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Abstract. Quantitative verification is an established automated
technique that can ensure predictability and dependability of software sys-
tems which exhibit probabilistic behaviour. Since offline usage of quantita-
tive verification is infeasible for large-scale complex systems that
continuously adapt to the changing environment, quantitative runtimever-
ification was proposed as an alternative. Using an illustrative case study
of communicating, distributed probabilistic processes, we formulate the
problem of quantitative steering, a runtime technique that involves sys-
tem monitoring, prediction of future errors, and enforcement of system’s
behaviour away from the error states.We consider a communication-based
variant of steering where enforcement is achieved by modifying the con-
tents of communication channels. Our approach is based on stochastic
games, where one player is the system and the other players assume the
role of the controller, and hence steering reduces to finding a controller
strategy that meets the given quantitative goal. We discuss the solution to
the quantitative steering problem and its extensions inspired by complex
real-world scenarios.

1 Introduction

Software systems underpin the vast majority of our activities, from commerce, to
manufacturing, transport and healthcare. Typical requirements for such systems
are that they run in distributed and de-centralised environments; must be fault-
tolerant, since devices may fail and communication media may be unreliable; and
are expected to run continuously, adapting to the changes in the environment,
for example user demand. Being deployed in business-critical setting, they must
also behave in a predictable and dependable manner.

Formal verification techniques such as model checking [10] have proved par-
ticularly useful in preventing errors in the deployed software. Formal verification
is used mainly in an offline fashion, though there have been recent efforts to
integrate it within autonomic systems [9], where adaptive behaviour can be han-
dled by applying concepts from control such as feedback loops. In this context,
software is monitored at runtime, its behaviour analysed against given require-
ments, and, if deviation is detected, instructions are issued to steer its behaviour
accordingly. In cases where software systems can exhibit failure and must comply
with resource limitations, the modelling frameworks typically allow for proba-
bilistic behaviour and annotation with appropriate quantities to represent the
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incurred cost, e.g. energy usage. Quantitative verification [19] is a technique
which combines formal verification with numerical computation, and is able to
automatically answer the questions such as “what is the maximum probability
of reaching an error state?”, and “what is the expected energy usage in the start
up phase?”. Quantitative verification techniques have been implemented, e.g.,
within the PRISM model checker [20]. PRISM has been successfully used to
verify a range of quantitative/probabilistic temporal properties, in some cases
discovering critical flaws.

The offline application of quantitative verification, however, is usually infea-
sible in the context of large-scale complex systems [24]. The main culprit is
state-space explosion in conjunction with the inherent complexity of the analy-
sis methods that are involved. A quantitative runtime verification approach was
recently proposed [2,16,1] as an alternative, complementary analysis method. We
adopt this approach, and focus on the following system characteristics:

– adaptivity in presence of probabilistic choice: we explicitly model failure us-
ing probability distributions, and allow for continuous changes as the system
evolves, including changes to probability values and system transitions;

– resource limitations: we model resource limitatations, for example finite mes-
sage queue sizes, by placing quantitative bounds on them;

– partial observability: we assume that, while we have a formal model over-
approximating the behaviour of the processes, we know nothing about their
current internal state other than what we can infer from the model and the
communication history.

In this paper we formulate the problem of quantitative runtime steering for
large-scale complex systems that exhibit the above characteristics. The (non-
quantitative) steering problem has been earlier solved in the context of dis-
tributed systems [26], where a model checker has been used to predict and pre-
vent future inconsistencies. As a representative setting, we consider systems com-
prising a number of distributed probabilistic processes, communicating through
message channels. We assume that each process is modelled as a Markov decision
process (see the next section for details) and the system is constructed through
parallel composition of those. To enable steering, we allow an explicit controller
process who can use the channels both as a source of information (to try to
determine the actual system state) and as a steering medium (by altering the
channel contents). We then take a stochastic game view [8] of the system, where,
in addition to a randomised player that deals with probabilistic transitions, we
have:

– player 1 representing the decisions of a controller, striving to ensure that the
required quantitative property holds; and

– player 2 representing the combined decisions of the system components,
which in order to cover the worst possible scenario is usually assumed to
be malicious.

