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Abstract. Model checking is a powerful and widespread technique for
the verification of finite state concurrent systems. However, the main hin-
drance for wider application of this technique is the well-known state ex-
plosion problem. In [16], we proposed an incremental and compositional
verification approach where the system model is partitioned according
to the actions occurring in the property to be verified and where the en-
vironment of a component is taken into account. But the verification at
each increment might be costly. On the other hand, Symbolic Observa-
tion Graphs provide a compact analysis means for LTL\X properties. We
have shown a purely modular construction of these in [15]. Therefore, in
this paper, we combine both techniques to benefit from their pros. Also,
we propose a novel approach for incrementally checking the validity of
the counter-example.

1 Introduction

Model checking is a powerful and widespread technique for the verification of
finite state concurrent systems. However, the main hindrance for wider applica-
tion of this technique is the well-known state explosion problem. Modular and
compositional approaches to verification are promising to tackle this problem.
They are based on the “divide and conquer” principle and aim at deducing the
properties of the system from those of its components analysed in isolation.

In [16], we proposed an incremental and compositional verification approach
where the system model is partitioned according to the actions occurring in the
property to be verified and where the environment of a component is taken into
account using the linear place invariants of the system. The first component con-
tains only the actions occurring in the formula, and each newly added component
is obtained based on the neighbourhood of those already analysed.

However, the verification at each increment might be costly. On the other
hand, Symbolic Observation Graphs (SOGs) [9,17] provide an abstraction-based
approach leading to a compact representation of the system’s state space graph,
and allowing for the analysis of properties expressed using LTL\X (Linear Time

R. Calinescu and D. Garlan (Eds.): Monterey Workshop 2012, LNCS 7539, pp. 283–302, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Logic [20] from which the “next operator” has been removed). We have shown
a purely modular construction of these in [15].

Therefore, in this paper, we combine both techniques to benefit from their
advantages. Since, it has been empirically shown that breaking up a system
is a difficult task (see for instance [5]), we assume here that the system is
already given as a set of components sharing global actions. In order to use
an approach derived from [16], either all actions of the formula belong to a
single component, or we compose all those containing such actions, to start
with. Note that [16] considered Petri nets models, whereas the technique is here
generalised to Labelled Transitions Systems (LTSs). In general, the LTS and
a counterexample can be derived on-the-fly as long as an initial state and a
transition relation are provided.

Related Work. During the last 20 years, many researchers have worked on the
use of abstraction and/or modularity to tackle the explosion problem of model-
checking properties on concurrent systems. On one hand, modularity refers to
a wide range of techniques that make use of the fact that components have
some intrinsic behavior of their own. Each component (subpart) of the global
system is verified separately and the behavior of the main system is deduced
from the behaviors of its components (see, e.g. [22,4]). Among modular tech-
niques, authors of [18] present algorithms to exploit the modular analysis in the
determination of reachable states with specified partial markings, to determine
possible deadlocks, both global and local, and also liveness. The idea there was
to start from a system designed in a modular way and construct the state space
of the complete system in a similar way: one local state space per module and
a synchronization graph showing their interactions. The technique was applied
to a problem of controller design, where some of the actions could be controlled
and others not. The approach advocated was also to lift these actions to the
global (i.e. synchronization) level, so that both synchronized and controllable
actions are visible in the synchronization graph and only there. Another related
paradigm is compositional state space verification [26]. In this paradigm, sys-
tems are specified as a parallel composition of subcomponents, and the state
space of the full system is computed from the state spaces of the subcompo-
nents. Moreover, the state spaces of subcomponents can be replaced by smaller
and behaviourally equivalent state spaces before constructing the state space
of the full system. Authors use methods and models considering actions in the
context of synchonous communicating systems.

On the other hand, abstraction-based techniques aim to build an abstract
model of the system by getting rid of some of its irrelevant parts so that the
analysis can be achieved on the abstract model instead of the original system. De-
pending on the property to be checked, the abstract model can either compeletely
characterize the system, or represents a super set of its possible behaviors. In the
first case, the abstraction satisfies the formula if and only if the original system
does (e.g. [25,21,9,17,7]). In the second case, only a sufficient condition exists
(i.e. if the abstract model is error-free, then so is the original system). Thus,
when the abstract model does not satisfy the property, one can not decide about
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the verification result on the original system (e.g. [13]). Counterexample-driven
abstraction refinement techniques (e.g. [1,3,6,24,10]) come with an iterative ap-
proach to face this weakness: when the abstract model does not satisfy the
property, an abstract counterexample is automatically supplied and we check
whether it corresponds to a concrete counterexample in the system. If this is the
case, we conclude that the system does not satisfy the property. Otherwise, we
start over using a new abstract model. In [10] as in the approach presented in
this paper, the abstract model used in one pass is obtained using the one com-
puted in the previous pass, while in [3,24,1,6] the abstract model is constructed
from scratch and the new one is model-checked.

