
Revealing Complexity

through Domain-Specific Modelling and Analysis

Richard F. Paige1, Phillip J. Brooke2, Xiaocheng Ge1,
Christopher D.S. Power1, Frank R. Burton1, and Simon Poulding1

1 Department of Computer Science, University of York, York, YO10 5GH, UK
{paige,xchge,cpower,frank,smp}@york.ac.uk

2 School of Computing, Teesside University, Middlesbrough, TS1 3BA, UK
pjb@scm.tees.ac.uk

Abstract. Complex systems exhibit emergent behaviour. The explana-
tions for this explicit emergent behaviour are often difficult to identify,
and usually require understanding of significant parts of system struc-
ture and component behaviour to interpret. We present ongoing work on
a set of techniques, based on Model-Driven Engineering principles and
practices, for helping to reveal explanations for system complexity. We
outline the techniques abstractly, and then illustrate parts of them with
three examples from the health care, system security and Through-Life
Capability Management domains.

1 Introduction

Complex systems exhibit behaviour that is not directly predictable or traceable
from the behaviour of their constituent components. For large-scale complex
IT systems (LSCITS), complexity arises due to combinations of attributes: in-
creasing system size; increasing rates of changing requirements that must be
addressed; increasing numbers and types of stakeholders. The roots of complex-
ity are typically hidden, and often these do not become apparent during the
system engineering phase. When tested or deployed, emergent behaviour readily
becomes apparent, as illustrated by some recent failures, e.g., the Mars Polar
Lander.

The LSCITS initiative1 has argued that existing reductionist approaches to
engineering complex systems do not address essential complexity. Instead, new
approaches, which allow engineers to understand and control complexity, are
needed.

Model-Driven Engineering (MDE) is a systems engineering approach that
promotes models —abstract descriptions of phenomena of interest— to first-
class engineering artefacts. The ‘engineering’ in MDE focuses on constructing,
analysing and manipulating models in rigorous ways, particularly with auto-
mated tools that support required tasks. MDE requires organisations to invest
substantial effort into constructing models and supporting the modelling process.

1 www.lscits.org

R. Calinescu and D. Garlan (Eds.): Monterey Workshop 2012, LNCS 7539, pp. 251–265, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

www.lscits.org


252 R.F. Paige et al.

Models range from design artefacts (e.g., in UML, SysML, or bespoke domain-
specific languages), to requirements, to documentation and reports, to what-if
models, and beyond. The tasks that are typically applied to models in MDE
include calculations (e.g., calculating a representative response time based on a
model of a network), transformations (e.g., transforming a system model into
a detailed design model), comparisons (e.g., comparing two versions of a model
to identify the changes made during a configuration management process) and
more. Numerous tools now exist to support MDE tasks, and MDE is now prac-
ticed in industry, and on very large complex systems engineering projects and
problems.

MDE, as its name suggests, is most typically used for engineering complex
systems. It is used less frequently for understanding systems, explaining systems,
and revealing inherent complexity in systems. It is the latter that is the focus of
this paper.

We contribute towards an approach for modelling complex systems, designed
to help engineers better understand — and ultimately control — complexity. The
approach, based on MDE principles, practices and tools, focuses on domain mod-
elling and use of bespoke simulation and analysis of said models. The analyses
and simulations are designed to help disentangle relationships – both structural
and behavioural – between entities and components of complex systems. They
are not intended to hide complexity but to reveal just enough detail for engineers
to understand specific interactions between components. This, in turn, may help
engineers understand (1) the impact of engineering decisions on overall system
complexity; and (2) how to better manage and control complexity in a deployed
system. The analyses and simulations are produced via use of MDE transforma-
tions, which, as a side-effect, produce traceability information that can be used
to connect the results of analysis/simulation back to the models that capture
essential characteristics of the problem domain. This “closing of the loop” can
thus help to support evolution and change of models, as a deeper understanding
of complexity develops.

The rest of the paper is structured as follows. We start with an abstract
overview of the general approach for modelling complex systems (Section 2),
which is inspired by approaches to domain-specific language design. Then, in
Section 3, we present three modelling examples that focus on revealing differ-
ent kinds of complexity. The examples are all related to LSCITS socio-technical
problems and concepts; while not all LSCITS must exhibit socio-technical char-
acteristics, many do, and in turn the complexity of such systems is significant (in
part because of the increased number of events and nondeterminism that arises
with humans and organisations involved). In Section 4 we provide pointers and
concrete ideas for future work.