In [8], a reward-based temporal logic and verification algorithms were proposed
for turn-based stochastic games and implemented as an extension of PRISM [23].
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The logic can express properties such as “player 1 has a strategy to ensure that
the maximum probability of reaching a final state is at least 0.99, regardless
of the strategy of any other player”. Here, for simplicity, we assume that the
controller’s goal is to ensure a safety objective, namely the avoidance of a given
set of error states. As a secondary goal, we want the controller to achieve this
objective in the least intrusive way possible. We model this requirement by
associating a cost with every alteration of the channels; this naturally leads to
the definition of the steering problem in terms of a generation of a controller
strategy that meets the stated quantitative goal.

To illustrate our approach, we introduce a motivating case study which forms
the basis of our discussions. We then describe how to solve the steering problem
outlined above, at first treating a simplified variant which can be solved exactly
using existing methods. As mentioned above, due to the adaptivity and partial
observability, this exact solution will be inappropriate for very large systems;
in the following sections we discuss how to adapt the method to a variety of
harder scenarios inspired by real-world complex systems. We conclude the paper
by summarising future research in this area.

Related Work. The idea to incorporate the use of formal methods at runtime
dates back to the work of Crow and Rushby [11] on fault detection, identifi-
cation and reconfiguration. Subsequent developments include the framework of
[22]. In [26] a model checker executed from the current local state has been
used to predict and prevent future inconsistencies in a distributed system. In
the quantitative runtime setting, a number of approaches have been proposed
for different types of models, to mention the autonomic approach of [2,1] for
discrete- and continuous-time Markov chains, parametric techniques of [15,16]
for discrete time Markov chains and the incremental approach of [21] for Markov
decision processes. Partially observable Markov decision processes are known to
be infeasible, but a promising partial approach to adversary generation was re-
cently proposed in [18]. Stochastic games have been a very active research topic,
see e.g. [13,7,3]. A survey of results can be found in [5] and an overview of par-
tially observable stochastic games in [4]. The majority of the work has been
theoretical, and we are aware of only two implementations, GIST [6] for syn-
thesis and PRISM-games for quantitative verification [8,23]. Our paper is the
first to propose stochastic game techniques as a solution to quantitative runtime
steering.

1.1 Case Study

Consider the following example, motivated by a cloud computing scenario, for
distributing a workload of tasks among a number of processing units. We are
given processing units P1, . . . , Pn arranged in a network (see Figure 1). For the
sake of simplicity, the network topology we use in this example is a ring of pro-
cesses, each of which can communicate with other processes up to two positions
away, and with an environment process.

Figure 2 shows the abstract specification for process Pr, r ∈ {1, . . . , n}. The
process executes the following main loop:
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– In the idle location q1, it can receive requests to perform some computation,
either as a reqr message from the environment, or as a ai,r or bi,r message
from another process Pi, representing some subtask which Pi generated to
distribute the workload. Note that i serves as a free variable, which param-
eterizes families of actions (ai,r and acki,r) and locations (q11,i) in Pr. The
process moves to q2, storing the client process id in variable m (a value of 0
representing the environment).

– In each of the busy locations q2, q3, q4, further requests from another Pi are
rejected using a nackr,i message.

– In locations q2 and q3, the process makes a probabilistic decision about
whether or not to issue a subrequest of type a or b, respectively. If the answer
is positive, it then chooses a recipient, by calling the auxiliary function pick j
(resp. pick k), which
• assigns to j (resp. k) a neighbour id chosen uniformly at random, ex-
cluding the current values of j, k,m, and

• increases the counter tries,
and sending an ar,j (resp. br,k) message.

