
R. Calinescu and D. Garlan (Eds.): Monterey Workshop 2012, LNCS 7539, pp. 81–93, 2012. 
© Springer-Verlag Berlin Heidelberg 2012 

Command and Control of Teams of Autonomous Systems 

Douglas S. Lange*, Phillip Verbancsics, Robert S. Gutzwiller,  
John Reeder, and Cullen Sarles 

Space and Naval Warfare Systems Center Pacific 
San Diego, CA 92152 

doug.lange@navy.mil 

Abstract. The command and control of teams of autonomous vehicles provides a 
strong model of the control of cyber-physical systems in general. Using the 
definition of command and control for military systems, we can recognize the 
requirements for the operational control of many systems and see some of the 
problems that must be resolved. Among these problems are the need to distinguish 
between aberrant behaviors and optimal but quirky behaviors so that the human 
commander can determine if the behaviors conform to standards and align with 
mission goals. Similarly the commander must able to recognize when goals will 
not be met in order to reapportion assets available to the system. Robustness in the 
face of a highly variable environment can be met through machine learning, but 
must be done in a way that the tactics employed are recognizable as correct. 
Finally, because cyber-physical systems will involve decisions that must be made 
at great speed, we consider the use of the Rainbow framework for autonomics to 
provide rapid but robust command and control at pace. 

Keywords: cyber-physical, command and control, autonomic, machine 
learning. 

1 Introduction 

Teams that include heterogeneous autonomous unmanned systems (AUS) are good 
generalizations of complex cyber-physical systems. They contain autonomous units 
connected by a network, involving distributed computation, and to further complicate 
matters may have cooperative intelligent behavior among changing subsets of the 
systems components. As the elements of these networked systems exist in and interact 
with the physical environment, the physical nature of AUS is obvious. Even the 
network can be influenced by the environment given the use of wireless 
communications. 

Controlling such a complex system requires several critical capabilities. First, the 
goals and constraints for the AUS team must be communicated to the various decision 
making nodes. This may include all of the AUS, as they all may possess sufficient 
autonomous capability to decide how to act under many situations given the goals. A 
central controller, or more generally several distributed controllers, must have 

                                                           
* Corresponding author. 



82 D.S. Lange et al. 

confidence (particularly if human operated) that the goals and constraints have been 
received and correctly interpreted by the autonomous units. Second, the control units 
must have sufficient situational awareness of the environment and the behaviors of 
the team members in order to decide if changes to orders are required. The control 
must have the ability to determine if any error conditions are present and must be able 
to distinguish between aberrant behavior and what may be a plausible but unpredicted 
solution. Finally, team strategies must be selected to accomplish goals, and these 
strategies may need to be altered as the environment changes.  

This paper explores the control of complex cyber-physical systems. In particular 
we look at the requirement for human controllers to influence the operation of these 
systems as well as addressing the need for autonomic control in situations where time 
constraints do not allow human decision making. This combination of requirements 
poses interesting demands on how cyber-physical systems are constructed and how 
they incorporate adaptation. 

2 Control of Complex Systems 

The control exercised by a military commander over forces is described as “…guiding 
the operation” [1]. The presumption is that there is a mission statement, a set of assets 
with which to perform the mission, and an environment to operate in that may include 
an opposing force. There are several ways in which a commander guides an operation. 

Maintain alignment: The commander must ensure that all decisions remain aligned 
with the operation’s mission and the commander’s intent. 

Provide situational awareness: The commander must assess the status of plan 
execution constantly, utilizing a common operational picture (COP). 

Advance the plan: The commander must monitor the status of plan execution 
against the plan’s timeline. 

Comply with procedure: The commander oversees compliance with warfighting 
procedures to avoid mistakes (e.g., friendly fire engagements or collateral damage) 
and achieve efficiencies. 

Counter the enemy: The commander must be responsive to emerging intelligence, 
surveillance, and reconnaissance information that differ significantly from 
expectations. 

Adjust apportionment: Changes to asset availability or changes to requirements and 
priorities may require reapportionment of assets. 

Military organizations are essentially complex cyber-physical systems. The end –
nodes may be aircraft with pilots, or aircraft without pilots. These units whether 
manned or unmanned can be viewed as autonomous systems that cooperate to achieve 
a mission under the command of a human commander.  

