
Independent Implementability of Viewpoints

Thomas A. Henzinger1,� and Dejan Ničković2

1 IST Austria, Klosterneuburg, Austria
2 AIT Austrian Institute of Technology, Vienna, Austria

Abstract. Interface theories provide a formal framework for component-
based development of software and hardware which supports the in-
cremental design of systems and the independent implementability of
components. These capabilities are ensured through mathematical prop-
erties of the parallel composition operator and the refinement relation
for components. More recently, a conjunction operation was added to
interface theories in order to provide support for handling multiple view-
points, requirements engineering, and component reuse. Unfortunately,
the conjunction operator does not allow independent implementability
in general.

In this paper, we study conditions that need to be imposed on in-
terface models in order to enforce independent implementability with
respect to conjunction. We focus on multiple viewpoint specifications
and propose a new compatibility criterion between two interfaces, which
we call orthogonality. We show that orthogonal interfaces can be refined
separately, while preserving both orthogonality and composability with
other interfaces. We illustrate the independent implementability of dif-
ferent viewpoints with a FIFO buffer example.

1 Introduction

Component-based design is a common design methodology, where complex sys-
tems are developed by assembling individual components. It usually involves a
combination of bottom-up and top-down design techniques. In bottom-up design,
the designer assembles the overall system by integrating already available com-
ponents. Top-down design starts from the specification of the overall system that
is decomposed and refined into requirements for the subsequent design stages.

Interface theories [6] were developed as a formal framework that supports both
bottom-up and top-down approaches in component-based design. An interface
is an abstract specification that describes the interaction of a component with
its environment. In particular, an interface captures both the assumptions that
the component makes about its environment, and the guarantees that the com-
ponent provides when used in the intended design context. In order to support
bottom-up design, interface theories provide a composition operator that satisfies

� This work was supported in part by the ERC Advanced Grant QUAREM (Quanti-
tative Reactive Modeling) and by the FWF National Research Network RISE (Rig-
orous Systems Engineering).

R. Calinescu and D. Garlan (Eds.): Monterey Workshop 2012, LNCS 7539, pp. 380–395, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Independent Implementability of Viewpoints 381

the incremental design property. Two interfaces are compatible for composition if
their port types match and there exists a design context in which they can inter-
act without violating their mutual guarantees. Incremental design requires the
possibility of checking the compatibility of two interfaces and composing them,
without considering the precise design context in which the composition will be
used. The composition operator is both associative and commutative, thus ensur-
ing that compatible interfaces can be developed independently and composed in
any order. In top-down design, the notion of refinement plays a central role. This
design flow starts with a system-level interface that is iteratively decomposed
and refined into sub-system interfaces, until implementations of respective com-
ponents are obtained. Top-down design, illustrated in Figure 1, is subject to the
independent implementability property, that requires the possibility of refining
compatible interfaces separately, while still maintaining compatibility between
them.

M

M1 M2

M1

M11

M12

M13

M2

M21 M22

M11

M111 M112

Fig. 1. Top-down design

The properties of the composition operator and the refinement relation, pro-
vide necessary basic support for bottom-up and top-level design in interface
theories. However, composition alone does not cover all the aspects that are
encountered in component-based design, such as:

1. Specification of component’s multiple viewpoints, where each viewpoint is
modeled as an interface, and specifies a particular (behavioral, timing, power
consumption, etc.) aspect of the component;

2. Requirement engineering, by formal modeling of requirement documents that
consist of a conjunction of individual requirements;

3. Component reuse in different parts of a design.

382 T.A. Henzinger and D. Ničković

In order to provide additional support for the above aspects of component based
design, the conjunction operator was introduced in [8], in the context of stateless
and Moore interfaces [4]. The conjunction is a partial function defined on pairs
of interfaces and is the most general refinement of individual interfaces, i.e. the
greatest lower bound in the refinement lattice on interfaces. The conjunction
between two interfaces is defined if they are consistent1, i.e. if their input vari-
ables do not overlap with the output variables and the output guarantees do
not contradict each other. The conjunction operator was subsequently added to
modal interfaces [10], assume/guarantee contracts [2] and synchronous relational
interfaces [12]. Top-down design with conjunction is illustrated in Figure 2 in
the context of multiple viewpoints and component reuse, where components can
be reused in different parts of a design, without being restricted to be trees of
components, but they can also be directed acyclic graphs.

Functional
Specification

Timing
Specification

Power
Specification

(a) (b)

M1 M2 M3

M1 ∧M2 ∧M3

M

M1 M2

M1

M11

M12

M13

M2

M21 M22

M11

M111 M112

M112 ∧M22

Fig. 2. Top-down design with conjunction for: (a) component reuse, and (b) multiple
viewpoints

The conjunction of specifications plays an important role in top-down de-
sign. A natural requirement for the conjunction operator would be to support
independent implementability and allow separate stepwise refinement of indi-
vidual interfaces. Unfortunately, conjunction does not satisfy the independent
implementability property, in general. We illustrate this point with the following
example.

