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Abstract. Online social networks are rapidly changing our lives. Their
growing pervasiveness and the trust that we develop in online identities
provide us with a new platform for security applications. Additionally,
the integration of various sensors and mobile devices on social networks
has shortened the separation between one’s physical and virtual (i.e.
web) presences. We envisage that social networks will serve as the portal
between the physical world and the digital world. However, challenges
arise when using social networks in security applications; for example,
how can one prove to a friend (or Friend) that your Facebook page
belongs to you and not a man in the middle? Once you have proved
this, how can you use it to create a secure channel between any device
belonging to you and one belonging to your friend? We show how human
interactive security protocols (HISPs) can greatly assist in both these
areas and in general create a decentralised and user-oriented model of
security. And we demonstrate that by using this security model we can
quickly and efficiently bootstrap security for sharing information within
a large group.

1 Introduction

Online social networks (OSNs), such as Facebook, Google+, Foursquare, Twit-
ter, and LinkedIn, have enjoyed phenomenal growth in recent years. The authors
of [13] analysed relationships and communication on Twitter, and pointed out
that Twitter also plays the role of a social medium: information can spread widely
and quickly. For example, in less than 12 hours after the first tweet of Osama Bin
Laden being killed, there were 2.2 million tweets related to this event [3]. OSNs
therefore not only help to create and maintain a large amount of relationships
between humans, they also provide efficient and convenient platforms for sharing
and spreading data amongst a large audience.

The future of OSNs is changing with the growing pervasiveness of device
connections. For example, the CEO of Ericsson [2] has forecast that there will
be 50 billion device connections by 2020, which will create a “connected society”.
Sensors are often used to make data about physical objects available online, for
example, to display the sensory data on OSNs. An IBM researcher connected his

R. Calinescu and D. Garlan (Eds.): Monterey Workshop 2012, LNCS 7539, pp. 132–147, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Social Networks for Importing and Exporting Security 133

house with Twitter1: a set of sensors are used to generate tweets about power
consumption, water usage and the temperature of the house. We also notice that
there are plenty of body-monitoring sensors [1] with mobile connectivity in the
market today.

The integration of OSNs on mobile devices has further shortened the sepa-
ration between our virtual presences on the web and our physical existence. By
using a mobile device, OSNs have the opportunity to collect more private data;
for example, location data or medical data from on-body medical sensors. There
is already a clear need for a solid security model for social networking, and the
more we use them for, the more we need them to be secured.

Given that the social network providers are increasingly making their appli-
cations available as secure web sites, there remain two primary concerns:

A How can we know that a given OSN page belongs to a given user: the iden-
tification, or authentication problem? In general such knowledge may be
absolute or come with some identified confidence level.

B The provision of appropriate security models for collecting, using and sharing
data from the local user and his or her devices including sensors.

In this paper we concentrate on A, and furthermore show how security devel-
oped for social networking can be used to conveniently bootstrap other secure
connections.

We imagine that in general solutions to A might involve any one, or combina-
tions of (i) pre-existing security infrastructures such as PKIs, (ii) reputational
models based on trust ratings by other network users, and (iii) bootstrapping
security by person-to-person contact by interaction outside the social network.
In this paper we concentrate on (iii) and show how Human-Interactive Security
Protocols (HISPs) can be used to do this efficiently when there is a means for
getting a small amount of information from the owner of the page that is to
be authenticated to the person who wants to authenticate it. This transmis-
sion might be via personal contact or using a second medium that is trusted as
authentic.

In this paper we make the following contributions:

1. We propose a security model that exploits the trust on social networks by
using HISPs. This model can be used to authenticate online identities and
create secure connections between devices.

2. We demonstrate these by implementing a prototype system. It can efficiently
bootstrap security for a large group. It shows the practicability of using our
security model in future mobile computing.

