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Abstract. We argue here that, in recent years, the world’s financial markets have 
become a globally interconnected complex adaptive ultra-large-scale socio-
technical system-of-systems, and that this has important consequences for how the 
financial markets should be engineered and managed in future. Major failures in 
the financial markets can now occur at super-human speeds, as was witnessed in 
the “Flash Crash” of May 6th 2010. Events such as the Flash Crash may become 
more commonplace in future, unless lessons are learned from other fields where 
complex adaptive socio-technical systems-of-systems have to be engineered for 
high-integrity, safety-critical applications. In this document we review the literature 
on failures in risky technology and high-integrity approaches to safety-critical SoS 
engineering. We conclude with an argument that, in the specific case of the global 
financial markets, there is an urgent need to develop major national strategic 
modeling and predictive simulation capabilities, comparable to national-scale 
meteorological monitoring and modeling capabilities. The intent here is not to 
predict the price-movements of particular financial instruments or asset classes, but 
rather to provide test-rigs for principled evaluation of systemic risk, estimating 
probability density functions over spaces of possible outcomes, and thereby 
identifying potentially high-consequence failure modes in the simulations, before 
they occur in real life, by which time it is typically too late.  

Keywords: Large-scale complex IT systems, ultra-large-scale systems, 
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1 Introduction 

For what events will the date of May 6th, 2010 be remembered? In Britain, there was a 
general election that day, which ousted the ruling Labour Party after 13 years and led 
to the formation of the UK’s first coalition government since 1945. Nevertheless, it 
seems likely that in financial circles at least, May 6th will instead long be remembered 
for dramatic and unprecedented events that took place on the other side of the 
Atlantic, in the US capital markets. May 6th is the date of what is now widely known 
as the “Flash Crash”. 

On that day, in a period lasting roughly 30 minutes from approximately 2:30pm to 
3:00pm EST, the US equity markets underwent an extraordinary upheaval: a sudden 
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catastrophic collapse followed by an equally unprecedented meteoric rise. In the 
space of only a few minutes, the Dow Jones Industrial Average dropped by over 600 
points, representing the disappearance of more than 850 billion dollars of market 
value. In the course of this sudden downturn, the share-prices of several blue-chip 
multinational companies went haywire, with shares in companies that had previously 
been trading at a few tens of dollars plummeting to $0.01 in some instances, and 
rocketing to values of $100,000 in others. Seeing prices quoted by some major 
exchanges suddenly going crazy, other major exchange-operators declared “self-help” 
(that is, they invoked a regulation allowing them to no longer treat the price-feeds 
from the other exchanges as valid), thereby decoupling the trading on multiple venues 
that had previously been unified by the real-time exchange of reference price data.  

Then as suddenly as this downturn occurred it reversed, and over the course of 
another few minutes most of the 600-point loss in the Dow was recovered, and share 
prices returned to levels within a few percentage points of the values they had held 
before the crash. That recovery took less than twenty minutes. 

Two weeks after the Flash Crash, the US Securities and Exchange Commission 
(SEC) and the US Commodity Futures Trading Commission (CFTC) jointly released 
an interim report into the events of May 6th (CFTC&SEC, 2010a) that established 
very little, other than dispelling rumours of the flash crash having been caused by a 
“fat-finger” error (where a trader mis-keys an order) or terrorist action. After that, for 
more than four months there was open speculation on the cause of the Flash Crash, 
and senior figures in the markets voiced their growing exasperation at the lack of a 
straightforward explanation. Identifying the cause of the crash was made difficult by 
the “fragmentation of liquidity” (trading taking place simultaneously on a number of 
independent but interconnected exchange-venues); by the lack of a single unifying 
“consolidated audit trail” showing synchronized timestamps for all events in all the 
markets with identifiers of the originators of those events; and by the widespread use 
of algorithmic trading systems: autonomous adaptive software systems that automate 
trading jobs previously performed by human traders, many operating at super-human 
speeds. Various theories were discussed in the five months that it took the SEC and 
CFTC to produce their joint final report on the events of May 6th. Many speculated on 
the role of high-frequency trading (HFT) by investment banks and hedge funds, where 
algorithmic traders buy and sell blocks of financial instruments on very short 
timescales, sometimes holding a position for only a few seconds or less.  

When the SEC/CFTC final report on the Flash Crash was eventually published on 
September 30th, nearly five months after the event, (CFTC&SEC, 2010b), it made no 
mention of a “bug” anywhere in the system being a causal factor. Instead, the story it 
told was that the trigger-event for the crash was a single block-sale of $4.1bn worth of 
futures contracts, executed with uncommon urgency on behalf of a traditional fund-
management company. It was argued that the consequences of that trigger event 
interacting with HFT systems rippled out to cause the system-level failures just 
described. The SEC/CFTC report was met with very mixed responses. Many readers 
concluded that it left more questions unanswered than resolved, and a subsequent 
much more detailed analysis of the time-series “tapes” of market event data 
conducted by Nanex Corp.1 offered an alternative story that many market 

                                                           
1 See www.nanex.net 



 The Global Financial Markets: An Ultra-Large-Scale Systems Perspective 31 

practitioners found more plausible: see Meerman et al. (2010) and Easley et al. (2011) 
for further details of the extent to which the CFTC/SEC version of events is disputed.  

Ten months after the event, in February 2011, a specially convened panel of 
regulators and economists, the Joint CFTC-SEC Advisory Committee on Emerging 
Regulatory Issues, released a report (CFTC&SEC, 2011) urging a number of rule 
changes, some of them fundamental and potentially far-reaching. At the time of 
writing this Foresight review, the extent to which the report’s recommendations will 
be acted upon is unclear (see, e.g., Demos, 2011a, 2011b, 2011c).  

Now the fact that there was such a rapid recovery immediately after the down-spike 
meant that, by the close of business on May 6th the overall inter-day price change on the 
previous day was nothing particularly dramatic. To someone focused only on daily 
market-close prices, this may look like just another day of a downward-trending market 
in a time of significant political and economic uncertainty: on that day, the Greek 
national debt crisis was threatening to destabilize the entire Euro-zone single-currency 
economic union; and the indeterminate outcome of the UK general election was a 
further distraction. For sure, the intra-day dynamics on May 6th were unlike anything 
ever seen before, but the market pulled back, so what is there to worry about? 

We contend that there are two significant reasons to be worried by the Flash Crash. 
The first worry is that at the micro-level there was a clear market failure: whether a 
trader was richer or poorer by the end of that disorderly day was in many cases not 
much more than a lottery. The second worry is the macro-level observation that, with 
only a very slight change in the sequence of events, the global financial markets could 
plausibly have gone into meltdown, with May 7th 2010 (i.e, the next day) becoming 
the date of a global collapse that dwarfed any previous stock-market crash. We’ll 
expand on these two worries in the next two paragraphs. 

The first worry, on the micro-level, is that while some equity spot and derivatives 
trades that took place at the height of the mayhem were subsequently “busted” 
(declared to be invalid on the basis that they were clearly made on the basis of 
erroneous data) by the exchanges, the means by which trades were selected for 
busting was argued by many to be arbitrary, after-the-fact rule-making.  Some traders 
who had lost large amounts of money did not have their trades busted; some who had 
made handsome profits found their gains taken away. The flash-crash chaos had 
rippled beyond the equity markets into the foreign exchange (FX) markets where 
certain currency exchange rates swung wildly on the afternoon of May 6th as the 
markets attempted to hedge the huge volatility and risk that they were suddenly seeing 
explode in equities. There is no provision to retrospectively bust trades in FX, and so 
those deals were left to stand. Sizeable fortunes were made, and sizeable fortunes 
were lost, by those caught in the storm; the issue of who lost and who gained was in 
too many cases almost random. 

The second worry is a much more significant concern: the Flash Crash could have 
occurred any time that day. Certainly the specific time-period during which the Flash 
Crash occurred, roughly 2:30pm to 3:00pm, was not cited as a causal factor in the 
official CFTC/SEC report on the events of May 6th, nor in the much more detailed 
analysis performed by Nanex Corp. This is a point recently explored in public 
statements by Bart Chilton, head of the CFTC, who said the following in a public 
lecture given in March 2011: “…Think about it. There are stocks and futures, which 
are arbitraged internationally. If the Flash Crash had taken place in the morning on 
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May 6th, when E.U. markets were open, it could have instigated a global economic 
event. Since it took place in the mid-afternoon, it was primarily limited to U.S. 
markets…” (Chilton, 2011). Although we respect Commissioner Chilton’s view, we 
think that in fact the much, much bigger worry is not what would have happened if 
the Flash Crash had occurred in the morning of May 6th, but instead what would have 
happened if it had occurred a couple of hours or so later that day. Specifically, we 
think that the true nightmare scenario would have been if the crash’s 600-point down-
spike, the trillion-dollar write-off, had occurred immediately before market close: that 
is, if the markets had closed just after the steep drop, before the equally fast recovery 
had a chance to start. Faced with New York showing its biggest ever one-day drop in 
the final 15 minutes before close of business on May 6th, and in the absence of any 
plausible public-domain reason for that happening, combined with the growing 
nervousness that the Greek government would default on its sovereign debt and throw 
the entire Euro-zone economic union into chaos, traders in Tokyo would have had 
only one rational reaction: sell. The likelihood is that Tokyo would have seen one of 
its biggest ever one-day losses. Following this, as the mainland European bourses and 
the London markets opened on the morning of May 7th, seeing the unprecedented sell-
offs that had afflicted first New York and then Tokyo, European markets would have 
followed into precipitous freefall. None of this would have been particularly useful in 
strengthening confidence in the Greek debt crisis or the future of the Euro, either. 
And, as far as we can tell, the only reason that this sequence of events was not 
triggered was down to mere lucky timing. Put simply, on the afternoon of May 6th 
2010, the world’s financial system dodged a bullet.  

Although the Flash Crash was a particularly extreme event, similar phenomena 
have been witnessed in various markets in the period since May 2010. Some notable 
examples are listed here, but this is by no means an exhaustive list: 

• On 28th September 2010, share-prices of major technology stocks Apple, 
Dell, Hewlett-Packard, IBM, Microsoft, and Oracle all experienced sudden severe 
spike-transitions before returning to normal price ranges.2 

• On May 2nd, 2011, the market price of gold spiked sharply downwards by 
$20 and then immediately recovered more than $15 of that loss. The graph of price 
against time for this event is strongly reminiscent of the graph of the Dow Jones 
Industrial Index during the Flash Crash. Unlike the Flash Crash, which unfolded 
over a period of roughly 30 minutes, this down-spike and recovery in the price of 
gold took less than 10 minutes.3 

• The next day, on May 3rd, 2011, the price of silver dropped dramatically in 
after-hours trading, an event that was again attributed to algorithmic trading 
systems.4 

• On June 8th 2011 the price of natural gas in the USA commodity markets had 
been trending flat (i.e. showing neither a rise or a fall for the day) over a period of 

                                                           
2  http://ftalphaville.ft.com/blog/2010/09/28/355081/market-on-
edge-after-apple-drops-like-a-stone/ 

3 See http://www.zerohedge.com/article/golden-flash-crash 
4 See http://www.zerohedge.com/article/and-now-todays-mini-silver-
flash-crash-same-time-same-place  
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several hours, when the price suddenly started to oscillate in a pattern strongly 
reminiscent of a smooth sine-wave, with the amplitude of the oscillations (the 
height of the peaks and the depths of the troughs) growing steadily in a short space 
of time, and then the price crashed dramatically. This event was also attributed to an 
erroneously programmed algorithmic trading system.5 

• On July 7th 2011, there were sizeable swings in the price of crude oil futures 
on the New York Mercantile Exchange (one of the world’s primary exchanges for 
trading of commodities and commodity derivatives). According to the analysis 
published by Nanex Corp, these swings appear to have been the result of a “massive 
arbitrage algorithm” running at a significant speed advantage for a period of around 
five seconds.6 

• On March 23rd 2012, the initial public offering (IPO) of shares in the 
company BATS Global Markets was marred by an astonishingly fast collapse in its 
share price. BATS (an acronym for “Better Alternative Trading Systems”) was 
founded in 2005 and is the owner and operator of popular electronic trading venues 
in major economies such as the USA and UK, that are alternatives to the traditional, 
longer-established stock exchanges. At 11:14 am on the day of the IPO, BATS’ 
shares commenced trading at a price of $15.25. Within 0.9 seconds of the start of 
trading, the price had dropped to $0.2848; and at +1.5 seconds, the price was 
$0.0002. A total of 567 orders had been executed by the time trading in BATS was 
halted, and BATS subsequently cancelled its IPO, thereby depriving the company 
of the capital that would otherwise have been raised by the sale of its shares that 
day. Subsequent reports in the financial media quoted BATS as blaming this 
collapse on  “problems” and “bugs” in their own exchange software,7 but analysis 
of market data subsequently released by Nanex Corp8 indicated that the collapse in 
BATS’ share price had been driven primarily by so-called intermarket sweep orders 
originating from a trader or traders operating on the Nasdaq exchange.  Nanex’s 
analysis also demonstrated that the collapse in BATS’ price traced an almost-
perfect logarithmic decay curve, strong evidence that a computerized system was 
driving the price down by a fixed percentage with each successive trade. In the days 
that followed, there was open speculation that BATS’ crash had been caused by a 
rogue trading system, and that perhaps someone had deliberately programmed a 
system to inflict this grief on BATS.  