Example 1. Let M , M ′ and N be three stateless interfaces shown in Figure 3.
The input variables of M and N do not overlap with their respective output
variables. Furthermore, the output guarantees of M and N do not contradict,
i.e. there always exists an output (y = 2), such that both the guarantees of M

1 In [8], consistency is called shared refinability.

Independent Implementability of Viewpoints 383

andN are satisfied. It follows thatM and N are consistent. Moreover,M ′ refines
M because the two interfaces accept the same inputs and the output guarantee of
M ′ implies the output guarantee of M . However, M ′ and N are not consistent,
because the conjunction of their output guarantees is unsatisfiable, hence the
conjunction of M ′ and N is not defined. It follows that M and N cannot be
refined independently, given that the consistency property is not preserved by
refinement.

M :

⎧
⎪⎪⎨

⎪⎪⎩

var:

{
in: x : B

out: y : N

A: True
G: y ≤ 2

M ′ :

⎧
⎪⎪⎨

⎪⎪⎩

var:

{
in: x : B

out: y : N

A: True
G: y < 2

N :

⎧
⎪⎪⎨

⎪⎪⎩

var:

{
in: x : B

out: y : N

A: True
G: y ≥ 2

Fig. 3. Single-state interfaces M , M ′ and N : M and N are consistent, M ′ refines M ,
but M ′ and N are not consistent

In this paper, we study sufficient conditions that need to be imposed on
stateless and Moore interfaces, in order to guarantee their independent imple-
mentability with respect to the conjunction operator. We focus in particular on
the context where conjunction is used to combine multiple viewpoints of the
same component. Independent implementability of viewpoints is a highly desir-
able requirement of an interface theory, because different aspects of a component
are often specified and developed by different design teams, and are not effec-
tively combined until a late stage in the design process. We first observe that
different viewpoints of a component usually specify non-overlapping aspects, and
the guarantees that are provided by individual viewpoints are rarely conflicting.
It follows that the notion of consistency is not well adapted to conjunction of
viewpoints. We instead propose a different criterion, that we call orthogonality,
for conjunction of two interfaces to be defined. We say that two interfaces are or-
thogonal if their input variables do not overlap with their output variables, and
if the intersection of their output variables is empty. While this condition is not
realistic for specifying multiple requirements of the same view of a component,
we believe it is reasonable for expressing multiple view requirements. We show
that for every two interfaces that are orthogonal, they can be refined separately,
while maintaining orthogonality between them.

2 Stateless Interfaces

A stateless interface consists of a set of input and output variables, an input
assumption predicate and an output guarantee predicate.

384 T.A. Henzinger and D. Ničković

Definition 1 (Stateless interface). A stateless interface M = 〈XI , XO, ϕ, ψ〉
consists of the following components:

– XI and XO are disjoint sets of input and output variables. We define X =
XI ∪XO;

– ϕ is a predicate over XI called input assumption; and
– ψ is a predicate over XO called output guarantee.

We require the stateless interface to be well-formed, i.e. to accept at least one
input value and generate at least one output value.

2.1 Connection, Composition and Refinement

In this section, we define standard connection and parallel composition operators,
as well as the refinement relation, as in [7], and recall the incremental design
and independent implementability properties that are supported by stateless
interfaces.

A connection consists of a set of interface variable pairs and defines which
variables in an interface are interconnected after application of the connection
operator. For all pairs, the first component is an output and the second compo-
nent an input variable of the stateless interface to which the output is connected.
Formally, we have the following:

Definition 2 (Connection). A connection θ is a set of pairs (x, y), consisting
of a source variable x and a target variable y, such that for all pairs (x, y), (x′, y′)
∈ θ, if x �= x′, then y �= y′.

We denote by Sθ the set of source variables in θ, by Tθ the set of target variables
in θ, and by ρθ the predicate

∧
(x,y)∈θ(x = y).

We say that a connection θ is compatible with a stateless interface M , if the
following conditions hold: (1) the source variables in θ are all output variables of
M ; (2) the target variables in θ are all input variables inM ; and (3) when source
variables are connected to target variables, there exists a valuation of remaining
input variables in M for which the assumption ϕ of M is satisfied for all values
of output variables of M that satisfy the guarantee ψ of M .

Definition 3 (Compatibility for connection). A stateless interface M =
〈XI , XO, ϕ, ψ〉 is compatible with a connection θ if the following conditions hold:

– Sθ ⊆ XO;
– Tθ ⊆ XI ;
– the predicate ϕ̂ = ∀XO.∀Tθ.((ψ ∧ ρθ) → ϕ) is satisfiable.

