
Lecture Notes in Computer Science 7549
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany



Anne Canteaut (Ed.)

Fast
Software Encryption

19th International Workshop, FSE 2012
Washington, DC, USA, March 19-21, 2012
Revised Selected Papers

13



Volume Editor

Anne Canteaut
INRIA Paris-Rocquencourt
B.P. 105
78153 Le Chesnay, France
E-mail: anne.canteaut@inria.fr

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-34046-8 e-ISBN 978-3-642-34047-5
DOI 10.1007/978-3-642-34047-5
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012948466

CR Subject Classification (1998): E.3, K.6.5, D.4.6, C.2, J.1, G.2.1

LNCS Sublibrary: SL 4 – Security and Cryptology

© International Association for Cryptologic Research 2012

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

These are the proceedings of FSE 2012, the 19th International Workshop on Fast
Software Encryption. The workshop, organized in cooperation with the Interna-
tional Association for Cryptologic Research, was held March 19–21, 2012, in
Washington DC. The General Chair was Bruce Schneier, from British Telecom,
USA.

This year, a total of 89 papers were submitted to the workshop. Each sub-
mission was reviewed by at least three Program Committee (PC) members,
while submissions co-authored by PC members were reviewed by at least five
PC members. After the reviews were submitted, the committee deliberated on-
line in depth and we eventually selected 24 submissions for presentation. The
authors of the accepted papers were then given more than one month to revise
their manuscript and to take into account the comments from the reviewers. This
revision process allowed some interactions between the authors and the PC, and
I am grateful to the PC members who spent a lot of time on this and contributed
to guaranteeing the high standards of these papers. At the workshop, the pa-
pers were made available to the audience in electronic form. Then, the authors
prepared the final versions which are included in these proceedings. Since these
final versions were not checked again before publication, the authors bear the
responsibility for the contents of their papers.

The PC selected three papers for invitation to the Journal of Cryptology:
“Improved Rebound Attack on the Finalist Grøstl” by Jérémy Jean, Maŕıa Naya-
Plasencia, and Thomas Peyrin, “Recursive Diffusion Layers for Block Ciphers
and Hash Functions” by Mahdi Sajadieh, Mohammad Dakhilalian, Hamid Mala,
and Pouyan Sepehrdad, and “New attacks on Keccak-224 and Keccak-256” by
Itai Dinur, Orr Dunkelman, and Adi Shamir.

In addition to the papers included in this volume, we were fortunate to have
in the program two invited talks: one by Kaisa Nyberg on “Provable” Security
against Differential and Linear Cryptanalysis” and the other by Mitsuru Matsui
on “The History of Linear Cryptanalysis.” An invited paper corresponding to
Kaisa Nyberg’s talk is included in the proceedings. The conference also featured a
rump session with short informal presentations. Dan Bernstein and Tanja Lange
served as the Chairs of the rump session.

I wish to thank all the authors who submitted their work to the conference. I
am very grateful to the PC members for their hard and generous work. In addi-
tion, I gratefully acknowledge the help of a number of colleagues who provided
reviews for the PC. I am also indebted to Andrei Voronkov for his very nice
EasyChair conference management system that helped me compile this volume.

Finally, I would like to say that being the Program Chair for FSE 2012 has
been a great honor and an exciting task.

May 2012 Anne Canteaut



Conference Organization

General Chair

Bruce Schneier British Telecom, USA

Program Chair

Anne Canteaut INRIA Paris-Rocquencourt, France

Program Committee

Alex Biryukov University of Luxembourg, Luxembourg
Guang Gong University of Waterloo, Canada
Martin Hell Lund University, Sweden
Antoine Joux Université de Versailles

Saint-Quentin-en-Yvelines and DGA,
France

Pascal Junod HEIG-VD, Switzerland
John Kelsey NIST, USA
Dmitry Khovratovich Microsoft Research, USA
Lars Knudsen Technical University of Denmark, Denmark
Gregor Leander Technical University of Denmark, Denmark
Stefan Lucks Bauhaus-Universität Weimar, Germany
Subhamoy Maitra ISI Kolkata, India
Willi Meier FHNW, Switzerland
Shiho Moriai Sony Corporation, Japan
Maŕıa Naya-Plasencia Université de Versailles

Saint-Quentin-en-Yvelines,
France

Elisabeth Oswald University of Bristol, UK
Vincent Rijmen K.U. Leuven, Belgium and TU Graz, Austria
Matt Robshaw Orange Labs, France
Yu Sasaki NTT Corporation, Japan
François-Xavier Standaert Université catholique de Louvain, Belgium
Gilles Van Assche STMicroelectronics, Belgium
Serge Vaudenay EPFL, Switzerland



VIII Conference Organization

External Reviewers

Mohamed Ahmed Abdelraheem
Toru Akishita
Kazumaro Aoki
Jean-Philippe Aumasson
Subhadeep Banik
Aslı Bay
Guido Bertoni
Rishiraj Bhattacharyya
Céline Blondeau
Andrey Bogdanov
Julia Borghoff
Ioana Boureanu
Qi Chai
Anupam Chattopadhyay
Jiazhe Chen
Baudoin Collard
Joan Daemen
Xinxin Fan
Matthieu Finiasz
Ewan Fleischmann
Christian Forler
Thomas Fuhr
Praveen Gauravaram
Benedikt Gierlichs
Kishan Gupta
Benôıt Gérard
Honggang Hu
Takanori Isobe
Tetsu Iwata
Selçuk Kavut
Shahram Khazaei
Simon Knellwolf
Yuichi Komano
Gaëtan Leurent
Marco Macchetti
Atefeh Mashatan

Marcel Medwed
Florian Mendel
Mridul Nandi
Svetla Nikova
Kaisa Nyberg
Khaled Ouafi
Goutam Paul
Emmanuel Prouff
Christian Rechberger
Jean-René Reinhard
Arnab Roy
Santanu Sarkar
Martin Schläffer
Sourav Sen Gupta
Pouyan Sepehrdad
Yannick Seurin
Kyoji Shibutani
Taizo Shirai
Paul Stankovski
Fatih Sulak
Petr Sus̆il
Soren S. Thomsen
Stefan Tillich
Elmar Tischhauser
Deniz Toz
Michael Tunstall
Kerem Varici
Lei Wang
Ralf-Philipp Weinmann
Jakob Wenzel
Carolyn Whitnall
Teng Wu
Kan Yasuda
Bo Zhu
Martin Ågren



Table of Contents

Invited Talk

“Provable” Security against Differential and Linear Cryptanalysis . . . . . . 1
Kaisa Nyberg

Block Ciphers

Improved Attacks on Full GOST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Itai Dinur, Orr Dunkelman, and Adi Shamir

Zero Correlation Linear Cryptanalysis with Reduced Data
Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Andrey Bogdanov and Meiqin Wang

Differential Cryptanalysis

A Model for Structure Attacks, with Applications to PRESENT
and Serpent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Meiqin Wang, Yue Sun, Elmar Tischhauser, and Bart Preneel

A Methodology for Differential-Linear Cryptanalysis and
Its Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Jiqiang Lu

New Observations on Impossible Differential Cryptanalysis
of Reduced-Round Camellia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Ya Liu, Leibo Li, Dawu Gu, Xiaoyun Wang, Zhiqiang Liu,
Jiazhe Chen, and Wei Li

Hash Functions I

Improved Rebound Attack on the Finalist Grøstl . . . . . . . . . . . . . . . . . . . . 110
Jérémy Jean, Maŕıa Naya-Plasencia, and Thomas Peyrin

(Pseudo) Preimage Attack on Round-Reduced Grøstl Hash Function
and Others . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Shuang Wu, Dengguo Feng, Wenling Wu, Jian Guo, Le Dong, and
Jian Zou

Practical Cryptanalysis of ARMADILLO2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Maŕıa Naya-Plasencia and Thomas Peyrin



X Table of Contents

On the (In)Security of IDEA in Various Hashing Modes . . . . . . . . . . . . . . . 163
Lei Wei, Thomas Peyrin, Przemys�law Soko�lowski, San Ling,
Josef Pieprzyk, and Huaxiong Wang

Modes of Operation

The Security of Ciphertext Stealing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Phillip Rogaway, Mark Wooding, and Haibin Zhang

McOE: A Family of Almost Foolproof On-Line Authenticated
Encryption Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

Ewan Fleischmann, Christian Forler, and Stefan Lucks

Cycling Attacks on GCM, GHASH and Other Polynomial MACs
and Hashes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

Markku-Juhani Olavi Saarinen

Hash Functions II

Collision Attacks on the Reduced Dual-Stream Hash Function
RIPEMD-128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

Florian Mendel, Tomislav Nad, and Martin Schläffer

Bicliques for Preimages: Attacks on Skein-512 and the SHA-2 Family . . . 244
Dmitry Khovratovich, Christian Rechberger, and Alexandra Savelieva

Converting Meet-In-The-Middle Preimage Attack into Pseudo Collision
Attack: Application to SHA-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

Ji Li, Takanori Isobe, and Kyoji Shibutani

New Tools for Cryptanalysis

UNAF: A Special Set of Additive Differences with Application
to the Differential Analysis of ARX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

Vesselin Velichkov, Nicky Mouha, Christophe De Cannière, and
Bart Preneel

ElimLin Algorithm Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
Nicolas T. Courtois, Pouyan Sepehrdad, Petr Sušil, and
Serge Vaudenay

New Designs

Short-Output Universal Hash Functions and Their Use in Fast
and Secure Data Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

Long Hoang Nguyen and A.W. Roscoe



Table of Contents XI

Lapin: An Efficient Authentication Protocol Based on Ring-LPN . . . . . . . 346
Stefan Heyse, Eike Kiltz, Vadim Lyubashevsky, Christof Paar, and
Krzysztof Pietrzak

Higher-Order Masking Schemes for S-Boxes . . . . . . . . . . . . . . . . . . . . . . . . . 366
Claude Carlet, Louis Goubin, Emmanuel Prouff,
Michael Quisquater, and Matthieu Rivain

Recursive Diffusion Layers for Block Ciphers and Hash Functions . . . . . . 385
Mahdi Sajadieh, Mohammad Dakhilalian, Hamid Mala, and
Pouyan Sepehrdad

Keccak

Unaligned Rebound Attack: Application to Keccak . . . . . . . . . . . . . . . . . . . 402
Alexandre Duc, Jian Guo, Thomas Peyrin, and Lei Wei

Differential Propagation Analysis of Keccak . . . . . . . . . . . . . . . . . . . . . . . . . 422
Joan Daemen and Gilles Van Assche

New Attacks on Keccak-224 and Keccak-256 . . . . . . . . . . . . . . . . . . . . . . . . 442
Itai Dinur, Orr Dunkelman, and Adi Shamir

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463



“Provable” Security against Differential

and Linear Cryptanalysis

Kaisa Nyberg

Aalto University School of Science and Nokia, Finland
kaisa.nyberg@aalto.fi

Abstract. In this invited talk, a brief survey on the developments of
countermeasures against differential and linear cryptanalysis methods is
presented.

1 Nonlinearity of S-Boxes

Throughout the eighties the unpublished design criteria of the DES had inspired
various authors to invent formal nonlinearity criteria for S-boxes such as the
strict avalanche criterion [30] and the propagation criterion [27]. At the same
time, correlation attacks on combination generators inspired definitions of corre-
lation immunity [29] and perfect nonlinearity [21] of Boolean functions. W. Meier
and O. Staffelbach realized that perfect nonlinear Boolean functions had been
invented before under the name bent functions [28,12]. Then the discovery of
the differential cryptanalysis method [4] lead to the notion of perfect nonlinear
S-boxes [22], with the property that for any non-zero input difference the output
differences are uniformly distributed. In particular, the output difference zero
would occur with the same probability as the non-zero output differences and
would significantly improve the probability of the two-round iterative character-
istic for a Feistel cipher as pointed out to the author by E. Biham at Eurocrypt
1991. It also means that perfect nonlinear S-boxes cannot be bijective, even
worse, the number of input bits must be at least twice the number of output
bits [22].

It was clear that the requirement of perfect nonlinearity must be relaxed.
But it was not sufficient to take care that the output bits were highly nonlinear
Boolean functions as in [26], but also all non-zero linear combinations of the
output bits should be highly nonlinear as noted in [23], where the definition of
nonlinearity of a vector Boolean function was formulated. The importance of
nonlinearity as a cryptographic criterion was highlighted even more as the linear
cryptanalysis method was presented by M. Matsui in 1993 [20]. The relationship
between nonlinearity (resistance against linear cryptanalysis) and differential
uniformity (resistance against differential cryptanalysis) was established in [8].
Since then H. Dobbertin and C. Carlet followed by many other authors have
contributed with combinatorial designs and constructions that are almost perfect
nonlinear (APN) or satisfy other nonlinearity criteria of S-boxes.

A. Canteaut (Ed.): FSE 2012, LNCS 7549, pp. 1–8, 2012.
c© International Association for Cryptologic Research 2012



2 K. Nyberg

2 CRADIC

We observed that if the differential probabilities of a round function of a Feistel
cipher are bounded from above, then also the differential probabilities over four
rounds of the cipher are bounded by a significantly smaller bound. There is a
penalty of allowing zero output difference as noted by E. Biham, but it takes
only one more round to achieve the same security level. In [25] we formulated
and proved the following theorem.

Theorem 1. (KN Theorem) It is assumed that in a DES-like cipher with f :
Fm
2 → Fn

2 the round keys are independent and uniformly random. Then the
probability of an s-round differential, s ≥ 4, is less than or equal to 2p2max.

Here

pmax = max
β

max
αR �=0

Pr[αL + f(E(X + αR)) +K) + f(E(X) +K) = βR]

≤ pf = max
b

max
a �=0

Pr[f(Y + a) + f(Y ) = b]

If f bijective, then the claim of the KN Theorem holds for s ≥ 3, in which case
the multiplier 2 can be removed [1].

The high nonlinearity of the Cube function f(x) = x3 in F2n had been ob-
served already in [26]. It is bijective for odd n only, so we made one-bit adjust-
ments to it, so that it was possible to fit it into a balanced 2(n − 1)-bit Feistel
cipher as a round function. We called this cipher CRADIC, as Cipher Resistant
Against DIfferential Cryptanalysis, but in public it became known as KN Ci-
pher. The cipher was later broken using algebraic cryptanalysis making use of
the low degree of the Cube monomial.

Since then, designers of block ciphers continue using small nonlinear S-boxes
in the spirit of C. Shannon. Would it be possible to use a monolithic algebraic
construction? Recently, the Discrete Logarithm function was proved to achieve
optimum algebraic immunity [7]. Let α generator of the multiplicative group F∗

2n

and set

f(x) =

{
logα(x), for x �= 0
(1, 1, . . . , 1, ) for x = 0.

Then f gives an n-bit S-box. Previously, it is known that any single output
bit of f exhibits asymptotically low correlation with linear functions [6]. The
correlations are bounded from above by

O(n 2−n/2).

But no useful general upper bound is known to the linearity of combinations of
output bits. The known bounds increase exponentially as the length of the linear
mask grows [7,14]. Later we managed to establish a smaller bound where the
increase is exponential with respect to the number of output bits involved, that
is, the Hamming weight of the mask. In experiments, however, it seems that the
linearity does not grow exponentially but essentially slower. It remains an open
question, whether CRADIC would be secure if the Cube function were replaced
by the Discrete Logarithm function.



“Provable” Security against Differential and Linear Cryptanalysis 3

3 Linear Hulls

The essential notion in the KN Theorem is differential first introduced in [18].
The approach taken in this work was to model an iterated block cipher as a
stochastic process and assume that the rounds are independent. This can be
achieved for a key-alternating cipher by selecting the round keys to be statisti-
cally independent and then taking the average over all keys. Under the hypothesis
of stochastic equivalence it is then possible to draw conclusions about the be-
haviour of the cipher for a fixed unknown key. We adopted the same stochastic
model and introduced in [24] the concept of linear hull and proved the following
result for the expected squared correlation.

Theorem 2. (Linear Hull Theorem) Let X, K and Y be random variables in
Fm
2 , F�

2, and Fn
2 , resp. where Y = F (X,K) and X and K are independent. If K

is uniformly distributed, then for all a ∈ Fm
2 and b ∈ Fn

2 ,

ExpKcorr(a ·X + b · Y )2 =
∑
c∈F

�
2

corr(a ·X + b · Y + c ·K)2.

Here, for random variable Z in Z (binary strings) we defined

corr(u · Z) =
1

|Z|
∑
z∈Z

Pr[z](−1)u·z. (1)

Then the linear hull (originally called as approximate linear hull) was defined as
the set of all linear approximations

ALH(a, b) = {a ·X + b · Y + c ·K | c ∈ F�
2}

of plaintext, ciphertext and key, with fixed input and output masks a and b, but
letting the key mask vary. Thus taking squares of the correlations and summing
over c gives the average correlation over the cipher with plaintext mask a and
ciphertext mask b.

J. Daemen abandoned the Markov cipher model and took the fixed key ap-
proach [11]. He investigated correlations of linear approximations over a key
alternating block cipher E, with round functions x �→ fi(x + Ki), and fixed
set of round keys K0, . . . ,Kr. Given vector Boolean function: f : Fn

2 �→ Fm
2

with f = (f1, . . . , fm),, where b · f are Boolean functions, for all b ∈ Fm
2 , the

correlation between b · f(x) and a · x is defined by

cf (a, b) =
1

2n
(#{x ∈ Fn

2 | b · f(x) = a · x} −#{x ∈ Fn
2 | b · f(x) �= a · x})

Then the correlation of a composed function computed as the matrix product is

cf◦g(a, b) =
∑
u

cg(a, u)cf(u, b),

from where we obtain



4 K. Nyberg

cE(u0, ur) =
∑

u1,...,ur−1

(−1)u0·K0+...+ur ·Kr

r∏
i=1

cfi(ui−1, ui),

where u0 and ur are the linear masks of data after 0 and r rounds of encryp-
tion, respectively. This result holds for all fixed keys. By taking the squares and
averaging over uniformly distributed and independent keys we get as a corollary

AverageK0,...,Kr
cE(u0, ur)

2 =
∑

u1,...,ur−1

r∏
i=1

cfi(ui−1, ui)
2.

This result was given in [24] for the special case of DES. Related to this, let
us also observe that the correlation of a single trail of a linear hull, taken over
plaintext, ciphertext and key, gives another presentation of the piling-up lemma

corr(a ·X + b · Y + c ·K) =
r∏

i=1

cfi(ui−1, ui),

where a = u0, b = ur, and c is in unique correspondence with the trail masks
u1, . . . , ur−1.

Finally let us make an observation of the effect of key scheduling, which should
be designed in such a way that the magnitudes of the correlations

cE(u0, ur) =
∑

u1,...,ur−1

(−1)u0·K0+...+ur ·Kr

r∏
i=1

cfi(ui−1, ui)

do not vary too much with the key. This can be achieved if all dominating trail
correlations are of about equal magnitude and the map:

(u1, . . . , ur−1) �→ sign

(
r∏

i=1

cfi(ui−1, ui)

)

is highly nonlinear. Then the correlations |cE(u0, ur)| are bounded by the small
linearity bound. Known examples of mappings with highly nonlinear correlation
sign functions are bent functions and the Cube function. For bent functions the
sign function is also bent. For the Cube function, correlations are zero in a half
space while restricted in the other half space the sign function is bent.

4 Provable Security in Practice

It would be easier to achieve security guarantees against differential and linear
attacks for round functions composed of a highly nonlinear monolithic design.
In case of substitution permutation networks and similar designs such as AES,
cryptographers must work harder. The basic approach is to design the diffusion
layer in such a way that the minimum number of active S-boxes involved in
the attack is large enough to make the linear trail correlations and differential



“Provable” Security against Differential and Linear Cryptanalysis 5

characteristic probabilities sufficiently small. To achive this goal, the designers
of the AES used MDS matrices for creating larger S-boxes and the Wide-Trail
Strategy for ensuring diffusion of trails over the entire width of the cipher [10].
Then obtaining any useful upper bounds to linear correlations and differential
probabilities becomes hard. The best known upperbounds for 4 and more rounds
are due to L. Keliher [16].

The block cipher PRESENT makes use of bit permutations between rounds
for optimal diffusion [5]. Its hardware optimized S-box exhibits, however, strong
linear correlations for single-bit masks. Consequently, fairly accurate estimates
of correlations can be obtained using single-bit linear approximation trails. As
demonstrated in [9], linear hull effect is significant and therefore linear attacks are
more powerful than initially estimated by the designers. The other side of the coin
is that now we have better estimates of resistance of PRESENT against linear
attacks. Can the linear hull effect for PRESENT be computed with sufficient
accuracy using single-bit trails only is an interesting question.

5 Linear Approximations and Distributions

The correspondence between correlations of linear projections and probability
distributions has been well-known for cryptographers since at least [2] but not
exploited in cryptanalysis until in the multidimensional linear cryptanalysis [15].
It allows to use a number of linear approximations simultaneously. More gener-
ally, let Z be a vector of (binary) random variables over domain Z. By applying
the inverse Walsh-Hadamard transform to (1) we get

pz = Pr[z] =
∑
u∈Z

corr(u · Z)(−1)u·z.

In cryptanalysis, Z is a random variable, which can be sampled from cipher
data, such as multidimensional linear approximation, difference, or ciphertext
from chosen biased plaintext, anything expected to have non-random behaviour.
In this sense, linear approximations, that is, linear projection z �→ u · z gives a
universal tool for analyzing probability distributions. For example, G. Leander
used it to prove that the statistical saturation attack averaged over the fixations
and the multidimensional linear cryptanalysis attack are essentially the same
[19].

This approach is not restricted to binary variables but can be extended to
any finite group. For example, projections x �→ ux mod p, for p prime, have
been used in cryptanalysis of block ciphers with non-binary diffusion layer [3].
This leads to the following generalized notion of correlation

cf (u,w) =
1

q

∑
x∈Zq

e
2πi
p wf(x)e−

2πi
q ux

for a function f : Zq → Zp and positive integers p and q. The generalized
bent functions achieve the smallest linearity with respect to generalized cor-
relation [17]. The Discrete Logarithm function for integers is another example



6 K. Nyberg

with known asymptotic upper bound of linearity [13]. This upperbound is of the
same magnitude than the bound conjectured to the binary Discrete Logarithm
function.

Given such Z related to a cipher, how many samples of Z is needed to distin-
guish it from a true random variable? If the distribution of Z is close to uniform,
then the answer can be given in terms of the capacity of the distribution Z
defined as follows:

C(Z) = M
∑
z∈Z

(pz −
1

M
)2,

where M = |Z|. Using the relationship between the distribution and correlations
we obtain

C(Z) =
∑
u�=0

|corr(u · Z)|2.

Let us summarize the known upper bounds of data complexities for two com-
monly used distinguishers.

The strongest distinguisher based on the log-likelihod ratio (LLR) requires
good knowlege of the probability distribution of Z. If it is available, then the
data requirement of the LLR distinguisher can be given as:

NLLR =
λ

C(Z)
,

where the constant λ depends only on the success probability.
In cryptanalysis, the variable Z and its probability distribution typically de-

pend on the unknown key. While the χ2 distinguisher is less optimal than the
LLR, it can be used also in this case, as it does not require knowledge of the
distribution of Z. Its data requirement is

Nχ2 =
λ′√M

C(Z)
, where

λ′ ≈ (
√
2 + 2)Φ−1(PS) ≈ λ.

Cryptanalysts aim at minimizing the data complexity. To be able to use the LLR
bound, they must make convincing arguments that LLR works. Else they are left
with the higher value given by the χ2 complexity bound. Cryptographers want
to work in the opposite direction and claim as high values as possible for the data
complexity. In general, provable security may be difficult to achieve given only
such upper bounds of average data complexities. It takes practical experiments
and other evidence to see what the actual distinguishing data complexities are
and how much they vary with the keys.

Acknowledgement. Thanks to Céline and Risto for their help in the final
editing of the paper.



“Provable” Security against Differential and Linear Cryptanalysis 7

References

1. Aoki, K.: On Maximum Non-averaged Differential Probability. In: Tavares, S., Mei-
jer, H. (eds.) SAC 1998. LNCS, vol. 1556, pp. 118–130. Springer, Heidelberg (1999)

2. Baignères, T., Junod, P., Vaudenay, S.: How Far Can We Go Beyond Linear Crypt-
analysis? In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 432–450.
Springer, Heidelberg (2004)

3. Baignères, T., Stern, J., Vaudenay, S.: Linear Cryptanalysis of Non Binary Ciphers.
In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 184–211.
Springer, Heidelberg (2007)

4. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. In:
Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21.
Springer, Heidelberg (1991)

5. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher. In:
Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

6. Brandstätter, N., Lange, T., Winterhof, A.: On the Non-linearity and Sparsity of
Boolean Functions Related to the Discrete Logarithm in Finite Fields of Char-
acteristic Two. In: Ytrehus, Ø. (ed.) WCC 2005. LNCS, vol. 3969, pp. 135–143.
Springer, Heidelberg (2006)

7. Carlet, C., Feng, K.: An Infinite Class of Balanced Vectorial Boolean Functions
with Optimum Algebraic Immunity and Good Nonlinearity. In: Chee, Y.M., Li,
C., Ling, S., Wang, H., Xing, C. (eds.) IWCC 2009. LNCS, vol. 5557, pp. 1–11.
Springer, Heidelberg (2009)

8. Chabaud, F., Vaudenay, S.: Links between Differential and Linear Cryptanalysis.
In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 356–365. Springer,
Heidelberg (1995)

9. Cho, J.Y.: Linear Cryptanalysis of Reduced-Round PRESENT. In: Pieprzyk, J.
(ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 302–317. Springer, Heidelberg (2010)

10. Daemen, J., Rijmen, V.: The Design of Rijndael – AES, the Advanced Encryption
Standard. Springer (2002)

11. Daemen, J., Govaerts, R., Vandewalle, J.: Correlation Matrices. In: Preneel, B.
(ed.) FSE 1994. LNCS, vol. 1008, pp. 275–285. Springer, Heidelberg (1995)

12. Dillon, J.F.: Elementary Hadamard difference sets. In: Proceedings of the Sixth
Southeastern Conference on Cornbinatorics, Graph Theory and Computing, Boca
Raton, Florida. Congressus Numerantium, vol. XIV, pp. 237–249. Utilitas Math.,
Winnipeg, Manitoba (1975)

13. Hakala, R.M.: An upper bound for the linearity of Exponential Welch Costas func-
tions. Finite Fields and Their Applications (to appear, 2012),
http://dx.doi.org/10.1016/j.ffa,05.001

14. Hakala, R.M., Nyberg, K.: On the Nonlinearity of Discrete Logarithm in F2n . In:
Carlet, C., Pott, A. (eds.) SETA 2010. LNCS, vol. 6338, pp. 333–345. Springer,
Heidelberg (2010)

15. Hermelin, M., Cho, J.Y., Nyberg, K.: Multidimensional Linear Cryptanalysis of
Reduced Round Serpent. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP 2008.
LNCS, vol. 5107, pp. 203–215. Springer, Heidelberg (2008)

16. Keliher, L.: Refined Analysis of Bounds Related to Linear and Differential Crypt-
analysis for the AES. In: Dobbertin, H., Rijmen, V., Sowa, A. (eds.) AES 2005.
LNCS, vol. 3373, pp. 42–57. Springer, Heidelberg (2005)

http://dx.doi.org/10.1016/j.ffa,05.001


8 K. Nyberg

17. Kumar, P.V., Scholtz, R.A., Welch, L.R.: Generalized bent functions and their
properties. J. Combin. Theory Ser. A 40(1), 90–107 (1985)

18. Preneel, B., Govaerts, R., Vandewalle, J.: Boolean Functions Satisfying Higher
Order Propagation Criteria. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS,
vol. 547, pp. 141–152. Springer, Heidelberg (1991)

19. Leander, G.: On Linear Hulls, Statistical Saturation Attacks, PRESENT and a
Cryptanalysis of PUFFIN. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 303–322. Springer, Heidelberg (2011)

20. Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

21. Meier, W., Staffelbach, O.: Nonlinearity Criteria for Cryptographic Functions. In:
Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp.
549–562. Springer, Heidelberg (1990)

22. Nyberg, K.: Perfect Nonlinear S-Boxes. In: Davies, D.W. (ed.) EUROCRYPT 1991.
LNCS, vol. 547, pp. 378–386. Springer, Heidelberg (1991)

23. Nyberg, K.: On the Construction of Highly Nonlinear Permutations. In: Rueppel,
R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 92–98. Springer, Heidelberg
(1993)

24. Nyberg, K.: Linear Approximation of Block Ciphers. In: De Santis, A. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 439–444. Springer, Heidelberg (1995)

25. Nyberg, K., Knudsen, L.R.: Provable security against a differential attack. Journal
of Cryptology 8(1), 27–37 (1995)

26. Pieprzyk, J.: On bent permutations. Tech. rep., The University of South Wales,
Department of Computer Science. Presented at the International Conference on
Finite Fields, Coding Theory and Advances in Communications and Computing,
Las Vegas (1991)

27. Preneel, B., Van Leekwijck, W., Van Linden, L., Govaerts, R., Vandewalle,
J.: Propagation Characteristics of Boolean Functions. In: Damg̊ard, I.B. (ed.)
EUROCRYPT 1990. LNCS, vol. 473, pp. 161–173. Springer, Heidelberg (1991)

28. Rothaus, O.S.: On “bent” functions. J. Combinatorial Theory Ser. A(20), 300–305
(1976)

29. Siegenthaler, T.: Correlation-immunity of nonlinear combining functions for cryp-
tographic applications. IEEE Transactions on Information Theory 30(5), 776–780
(1984)

30. Webster, A.F., Tavares, S.: On the Design of S-boxes. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 523–534. Springer, Heidelberg (1986)



Improved Attacks on Full GOST

Itai Dinur1, Orr Dunkelman1,2, and Adi Shamir1

1 Computer Science Department, The Weizmann Institute, Rehovot, Israel
2 Computer Science Department, University of Haifa, Israel

Abstract. GOST is a well known block cipher which was developed in
the Soviet Union during the 1970’s as an alternative to the US-developed
DES. In spite of considerable cryptanalytic effort, until very recently
there were no published single key attacks against its full 32-round ver-
sion which were faster than the 2256 time complexity of exhaustive search.
In February 2011, Isobe used the previously discovered reflection prop-
erty in order to develop the first such attack, which requires 232 data,
264 memory and 2224 time. In this paper we introduce a new fixed point
property and a better way to attack 8-round GOST in order to find im-
proved attacks on full GOST: Given 232 data we can reduce the memory
complexity from an impractical 264 to a practical 236 without chang-
ing the 2224 time complexity, and given 264 data we can simultaneously
reduce the time complexity to 2192 and the memory complexity to 236.

Keywords: Block cipher, cryptanalysis, GOST, reflection property,
fixed point property, 2D meet in the middle attack.

1 Introduction

During the 1970’s, the US decided to publicly develop the Data Encryption Stan-
dard (DES), which was the first standardized block cipher intended for civilian
applications. At roughly the same time, the Soviet Union decided to secretly de-
velop GOST [14], which was supposed to be used in civilian applications as well
but in a more controlled way. The general design of GOST was finally published
in 1994, but even today some of the crucial elements (e.g., the choice of Sboxes)
do not appear in the public description, and a different choice can be made for
each application.

GOST is a Feistel structure over 64-bit blocks. The round function consists of
adding (modulo 232) a 32-bit round key to the right half of the block, and then
applying the function f described in Figure 1. This function has an Sbox layer
consisting of eight different 4 × 4 Sboxes, followed by a rotation of the 32-bit
result by 11 bits to the left using the little-endian format (i.e. the LSB of the
32-bit word enters the rightmost entry of the first Sbox).

The full GOST has 32 rounds, and its key schedule is extremely simple: the
256-bit key is divided into eight 32-bit words (K1,K2, ...,K8). Each round of
GOST uses one of these words as a round key in the following order: in the first
24 rounds, the keys are used in their cyclic order (i.e. K1 in rounds 1,9,17, K2

A. Canteaut (Ed.): FSE 2012, LNCS 7549, pp. 9–28, 2012.
c© International Association for Cryptologic Research 2012



10 I. Dinur, O. Dunkelman, and A. Shamir

Li Ri

Li�1 Ri�1

�

Ki

S1

S2

S3

S4

S5

S6

S7

S8

≪ 11

�

Fig. 1. One round of GOST

in rounds 2,10,18, and so forth). In the final 8 rounds (25–32), the round keys
are used in reverse order (K8 in round 25, K7 in round 26, and so forth).

A major difference between the design philosophies of DES and GOST was
that the publicly available DES was intentionally chosen with marginal parame-
ters (16 rounds, 56-bit keys), whereas the secretive GOST used larger parameters
(32 rounds, 256-bit keys) which seemed to offer an extra margin of security. As a
result, DES was broken theoretically (by using differential and linear techniques)
and practically (by using special purpose hardware) about 20 years ago, whereas
in the case of GOST, all the single key attacks [1,9,17] published before 2011
were only applicable to reduced-round versions of the cipher.1

The first single key attack on the full 32-round version of GOST was published
by Isobe at FSE’11 [8]. It exploited a surprising reflection property which was
first pointed out by Kara [9] in 2008: Whenever the left and right halves of the
state after 24 rounds are equal (which happens with probability 2−32), the last
16 rounds become the identity mapping, and thus the effective number of rounds
is reduced from 32 to 16. Isobe developed a new key-extraction algorithm for the
remaining 16 rounds of GOST which required 2192 time and 264 memory, and
used it 232 times for different plaintext/ciphertext pairs in order to get the full
256-bit key using a total of 232 data, 264 memory, and 2224 time. This is much
faster than exhaustive search, but neither the time complexity nor the memory
complexity are even close to being practical.

Shortly afterwards, Courtois [4] published on ePrint a new attack on the full
GOST. It uses a very different algebraic approach, but had an inferior complexity
of 264 data, 264 memory, and 2248 time. Later, Courtois and Misztal [5] described
a differential attack which again used 264 data and memory, but reduced the time
complexity to 2226.

In this paper we improve several aspects of these previously published attacks.
We describe a new fixed point property, and show how to use either the previous
reflection property or the new fixed point property in order to reduce the general
cryptanalytic problem of attacking the full 32-round GOST into an attack on

1 Attacks on full GOST in the stronger related-key model are known for about a
decade, see [7,10,11,16,17].



Improved Attacks on Full GOST 11

8-round GOST with two known input-output pairs. We then develop a new
way to extract all the 2128 possible values of the full 256-bit key given only two
known 64-bit input-output pairs of 8-round GOST, which requires 2128 time and
236 memory2 (all the previously published attacks on 8-round GOST have an
impractical memory complexity of at least 264). By combining these improved
elements, we can get the best known attacks on GOST for the two previously
considered data complexities of 232 and 264.

Our new results on GOST (including the fixed point based attack) use well
known and easy to analyze cryptanalytic techniques such as “Guess and Deter-
mine” and “meet-in-the-middle”. A month after this paper appeared on eprint [6]
(and more than four months after its results were publicly disclosed in a public
talk by Adi Shamir at MIT), Courtois posted to ePrint his independently dis-
covered attacks [3], which use several different algebraic techniques. Some of his
attacks are also based on the fixed point property, but all of them have higher
claimed complexities: Given 232 data, the best attack in [3] has a time complex-
ity of 2224 and a memory complexity of 2128, and given 264 data, the best attack
in [3] has a time complexity of 2216 and a negligible memory complexity. We
include the results of [3] in Table 1 (which summarizes all the previously known
single-key attacks on the full GOST, our new results, and Courtois’ subsequent
results) for the sake of completeness.

An important observation about Isobe’s attack is that it uses in an essential
way the assumption that the Sboxes are invertible. Since the GOST standard
does not specify the Sboxes, and there is no need to make them invertible in
a Feistel structure, Isobe’s attack might not be applicable to some valid incar-
nations of this standard. A similar problem occurs in most of Courtois’ attacks
[3,4,5], as their complexities are only estimated for one particular choice of Sboxes
described in [15] which is used in the Russian banking system, and it is possi-
ble that for other choices of Sboxes the complexities will be different. Our new
attacks do not suffer from these limitations, since they can be applied with the
same complexity to any given set of Sboxes.

2 Overview of Our New Attacks on the Full GOST

The 32 rounds of GOST can be described using only two closely related 8-
round encryption functions. Let GKi1 ,...,Kij

be j rounds of GOST under the

subkeys Ki1 , ...,Kij (where i1, ..., ij ∈ {1, 2, ..., 8}), and let (PL, PR) be a 64-bit
plaintext, such its right half, PR, enters the first round. Then GOSTK(PL, PR) =
GK8,...,K1(GK1,...,K8(GK1,...,K8(GK1,...,K8(PL, PR)))).

Our new attacks on the full GOST exploit its high degree of self-similarity
using a general framework which is shared by other attacks: the algorithm of

2 We can reduce the memory complexity by an additional factor of 217 (to 219) if we
are willing to increase the time by a factor of 212 (to 2140). This may seem like an
unattractive tradeoff since the 236 memory complexity is already practical, but one
can argue that 219 words fit into the cache whereas 236 do not, which may result in
a big performance penalty.



12 I. Dinur, O. Dunkelman, and A. Shamir

Table 1. Single-key Attacks on the Full GOST

Reference Data Memory Time Self-Similarity 8-Round Attack Sboxes
(KP)†† Property

[8] 232 264 2224 Reflection - Bijective

[4] 264 264 2248 Other (unnamed) Algebraic Russian
Banks [15]

[5] 264 264 2226 None (differential - Russian
attack) Banks [15]

[3]††† 232 2128 2224 Reflection - any

[3]††† 264 Negligible 2216 fixed point Algebraic Russian
Banks [15]

This paper 264 236 2192† fixed point 2DMITM any

This paper 264 219 2204† fixed point low-memory any

This paper 232 236 2224† Reflection 2DMITM any

This paper 232 219 2236† Reflection low-memory any
† The time complexity can be slightly reduced by exploiting GOST’s comple-
mentation properties (as described in the full version of the paper [6])

†† Known plaintext
††† Published on ePrint after the original version of this paper [6].

each attack consists of an outer loop which iterates over the given 32-round
plaintext-ciphertext pairs, and uses each one of them to obtain suggestions for
two input-output pairs for GK1,...,K8. For each suggestion of the 8-round input-
output pairs, we apply an 8-round attack which gives suggestions for the 256-
bit GOST key. We then verify the key suggestions by using some of the other
plaintext-ciphertext pairs. The self-similarity properties of GOST ensure that the
8-round attack needs to be applied a relatively small number of times, leading
to attacks which are much faster than exhaustive search.

We describe several attacks on the full GOST which belong to this common
framework but differ according to the property and the type of 8-round attack
we use. The two self-similarity properties are:

1. The reflection property which was first described in [9], where it was used
to attack 30 rounds of GOST (and 2224 weak keys of the full GOST). This
property was later exploited in [8] to attack the full GOST for all keys. We
describe this property again in Section 3.1 for the sake of completeness.

2. A new fixed point property which is described in Section 3.2.

The two properties differ according to the amount of data required to satisfy
them, and thus offer different points on a time/data tradeoff curve.

Given two 8-round input-output pairs, we describe in this paper several pos-
sible attacks of increasing sophistication:

1. A very basic meet-in-the-middle (MITM) attack [2], which is described in
Section 4.1.



Improved Attacks on Full GOST 13

2. An improved MITM attack, described in Section 4.2, which uses the idea of
equivalent keys (first described by Isobe in [8]).

3. A low-memory attack, described in Section 5, which requires 219 memory
and 2140 time.

4. A new 2-dimensional meet-in-the-middle (2DMITM) attack, described in
Section 6, which requires 236 memory and 2128 time.

In order to attack the full GOST, we first select one of the two self-similarity
properties to use in the outer loop of the attack according to the number of
plaintext-ciphertext pairs available: in case we have 264 pairs available, we select
the fixed point property, and if we only have 232 pairs, we select the reflec-
tion property. We then select one of last two 8-round attacks according to the
amount of available memory: in case we have 236 memory available, we select
the 2DMITM attack, and if we only have 219 memory, we select the low-memory
attack. The outcome of this selection is an attack algorithm of the form:

1. For each plaintext-ciphertext pair (P,C):

(a) Assuming that (P,C) satisfies the conditions of the self-similarity prop-
erty, derive suggestions for two 8-round input-output pairs (I, O) and
(I∗, O∗).

(b) For each suggestion for (I, O) and (I∗, O∗):
i. Execute the 8-round attack on (I, O) and (I∗, O∗) in order to derive

suggestions for the key, and test each suggestion by performing trial
encryptions on the remaining plaintext-ciphertext pairs.

The total time complexity of our attacks is calculated by multiplying the com-
plexity of the 8-round attack by the expected number of times it needs to be
applied according to the self-similarity property: An arbitrary (P,C) pair sat-
isfies the fixed point property with probability of about 2−64. Thus, it requires
about 264 known (P,C) pairs to succeed with high probability, and since we do
not know in advance which pair satisfies the property, we need to repeat step 1 of
the attack 264 times. For each (P,C) pair, the fixed point property immediately
suggests two 8-round input-output pairs (which are correct if the pair indeed
satisfies the property). Hence, we need to perform step 1.(b) of the attack only
once per (P,C) pair. In total, we need to execute the 8-round attack about 264

times. On the other hand, an arbitrary (P,C) pair satisfies the reflection prop-
erty with a much higher probability of about 2−32. Thus, it requires about 232

known (P,C) pairs, and we need to repeat the attack only 232 times. However,
for each (P,C) pair, the reflection property suggests a large number of 264 values
for (I, O) and (I∗, O∗) (out of which only one is correct if the pair indeed satisfies
the property). Hence, we need to perform step 1.(b) of the attack 264 times per
(P,C) pair. In total, we need to execute the 8-round attack about 232+64 = 296

times.
Altogether, we obtain four new attacks on the full GOST. In three out of the

four cases, we obtain better combinations of complexities than in all the previ-
ously published attacks. In the remaining case, we use the reflection property



14 I. Dinur, O. Dunkelman, and A. Shamir

and the low-memory 8-round attack to significantly reduce the memory require-
ments of Isobe’s attack [8], at the expense of a small time complexity penalty.
We note that the computation required by each one of our attacks can be easily
parallelized, and thus using x CPUs reduces the expected running time of the
attack by a factor of x.

As described in the full version of this paper [6], the time complexity of all
these attacks can be slightly reduced by exploiting GOST’s complementation
properties. However, in some of these improved attacks we have to use chosen
rather than known plaintexts, which reduces their attractiveness.

3 Obtaining Two 8-Round Input-Output Pairs for GOST

In this section, we describe the two self-similarity properties of GOST which we
exploit in order to obtain two 8-round input-output pairs.

3.1 The Reflection Property [8,9]

Assume that the encryption of a plaintext P after 24 rounds of GOST results in
a 64-bit value Y , such that the 32-bit right and left halves of Y are equal (i.e.
YR = YL). Thus, exchanging the two halves of Y at the end of round 24 does
not change the intermediate encryption value. In rounds 25–32, the round keys
K1–K8 are applied in the reverse order, and Y undergoes the same operations as
in rounds 17–24, but in the reverse order. As a result, the encryption of P after
32 rounds, which is the ciphertext C, is equal to its encryption after 16 rounds
(see Figure 2). By guessing the state of the encryption of P after 8 rounds,
denoted by the 64-bit value X , we obtain two 8-round input-output pairs (P,X)
and (X,C). For an arbitrary key, the probability that a random plaintext gives
such a symmetric value Y after 24 rounds is 2−32, implying that we have to
try about 232 known plaintexts (in addition to guessing X) in order to obtain
the two pairs. Note that the reflection property actually gives us another “half
pair” (Ĉ, Y ), where the 64-bit word Ĉ is obtained from C by exchanging the
right and left 32-bit halves of C, and the 32-bit right and left halves of Y are
equal.3 However, it is not clear how to exploit this additional knowledge in order
to significantly improve the running time of our attacks on the full GOST which
are based on the reflection property.

3 In our attacks, we use 8-round input-output pairs whose encryption starts with K1

and thus need to apply the Feistel structure in the reverse order (starting from round
32) for input-output pairs obtained for rounds 25–32. Since in Feistel structures the
right and left halves of the block are exchanged at the end (rather than at the
beginning) of the round function, we exchange the right and left sides of the input

and the output of the input-output pairs obtained for rounds 25–32. We call (Ĉ, Y )
a “half pair” since we have to guess only 32 additional bits in order to find it, once
(P,C) is known.



Improved Attacks on Full GOST 15

P Rounds 1–8

K1,K2, ...,K8
X

Rounds 9–16

K1,K2, ...,K8
C

Rounds 17–24

K1,K2, ...,K8
Y � �YL, YR�

YL � YR

Rounds 25–32

K8,K7, ...,K1
C

Fig. 2. The Reflection Property of GOST

3.2 The Fixed Point Property

Assume that for a plaintext P , GK8,...,K1(P ) = P . Since rounds 9–16 and 17–
24 are identical to rounds 1–8, we obtain P after 16 and 24 rounds as well. In
rounds 25–32, the round keys K1–K8 are applied in the reverse order, and we
obtain some arbitrary ciphertext C (see Figure 3). The knowledge of P and C

immediately gives us the 8-round input-output pairs (P, P ) and (Ĉ, P̂ ) (in which
the right and left 32-bit halves of P and C are exchanged).

For an arbitrary key, the probability that a random plaintext is a fixed point
is about 2−64, implying that we need about 264 known plaintexts to have a
single fixed point, from which we obtain the two input-output pairs needed in
our attack. If we have only c · 264 known plaintexts for some fraction c, we ex-
pect this fixed point to occur among the given plaintexts with probability c,
and thus the time complexity, the data complexity, and the success probabil-
ity are all reduced by the same linear factor c. Consequently, it makes sense
to try the fixed point based attack even when we are given only a small frac-
tion of the entire code book of GOST. Such a graceful degradation when we
are given fewer plaintexts (which also occurs for the reflection property) should
be contrasted with other attacks such as slide attacks, in which we have to
wait for some random birthday phenomenon to occur among the given data
points. Since the existence of birthdays has a much sharper threshold, the
probability of finding an appropriate pair of points goes down quadratically
rather than linearly in c, and thus they are much more likely to fail in such
situations.

We note that our fixed point property is closely related to a previously pub-
lished property which (in addition to the assumption the P is an 8-round fixed
point) also assumes that the right and left halves of P are equal. Such a plain-
text exists for an arbitrary key with probability 2−32 and thus was used in [9] to
attack 2224 weak keys of the full GOST. The same property was also used later
in [13] in cryptanalysis of the GOST hash function.

P Rounds 1–8

K1,K2, ...,K8
P

Rounds 9–16

K1,K2, ...,K8
P

Rounds 17–24

K1,K2, ...,K8
P

Rounds 25–32

K8,K7, ...,K1
C

Fig. 3. The fixed point property of GOST



16 I. Dinur, O. Dunkelman, and A. Shamir

4 Simple Meet-In-The-Middle Attacks on 8 Rounds of
GOST

Meet-in-the-middle (MITM) attacks can be efficiently applied to block ciphers
in which some intermediate encryption variables (bits, or combinations of bits)
depend only on a subset of key bits from the encryption side and on another
subset of key bits from the decryption side: the attacker guesses the relevant
key bits from the encryption and the decryption sides independently, and tries
only keys in which the values suggested by the computed intermediate variables
match. While the full 32-round GOST resists such attacks, 8-round GOST uses
completely independent round keys. Thus, the full 64-bit value after 4 encryption
rounds depends only on round keys K1–K4 from the encryption side and on
round keys K5–K8 from the decryption side.

4.1 The Basic Meet-In-The-Middle Attack

We describe how to mount a simple meet-in-the-middle attack on 8 rounds of
GOST given two 8-round input-output pairs and several additional 32-round
plaintext-ciphertext pairs:

1. For each of the 2128 possible values ofK1–K4, encrypt both inputs and obtain
two 64-bit intermediate encryption values after 4 rounds of GOST (i.e., 2128

intermediate values of 128 bits each). Store the intermediate values in a list,
sorted according to these 128 bits, along with the corresponding value of
K1–K4.

2. For each of the 2128 possible values of K5–K8, decrypt both outputs, obtain
two 64-bit intermediate values and search the sorted list for these two values.

3. For each match, obtain the corresponding value of K1–K4 from the sorted
list and derive a full 256-bit key by concatenating the value of value ofK1–K4

with the value of K5–K8 of the previous step. Using the full key, perform
a trial encryption of several plaintexts and return the full key, i.e., the one
that remains after successfully testing the given 32-round pairs.

We expect to try about 2128+128−128 = 2128 full keys in step 3 of the attack, out
of which only the correct key is expected to pass the exhaustive search of step 3.
Including the 2128 8-round encryptions which are performed in each of the first
two steps of the attack, the total time complexity of the attack is slightly more
than 2128 GOST encryptions. The memory complexity of the attack is about
2128 words of 256 bits.4

4 Note that it is possible obtain a time-memory tradeoff: we partition the 2128 possible
values of K1–K4 into 2x sets of size 2128−x (for 0 ≤ x ≤ 128), and run the second and
third steps of the attack independently for each set. Thus, the memory complexity
decreases by a factor 2x to 2128−x, and the time complexity increases by a factor of
2x to 2128+x.



Improved Attacks on Full GOST 17

4.2 An Improved Meet-In-The-Middle Attack Using Equivalent
Keys

In this section, we use a more general variant of Isobe’s equivalent keys idea
[8] to significantly improve the memory complexity of the attack. Both our and
Isobe’s MITM attacks are based on a 4-round attack that uses one 4-round input-
output pair to find all the 264 possible values of subkeys K1–K4 that yield this
pair. However, our MITM attack is more general since we can attack all possible
incarnations of the GOST standard, whereas Isobe’s attack works only on those
which use bijective Sboxes.5 An additional advantage of our MITM attack over
Isobe’s one, is that our attack can use any two input-output pairs for 8-round
GOST, regardless of how they are obtained. We can thus use the same algorithm
to exploit both the reflection and the fixed point properties. On the other hand,
Isobe’s attack is restricted to the case of a single input-output pair obtained for
the first 16 rounds of GOST (by guessing the intermediate values obtained after
4 and 12 rounds) and thus can be combined with the reflection property, but
cannot be directly applied to the two input-output pairs produced by the fixed
point property.

We now describe Isobe’s 4-round attack procedure: Denote the 4-round input
(divided into two 32-bit words) by (XL, XR) and the output by (YL, YR). Denote
the middle values (after the second round) by (ZL, ZR) (see Figure 4). Then:

ZL = XL ⊕ f(XR �K1)

ZR = YR ⊕ f(YL �K4)

YL ⊕ ZL = f(ZR �K3)

XR ⊕ ZR = f(ZL �K2)

Isobe’s attack assumes bijective Sboxes (making f invertible), and finds the
equivalent keys as follows:6 for each value of K1,K2, compute ZL from the first
equation and ZR from the fourth equation. From the second equation we have:
K4 = f−1(ZR⊕YR)�YL and from the third equation: K3 = f−1(ZL⊕YL)�YR.

Our 8-round attack is a variant of Isobe’s MITM attack, given two 8-round
input-output pairs (I, O) and (I∗, O∗):

1. For each possible value of the 64-bit word Y = (YL, YR) obtained after 4
encryption rounds of I:
(a) Apply the 4-round attack on (I, Y ) to obtain 264 candidates for K1–K4.
(b) Partially encrypt I∗ using the 264 candidates and store Y ∗ = (Y ∗

L , Y
∗
R)

in a list with K1–K4.

5 The Feistel structure of GOST does not require bijective Sboxes and the published
standard does not discuss this issue, but all the known choices of Sboxes happen to
be bijective (perhaps due to the weakness of non-bijective Sboxes against differential
cryptanalysis).

6 In case f is not bijective, then for a random (XL, XR) and (YL, YR) there exist
an average of 264 equivalent keys which can be found using a simple preprocessing
MITM algorithm that requires about 264 time and memory.



18 I. Dinur, O. Dunkelman, and A. Shamir

(c) Apply the 4-round attack on (Y,O) to obtain 264 candidates for K5–K8.
(d) Partially decrypt O∗ using each one of the 264 candidates and obtain

Y ∗ = (Y ∗
L , Y

∗
R).

(e) Search the list obtained in step (b) for Y ∗, and test the full 256-bit keys
for which there is a match.

The expected time complexity of steps (a–d) is about 264 (regardless of the
algorithm that is used to find the equivalent keys). The time complexity of step
(e) is also about 264 since we expect to try about 264+64−64 = 264 full keys. Steps
(a–e) are performed 264 times, hence the total time complexity of the attack is
about 2128 GOST encryptions, which is similar to the first attack. However, the
memory complexity is significantly reduced from 2128 to slightly more than 264

words of 64 bits.

XL XR

f
�

K1

f
�

K2

ZL ZR

f
�

K3

f
�

K4

YL YR

Fig. 4. Four Rounds of GOST

5 A New Attack on 8 Rounds of GOST with Lower
Memory Complexity

Simple meet-in-the-middle attacks, such as the ones described in Sections 4.1 and
4.2 are much faster than exhaustive search for the entire 256-bit key. However,
they do not fully exploit the slow diffusion of the key bits in 4 rounds of GOST.
As a result, these MITM attacks use a large amount of memory to store the many
intermediate encryption values obtained for all the possible values of large sets of
key bits. In this section, we describe an improved 8-round attack which exploits
the slow diffusion properties of 4 rounds of GOST in order to reduce the memory
complexity from the impractical value of 264 to the very practical value of 219

words of memory, with a very small time complexity penalty. The main idea of
this attack is to guess the 4 round keys K5–K8 and apply an optimized “Guess
and Determine” attack on the remaining 4 rounds using two input-output pairs.



Improved Attacks on Full GOST 19

In the 4-round attacks we have 128-bits of unknown key and 128 bits of input-
output pairs. Thus, we expect that only one value for K1–K4 exists (although
there are likely to be input-output pairs for which the encryptions of the inputs
does not match the outputs for any of the keys, and input-output pairs for which
the encryptions of the inputs matches the outputs for several values of K1–K4).

In the rest of this section we describe the algorithm for deriving the 32 bits
of K1 and the 32 bits of K4. Afterwards, deriving the values of K2 and K3 is
immediate using the third and forth equations of Section 4.2 (ZL and ZR are
known from the first and second equations).

5.1 Overview of the “Guess and Determine” Attack on 4-Round
GOST

Now that we deal with 4-round GOST, we apply a typical “Guess and Deter-
mine” attack which traverses a tree of partial guesses for the round keys K1

and K4 and intermediate encryption values. The tree is composed of layers of
nodes �i for integral 0 ≤ i ≤ k, where each layer contains nodes that specify
the potential values (i.e. guesses) for a certain subset of key and intermediate
encryption values. In each layer we expand each node by guessing the values of
a small number of additional key bits and state bits that are needed to calculate
some intermediate encryption bits, both from the encryption and the decryp-
tion sides. We then calculate the bits by evaluating the Feistel structure from
both sides on a small number of bits, compare the values obtained, and discard
guesses in which the values do not match (i.e., we discard child nodes that do
not satisfy a predicate which checks the consistency of intermediate encryption
values).

We traverse the partial guess tree starting from the root using DFS (which
requires only a small amount of memory). In our attack, the nodes of the last
layer of the tree �k contain guesses for the full key, which can be verified using
trial encryptions.

The total number of operations performed during the traversal is proportional
to the total number of nodes in the tree. However, the operations performed when
expanding a single node work only on a few bits (rather than on full words). At
the same time, when expanding a full path of nodes in the tree from the root
to the last layer, we work on the full-size Feistel structure to obtain a guess
for the full key. Hence, we estimate the time complexity of expanding a full
path by a single Feistel structure evaluation on a full 64-bit input. Using this
estimation, we can upper bound the time complexity of the tree traversal (in
terms of Feistel structure evaluations) as the width of the tree, or the size of
the layer which contains the highest number of nodes. Note that when counting
the number of nodes in a layer for the time complexity analysis, we must also
include nodes that were expanded and discarded since they do not satisfy the
predicate of the previous layer.



20 I. Dinur, O. Dunkelman, and A. Shamir

5.2 Notations

Assume that we have two input-output pairs for 4 encryption rounds of GOST
under the subkeys K1,K2,K3,K4. Similarly to Section 4.2, denote the input,
output and middle values (after usingK2) for the first pair by (XL, XR), (YL, YR)
and (ZL, ZR), respectively. For the second pair, denote these values by (X∗

L, X
∗
R),

(Y ∗
L , Y

∗
R) and (Z∗

L, Z
∗
R) respectively.