In each of these cases, there is evidence to suggest that computer-based trading 
systems were involved in the transactions that played causal roles in these events, but 
unlike the events of May 6th 2010, there have been no official investigations launched 
by regulatory bodies such as the CFTC and the SEC. There is frequent open 
discussion among market practitioners (especially on the anonymously-sourced but 
very well-informed website www.zerohedge.com) that current markets are too often 

                                                           
5 See http://www.zerohedge.com/article/story-berserk-nat-gas-algo-
just-got-really-strange and for the supporting data analysis see http://www. 
nanex.net/StrangeDays/06082011.html 

6 See http://www.nanex.net/StrangeDays/07072011.html  
7 See T. Demos (2012), “IPO Software Behind BATS’ Failure”, The Financial Times, March 

26th 2012.  
8 See http://www.nanex.net/aqck/2970.html 
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showing price movements for which the only plausible explanation is that a 
computerised system is operating in an unexpected or unanticipated fashion, giving 
market dynamics that deviate from expectations based on experience of markets 
populated by human traders, or from rational economic argument. 

We argue here that market disorder such as the May 6th 2010 Flash Crash, and the 
mini-flash-crashes that have been recorded since then in various markets, are deviant 
events that are best understood as evidence of “normal failure” in an ultra-large-
scale complex adaptive socio-technical system-of-systems.  

Unpacking that assertion requires some care, so in the following sections we’ll 
start first with a discussion of notable technology failures, then bring the conversation 
back to discussion of failures of the financial markets.  

Systems, such as the financial markets, that are themselves composed of 
constituent stand-alone systems that are each operationally and managerially 
independent, are very often the result of incremental, sporadic, organic growth and 
unplanned accretion rather than clean-sheet engineering design. They thereby involve 
or acquire significant degrees of variability in components and heterogeneity of 
constituent systems, and their make-up changes dynamically over multiple timescales. 
For this reason traditional engineering techniques, which are predicated on very 
different assumptions, cannot necessarily be trusted to deliver acceptable solutions. 
And, therefore, new approaches are required: new engineering tools and techniques, 
new management perspectives and practices.  

In the main text and the appendices of this review, we survey some recently 
developed approaches that look likely to grow into promising new engineering 
techniques in the coming decade and beyond, better suited to current and future 
systems than our traditional engineering practices, which owe more to the mid-
twentieth-century than they can offer the early-twenty-first.  

2 Background: Failures in Risky Technology 

The global financial markets are not the only area in which the application of new 
technologies has led to failures.  Although operator error can be attributed to many 
failures, as technological systems grow in complexity the prospect of failure-modes 
being inadvertently designed-in also grows. Take, for example, bridge building.  As an 
engineering activity this is something that dates at least as far back as ancient Rome 
(c.150BC) and so probably doesn’t figure as a risky technology for many people.  

Yet for decades, engineering students have been taught the story of the Tacoma 
Narrows suspension bridge, opened in July 1940, which collapsed four months later, 
where the designers did not anticipate the prospect of wind-flows over the bridge deck 
reinforcing the deck’s natural mode of vibrations, leading to the bridge shaking itself 
apart. Presumably, current and future students will also be taught the story of the 
London Millennium Bridge, which opened in June 2000 and two days later was 
closed for two years to remedy destabilizing swaying motions induced when groups 
of people walked over it. A significant difference between Tacoma Narrows and 
London Millennium is that in the latter case, it was the interaction of people, the 
users, with the engineered system that caused the problem. The Millennium Bridge on 
its own, as a piece of engineering, was a fine and stable structure; but when we 
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consider the interaction dynamics of the larger system made up of the bridge and its 
many simultaneous users, there were serious unforeseen problems in those dynamics 
that only came to light when it was too late.  

As engineered systems become more complex, it becomes more reasonable to 
argue that no one person or group of users is responsible for failures, but rather that 
the failures are inherent, latent, in the system; this seems especially so in the case of 
socio-technical systems, i.e. systems (like the Millennium Bridge, when in use) whose 
dynamics and behaviour can only be properly understood by including human agents 
(such as operators and/or users) within the system boundary.9 

This is perhaps most clear in some of the more famous technology failures of the 
past 40 years. The oxygen-tank explosion that crippled the Apollo 13 Lunar Service 
Module as it was en route to the moon in 1970, and subsequent safe return of her 
crew, has been rightly popularized as a major triumph of bravery, skill, teamwork, 
and engineering ingenuity. Nevertheless, the fact remains that NASA very nearly 
suffered the loss of Apollo 13 and her crew, due to the compounding effect of several 
independent small failures of process rather than malign intent or major error from 
one or more individuals. The successful return of Apollo 13’s crew owed an awful lot 
to the availability of accurate simulation models, physical replicas on the ground of 
key components of the spacecraft, where emergency procedures could be invented 
and rehearsed and refined before being relayed to the astronauts. The value of 
simulation models is something that we will return to in depth, later in this paper.  

While loss of a space vehicle is undoubtedly a tragedy for those concerned, the 
number of fatalities is small in comparison to the potential losses in other high-
consequence systems, such as petrochemical plants and nuclear power stations. The 
release of toxic gas at the Union Carbide plant in Bhopal in December 1984 
immediately killed over 2,000 people, with estimates of the subsequent delayed 
fatalities running at 6,000-8,000. The partial meltdown at the Three Mile Island 
nuclear plant in 1979 was successfully contained, but the reactor-core fire at 
Chernobyl in 1986 was not, and estimates of the number of deaths resulting from that 
event range from many hundreds to several thousand.   

High-risk technology failures including Apollo 13 and Three Mile Island were the 
subject of serious scholarly analysis in Charles Perrow’s seminal work Normal 
Accidents (Perrow, 1984). Perrow argued that in tightly-coupled systems with 
sufficiently complex internal interactions, accidents and failures, including 
catastrophic disasters of high-risk systems with the potential to end or threaten many 
lives, are essentially inevitable – such accidents are, in that sense, to be expected as 
“normal”, regardless of whether they are common or rare.  

In Perrow’s terms, the losses of the NASA space shuttles Challenger in January 
1986 and Columbia in February 2003 were also normal accidents. However, the 
sociologist Diane Vaughan argued for a more sophisticated analysis in her classic 
study The Challenger Launch Decision (1997), in which she presented a detailed 
analysis of transcripts, covering the hours immediately preceding Challenger’s 
launch, of interactions between NASA staff and the staff of Morton Thiokol, 
manufacturers of the shuttle’s solid-fuel rocket booster (SRB) that failed leading to 
loss of the vehicle and her crew.  
                                                           
9
 For an early, but very insightful, discussion of the dynamics of socio-technical systems, see 
Bonen (1979).  
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The transcripts had been released as part of the official Presidential Commission on 
the Space Shuttle Challenger Accident, led by William Rogers. A shocking finding of 
the Rogers investigation was that the specific failure-mode (burn-through of rubber 
O-ring seals in a critical joint on the SRB) had been known since 1977 and the 
consequent potential for catastrophic loss of the vehicle had been discussed at length 
by NASA and Thiokol, but the shuttle had not been grounded. Vaughan concluded 
that while the proximal cause of disaster was the SRB O-ring failure, the ultimate 
cause was a social process that Vaughan named normalization of deviance. 

 Put simply, normalization of deviance occurs when the safe-operating envelope of 
a complex system is not completely known in advance, and where events that were a 
priori thought to be outside the envelope, but which do not then result in failures, are 
taken after the fact as evidence that the safe envelope should be extended to include 
those events. In this way, deviant events become normalized: the absence of a 
catastrophe thus far is taken as evidence that in future catastrophes are less likely than 
had previously been thought. The flaw in this line of reasoning is starkly revealed 
when a catastrophe then ensues. In Vaughan’s analysis, the loss of Challenger was 
not a purely technical issue but rather was an organizational failure in the socio-
technical system comprised of the (technical) shuttle hardware systems and the 
(social) human individuals, teams, and organizations that had to interact appropriately 
to ensure safe launch and return of the shuttle.  

Vaughan’s analysis of the Challenger accident came more than a decade after the 
official inquiry into that 1986 event. In contrast, because of her work on Challenger, 
following the loss of Columbia in 2003 Vaughan was immediately invited onto the 
Columbia Accident Investigation Board (CAIB) and subsequently authored a chapter 
of the CAIB official report. It was argued that once again an organizational failure at 
NASA had resulted in loss of a vehicle, once again via a long-standing process of 
normalization of deviance.  

For Columbia, the proximal cause of disaster was a lump of insulating foam that 
broke away from the external fuel tank and struck the leading edge of the orbiter’s left 
wing, damaging its thermal insulation: on re-entry, this damage allowed atmospheric 
gases, compressed in the bow-wave at the wing edge and hence heated to more than 
1,500 degrees Celsius, to penetrate the wing; and the vehicle then broke up at high 
speed. But the ultimate cause was an organizational culture that had once again 
engaged in normalization of deviance, despite the warnings from Vaughan’s analysis 
of the Challenger disaster.  

Prior to the loss of Columbia, sixty-four previous missions had suffered strikes 
from insulating material breaking away during launch and hitting the orbiter, and yet 
each such strike was technically a violation of the shuttle’s design requirements: the 
shuttle had simply not been designed to withstand impacts from breakaway insulating 
material. Most notably, in 1988 on mission STS-27, insulation broke away from an 
SRB during launch and damaged 700 of the heat-insulating tiles on shuttle Atlantis, 
and the crew on board believed they would very likely be killed on re-entry; 
nevertheless, they weren’t, and post-mission repairs to the shuttle’s damage from 
insulation strikes became increasingly seen as nothing more than a routine 
maintenance issue (Mullane, 2006).  

Vaughan discussed the similarities between the Challenger and Columbia losses in 
a book chapter (Vaughan, 2005) and has documented her experience on the CAIB and 
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her subsequent interactions with NASA in a 40-page journal article (Vaughan, 2006). 
The CAIB report is probably the first major US government accident investigation 
that explicitly states the cause of the disaster to be a socio-technical system failure.  

The approaches exemplified by the writings of Perrow and Vaughan are not the 
only ones. Studies of what are known technically as High-Reliability Organizations 
(such as emergency rooms in hospitals, firefighter teams, and the flight-deck 
operations crews on aircraft carriers) have revealed that there are social and 
organizational, as well as technical, solutions to creating resilient socio-technical 
systems: see, for example, Roberts (1990); Weick & Sutcliffe (2007); and Reason 
(2008). The results from these studies indicate that there is no traditional, “pure” 
engineering approach that is suitable for ultra-large-scale systems. Multi-disciplinary 
approaches, that integrate the social with the technical, need to be developed: so-
called socio-technical systems engineering. 

But what does this academic literature on the study of technology failures offer to 
teach us about the events of May 6th, 2010?  

Of course, the Flash Crash was by no means the first failure in a major financial 
market. As anyone reading this paper must surely be aware, in July 2007 the 
investment bank Bear Stearns was the first in what turned out to be a sequence of 
major financial institutions to signal that it had suffered significant losses on subprime 
hedge funds, triggering a sudden dramatic reassessment of counterparty risk in most 
major financial institutions around the world which led, inter alia, to the UK’s 
Northern Rock consumer bank being the first to suffer a full-scale public bank run in 
150 years; and to the US government bailing out insurance giant AIG, mortgage 
providers Freddie Mac and Fannie Mae, and yet famously not extending a lifeline to 
Lehman Brothers, which turned out not to be too big to fail, and duly went bust. 

Taking a longer historical perspective, the crisis of 2007-08 was just one in a 
sequence that stretches back through the collapse of the LTCM hedge-fund in 1998; 
the “black Monday” crash of October 1987; the US savings-and-loan crisis of the 
mid-1980’s; the Wall Street Crash of October 1929; the South-Sea Bubble of the 
1720s; and the Tulip Mania of the 1630s.  