Given an interface M and a connection θ such that M is compatible with θ, the
result of applying θ to M is the stateless interface Mθ = 〈X̂I , X̂O, ϕ̂, ψ̂〉, where

Independent Implementability of Viewpoints 385

– X̂I = XI\Tθ;
– X̂O = XO ∪ Tθ; and
– ψ̂ = (ψ ∧ ρθ)

Example 2. The application of a connection θ to a stateless interface M is il-
lustrated in Figure 4. In this example, θ = {(z, x)} and the predicate ϕ̂ =
(∀x, z)((z < 2∧ z = x) → (x < 3∧ y �= 0)) is satisfiable and can be simplified to
y �= 0.

M :

⎧
⎪⎪⎨

⎪⎪⎩

var:

{
in: x, y : N

out: z : N

A: x < 3 ∧ y �= 0
G: z < 2

Mθ :

⎧
⎪⎪⎨

⎪⎪⎩

var:

{
in: x : N

out: y, z : N

A: y �= 0
G: z < 2 ∧ x = z

Fig. 4. Stateless interfaces M and Mθ, where θ = {(z, x)}

Theorem 1 ([7]). Let M be a well-formed stateless interface and θ be a con-
nection. If M is compatible with θ, then Mθ is a well-formed stateless interface.

Parallel composition operator supports combination of compatible stateless in-
terfaces. We say that two stateless interfaces are compatible for parallel compo-
sition if (1) their output variables are disjoint; (2) the input variables of each
stateless interface are disjoint of the output variables of the other stateless in-
terface; and (3) the conjunction of their guaranteed is satisfiable.

Definition 4 (Compatibility for composition). Two stateless interfacesM =
〈XI

M , X
O
M , ϕM , ψM 〉 and N = 〈XI

N , X
O
N , ϕN , ψN 〉 are compatible for parallel com-

position if

– XO
M ∩XO

N = ∅;
– XI

M ∩XO
N = XI

N ∩XO
M = ∅; and

– ϕM ∧ ϕN is satisfiable.

Formally, parallel composition of two compatible stateless interfaces is defined
as follows:

Definition 5 (Parallel composition). Given two stateless interfaces M =
〈XI

M , X
O
M , ϕM , ψM 〉 and N = 〈XI

N , X
O
N , ϕN , ψN 〉 which are compatible for paral-

lel composition, their parallel composition is the interface M || N = 〈X̂I , X̂O, ϕ̂,

ψ̂〉, where

– X̂I = XI
M ∪XI

N ;

– X̂O = XO
M ∪XO

N ;
– ϕ̂ = (ϕM ∧ ϕN); and

– ψ̂ = (ψM ∧ ψN).

386 T.A. Henzinger and D. Ničković

Theorem 2 ([7]). Let M and N be two well-formed stateless interfaces. If M
and N are compatible for parallel composition, then M || N is a well-formed
stateless interface.

We say that a stateless interface N refines the stateless interface M if it has
more permissive assumption and more restrictive guarantees.

Definition 6 (Refinement). Given two well-formed stateless interfaces M =
〈XI

M , X
O
M , ϕM , ψM 〉 and N = 〈XI

N , X
O
N , ϕN , ψN 〉, we say that N refines M ,

denoted by N M , if

– (XI
M ∪XI

N) ∩ (XO
M ∪XO

N) = ∅;
– ϕM → ϕN is valid; and
– ψN → ψM is valid.

Following definitions of refinement, compatibility for connection, connection,
compatibility for composition and parallel composition, we have that stateless
interfaces satisfy the independent implementability with respect to both connec-
tion and composition, as stated in the following theorem.

Theorem 3 ([7]). Let M and N be two well-formed stateless interfaces and θ
be a connection. If N M and M is compatible with θ, then N is compatible
with θ and Nθ Mθ.

Let M , N and S be three well-formed stateless interfaces such that XN∩XS ⊆
XM . If M and S are compatible for composition and N M , then N and S are
compatible for composition and N || S M || S.

2.2 Conjunction

The conjunction M ∧ N of two stateless interfaces M and N was introduced
in [8] as an interface meant to work in two environments based on separate
descriptions of each environment. The interfaceM ∧N allows inputs that satisfy
assumptions of eitherM or N , and provides the guarantees of bothM and N . In
order to ensure that the conjunction of two interfaces is well-formed, the notion
of consistency was introduced. Two stateless interfaces are said to be consistent
if (1) the input variables do not overlap with the output variables and (2) their
output guarantees do not contradict each other.

Definition 7 (Conjunction). Given two consistent stateless interfaces M =
〈XI

M , X
O
M , ϕM , ψM 〉 and N = 〈XI

N , X
O
N , ϕN , ψN 〉, the conjunction of M and N

is the stateless interface M ∧N = 〈X̂I , X̂O, ϕ̂, ψ̂〉, where

– X̂I = XI
M ∪XI

N ;

– X̂O = XO
M ∪XO

N ;
– ϕ̂ = (ϕM ∨ ϕN); and

– ψ̂ = (ϕM ∧ ϕN).

Independent Implementability of Viewpoints 387

Theorem 4 ([8]). Let M and N be two well-formed stateless interfaces. If M
and N are consistent, then M ∧N is a well-formed stateless interface.