Since our attack analyzes 4-bit words (which are outputs of single Sboxes),
we introduce additional notations: Define the functions f0, f1, ..., f7 where each
f i takes a 4-bit word as an input, and outputs a 4-bit word by applying Sbox i
to the input. Denote by W i the i’th bit of the 32-bit word W , and by W i,j the
(j − i + 1)-bit word composed of consecutive bits of W starting from bit i and
ending at bit j. We treat W as a cyclic word, and thus W 24,3 contains 12 bits
which are bits 24 to 31 and 0 to 3 of W .

5.3 An Attack on 4 Rounds of Simplified GOST

We start by describing an attack on 4 rounds of a simplified variant of GOST
(which we call S-GOST), in which the round-key addition is replaced by XOR,
and the 11-bit rotation is replaced by 12-bit rotation. The simplified variant is
easier to analyze since it provides much slower diffusion of the key bits compared
to full GOST: unlike addition, the XOR operation does not produce carries, and
since 12 is a multiple of 4, rotating by 12 bits implies that the output of any
Sbox effects the input of only a single Sbox in the next round.

We now describe the basic procedure preformed by a node in layer 0 of our
guess tree for S-GOST. The procedure requires the value of K0,3

1 (whose value
we guess before executing the procedure), and expands nodes in the next layer,
which suggest a value for the additional 4 bits of K20,23

4 . The steps of this
procedure can be easily verified using a variant of Figure 4 where the addition
is replaced by XOR.

1. Given K0,3
1 and X0,3

R , compute Z12,15
L ≡ f0(X0,3

R ⊕K0,3
1 ) for both pairs (i.e.,

given K0,3
1 and X∗0,3

R , compute Z∗12,15
L ≡ f0(X∗0,3

R ⊕K0,3
1 )).

2. Obtain f0(Z0,3
R ⊕K0,3

3 ) ≡ Z12,15
L ⊕Y 12,15

L for both pairs. Then, invert7 f0 to

obtain Z0,3
R ⊕K0,3

3 and Z∗0,3
R ⊕K0,3

3 .

3. XOR the two expressions calculated in step 2, to eliminate K0,3
3 , and obtain

the value of Z0,3
R ⊕ Z∗0,3

R .

4. XOR the 4-bit difference obtained in step 3 to the difference Y 0,3
R ⊕ Y ∗0,3

R

and obtain the value of T = Z0,3
R ⊕ Y 0,3

R ⊕ Z∗0,3
R ⊕ Y ∗0,3

R ≡ (f(YL ⊕K4) ⊕
f(Y ∗

L ⊕K4))
0,3 (from the encryption side).

5. For each of the 24 possible values of K20,23
4 :

(a) Allocate a node in the next layer.

7 We expect one solution on average. However, in case the inversion has more than
one solution, we need to try each one. In case the inversion has no solution, we can
discard the node.



Improved Attacks on Full GOST 21

(b) Evaluate the expression f5(Y 20,23
L ⊕K20,23

4 )⊕ f5(Y ∗20,23
L ⊕K20,23

4 ) from

the decryption side by plugging the current value of K20,23
4 into the

expression. Discard nodes which do not agree with the value T .

Note that given K0,3
1 , we expect the procedure above to process a single child in

the next layer: in step 5 we have a 4-bit condition on 4 bits of the key K20,23
4 ,

and thus we expect one node to satisfy the predicate. Moreover, step 5 can be
optimized by using a small amount of precomputation and memory in order to
calculate in advance the solutions to the 4-bit condition (as described in the full
version of this paper [6]).

We now generalize the procedure above in order to derive more key bits in a
similar way:

– Since encryption and decryption are completely symmetric (except the order
of the subkeys), steps 1–5 can also be performed from the decryption side:
in steps 1–5 we use the value of K0,3

1 in order to obtain the value of K20,23
4 ,

and thus we define the symmetric steps 6–10 which use the value of K20,23
4

in order to obtain the value of K20+20,23+20
1 , i.e. K8,11

1 .
– Given any integer 0 ≤ i ≤ 7, we can rotate the indices of all the 32-bit

words in steps 1–10 by 4i bits. Namely, given i, we define analogues steps
1–10 which use the value of K4i,4i+3

1 to obtain the value of K4i+20,4i+23
4 and

K4i+8,4i+11
1 .

In order to derive the full 32-bit values of K1 and K4, we define a tree which
contains 9 layers �0, �1, ..., �8 (and an additional root node). The nodes of each
layer are expanded using the generalized procedure which uses 4 bits of K1 in
order to derive 4 additional bits of K1 and 4 additional bits of K4. Since the 10
steps of the procedure for expanding the nodes of layers 0–7 are basically the
same, we call this procedure an iteration, and index it according to the value of
i (which determines the 4-bit chunks that we work on).

5.4 Extending the Attack to 4 Rounds of the Real GOST

In order to extend the iteration procedure from S-GOST to full GOST, we need
to make several adjustments. The most significant adjustments are given below:

– Since the round keys are added (and not XORed) to the state, we have to
guess the carry bits into the LSBs of several addition operations of 4-bit
words. For example, in the expression f5(Y 20,23

L � K20,23
4 ) ⊕ f5(Y ∗20,23

L �
K20,23

4 ) evaluated in step 5, we have to guess two carry bits (one for Y 20,23
L

and one for Y ∗20,23
L ).

– GOST uses 11-bit rotation (instead of 12-bit rotation), and thus the 4-bit
chunks that we work on in each iteration are not aligned. Consequently, we
have to guess additional state bits in order to compare the evaluation of the
4-bit predicates from both sides. For example, since 20 + 11 = 31, in step 5
of the iteration we actually calculate (f(YL⊕K4)⊕f(Y ∗

L ⊕K4))
31,2 from the

decryption side. Thus, we additionally guess bit 31 of this expression from
the encryption side.



22 I. Dinur, O. Dunkelman, and A. Shamir

These adjustment create strong dependencies between iterations with consecu-
tive indexes (i.e., i and i + 1), namely:

– The carry bits required by iteration i + 1 are known after iteration i. For
example, iteration 1 requires the carry into bit 24 of the addition operation
YL �K4 (in order to calculate f6(Y 24,27

L �K24,27
4 )⊕ f6(Y ∗24,27

L �K24,27
4 ) in

step 5). This bit can be calculated after step 5 of iteration 0, where the 4-bit
value of Y 20,23

L �K20,23
4 is calculated in order to evaluate the predicate.

– The state bits required by iteration i + 1 are known after iteration i. For
example, iteration 1 requires calculation of bit 3 of the expression f(YL �
K4) ⊕ f(Y ∗

L � K4) from the encryption side. However, this bit is already
guessed in step 4 of iteration 0.

This suggests that we perform the iterations in their natural order, namely assign
layer �i iteration i for 0 ≤ i ≤ 7. As a result, we need to guess carry and state
bits only in the first iteration. Afterwards, the required carry and state bits for
each iteration can be calculated by the knowledge from the previous one. On the
other hand, we pay a (relatively small) penalty on key bit guesses since key bits
required by iteration i+ 2 are derived in iteration i (and not in iteration i+ 1).
Since iteration i requires key bits K4i,4i+3

1 , we need to guess 4 key bits in both
iterations 0 and 1 (K0,3

1 and K4,7
1 ). For iterations i ≥ 2, the required key bits

are already derived in previous iterations (as shown in Table 2).
We note that since there is no carry into the LSBs of addition operations,

starting the process with iteration 0 has the advantage that we do not need to
guess the carries for all the addition operations (e.g., we do not need to guess
the carry into the addition f0(X0,3

R �K0,3
1 ) in step 1).

The full details and analysis of the “Guess and Determine” attack are given
in the full version of this paper [6], most of which is not required in order to
understand the rest of this paper. It shows that the expected number of nodes
in the widest layer of the partial guess tree is 214, and it is obtained at iterations
1 to 5 (this was also verified using simulations performed on a PC). Basically,
the number 214 is obtained due to the 8 key-bit guesses (K0,3

1 and K4,7
1 ) and

6 additional carry and state bit guesses in iteration 0. This gives an expected
time complexity of about 214 4-round Feistel structure evaluations for two input-
output pairs, which is equivalent to about 212 full GOST evaluations. Since we
apply this 4-round attack 2128 times, the time complexity of the 8-round attack
is about 2128+12 = 2140 GOST evaluations. In terms of memory, the attack has
a completely practical complexity of 225 bits, which is equivalent to 219 64-bit
words.

6 A New 2-Dimensional Meet-In-The-Middle Attack on
8 Rounds of GOST

In this section, we present a new attack on 8 rounds of GOST given two input-
output pairs, which combines the ideas of the “Guess and Determine” attack



Improved Attacks on Full GOST 23

Table 2. The key bits derived in each iteration

Iteration 0 1 2 3 4 5 6 7

K1 bits derived 0–3 4-7 8–11 12–15 16–19 20–23 24–27 28–31
8–11 12–15 16–19 20–23 24–27 28–31 0–3 4–7

K4 bits derived 20–23 24–27 28–31 0–3 4–7 8–11 12–15 16–19
The key bits which are already known from previous iterations are underlined.

(which progresses horizontally across the state) and the MITM attack (which
progresses vertically across the rounds). Unlike the attack of the previous section,
we do not guess the last 4 round keys in advance. Instead, we divide the 8-round
Feistel structure horizontally by splitting it into a top part, which uses round
keys K1–K4, and a bottom part, which uses round keys K5–K8.

Our main observation is that due to the slow diffusion of the data bits into
the state, we can run a substantial part of the “Guess and Determine” attack of
Section 5 with very partial knowledge of Y and Y ∗ (obtained after 4 rounds of
encryption). This allows us to split the “Guess and Determine” attack into two
partial 4-round attacks which we run a relatively small number of times (once for
each value of the bits of Y and Y ∗ that it requires). Our full 4-round attacks on
the top and bottom parts combine the suggestions of the partial attacks in order
to suggest values for the 4-round keys. Finally, we use an 8-round attack which
joins the suggestions of the two partial attacks in order to obtain suggestions for
the full 256-bit key.

Schematically, we split the top and bottom parts of the block cipher vertically
into two (potentially overlapping) cells, such that on each cell we execute an
independent partial attack to obtain suggestions for some subset of key bits. We
then join all the suggestions to obtain suggestions for the full key using three
MITM attacks. This can be visualized using a 2× 2 matrix (as shown in Figure
5), where the horizontal line separates the four initial and final rounds of the
8-round block cipher, and the dashed vertical line separates the left and right
cells in each one of the top and bottom parts.

After the MITM attacks on the top and bottom parts of the Feistel structure,
we obtain 2128 suggestions for K1–K4 and 2128 suggestions for K5–K8, each
accompanied by corresponding 128-bit values of Y and Y ∗. Note that so far
we did not filter out any possible keys, and thus the final MITM attack, which
compares the 128-bit values of Y and Y ∗ to obtain about 2128 suggestions for
the full key, is essentially the basic MITM attack of Section 4.1, which would
normally require 2128 memory.

To reduce the memory consumption, we guess many of the 128 bits of Y and
Y ∗ in advance (in the outer loop of the 8-round attack). For each possible value
of those bits, we execute the 2DMITM (2-dimensional MITM) attack described
above, but obtain fewer suggestions for the key which we have to store. This
increases the number of times that we execute the partial 4-round attacks and
could potentially increase the overall time complexity of the full 8-round attack.



24 I. Dinur, O. Dunkelman, and A. Shamir

Top MITM

K1–K4

Intermediate
encryption bits

K5–K8

Bottom MITM

Joint MITM

Fig. 5. The general framework of the 2-dimensional meet-in-the-middle attack

However, this is not the case, as the partial 4-round attacks are relatively efficient
(the time complexity of each one is at most 218) and is executed only 282 times.
Thus, the partial 4-round attacks are not the bottleneck of the time complexity
of the attack.8

6.1 Details of the 8-Round Attack

Formally, we define the following sets which contain bits of Y and Y ∗:

– S1 is the set of bits that we guess in the outer loop of the 8-round attack.
– S2 is chosen such that S1

⋂
S2 = ∅, and S1

⋃
S2 is the minimal set that

contains all the bits of Y and Y ∗ which are required by the partial 4-round
attack on the left cell of the top part.

– S3 is chosen such that S1

⋂
S3 = ∅, and S1

⋃
S3 is the minimal set of bits

which are required by the partial 4-round attack on the right cell of the top
part.

For the bottom MITM attack, we define S4 and S5 in a similar way to S2 and
S3, respectively. Note that since the 4-round attacks on both the top and bottom
parts require all the 128 intermediate bits, S2

⋃
S3 = S4

⋃
S5.

The details of the 4-round attacks are given in the next section. We now refer
to them as black boxes, and give the algorithm of the full 8-round attack:

1. For each value of the bits of the set S1:
(a) Perform the 4-round attack on the top part of the Feistel structure, and

obtain a list with values of K1–K4, sorted according to the value of the
bits of S2

⋃
S3.

(b) Perform the 4-round attack on the bottom part of the Feistel structure.
For each value of S4

⋃
S5 = S2

⋃
S3 (given along with the value of K5–

K8), search the list obtained in the previous step of matches. For each
match test the full key K1–K8.

8 Note again that we expect about 2128 keys to fulfill the filtering conditions of the
two input-output pairs. Thus, the time required for the attack to list all of them
cannot be reduced below 2128 (without exploiting additional filtering conditions).



Improved Attacks on Full GOST 25

6.2 Details of the 4-Round Attacks

We concentrate first on the top part of the 8-round Feistel structure: each one
of the two partial 4-round attacks on the top part sequentially executes a subset
of the iterations defined in Section 5, and is called an iteration batch. The first
(left) iteration batch executes iterations 0–3, and the second (right) executes
iterations 4–7.

After performing iteration batches 0–3 and 4–7 independently, we get sugges-
tions for the values of some key bits, along with some carry and state bits. We
then discard inconsistent suggestions by comparing the values of the common
bits that are derived by batches. We partition these bits into three groups (which
are fully specified in the full version of this paper [6]):

– G1 contains 16 key bits which are derived by both of the left and right
batches.

– G2 contains 6 carry and state input bits that we guess in iteration 0. These
bits are also contained in the set of output bits of iteration 7 (of the right
batch), and can thus be used to discard inconsistent suggestions made by
the two batches.

– G3 contains 10 carry and state input bits that we guess in iteration 4. This
bits are also contained in the set of iteration output bits of iteration 3 (of the
left batch), and can thus be used to discard inconsistent suggestions made
by the two batches.

Assume that the values of all the bits of S1 are known. We now give the algorithm
of the MITM attack performed on the top part of the 8-round Feistel structure:

1. For each value of the bits of S2, perform the left batch. Save all the nodes
of the final layer in a list. These nodes contain the values 40 bits of K1 and
K4 (including the values of the bits of G1), and also the values of the bits of
G3. In addition to the information obtained by each node, save the value of
the initial guess of the bits of G2, and the value of the bits of S2 per node.
Sort the list according to the values of G1,G2 and G3.

2. For each value of the bits of S3, perform the right batch. For each node in the
final layer obtain the value of the bits of G1,G2 and G3 and search the list
obtained in the first step for their value. For each match, save the value of
the full K1–K4 in a sorted list according to the value of the bits of S2

⋃
S3.

The iteration batches of the MITM attack on the bottom part of the Feistel
structure are performed from the decryption side and are completely analogous
to the iteration batches on the top part (i.e. in iteration 0, we start by guessing
K0,3

8 , and derive K20,23
5 and K8,11

8 ). We also define analogous sets to G1,G2 and
G3 for the bottom part.

The specific choices of S1–S5 are given in the full version of this paper [6].
This choice of sets satisfies |S1| = 92 and |S2| = |S3| = |S4| = |S5| = 18.

We now analyze the complexity of the MITM attack on the top part of the
Feistel structure: as specified in the full version of this paper [6], when starting



26 I. Dinur, O. Dunkelman, and A. Shamir

the iteration batch from iteration 0, the expected maximal size of the tree is 214.
It is obtained after iteration 1, and is maintained until the end of iteration 5
(even though we do not perform 5 consecutive iterations in this attack). The time
complexity of the first step of the attack is thus about 2|S2|+14 = 214+18 = 232,
and this is also the size of the sorted list at the end of the first step. The
maximal size of the tree of the iteration batch 4–7 is 214+4 = 218 (as described
in the full version of this paper [6], we have to guess 4 more carry bits compared
to iterations 0–3). Thus, the time complexity of expanding the tree in the second
step is 2|S3|+18 = 236. The time and memory complexities of the remainder of
step 2 (in which we match the batches) are 2|S2|+|S3|+14+18−(|G1|+|G2|+|G3|) =
2|S2|+|S3|+14+18−(16+6+10) = 2|S2|+|S3| = 236. Note that it is not surprising that
the time and memory complexities of the matching part of the attack reduce to
2|S2|+|S3|, since given the full 128-bit intermediate value, we expect that only one
key survives the filtering conditions. Altogether, the memory complexity of the
top MITM attack is about 236 64-bit words. The time complexity is dominated
by step 2 and is equivalent to about 236 4-round Feistel structure evaluations,
which is equivalent to about 233 evaluations of the full GOST cryptosystem. For
the bottom MITM attack, we obtain the same time and memory complexities,
since the sizes of S4 and S5 are equal to the sizes of S2 and S3, and the sets
corresponding to G1, G2 and G3 are completely symmetrical.

6.3 The Complexity of the 8-Round Attack on GOST

We can now analyze the complexity of the attack described in Section 6.1: The
time complexities of each of the MITM attacks on the bottom and top parts
in steps (a) and (b) are equivalent to about 236 4-round Feistel structure eval-
uations, as calculated above. The number of expected matches for which we
run the full cipher in step (b) is 236+36−36 = 236. Hence, the time complex-
ity of these steps is equivalent to a bit more than 236 full GOST evaluations.
Since |S1| = 92, the total time complexity of the attack is equivalent to about
292+36 = 2128 GOST evaluations. The total memory complexity of the attack is
about 236 64-bit words, and is dominated by the sorted list calculated in step
(a).

7 Conclusions and Open Problem

In this paper we introduced several new techniques such as the fixed point prop-
erty and two dimensional meet in the middle attacks, and used them to greatly
improve the best known attacks on the full 32-round GOST. In particular, we
reduced the memory complexity of the attacks from an impractical 264 to a prac-
tical 236 (and to an even more practical 219 complexity, which can fit into the
cache of modern microprocessors, with a small penalty in the running time). The
lowest time complexity of our attacks is 2192, which is 232 times better than pre-
viously published attacks but still very far from being practical. Consequently,
we are concerned about the demonstrated weaknesses in the design of GOST



Improved Attacks on Full GOST 27

(especially in its simplistic key schedule), but do not advocate that its current
users should stop using it right away.

The main open problems left in this paper are whether it is possible to find
faster attacks, and how to better exploit other amounts of available data (in
addition to the 232 and 264 complexities considered in this paper, which are the
natural thresholds for our techniques).

Acknowledgements. The authors thank Nathan Keller, Pierre-Alain Fouque
and Charles Bouillaguet for useful discussions on this work, and the anonymous
referees for their helpful comments on this paper which greatly improved the
presentation of our results.

References

1. Biham, E., Dunkelman, O., Keller, N.: Improved Slide Attacks. In: Biryukov, A.
(ed.) FSE 2007. LNCS, vol. 4593, pp. 153–166. Springer, Heidelberg (2007)

2. Chaum, D., Evertse, J.-H.: Cryptanalysis of DES with a Reduced Number of
Rounds. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 192–211.
Springer, Heidelberg (1986)

3. Courtois, N.T.: Algebraic Complexity Reduction and Cryptanalysis of GOST.
Cryptology ePrint Archive, Report 2011/626 (2011), http://eprint.iacr.org/

4. Courtois, N.T.: Security Evaluation of GOST 28147-89 in View of International
Standardisation. Cryptology ePrint Archive, Report 2011/211 (2011),
http://eprint.iacr.org/

5. Courtois, N.T., Misztal, M.: Differential Cryptanalysis of GOST. Cryptology ePrint
Archive, Report 2011/312 (2011), http://eprint.iacr.org/

6. Dinur, I., Dunkelman, O., Shamir, A.: Improved Attacks on Full GOST. Cryptology
ePrint Archive, Report 2011/558 (2011), http://eprint.iacr.org/

7. Fleischmann, E., Gorski, M., Huehne, J.-H., Lucks, S.: Key Recovery Attack on
full GOST Block Cipher with Negligible Time and Memory. Presented at Western
European Workshop on Research in Cryptology (WEWoRC) (2009)

8. Isobe, T.: A Single-Key Attack on the Full GOST Block Cipher. In: Joux, A. (ed.)
FSE 2011. LNCS, vol. 6733, pp. 290–305. Springer, Heidelberg (2011)

9. Kara, O.: Reflection Cryptanalysis of Some Ciphers. In: Chowdhury, D.R., Rijmen,
V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 294–307. Springer,
Heidelberg (2008)

10. Kelsey, J., Schneier, B., Wagner, D.: Key-Schedule Cryptanalysis of IDEA, G-DES,
GOST, SAFER, and Triple-DES. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS,
vol. 1109, pp. 237–251. Springer, Heidelberg (1996)

11. Ko, Y., Hong, S., Lee, W., Lee, S., Kang, J.-S.: Related Key Differential Attacks
on 27 Rounds of XTEA and Full-Round GOST. In: Roy, B., Meier, W. (eds.) FSE
2004. LNCS, vol. 3017, pp. 299–316. Springer, Heidelberg (2004)

12. Mendel, F., Pramstaller, N., Rechberger, C.: A (Second) Preimage Attack on the
GOST Hash Function. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 224–
234. Springer, Heidelberg (2008)

13. Mendel, F., Pramstaller, N., Rechberger, C., Kontak, M., Szmidt, J.: Cryptanalysis
of the GOST Hash Function. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 162–178. Springer, Heidelberg (2008)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/


28 I. Dinur, O. Dunkelman, and A. Shamir

14. National Bureau of Standards. Federal Information Processing Standard-
Cryptographic Protection - Cryptographic Algorithm. GOST 28147-89 (1989)

15. OpenSSL. A Reference Implementation of GOST,
http://www.openssl.org/source/

16. Rudskoy, V.: On Zero Practical Significance of Key Recovery Attack on Full GOST
Block Cipher with Zero Time and Memory. Cryptology ePrint Archive, Report
2010/111 (2010), http://eprint.iacr.org/

17. Seki, H., Kaneko, T.: Differential Cryptanalysis of Reduced Rounds of GOST. In:
Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp. 315–323. Springer,
Heidelberg (2001)

http://www.openssl.org/source/
http://eprint.iacr.org/


Zero Correlation Linear Cryptanalysis

with Reduced Data Complexity

Andrey Bogdanov1,� and Meiqin Wang1,2,�

1 KU Leuven, ESAT/COSIC and IBBT, Belgium
2 Shandong University, Key Laboratory of Cryptologic Technology and Information

Security, Ministry of Education, Shandong University, Jinan 250100, China

Abstract. Zero correlation linear cryptanalysis is a novel key recovery
technique for block ciphers proposed in [5]. It is based on linear approx-
imations with probability of exactly 1/2 (which corresponds to the zero
correlation). Some block ciphers turn out to have multiple linear approx-
imations with correlation zero for each key over a considerable number
of rounds. Zero correlation linear cryptanalysis is the counterpart of im-
possible differential cryptanalysis in the domain of linear cryptanalysis,
though having many technical distinctions and sometimes resulting in
stronger attacks.

In this paper, we propose a statistical technique to significantly re-
duce the data complexity using the high number of zero correlation linear
approximations available. We also identify zero correlation linear approx-
imations for 14 and 15 rounds of TEA and XTEA. Those result in key-
recovery attacks for 21-round TEA and 25-round XTEA, while requiring
less data than the full code book. In the single secret key setting, these
are structural attacks breaking the highest number of rounds for both
ciphers.

The findings of this paper demonstrate that the prohibitive data com-
plexity requirements are not inherent in the zero correlation linear crypt-
analysis and can be overcome. Moreover, our results suggest that zero
correlation linear cryptanalysis can actually break more rounds than the
best known impossible differential cryptanalysis does for relevant block
ciphers. This might make a security re-evaluation of some ciphers neces-
sary in the view of the new attack.

Keywords: block ciphers, key recovery, linear cryptanalysis, zero cor-
relation linear cryptanalysis, data complexity, TEA, XTEA.

1 Introduction

1.1 Motivation

Differential and linear cryptanalyses [3,31] are the two basic tools for evaluating
the security of block ciphers such as the former U.S. encryption standard DES as
well as its successor AES. While DES was developed at the time when differential

� Corresponding authors.

A. Canteaut (Ed.): FSE 2012, LNCS 7549, pp. 29–48, 2012.
c© International Association for Cryptologic Research 2012



30 A. Bogdanov and M. Wang

and linear cryptanalyses were not publicly known, the design of AES provably
addresses these attacks.

Design strategies have been proposed such as the wide-trail design strategy
[14] or decorrelation theory [43] to make ciphers resistant to the basic flavours of
differential and linear cryptanalysis. However, a proof of resistance according to
these strategies does not necessarily imply resistance to the extensions of these
techniques such as impossible differential cryptanalysis [1, 7] and the recently
proposed zero correlation linear cryptanalysis [5].

Standard differential cryptanalysis uses differentials with probabilities signif-
icantly higher than those expected for a randomly drawn permutation. Simi-
larly, basic linear cryptanalysis uses linear approximations whose probabilities
detectably deviate from 1/2. At the same time, impossible differential cryptanal-
ysis and zero correlation linear cryptanalysis are based on structural deviations
of another kind: Differentials with zero probability are targeted in impossible
differential cryptanalysis and linear approximations with probability of exactly
1/2 correlation are exploited in zero correlation linear cryptanalysis. Thus, zero
correlation linear cryptanalysis can be seen as the counterpart of impossible
differential cryptanalysis in the domain of linear cryptanalysis.

The name of the attack originated from the notion of correlation [12,35]: If 1+c
2

is the probability for a linear approximation to hold, c is called the correlation
of this linear approximation. Clearly, putting c = 0 yields an unbiased linear
approximation of probability 1/2, or a zero correlation linear approximation.

Impossible differential cryptanalysis has been known to the cryptographic
community since over a decade now. It has turned out a highly useful tool of
attacking block ciphers [2, 16, 28–30,42]. In fact, among meet-in-the-middle [15]
and multiset-type attacks [19], it is the impossible differential cryptanalysis [29]
that breaks the highest numbers of rounds of AES-128 and AES-256 in the
classical single-key attack model as to date, the recent biclique cryptanalysis [4]
being the notable exception though.

Zero correlation linear cryptanalysis is a novel promising attack technique that
bears some technical similarities to impossible differential cryptanalysis but has
its theoretical foundation in a different mathematical theory. Despite its newness,
it has already been demonstrated to successfully apply to round-reduced AES
and CLEFIA even in its basic form [5], which is highly motivating for further
studies.

In this paper, we show how to remove the data requirement of the full code-
book which was the major limitation of basic zero correlation linear cryptanal-
ysis [5]. As an application of zero correlation linear cryptanalysis and this data
complexity reduction technique, we propose attacks against round-reduced TEA
and XTEA. For both ciphers, we can cryptanalyze more rounds than it was
previously possible using less than the full code book.

1.2 Contributions

The work at hand has two major contributions.



Zero Correlation Linear Cryptanalysis with Reduced Data Complexity 31

Data complexity reduction for zero correlation linear cryptanalysis.
The data requirements of the full codebook have been a crucial limitation for
the recent zero correlation linear cryptanalysis to become a major cryptanalytic
technique, though the length of the fundamental property (the length of the
zero correlation linear approximation) was demonstrated to be comparable to
that of impossible differentials for several cipher structures [5]. Overcoming this
annoying limitation, a statistical technique of data complexity reduction for zero
correlation linear cryptanalysis is the first contribution of this paper.

The data complexity reduction technique is based on the fact that, like any
exploitable impossible differential, a typical zero correlation linear approxima-
tion is truncated : That is, once a zero correlation linear approximation has been
identified that holds for all keys, it will as a rule imply an entire class of similar
zero correlation linear approximations to exist. Those can be typically obtained
by just changing several bits of the input mask, output mask or both. In other
words, in most practical cases, there will be multiple zero correlation linear ap-
proximations available to the adversary which has been ignored by the previous
analysis.

However, unlike in impossible differential cryptanalysis, the actual value of
the correlation has to be estimated in zero correlation linear cryptanalysis and
it is not enough to just wait for the impossible event to occur. In fact, the
idea we use for zero correlation linear cryptanalysis is more similar to that of
multiple linear cryptanalysis: We estimate the correlation of each individual
linear approximation using a limited number of texts. Then, for a group of
zero correlation linear approximations (i.e. for the right key), we expect the
cumulative deviation of those estimations from 0 to be lower than that for a
group of randomly chosen linear approximations (i.e. for a wrong key). Given the
statistical behaviour of correlation for a randomly drawn permutation [13, 36],
this consideration results in a χ2 statistic and allows for a theoretical analysis
of the complexity and error probabilities of a zero correlation linear attack that
are confirmed by experiments.

Zero correlation linear cryptanalysis of round-reduced TEA and
XTEA. TEA (Tiny Encryption Algorithm) is one of the first lightweight block
ciphers. It is a 64-bit block cipher based on a balanced Feistel-type network with
a simple ARX round function. TEA has 64 rounds and accepts a key of 128 bits.
It favours both efficient hardware [23] and software implementations. TEA was
designed by Wheeler and Needham and proposed at FSE’94 [44]. It was used
in Microsoft’s Xbox gaming console for checking software authenticity until its
weakness as a hash function was used [41] to compromise the chain of trust. The
block cipher XTEA [34] is the fixed version of TEA eliminating this property
(having the same number rounds, block size, and key size). TEA and XTEA
being rather popular ciphers, both are implemented in the Linux kernel.

Similarly to the complementation property of DES, TEA has an equivalent
key property and its effective key size is 126 bits (compared to 128 bits sug-
gested by the nominal key input size) [24]. Kelsey, Scheier and Wagner [25] pro-
posed a practical related-key attack on the full TEA. Using complementation



32 A. Bogdanov and M. Wang

Table 1. Summary of cryptanalytic results on round-reduced TEA∗ and XTEA in the
single-key setting

attack #rounds data comp. compl. memory Pr[success] ref.
TEA

impossible differential 11 252.5 CP 284 NA NA [33]
truncated differential 17 1920 CP 2123.37 NA NA [21]
impossible differential 17 257 CP 2106.6 249 NA [9]

zero correlation linear 21 262.62 KP 2121.52 negligible 0.846 this paper
zero correlation linear 23 264 2119.64 negligible 1 this paper

XTEA

impossible differential 14 262.5 CP 285 NA NA [33]
truncated differential 23 220.55 CP 2120.65 NA 0.969 [21]

meet-in-the-middle 23 18 KP 2117 1 − 2−1025 [38]
impossible differential 23 262.3 CP 2114.9 294.3 NA [9]
impossible differential 23 263 2101 MA +2105.6 2103 NA [9]

zero correlation linear 25 262.62 KP 2124.53 230 0.846 this paper
zero correlation linear 27 264 2120.71 negligible 1 this paper
CP: Chosen Plaintexts, KP: Known Plaintexts.
Memory: the number of 32-bit words.
∗The effective key length for TEA is 126 bit

cryptanalysis [8], up to 36 rounds of XTEA can be attacked with related keys
for all keys. The work [8] also contains related-key attacks for up to 50 rounds
of XTEA working for a weak key class.

In the classical single-key setting, however, by far not all rounds of TEA are
broken by structural attacks (whereas the effective key size is 126 bits for the
full cipher). The truncated differential result on 17 rounds remains the best
cryptanalysis of TEA [21]. Impossible differential cryptanalysis [9] has yielded a
faster attack against 17 rounds of TEA. Similarly, 23 rounds of XTEA have been
cryptanalyzed so far using truncated differential [21], impossible differential [9]
and well as meet-in-the-middle attacks [38]. That is, for both TEA and XTEA,
there has been no progress in terms of the number of attacked rounds since 2003.

In this paper, using zero correlation linear cryptanalysis, we cryptanalyze 21
rounds of TEA and 25 rounds of XTEA with 262.62 known plaintexts (in con-
trast to chosen texts required in impossible differential cryptanalysis). Certainly,
zero correlation linear cryptanalysis for lower number of rounds yields a lower
data complexity for both TEA and XTEA. Moreover, unlike most impossible
differential attacks including those on TEA and XTEA [9], zero correlation lin-
ear cryptanalysis is able to profit from the full code available. If all 264 texts
are available to the adversary, we propose zero correlation linear cryptanalysis
for 23 rounds of TEA and 27 rounds of XTEA. Our cryptanalytic results are
summarized and compared to previous cryptanalysis in Table 1.

As opposed to the initial intuition expressed in [5], both major contributions of
this work — the data complexity reduction and the new attacks on more rounds
of TEA and XTEA — demonstrate that zero correlation linear cryptanalysis can
actually perform better than impossible differential cryptanalysis. Moreover, we
expect the security of more ciphers to be reevaluated under the consideration of
zero correlation linear cryptanalysis.



Zero Correlation Linear Cryptanalysis with Reduced Data Complexity 33

1.3 Outline

We start with a review of the basic zero correlation linear cryptanalysis for
block ciphers in Section 2. In Section 3, we introduce a χ2 statistical technique
for reducing the data requirements of zero correlation linear cryptanalysis and
thoroughly investigate its complexity. In Section 4, the 14- and 15-round zero
correlation linear approximations are demonstrated for block ciphers TEA and
XTEA. Section 5 gives several zero correlation key recoveries for round-reduced
TEA and XTEA. The full version [6] of this paper is available online and contains
proofs of some technical statements as well as further zero correlation linear
attacks on round-reduced TEA and XTEA.

2 Basic Zero Correlation Linear Cryptanalysis

Zero correlation linear cryptanalysis has been introduced in [5]. Below we briefly
review its basic ideas and methods.

2.1 Linear Approximations with Correlation Zero

Consider an n-bit block cipher fK with key K. Let P denote a plaintext which
is mapped to ciphertext C under key K, C = fK(P ). If ΓP and ΓC are nonzero
plaintext and ciphertext linear masks of n bit each, we denote by ΓP → ΓC the
linear approximation

Γ T
P P ⊕ Γ T

CC = 0.

Here, Γ T
AA denotes the multiplication of the transposed bit vector ΓA (linear

mask for A) by a column bit vector A over F2. The linear approximation ΓP →
ΓC has probability

pΓP ,ΓC = Pr
P∈F

n
2

{Γ T
P P ⊕ Γ T

CC = 0}. (1)

The value
cΓP ,ΓC = 2pΓP ,ΓC − 1 (2)

is called the correlation (or bias) of linear approximation ΓP → ΓC . Note that
pΓP ,ΓC = 1/2 is equivalent to zero correlation cΓP ,ΓC = 0:

pΓP ,ΓC = Pr
P∈F

n
2

{Γ T
P P ⊕ Γ T

CC = 0} = 1/2. (3)

In fact, for a randomly drawn permutation of sufficiently large bit size n, zero is
the most frequent single value of correlation for a nontrivial linear approximation.
Correlation goes to small values for increasing n, the probability to get exactly
zero decreases as a function of n though. More precisely, the probability of the
linear approximation ΓP → ΓC with ΓP , ΓC �= 0 to have zero correlation has
been shown [5, Proposition 2] to be approximated by

1√
2π

2
4−n
2 . (4)



34 A. Bogdanov and M. Wang

2.2 Two Examples

Given a randomly chosen permutation, however, it is hard to tell a priori which
of its nontrivial linear approximations in particular has zero correlation. At the
same time, it is often possible to identify groups of zero correlation linear approx-
imations for a block cipher fK once it has compact description with a distinct
structure. Moreover, in many interesting cases, these linear approximations will
have zero correlation for any key K. Here are two examples provided in [5]:

– AES: The data transform of AES has a set of zero correlation linear approx-
imations over 4 rounds (3 full rounds appended by 1 incomplete rounds with
MixColumns omitted). If Γ and Γ ′ are 4-byte column linear masks with ex-
actly one nonzero byte, then each of the linear approximations (Γ, 0, 0, 0)→
(Γ ′, 0, 0, 0) over 4 AES rounds has zero correlation [5, Theorem 2].

– CLEFIA-type GFNs: CLEFIA-type generalized Feistel networks [40] (also
known as type-2 GFNs with 4 lines [45]) have zero correlation linear approx-
imations over 9 rounds, if the underlying F-functions of the Feistel con-
struction are invertible. For a �= 0, the linear approximations (a, 0, 0, 0) →
(0, 0, 0, a) and (0, 0, a, 0)→ (0, a, 0, 0) over 9 rounds have zero correlation [5,
Theorem 1].

D

E

rounds covered by
zero correlation

linear approximation

plaintext P

ciphertext C

partial encryption

partial decryption

check for zero correlation

Fig. 1. High-level view of key recovery in zero correlation linear cryptanalysis



Zero Correlation Linear Cryptanalysis with Reduced Data Complexity 35

2.3 Key Recovery with Zero Correlation Linear Approximations

Based on linear approximations of correlation zero, a technique similar to Mat-
sui’s Algorithm 2 [31] can be used for key recovery. Let the adversary have
N known plaintext-ciphertexts and � zero correlation linear approximations
{ΓE → ΓD} for a part of the cipher, with � = |{ΓE → ΓD}|. The linear ap-
proximations {ΓE → ΓD} are placed in the middle of the attacked cipher. Let E
and D be the partial intermediate states of the data transform at the boundaries
of the linear approximations.

Then the key can be recovered using the following approach (see also Figure 1):

1. Guess the bits of the key needed to compute E and D. For each guess:
(a) Partially encrypt the plaintexts and partially decrypt the ciphertexts up

to the boundaries of the zero correlation linear approximation ΓE → ΓD.
(b) Estimate the correlations {ĉΓE ,ΓD} of all linear approximations in {ΓE →

ΓD} for the key guess using the partially encrypted and decrypted values
E and D by counting how many times Γ T

EE ⊕ Γ T
DD is zero over N

input/output pairs, see (1) and (2).
(c) Perform a test on the estimated correlations {ĉΓE ,ΓD} for {ΓE → ΓD}

to tell of the estimated values of {ĉΓE,ΓD} are compatible with the hy-
pothesis that all of the actual values of {cΓE ,ΓD} are zero.

2. Test the surviving key candidates against a necessary number of plaintext-
ciphertext pairs according to the unicity distance for the attacked cipher.

Step 1(c) of the technique above relies on an efficient test distinguishing between
the hypothesis that {cΓE ,ΓD} are all zero and the alternative hypothesis. The
work [5] requires the exact evaluation of the correlation value (defined by the
probability of a linear approximation) and the data complexity is restricted to
N = 2n in [5]. Thus, a small number � of linear approximations is usually enough
in [5] and ĉΓE ,ΓD = cΓE ,ΓD , though the data complexity of the full codebook is
too restrictive.

For most ciphers (including the examples of Subsection 2.2), however, a large
number � of zero correlation linear approximations is available. This freedom
is not used in [5]. At the same time, it has been shown in the experimental
work [10] that any value of correlation can be used for key recovery in a linear
attack with reduced data complexity, once enough linear approximations are
available. Despite its convincing experimental evidence, [10] gives no theoretical
data complexity estimations and does not provide any ways of constructing linear
approximations with certain properties.

In the next section of this paper, we provide a framework for reducing the
data complexity N if many zero correlation linear approximations are known.

3 Reduction of Data Complexity with Many
Approximations

3.1 Distinguishing between Two Normal Distributions

Consider two normal distributions: N (μ0, σ0) with mean μ0 and standard devi-
ation σ0, and N (μ1, σ1) with mean μ1 and standard deviation σ1. A sample s is



36 A. Bogdanov and M. Wang

drawn from either N (μ0, σ0) or N (μ1, σ1). It has to be decided if this sample is
from N (μ0, σ0) or from N (μ1, σ1). The test is performed by comparing the value
s to some threshold value t. Without loss of generality, assume that μ0 < μ1.
If s ≤ t, the test returns ”s ∈ N (μ0, σ0)”. Otherwise, if s > t, the test returns
”s ∈ N (μ1, σ1)”. There will be error probabilities of two types:

β0 = Pr{”s ∈ N (μ1, σ1)”|s ∈ N (μ0, σ0)},
β1 = Pr{”s ∈ N (μ0, σ0)”|s ∈ N (μ1, σ1)}.

Here a condition is given on μ0, μ1, σ0, and σ1 such that the error probabilities
are β0 and β1. The proof immediately follows from the basics of probability
theory (see e.g. [18, 20]) and is given in the full version [6] of the paper for
completeness.

Proposition 1. For the test to have error probabilities of at most β0 and β1, the
parameters of the normal distributions N (μ0, σ0) and N (μ1, σ1) with μ0 �= μ1

have to be such that
z1−β1σ1 + z1−β0σ0

|μ1 − μ0|
= 1,

where z1−β1 and z1−β0 are the quantiles of the standard normal distribution.

3.2 A Known Plaintext Distinguisher with Many Zero Correlation
Linear Approximations

Let the adversary be given N known plaintext-ciphertext pairs and � zero cor-
relation linear approximations for an n-bit block cipher. The adversary aims to
distinguish between this cipher and a randomly drawn permutation.

The procedure is as follows. For each of the � given linear approximations,
the adversary computes the number Ti of times the linear approximations are
fulfilled on N plaintexts, i ∈ {1, . . . , �}. Each Ti suggests an empirical correlation
value ĉi = 2Ti

N − 1. Then, the adversary evaluates the statistic:

�∑
i=1

ĉ2i =

�∑
i=1

(
2
Ti

N
− 1

)2

. (5)

It is expected that for the cipher with � known zero correlation linear approxima-
tions, the value of statistic (5) will be lower than that for � linear approximations
of a randomly drawn permutation. In a key-recovery setting, the right key will
result in statistic (5) being among the lowest values for all candidate keys if � is
high enough. In the sequel, we treat this more formally.

3.3 Correlation under Right and Wrong Keys

Consider the key recovery procedure outlined in Subsection 2.3 given N known
plaintext-ciphertext pairs. There will be two cases:



Zero Correlation Linear Cryptanalysis with Reduced Data Complexity 37

– Right key guess: Each of the values ĉi in (5) approximately follows the nor-
mal distribution with zero mean and standard deviation 1/

√
N with good

precision (c.f. e.g. [22, 39]) for sufficiently large N :

ĉi ∼ N (0, 1/
√
N).

– Wrong key guess: Each of the values ĉi in (5) approximately follows the nor-
mal distribution with mean ci and standard deviation 1/

√
N for sufficiently

large N :
ĉi ∼ N (ci, 1/

√
N) with ci ∼ N (0, 2−n/2),

where ci is the exact value of the correlation which is itself distributed as
N (0, 2−n/2) over random permutations with n ≥ 5 — a result due to [13,36].
Thus, our wrong key hypothesis is that for each wrong key, the adversary
obtains a permutation with linear properties close to those of a randomly
chosen permutation.

3.4 Distribution of the Statistic

Based on these distributions of ĉi, we now derive the distributions of statistic (5)
in these two cases.

Right Key Guess. In this case, we deal with � zero correlation linear approx-
imations:

�∑
i=1

ĉ2i ∼
�∑

i=1

N 2
(
0, 1/

√
N
)
=

1

N

�∑
i=1

N 2(0, 1) =
1

N
χ2
� ,

where χ2
� is the χ2-distribution with � degrees of freedom which has mean � and

standard deviation
√
2�, assuming the independency of underlying distributions.

For sufficiently large �, χ2
� converges to the normal distribution. That is, χ2

�

approximately follows N (�,
√
2�), and:

�∑
i=1

ĉ2i ∼
1

N
χ2
� ≈

1

N
N
(
�,
√
2�
)
= N

(
�

N
,

√
2�

N

)
. (6)

Proposition 2. Consider � nontrivial zero correlation linear approximations for
a block cipher with a fixed key. If N is the number of known plaintext-ciphertext
pairs, Ti is the number of times such a linear approximation is fulfilled for i ∈
{1, . . . , �}, and � is high enough, then, assuming the counters Ti are independent,
the following approximate distribution holds for sufficiently large N and n:

�∑
i=1

(
2
Ti

N
− 1

)2

∼ N
(

�

N
,

√
2�

N

)
.



38 A. Bogdanov and M. Wang

Wrong Key Guess. The wrong key hypothesis is that we deal with pick a
permutation at random for each wrong key. Therefore, the � given linear approx-
imations will have randomly drawn correlations, under this hypothesis. Thus, as
mentioned above:

�∑
i=1

ĉ2i ∼
�∑

i=1

N 2
(
ci, 1/

√
N
)
, where ci ∼ N

(
0, 2−n/2

)
.

First, we show that the underlying distribution of ĉi is actually normal with
mean 0. Then we show that the sum approximately follows χ2-distribution as-
suming the independency of underlying distributions, and can be approximated
by another normal distribution.

Since
N
(
ci, 1/

√
N
)
= ci +N

(
0, 1/

√
N
)

= N
(
0, 1/

√
2n
)
+N

(
0, 1/

√
N
)

= N
(
0,
√
1/N + 1/2n

)
,

the distribution above is a χ2-distribution with � degrees of freedom up to a
factor, under the independency assumption:∑�

i=1N 2
(
ci, 1/

√
N
)
=
∑�

i=1N 2
(
0,
√

1
N + 1

2n

)
=
(

1
N + 1

2n

)∑�
i=1N 2 (0, 1)

=
(

1
N + 1

2n

)
χ2
� .

As for the right keys, for sufficiently large �, χ2
� can be approximated by the

normal distribution with mean � and standard deviation
√
2�. Thus:∑�

i=1 ĉ
2
i ∼

(
1
N + 1

2n

)
χ2
� ≈

(
1
N + 1

2n

)
N
(
�,
√
2�
)

= N
(

�
N + �

2n ,
√
2�
N +

√
2�

2n

)
.

Proposition 3. Consider � nontrivial linear approximations for a randomly
drawn permutation. If N is the number of known plaintext-ciphertext pairs, Ti is
the number of times a linear approximation is fulfilled for i ∈ {1, . . . , �}, and � is
high enough, then, assuming the independency of Ti, the following approximate
distribution holds for sufficiently large N and n:

�∑
i=1

(
2
Ti

N
− 1

)2

∼ N
(

�

N
+

�

2n
,

√
2�

N
+

√
2�

2n

)
.

3.5 Data Complexity of the Distinguisher

Combining Propositions 2 and 3 with Proposition 1, one obtains the condition:

z1−β1

(√
2�

N +
√

2�
2n

)
+z1−β0

√
2�

N

( �
N + �

2n )− �
N

= 1.



Zero Correlation Linear Cryptanalysis with Reduced Data Complexity 39

The left part of this equation can be simplified to

2n+0.5

N
√
�
(z1−β0 + z1−β1) +

z1−β1

√
2√

�
,

which yields

Theorem 1. With the assumptions of Propositions 1 to 3, using � nontrivial
zero correlation linear approximations, to distinguish between a wrong key and a
right key with probability β1 of false positives and probability β0 of false negatives,
a number N of known plaintext-ciphertext pairs is sufficient if the following
condition is fulfilled:

2n+0.5

N
√
�
(z1−β0 + z1−β1) +

z1−β1

√
2√

�
= 1.

The success probability of an attack is defined by the probability β0 of false neg-
atives. The probability β1 of false positives determines the number of surviving
key candidates and, thus, influences the computational complexity of the key
recovery.

4 Linear Approximations with Correlation Zero for TEA
and XTEA

In [5], a sufficient condition is given for a linear approximation to have a corre-
lation of zero. Namely, if for a linear approximation there exist no linear char-
acteristics with non-zero correlation contributions, then the correlation of the
linear approximation is exactly zero.

4.1 The Block Ciphers TEA and XTEA

TEA is a 64-round iterated block cipher with 64-bit block size and 128-bit key
which consist of four 32-bit words K[0],K[1],K[2] and K[3]. TEA does not have
any iterative key schedule algorithm. Instead, the key words are used directly in
round functions. The round constant is derived from the constant δ = 9e3779b9x
and the round number. We denote the input and the output of the r-th round
for 1 ≤ r ≤ 64 by (Lr, Rr) and (Lr+1, Rr+1), respectively. Lr+1 = Rr and Rr+1

is computed as follows:

Rr+1 =
{
Lr + (((Rr 	 4) + K[0]) ⊕ (Rr + i · δ) ⊕ (Rr � 5 + K[1])) r = 2i − 1,

Lr + (((Rr 	 4) + K[2]) ⊕ (Rr + i · δ) ⊕ (Rr � 5 + K[3])) r = 2i, 1 ≤ i ≤ 32.

Like TEA, XTEA is also a 64-round Feistel cipher with 64-bit block and 128-bit
key. Its 128-bit secret key K is represented by four 32-bit words K[0],K[1],K[2]
and K[3] as well. The derivation of the subkey word number is slightly more
complex though. The input of the r-th round is (Lr, Rr) and the output is
(Lr+1, Rr+1). Again, Lr+1 = Rr and Rr+1 is derived as:

Rr+1 =
{
Lr + (((Rr 	 4 ⊕ Rr � 5) + Rr) ⊕ ((i− 1) · δ + K[((i− 1) · δ 	 11)&3])) r = 2i− 1,

Lr + (((Rr 	 4 ⊕ Rr � 5) + Rr) ⊕ (i · δ + K[(i · δ 	 11)&3])) r = 2i, 1 ≤ i ≤ 32.

These round functions of TEA and XTEA are illustrated in Figure 2.



40 A. Bogdanov and M. Wang

L R

L +1 R +1

<<4

>>5

K[0]

K[1]

δ i·δ K[(i·δ>>11)&3]

L R

L +1 R +1

<<4

>>5

rr

rr

rr

rr

F

F

Fig. 2. Round function for TEA(left) and XTEA(right)

4.2 Notations

To demonstrate zero correlation linear approximations for TEA and XTEA, we
will need the following notations (the least significant bit of a word has number
0):

– ei,∼ is a 32-bit word that has zeros in bits (i + 1) to 31, one in bit i and
undefined values in bits 0 to (i− 1),

– ei∼j is a 32-bit word that has zeros in bits (i+1) to 31 and bits 0 to (j− 1),
a one in bit i and undefined values in bits j to (i − 1) for j < i,

– ēi,∼ is a 32-bit word that has zeros in bits (i+ 1) to 31, undefined values in
bits 0 to i,

– ? is an undefined value,
– X i∼j is bits from j to i of the value X , j < i, and
– X i is the value of bit i of X .

4.3 Linear Approximation of Modular Addition

Here, we first demonstrate the properties of linear approximations with non-zero
correlation over the modular addition, which is the only nonlinear part of the
TEA and XTEA transformation (summarized as Property 1). Then we use it
to show a condition for linear approximation with non-zero correlation for one
round of TEA and XTEA (stated as Property 2).

For the modular addition of two n-bit inputs x and y, the output z can be
computed as:

z = (x+ y) mod 2n.

We denote the mask values for x, y and z as Γx, Γy and Γz, respectively
(x, y, z, Γx, Γy, and Γz ∈ Fn

2 ). The linear approximation for the modular addi-
tion is then ΓxT · x⊕ ΓyT · y = ΓzT · z and is referred to as

+ : (Γx|Γy)→ Γz.



Zero Correlation Linear Cryptanalysis with Reduced Data Complexity 41

Property 1 (Modular addition). In any linear approximation (Γx|Γy) → Γz of
the modular addition with a non-zero correlation, the most significant non-zero
mask bit for Γx, Γy and Γz is the same.

Property 1 is proven in the full version [6] of the paper.

4.4 Linear Approximation of One TEA/XTEA Round

Using Property 1 for modular addition, as all other operations in TEA and
XTEA are linear, we can derive conditions on a special class of approximations
with non-zero correlation for the round function of TEA and XTEA. See Fig-
ures 4 and 3 for an illustration.

As in Subsection 4.1, the input and output of round r in TEA and XTEA are
(Lr|Rr) and (Lr+1|Rr+1), respectively. Correspondingly, (ΓL

r |ΓR
r ) and

(ΓL
r+1|ΓR

r+1) are input and output linear masks of the round. So the linear ap-
proximation over the round is

(X)TEA round r : (ΓL
r |ΓR

r )→ (ΓL
r+1|ΓR

r+1)

and has the following

Property 2 (One round). If ΓL
r = ei,∼ and ΓR

r = ej,∼, (j < i), then one needs
ΓR
r+1 = ei,∼ and ΓL

r+1 = ei,∼ ⊕ ei+5∼5 for the approximation to have a non-
zero correlation. Similarly, for the decryption round function of TEA, if the
input mask and the output mask for round r are (ΓL

r |ΓR
r ) and (ΓL

r+1|ΓR
r+1),

respectively. If ΓR
r = ei,∼ and ΓL

r = ej,∼, (j < i), then we have ΓL
r+1 = ei,∼ and

ΓR
r+1 = ei,∼ ⊕ ei+5∼5.

4.5 Zero Correlation Approximations for 14 and 15 Rounds of
TEA/XTEA

With the one-round property of linear approximation in TEA and XTEA derived
in the previous subsection, we can identify zero correlation approximations over
14 and 15 rounds of both TEA and XTEA.

Proposition 4. Over 15 rounds of TEA and XTEA, any linear approximation
with input mask (ΓR

1 |ΓL
1 ) = (1|0) and output mask (ΓR

15|ΓL
15) = (0|e1,∼) has

a correlation of exactly zero. Moreover, over 14 rounds of TEA and XTEA,
any linear approximation with input mask (ΓR

1 |ΓL
1 ) = (1|0) and output mask

(ΓR
14|ΓL

14) = (e1,∼|ē5,∼) has zero correlation.

Proof. First, we follow the linear approximation in the forward direction. From
ΓL
1 = 0 and ΓR

1 = 1, it is obtained that ΓL
2 = 0 and ΓR

2 = 1, then we get
ΓL
3 = 1⊕(1 << 5) and ΓR

3 = 1. From Property 2, ΓL
3 = 1⊕(1 << 5) and ΓR

3 = 1,
then we have ΓR

4 = e5,∼ and ΓL
4 = e5,∼ ⊕ e5+5∼5 ⊕ 1 = e10,∼. Similarly, we get

(ΓR
5 |ΓL

5 ) = (e10,∼|e15,∼), (ΓR
6 |ΓL

6 ) = (e15,∼|e20,∼), (ΓR
7 |ΓL

7 ) = (e20,∼|e25,∼),
(ΓR

8 |ΓL
8 ) = (e25,∼|e30,∼) and (ΓR

9 |ΓL
9 ) = (e30,∼|?).



42 A. Bogdanov and M. Wang

F

F

F

F

F

F

F

F

 

 

 

 

 

 

 

 

F

F

F

F

F

F

 

 

 

 

 

 

contradiction

Fig. 3. Zero correlation linear approxima-
tion for 14-round TEA and XTEA (grey –
undefined bits, black – bits set to 1)

F

F

F

F

F

F

F

F

 

 

 

 

 

 

 

 

F

F

F

F

F

F

F

 

 

 

 

 

 

 

contradiction

Fig. 4. Zero correlation linear approxima-
tion for 15-round TEA and XTEA (grey –
undefined bits, black – bits set to 1)

Second, we follow the 7-round linear approximation in the backward direc-
tion. From ΓL

16 = e1,∼ and ΓR
16 = 0, we can derive that (ΓR

15|ΓL
15) = (e1,∼|0),

(ΓR
14|ΓL

14) = (e1,∼⊕e6∼5|e1,∼), (ΓR
13|ΓL

13) = (e11,∼|e6,∼), (ΓR
12|ΓL

12) = (e16,∼|e11,∼),
(ΓR

11|ΓL
11) = (e21,∼|e16,∼), (ΓR

10|ΓL
10) = (e26,∼|e21,∼) and (ΓR

9 |ΓL
9 ) = (e31,∼|e26,∼).