– In q4, the process checks and acts on responses:
• if tries exceeds a given bound, give up and send a nackr,m message,
• if an ack arrives from Pj (or Pk), set j (respectively k) to zero,
• if both j and k are zero, there are no pending subrequests; send an ack
message,

• if either Pj or Pk send a nack, choose a new recipient for the failed
subrequest (again using pick j/pick k).

Note that the system is driven by user demand and does not offer a guarantee
that the workload will be successfully distributed; in fact, it may fail to do
so and this can be expressed using probability. This system therefore exhibits
two problems. Firstly, in the case when a process fails to distribute the workload
despite having tried the specified number of times, it is possible that ack or nack
messages arrive after the tries counter has exceeded the bound; these messages
are not cleaned up and can confuse the process in subsequent computations.
Secondly, the system may enter a configuration in which failure is unacceptably
high, for example, if the workload is distributed badly between the units. Suppose
the initial request leads to generation of subtasks as in Figure 3, where in the
rightmost configuration processes P1, . . . , P7 are all busy (note that these are
only a subset of the full system, and some of them may still have subrequests to
send). Then in that rightmost column:

– P5 has only busy neighbours, so if it generates any subrequests, it will fail
(after 5 attempts). The probability for this case is 0.64.

– If P5 does fail, P3 receives the resulting nack5,3 and re-sends its subrequest
up to 4 times; the recipient is chosen randomly from {P1, P2, P5}, subject to
the condition that the same recipient cannot be chosen in two successive
attempts. Since all neighbours other than P5 are busy, this will lead to
a failure of the overall request with probability 0.4672 (see the case k =
5, tries = 2 in Figure 4).
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Environment
P1

P2 P3

P4

...
...

ack4,0, nack4,0

req4

a2,3, b2,3, ack2,3, nack2,3

a3,2, b3,2, ack3,2, nack3,2

Fig. 1. A simple cluster of computing units. Processes P1, . . . , Pn are arranged in a ring,
each able to directly communicate with processes up to two positions away, and with the
environment, which can generate requests reqi for each process Pi. Messages ai,j , bi,j rep-
resent subrequests from Pi to Pj ; acki,j and nacki,j are success and failure notifications
(in the latter case, j can be 0, representing a notification to the environment).

Our goal is to prevent the above scenario through using a controller which cancels
requests responsible for creating such contiguous overloaded regions by deleting
them and injecting a nack message. The idea is that the controller is able to
predict that congestion is reachable in the near future, and can then select an
appropriate strategy to avoid it. In the example scenario, the congestion problem
could be addressed by trying to get P6 to send its second subrequest to a process
further down the chain, instead of its direct neighbour. In order to do this, the
controller would delete the request (a6,7 or b6,7) and inject a nack7,6 message.

2 Preliminaries

In this section, we formally describe the class of systems we are interested in,
together the corresponding quantitative verification and steering problems. The
systems comprise a number of distributed, probabilistic processes, each modelled
as a Markov decision process, communicating through (bounded) channels.

2.1 Words and Word Distances

As usual, the sets of finite and infinite words over an alphabet Σ are denoted by
Σ∗ and Σω, respectively. The empty word is ε, and the length of a word w ∈ Σ∗

is |w|.
In order to represent the intrusiveness of a steering strategy, we use a distance

between words, based on the number of steps needed to transform one into the
other, where a step consists of deleting or inserting a symbol (corresponding
to interception or injection of a message). Specifically, we have the following
definition.
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Fig. 2. One process Pr in the cluster. Variables m, j, and k are used to store the ids of
neighbours whose subrequest Pr is currently processing (m) and to which subrequests
have been sent (j, k). The auxiliary actions pick j and pick k, called before sending a
subrequest, assign a neighbour index other than the current values of j, k,m to j or k,
respectively, and increment the tries counter.
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Fig. 3. Buildup of congestion in part of the network. Arrival of a request leads to a
cascade of subrequests, eventually rendering all processes in the segment P1, . . . , P7

busy (indicated by shading). In particular, P5 is effectively isolated in the final state
(rightmost column), since it has only busy neighbours. This leads to a failure probability
for the overall task which is unnecessarily high.
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Fig. 4. Probabilities of overall failure in the situation shown in Figure 3, starting in the
next-to-last column and abstracting away all details except the values of k ∈ {1, 2, 5}
and the tries counter in P3. The subrequest can only succeed (with probability 0.36)
when k = 5; the value of k must change in each iteration.