2 Using a HISP

A typical HISP relies on the assumption that there is an empirical channel
in a specific application, in which one or more humans can compare a short

1 http://stanford-clark.com/andy_house.html
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authentication string (SAS) received from the empirical channel. An empiri-
cal channel is a human-based, non-fakeable channel, for example, face-to-face
conversations, video calls or voice calls. The best of these protocols, for exam-
ple those of [14,15,16,17,18,19,20,22,23], enable assurance to these humans that
there is no attack that would allow an intruder to get the system into an inse-
cure state (where the connections established are other than what the humans
believe), with probability meaningfully greater than 2−b, where b is the number
of bits in the check-string. In addition, to have such a chance, the attacker will
have a 1 − 2−b chance of his presence being revealed by the difference between
the strings.

HISPs can be thought of as tools that enable one (perhaps informal) authentic
channel to efficiently authenticate, and then secure another one. This means that
they have two complementary potential uses in social networking.

1. We can use a HISP to authenticate online identities by using existing con-
nections (typically personal or telephone conversations between the humans
involved). In this case, we import security from existing social relationships
to social networks.

2. We can use a HISP to create secure connections between devices, in this
case, we can use authenticated social network accounts as proxies to display
SASs. This can significantly improve the usability of HISPs. We therefore
export security from social networks to other applications. This also pro-
vides a new channel of sharing information directly between devices, which
is useful especially when the OSN providers cannot guarantee the privacy of
information posted online.

In the following sections we will introduce two HISPs that we use in our imple-
mentation.

2.1 Pair-Wise HISP

Below is the pair-wise HISP we use:

1. A −→ B : hash(0 : hkA), hash(k), InfoA,
2. B −→ A : hash(1 : hkB), pk, InfoB,

Each party creates a hash, or digest key: we call these hkA and hkB. These are
needed to randomise the final check-string. A creates a session key k. B either
creates freshly, or re-uses, an asymmetric key pair (pk, sk). There is no need
for the “public” key pk to be certified. The length of these keys will depend on
the desired level of security2, the amount of available computing power, and the
crypto-system in use.

In the first pair of steps of the protocol, A and B both commit each other
without knowledge to values of hkB or hkA. The only one of the four parameters

2 The key certainly needs to be strong enough so that there is no realistic chance of
it being broken during the life of the session being established. Further strength is
required to ensure that the contents of that session remain secret after it ends.
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hkA, hkB , pk and k communicated openly is B’s public key pk. InfoA and InfoB
are the information A and B wants to authenticate. In our example, when Alice
wants to verify Bob’s OSN account, InfoB contains Bob’s social network account
profile; similarly, InfoA contains Alice’s social network account profile when Bob
wants to verify Alice’s OSN account.

The protocol now proceeds:

3. A −→ B : hkA, {k}pk
4. B −→ A : hkB

The second part of Message 3 is to tell B the actual value of the session key,
which is now checked against the hash. It is the transmission of the unencrypted
keys hkA and hkB at this stage that represents the core of the protocol. Firstly,
of course, the participants must check that these are the same values that were
represented in Messages 1 and 2. If not, the run is abandoned. Secondly, they
(and anyone else who has been listening in) can compute a value for

digest(hkA ⊕ hkB , (pk, hash(k), InfoA, InfoB))

where ⊕ is bit-wise exclusive or and (X,Y ) is an ordered pair. The protocol
completes successfully if A (or A and B) are convinced that their two versions of
the value – the check-string of this protocol – are equal: in becoming convinced
they must not use a channel which can be “spoofed” by an intruder. Typically
one will read their value to the other, or A will read B’s value directly and
compare it with her own. Whichever knows that the two values are equal can
conclude that the link is authenticated. Typically this is either A or both of
them. It is this comparison that makes it a HISP.

Naturally, if the protocol has proceeded uninterfered with, A’s and B’s values
will be equal. If, however, an intruder has imposed his own values onto the
receivers of Messages 1–4, A and B will not agree on all four parameters. For
security, what is important is that they agree on pk and hash(k), so we will
concentrate on what happens if the intruder interferes with these.