The approach we present in this paper has the advantage to combine modular-
ity and counter-example abstraction refinement for the verification of temporal
properties (generic properties, e.g. deadlock freeness, can also be considered in
a similar way).

Benefits and Originality of the Approach. The approach presented in this pa-
per enjoys several advantages. Firstly, SOGs are computed locally. This favours
reuse of modules since once the SOG is computed, it can be used in another
environment without need of calculating it again. Moreover, for confidentiality
issues, a SOG showing only global actions can be provided instead of the mod-
ule itself, thus hiding the details of the internal functioning to external users,
and favouring the use of “black box” (or “gray box”) modules. The verification
process is incremental at all stages: not only the formula verification but also
checking the counterexample. Thus, the whole LTS does not always require a
complete analysis, and the satisfaction of the property can be decided on-the-fly.

Even though the combination of both techniques from [15] and [16] is quite
easy, it also leads to improvements. The definition of aggregates contains a more
elaborate structure for detecting internal deadlocks, making things way easier
at the composition stage. Moreover, the validation of counterexamples is also
incremental, sticking to the spirit of the overall approach.

Outline. The paper is structured as follows: after preliminary definitions and
notations in Section 2, the approach is introduced in Section 3. It defines the
different steps as well as the associated model checking algorithm. Section 4
presents the application of our approach to case studies. Finally, Section 5 con-
cludes and gives perspectives for future work.

2 Preliminaries

The technique presented in this paper applies to different kinds of process models
that can map to labelled transition systems, e.g. Petri nets. The techniques
addressed here are of particular interest for the analysis of workflow Petri nets
(WF-nets) as shown in [14]. For the sake of simplicity and generality, we chose
to present it for labelled transition systems, since this formalism is well adapted
to event-based approaches.
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2.1 Labelled Transition Systems

Definition 1 (Labelled Transition Systems)
A labelled transition system (LTS for short) is a 4-tuple 〈Γ,Act ,→, I〉 where:

– Γ is a finite set of states;
– Act is a finite set of actions;
– → ⊆ Γ ×Act × Γ is a transition relation;
– I ⊆ Γ is a set of initial states.

In this paper, we restrict the set of states Γ to those that are reachable from
an initial state in I. We distinguish observed actions, denoted by a set Obs ,
from unobserved actions, denoted by UnObs (with Obs ∪ UnObs = Act and
Obs ∩ UnObs = ∅). Observed actions include the set of actions occurring in an
LTL formula to be verified and interface actions allowing for the synchronisation
of two LTSs. Unobserved actions are the remaining ones. Therefore, unobserved
actions can be seen as silent τ actions.

In the sequel, we use the following notations:

– For s, s′ ∈ Γ and a ∈ Act , we denote by s a−→s′ that (s, a, s′) ∈ →.
– If σ = a1a2 · · · an is a sequence of actions, σ denotes the set of actions

occurring in σ, while |σ| denotes the length of σ, and s σ−→s′ denotes that
∃s1, s2, · · · sn−1 ∈ Γ : s a1−→s1

a2−→· · · sn−1
an−→s′.

– The set Enable(s) denotes the set of actions a such that s a−→s′ for some
state s′. For a set of states S, Enable(S) denotes

⋃
s∈SEnable(s).

– π = s0
a1−→s1

a2−→· · · denotes a path of an LTS.
– s �→, for s ∈ Γ , denotes that s is a dead state, i.e., Enable(s) = ∅.
– ReachUnObs(s) = {s′ | s σ−→s′∧σ ⊆ UnObs} is the set of states that are reach-

able from a state s by unobserved actions only. For S ⊆ Γ , ReachUnObs (S) =⋃
s∈S ReachUnObs(s).

– s �⇒, for s ∈ Γ , denotes that no state of ReachUnObs (s) enables an observed
action, i.e., Enable(ReachUnObs (s)) ∩ Obs = ∅. Conversely, s ⇒ denotes
¬(s �⇒), i.e. there is a state in ReachUnObs (s) enabling an observed action.

– A finite path C = s1
σ−→sn is said to be a circuit if sn = s1 and |σ| ≥ 1.

If σ ⊆ UnObs then C is said to be a livelock. If, in addition, s1 �⇒ then C is
called a strong livelock. Otherwise it is called a weak livelock.

If s �⇒ for s ∈ Γ , only a dead state or a strong livelock are reachable from s. In
this paper we assume that a strong livelock behaviour is equivalent to a deadlock.
These two behaviours are not distinguished and both are called deadlock. The
reason for this is that if unobserved actions are local to a module, the system
will somehow be stuck in this module, whatever the others’ behaviour.