This history of financial crises has been documented in a popular text by 
Kindleberger (2001), and with more academic rigour by Gorton (2010). The events of 
2007-08 have been recounted from a number of journalistic perspectives, of which 
Lewis’s (2010) and Tett’s (2009) are notably thorough and well written. Tett’s 
perspective is particularly insightful: she is a senior executive journalist for the 
Financial Times but has a PhD in social anthropology, and this clearly influences her 
analysis. Tett was one of the few journalists to warn of the impending crisis before it 
came to pass, and notes various events that are clear instances of normalization of 
deviance. Lewis’s brilliant book tells the story of the few individuals who recognized 
that deviance, and bet on the markets failing. For more scholarly, academic, studies of 
the sociology of the financial markets, see the works of Edinburgh sociologist Donald 
MacKenzie and his colleagues (MacKenzie 2008a, 2008b; MacKenzie et al. 2008), 
although all of those pre-date the turmoil of the subprime crisis.  

One significant difference between previous financial crises and the Flash Crash is 
the speed at which they played out. In the past quarter of a century, financial-market 



38 D. Cliff and L. Northrop 

trading has shifted from being a largely human, face-to-face activity, to being phone-
and-screen-based rather than face-to-face, but still largely requiring a human at each 
end of the phone or screen. But within the past decade a fundamental technology-led 
shift has occurred. Increasingly, the counterparties at either end of the trade, at each 
end of the telecoms cable, are pieces of software rather than humans. Algorithmic 
trading systems are increasingly trusted to do trading jobs that were previously done 
by human traders, and to do jobs that would require super-human data-integration 
abilities in a person.10 As was seen on May 6th, the system-wide interaction between 
multiple independently-engineered, independently operated, and independently 
managed automated trading systems had at least one unknown catastrophic failure 
mode. A major proportion of traders in the markets are still human, but to understand 
today’s markets it is necessary to study the interaction of these human traders with 
their automated counterparts; that is, we need to study the socio-technical system.  

The danger that normalization of deviance posed in high-frequency automated 
trading systems in the global financial markets, and the possibility of major 
catastrophe happening within very short time-scales, was discussed in a strategic 
briefing paper written by one of us for the UK Government’s Office of Science, first 
draft of which was submitted in January 2010 and the final version of which (Cliff, 
2010) was submitted to the government nine days before the Flash Crash. Similarly, 
in the US at least one academic was repeatedly warning the SEC of the likelihood of a 
Flash Crash type of event in the year running up to May 6th 2010 (Angel, 2009a, 
2009b, 2009c; Angel et al., 2010; Angel 2010a, 2010b).  

We think it is reasonable to argue that the Flash Crash was, at least in part, a result of 
normalization of deviance. For many years, long before May 6th 2010, concerns about 
systemic effects of rapid increases in the price volatility of various instruments had led 
several exchanges to implement “circuit breaker” rules, requiring that trading in a 
security be suspended for some period of time if the price of that security moved by 
more than some percentage within a sufficiently short time-period. For instance, the 
London Stock Exchange first adopted circuit-breakers, now known there as Automated 
Execution Suspension Periods (AESPs) and Price Monitoring Extensions (PMEs), 
shortly after the 1987 Black Monday crash; and Chi-X Europe enforces “order-entry 
controls” that prevent orders being entered that are more than 20% away from the 
current price (Flinders, 2007; Grant, 2010). In response to the Flash Crash, the USA’s 
SEC has now enforced similar mechanisms in the US markets with the aim of 
preventing such an event re-occuring. In fact the move toward introducing circuit-
breakers in the US pre-dates the Flash Crash by more than two years: it had been 
proposed in an influential report on the sub-prime crisis from the Institute of 
International Finance (IIF, 2008) but seems to have been actively resisted until the 
events of May 2010. Thus, it seems plausible to argue that before the Flash Crash 
occurred there had been some significant degree of normalization of deviance: high-
speed changes in the prices of equities had been observed, market participants were well 
aware that that could lead to a high speed crash, but these warning signals were ignored 
and the introduction of safety measures that could have prevented them was resisted. 

                                                           
10 The history of the spread of technology innovations in the financial markets, and some likely 

future developments, are discussed in a recent review by Cliff, Brown, & Treleaven (2011).  



 The Global Financial Markets: An Ultra-Large-Scale Systems Perspective 39 

Moreover, it could plausibly be argued that normalization of deviance has 
continued to take place in the markets since the Flash Crash. The SEC’s introduction 
of circuit breakers seems to have been offered, and largely accepted, as the one 
necessary solution for preventing another similar event; and (so the story goes) all is 
now well. We are told that adding circuit breakers firmly shuts the stable door. 
Admittedly, this was done only after the Flash Crash horse had bolted, but at least the 
door is now shut.  

Now, for sure, the introduction of circuit breakers means that the US markets today 
are not the same markets as they were on May 6th 2010. With circuit breakers added, 
those markets, and the other markets around the world that they are coupled to (i.e., the 
entire global financial market system) should be in a new dynamic regime – that is, their 
market dynamics are different now. But the new dynamics are still not entirely known, 
and so the new regime is certainly not yet guaranteed to be safe. Despite the circuit 
breakers, the next Flash Crash could be lurking just around the corner.  

There are anecdotal stories that the speed of price fluctuations occurring within the 
limits of circuit breaker thresholds seems to be increasing in some markets (See, e.g., 
Blas, 2011); and there is evidence to suggest that another Flash Crash was “dodged” 
on September 1st 2010, in a similarly bizarre period when quote volumes exceeded 
even those seen at peak activity on May 6th 2010 (Steiner, 2010), but no official 
investigation was commissioned to understand that latter event.  Furthermore, the 
circuit-breaker mechanisms in each of the world’s major trading hubs are not 
harmonized, exposing arbitrage opportunities for exploiting differences; computer and 
telecoms systems can still fail, or be taken down by enemies of the system, and the 
systemic effects of those failures may not have been fully thought through. 

Of course, the next Flash Crash won’t be exactly the same as the last one, the SEC’s 
circuit breakers will probably see to that. But there are no guarantees that another event, 
just as unprecedented, just as severe, and just as fast (or faster) than the Flash Crash 
cannot happen in future. Normalization of deviance can be a very deep-running, 
pernicious process. After Challenger, NASA addressed the issue with the SRB O-ring 
seals, and believed the Shuttle to be safe. That was no help to the crew of Columbia.  

Reassurances from regulators that all is now well are likely to sound somewhat 
hollow for as long as people can remember the near-total failure of the regulatory 
bodies to have anything useful to say about the subprime crisis until shortly after its 
severity was clear to even the most casual of observers. Light-touch regulation and its 
consequence for financial markets in the UK were discussed in the 2009 Turner 
Review11, and the parallel systemic failure of the economics profession is discussed at 
length by Colander et al. (2009) and by Bootle (2009). The next market failure may 
well be a failure of risky technology that, like the Flash Crash, has no clear precedent. 

The global financial markets, considered as a single ultra-large-scale super-system, is 
made up of components, of constituent systems. These constitutents include the human 
traders and their trading procedures; the various electronic exchanges; the automated 
trading systems operated by the various investment banks and hedge funds; and their 
associated clearing, settlement and risk-management systems. All of these constituent 
systems have been developed, procured, operated and managed independently, although 
for some of them the development and procurement processes were informal, organic 

                                                           
11 http://www.fsa.gov.uk/pubs/other/turner_review.pdf 
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growth rather than pre-specified projects. That is, the current global financial markets 
are, from a technology perspective, systems of systems (SoS). We explore the definition 
of “system of systems” in some detail in Appendix A.2.  

A key issue with SoS is that the effects of failure in one or more of the constituents 
may be contained, or may ripple out in a domino-effect chain reaction, analogous to 
the crowd-psychology of contagion. Furthermore, SoS are often used in unanticipated 
circumstances and by unanticipated users. In such situations, the response of the 
constituent systems may not result in local failure but rather the combined local 
responses can trigger a global failure: this seems to be what happened in the Flash 
Crash. In this very definite sense, the global financial markets have become high-
consequence socio-technical systems of systems, and with that comes the risk of 
problems occurring that are simply not anticipated until they occur, by which time it 
is typically too late, and in which minor crises can escalate to become major 
catastrophes at timescales too fast for humans to be able to deal with them. The extent 
to which the SEC/CFTC report attributes cause to a single rushed block-sale as a 
$4.1bn hedge as the trigger-event in the Flash Crash seems comparable to the way in 
which the Challenger accident investigation report identified failed SRB O-rings: 
there is a wider socio-technical perspective that should not be ignored, and which was 
already being pointed to by some authors prior to the events of May 6th 2010 
(Haldane, 2009; Cliff, 2010).   

That the global financial markets have become ultra-large-scale complex IT-centric 
socio-technical systems is perhaps no surprise, given the wider context that IT 
systems have moved from back-office support (for payroll processing, say) firmly 
onto the critical path for very many enterprises and organizations, to the point where 
failure of the IT system can incapacitate an organization. For example, ten years ago a 
failure of the IT servers in a hospital would not have a major negative effect; whereas 
in the near future, once all data is digitized at the point of capture and integrated with 
patient’s historical data before delivery in an appropriate form to a healthcare 
practitioner, then when a hospital’s servers go down it will cease to be a functioning 
hospital and instead be a big building full of sick people, with highly trained 
professionals frantically tapping the touch screens on their PDAs/tablet-computers, 
wondering where the data went. Similar stories can be told, or are already plausibly 
foreseeable, in very many private-sector, public-sector, and defence organizations in 
most industrialized economies.   

Most notably, such issues have for some time been a growing, major concern in 
those areas of systems engineering where system failures can result in hundreds or 
thousands of fatalities or where, in the limit, system failures pose existential threats to 
entire nations:  the engineering research literature in aerospace, nuclear, and defence 
systems may well be a source of experiences and new tools and techniques that could 
be applicable to the financial markets, although it is doubtful that any techniques yet 
exist that address the unique characteristics of ultra-large-scale systems. The 
manifestly dire consequences of failure in aerospace, nuclear, and defence systems, 
and also of course in automotive systems, has led to the development of engineering 
teaching and practices specific to the development and maintenance of safety-critical, 
high-integrity systems: a field known as high-integrity systems engineering (HISE), 
which we briefly review in Appendix A.1 of this document. 
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So, the concerns expressed here about modern computer-based trading in the global 
financial markets are really just a detailed instance of a more general story: it seems 
likely, or at least plausible, that major advanced economies are becoming increasingly 
reliant on large-scale complex IT systems (LSCITS): the complexity of these LSCITS is 
increasing rapidly; their socio-economic criticality is also increasing rapidly; our ability 
to manage them, and to predict their failures before it is too late, may not be keeping up. 
That is, we may be becoming critically dependent on LSCITS that we simply do not 
understand and hence are simply not capable of managing. This is something that we 
illustrate, purely notionally, as a single three-line graph, shown in Figure 1.  

We, the authors of this review, each work for major national strategic initiatives 
intended to address these issues. In the UK, the National Research and Training 
Initiative in the Science and Engineering of LSCITS was started in 2007 as a strategic 
investment with the primary aim being to foster the formation of a new community of 
researchers and practitioners with the training and experience appropriate for dealing 
with future software-intensive systems engineering dominated by LSCITS issues 
(Cliff et al. 2006). At pretty much exactly the same time as the UK LSCITS Initiative 
was being planned and set up, entirely independently, in the USA the US Army 
 

 

Fig. 1. The Complexity Crossover Crisis. The complexity of information and communications 
technology (ICT) socio-technical systems of systems (SoS) has increased dramatically since 
ICT was first commercialized in the 1950s, and in recent years the socio-economic criticality of 
ICT SoS has also sharply increased, as very many enterprises and organizations in advanced 
economies have become dependent on the availability of ICT functionality as a key component 
on the critical paths of their operations. Over the same period, there is increasing concern (and 
growing evidence) that our ability to manage and predict the behavior of these critical ICT SoS 
is not increasing at the same pace, and so at some point in time there is the potential for crisis, 
where major socio-economic systems are critically dependent on ICT SoS whose complexity is 
beyond that which we can manage.  We are deliberately non-committal on the precise timing of 
this crossover point: for some companies or industrial sectors it could be a decade or more 
away, for others it could have happened already.  
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commissioned a team of world-class researchers led by the Software Engineering 
Institute (SEI) at Carnegie Mellon University to conduct a study of ultra-large-scale 
systems software.  The study resulted in a major report that argued the necessity for 
the USA to invest in ultra-large-scale systems engineering research, to safeguard its 
international dominance in information systems; this authoritative report marked the 
first major output from the SEI Ultra-Large-Scale (ULS) Systems Project (Northrop et 
al., 2006). For a brief overview of the ULS Systems project, the UK LSCITS 
Initiative, and other related projects, see Goth (2008).  

