
Foundations and Tools for End-User Architecting

David Garlan, Vishal Dwivedi, Ivan Ruchkin, and Bradley Schmerl

School of Computer Science
Carnegie Mellon University

Pittsburgh, USA
{garlan,vdwivedi,iruchkin,schmerl}@cs.cmu.edu

Abstract. Within an increasing number of domains an important emerging need
is the ability for technically naı̈ve users to compose computational elements into
novel configurations. Examples include astronomers who create new analysis
pipelines to process telescopic data, intelligence analysts who must process di-
verse sources of unstructured text to discover socio-technical trends, and medical
researchers who have to process brain image data in new ways to understand
disease pathways. Creating such compositions today typically requires low-level
technical expertise, limiting the use of computational methods and increasing the
cost of using them. In this paper we describe an approach — which we term
end-user architecting — that exploits the similarity between such compositional
activities and those of software architects. Drawing on the rich heritage of soft-
ware architecture languages, methods, and tools, we show how those techniques
can be adapted to support end users in composing rich computational systems
through domain-specific compositional paradigms and component repositories,
without requiring that they have knowledge of the low-level implementation de-
tails of the components or the compositional infrastructure. Further, we outline a
set of open research challenges that the area of end-user architecting raises.

Keywords: end-user architecture, end-user architecting, software architecture,
end-user programming, software composition, software development tools.

1 Introduction

Increasingly users rely on computation to support their professional activities. In some
cases turnkey applications and services are sufficient to carry out computational tasks.
However, in many situations users must adapt computing to their specific needs. These
adaptations can take many forms: from setting preferences in applications, to “program-
ming” spreadsheets, to creating orchestrations of services in support of some business
process. This situation has given rise to an interest in end-user programming [41], and,
more generally, end-user software engineering [28] or end-user computing [23]. This
emerging field attempts to find ways to better support users who, unlike professional
programmers, do not have deep technical knowledge, but must somehow find ways to
harness the power of computation to support their tasks.

One important subclass of end-user computation arises in domains where users must
compose existing computational elements into novel configurations. Examples include
e-science (e.g., astronomers who create new analysis pipelines to process telescopic

R. Calinescu and D. Garlan (Eds.): Monterey Workshop 2012, LNCS 7539, pp. 157–182, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



158 D. Garlan et al.

data), intelligence analysis (e.g., policy planners who process diverse sources of un-
structured text to discover socio-technical trends), and medicine (e.g., researchers who
process repositories of brain imaging data to discover new disease pathways).

In these domains professionals typically have access to a large number of existing
applications and data sets, which must be composed in novel ways to gain insight, carry
out “what if” experiments, generate reports and research findings, etc. For example, in
the field of brain imaging, scientists study samples of brain images and neural activity
to diagnose disease patterns. Innovative research in this domain requires that scientists
compose a large number of tools and apply them to brain-imaging data sets to diagnose
problems, such as malformations and structural or functional deformities. There also
exist dozens (if not hundreds) of brain image processing tools for image recognition,
image alignment, filtering, volumetric analytics, mapping, etc. Figure 1 illustrates a
popular neuroscience tool suite, called FSL, that is used to create scripts for analyzing
FMRI [44] data.

A large script file
that contains 
program calls

Fig. 1. Compositions in the neuroscience domain

Unfortunately, assembling such elements into coherent compositions is a non-trivial
matter. In many cases users must have detailed low-level knowledge of things like ap-
plication parameter settings, application invocation idiosyncrasies, file locations and
naming conventions, data formats and encodings, ordering restrictions, and scripting
languages. In Figure 1, for example, users must create and execute detailed scripts il-
lustrated at the bottom of the figure.

Further, it may be difficult for end users to determine whether a set of components
can be composed at all, and, if not, what to do about it. For example, differences in data
encodings may make direct component composition infeasible without the inclusion
of one or more format converters. Even when a legal composition can be achieved, it



End-User Architecting 159

may not have the performance (or other quality attributes) critical to the needs of the
end user. And, even when a suitably performing composition can be created, it may be
difficult to share it with peers or reuse it in similar but different settings.

In this paper we advocate an approach to these problems that exploits the similar-
ity between such compositions and software architecture, and attempts to leverage the
considerable advances made within that field over the past two decades. The key idea
is to view the activities of these end users as engaging in architectural design within
a domain-specific style and to represent those architectures explicitly. As we will see,
such explicit representation allows one to raise the level of abstraction for composition,
provide criteria for evaluating the soundness and quality of a composition, support reuse
and parametrization, and establish a platform for a host of task-enhancing services such
as program synthesis, analysis, compilation, execution, and debugging.

By approaching the problem in this way we identify a new field of concern, which
we term end-user architecting. Similar to end-user programming [41], it recognizes up
front that the key issue is bridging the gap between available computational resources
and the skill set of the users who must harness them — users who typically have weak
or non-existent programming skills. But unlike end-user programming, it seeks to find
higher-level abstractions that leverage the considerable advances in software architec-
ture languages, methods, and tools to support component composition, analysis and
execution.

In Section 2 we revisit the problem, highlighting the cross-cutting similarities in
computing needs for composition-based domains such as those mentioned above, and
we outline the challenges for solving the problems of users in these domains. Section 3
makes the case for taking an architectural perspective on the problem, and outlines an
approach in which software architecture tools and techniques can be incorporated into
environments that support end-user architecting. Section 4 illustrates how this approach
can be applied by considering three case studies. Section 5 considers related work, and
Section 6 explores some of the open research challenges in this area.

2 The Problem

As noted above, an increasing number of domains are evolving to depend on composing
existing components to support their tasks. Table 1 lists examples of these domains,
including e-science, business processing, social science research, and electronic music
synthesis.

While very different in their specific tasks and goals, the use of computation within
these communities shares a number of common properties. First, it relies on compo-
sitions of existing components to accomplish computational tasks. For example, there
exist large repositories of reusable components such as BioCatalogue [55] for life sci-
ence web services, the BIRN Data Repository [4] for neuroscience data and analysis
tools, and myExperiment [40] for scientific workflows.

Second, in many cases those compositions are complex, involving dozens of com-
ponents, possibly running on many hosts. Thus, creating new compositions becomes a
non-trivial task, often taking weeks to develop, test, and execute.

Third, quality attributes matter. While the specific quality attributes of concern vary
from domain to domain, they typically include things like performance (time to



160 D. Garlan et al.

Table 1. Domains involving end user compositions

Type Compositions

Astronomy electromagnetic image processing tasks [11]
Bioinformatics biological data-analysis services [30]
Digital music production audio sequencing and editing [33]
Environmental Science spatio-temporal experiments [57]
Geospatial Analysis interactive visualization of geographical data [38]
Home Automation home devices and services [29]
Neuroscience brain-image processing libraries [12]
Scientific computing transformational workflows [49]
Socio-technical Analysis dynamic network creation, analysis, reporting and simulation [48]

complete a task), resource requirements (numbers of processors, storage requirements),
availability (likelihood of crashing), privacy and security (protection of data). For ex-
ample, a brain imaging composition may be of little use to a neuroscience researcher if
it takes a week to execute, fails frequently, or compromises the privacy of the data.

Fourth, the socio-technical ecosystem within which these computations are used is
complex, involving many roles and incentives [25]. For example, researchers care that
their compositions produce credible outputs and that they can share their computations
with their peers; component providers care that they are given credit for the use of
their components; regulators and funders care that the provenance of all results is fully
documented.

