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Abstract. The abundance of software that will be more and more avail-
able will promote the production of appropriate integration means (archi-
tectures, connectors, integration patterns). The produced software will
need to be able to evolve, react and adapt quickly to a continuously
changing environment, while guaranteeing dependability through (on-
the-fly) validation. The strongest adversary to this view is the lack of in-
formation about the software, notably about its structure, behavior, and
execution context. Despite the possibility to extract observational mod-
els from existing software, a producer will always operate with software
artifacts that exhibit a degree of uncertainty in terms of their functional
and non functional characteristics. Uncertainty can only be controlled by
making it explicit and by using it to drive the production process itself.
This calls for a production process that explores available software and
assesses its degree of uncertainty in relation to the opportunistic goal
G, assists the producer in creating the appropriate integration means
towards G, and validates the quality of the integrated system with re-
spect to the goal G and the current context. In this paper we discuss
how goal-oriented software systems can be opportunistically created by
integrating under uncertainty existing pieces of software.

1 Introduction

Increasingly, software applicationswill be produced following a production process
paradigm that will be based on the reuse of non-proprietary software, often black-
box and on software integrator systems that will ease the collaboration of existing
software for the realization of new functionalities. The produced software will be
inherently dynamic since it needs to operate in a continuously changing environ-
ment and must be able to quickly react and adapt to different types of changes,
even unanticipated, while guaranteeing the dependability today’s users expect.

This evidence promotes the use of an experimental approach, as opposed to
a creationistic one, to the production of dependable1 software. In fact, software

1 We refer to the general notion of dependability, as defined by IFIP Working Group
10.4: “the trustworthiness of a computing system which allows reliance to be justifi-
ably placed on the service it delivers”.
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development has been so far biased towards a creationist view : a producer is
the owner of the artifact, and with the right tools she can supply any piece of
information (interfaces, behaviors, contracts, etc.). The Digital Space promotes
a different experimental view : the knowledge of a software artifact is limited to
what can be observed of it. The more the observations will be powerful and
costly the more the knowledge will be deep, but always with a certain degree
of uncertainty. Indeed, there is a theoretical barrier that limits, in general, the
power and the extent of observations.

The big challenge underlying this scenario is therefore to accept that this im-
mense software resources availability corresponds to a lack of information about
the software, notably about its behavior and on its execution context. A software
producer will less and less know the precise behavior of a third party software
service, nevertheless she will use it to build her own application. This means
that the producer will operate in an environment in which the available services,
and hence their related software artifacts (e.g., behavioral models, interface de-
scriptions), exhibit a degree of uncertainty in terms of their functional and non
functional characteristics (e.g., approximated behavioral models, incomplete in-
terfaces, inaccuracy of performance parameters). We borrow Galbraith’s defini-
tion of uncertainty, as taken from [35]: it “defines uncertainty as the difference
between the amount of information required to perform a task and the amount of
information already possessed”. Indeed, in the software domain we see a flour-
ishing of tools and methods to elicit approximated behavioral models of running
systems. This problem recognized in the software engineering domain [23] is
faced in many other computer science domain, e.g., exploratory search [45] and
search computing [15], as well as software risk management [12], economics and
other social domains [35]. In order to face this problem and provide a producer
with a supporting framework to engineer the future software applications we
envision a process that implements a radically new perspective.

In this paper we move some steps in the definition of Eagle [4], an integrated
model-based framework of theories, models, model-driven techniques, and tools
to support the perpetual explore-integrate-validate production process of de-
pendable software in the digital space, i.e., goal-oriented software systems that
are opportunistically created by integrating under uncertainty existing software
and that are dynamically evolving within a perpetually changing context. Specif-
ically, we focus on the integration synthesis phase that aims at producing inte-
gration means to compose the explored software together in order to produce
an application that satisfies the goal and that is able to tames uncertainty. The
idea is that the integration solution compensates the lack of knowledge of the
composed software by adding integration logic like connectors, mediators and
adapters.