2.2 Model Checking LTL Formulae

Checking LTL formulae on an LTS is reduced to analyse its maximal paths. A
maximal path is either a finite path (leading to a terminal state) or an infinite one.
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Since we observe a subset of the LTS’s actions, we distinguish the infinite paths
where observed actions occur infinitely often from those where from some point,
only unobserved actions occur infinitely often (called divergent paths). It is well
known that preserving maximal paths suffices to preserve properties expressed
using LTL\X. This corresponds to the CFFD semantics [12], which is exactly the
weakest equivalence preserving LTL\X. The usual solution in automata theoretic
approaches to check LTL formulae on an LTS is to convert each of its finite paths
(leading to a terminal state) to an infinite one by adding a loop onto its last
state.

Definition 2 (Maximal paths). Let T be an LTS and π = s1
a1−→s2

a2−→· · ·
an−1−→sn a path of T . Then, π is said to be a maximal path if one of the following
two properties holds:

– sn �→,
– π = s1

a1−→s2
a2−→· · · sm am−→· · · an−1−→sn and sm

am−→· · · an−1−→sn is a circuit.

Observed Behaviour. In the following, we define a particular mapping (called
observed behaviour) applied to states of an LTS T . It will be established that it
is the necessary and sufficient local information to be retained so that LTL\X
properties can be checked on the composition of two processes.

Definition 3 (Observed behaviour mapping). Let T =
〈Γ,Obs ∪ UnObs,→, I〉 be an LTS. The observed behaviour is progressively
defined by :

1. λT : Γ → 2Obs

λT (s) = Enable(ReachUnObs (s)) ∩Obs
2. λT : 2Γ → 2Obs

λT (S) = {λT (s) | s ∈ S}
3. λmin

T (S) = {X ∈ λT (S) |� ∃Y ∈ λT (S) : Y ⊂ X}.

Informally, the observed behaviour of a state s, λT (s), represents the set of
observed actions which can be executed from s, possibly via a sequence of un-
observed actions. The observed behaviour is then extended to sets of states: the
observed behaviour λT of a set of states S is a set of sets of observed actions.
This set contains the observed behaviour of the states of S. Finally, λmin

T (S) is
the minimal set of subsets (w.r.t. the set inclusion relation) of λT (S).

The following proposition establishes that deadlock-freeness of an LTS can be
deduced from computing the observed behaviour associated with its states.

Proposition 1. Let T = 〈Γ,Obs ∪ UnObs,→, I〉 be an LTS. T is deadlock-free
if and only if ∀S ⊆ Γ : ∅ /∈ λmin

T (S).

Note that it is actually sufficient to check that, for all individual states s, λT (s) �=
∅. In Section 3, we will need to consider sets of states (instead of states), and
this is the reason why Proposition 1 is needed in this form.
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2.3 Synchronisation of LTSs

In the following, we define the synchronised product of two LTSs. The synchro-
nised product of n LTSs (for n > 2) can be built by iterative multiplication.

Definition 4 (LTS synchronised product). Let Ti = 〈Γi,Act i,→i, Ii〉, i =
1, 2 be two LTSs. The synchronised product of T1 and T2 is the minimal LTS
T1 × T2 = 〈Γ,Act ,→, I〉 given by:

1. Γ ⊆ Γ1 × Γ2 ;
2. Act = Act1 ∪Act2 ;
3. → is the transition relation, defined by:
∀(s1, s2) ∈ Γ : (s1, s2)

a−→(s′1, s
′
2)⇔⎧

⎨

⎩

s1
a−→1s

′
1 ∧ s2

a−→2s
′
2 if a ∈ Act1 ∩ Act2

s1
a−→1s

′
1 ∧ s2 = s′2 if a ∈ Act1 \Act2

s1 = s′1 ∧ s2
a−→2s

′
2 if a ∈ Act2 \Act1

4. The set of states Γ contains all (and by minimality only) reachable states:
Γ = {(s1, s2) ∈ Γ1 × Γ2 | ∃(i1, i2) ∈ I1 × I2, ∃σ ∈ Act∗ : (i1, i2)

σ−→(s1, s2)};
5. I = I1 × I2;

Note that the parallel operator for synchronisation is similar to Hoare’s classical
alphabetised parallel operator for CSP [11], with the exception that τ actions
are synchronised in our settings.

Every state of the synchronised product is a pair of states; the first compo-
nent indicates the corresponding state of the first LTS; the second component
indicates the one of the second LTS. Each LTS can still perform its own activ-
ities autonomously, i.e. only one component of the pair representing a state of
the composed LTS is changed by such an action. For common activities, both
components of the state are changed synchronously.

Consider the two examples of LTSs in Figure 1 (unobserved actions are de-
noted by τ). The synchronised product of these two LTSs is an LTS containing
24 reachable states, depicted in Figure 2.

Recall that even if two LTSs are deadlock free, their synchronised product
is not necessarily. Both LTSs in Figure 1 are deadlock free; however, in the
synchronised product in Figure 2, the path (s0, s

′
0)

τ−→(s0, s
′
2)

τ−→(s1, s
′
2) leads

to the deadlock state (s1, s
′
2).