The digest function [17,18] is designed so that, as hk varies, the probability
that digest(hk,X) = digest(hk, Y ) for X �= Y is less than ε, where typically ε
is very close to the theoretically optimal value of 2−b for b the number of bits in
the output of digest. It must also have the property that for any fixed value d,
the chance that digest(hk,X) = d as hk varies is less than ε also. More details of
this protocol can be found in [9]. Formal verification of this protocol is presented
in [21].

An important quality a HISP must have is that it protects the SAS that
the users compare from combinatorial searching by potential attackers: analysis
must be able to show that no matter what conceivable amount of computing an
attacker uses, he has no better chance of getting lucky and persuading the users
to agree on an SAS in inappropriate circumstances than if it had made a single
guess. All the HISPs we see in this paper have that property.
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2.2 Group HISP

The Symmetric HCBK (SHCBK) protocol [18] is used in our implementation.
This, the general description, connects an arbitrary-sized group. Good examples
of group authentication using HISPs are GAnGs [7] and SPATE [24].

1. ∀A −→N ∀A′ : A, INFOA, hash(A, hkA)
2. ∀A −→N ∀A′ : hkA
3. users compare digest(hk∗, {INFO’A|A ∈ G}), where hk∗ is the XOR of all

hkA’s for A ∈ G

SHCBK has each node “publish” its name and a collection of information that
it wishes to be authentically connected with that name. It also sends a hash3 of
a randomly generated key hkA coupled with the name. Once it has received that
information from all nodes, and therefore become committed to the set of iden-
tities, INFO and hashed keys it will use, it publishes its previously secret hkA.
The point is that by the time of this last publication, it was in fact committed to
all the data used in the above protocol, even though it does not yet know all the
hkAs. HCBK stands for Hash Commitment Before Knowledge. A careful security
analysis of this protocol (see [18], for example) demonstrates that any attacker
is unable to profit from combinatorial analysis aimed at getting the SASs (i.e.
digests) to agree even though nodes have different views of the authenticated
information. Good HISPs such as SHCBK therefore offer maximum security for
a given amount of human effort.

We can reduce the number of human interactions if there is a trustworthy
Initiator I, consider the rest of the group as G′, then the above protocol can
be modified as following: in the process of comparing digest values, I compares
digest value published by ∀A (A ∈ G′), ∀A compares the digest value published
by I; I then publishes the final result of digest comparison, ∀A checks this result.
We call it Semi-SHCBK protocol. Therefore the total number of messages to be
exchanged via empirical channels changes from N(N − 1)/2 to 3N − 3. If there
is a trustworthy Initiator, when N > 6, Semi-SHCBK protocol is more efficient
than SHCBK protocol.

The key generation is simple: we include a copy of an uncertified Diffie-
Hellman public key in INFOA, then after a successful run of SHCBK or Semi-
SHCBK protocol, each user generates N − 1 shared pair-wise secret keys sk. For
example, skαβ means a shared secret key between user α and user β. To generate
a group key skG, the following group key protocol is used (−→S means sending
encrypted information using a corresponding pair-wise secret key):

1. ∀A −→S ∀A′ : NonceA
2. skG = Nonce∗, where Nonce∗ is the XOR of all NonceA’s for A ∈ G

Each member also generates an anonymous ID. It can be used to publish infor-
mation anonymously on OSNs. The anonymous ID is created by hash(NonceA,

3 Hash means a standard cryptographic hash function that has two main properties:
collision resistance, and inversion resistance.



Social Networks for Importing and Exporting Security 137

A’s social network ID) mod 1015. This will generate a 15-digit4 ID for each group
member.

2.3 Improving the Usability and Security of HISPs

The practicability of using HISPs is in inverse proportion to the cost of human
effort. For example, factors that determine the practicability are: the availability
of empirical channels; the length of information to be compared; and the times
of comparison required in one run.

In order to reduce the amount of human effort without compromising security,
one solution is to allow automated comparison of SASs online. For example, when
OSN pages are being used to display SASs in HISPs there is clearly also the the
option for these same pages to compare the SASs provided they are connected
securely to the local device that is participating in the HISP.