The conjunction of two stateless interfaces subsumes all behaviors of the given
interfaces, as stated in the following theorem.

Theorem 5 ([8]). Let M and N be two well-formed stateless interfaces. If M
and N are consistent, then M∧N M and M∧N N , and for all well-formed
stateless interfaces S, if S M and S N , then S M ∧N .

Unfortunately, conjunction does not support independent implementability of
stateless interfaces, as demonstrated in Figure 3. The reason comes from the
consistency condition between two stateless interfaces, that is not preserved by
refinement. Given consistent stateless interfaces M and N , the output guaran-
tees of M and N do not conflict by definition. However, another interface M ′

that refines M may strengthen its guarantees in a way that makes the output
guarantees ofM ′ andN conflicting. Thus, stateless interfacesM ′ andN may not
be consistent. However, we observe that in the case that the conjunction opera-
tor is used to combine multiple viewpoints of the same component, the output
variables of the individual viewpoints are usually disjoint, hence their output
guarantees cannot contradict each other. In fact, the consistency between two
stateless interfaces is not preserved by refinement. Following this observation,
we propose a new condition between two stateless interfaces, that we call or-
thogonality.

Definition 8 (Orthogonality). Let M and N be two well-formed stateless
interfaces. We say that M and N are orthogonal if (XI

M ∪XI
N)∩(XO

M ∪XO
N) = ∅

and XO
M ∩XO

N = ∅.

We believe that in the context of multiple viewpoint specifications, the orthog-
onality is a realistic requirement. Note that while the output variables of two
orthogonal interfaces are disjoint, the two interfaces are interacting with each
other through common input variables. In the following lemma, we show that
orthogonal interfaces are consistent.

Lemma 1. Let M and N be two well-formed stateless interfaces. If M and N
are orthogonal, then M and N are consistent.

Proof. Assume that M and N are well-formed and orthogonal. It follows that
both ψM and ψN are satisfiable. By definition, we have that ψM is a predicate
over XO

M and ψN is a predicate over XO
N , and by assumption we have that

XO
M ∩ XO

N = ∅. It follows that there exists a valuation over XO
M ∪ XO

N that

satisfies both ψM and ψN , hence ψ̂ is also satisfiable.
��

Following Lemma 1, we are ready to state the result that establishes the inde-
pendent implementatibility property for the conjunction operator between or-
thogonal stateless interfaces.

388 T.A. Henzinger and D. Ničković

Theorem 6 (Independent implementability of conjunction). Let M , N
and S be three well-formed stateless interfaces such that XO

N ∩XS = XN ∩XO
S =

∅. If M and S are orthogonal and N M , then N and S are orthogonal and
N ∧ S M ∧ S.

Proof. Assume thatM and S are orthogonal and N M . By Lemma 1, M and
S are consistent, hence M ∧ S is defined.

We have by definition of a stateless interface that (1)XI
N∩XO

N = XI
S∩XO

S = ∅.
By the assumption that XO

N ∩ XS = ∅ and XN ∩ XO
S = ∅, we have that (2)

XI
N∩XO

S = XO
N∩XI

S = ∅. By (1) and (2), it follows that (XI
N∪XI

S)∩(XO
N∩XO

S) =
∅.

Furthermore, by the assumption that XO
N ∩XS = ∅, we have that XO

N ∩XO
S =

∅. It follows that N and S are orthogonal, hence by Lemma 1 consistent, and
N ∧ S is defined.

By the assumption, we have that (3) N M and by Theorem 5, we have that
(4) N ∧S N . By (3) and (4), we have that (5) N ∧S M . By Theorem 5, we
have that (6) N ∧ S S. Finally, by (5), (6) and Theorem 5, we can conclude
that N ∧ S M ∧ S.

��

Example 3. Consider stateless interfaces M and N shown in Figure 5. The two
interfaces do not share output variables, hence they are orthogonal. Stateless
interface N ′ refines N , by constraining its guarantee predicate. It is not hard
to see that the conjunction M ∧N ′ refines M ∧N , illustrating the independent
implementability property of the conjunction operator.

M :

⎧
⎪⎪⎨

⎪⎪⎩

var:

{
in: x : B

out: y : N

A: True
G: y ≤ 2

N :

⎧
⎪⎪⎨

⎪⎪⎩

var:

{
in: x : B

out: z : N

A: True
G: z ≥ 0

M ∧N :

⎧
⎪⎪⎨

⎪⎪⎩

var:

{
in: x : B

out: y, z : N

A: True
G: y ≥ 2 ∧ z ≥ 0

N ′ :

⎧
⎪⎪⎨

⎪⎪⎩

var:

{
in: x : B

out: z : N

A: True
G: z mod 2 = 0

M ∧N ′ :

⎧
⎪⎪⎨

⎪⎪⎩

var:

{
in: x : B

out: y, z : N

A: True
G: y < 2 ∧ z mod 2 = 0

Fig. 5. Stateless interfaces M , N and N ′: M and N are orthogonal, and N ′ � N ,
hence M and N ′ are orthogonal and M ∧N ′ � M ∧N

3 Moore Interfaces

In this section, we consider Moore interfaces, a synchronous interface model,
that was first introduced in [4]. Moore interfaces have internal states, that are

Independent Implementability of Viewpoints 389

decorated with assumption predicates over input variables, and guarantee pred-
icates over output variables. We consider Moore interfaces with deterministic
transition relation, where transitions are guarded by predicates over input and
output variables of the interface.