Notations. Given n LTSs Ti, for i = 1 . . . n, we denote by T〈i,...,k〉, for 1 ≤ i < k ≤
n, the LTS representing the synchronised product of the LTSs Ti, Ti+1, . . . , Tk.
When i = k, T〈i,...,k〉 is denoted by T〈i〉.

3 Approach

In this section we describe our incremental and modular approach for model
checking LTL\X properties. In order to counter the state space explosion prob-
lem we propose to abstract each LTS involved in the whole system by a SOG.
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s5

s6
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τ
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a

τ

c

τ

τ

τ

τ

a

b

(a)

s′0

s′1 s′2

τ τ

a b

(b)

Fig. 1. Two LTSs

This allows for not considering local states, i.e. states (s1, s2) that permit the
execution of neither interface actions nor actions occurring in the formula to be
checked. We recall the notion of Symbolic Observation Graph in Section 3.1,
and the preservation of LTL\X properties in Section 3.2. Then we present our
approach on top of these notions in Section 3.3.

3.1 The Symbolic Observation Graph

The construction of the SOG corresponding to an LTS is guided by the set of
actions occurring in an LTL\X formula expressing a property to be checked.
Such actions are said to be observed while the other actions of the system are
unobserved. Previous results [9,17] show that such a formula is satisfied by the
LTS if and only if it is satisfied by the respective SOG. The SOG is defined as a
graph where each node is a set of states linked by unobserved actions and each
arc is labelled by an observed action. Nodes of the SOG are called aggregates and
may be represented and managed efficiently using decision diagram techniques
(BDDs, see e.g. [2]). In practice, due to the small number of actions in a typical
formula, the SOG has a very moderate size and thus the time complexity of
the verification process is negligible in comparison to the building time of the
SOG (see [9,17,15] for experimental results). SOGs are used to abstract LTSs so
that all internal behaviour is hidden. Additional information is attached to the
aggregates so that the preservation of LTL\X formulae still holds by composition.
The observed actions are of two kinds: the actions occurring in the LTL formula
to be checked, and the interface actions.

Definition 5 (Aggregate). Let T = 〈Γ,Act ,→, I〉 be an LTS with Act =
Obs ∪ UnObs. An aggregate is a tuple a = 〈S, λ, l〉 defined as follows:
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(s0, s
′
0)start

(s1, s
′
0)(s0, s

′
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′
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′
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′
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′
0)(s4, s

′
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′
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′
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′
1) (s3, s

′
2) (s3, s

′
1)

(s2, s
′
0) (s7, s

′
2) (s7, s

′
1)

(s2, s
′
1) (s2, s

′
2)

τ τ τ

a τ τ τ τ

aτ τ τ τ

τ τ τ τ

τ

τ τ
τ

τ τ τ

a τ τ τ τ

τ τ

c

b

c
c

τ

τ

τ

Fig. 2. Product of the 2 LTSs in Figure 1

1. S is a nonempty subset of Γ satisfying: ReachUnObs(S) = S;
2. λ = λmin

T (S)
3. l ∈ {true, false}; l = true iff S contains a weak livelock.

From now on, a.S, a.λ and a.l denote the corresponding attributes of a given
aggregate a.

In the following definition, we inductively define a SOG associated with an LTS.

Definition 6 (Symbolic Observation Graph). A symbolic observation graph
(SOG for short) associated with an LTS T = 〈Γ,Obs ∪ UnObs,→, I〉 is a 4-tuple
〈A,Act ′,→′, I ′〉 where:

1. A is a finite set of aggregates satisfying:

– there is an aggregate a0 ∈ A with a0.S = ReachUnObs(I), and
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– if, for some a ∈ A and o ∈ Obs, the set Ext(a, o) := {s′ �∈ a.S | ∃s ∈
a.S, s o−→s′} is not empty, then it is a pairwise-disjoint union of non-
empty sets S1 . . . Sk, and for i = 1 . . . k, there is an aggregate ai ∈ A
with ai.S = ReachUnObs (Si);

2. Act ′ = Obs;
3. →′ ⊆ A×Act ′ ×A is the transition relation satisfying:

– if a �= a′ then (a, o, a′) ∈ →′ iff a′.S = ReachUnObs (S
′) for some S′ ⊆

Ext(a, o), and
– (a, o, a) ∈ →′ iff ReachUnObs({s′ ∈ Γ | ∃s ∈ a.S, s o−→s′}) = a.S;

4. I ′ = {a0} (where a0.S = ReachUnObs(I)).

Note that Definition 6 does not guarantee the uniqueness of a SOG for a given
LTS. In fact, it offers some flexibility for its implementation. In particular, the
SOG can be nondeterministic even if the original LTS is not. It is clear that the
canonical minimal SOG is obtained when the SOG is deterministic. Actually,
one can take advantage of such nondeterminism to obtain smaller aggregates.
Even if the SOG obtained in this way has more aggregates than a deterministic
one, its construction might consume less time and memory.