2 Domain-Specific Modelling Approach

The approach we take to modelling complex systems is inspired by domain-
specific language approaches to MDE. The general strategy is to model domain



Revealing Complexity through Domain-Specific Modelling and Analysis 253

concepts of interest (e.g., components, behaviours, requirements) in a language
specifically developed for the domain. As such, the semantic gap between the do-
main and the language used for expressing that domain should be reduced (and
therefore the complexity of the problem domain is the focus of the modelling
problem and the engineers). After constructing a suitable domain-specific lan-
guage (with supporting tools for manipulating models), task-specific simulations
and analyses are specified and developed. These analyses, which are designed to
make explicit views on the behaviour and structures of the complex system,
are developed and encoded using MDE operations (e.g., the transformations or
comparisons mentioned earlier). The analyses can then be used to ask questions
of the complex system model, e.g., what is the source of a set of events, how do
events get transformed through parts of the system, what is the cost associated
with processing particular types of events. In some cases, these questions may
generate a view on the original system model; in other cases, it may elaborate
part of the system model that was previously left abstract or obscured from an
engineer. It is, ultimately, the engineer’s responsibility to decide how to make use
of the elaborated system models that are produced as a result of applying the
analyses. Importantly, by using MDE operations (particularly model-to-model
transformations or model-to-text transformations) to implement the analyses
and simulations, we obtain full traceability (via a trace model) to original (do-
main) models. As such, when an analysis is executed, its results (e.g., model
checking counter-examples, simulation outputs) can be traced back to impor-
tant modelling elements, thus helping to explain the output – and complexity –
in a more precise and analytic way. The traceability information can also be used
to elaborate or refine the source models to take into account any improvements
that may be needed as a result of the analysis or simulation.

In summary, the general modelling approach is as follows.

1. Identify domain concepts and relationships of interest; this in turn identifies
and clarifies the scope of the DSL to be used, and of the modelling that is
to take place.

2. Encode domain concepts and relationships in a domain-specific language,
including the language’s abstract and concrete syntax. Ideally, provide an
editor for the language; the tool support will help to reduce errors and in-
crease trust in the models.

3. Encode analyses of interest, by transforming (via model transformations of
different kinds) domain-specific models into models amenable to analysis.
The transformations should effectively produce views or elaborations of the
original model, e.g., by simulating algorithms or calculating values.

4. Present the results of analysis to engineers, ideally in a perspective similar
to the original editor (where feasible). Exploit the traceability information
generated from running the transformations to enable this (e.g., following
the approach of [6]).

5. Exploit the same traceability information to refactor and evolve the domain-
specific language, where needed.

We now illustrate parts of this approach with several small examples.



254 R.F. Paige et al.

3 Illustrations

Our illustrations focus on constructing and analysing domain-specific languages,
and thereafter models of complex systems, to help to reveal explanations for their
emergent behaviour. We present three examples.

1. A process modelling example wherein complex behaviours (particularly ex-
ceptional behaviours) are revealed through the modelling approach;

2. A secure systems example wherein complex inter-relationships between ac-
tors are revealed through the modelling approach; and

3. A Through-Life Capability Management class of problem, wherein LSCITS
must be obtained to satisfy disparate goals, where there are multiple (opti-
mal) ways in which the goals can be satisfied.

3.1 Failures in Healthcare Processes

Healthcare is a complex system [1, 15, 16]. Here we use term ‘system’ gener-
ically, to indicate a conceptual entity whose components interact in rich and
fine-grained ways because they continually affect each other and operate towards
a common sense of purpose. There are many factors which may contribute to
the complexity of healthcare systems; the focus of our example is the struc-
tures of healthcare systems, and the patterns created by the interaction of their
components. To describe these, a business process model can be constructed.

A business process [7] is a collection of tasks designed to produce a specific
output (e.g., a product or service). A business process model defines a specific
ordering of tasks across time and space. A business process may have a hierar-
chical structure, i.e., tasks may include or trigger further business processes. As
such, they may also be recursive, i.e., a business process may invoke itself. A
task is normally made up of activities (carried out by actors), resources (which
support activities) and constraints.