From the forward direction, the most significant bit of ΓR
9 has to be zero, and

from the backward direction, the most significant bit of ΓR
9 has to be one. This

yields a contradiction and shows that there are no characteristics for this linear
approximation. By the sufficient condition of [5] for constructing zero correlation
linear approximations, this is enough for the approximation to have correlation
zero. So the linear approximation for 15-round TEA and XTEA with the input
mask (1|0) and the output mask (0|e1,∼) has zero correlation. By restricting
this linear approximation to 14 rounds and adding several undefined bits to the
output mask, one gets all the claims of the proposition. �



Zero Correlation Linear Cryptanalysis with Reduced Data Complexity 43

There are only 2 zero correlation linear approximations of this form over 15
rounds. We note however that there are 27 different zero correlation linear ap-
proximations over 14 rounds of both TEA and XTEA. They can be generated by
setting the undefined bits (depicted in gray in Figure 3 and Figure 4) to different
values.

5 Zero Correlation Linear Cryptanalysis of
Round-Reduced (X)TEA

14-Round Zero-Correlation Linear Hull

F

F

F

K[0][5~0]|K[1][5~0]

K[2][10~0]|K[3][10~0]

K[0][15~0]|K[1][15~0]

Round 19

Round 20

Round 21

F

F

F

F

Round 1

K[2][0]|K[3][0]

K[0][5~0]|K[1][5~0]

K[2][10~0]|K[3][10~0]

K[0][15~0]|K[1][15~0]

Round 2

Round 3

Round 4

PL PR

CL CR

Fig. 5. Key recovery for 21 rounds of
TEA. For the estimation of correlation,
grey and black bits need to be com-
puted and white bits are irrelevant. Uses
the zero correlation approximation of
Figure 3.

14-Round Zero -Correlation Linear Hull

F

F

F

K[1][5~0]

K[2][10~0]

K[0][15~0]

Round 28

Round 29

Round 30

CL CR

FK[3][20~0]

FK[3][25~0]

Round 31

Round 32

PL PR

F

F

F

F

Round 8

Round 9

Round 10

K[2][0]

K[3][5~0]

K[1][10~0]

K[0][15~0]

F

F

K[0][20~0]

K[0][25~0]

Round 11

Round 12

Round 13

Fig. 6. Key recovery for 25 rounds of
XTEA For the estimation of correlation,
grey and black bits need to be com-
puted and white bits are irrelevant. Uses
the zero correlation approximation of
Figure 3.

5.1 Key Recovery for 21 Rounds of TEA

For the cryptanalysis of 21-round TEA, we use the 14-round zero correlation
approximations of the type depicted in Figure 3 of Subsection 4.5. The availabil-
ity of many such approximations allows us to use the data complexity reduction
technique of Section 3.

We place the 14-round zero correlation linear approximations in the middle of
the 21-round TEA. It covers rounds 5 to 18. Following the procedure outlined in



44 A. Bogdanov and M. Wang

Subsection 2.3, up to the boundaries of the linear approximations, we partially
encrypt over the 4 first rounds 1 to 4 and partially decrypt over the 3 last rounds
19 to 21. The attack is illustrated in Figure 5.

The linear approximations involve 9 state bits: R0
5, R

1∼0
19 , and L5∼0

19 . In the
corresponding 9 bits of the input and output masks, only 7 can take on 0 and 1

values: ΓR
19

0
and ΓL

19
5∼0

. For the evaluation of the linear approximations from a
plaintext-ciphertext pair, we guess 54 key bitsK15∼0

0 ,K15∼0
1 ,K10∼0

2 , andK10∼0
3 .

The attack flow is as follows given N known plaintext-ciphertext pairs.

For each possible guess of the 54-bit subkey κ = (K15∼0
0 |K15∼0

1 |K10∼0
2 |K10∼0

3 ):

1. Allocate a 128-bit counter W and set it to zero. W will contain the χ2

statistic for the subkey guess κ.
2. Allocate a 64-bit counter V [x] for each of 29 possible values of

x = (R0
5|R1∼0

19 |L5∼0
19 )

and set it to 0. V [x] will contain the number of times the partial state value
x occurs for N texts.

3. For each of N plaintext-ciphertext pairs: partially encrypt 4 rounds and
partially decrypt 3 rounds, obtain the 9-bit value for x = (R0

5|R1∼0
19 |L5∼0

19 )
and add one to the counter V [x].

4. For each of 27 zero correlation linear approximations:

(a) Set the 64-bit counter U to zero.
(b) For 29 values of x, verify if the linear approximation holds. If so, add

V [x] to U .
(c) W = W + (2 · U/N − 1)2.

5. If W < t, then κ is a possible subkey candidate and all cipher keys it is
compatible with are tested exhaustively against a maximum of 3 plaintext-
ciphertext pairs.

The correct 54-bit subkey κ is likely to be among the candidates with the χ2

statistic W lower than the threshold t = σ0 · z1−β0 + μ0 =
√
2l
N · z1−β0 +

l
N =√

2·27
N ·z1−β0 +

27

N , see Subsection 3.1 with its Proposition 1 as well as Theorem 1.
In this attack, we set β0 = 2−2.7, β1 = 2−4.49 and get z1−β0 = 1, z1−β1 = 1.7.

Note once again that n = 64 and � = 27. Theorem 1 suggests the data complexity
of N = 262.62 known plaintext-ciphertexts with those parameters. The decision
threshold is t = 2−55.56.

The computational complexity is dominated by Steps 3 and 5. The computa-
tional complexity T3 of Step 3 is 254 times 7 half-round encryptions for each of N
texts. This gives T3 = 254 ·262.62 ·7 ·0.5/21 = 2114.03 21-round TEA encryptions.

One in 1/β1 = 24.49 keys is expected to survive the test against zero cor-
relation. The remaining key space is be covered by exhaustive search which
is performed in Step 5. The computational complexity T5 of Step 5 is about
T5 = 2126−4.49 = 2121.51 21-round encryptions using the equivalent key property.
T5 dominates the total computational complexity.



Zero Correlation Linear Cryptanalysis with Reduced Data Complexity 45

Summarizing the attack, its computational complexity is about 2121.51, data
complexity is about 262.62 known plaintext-ciphertext pairs, and the memory
complexity is negligible. The success probability is about 0.846.

5.2 Key Recovery for 25-Round XTEA

Similarly to the attack on 21 rounds of TEA provided in the previous subsection,
we use the 14-round zero correlation linear approximation depicted in Figure 3
to attack 25-round XTEA. Note that the attack covers rounds 8 to 32. It is
illustrated in Figure 6. The linear approximations are placed in rounds 14 to 27.
We partially encrypt 6 rounds (8 to 13) and partially decrypt 5 rounds (28 to
32) to evaluate the parity of approximations.

The linear approximations involve 9 bits and in the corresponding 9 bits of

the input and output masks, again only 7 can take on 0 and 1 values: ΓR
28

0

and ΓL
28

5∼0
. For the evaluation of the linear approximations from a plaintext-

ciphertext pair, we guess altogether 74 key bits K25∼0
0 , K10∼0

1 , K10∼0
2 , and

K25∼0
3 . The attack itself is similar to that on 21-round TEA.

For each possible 63-bit value of (K25∼0
0 |K10∼0

1 |K25∼0
3 ):

1. Allocate and set to zero the 32-bit counter V1[x] for each of 230 possible
values of

x = (R0
13|R5

13|L0
13|R10∼0

30 |L15∼0
30 ).

2. For each of N plaintext-ciphertext pairs: partially encrypt 5 rounds and
partially decrypt 3 rounds, obtain 30-bit x = (R0

13|R5
13|L0

13|R10∼0
30 |L15∼0

30 ),
and add one to V1[x].

3. For each possible 11 bits value of K10∼0
2 :

(a) Allocate and set to zero a 128-bit counter W .
(b) Allocate and set to zero a 64-bit counter V2[y] for each of 29 possible

values of
y = (R0

14|L5∼0
28 |R1∼0

28 ).

(c) Encrypt one round and decrypt two rounds for 230 values for x to get 9
bits of y and add V1[x] to V2[y].

(d) For each of 27 zero correlation linear approximations:
i. Set the 64-bit counter U to zero.
ii. For 29 values of y, verify if the linear approximation holds. If so, add

V2[y] to the counter U .
iii. W = W + (2 · U/N − 1)2.

(e) If W < t, then κ is a possible subkey candidate and all cipher keys
it is compatible with are tested exhaustively against a maximum of 3
plaintext-ciphertext pairs.

The correct 74-bit subkey is likely to be among the candidates with the χ2

statistic W lower than the threshold t. As we again set β0 = 2−2.7 and β1 =
2−4.49, we obtain N = 262.62 and t = 2−55.56.

The computational complexity is dominated by Step 2 and checking for false
positives in Step 3(e). T2 of Step 2 is constituted by 263N computations of 5 rounds



46 A. Bogdanov and M. Wang

of 25-round XTEA and by 263N increments in the memory of 230 32-bit counters.
Assuming that one increment of a memory cell costs one XTEA round, we obtain
T2 = 263 · 262.62 · (5/25 + 1/25) = 2123.56. In Step 3(e), the remaining T3(e) =
2128−4.49 = 2123.51 keys can checked exhaustively by the same number of 25-round
XTEA encryptions. Thus, the overall computational complexity is about T2 +
T3(e) = 2123.56 + 2123.51 = 2124.53 25-round XTEA encryptions. The memory
complexity is 230 32-bit words. Again, the data complexity is about 262.62 known
plaintext-ciphertext pairs, and the success probability is about 0.846.

5.3 Attacking More Rounds with the Full Codebook

The attacks in the previous subsections use 14-round zero correlation linear
approximations to enable data complexity reduction. As we only identified 2 15-
round approximations, we cannot use this longer property to attack more rounds
and still get a non-negligible decrease in the number of texts required. By taking
advantage of the full codebook, we are however able to perform key recovery for
up to 23 rounds of TEA and up to 27 rounds of XTEA, see the full version [6]
of this paper.

Acknowledgements. We would like to thank Vincent Rijmen and Gregor Le-
ander for insightful discussions. Andrey Bogdanov is postdoctoral fellow of the
Fund for Scientific Research - Flanders (FWO). This work has been supported in
part by the IAP Programme P6/26 BCRYPT of the Belgian State, by the Euro-
pean Commission under contract number ICT-2007-216676ECRYPT NoE phase
II, by KU Leuven-BOF (OT/08/027), by the Research Council KU Leuven (GOA
TENSE), by NSFC Projects (No.61133013, No.61070244 and No.60931160442)
as well as Outstanding Young Scientists Foundation Grant of Shandong Province
(No.BS2009DX030).

References

1. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack Reduced to 31
Rounds Using Impossible Differentials. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 12–23. Springer, Heidelberg (1999)

2. Biham, E., Dunkelman, O., Keller, N.: Related-Key Impossible Differential Attacks
on 8-Round AES-192. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860,
pp. 21–33. Springer, Heidelberg (2006)

3. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. In:
Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21.
Springer, Heidelberg (1991)

4. Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique Cryptanalysis of the
Full AES. In: Lee, D.H. (ed.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 344–371.
Springer, Heidelberg (2011)

5. Bogdanov, A., Rijmen, V.: Zero Correlation Linear Cryptanalysis of Block Ciphers.
IACR Eprint Archive Report 2011/123 (March 2011)

6. Bogdanov, A., Wang, M.: Zero Correlation Linear Cryptanalysis with Reduced
Data Complexity. IACR Eprint Archive Report (2012)

7. Borst, J., Knudsen, L.R., Rijmen, V.: Two Attacks on Reduced IDEA. In: Fumy,W.
(ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 1–13. Springer, Heidelberg (1997)



Zero Correlation Linear Cryptanalysis with Reduced Data Complexity 47

8. Bouillaguet, C., Dunkelman, O., Leurent, G., Fouque, P.-A.: Another Look at Com-
plementation Properties. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147,
pp. 347–364. Springer, Heidelberg (2010)

9. Chen, J., Wang, M., Preneel, B.: Impossible Differential Cryptanalysis of
Lightweight Block Ciphers TEA, XTEA and HIGHT. IACR Eprint Archive Report
2011/616 (2011)

10. Collard, B., Standaert, F.-X.: Experimenting Linear Cryptanalysis. In: Junod, P.,
Canteaut, A. (eds.) Advanced Linear Cryptanalysis of Block and Stream Ciphers.
Cryptology and Information Security Series, vol. 7. IOS Press (2011)

11. Collard, B., Standaert, F.-X., Quisquater, J.-J.: Improving the Time Complexity
of Matsui’s Linear Cryptanalysis. In: Nam, K.-H., Rhee, G. (eds.) ICISC 2007.
LNCS, vol. 4817, pp. 77–88. Springer, Heidelberg (2007)

12. Daemen, J., Govaerts, R., Vandewalle, J.: Correlation Matrices. In: Preneel, B.
(ed.) FSE 1994. LNCS, vol. 1008, pp. 275–285. Springer, Heidelberg (1995)

13. Daemen, J., Rijmen, V.: Probability distributions of correlations and differentials
in block ciphers. Journal on Mathematical Cryptology 1(3), 221–242 (2007)

14. Daemen, J., Rijmen, V.: The Design of Rijndael: AES – The Advanced Encryption
Standard. Springer (2002)

15. Demirci, H., Selçuk, A.A.: A Meet-in-the-Middle Attack on 8-Round AES. In:
Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 116–126. Springer, Heidelberg
(2008)

16. Dunkelman, O., Keller, N.: An Improved Impossible Differential Attack on
MISTY1. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 441–454.
Springer, Heidelberg (2008)

17. Etrog, J., Robshaw, M.J.B.: On Unbiased Linear Approximations. In: Steinfeld, R.,
Hawkes, P. (eds.) ACISP 2010. LNCS, vol. 6168, pp. 74–86. Springer, Heidelberg
(2010)

18. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 1.
Wiley & Sons (1968)

19. Dunkelman, O., Keller, N., Shamir, A.: Improved Single-Key Attacks on 8-Round
AES-192 and AES-256. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp.
158–176. Springer, Heidelberg (2010)

20. Hoel, P., Port, S., Stone, C.: Introduction to Probability Theory. Brooks Cole
(1972)

21. Hong, S., Hong, D., Ko, Y., Chang, D., Lee, W., Lee, S.: Differential Cryptanalysis
of TEA and XTEA. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971,
pp. 402–417. Springer, Heidelberg (2004)

22. Junod, P.: On the Complexity of Matsui’s Attack. In: Vaudenay, S., Youssef, A.M.
(eds.) SAC 2001. LNCS, vol. 2259, pp. 199–211. Springer, Heidelberg (2001)

23. Kaps, J.-P.: Chai-Tea, Cryptographic Hardware Implementations of xTEA. In:
Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365,
pp. 363–375. Springer, Heidelberg (2008)

24. Kelsey, J., Schneier, B., Wagner, D.: Key-Schedule Cryptanalysis of IDEA, G-DES,
GOST, SAFER, and Triple-DES. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS,
vol. 1109, pp. 237–251. Springer, Heidelberg (1996)

25. Kelsey, J., Schneier, B., Wagner, D.: Related-key Cryptanalysis of 3-WAY, Biham-
DES,CAST, DES-X, NewDES, RC2, and TEA. In: Han, Y., Quing, S. (eds.) ICICS
1997. LNCS, vol. 1334, pp. 233–246. Springer, Heidelberg (1997)

26. Lee, E., Hong, D., Chang, D., Hong, S., Lim, J.: A Weak Key Class of XTEA for a
Related-Key Rectangle Attack. In: Nguyên, P.Q. (ed.) VIETCRYPT 2006. LNCS,
vol. 4341, pp. 286–297. Springer, Heidelberg (2006)



48 A. Bogdanov and M. Wang

27. Lu, J.: Related-key rectangle attack on 36 rounds of the XTEA block cipher. In-
ternational Journal of Information Security 8(1), 1–11 (2009)

28. Lu, J., Kim, J.-S., Keller, N., Dunkelman, O.: Improving the Efficiency of Impos-
sible Differential Cryptanalysis of Reduced Camellia and MISTY1. In: Malkin, T.
(ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 370–386. Springer, Heidelberg (2008)

29. Lu, J., Dunkelman, O., Keller, N., Kim, J.: New Impossible Differential Attacks on
AES. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS,
vol. 5365, pp. 279–293. Springer, Heidelberg (2008)

30. Mala, H., Dakhilalian, M., Rijmen, V., Modarres-Hashemi, M.: Improved Impos-
sible Differential Cryptanalysis of 7-Round AES-128. In: Gong, G., Gupta, K.C.
(eds.) INDOCRYPT 2010. LNCS, vol. 6498, pp. 282–291. Springer, Heidelberg
(2010)

31. Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

32. Matsui, M.: The First Experimental Cryptanalysis of the Data Encryption Stan-
dard. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 1–11. Springer,
Heidelberg (1994)

33. Moon, D., Hwang, K., Lee, W., Lee, S., Lim, J.: Impossible Differential Cryptanal-
ysis of Reduced Round XTEA and TEA. In: Daemen, J., Rijmen, V. (eds.) FSE
2002. LNCS, vol. 2365, pp. 49–60. Springer, Heidelberg (2002)

34. Needham, R.M., Wheeler, D.J.: Tea extensions. Technical report, Computer Lab-
oratory, University of Cambridge (October 1997),
http://www.cix.co.uk/~klockstone/xtea.pdf

35. Nyberg, K.: Correlation theorems in cryptanalysis. Discrete Applied Mathemat-
ics 111(1-2), 177–188 (2001)

36. O’Connor, L.: Properties of Linear Approximation Tables. In: Preneel, B. (ed.)
FSE 1994. LNCS, vol. 1008, pp. 131–136. Springer, Heidelberg (1995)

37. Röck, A., Nyberg, K.: Exploiting Linear Hull in Matsui’s Algorithm 1. In: WCC
2011 (2011)

38. Sekar, G., Mouha, N., Velichkov, V., Preneel, B.: Meet-in-the-Middle Attacks on
Reduced-Round XTEA. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp.
250–267. Springer, Heidelberg (2011)

39. Selçuk, A.A.: On Probability of Success in Linear and Differential Cryptanalysis.
Journal of Cryptology 21(1), 131–147 (2008)

40. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-Bit Block-
cipher CLEFIA (Extended Abstract). In: Biryukov, A. (ed.) FSE 2007. LNCS,
vol. 4593, pp. 181–195. Springer, Heidelberg (2007)

41. Steil, M.: 17 Mistakes Microsoft Made in the Xbox Security System. Chaos Com-
munication Congress (2005),
http://events.ccc.de/congress/2005/fahrplan/events/559.en.html

42. Tsunoo, Y., Tsujihara, E., Shigeri, M., Saito, T., Suzaki, T., Kubo, H.: Impossi-
ble Differential Cryptanalysis of CLEFIA. In: Nyberg, K. (ed.) FSE 2008. LNCS,
vol. 5086, pp. 398–411. Springer, Heidelberg (2008)

43. Vaudenay, S.: Decorrelation: A Theory for Block Cipher Security. J. Cryptol-
ogy 16(4), 249–286 (2003)

44. Wheeler, D.J., Needham, R.M.: TEA, a Tiny Encryption Algorithm. In: Preneel,
B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 363–366. Springer, Heidelberg (1995)

45. Zheng, Y., Matsumoto, T., Imai, H.: On the Construction of Block Ciphers Prov-
ably Secure and Not Relying on Any Unproved Hypotheses. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 461–480. Springer, Heidelberg (1990)

http://www.cix.co.uk/~klockstone/xtea.pdf
http://events.ccc.de/congress/2005/fahrplan/events/559.en.html


A Model for Structure Attacks,

with Applications to PRESENT and Serpent

Meiqin Wang1,2,3,�, Yue Sun4, Elmar Tischhauser2,3,��, and Bart Preneel2,3

1 Key Laboratory of Cryptologic Technology and Information Security,
Ministry of Education, Shandong University, Jinan 250100, China

2 Department of Electrical Engineering ESAT/SCD-COSIC,
Katholieke Universiteit Leuven, Kasteelpark Arenberg 10, B-3001 Heverlee, Belgium

3 Interdisciplinary Institute for BroadBand Technology (IBBT), Belgium
4 Institute for Advanced Study, Tsinghua University, Beijing 100084, China

mqwang@sdu.edu.cn

Abstract. As a classic cryptanalytic method for block ciphers, hash
functions and stream ciphers, many extensions and refinements of differ-
ential cryptanalysis have been developed. In this paper, we focus on the
use of so-called structures in differential attacks, i.e. the use of multiple
input and one output difference. We give a general model and complexity
analysis for structure attacks and show how to choose the set of differ-
entials to minimize the time and data complexities. Being a subclass
of multiple differential attacks in general, structure attacks can also be
analyzed in the model of Blondeau et al. from FSE 2011. In this very
general model, a restrictive condition on the set of input differences is
required for the complexity analysis. We demonstrate that in our dedi-
cated model for structure attacks, this condition can be relaxed, which
allows us to consider a wider range of differentials. Finally, we point out
an inconsistency in the FSE 2011 attack on 18 rounds of the block cipher
PRESENT and use our model for structure attacks to attack 18-round
PRESENT and improve the previous structure attacks on 7-round and
8-round Serpent. To the best of our knowledge, those attacks are the
best known differential attacks on these two block ciphers.

Keywords: Structure Attack, Block Cipher, Differential, PRESENT,
Serpent.

1 Introduction

Differential cryptanalysis [2] is a classic cryptanalytic method that has been suc-
cessfully applied to block ciphers, hash functions and stream ciphers. The key

� This author is supported by 973 Project (No.2007CB807902), National Nat-
ural Science Foundation of China (Grant No.61133013, No.61070244 and
No.60931160442), Outstanding Young Scientists Foundation Grant of Shandong
Province (No.BS2009DX030), Shandong University Initiative Scientific Research
Program (2009TS087)

�� Elmar Tischhauser is a research assistant of the F.W.O., Fund for Scientific Research
— Flanders.

A. Canteaut (Ed.): FSE 2012, LNCS 7549, pp. 49–68, 2012.
c© International Association for Cryptologic Research 2012



50 M. Wang et al.

step for a differential attack is to identify a differential characteristic with high
probability as a distinguisher, then use it to recover (part of) the key. Lai et al.
propose the notion of differential which encompasses the collection of all possi-
ble differential characteristics [13] for one fixed input and output difference. A
lower bound for the probability of a differential (and thus, an upper bound for
the complexity of the attack) can be obtained by combining the probabilities
of a number of differential characteristics belonging to the differential. There-
fore, differentials give a better estimation of the actual attack complexity than
characteristics, since the distinguisher can exploit any characteristic belonging
to the differential. In order to further improve differential attacks, multiple dif-
ferentials with a single output difference but multiple input differences can be
used. This can reduce the data complexity provided that the set of input differ-
ences for the differentials can be combined in a so-called structure. Therefore, we
call this type of differential attacks structure attacks. The structure technique in
differential cryptanalysis was originally introduced in a more restrictive way as
quartets to attack DES [2], and multiple differential characteristics with multiple
input differences and a single output difference have been used to attack DES.
In addition, Biham et al. use the structure technique to attack reduced-round
versions of the Serpent block cipher [3].

At FSE 2011, Blondeau et al. proposed multiple differential cryptanalysis with
multiple input differences and multiple output differences [4] and gave an explicit
formula to compute the success probability of multiple differential cryptanaly-
sis. Traditionally, a normal approximation to the binomial distribution was used
to evaluate the success probability of a differential attack [18,19]. The approach
of [4] provides a more accurate estimation of the success probability. Since struc-
ture attacks are a special case of multiple differential cryptanalysis, those results
also apply to our structure attacks.

However, in order to ensure that one pair of ciphertexts can be only counted
once, the model of [4] requires a certain condition to be met (see Definition 1),
which severely restricts the set of input difference values that can be used in an
attack. In this paper, we demonstrate that this condition on the set of the input
difference values is so strong that many valuable differentials may be excluded.
We show that in the structure technique, this condition can be relaxed without
counting ciphertexts more than once. This enables us to choose our differentials
more freely, leading to improved attack complexities.

We stress that this condition and the general model of [4] are still necessary
for the analysis of the general case where one has multiple input and multiple
output differences. What we propose in this paper, is a tailored model for struc-
ture attacks, which are an important and often particularly efficient subclass of
multiple differential cryptanalysis.

Furthermore, the multiple differential attack on 18-round PRESENT [4] uses
561 differentials with 17 input differences and 33 output differences [5]. It turns
out that the sum of the probabilities of those 561 differentials is not correct in [4].
When calculated correctly, however, the obtained probability is lower than the
random probability, implying that this set of 561 differentials cannot be used



A Model for Structure Attacks 51

in an attack. Finally, we compare our attack to the corrected version [6] of the
attack of [4].

In order to evaluate the resistance of a block cipher to differential cryptanaly-
sis, it is crucial to take into account the effect of combining multiple differentials.
However, it is often not clear a priori which choice of differentials can actually
lead to an improvement. Compared to classic differential cryptanalysis with one
differential, a structure attack can obviously reduce the data complexity. In or-
der to reduce the overall time complexity, however, the differentials have to be
chosen carefully.

In this paper, we first present a general model for structure attacks, providing
guidance on how to choose the differentials to minimize the time complexity.
Secondly, we demonstrate structure attacks for 18-round PRESENT-80 with a
data complexity of 264 chosen plaintexts and time complexity of 276 18-round
encryptions. We find that the properties of differentials in PRESENT cause
structure attacks to be more efficient than the multiple differential cryptanaly-
sis proposed in [4]. Thirdly, we improve the differential cryptanalytic result for
the block cipher Serpent. In [3], Biham et al. describe a differential attack for
7-round Serpent with a data complexity of 284 chosen plaintexts and a time
complexity of 285 memory accesses. Biham et al. also give a differential attack
on 8-round Serpent-256 with 2213 memory accesses and 284 chosen plaintexts.
In our attack for 7-round Serpent, the data complexity is reduced to 271 chosen
plaintexts and the time complexity is 274.99 encryptions. The attack can be fur-
ther extended to 8-round Serpent-256. The time complexity is then increased to
2203.81 encryptions, with the data complexity remaining at 271 chosen plaintexts.

For PRESENT-80, the best known attack is the linear hull cryptanalysis of
26-round PRESENT [8]. For Serpent-128, the best known cryptanalytic result
is the differential-linear cryptanalysis on 12 rounds [12]. Although our attacks
do not improve on those results for PRESENT and Serpent, to the best of our
knowledge, they are the best differential attacks for PRESENT and Serpent.
Moreover, our proposed attack model can be used to improve differential crypt-
analytic results on other block ciphers as well.

This paper is organized as follows. Section 2 briefly describes the method for
computing the success probability with multiple differentials. Section 3 intro-
duces the structure attack model and the probability distribution of the key
under multiple differentials. In Sect. 4, we demonstrate the attack for 18-round
PRESENT. In Sect. 5, the improved attacks on 7-round and 8-round Serpent
are presented. Section 6 concludes the paper.

2 Brief Description of Blondeau et al.’s Multiple
Differential Cryptanalysis

In [4], Blondeau et al. propose multiple differential cryptanalysis using multiple
differentials with different input differences and different output differences and
give a precise analytical model to compute the success probability. In [18], Selçuk
uses a Gaussian approximation of the binomial distribution to derive a formula



52 M. Wang et al.

for the success probability for differential cryptanalysis. Since then, his formula
has been used in many papers on differential cryptanalysis. Blondeau et al.
demonstrate that Selçuk’s method cannot be applied to multiple differential
cryptanalysis and express the distribution of key counters instead in terms of
a hybrid distribution including the Kullback-Leibler divergence and a Poisson
distribution [4]. Blondeau et al. obtain the following formula for the success
probability PS :

PS ≈ 1−G∗[G−1(1− l−1
2nk−2)− 1/Ns], (1)

where nk is the number of key candidates, l is the size of the list to keep, G
is defined by G−1(y) = min{x|G(x) ≥ y}, and Ns is the number of samples.
Note that (1) corrects a typo in [4] by dividing by Ns for normalization. The

functions G and G∗ are defined as G∗(τ)
def
= G(τ, p∗) and G(τ)

def
= G(τ, p), where

p∗ =
∑

i,j p(i,j)
∗

|Δ0| and p = |Δ|
2m|Δ0| . p

(i,j)
∗ is the probability for the differential with

the i-th input difference value and the j-th output difference value, m is the
block size, |Δ0| is the number of input difference values and |Δ| is the number of
differentials. G(τ, p∗) and G(τ, p) can be calculated with the following equations:

G(τ, q)
def
=

⎧⎪⎨⎪⎩
G−(τ, q) if τ < q − 3 ·

√
q/Ns,

1−G+(τ, q) if τ > q + 3 ·
√
q/Ns,

GP(τ, q) otherwise,

(2)

whereGP(τ, q) is the cumulative distribution function of the Poisson distribution
with parameter qNs. G−(τ, q) and G+(τ, q) are defined as follows:

G−(τ, q)
def
= e−NsD(τ‖q) · [ q

√
1−τ

(q−τ)
√
2πτNs

+ 1√
8πτNs

],

G+(τ, q)
def
= e−NsD(τ‖q) · [ (1−q)

√
τ

(τ−q)
√

2πNs(1−τ)
+ 1√

8πτNs
],

(3)

where D(τ‖q) is the Kullback-Leibler divergence defined by D(τ‖q) def
= τ ln

(
τ
q

)
+ (1− τ) ln

(
1−τ
1−q

)
.

On the Assumptions for This Analysis. In order to guarantee that each pair
is counted only once, Blondeau et al. give Definition 1 as a necessary condition
for the set of the input differences Δ0.

Definition 1. The set of input differences Δ0 is admissible if there exists a set
χ of N/2 plaintexts that fulfils the condition:

∀δ(i)0 ∈ Δ0, ∀x ∈ χ, x⊕ δ
(i)
0 /∈ χ, (4)

where N is the number of chosen plaintexts. However, this condition is so strong
that many differentials will be excluded. For example, independent of the al-
gorithm under consideration, the set of input differences Δ0 = {1x, 2x, 3x} is



A Model for Structure Attacks 53

never admissible in any substitution-permutation network (SPN) because of this
condition, since the overlapping bits of 3x = 1x⊕2x will always result in double-
counting.

By contrast, in the structure technique, we can use a hash table to exclude the
duplicate pair arising from the violation of Definition 1. In fact, making use of
hash tables, structure attacks can use more differentials while still ensuring that
each pair is counted only once. Since we only have one possible output difference,
this also enables the use of the complexity analysis of [4] for sets of plaintexts
not satisfying Def. 1: This condition is only necessary to avoid counting both x

and x⊕ δ
(i)
0 for any δ

(i)
0 ∈ Δ0, i.e. guarantee Ns = N |Δ0|/2. This is satisfied in

our approach, since each hash table will produce N/2 plaintext pairs with one
input difference from N plaintexts, in total therefore Ns = |Δ0|N/2 plaintext
pairs with |Δ0| input diffference values. For structure attacks, the complexity
analysis of [4] is therefore applicable independent of Def. 1.

This has additionally been verified by experiments on SmallPresent with
block length of 24 bits, 12 rounds, and a set of 11 differentials with input differ-
ences violating Definition 1 and a single output difference.

On Previous Attacks on 18-Round PRESENT. There are two previously
published differential attacks on 18-round PRESENT [4,6]. In this section, we
point out two inconsistencies in both attacks, and demonstrate that our attack
compares favourably to them.

In [4], a multiple differential attack for 18-round PRESENT is presented.
They identify 561 differentials1 including 17 input differences and 33 output
differences using a branch-and-bound algorithm. In [4], the probabilities p∗ and

p are calculated as p∗ =
∑

i,j p(i,j)
∗

|Δ0| = 2−58.50 and p = |Δ|
2m|Δ0| = 2−64 ·33 = 2−58.96.

However, the value of p∗ is not correct; it should be p∗ = 2−60.39, which is less
than the random probability for 33 output differences p = 2−58.96. We found that
even when one choses an optimal subset of these 561 differentials, this attack
compares unfavourably to our structure attack.

In [6], another multiple differential attack on 18-round PRESENT is pre-
sented. It can be seen from Table 4 of [6], that |Δ0| = 17 (and not 16 as assumed
in the paper). This results in p∗ = 2−62.6765 (instead of 2−62.59) and p = 2−63.56

(instead of p=263.47). Based on these values, we compare this attack to our attack
from Sect. 4 for different values of the number � of remaining key candidates:

Attack of [6] Attack of Sect. 4

� PS � PS N time complexity

238 65.27% 236 85.94% 264 276

239 79.68% 237 92.30% 264 277

241 94.62% 239 98.36% 264 279

1 These differentials have been obtained through private communication with Blon-
deau et al.



54 M. Wang et al.

One can see that for the same data and time complexities, the structure
attack performs consistently better than multiple differential cryptanalysis with
multiple input differences and multiple output differences. This implies that
PRESENT is not a good example to show the efficiency of multiple differential
cryptanalysis with different input differences and different output differences.

3 Structure Attack

3.1 Principle of the Attack

The structure attack is a form of differential cryptanalysis which uses multiple
input differences and a single output difference. Structure attacks are a special
case of multiple differential cryptanalysis, but their form allows for a dedicated
attack procedure, which we describe in this section.

A structure attack is performed in three phases:

1. Data Collection Phase: Collect a large number of ciphertext pairs with the
differences produced from the output difference of the differentials and the
corresponding plaintext differences belong to the set of the input differences.

2. Data Analysis Phase: Derive the list of the best candidates for some key
bits from the collected ciphertext pairs.

3. Key Search Phase: Search the list of candidates and all the corresponding
master keys (i.e., the unexpanded key from which the round subkeys are
derived).

The idea of the structure attack is to use more differentials with multiple input
differences and a single output difference to reduce the data complexity. However,
the set of the input differences must be controlled in order to reduce the time
complexity. This is done by organizing the plaintext in so-called structures :

Definition 2. Let {Δ1
0, . . . , Δ

t
0} be a set of t input differences. A collection of

plaintexts of the form⋃
x

{x⊕Δ
∣∣ Δ ∈ span{Δ1

0, . . . , Δ
t
0}}, (5)

with span denoting the linear span operator, is called a structure.

In this way, we can construct structures to produce the expected number
of right pairs with lower data complexity compared with a single differential.
Now we will give a model to choose the differentials to reduce the complexity.
For clarity of exposition, we describe the model for the case of a substitution-
permutation network (SPN); however, the concept can analogously be applied
to other block cipher constructions, most importantly Feistel ciphers.

If we attack an R-round block cipher with |Δ0| r-round differentials with a sin-
gle output difference and multiple input differences, we denote these differentials
as follows:

Δi
0

r→ Δr, P robability = pi, (1 ≤ i ≤ |Δ0|),
where Δi

0 and Δr are the i-th input difference and the output difference, respec-
tively. The following notations are related with the attack:



A Model for Structure Attacks 55

– m: the block size of the block cipher.
– k: the key size of the block cipher.
– |Δ0|: the number of differentials.
– pi: the probability of the differential with input difference Δi

0.
– Nst: the number of structures is 2Nst .
– Np: the number of plaintexts bits involved in the active S-boxes in the first

round for all differentials.
– Nc: the number of ciphertexts bits involved in the non-active S-boxes in the

last round deriving from Δr.
– β: the filtering probability for the ciphertext pairs.
– pf : the filtering probability for the ciphertext pairs according to active S-

boxes, pf = β · 2NC .
– l: the size of the candidate list.
– nk: the number of guessed subkey bits in the last R− r rounds.

In the attack, 2Nst structures are constructed. In each structure, all the input
bits to non-active S-boxes in the first round are fixed to some random value,
while Np input bits of all active S-boxes take all 2Np possible values. There
are 2Nst · 2Np−1 = 2Nst+Np−1 pairs for each differential. We expect that about

2Nst+Np−1 ·
∑|Δ0|

i=1 pi pairs produce the output difference Δr. These pairs are
right pairs.

The attack is described as follows.

1. For each structure:
(a) Insert all the ciphertexts into a hash table indexed by Nc bits of the

non-active S-boxes in the last round.
(b) For each entry with the same Nc bits value, check whether the input

difference is any one of the total |Δ0| possible input differences. If a pair
satisfies one input difference, then go to the next step.

(c) For the pairs in each entry, check whether the output differences of active
S-boxes in the last round can be caused by the input differences according
to the differential distribution table. If the pair passes the test, then go
to the next step.

(d) Guess nk bits subkeys to decrypt the ciphertext pairs to round r and
check whether the obtained output difference at round r is equal to Δr.
If so, add one to the corresponding counter.

2. Choose the list of the l best key candidates from the counters.
3. Search the list of candidates and all the corresponding master key.

Obviously the time complexity in step 2 is negligible, so we denote Ta, Tb, Tc,
Td and T3 as the time complexity in step (a), (b), (c), (d) and 3, respectively,
which are listed in following:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Ta : 2Nst+Np memory accesses;
Tb : 2

Nst+2Np−Nc memory accesses;
Tc : |Δ0| · 2Nst+Np−Nc memory accesses;
Td : |Δ0| · 2Nst+Np−Nc · pf · 2nk partial decryptions;
T3 : l · 2k−nk .



56 M. Wang et al.

This assumes that there are nk independent subkey bits from the key schedule.
In general, Td can be approximated by |Δ0| ·2Nst+Np−Nc = Tc. Since |Δ0| < 2Np ,
we have Tc < Tb. Then the whole time complexity can be expressed as follows:

Ta + Tb + Tc + Td + T3 �

⎧⎪⎨⎪⎩
Ta + T3 if Np < Nc,

Tb + T3 if Np > Nc,

2Ta + T3 = 2Tb + T3 if Np = Nc.

If the time complexity in the key searching process T3 is much smaller than the
time complexity of the data collection process and the data analysis process, we
will take Np = Nc to minimise the whole time complexity as the minimum value
2Ta. Otherwise, we can try to take a larger value for Np to increase the sum of
the probabilities for differentials to further reduce the data complexity.

It is worth noting that in the structure attack, any pair of plaintexts with
the given input difference is only counted once. In this way, the number of
input differences can be increased compared with the condition in Definition 1,
improving the efficiency of the attacks. This is especially applicable in an attack
scenario where the probability of many differentials are close to 2−m, implying a
low success rate PS . Therefore, a large value for l has to be chosen, which causes
the complexity T3 of step 3 to increase. In this case, increasing the number of
input differences can help improving the attack, whereas increasing the number
of output differences does not have this effect in the case of multiple differential
cryptanalysis.

In the case of reduced-round PRESENT, we have the above-mentioned sce-
nario (many differentials with probability close to 2−64), so that when choosing
our set of differentials, we only include a limited number of high-probability dif-
ferentials to maintain a good success probability PS . For reduced-round Serpent,
the probabilities of the differentials are much larger than 2−128 (the inverse of
the block size), so that we can choose more differentials here without affecting
the success probability. In order to minimize the time complexity, we choose
Np = Nc according to our model.

3.2 Ratio of Weak Keys for Multiple Differentials

In general, the differential probability is related to the value of the key. As we
use multiple differentials in the structure attack, we need to consider the ratio of
keys which can produce the expected number of right pairs. We call those keys
weak keys since the attacks are only expected to work for those.

A cipher is called key-alternating if it consists of an alternating sequence of
unkeyed rounds and simple bitwise key additions. Note that most block cipher
proposals, including PRESENT and Serpent, are key-alternating ciphers. The
fixed-key cardinality of a differential N [K](a, b) is the number of pairs with input
difference a and output difference b where the key K is fixed to a specific value.
In [11,10], Daemen and Rijmen give the following theorem.



A Model for Structure Attacks 57

Theorem 1. Assuming that the set of pairs following a characteristic for a
given key can be modeled by a sampling process, the fixed-key cardinality of a
differential in a key-alternating cipher is a stochastic variable with the following
distribution:

Pr(N [K](a, b) = i) ≈ Poisson
(
i, 2m−1EDP (a, b)

)
,

where m is the block size, EDP (a, b) denotes the expected differential probability
of the differential (a, b), and the distribution function measures the probability
over all possible values of the key and all possible choices of the key schedule.

For multiple differentials with multiple input differences and a single output
difference, we have pj = EDP (aj , b), 1 ≤ j ≤ |Δ0|. We denote the fixed-key
cardinality of multiple differentials (aj , b) with a single output difference b by
N [K]

{
(aj , b)

}
j
. Based on Theorem 1, we can now derive Theorem 2.

Theorem 2. Under the assumptions of Theorem 1, in a key-alternating cipher,
the fixed-key cardinality of multiple differentials is a stochastic variable with the
following distribution:

Pr
(
N [K]

{
(aj , b)

}
j
= i
)
≈ Poisson

⎛⎝i, 2m−1
∑
j

EDP (aj , b)

⎞⎠ .

Proof. The cardinality of multiple differentials equals the sum of the cardinalities
of each differential (aj , b) for the iterative cipher, so we have

N [K]
{
(aj , b)

}
j
=
∑
j

N [K](aj , b).

From Theorem 1, the cardinality for each differential (aj , b) has Poisson distribu-
tion. Making the standard assumption that the cardinalities of the differentials
are independent random variables, the sum still is Poisson distributed with as
λ-parameter the sum of the λ-parameters of the terms:

λ =
∑
j

2m−1EDP (aj , b).

From Theorem 2, in the structure attack based on the differentials Δi
0

r→
Δr, P robability = pi, (1 ≤ i ≤ |Δ0|), the ratio of the weak keys rw that can
produce more than or equal to μ right pairs can be computed as follows:

rw = 1−
μ−1∑
x=0

Poisson

⎛⎝x, 2m−1

|Δ0|∑
j=1

pi

⎞⎠ .

Note that when evaluating the ratio of weak keys, we have a different setting
than when dealing with the distribution of the counters in a (multiple) differ-
ential attack. While approximating the distribution of the counters with either



58 M. Wang et al.

normal or Poisson distributions was shown to be problematic for accurately es-
timating the tails [19,4], the distribution of the weak keys instead depends on
the cardinality of the multiple differentials. In this setting, using the Poisson
distribution as in Theorem 2 also yields a good approximation for the tails. This
was also experimentally verified with small-scale variants of the block cipher
PRESENT [14], with block lengths ranging from 8 to 24 bits.

Additionally, the accuracy of the weak key ratio rw based on Theorem 2
has been verified by experiments on SmallPresent with a block length of 24
bits, 12 rounds and an master key with 8 bit entropy. 7 differentials with 7
different input and a single output difference were used. It was found that the
experimental results very closely follow the theoretical estimate.

4 Attack on 18-Round PRESENT

The block cipher PRESENT is designed as a very lightweight cipher. It has a
31-round SPN structure in which the S-box layer has 16 parallel 4-bit S-boxes
and the diffusion layer is a bit permutation [7]. The block size is 64 bits and
the key size can be 80 bits or 128 bits. One round of PRESENT is illustrated in
Fig. 1.

S
15

S
14

S
13

S
12 11

S S
10

S S S S S S S S S S
89 7 6 5 4 3 2 1 0

K i

G=0

B=3 B=0

N=0
G=3

Fig. 1. One round of the PRESENT block cipher

PRESENT has been extensively analyzed. Wang presents a differential attack
on 16-round PRESENT [20]. Collard et al. give a statistical saturation attack for
24-round PRESENT [9]. There are three papers about attacks based on linear
hulls for PRESENT [8,17,16], leading to linear attacks for up to 26 rounds.
Since the S-box of PRESENT admits linear approximations with single-bit linear
masks, the attacker can exploit linear hulls containing many single-bit linear
trails over an arbitrary number of rounds. However, for differential attacks, we
have to use paths in which two active S-boxes appear per round. Hence, a linear
attack will typically be more efficient than differential attacks.

In order to identify a differential with high probability, we must collect more
differential paths with high probability for a differential. The differential paths
with two active S-boxes in every round have a much bigger contribution to the
differential, so we will focus on differential paths with only two active S-boxes
in each round. Then we can choose more differentials to improve the attack
according to the formulas for the overall time complexity described in Sect. 3, .



A Model for Structure Attacks 59

4.1 Searching Differential Paths for PRESENT

We now give a method to search all differential characteristics with two active
S-boxes in each round which have higher probability compared with other dif-
ferential paths.

First, we introduce some notation. The block size of PRESENT is 64 bits
and we can divide 16 nibbles into four groups, in each of which there are four
nibbles. We define G as the index of a group, so the four least significant nibbles
belong to the group G = 0 and the four most significant nibbles belong to the
group G = 3. Analogously, we denote the index of a nibble in a group as N ,
N = 0, . . . , 3, and B as the B-th bit in a nibble, from B = 0 to B = 3. In
this way, the position of any bit can be denoted by a triple (G,N,B), as also
illustrated in Fig. 1. The permutation layer P is computed as follows,

P (16 ·G+ 4 ·N +B) = 16 ·B + 4 ·G+N, 0 ≤ G,N,B ≤ 3.

After the permutation layer P , the bit (G,N,B) will be transferred to the bit
(B,G,N). Here we also give another triple (G,N, V ) where G and N are the
group index and nibble index, respectively, while V is the difference of the nibble.
We wil write (Gr,k, Nr,k, Br,k) for the position of the k-th (k = 1, 2, 3, 4) output
bit for S-box in round r, and (Gr,k, Nr,k, Vr,k) for the output difference value of
the k-th (k = 1, 2) active S-box for nibble (Gr,k, Nr,k) in round r.

We focus on finding differential characteristics with two active S-boxes in each
round. The foundation for this search is formulated in Theorem 3.

Theorem 3. For the PRESENT block cipher, differential characteristics with
only two active S-boxes per round must have the following pattern:

1. If two active S-boxes are in the same group in round r, their output difference
will be equal and must have two non-zero bits to ensure that only two active
S-boxes appear in the (r+2)-nd round, and two active S-boxes in round r+1
will be in the different groups;

2. If two active S-boxes are in different groups in round r, their output difference
will be equal and must have only one non-zero bit to ensure that only two
active S-boxes appear in the (r+1)-st round, and two active S-boxes in round
r + 1 will be in the same group.

Proof. The output differences for the two active S-boxes are (Gr,1, Nr,1, Vr,1)
and (Gr,2, Nr,2, Vr,2). First, we will prove the case for two active S-boxes in the
same group in round r. We have Gr,1 = Gr,2 and Nr,1 �= Nr,2.

1. Vr,1 ∈ {1, 2, 4, 8}: If Vr,2 ∈ {1, 2, 4, 8}, we denote their two non-zero bits as
{(Gr,1, Nr,1, Br,1), (Gr,1, Nr,2, Br,2)}.
We have
{(Gr,1, Nr,1, Br,1), (Gr,1, Nr,2, Br,2)} P→ {(Br,1, Gr,1, Nr,1), (Br,2, Gr,1, Nr,2)} S→
{(Br,1, Gr,1, Nr+1,1), (Br,1, Gr,1, Nr+1,2), (Br,2, Gr,1, Nr+1,3), (Br,2, Gr,1, Nr+1,4)}
P→ {(Nr+1,1, Br,1, Gr,1), (Nr+1,2, Br,1, Gr,1), (Nr+1,3, Br,2, Gr,1), (Nr+1,4, Br,2,
Gr,1, )}.
As there are two active S-boxes in round r+1, we have Br,1 �= Br,2. Because
bit Nr+1,1 and bit Nr+1,2 are from the same S-box, we haveNr+1,1 �= Nr+1,2.



60 M. Wang et al.

Similarly, we have Nr+1,3 �= Nr+1,4. There will be four active S-boxes in the
(r + 2)-nd round. If Vr,2 ∈ {3, 5, 6, 9, 10, 12}, we denote the three non-zero
bits as {(Gr,1, Nr,1, Br,1), (Gr,1, Nr,2, Br,2), (Gr,1, Nr,2, Br,3)}.
We have
{(Gr,1, Nr,1, Br,1), (Gr,1, Nr,2, Br,2), (Gr,1, Nr,2, Br,3)}
P→ {(Br,1, Gr,1, Nr,1), (Br,2, Gr,1, Nr,2), (Br,3, Gr,1, Nr,2)|Br,1 = Br,2 �= Br,3}
S→ {(Br,1, Gr,1, Nr+1,1), (Br,3, Gr,1, Nr+1,2), (Br,3, Gr,1, Nr+1,3)|Nr+1,2 �= Nr+1,3}
P→ {(Nr+1,1, Br,1, Gr,1), (Nr+1,2, Br,3, Gr,1), (Nr+1,3, Br,3, Gr,1)}.
There will be three active S-boxes in round r + 2.

2. Vr,1 ∈ {7, 11, 13, 14, 15} or Vr,2 ∈ {7, 11, 13, 14, 15}: There will be at least
three active S-boxes in round r + 1.

3. Vr,1, Vr,2 ∈ {3, 5, 6, 9, 10, 12}: We denote the four non-zero bits as
{(Gr,1, Nr,1, Br,1), (Gr,1, Nr,1, Br,2), (Gr,1, Nr,2, Br,3), (Gr,1, Nr,2, Br,4)}.
We have

{(Gr,1, Nr,1, Br,1), (Gr,1, Nr,1, Br,2), (Gr,1, Nr,2, Br,3), (Gr,1, Nr,2, Br,4)}
P→ {(Br,1, Gr,1, Nr,1, )(Br,2, Gr,1, Nr,1), (Br,3, Gr,1, Nr,2), (Br,4, Gr,1, Nr,2)}.

Only if Br,1 = Br,3 and Br,2 = Br,4, there will be 2 active S-boxes in round
r + 1, so we have Vr,1 = Vr,2. For Br,1 �= Br,2, the two active S-boxes in
round r + 1 will be in different groups.

Next, we will prove the case for two active S-boxes in different groups in round
r. We have Gr,1 �= Gr,2.

1. Vr,1 ∈ {7, 11, 13, 14, 15} or Vr,2 ∈ {7, 11, 13, 14, 15}: There will be at least
three active S-boxes in round r + 1.

2. Vr,1 ∈ {3, 5, 6, 9, 10, 12}: There are at least three non-zero bits, namely
(Gr,1, Nr,1, Br,1), (Gr,1, Nr,1, Br,2) and (Gr,2, Nr,2, Br,3).
We have

{(Gr,1, Nr,1, Br,1), (Gr,1, Nr,1, Br,2), (Gr,2, Nr,2, Br,3)}
P→ {(Br,1, Gr,1, Nr,1), (Br,2, Gr,1, Nr,1), (Br,3, Gr,2, Nr,2)}.

For Br,1 �= Br,2 and Gr,1 �= Gr,2, there are three active S-boxes in round
r + 1.

3. Vr,1 ∈ {1, 2, 4, 8}: From the above proof, we have Vr,2 ∈ {1, 2, 4, 8}. There are
two non-zero bits {(Gr,1, Nr,1, Br,1), (Gr,2, Nr,2, Br,2)}. We have

{(Gr,1, Nr,1, Br,1), (Gr,2, Nr,2, Br,2)} P→ {(Br,1, Gr,1, Nr,1), (Br,2, Gr,2, Nr,2)}
S→ {(Br,1, Gr,1, Nr+1,1), (Br,1, Gr,1, Nr+1,2), (Br,2, Gr,2, Nr+1,3), (Br,2, Gr,2, Nr+1,4)}
P→ {(Nr+1,1, Br,1, Gr,1), (Nr+1,2, Br,1, Gr,1), (Nr+1,3, Br,2, Gr,2), (Nr+1,4, Br,2, Gr,2)}.
In order to ensure that there are two active S-boxes in round r+2, Nr+1,1 =
Nr+1,3, Nr+1,2 = Nr+1,4 and Br,1 = Br,2. So we have Vr,1 = Vr,2 and the two
active S-boxes in round r + 1 are in the same group. ��

Based on Theorem 3, a branch-and-bound search algorithm for differential paths
can be devised.

Using this algorithm, we search for 16-round differential paths (characteris-
tics) with two active S-boxes in each round having a probability greater than
2−92. In total, we find 139 differentials with probability greater than 2−64, among



A Model for Structure Attacks 61

Table 1. Filter probability for the structure attack on 18-round PRESENT

Na (Y17,2, Y17,10) p
(a)
f

2 {(1, 1), (1, 4), (4, 1), (4, 4)} 2−24 · ( 7
16
)2 · 4 = 2−24.83

3 {(1, 9), (1, 10), (1, 12), (4, 9),
(4, 10), (4, 12), (9, 1), (9, 4), 2−20 · ( 7

16
)3 · 12 = 2−19.99

(10, 1), (10, 4), (12, 1), (12, 4))}
4 {(9, 9), (9, 10), (9, 12), (10, 9),

(10, 10), (10, 12), (12, 9), (12, 10), 2−16 · ( 7
16
)4 · 17 = 2−16.68

(12, 12), (1, 11), (1, 13), (4, 11),
(4, 13), (11, 1), (11, 4), (13, 1), (13, 4)}

5 {(9, 11), (9, 13), (10, 11), (10, 13),
(12, 11), (12, 13), (11, 9), (11, 10), 2−12 · ( 7

16
)5 · 12 = 2−14.38

(11, 12), (13, 9), (13, 10), (13, 12)}
6 {(11, 11), (11, 13), (13, 11), (13, 13)} 2−8 · ( 7

16
)6 · 4 = 2−13.16

Table 2. Differentials for 16-round PRESENT with Δ16 = 00000900x ||00000900x

i Δi
0 logpi2 i Δi

0 logpi2
1 000f0000x ||0000000fx -62.98 10 000f0000x ||00000005x -63.98

2 00070000x ||00000007x -63.42 11 000f0000x ||0000000bx -63.98

3 0f000000x ||00000f00x -63.68 12 000f0000x ||0000000dx -63.98

4 000f0000x ||00000007x -63.69 13 00030000x ||0000000fx -63.98

5 00070000x ||0000000fx -63.69 14 00050000x ||0000000fx -63.98

6 000d0000x ||0000000dx -63.72 15 000b0000x||0000000fx -63.98

7 00f00000x ||000000f0x -63.92 16 000d0000x ||0000000fx -63.98

8 00090000x ||00000009x -63.94 17 f0000000x ||0000000fx -63.98

9 000f0000x ||00000003x -63.98 18 000f0000x ||0000f000x -63.98

which 91 differentials have output difference Δ16 = 00000500x||00000500x and
18 differentials have output difference Δ16 = 00000900x||00000900x. We list
them in Table 3 and Table 2, respectively. The differentials have been ordered
according to their probabilities in these two tables. In both Table 3 and Table
2, the first column i contains the number of the differential, Δi

0 is the input
difference and pi is the probability for each differential. Moreover, we present
the number of differential paths ordered by probability for Table 3 in Table 4
and Table 5. In Table 4, the first column denotes the index number in the first
column of Table 3. For example, the differentials with number 19 and 20 consist
of differential trails with the same probabilities. Columns 2, 3, . . . , 12 denote the
number of differential paths with probability 2−71, 2−73, . . . , 2−91, respectively.
In Table 5, the first column denotes the index number in the first column of Table
3. Column 2, 3, . . . , 13 denote the number of differential paths with probability
2−70, 2−72, . . . , 2−92, respectively. There is no differential path with probability
greater than 2−70 or less than 2−92 for the 91 differentials.