Definition 1. Let Σ be an alphabet, and let γ = (γ−, γ+) consist of the cost
functions γ−, γ+ : Σ → N ∪ {∞}. This gives rise to a weighted directed graph
GΣ,γ = (Σ∗, E, w), where E consists of all pairs of the form (xay, xy), (xy, xay)
for a ∈ Σ and x, y ∈ Σ∗, and the edge weight w is given by w(xay, xy) = γ−(a)
and w(xy, xay) = γ+(a).

The (weighted edit) distance dγ(u, v) between words u, v ∈ Σ∗ is the minimal
weight of a path from u to v in GΣ,γ.

2.2 Markov Decision Processes

Definition 2. Given a set S, a finitely supported probability distribution on S
is a function Δ : S → R≥0 such that Δ(s) = 0 for all but finitely many s ∈ S
and

∑
s∈S Δ(s) = 1. We denote the set of all such distributions on S by D(S).

Definition 3. A Markov decision process (MDP) is a tuple A = (Q,Σ, q0, T ),
where

– Q is a set of states, including the initial state q0 ∈ Q,
– Σ is an alphabet of actions, and
– T : Q×Σ → D(Q) is a partial transition function.

The action alphabet represents the possibility of nondeterministic choices in A,
which can be resolved by an adversary. In its most general form, this adversary
makes a probabilistic choice between actions based on the history, i.e. it is given
as a function σ : Q∗ → D(Σ). For any such adversary and any temporal property
ϕ defining a measurable set �ϕ� ⊆ Qω of paths, we get a probability pσA(ϕ) of the
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behaviour of A satisfying ϕ in standard fashion [19]. The supremum supσ p
σ
A(ϕ)

and infimum infσ p
σ
A(ϕ) are denoted by pmax

A (ϕ) and pmin
A (ϕ), respectively.

For simplicity, we will restrict ourselves to pure memoryless adversaries, given
by functions σ : Q → Σ, which suffice for the case of safety/reachability
properties.

2.3 The Simple Steering Problem

We first introduce a version of the steering problem which, at least in principle,
can be solved exactly using existing methods. In the next section, we will discuss
some complications which are typical for real-life scenarios.

We consider systems modelled as a parallel composition of a number of pro-
cesses, each given as an MDP, communicating through (bounded) message chan-
nels. In particular, the alphabet of each process consists of three subsets: internal
actions, as well as send and receive actions along the channels. Formally, we have
the following.

Definition 4. A Probabilistic Bounded Channel System (PBCS) is given by
S = (A,C, β, γ), where

– A = {A1, . . . , Ak} is a finite set of MDPs Ai = (Qi, Σi, q
0
i , Ti),

– C = {Γi,j | i, j ∈ {1, . . . , k}, i �= j} is a set of message alphabets, whose
disjoint union we denote by Γ ,

– β : C → N is a channel bound function, and
– γ = (γ−, γ+) is a pair of cost functions on Γ ,

such that, for i = 1, . . . , k, the alphabet Σi in Ai is the union of a set Λi of local
actions, {a? | a ∈ Γj,i for some j}, and {a! | a ∈ Γi,j for some j}.

A (global) state s = (l, c) of S consists of

– a tuple l = (li) of local states li ∈ Qi for each i, and
– a tuple c = (ci,j) of channel contents ci,j ∈ Γ ∗

i,j for all i �= j.