A business process consists of a normal set of tasks and constraints, as well as
exceptional tasks and constraints, designed to deal with situations outside the
norm. Exceptions in business processes have been widely studied, including work
on both identifying exceptions as well as exception handling. The traditional
approach is to anticipate beforehand, and ideally exhaustively, all exceptional
conditions that may arise, and augment business process models with the ad-
ditional conditional elements that represent exception handling activities. This,
however, makes business process models more complicated, and introduces com-
plexity through interactions between normal conditions and so-called exceptional
conditions, which model exceptional behaviour. This complexity is normally hid-
den from the modeller, until the process model is reviewed and validated. Even
then, for large business process models, it is easy to overlook or misunderstand
the complex interactions between normal tasks and exceptional tasks.

We applied the approach from Section 2 to the problem of understanding ex-
ceptional behaviour in complex business process models. The key concept that
we chose to focus on in developing a DSL (according to the process of Section 2)



Revealing Complexity through Domain-Specific Modelling and Analysis 255

was that of exceptional conditions. We chose to treat exceptional conditions (and
hence, tasks that were executed following exceptional conditions) as failures, and
carry out a failure propagation analysis on a business process model. This in turn
would illustrate (a) the impact of an exception on the overall business process
model; and (b) the sensitivity of the business process model to exceptional con-
ditions (namely, by illustrating the types of exception that tended to consolidate
in specific parts of the business process model). In a nutshell, our DSL would
include many familiar concepts for business modelling, but would be targeted at
modelling of exceptional behaviour.

In terms of the approach of Section 2, we commenced by producing a small
DSL for modelling business processes; this was effectively a subset of the Busi-
ness Process Description Metamodel (BPDM), tailored for the example we were
planning to use for experiments. However, the subset of BPDM was extended to
include concepts for modelling the possible failure modes of the business process.
This requires elaboration, because it is non-trivial and also because it is the key
modelling challenge associated with this problem.

The problem we are interested in solving is identifying the failure modes of a
business process. Our claim is that most process faults have a direct association
with a task in the process — i.e., we assume that in the majority of cases the
failure of a business process is initiated by a failure in a task of the process, and
the failures introduced by individual tasks propagate through the process until
the process delivers failure behaviour. So, to start analysing the behaviour of a
business process in the presence of exceptions, we must first identify the possible
failure modes of each task in the business process.

Let us illustrate this with a small healthcare system example. Consider Fig-
ure 1, which shows parts of a prototypical healthcare (business) process. We
focus particularly Task 15 (Investigations); this task consists of one activity.
Briefly, this task is as follows.

“Patients who have had a suspected stroke should have specialist assess-
ment and investigation within 24 hours of onset of symptoms and be
transferred to the acute stroke unit.”

The activity associated with this task is to investigate the condition of the sus-
pected stroke patient. Resources available include acute stroke/TIA specialists,
required medical documents (e.g., results of early assessment, patient medical
history), and the availability of an acute stroke unit. There is also a constraint
to carry out this activity within 24 hours of the onset of symptoms.

Given the activities, resources and constraints, we can now identify failure
modes, i.e., the ways in which the business process fails to deliver its service. In
effect, failure modes identify mismatches between expected outcomes and desired
qualities. Based on an analysis of the literature [8, 9, 14] and a domain analysis
of health care [2, 5], we argue that the qualities of a business process have the
following five dimensions:

– completeness, whether the outcome of the process is complete;
– validity, whether the outcome of the process meets its requirements;



256 R.F. Paige et al.

Acute stroke and/or
transient ischaemic
attack (TIA) -
suspected (secondary
care)

Clinical presentation

Consider differential
diagnoses

Brain imagingBlood tests Vascular investigations

Review investigation
findings

Imaging reveals
haemorrhagic stroke

Imaging reveals
ischaemic stroke or
transient ischaemic
attack (TIA)

Go to management of
ischaemic stroke

Go to intracerebral
haemorrhage

Imaging reveals
abnormalities other
than stroke or transient
ischaemic attack (TIA)

Manage according to
likely diagnosis

Investigations

History and
examination

Consider urgent
thrombolysis within 3
hours of symptoms

Consider need for
basic life support

Go to adult basic life
support

Perform in parallel

Perform standardised
assessment

Immediate brain
imaging

Consider time since
symptom onset

More than 3 hours
since symptom onset

Less than 3 hours
since symptom onset

Basic investigations

History and
examination

Fig. 1. Acute Stroke/TIA - suspected (secondary care) (derived from [13])



Revealing Complexity through Domain-Specific Modelling and Analysis 257

– consistency, whether the outcome of the process is consistent whenever the
process is executed;

– timeliness, whether the outcome of the process is generated on time; and
– adequacy, whether the outcome of the process is fit-for-purpose.