If all participants have this property we could use a longer SAS, but in general
we assume that there is likely to be some human participant creating the link in
person. The primary motivation for using HISPs is, after all, allowing this.

3 Proving Online Identities

In order to use OSNs as empirical channels we must answer the following ques-
tion: “how do I know that what I am seeing on the page comes from the person
or other entity that I think it does”. To better analyse this problem, we divide it
into two sub-questions: how do I know the (e.g. Facebook) page I am seeing is
authentic within the OSN? and how do I know it belongs to the person I think
it does? The first of these questions can be solved by conventional computer
security, for example, the https service on OSNs. It is therefore assumed that all
relevant interactions with the OSNs are via their https interfaces.

The second question can be converted into the following one: “is this an es-
tablished Friend for which you are certain of the link between page and person?”
If the answer is yes, then secure access to that page is clearly a good empiri-
cal channel. This is the most common way of authentication in our daily life.
For example, one may have experiences in interacting with a social network ac-
count, one may authenticate a social network account by the number of common
Friends, or one can authenticate a social network account by viewing its profile,
Friends list, photos, history of participated events and other context information.

If we can not make our decision based on past experiences, we may use tele-
phony or physical interactions to accomplish this task. A HISP can therefore be
used to authenticate OSN accounts. For example, Alice wants to know that the
social network account of Bob is authentic; if Alice has a phone number of Bob
and she is certain of the authenticity of this phone number, she then runs a HISP
with Bob to verify his account by using telephony as the empirical channel.

4 We use the same length of digits as Facebook ID.
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Note that the availability of HISPs provides us with the flexibility to boot-
strap security from any existing authentic connection, whether one derived from
physical proximity or other means such as telephony.

And there are other alternatives of authenticating online identities in practice,
for example:

1. Centralised authentication. For example, Twitter provides authentication
service. The verified account will display a special indicator (a small icon
or a “badge”). However this service is limited to celebrities on Twitter. A
similar situation can be found in other OSNs.

2. Introducing decentralised authorities. For example, we can publish OSN ac-
counts of a group on a company’s https web-page. In this case, the company
acts as an authority which authenticates a group. Similarly, a trusted or-
ganisation or a trusted individual can also play the role of an authority.
For example, a community leader may only keep Friends that belong to the
community, therefore his or her Friend-list can be used to help authenticate
the community members. This can be used to replace the human effort of
authenticating group members and can greatly improve the application in
authenticating a group when its size is large. In our implementation, when
prompting users to verify the member-list of a group, we provide an op-
tion for users to use a trusted authority (in the form of an https web-page).
Details of this approach are presented in Section 5.

3. Introducing trust ratings. Rating by trust is a common practice in OSN re-
search, for example, [12] describes a semantic web-based OSN, and they de-
veloped algorithms to rate the inferred reputation of a node. Another distinct
example is PGP. It exploits ratings to determine the level of authenticity of
downloaded public keys. A rating scale of 1 to 4 is used: full (complete trust),
marginal (partial trust), untrustworthy and don’t know. The most distinct
advantage of this method is that it provides pervasive automated authenti-
cation. We have implemented a demonstration rating system by using the
same ratings introduced in PGP (see Section 5).

4. Blackballing. Blackballing5 is a voting method used in many gentleman’s
clubs: members have a large number of white and black balls and each mem-
ber casts a single ball into the ballot box to vote for a proposition, if there are
one or more black balls in the ballot box, everyone will immediately know this
proposition has been vetoed. In our implementation, each member checks the
list objects one-by-one, if one object is “vetoed” by one member, then list L
is “vetoed”. This is also a form of utilising “crowd knowledge” which effec-
tively reduces the security mistakes when members manually authenticate
each other.