The paper is structured as follows: Section 2 presents the state of the art and
motivates the work. Section 3 recalls the Eagle approach while Section 4 ex-
plains the integration synthesis promoted by Eagle. Final remarks are discussed
in Section 5, while the paper concludes in Section 6.
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2 State-of-the-Art Overview

Eagle calls for uncertainty-aware and partial models. Uncertainty here corre-
sponds to a measure, in a given metric system, of the incompleteness and inaccu-
racy of the models with respect to the goal G, which is due to the nature of the
elicitation technique, its cost, and the operative context of the software system.
Eagle systems opportunistically integrate pieces of software as available in a
non-ideal world: this leads to accept incomplete information, hence accepting
systems that represent the strictly necessary solution for satisfying the specified
goal, possibly also in face of risks identification and prioritization. Thus, goal-
oriented validation is another key aspect for Eagle. As discussed below, there
exist many methods and techniques to account for uncertainty while develop-
ing software systems. All of them operate within different domains and consider
uncertainty at different abstraction levels by also exploiting different software
models. In this direction, one of the aims of Eagle is to combine/extend existing
techniques and methods into a unified uncertainty-aware framework. Therefore,
our state-of-the art overview is organized in several parts: Section 2.1 discusses
approaches addressing the problem of deriving partial models from implemented
systems. Section 2.2 presents the models@runtime approach and Section 2.3
concentrates on automatic connector synthesis to support software integration
and coordination. Finally, Section 2.4 focuses on functional and non-functional
Verification and Validation (V&V) under uncertainty.

2.1 Derivation of Partial Models

Many reverse engineering techniques have been applied to recover software archi-
tectural information from software systems. These techniques result in different
structural models that describe approximations of the system internal struc-
ture [42]. Several approaches have recently addressed the problem of deriving
partial behavioral models from implemented systems. In [8] we propose a method
that combines synthesis and testing techniques in order to automatically derive
the behavior protocol of a web-service out of its WSDL interface. In [22] the
authors propose an approach to construct partial models for representing sets
of alternatives and to use those alternatives for reasoning. In [44] the authors
propose a synthesis technique that constructs partial behavioral models in the
form of Model Transition Systems (MTS), a combination of safety properties
and scenarios. In [32] the authors describe a technique to automatically gener-
ate behavioral models from (object-oriented) system execution traces. The work
described in [25] aims to infer a formal specification of stateful black-box com-
ponents that behave as data abstractions by observing their run-time behavior.
In [18] the authors propose tools and techniques to automatically derive models
from running open source software systems in order to enable the simulation of
their upgrades and to detect possible configuration inconsistencies.
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2.2 Models@runtime

The models@runtime approach [9] seeks to extend the applicability of models
produced in Model Driven Development (MDD) [39] approaches to the run-time
environment. An example of design models application at run-time has been
proposed by the PLASTIC project2. The PLASTIC development process [3,2]
relies on model-based solutions to build adaptable context-aware service-oriented
applications. It encompasses methodologies and software tools to generate QoS
models and adaptable application code from UML-based specifications. In this
setting, opportunistic reuse of heterogeneous pieces of software, context aware-
ness, run-time evolution, adaptiveness and uncertainty represent challenges that
can be addressed by adopting a models@runtime approach [9]. Modeling tech-
niques coupled with MDD capabilities, such as model transformation and code
generation, provide viable means to enable system monitoring, model analysis
and adaptation at run-time [27]. In [16] variability models are reused at run-time
to support self-reconfiguration of systems when triggered by changes in the en-
vironment. In [34] run-time models of a system are used to reduce the number of
configuration and reconfigurations to be considered when planning adaptations
of the application. In [24] the use of configuration graphs is investigated as a
means for monitoring and recording information about the system adaptations.
As discussed in [31], meta-models allowing the definition of models where design-
and run-time concepts are combined represent another key aspect for the cre-
ation and exploitation of effective run-time models. In the context of free and
open source software systems, we use models@runtime to manage the upgrade
of system configurations [18]. These approaches recognize the need to produce,
manage and maintain software models all along the software’s life time in order
to assist the realization and validation of system’s adaptations while the system
is in execution.

2.3 Automatic Connector Synthesis to Support Software
Integration and Coordination

The first approaches to connector synthesis appeared in the 90s in the control
theory domain [38] and, thereafter, they have been revised to fit the domain of
software (embedded) systems [1,5]. The aim of these approaches is to automati-
cally synthesize a controller that restricts the system behavior so as to satisfy a
given specification. In [14,37] LTSs are used to model the I/O behavior of com-
ponents and automatically synthesize a set of constraints on the components’
environment that allow deadlock avoidance. In [43] we show how to automati-
cally derive either a centralized or distributed connector from a specification of
the components’ interaction and of the requirements that the composed system
must fulfill. However, these approaches do not take into account both possible
run-time changes in the environment and non-functional requirements of the
system to be integrated. The CONNECT project3 overcomes these limitations

2 FP6 IST EU PLASTIC, http://www.ist-plastic.org/
3 FP7 FET EU CONNECT, http://connect-forever.eu/

http://www.ist-plastic.org/
http://connect-forever.eu/
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promoting the development of automatic connector synthesis approaches that
can be efficiently performed at run-time [29]. Eagle aims at tackling the prob-
lem of automatically synthesizing integrators at run-time under uncertainty.