In each quality dimension, we can determine the possible failure modes of each
activity, resource and constraint of a task. For example, considering the human
resources of Task 15, the possible failure modes might be:

– incomplete, the human resources assigned to the task are insufficient. For
instance, the task requests a specialist and a nurse to assist the investigation,
but in reality, there is no nurse available when the task is performed.

– Late, the team of specialists are late in carrying out the task.
– Inadequate, the task should be performed by a stroke specialist, but in reality,

it is done by a different specialist.

Process models expressed in our DSL can be annotated with tokens indicating
the type of potential failure for each kind of activity, resource or constraint.
Importantly, this failure modelling is carried out on the domain model, in the
vocabulary of process models. Additionally, these failures can then be elaborated
to capture the propagation and transformation behaviour of activities, resources
and constraints. For example, an activity may receive faulty outcomes from pre-
ceding activities. The new activity may compound the failure (by transforming
it into a new failure), may simply propagate the failure, or may mitigate the
failure in an appropriate way. Our modelling approach includes mechanisms for
modelling such failure behaviours.

However, the (annotated) process model constructed as above only captures
the component failure behaviour; it says nothing about the whole-system (emer-
gent) failure behaviour. To understand and reveal this, we transform the anno-
tated process model to a new model amenable to failure propagation analysis.
The details of this are outside the scope of this paper, but the overall approach
used is consistent with what was presented in Section 2: a model transformation
maps the annotated process model into an interval timed coloured Petri Net,
which can then be simulated to reveal the overall business process model failure
behaviour. The overall algorithms used for simulation are inspired by those in
the Failure Propagation and Transformation Calculus [17]. The transformation
itself is not particularly complicated, requiring only several hundred lines of code
(written in a specialised model transformation language); in part, the transfor-
mation is straightforward because of some similar structures arising in both the
DSL for process modelling, and in the dialect of Petri nets.

We applied this approach to the health care example illustrated in Figure 1.
This process includes sixteen key activities2 We focused on one particular failure

2 Excluding the final activity —i.e., determining whether the patient has experienced
an acute stroke, TIA, haemorrhagic stroke, or other attack— because we are inter-
ested in analysing this example to identify key potential failures leading to incorrect
judgement.



258 R.F. Paige et al.

that was identified during the modelling stages: incorrect judgement after activ-
ities related to reviewing the investigating results (activity A19 in Figure 1). As
a result of elaborating the business process model via transformation to a failure
propagation model, we identified a number of reasons that could lead to this par-
ticular failure. Perhaps more importantly, we identified a number of ‘vulnerable’
activities that may be the ultimate cause of such a failure. These include A5
(judgement of application of urgent thrombolysis within 3 hours), A9 (clinical
presentation), A10/11 (review history of health care and examinations) and A17
(brain imaging). During the analysis, the conclusion was that the quality of the
services provided by these activities rely substantially on the skills of the person-
nel carrying them out. Thus, we can argue that to better mitigate such a failure,
improvements should be concentrated on improving the skills and experience
of the personnel carrying out these critical activities. These ‘critical’ activities
were identified by expert analysis, assisted and supported by the traceability
information derived from the model transformation mapping the process model
into Petri nets. The results of the Petri net analysis was (manually) traced back,
via the underlying trace model, to the activities of the process model. In this
particular situation, the reflection of analysis results on the original model was
not done automatically, but expert analysis was assisted by automated tools.

The modelling and analysis approach helped in this example to reveal inherent
complexity due to failure behaviour. In turn, the analysis helped us identify
critical parts of business processes, and how these parts contribute to overall
failures and exceptional conditions.

Our second example uses a similar approach to modelling, but for different
effect: to understand the complex inter-relationships that exist between actors.

3.2 Secure Transaction Problem

The recently cancelled UK National ID card programme was intended to in-
troduce new large-scale complex IT systems, with particularly significant socio-
technical concerns; similar (though not as controversial and pervasive) ID card
systems exist in other countries world-wide. The intention for the UK ID card
programme was to use a unified ID card, with secure transactions, to support
many identification scenarios now currently supported by a collection of mech-
anisms (e.g., non-biometric cards). Many of the intended scenarios, and secure
transactions, involve both network and cryptographic protocols and the inter-
actions of different humans participants in a real-world environment. Modelling
these scenarios is complex, in part due to the fuzziness of some of the properties
involved. In this illustration, we use our modelling approach to unveil complex-
ity in these scenarios, and by doing so address two other key contributors to
complexity: nondeterminism and unpredictability.