Today these end-user communities are not well served by existing technology and
development platforms. In particular, we can identify five critical barriers.

1. Excessive Technical Detail: Creating compositions today often requires knowl-
edge of myriad low-level technical details, such as data formats, parameter settings,
file locations, ordering constraints, execution conventions, scripting languages, etc.
As Figure 1 illustrates, brain imaging research using FSL tools requires a user to
understand and create detailed execution scripts that specify how to configure each
of the constituent tools, which may have dozens of configuration parameters. As
another example, in the domain of intelligence analysis (cf. Section 4) a typical
composition that involves two logical steps, but is executed in the context of a
service-oriented architecture (SOA), requires the end user to specify a Business Pro-
cessing Event Language (BPEL) script shown in Figure 2 [48]. The script requires
the user to explicitly specify low-level details that handle control flow, variable as-
signment, exception handling, and other programming constructs.

2. Inappropriate Computational Models: The computational models provided by
typical execution platforms, such as SOA, may require end users to map their tasks
into a computational vocabulary that is quite different from the natural way of de-
composing the task in that domain. For example, tasks that are logically repre-
sented in the end user’s mind as a workflow may have to be translated into the
very-different vocabulary of service invocations executing on a SOA, as illustrated
in Figure 2.



End-User Architecting 161

3. Inability to Analyze Compositions: There may be many restrictions on legal ways
to combine elements, dictated by things like format compatibility, domain-specific
processing requirements, ordering constraints, and access rights to data and ap-
plications. Today, discovering whether a composition satisfies these restrictions is
largely a matter of trial and error, since there are few tools to automate such checks.
Moreover, even when a composition does satisfy the composition constraints, its
extra-functional properties — or quality attributes — may be uncertain. For exam-
ple, determining how long a given computation will take to produce results on a
given data set can often be determined only by time-consuming experimentation.

4. Lack of Support for Reuse: An important requirement in many communities is the
ability for professionals to share their compositions with others in those communi-
ties. For instance, brain researchers may want to replicate the analyses of others, or to
adapt an existing analysis to a different setting (e.g., executed on different data sets).
Packaging such compositions in a reusable and adaptable form is difficult, given the
low-level nature of their encodings, and the brittleness of the specifications.

5. Impoverished Support for Execution. The execution environment for composi-
tions is often impoverished. Compared to the capabilities of modern programming
environments, end users have relatively few tools for things like compilation into
efficient deployments, interactive testing and debugging (e.g., setting breakpoints,
monitoring intermediate results, etc.), history tracking, and graceful handling of
run-time errors. This follows in part from the fact that in many cases compositions
are executed in a distributed environment using middleware that is not geared to-
wards interactive use and exploration by technically naive users.

...

Assign

While

Sequence

Wait

Invoke

Catch

Throw

Sequence

Assign

Assign

Invoke

Reply

Sequence

Invoke

Invoke

Fig. 2. A segment of BPEL orchestration of a socio-cultural analysis workflow

This gap between the needs of end users and today’s technology has a number of se-
rious consequences. The cost of producing effective compositions is excessive because
end users must become experts in implementation details not relevant to their primary
task. The quality is low because compositions tend to be brittle and in many cases fail
to meet their extra-functional requirements. Compositions are difficult to reuse, modify,
and maintain, leading to gratuitous reinvention.



162 D. Garlan et al.

Recognizing these problems, a number of research- and practitioner-based efforts
have produced platforms that provide end-user tools for composition, reuse and
execution within specific domains. As described in more detail in Section 5, this is typ-
ically done through the creation of component repositories, and composition environ-
ments that support computational models appropriate to the domain, such as workflow
execution, widget composition, data exploration or music synthesis and composition.
Examples include Taverna for life sciences, the Ozone Widget Framework (OWF) for
geospatial analysis, VisTrails for data exploration and visualization, Steinberg’s Virtual
Studio Technology (VST) for composing music effects, etc.

While many of these platforms have been quite successful, and several are in wide-
spread use, they are typically handcrafted for specific communities and domains —
often at great cost in development time and effort. What is needed, we would argue, is
a foundational understanding of the problem and a general approach to a solution that
gets at the heart of the mismatch between end user needs and technologies that must be
exploited. Such foundations would ideally lead to a systematic approach to developing
tools that surmount the barriers outlined earlier. In the next section we outline such an
approach.

3 End-User Architecture

The key to solving the problems outlined above is to recognize that the computational
design activities performed by those communities are fundamentally architectural in
nature. Recognizing that, one can then explore how modern techniques and tools in
support of software architecture can be applied to this new area of end-user architecting.

Software architecture emerged as a subfield of software engineering in the 1990s as
a way to tackle the increasing complexity of software systems design. While there are
many definitions of software architecture, a typical one is [8]:

The software architecture of a computing system is the set of structures
needed to reason about the system, which comprises software elements, rela-
tionships among them, and properties of both.

Definitions aside, the principle idea behind software architecture is to allow software
engineers to treat system design at a high-level of abstraction, representing a system
as a composition of interacting components. Properties of those components and their
compositions can then be specified in a way that allows designers to analyze systemic
quality attributes and tradeoffs, such as performance, reliability, security, availability,
maintainability, and so on [50].

Since its emergence there has been substantial development of foundations,
tools, and techniques to aid software architects. These include formal and semi-formal
architecture description languages (ADLs) [34], architecture-based analyses [19], ar-
chitecture reconstruction tools [47], architecture evaluation methods [9], architecture
handbooks [6], architecture style definition and enforcement [17], and many others.

With respect to the theme of this paper, a number of salient features of software
architecture are particularly important:



End-User Architecting 163

– Component Composition: Software architecture represents a system as a compo-
sition of components, supporting a high-level view of the system and bringing to the
forefront issues of assignment of function to components, component compatibil-
ity, protocols of interaction between components, and ways to package component
compositions for reuse.

– Domain-Specific Computation Models: Software architecture allows developers
to represent a system using compositional models that are not restricted by the
implementation platform or programming language, but can be chosen to match
the intuition of designers. Specifically, software architecture allows one to define
architectural styles, where each style denotes a family of systems that shares a
common vocabulary of composition, conforms to rules for combining components,
and identifies analyses that can be applied to systems in that family [50]. Styles
may represent generic computational models such as publish-subscribe, pipe-filter,
and client-server. Or, they may be specialized for particular domains [35,36].

– Analysis: Software architecture allows developers to perform analysis of quality
attributes at a systems level. This is typically done by exposing key properties of
the components and their interactions, and then using those properties in support
of calculations to determine expected component compatibility, performance, reli-
ability, security, and so on [19]. This in turn allows developers to make engineering
tradeoffs, for example balancing attributes like fidelity, performance, and cost of
deployment to match the particular business context. Additionally, in some cases
it is possible to build analytic tools that not only detect problems, but also suggest
possible solutions [52].

– Reuse: Software architecture supports several kinds of reuse. First, architectural
styles provide a basis for sharing components that fit within that style [35,36].
Modern examples of this include platforms like JEE and frameworks like Eclipse.
Second, software architectures permit the definition of reusable patterns that can be
used to solve specific problems [2,6]. Third, most architectural models support hi-
erarchical description, whereby a component can be treated as a primitive building
block at one level of composition, but refined to reveal its own sub-architecture.

– Execution Support: For some architectural styles tools can generate implemen-
tations. Typically this is done by using a repository of components that conform
to the style, and then compiling the system description into executable code [18].
Additionally, software architectures can be used for run-time monitoring and de-
bugging [58].