2.4 Functional and Non-functional Verification and Validation
under Uncertainty

The idea of moving V&V activities at run-time [6] has been often realized by
introducing monitoring activities both for functional and non-functional proper-
ties, and more recently by moving testing to on-line [7]. Uncertainty in Ea-
gle calls for compositional V&V techniques that permit to perform partial
V&V (based on the information currently available) and to instrument the sys-
tem so to be able to support on-line V&V. Many works have been proposed
in compositional verification and, in particular, in assume-guarantee reason-
ing [17,26,19]. Bayesian models (such as Bayesian Networks [36]) can be con-
sidered as the stochastic counterpart of the assume-guarantee paradigm. In this
direction, an example of bayesian approach for modeling the reliability of a
software component-based system, given the reliability of its components, has
been presented in [40]. More sophisticated stochastic models can be used to take
into account uncertainty in non-functional validation processes. Hidden Markov
Models (HMM) [20] are typically used to model systems that have Markovian
characteristics in their behavior, but that also have some states (and transi-
tions) for which only limited knowledge is available. Finally, theories [28] and
techniques [10] for compositional approaches to testing have been investigated.

3 The EAGLE Approach

The Eagle approach promotes a novel production process (see Figure 1) that
builds around three iterative phases explore-integrate-validate as follows [4]:

(i) Explore: explore available software services with the aim of extracting mod-
els as much complete as possible with respect to an opportunistic goal G.
This means that, within the proposed software production process, we ad-
mit to deal with models that may exhibit a high degree of incompleteness,
provided that they are accurate enough to satisfy user needs and prefer-
ences. For sake of validation, we will consider behavioral models annotated
with quantitative non-functional parameters (e.g., Probabilistic Automata,
UML+MARTE models, Queueing Networks, etc.);

(ii) Integrate: assist the producer in creating the appropriate integration means
to compose the explored software together in order to produce an applica-
tion that satisfies G (e.g., from specific architectural integration patterns to
solutions enforcing suitable architectural constraints). The integration solu-
tion can indeed compensate the lack of knowledge of the composed software
by also adding integration logic like connectors, mediators and adapters.
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Fig. 1. Explore, Integrate, and Validate cycle

(iii) Validate: dynamically validate the integrated system to assess its quality
with respect to the goal G and the current context. This also requires to
check whether a change in the goal or in the context occurs, so to seamlessly
re-enact the explore-integrate-validate process to adapt to the change(s).

Feedbacks coming from validation and goal monitoring activities (see Figure 1)
will instruct the process on whether proposing a new integration architecture
(e.g., with the aim to act on the integration means, such as connectors, to avoid
interactions that prevent the achievement of the goal), or reiterating the entire
process to incrementally elicit more accurate software models (a specific lack
of information in the considered models may lead to a meaningless validation).
The explore-integrate-validate iteration is terminated once the validation step
shows that the goal is achieved. Indeed, whenever changes in the monitored
environment occur, the reiteration of the entire cycle might also be triggered (as
new context may invalidate the goal).

In more details, according to Figure 1, if S1,· · ·,Sk are (with respect to the
goal G) the candidate pieces of software that are being elicited by an explo-
rative technique i, the result of an explorative phase, elicitationi(S1,G),. . .,
elicitationi(Sk,G), is a set of models M={M1

i ,. . .,M
k
i }. Each model shall have

associated its own accuracy, and hence its own metric for measuring the degree
of uncertainty uMj

i
. Moreover, each elicited model M j

i has a cost cMj
i
that repre-

sents a quantitative measure of the effort to elicit M j
i with an uncertainty degree

uMj
i
. The Explore box of Figure 1 shows a curve for the explorative technique i,

that is able to elicit the model M1
i with different costs and uncertainty degree