Consider the following concrete example.

Alice has an identification card issued by her national government. She
applies, in person, for a tax certificate for her car. The clerk takes Alice’s
identification card and tests it for various properties, related to Alice’s



Revealing Complexity through Domain-Specific Modelling and Analysis 259

identifying features (name, photograph, biometrics, address), which are
needed to ensure that a tax certificate is properly issued to the person
who should hold it. Specifically, the clerk at the tax office uses the iden-
tification card as a means of verifying any claims that Alice makes about
herself (e.g., related to name and age).

Such scenarios occur widely. They appear to be simple (i.e., can Alice be is-
sued a tax certificate for her car?) yet have significant inherent complexity. This
complexity arises for at least two reasons.

1. decisions taken within the scenario are not based purely on boolean values
(i.e., they are taken or not taken). Nor are they taken based on a probability
(e.g., 75% of the time the certificate is issued, 25% of the time it is not3).
Instead, decisions are taken based on probability distributions. A seemingly
binary decision (e.g., can Alice acquire a tax certificate?) is underpinned
by a number of fuzzy decisions (e.g., how accurately does the ID card pre-
sented identify Alice? To what extent does the clerk believe that the ID card
represents Alice?).

2. the scenarios are inherently generic and must be configured to be fully
analysable. For example, different mechanisms of different quality can be
used within the scenario to support Alice demonstrating that she is at least
18. Such instantiations must take into account the scenario context (e.g., how
effective will biometric scanners be in this particular building during these
particular hours), and must be taken into account in any analysis process.

At different steps of the scenario (e.g., when Alice enters the tax office, when
the clerk first observes Alice), decisions are taken (e.g., Alice is over 18, Alice’s
ID is valid). A simplistic view would be that these decisions are binary, and one
branch of the decision structure (e.g., Alice is over 18) is taken with probability
p, and the other (e.g., Alice is not over 18) taken with probability 1− p. Such a
structure would naturally lend itself to state exploration and property checking
using a probabilistic model checker, e.g., PRISM [10] or a probabilistic process
algebra, e.g., pCSP [11]. A different view is that decisions are taken based on
probability distributions. When Alice enters the office, the clerk forms a belief
about Alice’s age; conceptually, this belief is not that Alice is or is not 18, but
that it can be represented as a distribution around Alice’s age and represents
the clerk’s ability to perceive a person’s age. Similarly, when Alice presents an
ID card, there is a probability distribution associated with the clerk’s perception
of this ID card (e.g., does the photo accurately depict Alice; does it appear that
the card has been tampered with). This distribution is in turn dependent on the
clerk’s ability to perceive if a card has been tampered with. Later distributions
may depend on an earlier perception, such as the ability of a third party to forge
or modify a card.

Modelling scenarios like these as a set of binary decisions with real-valued
probabilities hides much of the complexity of how decisions are made. By hiding

3 Though post facto analysis of many instances of the scenario could lead to sufficient
data about the probability of a decision being made.



260 R.F. Paige et al.

this complexity, we make it difficult to understand the impact of changes in
the scenario, e.g., the use of ID cards that are claimed to provide fewer false
positives. This in turn makes it more difficult to analyse scenarios and carry out
what-if analyses, particularly to establish the benefit of improvements in the
mechanisms used in specific configurations of scenarios.

We have applied the modelling approach of Section 2 to scenarios like the tax
certificate one above. In [3] we identified the concepts for and the abstract syntax
of a domain-specific language for modelling configurable scenarios. The DSL in-
cludes concepts for modelling actors (e.g., agents, subjects, cheats), mechanisms
(e.g., cards, card readers), locations, and events (e.g., test a card, validate a
transaction). As a result, the DSL contains slots for carrying out configurations,
for example, to introduce particular cards or particular events.

Transformations have then been defined to map models written in the DSL to
input to a probabilistic state exploration tool. This would allow the use of prob-
abilistic model checkers such as PRISM, or state exploration tools like Casper,
FDR2, or ProBE to do exhaustive runs of specific scenarios, or to work in an in-
teractive mode. These would support probability distributions related to events,
but it would not allow the manipulation of those distributions. In order to pro-
vide support such manipulations, we transform models to to serve as input into
a bespoke state exploration tool. This tool allows us to exhaustively explore
scenario instances, and as result obtain a better understanding of the inherent
complexity of such scenarios. The transformation – in this case, a model-to-text
transformation – is, like the previous example, not particularly complex. Much
of the complexity arises with supporting the configuration of the scenario, e.g.,
to introduce cards with particular capabilities. In this particular case, because
the number of configurations we needed to work with was relatively small – just
a few different types of cards and around 10 different events – we configured
the models interactively. In other words, we asked the end-user to select which
configurations they wanted to execute (as the model-to-text transformation was
running). For larger configurations we would likely re-implement the transfor-
mation to take two models as input – one for the scenario model, the other
encoding configuration parameters. It is worth noting that the transformation
tools we used support transformations involving multiple input models.

