equatorial parts of the Atlantic. Its further
propagation to the north is almost limited by the Kane Gap.
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Fig. 4 Bottom topography of the Romanche and Chain fracture zones

4 Vema Fracture Zone

During the German expedition in 1927–1929 on R/V Meteor, Wüst [3] found cold
abyssal waters with potential temperature � D 1:74ıC at the bottom of the Gambia
Abyssal Plain. He suggested that these waters were of the Antarctic origin. He
attributed their existence to the penetration through the Romanche Fracture Zone
(known already by that time) and a fracture in the Mid-Atlantic Ridge presumptively
located near 7–13ı N. Only in 1956, deep sounding from R/V Vema revealed a
deep fracture near 11ıN, which was later called the Vema Fracture Zone. The
fracture occurs between 43.5ı and 41ı W and connects the Demerara and Gambia
abyssal plains. The width of the fracture zone is 8–10 km and the maximum depth
is approximately 5,200 m. Three sills of the fracture zone have depths 4,690, 4,650,
and 4,710 m.

In 2006, an expedition with CTD and LADCP measurements onboard R/V
Akademik Ioffe visited the region of the main sills. The Antarctic Bottom Water
(� < 2ıC) flow through the Vema Fracture Zone (11ı N) based on the measurements
with a lowered velocity profiler was estimated at 0.5 Sv. The mean velocity is
10 cm s�1, while the greatest velocity reaches 30 cm s�1. Numerous observations
in the North Atlantic indicate that the Vema Fracture Zone is the main pathway for
Antarctic Bottom Water to the Northeast Atlantic.

5 Further Propagation of Antarctic Bottom Water to the
Northeast Atlantic

In this section, we analyze the inflow of bottom waters to the Northeast Atlantic
from the Vema, Romanche, and Chain fracture zones and their further propagation
in the basin. The present-day concept was for the first time suggested in [8]. They
wrote that the bottom waters propagating through the Romanche Fracture Zone
spreads only in the equatorial and southeastern part of the Atlantic Ocean and do
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Fig. 5 Scheme of Antarctic
waters spreading in the
bottom layer of the Atlantic.
Distribution of potential
temperature (ıC) at the
bottom in the eastern part of
the North Atlantic based on
the WODB-2005 data. Only
the stations deeper than
4,000 km were used. Gray
shade shows the location of
isobaths above 4 km

not propagate to the north through the Kane Gap, whereas the Vema Fracture Zone
is the main pathway for bottom waters into the northeastern Atlantic.

On the basis of a large amount of measurements before 1991, a scheme of
Antarctic Bottom Water (with potential temperature � <2ıC) spreading in the
Northeast was suggested in [5]. According to this scheme, Antarctic Bottom Water
that propagated to the Gambia Abyssal Plain in the East Atlantic through the Vema
Fracture Zone splits into two branches. One branch transports bottom waters to the
northeast and the other to the southeast. We suggest an improved scheme of the
distribution of potential temperature at the bottom based on recent measurements,
which appeared after 1991, with inclusion of all available historical data based of
CTD-measurements during the WOCE experiment (Fig. 5).

One branch of the bottom water flow from the Vema Fracture Zone in the Gambia
Abyssal Plane is directed to the north and northeast and the waters of the Antarctic
origin fill the deepest parts of the Northeast Atlantic basins including the Canary
Basin. The flow reaches the Discovery Gap at 37ıN. This topographic feature is
the boundary for the further northward transport of bottom water with potential
temperatures below 2ıC.

The second branch is directed from the Vema Fracture Zone to the southeast; the
slopes of the Mid-Atlantic Ridge and Sierra Leone Rise are constraints for this flow
from the south. This branch reaches the Kane Gap near the coast of Guinea.

According to the CTD casts made in the last 20 years, the waters with potential
temperature less than � D 1:85ıC from the Romanche and Vema fracture zones
merge in the region around the Kane Gap. Waters with � D 1:80ıC are located
north and south of the Kane Gap. Since the waters with temperatures � D 2:00ıC
and cooler are not separated over the Kane Gap the exchange of Antarctic Bottom
Water through this passage is possible.
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Antarctic Bottom Water transports through the Romanche and Chain fracture
zones are of the order of 1 Sv, which is almost the same as the water transport
through the Vema Fracture Zone. We believe that it may be explained by stronger
mixing in the Romanche and Chain Fracture Zones compared to the Vema Fracture
Zone. This can be seen from enhanced transformation of bottom water properties
in the equatorial channels. In particular before the entrance to the Romanche and
Vema fracture zones, the minimum values of potential temperature at the bottom
are 0.68ıC and 1.33ıC, respectively [5]. The difference between the smallest values
of potential temperature in these fracture zones becomes insignificant after they
outflow to the East Atlantic from the fracture zones: � D 1:66ı (in Romanche) and
� D 1:69ı (in Vema) [9].

Despite the fact that the bottom waters of the Antarctic origin propagated from
the Brazil Basin they conserve all distinguishing indicators of Antarctic Bottom
Water: low salinity, low concentration of dissolved oxygen, and high concentration
of nutrients [10]. However, some authors use other names for Antarctic Bottom
Water in the Northeast Atlantic.

Let us give a physical explanation why strong mixing occurs in the equatorial
channel, which results in the isolation of different basins east of the Mid-Atlantic
Ridge. This fact is explained by different intensities of mixing of Antarctic waters
with the overlying North Atlantic Deep Water due to internal tides generated over
the slopes of the Mid-Atlantic Ridge.

Morozov [11] calculated the amplitudes of internal tidal waves in the World
Ocean based on the integrated results of measurements and model calculations.
According to these estimates, the amplitude of internal tidal waves reaches almost
50 m in the Romanche Fracture Zone region at the equator and only slightly exceeds
20 m in the Vema Fracture Zone region at 11ıN.

Figure 6 shows a chart of amplitudes of internal tides in the Atlantic Ocean. Due
to such strong difference in the amplitudes of waves in these regions, mixing of
deep water masses will differ strongly. The main mixing occurs over the slopes of
the submarine ridge, where amplitudes of internal waves are the greatest. Internal
tides are intensely generated in the regions of strong barotropic tides if the currents
are normal to the ridge. Generation is intensified if the inclination of the bottom
coincides with the inclinations of characteristic curves of internal tides, which
depend on stratification [11]. The conditions that favor strong generation of internal
tides are much better in the region of equatorial channels than in the Vema Fracture
Zone.

We summarize that mixing in the equatorial region of the East Atlantic is greater
than in the region of the Vema Fracture Zone. This strong mixing is caused by a
strong barotropic tide in the equatorial region of the East Atlantic compared to the
region of the Mid-Atlantic Ridge near the Vema Fracture Zone.

Strong mixing in the equatorial channels explains the difference in the contri-
bution of the equatorial channels and Vema Fracture Zone to the bottom water
mass composition in the Northeast Atlantic. Without strong mixing in the equatorial
region, the influence of the Romanche and Vema fracture zones on the North-
east Atlantic seems to be equal. Antarctic Bottom Water transports through the
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Fig. 6 Contour lines of
amplitudes of internal tide in
meters [11]. Thick lines show
submarine ridges. Numerals
in circles denote actual
measurements of amplitudes
of internal tide. The internal
tide amplitude exceeds 50 m
in the Romanche Fracture
Zone region and only slightly
exceeds 20 m in the Vema
Fracture Zone region

Romanche and Chain fracture zones are of the order of 1 Sv, which is almost
the same as the water transport through the Vema Fracture Zone. The difference
between the smallest values of potential temperature of bottom water is insignificant
after the water outflows to the East Atlantic: � D 1:66ı (in the Romanche FZ) and
� D 1:69ı (in the Vema FZ). The depths of the main sills in the channels do not
differ greatly: 4,359 m (Romanche FZ) and 4,571 m (Vema FZ).

Despite the fact that depths of the Kane Gap allow propagation of Antarctic
Bottom Water and only 1.8ıC isotherm is separated over the passage, the transport
of bottom water through this channel is not strong.

Strong mixing with overlying waters results in strong transformation of prop-
erties of Antarctic Bottom Water after its outflow from the equatorial channels. In
addition, the region of strong mixing includes also the Kane Gap, which makes
this passage almost impossible for the strong northerly flow of bottom waters.
Strong mixing closes this pathway for the flow of bottom water transported through
the equatorial fracture zones. On the other hand, mixing conditions in the Vema
Fracture Zone region are not as strong as in the equatorial East Atlantic and bottom
water inflows are less transformed through the Vema Fracture Zone filling the entire
Northeast Atlantic abyssal depths.

Different intensity of mixing results in different stratification at the outflow
from the channels. Brunt-Väisälä frequency east of the Romanche Fracture Zone
is N D 0:14:10�3s�1, while east of the Vema Fracture Zone it is equal to N D
0:80:10�3s�1.
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6 Kane Gap

The Kane Gap is located between the Grimaldi Mountains, which are a part of
the Sierra Leone Rise and the Guinea Plateau near the African Continent. The gap
connects Gambia Abyssal Plain and Sierra Leone Basin. The sill depth in the gap is
4,502 m [12]. This depth was confirmed by the echo sounder measurements in our
expeditions.

According to the scheme of Antarctic Bottom Water spreading in the Northeast
Atlantic, the Kane Gap occupies the middle position between the Antarctic Bottom
Water that propagated to the East Atlantic through the Vema Fracture Zone and the
Antarctic Bottom Water that propagated through the Romanche and Chain fracture
zones. Waters with potential temperature less than � D 1:80ıC are separated near
the Kane Gap. The lowest temperatures measured over the sill in the Kane Gap were
made in October 2009 at the western slope of the gap (1.846ıC). South and north of
the Kane Gap potential temperatures at the bottom are cooler.

In May 2009, the currents measured with LADCP were directed to the south at
all depths below 2,500 m. Thus, the bottom transport was directed from the Gambia
Abyssal Plain to the Sierra Leone Basin. In October 2009, measurements with an
LADCP profiler demonstrated that the flow was directed to the northwest. Thus,
the flow was opposite to the one recorded in May 2009. This result agrees with the
idea discussed in [13] based on the photographs of the bottom, from which they
concluded that the bottom flow in the Kane Gap is directed to the north.

The temperature stratification of the flow is similar to the flow in the Vema
Channel. The coolest and densest water of the flow is displaced to the western wall
of the gap due to the Ekman friction.

The total transport below 1.9ıC potential temperature isotherm based on LADCP
measurements fluctuates between zero and 0.2 Sv based on our measurements in
different years (2009–2011). Thus, the bottom water from the Vema Fracture Zone
influences at least the northern part of the Sierra Leone Basin, while the bottom
water from the Romanche Fracture Zone can spread to the north through the Kane
Gap and influence the adjacent southern region of Cape Verde Basin. However, the
bottom water transport is not very strong and can be influenced by tides.

7 Discovery Gap

The northward propagation of bottom waters from the Canary Basin to the
northeastern Atlantic occurs through the Discovery Gap. This passage is considered
the terminal point of AABW spreading to the north in the sense that this is the water
with a potential temperature less than 2ıC, This is a narrow passage in the East
Azores Fracture Zone at 37ıN between the Madeira and Iberian abyssal basins.
Our knowledge of the flow through this passage is based on the research described
in [14] who named the passage “Discovery Gap”. The passage is 150 km long. Its
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narrowest place is located at 37ı20’N, 15ı40’W. The width of the narrowest gap is
10 km and the depth of the sill is 4,800 m. The flow was measured from six moorings
and supplemented by tracking floats at a depth of 4,700 m. The measured mean
velocities were 5 cm s�1. The flux of bottom water colder than potential temperature
� D 2:05ıC was estimated at 0.2 Sv. Numerous CTD measurements around the
Discovery Gap indicate that water with potential temperature below 2ıC does not
propagate through this passage.

During the last 29 years since the previous measurements in 1982 the temperature
at the bottom of the Discovery Gap increased by 0.02ıC from 2.025ıC in 1982 to
2.002ıC in 2011. Unlike the current measurements in 1982, the measurements in
2011 did not demonstrate clearly manifested northerly flow of the bottom water.
A fluctuating flow was observed in 2011. One core displaced to the eastern slope
was directed to the northeast with velocities of approximately 5 cm/s and the second
core with slightly greater velocities was directed to the southwest and displaced to
the western slope.

8 Conclusions

This Chapter is a review of recent field studies of bottom transport of bottom through
the main abyssal channels of the Atlantic Ocean. The expeditions carried out in
the last 10 year made measurements with CTD-casts and moored current meters. A
strong flow of bottom water in the Vema Channel was analyzed. The mean velocities
are 30 cm/s. After the Vema Channel, Antarctic Bottom water slowly flows in the
Brazil Basin and then splits into two flows. Part of the water flows through the
Romanche and Chain fracture zones to the east. The other part flows to the northwest
to the North American Basin. Part of the northwestern flow turns to the east and
spreads through the Vema Fracture Zone into the Northeast Atlantic.
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Global Climate Change and Local Severe
Weather Phenomena: Is There a Possible
Synthesis Among These Apparent Antitheses?

F. Stel and D.B. Giaiotti

1 Introduction

Climate change is one of the major concerns of post modern world.1 Climate,
here considered as the average state of the coupled ocean-atmosphere system,
continuously changed in the past and will continuously change in the future.
Under the mathematical point of view, the reasons of this chaotic and everlasting
transformation, a sort of mechanical samsara, are written in the equations that
describe the system, in particular into the advection term, which brings with it the
germs of non linearity. Under the physical point of view, the reasons of the ceaseless
change relies within the equilibrium between incoming and out coming energy, in
particular in the way in which energy is redistributed in the oceanic-atmospheric
system. Even if science is not a matter of democracy, it is relevant to underline
that nowadays the large majority of Scientists are confident that current climate is
changing and the ocean-atmospheric system that is moving toward a higher energy
state. The index used to quantify the intensity and timing of state’s change is average
temperature, even if average temperature barely represents a threat for people or
environment.

The reasons why temperature is chosen as “the” index to quantify climate change
are many: one of these is that in the World there is a relatively large number
of relatively long temperature time series, then we can have a useful baseline
to compare current climate with past climates. Another relevant advantage of

1The expression “post modern” is borrowed from Zygmunt Baumann’s “Liquid modernity” (2000,
Polity Pr, 228 pages).
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temperature is that, being directly related to the amount of available energy, it gives
us exactly the information we are interested is, i.e., if Earth is earning or loosing
energy, moreover, just being temperature the measure of available energy, there are a
lot of proxy relationships based on energy that can be used to infer temperature
trends for the periods when there are no direct temperature measurements (e.g., tree
rings, oxygen isotopes in ice cores, etc.). Temperature, moreover, is quite easily
determined, without ambiguities, by numerical models and can be easily compared
with the in situ available time series as a form of calibration for the climatic
numerical models or projected into the future to guess what might happen to the
climate.