4 Bootstrapping a Large Group by Using OSNs

An important assumption has to be made before bootstrapping security for a
group: members of a group are capable of verifying the legitimacy of each other

5 http://en.wikipedia.org/wiki/Blackballing

http://en.wikipedia.org/wiki/Blackballing
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within the group. This is supported by the methods introduced in Section 3.
It allows us to start our discussion of how to bootstrap a large group by using
OSNs. The insecure state we will address is where one trustworthy user believes
he has an authenticated connection to another but is in fact connected to a third
party (e.g. the attacker).

In some cases when bootstrapping a HISP group the identities (however de-
fined) of those participating will be obvious. Perhaps this will be because all
know each other well and have agreed to connect, or perhaps it will be because
they are together is some easily identifiable context such as sitting around a
table. In these cases all that is necessary for them to start the protocol is the
number of them. For small groups this will be obvious; for large ones they might
either organise a count themselves or build up a list to which they agree.

In other cases – for example where some members of the group do not have
a direct link – it will certainly be necessary to establish the list of participants
in advance. In this case the names on the list will need to be authenticated.
Each intended party can check if his/her name is on the list, but it may be more
difficult to establish that no undesirables are on it.

The correctness of bootstrapping a group can be defined as follows: all mem-
bers acknowledge a list L, which contains details of all members; the resulting
group G contains exactly the same number of members recorded in L and no
one, except for the members included in L, can be allowed to join G. To fulfill
this task, we need to identify and overcome the following challenges:

– Collecting group information. This is to create list L. [7] presents two solu-
tions for collecting information from group members when they are in the
same room: the first solution is to use an untrusted projector as a central
node by displaying its Bluetooth address as a 2D barcode; all members con-
nect their mobile phones to the projector by reading this barcode and send
their details to this projector which then broadcasts list L to the group. The
second solution is to create a tree structure of collecting member’s infor-
mation one-by-one by reading 2D barcodes of Bluetooth addresses. These
methods are too cumbersome and inconvenient when the size of the group
is large. In remote scenarios, collecting group information becomes more
difficult since group information is often discrete and inconsistent.

– Counting and authentication. Counting is to check whether the size of group
G matches with the size of list L. Authentication is to check whether mem-
bers included in list L are legitimate. In general, there are two types of
attacks: (i) man-in-the-middle (MITM) or outsider attacks; (ii) Sybil [10] or
insider attacks. Counting and authentication is to detect attacks of (i) and
(ii). Normally, if authentication is prudent, authentication alone can detect
attacks of (i). However, an insider may be capable of providing multiple fake
identities6 to get access to more resources, therefore counting is necessary to
detect attacks of (ii). Depending on physical interactions to perform counting
and authentication has many limitations. For example, members of a group

6 The fake identities can be different copies of the insider’s identity or fake identities
of others.
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may be distributed and remote, and physical interactions may be unavail-
able; humans can be lazy and careless, for instance, they may not correctly
count a group, or they may not correctly perform actions of authentication.

To simplify our discussion, we assume group formations are presented in the
form of events; for example, the Department of Computer Science creates a list
of their staff and students in order to share their project data; they arrange an
event (e.g. a Facebook event) by informing all members within the department
via emails or by posting a notice to the public. We generalise these events of
group formation into the following two events:

A. Pre-emptive event: group members know each other and they all trust the
Initiator before the event runs, therefore, the Semi-SHCBK protocol is used.

B. Non-pre-emptive event: except for the Initiator, the rest of the group does
not know of the event in advance and they may not know each other. The
Initiator sends out invitations to ask for participation. Those who accept
it join the event. Members may not all trust the Initiator and the SHCBK
protocol is used.

In our solution, all functions are achieved and performed by using a mobile
application installed on users’ mobile phones.

4.1 Collecting Group Information

OSNs provide two functions that make collecting group information convenient
and efficient: (i) information on OSNs is rich and well formatted which is con-
venient for exporting information to other applications; (ii) OSN accounts are
managed according to social relationships; for example, we can create and man-
age different groups7, and we can create an event (e.g. a Facebook event or a
Google+ page) and invite Friends to join.