The tasks of the military commander are also clearly analogous to what would be 
required in many non-military systems. The only difference may be that no enemy 
exists, but the environment is nevertheless capable of surprising, therefore emerging 
information that alters assumptions is still possible. Units may become inoperable just 
as in military operations, and adjustments to plans must often be made. 

As the complexity of the system increases, the commander must work at higher, 
more abstract levels. The units of the system must also exhibit higher levels of 



 Command and Control of Teams of Autonomous Systems 83 

autonomy so that decision making is moved further down and is more immediate [2]. 
Based on the level of autonomy exhibited by the units, we can model the size of an 
operation that a single person can manage, provided the situation can be adequately 
described to the commander. 

3 Control of Systems by Humans 

Automation can easily be called ubiquitous.  We interface with it daily, even if we do 
not immediately recognize it.  In years past for example, elevators required human 
operators, but now we simply press a button to reach our floor.  Even highly complex 
systems integrate automation; commercially flown airplanes have autopilots that are 
capable of landing the plane, and some models of cars have automated systems which 
bypass the driver if safety is in doubt (i.e., automatic braking systems, vehicle 
headway monitoring).  These systems integrate automation, but still rely heavily on a 
human component for routine performance and supervision.  While automation is 
becoming more common, and more reliable, it rarely replaces or removes a human 
with experience from the overall task [3]. 

Automation has also been shown to result in phenomena such as complacency 
which results in operators failing to detect failures of automated systems [4,5,6] and 
automation bias, which results in operators blindly following automation 
recommendations or failing to act unless the automation requests the human action in 
decision making systems [7,8,9,10,11]. 

Leli and Filskov [12] suggest that it is specifically the integration that plays a large 
role in determining the effectiveness of a system outcome.  In their work, automated 
diagnostic systems consistently outperformed clinicians when in isolation; however 
decision accuracy decreased as a direct result of integrated clinician use of the aid to 
diagnose psychological conditions. This suggests that perhaps the most critical aspect 
of automation is not the engineering behind the automation itself, but the interaction 
between any automation and the operator who is expected to work together with it.   

Parasuraman and Wickens [3] also identified issues related to the ability of human 
operators to understand the actions of the automation. The operators trust and ability 
to evaluate the performance of autonomous systems comes, in part, from an ability to 
recognize behaviors as correct or incorrect. AUS that have been programmed to 
perform in a particular fashion may or may not exhibit behaviors that are recognizably 
correct while optimal for the given situation. Knowing that such situations can exist 
may also push an operator to show complacency when observing odd behaviors 
because they can be explained as possibly correct if not humanlike. 

4 The Roles for Learning 

4.1 Developing Team Tactics 

A common approach to the design of autonomous systems is to design the entire 
system to be scripted. That is, a human decides on the action the autonomy takes for 
 



84 D.S. Lange et al. 

any given state the system is in. Such systems face many challenges. The first is the 
significant investment in human resources in the design because every part of the 
autonomy must be thought out and scripted.  Furthermore, the autonomous capability 
is dependent upon the incorporated knowledge. Therefore, the investment of human 
resources necessarily includes subject matter experts in the task the autonomy is 
addressing. Another difficulty is that scripted autonomy is brittle, e.g. unexpected 
situations can cause the autonomy to not work. This lack of robustness is due to the 
expansive state space that exists in the real world. Human designers will not be able 
to test or even anticipate every situation the autonomous system will be exposed to, 
resulting in a number of states that will not be addressed by the autonomy or be 
addressed with limited effectiveness. For example, consider a scripted autonomous 
system designed to deter piracy that assumes there exists only a single pirate threat at 
any given time. Once such autonomy encounters a situation where there exists more 
than one pirate, the script will degrade in effectiveness because the situation was not 
anticipated. Furthermore, once the autonomous system is introduced, pirates can adapt 
their tactics to counter the system and render ineffective the specific design of the 
autonomy. Finally, scripted systems often lack scalability. In particular, the designs 
will be tied to a particular number of autonomous agents, or a particular autonomous 
system, meaning each time the number of types of unmanned vehicles change, the 
autonomy for the system must be redesigned. 