We denote the set of global states by QS. The initial global state s0 is given by
li = q0i for all i and ci,j = ε for all i �= j.

A transition of this system corresponds to a transition in one of its processes,
which, as a side effect, may add a new message to an outgoing channel (if the
action was a send) or consume a message from an incoming channel (if it was a
receive). These two types of non-local transitions may only happen if the channel
in question is not full or empty, respectively. Formally, we define the transition
relation of the composed system S.

Definition 5. Let S = (A,C, β, γ) be a PBCS and s = (l, c) its global state.

– For q ∈ Qi, s[q] = (l′, c) is obtained by replacing the location li of Ai in l
with q, i.e. l′i = q and l′j = lj for j �= i.

– For Δ ∈ D(Qi), s[Δ] ∈ D(QS) is the distribution defined by s[Δ](s[q]) =
Δ(q) for q ∈ Qi and s[Δ](s′) = 0 otherwise.
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– For a ∈ Γi,j, a.s = (l, c′) and s.a = (l, c′′) are obtained by appending a to
the front or back, respectively, of the channel contents ci,j:

• c′i,j = a.ci,j and c′′i,j = ci,j .a;

• c′r,s = c′′r,s = cr,s otherwise.

Then the transitions in Ai translate into the following system transitions for
all s = (l, c):

– if a ∈ Λi and Ti(qi, a) = Δ, then T (s, a) = s[Δ];

– if a ∈ Γi,j, |ci,j | < β(Γi,j) and Ti(qi, a!) = Δ, then T (s, a!) = (s.a)[Δ];

– if a ∈ Γj,i and Ti(qi, a?) = Δ, then T (a.s, a?) = s[Δ].

Thus the composed system induces an MDP (QS , Σ, s0, T ) over the global states,
and our goal is to ensure that this MDP satisfies a given safety property, ex-
pressed as a subset E ⊆ QS of error states to be avoided.

In order to do this, we assume a controller whose task is to steer the system
away from the bad states. This controller cannot directly influence the decisions
of the system processes, but has access to the communication channels, and
can remove or insert messages. The set of controller transitions is thus given
by (l, c) ⇒ (l, c′) for all l, c, c′. The cost of such a transition is the sum of
the distances between the channel contents in c and c′, i.e. d((l, c), (l, c′)) =∑

i�=j dγ(ci,j , c
′
i,j).

This gives rise to a stochastic game structure between the system and the
controller. One round of this game consists of the system executing an enabled
system transition, followed by a probabilistic choice according to the resulting
distribution, and the controller executing one of its transitions, i.e. altering the
channel contents.

Definition 6. The steering game GS = (N, I,M, c) for a PBCS S = (A,C, β, γ)
consists of:

– the set N = NS ∪NC of nodes, where

• NS = QS × {0} is the set of system nodes, containing the initial node
I = (s0, 0),

• NC = QS × {1} is the set of controller nodes,

– the set M = MS ∪MC of moves, where

• MS is the set of system moves
{((s, 0), Δ′) | s → Δ,Δ′(s, 1) = Δ(s) for all s},

• MC is the set of controller moves {((s, 1), (s′, 0)) | s ⇒ s′},
and

– π : M → N gives the cost of a move, where π(m) = 0 for m ∈ MS and
π((s, 1), (s′, 0)) = dγ(s, s

′) represents the total cost of steering operations to
obtain s′ from s.

A play of GS is an infinite sequence of nodes p = n0, n1, . . . such that n0 = I
and, for all i, (ni, ni+1) ∈ M .
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We are interested in the long-run cost of such plays. Since a play is in general
infinite, we cannot simply add up all the costs of its moves, because this sum
would diverge. A standard solution to this problem is to use the discounted payoff
of p, which is defined in terms of a suitably chosen discount factor λ ∈ (0, 1), as
the infinite sum

∑∞
k=1 λ

kc(nk−1, nk).
The behaviour of the system and controller players is given in terms of strate-

gies σS : NS → D(NC) and σC : NC → NS such that (n, σS(n)) ∈ MS for
all n ∈ NS and (n, σC(n)) ∈ MC for all n ∈ NC . Any choice σ = (σS , σC) of
strategies turns the game into a Markov chain Mσ = (N,n0, T ) in the standard
fashion [8], with the probability distribution T (n) given by T (n) = σS(n) for
n ∈ NS and T (n)(σC(n)) = 1 for n ∈ NC .