This is different from, e.g. determinisation of a process or specification with
unobserved actions hidden used in some model checkers.

s0

s1

a0

({{a}}, l)

s2

s3

a1

({{c}}, l)

s4

s5

a2

({{a}, {b}}, l)

s6

s7

τ

τ τ

τ

τ

τ

a

a

a, b

c

(a)

s0

s1

a0

({{a}}, l)

s2

s3

a2

({{c}}, l)

s4

s5

a1

({{a}, {c}, {b}}, l)

s2 s3

s6

s7

τ

τ τ

τ

τ

τ

τ

τ

a

c

c
a, b

(b)

Fig. 3. Two possible SOGs for the LTSs in Figure 1(a)

The two SOGs (a) and (b) of Figure 3 correspond to two possible SOGs as-
sociated with the LTS of Figure 1(a) page 289, while the SOG of Figure 4 is a
SOG of the LTS of Figure 1(b). Let us explain the first two SOGs. The set of
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observed actions is {a, b, c} and the unobserved actions are represented by the
mute action τ . Each aggregate a is indexed with a pair (a.λ, a.l). The left part
λ is the observed behaviour associated with a, and indicates whether a contains
a deadlock state (viz. ∅ ∈ a.λ). The symbol l (resp. l) is used when a contains
(resp. does not contain) a livelock. The first SOG (Figure 3(a)) is nondetermin-
istic and the sets of states of the aggregates represent a partition of the LTS’s
states. In this SOG, one can regroup a1 and a2 leading to the deterministic SOG
(Figure 3(b)) where s2 and s3 belong to two different aggregates.

s′0

s′1 s′2

τ τ

a′
0

({{a}, {b}}, l)

a, b

Fig. 4. SOG for the LTSs in Figure 1(b)

Preservation of LTL\X Properties. The equivalence between checking a
given LTL\X property on the observation graph and checking it on the original
LTS is ensured by the preservation of maximal paths. Thus, the symbolic ob-
servation graph preserves the validity of formulae written in classical LTL from
which the “next operator” has been removed (because of the abstraction of the
immediate successors) (see for instance [23,8]).

The following theorem establishes that checking an LTL\X formula on an
LTS can be reduced to check it on a corresponding SOG. It is easily proven by
combining our definition of a SOG and results of [9].

Theorem 1. Let G be a SOG over a set of observed actions Obs, corresponding
to an LTS T . Let ϕ be a formula from LTL\X on a subset of Obs.

Then T |= ϕ iff G |= ϕ.

3.2 Composition of SOGs

Let us consider several LTSs which communicate synchronously. This section
shows how to compose the SOGs of the individual LTSs so that the result is
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isomorphic to some SOG of the composition of the original LTSs. Thus, the
composition of SOGs is correct (with respect to LTL\X formulae) if and only if
the composition of the original LTSs is correct. However, it is well known that
deadlock-freeness is not preserved by composition (e.g. the two LTSs of Figure 1
are deadlock-free but their synchronised product in Figure 2 is not).

The computation of the observed behaviour associated with an aggregate a
can be done using symbolic operations exclusively (BDD operations). Moreover,
it is not necessary to explore all the states of the aggregate but only analyse the
observed transitions and the states that enable these states (immediately).

From now on, an aggregate a is identified by two attributes a.l and a.λ. Also,
the set of states a.S of an aggregate a does not have to be stored explicitly
within the aggregate. Once the SOG is built, it will not play any role in the
composition process.

When composing several modules, a SOG corresponding to each module is
computed locally and once and the obtained SOGs are then composed, leading to
a new SOG. The observed behaviour and the livelock attributes of each aggregate
of this SOG are deduced from those of the composed aggregates, as follows.

Definition 7 (Product aggregate). Let Ti = 〈Γi,Obsi ∪ UnObsi,→i, Ii〉, for
i = 1, 2, be two LTSs. Let G1 and G2 be SOGs corresponding to T1 and T2,
respectively. Let ai be an aggregate of Gi. The product aggregate a = a1 × a2 is
defined by:

1. a.l = a1.l ∨ a2.l
2. a.λ = {(x∩y)∪(x∩(Obs 1 \Obs2))∪(y∩(Obs 2\Obs1)) | x ∈ a1.λ, y ∈ a2.λ}

Deducing the weak livelock attribute of the product aggregate from the involved
aggregates is rather trivial: there exists a livelock in the product aggregate a =
a1 × a2 if and only if there exists a livelock in a1 or there exists a livelock in
a2. Computing the observed behaviour a.λ requires some explanation. First note
that the sets of observed actions Obs1 and Obs2 are not necessarily identical.
When we compose a1 and a2, if a1 can progress in G1 by using local observed
actions (i.e. actions that are observed in G1 but not shared by G2), the product
aggregate a should be able to do the same. If this is not the case, then a has to
have the same behaviour as a1 and a2 conjunctively. In this way, the observed
behaviour associated with a product aggregate is helpful to deduce whether the
involved set of (pairs of) states contains a deadlock.