3 Where Next for the Financial Markets? 

One criticism that is sometimes leveled at the academic study of technology failures is 
that there is perhaps a tendency to be wise after the event. That is, a large amount of 
the work is descriptive (saying what happened) but not sufficiently predictive (saying 
what could happen next) or prescriptive (saying what should be done differently in 
future, to predict or prevent such failures from re-occurring).  

One possible approach, which side-steps the need for specific predictions, is to accept 
that technology failures are simply to be expected every now and again as part of the 
Darwinian arms-race dynamics at the leading edge of technology-dependent institutions, 
comparable to natural “failures” such as the species-extinctions that occur relatively 
routinely in biological ecosystems, when viewed over evolutionary timescales, and 
which also seem to follow a power-law distribution (small failures being common, big 
failures being rare: see e.g. Ormerod, 2006). Such a perspective may be well-aligned 
with the new schools of thought in economics and the study of technology innovation 
that are influenced by complexity science and autopoeisis (e.g. Ormerod, 1998; Blume 
& Durlaf, 2005; Beinhocker, 2007; Arthur, 2009), but taking a Darwinian, laissez-faire, 
“stuff happens” approach isn’t particularly helpful in the quest for new engineering 
practices, for predictive and preventative tools and techniques.   

Recently, there has been growing recognition within the engineering community 
that the engineering of systems in which failures are expected, and where the systems 
are resilient to those failures, may require a fundamental reassessment of established 
engineering teaching (see, e.g., Hollnagel et al. 2006). Similar views have also been 
expressed, earlier, in the business administration literature dealing with the 
management of large-scale technology-driven projects (Collingridge, 1992). It seems 
reasonable to suggest that changes are necessary both in engineering practices, and in 
the coordination, incentivization, and management of projects, for all LSCITS 
including those underlying the global financial markets. But such changes are likely 
to take time, and while we wait for them to take effect it would be good to have a 
viable near-term strategy, one that would potentially offer major payoff within five to 
seven years (seven years is long enough to achieve quite a lot, given enough 
resources: the US Apollo programme took seven years, from John F. Kennedy’s 
famous speech to Neil Armstrong’s famous small step.) In the following pages, we 
outline one such strategy. It will require national-scale investment, to create a 
national-scale strategic resource (or, perhaps, international collaboration to create a 
shared multinational resource, rather like the CERN Large Hadron Collider or the 
European Space Agency’s Arianne space rocket). 



 The Global Financial Markets: An Ultra-Large-Scale Systems Perspective 43 

The proposed strategy is simple enough to state: build a predictive computer 
simulation of the global financial markets, as a national-scale or multinational-scale 
resource for assessing systemic risk.  Use this simulation to explore the “operational 
envelope” of the current state of the markets, as a hypothesis generator, searching for 
scenarios and failure modes such as those witnessed in the Flash Crash, identifying 
the potential risks before they become reality. Such a simulator could also be used to 
address issues of regulation and certification. Doing this well will not be easy and will 
certainly not be cheap, but the significant expense involved can be a help to the 
project rather than a hindrance.  

Explaining and justifying all that was written in that last paragraph will take up the 
next several pages.   

For most engineering and scientific domains, in recent years it has become 
increasingly commonplace to rely on high-precision computer simulation as a means 
of studying real-world systems. Such simulations offer the possibility of evaluating 
the performance of proposed systems that have not yet been physically constructed, 
and of exploring the response of existing real-world systems to different operating-
environment conditions, and to alterations of the system itself, allowing “test-to-
destruction” without actually destroying anything.  Engineers interested in 
aerodynamic flows over aeroplanes and cars, or around buildings, or hydrodynamic 
flows around a ship’s hull, can routinely call upon highly accurate computational fluid 
dynamics (CFD) models to evaluate these flows in simulation, rather than building 
physical models to test in wind-tunnels or test-tanks. Almost all silicon chip designs 
are evaluated in microelectronics circuit-simulators such as SPICE (e.g. Tuinenga, 
1988) before the chip-producers make the final (and most expensive) step of 
committing their design to fabrication. Fissile nuclear reactions can be simulated with 
sufficient accuracy that designs for nuclear power stations, and for nuclear weapons, 
can be evaluated in simulation without splitting a single atom. In most advanced 
economies, weather forecasts are produced by national agencies on the basis of 
detailed sensor readings, and advanced computer simulations, that allow for accurate 
short-term and medium-term predictions of the future. Similar stories can be told in 
computational drug design, computational systems biology, and so on. Advocates of 
the use of predictive computer simulations in science and engineering have argued 
that this approach now represents a well-established third paradigm within science, in 
addition to the two long-established paradigms of empirical observation and 
theoretical modeling/generalization (see e.g. Gray, 2009, p.xviii).12 

It’s important to be clear about the nature of the predictive simulation models that we 
are advocating here. Meteorological simulations are predictive in the sense that they 
make weather-forecasts, specific projections about the likely future state or states that the 
real-world weather system may find itself in; that is, they say what is about to happen, or 
what would be likely to happen under specific circumstances. This is the most familiar 
practical use of simulation modeling. But there is a second use to which simulation 
modeling can be put: simulating a model of some system allows the model itself to be 
explored; in this sense, the model is an embodiment, an implementation in computer-
code, of a theory of how the thing being modeled works. This second type of simulation 

                                                           
12 The use of predictive simulations in engineering safety-critical complex systems-of-systems 

is discussed further in Appendix A.4. 
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modeling often starts out as essentially exploratory, with the intention of delivering 
explanatory insights that would otherwise have been difficult or impossible to come by.  

One illustrative example of this kind of simulation-as-explanation is Schelling’s 
(1971) model of racial segregation, where a very simple iterative process (i.e., an 
algorithm) operating on black or white markers positioned on a grid of square cells 
arranged chessboard-like over a two-dimensional space (i.e., an abstract model of the 
real world) was used to explore and explain how groups of people expressing only very 
weak preferences for wanting to live near to neighbours of the same race could lead 
over time to total segregation with large spatial clusters all of one race or the other. That 
is, the Schelling model, when simulated, showed in its dynamics an emergent behavior 
at the system-level that was unexpected and difficult to predict from mere inspection of 
the set of rules that the simulated people (the “agents” in the model) were specified to 
follow; Schelling was subsequently awarded the 2005 Nobel Memorial Prize in 
Economic Sciences. For a recent collection surveying such exploratory and explanatory 
simulation modeling in social sciences research, an approach now widely known as 
agent-based modeling, see Epstein (2007); and for a review of foundational work in 
agent-based computational finance, see LeBaron (2000).  

Of course, computational simulations are currently also routinely used by financial 
institutions: Monte-Carlo techniques are used to solve and explore options-pricing 
models, to evaluate value at risk, to back-test trading algorithms on historical data, 
and to perform stress-tests on individual financial instruments or on portfolios of such 
instruments. But historically it has been much less commonplace to simulate entire 
markets at a fine-grained level to study issues in overall system behaviour in an 
exploratory fashion.  

In an excellent book, Darley & Outkin (1997) give a detailed description of how 
they used complex adaptive systems (CAS)13 agent-based simulation-modeling 
techniques to explore the consequences of the Nasdaq exchange’s move from quoting 
prices expressed as multiples of sixteenths of a dollar to fully decimalized prices, 
expressed as multiples of one hundredth of a dollar (i.e., as dollars and cents). In the 
language of the markets, this was exploring the effects of a reduction in the Nasdaq 
“tick size” from $0.0625 to $0.01. Nasdaq had previously changed its tick-size from 
$1/8th to $1/16th in 1997, and there was evidence to suggest that at the same time there 
had been a change of strategies among the market participants trading on Nasdaq. 
Nasdaq commissioned Darley & Outkin to construct a detailed simulation model to 
evaluate possible effects of changing the tick-size to $0.01, in advance of the actual 
decimalization which was completed in April 2001; that is, Darley & Outkin  
were dealing in predictions, not postdictions. Darley & Outkin’s book recounting  
this predictive-simulation CAS work was published several years later. In it, they 
state: 

 
“While building the simulated model of the market, we interacted 

extensively with many market participants: market-makers, brokers, 
traders, large investors, etc. We found this interaction invaluable – as a 
source of information in particular on often subtle details of market 
operations, as a venue for verifying our assumptions and simulations 

                                                           13 The definition of a “complex adaptive system” is explored in more depth in Appendix A.3.  
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results, and at times as a source of constructive criticism. One 
conversation with a market maker still stays clear in our minds. He was 
supportive, but skeptical. The core of his skepticism lay in this question: 
how one can model the fear and greed often ruling the market behavior? 
This is a valid point: while fear and greed affect markets immensely, as 
has been time and again demonstrated by numerous booms and busts, 
understanding of underlying individual and mass psychology is lacking.  

“In our approach we address this problem by explicitly modeling 
strategies of individual market participants, by allowing those strategies to 
evolve over time due to individual learning or evolutionary selection, and 
by allowing to [sic] investigate various what-if scenarios by using user-
defined strategies.”  
(Darley & Outkin, 1997, pp.5-6) 

 

Darley & Outkin report that the results from their CAS simulations led them to make 
six substantive predictions before decimalization was enacted, and that events 
subsequent to the actual decimalization largely supported all of those predictions, 
except one (concerning the upper bound on the increase in trading volume, which had 
not yet been reached by the time that Darley & Outkin published their book). 

Darley & Outkin’s book describes a simulation model of one specific real-world 
exchange, and was the first to do so in such detail. For other studies of using CAS 
simulation-modeling techniques to explore how the collective behaviour of individual 
trader-agents can give rise to certain market-level phenomena, see e.g. Palmer et al., 
1994; Cliff & Bruten, 1999; LeBaron, 1999; Levy et al., 2000; and Tesfatsion & Judd, 
2006. 

Given the success of Darley & Outkin’s work, which is now over a decade old, it 
seems entirely plausible to propose that a similar complex-adaptive-systems, 
evolutionary agent-based, predictive simulation model could be constructed to assess 
the dynamics and behavior of individual financial markets, or indeed of the entire 
global financial market system. Obviously, it would be a major endeavour to create 
such a model, requiring national-scale levels of investment and ongoing funding to 
provide appropriate resources of human capital and computing power.  

Nevertheless, there is an obvious precedent in most advanced economies: very 
many countries fund, as a national utility, a meteorological agency such as the UK’s 
Met Office14. Combining real-time sensor data from satellites and ground-based 
observation stations with historical data and advanced, highly compute-intensive, 
predictive simulation models, the Met Office is able to give accurate near-term 
weather forecasts with a high spatial precision.  

The famously chaotic nature of weather systems (Lorenz, 1963) means that accurate 
longer-term predictions remain more problematic, and the same is very likely to be true 
of long-term predictive models of the financial markets, but there is a well-established 
technique used in meteorological forecasting that should also be of use modeling the 
markets: so-called ensemble forecasting, where the same model is re-run many 
hundreds or thousands of times, with each fresh run having minor variations in the 
initial conditions, and/or a different sequence of random numbers generated in the 
modeling of stochastic factors (see, e.g., Smith, 1995, 2002). From a thousand runs 
                                                           
14 http://www.metoffice.gov.uk  
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(say) of a model aimed at predicting the weather 48 hours into the future, it may be that 
243 of the simulations show snowfall on a particular area, 429 show rain, and the rest 
predict no precipitation; with these results, the forecast for two day’s time would be a 
24% chance of snow, a 43% chance of rain, and a 33% chance of it staying dry. In this 
sense then, the forecast is a probability function over the space of possible outcomes. 
Here we have only three mutually exclusive outcomes; a more sophisticated model 
might give a probability density function (PDF) over the space of possible precipitation 
levels measured to the nearest millimeter per unit of area, and also a separate PDF over 
the space of possible ambient temperatures, measured to the nearest degree Celsius; 
taken together, the two PDFs would form a prediction of whether water would fall from 
the sky, and whether it would fall as rain or as snow. 