What does the elaboration of complex scenario models actually provide to
us? For one, it allows us to determine the impact of mechanisms on outcome.
For example, we might ask: what, truly, is the impact of biometric ID cards
on identification scenarios such as this? Before biometric ID cards, successful
completion of the scenario (i.e., offering Alice a tax certificate when she was
legitimately entitled to one; and refusing when she shouldn’t receive one) de-
pended predominantly on the beliefs formed by the clerk. Do biometric ID cards
offer any improvement? The work in [3] included a number of instances of similar
scenarios and as a result made the following observations:

– use of biometric ID cards led to small, though noticeable increases in true
positives and small, but noticeable reductions in false negatives (when com-
pared with using no cards at all);



Revealing Complexity through Domain-Specific Modelling and Analysis 261

– when compared with alternative mechanisms (e.g., non-biometric ID cards),
biometric ID cards made very small improvements (on the order of 1%).

While many more scenarios and experiments would need to be carried out to
better bound the overall impact, it is arguable whether more expensive bio-
metric ID cards add value when compared with less sophisticated, less accurate
mechanisms of identification.

With this example, we were able to use modelling and overall approach to
make explicit the relationships between actors in a scenario, and to tease out
the semantics underpinning these relationships — i.e., that they were based
on belief models instead of discrete probabilities. In constructing our domain-
specific language and our analysis tools, we have configured the approach in
a way that allows experiment with different semantics. For example, we could
experiment with Bayesian models underpinning the belief systems set up in the
scenarios, without having to change the overall DSL or the modelling approach—
only the back-end state exploration or modelling tool would need to be changed.

3.3 Through-Life Capability Management

Large organisations typically manage LSCITS projects in terms of procuring
the equipment, facilities, personnel and software that they require. Procurement
exercises are invariably large and complex, requiring different entities (e.g., com-
puters, lifeboats) to be compared in different ways.

It has been recognised by numerous government departments and large or-
ganisations that management of projects in terms of capability could potentially
offer increased efficiencies. In classical procurement, an organisation may have
defined a problem in terms of a requirement for a piece of equipment (e.g., a
lifeboat); said equipment would then be acquired. In capability-based manage-
ment, the problem would be defined in terms of a capability of rescuing people
and equipment at sea, and a range of possible solutions could be considered. In
effect, capability-based management means moving from defining problems in
terms of concrete solutions, to defining problems in terms of abstract needs.

The challenge associated with capability-based management is that it opens
up the solution space: a problem is now specified in terms of abstract needs,
which can be met in a number of ways. Each potential solution must be iden-
tified and costed. Moreover, potential solutions are themselves capabilities, and
are associated with their own individual requirements. To put it another way,
solutions come with new problems, and as such understanding how solutions
interact is difficult. Modelling – particularly with domain-specific languages –
can help provide engineers with means to manage the solution space.

Through-Life Capability Management (TLCM) [12] is a specific instance of
capability-based management, which also takes into account long-lived capabili-
ties, e.g., logistics, personnel, training, deployment and decommissioning. It is of
particular interest to military organisations (e.g., the UK Ministry of Defense).
An example of a TLCM problem arises with acquisition of long-lived assets such
as aircraft carriers: not only must the equipment (the carrier) be acquired, but



262 R.F. Paige et al.

so must airplanes, personnel, and fixtures and fittings. Moreover, personnel must
be trained (at the right time) so that the aircraft carrier can be deployed on-time
and on-budget. Furthermore, personnel and other equipment must be moved off
the aircraft carrier in time for it to be decommissioned. There are, of course,
multiple ways in which acquisition of these various assets can be implemented.
In general, TLCM problems exhibit the following characteristics:

– They exhibit multiple objectives (e.g., protect a country, minimise costs).
– To solve them requires heterogeneous tradeoffs (e.g., between training and

equipment). This is sometimes called the ‘Apples and Wednesdays’ problem,
as it requires comparing and deciding between very different things.