Definition 9 (Moore interface). A Moore interfaceM = 〈XI , XO, Q, q̂, ϕ, ψ, ρ〉
consists of the following components:

– XI and XO are disjoint sets of input and output variables. We define X =
XI ∪XO;

– Q is a finite set of locations, and q̂ ∈ Q is the initial location;
– ϕ is a labeling that associates with each location q ∈ Q an input assumption

predicate over XI;
– ψ is a labeling that associates with each location q ∈ Q an output guarantee

predicate over XO;
– ρ is a transition guard that associates with each pair of locations q, q′ ∈ Q a

predicate ρ(q, q′) over X.

Given a set X of variables, a valuation v over X is a function that assigns to
each x ∈ X , a value v(x) of the appropriate type. We denote by V [X], the set
of all valuations v over X . Given a predicate ϕ on X , we write v |= ϕ if the
valuation v satisfies ϕ.

An execution of M is a sequence q0, v0, q1, . . . , qn, vn, qn+1 of states qi ∈ Q
and valuations vi ∈ V [X] such that: (1) q0 = q̂ is the initial state of M , and (2)
vi |= ϕ(qi) ∧ ψ(qi) ∧ ρ(qi, qi+1). We say that the sequence v0, . . . , vn is the trace
of M , and that the states q0, . . . , qn+1 are reachable in M .

The Moore interfaces can in general be non-deterministic, or even block in
some executions. Thus, we consider only well-formed interfaces, where the well-
formedness criterion is defined as follows:

Definition 10 (Well-formedness). A Moore interface M = 〈XI , XO, Q,
q̂, ϕ, ψ, ρ〉 is well-formed if for all states q that are reachable in M : (1) both
ϕ(q) and ψ(q) are satisfiable; (2) (ϕ(q) ∧ ψ(q)) → ∃q′. ρ(q, q′) is valid, and (3)
((ρ(q, q′) ∧ (ρ(q, q′′))) → q′ = q′′ is valid for all q′, q′′ ∈ Q.

Well-formedness ensures that the interface is non-blocking by conditions (1) and
(2), and deterministic by (3).

3.1 Composition and Refinement

In this section, we define standard parallel composition operator and refinement
relation in the lines of [4], and recall the incremental design and independent
implementability properties that are supported by Moore interfaces.

The parallel composition is a partial function on pairs of Moore interfaces,
that is defined if the two interfaces are compatible. We say that two interfaces
are compatible if their variable types match and if there exists a design context
in which the two interfaces can interact in a way that preserves their individual
guarantees.

390 T.A. Henzinger and D. Ničković

Definition 11 (Compatibility and parallel composition). Given two Moore
interfaces M = 〈XI

M , X
O
M , QM , q̂M , ϕM , ψM , ρM 〉 and N = 〈XI

N , X
O
N , QN , q̂N ,

ϕN , ψN , ρN 〉, let XO = XO
M ∪ XO

N , XI = (XI
M ∪ XI

N)\XO, Q = QM × QN ,
q̂ = (q̂M , q̂N), and for all q, q′ ∈ QM and r, r′ ∈ QN , ψ(q, r) = ψM (q) ∧ ψN (r)
and ρ((q, q′), (r, r′)) = ρM (q, q′) ∧ ρN (r, r′). We say that M and N are com-
patible, if XO

M ∩ XO
N = ∅, and there exists a labeling ϕ⊗ such that for all ex-

ecutions (q0, r0), v0, . . . , vn−1, (qn, rn) of 〈XI , XO, Q, q̂, ϕ⊗, ψ, ρ〉, we have that
vi |= (ϕM (qi) ∧ ϕN (ri)) for all 0 ≤ i ≤ n.

The parallel composition P = M || N is defined if and only if M and N are
compatible, in which case P = 〈XI , XO, Q, q0, ϕ, ψ, ρ〉, where ϕ is the weakest
labeling that satisfies the above conditions.

The parallel composition operator is associative, thus supporting incremental de-
sign, i.e. ensuring that the compatible interfaces of a system can be put together
in any order.

Theorem 7 ([4]). Given three Moore interfaces M , N and S, either M ||
(N || S) and (M || N) || S are both undefined, or they are both defined and
equal.

The refinement of two Moore interfaces is defined as an alternating simulation
relation R, and we say that R is a witness for N M .