In a proof of concept experiment, such a scripted system was compared to a cutting 
edge multiagent learning method, Multiagent HyperNEAT. Multiagent HyperNEAT 
approaches the problem of multiagent learning by focusing on the geometric 
relationships among agent policies [13]. The policy geometry is the relationship 
among policies located at particular positions and the team behavior. Because 
multiagent HyperNEAT is built upon HyperNEAT, it can exploit the same patterns 
that HyperNEAT is able, such as regularities. Furthermore, because HyperNEAT can 
encode repetition with variation, it can encode agent policies that share skills and vary 
in significant ways. Conventional multiagent learning cannot capture such regularities 
to enable sharing of skills and variation of policy. For a full description of how 
multiagent HyperNEAT encodes a team of policies see [13,14]. The main idea is to 
place a whole set of policies within a team geometry and compute their individual 
policies as a function of their location within the team. 

Moving from simulated domains to real robots will mean that situations may occur 
where the number of agents varies, such as malfunctions or replacements and 
therefore ideally team size should be dynamically adjustable. The multiagent 
HyperNEAT approach allows such scaling because it represents team policies 
indirectly as a function of team geometry. Thus new agents can be added by simply 
generating the policy for their assigned team position. 

The results of the proof of concept experiment are illustrated in the figure below.  



 Command and Control of Teams of Autonomous Systems 85 

 

Fig. 1. Performance of Scripted Search versus Learned Policy 

Overall, the results show that policies created by multiagent learning approaches 
are more robust to change. The scripted parallel search and learned multiagent 
HyperNEAT policies are compared on three variations of a threat detection task. In 
each of the variations, the policies are tested over 100 evaluations and the results 
averaged. The learned policy tested is trained solely on the first variation. The first 
variation is the training task for multiagent HyperNEAT, in which there are seven 
simulated unmanned vehicles patrolling and the threats can randomly appear along 
any of the four edges of the operational area. In this task, the learned policy has 
statistically the same performance as the scripted policy, resulting in the patrols 
missing 2.37 threats, and the learned patrol policy missing 2.47.  

In the second variation, the tactics employed by the threats are altered such that 
they now appear from two of the four sides at random, thus increasing the density of 
the attacks along that vector and testing the robustness of the approaches. The learned 
policy missed 3.94 threats, significantly (p < 0.001) outperforming the scripted policy, 
which decreased significantly in performance to 7.98 threats missed.  

In the third variation, threats can appear along all four edges, but the number of 
simulated unmanned vehicles in the team is increased from seven to eleven. The 
learned policy exploits the increased number of vehicles, decreasing the missed 
threats to 0. However, the scripted policy is unable to take advantage of the new 
vehicles and only insignificantly decreased missed threats to 2.32. These results 
demonstrate that learning can produce more robust and scalable policies. 



86 D.S. Lange et al. 

4.2 Recognizing Correct Tactical Behavior 

Using HyperNEAT to develop team tactics will create more robust and scalable 
policies and behaviors. However, we must also be concerned with whether or not the 
human controller will recognize the behaviors as being safe and correct. As the 
HyperNEAT approach produces Artificial Neural Nets (ANN), we can only look at 
the team tactics as black boxes, and even within the proof of concept experiment, it 
took a fair amount of observation of the units to interpret (essentially guess) why they 
were behaving as they did. A human controller in such a system however, must be 
able to decide if the tactics being employed are aligned to the mission and whether or 
not they are properly countering the enemy or handling arising complications in the 
environment.  

One of the primary draw backs to learning behaviors is that in the search for 
optimal actions the agents can behave in ways that seem foreign and unintelligible to 
the human operators. It is most likely the case, and something that should be tested, 
that agents that behave in a more humanlike fashion are more easily trusted by human 
observers. The development of humanlike agents is possible through hand coding and 
expert systems, but it is a tedious and complicated process. It is, however possible to 
learn humanlike behaviors through observation. FALCONET is such a system 
designed to create high performance humanlike agents through human observation. 

Humans learn through several different processes. Learning through observation 
entails watching the process as performed by some other individual or agent. Learning 
through experience involves repetitive practice of the process with feedback on 
performance. Learning can and does occur under each process individually, but it is 
the combination of observation and experience that generally leads to the highest 
levels of performance. For instance when learning a new sport humans typically 
observe others already proficient in the activity before beginning to practice 
themselves. Observation bootstraps the learning process of experience enabling faster 
learning speed and higher peak performance. 

There is a long history in Machine learning of borrowing from biological systems. 
Examples include knowledge representations like neural networks, optimization 
algorithms such as genetic algorithms and ant colony optimization, and learning 
paradigms like reinforcement learning. In the particular method discussed below the 
observational-experiential learning cycle is replicated in machine learning to achieve 
the same goals for simulated learning that are achieved in biological learning. 