These properties suggest that if applied appropriately, software architecture principles,
tools, and practices could directly address the five challenges outlined in Section 2.
Specifically:

1. Excessive Technical Detail: Architectural models provide a way to develop, ana-
lyze, and execute compositional models at a high level of abstraction, suppressing
details of implementation.

2. Inappropriate Computational Models: Architectural models can define domain-
specific compositional styles to match the computational intuition of end users.



164 D. Garlan et al.

3. Inability to Analyze Compositions: Architectural models, suitably represented
and formalized, can be analyzed by tools to gain insight into a system’s expected
quality attributes and to evaluate tradeoffs between alternative designs based on
their support for relevant qualities.

4. Lack of Support for Reuse: Architectural models support reuse of components,
patterns, styles, and encapsulated subsystems.

5. Impoverished Support for Execution. Architectures can, in principle, be used as
a basis for compilation, deployment, execution, and debugging.

How can these potential benefits be realized? We would argue that the key to doing this
is to use an approach in which there is an explicit architectural representation of the
compositions created by end users. For a given domain the architectures that could be
created would be associated with a domain-specific architectural style corresponding
to natural computational models for the domain (such as some variant on workflow,
publish-subscribe, or data-centric styles). Further, associated with the style and corre-
sponding infrastructure, there would be a set of architecture services that could support
analysis, execution, etc. Finally, all of these features would be made available to users
through a graphical front end that supports access to component repositories, architec-
ture construction, system execution, and various additional support services.

This leads to a general framework of system organization in support of end-user
architecting, as illustrated in Figure 3. Part (a) of the figure shows the current state
of affairs: users must translate their tasks into the computational model of the execu-
tion platform, and become familiar with the low-level details of that platform and the
primitive computational elements (applications, services, files, etc.) — leading to the
problems outlined in Section 2. Part (b) illustrates the new approach. Here, end-user
architectures are explicitly represented as architectural models defined in a domain-
specific architectural style. These models and the supporting infrastructure can then
support a host of auxiliary services, including checking for style conformance, qual-
ity attribute analysis, compilation into efficient deployments, execution and debugging
mechanisms, and automated repair — as shown in part (c).

(a)

UI
Execution Platform

Primitives
Architecture 

Style Conformance Analysis

Execution Compilation Repair

(b) (c)

Architecture 
Execution Platform

Primitives

UI

Fig. 3. End-user Architecting Approach

4 Case Studies

To investigate the potential of this approach we instantiated the general framework
described above in three domains: dynamic network analysis, brain imaging, and geospa-
tial analysis. For each we describe the nature of the domain and the forms of composi-
tion that are required within the community of use. We then consider how we adapted



End-User Architecting 165

the end-user architecting framework to this domain in terms of (a) architecture rep-
resentation, (b) architecture style, (c) architectural analysis, (d) execution support, (e)
additional services, (f) reuse, and (g) user interface.

4.1 Dynamic Network Analysis

Dynamic Network Analysis (DNA) is a domain of computation that focuses on the
analysis of network models, which represent entities, relations, and their properties.
DNA is increasingly being used in a variety of fields, including anthropology, sociology,
business planning, law enforcement, and national security, where networks capture the
relationships between people, knowledge, tasks, locations, etc. [7].

End users in these fields are typically analysts who extract entities and relations from
unstructured text (such as web sites, blogs, twitter feeds, email, etc.) to create network
models, and who then use those models to gain insight into social, organizational, and
cultural phenomena through analysis and simulation.

For example, an analyst interested in understanding disaster relief after the Haiti
earthquake in 2010 [59] might build a network from open source news data provided
through a source such as LexisNexis [31]. This unstructured textual data needs to be
processed into a usable form, or “cleaned,” to filter out headers, remove noise, and
normalize concepts. From this processed data a dynamic network can be generated rep-
resenting associations between people, places, resources, knowledge, tasks, and events.
Using network analysis algorithms, insights can then be gained. For example, analysis
can determine things like the primary organizations and people involved in the relief ef-
fort, how information about food and medical supplies propagated through the network,
and how these evolved over time.

Similar kinds of analyses are routinely carried out in law enforcement (where ana-
lysts use crime reports and statistics to determine drug-related gang activities), health-
care and disease control (where analysts use medical reports from hospitals and phar-
macies to understand disease vectors), and anthropology (where social scientists can
understand belief systems and how they relate to demographics).

Within this broad domain of dynamic network analysis, analysts typically engage in
a process of composing a variety of existing tools to extract networks, analyze them, and
display results. Figure 4 illustrates a typical toolset used for such analyses consisting of
the following: AutoMap for extracting networks from natural language texts, ORA for
analyzing and visualizing networks, and Construct for “what-if” reasoning about the
networks using simulation [48].

Conceptually the computations that analysts create can be viewed as workflows,
where each step in the workflow requires the invocation of some data transformation
step that consumes the data from previous steps and produces results for the next step.
However, traditionally, to achieve this kind of composition analysts would need to un-
derstand the idiosyncracies of each of tool, manually invoke them on data stored in
various file locations using a variety of file naming schemes and data formats, and pre-
serve the results of the analysis in some location that they would have to keep track of,
before invoking another tool to carry out the next step.

More recently coarse-grained tools like AutoMap, ORA, and Construct have been
reengineered to expose a set of services that can be composed within a SOA



166 D. Garlan et al.

Fig. 4. Typical tools for socio-cultural analysis

framework. While the use of services reduces the burden of learning to use specific
tools, and opens up the possibility of novel compositions, unfortunately the use of SOA
requires end users to translate their workflow intuitions into the low-level encodings and
scripting required by SOA orchestration languages such as BPEL. Figure 2 illustrated
the resulting complexity of such encodings.

To apply the proposed end-user architecting approach to this domain, we adapted
the end-user architecting framework of Figure 3 by creating an environment, called
SORASCS (Service ORiented Architecture for Socio-Cultural Systems), for dynamic
network analysis [16,48], and illustrated in Figure 5. Key features of this environment
are as follows:

a. Architecture Representation: Architectures are explicitly represented in a sys-
tem layer, called the socio-cultural analysis layer. This layer stores compositions as
workflows. It also provides a repository of data transformers, which act as compo-
nent building blocks for creation of new workflows.

b. Architecture Style: Compositions are defined using a formal workflow architec-
tural style, which specifies the vocabulary of element types and constraints on com-
positions [12]. Element types include data transformers, data sources, and data
sinks. Constraints of the workflow style prohibit the introduction of cycles, dan-
gling connectors, unattached interfaces, and mismatched communication channels
(where the data produced by one component is incompatible with the data con-
sumed by a successor component).

c. Analysis: The SORASCS workflow style supports a number of analyses including
(a) data privacy analysis, which identifies potential privacy issues in the informa-
tion flows, (b) ordering analysis, which uses machine-learning to evaluate whether
the ordering of transformation steps is consistent with previously constructed work-
flows, and (c) performance analysis, which estimates the amount of time that will
be taken to complete an analysis of a specified data set.