62 M. Wang et al.

Table 3. Differentials for 16-round PRESENT with output difference
00000500x ||00000500x

i Δi
0 logpi2 i Δi

0 logpi2
1 000f0000x ||0000000fx -62.13 47 000f0000x ||00000f00x -63.79

2 00070000x ||00000007x -62.57 48 0f000000x ||0000000fx -63.79

3 0f000000x ||00000f00x -62.79 49 0f000000x ||00000d00x -63.79

4 000f0000x ||00000007x -62.84 50 0f000000x ||00000b00x -63.79

5 00070000x ||0000000fx -62.84 51 0f000000x ||00000300x -63.79

6 000d0000x ||0000000dx -62.88 52 0f000000x ||00000500x -63.79

7 00f00000x ||000000f0x -62.95 53 03000000x ||00000f00x -63.79

8 00090000x ||00000009x -63.10 54 05000000x ||00000f00x -63.79

9 000f0000x ||00000003x -63.13 55 0d000000x ||00000f00x -63.79

10 000f0000x ||00000005x -63.13 56 0b000000x||00000f00x -63.79

11 000f0000x ||0000000bx -63.13 57 00070000x ||00000003x -63.84

12 000f0000x ||0000000dx -63.13 58 00070000x ||00000005x -63.84

13 00030000x ||0000000fx -63.13 59 00030000x ||00000007x -63.84

14 00050000x ||0000000fx -63.13 60 00050000x ||00000007x -63.84

15 000b0000x ||0000000fx -63.13 61 f0000000x ||00000007x -63.84

16 000d0000x||0000000fx -63.13 62 70000000x ||0000000fx -63.84

17 f0000000x ||0000000fx -63.13 63 000f0000x ||00007000x -63.84

18 000f0000x ||0000f000x -63.13 64 00070000x ||0000f000x -63.84

19 000d0000x||00000007x -63.19 65 0d000000x||00000700x -63.85

20 00070000x ||0000000dx -63.19 66 07000000x ||00000d00x -63.85

21 0f000000x ||000000f0x -63.21 67 00000f00x ||00000f00x -63.87

22 00f00000x ||00000f00x -63.21 68 00000000x ||0f000f00x -63.87

23 00000000x ||000f000fx -63.21 69 d0000000x ||0000000dx -63.88

24 0000000fx ||0000000fx -63.21 70 000d0000x ||0000d000x -63.88

25 07000000x ||00000700x -63.23 71 00000000x ||000f0007x -63.91

26 00700000x ||00000070x -63.39 72 00000000x ||0007000fx -63.91

27 000b0000x ||0000000bx -63.44 73 0000000fx ||00000007x -63.91

28 000f0000x ||00000009x -63.50 74 00000007x ||0000000fx -63.91

29 00090000x ||0000000fx -63.50 75 00900000x ||00000090x -63.92

30 0f000000x ||00000700x -63.50 76 0f000000x ||00000070x -63.92

31 07000000x ||00000f00x -63.50 77 07000000x ||000000f0x -63.92

32 000b0000x ||00000007x -63.52 78 00f00000x ||00000700x -63.92

33 00070000x ||0000000bx -63.52 79 00700000x ||00000f00x -63.92

34 0d000000x ||00000d00x -63.54 80 00f00000x ||00000030x -63.95

35 70000000x ||00000007x -63.57 81 00f00000x ||00000050x -63.95

36 00070000x ||00007000x -63.57 82 00f00000x ||000000b0x -63.95

37 000d0000x||00000009x -63.58 83 00f00000x ||000000d0x -63.95

38 00090000x ||0000000dx -63.58 84 00300000x ||000000f0x -63.95

39 00000000x ||00070007x -63.64 85 00500000x ||000000f0x -63.95

40 00000007x ||00000007x -63.64 86 00b00000x||000000f0x -63.95

41 07000000x ||00000070x -63.65 87 00d00000x ||000000f0x -63.95

42 00700000x ||00000700x -63.65 88 0d000000x ||000000d0x -63.95

43 00700000x ||000000f0x -63.66 89 00d00000x ||00000d00x -63.95

44 00f00000x ||00000070x -63.66 90 00000000x ||000d000dx -63.95

45 00d00000x ||000000d0x -63.70 91 0000000dx ||0000000dx -63.95

46 09000000x ||00000900x -63.76



A Model for Structure Attacks 63

Table 4. Number of differential paths for differentials in Table 3 (first part)

i 2−71 2−73 2−75 2−77 2−79 2−81 2−83 2−85 2−87 2−89 2−91

9,10,. . . ,18 12 160 986 3744 9654 17440 21988 18536 9280 1920 0

19,20 12 157 952 3567 9092 16264 20348 17068 8520 1760 0

32,33 9 123 769 2913 7350 12692 14780 10980 4600 800 0

35,36 9 117 707 2669 7056 13858 20936 24568 21248 11520 2560

37,38 6 89 628 2795 8562 18504 27976 28004 16200 3680 0

47,48 8 104 628 2348 5976 10676 13340 11160 5568 1152 0

49,50,. . . ,56 4 64 486 2336 7838 19064 33976 43600 38368 20736 4608

57,58,. . . ,64 9 114 655 2258 5092 7600 7180 3800 800 0 0

65,66 4 63 472 2243 7448 17942 31704 40376 35344 19040 4224

69,70 3 55 457 2295 7744 18318 30608 35268 26256 11040 1920

80,81,. . . ,87 4 60 438 2066 6886 16766 30064 38908 34584 18880 4224

Table 5. Number of differential paths for differentials in Table 3 (second part)

i 2−70 2−72 2−74 2−76 2−78 2−80 2−82 2−84 2−86 2−88 2−90 2−92

1 12 160 986 3744 9654 17440 21988 18536 9280 1920 0 0

2 9 117 707 2669 7056 13858 20936 24568 21248 11520 2560 0

3 4 64 486 2336 7838 19064 33976 43600 38368 20736 4608 0

4,5 9 114 655 2258 5092 7600 7180 3800 800 0 0 0

6 3 55 457 2295 7744 18318 30608 35256 26256 11040 1920 0

7 4 60 438 2066 6886 16766 30064 38908 34584 18880 4224 0

8 3 49 383 1897 6526 16098 28564 35504 28928 13440 2560 0

21,22 4 56 382 1708 5490 13088 23300 30260 27208 15168 3456 0

23,24 0 48 472 2112 5724 10404 13104 11336 6400 1920 0 0

25 3 47 351 1673 5650 14212 27472 41472 48928 43520 25600 6144

26 3 44 316 1480 4971 12516 24286 36824 43656 39168 23296 5632

27 0 21 274 1641 6002 14746 25040 29168 22336 10080 1920 0

28,29,30,31 3 46 331 1486 4562 9840 14808 14736 8480 1920 0 0

34 1 21 205 1243 5222 15940 35960 59616 70464 55488 24960 4608

39,40 0 36 342 1496 4090 8128 12572 14936 12928 7680 2560 0

41,42 3 41 275 1223 3976 9836 18950 28680 34008 30720 18688 4608

43,44 3 43 297 1309 4000 8664 13168 13268 7720 1760 0 0

45 1 20 188 1112 4609 14004 31658 52832 63048 50160 22752 4224

46 1 19 175 1037 4364 13596 31832 55600 70336 60416 30208 6144

67,68 0 16 200 1184 4420 11276 20280 26080 23392 13824 4608 0

71,72,73,74 0 36 330 1330 3072 4480 4280 2600 800 0 0 0

75 1 18 160 928 3857 11954 28014 49196 62800 54528 27520 5632

76,77,78,79 3 40 257 1070 3152 6706 10188 10412 6200 1440 0 0

88,89 1 19 169 949 3768 11100 24650 40920 49128 39696 18336 3456

90,91 0 12 178 1160 4430 10944 18260 20952 16416 8160 1920 0



64 M. Wang et al.

4.2 Key Recovery Attack on 18-Round PRESENT-80

In this section, we show how to use the 16-round differentials listed in Table 3 to
attack 18-round PRESENT-80. The first step is to choose the set of differentials.
From the output difference 00000500x||00000500x at round 16, we can derive that
the number of recovered subkey bits in round 17 and round 18 is 8 + 32 = 40.
Those 40 subkey bits are independent according to the key schedule. In this
attack, we will use the whole codebook and set the size of the candidates of
subkey counters l to 236. In our structure attack, we will use Blondeau et al.’s
method (see Sect. 2) to compute the success rate. With Equation (1), we have
nk = 40, l = 236 and N = 264. We gradually increase the number of differentials
with higher probability from Table 3 to compute the success probability for
every case. As a result, we found that the success rate will increases as |Δ0| = i
increases if 1 ≤ i ≤ 36. The success probability is 85.95% as |Δ0| = 36. If we
add the i-th (37 ≤ i ≤ 91) differential to the set, the success probability will be
reduced. This implies that the i-th (37 ≤ i ≤ 91) differential has no contribution
to reduce the data complexity since its probability is too low. Therefore, in our
attack, we will only use the first 36 differentials in Table 3.

If we use multiple differentials cryptanalysis for PRESENT following Blon-
deau et al., we can choose more output difference values. We can add the 18
differentials in Table 2 to the set of 36 differentials. The input difference values
for the 18 differentials belong to the set of the input difference values for the 36
differentials, so we have |Δ0| = 36 and |Δ16| = 2. Then we get p∗ = 2−62.74 and
p = 2−63. As τ (p < τ < p∗) increases, G(τ, p) will decrease. Even if we take
τ = p∗, G(τ, p) is still larger than (1 − l−1

2nk−2 ), so the attack will not work for

l = 236. Therefore, our structure attack works better for PRESENT than the
multiple differential cryptanalysis presented in [4].

Moreover, we have identified the differential trails with two active S-boxes
per round but more than two active S-boxes in the last round. As a result,
those differentials have no advantage compared with the differentials in Table 3.
Therefore, these differentials do not contribute to improving multiple differential
cryptanalysis for PRESENT.

We will use the structure attack for 18-round PRESENT-80 with the first 36
differentials with p∗ = 2−63.14 and p = 2−64. For the 36 input differences, there
are 10 active S-boxes in the first round which are nibbles 0, 1, 2, 3, 4, 8, 12, 13,
14 and 15, so the S-boxes for the nibbles 5, 6, 7, 9, 10 and 11 are all non-active.

We construct 224 structures of 240 chosen plaintexts each. In each structure,
all the inputs to the 6 non-active S-boxes in the first round take a fixed random
value, while 40 bits of input to 10 active S-boxes take 240 possible values. In all
structures, there are 224 · 239 = 263 pairs for each possible differential. The sum
of the probabilities for all 36 differentials is 2−57.97, so the number of right pairs
is 263 · 2−57.97 = 25.03.

According to the output difference of 16-round differentials, there are two
active S-boxes in round 17 in nibble 2 and 10 whose input difference is 5 and
the possible output differences will be 1, 4, 9, 10, 11, 12 or 13. After the bit
permutation, 8 output bits from the two active S-boxes in round 17 will be one



A Model for Structure Attacks 65

input bit to 8 different S-boxes in round 18 respectively. As the number of non-
zero bits among the 8 output bits is at most 6, the maximum number of active
S-boxes for round 18 is 6 and the minimum number of active S-boxes for round
18 is 2. We denote the number of active S-boxes in round 18 as Na (2 ≤ Na ≤ 6),
the output difference for the j-th S-box in round i as Yi,j , the filter probability

with Na active S-boxes in round 18 as p
(a)
f . We present the filter probability for

different values of Na in Table 1. The filter probability for the ciphertext pairs β
according to active S-boxes can be computed with the sum of column 3 in Table
1, and we get β = 2−12.55.

We now describe in detail the attack procedure of Sect. 3 for 18-round

PRESENT-80. We have |Δ0| = 36,
∑|Δ0|

i=1 pi = 2−57.97, Nst = 24, Np = 40,
Nc = 32, β = 2−12.55, pf = 2−44.55, nk = 40 and l = 236. We denote Ta, Tb, Tc,
Td and T3 as the time complexity in step (a), (b), (c) (d) and 3, respectively,
which are as follows: Ta =264 memory accesses, Tb = 272 memory accesses, Tc =
36 · 232 memory accesses, Td =36 · 231 · 2−12.55 · 240 · (12 + 1

8 ) · 2 = 265.20 1-round
encryptions and T3 =236 · 240 = 276 18-round encryptions. Therefore, the to-
tal time complexity will be 276 18-round encryptions. The data complexity is
264 chosen plaintexts and the memory requirements are 240 128-bit cells for the
hash table, which can be reused for the 240 counters. The success probability is
85.95%.

The ratio of weak key satisfying the sum of the probabilities of the 36 differ-
entials is computed as follows:

rw = 1−
μ−1∑
x=0

Poisson

(
x, 2n−1

Nd∑
j=1

pi

)
= 1−

25.03−1∑
x=0

Poisson
(
x, 263 · 2−57.97) = 0.57.

This means that the number of weak keys for which our attack can succeed is
280 · 0.57 = 279.19 for PRESENT-80. A comparison with the attack of [6] can be
found in Section 2.

5 Attack on Reduced-Round Serpent

Serpent was one of the five AES candidates in the final round; it is an SPN block
cipher with 32 rounds [1]. In our attacks, we consider Serpent from rounds 4 to
11.

In the previous differential cryptanalysis of Serpent in [3], Biham et al. used
the structure attack for Serpent. They identify a differential characteristic for
1
2 + 5 rounds staring from the linear transformation with fewer active S-boxes
(13 active S-boxes) in the first half round, then extend it backwards to 6 rounds.
Moreover, there is only one differential characteristic in each differential due
to the strong avalanche characteristics of Serpent. Biham et al. claim that 214

differential characteristics with probability 2−93 have been found. However, it
can be shown that there are only 213 differential characteristics with probability
2−93. The proof has been omitted due to space constraints.



66 M. Wang et al.

For the differential characteristics, the output difference of S-boxes in the
first round is {0906b010x||00000080x||13000226x||06040030x}. We will use all
the possible non-zero input differences according to the output differences for
the S-boxes (S4) in the first round. According to the differential distribution

table of S4, we have |Δ0| = 235.32 and
∑|Δ0|

i=1 pi = 2−65 which is equal to the
probability of the differential characteristic from round 2 to round 6.

We now apply the structure attack described in Sect. 3. We construct 219

structures of 252 chosen plaintexts each. In each structure, all the inputs to non-
active S-boxes in the first round are fixed to some random value, while the 52
bits of input to all the active S-boxes take all the 252 possible values. There are
219 · 251 = 270 pairs for each differential characteristic. We expect that about
270 ·2−65 = 25 pairs produce the output differenceΔ6. In order to reduce the time
complexity and ensure a higher success probability, 52 bits subkey are guessed
after the data collection process. After retrieving 52 bits of the subkey, we can
use the right pairs to recover the remaining 24 bits of the subkey.

The success probability PS can be computed with Equation (1). HereN = 271,
|Δ0| = 235.32, p∗ = 2−65 · 2−35.32 · 252 = 2−48.32, Ns = 270 · 235.32 · 2−52 = 253.32,
p = 2−52, nk = 52, l = 2, β = 2−26.22, hence we get PS = 89.87%.

The time complexity is 227.10 · 252 · 13/32 = 277.81 one-round encryptions
which is equivalent to 274.99 7-round encryptions, the data complexity is 271

chosen plaintexts and the memory requirements are 252 hash cells of 256 bits
and 252 32-bit counters storing 25 pairs each, hence using about 257 256-bit
words. This attack consequently applies to Serpent with all key sizes of 128,192
and 256 bits.

The attack can be further extended to 8-round Serpent-256. By exhaustively
searching the 128-bit subkey in the last round to decrypt to round 7, the above
attack for 7 rounds can be applied. The time complexity is 2203.81 8-round en-
cryptions, the data complexity is 271 chosen plaintexts and the memory require-
ments are the same as for the 7-round attack. This attack therefore applies only
to Serpent with a 256-bit key.

In comparison, the previous differential attack for 7-round Serpent described
in [3] has a time complexity of 285 memory accesses and a data complexity of 284

chosen plaintexts. For the previous differential attack on 8-round Serpent, the
time complexity is 2213 memory accesses and the data complexity is 284 chosen
plaintexts. This implies that our attacks require much less chosen plaintexts and
improve the time complexity.

It is possible to further reduce the data requirements at the expense of the
time complexity. We have identified another set of differentials for 5.5 rounds
which have 16 instead of 13 active S-boxes in the first round (the sequence of
active S-Boxes is 16–10–6–2–1–5, and there are 241.49 input differences). The
combined probability of these differentials is 2−62.85, leading to a total time
complexity greater than the previously described attack.



A Model for Structure Attacks 67

The ratio of weak keys satisfying the probability of the multiple differentials
is computed as follows:

rw = 1−
μ−1∑
x=0

Poisson

⎛⎝x, 2n−1
Nd∑
j=1

pi

⎞⎠ = 1−
25−1∑
x=0

Poisson
(
x, 270 · 2−65

)
= 0.52.

This means that this attack is expected to work with about half of all possible
keys, independent of the key size.

6 Conclusion

In this paper, we give a general model for the structure attack, providing guid-
ance on how to choose the set of differentials to minimize the time complexity.
As concrete applications of our model, we present structure attacks on 18-round
PRESENT and improve the previous differential cryptanalytic results for the
Serpent block cipher. To the best of our knowledge, those attacks are the best
known differential attacks on these two block ciphers.

Comparing our model for structure attacks against the general model for mul-
tiple differential cryptanalysis proposed in [4], we conclude that the limitation for
the set of input differences imposed by the model of [4] excludes many valuable
differentials. We show that in structure attacks, a very important – and often
particularly efficient – subclass of multiple differential attacks, this restriction
can be relaxed. In our model presented in Sect. 3, the analysis of an attack can
be carried out without this assumption.

The relevance of the limitation imposed by the condition of Definition 1 is
additionally supported by our concrete application of the structure attack to
PRESENT, which is more efficient than the multiple differential cryptanalysis
with different output differences described in [4] and [6] where this condition was
necessary. By removing this limitation, we have identified new sets of differentials
that improve on the previous analysis.

It remains an interesting open question to find a block cipher other than
PRESENT for which multiple differential cryptanalysis with multiple output
differences produces superior results to the structure attack. Furthermore, our
attack model can be used as a guidance to improve differential attacks for other
algorithms. Applying it to other block ciphers than PRESENT or Serpent will
be subject of future work.

Acknowledgements. We would like to thank Vincent Rijmen for valuable
advice and Kerem Varici for his support for the work on PRESENT. The work
in this paper was supported in part by the European Commission through the
ICT programme under contract ICT-2007-216676 ECRYPT II and in part by
the Concerted Research Action (GOA) TENSE 2011 of the Flemish Government,
the IAP Program P6/26 BCRYPT of the Belgian State (Belgian Science Policy)
and by the Research Fund KU Leuven (project OT/08/027).



68 M. Wang et al.

References

1. Anderson, R., Biham, E., Knudsen, L.R.: A Proposal for the Advanced Encryption
Standard. NIST AES proposal (1998)

2. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. Jour-
nal of Cryptology 4(1), 3–72 (1991)

3. Biham, E., Dunkelman, O., Keller, N.: The Rectangle Attack - Rectangling the
Serpent. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 340–
357. Springer, Heidelberg (2001)

4. Blondeau, C., Gérard, B.: Multiple Differential Cryptanalysis: Theory and Practice.
In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 35–54. Springer, Heidelberg (2011)

5. Blondeau, C., Gérard, B.: Private communication: The 561 Differentials (2011)
6. Blondeau, C., Gérard, B.: Multiple Differential Cryptanalysis: Theory and Practice

(Corrected). Cryptology ePrint Archive: Report 2011/115
7. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,

M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

8. Cho, J.: Linear Cryptanalysis of Reduced-Round PRESENT. In: Pieprzyk, J. (ed.)
CT-RSA 2010. LNCS, vol. 5985, pp. 302–317. Springer, Heidelberg (2010)

9. Collard, B., Standaert, F.-X.: A Statistical Saturation Attack against the Block
Cipher PRESENT. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp.
195–210. Springer, Heidelberg (2009)

10. Daemen, J., Rijmen, V.: Probability distributions of correlations and differentials
in block ciphers. Journal of Mathematical Cryptology 1(3), 221–242 (2007)

11. Daemen, J., Rijmen, V.: Probability distributions of Correlation and Differentials
in Block Ciphers (2005), http://eprint.iacr.org/2005/212

12. Dunkelman, O., Indesteege, S., Keller, N.: A Differential-Linear Attack on 12-
Round Serpent. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT
2008. LNCS, vol. 5365, pp. 308–321. Springer, Heidelberg (2008)

13. Lai, X., Massey, J.L.: Markov Ciphers and Differential Cryptanalysis. In: Davies,
D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 17–38. Springer, Heidelberg
(1991)

14. Leander, G.: Small scale variants of the block cipher PRESENT. Cryptology ePrint
Archive, Report 2010/143 (2010)

15. Matsui, M., Nakajima, J.: On the Power of Bitslice Implementation on Intel Core2
Processor. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727,
pp. 121–134. Springer, Heidelberg (2007)

16. Nakahara Jr., J., Sepehrdad, P., Zhang, B., Wang, M.: Linear (Hull) and Algebraic
Cryptanalysis of the Block Cipher PRESENT. In: Garay, J.A., Miyaji, A., Otsuka,
A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 58–75. Springer, Heidelberg (2009)

17. Ohkuma, K.: Weak Keys of Reduced-Round PRESENT for Linear Cryptanaly-
sis. In: Jacobson Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS,
vol. 5867, pp. 249–265. Springer, Heidelberg (2009)

18. Selçuk, A.A., Biçak, A.: On Probability of Success in Linear and Differential Crypt-
analysis. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576,
pp. 174–185. Springer, Heidelberg (2003)

19. Selçuk, A.A.: On Probability of Success in Linear and Differential Cryptanalysis.
Journal of Cryptology 21(1), 131–147 (2008)

20. Wang, M.: Differential Cryptanalysis of Reduced-Round PRESENT. In: Vaudenay,
S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 40–49. Springer, Heidelberg
(2008)

http://eprint.iacr.org/2005/212


A Methodology for Differential-Linear

Cryptanalysis and Its Applications�

(Extended Abstract)

Jiqiang Lu

Institute for Infocomm Research,
Agency for Science, Technology and Research

1 Fusionopolis Way, #19-01 Connexis, Singapore 138632
lvjiqiang@hotmail.com, jlu@i2r.a-star.edu.sg

Abstract. In 1994 Langford and Hellman introduced a combination of
differential and linear cryptanalysis under two default independence as-
sumptions, known as differential-linear cryptanalysis, which is based on
the use of a differential-linear distinguisher constructed by concatenat-
ing a linear approximation with a (truncated) differential with probabil-
ity 1. In 2002, by using an additional assumption, Biham, Dunkelman
and Keller gave an enhanced version that can be applicable to the case
when a differential with a probability of smaller than 1 is used to con-
struct a differential-linear distinguisher. In this paper, we present a new
methodology for differential-linear cryptanalysis under the original two
assumptions implicitly used by Langford and Hellman, without using
the additional assumption of Biham et al. The new methodology is more
reasonable and more general than Biham et al.’s methodology, and apart
from this advantage it can lead to some better differential-linear cryptan-
alytic results than Biham et al.’s and Langford and Hellman’s method-
ologies. As examples, we apply it to attack 10 rounds of the CTC2 block
cipher with a 255-bit block size and key, 13 rounds of the DES block
cipher, and 12 rounds of the Serpent block cipher. The new methodol-
ogy can be used to cryptanalyse other block ciphers, and block cipher
designers should pay attention to this new methodology when designing
a block cipher.

Keywords: Block cipher, CTC2, DES, Serpent, Differential cryptanal-
ysis, Linear cryptanalysis, Differential-linear cryptanalysis.

1 Introduction

Differential cryptanalysis was introduced in 1990 by Biham and Shamir [8]. Linear
cryptanalysis was introduced in 1992 by Matsui and Yamagishi [31]. A differen-
tial cryptanalysis attack is based on the use of one or more so-called differentials,

� An earlier version of this work appeared in 2010 as part of Cryptology ePrint Archive
Report 2010/025 [28], which was done when the author was with Eindhoven Uni-
versity of Technology (The Netherlands) under the support of the Dutch Sentinels
project PINPASJC (No. TIF.6687).

A. Canteaut (Ed.): FSE 2012, LNCS 7549, pp. 69–89, 2012.
c© International Association for Cryptologic Research 2012



70 J. Lu

Table 1. Our and previous main cryptanalytic results on CTC2 and DES

Cipher Attack Technique Rounds Data Time Success Rate Source

CTC2 Algebraic [12] 6 4CP 2253Enc. not specified [11]

(255-bit Differential 7† 215CP 215Enc. not specified [15]
version) Differential-linear 8† 237CP 237Enc. 61.8% [15]

10 2142CP 2207Enc. 99.9% Section 5.4

DES Differential full 247.2CP 237Enc. not specified [10]

Linear full 243KP 247Enc. 85% [29]

Davis’s attack [13] full 250KP 250Enc. 51% [4]

Differential-linear 8 768CP 240Enc. 95% [26]

9 215.75CP 238Enc. 88.8% [14]

10 229.66CP 244Enc. 97% Section 4.2

13 252.1CP 254.2Enc. 99% Section 4.2

†: There is a flaw; see Section 5.2 for detail.

and a linear cryptanalysis attack is based on the use of one or more so-called
linear approximations. Both the cryptanalytic methods were used to attack the
full Data Encryption Standard (DES) [32] algorithm faster than exhaustive key
search [10, 29].

In 1994 Langford and Hellman [26] introduced a combination of differential
and linear cryptanalysis under two default independence assumptions, known
as differential-linear cryptanalysis, and they applied it to break 8-round DES.
Such an attack is constructed on a so-called differential-linear distinguisher; a
differential-linear distinguisher treats a block cipher as a cascade of two sub-
ciphers, and it uses a linear approximation for a sub-cipher and, for the other
sub-cipher it uses a differential (or a truncated differential [22]) with a one prob-
ability that does not affect the bit(s) concerned by the input mask of the linear
approximation. In 2002, by using an additional assumption Biham, Dunkelman
and Keller [5] introduced an enhanced version of differential-linear cryptanaly-
sis, which is applicable to the case when a differential with a smaller probability
is used to construct a differential-linear distinguisher; and they applied the en-
hanced version to break 9-round DES. Differential-linear cryptanalysis has been
used to yield the best currently published cryptanalytic results for a number of
state-of-the-art block ciphers [5, 6, 15, 16].

In this paper, we present a new methodology for differential-linear cryptanaly-
sis under the two default assumptions implicitly used by Langford and Hellman,
without using the additional assumption due to Biham et al. The new method-
ology is more reasonable and more general than Biham et al.’s methodology, and
it can lead to some better differential-linear cryptanalytic results than Biham et
al.’s and Langford and Hellman’s methodologies. As examples, we apply the new
methodology to mount differential-linear attacks on 10 rounds of the CTC2 [11]
block cipher with a 255-bit block size and key, 13 rounds of DES, and 12 rounds



A Methodology for Differential-Linear Cryptanalysis and Its Applications 71

of the Serpent [1,2] block cipher. In terms of the numbers of attacked rounds: The
10-round CTC2 attack is the first published cryptanalytic attack on the version
of CTC2; the 13-round DES attack is much better than any previously published
differential-linear cryptanalytic results for DES, though it is inferior to the best
previously published cryptanalytic results for DES; and the 12-round Serpent
attack matches the best previously published cryptanalytic result for Serpent,
that was obtained under Biham et al.’s methodology. Due to page constraints,
we will only present the attacks on CTC2 and DES in this paper, and give the
attack on Serpent in the full version of this paper (which contains more material).
Table 1 summarises both our and previous main cryptanalytic results on CTC2
and DES, where CP and KP refer respectively to the required numbers of chosen
plaintexts and known plaintexts, and Enc. refers to the required number of
encryption operations of the relevant version of CTC2 or DES.

The remainder of the paper is organised as follows. In the next section we
give the notation used throughout the paper and briefly describe differential
and linear cryptanalysis. In Section 3 we review Langford and Hellman’s and
Biham et al.’s methodologies and give our methodology for differential-linear
cryptanalysis. In Sections 4–5 we present our cryptanalytic results on DES and
CTC2, respectively. We discuss a few possible extensions to our methodology in
Section 6. Section 7 concludes this paper.

2 Preliminaries

In this section we describe the notation, differential and linear cryptanalysis.

2.1 Notation

In the following descriptions, we assume that a number without a prefix is in
decimal notation, and a number with prefix 0x is in hexadecimal notation, unless
otherwise stated. The bits of a value are numbered from right to left, the leftmost
bit is the most significant bit, and the rightmost bit is the least significant bit,
except in the case of DES, where we use the same numbering notation as in
FIPS-46 [32]. We use the following notation.

⊕ bitwise logical exclusive OR (XOR) of two bit strings of the same length
� dot product of two bit strings of the same length
|| string concatenation
≪ left rotation of a bit string
◦ functional composition. When composing functions X and Y, X ◦Y den-

otes the function obtained by first applying X and then applying Y
ej a 255-bit value with zeros everywhere except for bit position j, (0 ≤ j ≤

254)
ei0,···,ijthe 255-bit value equal to ei0 ⊕ · · · ⊕ eij , (0 ≤ i0, · · · , ij ≤ 254)
E an n-bit block cipher when used with a specific user key



72 J. Lu

2.2 Differential Cryptanalysis

Differential cryptanalysis [8] takes advantage of how a specific difference in a
pair of inputs of a cipher can affect a difference in the pair of outputs of the
cipher, where the pair of outputs are obtained by encrypting the pair of inputs
using the same key. The notion of difference can be defined in several ways;
the most widely discussed is with respect to the XOR operation. The difference
between the inputs is called the input difference, and the difference between
the outputs of a function is called the output difference. The combination of the
input difference and the output difference is called a differential. The probability
of a differential is defined as follows.

Definition 1 (from [27]). If α and β are n-bit blocks, then the probability of
the differential (α, β) for E, written Δα→ Δβ, is defined to be

PrE(Δα→ Δβ) = Pr
P∈{0,1}n

(E(P )⊕ E(P ⊕ α) = β).

The following result follows trivially from Definition 1:

Proposition 1 (from [27]). If α and β are n-bit blocks, then

PrE(Δα→ Δβ) =
|{x|E(x) ⊕ E(x ⊕ α) = β, x ∈ {0, 1}n}|

2n
.

For a random function, the expected probability of a differential for any pair
(α, β) is 2−n. Therefore, if PrE(Δα → Δβ) is larger than 2−n, we can use the
differential to distinguish E from a random function, given a sufficient number
of chosen plaintext pairs.

Sometimes, we simply write Δα
E→ Δβ to denote the differential Δα → Δβ

for E in this paper.

2.3 Linear Cryptanalysis

Linear cryptanalysis [29, 31] exploits correlations between a particular linear
function of the input blocks and a second linear function of the output blocks.
The combination of the two linear functions is called a linear approximation.
The most widely used linear function involves computing the bitwise dot product
operation of the block with a specific binary vector (the specific value combined
with the input blocks may be different from the value applied to the output
blocks). The value combined with the input blocks is called the input mask, and
the value applied to the output blocks is called the output mask. The probability
of a linear approximation is defined as follows.

Definition 2 (from [27]). If α and β are n-bit blocks, then the probability of
the linear approximation (α, β) for E, written Γα→ Γβ, is defined to be

PrE(Γα→ Γβ) = Pr
P∈{0,1}n

(P � α = E(P )� β).



A Methodology for Differential-Linear Cryptanalysis and Its Applications 73

We refer to below the dot product P � α as the input parity, and the dot
product E(P ) � β as the output parity. The following result follows trivially
from Definition 2:

Proposition 2 (from [27]). If α and β are n-bit blocks, then

PrE(Γα→ Γβ) =
|{x|x� α = E(x) � β, x ∈ {0, 1}n}|

2n
.

For a random function, the expected probability of a linear approximation for
any pair (α, β) is 1

2 . The bias of a linear approximation Γα→ Γβ, denoted by ε,
is defined to be ε = |PrE(Γα→ Γβ)− 1

2 |. Thus, if the bias ε is sufficiently large,
we can use the linear approximation to distinguish E from a random function,
given a sufficient number of matching plaintext-ciphertext pairs.

2.4 General Assumptions Used in Practice

Propositions 1 and 2 give the accurate probability values of a differential and
a linear approximation from a theoretical point of view. However, it is usually
hard to apply them in practice to a block cipher with a large block size, for
example, n = 64 or 128 which is currently being widely used in reality, and even
harder when the differential or linear approximation operates on many rounds of
the cipher. In practice, for a Markov block cipher [24], a multi-round differential
(or linear approximation) is usually obtained by concatenating a few one-round
differential characteristics (respectively, linear approximations), and the prob-
ability of the multi-round differential (or linear approximation) is regarded as
the product (respectively, the piling-up function [29]) of the probabilities of the
one-round differential characteristics (respectively, linear approximations) under
the following Assumption 1.

Assumption 1. The involved round functions behave independently.

We note that one may argue the correctness of Assumption 1 and may use a
different assumption, for example, many people would like to use the assump-
tion that the round keys are independent and uniformly distributed; however,
it is not accurate, either, for generally the round keys are actually dependent,
being generated from a global user key under the key schedule algorithm of the
cipher. Anyway, all such assumptions require us to treat the involved rounds as
independent. As mentioned in [17], this is “most often not exactly the case, but
as often it is a good approximation”.

Differential and linear cryptanalyses generally treat a basic unit of input (i.e.
a chosen-plaintext pair for differential cryptanalysis; a known-plaintext for linear
cryptanalysis) as a random variable, and assume that given a set of inputs of the
basic unit, the inputs that satisfy the required property can be approximated by
an independent distribution, as followed in [9, 29].



74 J. Lu

3 Differential-Linear Cryptanalysis: Previous and Our
Methodologies

In this section we first review previous methodologies on differential-linear crypt-
analysis, namely Langford and Hellman’s and Biham et al.’s methodologies, and
then give our new methodology, followed by a few implications. First observe
that for simplicity we assume that the probability for a linear approximation
with bias ε is 1

2 + ε in all the following descriptions; but the same results can be
obtained when the probability is 1

2 − ε.

3.1 Langford and Hellman’s Methodology

In 1994 Langford and Hellman [26] introduced differential-linear cryptanalysis as
a combination of differential and linear cryptanalysis, which is based on the use of
a differential-linear distinguisher. To construct a differential-linear distinguisher,
they treated E as a cascade of two sub-ciphers E0 and E1, where E = E0 ◦ E1.
A differential-linear distinguisher uses a (truncated) differential Δα→ Δβ with
probability 1 for E0 and a linear approximation Γγ → Γδ with bias ε for E1,
where the output difference β of the (truncated) differential has a zero value in
the bit positions concerned by the input mask of the linear approximation (thus
β�γ = 0 holds). Let P be a plaintext chosen uniformly at random from {0, 1}n.
Thus, we have E0(P )� γ = E0(P ⊕ α) � γ with probability 1. The differential-
linear distinguisher is concerned with the event δ � E(P ) = δ � E(P ⊕ α); and
under Assumption 1 and the following Assumption 2 it has a probability of
Pr(δ � E(P ) = δ � E(P ⊕ α)) = (12 + ε)× (12 + ε) + (12 − ε)× (12 − ε) = 1

2 + 2ε2.

Assumption 2. The two inputs E0(P ) and E0(P ⊕α) of the linear approxima-
tion for E1 behave as independent inputs with respect to the linear approximation.

Note that E(P ) = E1(E0(P )) and E(P ⊕ α) = E1(E0(P ⊕ α)) in the above de-
scriptions. Assumption 2 is somewhat like assuming an independent distribution
for plaintext pairs generated from a particular plaintext structure with certain
property in differential cryptanalysis.

By contrast, for a random function, the expected probability of a differential-
linear distinguisher is 1

2 . Therefore, if the bias |Pr(δ�E(P ) = δ�E(P⊕α))− 1
2 | =

2ε2 is sufficiently large, we can distinguish E from a random function.

3.2 Biham et al.’s Methodology

A differential-linear distinguisher plays a fundamental role in a differential-linear
cryptanalysis attack. In 2002 Biham, Dunkelman and Keller [5] presented an
enhanced version to make a differential-linear distinguisher cover more rounds
of a block cipher, so that an attacker can potentially break more rounds of the
cipher. Biham et al.’s enhanced version includes the case when the (truncated)
differential Δα→ Δβ has a smaller probability than 1, p say, with β meeting the



A Methodology for Differential-Linear Cryptanalysis and Its Applications 75

condition β � γ = 0.1 A slightly revised version was given in [14]. They applied
Langford and Hellman’s analysis described above when E0(P )⊕E0(P ⊕α) = β,
and used the following Assumption 3 for the cases where E0(P )⊕E0(P⊕α) �= β:2

Assumption 3. The output parities δ�E(P ) and δ�E(P ⊕α) have a uniform
and independent distribution in {0, 1} for the cases where E0(P )⊕E0(P⊕α) �= β.

As a result, under Assumptions 1, 2 and 3, Biham et al. got Pr(δ � E(P ) =
δ � E(P ⊕ α)) = p× (12 + 2ε2) + (1− p)× 1

2 = 1
2 + 2pε2.

Finally, they concluded that if the bias 2pε2 is sufficiently large, the distin-
guisher can be used as the basis of a differential-linear attack to distinguish E
from a random function. Roughly, the attack has a data complexity of about
O(p−2ε−4).

Note. We learnt from the comments of an anonymous reviewer that the same
methodology appeared earlier in Langford’s PhD thesis [25], (which seems to be
not publicly accessible). For simplicity, in this paper we use the phrase “Biham
et al.’s methodology” to express this methodology, but hope the reader to keep
in mind that Langford proposed the same methodology a few years earlier.

3.3 Our Methodology

In summary, the differential-linear distinguishers described above are concerned
with the correlation between a pair of output parities, where the pair of output
parities are obtained by applying a linear function (e.g. bitwise dot product with
δ) to the outputs of a pair of input blocks with difference α (under the same
key). The combination of the input difference and the linear function is called a
differential-linear distinguisher. More formally, we define the probability of the
differential-linear distinguisher as follows.

Definition 3. If α and δ are n-bit blocks, then the probability of the differential-
linear distinguisher (α, δ) for E, written Δα→ Γδ, is defined to be

PrE(Δα→ Γδ) = Pr
P∈{0,1}n

(E(P )� δ = E(P ⊕ α)� δ).

The following result follows trivially from Definition 3:

Proposition 3. If α and δ are n-bit blocks, then

PrE(Δα→ Γδ) =
|{x|E(x) � δ = E(x ⊕ α)� δ, x ∈ {0, 1}n}|

2n
.

1 A more general condition is β � γ = c, where c ∈ {0, 1} is a constant. Without loss
of generality, we consider the case with c = 0 throughout this paper.

2 We note that Biham et al. used a different assumption when reviewing the enhanced
version in a few other papers, [7] say, where they assumed that E0(P )� γ = E0(P ⊕
α)� γ holds with half a chance for the cases where E0(P )⊕E0(P ⊕α) �= β, yielding
the same probability value 1

2
+2pε2 as under Assumption 3. We treat this assumption

as Assumption 3, though they are different.



76 J. Lu

For a random function, the expected probability of a differential-linear distin-
guisher for any combination (α, δ) is 1

2 . Similarly, the bias of the differential-linear
distinguisher Δα → Γδ is defined to be |PrE(Δα → Γδ) − 1

2 |. Thus, if the bias
is sufficiently large, we can use the differential-linear distinguisher to distinguish
E from a random function, given a sufficient number of chosen plaintext pairs.

In practice, it is usually infeasible to compute the accurate probability of a
differential-linear distinguisher Δα→ Γδ by Proposition 3, and we have to make
use of some assumptions to approximate it, like Biham et al.’s methodology
described in Section 3.2. However, Biham et al.’s methodology uses the three
assumptions as hypotheses and works only when Assumption 3 holds; otherwise
it may give probability values that are highly inaccurate in some situations;
for example, let’s intuitively consider the naive situation where the differential
Δα → Δβ has probability 1

2 and meets β � γ = 0, and all the other possible

differentials {Δα → Δβ̂} meet β̂ � γ = 1. Such an example can be easily built
for a practical block cipher, DES say. The differential Δα → Δβ contributes
1
2 [(

1
2 + ε) × (12 + ε) + (12 − ε) × (12 − ε)] = 1

4 + ε2 to the probability of the

distinguisher, and the other differentials {Δα → Δβ̂} contribute 1
2 [(

1
2 + ε) ×

(12 − ε) + (12 − ε)× (12 + ε)] = 1
4 − ε2, which also cause a bias, but in a negative

way, canceling the bias due to Δα→ Δβ. So the real bias of the distinguisher is
0, that is, the distinguisher has no cryptanalytic significance. But if we applied
Biham et al.’s methodology in this situation, the distinguisher would have a bias
of 2 × 1

2 × ε2 = ε2, and thus the distinguisher would be useful (if ε2 is large
enough); but nevertheless it is useless in fact. Notice that this case is not truly a
counterexample to Biham et al.’s methodology, for it is clear that Assumption 3
does not hold for it, but it suggests that we should be cautious about using
Assumption 3 and actually, we should be careful with using any assumption,
and it is preferable to use as few assumptions as possible.

Biham, Dunkelman and Keller used a heuristic way to approximate the proba-
bility of a differential-linear distinguisher. We make an analysis for the probabil-
ity of a differential-linear distinguisher from a mathematical point, and obtain
a new methodology under only Assumptions 1 and 2. Our result is given as
Theorem 1, followed by a proof.

Theorem 1. An n-bit block cipher E is represented as a cascade of two sub-
ciphers E0 and E1, where E = E0 ◦ E1. If α (�= 0) is an input difference for
E0, Γγ → Γδ is a linear approximation with bias ε for E1, and the sum of the
probabilities for the differentials {Δα → Δβ|PrE0(Δα → Δβ) > 0, γ � β =
0, β ∈ {0, 1}n} is p̂ (=

∑
γ�β=0PrE0(Δα → Δβ)), then under Assumptions 1

and 2 the probability of the differential-linear distinguisher Δα→ Γδ is

Pr
P∈{0,1}n

(E(P ) � δ = E(P ⊕ α)� δ) =
1

2
+ 2(2p̂− 1)ε2.

Proof. Given the input difference α for E0, there are one or more possible output
differences {β|PrE0(Δ α → Δβ) > 0, β ∈ {0, 1}n}; these output differences can
be classified into two sets: one is {β|γ�β = 0,PrE0(Δα→ Δβ) > 0, β ∈ {0, 1}n},
and the other is {β|γ � β = 1,PrE0(Δα→ Δβ) > 0, β ∈ {0, 1}n}.



A Methodology for Differential-Linear Cryptanalysis and Its Applications 77

Let P be a plaintext chosen uniformly at random from {0, 1}n. Then, under
Assumptions 1 and 2 we have

Pr(E(P ) � δ = E(P ⊕ α)� δ|E0(P )⊕ E0(P ⊕ α) = β, γ � β = 0)

= Pr(E0(P )� γ = E(P )� δ,E0(P ⊕ α)� γ = E(P ⊕ α)� δ|
E0(P )⊕ E0(P ⊕ α) = β, γ � β = 0) +

Pr(E0(P )� γ �= E(P )� δ,E0(P ⊕ α)� γ �= E(P ⊕ α)� δ|
E0(P )⊕ E0(P ⊕ α) = β, γ � β = 0)

= (
1

2
+ ε)× (

1

2
+ ε) + [1− (

1

2
+ ε)]× [1− (

1

2
+ ε)]

=
1

2
+ 2ε2,

and

Pr(E(P ) � δ = E(P ⊕ α)� δ|E0(P )⊕ E0(P ⊕ α) = β, γ � β = 1)

= Pr(E0(P )� γ = E(P )� δ,E0(P ⊕ α)� γ �= E(P ⊕ α)� δ|
E0(P )⊕ E0(P ⊕ α) = β, γ � β = 1) +

Pr(E0(P )� γ �= E(P )� δ,E0(P ⊕ α)� γ = E(P ⊕ α)� δ|
E0(P )⊕ E0(P ⊕ α) = β, γ � β = 1)

= (
1

2
+ ε)× [1− (

1

2
+ ε)] + [1− (

1

2
+ ε)]× (

1

2
+ ε)

=
1

2
− 2ε2.

Next, under Assumptions 1 and 2 we can compute the probability of the
differential-linear distinguisher as follows.

Pr(E(P )� δ = E(P ⊕ α)� δ)

=
∑

β∈{0,1}n,Y ∈{0,1}
Pr(E(P )� δ = E(P ⊕ α)� δ,E0(P )� γ ⊕ E0(P ⊕ α)� γ=Y,

E0(P )⊕ E0(P ⊕ α) = β)

=
∑

β∈{0,1}n,Y ∈{0,1}
Pr(E(P )� δ = E(P ⊕ α)� δ|E0(P )� γ ⊕ E0(P ⊕ α)� γ=Y,

E0(P )⊕ E0(P ⊕ α) = β)×
Pr(E0(P )� γ ⊕ E0(P ⊕ α)� γ = Y,E0(P )⊕ E0(P ⊕ α) = β)

=
∑

β∈{0,1}n

Pr(E(P )� δ = E(P ⊕ α)� δ|E0(P )� γ ⊕ E0(P ⊕ α)� γ = 0,

E0(P )⊕ E0(P ⊕ α) = β)× Pr(E0(P )� γ ⊕ E0(P ⊕ α)� γ = 0,

E0(P )⊕ E0(P ⊕ α) = β) +∑
β∈{0,1}n

Pr(E(P )� δ = E(P ⊕ α)� δ|E0(P )� γ ⊕ E0(P ⊕ α)� γ = 1,



78 J. Lu

E0(P )⊕ E0(P ⊕ α) = β)× Pr(E0(P )� γ ⊕ E0(P ⊕ α)� γ = 1,

E0(P )⊕ E0(P ⊕ α) = β) (1)

= (
1

2
+ 2ε2)×

∑
β∈{0,1}n,γ�β=0

Pr(E0(P )⊕ E0(P ⊕ α) = β) +

(
1

2
− 2ε2)×

∑
β∈{0,1}n,γ�β=1

Pr(E0(P )⊕ E0(P ⊕ α) = β)

=
1

2
+ 2(2p̂− 1)ε2. �

Consequently, the bias of the differential-linear distinguisher Δα→ Γδ is

| Pr
P∈{0,1}n

(E(P )� δ = E(P ⊕ α)� δ)− 1

2
| = 2|2p̂− 1|ε2.

3.4 Implications

Biham et al.’s methodology requires Assumptions 1, 2 and 3, while our method-
ology requires only Assumptions 1 and 2. Thus, our methodology is more rea-
sonable than Biham et al.’s methodology.

Biham et al.’s methodology holds only when Assumption 3 holds, and under
the situation we have p̂ = p + (1 − p)12 = 1

2 + p
2 , meaning that the probability

value obtained using Biham et al.’s methodology equals that obtained using our
methodology. Thus, when Biham et al.’s methodology holds, our methodology
always holds. However, our methodology holds under some situations where
Biham et al.’s methodology does not hold, for example, it works for the naive
situation discussed in Section 3.3 where p̂ = p = 1

2 . Therefore, our methodology
is more general than Biham et al.’s methodology. (When Langford and Hellman’s
methodology holds, our methodology always holds as well.)

Our methodology still requires Assumptions 1 and 2. Assumption 1 is ex-
tensively used in and is commonly regarded as necessary for differential and
linear cryptanalysis in practice. Assumption 2 seems irremovable to get such a
simple and practical probability formula; otherwise, the formula could not be
so simple, but a more accurate version can be easily obtained from our above
reasonings, for instance, from Eq. (1), though it is complicated and appears to
be hardly applicable in practice. The assumptions mean that, in some cases, the
probability of a differential-linear distinguisher may be overestimated or under-
estimated, and so is the success probability of the attack; however, computer
experiments [6, 16, 23, 26, 29, 30] have shown that the assumptions work well in
practice for some block ciphers. Anyway, it seems reasonable to take the worst
case assumption from the point of the user of a cipher. We suggest that if pos-
sible an attacker should check the validity of these assumptions when applying
them to a specific cipher.

Our result shows that using only one (truncated) differential satisfying β�γ = 0
is not sufficient in most situations, and it is likely to be not sufficient in the general
situation;we should use all the differentials satisfyingβ�γ = 0 instead.Thismakes



A Methodology for Differential-Linear Cryptanalysis and Its Applications 79

the distinguisher harder and even impossible to construct in practice, due to a large
number of possible output differences. Anyway, we should use at least those differ-
entials with a significant contribution to reduce the deviation if we are able to do
so. Biham et al.’s methodology suggests that if the bias of the linear approxima-
tion keeps constant, the larger p is, the bigger is the bias of the distinguisher. Now,
we know that may be not true in the general situation: A differential with a bigger
probability will not necessarily result in a distinguisher with a bigger bias.

When constructing a differential-linear distinguisher, in Biham et al.’s method-
ology the attacker first chooses a (truncated) differential that meets the condition
(as followed in [5, 6, 15, 16], in practice the output difference of the differential has
zeros in the bit positions concernedby the inputmask of the linear approximation),
then calculates the probability of the differential, and finally takes this probability
as the value of p. Our new methodology suggests a different format, that is, com-
puting p̂. Once the linear approximation and the input difference of the differentials
are chosen, that how many rounds can be constructed for a distinguisher depends
to some extent on the computational power available for the attacker.

Our new methodology can lead to some better differential-linear cryptanalytic
results than Biham et al.’s and Langford and Hellman’s methodologies, as to be
demonstrated by its applications to the block ciphers DES and CTC2 in the
following two sections. Before further proceeding, observe that DES is a Markov
cipher under the XOR difference notion [24], and similarly we can learn that
CTC2 as well as Serpent is a Markov cipher under the XOR difference notion.

At last, to be conservative, we would like to suggest that one should pay
attention to all these methodologies, for a real situation is usually hard to predict,
and it may make the Assumption 3 for Biham et al.’s methodology hold.

4 Application to the DES Block Cipher

The DES block cipher is well known to both academia and industry, which has a
64-bit block size, a 56-bit user key, and a total of 16 rounds. We refer the reader
to [32] for the specifications of DES.

In 1994, under the two default Assumptions 1 and 2 Langford and Hellman [26]
used their methodology to obtain a 6-round differential-linear distinguisher of
DES, and finally applied it to break 8-round DES; the attack recovers 16 key
bits with a time complexity of 214.6 8-round DES encryptions, so it would take
240 encryptions to recover the remaining 40 key bits with an exhaustive search,
meaning that a total of approximately 240 8-round DES encryptions are required
to recover the whole 56 key bits (Note that there might exist an efficient way to
obtain the remaining key bits). In 2002, under Assumptions 1, 2 and 3, Biham,
Dunkelman and Keller [5] described a 7-round differential-linear distinguisher
of DES using their enhanced methodology, and finally gave differential-linear
attacks on 8 and 9-round DES; and an improved version of the 9-round attack
appeared in pages 108–111 of [14]. Their attack recovers 18 key bits with a time
complexity of 229.17 9-round DES encryptions, the remaining 38 key bits would
take 238 encryptions to recover with a key exhaustion, and thus it has a total of
approximately 238 9-round DES encryptions to recover the whole 56 key bits.



80 J. Lu

Nevertheless, we find that our new methodology enables us to construct 7
and 8-round differential-linear distinguishers of DES based on the same 3-round
linear approximation as used in the previous differential-linear cryptanalysis of
DES [5,26]; the 8-round distinguisher can allow us to break 10-round DES. More
importantly, we are able to construct a 11-round differential-linear distinguisher
of DES, and finally use it as the basis of a differential-linear attack on 13-round
DES. Below we describe the 11-round differential-linear distinguisher and our
attack on 13-round DES. We write the subkey used in the Sl S-box of Round m
as Km,l, where 1 ≤ m ≤ 16, 1 ≤ l ≤ 8.

4.1 A 11-Round Differential-Linear Distinguisher with Bias 2−24.05

The 11-round differential-linear distinguisher is made up of a 6-round linear
approximation Γγ → Γδ with bias 1.95 × 2−9 ≈ 2−8.04 and all the 5-round
differentials {Δα → Δβ} with Δα = 0x4000000000000000. The 6-round lin-
ear approximation Γγ → Γδ is 0x0000000001040080 → 0x2104008000008000,
(which is the best 6-round linear approximation given in [29]). Let’s compute
the probability of the 11-round differential-linear distinguisher using our new
methodology.

We first consider the 5-round differentials {Δα → Δβ}. There is a one
probability in the first round, meaning that the first round is bypassed by
the differential characteristic with probability 1. After the E expansion oper-
ation of the second round, 0x4 in Δα becomes 0x8, which enters the S1 S-
box of the second round and generates 11 differences after the S-box: {ω|ω =
0x3, 0x5, 0x6, 0x7, 0x9, 0xA, 0xB, 0xC, 0xD, 0xE, 0xF}; the probabilities for the
output differences are given in the second column of Table 2. We represent ω as
a concatenation of four one-bit variables a||b||c||d, where a, b, c, d ∈ {0, 1}. Thus,
the right half of the third round has the input difference 00000000a0000000b00000
c0000000d0 in binary notation, and this input difference can make at most 6 S-
boxes of the third round active: S2, S3, S4, S5, S6, S8.

In the third round, the S2 S-box has an input difference 00000a in binary
notation, the S3 S-box has an input difference 0a0000 in binary notation, the
S4 S-box has an input difference 00000b in binary notation, the S5 S-box has an
input difference 0b0000 in binary notation, the S6 S-box has an input difference
000c00 in binary notation, and the S8 S-box has an input difference 000d00 in
binary notation. We denote respectively by x0, x1, x2 the most significant bit,
the second most significant bit and the second least significant bit of the output
difference of the S2 S-box, by x3||x4||x5||x6 the output difference of the S3 S-
box, by x7, x8, x9 the second most significant bit, the second least significant
bit and the least significant bit of the output difference of the S4 S-box, by
x10||x11||x12||x13 the output difference of the S5 S-box, by x14, x15, x16 the most
significant bit, the second most significant bit and the second least significant bit
of the output difference of the S6 S-box, and by x17, x18, x19 the most significant
bit, the second least significant bit and the least significant bit of the output
difference of the S8 S-box.



A Methodology for Differential-Linear Cryptanalysis and Its Applications 81

Table 2. Probabilities for the eleven output differences in {ω}

ω PrS1
(Δ0x8 → Δω) Pr(Δβω � Γγ = 0|Δ0x8 → Δω)

0x3 12
64

0.49779944866895676

0x5 8
64

0.49595199525356293

0x6 8
64

0.50433863041689619

0x7 4
64

0.50256029706542904

0x9 6
64

0.50855094581311278

0xA 2
64

0.50591027818154544

0xB 8
64

0.50239421910760029

0xC 8
64

0.49929085310759547

0xD 2
64

0.49968796220765910

0xE 2
64

0.50061782109781916

0xF 4
64

0.50005227406592345

In the fourth round, the S1 S-box has the input difference 0||x9||(x2⊕1)||x13||
x14||x17, and we denote by y0 the second most significant bit of its output dif-
ference; the S2 S-box has the input difference x14||x17||x6||0||x10||0, and we de-
note by y1 the least significant bit of its output difference; the S3 S-box has
the input difference x10||0||x8||x16||0||x0, and we denote by y2 the second most
significant bit of its output difference; the S4 S-box has the input difference
0||x0||x11||x18||x4||0, and we denote by y3 the second most significant bit of its
output difference; the S6 S-box has the input difference x7||x19||0||0||x3||x12, and
we denote by y4 the least significant bit of its output difference; the S8 S-box
has the input difference x1||x15||x5||0||0||x9, and we denote by y5 the least sig-
nificant bit of its output difference. Thus we have that the input difference of
the S5 S-box of the fifth round is y2||(y0 ⊕ b)||y1||y4||y3||y5.

A simple analysis reveals that the three bits concerned by the input mask Γγ
depend on: (1) x10, x11 and x12; and (2) The three most significant bits of the
output difference of the S5 S-box of the fifth round; and we denote the XOR of
the three bits by z.

For each difference ω, we denote by βω the output difference(s) of the 5-round
DES. Now, by the differential distribution tables of the S-boxes (see [9]) we can
compute the probability that the XOR of the concerned three bits of βω (i.e.,
x10⊕x11⊕x12⊕z) is zero by performing a computer program over all the possible
(truncated) differential characteristics. These probabilities are given in the third
column of Table 2. The largest number of possible differential characteristics
happens when ω = 0xF , which is 7 × 10× 4× 10 × 6 × 7 × 26 × 2 ≈ 223.9; and
it takes a few seconds to check on a personal computer.

Finally, by Theorem 1 we have that the probability of the 11-round distin-
guisher Δα → Γδ is 1

2 + 2 × [2 ×
∑

ω PrS1
(Δ0x8 → Δω) × Pr(Δβω � Γγ =

0|Δ0x8 → Δω) − 1] × (2−8.04)2 ≈ 1
2 + 2 × 2−8.97 × (2−8.04)2 = 1

2 + 2−24.05.
Therefore, the 11-round distinguisher has a bias of 2−24.05.



82 J. Lu

4.2 Differential-Linear Attack on 13-Round DES

The 11-round distinguisher Δα → Γδ can be used to break 13-round DES. We
assume the attacked rounds are the first thirteen rounds from Rounds 1 to 13. A
simple analysis on the key schedule of DES reveals that K1,1 and K13,1 overlap
in 2 bits (i.e. bits 17 and 34 of the user key), and thus given K1,1 we know 2 bits
of K13,1. The attack procedure is as follows.

1. Choose 247.1 structures Si, (i = 1, 2, · · · , 247.1), where a structure is defined
to be a set of 24 plaintexts Pi,j with bits (9,17,23, 31) of the left half taking
all the possible values, bit (2) of the right half fixed to 0 and the other 59
bits fixed, (j = 1, 2, · · · , 24). In a chosen-plaintext attack scenario, obtain
all the ciphertexts for the 24 plaintexts in each of the 247.1 structures; we
denote by Ci,j the ciphertext for plaintext Pi,j .