(along the curve). In general, a piece of software can have associated different
models, as derived from different observations performed by different elicitation
techniques. That is, the Explore box has a certain multiplicity (as represented
by the dashed box boundaries) given by the multiplicity of the pieces of soft-
ware under observation and of the explorative techniques. Similarly, different
models of context C={C1,. . .,Cn} can be elicited and analogous definitions of
uncertainty and cost metrics can be introduced for them.
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4 Integration Synthesis for Taming Uncertainty

As previouslymentioned, we are primarily interested in extracting behavioral quan-
titative models of the software interaction protocols, and in modeling contexts
together with their evolution. The elicited models can be incomplete and/or in-
accurate with respect to the related software and the goal that the system has to
achieve. The first refers to the behavioral modeling, i.e., less and/or more traces,
the latter to the quantitative modeling, i.e., inaccurate probabilities and/or quan-
titative indices [33]. As anticipated in Section 2, in this context uncertainty cor-
responds to a measure, in a given metric system, of the incompleteness and inac-
curacy of the models with respect to the goal G, which is due to the nature of the
elicitation technique, its cost, and the operative context of the software system.
Analogously to testing where the notion of coverage is pivotal to any metrics to
assess the effectiveness of testing, reasoning about the quality of the elicited obser-
vational models needs similar notions. Indeed, in theEagle scenario we are inter-
ested in developing systems by opportunistically integrating pieces of software and
in assessing costs subsequent to choices, as in the “value-based” paradigm [11], so
to achieve the goal most effectively. For the elicitation techniques, it shall there-
fore be possible to: (i) establish what portion of the goal specification can be ful-
filled by the system under exploration, possibly under some assumptions on the
environment; and (ii) select the suitable exploration techniques and establish a
convenient strategy for their usage according to the cost of the elicitation process,
as specified by the user preferences and needs.

To better explain how the integration synthesis promoted by Eagle tames
uncertainty, let us introduce a hypothetical scenario of Eagle at work. Let us
consider an e-commerce web service, EcommerceWS, with the aim of eliciting
a behavioral model of it. The goal G is a combination of functional and non-
functional properties, that can be informally expressed as follows: (i) to achieve
a successful interaction among EcommerceWS and a client of it, i.e., to ensure
that the client always progresses on buying items, (ii) to achieve a certain level of
reliability of the whole system, where this attribute is given by the combination
of the client and the web service reliabilities.

The explore step might use different techniques to elicit behavioral models
of the software under exploration, e.g., from standard analysis techniques com-
plemented with statistical inference to machine learning techniques [21,13]. An
elicited model M has a degree of uncertainty with respect to the system S and
the goal G. In general, different models, each with its own degree of uncertainty,
may exist. This is shown in the Explore box of Figure 1, where S can have
associated different models obtained through elicitation techniques with differ-
ent costs and uncertainty degrees. Similarly, different models of context can be
elicited and analogous definitions of uncertainty and cost metrics can be intro-
duced for them. As a possible technique to be used in the explore step, we
consider a version of the StrawBerry tool [8] that, for the EAGLE purposes, is
enhanced to deal with the uncertainty degree of the elicited models.

Coming back to the example, clients of EcommerceWS can open a session, add
a product to a shopping cart and buy items added to the cart. When an item is
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Fig. 2. EcommerceWS sample: explore and integration

bought, it is removed from the cart. The operation used to buy a product, named
buyProduct, is successfully concluded only if the shopping cart connected to the
current session is not empty, an error will be raised otherwise. By taking as input
the WSDL of EcommerceWS, the current version of StrawBerry produces a finite
state automaton modeling the interaction protocol that a client has to follow in
order to correctly interact with EcommerceWS. For the sake of the scenario, the
enhanced version of StrawBerry shall produce the probabilistic automaton [41]
for EcommerceWS in Figure 2.a. This automaton is potentially incomplete and
the probabilities represent the uncertainty of the elicitation technique. Indeed,
the operation buyProduct has a probability 0.6 to happen and to loop on state 3
(e.g., the case of successfully buying an item). The incompleteness of the model
concerns the remaining cases in which buyProduct happens with a probability 0.4.
In these cases, the model does not express what the behaviour of EcommerceWS
may be, i.e., which states may be reached (e.g., when trying to buy an item from
an empty cart). For instance, there might be other two buyProduct transitions
from state 3, both with probability 0.2, going to state 1 and 2 respectively. The
reason for this incompleteness of the model may depend on limits to the cost of
the elicitation process as specified by user preferences and needs. Uncertainty on
the behavior can also affect the estimate of reliability for sake of goal satisfaction,
along with the uncertainty on the values of fundamental reliability parameters,
such as the probability of failure of the buyProduct operation.