So, the chaotic nature of financial markets is not necessarily an impediment to the 
development of predictive simulation models, so long as sufficient computing 
resources are made available to allow for ensemble forecasting. In fact, it is likely that 
the real value of the ensemble forecasting work would be in running very many 
simulations (perhaps tens or hundreds of thousands or more) in the search for those 
extremely rare but devastatingly problematic combinations of circumstances that have 
become widely known as Black Swan events (Taleb, 2007). It seems reasonable to 
describe the May 6th Flash Crash as a Black Swan event, and maybe the likelihood of 
such an event could have been predicted in advance, if a suitably detailed simulation 
model had been available beforehand. Of course the simulation would not have 
predicted that the crash would occur on May 6th, and would probably not have 
identified the precise trigger event. But it does seem entirely reasonable to argue that 
an appropriate model may have identified in advance the existence of a nonzero 
probability that if a certain type of order is executed in sufficiently large volume with 
certain (lack of) constraints on its execution pattern, that order could interact with the 
existing population of traders (both human and machine) to cause a “hot-potato” 
dynamic leading to a sudden, largely irrational, mass sell-off, exposing stub-quote 
values as reference prices, and leading major exchange-operators to declare self-help 
against each other, which is the current official story (CFTC & SEC, 2010a,b).  

The possibility of such a sequence of events does not seem to have been much 
discussed prior to May 6th; perhaps if an appropriate national-level or international-
level modeling facility had been operational, people would have been aware of the 
latent risk. Central government treasury departments in most economies have for 
many years (since before the advent of electronic computers) run large-scale macro-
economic models for forecasting, but as far as we are aware there are no mature 
models used to understand and predict issues of systemic risk in the financial markets. 
Such a systemic-risk market simulator system could also be used for training market 
practitioners and regulators in dealing with rare but extreme situations, in much the 
same way as civil and combat aeroplane pilots are trained to deal with various rare but 
serious aircraft system failures by flying many hours of simulator practice, so that in 
the unlikely event of such a failure occurring on a real flight, the pilot can rely on her 
lessons learned and experience gained in the simulator. The rescue of Apollo 13 owed 
an awful lot to the availability of accurate simulation models (physical electro-
mechanical ones rather than purely virtual computer simulations) at NASA Mission 
Control. The simulators had been developed to train the astronauts in dealing with 
various mid-mission failure situations, including using the Lunar Excursion Module 
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as a “lifeboat”, as was necessary on Apollo 13; after the explosion on Apollo 13 the 
simulators also became the test-bed for evaluating novel procedures necessary to keep 
the crew safe and the crippled ship on its return course.  

Simulation models used in complex systems engineering are typically not intended 
for training humans within the socio-technical system being simulated; rather, any 
human agents within the real system are also simulated in the model of that system. 
Nevertheless, the use of simulation models as scientific evaluation and training tools 
for humans dealing with unusual complex situations has a long history: see, e.g., 
Sloan (1981) and Dorner (1990, 1997), yet there is currently very little in the way of 
comparable use of personnel training/evaluation simulators in the financial markets. 
Trainee traders typically learn the ropes by running “dummy” accounts, keeping a 
record of trades that they would have made, but did not actually execute, so that any 
losses are merely on paper; this can be done using live market data, and trading 
strategies can also be back-tested on historical data. A notably more sophisticated 
simulator, integrating real-time price feeds, was developed in a collaboration between 
the University of Pennsylvania and Lehman Brothers, the Penn-Lehman Automated 
Trading project, described by Kearns & Ortiz (2003).  

While techniques such as these work well as training for situations where the trader’s 
activity has no immediate effect on the prices of the securities being traded, they cannot 
readily model market impact, where the mere act of revealing the intent to buy or sell a 
large quantity of a security means that other traders in that security (potential 
counterparties to the trade) alter their prices before the transaction occurs, in anticipation 
of the change in price that would otherwise result after the transaction has executed. 
Furthermore, simulators based on regurgitating historical data offer essentially nothing 
toward understanding the current or future overall system-level dynamics of the system: 
they can tell you what happened, but not what might happen next, nor what might have 
happened instead. Simulators for evaluating trading strategies on historical data are 
sometimes referred to as financial-market “wind-tunnels” (e.g. Galas et al., 2010). A 
financial-market wind-tunnel is certainly useful in refining the dynamics of an 
individual trading strategy, in much the same way as a traditional engineer’s wind 
tunnel is useful in refining the aerodynamics of a new aeroplane or car. But financial-
market wind-tunnel simulators are of zero help in understanding systemic issues such as 
financial stability, for much the same reason that an aerodynamicist’s wind tunnel can 
tell you nothing about system-level phenomena such as traffic congestion in a city’s 
street, nor air safety in a nation’s skies.  

More fancifully, it may also be worth exploring the use of advanced simulation 
facilities to allow regulatory bodies to act as “certification authorities”, running new 
trading algorithms in the system-simulator to assess their likely impact on overall 
systemic behavior before allowing the owner/developer of the algorithm to run it 
“live” in the real-world markets. Certification by regulatory authorities is routine in 
certain industries, such as nuclear power or aeronautical engineering. We currently 
have certification processes for aircraft in an attempt to prevent air-crashes, and for 
automobiles in an attempt to ensure that road-safety standards and air-pollution 
constraints are met, but we have no trading-technology certification processes aimed 
at preventing financial crashes. In the future, this may come to seem curious. 
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We’re not arguing here that predictive simulation models are a “silver bullet”, an 
easily achievable panacea to the problem of assessing systemic risk and identifying 
black-swan failure modes: developing and maintaining such models would be 
difficult, and would require a major research investment. It seems very likely that 
quantitative analytical techniques such as probabilistic risk assessment (see e.g. 
Stamatelatos et al., 2002a, 2002b; Dezfuli et al., 2009; Hubbard, 2009) and 
probabilistic model-checking (e.g. Calinescu & Kwiatkowska, 2010; Calinescu, 
Kikuchi, & Kwiatkowska, 2010) would also need to be involved, in sufficiently 
extended forms, to help constrain the (otherwise impossibly vast) space of possible 
situations and interactions that would need to be explored by the simulations. 

While there is no shortage of challenges in simulating the technical entities in 
socio-technical systems, simulating the social entities is almost always even more 
problematic, and this is something that doesn’t have to be addressed by 
meteorological forecasting systems. Whether individual human agents, or groups of 
humans operating and interacting as teams or large organizations, the social entities in 
a socio-technical system are frequently present in virtue of the fact that they are 
needed to perform roles and discharge responsibilities with levels of flexibility, 
adaptability, and subtleness that are beyond the capability of automated systems. 
Modelling those kind of issues certainly presents a large number of deep technical 
challenges, and it is fair to say that the representations of social entities in many HISE 
models are often quite primitive: simple probabilistic models of humans switching 
from “safe” to “error” status are not uncommon. More sophisticated nondeterministic 
behavioural models such those based on Markov chains (e.g. Haccou & Meels, 1994; 
Benveniste et al., 2003), and computational implementations of models of behaviour 
and motivation from the ethology literature (such as Lorenz’s well-known hydraulic 
model explained in his 1966 book On Aggression) have all been explored in the 
research field that studies mechanisms for the generation or simulation of adaptive 
behaviour in animals (including humans) and synthetic agents, including those that 
are needed to model human ingenuity and adaptivity in predictive simulation models. 
One of the biggest drivers for this research is the need for creating believable 
synthetic agents in virtual environments such as computer games, yet the work 
presents deep challenges and is also directly relevant to simulations of real-world 
scenarios for training and evaluation purposes (so-called “serious games”)15: see, e.g., 
Blumberg, 1996; Ivanov, 2002; Tomlinson & Blumberg, 2002; Horswill 2009. In 
some limited domains, for instance the modeling of emergency egress by crowds of 
humans from stricken structures (such as burning buildings or sinking ships), where 
there is reasonable data for how humans do behave in such circumstances, such 

                                                           
15 See, for example, the Serious Games Institute at http://www.seriousgamesinsti 

tute.co.uk, the Serious Games Initiative at http://www.seriousgames.org/, and 
the various research outputs from FutureLab on Games and Learning, Serious Games in 
Education, Game-Based Experience in Learning, and Teaching with Games, all available at 
http://www.futurelab.org.uk/projects/. An extensive report on the use of 
serious games in military education and training was produced by Caspian Learning for the 
UK Ministry of Defence:http://www.caspianlearning.co.uk/MoD_Defence_ 
Academy_Serious_games_Report_04.11.08.pdf. 
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models have proven to be genuinely insightful (see, e.g., Johnson, 2005, 2006, 2008; 
Johnson & Nilsen-Nygaard, 2008)16. 

The significant cost of constructing and operating such a simulation facility could 
possibly be met from the public purse via general taxation, or could perhaps be 
funded by direct contributions from the major financial corporations (banks, fund-
management companies, exchange operators, insurers, etc.) operating in a particular 
country or group of countries. If funded as a public-sector project, it would of course 
be necessary to recognize that in addition to the significant technical challenges, the 
establishment of such a simulator facility also present significant budgetary 
challenges and the entire endeavour would need to stand up to a thorough cost-benefit 
analysis: this is an issue expanded upon by Bullock (2011).  

However, it is not the case that the only way of building or running such a 
simulation facility is via public-sector financing. It is possible that a group of 
financial institutions could collaborate on, and co-fund, the necessary capital 
expenditure at start-up and ongoing operational costs. A UK precedent for this, albeit 
in a different industry sector, is the independent non-profit company CFMS Ltd17

 that 
is jointly owned and operated by founding partners Airbus, BAE Systems, Frazer-
Nash Consultancy, MBDA UK, Rolls-Royce, and Williams Formula 1 Engineering. 
CFMS exists to advance the theory and practice of simulation-based design processes, 
and has invested in its own high-performance computing facilities available in its 
Advanced Simulation Research Centre (ASRC). Given the importance of 
aerodynamics to many of the founding partners, there is a focus on computational 
fluid dynamics modeling in CFMS/ASRC, which is of no direct relevance to the 
world of finance. Nevertheless, the success of CFMS and ASRC shows that 
independent companies can indeed come together to co-found and co-run shared 
facilities as an investment in pre-competitive research and development capability.   

If a major simulation facility was constructed, revenue could be generated from 
levying charges for anyone wanting access to it, and also possibly from using it as a 
training or certification facility. The potentially massive cost involved is not 
necessarily a disincentive: if the simulator was constructed on a minimal budget of 
(say) several hundred thousand pounds, it would be reasonably easy for financial 
corporations such as a hedge funds or investment banks to fund their own rival 
internal projects, probably much better-resourced, which would then detract from the 
public-good shared-utility nature of what is proposed here.  

But, if the national-level simulator was funded by tens or hundreds of millions of 
pounds (and assuming that these pounds were spent wisely) then it is plausible that it 
would be so well resourced, and hence so much more detailed and/or accurate, that no 
private corporation could reasonably hope to compete with it, then all private 
corporations reliant on its results would have an incentive to contribute to the running 
costs, and the intellectual content, of the simulator facility as a common good. The 
facility would then be a pre-competitive shared resource: all contributing corporations 
would have access to details of its design and construction, and all would have access 
to its facilities for running experiments. Corporations would nevertheless be free to 
                                                           
16

 See also http://www.massivesoftware.com/real-world-simulation-
gallery/. 

17   See www.cfms.org.uk 
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compete on the basis of what questions they ask of the simulator (details of each 
corporation’s specific experiments could be kept confidential), and in how they then 
use the results from their experiments.  

Of course the counterargument to developing a single utility facility is that this 
would concentrate risk: if the one national simulator is wrong, and everyone is using 
results from that simulator, then everyone’s expectations or predictions are wrong at 
the same time. This is also manifestly true of national weather-system simulator 
facilities, and there is no shortage of examples of entire nations being taken by 
surprise when their state-funded monopoly weather-forecasting services got it 
wrong.18   

One approach to mitigating this risk may be to enforce so-called “n-plex 
redundancy”, as is common in the design of controllers for aerospace and defence 
systems, where the same control-system functionality is implemented by n multiple 
parallel systems, each designed and implemented by different independent suppliers, 
often constrained to not use the same core technologies (such as particular processor 
chips, programming languages and compilers, third-party suppliers, etc). The 
rationale for such an approach is that, while each of the n redundant systems may 
have one or more failure modes, the likelihood of all n systems having the same (or 
overlapping) vulnerabilities is greatly reduced by the active prevention of them 
sharing common components and/or development paths. Thus, so the argument goes, 
while one or more of the individual systems may fail from time to time, the remaining 
parallel redundant systems will most probably remain operational, and thereby 
coherent control will be maintained. So, maybe the best approach is for a national 
agency to commission some small number n of competing predictive simulation 
models, adopting or guided by the principle of n-plex redundancy, in the hope that the 
collective indications from the suite of n independent simulations can be trusted more 
than the lone voice of a single model.  