FALCONET is a method of agent training that follows the biologically inspired 
cycle of observation and experiential learning. It was designed to enable the creation 
of high performing, humanlike agents for real time reactionary control systems [15]. 
Typically, the building of humanlike agents involves the complicated process of 
interviewing knowledge experts and then codifying that knowledge into a format that 
is machine readable. This process is complicated and time consuming and has led to 
the slow adoption of this technique in real world systems, despite the success that can 
be achieved. This problem is known as the “knowledge engineering bottleneck” [16]. 
FALCONET was designed to automate the agent creation process from human 
observation thereby sidestepping the bottleneck. 



 Command and Control of Teams of Autonomous Systems 87 

Previous work has been done using observational data alone to train agents, 
stopping once an acceptable level of performance is reached on training and 
validation sets [17,18,19,20,21]. While this might produce humanlike agents, it 
ignores the possibility that the observational agents will perform poorly in situations 
not covered in the observational data. The agents when presented with novel 
situations could perform in unpredictable and unintelligent ways. The experiential 
phase can fill in these gaps by providing feedback on the agent’s performance in 
novel situations. 

The training in FALCONET follows a two phase training approach. First a 
supervised observational phase, followed by an unsupervised experiential phase. 
During the observational phase the objective of the learning is to be similar to the 
actions of a human trainer. Human trainers run through the selected tasks starting 
from many different scenarios to generate the observational training set. The agents 
are then trained on this data set while being graded on how closely they mimic the 
decisions of the human. In the experiential phase the agents are trained further using a 
measure of performance on the task. In FALCONET all training is done by a hybrid 
genetic algorithm (GA) particle swarm optimization (PSO) algorithm called 
PIDGION-alternate. This is an ANN optimization technique that generates efficient 
ANN controls from simple environmental feedback. FALCONET has been tested 
showing that it can produce agents that perform as well or better than experiential 
training alone while incorporating humanlike behaviors. The results from 
FALCONET also state that unique human operator traits can be incorporated and 
evident in the final highest performance controls, that is to say that agents sourced 
from different trainers have slightly different behavioral quirks. 

As part of the validation of the FALCONET method experiments were conducted 
using only the experiential learning phase. High performance controls were created in 
this manner, but they showed several “improper” quirks, that while more optimal in 
the performance metric, seem foreign to human operators. These quirks, like driving 
backward or slamming the controls left and right very quickly, can be programmed 
out by a human designer, but it requires the a priori knowledge of all “improper” 
behaviors that would be undesirable. The FALCONET method bypasses this need by 
bootstrapping the process with human training. 

5 Autonomic Control 

So far, we have discussed the basic needs that will allow a human commander/controller 
to exercise command and control over a network of autonomous units that include 
highly autonomous unmanned systems (AUS). We have recognized that the controller 
must be able to develop adequate situational awareness of the environment, any 
enemies, and the behaviors and status of assets available. This SA requires the 
commander to recognize the behaviors being displayed as aligned with the mission, 
commander’s intent, and applicable procedures. It also requires that these behaviors be 
robust to the variation found in the environment. 

We have also recognized that the human controller is subject to many difficulties 
inherent to managing automation. Humans are prone to complacency and  



88 D.S. Lange et al. 

automation bias. They also can only work at human speeds and can only handle a 
finite level of complex information. Abstraction and supervisory control are therefore 
essential to success if many rapid decisions will need to be made in controlling the 
network. 

We are beginning to model AUS teams utilizing the Rainbow Framework [22] 
from Carnegie Mellon University. Rainbow groups commands into tactics and 
strategies and directs the system with those instead of individual actions.  This 
approach allows an automated controller to move the system out of local maximums 
that it may encounter in utility functions.  Additionally, the grouping of actions into 
tactics and strategies allows for the system to leverage learning techniques and 
previous human experience in dealing with situations.  

Rainbow will provide an autonomic command and control in the sense that it 
assists with the same set of six tasks, only faster. 

Maintain alignment: The mission goals and the commander’s intent will be 
modeled as a set of utility functions within Rainbow. Rainbow evaluates current 
readings from probes and gauges as well as tactics for changing the resource 
allocations against these utility functions to select an action. 

Provide situational awareness: Rainbow’s framework of probes and gauges provides 
situational awareness into how well the current plan is meeting mission goals.  