Definition 12 (Refinement). Given two Moore interfaces M = 〈XI
M , X

O
M ,

QM , q̂M , ϕM , ψM , ρM 〉 and N = 〈XI
N , X

O
N , QN , q̂N , ϕN , ψN , ρN 〉, we say that N

refines M , denoted by N M , if

1. (XI
M ∪XI

N) ∩ (XO
M ∪XO

N) = ∅, and
2. there exists a relation R ⊆ QM ×QN such that: (1) (q̂M , q̂N) ∈ R, ϕM (q) →

ϕN (r) is valid; (2) ψN (r) → ψM (q) is valid, and (3) for all q′ ∈ QM and
r′ ∈ QN , if ϕM (q)∧ψN (r)∧ρM (q, q′)∧ρN (r, r′) is satisfiable, then (q′, r′) ∈
R.

Following definitions of refinement, compatibility and composition, it follows
that Moore interfaces satisfy the independent implementability requirement, as
stated in the following theorem:

Theorem 8 ([4]). Let M , N and S be three well-formed Moore interfaces such
that XN ∩XS ⊆ XM . If M and S are compatible, and N M , then N and S
are also compatible and N || S M || S.

3.2 Conjunction

The conjunction M ∧N of two Moore interfaces M and N was also introduced
and defined in [8] as the weakest interface that refines both M and N , similarly
to the stateless case. In the context of a conjunction of Moore interfaces M and
N , as long as the inputs satisfy both the assumptions of M and N , the outputs
must satisfy both the guarantees of M and N . If the assumption of M (N) is

Independent Implementability of Viewpoints 391

violated, then the conjunction interface does not need anymore to satisfy the
guarantees of M (N) and jumps to a copy of N (M). The conjunction does not
allow inputs that violate both assumptions of M and N .

Definition 13 (Conjunction). Given two Moore interfaces M =
〈XI

M , X
O
M , QM , q̂M , ϕM , ψM , ρM 〉 and N = 〈XI

N , X
O
N , QN , q̂N , ϕN , ψN , ρN 〉, let

P be the Moore interface 〈XI , XO, Q, q̂, ϕ, ψ, ρ〉, where

– XI = XI
M ∪XI

N

– XO = XO
M ∪XO

N

– Q = (QM ×QN) ∪QM ∪QN

– q̂ = (q̂M , q̂N)
– ϕ and ψ are defined for all q ∈ QM and r ∈ QN , by

ϕ(q, r) = (ϕM (q) ∨ ϕN (r)) ψ(q, r) = (ψM (q) ∧ ψN (r))
ϕ(q) = ϕM (q) ψ(q) = ψM (q)
ϕ(r) = ϕN (r) ψ(r) = ψN (r)

– ρ is defined for all q, q′ ∈ QM and r, r′ ∈ QN , by

ρ((q, r), (q′, r′)) = (ϕM (q) ∧ ϕN (r) ∧ ρM (q, q′) ∧ ρN (r, r′))
ρ((q, r), q′) = (ϕM (q) ∧ ¬ϕN (r) ∧ ρM (q, q′))
ρ((q, r), r′) = (¬ϕM (q) ∧ ϕN (r) ∧ ρN (r, r′))
ρ(q, q′) = ρM (q, q′)
ρ(r, r′) = ρN (r, r′)
ρ(q, (q′, r′)) = ρ(r, (q′, r′)) = ⊥

We say that M and N are consistent if: (1) XI ∩ XO = ∅, and (2) ψ(q) is
satisfiable for all states q that are reachable in M ∧N .

When M and N are consistent, the conjunction M ∧ N is the well-formed
Moore interface P .

Theorem 9 ([8]). Let M and N be two well-formed Moore interfaces. If M and
N are consistent, then M ∧ N M and M ∧ N N , and for all well-formed
Moore interfaces S, if S M and S N , then S M ∧N .

In Section 1, we have seen that the conjunction operator does not support inde-
pendent implementability in general, and hence similarly to the stateless inter-
face case, we introduce the same orthogonality condition for Moore interfaces.

Definition 14 (Orthogonality). Let M and N be two well-formed Moore in-
terfaces. We say that M and N are orthogonal, if (XI

M ∪XI
N)∩ (XO

M ∪XO
N) = ∅

and XO
M ∩XO

N = ∅.

In the following lemma, we show that two orthogonal Moore interfaces are also
consistent:

Lemma 2. Let M and N be two well-formed Moore interfaces. If M and N are
orthogonal, then M and N are consistent.

392 T.A. Henzinger and D. Ničković

N

M

enq ∨ deq True enq ∨ deq

True enq ∧ deq

cnt = 0 cnt = 1 cnt = 2

pc = 0 pc ≤ 5

enq = deq enq = deq enq = deq

enq ∧ deq enq ∧ deq

enq ∧ deq enq ∧ deq

enq ∧ deq

enq ∨ deq

enq ∧ deq

Fig. 6. FIFO buffer - functional specification M and functional/power consumption
specification N

Proof. The proof is identical to the one of Lemma 1.
��

Following Lemma 2, we are ready to state the result that establishes the indepen-
dent implementability property for the conjunction operator between orthogonal
Moore interfaces.