Proposition 2. Let T1 and T2 be two LTSs. Let T = 〈Γ,Obs ∪ UnObs,→, I〉
be their synchronised product. Let G1 and G2 be SOGs corresponding to T1 and
T2, respectively. Let a1 and a2 be two aggregates of G1 and G2, respectively, such
that a = a1 × a2. Then ∃s ∈ (a1.S × a2.S) ∩ Γ : s �⇒ if and only if ∅ ∈ a.λ.

Given two SOGs G1 and G2, their synchronised product is a SOG G. The synchro-
nised product of two SOGs can be defined similarly to the synchronised product
of two LTSs (Definition 4). The only difference is that we deal with aggregates
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(carrying additional information) instead of states. Definition 7 allows for de-
ducing the attributes of a product attribute a = a1 × a2 from the attributes of
a1 and a2. In particular, the observed behaviour computation allows to detect
new deadlock situations, i.e. deadlocks due to the composition process.

(a0, a
′
0)

({∅, {a}}, l)

(a1, a
′
0)

({{c}}, l)

(a2, a
′
0)

({∅, {a}, {b}}, l)

a a

c

a, b

Fig. 5. Product of the SOGs in Figures 3(a) and 4

For instance, the synchronised product between the SOGs of Figures 3(a)
and 4 is a SOG (presented in Figure 5) containing three aggregates (a0, a

′
0),

(a2, a
′
0) and (a1, a

′
0) where the first two contain a deadlock. Indeed, by composing

their observed behaviour we obtain the empty set as a member of the observed
behaviour of the product aggregate.

The following theorem will be a basis for our approach. We give an informal
illustration of this theorem in Figure 6.

Theorem 2. Let T1 and T2 be two LTSs with synchronised product T . Let G1
and G2 be SOGs corresponding to T1 and T2 with respect to observed actions
Obs1 and Obs2 respectively. Let G be the synchronised product of G1 and G2.
Then, G is a SOG of T with respect to the observed actions Obs1 ∪Obs2.

Corollary 1. Let T1 and T2 be two LTSs with synchronised product T . Let G1
and G2 be SOGs corresponding to T1 and T2 with respect to observed actions
Obs1 and Obs2 respectively. Let G be the synchronised product of G1 and G2.
Then T |= ϕ iff G |= ϕ.

3.3 Verification Algorithm

We suppose that a decomposition of the system T into n LTSs (T1, . . . , Tn), and
an LTL\X formula ϕ are given. We also suppose that this decomposition is such
that all actions appearing within ϕ appear only in T1. If this is not the case,
we compose all components containing such actions, so that such actions appear
only in T1.
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T1, T2 T1 × T2

SOG(T1),SOG(T2) SOG(T1 × T2)

synchronous product

(=)

SOG product

Fig. 6. Illustration of Theorem 2

i ← 1

T1, . . . , Tn;ϕ

T1,i |= ϕ i < n

i ← i + 1

T |= ϕ

valid CE?

T �|= ϕ

yes

yes

no

no

yes

no

Fig. 7. Our approach (general scheme)

We give the general scheme of our approach in Figure 7. The main principle
is that we will check ϕ on the synchronisation of the SOGs corresponding to an
iteratively growing number of LTSs. Starting with i = 1, we first check whether
T1 |= ϕ, viz. whether the first subsystem satisfies ϕ (test “T〈1,...,i〉 |= ϕ” in
Figure 7, with i = 1). If not, we then check the validity of the counterexample
exhibited (test “valid ce” which will be explained below); if the counterexample
is indeed valid, the global system T does not satisfy the property (“T �|= ϕ”). If
the counterexample is not valid, or if the first subsystem satisfies ϕ, we go one
step further (“i ← i + 1”) by considering the system obtained by composition
of the first and the second subsystems. Note that the satisfiability test (test
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“T〈1,...,i〉 |= ϕ” with i = 2) is performed on the synchronised SOGs, and not
on the LTSs, which is much more efficient (see [16]). Also recall that this is
equivalent, by Corollary 1. This scheme is performed again iteratively until all
subsystems have already been considered; in that case, if the composition of the
n SOGs corresponding to the n subsystems satisfies the formula, then the whole
system T also satisfies the formula (“T |= ϕ”).