The expected discounted payoff for σS , σC and discount factor λ is then given
by the limit ηλ(σS , σC) = limk→∞ pk of the sums

pk =
∑

n1,...,nk∈N

T (n0, n1) · · ·T (nk−1, nk)(λ
1c(n0, n1) + · · ·+ λkc(nk−1, nk)).

In order to solve the steering problem described above, we need to find a con-
troller strategy σC with two properties, as defined below.

Definition 7. A λ-optimal strategy for a steering game G and a set E of error
states is a controller strategy σC which

1. avoids the error states, i.e. reaches E with probability 0 in M(σS ,σC) for all
system strategies σS , and

2. among the strategies satisfying the first property, minimizes the worst-case
expected discounted payoff, i.e. the supremum supσSηλ(σS , σC).

In the next section we discuss ways of finding a λ-optimal strategy, if it exists
(which it may not, if the safety condition cannot be guaranteed).

3 Attacking the Steering Problem

3.1 The Simple Version

We will first consider the simplest version of the steering problem as presented in
the previous section, assuming a fixed system and full observability, by which we
mean that the controller is aware of the internal state of the system processes.
In this case, the problem has a straightforward solution using existing methods:

1. Compute the full game graph GS = (N, I,M, c).
2. Determine the unsafe region U , starting from the set E of error nodes and

iteratively adding the following sets until a fixpoint is reached:

– all system nodes n ∈ NS for which there is Δ ∈ D(N) and n′ ∈ U with
(n,Δ) ∈ MS and Δ(n′) > 0;

– all controller nodes n ∈ NC such that n′ ∈ U for all n′ with (n, n′) ∈ MC .
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3. If U contains I, give up: we cannot avoid the error. Otherwise, remove U
and all incident transitions from GS , and use the existing algorithms [12] to
find an optimal strategy for the resulting discounted payoff game on N \ U .

Unfortunately, the case of large-scale complex systems is much more complicated,
and this simple solution is no longer appropriate. Some prominent difficulties are:

1. The state space, even if finite, (for example, because the processes are ac-
tually finite-state abstractions), is huge, making the explicit construction of
the full game graph impractical.

2. If we allow for continuous system adaptation, this would, in our setting,
manifest itself as changes to parameters such as transition probabilities,
channel sizes, or cost functions. This calls for incremental quantitative verifi-
cation techniques [21], which can be executed at runtime, reacting to system
changes.

3. Full observability is unrealistic: all we can really expect the controller to see
is the communication behaviour of the processes, i.e. the channel contents.
In particular, we have to assume that processes could perform arbitrarily
many unobservable internal transitions between communications, i.e. a sys-
tem move would consist of a sequence of local transitions followed by a send
or receive transition.

Note that the latter two points also imply that we can no longer hope to guar-
antee the safety property. Instead, we aim at a best-effort approach, which, in
this context, we take to mean an attempt to avoid (or, in the partial observabil-
ity scenario, minimize the probability of reaching) the error states within some
number of steps.

We will now describe an approach which addresses the first two points; partial
observability introduces some rather fundamental issues and will be discussed in
Section 4.

3.2 Runtime Verification

In order to tackle the more general case, we use a runtime approach, which only
explores a bounded part of the state space in any given step. Specifically, we
assume given a suitable lookahead L ∈ N such that the goal in each step is to
find a minimum-cost controller strategy to avoid the error states for at least L
steps, starting from the current state s. Note that, in this case, we can simply
add up the costs of a play with no need for a discount factor.