In Event A, we can assume that group members are already Friends of the
Initiator on OSNs, therefore the Initiator can simply create a group by selecting
accounts from his/her Friend list, and then export the group information to
our mobile application. In Event B, we assume that group members may not
be Friends with each other. The Initiator can simply create an event and then
notify all others. For example, the Initiator can introduce this event by sending
emails or by publishing it on posters. Others can easily identify and join this
event on OSNs. In the end we can export group information from this event.

This process can also be made via physical interactions, for example, one can
display an event’s OSN page address as a 2D barcode and others can read this
barcode to join this event. Therefore by using OSNs, we can support group for-
mation when group members are collocated, remote to each other, or a mixture
of the former two situations.

7 On Google+ a group is presented as a “circle”.
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4.2 Counting and Authenticating Members

Counting, if made by humans, has limitations. For example, one may make mis-
takes when the size of the group is large. [7] assumes humans can accurately
count less than ten individuals via physical interactions. They randomly divide
a large group into small subgroups in order to allow humans to count and verify
members correctly. This action provides greater usability but leads to weaker
security: there may be the chance that attackers are allocated to the same sub-
group. The probability of attack detection [7] is less than the value of 1 − 2−b

assumed by the HISP (b is the bit-length of the SAS). In addition, subgrouping
can be laborious and inconvenient since it has to be randomised.

Authentication normally requires more human efforts. For example, in [7] they
use visual channels (created by mobile phone display screens and cameras) to
check the presence of identities. Since visual channels of reading 2D barcodes
on mobile phones are normally unidirectional, a symmetric authentication of a
group of size N requires N(N − 1)/2 interactions. This number increases quickly
when the size of the group increases.

When using OSNs as empirical channels, we can first divide the authentication
process into the following two steps:

1. Authenticate OSN accounts included in list L are legitimate. We call it the
authentication of online identities.

2. Read and compare digest values displayed on members’ OSN pages. We call
it the authentication of connections.

Step 1 is to ensure that we can use OSN accounts as proxies of our physical
presences. Step 2 is to test the presence of MITM attackers by using a HISP,
which is to authenticate that the electronic connection is correctly connected to
the intended device represented by the OSN account. This strategy can remove
the requirement for physical interactions in Step 2.

In [7], counting is important because an insider can create multiple fake iden-
tities and then perform physical interactions of authentication multiple times. In
our solution, the only chance of successful insider attacks is to add fake identities
in list L and pass the authentication in Step 1. In Section 3 we have discussed
various techniques of proving online identities. These allow humans to conve-
niently and efficiently adapt their authentication strategy according to different
scenarios. In addition, we can conveniently run a program to automatically count
and check whether the number of responsive8 (or active) OSN accounts is equal
to the number of accounts included in list L. We therefore conclude that count-
ing is unnecessary in our solution and there is no need of subgrouping. This
improves both security and usability.

More importantly, once we have authenticated that OSN accounts included
in list L are legitimate, Step 2 can be made automatically since we use OSN
accounts as proxies of our physical presences. This is a significant improvement
which provides more capacity for large groups, for example, groups with size

8 Those who display the digest value.
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over 100. In addition, we can display long digest values without increasing the
cost of human efforts.

It is worth noticing that on OSNs, the cost of Sybil attacks of creating mul-
tiple fake accounts are higher because OSN providers, for example, Facebook9,
Google+, require unique identifiers (email addresses or mobile phone numbers)
to register, and they keep records of online interactions which can be used as
indicators of authenticity. We also notice that by reducing physical interactions,
we can reduce impacts from other uncontrolled factors; for example, the lumi-
nous intensity, the physical distances, the quality of mobile phone cameras or
display screens, and most importantly, the human complacency.