Checking Validity of Counterexamples. Suppose that T〈1,...,i〉 does not satisfy ϕ
and a counterexample σ has been found. Checking that σ is an actual coun-
terexample (test “valid ce”) is performed by analysing the environment part of
the system, i.e. T〈i+1,...,n〉. This can be achieved in an incremental way as well,
as depicted in Figure 8. Let σk be the projection of σ on the actions shared
by T〈1,...,i〉 and T〈i+1〉. If σk is not an accepted run of T〈i+1〉, then the coun-
terexample is not valid. Otherwise, we iteratively check the validity of σ on the
LTS T〈i+1,...,k〉, for k = (i + 2) . . . n. If all iterations show that the projection
of σ (on the appropriate sets of actions) is an accepted run, then σ is a valid
counterexample.

k ← i+ 1

k ≤ n valid CE

σk ←
σ|(T1,i∩Ti+1,k)

σk ∈
Runs(Ti+1,k)

k ← k + 1

invalid
CE

no

yes

yes
no

Fig. 8. Approach for checking validity of counterexamples

Advantages. The main interest of our scheme relies on the iterative composition
of SOGs instead of LTSs (by Corollary 1). Furthermore, such SOGs are computed
locally: one SOG corresponds to one LTS, independently of any information
concerning neighbouring systems except their shared actions. As a consequence,
one can reuse SOGs; even better, one can provide a SOG instead of an LTS,
and thus allow for confidentiality (the original system is not provided, only its
abstraction with respect to its neighbouring systems is). Similarly, refinement of
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one subsystem is possible without reverifying the whole system, as long as the
SOG of the refined subsystem is the same as the original one.

Also note that our scheme is more general than the one of [16] in the sense
that we do not give any assumption on the decomposition: we suppose for the
sake of simplicity that it is given a priori.

4 Case Study: The Clients/Servers Example

4.1 Description of the Model

Our approach based on an incremental and modular verification is illustrated
on the well known Clients/Servers problem. This is a distributed application
which partitions tasks between the providers of a service (called servers), and
the requesters of this service (called clients). Clients and servers communicate by
sending and receiving messages. This system can be modelled by a composition
of clients and servers LTSs depicted in Figure 9. Each client can issue service
requests by sending messages to any of the servers, and each server can provide
the service to the requesting clients, sending it an answer message.

When a client i is ready (state CReady i), it sends a message (action CSendj
i )

to a server j which is also in a ready state, SReadyj (for sake of clarity, we
use subscript for clients and superscript for servers). The client is then in a
pending state (CWait i) waiting for a response from the server to move to the
ready state again by enabling CRecji . Until then, the server is in a busy state

(SBusyj
i ) to proceed the received message, and then sends a response message

to the corresponding client before returning to its initial state.
Each client has an internal behaviour: After receiving message, the client

decrypts and verifies it according to its own rules (actions decrypt i and verify i).
If the message is valid, the client stores it in a local database (action storei);
otherwise, the client rejects it (action reject i).

4.2 First Property

We are interested in checking whether the first client receives a response from
each server to whom it sends a message. This can be expressed by the LTL
formula ϕ1 = �(CSendj

1 ⇒ ♦CRecj1), where � reads “always” and ♦ reads
“eventually”.

We consider the case where the first client sends a message to server 1, and
receives a response from server 1; other cases can be obtained similarly. As
mentioned in the previous section, we propose to compose all components such
that all actions of the formula appear only in the first LTS (first client TC1): the
second client and the servers are denoted respectively TC2, TS1 and TS2 so that
T = (TC1, TS1, TC2, TS2) = T<1,2,3,4>. This case can easily be generalized to an
arbitrary number of servers and clients.
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CReady i

CWait1i

CRec1i

CDec1i

CCheck1
i

CWait2i

CRec2i

CDec2i

CCheck2
i

CSend1
i

CRec1i

decrypt i

verify i

reject i,
storei

CSend2
i

CRec2i

decrypt i

verify i

reject i,
storei

(a) LTS TCi for client i

SReadyj

SReadyj
1

SRecj1

SBusyj
1

SReadyj
2

SRecj2

SBusyj
2

CSend j
1

SRecj1

SSend j
1

CRecj1

CSend j
2

SRecj2

SSend j
2

CRecj2

(b) LTS TSj for server j

Fig. 9. LTSs composing the Clients/Servers model

Step 1. In order to check the LTL formula ϕ1 using our approach, we start
with the first subsystem TC1. As we can see in Figure 9(a), we obviously have
TC1 |= ϕ1 since once a message is sent to the first server (action CSend1

i ), this
client eventually receives an answer from that server (actionCRec1i ). Let us verify
this on the corresponding SOG, that we give in Figure 10(a). Observe that only
the actions of ϕ1 (viz., CSend1

1, CRec
1
1, CSend

2
1 and CRec21) are observable. It

is straightforward to verify that ϕ1 holds for this SOG.

Step 2. Following our approach in Figure 7, the second step is to synchronise
SOGs associated with TC1 and the next subsystem (the first server component,
viz. TS1). We give in Figure 10 the SOG of TS1, where only the actions of ϕ1

(viz., CSend1
1 and CRec11) and the interface actions (viz. CSend1

2 and CRec12)
are observable.