A more thorny issue is the effect of the feedback loop from the model(s) back to 
the market systems being modeled. Results from a predictive simulation model of the 
weather do not actually alter the weather, but results from a market simulation may 
have a significant effect on the subsequent behavior of agents within the real-world 
markets that the simulator is a model of. There is prior evidence of self-fulfilling 
prophecies driving market dynamics, such as the theory that market activity is 
somehow affected by the number of sunspots. There is no a priori causal mechanistic 
explanation for why sunspots might affect market activity, but someone once 
proposed that there was at least a correlation between sunspot numbers and markets 
rising or falling; all that was then required was for enough people to believe in the 
correlation and to allow that belief to alter their trading activity in the markets. This 

                                                           
18 On October 15th, 1987, a UK Met Office forecaster reassured viewers on the BBC prime-time 

evening weather broadcast that there was not a hurricane coming, in an attempt to quell 
earlier speculation. Later that night the south of England was hit by the worst hurricane-force 
windstorm for over 250 years, with speeds gusting to 120mph for several hours, causing huge 
amounts of damage and unprecedented levels of disruption for days afterwards. Other 
nations’ meteorological forecasting services on mainland Europe, using different monitoring 
and prediction models, had given more accurate forecasts of the windy weather that night.   
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shared belief then became the causal link: if enough people are counting sunspots and 
using that to drive their market behaviour, then an increase in the number of sunspots 
will indeed affect the market in the manner that was “predicted” by their belief, 
thereby reinforcing the conviction of those who already hold the belief and helping to 
convert non-believers. The causal feedback loop from predictive simulations back to 
the real-world markets is something that will need to be handled well, but it is not 
necessarily a problem: the feedback could have a positive effect, dampening 
unwelcome dynamics. 

To conclude, we observe that there is an old saying: “if it ain’t broke, don’t fix it”. 
This is certainly wise guidance in very many situations. But it is important to remember 
that for some systems, when they do actually break, they go so catastrophically wrong 
so superhumanly fast that the safest option for such a system really is to fix it while it 
ain’t broke, because that is the only decent chance you’ll get. This is the case for many 
large-scale complex IT systems (LSCITS). Ensemble forecasting via n-plex redundant 
predictive simulation models is not cheap, is not easy, and is certainly far from perfect, 
but it may just be the best option currently available.19

  
The novelty of this proposal can perhaps be judged by the fact that the most recent 

comprehensive UK industry-focused review examining mechanisms for achieving 
supervisory control of systemic risk (Bonisch & Di Giammarino, 2010) mentions 
predictive simulation modeling only obliquely, in passing; but that same report also 
mentions the Flash Crash only once, in passing, too, as if such a manifestly deviant 
event was already normalized.  

Nevertheless, we are certainly not the only people to be making such proposals: 
see, e.g. (Farmer & Foley 2009; Economist, 2010; Harford, 2011; Salmon, 2011), and 
the UK Government Office for Science’s recent Foresight project exploring the future 
of computer trading in the financial markets has commissioned two excellent reviews 
that discuss aspects of the idea in more detail: see Bullock (2011) and Farmer & 
Skouras (2011). The UK already has significant investments in university research 
centres that could make valuable contributions to this approach.20 

In his April 2009 speech Rethinking the Financial Sector, Andy Haldane, Executive 
Director for Financial Stability at the Bank of England, argued that three steps were 
necessary to safeguard against another series of events like the 2007/08 subprime crisis: 
all three steps deal with the global network of interacting financial institutions. 
Haldane’s argument was that we should work first to map that network; then take steps 
to better manage and regulate the existing network; and then explore useful ways in 
which the network could be restructured or otherwise modified. We contend that all 
three of these steps (map, manage, & modify) could, and in fact should, be performed 

                                                           
19 In the interests of balance, for recent counterarguments to the use of simulation models, see 

Turkle (2009).  
20 Major UK academic research centres that could be involved include: the Bristol Centre for 

Complexity Science (http://bccs.bristol.ac.uk); the Bristol/Bath Systems 
Engineering Centre (www.bristol.ac.uk/eng-systems-centre/); the 
Southampton Institute for Complex Systems Simulation (www.icss.soton.ac.uk); the 
UCL PhD Centre for Financial Computing (http://fc.cs.ucl.ac.uk/phd-
centre); the York Centre for Complex Systems Analysis (www.yccsa.org); and the 
UK Large-Scale Complex IT Systems Initiative (www.lscits.org).  
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via an appropriate simulation-model-based engineering approach: creating and 
maintaining the model would be Haldane’s mapping exercise; once operational, the 
effects of different regulatory actions, and any potential restructuring of the financial 
network could be explored and evaluated in the model too.   

4 Summary 

The Flash Crash of May 6th 2010 was a sudden and dramatic failure in a ultra-large-scale 
software-intensive socio-technical system (the US financial markets) with prices running 
wild at a speed and magnitude of volatility that were without historical precedent.  The 
fact that there was not major lasting damage to the global financial markets is perhaps 
more due to luck than judgement: if the down-spike in the Flash Crash had occurred five 
minutes before market close in New York, it’s plausible that could have triggered a 
contagious global sell-off that then went on to wrap around the world. 

Yet from a broader perspective it is clear that the Flash Crash was just one more in 
a sequence of failures of risky technology, and quite plausibly such an event was 
made more likely via a prior process of financial-market practitioners becoming 
increasingly tolerant of unexpected events, previously thought to be unacceptable, not 
resulting in disasters: that is, via a process of normalization of deviance.  

The problems posed by attempting to engineer and manage reliable ultra-large-
scale complex adaptive socio-technical systems of systems are becoming ever more 
clear, but further research is needed to develop appropriate tools and techniques. 
System-of-systems issues of scaling, normal failure, heterogeneity via organic 
growth, and emergent behavior all have to be addressed. Parallel running of multiple 
redundant predictive simulation models is one approach that may now be applicable 
for assessing and controlling systemic risk in the financial markets.  

The engineering of LSCITS and ULS socio-technical ecosystem system-of-systems 
is in its infancy: it has significant differences from traditional engineering of smaller-
scale systems, and developing rigorous trusted approaches may turn out to be a long 
haul. The UK’s LSCITS Initiative and the USA’s Ultra-Large-Scale (ULS) Systems 
Initiative are each articulations of national strategic concerns. Both represent a 
sizeable step toward developing a new community of practitioners and researchers 
who are conversant with all the necessary subfields that can contribute to addressing 
issues in the science and engineering of such systems, forming those communities of 
practice will take several years of sustained investment. Without doubt this is not 
merely responding to a national need but an international one. We, the authors of this 
report, welcome any researchers, practitioners, regulators, policy-makers or sponsors 
who would like to become involved in the LSCITS and/or the ULS Systems 
initiatives. The intellectual challenges are significant, but not insurmountable; the 
potential societal savings are massive, and the scale is truly global.  
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Appendix: High-Integrity Large-Scale Complex Ecosystems 

In this Appendix we take a quick tour through the concepts and approaches from 
current systems engineering that are relevant to the discussion just presented, but for 
which going into detailed explanation or definition would have been a distracting 
diversion from the flow of our argument. In sequence, here we briefly review high-
integrity approaches to systems engineering (Appendix A.1); the definitions of 
Systems-of-Systems (A.2) and Complex Adaptive Systems (A.3); and then selected 
current leading-edge approaches to the high-integrity engineering of complex 
adaptive systems-of-systems (A.4). 

A.1   High-Integrity Systems Engineering 

High-integrity engineering techniques for safety-critical systems have a long heritage, 
and it’s simply beyond the scope of this document to provide a comprehensive review 
of all the relevant background literature; for detailed surveys, see the review chapters 
in the recent PhD theses by Alexander (2007, pp.29-55), Despotou (2007, pp.41-76), 
and Hall-May (2007, pp.33-72).  

It is commonplace in real-world engineering situations to be dealing with systems 
that simply cannot be guaranteed to be absolutely safe because key components in the 
system are known not to be absolutely reliable. If one of the key components is 
known to be 99.99999% reliable, that is an admission that there is a 0.00001% chance 
of failure; if failure of that component compromises the safety of the overall system, 
then there is a risk (small, but nonzero) that the system will become unsafe. Safety 
engineering has developed techniques for estimating the causal chains of events 
leading to failure, the attendant risks of failure, the effects of failure, and for reducing 
those risks and limiting their effects; in this sense then, risk and reliability are two 
sides of the same coin.    

One of the earliest forms of risk and reliability assessment method, developed in 
the 1960’s US aerospace and missile programs, is fault-tree analysis (FTA). FTA 
operates by the engineer first identifying “basic events” such as a fuse blowing or a 
relay-switch failing to open. Significant combinations of these basic events are then 
aggregated into a graph structure much like a family tree: compound events are 
formed via “gate” nodes that link basic events. It may be that basic events E1 and E2 
and E3 all have to occur for a particular output fault F1 to occur: on the graph the 
event nodes E1, E2, and E3 would be shown as “daughters” of F1, with F1 denoted as 
an “and” gate. Other types of gate include: “or” (any one or more of the daughters 
triggers the compound fault);“combination” (the compound fault is triggered by any n 
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or more of the daughters occurring, for n>1); “exclusive or” (exactly one daughter 
will act as the trigger); “priority and” (the daughter events have to all occur in a 
specific sequence); and “inhibit” (the daughter event occurs as the same time as some 
enabling condition). The daughter nodes of a compound event are not required to be 
basic events: they can be other compound events, and so it is possible to construct 
deep trees showing how basic events, combinations of basic events, and combinations 
of those combinations, can each combine to contribute to particular faults or failures 
in the system under analysis.  Fault-tree analysis distinguishes between failure effects 
(such as a switch failing to make contact), failure modes (such as the switch’s contacts 
being broken, or the contacts having a very high resistance), and failure mechanisms 
by which those modes may come about (such as high resistance on the switch 
contacts being caused by corrosion of the contact surfaces, or by an insulating coating 
having been spilled onto them); this well-known safety-critical engineering practice is 
known as Failure Modes and Effects Analysis (FMEA). For further details, see e.g. 
Stamatelatos et al. (2002b). 

FMEA and FTA, as just described, are essentially qualitative, deterministic, 
approaches. In recent years, there has been a concerted move toward developing 
quantitative approaches where numeric values represent measures of risk. An 
obvious, intuitive, risk metric is the probability of failure, and so the field is widely 
known as probabilistic risk assessment (PRA).21

 Over much the same period, the field 
of mathematical statistics has undergone something of a revolution in the rapid 
adoption of the so-called Bayesian approach as an alternative to the long-established, 
traditional, frequentist approach, and this has been reflected in the PRA literature. For 
instance, in 2002 NASA published a 323-page guide to PRA procedures for its 
managers and practitioners (Stamatelatos et al., 2002a) based on traditional 
frequentist statistics, but then in 2009 it published a new 275-page guide to PRA 
using Bayesian methods (Dezfuli et al., 2009). Some authors, most notably Hubbard 
(2009), have argued forcefully that PRA should be the only game in town, but PRA is 
not without its critics and detractors: see, for example: Parry (1996); Slovik (1999); 
and Apostolakis (2004).  

The opening page of NASA’s 2002 guide to PRA neatly summarises the history of 
its adoption in that organization: 

“Legend has it that early in the Apollo project the question was asked 
about the probability of successfully sending astronauts to the moon and 
returning them safely to Earth. A risk, or reliability, calculation of some sort 
was performed and the result was a very low success probability value. So 
disappointing was this result that NASA became discouraged from further 
performing quantitative analyses of risk or reliability until after the 
Challenger mishap in 1986. Instead, NASA decided to rely on the Failure 
Modes and Effects Analysis (FMEA) method for system safety assessments. 
To date, FMEA continues to be required by NASA in all its safety-related 
projects.  

                                                           
21 Some authors (e.g. Apostolakis, 2004) instead refer to Quantitative Risk Assessment, to 

cover the possibility that the numerical values being manipulated are not strictly 
interpretable as probabilities.  
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“In the meantime, the nuclear industry picked up PRA to assess safety 
almost as a last resort in defense of its very existence. This analytical method 
was gradually improved and expanded by experts in the field and has gained 
momentum and credibility over the past two decades, not only in the nuclear 
industry, but also in other industries like petrochemical, offshore platforms, 
and defense. By the time the Challenger accident occurred, PRA had become 
a useful and respected tool for safety assessment. Because of its logical, 
systematic, and comprehensive approach, PRA has repeatedly proven 
capable of uncovering design and operation weaknesses that had escaped 
even some of the best deterministic safety and engineering experts. This 
methodology showed that it was very important to examine not only low-
probability and high-consequence individual mishap events, but also high-
consequence scenarios which can emerge as a result of occurrence of 
multiple high-probability and nearly benign events. Contrary to common 
perception, the latter is oftentimes more detrimental to safety than the 
former.“ (Stamatelatos et al., 2002a, p.1) 

NASA’s series of public-domain guides on FTA, frequentist PRA, and Bayesian PRA 
(Stamatelatos et al., 2002a; Stamatelatos et al., 2002b; Dezfuli et al., 2009, 
respectively) talk in terms of estimating and assuring system safety/reliability: they do 
not involve themselves in the distinction between systems, and systems-of-systems 
(SoS), which was informally introduced earlier. However, for the discussion that 
follows, we need to take a brief diversion into a more precise definition of what 
precisely we mean here by “SoS”. 