Theorem 10 (Independent implementability of conjunction). Let M ,
N and S be three well-formed interfaces such that XO

N ∩ XS = XN ∩ XO
S = ∅.

If M and S are orthogonal and N M , then N and S are orthogonal and
N ∧ S M ∧ S.

Proof. The proof follows the same line as the proof of Theorem 6. ��

4 FIFO Buffer Example

We illustrate independent implementability of viewpoints with a FIFO buffer
example. The FIFO buffer specification consists of two interfaces, M and N
that describe two different aspects of the buffer. These two specifications are
extensions of the example presented in [8], and are depicted in Figure 6.

The interfaceM specifies a buffer of size 2.M has two Boolean input variables
enq and deq, that model the enqueue and dequeue operations and one integer
variable cnt that gives the current number of items that are stored in the buffer.
The assumption (guarantee) predicates are depicted in the upper (lower) part
of locations, and transitions are labeled by their guards. Initially, the buffer is
empty, hence cnt = 0. Every exclusive enqueue (dequeue) operation increases
(decreases) the cnt variable by one. However, in the initial state, the buffer is
not allowed to dequeue, and in the state where the buffer is full (cnt = 2), the

Independent Implementability of Viewpoints 393

enq ∨ deq

True

enq ∨ deqTrueenq ∨ deq

T enq ∧ deq

True

enq ∨ deqTrue

True

cnt = 2

pc = 0 pc ≤ 5

cnt = 0 cnt = 1

pc = 0 pc = 0 pc = 0
cnt = 1∧ cnt = 2∧

cnt = 0 cnt = 1 cnt = 2

cnt = 0∧

pc ≤ 5 pc ≤ 5 pc ≤ 5

enq ∧ deq enq ∧ deq

enq ∧ deq enq ∧ deq

enq = deq enq = deq enq = deq

enq ∧ deq

enq ∧ deq enq ∧ deq

enq ∧ deq enq ∧ deq

enq ∧ deq enq ∧ deq enq ∧ deq

enq ∧ deqenq ∧ deq

enq ∨ deq

enq ∧ deq

enq ∧ deqenq ∧ deq enq ∧ deq enq ∧ deq

enq ∧ deq enq ∧ deq

enq ∧ deq enq ∧ deq

enq ∧ deq

enq ∧ deq

enq ∧ deq

enq ∧ deq

enq ∧ deq

enq ∧ deq enq ∧ deq

enq ∧ deqenq ∧ deq

Fig. 7. FIFO buffer - conjunction M ∧N

buffer is not allowed to enqueue new items. Note that simultaneous enqueue and
dequeue operations are allowed, but have no effect.

Interface N specifies a power consumption and another behavioral aspect
of a FIFO buffer. It has the same input variables as N (enq and deq), and
an integer output variable pc that models the power consumption of a buffer.
This interface forbids two consecutive enqueue or dequeue operations to happen.
Additionally, it specifies the power consumption needed to process enqueue and
dequeue requests. We can see that the absence of enqueue/dequeue requests
results in no power consumption. On the other hand, any combination of the
presence of enqueue and dequeue operations is bounded by 5 power units.

The interfacesM and N are naturally combined by the conjunction operator.
The two interfaces are consistent, hence their conjunction M ∧N is defined and
is shown in Figure 7. To obtain the conjunction M ∧ N , we need additional
transitions leaving the dashed line box when the assumptions of M (N) are
violated, and from then on only assumptions and guarantees of N (M) need to
be satisfied.

394 T.A. Henzinger and D. Ničković

N ′

M ′

enq ∨ deq True enq ∨ deqTrue

True

enq ∧ deq

enq ∧ deq

cnt = 0 cnt = 1 cnt = 2 cnt = 3

pc = 0

pc = 2

pc ≤ 4

enq = deq

enq ∧ deq enq ∧ deq

enq ∧ deq enq ∧ deq enq ∧ deq

enq ∧ deq

enq = deq enq = deqenq = deq

enq ∧ deq

enq ∧ deq

enq ∧ deq

enq ∧ deq

enq ⊕ deq

Fig. 8. FIFO buffer - functional specification M ′ and functional/power consumption
specification N ′ such that M ′ � M and N ′ � N

.

Interfaces M and N may be under-specified for many applications. For ex-
ample, a designer may need to use a buffer that can store more than two items.
Moreover, the interface N does not distinguish between the power consumption
of enqueue and dequeue operations, that may have different resource require-
ments to be processed. Hence, M and N may need to be refined. Refining the
requirements directly on the conjunctionM ∧N can be highly impractical, given
the relative complexity of M ∧N with respect to M and N . This can be appre-
ciated by comparing Figures 6 and 7.