The obtained synchronised product of SOGs, denoted by (TC1, TS1), is rep-
resented in Figure 11. Note that, for the sake of clarity, we abbreviated some
state names; for example, CReady1 is abbreviated with CR1, and SRec21 is ab-
breviated with SV 2

1 (V is used for ReceiVe, other letters are straightforward).
For this subsystem, the formula holds, viz. (TC1, TS1) |= ϕ1.

Step 3. We give the rest of the analysis with less details. The verification process
is applied to the synchronised product by composing one more subsystem. We
get the synchronised product of SOGs (TC1, TS1, TC2), that we do not represent
here. It can be shown that the formula ϕ1 is satisfied by this product.
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CR1

CW 1
1 CW 2

1

CV 1

CSend1
1

CSend2
1

CRec11

CRec21CSend1
1

CSend2
1

(a) SOG of Client 1

SR1

SR1
1 SR1

2

CSend1
1

CSend1
2CRec11

CRec12

(b) SOG of Server 1

Fig. 10. SOGs of Client 1 and Server 1 for ϕ1

CR1SR1

CW 2
1SR1CW 1

1SR
1
1 CR1SR

2
1

CV 1SR1 CW 2
1SR

2
1

CV 1SR
2
1

CSend1
1 CSend2

1 CSend1
2

CRec11
CRec21 CSend1

2

CRec12

CSend2
1

CSend1
1

CSend2
1

CSend1
2

CRec12

CReq2
1

CRec12 CSend2
1

Fig. 11. Synchronised product of SOGs T<1,2> = (TC1, TS1)
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Step 4. Then, we go one step further, and we perform the synchronised product
of SOGs (TC1, TS1, TC2, TS2) (again, which is not given here). The formula is also
satisfied by this product. Hence, the formula is satisfied by the whole system T .

With the earlier approach from [16], the whole system had to be analysed
to prove that the property holds. In this case, the contribution of our modular
and incremental approach using a counterexample is not visible. Nevertheless,
the gain is obtained when checking the property on the synchronised product of
subsystems’ abstractions (SOGs), so that the graph is smaller and the verifica-
tion process is faster. Considering the LTSs instead of the SOGs would result in
a much larger product. Even for the simple (non-synchronised) LTSs in Figure 9,
their corresponding SOG (in Figure 10) is much smaller: compare a maximum
of 9 × 7 states (in the worst case) for the LTSs, with a maximum of 4 × 3 for
the SOG (actually 7, see Figure 11. This example confirms the first advantage
of our approach which reduces the complexity of model checking.

4.3 Second Property

Let us now consider another property to verify: the first client has to alternate
between the two servers at least once when sending messages. This property can
be expressed by the LTL formula ϕ2 = �(CSend i

1 ⇒ ♦CSend j
1) with i �= j and

i, j ∈ {1, 2}.
Let us consider the first component, viz. the SOG of the first client (given in

Figure 10(a)). We immediately notice that ϕ2 is not satisfied, and a counterex-
ample σ is deduced which is the infinite path composed by (CSend1

1CRec
1
1)

∞.
Using our algorithm to check the validity of the counterexample (given in Fig-
ure 8), we can deduce that σ is a valid counterexample that can be run on T<1,2>,
T<1,2,3> and T<1,2,3,4> = T . Therefore we can deduce that T �|= ϕ2. Hence, our
counterexample-based approach is more efficient for checking a formula which
is not satisfied by the system, because we could prove the non-validity of the
formula directly from a single component.

5 Conclusion

We proposed here an incremental and compositional verification approach based
on [16]. We improved that approach by incrementally verifying the counter-
example on incremental partial decompositions of the LTS. Our approach has
the following advantages. First, by composing the LTSs using SOGs [15], we
strongly reduce the complexity of this verification when compared to monolithic
verification. In the worst case, i.e. if the formula is indeed valid, we verify it on
the whole set of LTSs; this remains much more efficient than monolithic veri-
fication, due to the use of SOGs. Second, it allows the verification of systems
containing black box (or gray box) subsystems: if one does not want to provide
some part of the system (e.g. due to confidentiality issues) one may still provide
the corresponding abstraction under the form of its SOG, thus allowing verifica-
tion without disclosing the precise implementation. This also allows for reusing
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some components under the form of their SOG. Several issues can be investi-
gated in the future: Given a decomposition 〈T1, . . . , Tn〉, we considered so far
that the actions of the LTL\X formula ϕ all appear in T1 only (see Section 3.3).
If these actions appear in further LTSs, one idea would be to decompose the
formula in subformulae, as for instance in [19], each to be checked on the under-
lying sub-compoenent. Also, we suppose that the decomposition of the system
is already given. As done in [16], one can build a decomposition of the system
which is guided by the formula to be checked.

An efficient implementation of our approach is ongoing. It will both strengthen
the initial results on examples of moderate size and allow for comparing the
approach developed here with the monolithic verification on the one hand, and
with the approach of [16] on the other hand.
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