This problem can be formalized using the techniques developed in [8]. For
the original game GS = (N, I,M, c) and the error states E, define the set of
error nodes Ne := {(s, i) | s ∈ E, i ∈ {0, 1}}, and consider the modified game
G′

S,E,L,s = (N ′, I ′,M ′, c′) starting in s, where

– N ′ = N × {0, . . . , L},
– I ′ = (s, 0, 0),
– M ′ = M ′

S ∪M ′
C with
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• the system moves M ′
S given by

{((n, i) , Δ′) | n /∈ Ne, (n,Δ) ∈ MS, Δ
′((n′, i)) = Δ(n′) for all n′}, and

• the controller moves M ′
C given by

{((n, i) , (n′, i+ 1)) | n /∈ Ne, (n, n
′) ∈ MC , i < L},

– c′((n, i), (n′, i′)) = c(n, n′) for all n, n′, i, i′.

Intuitively, we have augmented the original game with a counter which is in-
cremented on each controller move. The error states become sinks from which
no escape is possible. The controller then strives to reach the states where the
counter has the value L, avoiding the error states up to this bound on the num-
ber of states, but without guaranteeing that the error states will be avoided in
future.

We thus need to find the minimum-cost controller strategy to reach the set
of goal nodes G = {(n, L) | n ∈ N}, where the cost of not reaching them (due
to a failure to avoid the error states) is infinite. In the logic rPATL, which is an
extension of the logic ATL with the probabilistic and reward operators, this can
be expressed as ϕ ≡ 〈〈{C}〉〉Rc

min=?[F
∞g] , where C is the controller player, and

g is an atomic proposition labelling the goal states.
The overall solution then proceeds as follows: in each step, use the model

checking algorithm from [8] to find the strategy1 solving the rPATL formula
ϕ on the game G′

S,E,L,s starting in the current state (note that this includes
taking into account any changes in the model); make any changes which are
immediately required by this strategy; and await the next system transition.

If the error condition is based on the states of just a small number of processes,
this approach can be augmented using a form of target enlargement by first
computing, for this subsystem, the set U of unsafe states (as defined in the
simple case). The cylinder over U (i.e. the system states where the relevant
processes are in an U -state) is then used in place of E.

4 Extensions

The game-based approach to the quantitative runtime steering problem that
we introduced in the previous section is sufficient for the simplified setting, but
not for many realistic large-scale complex systems scenarios. In this section, we
use our framework as a basis to discuss a number of challenging variations. We
briefly describe them and suggest possible solutions.

4.1 Compositional Analysis

In case the error condition is given in terms of some local error states in a subset
of processes, it is tempting to try analysing these processes in isolation. If the
bound L is relatively small, it may well be possible that the message channels
to some of these processes are sufficiently full so that the behaviour of the other

1 An implementation of strategy generation for the logic rPATL is in progress, ex-
tending the functionality of [23].
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processes cannot influence them within this number of steps. Even if this is not
the case, there may only be a small number of messages which could be both
sent and received before the time bound, allowing us to restrict the analysis of
the processes not contributing to the error.

4.2 Partial Observability

In order to cope with partial observability, the controller needs to keep track
of the states in which the system processes might be, and the corresponding
probabilities. The recent paper [4] gives a good overview of the complexity of
this problem in general stochastic games.

The classic approach to this problem occurs in the case of partially observable
Markov decision processes (POMDPs)M = (Q,Σ,O,Δ0, T, o), which are MDPs
extended with a set O of observables and an observation function o : Q → O.
The idea is that an observer infers at each step a distribution Di based on Di−1,
the action ai, and the observation o(qi); these distributions are referred to as
belief states.