End-User Architecting 167

Wrappers

Tools

Legend

Tools

Services
Layer

Socio-
cultural
analysis
Layer

User-
Interface

Layer

SWIFT

Data
Transformers

SORASCS
Workflows

History Intelligence
Data Services

Registry Orchestration Engine Data 
Services

Bridging Component

SORASCS Invocation API

Component Interface

Local Call

Webservice Call

Data Call

Configuration Port

Fig. 5. SORASCS Organization

d. Execution Support: Workflows are compiled into BPEL scripts, which are run
within the Services Layer using standard SOA infrastructure. The compilation pro-
cess attempts to optimize performance by parallelizing workflow execution. Addi-
tionally, there is execution support for long-duration transformations and graceful
error handling — typically not provided by baseline SOA infrastructure. Further, it
is possible for a user to set breakpoints, execute the workflow one transformation
at a time, and preserve intermediate data for later inspection.

e. Services: The SORASCS platform provides services for examining history and
for repeating previously executed activities in the history list. The platform also
provides data services for organizing data into projects and categories, and catego-
rizing the data in ways that are informative to analysts. Access control is provided
to check that users have appropriate rights to use data sets and transformations.

f. Reuse: Workflows can be encapsulated as parameterized components for later reuse
and adaptation. These are stored in a repository of available data transformers,
which may be used as primitives, or “opened” to reveal their substructure and pos-
sibly edited for new usage contexts.



168 D. Garlan et al.

g. User Interface: A web-based graphical interface, called SWiFT [20], is provided
for workflow construction, analysis, and execution. Further, the interface provides
access to the set of available data transformers, organized hierarchically according
to community-based ontologies.

To illustrate how SORASCS works, Figure 6 shows a workflow that analyzes a user’s
emails to generate a social network of his/her contacts. Table 2 lists the computational
elements that are used for this workflow. The Mail Extractor workflow step ac-
quires security credentials to connect to a remote mail server in order to gain access
to the user’s emails. The composition then transmits the user’s email data to Filter
Text, followed by Delete, which in combination remove irrelevant words and sym-
bols. This data is then passed to Generate Meta-Network, which generates a
social-network of the people and concepts referred to in the email text. HotTopics
then creates a report listing important keywords in this social network. The workflow
also uses two data sources that provide the inputs to the text processing steps.

Fig. 6. A DNA Workflow with a Security Flaw

When a security analysis is run on this workflow, SORASCS detects a security prob-
lem. In this case, data security requirements mandate the use of ‘token-based authenti-
cation’ by all services. However the above workflow includes the Mail Extractor
service, which uses ‘password-based authentication’ — indicating a security violation.
The analysis flags this as a problematic workflow by highlighting the inappropriate ser-
vice in red.

Once analysis is complete and the errors have been corrected, the user can compile
the workflow into the BPEL script illustrated in Figure 6, which can then be executed.
Although not illustrated here, as execution proceeds, the user is given feedback through
the SORASCS user interface to show which workflow step is currently being executed.

4.2 Neuroscience

Functional magnetic resonance imaging (fMRI) is a common form of analysis per-
formed by neuroscientists in the brain-imaging domain to understand the behavior of
the human brain [44]. A typical fMRI analysis consists of sequences of computations
over brain image data to support hypotheses or interpretations, such as assessing the



End-User Architecting 169

Table 2. DNA operations used in the workflow of Figure 6

Operation Description

Mail
Extractor

Extracts email from a server to a text file

Filter Text Removes undesirable information from text files
Delete Removes a set of common keywords using a stan-

dard dictionary (such as: a, an, the, etc) from a text
file

Generate
Meta-Network

Creates a dynamic network based on the informa-
tion in the text file

Hot Topics Creates a report about important keywords in a so-
cial network

evolution of cognitive deficits in neurodegenerative diseases [13]. Figure 7 illustrates a
typical image translation process.

Neuroscientists have at their disposal large repositories of brain imaging data, such as
the BIRN Data Repository [4] and the Portuguese Brain Imaging Network Project [54].
Neuroscientists also have access to a large variety of processing tools, which perform
functions such as those listed in Table 3.

Fig. 7. Brain image data viewed after individual pre-processing steps

Professional neuroscientists can easily identify the steps required for processing
brain imaging data, but because of a proliferation of possible tool implementations for
each step and their idiosyncratic parameterization requirements, they find it difficult to
choose and assemble tools to implement these steps. Furthermore, while these experts
can debug a processing script by examining the outputs, novices are typically unable to
do this. As an example of the complexity introduced by tool parameterization, Figure 1
illustrates a part of a typical script in which a single logical processing step requires the
specification of 9 parameters1.

Additional complexity arises because of implicit sequencing constraints. For exam-
ple, a mandatory step in fMRI analysis is to perform pre-processing operations on brain
image data to remove or control some aspects that can affect the overall analysis [53]
(such as aligning one brain volume to another using linear transformations operations

1 In practice, the number of parameters ranges from 5 to 25.



170 D. Garlan et al.

Table 3. Some tools for brain-imaging processing

Operation Description Tool name

Align Alignment of an fMRI sequence based on a refer-
ence volume (i.e. motion correction, direction cor-
rectness)

fslmaths,
fslroi,
mcflirt

Segmentation Segmentation of a brain mask from the fMRI se-
quence

bet2,
fslmaths,
fslstats

Spatial Filtering Compute spatial density estimates for neuroscience
images, and filter the volumes accordingly

fslmaths,
susan

Temporal Filtering Blur the moving parts of images, while leaving the
static parts.

fslmaths

Normalize Translating, rotating, scaling, and may be wrapping
the image to match a standard image template

flirt

Register Align one brain volume to another using linear
transformation operations (such as rotation, trans-
lations, etc.) or non-linear transformations (such as
warping, local distortions, etc.)

flirt, fnirt

like rotation, translation, etc.). While experts may learn these constraints through trial
and error, there are no tools to guide less-expert end users.

There are many possible ways to encode image data and analysis results, and neu-
roscientists must ensure that encodings match between steps. This further complicates
composition because neuroscientists must be aware of these formats and carefully select
compatible steps or manually locate transducers that can bridge mismatches.

flirt ref standard in ${2} out $
{input_in_standard} omat ${input2standard}.mat$

cost corratio dof 12 searchrx 90 90 
searchry 90 90 searchrz 90 90 interp 
trilinear

hp=‘echo "scale=10;100/${3}" | bc‘
lp=‘echo "scale=10;3/${3}" | bc‘
fslmath ${2} bptf ${lp} 1 mas mask ${6}

fslmath ${2} kernel gauss ${sigma} fmean ${5}

bet2 ${2} ${4} f ${3} n m

Service Implementation

 

Fig. 8. A problematic neuroscience workflow that misses ‘alignment’ of data before ‘temporal
filtering’



End-User Architecting 171

To address these problems we adapted the end-user architecting framework to this
domain as follows:

a. Architecture Representation: Similar to dynamic network analysis, architectures
are explicitly represented in a system layer that stores compositions as workflows
and provides a repository of processing steps and transducers. The main compo-
nents made available in this prototype were derived from the FSL tool suite (e.g.,
bet2, fslmath, flirt) [14].

b. Architecture Style: Compositions are defined using a formal workflow architec-
tural style, which is similar to the one used for dynamic network analysis.2 The
neuroscience style differs in two respects: (a) it defines computational elements
specific to the neuroscience domain, and (b) it provides additional properties and
domain-specific constraints (such as checking ports for different data encodings and
other content of brain-image data) that allow the correct construction of workflows
within the neuroscience domain.

c. Analysis: Similar to dynamic network analysis, the properties of the style elements
are used for designing various domain-specific analyses for the brain imaging do-
main. An example is data mismatch analysis to support the detection of data mis-
matches in the neuroscience compositions and to suggest repairs that can resolve
these mismatches based on an end user’s quality of service requirements [56].

d. Execution Support: Workflows are compiled into BPEL scripts, which are exe-
cuted on a service-oriented platform, identical to SORASCS, providing the similar
feedback and debugging facilities.

e. Services: Similar to dynamic network analysis, the brain imaging platform pro-
vides services to end users tracking the history of operations performed and access
to brain imaging data sets.

f. Reuse: Like dynamic network analysis, workflows can be encapsulated as param-
eterized components for later reuse and adaptation.

g. User Interface: A web-based graphical interface is provided for workflow con-
struction, analysis, and execution.