Nevertheless, in spite of its countless good qualities, temperature is affected by
the awful drawback not to be directly related with all the atmospheric phenomena
we are interested in. In other words, even if global and/or local temperature is
growing, this will not automatically mean that the number of tornadoes will globally
and/or locally increase as well as the number of thunderstorms, floods, hail falls,
draughts, etc. The reason for this apparent paradox, i.e., available energy rises but
relevant events which often requires a lot of energy do not necessarily become
more frequent or severe, is that significant weather is mainly related to atmospheric
flows rather than bulk available energy. In turn, this is caused by the fact that, even
if energy reaches Earth in radiative form, it is redistributed (then equilibrium is
kept) mechanically through the meridional perturbations of geostrophic flow. In
other words, even if it is true that intense atmospheric phenomena are characterized
by a high energy density, the local increase in energy density is produced by
mechanisms that are not directly related to the energy off-set represented by the
average temperature which is, very likely, going to increase in the next years.
Trends in the frequency and/or intensity of flash floods in a specific area instead
of dry spells, then, will be related to the way in which atmospheric flows change
more than to the local and/or global trends in temperature [1]. Moreover, even
average temperature should be more correctly considered as an effect of oceanic-
atmospheric global circulation than as a consequence of the direct radiative forcing
[2, 3].

This is not a new paradigm, indeed, because already C. G. Rossby [4], in 1939,
pointed out that changes in global average temperature have to be a consequence
of changes in average flow patterns [5], nevertheless, probably even thanks to the
wonder of successes achieved by atmospheric and coupled oceanic and atmospheric
numerical models, the causal relationship between dynamics and temperature fade
as time went by, becoming less evident in researchers minds. More generally,
people barely remembered that numerical models do not reproduce full reality, but
only some of its behaviours. This oversight increased the risk to be trapped into
the so called shadowgraphy mirage (Velarde, personal communication), confusing
reality behaviour (the shadow) with reality itself2 (the subject whose shadow

2Here “reality” and “reality representation” are assumed, with a significant abuse of language, to
have the same meaning.
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is reproduced). This kind of oversight is not new in the history of science, in
fact it happened, as an example, to Astronomy in the late sixteenth century,
with the Tychonic System (a conceptual model, indeed), which was capable
to reproduce some of the observed planets behaviour, but it was not a correct
representation of reality. Even nowadays, however, we can fall in the same trap. As
an example, current state-of-the-art meteorological numerical models can, through
wise parametrizations (conceptual models, indeed), quite effectively reproduce the
observed rain patterns, even if associated with different dynamical conditions; but in
spite of their success in reproducing rain patterns, the same parametrizations often
fail to reproduce correctly the boundary layer properties. Such a failure can become
extremely relevant when just those boundary layer properties play a fundamental
role for a correct description of rain patterns, as is the case for intense orographic
rain [6].

The “shadowgraphy mirage”, as will be shown in a while, is a crucial aspect
that has to be clearly kept in mind dealing with the local effects of global climate
change, in particular when we are interested in severe local effects. These events,
in fact, are characterized by a relevant release of energy, often occurring by way of
intense convection, in a relatively short amount of time, which is by far negligible
when compared with the climate change characteristic time, as it is marked by
average temperature. This pristine evidence raise immediately two questions: the
first is if we already have the conceptual tools to say something about the frequency
and intensity of events occurring in spatial and temporal scales several orders of
magnitude different from that of global climate change; the second question is if
it is worth to spent efforts trying to answer to the first one. Give a response to the
latter question is relatively easy, in fact almost the majority of atmospheric damages
inflicted to people, property and environment are caused by local severe weather
events [7]. Moreover, as an effect of globalization, nowadays local damages can
produce long range disturbances more frequently than in the past, this because of
the increased degree of connection in Societies which, in turn, have become more
sensitive to this kind of events [8]. Giving a response to the first question is a little
bit more tricky and would require a whole new chapter.

2 The Characteristic Environment of Local Severe Weather
Events

Severe weather events [9] pertain to small scale (say a few kilometres) and high time
frequency (say a few hours), while climate change belongs to very low frequency
and, because of the lack of information at small spatial scales, it is quite well
understood only at large scales. Moreover, the most effective, and probably only,
tools we have are numerical models that can describe climate behaviour with a
satisfying level of confidence only at a spatial scale of several tens of kilometres
and with a time resolution of years. The question then is how can we use these large



722 F. Stel and D.B. Giaiotti

nets to capture such small, but dangerous, fishes? There is not a unique answer to
this question, but we can say that there are at least two ways in which we can face
this problem, both based on the physical mechanisms that produce the onset and
evolution of severe weather events [10, 11].

When related to deep moist convection, severe weather events, requires three
ingredients to occur [12]. The first ingredient is represented by the onset of
convection, i.e., the initial vertical displacement of a significant portion of the
air mass that moves it away from its original position and, thermodynamically
speaking, away from its unstable equilibrium. The second ingredient is represented
by the presence of a sufficient amount of thermodynamic energy in the unstable
air mass, that might sustain an independent and organized vertical motion of the air
mass portions. The third ingredient is represented by the presence in the air mass of a
sufficient shear, i.e., a variation of wind speed and direction with altitude, that might
prevent the development of damping mechanisms (hydrodynamic load, among
others) and supply the horizontal vorticity that, in turn, would favour a long-lasting
convection. The role of the first two ingredients is quite obvious and we will spend
only a few more words describing which variable is almost often used to quantify
the amount of available energy, that is the “convective available potential energy”,
because it would be relevant for the technical possibility to determine this quantity
in climate numerical models.

Convective available potential energy, in detail, is a quantity which is directly
related to the maximum kinetic energy that a volume of air can acquire attaining
the thermodynamic instability and releasing the energy present in the air mass.
Moreover, this quantity can be easily determined using only the vertical thermal
atmospheric profiles. Mathematically speaking, this quantity springs out straightfor-
wardly from the vertical component of the simplified Navier-Stokes equation, i.e.,

�
dw

dt
D �@p

@z
� g�:

This equation assumes a very useful form, just considering a small volume
subject to the displacement and changing the density variable with temperature
variable using the ideal gal law, i.e.,

dw

dt
D �gT0 � T

T0
;

where T is the temperature of the displaced parcel and T0 is the temperature of the
environment in which the parcel moves.

A solution of this equation has the following form

1
2

Z EL

LFC

dw2 D �g
Z EL

LFC

.T0 � T /
T0

d z;

where the integration limits are the level of free convection (LFC, the level at which
the air parcel starts to buoy) and the equilibrium level (EL, the level at which there
is no more buoyancy). In this solution, the term
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g

Z EL

LFC

.T0 � T /

T0
d z D CAPE;

is the convective available potential energy (CAPE). As formerly stated, this
quantity depends only from the thermal field3 and temperature should be, in
principle, quite well reproduced by climatic numerical models. Thanks to the CAPE
index we can say that, even if it is not reasonable to use currently available climatic
models to see directly if the frequency and intensity of local severe weather events
will change, it might be reasonable and feasible to use the same numerical models to
see if the frequency and intensity of the environments prone to severe weather events
under the point of view of available energy would change in the future [13, 14].

The role of the third ingredient, i.e., the wind shear, is a little bit less intuitive
and will be described in more detail right now. In fact, when a volume of air
begins to buoy, releasing its CAPE, condensation often occurs and water droplets,
as well as ice crystals, begin to fall down in the air mass with theirs terminal
velocity. With this downward uniform movement, these hydrometeors increase the
pressure on the rising parcel by an amount equal to their weight per unit of parcel
surface. This local increase in pressure is called hydrometeors loading and, if the
amount of condensation is enough large, it can completely dump the vertical motion.
However, the dumping effect of hydrometeors loading can be avoided if the upward
displacement is not exactly vertical but slanted, in this way the dynamic high
pressure is exerted far away from the base of the convective current, that in turn
can continue to develop.

Another relevant effect of wind shear on the development of convection is
related to the enhancing of vertical vorticity, described by the vertical component
of vorticity in a rotating system

d
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CF r;

where the � and � horizontal components of vorticity, directly related to the vertical
variation of wind field, can be transformed in horizontal vorticity by horizontal
variations of vertical velocity, clearly related to upward motions. This increased
vorticity, in turn, can be further enhanced by convergence or by baroclinic effects,
producing the intense local vortexes called tornadoes.

3In reality, CAPE depends even from the initial temperature and moisture of the rising parcel,
because these two variables modify the level of free convection (LFC), which is pivotal for the
determination of CAPE. In other words, CAPE can change, for the same vertical thermal profile,
just chosing a different risilg parcel on the same column of air. Moreover, the air parcels that starts
convection are often near to the ground, and the lowest levels are badly reproduced by numerical
models, climatic ones in particular, and strongly depend from the way in wich land use, orography
and gerography are reproduced by the numerical models. This is an extra, non negligible, problem
to face.
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3 Impacts of Global Climate Change on Severe
Weather Events

Currently, the majority of attempts made to infer the variation in frequency and
intensity of local severe weather events due to the global climate change are
carried out looking for the way in which environmental conditions prone to local
severe weather events are going to change in the future. In general, attention is
often devoted to CAPE and shear, because these quantities are directly related to
severe convection and, in principle, they can be retrieved by the currently available
global and regional climate models. An approach parallel to the CAPE and wind
shear approach is that based on the first ingredient, that is convection onset, and,
more generally, on the knowledge of physical climatology. Analysing the flow
patterns associated to the occurrence of severe weather events in a specific area, in
fact, it is possible to see that they cluster in definite and distinct classes (among
others, Giaiotti et al. [15]). In this way it is possible to move the quest for the
variations in frequency and intensity of severe weather events to the quest for the
variations in frequency and intensity of the large scale flow patterns associated
to the occurrence of these phenomena. This connection is often manifested by
the relationship between large scale flow index and local (sometimes very local)
phenomena like hail, as it is shown in Fig. 1 [16].

Dealing with hail, in particular, it is amazing how a very local meteorological
phenomenon produced by the microphysical interactions between supercooled
water droplets and ice crystals might, as shown in the above picture, be in a tight
connection with the hemispheric centres of pressure represented by the Island low
and Azores high. This connection, would not be possible without an interplay
between large scale flows and orography.4 Similar connections between severe
convective events and large scale flows can be found in other areas of the World
and might represent, once physically understood, a useful proxy to infer the future
trends of these events.

Even if all the above described approaches are promising and can supply right
now hints on what might be expected in the different areas of the World for some
classes of severe weather events, they are undermined by the above mentioned
“shadowgraphy” effect. In fact, even if currently available numerical models are
capable to reproduce correctly the observed average temperature trends, unfortu-
nately they do not reproduce correctly the observed values of CAPE and shear [17],
overestimating it over sea (e.g., in the Mediterranean area) and underestimating it
over land or in general over areas characterized by complex orography, like the
Alpine chain. The reasons of this systematic effect are still not clear, but they might
be related both to an incorrect parametrization of the radiative budget near to the

4This connection between NAO and hail days is not general, but peculiar of the Friuli Venezia
Giulia Region (northeastern Italy), in fact other areas do not show such a behaviour, as is the case
of other alpine areas. In the latter cases, probably, the onset of hail storms is less related to large
scale flows and is more connected with peculiar effects.
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Fig. 1 Trends of hail days (normalized) over Friuli Venezia Giulia and of North Atlantic
Oscillation (NAO; Hurrel, 2003)

Earth’s surface (boundary layer parametrization), or to an incorrect description of
the large scale flows ([18], then to a resulting poor representation of the interaction
between flows and complex orography. The fact that even the large scale flows
might be incorrectly represented puts severe threats not only to the CAPE-shear
technique, but even to the possibility to adopt the complementary approach of
physical climatology and the onset ingredient.

4 Conclusions

What we know about future climates comes out from complex tools called numeri-
cal climate models. These tools might in principle be used even to infer information
on the future trend of local severe weather events in defined areas of our planet. At
least two approaches, based on the so called “ingredients” of local severe weather
events, can be adopted to face this challenge but, even if these approaches might in
principle work, their adoption is undermined by the fact that state-of-the-art climate
numerical models barely reproduce the needed variables even if they reproduce
correctly the observed past trends of temperature and rain. This apparent paradox
probably reveals a significant point that has to be analysed in detail, in fact this might
be caused by imperfect parametrizations that, when tuned, can reproduce correctly
only some of the main atmospheric behaviours, in spite of others, among which there
are those directly connected with the onset and development of local severe weather
events. If this is the case, we might have been trapped by a “shadowgraphy mirage”,
confusing a shadow with its physical reality. Even if this had to be the case, however
numerical climate models have the capability to be improved, through the adoption
of more correct physical parametrizations. This amelioration would produce direct
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benefits, with a more robust determination of the already well reproduced variables
(temperature and rain, in particular), but even indirect benefits, supplying correct
information on the variables needed for the determination of the future trends of
local severe weather events. Mirages, in fact, do not represent a threat if we realize
what they are.
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A Time-Space Description of the Analysis
Produced by a Data Assimilation Method

K.P. Belyaev and C.A.S. Tanajura

1 Introduction

The assimilation of geophysical data into dynamical models of the ocean and the
atmosphere has become one of the most attractive scientific areas during last decade.
This was mostly caused by the demands on improvements of weather and climate
predictability, by the increase on computational resources, and by substantial
developments in the observational system of the ocean and the atmosphere.

In general, the data assimilation (DA) schemes can be classified as variational or
sequential. The variational scheme assimilates the available data in a time window
by finding the model initial condition that provides a trajectory with minimum errors
with respect to the data. If new data come after assimilation, the scheme should
be repeated independently of the previous solution. This scheme is theoretically
well posed but rather complicated for realisation, particularly for non-linear models,
since it requires the use of iterative schemes and the calculation of the model
adjoint operator. The update or sequential scheme produces the objective analysis
by correcting the model forecast or first guess. This correction is calculated by
minimising the errors of the estimate with respect to the true value. The analysis
is used as the model initial condition for the calculation of the first guess in the
next time step. This scheme is much easier for realisations despite some theoretical
uncertainties.
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The majority of the sequential DA algorithms is based on the control theory
of filtration of stochastic processes and statistical estimations. After the classical
work of N. Wiener, A. Kolmogorov, and other great mathematicians of the twentieth
century, a feasible sequential scheme was proposed by Kalman [3]. It is referred to
in the literature as the Kalman filter [4]. Reviews about the Kalman filter theory and
applications on geophysical research have been presented by Ghil and Malanotte-
Rizzoli [5], Cohen [6], and others, i.e. [10]. During the last years, extensions of the
Kalman filter, such as the generalisation to non-linear models and the use of non-
Gaussian error distributions, have been proposed. These extensions can be found, for
instance, in Evensen [7]. In addition, simpler forms of the Kalman filter algorithm,
such as the statistical interpolation scheme, have been quite used in ocean data
assimilation (e.g., [8, 9]).

Despite the recent developments, the extended Kalman filter schemes are still an
open area. The feasibility of the standard Kalman filter method for the operational
atmosphere and ocean data assimilation remains questionable, mainly because of
its high computational cost. Also, approximations are required for its realisation.
This creates a serious gap between theory and applications, and adds difficulties to
investigate the numerical behaviour of the scheme. Another limitation of the Kalman
filter scheme is the lack of initial and/or boundary conditions for the covariance
function of the error.