– Different solutions may be optimal or near-optimal at different times.
– There may be multiple solutions, and understanding how each solution con-

tributes to solving the overall problem may be difficult.

We applied the approach in Section 2 in a number of experiments that con-
structed DSLs for modelling TLCM problems. At the same time, we developed
MDE techniques for calculating optimal and near-optimal solutions to these
problems. The full details of our approach to calculating optimal solutions (based
on search-based software engineering techniques) have recently been presented
in [4], including a small example. We give a concise overview of our modelling
approach here.

There are two basic modelling problems associated with TLCM.

1. Modelling TLCM problems in a domain-specific way, which reveals the com-
plexity of the problem but says nothing about potential solutions. In this
manner, we use abstraction and domain-specific concepts to allow us to fo-
cus on the challenges of understanding the problem, instead of concerning
ourselves with characteristics of the solution space.

2. Modelling components, which are artefacts that can be used to (partially or
fully) satisfy the goals inherent in a TLCM problem. In effect, the compo-
nents are the basic building blocks of the solution space, and when compo-
nents are – perhaps in combination or aggregation – used to satisfy goals, a
solution to the overall TLCM problem is derived.

To support this, we used the approach in Section 2 and designed and imple-
mented two domain-specific languages: one for modelling TLCM goals, and the
other for modelling components. In the first DSL, goals can be decomposed fur-
ther; moreover, each goal is itself associated with an arbitrary number of ways
in which its satisfaction can be determined. For example, some goals may be
satisfied in a probabilistic way (e.g., 100%, 75%); others may be satisfied in a
measurable but discrete way (e.g., best, worst). The overall abstract syntax of
the problem/goal DSL is illustrated in Fig. 2. We use UML’s concrete syntax
to represent the abstract syntax; in practice, we usually implement the abstract
syntax using Ecore and the Eclipse Modelling Framework (EMF)4. For reasons of
compliance with TLCM vocabulary, a goal is called a Capability in this diagram.

4 www.eclipse.org/emf

www.eclipse.org/emf


Revealing Complexity through Domain-Specific Modelling and Analysis 263

Fig. 2. Capability and goal DSL

The second DSL is used for modelling components that can be used to satisfy
goals (capabilities). Components are associated with a particular cost, as well as
a description of the capabilities they provide, and the capabilities they require
(it is typical of TLCM problems that acquired capabilities require other assets
to also be acquired). This is illustrated in Fig. 3

The first DSL is used by the TLCM expert who wishes to model and under-
stand a TLCM problem; the second DSL may be used by a procurement expert
who understands what assets are available, what they may cost, and what is re-
quired to acquire and deploy them. Models expressed in the two DSLs are then
input in to an optimisation algorithm (implemented using the Epsilon model
management framework5, which will automatically calculate optimal ways in
which the components can be configured to satisfy the overall TLCM objectives.
The details of this algorithm can be found in [4]. Effectively, the implementa-
tion of the algorithm uses a chain of different kinds of model transformations to
calculate optimal solutions. The chain of transformations maintains traceabil-
ity between source models (scenarios and components) and optimal solutions;
the chain is itself very complex, involving around 5K lines of transformation
code. However, the traceability information is not specifically needed to trace
the results from solution back to source models, because the way in which the
transformations produce results, both solutions and relevant source models are
presented to the end-user (in other words, the traceability information is cap-
tured explicitly in the output). Explicitly representing traceability information
in this specific case is necessary to allow the end-user to consider the tradeoffs
between solutions that are available.

5 http://www.eclipse.org/epsilon

http://www.eclipse.org/epsilon


264 R.F. Paige et al.

Fig. 3. Component and measurement DSL

We have applied the modelling approach and the optimisation algorithm to a
number of TLCM problems, including the next-release problem (i.e., determin-
ing the optimal features to include in a next software release), a lifeboat problem,
and a crisis management problem. With this approach we were able to make ex-
plicit the relationships between solutions and problems, particularly when those
relationships were extremely complex (e.g., when an aggregate of components
was used in a non-obvious way to satisfy a complex decomposition of goals). Ef-
fectively, the approach can be used to disentangle the most appropriate ways to
satisfy goals, to exhaustively enumerate all possible optimal solutions to TLCM
problems, and as a result guide TLCM practitioners through the process of mak-
ing tradeoffs between these solutions. DSLs and modelling helped us to reveal
complexity, but also manage it in efficient and controlled ways.