Figure 8 illustrates a typical application that analyzes brain image data using some of
the transformation operations listed in Table 3. To the right of the workflow the figure
indicates the invocation and parameter settings that are used to invoke individual tools.

In this example analysis reveals an error in the workflow located in the Temporal
Filtering component and its corresponding interface. The error occurs because be-
fore doing temporal filtering on brain-imaging data, it is necessary to align it. There-
fore any workflow is required to have the Align component before the Temporal
Filtering component. This is an example of a typical semantic problem that cannot
be easily identified from scripts or BPEL-like compositions.

2 In fact, using the formal architectural description language of Acme[37], we have defined
a common root style for both the dynamic network analysis domain and the neuroscience
domain [12].



172 D. Garlan et al.

4.3 Geospatial Analysis

Geospatial analysis tools allow analysts to explore location-based data using graphi-
cal representations such as maps and charts [51]. Examples of such data include data
about infrastructure (e.g., an electrical grid), population distribution (e.g., census data),
or dynamic network data that has location information associated with it (e.g., crime
activities associated with a criminal network derived from police reports). End users in
this field typically want to display information on one or more maps, drill down into
more detail in certain views, and receive updates when information changes. In contrast
to dynamic network analysis and neuroscience analysis, which is largely sequential
and transformational, end users doing geospacial analysis typically explore information
through a set of concurrent tools that exchange dynamically-changing data to update
multiple concurrent views.

The Ozone Widget Framework (OWF) [45] – or just Ozone – is a web platform
for integrating web-based tools in this domain. Web applications are represented as
lightweight visual applications, called widgets, and OWF allows end users to open and
compose a set of widgets through a web “dashboard” in their browser. Users interact
with widgets, which communicate among each other using the OWF framework.

An example of an Ozone dashboard is shown in Figure 9. The right-most window
is the launch menu from which end users can add widgets to their dashboard. There
are four widgets displayed on the dashboard, displaying information of different types,
some in chart form, others (in the background) on maps. These widgets may pass in-
formation between each other to ensure that they are focused on the same map region,
for example, or to display updated information as it becomes available from a database
or data stream. This dashboard and the arrangement of widgets can be shared between
developers by exchanging textual configuration files.

Ozone widgets interact in a publish-subscribe style [8]: widgets can publish events
to channels and subscribe to channels to receive events.3 All widgets that have sub-
scribed to a channel receive data published to that channel by any other widget. Widget
developers who wish to integrate with other developers must agree on the names of
channels to publish to, and the format of the data that is published. To offer additional
control over communication, Ozone also allows end users to restrict potential commu-
nication between widgets by indicating pairs that are allowed to communicate, thereby
implicitly restricting other widgets from participating in those communications.

While end users are free to choose which widgets appear in their dashboard, consid-
erable care must be taken to ensure sensible configurations. In particular, it is important
to make sure that widgets both publish and subscribe to the appropriate channels, and
that the type of data published is consistent with that expected by subscribers.

Unfortunately, today it is difficult to do this because the interconnection topology is
largely implicit. Specifically, to determine the interconnection structure between wid-
gets an end user needs to either examine widget source code, or perform experiments.
This problem is compounded by the use of restriction lines, because they can radically
change the communication topology indicated in the code by prohibiting interactions
that would otherwise be allowed.

3 Events in Ozone are plain-text strings or JSON objects.



End-User Architecting 173

Fig. 9. An Ozone dashboard example from [24]

The existence of complex interconnection rules and behavior lead naturally to the
use of architectural modeling of widget compositions, which could support the end-
user architecting process through automated constraint checking. For example, a widget
topology can be checked to conform to a privacy constraint that widgets containing
private data do not communicate it to third-party untrusted widgets. Another application
is widget topology generation: a user would specify what pairs of widgets should and
should not interact, and a set of topologies would be generated.

Key features of our end-user architecting approach to this domain are:

a. Architecture Representation: Ozone widget configurations are represented as ex-
plicit architectural models, that indicate which widgets are involved in a composi-
tion and the communication topology.

b. Architectural Style: Compositions are defined using a variant of a publish-subscribe
style that takes into account the idea of restrictions. Element types include Widgets,
which have publish and subscribe interfaces, and two types of connectors represent-
ing public channels and private (restricted) channels.

c. Analysis: We are building analyses to provide insight into the widget compositions,
such as which widgets are communicating, whether there are data mismatches over
publish-subscribe channels, how to restrict communication to minimize event mes-
saging, whether information is lost (e.g., because there is no widget subscribed to
information on a particular channel).



174 D. Garlan et al.

d. Reuse: Dashboard setups (i.e., configurations) can already be shared between ana-
lysts as textual configuration files. Embellishing this with architectural representa-
tions allows end users to check whether adaptations to existing compositions retain
prior communication channels, and whether it is feasible to substitute one widget
for another.

e. Services: Similar to dynamic network analysis,we expect to be able to provide
automated data mismatch detection and repair.

f. Execution support: We are building support for debugging in the form of channel
monitoring and execution histories.

g. User interface: An explicit architectural model enhances the current Ozone user
interface by providing information to the end user about which widgets are sharing
information with other widgets, which widgets are restricted from communicating,
and so on.

5 Related Work

Three primary areas of related research have influenced the formulation and direction
of this work: (a) end-user software engineering, (b) software architecture design, and
(c) tools and frameworks for end users.

End-User Software Engineering

End-user software engineering is a research area at the intersection of computer science
and human-computer interaction. It aims to empower users who do not have deep tech-
nical expertise to harness the power of computers in support of tasks within their profes-
sion [28]. Although such users do not have (or want to have) the skills of professional
software developers, often they face many of the same software engineering challenges:
understanding requirements, carrying out design activities, supporting reuse, quality as-
surance, etc. In fact, studies have shown that across many domains, such end users spend
about 40% of their time doing programming-related activities [25], but employ few of
the tools and techniques used by modern software engineering. As as result, creating
computations often leads to systems that are brittle, contain numerous bugs, have poor
performance, cannot be easily reused or shared, and lead to a proliferation of idiosyn-
cratic solutions to similar problems within a domain [5].

To date, most of the research in end-user software engineering has focused on
end-user programming, where novel forms of programming languages have been devel-
oped for enhanced usability within a domain. These include visual programming lan-
guages [39], programming-by-demonstration [10], direct manipulation programming
languages [26], and domain-specific languages [15].

In contrast, this paper focuses on domains in which component composition is the
primary form of end-user system construction, an activity that we have termed end-user
architecting. For such domains, we have argued, it makes sense to explore ways to adapt
the tools and techniques of software architecture, rather than software programming.



End-User Architecting 175

Software Architecture

As we discussed in Section 3, there exists a large body of foundational work on software
architecture that has paved the way for architecture to be used as a model to reason about
a software system. In this paper we build directly on that heritage. Key influences have
been architecture description languages [34], the use of architectural styles [50,37], and
architecture-based analyses [19].

In this paper we have argued that these techniques have direct relevance and can
be effective in solving many of the problems of end-user architecting. However, as we
elaborate in Section 6, there also remain a number of gaps and challenges that require
additional research and adaptation of those techniques to the needs of end users.