Another significant improvement in usability may be that we can allow de-
layed running of HISPs. Experiments of relying on physical interactions to run
HISPs have one implicit assumption that all members have to finish the process
of authentication within a short period of time. And it is the reason that re-
ducing time is critical for improving usability. However, in practice, the cost of
coordination can be high and humans may not necessarily be available of carry-
ing out the same physical action at the same time. This problem can be more
significant10 when humans are remote to each other. By using OSN accounts as
proxies of our physical presences, we can divide the authentication process into
two separate steps discussed earlier in this section. Because Step 2 of reading
and comparing digest values can be automatically completed by using a pro-
gram, and Step 1 of authenticating the legitimacy of OSN accounts in list L can
be carried out asynchronously, the running of HISPs can be delayed until the
last member completes the authentication in Step 1.

This allows more useful security applications. For example, a department
sends out notifications of bootstrapping a secure network for internal commu-
nication to its employees. Some employees are traveling abroad and they are
not responding immediately. By using our solution, the program keeps waiting
until the last employee responds which triggers the authentication process. After
the authentication process has been finished, the program displays results to all
employees.

5 Demonstration Implementation

We have implemented a secure location sharing service to demonstrate the use
of our security model. We have developed three versions of mobile applications:
RIM (Blackberry), Android, and iOS (iPhone, iPad and iTouch). One server SO
is used as the coordination server. All devices are connected to SO. After they
have successfully bootstrapped security for the group, they start to share their
locations with each other.

9 In our investigation, we discover that Facebook normally requires at least one mobile
phone number to register; and accounts registered by email addresses will later be
required to be authenticated via a mobile phone number.

10 Our experiment shows evidence of high cost of coordination.
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The mobile phone application first checks the ratings; if there are accounts
which fail to pass the rating check, it will prompt the user with a dialogue calling
for authentication resource (from a decentralised authority), it will automatically
remove the authenticated objects from the stack of the member list; the objects
that are left on the stack will be verified by empirical authentication, for example,
by using a HISP. Figure 1 shows the flow chart of the authentication process.

Note that while the current practices of implementing a rating system are
mostly experimental, we observe that the presence of a decentralised authority is
strong in scenarios with security demands. For example, in a conference scenario,
the organiser can manage the “guest list” of the conference’s Facebook event. He
or she can either remove those illegal “guests” or set this event to be visible only
to the “guests” on a given “guest list”. In an online community, the community
leader can manage the legitimate list of community members on his or her social
web-page (for example, he or she keeps the list as a group in the Friends-list).

Fig. 1. The flow chart of the authentication process

If the entire member list has been verified, the protocol starts to run. The user
will start to share his or her data of locations on Facebook (or directly between
devices) if the protocol has been finished successfully. Figure 2 shows the screen
shots of the application on Android.

We use Bouncy Castle Crypto Java API on RIM and Android; and OpenSSL
C Library for iOS. We use 1024-bit Diffie-Hellman public keys to generate shared
secret keys; 128-bit AES is used to encrypt data.
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Fig. 2. Screen shots of the mobile application

6 Performance Analysis

We have tested the mobile applications on Blackberry Bold 9000 (BB9000) (4
devices), Blackberry Storm 9500 (BB9500) (1 device), HTC Wildfire (HTC) (1
device), Dell Streak (Dell) (1 device), iPhone 3 (1 device), iPad 1 (2 devices). 10
volunteers joined this test. They were located at different addresses. Coordina-
tion was made via phone calls, sending SMSs, and messaging on OSNs. Note in
order to simplify our test, the member-list was imported from a Facebook event.
We assumed there was a trustworthy leader. Therefore, the semi-SHCBK pro-
tocol was used. A total of 20 messages are exchanged. The size of the data sent
by one device is about 18 KBytes. Compared with using traditional public key
certificates, our method allows binding of contextual data (e.g. photos, voices or
videos) to the uncertified public key we use in addition to names. We call these
secondary security information which can be used to improve security as well as
usability. Figure 3 shows the time consumption of bootstrapping a group of all
the devices we have. The total time cost is around 193 seconds.