The integration step shall support the producer in creating the most effec-
tive (to the goal G) integration means that takes into account the uncertainty
degree, and the associated cost, of each single elicited model. During the inte-
gration step, by reasoning on their elicited models and further accounting for
the tradeoff between uncertainty degree and cost, the candidate pieces of soft-
ware are selected. Then, an integration architecture IA is synthesized, possibly
automatically (see the Integrate box of Figure 1). IA is synthesized by mak-
ing assumptions on the uncertain behavior of the selected pieces of software,
as well as on the uncertain reliability parameter values, in order to achieve the
goal G. That is, the integrated system satisfies G only if the assumptions hold.
As detailed later, the validation step is responsible to check such assumptions.
Thus, IA plays a crucial role in influencing the overall uncertainty degree of the
final integrated system S, as different IAs may result in different uncertainty
degrees for S. By continuing our example, EcommerceWS and Client are the
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components that have been selected to build the integrated system. Actions de-
noted with the overbar in Figures 2 and 3 correspond to output actions, all the
others correspond to inputs. The goal to be considered while producing the IA
is that the integrated system, i.e., the one composed of EcommerceWS, Client,
and the synthesized IA, always progresses on buying items with the required
level of reliability. For instance, in Linear-time Temporal Logic, the functional
part of goal G can be formally expressed as follows:

G =!(<> [ ](buyProduct))

whereas the non-functional one (in a simplified formulation) as follows:

Rel(Client) ∗Rel(EcommerceWS) >= targetrel

where targetrel is the required level of reliability. In this example, IA assumes
the form of a mediator (see Figure 2.c), which is an additional software entity
that can be synthesized4 [30]. It suitably mediates the interaction between Ecom-
merceWS and Client in order to achieve G provided that some assumptions on
the incomplete behavior and the reliability parameters of EcommerceWS hold.
By referring to Figure 2.c, Mediator assumes that EcommerceWS reaches state
2 after a failure occurred while buying items. The transitions of the mediator
model are labeled according to the following template:

<Client operation>.<EcommerceWS operation>,<probability to happen>

The mediator copes with the inherent uncertainty of the EcommerceWS model
that concerns the case(s) in which buyProduct happens with a probability of
0.4. To this aim, Mediator assumes that EcommerceWS reaches state 2 af-
ter performing buyProduct,0.4. This assumption is reflected by the transition
labeled buyProduct.buyProduct,0.4 in Figure 2.c. This transition is added dur-
ing mediator synthesis to enforce the integrated system to perform addProduct
once buyProduct has been executed with an empty shopping cart. For the non-
functional part of the goal, assumptions are made on the reliabilities of service
components, under a certain level of uncertainty.

A validation step shall then assess the quality of the integrated system with
respect to the assumptions made by IA. If the final assessment is not satisfying
then the process shall iterate either to select different pieces of software, or to
reduce the uncertainty degree of models (some already in place), or to mod-
ify the overall IA. For instance, back to the example, a new iteration of the
explore-integrate-validate process is required when, upon validation, the above
behavioral assumption made by Mediator does not hold. The new explore step
will incrementally refine the elicited model by exploiting the feedbacks of the
validation phase and the results of the previous explore step. In particular,

4 The CONNECT project (http://connect-forever.eu/, Grant agreement no.
231167) concerns the definition of theories and techniques to drop interoperabil-
ity barriers by synthesizing on the fly the connectors via which networked systems
communicate.

http://connect-forever.eu/
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Fig. 3. EcommerceWS sample: validation

the EcommerceWS model, of Figure 2.a, is refined by adding the transition
buyProduct,0.4 from state 3 to 1. Consequently, a new mediator needs to be
synthesized as shown in Figure 3. In general, although still incomplete with re-
spect to the modeled software, the refined models might be accurate enough to
achieve the functional part of G. In particular, the new mediator detects the
failure of buyProduct and, by exploiting authentication information previously
stored, simulates an access of Client to EcommerceWS by performing openS-
ession. The non-functional validation of the integrated system can also report
an uncertain result, such as “the system reliability is within an interval of 10%
around targetrel”, for example due to incomplete information about the relia-
bility of some software components. In this case, either the process is reiterated,
or (if feasible) the goal can be loosened and the integration acceptable.