Tools and Frameworks for End-User Composition

The primary motivation for this paper is the fact that a large number of domains require
technically-naive users to compose computational elements into novel configurations,
such as workflows and scripts for experiments and analyses. Such users often form large
communities that share a common set of tasks, vocabulary, and computational needs.
These communities include astronomy [11], bioinformatics [30], environmental sci-
ences [57], intelligence analysis [48], neuroscience [42], and scientific computing [49].
In such communities simple turnkey or parameterized implementations are inadequate,
since it is impossible to anticipate all possible configurations — hence the need for tools
that can help users in creating, executing, and sharing compositions.

As a consequence, a number of powerful composition environments have been cre-
ated for particular problem domains. Examples include: Loni-pipeline [46] for brain-
imaging compositions; Galaxy [21] for genomics; and Vistrails [3] for data-exploration
and visualization for scientific applications. Other more generic composition environ-
ments, such as Taverna [43], Kepler [32], WINGS [22], and Ozone [38], can be used
across several domains, but typically only support a specific computation model — such
as workflow or publish-subscribe.

In contrast to these efforts, this paper attempts to lay the foundation for viewing
this class of tools and frameworks as supporting architecture design, and argues that
there are considerable benefits in taking this point of view. Among those benefits are
the ability to formally define and reason about compositional models as instances of
domain-specific architectural styles, create cross-domain analyses, provide systematic
support for reuse and adaptation, support powerful auxiliary services (e.g., mismatch
repair), and support execution, testing, and debugging.

6 Discussion

Having described an approach to end-user architecting and illustrated it through three
case studies, we now consider some of the aspects of that approach in more detail and
outline some of the challenges and open problems.

The centerpiece of an end-user architecting approach is the explicit representation
of a composition of computational elements as an architecture, expressed within an ap-
propriate architectural style for the domain at hand. In the case of dynamic network



176 D. Garlan et al.

analysis and neuroscience we used variations on a dataflow style. In the case of geospa-
tial analysis we used a publish-subscribe style.

But where does that style come from? In our own experience, we have found that
it is often non-trivial to determine this. For example, in the case of dynamic network
analysis we found that in some compositions, users wanted to include interactive tools
as components in their workflows, in addition to data transformers. This led to a hybrid
style that was not purely transformational (as would be the case for a pure dataflow
style), but rather permitted a user to interrupt a data transformation workflow, and inter-
actively explore data using applications running on the desktop, before continuing with
successive data transformation. Formally, we had to introduce into the style a new type
of component — an interactive tool component — and create execution infrastructure
to permit those components to work smoothly with data transformation executing on a
SOA (see [48] for details).

Similarly, we were initially unsure how to model the communication restrictions
present in the Ozone Widget Framework. After exploring a number of options we
eventually decided on a variant of a publish-subscribe style that includes two publish-
subscribe connector types: public and private pub-sub channels.

The problem of defining an appropriate end-user architecting style is further com-
plicated by the fact that end users may have different compositional needs at different
times. For instance, in many analytical domains (including all three domains that we
studied), it is the case that in early stages of development end users want to do ex-
ploratory investigation using highly interactive, manually-controlled tools. But once it
is clear what kinds of computation need to be done, a more streamlined composition
can be constructed that provides better performance and is easier for others to use as a
packaged computation. This suggests that end users may have several modes of com-
position, with different architectural modeling needs.

Thankfully, today there are a number of tools that allow one to experiment with
different styles. For instance, in our own work we used Acme and its supporting Acme
Studio toolset [17]. Acme supports rapid design and experimentation with styles. In
particular, styles can be defined using a declarative language, which can then be directly
compiled into an environment for constructing systems in that style and for checking
conformance with the constraints of the style. Acme Studio also provides an analysis
plug-in framework that allows one to rapidly develop analyses appropriate for a given
style [19].

Moreover, Acme has a rich set of base styles (client-server, publish-subscribe, etc.),
which can be used as a starting point defining domain-specific styles for end-user archi-
tecting communities. For instance, both the dynamic network analysis style and neuro-
science style were developed by specializing a common inherited dataflow style. Fur-
ther, since Acme styles are formally defined they may also be formally analyzed as
specifications in their own right to determine, for example, whether a style has the
properties that one expects, or to detect inconsistencies when multiple styles are com-
bined [27].

Another technique that helps address this problem is construction of support ser-
vices that bridge the gap between different modes of composition. In SORASCS, for
example, we provided tools to transition between interactive exploration and workflow.



End-User Architecting 177

Specifically, an end user can manually and interactively invoke operations on data sets.
SORASCS keeps track of the history of these invocations. Once users are happy with
the results, they can use the history to generate a workflow that captures the overall
transformation that they want to package as a workflow.

A second concern that must be addressed when pursuing an end-user architecting ap-
proach is the issue of managing large component repositories. As we indicated earlier,
for many domains there may be hundreds of possible elements that can be combined
to produce compositions. In SORASCS, for example, there are over 100 data transfor-
mations that are available for dynamic network creation, analysis, visualization, sim-
ulation, and report generation. Thus any effective tool for end-user architecting will
need to provide scalable ways to search repositories. We have experimented with sev-
eral schemes for this. For example, we can use community-based ontologies to organize
services into categories familiar to end users. We can provide a set of standard filters
that can be used to extract components with appropriate properties along several dimen-
sions. We can also use machine learning to recommend possible component selections,
based on prior compositions. However, this remains an open problem, as few software
architecture tools have addressed the problem of rich component repositories.

A third concern is whether we have raised the level of abstraction sufficiently high.
While end-user architecting is a huge improvement over today’s programming-based
systems, it still requires end users to consider carefully how their computations are
composed from the available components. For some users — particularly novice users,
or users who are simply reusing existing compositions — this may still require too
much expertise.

This suggests that in many cases it may make sense to provide another level above
that of architecture representation that more directly supports user tasks. For instance,
there might be simple domain-specific languages that can be used to define some com-
putation task. Or, there may be simplified interfaces that automatically construct the
architectures through various menus or “wizards”. For example, with SORASCS we
demonstrated the ability to do this by connecting it to a front-end tool, called VIBES [1],
that provides a specialized interface for constructing belief network analyses.

More generally, the presence of an intermediate level of architecture simplifies the
problem of providing task assistance to end users, since the gap between a task and
an architecture that supports it is usually much smaller than the gap between a task
and its executable. However, task-level support for end users seems a particularly rich
area for future research, and many questions remain open. For example, is it possible to
learn compositions by watching experts solve certain tasks? Can automated synthesis
be used to achieve a computational goal based on a high-level description of the inputs
and desired outputs?

A fourth concern is the engineering cost for creating end-user architecting environ-
ments. Ideally it should be possible to generate large parts of the N-tiered framework
that we illustrated in Figure 3. This remains an open and active area of research.

Finally, as we noted in Section 2, one of the common elements of end-user architect-
ing communities is that they often involve complex ecosystems. In this paper we have
primarily addressed only one role within these ecosystems – the end-user architect. But



178 D. Garlan et al.

there are also other roles, such as component developers, data set providers, regulatory
bodies, funding agencies, etc.

We have found that when following the end-user architecting approach advocated
in this paper, it is also critical that these other roles be considered. For instance, what
incentives are there for people to contribute reusable components to an end-user archi-
tecting platform? If none are in place, it is unlikely that there will be a sufficiently large
base of parts for end users to assemble. Has the platform been constructed in such a
way that it can be certified for use in deployment environments where there may be
significant privacy or security requirements? If not, the end-user architecting tools may
not be usable in the target context. How can an analyst who has created a composition
get credit for that design if it is used by others? In many communities people are re-
luctant to make their tools available or share their analyses unless they receive some
professional recognition for doing this.