We can see the cost of coordination is high in group formation because of
many uncontrolled random factors. However, the verification and comparison is
efficient and only takes a small fraction of the total time.

Table 1. Facts and statistics

Device Time Ratio Speed1 Speed2
BB9000 3.69s 99% 1.72kb/s 4.32kb/s
BB9500 4.49s 99% 1.35kb/s 3.75kb/s
HTC 3.74s 99% 1.56kb/s 4.80kb/s
Dell 0.85s 99% 2.42kb/s 7.15kb/s

iPhone 0.11s 99% 4.38kb/s 8.74kb/s
iPad 0.08s 99% 4.06kb/s 13.7kb/s

Fig. 3. Time consumption
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Table 1 shows the facts and statistics of different devices. The second column
is the time of computing DH secret; the third column is the ratio of the time of
computing DH secret against the time of total on-device computing (excluding
communication); the fourth column is the speed of connection between the device
and the coordination server; the last column is the speed of the connection
between the device and the Facebook server. We can see the time of on-device
computation mostly originates from the DH secret computation.

According to the above analysis, we can identify two challenges for the future:
(A) providing more convenient methods for large ad hoc group formation; (B)
increasing the speed of mobile connections to allow including more contextual
data in the protocol. Challenge A requires research on both security and usability.
For example, should a group be formed using a single initiator, a tree structure,
broadcasting over a fully connected graph, or some other topology? Challenge
B is less significant since there are continuous developments in improving the
speed of mobile connections; for example, the deployment of 4G network.

7 Related Research

WhozThat [4] is a system making use of OSN IDs among mobile phones: two
users exchange their OSN IDs using Bluetooth, and it then introduces social
context into the local context; for example, one may play the favourite music
of the other. This is similar to our solution of binding OSN IDs with mobile
devices while our intention is to facilitate identification and connection rather
than interaction between humans. CenceMe [11] is a more advanced mobile OSN
system which detects users’ social activities by analysing sensory data on mobile
phones. It demonstrates a well designed integration of OSNs on mobile phones:
automated input of social information (deducted from sensory data) replaces
traditional manual input. This is similar to our vision for future OSNs; for ex-
ample, sensor networks like on-body sensor networks can be exploited by OSNs
to automatically generate and display social patterns.

In [8] the authors presented a concrete implementation of Cloud Computing
Service (for storage) on Facebook. However, there is no description as to actually
utilise the Cloud after creation. Our solution gives a clear data flow between
different interfaces and it can be put in use instantly.

Security is a key enabling factor for the above practices. In [5] the authors
suggested OSN operators should not be trusted and data should be encrypted
before posting online. They provided an example of creating a peer-to-peer sys-
tem by using a pair-wise HISP to distribute public keys. A similar example was
discussed in [6], which proposed a completely decentralised peer-to-peer system
by storing data on user devices.

We notice that although there is much research on creating decentralised
systems to improve security, practices without using a PKI or existing security
infrastructures can be difficult. And such peer-to-peer systems are not efficient
when the scale of sharing increases. Practices introduced in [7,24] reveal the high
complexity of group HISPs when using physical interactions to collect group
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information and authenticate members, therefore they are not practical when
bootstrapping a large ad hoc group.

8 Conclusions

We have revealed the challenges of authenticating online identities and boot-
strapping security for a large ad hoc group. The model of social networks for
importing and exporting security we have presented can be used to (i) exploit
existing social relationships to authenticate online identities and (ii) exploit ex-
isting online relationships to efficiently bootstrap security for a large ad hoc
group. This provides a way of incorporating social context into security which
can be used to deal with changing security requirements emerging from new
applications. The secure location sharing service we have implemented demon-
strates these features of this model.

The security of social networks remains an interesting problem on which more
work is required. Its attack models based on technology are likely to be similar to
those of other online services, but there is also a social/psychological dimension
to investigate. We believe that in the future the growing investment in security
by social network companies will make our solution more secure when export-
ing security to other applications, and the development of computing power on
mobile devices will make it more efficient in supporting security services.
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