5 Discussion

In this section we discuss some aspects that merit to be further investigated.

– Metrics to quantify/qualify the uncertainty - The metrics adopted
to reason on uncertainty should be different depending on the sources of
uncertainty they refer to. Furthermore, in some cases uncertainty cannot be
quantified due to the source domain it stems from, thus it has to be qualified
in non-ambiguous terms. Hence, uncertainty can be quantified/qualified in
different ways. In the following we propose some examples:

1. The uncertainty can be originated by a set of available alternatives (such
as static, dynamic, or deployment alternatives) when more than one
alternative can be suitable with respect to the goal G. In this case the
uncertainty can be quantified (i) either with a probability assigned to
each suitable alternative, when knowledge is sufficient to generate a set
of values that sum up to 1, (ii) or with a non-stochastic metric that
represents the level of preference/priority associated to each suitable
alternative.

2. When uncertainty stems from functional or non-functional parameters of
the model (e.g., maximum multiplicity of a component, resource demand
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of a service) the uncertainty can be quantified with intervals that bind
the suitable values of these parameters.

3. In some other cases, e.g., in the case of a macro-component with an
internal structure not completely known, uncertainty can be qualified
through elements of the design. In these cases it could be appropriate to
define/use partial specification modalities.

Since different metrics can be used to measure the uncertainty of a piece
of software, each one related to a specific aspect (e.g., behavior, reliability,
performance, etc.), they have to co-exist in a coherent metric system. There-
fore, such system should also contain relations and dependencies among these
different metrics.

– Tradeoffs between different metrics - As anticipated, the uncertainty
of a system is measured by means of a metric system. Then, this calls for
tradeoffs between the different functional or non-functional aspects to be
considered, each related to a suitable metric of uncertainty. In other words,
within a suitable space of solutions determined by all uncertainties still in
place, often a designer has to take decisions that decrease uncertainty in one
direction whereas increase uncertainty in other directions. For example, in
order to increase the reliability a higher number of (replicated and differently
designed) components are put in place, whereas this choice, at the same time,
increases the uncertainty about the resource demand of this system because
many more components’ demands have to be estimated.

– Uncertainty estimation - The explore phase of Eagle produces a model
of a software artifact specialized to represent some aspects. Quite often this
model is defined under uncertainty that is associated to one or more metrics.
Now a question raises, that is: how to estimate the value of uncertainty
metrics? Referring to the example in Section 4, StrawBerry makes use of
testing to extract the model, thus in this case the metric of uncertainty can
be estimated by considering the number of positive and negative tests that
have been performed. The knowledge of the designer can help during the
explore phase since she can be aware, for instance, that a piece of software
requires an amount of CPU that is in the range of [x, y], with x and y
belonging to the real numbers, event though no exact value is known.

– Uncertainty of composed systems - While building a system composed
of several components or subsystems, the uncertainty metric system might
be derived out of the uncertainty metric systems of the single components
or subsystems. This calls for mechanisms to create a new metric system
out of existing ones. Thus, relations and dependencies of the component
metric systems have to be exploited, and/or new relations and dependencies
among metrics must be inferred. Let us now focus on a single metric. The
measure of uncertainty related to this metric for a composed system can
be calculated by suitably combining the metrics of uncertainty associated
to the single components or subsystems. Thus, a suitable operator must be
aptly adopted. In the example described in Section 4, the composition is
simply performed by multiplying the probabilities associated to Client and
ECommerceWS.
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6 Conclusion

Eagle proposes a model-based framework for supporting the perpetual explore-
integrate-validate cycle that will be realized by exploiting model-driven tech-
niques. This integrated framework will support the engineering of goal-oriented
software systems that are opportunistically created by integrating, under uncer-
tainty, existing software and that are dynamically evolving within a perpetually
changing context.

Reaching this goal requires to put at work different expertises and skills to-
gether, hence asking for a multi-domain research and development work on func-
tional and non functional system modeling, verification and validation,
model-driven development, context-awareprogramming, connector synthesis, and
techniques for run-time monitoring and reconfiguration. As a by-product of this
approach we expect that Eagle results should be exploitable in a multitude of
contexts both research-wise and industrial-wise.
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