While the approach we have advocated above does not by itself address the entire
ecosystem, it can, however, help address some of the concerns such as those mentioned.
For instance, analytical outputs of some computation can be formally linked to the com-
position that produced those results, providing a way to acknowledge the developers of
the individual components and the composition itself. Additionally, as we have indi-
cated, style-based analyses can guarantee certain properties of a composition — such
as security or privacy. Tools can enforce that such analyses are successfully completed
before permitting execution of a composition. Further, the decoupling of the architec-
ture from the execution infrastructure on which it runs allows one to select an execution
platform that satisfies regulatory concerns.4 That said, the understanding of ecosystems
for end-user architecting communities remains a largely unexplored area, and a rich
subject for future research.

7 Conclusion

We have argued that the computational activities of end users in many domains are
analogous to that of software architects, and that rather than forcing end users to be-
come programmers, we should instead provide architecture-based tools and techniques
to support their tasks.

To make this concrete, we outlined six elements of an approach: (a) explicit represen-
tation of compositions as architectures, (b) use of domain-specific architectural styles
to provide appropriate computational models, (c) the ability to analyze end-user archi-
tectures for properties such as performance, reliability, security, etc., (d) support for
execution and debugging, (e) support for reuse, and (f) possibly additional services that
leverage the architectural representation. We then illustrated how this approach can be
used in three end-user architecting domains: dynamic network analysis, neuroscience,
and geospatial analysis.

We believe that the recognition of the value of architectural modeling for end users
in certain domains is an important first step towards improving the ability for myriad
disciplines to leverage the power of computation without requiring its participants to

4 For instance, there are certain pre-approved infrastructures for the US military. By using these,
one limits the amount of certification that must be done to the parts that are built on top of it.



End-User Architecting 179

become programmers. However, we also acknowledge that there is much more to be
done to make this a reality, and we outlined some of the possible future directions in
Section 6.

Acknowledgments. This work was supported in part by the Office of Naval Research
grant ONR-N000140811223, and the Center for Computational Analysis of Social and
Organizational Systems (CASOS). The views and conclusions contained herein are
those of the authors and should not be interpreted as representing the official policies,
either expressed or implied, of the Office of Naval Research, or the U.S. government.
The authors would like to thank Perla Velasco Elizondo, Jose Maria Fernandes, Diego
Estrada Jimenez, Aparup Banerjee, Laura Gledenning, Mai Nakayama, Nina Patel, and
Hector Rosas for their contributions to various aspects of this work.

References

1. Alion MA&D Operation. VIBES: Visualization of Belief Systems (May 2012),
http://www.maad.com/index.pl/visualization_of_belief_systems

2. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn. Addison
Wesley (2007) ISBN 0-201-19930-0

3. Bavoil, L., Callahan, S.P., Scheidegger, C.E., Vo, H.T., Crossno, P., Silva, C.T., Freire, J.:
Vistrails: Enabling interactive multiple-view visualizations. In: IEEE Visualization, vol. 18
(2005)

4. Biomedical Informatics Research Network. (BIRN),
http://www.birncommunity.org

5. Brandt, J., Guo, P.J., Lewenstein, J., Dontcheva, M., Klemmer, S.R.: Two studies of oppor-
tunistic programming: interleaving web foraging, learning, and writing code. In: CHI, pp.
1589–1598 (2009)

6. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern Oriented Software
Architecture: A System of Patterns. John Wiley & Sons (1996)

7. Carley, K.M.: A dynamic network approach to the assessment of terrorist groups and the
impact of alternative courses of action. In: Visualizing Network Information Meeting, RTO-
MP-IST 2006, France (2006)

8. Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Merson, P., Nord, R.,
Stafford, J.: Documenting Software Architectures: Views and Beyond, 2nd edn. Addison-
Wesley Professional (October 2010)

9. Clements, P., Kazman, R., Klein, M.: Evaluating Software Architectures: Methods and Case
Studies. Addison Wesley (2001)

10. Cypher, A. (ed.): Watch What I Do – Programming by Demonstration. MIT Press, Cambridge
(1993)

11. Deelman, E., Singh, G., Su, M.-H., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Vahi,
K., Bruce Berriman, G., Good, J., Laity, A.C., Jacob, J.C., Katz, D.S.: Pegasus: A frame-
work for mapping complex scientific workflows onto distributed systems. Scientific Pro-
gramming 13(3), 219–237 (2005)

12. Dwivedi, V., Velasco-Elizondo, P., Maria Fernandes, J., Garlan, D., Schmerl, B.: An Archi-
tectural Approach to End User Orchestrations. In: Crnkovic, I., Gruhn, V., Book, M. (eds.)
ECSA 2011. LNCS, vol. 6903, pp. 370–378. Springer, Heidelberg (2011)

13. Eidelberg, D.: Metabolic brain networks in neurodegenerative disorders: A functional imag-
ing approach. Trends Neurosci. 32, 548–557 (2009)

http://www.maad.com/index.pl/visualization_of_belief_systems
http://www.birncommunity.org


180 D. Garlan et al.

14. FMRIB Software Library (fsl), http://www.fmrib.ox.ac.uk/fsl/
15. Fowler, M.J.: Domain-Specific Languages. Addison-Wesley (2011)
16. Garlan, D., Carley, K.M., Schmerl, B., Bigrigg, M., Celiku, O.: Using service-oriented ar-

chitectures for socio-cultural analysis. In: Proceedings of the 21st International Conference
on Software Engineering and Knowledge Engineering (SEKE 2009), Boston, USA, July 1-3
(2009)

17. Garlan, D., Monroe, R.T., Wile, D.: Acme: Architectural description of component-based
systems. In: Leavens, G.T., Sitaraman, M. (eds.) Foundations of Component-Based Systems,
p. 47. Cambridge University Press (2000)

18. Garlan, D., Reinholtz, W.K., Schmerl, B., Sherman, N., Tseng, T.: Bridging the gap between
systems design and space systems software. In: Proceedings of the 29th Annual IEEE/NASA
Software Engineering Workshop (SEW-29), Greenbelt, MD, April 6-7 (2005)

19. Garlan, D., Schmerl, B.: Architecture-driven modelling and analysis. In: Cant, T. (ed.) Pro-
ceedings of the 11th Australian Workshop on Safety Related Programmable Systems (SCS
2006), Melbourne, Australia. Conferences in Research and Practice in Information Technol-
ogy, vol. 69 (2006)

20. Garlan, D., Schmerl, B., Dwivedi, V., Banerjee, A., Glendenning, L., Nakayama, M., Pa-
tel, N.: Swift: A tool for constructing workflows for dynamic network analysis (2011),
http://acme.able.cs.cmu.edu/pubs/show.php?id=333

21. Giardine, B., Riemer, C., Hardison, R.C., Burhans, R., Elnitski, L., Shah, P., Zhang, Y.,
Blankenberg, D., Albert, I., Taylor, J., Miller, W., Kent, W.J., Nekrutenko, A.: Galaxy: a plat-
form for interactive large-scale genome analysis. Genome Res. 15(10), 1451–1455 (2005)

22. Gil, Y., Ratnakar, V., Deelman, E., Mehta, G., Kim, J.: Wings for Pegasus: Creating large-
scale scientific applications using semantic representations of computational workflows. In:
AAAI, pp. 1767–1774 (2007)