A.2  Systems-of-Systems: Directed, Collaborative, Coalition, and Ecosystem 

Probably the most-cited paper in the SoS literature is Maier’s  “Architecting Principles 
for Systems of Systems” (1998), and we will use Maier’s careful definition of a SoS 
here. Maier proposed two primary characteristics that distinguish a SoS: a system that 
did not exhibit these two characteristics was, in his terms, not to be considered as a SoS 
“…regardless of the complexity or geographic distribution of its components.” (Maier 
1998, p.271, original emphasis). Maier’s definition reads as follows: 

“A system-of-systems is an assemblage of components which individually 
may be regarded as systems, and which possess two additional properties: 

 

“Operational Independence of the Components: If the system-of-systems 
is disassembled into its component systems the component systems 
must be able to usefully operate independently. That is, the 
components fulfill customer-operator purposes on their own. 

 

“Managerial Independence of the Components: The component systems 
not only can operate independently, they do operate independently. 
The component systems are separately acquired and integrated but 
maintain a continuing operational existence independent of the 
system-of-systems.” 

 

(Maier, 1998, p.271, original emphasis) 
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A strict interpretation of Maier’s definition of SoS would argue that the US Space 
Shuttle, even at one second before launch, is not a system of systems. The Orbiter, its 
external fuel tank, its left and right SRBs, and the launch-pad and support-tower that 
they all lift off from, do not have immediate operational independence: that is, they 
were all intimately designed to work with each other. It might perhaps be argued that 
with a little tinkering the SRBs could be re-engineered to usefully operate 
independently (as warhead-carrying long-range missiles, perhaps), but that would be 
clutching at straws: even if that were true, there is no real sense in which any of the 
Shuttle’s component systems exhibit Maier’s second property, of managerial 
independence, and on that basis the Shuttle at launch is simply not an SoS. At launch, 
each of the shuttle’s component systems is under the collective, coordinated, 
combined command of NASA (the precise nexus of that command is something that 
is constructed by the interaction of, and shifts dynamically between, Mission Control 
on the ground, and the astronauts onboard the Shuttle).  

Precisely because of Maier’s definition, earlier in Section 2 of this paper we were 
careful not to describe the Shuttle as a SoS. Nevertheless, it is clear that the global 
financial markets network, or even “just” the financial markets operational in one of 
the major global hubs such as London or New York, satisfy both the operational 
independence and managerial independence criteria. Maier goes on to note that SoS 
can be classified as Directed (built and managed to fulfill specific purposes), or 
Collaborative, or Virtual. His definition of collaborative SoS reads as follows: 

 

“Collaborative systems-of-systems are distinct from directed systems in that 
the central management organization does not have coercive power to run 
the system. The component systems must, more or less, voluntarily 
collaborate to fulfill the agreed upon central purposes.”   
(Maier, 1998, p.278). 
 

In Maier’s terms, a virtual SoS is then a SoS that is neither directed nor collaborative, 
i.e. it is one for which there is no central management authority, and also no agreed 
upon central purposes. Maier is explicit that he considers national economies to be 
virtual SoS; and it seems obvious that in Maier’s terms the global financial markets 
are also virtual SoS. But classifying the markets as a virtual SoS simply because of 
their absence of central management and centrally agreed purpose glosses over some 
important richness in the network of interacting institutions within the financial 
markets. The markets involve varying numbers of various types of institution (e.g., 
investment banks, hedge funds, exchange operators, insurers, technology providers). 
The organizations that participate in the markets (and those that regulate them too) 
serve different purposes; some of them are in direct competition with other 
institutions (sometimes in zero-sum terms), others are in collaborative relationships 
with one or more other institutions; and such institutions come and go over time. 
Sommerville et al. (2012) have recently coined the term “Coalition of Systems” to 
describe this class of SoS; before that, Valerdi et al. (2008) referred to “No Single 
Owner SoS”, and Northrop et al. (2006) coined the term socio-technical ecosystems, 
to capture the same notion that these SoS can be represented as a web of interacting 
constituents: in some cases the interactions are collaborative, in others they are 
competitive, all within the one SoS. It seems unarguable that the technology-enabled 
global financial markets of today, and in the future, are ecosystem-SoS.  
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The development of techniques for maintaining and managing high-integrity large-
scale ecosystem-SoS is a new and significantly under-researched field. Fewer than 
five years ago, eight authors from industry and academia co-authored a paper (De 
Laurentis et al., 2007) calling for an international consortium on SoS engineering to 
be established, to better understand the problems and solution strategies associated 
with SoS, yet their conception of a SoS was phrased in terms of “…heterogeneous 
independently operable systems to achieve a unique purpose” (p.68) – that is, they 
concentrated on a conception of SoS that is better suited to Maier’s 
directed/collaborative SoS than the ecosystem-SoS of Northrop et al. Books and 
research papers exploring how to engineer robustly scalable socio-technical systems 
are currently few and far between (but see Abbot & Fisher, 2009; Rooksby, 
Rouncefield, & Sommerville, 2009; Baxter & Sommerville 2010). 

The primary reason for that is because the development of reliable practices, and 
engineering teaching, for ensuring or assuring the integrity or safety of a SoS is a 
current research challenge; one that is being actively pursued by the world’s leading 
research groups in high-integrity systems engineering, and even those leading 
researchers would admit that it is not yet a solved problem. In contrast to traditional 
engineering teaching, with its emphasis on designing “from scratch”, starting 
(metaphorically at least) with a clean sheet of paper, most SoS instead arise from 
organic processes of aggregation and accretion, where pre-existing systems are 
integrated as constituents into the SoS. In almost all large-scale SoS, there is significant 
heterogeneity (which itself changes over time) because different constituents in the SoS 
were added at different stages in the development of the SoS and arrived via differing 
design and implementation paths. In their 2008 book Eating the IT Elephant: Moving 
from Greenfield Development to Brownfield, senior IBM staff Richard Hopkins and 
Kevin Jenkins made the analogy between the greenfield/brownfield distinction in civil 
engineering, and modern-day large-scale complex IT projects. A greenfield engineering 
project is one in which construction takes place on a previously undeveloped site, 
allowing a “clean-sheet” approach at the design stage, with relatively little preparatory 
work required on-site before construction, and with relatively few constraints on the 
construction process. A brownfield project is one in which the site has previously been 
built on and hence may require significant clearing operation before construction, with 
the possibility of the added complexity from the requirement that existing structures 
must be retained and their viability maintained during the construction phase (Hopkins 
& Jenkins, 2008). 

Even if a large-scale SoS was the product of a clean-sheet engineering design 
process and was initially constructed from homogeneous constituents, sheer 
largeness-of-scale implies that at any one time it is almost definite that some of those 
constituents will have failed and be needing replacement (so-called normal failure). 
Those replacement constituents may not be exactly identical to the originals, and so 
the SoS becomes a heterogeneous, brownfield engineering problem.  

The challenge of determining the safety of a SoS is neatly summarized by 
Alexander, Kazakov, & Kelly (2006): 

“In a conventional system, …the system boundary is well defined and the 
components within that boundary can be enumerated. When a safety analyst 
postulates some failure of a component, the effect of that failure can be 
propagated through the system to reveal whether or not the failure results in a 
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hazard. This is not always easy, because of the complexity of possible 
interactions and variability of system state, hence the need for systematic 
analysis techniques, automated analysis tools and system designs that 
minimize possible interactions. To make the task more tractable, most 
existing hazard analysis techniques…. deal with only a single failure at a 
time; coincident failures are rarely considered.  

“In an SoS, this problem is considerably worse. The system boundary is 
not well defined, and the set of entities within that boundary can vary over 
time, either as part of normal operations… or as part of evolutionary 
development… Conventional tactics to minimize interactions may be 
ineffective, because the system consists of component entities that are 
individually mobile. In some cases… the entities may be designed to form 
ad-hoc groupings amongst themselves. Conventional techniques may be 
inadequate for determining whether or not some failure in some entity is 
hazardous in the context of the SoS as a whole.” 

The prospect of component entities being “individually mobile” was relevant to 
Alexander et al. because their work concentrated on SoS in defence applications, where 
the constituent entities in the SoS are often individual battlefield units (e.g., troops, tanks, 
unmanned vehicles, etc). While there is no direct physical correlate of spatial mobility in 
the computerized global financial markets, there is a reasonable equivalent in the virtual 
space defined by the network of current interactions between agents in the markets: just 
as a tank might physically move from one location to another on a battlefield in order to 
engage with the enemy or withdraw to a position of safety, so a trading agent (human or 
machine) might establish a connection with a potential counterparty, or terminate an 
existing connection. In both the tank battle and the trading scenario, the key factor that is 
altered is the network of links from the node in question (the tank, the trader), to other 
nodes in the network (enemy units, other traders) with which that node might have 
meaningful interactions (exchange of fire, exchange of bids/offers).  

But this “mobility” issue of the network of meaningful interactions changing 
dynamically is not the only issue that confuses the task of understanding or managing an 
ecosystem SoS. Each of the nodes in the network, i.e. each of the constituent entities, is 
likely to be both nonlinear and adaptive. For the sake of the argument here, we’ll 
simply define “nonlinearity” as a meaning that the entity’s “outputs” (i.e., its responses 
or behavior) are not a simple linear function of its “inputs” (i.e., readings from its 
sensors, say); and we’ll adopt a similarly simple definition of “adaptive”: the entity is 
adaptive if its “outputs” may change over time, in consequence of the particular time-
sequence of “inputs” that the entity is exposed to. Readers familiar with the 
mathematical economics literature will recognize this notion of adaptation as similar to 
“path-dependency”; colloquially we can think of the entity “learning from experience” 
or “evolving its response over time”. In recent decades, a new set of scientific tools  
and techniques has been developed to study systems composed of networks of 
interacting nonlinear adaptive entities. That field is known as Complexity Science, and 
the networked nonlinear adaptive systems are known as Complex Adaptive  
Systems.  
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A.3  Complex Adaptive Systems 

In complexity science, complex systems are commonly defined as systems that are 
composed from large numbers of components, where each component interacts with 
some number of other components, and where there are nonlinearities in the nature of 
the component interactions and/or in the responses of the components themselves, 
which compound across the entire system in such a way that the overall system-level 
behaviour is difficult or perhaps impossible to predict accurately, even when one is 
given complete or near-complete information about the individual components and 
their interactions. The system-level behaviour is said to emerge from the network of 
interacting components and their constituent behaviours, forming a whole that is in 
some reasonable sense more than the sum of its parts. Substituting the word 
“constituent” for “component” in that description and it is clear that for very many 
SoS of practical importance, the SoS is manifestly a complex system. In addition to 
exhibiting emergent behaviour, many complex systems of significant interest are 
adaptive (in the sense informally introduced in the previous paragraph), and this also 
is surely true of many constituents in SoS, hence many SoS are instances of Complex 
Adaptive Systems (CAS).  Since the late 1980’s a growing number of scientists have 
been attempting to understand the financial markets as CAS, and have been exploring 
the links between the financial markets and other CAS, both naturally-occurring and 
engineered artefacts. There is growing evidence that the emergent behaviour, phase 
changes, instabilities, and hysteresis seen in many other complex systems are also to 
be found in the financial markets: see, for example: Anderson, Arrow, & Pines 
(1989); Arthur, Morrison, et al. (1997); Johnson, Jefferies, & Hui (2003); Challet, 
Marsili, & Zhang (2004); and Blume & Durlaf (2005). 