Advance the plan: The autonomic systems is continuously evaluating the readings 
from the probes and gauges against the plan and makes changes to adjust in the event 
that desired goals are not being met. 

Comply with procedure: Procedural guidelines can be coded in the tactics 
employed by Rainbow in the stitch language. It is our intention to also link tactical 
procedures to learned behaviors. 

Counter the enemy: As the environment or enemy actions impinge on success of 
the goal, Rainbow adjusts the operation based on evaluating tactics against the 
likelihood of success. The evaluation processes will need to be robust enough to 
estimate how the changes will effect operations. 

Adjust apportionment: The basic types of tactics employed in Rainbow to date 
have been apportionment decisions. In [22] experiments were done on video 
teleconferencing services where additional servers were brought online to solve 
problems that occurred during operations. 

In the application of Rainbow, AUS teams are represented in a similar fashion as a 
network of servers would be. However, we include probes into the physical world 
providing information both on the AUS and on the environment. Many of these 
probes relate directly to the sensors that are onboard typical AUS. Strategy decisions 
involving costs include physical costs of fuel as well as risks found only in systems 
that interact with the physical world. Likewise, rewards are based on the ability of the 
AUS to effect a positive change on the environment, often in the form of achieving a 
probability of detection of other physical entities in a portion of the environment. 

We have developed an initial proof of concept in autonomic control of unmanned 
systems by applying the Rainbow Framework to a simulated domain.  In this domain, 
a number of AUS must maximize the probability of detection, P(d),  in an 
environment by maximizing sensor coverage across the area.  In this case, P(d) is a 



 Command and Control of Teams of Autonomous Systems 89 

simple metric defined as the fraction of horizontal and vertical paths across the space 
that do not have sensor coverage across them,  i.e. straight paths that can be traversed 
without detection.  Thus each AUS has a location (x,y-coordinate) and sensor range 
along with other parameters.  Because AUS are conceptually similar to computational 
services (e.g. servers), they can be similarly modeled in the Acme architecture model 
language that defines a system architecture in the Rainbow Framework. A simple 
AUS architecture definition is as follows: 

 
Component Type AUST extends ArchElementT with { 

   Property x : float <<  default : float = 0.0; >> ; 

   Property y : float <<  default : float = 0.0; >> ; 

   Property fuel : float <<  default : float = 1.0; >> ; 

   Property fuelExpendRate : float <<  default : float = 1.0E-4; >> ; 

   Property speed : float <<  default : float = 0.01; >> ; 

   Property sensorRadius : float <<  default = 0.1; >> ; 

   Property cost : float <<  default : float = 1.0; >> ; 

} 

 
Properties, such as the geographic location and fuel state, represent values that are 
probed from the (simulated) world.  Such values inform the Rainbow model manger, 
allowing it to accurately reflect and gauge the real system within the Rainbow defined 
model. 

A key feature of Rainbow is the definition of constraints that the system must 
follow.  For example, a web business may desire the minimization of response time 
for its customers and define a constraint that the response time experienced by any 
customer if below some threshold. In turn, Rainbow would probe these response time 
values from the real system and then evaluate the model for constraint violations.  If a 
constraint is violated, Rainbow adapts the model through predefined strategies and 
then executes these strategies on the real system through effectors. In this proof of 
concept, the constraint is that the value P(d) must be above a given threshold of 0.8.  
To satisfy this constraint, Rainbow implements a simple strategy.  

 
strategy BruteDetection 

[styleApplies && cViolation] { 

    t0: (overlapExists) -> move(){ 

        t0a: (default) -> done; 

    } 

    t1: (cViolation  && ! overlapExists) -> enlistAUS() { 

        t1a: (overlapExists) -> move(); 

    } 
 

In brief, the strategy states that if an overlap in sensor coverage exists, move the 
active AUS to minimize the overlapping coverage.  If there is no overlap, but the 
constraint is still violated, then add a new AUS to the domain.  This strategy 
implements two tactics that we described in stitch: move and enlistAUS. As an 
example of how these tactics are defined, enlistAUS is as follows: 