In Belyaev et al. [11], another contribution on the sequential DA methods has
been presented. It is also based on the Kalman filter theory, but it is able to solve
some of the aforementioned problems. Its feasibility and physical relevance have
been demonstrated in a recent study as well [12, 13]. The limitations of the method
have been discussed in those works.

The main goal of the present study is to further develop the DA method derived
in those papers for practical applications in atmosphere and ocean circulation
problems. Another goal is to discuss the quality of the estimated fields and better
understand the time-space structure of the analysis and of the error between the
model and the observations.

The present work utilises the eigenvalues and eigenvectors decomposition for
the analysis error covariance matrix, referred to in the scientific literature as the
canonical covariance matrix representation. This method is very similar to the
well-known empirical orthogonal function (EOF) decomposition and principal com-
ponents, widely used in the data analysis of the atmosphere and ocean variability.
However, this approach is not commonly used in DA studies.

Most of the DA methods based on the probability theory and statistics, such as
the Kalman filter approach, the statistical interpolation or the method of successive
corrections, exploit the analysis covariance. If, for instance, a variable is observed at
a pointA at time t but it is not observed at a pointB at time t (or at time � different
of t), then, in order to make any conclusion about this variable at a point B at time
t (or �), it is necessary to know the connection of the variable between the points
A andB at time t (or at times t and �). This connection is mathematically expressed
through the covariance. However, the representation of the covariance of a scalar
variable with spatial and temporal dependence is rather difficult, since, in general, it
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requires a four-dimensional function. For vector variables, it would require an even
higher dimensional function. The canonical decomposition allows to identify the
pattern and magnitude of this connection in a physically reasonable and transparent
way. It decreases the dimension of the function that describes the covariance.

The present study uses the ocean general circulation model (OGCM) MOM3
from the Geophysical Fluid Dynamics Laboratory (GFDL/NOAA), USA, as a tool
to investigate the DA scheme. A new model, MOM4, has become recently available.
However, from the qualitative point of view, the results obtained in this work would
be the same with MOM3 or MOM4. Here, the observational data used in the
assimilation experiments and in the validation procedure are from the Pilot Research
Moored Array for Tropical Atlantic (PIRATA) database [14].

The structure of this work is the following. Section 2 briefly describes the
OGCM, the PIRATA data and the DA technique. Section 3 presents the strategy
of the canonical decomposition of the covariance matrix of the analyses error as a
development of the DA technique. Section 4 discusses the experiments and the main
results. In the end of this paper, there are two appendixes. Both of them present some
mathematical details of the DA method for completion and to help understanding
the method and the present work.

2 The OGCM, the PIRATA Data and the DA Technique

2.1 The OGCM

MOM3 [15, 16] is a primitive equation hydrostatic ocean model in z-coordinate. It
uses finite differences over a staggered Arakawa B-grid in space and an implicit
scheme in time.

In the present study, the model horizontal resolution was set to 1:5ı � 1:41ı
(longitude � latitude) over the globe for each of the 15 vertical layers. The model
has no explicit mixed layer parameterisation. The latter is resolved by considering
non-uniform vertical resolution, in which the number of layers in the upper ocean
is much greater than below. For the configuration used in the present study, the first
10 layers cover the upper 500 m. The horizontal diffusion coefficients were 108 ıC
cm�1s�1 for heat, 106cms�1 for momentum, and the same for salinity. The vertical
diffusion coefficients were 102 ıC cm�1s�1 and 106cms�1. Time-step in the model
was 3,600 s.

The OGCM was initialised at rest with climatological salinity-temperature struc-
ture from Levitus data, and it was integrated for 5 years forced by climatological
atmosphere heat, momentum, and freshwater fluxes through its surface boundary
[17]. This was the spin-up run. Starting from the result of the spin-up run, the model
was forced by the National Centre for Environmental Prediction (NCEP)/National
Center for Atmospheric Research (NCAR) reanalyses [1] momentum fluxes, clima-
tological freshwater fluxes, and observed sea surface temperature from January 1,
1996 until December 31, 2000.
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2.2 The PIRATA Data

The PIRATA array is today composed by 15 Atlas moored buoys located in the
tropical Atlantic (Fig. 1). Several meteorological variables are measured at the
surface, including precipitation, wind direction and magnitude and air temperature.
Vertical profiles of the ocean temperature are measured at 11 levels, from surface to
500 m. More recently, salinity measurements have been taken at 3 levels. Daily mean
data are transmitted via the ARGOS satellite system and they are freely available in
the internet.

For the data assimilation experiments in the present work, only the temperature
vertical profiles were used. It should be emphasized that no filtering or other
smoothing of the data time series was done, but time and vertical linear interpolation
were performed to fill in gaps of the data and easy the realization of the assimilation
experiments.

2.3 The DA Technique

The DA method considered here will be referred to as the Fokker-Planck (FP) assim-
ilation scheme. It is based on the Kalman filter theory, but it uses the FP equation to
calculate the evolution of the error covariance. The method was presented in details
in [11], and its feasibility and practical applications were discussed in [12,13]. Here,
only a brief description is presented. Also, to avoid unjustified references and to
simplify the understanding of this paper, some mathematical and technical aspects
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of the FP method are presented in two appendixes. The analysis of the unknown
variable �.t; Nx/ produced by the method at time t and position Nx is

O�.t; Nx/ D �m.t; Nx/C
Z t

0

N.�/X
iD1

˛.�; Nx; Nxi /�.�; Nxi/d�; (1)

where Nxi is the position of an observation; the bar is introduced to distinguish the
3-dimensional spatial point from its coordinate; � is time, �  t ; �m.t; Nx/ and
�0.t; Nxi / are the values of the variable given by the model (first guess) and the
observation, respectively; �.t; Nxi/ D �0.t; Nxi / � �m.t; Nxi / is the error of the
model variable known only at the observational points; ˛.�; Nx; Nxi / is the optimal
weight coefficient; N.�/ is the number of observations used in the assimilation
at time � . Without loss of generality, the observational data are assumed to be
available continuously in time, while their spatial distribution is discrete. Also, the
observational values are assumed to be perfect, i.e., there is no difference between
the observed value and the true value. The weight coefficients ˛ are unknown and
should be determined from other equations.

Formula (1) has a clear physical interpretation. It shows that in order to estimate
the unknown variable � at an arbitrary grid point or to correct the model variable at
this point, it is sufficient to: (i) calculate the differences between the model variable
and the observations at all available observational points; (ii) then multiply these
differences by the weight coefficients taking into account the location of both the
observation and the analysis grid point; and (iii) finally add this to the model value.
This linear form of the optimal estimator is commonly used [2, 5].

To obtain the Kalman-gain matrix A.t/ the following equation is used

K.t; Nx; Nxi / D
Z t

0

N.�/X
jD1

˛.�; Nx; Nxj /K0.�; t; Nxi Nxj /d�; (2)

or in matrix form

K.t/ D
Z t

0

A.�/K0.�; t/ d�; (3)

where K0.�; t; Nxi Nxj /d� is the covariance between the errors of the estimated
variable taken at the points Nxi Nxj / and at times �; t , respectively, and K.t; Nxi Nx/ is
the covariance between the estimated variables at an analysis grid point Nx and an
observational point Nxi .

The determination of the covariance matricesK0.�; t/ andK.t/ is a key-problem
of the Kalman-filter theory. However, if these matrices are known, the optimal
estimation is found linearly and uniquely from formulas (1)–(3).
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In [11], it was proposed to obtainK0.�; t/ by using the FP equation

@p

@t
D �@.ap/

@s
C 1

2

@2.bp/

@s2
; (4)

where p D p.t; s/ is the joint conditional probability density function between the
error of the analysis at two arbitrary (observational) points; s is a two-dimensional
vector with the values of those errors; and a and b are parameters that depend on
s and t , known as the drift vector and the diffusion matrix, respectively. The solution
of this equation, the density distribution p, uniquely defines the covariance between
any pair of errors, which can be inserted into formulas (2) and (3).

The drift vector and the diffusion matrix are approximated from the model output
and the data. The main idea is given here in the appendixes.

3 Further Developments of the DA Technique

In this section some new ideas on the development of the DA technique are
discussed. They are mostly connected with the simplification of the method.

Equation (4) defines only a conditional probability of the error. It means that
the real unconditional probability can be determined only if the probability at the
previous time step or at the initial time is known. The initial probability of the error
is known uniquely only at those points where the observations are available. Indeed,
comparing the model and the observed data, it is possible to define the error, and
hence, to set up the distribution for this error.

If no prior information about the observational error is considered, this density
distribution function will be simply the Dirac-function centred at the time in which
the observation is taken. If there is additional information about the observational
error, the full distribution of the error will be given as a convolution of this known
distribution and the ı-function. In any case, the set up of the initial condition of
the density is necessary, and this requires information about the errors. Therefore,
the covariance matrixK0.�; t/ can be defined uniquely for any pair of observational
points. However, the lack of information creates uncertainties about the covariance
matrixK.t/.

In general, there are two ways to define K.t/. One way is to subjectively set up
the initial conditions for the FP equation. This is physically equivalent to set up an
a priori distribution of the error before the experiment. The second way is to define
K.t/ knowing K0.�; t/. The second way seems preferable. It does not need any
additional assumptions and it reduces the problem to a simple linear interpolation.
However, to obtain a good estimation of K.t/, it is necessary to have a dense
observational network.

Now one way is proposed to realise this scheme. Matrix K0.�; t/ is a positive-
determined diagonally-dominated matrix and, hence, it has a full set of eigenvectors,
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which are linearly independent, orthogonal and have a length equalled one. Let
this set be g1.t/; g2.t/ : : : ; gN.t/.t/ and �1; �2 : : : ; �N.t/.t/ be the corresponding
eigenvalues for a momentt . After multiplication both parts of equality (2.b) on
vector g1.t/ for any index 1, one obtains the formula

�1 Og1 D A.t/�1g1.t/C F.t/;

where Og1.t/ D K.t/g1.t/ and F.t/ is known function which includes the previously
corrected values. As it was mentioned if data at moment t are updated this function
is zero.

Vector Og1.t/ has the following properties:

• It must coincide with vector g1.t/ at all observational points;
• It should vanish at arbitrary grid points Nx if the distance between Nx and any

observational point exceeds some limit value or cut-off radius;
• It should be continue and smooth function of the distance between grid point Nx

and arbitrary observational point.

These requirements leave some space to construct the vector Og1.t/ through
the known vectors g1.t/; g2.t/ : : : ; gN.t/.t/ and eigenvalues �1; �2 : : : ; �N.t/.t/.
However, if a scheme of interpolation is chosen, this is done uniquely. In this study
the scheme of interpolation or construction of vector Og1.t/ is used as follows:

Og1.t/ D
2
4
N.t/X
jD1

	1j gj .t/

3
5 .R �R0/�1

where R is the distance between grid point Nx and observational point Nxj where
eigenvector gj is defined and known, R0 is the cut-off radius, which is a parameter
of the scheme and 	1j are the coefficients of simple linear interpolation in space from
point Nxj to point Nx. Namely, they are the solution of the linear system

x D
X

	j xj ;
X

	j yj ; z D
X

	j zj ;

where x; y; z are co-ordinates of grid point Nx, and xj ; yj ; zj are the co-ordinates
of observational point Nxj . If R exceeds R0, Og1.t/ is prescribed zero. This scheme
is simple, uniquely defines the vector Og1.t/ at any grid points and provides the
holding of requirements (a)–(c). When vector Og1.t/ is defined for each eigennumber
l; 0 < l  N.t/, there is no problem to find out the Kalman gain matrix A.t/ The
problem of its definition is reduced to a simple linear system of equation which
defines the unique solution, because the matrix of the system is non-degenerated.
And, ultimately, having defined the Kalman gain, the assimilated amendment is
found by (1). This completes the DA scheme description.
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4 The Experiments and Results

The scheme described above has been applied in conjunction with OCM MOM3 as
follows: Spin up run of MOM3 forced by climatological wind stress and heat fluxes
from NCEP for 4 years started from climatological temperature-salinity atlas and
zero currents.

Forced run of MOM3 by reanalysed wind stress and heat fluxes NCEP from
1996–1999 years (also 4 years).

Assimilated and control run in parallel (twin experiments). Assimilated run starts
from initial fields obtained after forced run and assimilates PIRATA data as it was
mentioned before. This run has been continued one month (January 2000). Model
was forced by reanalysed atmosphere field for 2000 January. In parallel, the same
scheme but without assimilation has been performed. Further these two experiments
will be referred as assimilation and control, respectively.

In the assimilation run data were assimilated daily, from 9 buoys, on each level
independently. The scheme of a buoy location is presented in Fig. 1. Also, in Fig. 1
the location of two another buoys are shown, marked by crosses. Data from those
buoys had not been assimilated but used for comparison of the corrected temperature
profiles with real data. Now the results of experiments are discussed. Figure 2 shows
the experiments results on day January 15 on level 40 m. Figure 2a presents the
model assimilation run, Fig. 2b presents the model control run, and Fig. 2c shows
their difference, assimilation minus control. The first view on these figures shows
that after assimilation the resulted field becomes much more dynamical and varied.
The temperature difference after assimilation ranged from 22ıC up to 28ıC while
in control run this variability is smaller, maximum is only 26ıC. In general, the
temperature on the sea surface is higher after assimilation. Assimilation increases
the temperature of upper ocean level significantly underestimated by the model.
The difference of two runs (Fig. 2c) clearly demonstrates the non-homogeneity
of the assimilation impact, its concentration near the observational point position,
but spreading far beyond them. The assimilation process grabs the whole tropical
zone and fills out 20ıS and 25ıN despite all stations lie in between 10ıS and
20ıN. Everywhere this difference is positive. The opposite situation occurs below
the mixed layer. Figure 3 demonstrates the temperature structure on the same day
Janeiro 15 on level 200 m. Figure 3a presents the model assimilation run, Fig. 3b
presents the model control run, and Fig. 3c shows their difference. The structure
of the difference is very similar as in Fig. 2c, but with the opposite sign. Also,
in general the impact of assimilation is less pronounced, grabs smaller area and
gives less amendment. However, this impact physically is even stronger, because
it involves larger volume of water. The accumulated results of assimilation are
very well presented by comparison the assimilated and non-assimilated temperature
profiles shown in Fig. 4a, b. Two points have been chosen for demonstration, one
had co-ordinates 330W, 0N(equator), and another had position 350W 5 S. They are
shown in Fig. 1 by crosses, as it was mentioned above. In the first of this point there
are no observations, but there are observations in vicinities points. Among these
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Fig. 2 Model run on January 15, 40 m depth, temperature. (a) Assimilation, (b) control,
(c) difference (a)–(b)

two vicinity points, one of them with co-ordinates 337W, 0 was used in assimilation
while another was not. And point with coordinates 35ıW 5ıS was not used in
assimilation process at all.