2. Choose 247.1 structures Ŝi, (i = 1, · · · , 247.1), where a structure Ŝi is ob-
tained by setting 1 to bit (2) of the right half of all the plaintexts Pi,j in Si.
In a chosen-plaintext attack scenario, obtain all the ciphertexts for the 24

plaintexts in each Ŝi.
3. Guess a value for K1,1, and do as follows.

(a) Initialize 220 counters to zero, which correspond to the 220 possible pairs
consisting of the possible values for a couple of the 10 ciphertext bits:
bit (17) of the left half and bits (1,2,3,4,5,8,14,25,32) of the right half.

(b) Partially encrypt every (remaining) plaintext Pi,j with the guessed K1,1

to get its intermediate value immediately after Round 1; we denote it by
εi,j .

(c) Partially decrypt εi,j ⊕ 0x4000000000000000 with the guessed K1,1 to

get its plaintext, and find the plaintext in Ŝi; we denote it by P̂i,j , and

denote by Ĉi,j the corresponding ciphertext for P̂i,j . Store (Ci,j , Ĉi,j) in
a table.

(d) For every ciphertext pair (Ci,j , Ĉi,j), add 1 to the counter corresponding

to the pair of the 10 ciphertext bits specified by (Ci,j , Ĉi,j).
(e) Guess a value for the unknown 4 bits of K13,1, and do as follows.

i. For each of the 220 pairs of the concerned 10 ciphertext bits, par-
tially decrypt it with the guessed K13,1 to get the pair of the 5 bits
concerned by the output mask Γδ, and compute the XOR of the pair
of the 5 bits (concerned by the output mask).

ii. Count the number of the ciphertext pairs (Ci,j , Ĉi,j) such that the
XOR of the pair of the 5 bits concerned by Γδ is zero, and compute
its deviation from 250.1.

iii. If the guess for (K1,1,K13,1) is the first guess for (K1,1,K13,1), then
record the guess and the deviation computed in Step 3(e)(ii); oth-
erwise, record the guess and its deviation only when the deviation
is larger than that of the previously recorded guess, and remove the
guess with the smaller deviation.

4. For the (K1,1,K13,1) recorded in Step 3(e)(iii), exhaustively search for the
remaining 46 key bits with two known plaintext-ciphertext pairs. If a 56-bit
key is suggested, output it as the user key of the 13-round DES.



A Methodology for Differential-Linear Cryptanalysis and Its Applications 83

The attack requires 252.1 chosen plaintexts. The required memory for the attack
is dominated by the storage of the plaintexts and ciphertexts, which is 252.1 ×
16 = 256.1 bytes. Steps 1 and 2 have a time complexity of 252.1 13-round DES
encryptions. Steps 3(b) and 3(c) have a time complexity of 2×251.1×26× 1

8×13 ≈
251.4 13-round DES encryptions. Step 3(d) has a time complexity of 251.1 ×
26 = 257.1 memory accesses. Roughly, an extremely conservative estimate is: 13
memory accesses equal a 13-round DES encryption in terms of time, assuming
that the 13-round DES is implemented with 8 parallel S-box lookups per round
and one round is equivalent to one memory access. So the time complexity of

Step 3(d) is equivalent to 257.1

13 ≈ 253.4 13-round DES encryptions. The time
complexity of Step 3(e) is dominated by the time complexity of Step 3(e)(i),
which is 2 × 26 × 24 × 220 × 1

8×13 ≈ 224.3 13-round DES encryptions. Step 4

has a time complexity of 246 13-round DES encryptions. Therefore, the attack
has a total time complexity of approximately 254.2 13-round DES encryptions,
faster than exhaustive key search. There are 251.1 plaintext pairs (Pi,j , P̂i,j) for
a guess of (K1,1,K13,1), and thus following Theorem 2 of [33], we can know that
the attack has a success probability of about 99%.

This shows that our new methodology enables us to break more rounds of
DES than Biham et al.’s or Langford and Hellman’s methodology. Since our
attack works under only two assumptions, it is more reasonable than Biham et
al.’s attack.

Note. Using the new methodology we can obtain a few differential-linear dis-
tinguishers operating on a smaller number of rounds, for example, a 7-round
distinguisher (Δα = 0x4000000000000000, Γδ = 0x2104008000008000) with
bias 2−7.94 and an 8-round distinguisher (Δα = 0x4000000000000000, Γδ =
0x2104008000008000) with bias 2−12.83, both using the same 3-round linear ap-
proximation as used in Biham et al.’s and Langford and Hellman’s differential-
linear cryptanalysis of DES. These distinguishers can allow us to break DES
with a smaller number of rounds at a smaller complexity, for example, the 8-
round distinguisher can similarly be used to break 10-round DES with a data
complexity of 229.66 chosen plaintexts and a time complexity of 244 10-round
DES encryptions at a success rate of about 97%.

5 Application to the CTC2 Block Cipher

The CTC2 [11] cipher was designed to show the strength of algebraic crypt-
analysis [12] on block ciphers by the proposer of algebraic cryptanalysis, who
described an algebraic attack on 6 rounds of the version of CTC2 that uses a
255-bit block size and a 255-bit key. Using Biham et al.’s methodology, in 2009
Dunkelman and Keller [15] described 6 and 7-round differential-linear distin-
guishers for the version of CTC2, and finally presented differential-linear attacks
on 7 and 8 rounds of CTC2 (with a 255-bit block size and key). The 8-round
attack is known as the best previously published cryptanalytic result on the
version of CTC2 in terms of the numbers of attacked rounds.



84 J. Lu

In this section, we first describe a flaw in the previous differential-linear crypt-
analysis of CTC2. Then, under the new methodology we present an 8.5-round
differential-linear distinguisher with bias 2−68 for the CTC2 with a 255-bit block
size and key, and finally give a differential-linear attack on 10-round CTC2 (with
a 255-bit block size and a key). First we briefly describe the CTC2 cipher.

5.1 The CTC2 Block Cipher

The CTC2 [11] block cipher has a variable block size, a variable length key and
a variable number of rounds. There are many combinations for the block size,
key size and round number. As in [15], we only consider the version of CTC2
that uses a 255-bit block size and a 255-bit key. CTC2 uses the following two
elementary operations to construct its round function.

– S is a non-linear substitution operation constructed by applying the same
3× 3-bit bijective S-box 85 times in parallel to an input.

– D is a linear diffusion operation, which takes a 255-bit block Y=(Y254, · · · , Y1,
Y0) as input, and outputs a 255-bit block Z = (Z254, · · · , Z1, Z0), computed
as defined below.{

Z151 = Y2 ⊕ Y139 ⊕ Y21

Z(i×202+2) mod 255 = Yi ⊕ Y(i+137) mod 255 i = 0, 1, 3, 4, · · · , 254

CTC2 takes as input a 255-bit plaintext block P , and its encryption procedure
for Nr rounds is, where Z0, Xi, Yi, Zi, XNr , YNr , ZNr are 255-bit variables, and
K0,Ki,KNr are round keys generated from a user key K as Kj = K ≪ j in
our notation, (0 ≤ j ≤ Nr).

1. Z0 = P .
2. For i = 1 to Nr − 1:

– Xi = Zi−1 ⊕Ki−1,
– Yi = S(Xi),
– Zi = D(Yi).

3. XNr = ZNr−1 ⊕KNr−1, YNr = S(Xi), ZNr = D(YNr ).
4. Ciphertext = ZNr ⊕KNr .

To keep in accordance with [11], the ith iteration of Step 2 in the above descrip-
tion is referred to as Round i, (1 ≤ i ≤ Nr−1), and the transformations in Steps
3 and 4 are referred to as Round Nr. We number the 85 S-boxes in a round from
0 to 84 from right to left.

5.2 A Flaw in Previous Differential-Linear Cryptanalysis of CTC2

Observe that Dunkelman and Keller used the 0.5-round differential e30,151
D→ e2

with probability 1 in their differential-linear attacks presented in [15]. However,
we find that this differential is not correct: For the D operation, given the input
difference e30,151, we cannot get the output difference e2; and the correct output



A Methodology for Differential-Linear Cryptanalysis and Its Applications 85

difference should be e25,63,159,197. On the other hand, for the D operation, given
the output difference e2, the input difference has over fifty non-zero bits, much
more than the number two in e30,151. As a consequence, the differential-linear
cryptanalytic results are flawed.

Note that Dunkelman and Keller also described differential attacks on 5, 6

and 7-round CTC2 in [15], and the 0.5-round differential e30,151
D→ e2 with

probability 1 was also used and played a very important role in the differential
results; thus they are flawed, too. It seems very hard to correct these differential
and differential-linear cryptanalytic results to break that many rounds of CTC2.

5.3 An 8.5-Round Differential-Linear Distinguisher with Bias 2−68

The 8.5-round differential-linear distinguisher with bias 2−68 is made up of a
5.5-round linear expression Γγ → Γδ with bias 2−33 and all the 3-round differ-
entials {Δα→ Δβ} with Δα = e0. The 5.5-round linear expression Γγ → Γδ is
e5,33,49,54,101,112,131,138,155,168,188,193,217,247,251 → e32,151. Using the new method-
ology we can compute that the 8.5-round distinguisher Δα → Γδ has a bias of
2−68, in a manner similar to that for the above 11-round DES distinguisher.

5.4 Differential-Linear Attack on 10-Round CTC2 with a 255-Bit
Block Size and Key

The above 8.5-round distinguisher can be used as the basis for a differential-linear
attack breaking the version of CTC2 that has a 255-bit block size, a 255-bit key
and a total of 10 rounds.

We assume the attacked rounds are the first ten rounds from Rounds 1 to
10; and we use the distinguisher from Rounds 2 until before the D operation
of Round 10. We can learn that the input difference α propagates to 16 bit
positions after the inverse of the D operation of Round 1: Bits 17, 21, 40, 59,
78, 97, 116, 135, 139, 154, 158, 177, 196, 215, 234 and 253. The 16 active bits
correspond to 16 S-boxes of Round 0: S-boxes 5, 7, 13, 19, 26, 32, 38, 45, 46,
51, 52, 59, 65, 71, 78 and 84; let Θ be the set of the 16 S-boxes, and KΘ be the
48 bits of K0 corresponding to the 16 S-boxes in Θ. Another observation is that
we do not need to guess the subkey bits from K10, because the output mask Γδ
of the 8.5-round distinguisher concerns the intermediate value immediately after
the S operation of Round 10, and for a pair of ciphertexts (C, Ĉ) the value of

δ �D−1(C) ⊕ δ �D−1(Ĉ) equals to δ �D−1(C ⊕ Ĉ), which is independent of
K10. The attack procedure is as follows.

1. Choose 294 structures Si, (i = 0, 1, · · · , 294− 1), where a structure is defined
to be a set of 248 plaintexts Pi,j with the 48 bits for the S-boxes in Θ taking
all the possible values and the other 207 bits fixed, (j = 0, 1, · · · , 248 − 1).
In a chosen-plaintext attack scenario, obtain all the ciphertexts for the 248

plaintexts in each of the 294 structures; we denote by Ci,j the ciphertext for
plaintext Pi,j .



86 J. Lu

2. Initialize 248 counters to zero, which correspond to all the possible values for
KΘ.

3. For every structure Si, guess a value for KΘ, and do as follows.
(a) Partially encrypt every (remaining) plaintext Pi,j with the guessed KΘ

to get its intermediate value immediately after the S operation of Round
1; we denote it by εi,j .

(b) Take bitwise complements to bits (17, 21, 40, 59, 78, 97, 116, 135, 139,
154, 158, 177, 196, 215, 234, 253) of εi,j , and keep the other bits of εi,j
invariant; we denote the resulting value by ε̂i,j .

(c) Partially decrypt ε̂i,j with the guessed KΘ to get its plaintext, and find

the plaintext in Si; we denote it by P̂i,j , and denote by Ĉi,j the corre-

sponding ciphertext for P̂i,j .

(d) For (Ci,j , Ĉi,j), compute the XOR of bits 32 and 151 of D−1(Ci,j⊕ Ĉi,j).
If the XOR is zero, add 1 to the counter corresponding to the guessed
KΘ.

4. For the KΘ with the highest deviation from 2140, exhaustively search for the
remaining 207 key bits with a known plaintext-ciphertext pair. If a 255-bit
key is suggested, output it as the user key of the version of CTC2.

The attack requires 2142 chosen plaintexts. Note that we start to collect another
structure of plaintexts only after testing a structure of plaintexts, so that we
can reuse the memory for storing the structure of plaintexts, hence the required
memory of the attack is dominated by the storage of the 248 counters and a
structure of 248 plaintext-ciphertext pairs, which is 248 × 48

8 + 2 × 248 × 255
8 ≈

254.2 bytes of memory. The time complexity of Step 3 is dominated by the time
complexity of Steps 3(a), 3(c) and 3(d), which is approximately 2× 2141× 248×

16
85×10 + 2141 × 248 × 1

10 ≈ 2186.2 10-round CTC2 encryptions. Step 4 has a

time complexity of 2207 10-round CTC2 encryptions. Therefore, the attack has a
total time complexity of 2207 10-round CTC2 encryptions to find the 255-bit key.
There are 2141 plaintext pairs (Pi,j , P̂i,j) for a guess of KΘ. Following Theorem
2 of [33], we can learn that the probability that the correct guess for KΘ has the
highest deviation is about 99.9%. Thus, the attack has a success probability of
about 99.9%.

6 Possible Extensions of Our Methodology

In this section we briefly discuss several possible extensions of our methodology,
although particulars should be noticed.

The first possible extension is to consider the case when using two different
values for the output mask δ in Definition 3, say δ1, δ2; that is, we might con-
sider the event E(P ) � δ1 = E(P ⊕ α) � δ2 for a randomly chosen P ∈ {0, 1}n.
The resulting differential-linear distinguisher would have a bias of 2(2p̂− 1)ε1ε2
for some ε1 and ε2 denoting the respective bias of the two linear approxima-
tions. From a theoretical point of view, there seems no need to use two different
output masks, for we can always choose the output mask with a bigger bias,



A Methodology for Differential-Linear Cryptanalysis and Its Applications 87

and a key-recovery attack based on a differential-linear distinguisher with two
different output masks requires us to guess no less key bits than that based on
a differential-linear distinguisher with one output mask; however, the case with
two different output masks may depend on Assumption 2 to a lesser degree than
the discussed case with one output mask, for the two linear approximations can
be independent somewhat, instead of two identical linear approximations used
in the case with one output mask, and thus it may potentially be particularly
helpful when making a practicable attack in reality.

The second possible extension is to consider the case when applying our
methodology in a related-key [3,19,21] attack scenario. The notion of the related-
key differential-linear analysis appeared in [18], and later Kim [20] described an
enhanced version based on Biham et al.’s enhanced methodology. Likewise, we
can get a more reasonable and general version based on our new methodology.

Other possible extensions are to obtain new methodologies, in a way similar
to the above new methodology for differential-linear cryptanalysis, for the high-
order differential-linear attack, the differential-bilinear attack and the differential-
bilinear-boomerang attack, which were proposed in [7]. At present, however,
these attack techniques appear to be hard to apply to obtain good cryptanalytic
results in practice.

7 Conclusions

In this paper we have given a new methodology for differential-linear crypt-
analysis under only the two assumptions implicitly used in the very first pub-
lished paper on this technique. The new methodology is more reasonable and
more general than Biham et al.’s methodology, and it can lead to some better
differential-linear cryptanalytic results for some block ciphers than the previously
known methodologies.

Using the new methodology, we have presented differential-linear attacks on
13-round DES and 10-round CTC2 with a 255-bit block size and key. In terms of
the numbers of attacked rounds, the 10-round CTC2 attack is the first published
cryptanalytic attack on the version of CTC2; and the 13-round DES attack is
much better than any previously published differential-linear cryptanalytic re-
sults for DES, though it is inferior to the best previously published cryptanalytic
results for DES. In addition, an important merit for these new differential-linear
cryptanalytic results is that they are obtained under only two assumptions and
thus are more reasonable than those obtained using Biham et al.’s methodology.
Like most cryptanalytic results on block ciphers, most of these attacks are far
less than practical at present, but they provide a comprehensive understanding
of the security of the block ciphers.

The new methodology is a general cryptanalysis technique and can be po-
tentially used to cryptanalyse other block ciphers; and block cipher designers
should pay attention to this new methodology when designing ciphers.

The new methodology still requires Assumptions 1 and 2. As a direction for
future research on differential-linear cryptanalysis, it would be interesting to



88 J. Lu

investigate how to further reduce the number of assumptions used, making a
more reasonable and more general methodology that could be used in practice.

Acknowledgments. The author is very grateful to Dr. Orr Dunkelman and
Dr. Nathan Keller for their discussions on the flaw about CTC2 and to the
anonymous referees for their comments on earlier versions of the paper.

References

1. Biham, E., Anderson, R., Knudsen, L.R.: Serpent: A New Block Cipher Proposal.
In: Vaudenay, S. (ed.) FSE 1998. LNCS, vol. 1372, pp. 222–238. Springer, Heidel-
berg (1998)

2. Anderson, R., Biham, E., Knudsen, L.R.: Serpent: a proposal for the Advanced
Encryption Standard (1998)

3. Biham, E.: New types of cryptanalytic attacks using related keys. Journal of Cryp-
tology 7(4), 229–246 (1994)

4. Biham, E., Biryukov, A.: An improvement of Davies’ attack on DES. Journal of
Cryptology 10(3), 195–206 (1997)

5. Biham, E., Dunkelman, O., Keller, N.: Enhancing Differential-Linear Cryptanaly-
sis. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 254–266. Springer,
Heidelberg (2002)

6. Biham, E., Dunkelman, O., Keller, N.: Differential-Linear Cryptanalysis of Serpent.
In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 9–21. Springer, Heidelberg
(2003)

7. Biham, E., Dunkelman, O., Keller, N.: New Combined Attacks on Block Ciphers.
In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 126–144.
Springer, Heidelberg (2005)

8. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. In:
Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21.
Springer, Heidelberg (1991)

9. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. Jour-
nal of Cryptology 4(1), 3–72 (1991)

10. Biham, E., Shamir, A.: Differential Cryptanalysis of the Full 16-Round DES. In:
Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 487–496. Springer, Heidel-
berg (1993)

11. Courtois, N.T.: CTC2 and fast algebraic attacks on block ciphers revisited. IACR
ePrint report 2007/152 (2007)

12. Courtois, N.T., Pieprzyk, J.: Cryptanalysis of Block Ciphers with Overdefined
Systems of Equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501,
pp. 267–287. Springer, Heidelberg (2002)

13. Davies, D.: Investigation of a potential weakness in the DES algorithm (1987)
14. Dunkelman, O.: Techniques for cryptanalysis of block ciphers. Ph.D. thesis, Tech-

nion — Israel Institute of Technology, Israel (2006)
15. Dunkelman, O., Keller, N.: Cryptanalysis of CTC2. In: Fischlin, M. (ed.) CT-RSA

2009. LNCS, vol. 5473, pp. 226–239. Springer, Heidelberg (2009)
16. Dunkelman, O., Indesteege, S., Keller, N.: A Differential-Linear Attack on 12-

Round Serpent. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT
2008. LNCS, vol. 5365, pp. 308–321. Springer, Heidelberg (2008)



A Methodology for Differential-Linear Cryptanalysis and Its Applications 89

17. Handschuh, H., Naccache, D.: SHACAL. In: Proceedings of the First Open NESSIE
Workshop (2000)

18. Hawkes, P.: Differential-Linear Weak Key Classes of IDEA. In: Nyberg, K. (ed.)
EUROCRYPT 1998. LNCS, vol. 1403, pp. 112–126. Springer, Heidelberg (1998)

19. Kelsey, J., Schneier, B., Wagner, D.: Key-Schedule Cryptanalysis of IDEA, G-DES,
GOST, SAFER, and Triple-DES. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS,
vol. 1109, pp. 237–251. Springer, Heidelberg (1996)

20. Kim, J.: Combined differential, linear and related-key attacks on block ciphers and
MAC algorithms. Ph.D. thesis, Katholieke Universiteit Leuven, Blegium (2006)

21. Knudsen, L.R.: Cryptanalysis of LOKI91. In: Zheng, Y., Seberry, J. (eds.)
AUSCRYPT 1992. LNCS, vol. 718, pp. 196–208. Springer, Heidelberg (1993)

22. Knudsen, L.R.: Trucated and Higher Order Differentials. In: Preneel, B. (ed.) FSE
1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995)

23. Knudsen, L.R., Mathiassen, J.E.: A Chosen-Plaintext Linear Attack on DES. In:
Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 262–272. Springer, Heidelberg
(2001)

24. Lai, X., Massey, J.L.: Markov Ciphers and Differential Cryptanalysis. In: Davies,
D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 17–38. Springer, Heidelberg
(1991)

25. Langford, S.K.: Differential-linear cryptanalysis and threshold signatures. Ph.D.
thesis, Stanford University, USA (1995)

26. Langford, S.K., Hellman, M.E.: Differential-Linear Cryptanalysis. In: Desmedt,
Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 17–25. Springer, Heidelberg (1994)

27. Lu, J.: Cryptanalysis of block ciphers. Ph.D. thesis, University of London, UK
(2008)

28. Lu, J.: New methodologies for differential-linear cryptanalysis and its extensions.
Cryptology ePrint Archive, Report 2010/025 (2010),
http://eprint.iacr.org/2010/025

29. Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

30. Matsui, M.: The First Experimental Cryptanalysis of the Data Encryption Stan-
dard. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 1–11. Springer,
Heidelberg (1994)

31. Matsui, M., Yamagishi, A.: A New Method for Known Plaintext Attack of FEAL
Cipher. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 81–91.
Springer, Heidelberg (1993)

32. National Bureau of Standards (NBS), Data Encryption Standard (DES), FIPS-46
(1977)

33. Selçuk, A.A.: On probability of success in linear and differential cryptanalysis.
Journal of Cryptology 21(1), 131–147 (2008)

http://eprint.iacr.org/2010/025


New Observations on Impossible Differential

Cryptanalysis of Reduced-Round Camellia

Ya Liu1, Leibo Li2,3,�, Dawu Gu1, Xiaoyun Wang2,3,4,
Zhiqiang Liu1, Jiazhe Chen2,3, and Wei Li5,6,7

1 Department of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai 200240, China

{liuya0611,dwgu,ilu zq}@sjtu.edu.cn
2 Key Laboratory of Cryptologic Technology and Information Security,

Ministry of Education, Shandong University, Jinan 250100, China
3 School of Mathematics, Shandong University,

Jinan 250100, China
{lileibo,jiazhechen}@mail.sdu.edu.cn

4 Institute for Advanced Study, Tsinghua University, Beijing 100084, China
xiaoyunwang@mail.tsinghua.edu.cn

5 School of Computer Science and Technology, Donghua University,
Shanghai 201620, China

6 Shanghai Key Laboratory of Integrate Administration Technologies
for Information Security, Shanghai 200240, China

liwei.cs.cn@gmail.com
7 State Key Laboratory of Information Security, Institute of Software,

Chinese Academy of Sciences, Beijing 100190, China

Abstract. Camellia is one of the widely used block ciphers, which has
been selected as an international standard by ISO/IEC. In this paper,
by exploiting some interesting properties of the key-dependent layer,
we improve previous results on impossible differential cryptanalysis of
reduced-round Camellia and gain some new observations. First, we in-
troduce some new 7-round impossible differentials of Camellia for weak
keys. These weak keys that work for the impossible differential take 3/4
of the whole key space, therefore, we further get rid of the weak-key
assumption and leverage the attacks on reduced-round Camellia to all
keys by utilizing the multiplied method. Second, we build a set of dif-
ferentials which contains at least one 8-round impossible differential of
Camellia with two FL/FL−1 layers. Following this new result, we show
that the key-dependent transformations inserted in Camellia cannot re-
sist impossible differential cryptanalysis effectively. Based on this set of
differentials, we present a new cryptanalytic strategy to mount impossi-
ble differential attacks on reduced-round Camellia.

Keywords: Block Cipher, Camellia, Impossible Differential
Cryptanalysis.

� Corresponding author.

A. Canteaut (Ed.): FSE 2012, LNCS 7549, pp. 90–109, 2012.
c© International Association for Cryptologic Research 2012



New Observations on Impossible Differential Cryptanalysis 91

1 Introduction

The block cipher Camellia was jointly proposed by NTT and Mitsubishi in 2000
[1]. It was selected as one of the CRYPTREC e-government recommended ciphers
in 2002 [4] and as a member of the NESSIE block cipher portfolio in 2003 [20].
In 2005, it was adopted as the international standard by ISO/IEC [6]. Camellia
is a 128-bit block cipher. It supports variable key sizes and the number of the
rounds depends on the key size, i.e., 18 rounds for a 128-bit key size and 24
rounds for 192/256-bit key sizes. For simplicity, they can be usually denoted as
Camellia-128, Camellia-192 and Camellia-256, respectively. Camellia adopts the
basic Feistel structure with some key-dependent functions FL/FL−1 inserted
every six rounds, where these key-dependent transformations must be linear
and reversible for any fixed key. The goals for such a design are to provide
non-regularity across rounds and to thwart future unknown attacks.

Up to now, many cryptanalytic methods were used to evaluate the security of
reduced-round Camellia such as linear cryptanalysis, differential cryptanalysis,
higher order differential attack, truncated differential attack, collision attack,
square attack and impossible differential attack. Before 2011, most attacks fo-
cused on the security of simplified versions of Camellia, which did not take the
FL/FL−1 and whitening layers into account [9–11, 16, 19, 21–24]. Recently, some
attacks involved in the study of the original structure of Camellia. For instance,
Chen et al. constructed a 6-round impossible differential with the FL/FL−1 layer
to attack 10-round Camellia-192 and 11-round Camellia-256 [3], Lu, Liu and
Li independently improved Chen’s results to attack on reduced-round Camel-
lia [12, 14, 17], Lu et al. proposed higher order meet-in-the-middle attacks on
10-round Camellia-128, 11-round Camellia-192 and 12-round Camellia-256 [18].

Impossible differential cryptanalysis was independently proposed by Knudsen
[7] and Biham [2]. Its main idea is to use impossible differentials that hold with
probability zero to discard the wrong keys until only one key is left. So far,
impossible differential cryptanalysis has received much attention and been used
to attack a variety of well-known block ciphers such as AES, ARIA, CLEFIA,
MISTY1 and so on.

In this paper, we reevaluate the security of reduced-round Camellia with
FL/FL−1 and whitening layers against impossible differential cryptanalysis
from two aspects. On the one hand, we construct some new 7-round impossible
differentials of Camellia for weak keys, which work for 75% of the keys. Based on
one of them, we mount impossible differential attacks on reduced-round Camel-
lia in the weak-key setting. Then we further propose a multiplied method to
extend our attacks for the whole key space. The basic idea is that if the correct
key belongs to the set of weak keys, then it will never satisfy the impossible
differential. While if the correct key is not a weak key, we get 2-bit conditions
about the key. In fact, for the whole key space, we attack 10-round Camellia-
128 with about 2113.8 chosen plaintexts and 2120 10-round encryptions, 11-round
Camellia-192 with about 2114.64 chosen plaintexts and 2184 11-round encryptions
as well as 12-round Camellia-256 with about 2116.17 chosen plaintexts or chosen
ciphertexts and 2240 12-round encryptions, respectively. Meanwhile, we can also



92 Y. Liu et al.

extend these attacks to 12-round Camellia-192 and 14-round Camellia-256 with
two FL/FL−1 layers. On the other hand, by studying some properties of key-
dependent functions FL/FL−1, we build a set of differentials which contains at
least one 8-round impossible differential of Camellia with two FL/FL−1 layers.
The length of this impossible differential with two FL/FL−1 layers is the same
as the length of the longest known impossible differential of Camellia without
the FL/FL−1 layer given by Wu and Zhang [24]. Consequently, we show that
the key-dependent transformations inserted in Camellia cannot resist impossible
differential cryptanalysis effectively. Based on this set of differentials, we propose
a new cryptanalytic strategy to attack 11-round Camellia-128 with about 2122

chosen plaintexts and 2122 11-round encryptions, 12-round Camellia-192 with
approximately 2123 chosen plaintexts and 2187.2 12-round encryptions as well as
13-round Camellia-256 with about 2123 chosen plaintexts and 2251.1 13-round en-
cryptions (not from the first round but with the whitening layers), respectively.
All attacks adopt the early abort technique [15]. In table 1, we summarize our
results along with the former known ones on reduced-round Camellia.

Table 1. Summary of the attacks on Reduced-Round Camellia

Key Size Rounds Attack Type Data Time(Enc) Memory Source

128 bits 9† Square 248CP 2122 253Bytes [10]
10† Impossible DC 2118CP 2118 293 Bytes [17]
10† HO-MitM 293CP 2118.6 2109 Bytes [18]
10† Impossible DC 2118.5CP 2123.5 2127Bytes [12]

10(WK) Impossible DC 2111.8CP 2111.8 284.8Bytes Section 3.2
10 Impossible DC 2113.8CP 2120 284.8 Bytes Section 3.2
11 Impossible DC 2122CP 2122 2102 Bytes Section 4.4

192 bits 10 Impossible DC 2121CP 2175.3 2155.2Bytes [3]
10 Impossible DC 2118.7CP 2130.4 2135Bytes [12]
11† Impossible DC 2118CP 2163.1 2141Bytes [17]
11† HO-MitM 294CP 2180.2 2174Bytes [18]

11(WK) Impossible DC 2112.64CP 2146.54 2141.64Bytes Section 3.3
11 Impossible DC 2114.64CP 2184 2141.64Bytes Section 3.3
12 Impossible DC 2123CP 2187.2 2160Bytes Section 4.3
12† Impossible DC 2120.1CP 2184 2124.1Bytes Section 3.5

256 bits 11 High Order DC 293CP 2255.6 298Bytes [5]
11 Impossible DC 2121CP 2206.8 2166Bytes [3]
11 Impossible DC 2119.6CP 2194.5 2135Bytes [12]
12† HO-MitM 294CP 2237.3 2174Bytes [18]

12(WK) Impossible DC 2121.12CP 2202.55 2142.12Bytes Section 3.4
12 Impossible DC 2116.17CP/CC 2240 2150.17Bytes Section 3.4
13 Impossible DC 2123CP 2251.1 2208Bytes Section 4.2
14† Impossible DC 2120CC 2250.5 2125Bytes Section 3.5

DC: Differential Cryptanalysis; CP/CC: Chosen Plaintexts/Chosen Ciphertexts; Enc:
Encryptions; †: The attack doesn’t include the whitening layers; WK: Weak Key;
HO-MitM: Higher Order Meet-in-the-Middle Attack.



New Observations on Impossible Differential Cryptanalysis 93

The remainder of this paper is organized as follows. Section 2 gives some no-
tations and a brief introduction of Camellia. Section 3 presents several 7-round
impossible differentials of Camellia for weak keys. Based on one of them, impos-
sible differential attacks on 10-round Camellia-128, 11-round Camellia-192 and
12-round Camellia-256 are elaborated. Section 4 first constructs a set of differ-
entials which contains at least one 8-round impossible differential of Camellia
with two FL/FL−1 layers, and then proposes impossible differential attacks
on 11-round Camellia-128, 12-round Camellia-192 and 13-round Camellia-256,
respectively. Section 5 summarizes this paper.

2 Preliminaries

2.1 Some Notations

– P,C: the plaintext and the ciphertext;
– Li−1, Ri−1: the left half and the right half of the i-th round input;
– ΔLi−1, ΔRi−1: the left half and the right half of the input difference in the

i-th round;
– X | Y : the concatenation of X and Y ;
– kw1|kw2, kw3|kw4: the pre-whitening key and the post-whitening key;
– ki: the subkey used in the i-th round;
– kli(1 ≤ i ≤ 6): 64-bit keys used in the functions FL/FL−1;
– Sr, ΔSr: the output and the output difference of the S-boxes in the r-th

round;
– X ≪ j: left rotation of X by j bits;
– XL(n

2 ), XR(n
2 ): the left half and the right half of a n-bit word X ;

– Xi, X{i,j}, X{i∼j}: the i-th byte, the i-th and j-th bytes and the i-th to the
j-th bytes of X ;

– X i, X(i,j), X(i∼j): the i-th bit, the i-th and j-th bits and the i-th to j-th bits
of X ;

– ⊕,∩,∪: bitwise exclusive-OR (XOR), AND, and OR operations, respectively;
– 0(i), 1(i): consecutive i bits are zero or one.

2.2 Overview of Camellia

Camellia [1] is a 128-bit block cipher. It adopts the basic Feistel structure with
keyed functions FL/FL−1 inserted every 6 rounds. Camellia uses variable key
sizes and the number of rounds depends on the key size, i.e., 18 rounds for a
128-bit key size and 24 rounds for 192/256-bit key sizes. Its round function uses
a SPN structure, including the XOR operation with the round subkey, the non-
linear transformation S and the linear permutation P . Please refer to [1] for
detailed information.

The key schedule algorithm of Camellia applies a 6-round Feistel structure
to derive two 128-bit intermediate variables KA and KB from KL and KR, and
then all round subkeys can be generated by KL,KR,KA and KB. For Camellia-
128, the 128-bit key K is used as KL and KR is 0. For Camellia-192, the left



94 Y. Liu et al.

128-bit of the key K is used as KL, and the concatenation of the right 64-bit of
the key K and the complement of the right 64-bit of the key K is used as KR.
For Camellia-256, the main key K is separated into two 128-bit variables KL

and KR, i.e., K = KL | KR.

3 7-Round Impossible Differentials of Camellia for Weak
Keys and Their Applications1

In this section, we construct some 7-round impossible differentials of Camellia
in weak-key setting. Based on one of them, we present impossible differential at-
tacks on 10-round Camellia-128, 11-round Camellia-192 and 12-round Camellia-
256 which start from the first round. In addition, we also extend these attacks to
12-round Camellia-192 and 14-round Camellia-256 with two FL/FL−1 layers.

3.1 7-Round Impossible Differentials of Camellia for Weak Keys

This section introduces 7-round impossible differentials of Camellia in weak-key
setting, which is based on the following lemmas and propositions.

Lemma 1 ([8]). Let X, X ′, K be l-bit values, and ΔX = X ⊕ X ′, then the
differential properties of AND and OR operations are:
(X ∩K)⊕ (X ′ ∩K) = (X ⊕X ′) ∩K = ΔX ∩K,
(X∪K)⊕(X ′∪K) = (X⊕K⊕(X∩K))⊕(X ′⊕K⊕(X ′∩K)) = ΔX⊕(ΔX∩K).

Lemma 2 ([3]). Let ΔX and ΔY be the input and output differences of FL.
Then ΔYR = ((ΔXL ∩ klL) ≪ 1)⊕ΔXR, ΔYL = ΔXL ⊕ΔYR ⊕ (ΔYR ∩ klR);
ΔXL = ΔYL ⊕ΔYR ⊕ (ΔYR ∩ klR), ΔXR = ((ΔXL ∩ klL) ≪ 1)⊕ΔYR.

Proposition 1. If the output difference of FL is ΔY = (0|0|0|0|d|0|0|0), where
d �= 0andd(1) = 0, then the inputdifferenceofFL shouldsatisfyΔX{2,3,4,6,7,8} = 0.

Proposition 2. If the output difference of FL−1 is ΔX = (0|e|e|e|0|e|e|e), and
the subkeys of FL−1 satisfy that KL

(9)
L is 0 or KL

(8)
R is 1, then the first byte of

input difference ΔY should be zero, where e is a non-zero byte.

Proposition 3. Given a 7-round Camellia encryption and a FL/FL−1 layer
inserted between the fifth and sixth round. If the input difference of the first round

is (0|0|0|0|0|0|0|0, a|0|0|0|c|0|0|0), and the subkeys of FL−1 satisfy KL
(9)
L = 0

or KL
(8)
R = 1, then the output difference (0|0|0|0|d|0|0|0, 0|0|0|0|0|0|0|0) with

d(1) = 0 is impossible, where a and d are non-zero bytes, c is an arbitrary value
(see Fig. 1).

We also obtain three other impossible differentials under different weak-key as-
sumptions:

– (0|0|0|0|0|0|0|0, 0|a|0|0|0|c|0|0)� (0|0|0|0|0|d|0|0, 0|0|0|0|0|0|0|0) with condi-

tions KL
(17)
L = 0 or KL

(16)
R = 1, and d(1) = 0,

1 By Leibo Li, Xiaoyun Wang and Jiazhe Chen. See [13] for more details.



New Observations on Impossible Differential Cryptanalysis 95

Fig. 1. A 7-Round Impossible Differential for Weak Keys

– (0|0|0|0|0|0|0|0, 0|0|a|0|0|0|c|0)� (0|0|0|0|0|0|d|0, 0|0|0|0|0|0|0|0) with condi-

tions KL
(25)
L = 0 or KL

(24)
R = 1, and d(1) = 0,

– (0|0|0|0|0|0|0|0, 0|0|0|a|0|0|0|c)� (0|0|0|0|0|0|0|d, 0|0|0|0|0|0|0|0) with condi-

tions KL
(1)
L = 0 or KL

(32)
R = 1, and d(1) = 0.

We denote this type of impossible differentials above as 5+2 WKID (weak-key
impossible differentials). Due to the feature of Feistel structure, we also deduce
another type of 7-round impossible differentials with the FL/FL−1 layer inserted
between the second and the third rounds. We call them 2+5 WKID, which are
depicted as follows.

– (0|0|0|0|0|0|0|0, 0|0|0|0|d|0|0|0)� (a|0|0|0|c|0|0|0, 0|0|0|0|0|0|0|0) with condi-

tions KL′(9)
L = 0 or KL′(8)

R = 1, and d(1) = 0,
– (0|0|0|0|0|0|0|0, 0|0|0|0|0|d|0|0)� (0|a|0|0|0|c|0|0, 0|0|0|0|0|0|0|0) with condi-

tions KL′(17)
L = 0 or KL′(16)

R = 1, and d(1) = 0,
– (0|0|0|0|0|0|0|0, 0|0|0|0|0|0|d|0)� (0|0|a|0|0|0|c|0, 0|0|0|0|0|0|0|0) with condi-

tions KL′(25)
L = 0 or KL′(24)

R = 1, and d(1) = 0,
– (0|0|0|0|0|0|0|0, 0|0|0|0|0|0|0|d)� (0|0|0|a|0|0|0|c, 0|0|0|0|0|0|0|0) with condi-

tions KL′(1)
L = 0 or KL′(32)

R = 1, and d(1) = 0,

where KL′ represents the subkey used in FL-function.

3.2 Impossible Differential Attack on 10-Round Camellia-128

We first propose an attack that works for 3 × 2126(= 3
4 × 2128) keys, which is

mounted by adding one round on the top and two rounds on the bottom of the
5+2 WKID (See Fig. 2).



96 Y. Liu et al.

Fig. 2. Impossible Differential Attack on 10-Round Camellia-128 for Weak Keys

Data Collection

1. Choose 2n structures of plaintexts, and each structure contains 232 plain-
texts (L0, R0) = (α1|x1|x2|x3|α2|x4|x5|x6, P (β1|y1|y2|y3|β2|y4|y5|y6)), where
xi and yi (i = 1, ..., 6) are fixed values in each structure, while αj and βj

(j = 1, 2) take all the possible values.
2. For each structure, ask for the encryption of the plaintexts and get 232

ciphertexts. Store them in a hash table H indexed by CR,{1,5}, the XOR
of CR,2 and CR,3, the XOR of CR,2 and CR,4, the XOR of CR,2 and CR,6,
the XOR of CR,2 and CR,7, the XOR of CR,2 and CR,8. Then by birthday
paradox, we get 2n+7 pairs of ciphertexts with the differences (ΔCL, ΔCR) =
(g1|g2|g3|g4|g5|g6|g7|g8, 0|f |f |f |0|f |f |f), and the differences of corresponding
plaintext pairs satisfy (ΔL0, ΔR0) = (a|0|0|0|c|0|0|0, P (b1|0|0|0|b2|0|0|0)),
where a, c, f and bi (i = 1, 2) are non-zero bytes, and gi are unknown
bytes. For every pair, compute P−1(ΔCL) = P−1(g1|g2|g3|g4|g5|g6|g7|g8) =
(g′1|g′2|g′3|g′4|g′5|g′6|g′7|g′8). Keep only the pairs whose ciphertexts satisfy g′1 =
0. The probability of this event is 2−8, thus the expected number of remaining
pairs is 2n−1.

Key Recovery

1. For each pair obtained in the data collection phase, guess the 16-bit value
K1,{1,5}, partially encrypt its plaintext (L0,{1,5}, L′

0,{1,5}) to get the interme-
diate value (S1,{1,5}, S′

1,{1,5}) and the difference ΔS1,{1,5}. Then discard the
pairs whose intermediate values do not satisfy ΔS1,1 = b1 and ΔS1,5 = b2.
The probability of a pair being kept is 2−16, so the expected number of
remaining pairs is 2n−17.

2. In this step, the ciphertext of every remaining pair is considered.
(a) Guess the 8-bit valueK10,8 for every remaining pair, partially decrypt the

ciphertext (CR,8, C
′
R,8) to get the intermediate value (S10,8, S

′
10,8) and



New Observations on Impossible Differential Cryptanalysis 97

the difference ΔS10,8, and discard the pairs whose intermediate values
do not satisfy ΔS10,8 = g′8. The expected number of remaining pairs is
2n−25.

(b) For l = 2, 3, 4, 6, 7, guess the 8-bit value K10,l. For every remaining pair,
partially decrypt the ciphertext (CR,l, C

′
R,l) to get the intermediate value

(S10,l, S
′
10,l) and the difference ΔS10,l, and keep only the pairs whose

intermediate values satisfy ΔS10,l = g′l ⊕ g′5. Since each pair will remain
with probability 2−40, the expected number of remaining pairs is 2n−65.

(c) Guess the 8-bit value K10,1, partially decrypt the ciphertext CR,1 of
every remaining pair to get the intermediate value S10,1, which is also
the value of S′

10,1.
(d) Partially decrypt (S10, S

′
10) to get the intermediate values (R9,5, R

′
9,5),

and discard the pairs whose intermediate values do not satisfyΔR
(1)
9,5 = 0.

As the probability of a pair being discarded is 0.5, the expected number
of remaining pairs is 2n−66.

3. For every remaining pair, guess the 8-bit value K9,5, partially decrypt the
output value (R9,5, R

′
9,5) to get the intermediate value (S9,5, S

′
9,5) and the

difference ΔS9,5. If there is a pair satisfying ΔS9,5 = ΔCR,2, we discard the
guessed key and try another one. Otherwise we exhaustively search for the
remaining 48 bits of the key under this guessed key, if the correct key is
obtained, we halt the attack; otherwise, another key guess should be tried.

Complexity. Since the probability of the event ΔS9,5 = ΔCR,2 in step 3 of
key recovery phase is 2−8, the expected number of remaining guesses for 72-bit
target subkeys is about ε = 280 × (1 − 2−8)2

n−66

. If we choose ε = 1, then n
is 79.8, and the proposed attack requires 2n+32 = 2111.8 chosen plaintexts. The
time and memory complexities are dominated by step 2 of data collection phase,
which are about 2111.8 10-round encryptions and 2n−1 × 4× 24 = 284.8 bytes.

Extending the Attack to the Whole Key Space. On the basis of the above
impossible differential attack for weak keys, we construct a multiplied attack on
10-Round Camellia-128.

– Phase 1. Perform an impossible differential attack by using the 5+2 WKID
(0|0|0|0|0|0|0|0, a|0|0|0|c|0|0|0)� (0|0|0|0|d|0|0|0, 0|0|0|0|0|0|0|0). This phase
is extremely similar to the weak-key attack that is described above. How-
ever, it is slightly different when the attack is finished. That is, if there is a
key kept, then the key is the correct key, and we halt the procedure of the
attack. Otherwise, we conclude that the correct key does not belong to this

set of weak keys, which means that kl
(9)
1 = 1 and kl

(8)
2 = 0. In this case, we

get 2-bit information of the key and perform the next phase.
– Phases 2 to 4. Perform an impossible differential attack by using each 5+2

WKID in the following:

(0|0|0|0|0|0|0|0, 0|a|0|0|0|c|0|0)� (0|0|0|0|0|d|0|0, 0|0|0|0|0|0|0|0),

(0|0|0|0|0|0|0|0, 0|0|a|0|0|0|c|0)� (0|0|0|0|0|0|d|0, 0|0|0|0|0|0|0|0),



98 Y. Liu et al.

(0|0|0|0|0|0|0|0, 0|0|0|a|0|0|0|c)� (0|0|0|0|0|0|0|d, 0|0|0|0|0|0|0|0).
The procedure is similar to Phase 1, and either recover the correct key or
get another 2-bit information about the key and execute the next phase.

– Phase 5.Announce the intermediate keyK
(95,103,111,119)
A =0 andK

(6,14,22,30)
A

= 1, then exhaustively search for the remaining 120-bit value of KA and re-
cover the key KL.

The upper bound of the time complexity is 2111.8 × 4 + 2120 ≈ 2120. The data
complexity is about 2113.8. The memory could be reused in different phase, so
the memory requirement is about 284.8 bytes.

3.3 Attack on 11-Round Camellia-192

We add one round on the bottom of 10-round attack and give an attack on
11-round Camellia-192.

Data Collection. Choose 280.64 structures of plaintexts. Each structure con-
tains 232 plaintexts satisfying (L0, R0) = (α1|x1|x2|x3|α2|x4|x5|x6, P (β1|y1|y2|y3|
β2|y4|y5|y6)), where xi and yi (i = 1, ..., 6) are fixed values in each struc-
ture, while αj and βj (j = 1, 2) take all the possible values. Ask for the en-
cryption of the corresponding ciphertext for each plaintext, compute P−1(CR)
and store the plaintext-ciphertext pairs (L0, R0, CL, CR) in a hash table in-
dexed by 8-bit value (P−1(CR))1. By birthday paradox, we get 2135.64 pairs
whose ciphertext differences satisfy P−1(ΔCL) = (h′

1|h′
2|h′

3|h′
4|h′

5|h′
6|h′

7|h′
8) and

P−1(ΔCR) = (0|g′2|g′3|g′4|g′5|g′6|g′7|g′8), where h′
i and g′i are unknown values.

Key Recovery

1. For l = 1, 5, guess the 8-bit value of K1,l, partially encrypt their plaintext
(L0,l, L

′
0,l) and discard the pairs whose intermediate value do not satisfy

ΔS1,l = (P−1(ΔR0))l. The expected number of remaining pairs is 2119.64.
2. In this step, we consider the ciphertext of each remaining pair.

(a) For l = 1, 2, 3, 4, 6, 7, 8, guess the 8-bit value of K11,l. Partially decrypt
the ciphertext (CR,l, C

′
R,l) and keep only the pairs which satisfyΔS11,l =

h′
l. The expected number of remaining pairs is 263.64.

(b) Guess the 8-bit valueK11,5. Partially decrypt the ciphertext (CR,5, C
′
R,5),

then compute the intermediate value (R10, R
′
10), whereΔR10 = (0|f |f |f |

0|f |f |f) and f = ΔS11,5 ⊕ h′
5.

3. Application of the 10-round attack.
(a) Guess the 8-bit value K10,8, partially decrypt (R10,8, R

′
10,8) and discard

the pairs whose intermediate values do not satisfy ΔS10,8 = g′8. The
expected number of remaining pairs is 263.64 × 2−8 = 255.64.

(b) For l = 2, 3, 4, 6, 7, guess the 8-bit value K10,l. Partially decrypt the
intermediate value (R10,l, R

′
10,l) and keep only the pairs whose interme-

diate values satisfy ΔS10,l = g′l⊕ g′5. The expected number of remaining
pairs is 215.64.



New Observations on Impossible Differential Cryptanalysis 99

(c) Guess the 8-bit value K10,1, partially decrypt the intermediate value
R10,1 and calculate the intermediate values (R9,5, R

′
9,5). Discard the pairs

whose intermediate values do not satisfy ΔR
(1)
9,5 = 0. Then the expected

number of remaining pairs is 214.64.
(d) Guess the 8-bit value K9,5, partially decrypt the intermediate value

(R9,5, R
′
9,5) to get the difference ΔS9,5. If there is a pair satisfies ΔS9,5 =

ΔR10,2, we discard the guessed key and try another one. Otherwise we
exhaustively search for the remaining 48 bits of KL and KR under this
key, if the correct key is obtained, we halt the attack; otherwise, another
key should be tried.

Complexity. The data complexity of the attack is 2112.64 chosen plaintexts.
The time complexity is dominated by step 3 (d) which requires about 2144×(1+

(1 − 2−8) + (1 − 2−8)2 + ...+ (1 − 2−8)2
13.7−1)× 2× 1

11 ×
1
8 ≈ 2146.54 11-round

encryptions. The memory complexity is about 2133.56 × 4× 24 = 2141.64 bytes.

Reduce the Time Complexity to 2138.54. Assume 16-bit value α2 and β2 are
fixed in data collection phase of above attack, then we can collect 2n+31×2−8 =
2n+23 pairs, where n represents the number of structures. Nevertheless, it is
unnecessary for us to guess 8-bit subkey K1,5 in this case. Then there are totally
136-bit values of subkey to be guessed in the attack, therefore, the expected
number of remaining guesses of target subkey is about ε = 2136× (1− 2−8)2

n−90

after the attack. If we chose ε = 1, n is 104.56. Then the data complexity
increases to 2n+16 = 2120.56, but the time complexity reduces to 2138.54, the
memory requirement reduces to 2133.56 bytes.

Extending the Attack to the Whole Key Space. Similar to 10-round
attack on Camellia-128, we mount a multiplied attack on Camellia-192 for the

whole key space. The time complexity is about 4×2146.54+2192×(1− 3
4 )

4
= 2184

10-round encryptions. The data and memory complexities are approximately
2114.64 chosen plaintexts and 2141.64 bytes, respectively.

3.4 The Attack on 12-Round Camellia-256

We add one round on the bottom of 11-round attack, and present a 12-round
attack on Camellia-256. The attack procedure is similar to the 11-round attack.
First choose 281.17 structures and collect 2144.17 plaintext-ciphertext pairs in
data collection phase. After guessing the subkey K1,{1,5}, we guess the 64-bit
value K12 and compute the intermediate value (R11, R

′
11), then apply the 11-

round attack to perform the remaining steps. In summary, the proposed attack
requires 281.17+32 = 2113.17 chosen plaintexts. The time complexity is about
2210.55 12-round encryptions, and the memory requirement is about 2150.17 bytes.
Similar to the above subsection, the time complexity and memory requirement
can also reduce to 2202.55 and 2142.12, respectively, but data complexity increases
to 2121.12 in this case.



100 Y. Liu et al.

We also construct another type of impossible differential attack of Camellia-
256, which adds four rounds on the top and one round on the bottom of the 2+5
WKID (see section 3.1). The attack is performed under the chosen ciphertext
attack scenario. Similar to the attack based on the 5+2 WKID, the data and
time complexity are about 2113.17 and 2216.3, respectively.

Extending the Attack to the Whole Key Space. On the basis of two types
of impossible differential attacks for weak keys, we mount a multiplied attack on
12-round Camellia-256 for the whole key space as below.

– Phases 1 to 8. Preform impossible differential attacks by using of all con-
ditional impossible differentials 2+5 WKID list in section 3.1. For each
phase, if success, output the actual key, else perform the next phase.

– Phase 9. Announce 16-bit value of the master key K
(31,39,47,55,95,103,111,119)
R

= 0 and K
(6,14,22,30,70,78,86,94)
R = 1, then exhaustively search for the remain-

ing 240-bit value of KR, KL and recover the actual key.

The expected time of the attack is 2216.3 × 8 + 2256 × (14 )
8 ≈ 2240 encryptions,

and the expected data complexity is about 2116.17.

3.5 The Attacks Including Two FL/FL−1 Layers

If we do not start from the first round, we can take the attacks that include two
FL/FL−1 layers into account. By exploiting some new properties of FL and
FL−1, we mount impossible differential attacks on variants of 14-round Camellia-
256 and 12-round Camellia-192. Specifically, we attack 14-round Camellia-256
from round 10 to round 23 with about 2120 chosen ciphertexts, 2250.5 14-round
encryptions and 2125 bytes of memory, and 12-round Camellia-192 from round
3 to round 14 with about 2120.1 chosen plaintexts, 2180.1 12-round encryptions
and 2124.1 bytes of memory. The detailed information can be found in [13].

4 8-Round Impossible Differentials of Camellia and Their
Applications2

In this section, we first present a method to construct a set of differentials,
which contains at least one 8-round impossible differential of Camellia with two
FL/FL−1 layers for any fixed key. Based on this set of differentials, we pro-
pose a new strategy to attack on reduced-round Camellia-128/192/256 with the
whitening and FL/FL−1 layers.

4.1 The Construction of 8-Round Impossible Differentials of
Camellia

We first illustrate some properties of FL/FL−1.

2 By Ya Liu, Dawu Gu, Zhiqiang Liu and Wei Li.



New Observations on Impossible Differential Cryptanalysis 101

Proposition 4. If the input difference of FL is (a|0|0|0|a′|0|0|0), where a(1) =
a′(8) = 0 and

a′(i) =

{
0, kl

(i+1)
L = 0;

a(i+1), kl
(i+1)
L = 1;

for 1 ≤ i ≤ 7,

then the output difference of FL is (a|0|0|0|0|0|0|0).
By Propositions 4, we construct an 8-round impossible differential of Camellia
with two FL/FL−1 layers for any fixed subkey.

Fig. 3. The Structure of 8-Round Impossible Differential of Camellia

Proposition 5. For an 8-round Camellia encryption with two FL/FL−1 layers
inserted after the first and seventh rounds, the input difference of the first round
is (0|0|0|0|0|0|0|0, a|0|0|0|a′|0|0|0) and the output difference of the eighth round
is (b|0|0|0|b′|0|0|0, 0|0|0|0|0|0|0|0) with a and b being nonzero bytes and a(1) =
b(1) = a′(8) = a′(8) = 0. Four subkeys kli(i = 1, · · · , 4) are used in two FL/FL−1

layers. If a′ and b′ satisfy the following equations:

a′(i) =

{
0, if kl

(i+1)
1 = 0;

a(i+1), if kl
(i+1)
1 = 1;

b′(i) =

{
0, if kl

(i+1)
4 = 0;

b(i+1), if kl
(i+1)
4 = 1;

for 1 ≤ i ≤ 7,

then (0|0|0|0|0|0|0|0, a|0|0|0|a′|0|0|0) �8 (b|0|0|0|b′|0|0|0, 0|0|0|0|0|0|0|0) is an 8-
round impossible differential of Camellia with two FL/FL−1 layers (See Fig. 3).



102 Y. Liu et al.

For any fixed subkey, an 8-round impossible differential with two FL/FL−1

layers can be constructed. Each possible value of kl
(2∼8)
1 | kl(2∼8)

4 corresponds to

the existence of an 8-round impossible differential. All possible values of kl
(2∼8)
1 |

kl
(2∼8)
4 are from 0(14) to 1(14). Denote their corresponding impossible differentials

by Δi for 0 ≤ i ≤ 214 − 1. Let A be a set including all differentials Δi(0 ≤ i ≤
214 − 1), i.e., A = {Δi | 0 ≤ i ≤ 214 − 1}. According to Proposition 5, 8-round
differentials of A must have the form: Δ = (0|0|0|0|0|0|0|0, a|0|0|0|a′|0|0|0) �8

(b|0|0|0|b′|0|0|0, 0|0|0|0|0|0|0|0) with a and b being nonzero bytes and a(1) =
b(1) = a′(8) = b′(8) = 0. Among them, a′ and b′ are either zero or nonzero bytes.
We divide all differentials of A into three cases: (1) a′ = b′ = 0, (2) a′ = 0 and
b′ �= 0, or a′ �= 0 and b′ = 0, (3) a′ �= 0 and b′ �= 0.

By proposition 5, we only know the existence of an 8-round impossible dif-
ferential of Camellia with two FL/FL−1 layers for any fixed key, but cannot
distinguish it from other differentials of A. Therefore, we require to propose a
new attack strategy to recover the correct key based on this set of differentials.