The channel systems we are considering are an extreme case, in that we only
have the actions available, corresponding to a trivial (singleton)O. The controller
could then maintain a sequence of belief states Δi, starting with the Dirac dis-
tribution Δ0 such that Δ0(s

0) = 1, and updating based on the observed actions
ci. Let Si ⊆ Q be the support of ci, i.e. the set of states q for which T (q, ci)
is defined, and let pi be the probability

∑
q∈Si

Δi(q) of Si in Δi. After ci is
observed, the new belief state is

Δi+1(q) =
∑

q′∈Si

Δi(q
′)T (q′, ci, q)/pi.

This could then be combined with the steering game as described in the previ-
ous section, where we now have an initial distribution (Δi) instead of an initial
state. One problem with this approach is that the support of the distributions
involved might grow substantially over time. For the belief states, this can be
addressed to some extent by realizing that we can maintain individual distri-
butions for the processes instead of one distribution over product states, which
could complement the compositional approach when it is viable.

So far, while we have treated the internal state of processes as unobservable,
we were still assuming that the controller knows about all actions which occur.
There are two quite realistic deviations from this which make the analysis much
harder:

– There may be a delay between the time when an action occurs and the time
when the controller becomes aware of it. This can be treated as a special
case of incomplete information and dealt with as in [25].

– Some or all internal actions can be silent. In particular, since the controller
cannot know about their occurrence, in this case a system step would ac-
tually consist of some number of such silent transitions followed by an
observable one. The example in Figure 5 illustrates this situation: when
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s0

s1 s2

τ1 τ2

0.5 0.5
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a!0.4

0.6
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0.7

0.3

Fig. 5. State inference in systems with silent transitions. Even if the process is known to
be in s0 initially, the presence of τ -transitions means that, when observing an a!-event,
we only know that the state was in {s0, s1, s2} before.

observing an action, there are several possible sequences of silent actions
which might have occurred (in this case, τ1, τ2, or neither) resulting in sev-
eral possible belief states {s0, s1, 0.5s1 + 0.5s2}, with the successor states
{0.3s0 + 0.7s2, s0, 0.5s0 + 0.2s1 + 0.3s2}. Pursuing this naive extension of
the belief state-based analysis leads to exponentially growing sets of distri-
butions, which suggests the need for more compact (and less precise) repre-
sentations for the possible process states.

4.3 Multi-way Communication Channels

The communication in our system model uses point-to-point channels, each with
a dedicated sender and receiver. It would be interesting to generalize this to chan-
nels with arbitrary sets of readers and writers. Adapting the basic algorithms
to this setting is straightforward (it changes the set of system transitions, which
just needs to be reflected in the game structure), but the compositional approach
described above becomes more difficult, since the assumptions about the possible
interactions within the chosen time frame are no longer valid.

4.4 Soft Errors

We have so far used the assumption that the error states should be avoided
if at all possible. Alternatively, one can consider situations in which they are
merely undesirable and can be recovered from. In this case, instead of a safety
property, the goal of the controller could, for example, be to minimize the time
spent in these error states; more generally, we could assign a separate cost func-
tion to states and look for controllers minimizing the discounted long-term cost.
If combined with the action-based cost function, this leads to multi-objective
properties for stochastic games, about which very little is currently known; see
[14,17] for multi-objective model checking algorithms and implementation for
MDPs.



Towards Communication-Based Steering of Complex Distributed Systems 367

5 Conclusion and Future Work

In this paper we have formulated the problem of quantitative runtime steering
for large-scale complex systems modelled as a parallel composition of Markov de-
cision processes communicating through bounded channels. We have shown how
the simplified setting can be solved by employing stochastic games, and reduces
to finding a controller which meets a given quantitative goal by manipulating
the channel contents. Real-world scenarios are, however, more complex, and we
have outlined the challenges and possible solutions in this case.

Quantitative runtime verification and steering are powerful new techniques
that have the potential to significantly enhance fault prevention and therefore
predictability and dependability of software systems. In future we will work on
adding these techniques to the repertoire of automated verification.
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