These figures show the model deficiency versus observations. In Fig. 4a curve
(a) marked by black circles represents the model control temperature profile, while
curve (b) marked by open circles represents in assimilated counterpart and curve
(c) marked by is real temperature. It is clearly seen that model substantially
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Fig. 3 Model run on January 15, 200 m depth. The same as in Fig. 2

overestimated the real diffusion and creates the temperature profile smoother than
it is in reality. The major thermocline part in assimilated curve is pronounced much
better, and profile becomes crunched below mixed layer. However, the mixed layer
part is very well pronounced at all three curves. Control run does not take into
account any data, so this may be explained by pure coincidence. From these pictures
it is possible to make a conclusion that natural data show the prevalence an advection
process over diffusion. This detail was already cited in [12, 13] but confirmed again
in the study. In Fig. 4b only modelled and assimilated data are shown. A point where
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Fig. 4 Assimilated and non-assimilated temperature profiles at two spatial points 30 W, 0 N; 35ıW
5ıS: (a) assimilated, (b) non-assimilated

these two profiles are compared has no direct measurements, natural observation
are interpolated into this point. Figure 4b also demonstrates that a tendency to
overestimate a diffusion conserves in control run, mixed layer expressed badly and
major thermocline simulated very weakly. The assimilated run partially fixes these
disadvantages but does not overcome them fully. Particularly, it is necessary to note
that the mixed layer step is pronounced insufficiently, and the crunch of the major
thermocline is also not very realistic. However, the assimilated profile looks much
better and physically more relevant then its control counterpart.

The next figures show how the assimilation process occurs in details. As it
was said above, the main idea of this presentation is based on the canonical
decomposition of covariance matrix. In present study 9 moorings were used, hence
the covariance matrix has the dimension 9 � 9 , and all eigenvalues of this matrix
are real and positive for any time moment. Let, �1; �2; : : : �9 be the eigennumbers
taken with respect to their order, g1; g2; : : : g9 be the corresponding eigenvectors
and g0 D P9

iD1 �igi be the summarised eigenvector, which accumulates the impact
of all covariance matrix. Figure 5a–e presents the eigenvectors g1; g4; g7; g9; g0 for
day January 10 and for 200 m depth. From these figures one may see the localisation
of an impact of the assimilation and its magnitudes. There is understood, that its
localisation matches the position of observational points, but absolutely unclear
a priory a spatial-temporal variability of this influence as well as its relatively
contribution in accumulative impact. The resulted action can be broken down into
specific local influence relatively each entered observation. These observations may
affect differently, either to be relatively isolated, as it is seen in Fig. 5c, d or may
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Fig. 5 The eigenvectors structure (a–d) for January 10, 200 m depth

impact in conjunctions, as it is clearly seen in Fig. 5a, b. Magnitude of those impacts
also varies from 0.1 until around 2. The summary effect is shown in Fig. 5e. One may
see the zones of more strong and weaker influence, non-homogeneously distributed
over the domain, zone of maximum effect, near the observational point with co-
ordinate 0, 330W and zone of very weak impact near the continent in Guinea Bay.

Situation is different on the mixed layer. Figure 6 presents the same values but
taken on the 40 m depth. Figure 6a–d contain the same eigenvectors, as in Fig. 5. One
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Fig. 6 The eigenvectors structure (a–d) for January 10, 40 m depth

may see that the magnitudes of covariance in sea top are higher and their influence
enlarges much longer then it occurs for below eigenvectors. This is reasonable, the
dynamic on sea surface is greater and covariance reflects this dynamic. It interest to
note, for instance zone of the negative covariance near the continent in Guinea Bay
appeared in Fig. 6b, for eigenvector g4. This does not exist in previous Fig. 5b, but
seems to be important part in the summary effect.
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To highlight the variability of the covariance with respect to depth, the difference
between these two figures in presented in Fig. 7. Only the difference between
resulted vectors g0 is shown. This difference is almost everywhere negative, which
demonstrates the domination of impact on sea surface. However, it is extremely non-
homogeneous. There are three well-pronounced cores, in Guinea Bay, in Southern
part of Eastern Atlantic and in Northern part of Western Atlantic. However, a weak
difference occurs in Equatorial Atlantic, which seems strange, because the major
part of data observed here. This paradox can be explained by the following reason-
the covariance near the observations reaches maximum and close to variance of
the error in the observational points. This variance depends on the model skill
to simulate the temperature and does not clearly produce this dependence with
the depth. But the spread of this error mostly depends on the model dynamic,
which strongly differs with depth. It shifts the maximum of difference from directly
observed points to their transport outside of the observations.

Finally, the time-variability of eigenvector over one month is studied. Figure 8
presents the difference between accumulated vector g0 after 20 days of assimilation
and 10 days of assimilation on level 40 m. This difference is well pronounced, covers
the same domain, which is natural, everywhere is negative. The last circumstance
is also reasonable. During the time with the continuing assimilation the error of
modelling decreases (see [12]), the variance of the error falls and, the covariance
being enhanced by variance falls as well. However, this error remains valuable
and this is confirmed by Fig. 9. Other levels do not shown but the situation there
is similar. The main conclusion from this figure is that the time variability of the
covariance of the error even within one month is substantial.
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Appendix 1. Mathematical Basis of the Data
Assimilation Scheme

This paragraph deals with the mathematical foundation of the DA scheme used
throughout the paper. Its full math. description and explanation is contained in
[11, 13]. However, this paragraph highlights some moments which are important
for the current study from the mathematical point of view. Let the true (unknown)
variable � be satisfied the equation

@�

@t
D �.t; �/C �.t/; (5)

while its model counterpart is given as

@�m

@t
D �.t; �m/: (6)

In formulas (5) and (6), � and �m are tri-dimensional fields, depending also on time,
t denotes the time, �.t; �/ is a known operator, in generally non-linear, acting on
the given functional space and �.x; t/ is a random variable, with zero mean for any
spatial point x and with covariance satisfying for any arbitrary two time-moments
t , � to the relation , where ı is the Dirac function, R is a known function and E
is a symbol of mathematical expectation. The expression R.jx � y/j means that
functionR depends only on the distance between two spatial points x and y. Let the
observed variable �0 be given on the same space as the true variable � and let its be
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linked by the relation � D �0 C ', where ' is the error of observation (instrumental
error). Random variable ' is supposed to be independent on �.t/, also with zero
mean and the covariance given as E'.x; t/'.y; �/ D Q.jx � y/j ı.t � �/, where
Q is known. Let � denote the summarised error or modelling, i.e. � D � � �m and
�0 D �0 � �m is an observed error, i.e. the error between observation and model
simulation. According to (5) and (6)

@�

@t
D �.t; �m C �/ ��.�m/C �.t/: (7)

Definition. Operator �.t; f /, where f is a function on a given functional space
is called unbiased (relatively family of distribution ˚) if for any random variable �
(from this family) the condition E� D 0 implies the condition E�.t; �/ D 0 for
any moment t .

Note 1. Obviously, any linear operator is unbiased. The inverse statement is not
valid. For instance, if � is a Gaussian random variable with zero mean and
�.t; f / D f 3 is one-dimensional operator, then E�.t; �/ D 0 but operator
is non-linear.

Note 2. The indication relatively which distribution the operator is unbiased is
essential. The operator may be unbiased relatively one family of distribution but
not unbiased relatively others. But this makes pure theoretical interest and is
minor significant in applications.

Two obvious equalities hold for an unbiased operator. 1. �.t; 0/ D 0. 2. If the
operator �.t; �/ can be expanded as �.t; �/ D a.t/� C � , where a.t/ is non-
random, � and � are random and E� D 0, then E� D 0.

The main statement follows the formula (7) and equalities 1 and 2.
Statement. If the model operator � satisfying (5) and (6) is unbiased then the

following equation holds for the model error �

@��

@t
D �.t; �/C #.t/; (8)

where #.t/ is a random variable with zero mean, which includes the non-linear part
of operator and all stochastic noise.

Appendix 2. On the Definition of the Coefficients
of the Fokker-Planck Equation

Equation (8) in finite-differential approximation is presented as follows

�.tnC1/ � �.tn/
�n

D � Œtn; �.tn/�C #.tn/; (9)
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where � D t0 < t1 < : : : < tn < : : : < T is an arbitrary breaking down
the time interval [0,T], T may coincide with infinity, and �n D tnC1 � tn is a
length of n-th interval. With fixed discretisation the sequence of random variables
�n D �.t1/; : : : ; �.tn/; : : : is a Markov chain. Following [18], the series of sequences
�n when n goes to infinity and �n ! 0, converges under some reasonable conditions
to a stochastic diffusion process �.t/ given by stochastic differential equation
(Langeiven equation)

d� D a.t; �/dt C B.t; �/dW; (10)

where a.t; �/ and B.t; �/ are drift vector and diffusion matrix, respectively, and
W is a symbolic notation of the Wiener process. As it was shown [12], in this
specific case, a.t; �/ D �.t; �/ and B.t; �/ D E##T D P

is a covariance matrix
of summary noise, included the non-linear part of operator. These formulas give
the method how to calculate the coefficients a.t; s/ and B.t; s/ as a function of
variable s. Indeed, having a sample of arbitrary variable s at moment t � dt it is
sufficient to calculate the�.t; s/ as a model output at moment t . As this sample, the
model variable �m can be chosen. Because the sampled variable has to have a zero
mean, a deviation �m� < �m > can be taken, where symbol <> means the spatial
average. This variable is inserted into the model operator and the model output will
be used to estimate a drift vector a. More technically complicated but the same idea
is utilised to get the covariance matrix

P
. Details of this scheme, with using the

histogram technique are presented in [11].
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Challenges of Biomass in a Development Model
Based on Renewable Energies

F. Cuadros, A. González-González, A. Ruiz-Celma, F. López-Rodrı́guez,
J. Garcı́a-Sanz-Calcedo, J.A. Garcı́a, and A. Mena

1 Introduction

All living matter on earth—biomass—lives on a surface layer known as biosphere.
Biomass represents only a tiny fraction of the total mass of the planet, but on a
human scale it represents a vast energy source that is continuously being renewed
through Photosynthesis. The original source of that energy is the Sun.

Energy stored in plants is naturally recycled through a series of physical and
chemical processes that take place between themselves, the ground, the surrounding
atmosphere, and other living things, until it is mostly radiated again, from earth to
space, as low-temperature heat (Longwave Infrared Radiation).

If the cyclical process is interfered and some of the energy is captured when
it is being stored as biomass, then a fuel (biofuel) that can burn or transform
its energy to generate final useful energy (heat, electricity, or motion) will be
acquired. A significant advantage is added to the process: burning biomass does
not imply generating any more heat or more CO2 than it would be generated by
natural processes (decomposition, respiration, fermentation, etc. . . ). In any case,
CO2 balance is zero, since plants return CO2 consumed during their growth back to
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the environment at the end of their life. The term biofuel describes a wide range of
energy sources and it is applied to any solid, liquid or gas produced from organic
materials, either directly from plants or indirectly from industrial, commercial,
domestic or agricultural residues. Biofuels may result from a large number of raw
materials (provided they are of organic nature) and produced as a wide variety of
final types [1].

A first classification of biomass can be established as:

1. Natural biomass, which occurs in nature without human intervention.
2. Residual biomass, generated by any human activity. It includes agricultural,

livestock, agro-industrial, and organic residues.
3. Produced biomass (energy crops), which is grown to be further transformed

into fuel. Biomass conversion into useful energy takes place through several
technologies, which are also primarily based on thermochemical and biochemical
processes. Table 1 shows an outline of preferred technologies in biomass
transformation processes [2].

Biomass use as a source of production of useful final energy is a common
objective of the European Union’s agricultural, energy, and environmental
policies.

Agricultural policy:

(a) Biomass represents a valid alternative to replace traditional crops whose
financial viability depends on retaining the production subsidies referred to in
the Common Agricultural Policy (CAP).

(b) Removal of agricultural crop residues and waste from forestry work helps
meet the CAP agri-environmental measures for countryside and environment
conservation and sustainability.

(c) Biomass shows more stable prices, which will revise upwards according to the
development of primary energy prices.

Energy policy:

(a) Biomass helps meet objectives of reducing dependence on foreign energy,
which is currently around 50% in the EU, and over 80% in Spain.

(b) Biomass means energy that due to its renewable nature does not become
exhausted, as is expected to happen with fossil fuels.

Environmental policy: the use of biomass helps meet the Kyoto protocol for the
reasons listed below.

a) Energy crops consume fewer amounts of fertilizers, and usually require less or
no pesticide treatment that pollutes the environment.

b) Collection and use of agricultural, forestry and agro-industrial crop residues and
pruning for energy use, prevents its burning, dumping or uncontrolled burial.

c) The usage of biomass to replace fossil fuels avoids greenhouse gas emissions
that contribute to global warming.

Despite all these advantages, the use of biomass as fuel or for electricity
generation barely meant an insignificant percentage of primary energy consumption
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Table 1 Biomass transformation processes for energy purposes, technologies used and final
energy output

Transformation process Technology used Output product

Combustion Vapour
Heat
Electricity

Thermochemical Gasification Vapour
Heat
Electricity
Methane

Pyrolysis Charcoal
Biocoal
Combustible gas

Biochemical Fermentation and anaerobic digestion Ethanol
Water for irrigation
Biogas
Compost

2,3 5,7
5,5 10,6

TRADITIONAL BIOMASS

NATURAL GAS

OIL

22,2
21,1

32,6

COAL

NUCLEAR 

OTHER RENEWABLE
SOURCES

Fig. 1 World annual primary energy consumption as sorted by different types of source (http://
www.bp.com)

to national statistics. Figure 1 shows contribution of biomass to global primary
energy consumption in 2000, according to UN estimates (http://www.bp.com).
Global application of this resource is exclusively focused to heat generation.

It is difficult to come up with a reliable estimation of biomass consumption, since
a biomass world market with a role similar to OPEC for oil does not yet exist.
Biomass industries are locally managed, and no financial transactions are recorded.

The European Union (EU) was the first region in the world to show a firm
commitment to renewable energy, setting ambitious targets on the White Paper on
Renewable Energy published in 1997. The main challenge set by Europe in 2010

http://www.bp.com
http://www.bp.com
http://www.bp.com
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was to reach 12% of its primary energy consumption through renewable sources. In
order to achieve this percentage, biomass should play a major role in the European
energy system, progressively displacing other fossil fuels for (mainly) electricity,
heat and motion generation.

However, results have been different. Thus, Spain’s National Renewable Energy
Action Plan, published in late 1999 [3], established a biomass contribution to total
primary energy consumption in 2010 to 6,650 ktoe (6,000 ktoe for solid biomass,
500 ktoe for biofuels, and 150 ktoe for biogas). In 2005, Spain’s Renewable Energies
Plan (REP) [4] revised downwards these goals, as biomass development was not as
significant as expected. This Plan established for 2010 a share of solid biomass for
primary energy of 5,040.3 ktoe (582,5 for thermal applications and 4,457.8 ktoe for
electrical applications).