4 Conclusions

We have outlined a modelling approach, based on the construction of domain-
specific languages, for improving understanding of complex systems. Typical
approaches to use of domain-specific languages (e.g., as exemplified in Model-
Driven Engineering) focus on generating new applications; we instead focus on
using the principles of domain-specific languages to produce views of complex
systems that help us better understand interactions between components. We
have used this approach, in concert with model transformation technology, to
better understand complex business processes (to help identify failure behaviour,
both locally and in subsystems) and to better understand complex scenarios (to
help identify the relationships between actors in scenarios). We are current ap-
plying domain-specific languages to wider search-related problems, particularly
for validation and verification of models and mechanisms for manipulating mod-
els. One of the critical problems in modelling is determine the validity of the



Revealing Complexity through Domain-Specific Modelling and Analysis 265

model; we are attempting to evaluate this by building tools that manipulate
models (e.g., via transformation, code generation, or comparison) and then us-
ing search-based techniques to automatically test the tools, thus ideally giving
us more confidence in the validity of the models, the DSLs themselves, and the
tools.

References

1. Baxter, G.: White paper: Complexity in health care. Technical report, Large Scale
Complex IT System, LSCITS (2010)

2. Brook, R.H., McGlynn, E.A., Cleary, P.D.: Quality of health care: measuring qual-
ity of care. New England Journal of Medicine 335, 966–970 (1996)

3. Brooke, P.J., Paige, R.F., Power, C.: State exploration and property checking for
fuzzy scenarios (under review, 2012)

4. Burton, F.R., Paige, R.F., Rose, L.M., Kolovos, D.S., Poulding, S., Smith, S.:
Solving Acquisition Problems Using Model-Driven Engineering. In: Vallecillo, A.,
Tolvanen, J.-P., Kindler, E., Störrle, H., Kolovos, D. (eds.) ECMFA 2012. LNCS,
vol. 7349, pp. 428–443. Springer, Heidelberg (2012)

5. Donabedian, A.: The Definition of Quality and Approaches to Its Assessment.
Health Administration Press (1980)

6. dos Santos, O.M., Woodcock, J., Paige, R.F.: Using model transformation to
generate graphical counter-examples for the formal analysis of xuml models. In:
ICECCS, pp. 117–126 (2011)

7. Object Management Group. Business process definition metamodel (BPDM), pro-
cess definitions (2008), http://www.omg.org/cgi-bin/doc?dtc/2008-05-09

8. Haywood-Farmer, J., Alleyne, A., Duffus, B., Downing, M.: Controlling service
quality. Business Quarlerly 50(4), 62–67 (1986)

9. Haywood-Farmer, J.: A conceptual model of service quality. International Journal
of Operations and Production Management 8(6), 19–29 (1988)

10. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: Probabilistic Symbolic Model
Checker. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002.
LNCS, vol. 2324, pp. 113–140. Springer, Heidelberg (2002)

11. Lowe, G.: Probabilistic and prioritized models of timed CSP. Theoretical Computer
Science 13(2), 315–352 (1995)

12. McKane, T.: Enabling acquisition change - an examination of the Ministry of
Defence’s ability to undertake Through Life Capability Management. Technical
report (June 2006)

13. NHS. Acute stroke and transient ischaemic attack suspected (January 2010),
http://healthguides.mapofmedicine.com/choices/map/stroke2.html

14. Parasuraman, A., Zeithaml, V.A., Berry, L.L.: A conceptual model of service qual-
ity and its implications for future research. Journal of Marketing 49, 41–50 (1985)

15. Plsek, P.E., Greenhalgh, T.: The challenge of complexity in health care. British
Medical Journal 323, 624–628 (2001)

16. Sweeney, K., Griffiths, F. (eds.): Complexity and Healthcare: an introduction. Rad-
cliffe Medical Press (2002)

17. Wallace, M.: Modular architectural representation and analysis of fault propagation
and transformation. Electr. Notes Theor. Comput. Sci. 141(3), 53–71 (2005)

http://www.omg.org/cgi-bin/doc?dtc/2008-05-09
http://healthguides.mapofmedicine.com/choices/map/stroke2.html

	Revealing Complexity through Domain-Specific Modelling and Analysis
	Introduction
	Domain-Specific Modelling Approach
	Illustrations
	Failures in Healthcare Processes
	Secure Transaction Problem
	Through-Life Capability Management

	Conclusions
	References