90 D.S. Lange et al. 

tactic enlistAUS () { 
 condition { 
 // Probability of detection is below a threshold 
 ModelAlt.probabilityDetection(M.components) <M.MIN_PDETECT; 
 // there should be enough available AUS 
 ModelAlt.availableServices(T.AUST) >= 1; 
 } 
 action { 
 set aus = Set.randomSubset(ModelAlt.findServices(T.AUST), 1); 
 for (T.AUST freeAUS : aus) { 
  S.activateAUS(freeAUS); 
  } 
 } 
 effect { 
 // Probability of detection rising should result 
 ModelAlt.probabilityDetection(M.components) >= M.PDETECT; 
 } 
} 

 
In the enlistAUS tactic, the condition first checks whether the constraint is violated 
and then if there are any AUS not currently active.  If both these conditions are 
satisfied, a random free AUS is chosen and activated.  The effect being that the 
addition of the new AUS increases the sensor coverage, thus improving P(d) over the 
current levels. 

In the domain, the AUS exist in a two-dimensional plane with coordinate values in 
the range [0,1].  Initially, no AUS are active, thus the constraint is violated at the start.  
This compels Rainbow to adapt the system with the above strategies and tactics to 
achieve the pre-determined desired P(d) level.  When each AUS is activated, they are 
placed at location (0,0) and then move from there.  Each AUS moves at the same 
fixed speed of 0.01, have a sensor range of 0.1, and begin with 100% fuel. 

Results demonstrate that Rainbow can be implemented to effectively control such 
systems.  Figure 2 shows that the system begins at a low P(d), indicative of the initial 
state of the system.  However, by time step 150, Rainbow has successfully adapted 
the system to achieve the desired P(d) value. 

 
Fig. 2. Probability of Detection in Proof-of-Concept Experiment 



 Command and Control of Teams of Autonomous Systems 91 

Not only is the result interesting, but the behavior of the system is as well. Figure 3 
shows the final configuration of the system, when it achieves the P(d) threshold 
required. Each circle represents an AUS sensor coverage. 

 

Fig. 3. Final AUS Positions with Sensor Radii 

Through the composition of simple strategies and tactics, organization emerges that 
effectively minimizes the probability of anyone passing through the region undetected. 
In this simulation, utility of the system is equal to the probability of detection.  
However, Rainbow includes the capability to calculate system utility as a function of 
multiple variables.  For example, maintaining sensor coverage may be only one 
important aspect; another may be reducing fuel consumption or minimizing the AUS 
required.  Rainbow weights each of these contributions of utility to determine the 
overall utility of the system.  Through these relative weightings, different aspects can be 
emphasized. A suite of strategies to address these differing concerns may be required, 
forming a pareto-front of performance depending on particular user needs. 

The ability of Rainbow to automatically and quickly implement strategies frees up 
the controller to focus on macro level concerns, such as overall probability of 
detection, fuel levels, and costs, rather than micro-managing individual AUS.  Thus 
the controller can make decisions about required detection levels versus preferred fuel 
levels and leave it up to Rainbow and its strategies to implement the decisions. Many 
avenues remain for exploration in the Rainbow Framework including, but not limited 
to, performance with “human-in-the-loop” changing the system constraints and goals, 
integrating machine learning into tactics and strategies, extending Rainbow to be able 
to dynamically acquire system architecture, and evaluating robustness to failures in 
the system, such as an AUS malfunctioning, being destroyed, running out of fuel, or 
being reassigned. 



92 D.S. Lange et al. 

6 Conclusions 

We have both found and produced, proof-of-concept level experiments that 
demonstrate possible solutions to some of the challenges we perceive for the 
successful command and control of teams that include AUS. Our goal is to continue 
to pursue these possible solutions. 

The command and control of teams requires that commanders be able to work at a 
suitable level of abstraction. Commanders must be able to recognize when changes to 
a plan are required and must have the ability to affect such a change. The dynamic 
nature of the military environment indicates the need for robust adaptable capabilities 
for decision making in the individual AUS, but also the ability for their actions to be 
recognizable to human controllers. Autonomic capabilities are a likely approach to 
allow commanders to handle very large teams that may require rapid decision making, 
but the autonomic strategies must also be made more adaptable and in doing so also 
maintain the property of being recognizable by a commander. 