Nowadays, as shown in the next section, numbers indicate that we are still far
from biomass taking off and entering neither the European energy market, nor our
own Spanish market. The situation is even worse in the rest of the world. The use
of biomass as energy source is essentially implemented as heat generation, same as
500,000 years ago. Something is changing, however, especially in Europe, but the
pace of global change is not enough for biomass to make a significant contribution
to the development of a system based on renewable energy sources.

The effort that R&D is developing globally is also remarkable. According
to the Scopus database (http://www.info.scopus.com/researchtrends/archive/RT13/
bib$ -$mes$ -$13.html), the number of scientific publications (articles, reviews,
and conference papers) on biomass has increased from about 4,400 in 1996 to
about 12,000 in 2008. This means that an initial stage of pre-industrial research
and development has taken place, but the final step to implementing large-scale
industrial projects has not occurred yet.

Why cannot biomass development reach the percentage required in order to
achieve the objectives set out in the European White Paper and the Spanish
Renewable Energy Plan? In our view, biomass difficulties to enter current energy
markets can be summarized into three main aspects:

1. Biomass, as opposed to solar, wind, hydraulic energy sources, has an owner and
therefore a price.

2. Biomass comes in many forms and is delivered through large areas of land, which
makes its collection difficult and very expensive. Being highly divided, energy
density per hectare is very low and costs allotted to its collection and transport to
the conversion plant need then to be added.

3. Net profits of biomass energy conversion into electricity are still very low in
general.

The present paper focuses on the discussion of several problems associated with
the use of biomass as primary energy source for generating electricity and heat. As
a result, a series of possible solutions, some of which are currently being developed
at the University of Extremadura, are suggested.

http://www.info.scopus.com/researchtrends/archive/RT13/bib$_{-}$mes$_{-}$13.html
http://www.info.scopus.com/researchtrends/archive/RT13/bib$_{-}$mes$_{-}$13.html
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2 Biomass Status in Europe and Spain

If data referring 2008 are accounted for, the percentage contribution of renewables to
total primary energy consumption in Spain was 7.7% (http://epp.eurostat.ec.europa.
eu). Data corresponding to 2009 shows a contribution of renewables to total primary
energy consumption in Spain of 9.4% (http://www.idae.es, http://www.eurobserv-er.
org), which concurs with the European average in the same sector. Provisional data
for 2010 show some significant contributions of Spanish renewable energy, coming
close to 10.7% (http://www.idae.es). In Europe, the contribution of renewables to
electricity production in 2007 was 20% and, later in 2010, this percentage was
expected to approach 30% (http://epp.eurostat.ec.europa.eu). Meanwhile in Spain,
the amount of electricity generated from renewable sources in 2010 was 32.6% of
the total. This improvement of renewable energies in Spain denotes a shift in energy
models and their future—mainly biomass—implies their use and integration into
the building, urban planning and transport sectors.

The barometer EurObser’ER (http://www.eurobserv-er.org) presents some pre-
liminary data for 2009 comparing Spain’s 4,315 ktoe (4.315 Mtoe) contribution of
solid biomass to total consumption of primary energy, to the European total of 72.77
Mtoe. This represents primary energy consumption in the form of solid biomass
of 0.094 toe/(inhabitantyear), while the European average was estimated at 0.145
toe/(inhabitantyear). That is, in Spain the average consumption of biomass per year
is 35% lower than the corresponding European average.

As for the use of biomass to generate electricity, transformation profits must be
taken into consideration. Therefore, biomass Lower Heating Value (LHV), which is
estimated at around 3,000 kcal/kg (12.5 MJ/kg), must be initially established. This
value corresponds to a type of wood showing moisture content achievable by natural
means. To achieve an electrical output of 1 MW performing an average of 7,600 h
per year, 8,000–10,000tons of this sort of wood is required. The plant produces an
overall performance of about 25% [5].

Based on a provisional basis, the above mentioned reference (http://www.
eurobserv-er.org) provides some preliminary data regarding power generation in
Europe in 2009 of 62.2 TWh gross, using wood as primary energy. Assuming an
overall performance of 25% in the transformation of biomass to electricity, biomass
consumption for this purpose was around 248.8 TWh. In order to transform TWh
to conventional units referring primary energy consumption (ktoe), an appropriate
conversion factor must be implemented. According to reference [4], 1 TWh is
equivalent to 86 ktoe. Thus, the consumption of biomass for electricity generation in
2009 in Europe was 21 398.8 ktoe (21.4 Mtoe). Since the total biomass consumption
in Europe during 2009 was 72.77 Mtoe, it can be inferred that the percentage of
biomass used in Europe for electricity generation is approximately 29% of total
biomass. The remaining 71% is used to generate heat. It should be noted, in this
regard, the role played by Germany, Sweden and Finland, as these three countries
account for almost half of all biomass electricity in Europe. At the other end,

http://epp.eurostat.ec.europa.eu
http://epp.eurostat.ec.europa.eu
http://www.idae.es
http://www.eurobserv-er.org
http://www.eurobserv-er.org
http://www.idae.es
http://epp.eurostat.ec.europa.eu
http://www.eurobserv-er.org
http://www.eurobserv-er.org
http://www.eurobserv-er.org
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countries such as Romania, Estonia and Latvia show very little electrical power
supplied by biomass.

In Spain, and on a provisional basis, the gross production of biomass electricity
was of 2.14 TWh in 2009 (http://www.eurobserv-er.org). After proper calculations,
as described in the previous paragraph, this amount corresponds to the consumption
of primary energy (biomass) of 8.56 TWh, equivalent to 735.82 ktoe. Since solid
biomass total consumption in Spain in 2009 was 4,315 ktoe (http://www.eurobserv-
er.org), the percentage of biomass in Spain dedicated to electricity production is
only 17%. The remaining 83% is used for heat generation.

It is evident that such quantities indicate a low biomass development, especially
in electrical applications, both in Europe and Spain. Such slow growth occurs
despite the high percentage of renewables represented in the national electricity
market (32.6% of the total, as previously shown). Therefore, identification of
barriers that slow down the development of biomass is necessary, as well as trying
to overcome such barriers with designed actions on all areas: institutional, business,
research and development, programming, etc. . .

3 Barriers to Biomass Development

In order for biofuels to gain greater market share, they must be available (in
quantity, quality and price) and easily distributed (transported). But there are several
drawbacks, some of which are mentioned below [4].

In the case of forest residues, costs arising from cleaning, chipping and trans-
portation activities substantially exceed the benefits achieved by its energy potential.
It is also difficult to ensure a stable and homogeneous production of large biomass
amounts in a given area. Finally, forest residues have other traditional and industrial
uses, which make their energy use more complicated.

As for agricultural waste, they are seasonal and, similarly to forest residues, it is
necessary to apply a series of pre-treatments such as chipping (in the particular
case of wood wastes) or compaction (if crops) to reduce transportation costs.
Furthermore, their distribution and the small scale of most farms are other problems
to take into consideration.

The level of waste generated by the forest industry is initially high, but its
production fluctuates and its availability becomes influenced by the same industrial
activity generating it. By contrast, wastes from agrifood industry come from a great
variety of sources, and generally, retain a high moisture content, which complicates
its handling for energy use by conventional combustion technologies. In the case
of residual biomass with high moisture content, it is highly advisable to use
biodegradation techniques (anaerobic digestion and fermentation) in order to extract
energy from this type of waste.

To properly develop, energy crops (herbaceous or wood) need a legislative and
support framework in order to provide farmers confidence towards changing their
traditional activity for the production of such type of crops. The lack of crops energy

http://www.eurobserv-er.org
http://www.eurobserv-er.org
http://www.eurobserv-er.org
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performance-based practices and projects in action leads to uncertainty regarding
its financing. Currently, costs associated with cultivation and collection of this type
of product are too high. In addition, investment cost associated with power plants
fuelled by energy crops is much higher than conventional plants. All these elements
decrease the economic viability of projects to the point of unprofitability.

Universities and research centres must undertake R&D actions to achieve greater
incursion of such technologies in the Spanish energy system. At the same time,
projects validating biomass energy, environmental and economic profitability are
necessary.

The next section reports on a series of actions that are being developed at the
University of Extremadura in order to contribute to biomass development in the
region.

4 Some Proposals from the University of Extremadura

4.1 Assessing the Energy Potential of Forest Biomass in the
Northern Province of Cáceres (Extremadura, Spain)

As above mentioned, one of the main hindrances to biomass energy management
lies on the difficulty of ensuring a steady supply for thermal or electric power
generation. The viability of a project would thus largely depend on both availability
and management of the biomass resource. However, identifying and assessing the
potential of different forest species for energy purposes is a main concern for
most developed regions worldwide in order to replace fossil fuels and therefore to
contribute to biosphere sustainability.

Around 50% of the area in central regions of Spain is mainly covered by dehesa
woodland, featured by medium wood density approaching 40% wooded area and
a secondary vegetation cover mostly represented by diverse pasture species. The
remaining area (11–12%) corresponds to several shrub species and primarily Pinus
pinaster woods [5].

A recent work on the assessment of the energy potential of the main forestry
biomass wastes in the province of Cáceres (Spain) can be found in the scientific
literature [6]. GIS-based techniques were used not only for the geographic mapping
of biomass resources, but also as an inestimable tool for operation and management
activities.

The methodology followed a four-stage procedure: (i) Determination of the
theoretic biomass potential in terms of the previous location and estimate of the
annual quantities of biomass generated by the most representative forestry species in
the area under study; (ii) Available biomass potential was obtained via the selection
of the main forestry species in the region on the basis of the two following aspects:
extension of their regional distribution and difficulties in the collection process due
to steep terrain or some other drawbacks; (iii) Energetic characterisation of biomass
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Fig. 2 Global energy potential (a) and annual amount of forest biomass (b) in the area under study
(northern Cáceres)

and determination of technical feasibility for power production—i.e. determination
of technologically exploitable potential—; (iv) Finally, consideration of the fact
operations are based on the environmentally exploitable potential, since the biomass
derives from conventional forestry activities and from clearing of underbrush in
access tracks for fire prevention.

As a result, it was asserted that there is a vast biomass potential in the northern
area of the province of Cáceres, with rates approaching 463,000 gross t/year, which
would yield an equivalent energy potential of around 139,000 toe/year. Steep slopes
(sometimes exceeding 20%) play a drastic role in biomass collection, and lead
to a 50% reduction of the biomass potential. Figure 2a, b represent the global
energy potential from forest residues in the province of Cáceres and the amount
of forest biomass collectable from slightly sloped areas, respectively. Optimal
locations for forest-biomass-supplied energy plants are shown in Fig. 3. Note that
figures represent potential quantities, provided that actual values might strongly
depend on the frequency the forestry activities that generate the residual biomass
are performed. In view of these data, and linked to the policies on conservation and
maintenance of dehesa (and some other types of woodland), to the development of
new techniques for forestry biomass exploitation as well as to the continual supply
of good quality biomass, it could be concluded that forestry wastes might—at least
partially—come to replace current fossil fuels in Extremadura and Spain.
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Fig. 3 Optimal locations suggested for forest-biomass-supplied energy plants in northern Cáceres

4.2 Use of Biomass in Services Sector. Installation of a
Biomass Boiler at Zafra Regional Hospital (Badajoz)

Demonstration facilities for the general public are another relevant measure for
the development and consolidation of biomass in the energy market. This point is
enhanced if they are installed in buildings devoted to public care and administration,
like Hospitals and Health Centres.

The installation of specific facilities for the production of thermal energy from
biomass in buildings associated to the tertiary sector is one of main current
challenges faced by the renewable energy sector, which has successfully emerged in
terms of solar energy collection, but remains underdeveloped in Spain with respect
to the particular case of biomass [7, 8].

A 430 kW biomass boiler for heat and domestic hot water production was
installed to operate as complementary equipment to the conventional existing units
in Zafra Hospital (Badajoz) by November 2009. It is made of sheet steel with a
three-step vertical flue cleaning system and operates at 4 bar. It is designed as a
modulating-cascade type, equipped with automatic ignition and ash-pusher device.
Moreover, it incorporates a specific set for solid-particle retrieval based on cyclone
effect.
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The biomass fuel is introduced into the boiler from a storage silo by an endless
screw, so that thermal energy is transferred to the water stream of the primary
hydraulic circuit.

In order to regulate the heating energy demand—and therefore to achieve a
greater efficiency—a 2000 l buffer tank was installed as heat sink to prevent multiple
burner startup. This way, the setup performance was optimized and operating life of
facilities was extended (Fig. 4).

For the sake of efficiency, the facility is equipped with a remote control panel so
that operating parameters are monitored in real-time.

If the corresponding subvention from the Regional Government is accounted
for (Decree 60/2007 April 10th), the feasibility analysis of the installation sets
investment payback time as 5–6 years, as shown in Table 2.

The energy balance of the installation was carried out according to the energy
demand reported for the preceding 5 years (see Table 3). The installation had to meet
the annual heating demand of the Hospital, which is quantified as 812,515.5 kWh
(0.07 toe/year equivalent fossil fuel savings, approximately). Note that calculations
were made assuming the efficiency of the biomass heating facility as 10% lower
than that of any other conventional diesel boiler.

Carbon dioxide emissions due to biomass combustion are taken as neutral. With
regard to the rest of contaminants, emissions are negligible. This way, the pollution
charge associated to conventional diesel boilers is equivalent to the avoided charge
associated to the substitution by a biomass boiler (see Table 4). As can be observed,
positive increment of emissions is only reported for particles, which account for all
solid or liquid constituents present in the atmosphere whose size ranges from that
of a simple molecule up to 100 microns.

It should be noted that part of the hospital staff-managers and maintenance
staff-showed initial reluctance to the installation of the biomass equipment, which
was a shortcoming for the direct implementation of this technology. More than
3 months of continuous operation of the biomass boiler had been needed to verify
that collection, load and unload activities do not require neither additional efforts
nor further increase of the daily workload of maintenance personnel, and therefore
to overcome the remaining obstacles that had impeded regular operation of the
installation.

Seven months after installation of the biomass boiler, the main conclusions might
be stated as follows:

Hospitals are shown to be suitable buildings for the installation of biomass
facilities, provided their high energy consumption rates regarding hot domestic
water as well as heating and cooling requirements. Such specific energy needs
would allow biomass systems continuous operation throughout the whole year, thus
favouring both depreciation of the installation and a drastic reduction of contaminant
emissions to the atmosphere. The permanent presence of maintenance staff in the
room where the biomass boiler is located eases the additional operations derived
from the maintenance of this type of installation, mainly due to furnace cleaning
and ash removal. However, specific lifelong training programs for maintenance staff
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Fig. 4 Biomass boiler installed at Zafra Hospital and operating scheme

Table 2 Economic balance
of the biomass installation at
Zafra Hospital

Subvention 51,600 euros
Cost of installation 125,400 euros
Annual fuel savings 23,131.04 euros
Investment payback time 5.4 years
Savings over useful life (10 years) 231,310.40 euros

Table 3 Energy balance of
the biomass installation at
Zafra Hospital

Thermal energy demand 812,515.5 kWh
Useful power 430 kW
Temperature 84oC
Efficiency 80%

are crucial for the implementation and development of renewable energy units in
hospitals.