In this example, interfacesM and N are not only consistent, but also orthog-
onal. In fact, their output variables are disjoint, that is the number of items
in the buffer does not depend on its power consumption, and vice versa. The
orthogonality of M and N allows us to postpone taking an explicit conjunction
of M and N , and to refine them separately and independently. In Figure 8, we
show two interfaces, M ′ and N ′, where M ′ refines the interface M , and N ′ re-
fines the interface N . M ′ specifies a buffer that can store up to three elements.
It provides the same guarantees asM , while the number of items in the buffer is
bounded by two, but is also able to process an additional enqueue request and
store a maximum of three items.

On the other hand, the interface N ′ refines the power consumption guar-
antees, by distinguishing between the presence of an exclusive enqueue or de-
queue request, that consumes exactly 2 power units, and a simultaneous en-
queue/dequeue request that requires up to 4 power units. We leave to the reader
the exercise to checking that M ′ and N ′ are indeed orthogonal and thatM ′∧N ′

refines M ∧N .

Independent Implementability of Viewpoints 395

5 Conclusion

In this paper, we proposed orthogonality as a new condition between two Moore
interfaces that ensures the independent implementability with respect to the
conjunction operator. We believe that the orthogonality is the right notion when
considering conjunction of multiple viewpoints. We demonstrated the stepwise
refinement property of orthogonal interfaces with an example of a FIFO buffer
that combines behavioral and power consumption specifications.

The power consumption specification of the FIFO buffer corresponds to a
pure threshold resource interface in [5], but it was encoded as a Moore interface
in our example. We believe that the next important step would be to study
conjunction of fully heterogeneous interface models, a problem closely related to
heterogeneous composition [1,3]. In particular, we are interested in models where
the non-functional properties are expressed as Büchi threshold, pure energy and
reward energy interfaces from [5] or real-time interfaces [9, 11].

References

1. Benveniste, A., Caillaud, B., Carloni, L.P., Caspi, P., Sangiovanni-Vincentelli, A.L.:
Composing heterogeneous reactive systems. ACM Trans. Embed. Comput. Syst. 7,
43:1–43:36 (2008)

2. Benveniste, A., Caillaud, B., Ferrari, A., Mangeruca, L., Passerone, R., Sofronis,
C.: Multiple Viewpoint Contract-Based Specification and Design. In: de Boer, F.S.,
Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2007. LNCS, vol. 5382,
pp. 200–225. Springer, Heidelberg (2008)

3. Caspi, P., Benveniste, A., Lublinerman, R., Tripakis, S.: Actors without Directors:
A Kahnian View of Heterogeneous Systems. In: Majumdar, R., Tabuada, P. (eds.)
HSCC 2009. LNCS, vol. 5469, pp. 46–60. Springer, Heidelberg (2009)

4. Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Mang, F.Y.C.: Synchronous and
Bidirectional Component Interfaces. In: Brinksma, E., Larsen, K.G. (eds.) CAV
2002. LNCS, vol. 2404, pp. 414–427. Springer, Heidelberg (2002)

5. Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Resource Interfaces.
In: Alur, R., Lee, I. (eds.) EMSOFT 2003. LNCS, vol. 2855, pp. 117–133. Springer,
Heidelberg (2003)

6. de Alfaro, L., Henzinger, T.A.: Interface automata. In: ESEC / SIGSOFT FSE,
pp. 109–120 (2001)

7. de Alfaro, L., Henzinger, T.A.: Interface Theories for Component-Based Design.
In: Henzinger, T.A., Kirsch, C.M. (eds.) EMSOFT 2001. LNCS, vol. 2211, pp.
148–165. Springer, Heidelberg (2001)

8. Doyen, L., Henzinger, T.A., Jobstmann, B., Petrov, T.: Interface theories with
component reuse. In: EMSOFT, pp. 79–88 (2008)

9. Henzinger, T.A., Matic, S.: An interface algebra for real-time components. In: IEEE
Real Time Technology and Applications Symposium, pp. 253–266 (2006)

10. Raclet, J.-B., Badouel, E., Benveniste, A., Caillaud, B., Legay, A., Passerone, R.:
A modal interface theory for component-based design. Fundam. Inform. 108(1-2),
119–149 (2011)

11. Thiele, L., Wandeler, E., Stoimenov, N.: Real-time interfaces for composing real-
time systems. In: EMSOFT, pp. 34–43 (2006)

12. Tripakis, S., Lickly, B., Henzinger, T.A., Lee, E.A.: A theory of synchronous rela-
tional interfaces. ACM Trans. Program. Lang. Syst. 33(4), 14 (2011)

	Independent Implementability of Viewpoints
	Introduction
	Stateless Interfaces
	Connection, Composition and Refinement
	Conjunction

	Moore Interfaces
	Composition and Refinement
	Conjunction

	FIFO Buffer Example
	Conclusion
	References