The Attack Strategy. Select a differential Δi from A. Based on it, we mount
an impossible differential attack on reduced-round Camellia given enough plain-
text pairs.

1. If one subkey will be kept, we recover the secret key by the key schedule and
verify whether it is correct by some plaintext-ciphertext pairs. If success, halt
this attack. Otherwise, try another differential Δj(j �= i) of A and perform
a new impossible differential attack.

2. If no subkeys or more than one subkeys are left, select another differential
of A to execute a new impossible differential attack.

Our attack strategy can really recover the correct key. As a matter of fact, if Δi is
an impossible differential, we make sure the expected number of remaining wrong
keys will be almost zero given enough chosen plaintexts. Therefore, we only
consider those differentials which result in one subkey remaining. By Proposition
5, we know the set A contains at least one impossible differential. So we try each
differential of A until the correct key is recovered. The worst scenario is that the
correct key is retrieved from the last try.

4.2 Impossible Differential Attack on 13-Round Camellia-256

Based on three scenarios of differentials in A, we present an impossible differen-
tial attack on 13-round Camellia-256 with the FL/FL−1 and whitening layers
from rounds 4 to 16. Let ka � kw1 ⊕ k4, kb � kw2 ⊕ k5, kc � kw4 ⊕ k16, kd �
kw3 ⊕ k15, ke � kw4 ⊕ k14. We use these equivalent subkeys ka, kb, kc, kd and ke
instead of the round subkeys k4, k5, k14, k15 and k16 so as to remove the whitening
layers. In the following, we will illustrate this attack.

Case 1 a′ = b′ = 0: The differential Δ = (0|0|0|0|0|0|0|0, a|0|0|0|0|0|0|0) →8

(b|0|0|0|0|0|0|0, 0|0|0|0|0|0|0|0),where a and b are nonzero bytes and a(1) = b(1) =
0 (See Fig. 4).



New Observations on Impossible Differential Cryptanalysis 103

Fig. 4. Impossible Differential Attack on 13-round Camellia-256 for Case 1

Data Collection. Select a structure of plaintexts, which contains 255 plaintexts
with the following form:

(P (α1|x1|x2|x3|x4|x5|x6|x7), P (α2|α3|α4|α5|α6|x8|x9|α7)), (1)

where α
(1)
5 , xi(1 ≤ i ≤ 9) are fixed and αj(1 ≤ j ≤ 7, i �= 5), α

(2∼8)
5 takes all

possible values. Clearly, each structure forms 2109 plaintext pairs, the differences
of which have the form: (P (g1|0|0|0|0|0|0|0), P (g2|g3⊕a|g4⊕a|a|g5⊕a|0|0|g6⊕a))
with a and gi(1 ≤ i ≤ 6) being nonzero bytes and a(1)=0. We take all possible

values of (α
(1)
5 , x4, x8, x9) and 243 different values of xi(1 ≤ i ≤ 7, i �= 4) to

derive 268 special structures. In total, there are 2123 chosen plaintexts which form
2177 plaintext pairs. Encrypt these plaintext pairs to obtain the corresponding
ciphertext pairs. If the right halves of their ciphertexts differences have the form:
P (h1|h2⊕b|h3⊕b|b|h5⊕b|0|0|h8⊕b) with b(1) = 0, then these pairs will be kept.
The expected number of remaining pairs is about 2160.

Key Recovery

1. Guess ka,1. For each remaining pair, check whether the equation ΔS4,1 =
(P−1(ΔPR))1 holds. If ΔS4,1 �= (P−1(ΔPR))1 for some pair, then this pair
will be discarded. Next guess each possible value of ka,l for l = 2, 3, 5, 8.
Keep only the pairs satisfying ΔS4,l = (P−1(ΔPR))l ⊕ (P−1(ΔPR))4. The
expected number of remaining pairs is about 2120. Finally, guess ka,{4,6,7}
and compute the inputs of the fifth round for each remaining pair.

2. Guess kb,1 and test whether ΔS5,1 is equal to (P−1(ΔPL))1 for each re-
maining pair. If ΔS5,1 �= (P−1(ΔPL))1 for one pair, then this pair will be
removed. Finally, about 2112 pairs will be kept.



104 Y. Liu et al.

3. Guess kc,l for 2 ≤ l ≤ 8. Verify whether ΔS16,l is equal to (P−1(ΔCL))l for
every remaining pair. If ΔS16,l �= (P−1(ΔCL))l for some pair, then this pair
is discarded. The expected number of remaining pairs is about 256. Next
guess kc,1 and compute the outputs of the 15-th round for each remaining
pair.

4. Guess kd,l for l = 1, 2, 3, 5, 8. For each remaining pair, verify whether the
equationsΔS15,1=(P−1(ΔCR))1 andΔS15,j=(P−1(ΔCR))j⊕(P−1(ΔCR))4
(j = 2, 3, 5, 8) hold. The probability that to happen is about 2−40. Thus
about 216 pairs will be kept. Next guess other bytes of kd and calculate the
outputs of the 14-th round.

5. Guess ke,1 and compute the output difference of the S-Boxes in the 14-th
round. If ΔS14,1 is equal to (P−1(ΔL14))1, then we remove this value of
ke,1 with (ka, kb,1, kc, kd). The probability of this event is about 2−8. After
trying all possible values of (ka, kb,1, kc, kd, ke,1), if only one joint subkey
remains, then Δ is likely to be an impossible differential. At this time, we
recover the secret key by the key schedule and verify whether it is correct
by some plaintext-ciphertext pairs. If no subkeys or more than one subkeys
are left, then Δ is possible to exist. At this time, try another differential
of A. As a matter of fact, if Δ is an impossible differential, the expected
number of remaining wrong subkeys is about 2208 × (1 − 2−8)2

16 ≈ 2−161.4.
We consider that all wrong subkeys are removed and only the correct subkey
is left. Therefore, we require to perform the following step only if one subkey
will be kept.

6. According to the key schedule of Camellia-256, we can recover the secret key
from this unique 208-bit subkey (ka, kb,1, kc, kd, ke,1). As a matter of fact,
we guess KB and KR, and then calculate KL and KA by property 4 of [18].
Finally, the number of remaining main keys is approximately 248. By about
248 trail encryptions, if some key is correct, stop the attack. Otherwise, try
another differential of A.

Case 2 a′ = 0 and b′ �= 0, or a′ �= 0 and b′ = 0: We only attack a special
scenario, i.e., a′ = 0 and b′(1∼7) = b(2∼8). Others can be attacked in the similar
way. At this time, the differential is Δ′ = (0|0|0|0|0|0|0|0, a|0|0|0|0|0|0|0) →8

(b|0|0|0|b′|0|0|0, 0|0|0|0|0|0|0|0), where a, b and b′ are non-zero bytes, b′(1∼7) =
b(2∼8) and a(1) = b(1) = b′(8) = 0.

Data Collection. We apply 268 special structures of above Case 1. Totally,
there are 2123 chosen plaintexts which form 2177 pairs.

Key Recovery

1. Guess kc,l for 2 ≤ l ≤ 8 and l �= 5. Verify whether the equation ΔS16,l =
(P−1(ΔCL))l holds for every remaining pair. If ΔS16,l �= (P−1(ΔCL))l for
some pair, then this pair is discarded. The expected number of remaining
pairs is about 2129. Next guess kc,{1,5} and compute the outputs of the 15-th
round for each remaining pair.



New Observations on Impossible Differential Cryptanalysis 105

2. We first guess kd,1 and check whether the equation ΔS15,1 = (P−1(ΔCR))1
holds for each remaining pair. If ΔS15,1 �= (P−1(ΔCR))1 for one pair, then
this pair will be removed. Next guess kd,8 and keep only the pairs satisfying

ΔS
(1)
15,8 = (P−1(ΔCR))

(1)
8 . Finally, guess kd,{2∼7}. Test whether ΔS15,l =

(P−1(ΔCR))l ⊕ (((P−1(ΔCR))8 ⊕ΔS15,8)
(2∼8)|0) for l = 6, 7 and ΔS15,l =

(P−1(ΔCR))l ⊕ (P−1(ΔCR))8 ⊕ ΔS15,8 ⊕ (P−1(ΔCR))7 ⊕ ΔS15,7 for l =
2, 3, 4, 5. The total probability of this step is about 2−57. So the expected
number of remaining pairs is approximately 272. Compute the outputs of the
14-th round for each remaining pair.

3. Guess ke,l for l = 1, 5. Verify whether the equation ΔS14,l = (P−1(ΔL14))l
holds for each remaining pair. If this equation is correct for some pair, then
this pair will be kept. The probability of this event is about 2−16. About 256

pairs will be kept.
4. Guess each possible value of ka as like Case 1. The expected number of

remaining pairs is about 216. Calculate the inputs of the fifth round.
5. Guess kb,1. This step is similar to Step 5 of Case 1. If only one joint subkey

is left, then we consider Δ′ is an impossible differential and recover the
secret key by the key schedule. Otherwise try another differential of A. In
fact, the expected number of remaining wrong subkeys is approximately
2216 × (1 − 2−8)2

16 ≈ 2−153.4 if Δ′ is an impossible differential.
6. This step is similar to Step 6 of Case 1. Finally, about 240 keys will be

left. By about 240 trail encryptions, if some key is correct, stop the attack.
Otherwise, try another differential of A.

Case 3 a′ �= 0 and b′ �= 0: We only discuss an example, i.e., a′(1∼7) = a(2∼8)

and b′(1∼7) = b(2∼8). The differential is Δ′′ = (0|0|0|0|0|0|0|0, a|0|0|0|a′|0|0|0)
→8 (b|0|0|0|b′|0|0|0, 0|0|0|0|0|0|0|0), where a, b, a′ and b′ are nonzero bytes and
a(1) = b(1) = a′(8) = b′(8) = 0.

Data Collection. Continue to adopt 2123 chosen plaintexts of Case 1. Because

each structure of Case 1 takes all possible values of α
(1)
5 , x4, x8 and x9, 2

123 chosen
plaintexts of Case 1 are equivalent to 243 structures, each of which contains 280

plaintexts with the form: (P (β1|y1|y2|y3|β2|y4| y5|y6), β3|β4|β5|β6|β7|β8|β9|β10),
where yi(1 ≤ i ≤ 6) are fixed and βj(1 ≤ j ≤ 10) takes all possible values. It is
obvious that one structure generates 2159 pairs. Totally, there are approximately
2202 plaintext pairs satisfying the input differences.

Key Recovery

1. Guess each byte of kc, kd, ke,{1,5}. This step is similar to above Case 2. After
this step, about 281 pairs will be kept.

2. Guess ka,1, ka,8, ka,{6,7}, ka,{2∼5} and kb,5 in turn. The expected number of
remaining pairs is about 216. Compute the inputs of the 5-th round for each
remaining pair.

3. Guess kb,1 and test whether ΔS5,1 is equal to (P−1(ΔPL))1 for each remain-
ing pair. If ΔS5,1 = (P−1(ΔPL))1 for some pair, then this guessed key are



106 Y. Liu et al.

removed. After guessing all possible subkeys, if only one joint subkey is left,
then we consider Δ′′ is an impossible differential. At this moment, we exe-
cute the following step. Otherwise try another differential of A. As a matter
of fact, the expected number of remaining wrong subkeys is approximately
2224 × (1 − 2−8)2

16 ≈ 2−145.4 if Δ′′ is an impossible differential.
4. Similarly, we recover the secret key from this subkey. The number of remain-

ing main keys is approximately 232. By about 232 trail encryptions, if some
key is correct, stop the attack. Otherwise, try another differential of A.

Complexity. We calculate that the total time complexities of Cases 1 to 3
are about 2216 1-round encryptions, 2224 1-round encryptions and 2240.8 1-round
encryptions, respectively. Thus the total time complexity is at most 214×2240.8×
1
13 ≈ 2251.1 13-round encryptions. Furthermore, the total data and memory
complexities are 2123 chosen plaintexts and 2208 bytes, respectively.

4.3 Impossible Differential Attack on 12-Round Camellia-192

In this section, we attack 12-round Camellia-192 from rounds 4 to 15 with the
8-round differentials inserted rounds 6 to 13. Some equivalent subkeys ka and kb
are defined as before. In addition, let k′d = kw4 ⊕ k15 and k′e = kw3 ⊕ k14.

Case 1 a′ = b′ = 0: The differential is Δ.
We select the same plaintexts of Case 1 mentioned in section 4.2, i.e., 2123 cho-

sen plaintexts and 2177 pairs. Encrypt them and keep those pairs whose cipher-
text differences have the form: (P (h2|h3⊕b|h4⊕b|b|h5⊕b|0|0|h6⊕b), P (h1|0|0|0|0|
0|0|0)), where b and hi(1 ≤ i ≤ 6) are nonzero bytes and b(1) = 0. The expected
number of remaining pairs is about 2104.

Guess all possible values (ka, kb,1, k
′
d, k

′
e,1) and discard those subkeys which

acquire the input and output differences of Δ. This step is similar to section
4.2. If Δ is an impossible differential, about 2144 × (1− 2−8)2

16 ≈ 2−225.4 wrong
subkeys are expected to remain. Therefore, we will recover the secret key by the
key schedule of Camellia-192 only if one subkey is left. Otherwise, try another
differential of A. By the key schedule of Camellia-192, we derive 248 candidates
of the secret key from the 144-bit subkey (ka, kb,1, k

′
d, k

′
e,1). By about 248 trail

encryptions, if the correct key is retrieved, halt the attack. Otherwise, try another
differential of A.

Case 2 a′ = 0, b′ �= 0 or a′ �= 0, b′ = 0: For simplicity, we consider a special
differential Δ′.

We still select 2123 plaintexts of above Case 1. In total, there are 268 special
structures, each of which contains 255 plaintexts. Encrypt these plaintext pairs. If
the right halves of their ciphertexts differences have the form: P (h|0|0|0|h′|0|0|0)
with h and h′ being nonzero bytes, then these pairs will be kept. Consequently,
the expected number of remaining pairs is about 2129. Similarly, we can remove
some subkeys (ka, kb,1, k

′
d, k

′
e,{1,5}) which obtain the input and output differences

ofΔ′ for some pair. If only one subkey is left, we recover the secret key by the key



New Observations on Impossible Differential Cryptanalysis 107

schedule. Otherwise, try another differential of A. In fact, if Δ′ is an impossible
differential, about 2−217.4(≈ 2152 × (1− 2−8)2

16

) wrong subkeys will be left.

Case 3 a′ �= 0, b′ �= 0 : A special differential Δ′′ will be considered.
The similar attacking procedure can be performed as before. We select 243

structure, each of which contains 280 plaintexts. Totally, they can form 2202

pairs. After filtering some pairs by the ciphertext differences, about 2154 pairs
are expected to remain. The following steps can be preformed in the similar way.

We found that the time complexity of Case 3 is maximal. Therefore, the total
time complexity is at most 214 × 2173.2 ≈ 2187.2 12-round encryptions. The data
and memory complexities are 2123 chosen plaintexts and 2160 bytes, respectively.

4.4 Impossible Differential Attack on 11-Round Camellia-128

For Camellia-128, we put two additional rounds on the top and one additional
round on the bottom of 8-round differentials. Based on it, we attack 11-round
Camellia-128 from rounds 4 to 14. Similarly, we divide all possible differen-
tials into three different cases as before. For Case 1, we take 267 special struc-
tures (1). Totally, the data complexity is 2122 chosen plaintexts which form
2176 pairs. Encrypt these pairs to acquire the corresponding ciphertext pairs.
Then we discard some pairs whose ciphertext differences don’t satisfy this form:
(P (h|0|0|0|0|0|0|0), b|0|0|0|0|0|0|0) with b and h being non-zero bytes and b(1) =
0. The number of remaining pairs after this test is about 263. Guess ke,1, ka and
kb,1 in turn and operate the similar steps. If only one subkey is left, we retrieve
the secret key by the key schedule. Otherwise, try anther differential of A. As a
matter of fact, if Δ is an impossible differential, the expected number of remain-
ing pairs is about 280 × (1 − 2−8)15 ≈ 2−104.7. For other two cases, we execute
the similar attack procedure.

We find that the dominant time complexity of all steps in three cases is the
data collection. Therefore, the total data, time and memory complexities are
2122 chosen plaintexts, 2122 11-round encryptions and 2102 bytes, respectively.

5 Conclusion

In this paper, we have presented new insight on impossible differential crypt-
analysis of reduced-round Camellia with the FL/FL−1 and whitening layers.
First, we propose impossible differential attacks on reduced-round Camellia for
75% of the keys, which are then extended to attacks that work for the whole key
space. As a matter of fact, we attack 10-round Camellia-128, 11-round Camellia-
192 and 12-round Camellia-256 which start from the first round and include
the whitening layers. Meanwhile, we also attack 12-round Camellia-192 and 14-
round Camellia-256 with two FL/FL−1 layers. Second, we construct a set of
differentials including at least one 8-round impossible differential of Camellia
with two layers FL/FL−1. This impossible differential has the same length as
the best known impossible differential of Camellia without the FL/FL−1 layer.



108 Y. Liu et al.

Therefore, our result shows that the keyed functions cannot thwart impossible
differential attack effectively. On the basis of this set of differentials, we propose
a new strategy to derive an effective attack on 11-round Camellia-128, 12-round
Camellia-192 and 13-round Camellia-256, which do not start the first round but
include the whitening and FL/FL−1 layers.

Acknowledgements. The authors are grateful to all anonymous reviewers for
valuable suggestions and comments. The authors Ya Liu, Dawu Gu, Zhiqiang
Liu and Wei Li are supported by the National Natural Science Foundation of
China (No. 61073150 and No. 61003278), the Opening Project of Shanghai Key
Laboratory of Integrate Administration Technologies for Information Security,
the open research fund of State Key Laboratory of Information Security and the
Fundamental Research Funds for the Central Universities. The authors Leibo Li,
Xiaoyun Wang and Jiazhe Chen are supported by the National Natural Science
Foundation of China (Grant No. 61133013 and No. 60931160442), and Tsinghua
University Initiative Scientific Research Program (2009THZ01002).

References

1. Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita,
T.: Camellia: A 128-Bit Block Cipher Suitable for Multiple Platforms - Design
and Analysis. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp.
39–56. Springer, Heidelberg (2001)

2. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack Reduced to 31
Rounds Using Impossible Differentials. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 12–23. Springer, Heidelberg (1999)

3. Chen, J., Jia, K., Yu, H., Wang, X.: New Impossible Differential Attacks of
Reduced-Round Camellia-192 and Camellia-256. In: Parampalli, U., Hawkes, P.
(eds.) ACISP 2011. LNCS, vol. 6812, pp. 16–33. Springer, Heidelberg (2011)

4. CRYPTREC-Cryptography Research and Evaluation Committees: report. Archive
(2002), http://www.ipa.go.jp/security/enc/CRYPTREC/index-e.html

5. Hatano, Y., Sekine, H., Kaneko, T.: Higher order differential attack of Camellia
(II). In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 129–146.
Springer, Heidelberg (2003)

6. International Standardization of Organization (ISO): International standard -
ISO/IEC 18033-3. Tech. rep., Information technology - Security techniques - En-
cryption algrithm - Part 3: Block Ciphers (July 2005)

7. Knudsen, L.R.: DEAL - a 128-bit block cipher. Tech. rep., Department of Infor-
matics, University of Bergen, Norway. technical report (1998)

8. Kühn, U.: Improved Cryptanalysis of MISTY1. In: Daemen, J., Rijmen, V. (eds.)
FSE 2002. LNCS, vol. 2365, pp. 61–75. Springer, Heidelberg (2002)

9. Lee, S., Hong, S., Lee, S., Lim, J., Yoon, S.: Truncated Differential Cryptanalysis
of Camellia. In: Kim, K.-c. (ed.) ICISC 2001. LNCS, vol. 2288, pp. 32–38. Springer,
Heidelberg (2002)

10. Duo, L., Chao, L., Feng, K.: New Observation on Camellia. In: Preneel, B., Tavares,
S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 51–64. Springer, Heidelberg (2006)

http://www.ipa.go.jp/security/enc/CRYPTREC/index-e.html


New Observations on Impossible Differential Cryptanalysis 109

11. Duo, L., Li, C., Feng, K.: Square Like Attack on Camellia. In: Qing, S., Imai, H.,
Wang, G. (eds.) ICICS 2007. LNCS, vol. 4861, pp. 269–283. Springer, Heidelberg
(2007)

12. Li, L., Chen, J., Jia, K.: New Impossible Differential Cryptanalysis of Reduced-
Round Camellia. In: Lin, D., Tsudik, G., Wang, X. (eds.) CANS 2011. LNCS,
vol. 7092, pp. 26–39. Springer, Heidelberg (2011)

13. Li, L., Chen, J., Wang, X.: Security of Reduced-Round Camellia against Impossible
Differential Attack. IACR Cryptology ePrint Archive 2011, 524 (2011)

14. ’Liu, Y., Gu, D., Liu, Z., Li, W., Man, Y.: Improved Results on Impossible Differ-
ential Cryptanalysis of Reduced-Round Camellia-192/256. Journal of Systems and
Software (accepted)

15. Lu, J., Dunkelman, O., Keller, N., Kim, J.-S.: New Impossible Differential Attacks
on AES. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008.
LNCS, vol. 5365, pp. 279–293. Springer, Heidelberg (2008)

16. Lu, J., Kim, J.-S., Keller, N., Dunkelman, O.: Improving the Efficiency of Impos-
sible Differential Cryptanalysis of Reduced Camellia and MISTY1. In: Malkin, T.
(ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 370–386. Springer, Heidelberg (2008)

17. Lu, J., Wei, Y., Kim, J., Fouque, P.-A.: Cryptanalysis of Reduced Versions of the
Camellia Block Cipher. In: Preproceeding of SAC (2011)

18. Lu, J., Wei, Y., Kim, J., Pasalic, E.: The Higher-Order Meet-in-the-Middle Attack
and Its Application to the Camellia Block Cipher. In: Presented in Part at the First
Asian Workshop on Symmetric Key Cryptography (ASK 2011) (August 2011),
https://sites.google.com/site/jiqiang/

19. Mala, H., Shakiba, M., Dakhilalian, M., Bagherikaram, G.: New Results on Impos-
sible Differential Cryptanalysis of Reduced–Round Camellia–128. In: Jacobson Jr.,
M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 281–294.
Springer, Heidelberg (2009)

20. NESSIE: New European Schemes for Signatures, Integrity, and Encryption, final
report of eurpean project IST-1999-12324. Archive (1999),
http://www.cosic.esat.kuleuven.be/nessie/Bookv015.pdf

21. Shirai, T.: Differential, Linear, Boomerange and Rectangle Cryptanalysis of
Reduced-Round Camellia. In: Proceedings of 3rd NESSIEWorkshop, Munich, Ger-
many, November 6-7 (2002)

22. Sugita, M., Kobara, K., Imai, H.: Security of Reduced Version of the Block Cipher
Camellia against Truncated and Impossible Differential Cryptanalysis. In: Boyd,
C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 193–207. Springer, Heidelberg
(2001)

23. Wu, W., Feng, D., Chen, H.: Collision Attack and Pseudorandomness of Reduced-
Round Camellia. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS,
vol. 3357, pp. 252–266. Springer, Heidelberg (2004)

24. Wu, W., Zhang, W., Feng, D.: Impossible Differential Cryptanalysis of Reduced-
Round ARIA and Camellia. J. Comput. Sci. Technol. 22(3), 449–456 (2007)

https://sites.google.com/site/jiqiang/
http://www.cosic.esat.kuleuven.be/nessie/Bookv015.pdf


Improved Rebound Attack on the Finalist Grøstl

Jérémy Jean1,�,��, Maŕıa Naya-Plasencia2,�, and Thomas Peyrin3,� � �

1 École Normale Supérieure, France
2 University of Versailles, France

3 Nanyang Technological University, Singapore

Abstract. Grøstl is one of the five finalist hash functions of the SHA-3
competition. For entering this final phase, the designers have tweaked
the submitted versions. This tweak renders inapplicable the best known
distinguishers on the compression function presented by Peyrin [18] that
exploited the internal permutation properties. Since the beginning of the
final round, very few analysis have been published on Grøstl. Currently,
the best known rebound-based results on the permutation and the com-
pression function for the 256-bit version work up to 8 rounds, and up to
7 rounds for the 512-bit version. In this paper, we present new rebound
distinguishers that work on a higher number of rounds for the permuta-
tions of both 256 and 512-bit versions of this finalist, that is 9 and 10
respectively. Our distinguishers make use of an algorithm that we pro-
pose for solving three fully active states in the middle of the differential
characteristic, while the Super-Sbox technique only handles two.

Keywords: Hash Function, Cryptanalysis, SHA-3, Grøstl, Rebound
Attack.

1 Introduction

Hash functions are one of the main families in symmetric cryptography. They are
functions that, given an input of variable length, produce an output of a fixed
size. They have many important applications, like integrity check of executables,
authentication, digital signatures.

Since 2005, several new attacks on hash functions have appeared. In particu-
lar, the hash standards MD5 and SHA-1 were cryptanalysed by Wang et al. [21,22].
Due to the resemblance of the standard SHA-2 with SHA-1, the confidence in the
former has also been somewhat undermined. This is why the American National
Institute of Standards and Technology (NIST) decided to launch in 2008 a com-
petition for finding a new hash standard, SHA-3. This competition received 64
hash function submissions and accepted 51 to enter the first round. Now, three

� Supported by the French Agence Nationale de la Recherche through the SAPHIR2
project under Contract ANR-08-VERS-014.

�� Supported by the French Délégation Générale pour l’Armement (DGA).
� � � Supported by the Lee Kuan Yew Postdoctoral Fellowship 2011 and the Singapore

National Research Foundation Fellowship 2012.

A. Canteaut (Ed.): FSE 2012, LNCS 7549, pp. 110–126, 2012.
c© International Association for Cryptologic Research 2012



Improved Rebound Attack on the Finalist Grøstl 111

years and two rounds later, only 5 hash functions remain in the final phase of
the competition.

Amongst these finalists, there is only one AES-based function, though many
were proposed. This hash function is Grøstl [2], and is at the origin of the
introduction of a new cryptanalysis technique that has been widely deployed,
improved and applied to a large number of SHA-3 candidates, hash functions
and other types of constructions. This new technique, called rebound attack, was
introduced by Mendel et al. [11] and has become one of the most important tools
used to analyze the security margin of many SHA-3 candidates as well as their
building blocks. As for Grøstl itself, it has been applied and improved in several
occasions [3, 12, 13, 15, 18]. Grøstl is undoubtedly one of the SHA-3 candidates
that have received the largest amount of cryptanalysis. When entering the final
round, a tweak of the function was proposed, which prevents the application
of the attacks from [18]; we denote Grøstl-0 the original submission of the
algorithm and Grøstl its tweaked version. Apart from the rebound results, the
other main analysis communicated on Grøstl was at the presentation of [1]
where a higher order property on 10 rounds of Grøstl-256 permutation with
a complexity of 2509 was shown. In Table 1, we report a summary of the best
known results on both 256 and 512-bit tweaked versions of Grøstl, including
the ones that we will present in the following.

In this paper, we propose new results regarding both versions of the finalist
Grøstl. First, on Grøstl-256, we provide the best known rebound distinguishers
on 9 rounds of the permutation. From these results, we show how to make
some nontrivial observations on the the compression function, providing the
best known analysis on the compression function exploiting the properties of the
internal permutations. For Grøstl-512, we considerably increase the number
of analyzed rounds, from 7 to 10, providing the best analysis known on the
permutation. Both results are obtained using rebound-like attack techniques and
an algorithm that we introduce that allows to solve three fully active rounds in
the middle of the differential characteristic with a much lower cost than a generic
algorithm. Additionnally, we provide in Appendix A the direct application of our
new techniques to the AES-based hash function PHOTON.

These results do not threaten the security of Grøstl, but we believe they will
have an important role in better understanding Grøstl, and AES-based functions
in general. In particular, we believe that our work will help determining the
bounds and limits of rebound-like attacks in these types of constructions.

2 Generalities

2.1 Description of Grøstl

The hash function Grøstl-0 has been submitted to the SHA-3 competition un-
der two different versions: Grøstl-0-256, which outputs a 256-bit digest and



112 J. Jean, M. Naya-Plasencia, and T. Peyrin

Table 1. Best known analysis on the finalist Grøstl. By best analysis, we mean the
ones on the highest number of rounds

Target Subtarget Rounds Time Memory Ideal Reference

Grøstl-256 Permutation

8 (dist.) 2112 264 2384 [3]

8 (dist.) 248 28 296 [19]

9 (dist.) 2368 264 2384 Section 3

10 (zero-sum) 2509 − 2512 [1]

Grøstl-512 Permutation

8 (dist.) 2280 264 2448 Section 4

9 (dist.) 2328 264 2384 Section 4

10 (dist.) 2392 264 2448 Section 4

Grøstl-0-512 with a 512-bit fingerprint. For the final round of the competi-
tion, the candidate have been tweaked to Grøstl, with corresponding versions
Grøstl-256 and Grøstl-512.

The Grøstl hash function handles arbitrary long messages by diving them
into blocks after some padding and uses them to update iteratively an internal
state (initialized to a predefined IV) with a compression function. This function is
itself built upon two different permutations, namely P and Q. Each of those two
permutations updates a large internal state using the well-understood wide-trail
strategy of the AES. As an AES-like Substitution-Permutation Network, Grøstl
enjoys a strong diffusion in each of the two permutations and by its wide-pipe
design, the size of the internal states is ensured to be at least twice as large as
the final digest.

The compression function f256 of Grøstl-256 uses two permutations P256

and Q256, which are similar to the two permutations P512 and Q512 used in the
compression function f512 of Grøstl-512. More precisely, for a chaining value h
and a message block m, the compression functions (Figure 1) produce the output
(⊕ denotes the XOR operation):

f256(h,m) = P256(h⊕m)⊕Q256(m)⊕ h,

or: f512(h,m) = P512(h⊕m)⊕Q512(m)⊕ h.

The internal states are viewed as byte matrices of size 8×8 for the 256-bit version
and 8 × 16 for the 512-bit one. The permutations strictly follow the design of
the AES and are constructed as Nr iterations of the composition of four basic
transformations:

R
def
:= MixBytes ◦ ShiftBytes ◦ SubBytes ◦ AddRoundConstant.

All the linear operations are performed in the same finite field GF (28) as in the
AES, defined via the irreducible polynomial x8 + x4 + x3 + x + 1 over GF (2).



Improved Rebound Attack on the Finalist Grøstl 113

P

Q

h

m

h′

Fig. 1. The compression function of Grøstl hash function using the two permutations
P and Q

The AddRoundConstant (AC) operation adds a predefined round-dependent
constant, which significantly differs between P and Q to prevent the internal
differential attack [18] taking advantage of the similarities in P and Q. The
SubBytes (SB) layer is the non-linear layer of the round function R and applies
the same SBox as in the AES to all the bytes of the internal state. The ShiftBytes
(Sh) transformation shifts bytes in row i by τP [i] positions to the left for permu-
tation P and τQ[i] positions for permutation Q. We note that τ also differs from
P to Q to emphasize the asymmetry between the two permutations. Finally,
the MixBytes (Mb) operation applies a maximum-distance separable (MDS)
circulant constant matrix M independently to all the columns of the state. In
Grøstl-256, Nr = 10, τP = [0, 1, 2, 3, 4, 5, 6, 7] and τQ = [1, 3, 5, 7, 0, 2, 4, 6],
whereas for Grøstl-512, Nr = 14 and τP = [0, 1, 2, 3, 4, 5, 6, 11] and τQ =
[1, 3, 5, 11, 0, 2, 4, 6].

Once all the message blocks of the padded input message have been processed
by the compression function, a final output transformation is applied to the last
chaining value h to produce the final n-bit hash value h′ = truncn(P (h) ⊕ h),
where truncn only keeps the last n bits.

2.2 Distinguishers

In this article, we will describe algorithms that find input pairs (X,X ′) for the
permutation P (or the permutation Q), such that the input difference ΔIN =
X ⊕ X ′ belongs to a subset of size IN and the output difference ΔOUT =
P (X)⊕P (X ′) belongs to a subset of size OUT . The best known generic algorithm
(this problem is different than the one studied in [8] where linear subspaces are
considered) in order to solve this problem, known as limited-birthday problem,
has been given in [3] and later a very close lower bound has been proven in [16].
For a randomly chosen n-bit permutation π, the generic algorithm can find
such a pair with complexity max{min{

√
2n/IN,

√
2n/OUT}, 2n/(IN ·OUT )}.

If one is able to describe an algorithm requiring less computation power, then
we consider that a distinguisher exists on the permutation π.

In the case of Grøstl, it is also interesting to look at not only the internal
permutations P and Q, but also the compression function f itself. For that
matter, we will generate compression function input values (h,m) such that



114 J. Jean, M. Naya-Plasencia, and T. Peyrin

ΔIN = m ⊕ h belongs to a subset of size IN , and such that ΔIN ⊕ ΔOUT =
f(h,m)⊕f(m,h)⊕h⊕m belongs to a subset of size OUT . Then, one can remark
that:

f(h,m)⊕ f(m,h) = P256(h⊕m)⊕Q256(m)⊕ P256(m⊕ h)⊕Q256(h)⊕ h⊕m,

f(h,m)⊕ f(m,h) = Q256(m)⊕Q256(h)⊕ h⊕m.

Hence, it follows that:

f(h,m)⊕ f(m,h)⊕ h⊕m = Q256(m)⊕Q256(h).

Since the permutation Q is supposed to have no structural flaw, the best known
generic algorithm requires max{min{

√
2n/IN,

√
2n/OUT}, 2n/(IN ·OUT )} op-

erations (the situation is exactly the same as the permutation distinguisher with
permutation Q) to find a pair (h,m) of inputs such that h ⊕ m ∈ IN and
f(h,m)⊕ f(m,h)⊕ h⊕m ∈ OUT . Note that both IN and OUT are specific to
our attacks.

We emphasize that even if trivial distinguishers are already known for the
Grøstl compression function (for example fixed-points), no distinguisher is known
for the internal permutations. Moreover, our observations on the compression
function use the differential properties of the internal permutations.

3 Distinguishers for Reduced Grøstl-256 Permutations

In this section, we describe a distinguisher for the permutation P256 of the
Grøstl-256 compression function reduced to 9 rounds. We emphasize that in the
latest version of the Grøstl submission [20], the permutation Q256 has different
coefficients in the ShiftRows transformation, but the technique we describe in
the following applies to Q256 as well.

3.1 The Truncated Differential Characteristic

In the following, we will consider truncated differential characteristics, originally
introduced by Knudsen [7] for block cipher analysis. With this technique, already
proven to be efficient for AES-based hash functions cryptanalysis [5,6,10,17], the
attacker only checks if there is a difference in a byte (active byte, denoted by a
black square in the Figures) or not (inactive byte, denoted by an empty square
in the Figures) without caring about the actual value of the difference.

The truncated differential characteristic we use has the sequence of active
bytes

8
R1−→ 1

R2−→ 8
R3−→ 64

R4−→ 64
R5−→ 64

R6−→ 8
R7−→ 1

R8−→ 8
R9−→ 64,

where the size in the input and output differences subsets are both IN =
OUT = 28×8 = 264, since there are eight active bytes in each extreme state



Improved Rebound Attack on the Finalist Grøstl 115

of the truncated characteristic. The actual truncated characteristic is reported
in Appendix B.

Note that we have three fully active internal states in the middle of the dif-
ferential characteristic, thus impossible to handle with the classical rebound or
SuperSBox techniques.

3.2 Finding a Conforming Pair

The method to find a pair of inputs conforming to this truncated differential
characteristic is similar to the rebound technique: we first find many solutions
for the middle rounds (round 3 to round 6) and then we filter them out during
the outwards probabilistic transitions through the MixBytes layers (round 2
and round 7). We denote x → y a non-null truncated differential transition
mapping x active bytes to y active bytes in a column through a MixBytes (or
MixBytes−1) layer, and the MDS property ensures x + y ≥ 9. Its differential
probability is determined by the number (8− y) of inactive bytes on the output:
2−8(8−y) if the MDS property is verified, 0 otherwise.

Therefore, since in our case we have two transitions 8→ 1 (see Figure 2), the

outbound phase has a success probability of
(
2−8×7

)2
= 2−112 and is straight-

forward to handle once we found enough solutions for the inbound phase.
In order to find solutions for the middle rounds (see Figure 2), we propose

an algorithm inspired by the ones in [14, 15]: As in [3, 8], instead of deal-
ing with the classical 8-bit SubBytes SBoxes, one can consider 64-bit SBoxes
(named SuperSBoxes) each composed of two AES SBox layers surrounding one
MixBytes and one AddRoundConstant function1. Indeed, the ShiftBytes
can be taken out from the SuperSBoxes since it commutes with SubBytes.

We start by choosing the input difference δIN after the first SubBytes layer
in state S1 and the output difference δOUT after the last MixBytes layer in
state S12 in a way that the truncated characteristic holds in S0 and S12. Note
that since we have 8 active bytes in S1 and S12, there are as many as 22×64 =
2128 different ways of choosing (δIN , δOUT ). We continue by constructing the 8
forward SuperSBox independently by considering the 264 possible input values
for each of them in state S3: differences in S1 can be directly propagated to S3

sinceMixBytes is linear. This generates 8 independent lists, each of size 264 and
composed by paired values. Doing the same for the 8 backwards SuperSBoxes
from state S12, we again get 8 independent lists of 264 elements each, and we
end up in state S8 where the 8 forward and the 8 backward lists overlap. In the
sequel, we denote Li the ith forward SuperSBox list and L′

i the ith backward
one, for 1 ≤ i ≤ 8.

In terms of freedom degrees in state S8, we want to merge 16 lists of 264

elements each for a merging condition on 2×512 = 1024 bits (512 for values and
512 for differences): we then expect 216×64 2−1024 = 1 solution as a result of the

1 These SuperSBoxes are 64-bit large in the case of Grøstl, but only 4 × 8 = 32
bits for the AES.



116 J. Jean, M. Naya-Plasencia, and T. Peyrin

SB Sh Mb

SB Sh Mb

SB Sh Mb

SB Sh Mb

S0 S1 S2 S3

S3 S4 S5 S6

S6 S7 S8 S9

S9 S10 S11 S12

Fig. 2. Inbound phase for the 9-round distinguisher attack on the Grøstl permutation
P256. The four rounds represented are the rounds 3 to 6 from the whole truncated
differential characteristic. A gray byte indicates an active byte; hatched and coloured
bytes emphasize one SuperSBox: there are seven similar others.

merging process. We detail a method in order to find this solution in time 2256

and memory 264 (see Figure 3).

Step 1. We start by considering every possible combination of elements in each
of the four lists L′

1, L
′
2, L

′
3 and L′

4. There are 2256 possibilities.
Step 2. This fully constraints 2×4 bytes in each of the 8 lists Li, 1 ≤ i ≤ 8 (i.e.

the first 4 columns of the internal state). For each of them, we then expect
264 2−8×8 = 1 element to match the randomized bytes. These elements can
be found with one operation by sorting the lists Li beforehand. At this point,
note that the second half of the state S8 has been fully determined by the
choice in L1, . . . , L8.

Step 3. We now need to ensure that the 4 last lists L′
5, L

′
6, L

′
7 and L′

8 contain
the elements imposed: those lists being of size 264 each, this happens with
probability 264 2−8×(2×8) = 2−64 independently on each list. Again, these
elements can be found with one operation by sorting the lists L′

i beforehand.

All in all, trying all the 2256 elements in (L′
1, L

′
2, L

′
3, L

′
4), we expect to find

2256 2−64×4 = 1 solution that will verify the 1024 bits of condition and we can
find this solution with only a few operations.



Improved Rebound Attack on the Finalist Grøstl 117

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

L′
1L

′
2L

′
3L

′
4

(a) Step 1.

2 2 2 2
2 2 2 2
2 2 2 2
2 2 2 2
2 2 2 2
2 2 2 2
2 2 2 2
2 2 2 2

L1L2L3L4L5L6L7L8

(b) Step 2.

? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?

L′
5L

′
6L

′
7L

′
8

(c) Step 3.

Fig. 3. Steps to merge the 16 lists. Grey cells denote bytes fully constrained by a choice
of elements in L′

1, . . . , L
′
4 during the first step.

Hence, from random differences (δIN , δOUT ), we find a pair of internal states of
the permutation that conforms to the middle rounds in time 2256 andmemory 264.
To pass the probabilistic transitions of the outbound phase, we need to repeat the
merging 2112 times by picking another couple of differences (δIN , δOUT ). In total,
we find a pair of inputs to the permutation that conforms to the truncated differ-
ential characteristic in time complexity 2368 and memory complexity 264.

3.3 Comparison with Ideal Case

In the ideal case, obtaining a pair whose input and output differences lie in a
subset of size IN = OUT = 264 for a 512-bit permutation requires 2384 compu-
tations: we can directly conclude that this leads to a distinguishing attack on the
9-round reduced version of the Grøstl-256 permutation with 2368 computations
and 264 memory. Similarly, as explained in Section 2.2, this result also induces a
nontrivial observation on the 9-round reduced version of the Grøstl-256 com-
pression function with identical complexity.

Finally, one can also derive slightly cheaper distinguishers by aiming less
rounds: instead of using the 9-round truncated characteristic from Appendix B,
it is possible to remove either round 2 or 8 and spare one 8→ 1 truncated differ-
ential transition. Overall, the generic complexity remains the same and this gives
a distinguishing attack on the 8-round reduced version of the Grøstl-256 per-
mutation with 2312 computations and 264 memory. Unfortunately, this is worse
than previously known results.

4 Distinguishers for Reduced Grøstl-512 Permutations

The 512-bit version of the Grøstl hash function uses a non-square 8 × 16 ma-
trix as 1024-bit internal state, which therefore presents a lack of optimal diffu-
sion: a single difference generates a fully active state after three rounds where
a square-state would need only two. This enables us to add an extra round to
the generalization of the regular 9-round characteristic of AES-like permutation
(Section 3) to reach 10 rounds.



118 J. Jean, M. Naya-Plasencia, and T. Peyrin

4.1 The Truncated Differential Characteristic

To distinguish its permutation P512
2 reduced to 10 rounds, we use the truncated

differential characteristic with the sequence of active bytes

64
R1−→ 8

R2−→ 1
R3−→ 8

R4−→ 64
R5−→ 128

R6−→ 64
R7−→ 8

R8−→ 1
R9−→ 8

R10−→ 64.

where the size of the input differences subset is IN = 2512 and the size of the
output differences subset is OUT = 264.

The actual truncated characteristic is appended in Appendix C. Again, we
split the characteristic into two parts: the inbound phase involving a merging of
lists in the four middle rounds (round 4 to round 7), and an outbound phase that
behaves as a probabilistic filter ensuring both 8 −→ 1 transitions in the outward
directions. Again, passing those two transitions with random values occurs with
probability 2−112.

4.2 Finding a Conforming Pair

In the following, we present an algorithm to solve the middle rounds in time 2280

andmemory 264. In total, we will need to repeat this process 2112 times to get a pair
of internal states that conforms to the whole truncated differential characteristic,
which would then cost 2280+112 = 2392 in time and 264 in memory. The strategy
of this algorithm (see Figure 4) is similar to the ones presented in [14, 15] and the
one from the previous section: we start by fixing the difference to a random value
δIN in S1 and δOUT in S12 and linearly deduce the difference δ′IN in S3 and δ′OUT

in S10. Then, we construct the 32 lists corresponding to the 32SuperSBoxes: the
16 forward SuperSBoxes have an input difference fixed to δ′IN and cover states
S3 to S8, whereas the 16 backward SuperSBoxes spread over states S10 to S6

with an output difference fixed to δ′OUT . In the sequel, we denoteLi the 16 forward
SuperSBoxes and L′

i the backward ones, 1 ≤ i ≤ 16.
The 32 lists overlap in S8, where we merge them on 2048 bits3 to find

264×32 2−2048 = 1 solution, since each list is of size 264. The naive way to find
the solution would cost 21024 in time by considering each element of the Carte-
sian product of the 16 lists Li to check whether it satisfies the output 1024 bit
difference condition. We describe now the algorithm that achieves the same goal
in time 2280.

First, we observe that due to the geometry of the non-square state, any list
Li intersects with only half of the L′

i. For instance, the first list L1 associated to
the first column of state S7 intersects with lists L′

1, L
′
6, L

′
11, L

′
12, L

′
13, L

′
14, L

′
15

and L′
16. We represent this property with a 16 × 16 array on Figure 5: the 16

columns correspond to the 16 lists L′
i and the lines to the Li, 1 ≤ i ≤ 16. The

cell (i, j) is white if and only if Li has a non-null intersection with the list L′
j ,

otherwise it is gray.

2 It would work exactly the same way for the other permutation Q512.
3 The 2048 bits come from 1024 bits of values and 1024 bits of differences.



Improved Rebound Attack on the Finalist Grøstl 119

SB Sh Mb

SB Sh Mb

SB Sh Mb

SB Sh Mb

S0 S1 S2 S3

S3 S4 S5 S6

S6 S7 S8 S9

S9 S10 S11 S12

Fig. 4. Inbound phase for the 10-round distinguisher attack on the Grøstl-512 per-
mutation P512. The four rounds represented are the rounds 4 to 7 from the whole
truncated differential characteristic C. A gray byte indicates an active byte; hatched
and coloured bytes emphasize the SuperSBoxes.

Then, we note that theMixBytes transition between the states S8 and S9 con-
straints the differences in the lists L′

i : in the first column of S9 for example, only
three bytes are active, so that the same column in S8 can only have 23×8 different
differences, which means that knowing three out of the eight differences in an ele-
ment of L′

1 is enough to deduce the other five. For a column-vector of differences
lying in a n-dimensional subspace, we can divide the 264 elements of the associated
lists in 28n disjointed sets of 264−8n values each. So, whenever we know the n inde-
pendent differences, the only freedom that remains lie in the values. The bottom
line of Figure 5 reports the subspace dimensions for each L′

i.
Using a guess-and-determine approach, we derive a way to use the previous

facts to find the solution to the merge problem in time 2280. As stated before,
we expect only one solution; that is, we want to find a single element in each of
the 32 lists. We start by guessing the values and the differences of the elements
associated to the lists L′

2, L
′
3, L

′
4 and L′

5. For this, we will try all the possible
combinations of their elements, there are 24×64 = 2256 in total. For each one
of the 2256 tries, all the checked cells � now have known value and difference.
From here, 8 bytes are known in each of the four lists L5, L6, L7 and L8: this
imposes a 64-bit constraint on those lists, which filter out a single element in each.
Thereby, we determined the value and difference in the other 16 bytes marked
by � in Figure 5. In lists L′

1 and L′
16, we have reached the maximum number of

independent differences (three and two, respectively), so we can determine the
differences for the other bytes of those columns: we mark them by �. In L4, the
8 constraints (three � and two �) filter out one element; then, we deduce the



120 J. Jean, M. Naya-Plasencia, and T. Peyrin

� � �� � � �� �� � �
���� � ���
����� � ��
������ � �
������� �
������� �

���
�� �
� ��

�
�
� �
� � �

Li

L′
i

Number of different differences in each L′
i

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

3 4 3 4 5 6 8 6 5 4 3 4 3 2 2 2

Fig. 5. A � means we know both value and difference for that byte, a � means that we
only determined the difference for that byte and white bytes are not constrained yet

correct element in L4 and mark it by �. We can now determine the differences
in L′

15 since the corresponding subspace has a dimension equals to two.
At this point, no more byte can be determined based on the information

propagated so far. We continue by guessing the elements remaining in L′
6. Since

there are already six byte-constraints on that list (three �), only 216 elements
conform to the conditions. The time complexity until now is thus 2256+16 = 2272.

Guessing the list L′
6 implies a 64-bit constraint of the list L9 so that we get

a single element out of it and determine four yet-unknown other bytes. This
enables to learn the independent differences in L′

14 and therefore, we filter an
element from L3 (two � and four �). At this stage, the list L′

1 is already fully
constrained on its differences, so that we are left with a set of 264−3×8 = 240

values constrained on five bytes (five �). Hence, we are able to determine all the
unset values in L′

1 (Figure 6a).
Again, the lack of constraints prevent us to determine more bytes. We continue

by guessing the 28 elements left in L1 (two � and three �), which makes the
time complexity increase to 2280. The list L1 being totally known, we derive the
vector of differences in L′

13, which adds an extra byte-constraint on L2 where
only one element was left, and so fully determines it. From here, L′

7 becomes
fully determined as well (four �) and so is L16. In the latter, the differences
being known, we were left with a set of 264−2×8 = 248 values, which are now
constrained on six bytes (six �).

We describe in Figure 6b the knowledge propagated so far, with time com-
plexity 2280 and probability 1. We observe that L10 is overdetermined (four �
and one �) by one byte. This means that we get the correct value with probabil-
ity 2−8, whereas L11 is filtered with probability 1. Similarly, the element of L′

8

happens to be correctly defined with probability 2−16; as for L′
9 and L′

15, with



Improved Rebound Attack on the Finalist Grøstl 121

� � � � �
�� � � �
��� � ����
���� � ���
����� � ��
������ � �
������� �
������� �

������� �
��� �

�� �
� �
�

� �
� � �

� � � �

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

3 4 3 4 5 6 8 6 5 4 3 4 3 2 2 2

(a) End of the second guess.

� � ������
�� � �����
��� � ����
���� � ���
����� � ��
������ � �
������� �
������� �

������� �
���� �
��� �

� ��
� � �

� � �
� � � �
� � � � �

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

3 4 3 4 5 6 8 6 5 4 3 4 3 2 2 2

(b) Near the end.

Fig. 6. A � means we know both value and difference for that byte, a � means that we
only determined the difference for that byte and white bytes are not constrained yet

probability 1. We continue in L′
11 by learning the full vector of differences, which

constraints L12 on 11 bytes (five � and one �) so that we get a valid element
with probability 2−24. Finishing the guess and determine technique is done by
filtering L′

10 and L12 with probability 1, L16 with probability 2−40 and L13, L14

and L15 with probability 2−64 each.
In total, for each guess, we successfully merge the 32 lists with probability

2−8−16−24−40−64−64−64 = 2−280,

but the whole procedure is repeated 264×4+16+8 = 2280 times, so we expect to
find the one existing solution. All in all, we described a way to do the merge
with time complexity 2280 and memory complexity 264. The final complexity to
find a valid candidate for the whole characteristic is then 2392 computations and
264 memory.

4.3 Comparison with Ideal Case

In the ideal case, obtaining a pair whose input difference lies in a subset of size
IN = 2512 and whose output difference lies in a subset of size OUT = 264 for
a 1024-bit permutation requires 2448 computations. We can directly conclude
that this leads to a distinguishing attack on the 10-round reduced version of the
Grøstl-512 permutation with 2392 computations and 264 memory. Similarly, as
explained in Section 2.2, this results also induces a nontrivial observation on the
10-round reduced version of the Grøstl-512 compression function with identical
complexity.



122 J. Jean, M. Naya-Plasencia, and T. Peyrin

One can also derive slightly cheaper distinguishers by aiming less rounds while
keeping the same generic complexity: instead of using the 10-round truncated
characteristic from Appendix C, it is possible to remove either round 3 or 9 and
spare one 8 → 1 truncated differential transition. Overall, this gives a distin-
guishing attack on the 9-round reduced version of the Grøstl-512 permutation
with 2336 computations and 264 memory. By removing both rounds 3 and 9, we
achieve 8 rounds with 2280 computations.

One can further gain another small factor for the 9-round case by using a
8 → 2 truncated differential transition instead of 8 → 1, for a final complexity
of 2328 computations and 264 memory. Indeed, the generic complexity drops to
2384 because we would now have OUT = 2128.

5 Conclusion

In this paper, we have provided new and improved cryptanalysis results on the
building blocks of both 256 and 512-bit versions of the finalist Grøstl. This is
done by using a rebound-like approach as well as an algorithm that allows us
to pass three fully active states in the middle of the differential characteristic
with lower complexity than a general probabilistic approach. To the best of our
knowledge, all previously known methods only manage to control two fully active
states in the middle of the differential characteristic.

On Grøstl-256, we could provide the best known rebound distinguishers on
9 rounds of the permutation. For Grøstl-512, we have considerably increased
the number of analyzed rounds, from 7 to 10, providing the best analysis known
the permutation.

These results do not threaten the security of Grøstl, but we believe they will
have an important role in better understanding AES-based functions in general.
In particular, we believe that our work will help determining the bounds and
limits of rebound-like attacks in these types of constructions. Future works could
include the study of more AES-like functions in regards to this new cryptanalysis
method.

References

1. Boura, C., Canteaut, A., De Cannière, C.: Higher-Order Differential Properties of
Keccak and Luffa. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 252–269.
Springer, Heidelberg (2011)

2. Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C.,
Schläffer, M., Thomsen, S.S.: Grøstl -- a SHA-3 candidate

3. Gilbert, H., Peyrin, T.: Super-Sbox Cryptanalysis: Improved Attacks for AES-Like
Permutations. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 365–
383. Springer, Heidelberg (2010)

4. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON Family of Lightweight Hash
Functions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222–239.
Springer, Heidelberg (2011)



Improved Rebound Attack on the Finalist Grøstl 123

5. Jean, J., Fouque, P.-A.: Practical Near-Collisions and Collisions on Round-Reduced
ECHO-256 Compression Function. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp.
107–127. Springer, Heidelberg (2011)

6. Jean, J., Naya-Plasencia, M., Schläffer, M.: Improved Analysis of ECHO-256. In:
Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 19–36. Springer,
Heidelberg (2012)

7. Knudsen, L.R.: Truncated and Higher Order Differentials. In: Preneel, B. (ed.)
FSE 1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995)

8. Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: Rebound
Distinguishers: Results on the Full Whirlpool Compression Function. In: [9], pp.
126–143

9. Matsui, M. (ed.): ASIACRYPT 2009. LNCS, vol. 5912. Springer, Heidelberg (2009)
10. Matusiewicz, K., Naya-Plasencia, M., Nikolic, I., Sasaki, Y., Schläffer, M.: Rebound

Attack on the Full LANE Compression Function. In: [9], pp. 106–125
11. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The Rebound Attack:

Cryptanalysis of Reduced Whirlpool and Grøstl. In: Dunkelman, O. (ed.) FSE
2009. LNCS, vol. 5665, pp. 260–276. Springer, Heidelberg (2009)

12. Mendel, F., Peyrin, T., Rechberger, C., Schläffer, M.: Improved Cryptanalysis of
the Reduced Grøstl Compression Function, ECHO Permutation and AES Block Ci-
pher. In: Jacobson Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS,
vol. 5867, pp. 16–35. Springer, Heidelberg (2009)

13. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: Rebound Attacks on
the Reduced Grøstl Hash Function. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS,
vol. 5985, pp. 350–365. Springer, Heidelberg (2010)

14. Naya-Plasencia, M.: How to Improve Rebound Attacks. Cryptology ePrint Archive,
Report 2010/607 (2010) (extended version), http://eprint.iacr.org/

15. Naya-Plasencia, M.: How to Improve Rebound Attacks. In: Rogaway, P. (ed.)
CRYPTO 2011. LNCS, vol. 6841, pp. 188–205. Springer, Heidelberg (2011)

16. Nikolić, I., Pieprzyk, J., Soko�lowski, P., Steinfeld, R.: Known and Chosen Key
Differential Distinguishers for Block Ciphers. In: Rhee, K.-H., Nyang, D. (eds.)
ICISC 2010. LNCS, vol. 6829, pp. 29–48. Springer, Heidelberg (2011)

17. Peyrin, T.: Cryptanalysis of grindahl. In: Kurosawa, K. (ed.) ASIACRYPT 2007.
LNCS, vol. 4833, pp. 551–567. Springer, Heidelberg (2007)

18. Peyrin, T.: Improved Differential Attacks for ECHO and Grøstl. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 370–392. Springer, Heidelberg (2010)

19. Sasaki, Y., Li, Y., Wang, L., Sakiyama, K., Ohta, K.: Non-full-active Super-Sbox
Analysis: Applications to ECHO and Grøstl. In: Abe, M. (ed.) ASIACRYPT 2010.
LNCS, vol. 6477, pp. 38–55. Springer, Heidelberg (2010)

20. Schläffer, M.: Updated Differential Analysis of Grøstl. Grøstl website (January
2011)

21. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

22. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

http://eprint.iacr.org/


124 J. Jean, M. Naya-Plasencia, and T. Peyrin

A Distinguishers for Other AES-Like Permutations

Using the same cryptanalysis technique, it is possible to study other AES-like
schemes using permutations similar to the Grøstl ones. For example, the recent
lightweigth hash function family PHOTON [4] is based on five different versions of
AES-like permutations. We denote s the size of the cells (s = 8 for AES) and c
the size of the square matrix representing the internal state (c = 4 for AES), the
five versions (s, c) for PHOTON are then (4, 5), (4, 6), (4, 7), (4, 8) and (8, 6) for
increasing versions. All versions are defined to apply 12 rounds of an AES-like
process, where the subkey additions are replaced by constant additions. Since the
internal state is always square, by trivially adapting the method from Section 3
to the specific parameters of PHOTON, one can hope to obtain distinguishers for
9 rounds of the PHOTON internal permutations. However, we are able to do so
only for the parameters (4, 8) used in PHOTON-224/32/32 (see Table 2 with the
comparison to previously known results). Indeed, the size c of the matrix plays
an important role in the gap between the complexity of our algorithm and the
generic one. The bigger is the matrix, the better will be the gap between the
algorithm complexity and the generic one.