It has been observed that acting on the supply and demand of fuel as well as
promoting renewable energy sources through the use of biomass in public buildings
would help the consolidation of a local biomass market.
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Table 4 Environmental
balance of the biomass
installation at Zafra Hospital

NO2 (kg) –5,852.81
SO2 (kg) –303.537
CO (kg) –1,249.17
CO2 (kg) –242,829.6
Particles (kg) 140.72

Furthermore, it has been proved that biomass facilities might also be used for
educational purposes regarding awareness and demonstrations on environmental
issues aimed at general public, so that current prejudices about this type of
installations could be mitigated.

On another note, regarding the installation of biomass units in Health facilities,
olive stones have been documented to achieve advantageous use with respect to
conventional wood pellets provided lower market price, proper homogeneity and
lower rates of residual ash after combustion.

Some other studies on the energy, environmental and economic analysis of public
buildings in the Spanish Autonomous Communities Extremadura and Andalusia—
Health Centres and Hospitals—are currently being developed [9]. The viability of
acclimatization of public buildings in extreme weather locations by implementing
measures to minimize energy consumption (bio-acclimatization) using abundant
renewable energy sources (mainly biomass as well as solar thermal and photo-
voltaic) is therefore stated.

4.3 Biogas Production from Agrifood Industry Wastes

Anaerobic digestion (AD) is a biological degradation process by which organic
matter, in the absence of oxygen and due to the action of specific sets of bacteria, is
broken down into a series of gaseous products known as “biogas” (CH4, CO2, H2,
H2S, etc.), a digested effluent (a mixture of mineral elements like N, P, K or Ca) and
some other nondegradable compounds. Such process can therefore be regarded as a
suitable biological treatment for residual biomass with high moisture content.

The biogas shows a high percentage of methane, CH4 (between 50% and 80%,
which makes it suitable for energetic exploitation by combustion in engines, turbines
or boilers, either alone or mixed with another fuel.

The AD is featured by the existence of four consecutive stages in the substratum
degradation process (hydrolysis, acidogenesis, acetogenesis and methanogenesis)
and the action of five main populations of microorganisms (hydrolytic, acidogenic,
acetogenic, hydrogenofilic-methanogenic and acetoclastic bacteria).

A schematic diagram of the laboratory-scaled experimental setup used for the
anaerobic digestion experiments is shown in Fig. 5. The reactor was a CSTR
type (continuous-flow stirred-tank reactor) with about 6 l operating volume. It was
controlled by an automaton which regulates the substratum feeding supply, the
operating temperature as well as the agitation stage inside the reactor.
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Fig. 5 Continuous-flow strirred-tank reactor (CSTR) anaerobic digester

Experiments were conducted within the mesophilic range of temperature, keep-
ing temperature at 38oC by ceramic heating elements installed in the lower part
of the digester. The biodigester was fed using a peristaltic dosing pump that sucks
the substrate from a glass container equipped with a magnetic stirrer to guarantee
homogeneity of the substratum before being introduced into the digester. The
reactor content was agitated by the recirculation of part of the biogas produced by
another peristaltic pump. The biogas generated during the process was collected in
a gasometer, which is a device devoted not only to provide direct visual readout of
the accumulated volume of biogas, but also to guarantee safe biogas storage, hence
preventing fire hazard, bad odor, etc. The volume of biogass inside the digester was
controlled by an overflow spillway, so that the digested effluent was collected and
stored by a cone separator. Finally, sampling operations in the digester were carried
out by specific valves installed in its lower section.

The following paragraphs report on a summary of the main results achieved from
diverse types of residual material at the Laboratory for Alternative Energy Sources
in the University of Extremadura.

4.3.1 Anaerobic Digestion of Wastes from the Municipal Slaughterhouse
in Badajoz

The optimal operating parameters to achieve large biogas volumes as well as highest
degradation of wastes were:

– Temperature: 37–38ıC.
– Inoculum feeding rate: 350 ml/day, which leads to 17 days Hydraulic Residence

Time (HRT).
– Concentration of solids in the substrate: 6%.

10.6 l/day biogas production rate was achieved, which approaches 30.8 Nm3
biogas/m3 degraded substrate, or 1.9 l biogas/l digester day.

Regarding the level of degradation of the wastes, 75.3% and 97.8% reductions
were achieved for the Chemical Oxygen Demand (COD) of the effluent sludge and
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for the liquid fraction of such degraded effluent, respectively [10]. According to
those results, the authors estimated an investment payback time between 5 and
7 years for the construction of a biogas production plant to operate with this type of
wastes—as accounting for economic aids provided by Spanish regulations for this
kind of projects—.

4.3.2 Codigestion of Wastes from Agrifood Industry and Iberian Pig
Slaughterhouse Operations

A series of experiments using different proportions of slaughterhouse and tomato
industry wastes were conducted to yield the forthcoming results. The average
composition of the output products were observed as: (i) 6% solids (viscera, fats,
stomachs, etc.), 93% washing water and 1% blood for slaughterhouse wastes;
(ii) 10% solids (7.14% peels and seeds, 2.86% sludge) and 90% water for wastes
from tomato processing activities.

Results are listed in Table 5. The following features were noted as concentration
of tomato in the substratum was increased:

– Both alkalinity and the concentration of volatile fat acids (VFA) decreased. The
gradual reduction of those parameters allowed the rate VFA/alkalinity to remain
within the optimal interval, which accounted for stability and self-regulation
(for each of the selected substrata) in the biological reactions involved.

– Biogas production decreased. Nevertheless, volumes of produced biogas were
larger for each co-substratum than for any experiment regarding the specific
degradation of wastes from tomato processing industry.

– The degradation of the substratum remained at around 72–78%.
– The HRT could be reduced by feeding higher volumes of the residual mix-

ture [11]. This was due to the fact that tomato residues showed a lower
biodegrading potential. This way, when increasing the concentration of tomato
in the feeding substratum, higher feeding rates were needed to reach the optimal
organic charge (as lower quantities of the input inoculum would be degraded).

– On another note, it could be stated that codigestion leads to an increase of the
pH in the reaction medium (up to 7.5–7.8) if compared with pH values observed
for separated experiments with slaughterhouse wastes or residues from tomato
processing activities.

4.4 Solar Drying Processes and Pelletizing of Wet Residual
Biomass Conducted at the University of Extremadura

Another basic technique devoted to reduce the moisture content of biomass samples
is thermal drying. This process increases biomass heating power and, at the
same time, allows achieve a reduction in the associated handling costs. The main
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Table 5 Experimental results for the anaerobic codigestion of slaughterhouse wastes and residues
from tomato processing industry

%Slaughterhouse/ Inoculum feeding %Degradation
%tomato flow ml/day HRT days m3biogas/m3inoculum day OCD

100%/0% 250 24 22.53 ˙ 1.48 73.29 ˙ 2.49
80%/20% 200 30 22.75 ˙ 2.02 72.83 ˙ 3.34
60%/40% 750 8 22.26 ˙ 2.04 73.34 ˙ 4.27
40%/60% 600 10 23.02 ˙ 5.33 78.02 ˙ 3.65
0%/100% 600 10 5.45 ˙ 0.83 63.46 ˙ 5.28

drawback lies in the high energy intensity involved in such operation (between
4,500–9,200kJ/kg evaporated water, depending on the specific technology, the
features of the product and operation stages), hence the high exploitation costs,
which might hinder economic feasibility. At this point, solar energy plays a relevant
role as an alternative energy source.

Solar radiation shows two main drawbacks:

1. The energy density of radiation is low, which makes drying air operate at low
temperatures (< 60ıC). Due to this, as well as to minimization of operating costs,
the best configuration to perform the drying process is that of a thin layer on an
appropriate mounting device. The concentration mode would allow operation
with significantly higher drying air temperatures, although at the expense of
higher costs for specific equipment.

2. The intensity of radiation depends on time, which requires control strategies
involving the use of intermediate storage systems, profuse ventilation during high
solar exposure periods, etc.

The study of the kinetics of the drying process, together with the associated
energy-exergy analyses, are crucial tasks for the design of the solar drying device as
well as for the estimate of its load-unload intervals. As an example, some interesting
experimental results obtained at the University of Extremadura concerning several
types of biomass residual products (peels and seeds from tomato processing
industry) are presented in the present work [12]. Figure 6 represents an operating
scheme of the laboratory-scaled convective dryer used to perform experiments in
steady regime.

Results for the analysis of the kinetics of the drying process are shown in Fig. 7,
which represents the drying curves as well as the dependence of drying velocity on
operating time.

The following mathematical model for the convective drying of industrial tomato
wastes at low temperatures was obtained by using nonlinear regression (together
with multiple regressions) techniques:

MR D exp
˚ ��0:0001104� 5:81 � 10�8T � 1:81 � 10�8T 2 C 6:8536 � 10�5V

�

t .0:51783C0:001308T�0:0001533T 2C0:27373V /� (1)
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Fig. 6 Laboratory-scaled convective dryer

Fig. 7 Top: Experimental
drying curves. Bottom:
Drying velocity as a function
of operating time

t being the drying time (s), T the drying air temperature (oC) and V the speed of
drying air parallel to sample surface (m/s). The goodness of the fit was guaranteed
as r2med D 0:9961 [12].

The energy analysis of the process allows the determination of available thermal
power (kJ/s), thermal power used (kJ/s) and percentage ratio used/available energies.
All experiments showed energy ratios below 20%, which confirmed the availability
of remaining drying power in the air stream leaving the dryer.
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An exergy analysis of the process allowed the quantification of both exergetic
loss and time fluctuations in exergetic efficiency. Setting low drying temperatures
led to more satisfactory exergetic efficiency, even at the expense of longer operating
periods.

It should be noted that studies on laboratory-scaled convective drying experi-
ments do not account for direct solar radiation on samples, which notably acceler-
ates the drying process at industrial scale. The quantification of this phenomenon
is quite complex, provided the influence of the intensity of solar radiation and of
the colour of the absorbing surface and the instantaneous moisture content of the
product.

Experimental results were used to determine the average operating ratio during
the summer term (according to availability of this type of residual biomass) as
22 kg/m2 day.

After drying operations had been carried out, the product needed to undergo
densification. Pelletizing is regarded as one of the most efficient densification
processes to recover agricultural and biological wastes [13]. Before dried tomato
residues (with diverse moisture contents, i.e. 20.52%, 24.81%, 28.95%, 34.20% and
37.79%) were subjected to such process, samples were crushed in a blade mill Euro
tools, 220 V/1.5 kW/50 Hz/2 850 rpm, in order to ensure suitable granulometry.
Particle size distribution of crushed samples was determined with the use of a sieve
tower Retsch Test sieve model AS 200.

Experiments were conducted with a laboratory-scaled pelletizer Euro tools, 380
V/15 kW/50 Hz. Residual biomass was introduced into a flat matrix under the
action of (constant pressure) pressing rollers. The raw material passed through
the matrix while being compressed, so that pellets were manufactured according
to the characteristic diameter of the matrix (namely 6 mm for the experiments
herein described). Samples were finally cut as suitably cylinder-shaped units of the
expected length. Laboratory samples of the final product are shown in Fig. 8.

A series of physic-chemical properties of pellets manufactured from tomato
processing industry wastes (peels and seeds) were analyzed. Samples were selected
according to various moisture contents, provided this parameter plays a relevant role
in quality tests of densified residues.

Particle and apparent densities, hardness and durability of pellets were observed
to increase as moisture content of the biomass residue was raised. A significant
decrease of those magnitudes was seen as moisture content of dried (by direct solar
radiation) samples exceeded 30%, which was set as the maximum suitable moisture
content of biomass samples to guarantee quality of the final product.

The improvement of the densification operations of these residues by using some
kind of binding substances to optimize the process and the features of the final
product will be the subject of future work [14].
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Fig. 8 Sample pellets manufactured at laboratory for different moisture content percentages

4.5 New Energy Crops

Tobacco can be mentioned as an example of search for new energy crops. In fact,
Extremadura has extensive experience in tobacco cultivation. Following CAP’s
(Common Agricultural Policy) conditions, new alternatives to tobacco farmers in
Extremadura need to be offered, so that they can attain more sustainable living
conditions and enable their establishment in rural areas. Usage of tobacco as
biomass to generate energy through a process of digestion or anaerobic co-digestion
could be regarded as a novel application.

The idea of tobacco as a plant that requires an expensive and demanding crop
is widely spread, and it is certainly true when leaf production is intended for the
tobacco industry. However, tobacco plants can be grown by implementing a similar
method to forage such as alfalfa, with a high density planting, which can reach high
productions: above 150 t/ha of green biomass with a high moisture content not lower
than 80%, and therefore with a maximum of 20% dry matter.

Once crops have been established, tobacco plants can be successively cut,
provided after each cut, plants sprout again at a growth rate that can be harvested
after reaching 60–70 cm. Four or five cuts can be made over one growing season,
which may extend to the end of October. Therefore, the potential of tobacco growing
for biomass production is based on its crop high productivity.

Since cut plants need to be removed as soon as possible to allow saplings
regrowth, collected biomass barely lowers its amount of water. High water content
makes tobacco impossible to be used in thermochemical processes (combustion,
pyrolysis and gasification). However, tobacco plants can actually be used as
feedstock in anaerobic biodigestion processes.
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This process shows many advantages. Some of them are as follows:

– Waste energy recovery in an ecological way is ensured.
– Large amounts of energy are produced.
– Recycling organic matter for further energy use is allowed.
– High quality compost (which may be organic, depending on the nature of the

feeding waste product) is produced.
– No odour emissions.
– A CO2-neutral fuel is obtained.

Tobacco anaerobic digestion tests have been conducted in a semi-continuous
mode. The experimental setup is outlined in Fig. 9. It consists of a 2 l capacity glass
reactor that is kept continuously stirred at a temperature of 38ıC. The inoculum
is initially inserted together with the tobacco and water mixture and the reactor is
closed with a lid that has five openings (four of which are sealed and the fifth one
to allow feeding) and the output for produced gas. Generated biogas is channelled
towards wash bottles to capture CO2, thus obtaining exclusively methane. As
methane moves forward to the water containers, it displaces a volume equal to
the volume of produced methane. In order to stabilize pH and to optimize the
production of methane, substrate must be neutralized using lime, before injection
into the reactor.

Preliminary results from two tobacco dry methanation tests, diluted by 80% and
50% respectively, in pressurized water and with an active biomass inoculum, were
of 770 l biogas/kg organic matter (50 biogas Nm3/t substrate-tobacco biomass-), in
the case of 80% dilution (KOMPOGAS. Private communication, 2008).

Anaerobic digestion experiments were conducted in the laboratories of the
University of Extremadura for three different tobacco/water mixture ratios, i.e.
20%/80%, 15%/85% and 10%/90%. Using these substrates and setting HRT as
20 days, it is possible to obtain average tobacco yields of 21, 54.7 and 51 m3 CH4/m3

respectively, as well as percentage reduction in the initial Chemical Oxygen Demand
(COD) of 46, 62.8 and 4%. According to such results, the optimal tobacco/water
ratio was set as 15%/85.