A small but growing number of researchers in the (systems-of-) systems engineering 
community have, in recent years, turned their attention to whether tools and techniques 
from complexity science can help in the brownfield engineering of robust, scalable, 
large-scale, systems: that is, they are exploring the consequences of taking a CAS 
approach to the creation and management of such large-scale systems and SoS: see, for 
example, Bar-Yam (2005); Braha et al. (2006); Sheard, & Mostashari (2008); Polacek, 
& Verma, (2009); and Sillitto (2010). Thus far, only a small amount of this work has 
addressed issues directly relevant to the financial markets but some notable work has 
been produced; see, e.g.: Harman & Bar-Yam, 2008; and the Nasdaq study by Darley & 
Oatkin (1997), which was discussed in more detail in Section 4.  

Very often, such approaches involve exploring the system using so-called Multi-
Agent Simulation (MAS) models, where a computer simultaneously models each of 
the constituents (or “agents”) in the network of interacting adaptive nonlinear entities, 
resolving the consequence of each entity’s interaction with its environment (which in 
most cases will include one or more other such entities), often using fine time-slicing 
or discrete-event simulation techniques. The agents in the simulation may adapt their 
responses over time either by implementing machine-learning techniques (for learning 
“within the lifetime” of the agent) and/or by implementing a process inspired by 
Darwinian evolution, a so-called genetic algorithm (a simulated population of agents, 
adapting to its niche over successive generations via a process of random variation 
and “survival of the fittest” directed selection: each agent’s behaviour or performance 
at the task at hand being determined at least in part by “genes” that can be passed on 
to successor agents: see e.g. Goldberg, 1987). Very often, the reliance on computer 
simulation models is a consequence of the mathematical nonlinearities in the system 
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being analytically intractable: that is, they are sufficiently complicated and complex 
that the tools for expressing them as a set of equations and then deriving formal 
proofs of certain statements about the system, via manipulation of the equations, is 
simply not possible.  

For introductions to the use of CAS/MAS models in understanding social, 
economic, and socio-technical systems, see the texts by Epstein & Axtell (1996) and 
Axelrod & Cohen (2000). For examples of early machine-learning adaptive trading 
agents, see Cliff (1997) & Gjerstad & Dickhaut (1998), for the story of how those 
agents beat human traders, see Das et al. (2001). With regard to the application of 
evolutionary approaches, there has been heavy use of “replicator dynamics” (a 
technique pioneered in the theoretical study of evolution in biological systems) for 
exploring the interactions between different types of trading strategies, and 
identifying stable equilibria in the interaction dynamics (e.g., Walsh et al., 2002; 
Vytelingum, Cliff, & Jennings 2008); and also various researchers have used genetic 
algorithms to create trading agents, and the market-mechanisms they operate in, co-
adapted to each other by evolution (e.g., Phelps et al., 2002; Cliff, 2003; Byde, 2003; 
Cliff, 2009; Phelps et al., 2010). Evolutionary adaptation and co-adaptation in 
biological systems has served as a productive metaphor for economic dynamics at 
various levels for several decades (see, e.g., Nelson & Winter, 1982; Hodgson, 1993; 
Ormerod, 2006; Stephens & Waelbroeck, 2009); and there are other aspects of 
biological systems, such as the interconnected web of dependencies in natural 
ecosystems, that can offer fruitful insights into the functioning of financial systems 
(see, e.g., May et al., 2008; Haldane & May, 2011; also Johnson, 2011). Sources of 
inspiration are not limited to biological systems: studies of the complex dynamics and 
size-vs-frequency distributions of earthquakes also offer insights for students of 
markets crashes: see Sornette (2002).  

CAS and MAS approaches are not limited to the exploration of economic and 
financial systems: the approach is now pretty-much a standard item in the toolboxes 
of biologists, urban planners, military strategists, movie animators, safety architects, 
and practitioners of many more application areas in science and engineering. Several 
research teams have worked on developing general-purpose simulators (with 
associated visualization and analysis tools) for exploring CAS and MAS: for details 
of an example generic simulator and reviews of related work see Polack, Andrews, & 
Sampson (2009); and Polack et al. (2010).  

In the course of this section’s discussion thus far, we’ve briefly surveyed high 
integrity systems engineering, and the definitions of systems of systems (SoS) and of 
complex adaptive system. Now we draw those three strands together and explore the 
current state, and future prospects for, high-integrity safety-critical engineering of 
complex adaptive ecosystem SoS.22 

                                                           
22 We recognize that this is a long and cumbersome phrase. A shorter alternative might be 

“wicked systems”, first coined as a technical term in information systems engineering by 
Metcalf (2005) in direct reference to Rittel & Webber’s (1973) notion of “wicked 
problems”. But, given the current widespread disaffection in the media and general public 
with the banking sector, it seems prudent to avoid the potential confusion between the 
technical sense of “wicked” and the morally judgmental one, confusion that might arise in 
talking about trying to develop new engineering approaches for dealing with the “wicked 
systems of the financial markets”. 
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A.4 Engineering High-Integrity Complex Adaptive Ecosystem System-of-
Systems 

All approaches to risk assessment and safety-critical engineering involve the notion of 
a model. Rather than attempting to observe and manipulate the real physical system in 
its real operating environment, the model is instead an abstract representation of those 
aspects of the system that the engineers believe to be necessary and sufficient to 
reason about in order to achieve the task at hand. So, in this sense, a fault-tree 
diagram for some system is a model of that system. The fault-tree can be reasoned 
about, argued over, and altered to make it a better or worse representation of the real 
system, and the fault-tree can be manipulated to arrive at specific answers to specific 
questions, without having to touch the real system. The fault-tree is an explicit, 
diagrammatic, model of the system, suitable for risk assessment. But, as we have 
seen, the same system’s risk assessment could instead be approached via Bayesian 
PRA, in which case the model will be a set of coupled equations and the associated 
prior probabilities.  

In high integrity systems engineering, it is recognized that all models are 
developed iteratively, that they pass through a lifecycle: after an initial model is 
proposed, experience with the real system may reveal that the model needs refinement 
and improvement, the model is altered appropriately, but subsequent experience may 
again reveal the need for additional alterations. Eventually, it is hoped, the model will 
stabilize as more is known of the system. Of course, if the system itself is changing 
over time (as is almost definite in a socio-technical ecosystem SoS), the safety-
engineer’s model is forever playing catch-up; there will always be a strong likelihood 
that some aspect of the SoS is not yet known, not yet captured in the safety model.  

Recognizing this, in recent years many researchers and practitioners involved in 
the engineering of high-integrity systems of systems have turned to predictive 
computer simulation models as a way of exploring “what if” scenarios. Such 
simulations are typically highly compute-intensive, and it is only with the ongoing 
Moore’s-Law reductions in the real costs of computer power that such approaches 
have become practicable. In a predictive simulation, the model is expressed as 
interacting processes within the computer: such simulations may involve 
manipulating numeric values according to given equations (as in PRA); and they may 
also represent the model, or its outputs, via explicit diagrammatic visualizations (as in 
fault-tree analysis). Computer simulations offer the advantage of taking exhaustive 
“brute force” approaches to exploring system safety: for some systems, it is feasible 
to simulate the system in every possible combination of values for all variables of 
interest – the entire “state-space” of the system (that is, the space of all possible states 
it could ever find itself in) can be explored by the computer, given enough time. If the 
entire state-space is explored, and no unanticipated failures are discovered in the 
model, then (so long as the model is an accurate representation of the real system) the 
system’s reliability is known completely. This technique of brute-force simulation has 
been particularly successful in the microelectronics industry, where the responses of 
new designs for silicon chips are explored exhaustively in simulation before the chip 
is fabricated for real: mistakes discovered at the simulation stage are much cheaper to 
fix than if the error is discovered only after the chip has been manufactured.   



62 D. Cliff and L. Northrop 

However, for many real-world systems, the state-space is sufficiently large that 
brute-force exhaustive searching is simply not possible. The combinatorics of state-
spaces often involve exponentials-of-exponentials: equations of the form v=w-to-the-
power-(x-to-the-power-(y-to-the-power-z))), and numbers such as v can grow 
astronomically huge, much larger than the number of atoms in the known universe, 
for only moderate values of w, x, y, and z. Attempting exhaustive search of such vast 
state-spaces is possible in theory, but the sun will burn out long before the search is 
over. So, for many real systems, sophisticated techniques are required to cleverly 
sample only selected points or areas in the system’s state-space. Developing such 
techniques is a current research issue, even in microelectronics where the state-spaces 
of current chips have now grown to routinely be beyond the size where exhaustive 
search is practicable (see, e.g. Hsueh & Eder, 2006).  

Researchers concerned with risk assessment and safety assurance in SoS have 
developed increasingly sophisticated simulation modelling techniques (see, e.g., De 
Laurentis & Han, 2006; Parisi et al., 2008; Clymer, 2009; Kewley & Tolk, 2009), and 
researchers interested in developing generic simulation tools for the study of complex 
adaptive systems have learnt from the methods developed in high-integrity systems 
engineering (Polack, Andrews, & Sampson, 2009). Some recent work has explored 
the possibility of feeding the outputs of simulation models directly into machine 
learning (ML) algorithms, so that the ML system can discover or learn rules and 
regularities that can neatly summarise the behavior of the system (see, e.g., Eder, 
Flach, & Hsueh, 2006; Alexander, 2007). Nevertheless, researchers remain cautiously 
aware that the model is only that: only a model, an abstraction. The models are used 
to explore possible circumstances and situations that may be very rare, and/or 
disastrous, in the real system. Alexander et al. (2006) comment that this approach is 
one that Dewar et al. (1996) refers to as “weak prediction”: 

“[Dewar et al., 1996] note that “subjective judgement is unavoidable in 
assessing credibility” and that when such a simulation produces an 
unexpected result “it has created an interesting hypothesis that can (and 
must) be tested by other means”. In other words, when a simulation reveals a 
plausible system hazard, other, more conventional analyses must be carried 
out to determine whether it is credible in the real system. Therefore, the role 
of the simulation analysis is to narrow down a huge analysis space into one 
that is manually tractable.” (Alexander et al., 2006) 

 

One of the biggest challenges at present concerns modeling the social elements in 
socio-technical SoS: people and groups of people can be surprisingly sophisticated 
(and surprisingly stupid), and representing their relevant nonlinear, adaptive, 
nondeterministic behavior in a simulation model is certainly not easy.  

Although it is undoubtedly difficult to capture human ingenuity and adaptivity, 
there are well-developed techniques in the CAS literature that can serve as good 
proxies: most notable of these is the use of co-evolution as a process for driving 
stochastic search through a space of possible designs or strategies, giving rise to what 
can appear to be a form of “artificial creativity”.  

The seminal example of this approach was described in a paper by Hillis (1990): 
Hillis used simulated evolution, a genetic algorithm (GA), to automatically design 
algorithms for sorting lists of numbers into numeric order; each “individual” in his 
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GA’s population was a particular algorithm, and the sequence of steps in each 
individual’s algorithm were specified by its “genes” (each step involved comparing a 
pair of numbers, and if necessary swapping their places in the list to make them be in 
the right numeric order); each individual’s probability of reproduction (i.e., its fitness) 
was determined by how many test-lists it sorted successfully.  

Initially, Hillis worked with a set-up where the test-lists were fixed in advance: 
when he did this, his GA could reliably evolve individual algorithms that did well at 
sorting the specific lists in the test set, but did poorly when presented with a novel list, 
one that was not in the test set.  To counteract this, Hillis re-worked his system so that 
the test-lists were also an evolving population: the test-set was a population of lists, 
the particular numbers in each list were specified via its “genes” and the “fitness” of 
each list was determined by how “difficult” it was, i.e., by how many of the sorting 
algorithms failed to sort it. Thus the population of sorting algorithms, and the 
population of test-lists, made up a competitive co-evolutionary system, much like a 
predator-prey or parasite-host dynamic: the fitness of each sorter-algorithm depended 
on how many lists it could sort; the fitness of each list depended on how many sorter-
algorithms it could defeat; and the two populations co-evolved over time. The co-
evolutionary system was much more productive, and readily discovered sorting 
algorithms that rivalled the best-known human-designed ones.  

Since Hillis’ paper, several CAS researchers have demonstrated the power of co-
evolution as a force for generating novel solutions and designs (see, e.g. Sims, 1994; 
Funes & Pollack 1999; Cartlidge & Bullock, 2004; Cliff & Miller 2006; Stuermer et 
al. 2009), it seems entirely plausible that co-evolutionary processes could be used to 
approximate the effects of human ingenuity and creativity in socio-technical systems. 
Perhaps more importantly, co-evolutionary processes could also be used to explore 
the state-space of simulated ecosystems SoS, in the search for conditions that reveal 
unanticipated failure modes, in much the same way as Hillis’s population of test-lists 
searched for methods of “failing” his population of sorting algorithms. This would 
allow semi-automated generation of hypotheses about how the real system might fail. 
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