Table 2. Distinguishers on PHOTON internal permutation when applying the method
from Section 3

Target Subtarget Rounds Time Memory Ideal Ref.

PHOTON-224/32/32 Permutation
8 (dist.) 28 24 210 [4]

9 (dist.) 2184 232 2192 Section A

The same effect applies on AES in the known-key model, for which distinguish-
ers on only 8 rounds are known as of today [3]. When attacking 9 rounds with
the method from Section 3, the middle rounds will cost about 264 operations
per solution, while the two 4 → 1 truncated differential transitions during the
outbound will be verified with probability (2−24)2 = 2−48. Overall, one solution
for the whole characteristic is found with 2112 computation and 232 memory, but
the generic algorithm can find such a pair with only 264.



Improved Rebound Attack on the Finalist Grøstl 125

B 9-Round Grøstl-256 Permutation Truncated
Characteristic

SB

Sh

Mb

SB

Sh

Mb

SB

Sh

Mb

SB

Sh

Mb

SB

Sh

Mb

SB

Sh

Mb

SB

Sh

Mb

SB

Sh

Mb

SB

Sh

Mb

Fig. 7. The 9-round truncated differential characteristic used to distinguish the per-
mutation P of Grøstl-256 from an ideal permutation



126 J. Jean, M. Naya-Plasencia, and T. Peyrin

C 10-Round Grøstl-512 Permutation Truncated
Characteristic

SB Sh Mb

SB Sh Mb

SB Sh Mb

SB Sh Mb

SB Sh Mb

SB Sh Mb

SB Sh Mb

SB Sh Mb

SB Sh Mb

SB Sh Mb

Fig. 8. The 10-round truncated differential characteristic used to distinguish the per-
mutation P of Grøstl-512 from an ideal permutation



(Pseudo) Preimage Attack on Round-Reduced

Grøstl Hash Function and Others

Shuang Wu1, Dengguo Feng1, Wenling Wu1, Jian Guo2, Le Dong1,
and Jian Zou1

1 State Key Laboratory of Information Security, Institute of Software,
Chinese Academy of Sciences

2 Institute for Infocomm Research, Singapore
wushuang@is.iscas.ac.cn

Abstract. The Grøstl hash function is one of the 5 final round can-
didates of the SHA-3 competition hosted by NIST. In this paper, we
study the preimage resistance of the Grøstl hash function. We propose
pseudo preimage attacks on Grøstl hash function for both 256-bit and
512-bit versions, i.e., we need to choose the initial value in order to in-
vert the hash function. Pseudo preimage attack on 5(out of 10)-round
Grøstl-256 has a complexity of (2244.85, 2230.13) (in time and memory)
and pseudo preimage attack on 8(out of 14)-round Grøstl-512 has a
complexity of (2507.32 , 2507.00). To the best of our knowledge, our attacks
are the first (pseudo) preimage attacks on round-reduced Grøstl hash
function, including its compression function and output transformation.
These results are obtained by a variant of meet-in-the-middle preimage
attack framework by Aoki and Sasaki. We also improve the time com-
plexities of the preimage attacks against 5-round Whirlpool and 7-round
AES hashes by Sasaki in FSE 2011.

Keywords: hash function, meet-in-the-middle, preimage attack, Grøstl,
Whirlpool, AES.

1 Introduction

In FSE 2008, Gaëtan Leurent proposed the first preimage attack on the full MD4
hash function [12]. Based on this pioneering work, Aoki and Sasaki invented the
technique of Meet-int-the-middle (MitM) preimage attack [2]. The basic idea
of this technique is to divide the compression function into two concatenated
sub-functions. The output values of two sub-functions can be independently
calculated from the given input value in the forward direction and the backward
direction. The steps of the forward and backward computation are called forward
chunk and backward chunk. Then the MitM attack is applied to the output values
of two sub-functions at the concatenating point of two chunks.

For hash functions based on block ciphers, the feedforward operations in
the mode of operations like Davis-Meyer, Matyas-Meyer-Oseas and Miyaguchi-
Preneel provide a chance for the applications of new technique called splice-and-
cut [2]. The input and output of a compression function can be regarded as

A. Canteaut (Ed.): FSE 2012, LNCS 7549, pp. 127–145, 2012.
c© International Association for Cryptologic Research 2012



128 S. Wu et al.

concatenated through the feed-forward operation in these modes of operations.
Then the compression function is in the form of a circle and any step can be
selected as either the starting point or the matching point.

Improvements have been developed on both the starting point and the match-
ing point. The initial structure technique [16] (also called message stealing [7])
and the local collision1 [15] technique allows two sub-functions to share several
steps without violating the independency in computing their own values, which
provides more attackable rounds. The partial matching technique [2,16,7,1] takes
advantage of the compression function’s diffusion properties at the matching
point. Due to slow diffusion of the Feistel-like round function, part of the state
value can remain independent of the other chunk while proceeding with more re-
versed rounds. The deterministic part of the state is used as the matching point.
After finding a match of the partial values, the equality of the remaining part
is calculated and checked. These techniques used in the MitM preimage attacks
are illustrated in Fig. 1.

Chaining 
Value

Target 
Value

Initial Structure Partial Matching

Fig. 1. Advanced techniques for MitM preimage attack

The MitM preimage attacks have been applied to full HAVAL-3/4 [15], MD4 [2,7],
MD5 [16], Tiger [7], and round-reduced HAS-160 [8], RIPEMD [21], SHA-0/1 [3],
SHA-2 [7,1]. The compression functions of these hash functions all use Feistel-
like structures. In FSE 2011, Yu Sasaki proposed MitM preimage attack on AES

hash mode for the first time [14]. He discussed how initial structure and partial
matching can be used on AES-like structures and proposed direct applications to
AES in different hash modes and round-reduced Whirlpool [4]. The development
of the MitM attacks on hash functions has also inspired several attacks on block
ciphers, such as KTANTAN [22] and XTEA [19].

Our Contributions. In this paper, we found a way to reduce the complexity
of the MitM preimage attack on AES-like hash functions. By finding the optimal
chunk separation with best balance between freedom degrees and the size of the
matching point, the freedom degrees in the internal states are fully utilized.

Grøstl [6] is one of the five finalists in the third round of SHA-3 [13] compe-
tition hosted by NIST. The Grøstl hash function has been tweaked in the third

1 The local collision technique was proposed by Joux et al. [5], which is originally
used in the collision attacks. The similar idea can be used to construct the initial
structure in the MitM preimage attack.



Preimage Attack on Round-Reduced Grøstl Hash Function and Others 129

round. The original version is renamed to Grøstl-0 and the tweaked version is
called Grøstl.

We found that Grøstl’s round-reduced output transformation can be inverted
using the MitM techniques. Then we noticed that if we can control the initial
value, preimage of the output transformation can be connected with a compres-
sion function. The Grøstl hash function uses wide-pipe chaining values, so we
can actually match 2n-bit chaining value with a time complexity less than 2n

compression function calls. Since the initial value is chosen by us, this attack is
a pseudo preimage attack.

The matching of double-sized states are based on a method of variant gener-
alized birthday attack. The special property of Grøstl’s compression function
makes this approach possible. We found that the matching can be regarded as
a special three-sum problem. Since the elements in one of the three sets can be
restricted in a subspace, we can reduce the complexity to less than 2n.

The comparison of previous best attacks and our attacks on Grøstl are shown
in Table 1. Note that the attacks on Grøstl-0 are not included in this table,
since our attack is on the tweaked version.

We also improve the existing attacks against 5-round Whirlpool and 7-round
AES hashing modes. While the previous result on 5-round Whirlpool applies to
second preimage only, we improve the time complexity and also make the attack
work for first preimages. We also improve the time complexity for the attacks
against 7-round AES hashing modes. The details are presented in Appendix and
the extended version [23] due to space limit.

Outline of This Paper. In Sect. 2, we describe the specification of the Grøstl
hash function. In Sect. 3, we introduce the attack outline of the pseudo preimage
attack on reduced round Grøstl. Attacks on Grøstl-256 and Grøstl-512 are
illustrated in Sect. 4 and Sect. 5 respectively. Sect. 6 is the conclusion.

2 Specification of Grøstl

Grøstl is a double-pipe design, i.e., the size of the chaining value (2n-bit) is
twice as the hash size (n-bit). Message length should be less than 273− 577 bits.
The padding rule is not introduced here, since it’s not important in our attack.

The compression function of Grøstl is written as:

F (H,M) = P (H ⊕M)⊕Q(M)⊕H

Where H is the chaining value and M is the message block, both are of 2n bits.
After all message blocks are processed, the last chaining value X is used as input
of the output transformation, which is written as

Ω(X) = Truncn(P (X)⊕X)

The right half of P (X)⊕X is used as the hash value. The compression function
and output transformation are illustrated in Fig. 2.



130 S. Wu et al.

Table 1. Comparison of the attacks on Grøstl-256 and Grøstl-512

Algorithm Target Attack Type Rounds Time Memory Source

Grøstl-256

Hash
Collision 3 264 - [18]

Function

Compression Semi-Free-Start
6 2112 264 [18]

Function Collision

Permutation Distinguisher 8 248 28 [17]

Output
Preimage 5 2206 248 Sect. 4.1

Transformation

Hash Pseudo
5 2244.85 2230.13 Sect. 4

Function Preimage

Grøstl-512

Hash
Collision 3 2192 - [18]

Function

Compression Semi-Free-Start
7 2152 256 [17]

Function Collision

Output
Preimage 8 2495 216 Sect. 5.1

Transformation

Hash Pseudo
8 2507.32 2507.00 Sect. 5

Function Preimage

Fig. 2. Compression function and output transformation of Grøstl

P and Q are AES-like permutations with 8 × 8 and 8 × 16 sized state for
Grøstl-256 and Grøstl-512 separately. Grøstl-256 uses 10-round P , Q and
Grøstl-512 uses 14-round P ,Q. The round function of the permutations consists
of the four operations:

– SubBytes(SB): applies the Substitution-Box to each byte.
– ShiftBytes(SR): cyclically shifts the i-th row leftwards for i positions.
– MixBytes(MC): multiplies each column of the state matrix by an MDS ma-

trix:
C = circ(02, 02, 03, 04, 05, 03, 05, 07)

– AddRoundConstant(AC): XOR the round constant to the state.



Preimage Attack on Round-Reduced Grøstl Hash Function and Others 131

The shift vectors used in P and Q are different. P in Grøstl-256 uses
(0,1,2,3,4,5,6,7) and P in Grøstl-512 uses (0,1,2,3,4,5,6,11). In the description
of our attack, we skip Q’s detail since it’s not required.

An important property of the compression function has been pointed out in
the submission document of Grøstl hash function [6]. Note that with H ′ =
H ⊕M , the compression function can be written as

F (H,M) = P (H ′)⊕H ′ ⊕Q(M)⊕M.

So the generic preimage attack on the compression function with 2n-bit state
costs 2n computations, since solving the equation F (H,M) = T can be regarded
as a birthday problem. Then the collision attack on the compression function
costs 22n/3 computations, since F (H1,M1) ⊕ F (H2,M2) = 0 is a (four-sum)
generalized birthday problem [20].

3 Outline of the Attack on the Grøstl Hash Function

Suppose the hash size is n-bit and the state size is 2n-bit. In order to find a
pseudo preimage (H,M) of the Grøstl hash function, let X = F (H,M), then
X is the preimage of the output transformation: P (X) ⊕X = ∗||T where T is
the target hash value and ∗ stands for arbitrary n-bit value. With H ′ = H⊕M ,
we have

(P (H ′)⊕H ′)⊕ (Q(M)⊕M)⊕X = 0 (1)

If we have collected enough candidates for P (H ′)⊕H ′, Q(M)⊕M and X , the
pseudo preimage attack turns into a three-sum problem. As we know, there is
no generic solution for three-sum problem faster than birthday attack. But if we
can restrict P (H ′)⊕H ′ in a subspace, it is possible to break the birthday bound.
Here we restrict P (H ′)⊕H ′ in a subspace by finding its partial zero preimages.

2x3 × 2x2 × 2x1 ×

2x1+x2-b ×

2x1+x2+x3-2n ×

Fig. 3. Outline for pseudo preimage attack on the Grøstl hash function



132 S. Wu et al.

As illustrated in Fig. 3, the attack process is similar to the generalized birthday
attack [20]. With four parameters x1, x2, x3 and b, this attack can be described
in four steps:

1. Find 2x1 preimagesX of the output transformation and store them in lookup
table L1.

2. Find 2x3 H ′ such that leftmost b bits of P (H ′)⊕H ′ are all zero. Then store
all P (H ′) ⊕ H ′ and H ′ in lookup table L2. This step can be regarded as
finding partial zero preimages on P (H ′)⊕H ′.

3. Choose 2x2 random M with correct padding and calculate Q(M)⊕M . Then
check if there is an X in L1 with the same leftmost b bits as Q(M) ⊕M .
We expect to find 2x1+x2−b partial matches Q(M)⊕M ⊕X here, whose left
most b bits are all zero.

4. For each of the 2x1+x2−b Q(M)⊕M⊕X found in step 3, check if its remaining
(2n− b)-bit value can be found in L2.

Once a final match is found, we have H ′,M and X which satisfies equation (1).
So, (H ′ ⊕M,M) is a pseudo preimage of Grøstl.

Note that to find an X is to find an n-bit partial preimage of P (X) ⊕ X
and the truncation bits are fixed (the leftmost n-bits are truncated). But for
P (H ′) ⊕H ′, it’s not necessary to find partial preimage for the leftmost b bits.
In fact, we can choose any b bits as the zero bits. We will further discuss the
differences between fixed position and chosen position partial preimage attacks
later.

Suppose that for Grøstl with 2n-bit state, it takes 2C1(2n,n) computations to
find a fixed position n-bit partial preimage and it takes 2C2(2n,b) computations
to find a chosen position b-bit partial preimage of P (X)⊕X . Now we calculate
the complexity for each of the four attacking steps:

1. Step 1, building the look-up table 1 takes 2x1+C1(2n,n) computations and 2x1

memory.
2. Step 2, building the look-up table 2 takes 2x3+C2(2n,b) computations and 2x3

memory.
3. Step 3, calculating Q(M)⊕M for 2x2 M and checking the partial match in

table 1 takes 2x2 Q calls, which is equivalent to 2x2−1 compression function
calls.

4. Step 4, checking the final match for 2x1+x2−b candidates requires 2x1+x2−b

table look-ups, which can be equivalently regarded as 2x1+x2−bCTL compres-
sion function calls. CTL is the complexity of one table lookup, where unit
one is one compression function call. For 5-round Grøstl-256 and 8-round
Grøstl-512(the attacked versions), CTL is chosen as 1/640 and 1/2048 re-
spectively2.

2 The constant CTL is chosen as the upper bound of the complexity that one table
lookup takes, due to the fact that 5-round Grøstl-256 software implementation
composes of (8 ∗ 8) ∗ 5 ∗ 2 = 640 s-box lookups, and other operations. In 8-round
Grostl-512, there are (8 ∗ 16) ∗ 8 ∗ 2 = 2048 s-box lookups.



Preimage Attack on Round-Reduced Grøstl Hash Function and Others 133

Then the overall complexity is:

2x1+C1(2n,n) + 2x3+C2(2n,b) + 2x2−1 + 2x1+x2−b · CTL (2)

with memory requirement of 2x1 + 2x3 .
In the following sections, we first show how to find partial preimages of the

function P (X)⊕X and calculate the complexity C1(2n, n) and C2(2n, b). Then
we need to choose optimal parameters x1, x2, x3 and b to minimize the complexity
with the restriction of x1 + x2 + x3 ≥ 2n and 0 ≤ b ≤ 2n. Since in order to find
one final match, we need 2x1+x2+x3−2n ≥ 1⇒ x1 + x2 + x3 ≥ 2n.

4 Pseudo Preimage Attack on 5-Round Grøstl-256

In this section, first, we introduce the preimage attack on the output trans-
formation, i.e., the fixed position partial preimage attack on P (X) ⊕ X and
calculate the complexity C1(512, 256). Then we introduce the chosen position
partial preimage attack on P (H ′) ⊕H ′ and give the expression of the function
f(b) = C2(512, b). At last, we try to minimize the overall complexity by finding
proper parameters for the generic attack introduced in Section 3.

4.1 Fixed Position Partial Preimage Attack on P (X) ⊕ X

The chunk separation for this attack is shown in Fig. 4. Note that the yellow
cells with a diagonal line are the truncated bytes, which can be regarded as free
variables. In the last state of Fig. 4, the equations for the truncated byte can be
directly removed since they are automatically fulfilled. The size of the full match
is 256-bits for this MitM attack.

SRSBACMCSRSBAC

SRSBAC MC

SRSBAC MC SRSBAC MC

MC

Initial
Structure

Matching
Point

Hash Value

Truncated

Fig. 4. Chunk separation of preimage attack on Grøstl-256’s output transformation



134 S. Wu et al.

The Colors in the Chunk Separation. First, we explain what the colors
stand for. Actually, we use the same colors as in [14] to illustrate the chunk
separations. The blue bytes in the forward chunk can be determined by the blue
bytes in the initial structure. The white color in the forward chunk stands for the
bytes whose values are affected by both red bytes and blue bytes in the initial
structure, and can’t be pre-computed until the partial match is found. Similarly,
in the backward chunk, red and white cells stand for the certain and uncertain
bytes. The gray cells are constant bytes in the target value, the chaining value
and the initial structure, which are known or can be chosen before the MitM
attack.

Freedom Degrees and Size of the Matching Point. Before we apply the
MitM attack, we need to know the freedom degrees in the forward and backward
directions and the bit size of the matching point. The calculation method has
been explained in [14]. More details can be found in the extended version of this
paper [23].

We can find that, in Fig. 4, there are D2 = 248 and D1 = 264 freedom
degrees in red and blue bytes respectively. In each of the four available columns,
there are two bytes of matching point. So the size of the matching point is
m = 4× (2 × 8) = 64 bits.

The Attack Algorithm and Its Complexity. In this section, we consider a
generic MitM attack algorithm with partial matching technique. Suppose there
are 2D1 and 2D2 freedom degrees in the forward and backward chunks. The size
of the matching point is m-bit and the full matching size is b-bit. Without loss
of generality, assume that D1 ≥ D2. Note that if D1 + D2 ≥ b, we can’t fully
use all the freedom degrees. Here we use d1 and d2 to denote the actually used
freedom degrees:

(d1, d2) =

⎧⎨⎩
(D1, D2), ifD1 +D2 ≤ b;

(b/2, b/2), ifD1 +D2 > b and D2 ≥ b/2;

(b−D2, D2), ifD1 +D2 > b and D2 < b/2.

(3)

This MitM preimage attack can be described in four steps.

1. Choose random constants in the initial structure.
2. With the chosen constants, for all 2d2 values v2j of the forward direction,

calculate all the partial values p2j and the full values f2
j at the matching

point and store all the pairs (v2j , p
2
j) in a look up table L;

3. For all 2d1 values v1i of the backward direction, calculate p1i . Then check if
p1i is in table L. If we found one partial match that p1i = p2j for some j,

calculate the full value f1
i using v1i and check if f1

i = f2
j ;

4. If no full match has been found yet, go to step 1.

Then we calculate the complexity. Step 2 costs 2d2 f2 calls and 2d2 memory. Step
3 costs 2d1 f1 calls. Consider two kinds of circumstances separately.



Preimage Attack on Round-Reduced Grøstl Hash Function and Others 135

– If d1 + d2 ≥ m. After step 3 is done, we expect 2d1+d2−m good candidates
that satisfy the m-bit matching point. Now check if the full value of all
good candidates are matched. This step requires 2d1+d2−m computations.
The probability that a good candidate is a full match is 2m−b. Then the
probability that there exists one full match in 2d1+d2−m good candidates
is about 2(d1+d2−m)+(m−b) = 2d1+d2−b. So, we need to repeat the attack
2b−d1−d2 times in order to find a full match. The complexity is:

2b−d1−d2 · (2d1 + 2d2 + 2d1+d2−m) = 2b · (2−d1 + 2−d2 + 2−m)

– If d1 + d2 < m. After step 3 is done, we can find one good candidate with
probability of 2d1+d2−m. So, we need to repeat the attack 2m−d1−d2 times
to find one good candidate, then we calculate the full value of the good
candidate at the matching point to check if it is a full match, which cost one
computation. So the complexity to find one good candidate and check its full
value is 2m−d1−d2(2d1 +2d2)+1. Then find and check 2b−m good candidates
to get a full match. The complexity is:

2b−m · (2m−d1−d2(2d1 + 2d2) + 1) = 2b · (2−d1 + 2−d2 + 2−m)

So, no matter in which case, the complexity to find one full match using this
algorithm is always

2b · (2−d1 + 2−d2 + 2−m) (4)

computations and 2d2 memory.

Application to Grøstl’s Output Transformation. In Fig. 4, the freedom
degrees are D1 = 48, D2 = 64, the partial and full matching size are m = 64
and b = 256 bits. Using the attack algorithm introduced in Section 4.1, we can
calculate the complexity to invert 5-round Grøstl’s output transformation. Here
the complexity is measured by compression function calls. In the MitM attack
it takes about half P calls, i.e. 1/4 compression function calls to evaluate the
matching point for one direction. Thus we can multiply 2−2 to the complexity:
2C1(512,256) = 2−2 · 2256(2−64 + 2−48 + 2−64) ≈ 2206 compression function calls
with 248 memory.

On the Choice of the Chunk Separation. We can prove that our chunk
separation in Fig. 4 is optimal, which minimizes the complexity of inverting the
output transformation.

Suppose there are b blue bytes and r red bytes in each column of the matching
point. Then we show the relation between b, r, freedom degrees D1, D2 and the
partial matching size m.

In the forward direction, r red bytes in one column of the matching point
AC,SB,SR,MC−−−−−−−−−−→ r full red columns

AC,SB,SR−−−−−−−→ r red bytes in one column. Here
we stops at the left end of the initial structure. In order to produce at least one
byte of freedom degrees in the blue color, there are at least r + 1 blue columns



136 S. Wu et al.

in the initial structure. Then there would be at most 8 − (r + 1) = 7 − r red
columns in the initial structure.

In the backward direction, b blue bytes in one column of the matching point
SR−1,SB−1,AC−1

−−−−−−−−−−−−→ 8− b white columns
MC−1,SR−1,SB−1,AC−1

−−−−−−−−−−−−−−−−−→ 8− b white bytes
in each columns.

Now we count the freedom degrees. There are (7−r) red columns in the initial
structure and each column produces 8− b free bytes. So, freedom degrees in red
color is D2 = 8(7 − r)(8 − b) bits. The minimum freedom degrees in the blue
color here is D1 = 264. Size of the matching point in one column is 8(b+ r − 8)
bits, so there are 4× 8(b+ r − 8) bits of matching point in total.

So the complexity is 2−2 · 2256(2−64 + 2−8(7−r)(8−b) + 2−32(b+r−8)). The min-
imum complexity is 2206 when b = 6, r = 4 or b = 5, r = 5. Fig. 4 is the case of
b = 6, r = 4.

4.2 Chosen Position Partial Preimage Attack on P (H ′) ⊕ H ′

Now, consider the attack model of chosen position partial preimage. In the partial
preimage attack of P (H ′)⊕H ′, we can choose the positions of the target bits. In
order to minimize the complexity, we choose this chunk separation to maximize
the size of the matching point m(b) within all possible b target bits.

SRSBACMCSRSBAC

SRSBAC MC

SRSBAC MC SRSBAC MC

MC

Initial
Structure

Match
Point

Chosen 
positions of 

zeroes

Truncated

Fig. 5. Chunk separation of chosen position partial preimage attack on P (H ′)⊕H ′ for
Grøstl-256

First, we discuss the size of matching point and chosen positions in one col-
umn. If less than 8 bits of the red byte in one column are chosen, no matching
point can be derived. if b > 8 bits of the red bytes are chosen, there are b − 8
bits of matching point. Since there are only two red bytes in one column in the
last state of Fig. 5, even if b > 16, no more than 8 bits of matching point can be
derived. In order to maximize m(b), we choose at most 2 red bytes in one column
and then chose the red bytes from another column. When b > 128, m(b) = 64,
because there are 64 bits of matching point in total. The graph of m(b) is shown
in Fig. 6.



Preimage Attack on Round-Reduced Grøstl Hash Function and Others 137

In this Figure, freedom degrees in the red and blue color areD2 = 40 andD1 =
64. Then we can calculate the complexity of chosen position partial preimage:

2C2(512,b) = 2−2 · 2b(2−d1 + 2−d2 + 2−m(b))

where d1 and d2 are chosen according to equation (3), i.e.:

(d1, d2) =

⎧⎨⎩
(64, 40), if b ≥ 104;

(b − 40, 40), if 80 ≤ b < 104;

(b/2, b/2), if b < 80.

The graph of C2(512, b) is shown in Fig. 7. When b > 80, C2(512, b) ≈ b − 42.

0 50 100 150 200
0

50

100

150

b∈[0,200]

S
iz

e 
o

f 
th

e 
m

at
ch

in
g

 p
o

in
t

Fig. 6. Size of the matching point for cho-
sen position truncations for Grøstl-256

0 50 100 150
0

50

100

150

b∈[0,150]

C
o

m
p

le
xi

ty
 o

f 
ch

o
se

n
 p

o
si

ti
o

n
 p

ar
ti

al
 p

re
im

ag
e

Fig. 7. Complexity of chosen position
partial preimage of P (H ′) ⊕ H ′ for
Grøstl-256

4.3 Minimizing the Overall Complexity

By now, we have found C1(512, 256) and C2(512, b). So we can start to deal with
the overall complexity in equation (2). In the expression of the complexity, b can

0 20 40 60 80 100 120
240

242

244

246

248

250

252

254

256

258

260

b∈[0,120]

O
ve

ra
ll 

co
m

p
le

xi
ty

Fig. 8. Overall complexity of pseudo preimage attack on 5-round Grøstl-256



138 S. Wu et al.

be integers from 0 to 512. For all b ∈ [0, 512], optimal x1, x2 and x3 are chosen to
minimize the overall complexity. The graph of the minimum overall complexity
for b ∈ [0, 120] is shown in Fig. 8.

When b = 31, x1 ≈ 36.93, x2 ≈ 244.93 and x3 ≈ 230.13, the complexity is the
lowest: 2244.85 compression function calls. Memory requirement is 2230.13. The
chosen positions for the 31 bits ≈ 4 bytes are marked in Fig. 5.

5 Pseudo Preimage Attack on 8-Round Grøstl-512

The attack on Grøstl-512 uses the same method for the three-sum phase as in
the attack on Grøstl-256. Here we skip the details of the attack algorithm and
introduce the difference between the attacks on them only.

5.1 Fixed Position Partial Preimage Attack on P (X) ⊕ X

The chunk separation for 8-round Grøstl-512 is shown in Fig. 9. Note that in
this figure, we use a 2-round initial structure. Freedom degrees in the red and
blue bytes are both 216. There are 4 bytes of matching point in total.

The parameters for the MitM preimage attack on the output transformation
are D1 = D2 = 16,m = 32 and n = b = 512. So the complexity is 2C1(1024,512) =
2−2 ·2512(2−16+2−16+2−32) ≈ 2495 compression function calls and 216 memory.

On the Choice of the Chunk Separation. Actually, we searched for all the
possible patterns of the chunk separation for 8-round Grøstl-512. The chunk
separation in Fig. 9 is one of the best we found. The search algorithm is as
follows:

Step 1. Search for the matching point.
We want to find good candidates in all the possible positions of the white

columns in round 2 and round 6. Since there are 32 columns in two states, there
are 232 patterns in total.

For each of the pattern of white columns, we can calculate round 2 backward
and round 6 forward and check if there are at least two byte of matching point.
After the search for all the 232 patterns, we found 1322 patterns with at least
two bytes of matching point.

Step 2. Search for the initial structure.
Considering the mirror image and rotational similarity, there are only 120

distinct patterns in all the 1322 patterns of matching point. For each of the 120
patterns, we calculate forward from round 2 and backward from round 6.

If there is one white column in round 2, the number of possible patterns of the
white bytes in the same column of round 3 is 28− 1, since there must be at least
one white byte in this column. So size of the search space is (28 − 1)w, where w
is the number of white columns in both round 2 and round 6. In the 120 possible
patterns, w is no more than 4, so the search space is at most 232 · 120 ≈ 239.

Using early-abort trick, we can directly skip some bad patterns in round 2
without knowing the pattern in round 6. Then the search space is reduced again
and the search is practical.



Preimage Attack on Round-Reduced Grøstl Hash Function and Others 139

SRSBAC

MC

MCSRSBAC

MCSRSBAC

MC

MCSRSBAC

MC

SRSBAC

SRSBAC

MC

MCSRSBAC

Hash ValueTruncated

Matching Point

SRSBAC

Initial 
Structure

Fig. 9. Chunk separation of preimage attack on Grøstl-512’s output transformation

5.2 Chosen Position Partial Preimage Attack on P (H ′) ⊕ H ′

For chosen position partial preimage, we use another chunk separation in Fig. 10.
The freedom degrees for the MitM preimage attack are D1 = 24, D2 = 8. Then
we can calculate the complexity of chosen position partial preimage:

2C2(1024,b) = 2−2 · 2b(2−d1 + 2−d2 + 2−m(b))

where d1 and d2 are chosen according to equation (3), i.e.,

(d1, d2) =

⎧⎨⎩
(24, 8), if b ≥ 32;

(b− 8, 8), if 16 ≤ b < 32;

(b/2, b/2), if b < 16.

5.3 Minimizing the Overall Complexity

With the value and expression of C1(1024, 512) and C2(1024, b), we can deal
with the overall complexity like we have done for Grøstl-256. When b = 0, x1 ≈
10.50, x2 ≈ 506.50 and x3 ≈ 507.00, the overall complexity is the lowest: 2507.32.
Memory requirement is 2507.00.



140 S. Wu et al.

SRSBAC

MC

MCSRSBAC

MCSRSBAC

MC

MCSRSBAC

MC

SRSBAC

SRSBAC

MC

MCSRSBAC

Target Value

Matching Point

SRSBAC

Initial 
Structure

Fig. 10. Chunk separation of chosen position partial preimage attack on P (H ′) ⊕H ′

for Grøstl-512

6 Conclusion

In this paper, we proposed pseudo preimage attacks on the hash functions of
5-round Grøstl-256 and 8-round Grøstl-512. This is the first pseudo preimage
attack on round-reduced Grøstl hash function, which is a wide-pipe design.

In order to invert the wide-pipe hash function, we have to match 2n-bit state
value with less than 2n computations. This is achieved by exploiting the spe-
cial property of the Grøstl compression function. After collecting enough par-
tial preimages on the component P (X) ⊕ X , the double-sized state values are
matched using a variant of the generalized birthday attack.

There is an interesting observation that this attack works with any function
Q. Thus our attack can be applied to the Grøstl hash function with round-
reduced permutation P and full-round permutation Q. However, our attacks do
not threat any security claims of Grøstl.

Acknowledgement. The authors would like to thank Kazumaro Aoki, Keting
Jia, Mohammad Ali Orumiehchiha, Somitra Sanadhya, and Chunhua Su for their
inspiring suggestions during the ASK 2011 workshop. The authors would also
thank Lei Wang for useful discussions, Praveen Gauravaram for improving the
editorial quality of this paper and reviewers of FSE 2012 for helpful comments.



Preimage Attack on Round-Reduced Grøstl Hash Function and Others 141

This work is supported by the National Natural Science Foundation of China
(No.60873259 and No.60903212), National Science and TechnologyMajor Project
of China(No.2011ZX03002-005-02) and the Knowledge Innovation Project of The
Chinese Academy of Sciences.

References

1. Aoki, K., Guo, J., Matusiewicz, K., Sasaki, Y., Wang, L.: Preimages for Step-
Reduced SHA-2. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
578–597. Springer, Heidelberg (2009)

2. Aoki, K., Sasaki, Y.: Preimage Attacks on One-Block MD4, 63-Step MD5 and
More. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381,
pp. 103–119. Springer, Heidelberg (2009)

3. Aoki, K., Sasaki, Y.: Meet-in-the-Middle Preimage Attacks Against Reduced SHA-
0 and SHA-1. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 70–89.
Springer, Heidelberg (2009)

4. Barreto, P.S.L.M., Rijmen, V.: The whirlpool hashing function. Submission to
NESSIE (September 2000)

5. Chabaud, F., Joux, A.: Differential Collisions in SHA-0. In: Krawczyk, H. (ed.)
CRYPTO 1998. LNCS, vol. 1462, pp. 56–71. Springer, Heidelberg (1998)

6. Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C.,
Schläffer, M., Thomsen, S.S.: Grøstl – a SHA-3 candidate. Submission to NIST,
Round 3 (2011)

7. Guo, J., Ling, S., Rechberger, C., Wang, H.: Advanced Meet-in-the-Middle Preim-
age Attacks: First Results on Full Tiger, and Improved Results on MD4 and SHA-2.
In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 56–75. Springer, Hei-
delberg (2010)

8. Hong, D., Koo, B., Sasaki, Y.: Improved Preimage Attack for 68-Step HAS-160.
In: Lee, D., Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 332–348. Springer,
Heidelberg (2010)

9. Joux, A.: Multicollisions in Iterated Hash Functions. Application to Cascaded Con-
structions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316.
Springer, Heidelberg (2004)

10. Kelsey, J., Schneier, B.: Second Preimages on n-Bit Hash Functions for Much Less
than 2n Work. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp.
474–490. Springer, Heidelberg (2005)

11. Kiayias, A. (ed.): CT-RSA 2011. LNCS, vol. 6558. Springer, Heidelberg (2011)
12. Leurent, G.: MD4 is Not One-Way. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086,

pp. 412–428. Springer, Heidelberg (2008)
13. National Institute of Standards and Technology. Announcing Request for Candi-

date Algorithm Nominations for a New Cryptographic Hash Algorithm (SHA-3)
Family. Federal Register 27(212), 62212–62220 (2007),
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf

(October 17, 2008)
14. Sasaki, Y.: Meet-in-the-Middle Preimage Attacks on AES Hashing Modes and an

Application to Whirlpool. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 378–
396. Springer, Heidelberg (2011)

15. Sasaki, Y., Aoki, K.: Preimage Attacks on 3, 4, and 5-Pass HAVAL. In: Pieprzyk,
J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 253–271. Springer, Heidelberg
(2008)

http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf


142 S. Wu et al.

16. Sasaki, Y., Aoki, K.: Finding Preimages in Full MD5 Faster Than Exhaustive
Search. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 134–152.
Springer, Heidelberg (2009)

17. Sasaki, Y., Li, Y., Wang, L., Sakiyama, K., Ohta, K.: Non-full-active Super-Sbox
Analysis: Applications to ECHO and Grøstl. In: Abe, M. (ed.) ASIACRYPT 2010.
LNCS, vol. 6477, pp. 38–55. Springer, Heidelberg (2010)

18. Schläffer, M.: Updated Differential Analysis of Grøstl. Grøstl website (January
2011)

19. Sekar, G., Mouha, N., Velichkov, V., Preneel, B.: Meet-in-the-Middle Attacks on
Reduced-Round XTEA. In: Kiayias [11], pp. 250–267

20. Wagner, D.: A Generalized Birthday Problem. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 288–303. Springer, Heidelberg (2002)

21. Wang, L., Sasaki, Y., Komatsubara, W., Ohta, K., Sakiyama, K.: (Second) Preim-
age Attacks on Step-Reduced RIPEMD/RIPEMD-128 with a New Local-Collision
Approach. In: Kiayias [11], pp. 197–212

22. Wei, L., Rechberger, C., Guo, J., Wu, H., Wang, H., Ling, S.: Improved Meet-in-
the-Middle Cryptanalysis of KTANTAN (Poster). In: Parampalli, U., Hawkes, P.
(eds.) ACISP 2011. LNCS, vol. 6812, pp. 433–438. Springer, Heidelberg (2011)

23. Wu, S., Feng, D., Wu, W., Guo, J., Dong, L., Zou, J.: (Pseudo) Preimage Attack on
Round-Reduced Grøstl Hash Function and Others (Extended Version). Cryptology
ePrint Archive, Report 2012/206 (2012), http://eprint.iacr.org/

A Preimage Attack on Round-Reduced Whirlpool

A.1 Specification of Whirlpool

Whirlpool uses MD-strengthening structure, with narrow-pipe chaining value
and no block counters. So it is vulnerable to generic attack, like the expandable
messages [10] and multi-target pseudo preimage [12] attack. We will talk about
the details later.

Whirlpool accepts any message with less than 2256 bits as input and the 256-
bit binary expression of bit length is padded according to MD-strengthening,
i.e. M ||1||0∗||length. Size of the message block, the chaining value and the
hash value is 512-bit.

Compression function of Whirlpool can be regarded as a block cipher called
W in Miyaguchi-Preneel mode.

F (H,M) = WH(M)⊕M ⊕H

where block cipher W use AES-like iteration with 8 × 8 state of bytes and the
(8i + j)-th input byte of the message block is placed at the i-th row and j-th
column of the state. Each round consists of four operations:

http://eprint.iacr.org/


Preimage Attack on Round-Reduced Grøstl Hash Function and Others 143

– SubBytes(SB): applies the Substitution-Box to each byte.
– ShiftColumns(SC): cyclically shift the i-th column downwards for i positions.
– MixRows(MR): multiply each row of the state matrix by an MDS matrix

C = circ(01, 01, 04, 01, 08, 05, 02, 09)

– AddRoundKey(AK): XOR the round key to the state.

Since the key schedule is not important in our attack, the description is omitted.

A.2 Improved Second Preimage Attack on Whirlpool

In [14], Yu Sasaki proposed a second preimage attack on 5-round Whirlpool

using the MitM approach. In their attack, there are only 28 freedom degrees in
both chunks, but the size of matching point is much larger (40 bytes=320 bits).
The comparison of the preimage attacks on Whirlpool is shown in Table 2.

Table 2. Comparison of the preimage attacks on Whirlpool

Attack Type Rounds Time Memory Source

Second Preimage 5 2504 28 [14]

Second Preimage 5 2448 264 this section

Preimage 5 2481.5 264 this section

In this section, we propose an improved chunk separation with more freedom
degrees and a smaller matching point in Fig. 11.

AKMR

AKMR

SCSB

SCSB

SCSB AKMRAKMRSCSB

AKMRSCSB

Targets

Chaining Value

Initial
Structure

Matching
Point

Fig. 11. Chunk separation for improved 2nd-preimage attack on 5-round Whirlpool

We use the same colors as in [14] to illustrate the chunk separations. The blue
bytes in the forward chunk can be determined by the previously chosen blue
bytes in the initial structure. The white bytes in the forward chunk stands for
the bytes whose value are affected by the red bytes from initial structure and



144 S. Wu et al.

can’t be precomputed until the partial match is found. Similarly, in the backward
chunk, red and white cells stand for the certain and uncertain bytes. The gray
cells are constant bytes in the target value, the chaining value and the initial
structure.

Since this is a second preimage attack, the second last chaining value and the
last message block with proper padding are known. We choose random messages
and get a random chaining value at the third last position. With this chaining
value, apply MitM preimage attack of the compression function.

With chunk separation in Fig. 11, we have a MitM attack with D1 = 72, D2 =
64,m = 64 and b = 512. According to equation 4, the complexity can be com-
puted as 2−12512(2−72 + 2−64 + 2−64) ≈ 2448. Memory requirement is 264. Note
that the complexity of computing the two chunks and checking the full match
may be different. Here, we don’t consider the difference between them and they
are all regarded as the same cost of half compression function call.

A.3 First Preimage Attack on Whirlpool

This attack consists of three steps: First, find a preimage of the last block with
proper padding. Second, construct an expandable message. At last, connect ex-
pandable message and the last block with MitM. The attack process is illustrated
in Fig. 12.

Fig. 12. Outline of the first preimage attack on 5-round Whirlpool

Dealing with Message Padding. In order to apply the first preimage attack,
the message padding must be dealt with properly. In our attack, the last message
block consists of 255-bit message concatenated with one bit of “1” padding and
256-bit binary expression of the message length l. Since Whirlpool uses 512-bit
message block, l ≡ 255 mod 512. Then the last 9 bits of l are fixed to 011111111.

In Fig. 13, the initial structure is relocated at the beginning of the compression
function for the convenience of the message padding, since in MP mode, the first
state is the message block itself. Value of the black byte in the first state is fixed
to 0xff , because it is the last 8 bits of l. One red byte is marked with a “0”,
which means the last bit of it is fixed to zero due to the message length l. There
is another blue byte marked with a “1”, which comes from the “1-0” padding.

Parameters for this MitM attack are D1 = D2 = 63,m = 64 and b = 512.
According to equation 4, the complexity is about 2449 computations and 263

memory for the last block. When the attack on the last block is done, the re-
maining bits of the message length are fulfilled by expandable messages.



Preimage Attack on Round-Reduced Grøstl Hash Function and Others 145

AKMRAKMR SCSBSCSB

SCSB AKMRAKMRSCSB

AKMRSCSB

Hash Value

Chaining Value

1

0 ff

Initial
Structure

Match
Point

1

0 ff

Fig. 13. Chunk separation for the last message block of Whirlpool

Expandable Messages. Expandable messages [10] can be constructed using
either Joux’s multi-collision [9] or fix points of the compression function.

Expandable 2k-collision can be constructed with k · 2n/2 computations and k
memory. But its length can only be in the range of [k, k + 2k − 1] blocks. If the
message length obtained from the last block is less than k (with a very small
probability), we choose different random constants and repeat the attack.

Fix points of MP mode can be constructed by finding the zero preimages of
the compression function in MMO mode, since

WH(M)⊕M ⊕H = H ⇔WH(M)⊕M = 0.

This can be done using the same technique as in our 2nd-preimage attack, with
complexity of (2449, 264), which is an affordable cost for us. Note that for random
H , the fix point exists with probability of 1 − e−1. If no fix point can be found
for IV, we choose a random message block, compute the following chaining value
and try to find fix point for this chaining value instead.

So, either way is fine to construct the expandable message here and has little
influence on the overall complexity.

Turns Pseudo Preimage into Preimage. After preparing preimage for the

last message block F (H,M) = T and the expandable message IV
M∗
−−→ H ′. Now

we can connect them to form a first preimage.
Suppose it takes 2c to find a pseudo preimage. A traditional MitM approach

can convert preimage attack on the compression function into preimage attack
on the hash function works like this. First, find and store 2k pseudo preimages
with 2k+c computations and 2k memory. Then choose 2n−k random message ,
calculate from IV to find a chaining value appearing in one of the pseudo preim-
ages. The complexity is 2n−k + 2k+c. Take the optimal k = n−c

2 , the minimum

complexity is 2
n+c
2 +1. Using the pseudo preimage attack described in Sect. A.2,

the preimage attack has a complexity of (2481.5, 264).



Practical Cryptanalysis of ARMADILLO2

Maŕıa Naya-Plasencia1,� and Thomas Peyrin2,��

1 University of Versailles, France
maria.naya-plasencia@prism.uvsq.fr

2 Division of Mathematical Sciences, School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore

thomas.peyrin@gmail.com

Abstract. The ARMADILLO2 primitive is a very innovative hardware-
oriented multi-purpose design published at CHES 2010 and based on
data-dependent bit transpositions. In this paper, we first show a very
unpleasant property of the internal permutation that allows for example
to obtain a cheap distinguisher on ARMADILLO2 when instantiated as a
stream-cipher. Then, we exploit the very weak diffusion properties of
the internal permutation when the attacker can control the Hamming
weight of the input values, leading to a practical free-start collision attack
on the ARMADILLO2 compression function. Moreover, we describe a new
attack so-called local-linearization that seems to be very efficient on data-
dependent bit transpositions designs and we obtain a practical semi-
free-start collision attack on the ARMADILLO2 hash function. Finally, we
provide a related-key recovery attack when ARMADILLO2 is instantiated as
a stream cipher. All collision attacks have been verified experimentally,
they require negligible memory and a very small number of computations
(less than one second on an average computer), even for the high security
versions of the scheme.

Keywords: ARMADILLO2, hash function, stream-cipher, MAC, cryptanal-
ysis, collision.

1 Introduction

Hash functions are among the most important and widely spread primitives in
cryptography. Informally a hash functionH is a function that takes an arbitrarily
long message as input and outputs a fixed-length hash value of size n bits. The
classical security requirements for such a function are collision resistance and
(second)-preimage resistance. Namely, it should be impossible for an adversary
to find a collision (two different messages that lead to the same hash value) in less
than 2n/2 hash computations, or a (second)-preimage (a message hashing to a
given challenge) in less than 2n hash computations. In general, a hash functionH

� Supported by the French Agence Nationale de la Recherche through the SAPHIR2
project under Contract ANR-08-VERS-014.

�� Supported by the Lee Kuan Yew Postdoctoral Fellowship 2011 and the Singapore
National Research Foundation Fellowship 2012.

A. Canteaut (Ed.): FSE 2012, LNCS 7549, pp. 146–162, 2012.
c© International Association for Cryptologic Research 2012



Practical Cryptanalysis of ARMADILLO2 147

is built from an iterative use of a n-bit output compression function h in a Merkle-
Damg̊ard-like operating mode [6,4]. The compression function takes a chaining
variable CV (fixed to an initial value IV at the beginning) and a message block
M as inputs and in order to allow security proofs on the operating mode, one
requires the same security properties as a hash function, namely collision and
(second)-preimage resistance. However, the compression function allows several
flavors of security properties depending on how well the attacker can control the
chaining variable:

• free-start collision: the attacker fully controls the chaining variable, i.e. both
its value and difference

• semi-free-start collision: the attacker control partially the chaining variable,
i.e. only its value, and the difference is null

• collision: the attacker does not control the chaining variable, the value is
defined by the IV and the difference is null

For all three flavors, it should be impossible for an adversary to find a collision in
less than 2n/2 compression function computations. Note that free-start collision
is required as necessary assumption regarding the compression function in the
Merkle-Damg̊ard-like security proofs. Moreover, a semi-free-start collision means
there exists initial values IV for which it is possible to find collisions for the hash
function. Therefore, both these two notions are very important and should be
verified for a secure compression function.

ARMADILLO2 [2] is a very novel primitive dedicated to hardware, defining a
FIL-MAC, a stream cipher and a hash function. Originally, two versions were
proposed, ARMADILLO and ARMADILLO2, the later being the recommended one.
A key recovery attack on ARMADILLO was rapidly published by a subset of the
designers [9]. ARMADILLO2 remained unbroken until Abdelraheem et al. [1] found
a meet-in-the-middle technique that allows to invert the ARMADILLO2main func-
tion. This cryptanalysis eventually led to a key recovery attack on the FIL-MAC
and the stream cipher, and a (second)-preimage attack on the hash function.
However, while being the first weakness published on ARMADILLO2, this work is
an improved meet-in-the-middle technique, therefore requiring a lot of computa-
tions and memory, often close to the generic complexity. For example, the preim-
age attack on the 256-bit output hash function requires either 2208 computations
and 2205 memory or 2249 computations and 245 memory. With its data-dependent
bit transpositions and original compression function construction, ARMADILLO2
is clearly not following the classical design trends for symmetric-key primitives
(for example RC5 [7] and RC6 [8] use data-dependent rotations, while IDEA [5] use
data-dependent multiplication). As a consequence, it would be interesting to look
at this proposal without necessarily relying on known cryptanalysis techniques.

Our Contributions. In this paper, we first observe the very unpleasant prop-
erty that the parity bit is preserved through all ARMADILLO2 internal permu-
tations. This allows us for example to derive a very cheap distinguisher for
the stream-cipher. Then, we analyze the differential diffusion of the permuta-
tions and we provide practical free-start collision attacks for all versions of the



148 M. Naya-Plasencia and T. Peyrin

compression function of ARMADILLO2. We extend our results by introducing a
new technique, the local linearization, that seems very efficient against data-
dependent bit transpositions. This method led us to practical semi-free-start
collision attacks for all versions of ARMADILLO2. All attacks require very few
computations (at most 210.2 operations for 256-bit output version) and negli-
gible memory. Moreover, our implementations validate our techniques and we
provide collision examples. Finally, we provide a related-key recovery attack
when ARMADILLO2 is instantiated as a stream cipher.

2 The ARMADILLO2 Function

We let X [i] denote the i-th bit of a word X . Let C be an initial vector of size c
and U be a message block of size m. The size of the register (C||U) is k = c+m,
where || denotes the concatenation operation. The internal ARMADILLO2 function
transforms the vector (C,U) into (Vc, Vt) as described in Figure 1, (Vc, Vt) =
ARMADILLO2(C,U). The internal ARMADILLO2 function relies on a parameterized
permutation on k bits Q, instantiated by QU and QX , where U is a m-bit
parameter and X is a k-bit parameter.

Let σ0 and σ1 be two fixed bitwise permutations of size k. In [2], the permu-
tations are not specifically defined but some criteria they should fulfill is given.

C U

QX(C‖U) X

QU (C‖U)

C U

�

�

U

�

�

�
�
�
�
�
�
�
�
�
�
�
�

��
��
�

Y

�
���

Vc Vt

Fig. 1. The internal function of ARMADILLO2. The thick line at the side of a register
represents the least significant bit.



Practical Cryptanalysis of ARMADILLO2 149

We denote by cst a constant of size k defined by alternating 0’s and 1’s, i.e. :
cst = 1010 · · ·10. Using these notations, we can specify Q which is used twice in
the internal ARMADILLO2 function. Let A be the a-bit parameter and B be the
k-bit input of Q, the parameterized permutation QA can be divided into a = |A|
simple steps. The i-th step of QA (reading A from its least significant bit to its
most significant one) is defined by:

• an elementary bitwise permutation: B ← σA[i](B), that is if the i-bit of
A is 0 we apply σ0 to B, otherwise we apply σ1.

• a constant addition (bitwise XOR) of cst: B ← B ⊕ cst.

The internal ARMADILLO2 function first computes X = QU (C||U), then Y =
QX(C||U), and finally outputs (Vc, Vt) = Y ⊕X .

Using this internal primitive, ARMADILLO2 builds a FIL-MAC, a stream-cipher
and a hash function:

• Stream-cipher: the secret key is inserted in the C register and the output
sequence is obtained by taking the k bits of the output (Vc, Vt) after one
iteration. The keystream is composed of k-bit frames indexed by U (which
is a public value).

• Hash function: it uses a strengthened Merkle-Damg̊ard construction, where
Vc represents the output of the compression function (i.e. the next chaining
value or the hash digest), U is the incoming message block and C is the
incoming chaining variable.

• FIL-MAC: the secret key is inserted in the C register and the challenge,
considered known by the attacker, is inserted in the U register. The response
to the challenge is the m-bit output Vt.

Five different sets of register sizes (k, c,m) are provided, namely (128, 80, 48),
(192, 128, 64), (240, 160, 80), (288, 192, 96) and (384, 256, 128).

3 First Tools

We denote HAM(X) the Hamming weight of the word X . We recall from [1] that
for two random k-bit words A and B of Hamming weight a and b respectively, the
probability that HAM(A∧B) = i (where ∧ stands for the bitwise AND function)
is given by the formula

Pand(k, a, b, i) =

(
a
i

)(
k−a
b−i

)(
k
b

) =

(
b
i

)(
k−b
a−i

)(
k
a

) .

Moreover, we would like to deduce from it the probability that HAM(A⊕ B) = i
(where ⊕ stands for the bitwise XOR function) for two randomly chosen k-
bit words A and B of Hamming weight a and b respectively. We remark that
HAM(A⊕B) = a+b−2·HAM(A∧B) and therefore the probability that HAM(A⊕B) =
i is given by the formula.



150 M. Naya-Plasencia and T. Peyrin

Pxor(k, a, b, i) =

⎧⎨⎩Pand(k, a, b,
a+b−i

2 ) for (a+ b− i) even

0 for (a+ b− i) odd

Since they have not been specified in the original ARMADILLO2 document, in the
following we assume that σ0 and σ1 are randomly chosen bit permutations.

4 Parity Preservation

We call the parity bit of an a-bit word A the bit value
⊕a−1

i=0 A[i]. Regardless
of the parameter A of the internal permutation QA, we have that the parity
of the input is always maintained through the permutation. This can
be easily verified by remarking that QA is composed of several identical rounds,
all satisfying this property. Indeed, one round is composed of a bit permutation
(which fully maintains the Hamming weight) and an XOR of the internal state
with the constant cst = 1010...10. This constant being always the same during
the whole ARMADILLO2 computation and its parity being even, the parity of the
internal state remains the same after application of the XOR. Note that even if
this constant was changed during the rounds, the attacker would only have to
compute the parity of the XOR of all constants to be able to tell if the parity bit
will be maintained or negated. This property is moreover maintained whatever
number of rounds is applied in the permutations, thus the attack proposed in
this section is independent of the number of rounds.

Distinguisher for the Stream Cipher Mode. We can exploit the previous
property to build a cheap distinguisher on ARMADILLO2 when used as a stream-
cipher. In the attack model, the whole output of the function is assumed to be
known as it is a frame of the keystream. This output is generated by a XOR
of internal states X and Y . Since permutations QU and QX will maintain the
parity, their respective outputs X and Y will both have the same parity as
(C||U). As a consequence, the output of the function X ⊕ Y always has an even
parity. For a random sequence, this will only happen with probability 1/2, as for
ARMADILLO2 this happens with probability 1. In other words, the entropy of the
ARMADILLO2 function output is reduced by one bit.

5 Controlled Diffusion: Practical Free-Start Collision
Attack

In this section, we show how an attacker can control the bit difference diffusion
in ARMADILLO2 function by using the available inputs. This leads to a very cheap
free-start collision attack against the compression function.



Practical Cryptanalysis of ARMADILLO2 151

5.1 General Description

Assume that we insert a single bit difference in C, that is HAM(ΔC) = 1, and no
difference in U that is ΔU = 0. We can use c distinct ΔC, one for each active
bit position. The attack is depicted in Figure 2.

HAM(ΔC)
= 1

ΔU
= 0

QX

ΔX = 00...01

QU

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�
�

�
�

�

�
�

�
�
�

�
�

�
�
�

�
�

............
...........
........

......
.....

......
.......
......

.........
.........

........
..
..........

........
.......

............
......

�

HAM(ΔC)
= 1

ΔU
= 0

�

�

ΔU
= 0

�

�

�
�
�
�
�
�
�
�
�
�
�
�

��
��
�

ΔY = 0...0||*...*

�
���

ΔVc

= 0
ΔVt

= ∗..∗

Fig. 2. A schematic view of the free-start collision attack on ARMADILLO2. The thick
line at the side of a register represents the least significant bit and black circles stand
for bit differences. The dashed box indicates the first round of QX , which contains a
difference on its corresponding parameter input bit.

Difference Propagation in QU . Since we have no difference in U , the per-
mutation QU always remains the same. We only have to study the propagation
of the bit difference in C through QU . Note that one round of the internal per-
mutation QU provides no difference diffusion since it is only composed of a bit
permutation and a constant addition. Therefore, the single bit difference in C
will be just transfered to some random bit position in X at the end of QU and
we have HAM(ΔX) = 1. We would like the single bit difference in X to be posi-
tioned in bit 0, i.e. ΔX = 00...01 (this will later allow us to use the freedom
degrees efficiently). For a randomly chosen value of U and C, this happens with
probability

PX =
1

k
.