Therefore, there are alternatives to the tobacco CMO Reform, whose implemen-
tation began in 2006, and which has generated negative consequences in the tobacco
growing area of Cáceres. The surface of tobacco has declined and is expected to
continue falling, remaining to finally remain around 50–60% (about 6,000 ha) of
the acreage of traditional tobacco. This decrease will mean a highly detrimental
economic impact for the area, as well as direct job losses to farmers. It will also
represent a significant loss for economic and employment activity generated in the
area.

4.6 Search for Alternative Bioenergy Sources

Annual cellulose production by plants through photosynthesis is estimated as 4�1010
t [15], of which only 2% are used for combustion and other industrial processes.
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Lignocellulose is a major component of various wastes from industries, forestry,
agriculture and a large percentage of urban waste. It shows a great bioenergy
potential since mostly consists of glucose polymers, a molecule that can be used
both for bioethanol production through fermentation processes, as for methane
production in anaerobic digestion processes. However, the main obstacle to its
energy use is the difficulty to obtain glucose from cellulose since its structure is
highly resistant to all kinds of treatments, chemical, physical as well as enzymatic.
The limiting step, therefore, lies in the pre-treatment to be applied to cellulose in
order to release glucose right before its conversion into ethanol or biogas.

There are many treatments, both physical and chemical, to break the crystalline
structure of cellulose and consequently, to make molecules more accessible to the
action of enzymes that degrade them. Such treatments are, in general, quite effective
but have the disadvantage of requiring high energy (physical) or producing large
waste quantities (chemicals) that must be neutralized at the end of the process.
Biological treatments show none of these problems, but are very slow and show
low energy efficiency, so that they are currently not viable. Therefore, research has
focused on optimizing all types of pre-treatments and in case of biological ones on
increasing their speed and efficiency.

Among biological processes, the most studied is that associated with fungus
Trichoderma Reesei, which is featured by its ability to degrade cellulose. It is able
to produce the three major types of cellulose, and is resistant to chemical inhibitors
and stable at low pH and at temperatures up to 50ıC, which eases its industrial use.

As for the degradation of lignocellulose residues, another line of research with a
promising future is the study of the bacterium Clostridium Thermocellum, which is
able to grow efficiently on cellulosic substrates. This bacterium has the advantage
that in addition to degrading cellulose is capable of producing ethanol from derived
sugars, all in the same reactor and in a single step, although it can only efficiently
use ˇ-1, 3 and ˇ-1.4-glucans and it prefers longer-chain cellodextrins. Nowadays,
the genetic engineering process is being improved by enhancing the microorganism
and by trying to fully understand the mechanisms that favour its dual function [16].
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More recently, it has been noticed that enzymes present in microorganisms that
develop in the intestinal tracts of termites are miniature bioreactors, capable of
fragmenting the complex polymer chain of cellulose and xylan in much smaller
sugar units that feed termites. In the biotechnology field, these enzymes could be
incorporated to fermentation processes, which would yield waste wood biofuels
and other agrifood waste. This research restriction lays on the complexity of the
insects’ microbial population and the complex symbiotic relationships between
microorganisms in the intestinal tract of termites. They are able to transform
95% of the ingested cellulose into fermentable sugars, which makes it particularly
interesting to study the microflora residing in their intestinal tract, as well as the
possibility of discovering new celluloses which significantly increase the yield of
treatments biological cellulose for energy purposes.
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Part VIII
Science for the Lay Audience



Swings of Science: From Complexity
to Simplicity and Back

L.M. Pismen

1 Introduction

I start with the lines by Boris Pasternak, given here in my poor translation:

In the end, one cannot do but to fall like into herecy into unheard-of simplicity.
But we will not be spared if we fail keeping it concealed:
people need it most of all but they better understand complexity.

People need simplicity, to grasp the essence of things, maybe in a single moment
of revelation—but they better understand complexity, being evolved to endure
challenges of complex environment.

From the very beginning of civilization, man tried to introduce order—and
thereby “unheard-of simplicity” into the infinite complexity of the surrounding
world. The order, in its simplicity, had been, however, always fragile and hard to
sustain, as it was overpowered by ever present ambient complexity, as well as by
internal complexity of man who never stops at simple explanations and simple rules.

2 Swings of Religions

We see this swinging motion, from complexity to simplicity and back, already in
the evolution of religions, which had served historically, in many ways, the same
epistemological purpose that science is serving today (I do not say anything on other
functions of religion). Primitive magical, shamanic rituals took the complex world
as is, as a “black box”, if we use a modern term. There was a fairy in every tree, and
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a nymph in every stream, and practical benefits could be obtained by placating the
spirits, without insight into their nature.

More order was introduced by ancient religions with their hierarchical pantheons
and codified rituals, and eventually by the monotheism with the unique God as
the source and the cause of everything. The tetragrammaton, the unpronounceable
sacred name, is formed as the active form of the verb “to be”, loosely translated as
“he bringeth into existence”. A direct line can be drawn from here to the dream of
modern physics, “the theory of everything”. When we read now the first chapter of
the Book of Genesis, it sounds not unlike the theory of phase transitions in early
Universe, as explained to a pastoral tribe, followed by an account of creation of
living forms going in about the same order as the theory of evolution. Other unified
religio-philosophical systems have been created in the “axial age” in India, China,
and Greece. This was the period, centered around 500 BC, during which, according
to Karl Jaspers [1], “the spiritual foundations of humanity were laid simultaneously
and independently”.

Complexity has found its way back when the unified systems were expanded and
elaborated in diverse ways: in Judaism, first by prophets and further by talmudic
scholars and eventually, back to magic, by kabbalists and Hasidic mystics; in
Christianity, by expanding the unique God to Trinity and veneration of a multitude
of saints; in Buddhism, by proliferation of schools and the cult of bodhisattvas.
It was counteracted by retrograde simplification, in islam, returning to the ethos
of desert tribes, and in various iconoclastic and puritanical movements throughout
Christian history, and eventually in totalitarian ideologies of twentieth century.

In our time, we see proliferation of sectarian and esoteric beliefs, as well as all
shades of traditional religions unrestricted, thanks to globalization, by geography
or ethnicity. Science remains a thin crust over the molten lava of ignorance. The
society at large views science rather like a hog from a fable who does not care
that the oak will wilt when its roots are dug under, but only needs the oak’s acorns
to remain available. The fruits of science, from communication tools to weapons,
are eagerly used by the same forces, from terrorists to preachers to pop stars, who
undermine its roots.

3 Swings of Elements

3.1 Thales to Dalton

In science, starting with its pre-scientific origins, the quest for simplicity is seen,
first of all, in a quest for elementary entities in Nature. The great idea of Thales,
not unlike religious visions of his time, was that water is the foundation of all.
By comparison, the symmetry-breaking transition in the first chapter of the book of
Genesis also involved waters, separated by a domain wall—the firmament of heaven.
This far-reaching universality was later relaxed to a rational Aristotelian system of
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Fig. 1 Left: Aristotelian and medieval elements. Upper right: Dalton’s elements. Lower right:
symbolic presentation of composition of matter [2]

four classical elements, earth, water, air, and fire, or five, including quintessence,
which dominated for almost two millenia. Alchemists, more practically minded,
added Tria Prima, crucial for their transmutation activities: sulfur, mercury, and
salt, with a number of “mundane” elements on the top of that.

In the new age, a completely different empirically based principle was suggested
for identification of elements: they were defined as substances that could not be
split into simpler constituent parts. This was the basis of John Dalton’s system
of elements; their number was not restricted, and kept expanding throughout the
rational nineteenth century (Fig. 1).

The notion of elements was naturally compatible with the atomic hypothesis
going back to Leucippus and Democritus in the fifth century BC: to each indivisible
element corresponded an indivisible atom. and compound species, with their
specific properties, could be assembled by combining atoms, as seen in a symbolic
artist’s rendering in Fig. 2. The existence of atoms had not yet been proven,
and many prominent scientists, Like Wilhelm Ostwald, Ernst Mach, and Dmitry
Mendeleev, still believed in infinite divisibility of matter at the break of the twentieth
century, well after the discovery of radioactivity which made atoms both real and
not really atomic but divisible.

3.2 Mendeleev to Bohr

This was particularly ironic in the case of Mendeleev, who has organized the
multitude of elements known at the time into his famous periodic table. While
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Fig. 2 Assembling elements into variegated structures [3]. Courtesy TM/R Design

the elements were ostensibly ordered in the periodic table by their atomic mass,
Mendeleev took liberty to switch places of some elements to fit the periodic change
of their chemical properties, and to leave empty spaces—thereby predicting the
elements unknown at the time, which later were discovered to add to the glory
of his genius. This was an amazing breakthrough: what was really important was
not the atomic mass thoroughly measured by nineteenth century chemists, but
just the innocuous natural number assigned to the element in the periodic table.
The reason has become shortly clear through the discovery by Rutherford of the
structure of the atom that consists of a nucleus with the charge equal to its number
in Mendeleev’s table, surrounded by the matching number of electrons. Rutherford
called the positively charged nuclear particles protons, and inferred existence of
neutral particles of a comparable mass, neutrons, to account for the difference
between the atomic mass and the charge.

The periodicity of chemical properties was explained by a bold hypothesis of
Niels Bohr allowing electrons to move around the nucleus along a fixed discrete
sets of orbits, in defiance of laws of classical electrodynamics, which predicted that
electron should gradually lose energy, and fall eventually onto the nucleus.
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3.3 Rutherford to Strings

This was the moment of unheard-of simplicity: only three elementary particles
remained; electron, proton and neutron; but we were not spared, as “weird”—from
the contemporaries’ point of view—quantum mechanics came forth to explain the
inconsistencies of Bohr’s model. Complexity kept creeping in: Dirac’s relativistic
quantum theory required an antiparticle partner for each particle, and by the mid
twentieth century accelerators produced a cornucopia of baryons and mesons,
arbitrarily named and obeying no particular order. The new coup of simplicity
came with the establishment of the Standard Model; the new set of elements were
quarks and leptons, neatly organized in three generations; all particles predicted
theoretically to fit this scheme have been later discovered experimentally, except the
quintessence of the scheme, the elusive Higgs boson.

This order is being endangered again by hypothetical supersymmetric partners
of all particles and murky dark matter and dark energy. Finally, the string theory
with its zillions of versions, realized, perhaps, in a zillion worlds of the multiverse,
kills the dream of finding a unique single principle governing the complex world. A
multitude of outcomes renders this theory immune to empirical falsification, which,
if we follow the definition by Karl Popper [4], removes it out of the realm of science,
back into the ancient world of metaphysics and magic.

4 Swings of Cosmology

4.1 Aristoteles to Newton

The macroworld of cosmology, which, as we now believe, is deeply related to the
microworld of elementary particles, has also passed through its cycles of simplicity
and complexity. The neat Aristotelian system of seven planets rotating around the
quiescent Earth was supplemented by Ptolemean epicycles to better fit observational
data; this was simplified by Heliocentric system of Copernicus. Young Kepler came
with a fantastic scheme of nesting the five Platonic solids, each encased in a sphere,
to produce six layers, corresponding to the orbits of the six known planets (Fig. 3).
He thought at the time that he had revealed God’s geometrical plan for the universe.
The perfect geometry of a circle or a sphere came, however into contradiction with
refined astronomical measurements of Tycho Brahe. To explain them, Kepler came
to an idea of elliptical orbits; he created a formula in which a planet’s rate of motion
is inversely proportional to its distance from the Sun which, as a symbol of God the
Father, was the source of the motive force in the solar system. The laws of planetary
motion were soon rationally explained by Newton’s theory of gravitation. Though
Newton was no less mystically inclined, he concentrated his esoteric views in his
passion to alchemy rather than in mathematical and physical work we admire to
this day.
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Fig. 3 Left: Kepler’s nesting of the five Platonic solids. Right: Universe expanding from Big Bang

4.2 Universe to Multiverse

This theory reigned supreme even after the Sun was demoted to the status of a
run-of-the-mill insignificant star in a run-of-the-mill galaxy, and the cosmological
question has shifted to the structure of the Universe as a whole. The first trouble
surfaced in the experiment by Albert Michelson and Edward Morley proving that
the speed of light—which was thought at the time to be transmitted through the
ether filling up the space, as sound is transmitted through air—remains invariant,
independently of the direction of its propagation relative to the moving observer.
This made it necessary to consider time on the same footing as spatial coordinates.
The paradox was resolved by Einstein’s special relativity theory—but Einstein
claimed that he was not aware of these experiments and was driven only by
mathematical beauty and logic—by the quest for simplicity.

Since then, the cosmological question turned into the question of the structure
of spacetime. Still, no observations had contradicted Newton’s gravitation theory
in 1916 when Einstein came with his general relativity theory, which has reduced
Newton’s gravitation to pure geometry. Einstein became world-famous after his
theory was confirmed by measuring small deviations of the orbit of Mercury. For
him, this was rather a non-event. What significance has this tiny measurement
compared to the great edifice of the theory? When asked what he would do if the
experiment had not confirmed the theory, Einstein ostensibly said: “I would pity
poor God”—poor God indeed, who has not created the world according to this
beautiful plan.

The Universe was now understood as spacetime governed by Einstein’s relativity,
which expands following its creation at Big Bang (Fig. 3). The word itself was
ironically coined by Fred Hoyle, who believed in an alternative scenario of
continuous creation of matter, finally disproved by the discovery in the 1960s of
the cosmic microwave background radiation—the remainder of Big Bang.
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The ultimate fate of the Universe, and the nature of Big Bang itself remain,
however, so far unclear, and complexity is bursting out into the picture of a bubbling
multiverse where anything is possible. The contradicting modern and postmodern
attitudes can be seen in two statements of the same prominent scientist, John
Archibald Wheeler [5]: First: “Omnibus ex nihil ducendis sufficit unum” (one
principle suffices to obtain everything from nothing). Second: “Physics has to give
up its impossible ideal of a proud unbending immutability and adopt the more
modest mutability of its sister sciences, biology and geology”. The first, is Einstein’s
uncompleted quest; the second, a retreat from Einstein’s challenge to God.

4.3 From Order to Chaos

Our world seems to have been more stable in the past, both ontologically and
politically, and it probably had never been more stable than at the time when it stood
on the firm ground of the laws of Newtonian mechanics, developed into a beautiful
mathematical structure by the brilliant French and German mathematicians of the
Age of Enlightenment. The social and moral ground had been firm then as well,
even though occasionally trembled by revolutions.

Deterministic laws, should, in principle, allow computation of all future states of
the system. Laplace’s daemon should have been able to accomplish this task [6]:

An intellect which at a certain moment would know all forces that set nature in motion, and
all positions of all items of which nature is composed, if this intellect were also vast enough
to submit these data to analysis, it would embrace in a single formula the movements of the
greatest bodies of the universe and those of the tiniest atom; for such an intellect nothing
would be uncertain and the future just like the past would be present before its eyes.