23. Goodell, H.: End-user computing. In: CHI 1997 Extended Abstracts on Human Factors in
Computing Systems: Looking to the Future, CHI EA 1997, pp. 132–132. ACM, New York
(1997)

24. Hellar, D.B., Vega, L.C.: The Ozone Widget Framework: towards modularity for C2 human
interfaces. In: Proceedings of SPIE Conference on Defense Transformation and Net-Centric
Systems, Baltimore, Maryland (2012)

25. Howison, J., Herbsleb, J.D.: Scientific software production: incentives and collaboration. In:
CSCW, pp. 513–522 (2011)

26. Hutchins, E.L., Hollan, J.D., Norman, D.A.: Direct manipulation interfaces. Human Com-
puter Interaction 1(4), 311–338 (1985)

27. Kim, J.S., Garlan, D.: Analyzing architectural styles. Journal of Software and Systems 83(7),
1216–1235 (2010)

28. Ko, A.J., Abraham, R., Beckwith, L., Blackwell, A.F., Burnett, M.M., Erwig, M., Scaffidi, C.,
Lawrance, J., Lieberman, H., Myers, B.A., Rosson, M.B., Rothermel, G., Shaw, M., Wieden-
beck, S.: The state of the art in end-user software engineering. ACM Comput. Surv. 43(3),
21 (2011)

29. Lee, C., Nordstedt, D., Helal, S.: Enabling smart spaces with osgi. IEEE Pervasive Comput-
ing 2, 89–94 (2003)

30. Letondal, C.: Participatory programming: Developing programmable bioinformatics tools
for end-users. In: Lieberman, H., Paterno, F., Wulf, V. (eds.) End-User Development, pp.
207–242 (2005)

31. LexisNexis, http://www.lexisnexis.net
32. Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E., Jones, M.B., Lee, E.A., Tao,

J., Zhao, Y.: Scientific workflow management and the Kepler system. Concurrency and Com-
putation: Practice and Experience 18(10), 1039–1065 (2006)

http://www.fmrib.ox.ac.uk/fsl/
http://acme.able.cs.cmu.edu/pubs/show.php?id=333
http://www.lexisnexis.net


End-User Architecting 181

33. McConahy, A.L., Herbsleb, J.D.: Platform design strategies: Contrasting case studies of two
audio production systems. In: FutureCSD Workshop at CSCW (2011)

34. Medvidovic, N., Taylor, R.N.: A framework for classifying and comparing architecture de-
scription languages. In: ESEC / SIGSOFT FSE, pp. 60–76 (1997)

35. Monroe, R.T.: Rapid Develpomentof Custom Software Design Environments. PhD thesis,
Carnegie Mellon University, School of Computer Science (July 1999)

36. Monroe, R.T., Garlan, D.: Style-based reuse for software architectures. In: Proceedings of
the Fourth International Conference on Software Reuse (April 1996)

37. Monroe, R.T., Kompanek, A., Melton, R.E., Garlan, D.: Architectural styles, design patterns,
and objects. IEEE Software 14(1), 43–52 (1997)

38. Moore, D.M., Crowe, P., Cloutier, R.: Driving major change: The balance between methods
and people. Software Technology Support Center Hill AFB UT (2011)

39. Myers, B.A.: Taxonomies of visual programming and program visualization. J. Vis. Lang.
Comput. 1(1), 97–123 (1990)

40. myExperiment, http://www.myexperiment.org/
41. Nardi, B.A.: A small matter of programming: perspectives on end user computing. MIT Press

(1993)
42. neuGRID CNRS. N4u - neugrid for you, http://neugrid4you.eu
43. Oinn, T.M., Mark Greenwood, R., Addis, M., Nedim Alpdemir, M., Ferris, J., Glover, K.,

Goble, C.A., Goderis, A., Hull, D., Marvin, D., Li, P., Lord, P.W., Pocock, M.R., Senger, M.,
Stevens, R., Wipat, A., Wroe, C.: Taverna: lessons in creating a workflow environment for
the life sciences. Concurrency and Computation: Practice and Experience 18(10), 1067–1100
(2006)

44. Pekar, J.J.: A brief introduction to functional MRI. IEEE Engineering in Medicine and Biol-
ogy Magazine 25(2), 24–26 (2006)

45. Potomac Fusion. Ozone/Synapse download portal (2012),
http://widget.potomacfusion.com/main/home

46. Rex, D.E., Ma, J.Q., Toga, A.W.: The LONI Pipeline Processing Environment. Neuroim-
age 19, 1033–1048 (2003)

47. Schmerl, B., Aldrich, J., Garlan, D., Kazman, R., Yan, H.: Discovering architectures from
running systems. IEEE Transactions on Software Engineering 32(7) (July 2006); also avail-
able from IEEE. Appendix A, Appendix B

48. Schmerl, B.R., Garlan, D., Dwivedi, V., Bigrigg, M.W., Carley, K.M.: SORASCS: a case
study in SOA-based platform design for socio-cultural analysis

49. Segal, J.: Some problems of professional end user developers. In: VL/HCC, pp. 111–118
(2007)

50. Shaw, M., Garlan, D.: Software architecture - perspectives on an emerging discipline. Pren-
tice Hall (1996)

51. de Smith, M.J., Goodchild, M.F., Longley, P.A.: Geospatial Analysis: A Comprehensive
Guide to Principles, Techniques and Software Tools, 2nd edn. Troubador Publishing Ltd.
(December 2007)

52. Spitznagel, B., Garlan, D.: A compositional formalization of connector wrappers. In: The
2003 International Conference on Software Engineering, ICSE 2003 (2003)

53. Strother, S.C.: Evaluating fMRI preprocessing pipelines. IEEE Engineering in Medicine and
Biology Magazine 25(2), 27–41 (2006)

54. The Portuguese Brain Imaging Network Grid - IEETA. (BING),
http://www.brainimaging.pt

55. The University of Manchester and the European Bioinformatics Institute (EMBL-EBI). Bio-
Catalogue. The Life Science Web Services Registry,
http://www.biocatalogue.org/

http://www.myexperiment.org/
http://neugrid4you.eu
http://widget.potomacfusion.com/main/home
http://www.brainimaging.pt
http://www.biocatalogue.org/


182 D. Garlan et al.

56. Elizondo, P.V., Dwivedi, V., Garlan, D., Schmerl, B., Fernandes, J.M.: Resolving data mis-
matches in end-user compositions (submitted for publication, 2012)

57. Villa, F., Athanasiadis, I.N., Rizzoli, A.E.: Modelling with knowledge: A review of emerg-
ing semantic approaches to environmental modelling. Environmental Modelling and Soft-
ware 24(5), 577–587 (2009)

58. Yan, H., Garlan, D., Schmerl, B., Aldrich, J., Kazman, R.: DiscoTect: A system for discover-
ing architectures from running systems. In: Proceedings of the 26th International Conference
on Software Engineering, Edinburgh, Scotland, May 23-28 (2004)

59. Zhao, Y., Gallup, S.P., MacKinnon, D.J.: Lexical link analysis for the haiti earthquake relief
operation using open data sources. In: International Command and Control, Research and
Technology Symposium, Québec City, Canada, June 21-23 (2011)


	Foundations and Tools for End-User Architecting
	Introduction
	The Problem
	End-User Architecture
	Case Studies
	Dynamic Network Analysis
	Neuroscience
	Geospatial Analysis

	Related Work
	Discussion
	Conclusion
	References