References 

1. Willard, R.F.: Rediscovering the Art of Command & Control. Proceedings of the US 
Naval Institute (2002) 

2. Rodas, M.O., Szatkowski, C.X., Veronda, M.C.: Modeling Operator Cognitive Capacity in 
Complex C2 Environments. In: 16th International Command and Control Research and 
Technology Symposium (2011) 

3. Parasuraman, R., Wickens, C.D.: Humans: Still vital after all these years of automation. 
Human Factors 50(3), 511–520 (2008) 

4. Parasuraman, R., Molly, R., Singh, I.L.: Performance consequences of automation induced 
“complacency”. The International Journal of Aviation Psychology 3(1), 1–23 (1993) 

5. Wiener, E.L.: Cockpit automation. In: Wiener, E.L., Nagel, D.C. (eds.) Human Factors in 
Aviation, pp. 433–461. Academic, San Diego (1988) 

6. Parsasuraman, R., Manzey, D.H.: Complacency and Bias in Human Use of Automation: 
An Attentional Integration. Human Factors 52, 381–410 (2010) 

7. 32nd Army Air and Missile Defense Command: Patriot Missile Defense Operations during 
Operation Iraqi Freedom, Washington, DC (2003)  

8. Chen, T.L., Pritchett, A.R.: Development and evaluation of a cockpit decision-aid for 
emergency trajectory generation. Journal of Aircraft 38, 935–943 (2001) 

9. Johnson, K., Ren, L., Kuchar, J., Oman, C.: Interaction of automation and time pressure in 
a route replanning task. In: International Conference on Human-Computer Interaction in 
Aeronautics, pp. 132–137 (2002) 

10. Layton, C., Smith, P.J., McCoy, E.: Design of a cooperative problem-solving system for 
en-route flight planning: An empirical evaluation. Human Factors 36, 94–119 (1994) 

11. Mosier, K.L., Skitka, L.J., Dunbar, M., McDonnell, L.: Aircrews and automation bias: The 
advantages of teamwork? The International Journal of Aviation Psychology 11(1), 1–14 
(2001) 

12. Leli, D., Filskov, S.: Clinical detection of intellectual deterioration associated with brain 
damage. Journal of Clinical Psychology 40(6), 1435–1441 (1984) 

13. D’Ambrosio, D.B., Stanley, K.O.: Generative encoding for multiagent learning. In: 
Proceedings of the Genetic and Evolutionary Computation Conference (2008) 



 Command and Control of Teams of Autonomous Systems 93 

14. D’Ambrosio, D.B., Lehman, J., Risi, S., Stanley, K.O.: Evolving policy geometry for 
scalable multiagent learning. In: Proceedings of the Ninth International Conference on 
Autonomous Agents and Multiagent Systems (2010) 

15. Stein, G.: FALCONET: Force-feedback approach for learning from coaching and 
observation using natural and experiential training. Ph.D. Thesis, University of Central 
Florida (2009)  

16. Feigenbaum, E.A.: Knowledge Engineering: The Applied Side of Artificial Intelligence. 
Annals of the New York Academy of Sciences 426(1 Computer Culture: The Scientific, 
Intellectual, and Social Impact of the Computer), 91–107 (1984) 

17. Dejong, G., Mooney, R.: Explanation-based learning: An alternative view. Machine 
Learning 1(2), 145–176 (1986) 

18. Lee, S., Shimoji, S.: Machine acquisition of skills by neural networks. In: IEEE 
International Joint Conference on Neural Networks, vol. II, pp. 781–788 (1991) 

19. Sammut, C., Hurst, S., Kedzier, D., Michie, D.: Learning to fly. In: Proceedings of the 
Ninth International Workshop on Machine Learning, pp. 385–393 (1992) 

20. Henninger, A.E., Gonzalez, A.J., Georgipoulos, M., DeMara, R.F.: The limitations of 
static performance metrics for dynamic tasks learned through observation. Ann 
Arbor 1001, 43031 (2001) 

21. Fernlund, H.K.G., Gonzalez, A.J., Georgiopoulos, M., DeMara, R.F.: Learning tactical 
human behavior through observation of human performance. IEEE Systems, Man, and 
Cybernetics, Part B: Cybernetics 36(1), 128–140 (2006) 

22. Garlan, D., Cheng, S., Huang, A., Schmerl, B., Steenkiste, P.: Rainbow: Architecture-
Based Self Adaptation with Reusable Infrastructure. Computer 37(10), 46–54 (2004) 


	Command and Control of Teams of Autonomous Systems
	Introduction
	Control of Complex Systems
	Control of Systems by Humans
	The Roles for Learning
	Developing Team Tactics
	Recognizing Correct Tactical Behavior

	Autonomic Control
	Conclusions
	References