Alas, even with the gravitation laws intact and no quantum uncertainty, the future
of a gravitating many-body system is uncertain. In his research on the three-body
problem, Henri Poincaré [7] became the first to describe a chaotic deterministic
system. The solar system itself is intrinsically chaotic. It is rendered unstable
by weak multibody interactions, as proven in mid twentieth century by Vladimir
Arnold—thankfully, on exceedingly long times of Arnold diffusion [8].

5 Turbulence

5.1 A Question to God

This brings us to the ultimate revenge of complexity: even when the basic laws are
firmly established, behavior of large systems including many interacting parts may
become practically unpredictable. This problem became particularly acute in such a



778 L.M. Pismen

Fig. 4 Left: Hokusai, The Wave (fragment). Right: Fractal Kelvin-Helmholtz breakup [9] (frag-
ment)

mundane everyday phenomenon as turbulent fluid motion. An apocryphal quotation
from Werner Heisenberg says:

When I meet God, I am going to ask him two questions: Why relativity? And why turbulence?
I really believe he will have an answer for the first.

A similar witticism has been attributed to Horace Lamb:

I am an old man now, and when I die and go to heaven there are two matters on which
I hope for enlightenment. One is quantum electrodynamics, and the other is the turbulent
motion of fluids. And about the former I am rather optimistic.

“Enlightenment” supposes a simple answer to a complicated question, like a
rabbi challenged to explain the essence of the Torah while standing on one foot. Why
to think that it might be possible at all? No fundamental questions are involved here;
no one doubts the Navier–Stokes equation, which well describes hydrodynamics of
a Newtonian fluid moving with a velocity much smaller than the speed of sound. The
problem of turbulence has, however, philosophical depth: the equation, apparently
deterministic, should, in principle, allow computation of all future states of the
system, as the daemon of Laplace claimed to do. This is, of course, impossible,
even without intervention of quantum uncertainty, as we all know not only from
frustrating weather forecasts, but even from a failure to predict the outcome of such
a simple mechanical process as flipping a coin. No reasonable physicist attempts
precise prediction; in many cases—those, of course, which do not concern us
personally—statistical description is satisfactory.

The challenging feature of turbulence that it is not plainly random, but has
elements of structure, as seen, for example, both in the famous drawing by Hokusai
and in a modern simulation [9] (Fig. 4). The attempts to “understand” turbulence, i.e.
to reduce it to simpler “elementary” entities went accordingly from two directions,
from statistics—maybe somewhat organized, and structures—maybe somewhat
distorted and fluent.
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Fig. 5 Quasiperiodic motion: superposition of two (above) and three (below) oscillating modes

5.2 Origin of Turbulence

The first direction is associated with Lev Landau and Andrey Kolmogorov. Landau
was tuned to generic phenomena, he might have dismissed as “sick” some curiosities
of behavior of complex systems which now find their way to covers of Physical
Review Letters and Nature. Many complex flow patterns arising near the onset of
hydrodynamic turbulence were dismissed as a “turbulence crisis”, and attention was
concentrated on “developed turbulence” formed by superposition of a large number
of waves. Landau envisaged transition to turbulence as a gradual excitation of a
large number of waves. One can see in Fig. 5 that already a superposition of three
oscillating modes looks chaotic to the eye. In developed turbulence a great many
waves of different length and matching frequency coexist, and energy is transmitted
from longer to shorter ones, as can be seen even in the Hokusai drawing; it is
expressed by Lewis Fry Richardson [10] in a paraphrase of Jonathan Swift:

Big whirls have little whirls that feed on their velocity,
and little whirls have lesser whirls, and so on to viscosity.

Quantitatively it leads to the famous Kolmogorov’s 5/3 law of the energy distribu-
tion among the modes of different wavelengths [11].

There were a lot of corrections to this simple picture. Nonlinear interactions
among the modes and their localization had to be taken into account; a diagram
technique similar to that developed by Feynman in quantum electrodynamics was
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applied. I recall one distinguished scientist saying about another one that the latter’s
merit is in bringing this method to a conclusive dead end. Nevertheless, the work in
this direction is still pursued.

Kolmogorov reportedly chuckled at Landau’s scenario saying that he is probably
unaware of more complex dynamical systems. It has been known already to
Poincaré that very simple systems, like two coupled pendula, can exhibit unpre-
dictable chaotic behavior—but the scientific community, let alone general public,
failed to appreciate this. Kolmogorov, Arnold, and Jürgen Moser showed that weak
interactions near resonances can make motion around the tori unstable.

One of the problems in Kolmogorov’s student seminar in mid 1950s was to prove
using this theory a practical impossibility of weather forecast. For Edward Lorenz,
a meteorologist, the forecast problem was particularly acute. He devised in 1963 a
toy mathematical model of thermal convection [12] that showed chaotic behavior,
with trajectories switching erratically between circling either of the two stationary
points (Fig. 6). The work remained unnoticed till late 1970s when chaos came into
fashion.

5.3 Turbulence made Simple

The Lorenz system was an example of a very simple system capable to behave
chaotically. This does not surprise us anymore: the question we can ask now is
why far more complex systems are most commonly well behaved. This was still,
however, not the end of the quest for simplicity. A system of differential equations
can be turned into a still simpler iterative equation by constructing a Poincaré map;
the complexity of behavior is retained, and can be investigated far more easily—
a pocket calculator, one of those in use 30 C years ago, would suffice to find out
change of behavior in different parametric regions. An important feature of the
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Lorenz map is a possibility of long chaotic transients and, on the contrary, long quiet
sequences bursting into chaos. This is the way to turbulence through intermittency
of Yves Pomeau and Paul Manneville [13].

Other simple chaotic systems designed in the 1970s showed the phenomenon of
repeated period doubling leading eventually to chaos. Differential equation systems
behaving in this way are qualitatively equivalent to the simplest iterative map of
all—the famous logistic map. Mitchell Feigenbaum [14] discovered transition to
chaos via the period doubling cascade while trying to help his pocket calculator to
faster compute many iterations of this map. The cascade is commonly known by
his name, although it was described earlier by Robert May [15] and the related
renormalization group discovered independently by Charles Tresser and Pierre
Coullet [16]. This scenario was considered at the time as a universal way to chaos—
but with time, as usual, complexity creeped back again, and scenarios of transition
to chaos turned out to be too numerous to be universal.

5.4 Coherent Structures

Studies of toy models prompted an alternative approach to turbulence: discerning
coherent structures which follow relatively simple dynamic equations and remain
more or less persistent while evolving in time [17]. The vortices seen in Fig. 4
give an example of structures of this kind, and more ephemeral structures can
be discerned in turbulent flows, as familiar to us in cloud and smoke patterns.
Nobody has given, however, a working definition of a coherent structure, and their
persistence time is usually quite limited.

Although we doubt that even God knows turbulence theory, practical compu-
tations of turbulent flows are gradually improving. We keep listening to weather
forecasts with attention, and forgive failures, taking note that short-range forecasts
gain reliability as computers become more powerful and data banks swell.

6 Patterns

6.1 Unity in Variety

There are great many other structures or patterns in Nature, often persisting in time
and having similar appearance in completely different settings [18, 19]. Hexagonal
convection patterns is a common form, first seen in experiments of Bénard [20], but
also sculpted by Nature in solidified lava flows—and in ephemeral cloud patterns on
different scales (Fig. 7). More fancy patterns generated by same process were seen
in the laboratory.
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Fig. 7 Hexagonal patterns in Nature. Left: Rendering of Devil’s causeway in Ireland (1642).
Upper right: cloud patterns (NASA image). Lower right: cracks in soil (author’s photo)

Another way to generate a variety of patterns, discovered by Faraday [21] but
brought to sophistication in our days, is vibrating a fluid layer; a layer of sand can
serve the same purpose. Patterns of sand created by the action of wind and water
currents are common in Nature as we all know, and more patterns are seen in rocks
and cracked soil.

Quite often, the same system—be it convection, vibration, or chemical
reactions—is capable to generate different patterns, and quite often, different
systems generate the same patterns. Both convective and chemical patterns may
look similar to desert vegetation patterns or to patterns of animal coats.

Chemical reactions can produce waves rather than steady patterns, both in
fluids and on surfaces. Chemical surface patterns on shorter scales are sculpted
by crystalline structure, distorting round spirals to a squared form or imposing a
decorated hexagonal structure. Spiral waves are ubiquitous, and are seen in different
physical settings, and on immensely different scales. In shells and flowers, it reflects
a radial growth pattern, and in the hurricane cloud pattern, the earth rotation, but
in chemical patterns, as well as in slime, it results from spontaneous symmetry
breaking. Spiral forms also commonly appear as a result of instabilities of fluid
flows and wave breaking. Another common structure seen in chemical, crystalline,
hydrodynamic, and living patterns, is dendritic.
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Fig. 8 Left: Spontaneous symmetry breaking in an isotropic open system subject to uniform
external fluxes. Right: the various chemical patterns

6.2 Turing Patterns

The general principle governing the creation of a great variety of patterns is
spontaneous symmetry breaking in non-equilibrium systems subject to external
matter or energy fluxes (Fig. 8). They are often called Turing patterns after his
famous 1952 paper [22]. The general recipe for a pattern is to have a combination
of a short-range activator and a long-range inhibitor. The principle is simple: the
inhibitor excited by the activator locally, spreads sidewise, and depresses growth
nearby; for example, animals attracted by local abundance of grass, depress the
surroundings; this pattern spreads over the available terrain. Both activator and
inhibitor can be either chemical or biological species, or, in a more abstract form,
other physical agents, and the scale of the pattern is determined by the relevant
spreading ranges.

This is another breakthrough of simplicity: A simple system of two reaction-
diffusion equations: first, a nonlinear activator equation, and second, an inhibitor
equation, which can be linear, can generate various patterns and waves in different
applications, both in chemistry and biology.

6.3 Genetic Code

But is it really a way complex living forms can be created? Life is not spontaneous;
this is recognized at least since the notion of spontaneous generation from non-
living matter e.g. insects from putrefying earth, going back to pre-Aristotelian Greek
philosophers, has been finally disproved by Pasteur. Living things develop following
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Fig. 9 Left: Homunculus in the sperm, drawn by N. Hartsoecker (1695). Right: Genetic code in
the double spiral, read according to G. Gamov

a predetermined plan—long believed to be set by Almighty—but where is hidden
this plan?

Quite an absurd answer was given by spermists of the early modern age: there is
a tiny homunculus hidden in the sperm (Fig. 9). This engenders infinite complexity:
is there a chain of homunculi “all the way down”? A far simpler plan has been
discerned in Mendel’s study of variation in peas, as he set the basis of modern
genetics while working unnoticed in a quiet monastery garden. The “homunculi”
turned out to be tightly compressed in double spirals of DNA carrying genetic
information. This was a triumph of a unique simple principle beneath the infinite
variety of forms. Only four “letters”—bases attached to the spiral backbone—suffice
to encode the order of aminoacids assembled into protein molecules. The design
ensures stability of hereditary forms, and at the same time is sufficiently flexible to
allow new forms to develop by recombination and mutation of genes, as shown in a
symbolic artist’s rendering in Fig. 10.

As related by Francis Crick [23], the great physicist George Gamow tried to
deduce the precise way this code is structured. It follows from simple combinatorics
that if each amino acid is coded by a combination of overlapping triplets bases
in any order (as sketched in Fig. 9), four “letters” are just enough to code twenty
aminoacids in a unique way. This would immediately explain why there are four
bases and twenty aminoacids, not more and not less.

Alas, Nature is not as rational as the physicist sees it; there is no overlap, the
order of bases counts, and the code is highly degenerate: some combinations of
bases do not code any aminoacids, and the correspondence between base triplets
and aminoacids is not one-to-one. And, alas, Gamow, unlike Einstein, could not
pity God who has not followed his beautiful design. It is hard to tell, which features



Swings of Science: From Complexity to Simplicity and Back 785

Fig. 10 Evolution of variegated complex forms [3]. Courtesy TM/R Design

are essential and which came about just as a result of random play of evolution.
A close analogy is found in the Hebrew language where most roots are triplets of
letters; their order counts, of course; some triplets have more than one meaning, and
many others have no meaning at all.

6.4 Development and Signaling

Complexity kept creeping in as thousands and thousands of biologists, biochemists,
and biophysicists, driven by the desire to understand the inner workings of life—
maybe to be able to extend it eternally—and sustained by grants more generous than
in other branches of science (except, perhaps, the megalomanic edifice at CERN)—
have been struggling during the half-century since the discovery of the double spiral,
trying to uncover detailed mechanisms of translation of the molecular code into the
living form.

The chemistry of life turned out to be immensely complex, maybe unnecessarily
so—but Nature may be not aware of Occam’s razor, and cares for robustness and
stability more than for rational and economic design. There is far less universality
here than the physicist would like to see.
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Fig. 11 Left: Wolpert’s French flag model [26]. Right: Simulated patterns in crossed signaling
gradients coupled with signals emitted by cells [27]. A quarter of the morphogenetic field is shown,
with signal sources originating on the left and below

Turing’s mechanism does not work in living forms and patterns; even animal coat
patterns are not created in this way, in spite of a superficial semblance achieved in
simulations. When a living organism develops from a seed or an egg, the cells do
not specialize by spontaneous symmetry breaking, but are directed my morphogen
gradients [24]. Patterns are not created by a simple activator-inhibitor scheme, but
involve a great number of chemical interactions. Even segmentation, common in
animals, does not work by Turing: particular chemical interactions are implemented
to build up each segment—which may be the only way to insure that the number of
segments be independent of the size of the animal [25].

The simplest patterning scheme generates Wolpert’s French flag model [26].
The target gene is expressed in the middle (white) interval, where the signal
level is above the threshold T2 of an activated link but below the threshold
T1 of a depressing link in the genetic scheme (Fig. 11). In many cases, e.g. in
the Drosophila egg, two axes (anterior–posterior and ventral–dorsal) are set by
diffusing morphogens, leaving only left-right symmetry, which may be further
weakly broken. A combination of external crossed gradients with signals emitted by
cells themselves may create a variety of asymmetric patterns [27]; some examples
are shown in Fig. 11.

7 Conclusion

One has to distinguish between simplicity through rude simplification and simplicity
through understanding the roots and causes; between complexity through mix-
up and failure of analysis and complexity through interactions and enrichment.
Simplicity that we need most, that which human intuition is able to comprehend,
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drives scientific insight; it is dressed in refining details when applied to practical
problems and is understood in its complex realizations.

This refinement, unfortunately, deprives us of the light of sudden comprehension;
great aims disappear into unreachable distance, like Kafka’s castle. Where the
ancient alchemist thrived to find the philosopher’s stone—which would be in our
terms a catalyst for all reactions, both chemical and nuclear, the modern chemical
engineer is happy to improve performance of a particular kind of a catalyst for a
particular process. Where the elixir of life was sought, we are happy to find a drug
reducing mortality in a single variation of cancer.

There is probably no way to make complexity simple again.
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