152 M. Naya-Plasencia and T. Peyrin

Difference Propagation in QX . Since we have a single difference on the first
bit of X (corresponding to the first step of QX), the permutation QX remains
the same except for the first step where we switch from bit permutation σ0 to σ1

or from σ1 to σ0. We denote by Pstep(in, out) the probability that in active bits
are mapped to out active bits through a step of data-dependent permutation
with a difference (i.e. σ0 and σ1 are swapped). Assume for the moment that
after this first step, only b bits are active in the internal state. This happens
with probability Pstep(1, b). Since the next rounds of the internal permutation
QX provide no difference diffusion, we end up in Y with b active bits randomly
distributed. We need to ensure that all the b active bits remaining in Y will go
to the m-bit Vt part of the k-bit output, so that all differences will be truncated
and we eventually obtain a collision on the output of the compression function.
For b ≤ m, this happens with probability

Pout(b) = Pand(k,m, b, b) =

(
b
b

)(
k−b
m−b

)(
k
m

) =

i=b−1∏
i=0

m− i

k − i
.

During the feed-forward after QX the single active bit of X is already on the Vt

part of the output. Overall the probability of obtaining a compression function
collision for randomly chosen U and C values is:

Pcollision = PX ·
i=m∑
i=1

Pstep(1, i) · Pout(i).

the sum stopping atm because when i > m, we trivially have Pout(i) = 0. At this
point our problem is that in order for the probability Pout(i) to be high enough,
we need the number i of active bits to be small. On the other side, if i is small,
Pstep(1, i) will be very low (we do not explain how to compute Pstep(1, i) here
as we will study a slightly more detailed problem in the next section). However,
in this scenario we only considered an attacker that randomly chooses the value
of U and C and the bit difference position in C, but we can do much better by
using the available degrees of freedom efficiently.

5.2 Using the Freedom Degrees

First, note that the event related to the probability PX only depends on the
position of the bit difference in C and on the value of U . We can therefore
attack QU in a first phase (by fixing the position of the bit difference in C and
the value of U), and then independently attack QX by choosing the value of C.

Handling QU . We will see later that we would like C and U values to have
an extremely low or extremely high Hamming weight. Therefore, we fix ΔX =
00...01 and test with the two values U = 00..00 and U = 11..11 how the bit
difference will propagate through Q−1

U (note that we are dealing with the inverse
of QU , thus attacking backwards from ΔX). For each try, we have a probability



Practical Cryptanalysis of ARMADILLO2 153

Pand(k, c, 1, 1) = c/k that the single bit difference is mapped to the C part of
the input. Since for all ARMADILLO2 versions we have 2c/k > 1, we expect at
least one of the two U candidates to satisfy ΔX = 00...01, HAM(ΔC) = 1 and
HAM(ΔU) = 0. Overall, this phase costs us only 2 operations. We assume without
loss of generality that the selected candidate has value U = 00..00.

Handling QX . At the present time, everything is fixed except the value of
C and we have ΔX = 00...01 and U = 00..00. We now describe a simple
criteria in order to choose the values of C such that the first round probability
Pstep(1, i) in QX is high, even for small i. As an example, let’s assume that
C = 0, that is HAM(C||U) = 0. In that case, we trivially have that Pstep(1, 1) = 1
(and Pstep(1, i) = 0 for all other i) since changing the bit positions of the word
00..00 (switching from σ0 to σ1 or from σ1 to σ0) will not have any effect at
all and the single bit difference in C will just be placed to some random bit
position. Similarly, with a single one-bit in C, that is HAM(C||U) = 1, we have
that Pstep(1, 1) = 1

128 + 2·127
1282 and Pstep(1, 3) = 127·126

1282 (and Pstep(i) = 0 for
all other i). More generally, we have to compute the probability Pstep(1, b, hw)
which corresponds to the probability Pstep(1, b) knowing that the input word
hamming weight is hw. This can be modeled as follows: choose two random k-
bit words x and y both with Hamming weight hw (they represent σ0(C||U) and
σ1(C||U)) and compute z = x⊕ y ⊕ 1 (the 1 represents the single bit difference
in C). Then Pstep(1, b, hw) is the probability that HAM(z) = b (note that HAM(z)
is always odd thus we have Pstep(1, 2i, hw) = 0 for all i) and we have:

Pstep(1, b, hw) =
hw

c
· Pxor(k, hw, hw − 1, b) +

c− hw

c
· Pxor(k, hw, hw + 1, b).

The complexity for handling QX is finally

Comp =
1∑i=m

i=1 Pstep(1, i, hw) · Pout(i)
.

5.3 Complexity Results

The number C of candidate values we can generate with Hamming weight hw
is
(

c
hw

)
and in order to have a good chance to find a collision after QX with this

amount, we need to ensure that(
c

hw

)
≥ 1/

i=m∑
i=1

Pstep(1, i, hw) · Pout(i).

One can check that in order to minimize the complexity Comp, the dominant
factor of the sum is when i is small. Then, for i small, Pstep(1, i, hw) is higher
when hw is close to 0 or close to k, in other words the input should have very
low or very high Hamming weight. Since we previously chose U = 00..00 our
goal is to find for each ARMADILLO2 versions the smallest hw value hwmin that



154 M. Naya-Plasencia and T. Peyrin

ensures enough C candidate values to handle the collision probability in QX

(but the same reasoning is possible with U = 11..11 and the biggest hw value
hwmax). Overall, the full attack runs in 2 + Comp operations (i.e. compression
function calls) and negligible memory in order to find a free-start collision for
the ARMADILLO2 compression function. We depict in Table 1 our results relative
to all proposed versions of ARMADILLO2. This attack has been implemented and
verified in practice for k = 128 and we give free-start collision examples in the
Appendix.

Table 1. Summary of results for free-start collision attack on the different size variants
of the ARMADILLO2 compression function. The number of C candidates must always be
enough so as to handle the collision probability in QX .

scheme parameters attack parameters

k c m
generic

hwmin

nber of C collision attack

complexity candidates prob. in QX complexity

128 80 48 240 1 26.3 2−4.1 27.5

192 128 64 264 1 27 2−4.6 27.8

240 160 80 280 1 27.3 2−4.7 28.1

288 192 96 296 1 27.6 2−4.7 28.3

384 256 128 2128 1 28 2−4.8 28.7

6 Local Linearization: Practical Semi-free-Start Collision
Attack

In this section, we show how one can obtain a semi-free-start collision attack
(no difference on the input chaining variable) with a very low computational
complexity for the ARMADILLO2 compression function.

6.1 General Description

The previous method only allows to add differences on the capacity part of the
input, thus leading to free-start collision attacks. One can directly extend this
technique to allow only differences in the message part of the input, but this
only leads to semi-free-start collisions for randomly chosen bit permutations σ0

and σ1 with a not-so-high probability of success.
We would like to derive a semi-free-start collision attack that will output

a result with very high probability. In order to achieve this goal we propose
a new technique for data-dependent bit transposition ciphers, so-called local
linearization: by guessing some part of the input we are able to render a few
rounds of the internal permutation linear. Indeed, by knowing the g first bits of



Practical Cryptanalysis of ARMADILLO2 155

U we completely determine the permutations applied during the first g rounds
of QU . Therefore, for those g rounds the primitive QU only consists of known
bit permutations and known constant additions. With this method we neutralize
for the first g rounds the only non-linearity source: the fact that we don’t know
which bit permutation σ0 or σ1 is applied each round.

On a high-level view, our semi-free-start collision attack will force a collision
on the X value at the output of QU thanks to the local linearization technique.
This collision on X will ensure that the QX permutation will be the same for
both inputs. Therefore, the difference Hamming weight on the input of QX will
remain the same in the output. We then hope that those bit differences will be
mapped in the truncated part of the output in order to eventually obtain the
semi-free-start collision (no difference is feed-forwarded from X since we forced
a collision on it). The attack is depicted in Figure 3.

HAM(ΔC)
= 0

ΔU

QX

ΔX = 0

QU

�
�

�

�

�
�

�..........
.................

..

�

�
�

�
�

�
�

�
�

�
�
�

�
�

�

�
�

�
�
�

�
�

�
�
�

�
�
�..

......
........

.......
.....

.....
......

.......
........
.........

.......
.....

.......
..........

......
............

.........

�

�

�

HAM(ΔC)
= 0

ΔU

�

�

ΔU

�

�

�
�
�
�
�
�
�
�
�
�
�
�

��
��
�

ΔY = 0...0||*...*

�
���

ΔVc

= 0
ΔVt

= ∗..∗

Fig. 3. A schematic view of the semi-free-start collision attack on ARMADILLO2. The
thick line at the side of a register represents the least significant bit and black circles
stand for bit differences. The dashed box indicates the linearized part.

During a first phase, the input will be divided into two parts: the fixed and the
unfixed part. The fixed part z ∈ {0, 1}g is composed of the g first bits of U and
we choose random values for those g bits (so as to know the g first choices of σ0 or
σ1). The unfixed part w ∈ {0, 1}k−g is composed of the rest of the input bits and



156 M. Naya-Plasencia and T. Peyrin

we will be set to a value later. We force the input difference to be contained in
the fixed part and we denote it Δz ∈ {0, 1}g (since we are looking for semi-free-
start collisions we obviously have g ≤ m, otherwise we would have a difference
in the input chaining variable C). Let I1 = (C1||U1) (resp. I2 = (C2||U2)) be the
k-bit value of the first input (resp. second output), we have:

I1 = (x||z) and I2 = (x||z ⊕Δz).

and our goal is to have the collision X = QU1(I1) = QU2(I2).
Assume for the moment that this collision on X happens. Then the same

permutation QX will be used for both inputs I1 and I2 on the right side of
Figure 1. As a consequence, no additional bit difference will be introduced during
the computation of QX , but the bit difference positions will be randomly moved.
In order to obtain a semi-free-start collision on the output of the function, we
need the b = HAM(Δz) active bits of the input to be mapped in the truncated
part of the output through QX . As already explained in Section 5, this happens
with probability

Pout(b) = Pand(k,m, b, b) =
i=b−1∏
i=0

m− i

k − i
.

6.2 Colliding on X

We need now to evaluate the probability of getting a collision on X . Note that
for any round, if there is no difference on the bit choosing the permutation to
apply σ0 or σ1, the bit differences at the input of this round will only have
their position changed and cannot be erased. Therefore, if we want to obtain a
collision on X , we need to obtain it at latest just after the last round of QU for
which a difference is inserted on the side (in U). We consider from now on that
the input difference Δz contains at least one active bit on its MSB, thus this
last round is the g-th one.

We know the value of the g first bit of U , therefore we know exactly the
permutation applied to I1 and I2 for the g first rounds of QU . For a collision
after g rounds of QU , we want that

σU1[g−1](· · · (σU1[1](σU1[0](I1)⊕ cst)⊕ cst) · · · )
= σU2[g−1](· · · (σU2[1](σU2[0](I2)⊕ cst)⊕ cst) · · · )

and since all operations are linear, this can be rewritten as

ρ(I1)⊕A = ρ′(I2)⊕B = ρ′(I1 ⊕Δz)⊕B = ρ′(I1)⊕ ρ′(Δz)⊕B

where

ρ = σU1 [g−1] ◦ · · ·σU1[1] ◦ σU1[0] A = σU1[g−1](· · · (σU1 [1](cst)⊕ cst) · · · )
ρ′ = σU2[g−1] ◦ · · ·σU2 [1] ◦ σU2[0] B = σU2[g−1](· · · (σU2 [1](cst)⊕ cst) · · · ).



Practical Cryptanalysis of ARMADILLO2 157

Finally, we end up with the equation

ρ(I1)⊕ ρ′(I1) = A⊕B ⊕ ρ′(Δz) (1)

Since we know the value of the g first bit of U , we can compute the value of
A and B. Moreover, assuming that we already chose a Δz, then the collision
condition (1) can be rephrased as

I1 ⊕ τ(I1) = C

where C = ρ−1(A⊕B ⊕ ρ′(Δz)) and τ = ρ−1 ◦ ρ′.
In order to study this system S of k bit equations, we model τ as a random

bit permutation and C as a random k-bit word. Note that since this equation
system is linear finding the potential solutions requires only a few operations,
but we would like to know how many such systems we need to generate before
finding a solution, i.e. a collision on X . Thus, our goal is now to deduce the
probability that this system has at least one solution and what is the average
number of expected solutions.

The structure of this equation system is very particular and the number of
independent groups of bit equations is exactly the number of cycles of the bit
permutation τ . More precisely, let CYCLE(τ) represent the number of cycles of
the permutation τ and let Si denote the set of bits belonging to the i-th cycle
of τ .

Theorem 1. The equation system S : I1 ⊕ τ(I1) = C admits a solution if and
only if for every cycle set Si of τ the parity of the sum of the corresponding C
bit is null, that is ⊕

p∈Si

C[p] = 0.

If this system is solvable, then the number of solutions that can be generated is
exactly equal to 2CYCLE(τ).

The Idea of the Theorem is that when we want to find a solution for the
system, we can start by fixing one bit a0 to a random value. This bit is involved
into two binary equations from S. All equations having only two terms, one of
the two equations directly links bit a0 with say bit a1, and we can deduce the
value of a1. The bit a1 is in turn linked with bit a2 through his second equation
and we directly deduce the value of a2. This chain of dependency will eventually
cycle (the new bit deduced will be a0 again) and will be validated if and only if
the sum of the C bits of the equations visited is null (otherwise we encounter a
inconsistency). This check is then performed for all cycles.

Proof. Since τ is a bit permutation, the equation system S can be represented
as a collection of cycles, each cycle depicting the direct cyclical dependencies
between some set of bits: if bit x and bit y are linked by one of the k equations,



158 M. Naya-Plasencia and T. Peyrin

then they belong to the same cycle. The vertex weight between two members x
and y of the cycle is the value C[x].

If we fix the bit value of a member of a cycle Si, then this determines entirely
all the other bits of that cycle (according to the vertices values). Then, if the XOR
of all the vertex weights is different from zero, we have a direct contradiction. A
solution can only exist if all cycles present no internal contradiction.

Each cycle can have either zero or two solutions (the two solutions being
their mutual complement). If every cycle has no contradiction, then there exists

exactly 2CYCLE(τ) distinct combinations of cycle solutions, each one leading to a
distinct solution for the whole equation system S. ��

From Theorem 1, we directly deduce that the probability that the system admits
a solution is equal to 2−CYCLE(τ). The expected number of cycles for a randomly
chosen permutation on k elements is log(k). Therefore, we have to try at least
2log(k) different equation systems before finding one admitting a solution. When
one system admits a solution, we directly get 2log(k) solutions for free. Overall,
the cost for finding one solution of the system is 1 on average (the average cost
is the meaningful one here since we will have to find several inputs colliding on
X during the whole attack).

6.3 Complexity Results

We now look for a solution such that the original guess of the g first bits of
the input was right (with probability 2−g) and such that the b bit differences in
QX are mapped to the truncated part of the output (with probability Pout(b)).
Overall, the total complexity of the semi-free-start collision attack is 2g ·P−1

out(b)
with b ≤ g. Minimizing g and b will minimize the overall complexity, but we
need to ensure that we can go through enough equation systems in order to have
a good chance to find a collision eventually. More precisely, we need

1/2 · 2g ·
(
g

b

)
≥ 2g · P−1

out(b)

which can be rewritten as (
g

b

)
≥ 2 · P−1

out(b).

We depict in Table 2 our results relative to all proposed versions of ARMADILLO2.
This attack has been implemented and verified in practice for k = 128 and we
give semi-free-start collision examples in the Appendix.

7 Related-Key Recovery in Stream Cipher Mode

In this section we will present a related key attack that will allow us to recover
all key bits in practical time when using ARMADILLO2 in the stream cipher mode.
We will first present the main idea of this attack, and afterwards, we will give a
more detailed analysis of the probabilities and complexities.



Practical Cryptanalysis of ARMADILLO2 159

Table 2. Summary of results for semi-free-start collision attack on the different size
variants of the ARMADILLO2 compression function

scheme parameters attack parameters

k c m
generic

g b Pout(b)
time

complexity complexity

128 80 48 240 6 2 2−2.9 28.9

192 128 64 264 7 2 2−3.2 210.2

240 160 80 280 7 2 2−3.2 210.2

288 192 96 296 7 2 2−3.2 210.2

384 256 128 2128 7 2 2−3.2 210.2

7.1 Using Related-Keys for Recovering the Key

First of all, we consider a pair of related keys (K1,K2) that have one only bit
of difference, that is HAM(K1 ⊕K2) = HAM(ΔK) = 1. Our analysis will work for
any bit difference position d amongst all the bits of the key. Note that we expect
a pair of keys valid for performing the related-key attack to appear after using
about (2k/k)1/2 keys.

Let us consider a value of U for generating k bits of key-stream with each of
both keys K1 and K2. We use the index i for the intermediate states generated
from the key Ki. We first make the following observations, important in order
to understand the whole attack procedure:

• Since no difference is inserted in the U part (it is a public value) and since
HAM(ΔK) = 1, we have HAM(X1 ⊕X2) = 1. Let e be the bit position of this
difference in X .

• The first (e − 1) intermediate states of QX will also have a difference of
Hamming weight 1.

We assume that the attacker can choose the values of U . In this case, we can
make the bit difference in the key to go from position d to any wanted position
e in X through QU . We expect 2m/k distinct values of U that make the bit
difference go from position d to e for e ∈ [0, k− 1]. We denote by Ue each one of
these k subgroups of U values.

The output of the function (Vc, Vt) = X ⊕ Y is known to the attacker, but
concerning X he only knows the m bits of the U part (since U is known, he can
deduce directly where the bits coming from U and C will be eventually located
in X). Thus, he can recover m bits from the outputs of QX , Y1 and Y2. If he
could compute backward from Y1 and Y2 until the beginning of the e-th step of
QX , the colliding positions of the bits known from Y1 and from Y2 will have the
same values with maybe the exception of one, which would be the original single
bit difference before the step e.



160 M. Naya-Plasencia and T. Peyrin

Our attack basically consists in choosing several values for U from Ue, for
decreasing e values (starting from e = k − 1), that will gradually increase the
number of key bits appearing in X after position e. Each time we will guess
the value of the new key bits appearing and discard the guesses that will not
lead to collisions on the bit values in the colliding positions just before step e
when computing backward from Y1 and Y2 in QX . The complexity of this attack
depends on the bit permutations σ0 and σ1, but in the next subsection we give
a complexity analysis assuming that these permutations are randomly chosen.

7.2 Generic Complexity Estimation

We start at e = k − 1. First, we choose the value of i (denoted imax), that
maximizes the probability Pand(k,m,m, i) that we denote pmax. For instance,
if we consider the smallest version of ARMADILLO2, where k = 128, c = 80 and
m = 48, then we have imax = 18 and the probability of obtaining 18 positions
of known bits that collide is equal to pmax = 2−2.72.

Amongst the values from Uk−1, we choose pmax
−1 random ones. Each of them

is introduced in the ARMADILLO2 function parametrized with the keys K1 and
K2. For each of the pmax

−1 pairs of values, we guess the bit at position k − 1
of X1 and of X2 (for example 1 and 0 respectively since there is a difference on
this bit position) and we end up with 2 · pmax

−1 pairs. Then, we can undo the
last round of QX for the known bits from Y1 and Y2. We consider that a guess
passes the test if it verifies the conditions on the number of colliding values on
the colliding bit positions. For one of these 2 · pmax

−1 pairs (in our example
(Q−1

1 (Y1), Q
−1
0 (Y2))), the number of colliding bit positions will be imax. When

this is the case, if the guess on the bit of X1 and X2 was incorrect, we have a
probability of 2−imax+1 to pass the test, while we will pass it with probability
one if the guess was correct. Finally, we have determined one bit of each key K1

and K2 with a complexity of 2 · pmax
−1, which in our example would be 23.72.

We can continue the process by considering e = k−2 and pmax
−1 values from

Uk−2 that have a key bit at position k−1. Following the same method as before,
we will recover one key bit, i.e. the one at position k − 1 in X when we have 18
colliding bits before the step k − 1 of QX . Let us remark here that in practice
we do not have to wait for having a collision on 18 bits, but most of the time
collisions on a different number of bits will also be enough for determining if
a guess passes the test or not. We can repeat this step in order to obtain the
biggest possible number of key bits and determining each bit will add at most a
complexity of pmax

−1.
The next steps depend on the number of bits that we have already determined.

All in all, we conjecture that when both bit permutations behave like random
ones, the complexity will not exceed 2 · c · pmax

−1.

8 Conclusion

We have presented some new and practical analysis of ARMADILLO2. Notably
a free-start and semi-free-start collision attacks for the full ARMADILLO2 hash



Practical Cryptanalysis of ARMADILLO2 161

functions. Extending this work to real collisions (i.e. with a predefined IV) might
be possible but it is not very appealing because it is likely that several message
blocks are required (all versions have c > m) and therefore the task of the
cryptanalyst would be quite complex to handle. ARMADILLO2 should not be used
in any security application since our attacks have a very low complexity. This
work and the local-linearization method is a first step in order to evaluate the
security of data-dependent bit transpositions cryptographic designs.

Acknowledgements. The authors would like to thank the anonymous referees
and the ARMADILLO2 team for their helpful comments.

References

1. Abdelraheem, M.A., Blondeau, C., Naya-Plasencia, M., Videau, M., Zenner, E.:
Cryptanalysis of ARMADILLO2. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011.
LNCS, vol. 7073, pp. 308–326. Springer, Heidelberg (2011)

2. Badel, S., Dağtekin, N., Nakahara Jr., J., Ouafi, K., Reffé, N., Sepehrdad, P., Sušil,
P., Vaudenay, S.: ARMADILLO: A Multi-purpose Cryptographic Primitive Dedi-
cated to Hardware. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS,
vol. 6225, pp. 398–412. Springer, Heidelberg (2010)

3. Brassard, G. (ed.): CRYPTO 1989. LNCS, vol. 435. Springer, Heidelberg (1990)
4. Damg̊ard, I.: A Design Principle for Hash Functions. In: Brassard [3], pp. 416–427
5. Lai, X., Massey, J.L.: A Proposal for a New Block Encryption Standard. In:

Damg̊ard, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 389–404. Springer,
Heidelberg (1991)

6. Merkle, R.C.: One Way Hash Functions and DES. In: Brassard [3], pp. 428–446
7. Rivest, R.L.: The RC5 Encryption Algorithm, pp. 86–96. Springer (1995)
8. Rivest, R.L., Robshaw, M.J.B., Yin, Y.L.: RC6 as the AES (2000)
9. Sepehrdad, P., Sušil, P., Vaudenay, S.: Fast Key Recovery Attack on ARMADILLO1

and Variants. In: Prouff, E. (ed.) CARDIS 2011. LNCS, vol. 7079, pp. 133–150.
Springer, Heidelberg (2011)

A Implementation of the Collision Attacks for k = 128

We implemented all attacks for k = 128 and they require less than a second and
negligible memory on an average computer (Intel Core2 Duo CPU @ 2.13 GHz)
in order to find a collision. Since no specific σ0 and σ1 bit transpositions are
defined for ARMADILLO2, we run the attack for many randomly chosen instances
so as to ensure the soundness of our reasoning. We give here examples of (semi)-
free-start collisions for ARMADILLO2 with a σ0 and σ1 bit transpositions instance
that fulfill the criteria required in [2] for k = 128. Namely, we denote λ the
second largest eigenvalue of the matrix M = 1

4 (Pσ0 + P 128
σ0

+ Pσ1 + P 128
σ1

), then
for the σ0 and σ1 instance found we have λ = 0.87. This means that there exists
a distinguisher with advantage λ256 = 2−51.4, while our attacks have much better
advantage.



162 M. Naya-Plasencia and T. Peyrin

Free-Start Collision for ARMADILLO2 with k = 128, c = 80, m = 48:

ARMADILLO2(ffffffffffffffffbfff, ffffffffffff) =

ARMADILLO2(fffffdffffffffffbfff, ffffffffffff) =

dfb0d8f2b763ce97f785

Semi-Free-Start Collision for ARMADILLO2 with k = 128, c = 80, m = 48:

ARMADILLO2(6bc8c848de5ff533cd6f, 0850b04b82e2) =

ARMADILLO2(6bc8c848de5ff533cd6f, 0850b04b82f0) =

26827e3d614d2fc75d64

Bit Transpositions σ0 and σ1 Used:

σ0=62, 98, 14, 114, 36, 77, 55, 3, 28, 88, 29, 122, 57, 90, 66, 52, 44, 22, 95, 118, 69, 86,

35, 56, 58, 82, 18, 97, 78, 21, 85, 101, 19, 65, 10, 6, 116, 121, 70, 99, 61, 102, 4, 91,

39, 119, 79, 16, 84, 50, 113, 45, 93, 104, 73, 112, 8, 5, 51, 9, 105, 46, 64, 94, 41, 54,

127, 67, 106, 23, 63, 49, 123, 15, 60, 81, 96, 72, 110, 37, 30, 89, 7, 92, 2, 68, 40, 32,

53, 11, 71, 26, 103, 59, 109, 111, 38, 74, 20, 48, 24, 43, 126, 117, 13, 124, 31, 33,

100, 125, 87, 27, 83, 128, 12, 42, 80, 107, 108, 17, 25, 120, 76, 75, 115, 47, 1, 34

σ1=10, 60, 111, 78, 38, 57, 110, 75, 104, 56, 88, 79, 23, 99, 16, 22, 128, 94, 120, 24, 64,

3, 6, 55, 42, 51, 43, 82, 114, 89, 26, 35, 61, 73, 77, 36, 28, 21, 105, 15, 67, 70, 113,

65, 39, 80, 122, 31,101,100, 107, 124, 18, 46, 85, 19, 49, 14, 12, 71, 86, 68, 102, 91,

58, 95, 1, 53, 83, 125, 66, 98, 81, 44, 48, 59, 27, 9, 119, 40, 45, 74, 92, 112, 93,

69, 5, 108, 106, 115, 90, 13, 84, 126, 7, 109, 54, 127, 33, 121, 62, 87, 30, 29, 63, 2,

97, 116, 4, 47, 11, 8, 34, 96, 118, 72, 52, 103, 37, 25, 123, 50, 76, 17, 20, 41, 117, 32



On the (In)Security of IDEA

in Various Hashing Modes�

Lei Wei1, Thomas Peyrin1, Przemys�law Soko�lowski2,
San Ling1, Josef Pieprzyk2, and Huaxiong Wang1

1 Division of Mathematical Sciences, School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore

wl@pmail.ntu.edu.sg, thomas.peyrin@gmail.com
2 Macquarie University, Australia

Abstract. In this article, we study the security of the IDEA block cipher
when it is used in various simple-length or double-length hashing modes.
Even though this cipher is still considered as secure, we show that one
should avoid its use as internal primitive for block cipher based hashing.
In particular, we are able to generate instantaneously free-start collisions
for most modes, and even semi-free-start collisions, pseudo-preimages
or hash collisions in practical complexity. This work shows a practical
example of the gap that exists between secret-key and known or chosen-
key security for block ciphers. Moreover, we also settle the 20-year-old
standing open question concerning the security of the Abreast-DM and
Tandem-DM double-length compression functions, originally invented to
be instantiated with IDEA. Our attacks have been verified experimentally
and work even for strengthened versions of IDEA with any number of
rounds.

Keywords: IDEA, block cipher, hash function, cryptanalysis, collision,
preimage.

1 Introduction

Hash functions are considered as a very important building block for many secu-
rity and cryptography applications. Informally, a hash function H is a function
that takes an arbitrarily long message as input and outputs a fixed-length hash
value of size n bits. In cryptography, we want these functions to fulfill three secu-
rity requirements, namely collision resistance and (second)-preimage resistance.
It should be impossible for an adversary to find a collision (two different mes-
sages that lead to the same hash value) in less than 2n/2 hash computations, or a

� The first, fourth and sixth authors are supported by the Singapore National Research
Foundation under Research Grant NRF-CRP2-2007-03 and the first author is also
supported by the Singapore Ministry of Education under Research Grant T206B2204
and by the NTU NAP Startup Grant M58110000. The second author is supported
by the Lee Kuan Yew Postdoctoral Fellowship 2011 and the Singapore National
Research Foundation Fellowship 2012.

A. Canteaut (Ed.): FSE 2012, LNCS 7549, pp. 163–179, 2012.
c© International Association for Cryptologic Research 2012



164 L. Wei et al.

(second)-preimage (a message hashing to a given challenge) in less than 2n hash
computations. Most of nowadays hash functions divide the whole input message
into blocks after padding it, and then process the blocks in an iterative way.
A very known and utilised example is the Merkle-Damgåard algorithm [12,33],
which uses an n-bit compression function h in order to process the m message
blocks Mi: CVi+1 = h(CVi,Mi), where CVi is the n-bit internal state (or chain-
ing variable) that is initialized by a fixed public value CV0 = IV and the final
hash value is Hm. This algorithm is very interesting because it allows to reduce
the collision/preimage security of the hash function to the collision/preimage
security of the compression function. However, in order to guarantee the sound-
ness of the construction, a designer must ensure that an attacker can not break
the collision/preimage resistance of the compression function. One can identify
different security properties for a compression function:

• free-start collision: in less than 2n/2 computations, find two different pairs
(CV,M) �= (CV ′,M ′) such that they lead to the same compression function
output value: h(CV,M) = h(CV ′,M ′),

• semi-free-start collision: in less than 2n/2 computations, find one chaining
variable CV and two different message blocks M �= M ′ such that they lead
to the same compression function output value: h(CV,M) = h(CV,M ′),

• preimage: in less than 2n computations, find one chaining variable CV and
one message block M such that they lead to a given output challenge X :
h(CV,M) = X .

Note that a semi-free-start collision for the compression function where the chain-
ing variable CV is not chosen by the attacker directly leads to a collision for the
whole hash function. In any case, a semi-free-start collision is very dangerous
since it means that for some choices of IV , the attacker knows how to generate
a collision. Even free-start collision are considered serious as they invalidate the
collision resistance assumption on the compression function and we have seen
many free-start collision attacks eventually turning into full hash collision at-
tacks in the recent history (for example free-start collision attacks for MD5 were
quickly identified [14], then upgraded to semi-free-start collision attacks [15] and
eventually to full collision attacks [38]). As for preimage attacks on the com-
pression function (also known as pseudo-preimages), they are very relevant since
there exist a meet-in-the-middle algorithm that in most cases can turn them into
a preimage attack for the full hash function.

The separation between a block cipher and a compression function has always
been blurry. Constructions are known to turn the former into the latter [7,36] or
the latter into the former [31]. For example, the Davies-Meyer mode [1] converts
a secure block cipher E into a secure compression function and is incorporated
in a large majority of the currently known hash functions. While very satisfying
solutions exist to transform a secure n-bit block cipher into an n-bit compression
function (Davies-Meyer, Miyaguchi-Preneel, Matyas-Meyer-Oseas modes [1] or
see [7,36] for a systematic study of this problem), there is still a lot of research
being actively conducted on double-block length compression functions (where



On the (In)Security of IDEA in Various Hashing Modes 165

the block cipher size is n bits and the compression function output size is 2n),
from simple-key block ciphers such as AES-128 or double-key such as AES-256 [11].

A major difference between the cryptanalysis of block ciphers and compres-
sion functions is that the attacker can fully control the inner behavior of the
compression function. In other words, the attacker can use more efficiently the
freedom degrees available on the input (i.e. the number of independent binary
variables he has to determine). A new security model for block ciphers, the
so-called known-key model [24], was recently proposed in order to fill the gap
between these two situations. In this model, the secret key is known to the adver-
sary and its goal is to distinguish the behavior of a random instance of the block
cipher from the one of a random permutation by constructing a set of (plaintext,
ciphertext) pairs satisfying an evasive property. Such a property is easy to check
but impossible to achieve with the same complexity and a non-negligible proba-
bility using oracle accesses to a random permutation and its inverse. In general,
these known-key attacks are not regarded as problematic when the block cipher
is used in a classical “secret key” setting. Moreover, it is rare that such threats
are extended to attacks on the compression function.

A potential candidate for hashing is the 64-bit block cipher IDEA [26,39] that
uses 128-bit keys. While a simple-length hashing mode would only provide a
64-bit hash output, insufficient for most of nowadays security applications, a
double-block length construction (DBL) would allow 128-bit hash outputs which
can be sufficient in some scenarios. As IDEA handles double-length keys, more
freedom in the constructions is possible. In fact, the well known Abreast-DM
and Tandem-DM modes were specifically created to perform hashing with IDEA

(see page 2 and Section 6 of [39]). These modes were later studied in much
details [16,17,28,30], but the security they provide when instantiated with IDEA

remains a 20-year-old standing open question. In classical “secret key” setting,
IDEA has already been studied a lot [2,3,4,5,6,9,10,13,18] and is still considered
as a secure cipher despite its age and despite the current best attack [5] that
requires 263 data (half the codebook) and 2114 computations to recover the secret
key for IDEA reduced to 7.5 rounds over a total of 8.5 (the attack on the full
cipher from [5] is very marginal with 2126.8 computations and the one from [22]
requires 2126 computations and 252 chosen plaintexts). One can also cite the work
of [6], that exposes a weak-key class of size 264. Note also that a first step towards
analysis of IDEA in hashing mode was done in [21] where a 3-round chosen-key
attack is described and in [9] where the authors show how to find a free-start
near collision (only a subset of the output collides) when IDEA is plugged into
the Hirose DBL mode [9] (and also a free-start collision if the internal constant
c is controlled by the attacker).

Our Contribution. In this paper, we study the security of the IDEA block ci-
pher [26,39] when plugged into various block cipher based compression function
constructions, such as the classical Davies-Meyer mode [1], also DBL construc-
tions such as Hirose [19,20], Abreast-DM and Tandem-DM [27,39], Peyrin et al.
(II) [35] or MJH-Double [29]. Even if this cipher is still considered as secure in the
classical “secret key” setting, its security remains an open problem in hashing



166 L. Wei et al.

mode. Depending on the IDEA-based hash construction, we show that an at-
tacker can find free-start collisions instantaneously, preimages or semi-free-start
collisions practically. For some modes, we even describe a method to compute
collisions for the whole hash function. These attacks are based on weak-keys
utilisation, but in contrary to the “secret key” setting where the goal of the
attacker is to exhibit the biggest weak-key class possible, in hashing mode the
goal is to find and exploit the weakest of all keys. We use the fact that the key
0 in IDEA is extremely weak, actually rendering the whole encryption process a
T-function [23], already known as dangerous for building a hash function [34].
While weak-keys are already known to be dangerous for block cipher-based hash
functions, our method use a novel and non-trivial almost half-involution property
for IDEA. Even strengthened versions of the cipher with any number of rounds
can be attacked with about the same complexities. This work is one more ex-
ample that one has to be very careful when hashing with a block cipher that
presents any weakness when the key is known or controlled by the attacker. In
particular, one should strictly avoid the use of a block cipher for which weak-keys
exist, even if only a single weak-key is known.

2 The IDEA Block Cipher

The International Data Encryption Algorithm (IDEA) is a 64-bit block cipher
handling 128-bit keys and designed by Lai and Massey [26,39] in 1990. While its
use is reducing over the recent years, it remains deployed in practice and has not
been broken yet despite its advanced age. It has a very simple design, performing
8.5 rounds composed of only 16-bit wide XOR, additions and multiplications.
More precisely, one round is composed of three layers: first the key addition layer
(denoted KA), a multiplication-addition layer (denoted MA) and a middle words
switching layer (denoted S). For the eighth round, the switching is omitted.

Let X i represent the 64-bit internal state of IDEA before application of the i-th
round and we can view it as four 16-bit subwords X i = (X i

1, X
i
2, X

i
3, X

i
4), with

1 ≤ i ≤ 9. Also, Y i = (Y i
1 , Y

i
2 , Y

i
3 , Y

i
4 ) will stand for the intermediate internal

state value of IDEA during the i-th round, right between the KA and the MA
layers. We denote by ⊕ the bitwise XOR operation, by � the addition modulo
216 and by � the multiplication modulo 216 +1, where the value 0 is considered
as 216 and vice-versa. Finally, Zi = (Zi

1, Z
i
2, Z

i
3, Z

i
4, Z

i
5, Z

i
6) represents the six

16-bit subkeys used during the i-th round (only the first four subkeys for the
last half round).

The KA layer simply incorporates four subkeys:

Y i
1 = X i

1 � Zi
1, Y i

2 = X i
2 � Zi

2, Y i
3 = X i

3 � Zi
3, Y i

4 = X i
4 � Zi

4.

The MA layer first computes B = Zi
6 � ((Y i

2 ⊕ Y i
4 ) � (Zi

5 � (Y i
1 ⊕ Y i

3 ))) and
A = B � (Zi

5 � (Y i
1 ⊕ Y i

3 )). Then, after application of the S layer we have:

X i+1
1 = Y i

1 ⊕B, X i+1
2 = Y i

3 ⊕B, X i+1
3 = Y i

2 ⊕A, X i+1
4 = Y i

4 ⊕A.



On the (In)Security of IDEA in Various Hashing Modes 167

All the subkeys are simply determined by choosing consecutive bits in the
128-bit master key according to some selection table (we refer to the IDEA spec-
ifications). Finally, ciphering the plaintext P with IDEA to obtain the ciphertext
C is defined as: C = KA ◦ S ◦ {S ◦MA ◦KA}8(P ).

Currently, the best cryptanalysis work published on IDEA [5] can reach 7.5
rounds with 263 data (half the codebook) and 2114 computations. Concerning
weak-keys, the current biggest weak-key class contains 264 elements and has been
published in [6].

3 Hashing with a Double-Length Key Block Cipher

We will study the security of the various block cipher-based constructions that
can use IDEA as the internal primitive. Therefore, we only consider the ones that
use a double-key block cipher. More precisely, we denote C = EK(P ) the process
of ciphering the 64-bit plaintext P with IDEA using the 128-bit key K.

3.1 Simple-Length Compression Function

A simple-length compression function construction with IDEA will provide a 64-
bit output CVi+1.

Davies-Meyer is the most usual simple-length mode [1] and it handles 128-bit
message blocks: CVi+1 = EM (CVi)⊕CVi. Most standardized hash functions are
actually implementing this mode, with an ad-hoc internal block cipher. While
some weaknesses such as fixed-points are known, its security in terms of preim-
age and collision resistance have been studied and proved in the ideal cipher
model [7]. Namely, we should expect at least 232 and 264 computations respec-
tively to generate a (semi)-free-start collision or preimage for the compression
function. Note that Miyaguchi-Preneel and Matyas-Meyer-Oseas simple-block
length modes [1] are not considered in this article since they require the internal
primitive to have the same block and key size, which is not the case for IDEA.

3.2 Double-Length Compression Function

A more interesting design strategy with IDEA would be to define double-block
length constructions, in order to get 128-bit output, represented by two 64-bit
words CV 1i and CV 2i. This problem has already been studied a lot and remains
a very active research domain, even when the internal primitive is a double-key
block cipher.

Abreast-DM and Tandem-DM will of course be considered in this article
since they both have been especially designed for IDEA [27,39]. Tandem-DM
handles a 64-bit message block M .



168 L. Wei et al.

We define W = ECV 1i||M (CV 2i) and then we have

CV 1i+1 = EM||W (CV 1i)⊕ CV 1i,

CV 2i+1 = W ⊕ CV 2i.

Abreast-DM also handles a 64-bit message block M :

CV 1i+1 = EM||CV 2i(CV 1i)⊕ CV 1i,

CV 2i+1 = ECV 1i||M (CV 2i)⊕ CV 2i,

where X stands for the bitwise complement of X .

Hirose proposed a construction that contains two independent block cipher
instances [19], later improved to only a single instance [20] by using a constant
c to simulate the two independent ciphers:

CV 1i+1 = ECV 2i||M (CV 1i)⊕ CV 1i,

CV 2i+1 = ECV 2i||M (CV 1i ⊕ c)⊕ CV 1i ⊕ c.

Peyrin et al. described in [35] a compression function (denoted Peyrin et
al.(II)) that utilizes 5 calls to independent 3n-to-n-bit compression functions,
advising to be instantiated with double-key internal block ciphers such as AES-
256 or IDEA. It handles two 64-bit message blocks M1 and M2:

CV 1i+1 = f1(CV 1i, CV 2i,M1) ⊕ f2(CV 1i, CV 2i,M2) ⊕ f3(CV 1i,M1,M2),

CV 2i+1 = f3(CV 1i,M1,M2) ⊕ f4(CV 1i, CV 2i,M1) ⊕ f5(CV 2i,M1,M2),

where the functions fi can be build for example by using the IDEA block cipher
into a Davies-Meyer mode and we can simulate their independency by XORing
distinct constants to the plaintext inputs, as it is done in [20]: fi(U, V,W ) =
EU||V (W ⊕ i)⊕W (note that XORing the constants on the key input would be
avoided in practice because it would lead to very frequent rekeying and therefore
reduce the overall performance of the hash function). Since no real candidate
was proposed by the authors, all possible position permutations of the three
fi inputs will be considered. Note that when cryptanalysing this scheme, we
will attack the functions fi independently. Thus, we will not use any weakness
coming from potential dependencies between the functions fi (apart of course
that all 5 functions are based on IDEA).

MJH-Double is a rate 1 double-block length compression function recently
published by Lee and Stam [29]. It uses a double-key block cipher and handles
two 64-bit message blocks M1 and M2:

CV 1i+1 = EM2||CV 2i(CV 1i ⊕M1)⊕ CV 1i ⊕M1,

CV 2i+1 = g · (EM2||CV 2i(f(CV 1i ⊕M1))⊕ f(CV 1i ⊕M1))⊕ CV 1i,

where f is an involution with no fixed point and g �= 0, 1 is a constant.



On the (In)Security of IDEA in Various Hashing Modes 169

For all these double-block length proposals, the conjectured security is 264

and 2128 computations respectively to generate a (semi)-free-start collision or
preimage for the compression function or hash function.

4 Weak-Keys for IDEA

Weak-keys for IDEA has already been studied in details [6,10,18], but what we
are looking for is slightly different. Indeed, for block cipher cryptanalysis, since
the attacker can not control the key input he looks for the biggest possible class
of weak-keys, so as to get the highest possible probability that a weak-key will
indeed be chosen. In the case of compression function cryptanalysis, the key input
is fully known or even controlled by the attacker. The goal is therefore not to
find the biggest possible class of weak-keys, but to find the weakest possible key.
As we will show for IDEA, even if only one weak-key is found, its weakness might
directly lead to successful attacks on the whole compression or hash function.

4.1 Analysis of the Internal Functions

When looking at the internal round function of IDEA, one might wonder what
would be a weak-key. In IDEA, the most annoying functions for the cryptanalyst
are clearly the multiplications in Z216+1. Indeed, these operations are strongly
non-linear and provide good diffusion between the different bit positions. On the
contrary, XOR operations are linear and do not provide any diffusion between the
bit positions, while the additions in Z216 can be easily approximated linearly and
the diffusion between the bit positions only happens through the carry. Moreover,
XOR and additions are even weaker in IDEA since no rotations are present,
comparing with Addition-Rotation-XOR (ARX) designs. Here the rotation is
done through the multiplications in Z216+1 and our goal is therefore to avoid
them.

When adding (a + b) mod 216, we can avoid any diffusion by forcing one
operand to 0. When multiplying (a� b) = (a · b) mod 216 + 1, the good diffusion
will happen especially when (a · b) ≥ 216 + 1. An easy way to avoid this is to fix
one of the two operands to 1. In that case, we have (a�1) = (a·1) mod 216 + 1 =
a mod 216. As already remarked in [10], a good choice is also 0, since

(a� 0) mod 216 = ((a · 216) mod (216 + 1)) mod 216

= (((a · 216 + a) + (216 + 1)− a) mod (216 + 1)) mod 216

= (0 + 216 + 1− a) mod 216 = 1− a mod 216

= 2 + (216 − 1− a) mod 216 = (2 + a) mod 216

and the multiplication is reduced to only a complement and an addition with a
constant.



170 L. Wei et al.

4.2 Weak-Keys Classes

Based on the remark that the operand 0 is very weak for both multiplications
and additions, Daemen et al. [10] generated a class of weak-keys. A first obvious
candidate is the null key (all bits set to zero), which will force all the subkeys
to zero as well. As a consequence, all subkeys additions can be simply removed
and all subkeys multiplications can be replaced by a complement (or XOR with
0xffff) and an addition with value 2. At this point, all the operations in IDEA

with null key are either XOR or additions. Therefore, by inserting differences
only on the Most Significant Bit (MSB) of the four 16-bit plaintext input words,
the attacker is ensured that only the MSB of the four output words will contain
a difference. Even better, the mapping from an MSB input difference pattern to
an MSB output difference pattern is completely deterministic (is it linear since
on the MSB no carry is propagated). Such a property is largely sufficient to
consider the null key as weak. This reasoning can be generalized by observing
that the attacker does not necessarily need all subkeys to be null, but only the
ones that are multiplied to an internal word which contains a MSB difference.
Since the MSB differential paths are quite sparse, many of the null constraints
on the subkeys are relaxed and one finally gets 235 weak-keys.

4.3 The Null Weak-Key

We show that the null key is particularly weak for hash function utilization. Even
if other keys belong to a weak-key class, they do not present the same special
properties as the null key.

Almost Half-Involution. When using the null key, we remark that all subkeys
will be null as well. Then, all rounds layers will be the same and we write KA0 and
MA0 the KA and MA layers with null subkeys. A nice practical feature of IDEA
is that the decryption is done using the very same algorithm as encryption, but
with different subkeys. The decryption subkeys for the MA layer are the same
as the encryption ones since the MA layer is an involution (i.e. MA=MA−1).
The decryption subkeys for the KA layer are the respective multiplicative and
additive inverses of the encryption subkeys. However, note that a null subkey is
both its own multiplicative and additive inverse and the KA layer becomes an
involution as well (i.e. KA0=KA−1

0 ). To summarize, using the null key, we are
ensured that KA0=KA−1

0 and MA0=MA−1
0 . Note that we trivially have S=S−1.

Now, since the KA layer and S layer commute, IDEA with null key can be
rewritten as

C = KA0 ◦ S ◦ {S ◦MA0 ◦KA0}8(P )

= KA0 ◦ S ◦ {S ◦MA0 ◦KA0}3 ◦ S ◦MA0 ◦KA0 ◦ {S ◦MA0 ◦KA0}4(P )

= KA0 ◦MA0 ◦ {S ◦KA0 ◦MA0}3︸ ︷︷ ︸
σ−1

◦KA0 ◦ S︸ ︷︷ ︸
θ

◦ {MA0 ◦KA0 ◦ S}3 ◦MA0 ◦KA0︸ ︷︷ ︸
σ

(P )



On the (In)Security of IDEA in Various Hashing Modes 171

which eventually gives C = σ−1 ◦ θ ◦ σ(P ). One can check that since KA0, MA0

and S are involutions, the operation denoted by σ−1 is indeed the inverse of the
one denoted by σ. Thus, using the notation

P
σ−1

−→ U
θ−→ V

σ−→ C

where U and V are internal state values, we have

P
σ←− U

θ−→ V
σ−→ C.

We will use this almost half-involution property in Section 6 to find free-start
collisions and even hash function collisions for some IDEA-based constructions.

T-function. When using the null key, we have already described that all oper-
ations remaining are either XOR or additions. These operations are triangular
functions [23] (or T-functions) in the sense that any output bit at position i
only depends on the input bits located at a position i or lower. A composition
of T-functions is itself a T-function, therefore the whole permutation defined by
IDEA with the null key is a T-function. As shown in [34], this property might be
very dangerous in a hash function design. We will explain in Section 7 how to
exploit this weakness and compute preimages by guessing the input words bit
layer by bit layer.

5 Simple Collision Attacks

As shown by Daemen et al. [10], when using the null key for the encryption
process of IDEA, differences inserted uniquely on the MSB of the four 16-bit
input plaintext words will lead to differences on the MSB of the four 16-bit
output ciphertext words. Moreover, since this difference mapping is linear (the
difference on the carry is not propagated further than the MSB), all possible
differential characteristics have a differential probability 1. For example, we de-
note by δMSB = 0x8000 the 16-bit word with difference only on the MSB and
by ΔMSB = (δMSB , δMSB , δMSB, δMSB) the 64-bit difference composed of 4
words with difference δMSB . Then, ΔMSB propagates to itself with probability
1 through one round of IDEA, or through its last half-round. Therefore, we have
with probability 1

ΔMSB

IDEAK=0

−−−−−−−−−−→ ΔMSB .

Note that instead of using δMSB only, one can generalize the input difference
space and obtain other very good differential paths for the encryption of IDEA
with the null key. However, we omit this generalization here since the methods
described in later sections already provide much better attacks.



172 L. Wei et al.

Davies-Meyer. Finding a free-start collision on Davies-Meyer mode instan-
tiated with IDEA is very easy. Since the difference ΔMSB is mapped to itself
through the IDEA encryption process with the null key, the attacker only has to
pick M = 0. Then, any value of CV with difference ΔMSB applied to it will
lead to a collision with probability 1. We give in the full version of the article
examples of such a free-start collision.

Hirose. The samemethod as for Davies-Meyermode can be applied to the Hirose
mode in order to find free-start collisions. The attacker fixes CV 2 = 0 and M =
0 so as to force the null key to both encryptions. Then, any value of CV 1 with
a difference ΔMSB applied to it will lead to a collision with probability 1, since
ΔMSB will appear on the plaintext input of both encryptions with the null key.
We give in the full version of the article examples of such a free-start collision.

Abreast-DM. This technique seems impossible to apply to the Abreast-DM
mode since forcing a difference ΔMSB on any of the two encryptions plaintext
input will imply a difference inserted in the key input of the other encryption
block. Therefore, one cannot use ΔMSB difference on plaintext input with null
key in both encryption blocks. Even if the attacker tries to attack only one
encryption block with this method, the other block will not be controlled and he
will have to deal with random differences on its output. These random differences
cannot be dealt with some birthday technique because fixing all inputs of one
encryption block will fix all inputs of the other one as well.

Tandem-DM. This technique seems impossible to apply to the Tandem-DM
mode for the exact same reasons as for Abreast-DM.

Peyrin et al.(II). We have to separate in two groups the possible instances of
this construction, obtained by permuting the position of the three inputs of each
internal function fi. If all compression function inputs CV 1, CV 2, M1 and M2
appear in at least one of the IDEA key inputs of any fi internal function, then the
attack will not apply. Indeed, since all inputs will be involved at least one time,
the attacker will necessarily have to insert a difference in at least one IDEA key
input and he will not be able to use the differential path with probability 1. Note
that these instances would be avoided in practice because they would lead to
more frequent re-keying and therefore reduce the overall performance of the hash
function. If this condition is not met, then we can apply the following free-start
collision attack. Let X ∈ {CV 1, CV 2,M1,M2} denote the input that is missing
in all the IDEA key inputs of the compression function. The attacker simply fixes
the difference ΔMSB on X (one can give any value to X) and all other inputs
are set to 0 in order to get the null key in every internal IDEA. The attacker ends
up with several Davies-Meyer in parallel, with either no difference at all or with
null key and ΔMSB as plaintext input difference. Thus, he obtains a collision
with probability 1. If X �∈ {CV 1, CV 2}, then this attack finds semi-free-start
collisions.



On the (In)Security of IDEA in Various Hashing Modes 173

MJH-Double. The MJH-Double mode prevents this simple attack since even
if we fix CV 2 = 0 and M2 = 0 in order to get the null key in both encryptions,
it is hard to force the difference ΔMSB on both their plaintext inputs. Indeed,
the f operation will randomize the difference and in order for the attack to run,

we would require ΔMSB
f−→ ΔMSB which is unlikely to happen.

6 Improved Collision Attacks

In this section, using the almost half-involution property with the null key, we
will show how to get the same difference on the input and on the output of the
IDEA ciphering process with good probability. Then, we will use this weakness
to derive our collision attacks, for any number of rounds.

6.1 Exploiting the Almost Half-Involution

We have already shown in Section 4 that when the key is null, IDEA encryption
process can be rewritten as

P
σ←− U

θ−→ V
σ−→ C

where

σ = {MA0 ◦KA0 ◦ S}3 ◦MA0 ◦KA0 and θ = KA0 ◦ S.

We denote ΔU the XOR difference between two 64-bit internal state values U
and U ′, i.e ΔU = U ⊕ U ′, and δUi represents the 16-bit difference on the i-th
word of ΔU , that is ΔU = (δU1, δU2, δU3, δU4). Let us consider two random
64-bit internal state values U and U ′ such that δU2 = δU3 and we denote this
16-bit difference δM . For truly random values U and U ′, this condition happens
with probability 2−16. One can check that applying θ on U and U ′ to obtain
V and V ′ respectively will lead to δV2 = δV3 = δM since layer S only switches
the two middle words and layer KA0 has no effect on them (addition of null
subkeys).

Let δL and δR represent the difference on δU1 and δU4 respectively, i.e. ΔU =
(δL, δM , δM , δR). Applying function θ to U and U ′, we would like the same differ-
ences to appear on internal state V and V ′: ΔV = (δL, δM , δM , δR). The previous
condition with probability 2−16 already ensures the two middle differences being
the same δM . Concerning differences δL and δR, they will both be unaffected
by layer S, but they might be modified through layer KA0 that applies a mul-
tiplication with a null subkey. Therefore, we need to study the probability that
a random difference δ is mapped to itself through a multiplication by the null
subkey. We show in the full version of the article that this probability is equal to

2−1.585 and finally we have Pr[(δL, δM , δM , δR)
θ−→ (δL, δM , δM , δR)] = 2−3.17.

At this point, we proved that for randomly chosen internal state values U and
U ′, we will observe with probability 2−19.17 the same difference on U and V , i.e.
ΔU = ΔV .



174 L. Wei et al.

One can see that computing backward from internal states U to P or forward
fromV toC, the functionσ is applied.Ourfinal goal is to have the samedifference on
P andC. However, this seems unlikely to happen since U and V have different val-
ues, the forward and backward computations of σ should be completely unrelated,
evenwith the same input difference.Yet, this reasoning does not take in account the
fact that while U and V have distinct values, they are far from being independent:
V = θ(U) with θ being a very light function. Moreover, we remarked that almost
each time thatwe got the same difference onP andC, the same differenceswere ob-
served aswell in all rounds of the forwardand backwardσ computations (the round
success probability increasing with the number of rounds already processed). Be-
cause all the rounds are not independent and becauseU and V are strongly related,
it is very difficult to compute theoretically the probability of observing the same
difference on P and C and we leave this as an open problem. Therefore, we mea-
sured it by choosing random values of U , δL, δM , δR, computing V = θ(U), and
checking for collisions on the difference of P and C. The probability obtained was
2−16.26 for about 228 tests (note that this probability somehow contains the 2−3.17

probability computed previously, but we can not separate them because the two
events are not independent).

To conclude, the probability that two randomly chosen internal state values
U and U ′ give the same difference on P and C is equal to 2−16−16.26 = 2−32.26

(instead of 2−64 expected for a random function). In other words, using the
birthday paradox, one can find such a pair with about 216.13 computations.

Interestingly, we have observed that most of the pairs fulfilling the differen-
tial path for the full IDEA will also be valid for a strengthened version of the
cipher with any number of additional rounds. Since the subkeys are always null,
strengthening the cipher would mean that σ = {MA0 ◦ KA0 ◦ S}t ◦MA0 ◦ KA0

for any t > 3. We checked that the probability that two randomly chosen inter-
nal state values U and U ′ give the same difference on P and C tends to 2−32.54

when t tends to infinite. Thus, similarily to the method presented in the previous
section, the attacks using this almost half-involution property will work for any
number of rounds.

6.2 Improving Collision Attacks

Davies-Meyer. A first obvious application of having the same difference in P
and C is collision search on Davies-Mayer mode, where the feed-forward will
cancel the two differences in the output. The attack finds collisions for the whole
hash function and the procedure is very simple: we start from the IV and add
random differences in the first message block M0. This will cause random differ-
ences in the the first chaining variable CV1. For the second message block M1,
we will set all its bits 0 (M1 = 0), forcing the internal IDEA computation to use
the null key. Since we estimated in the previous section that with the null key a
random pair of inputs has a probability 2−32.26 to give the same input/output
difference, one can use the birthday paradox to generate a collision on CV2 with
only 216.13 distinct message blocks M0. We give in the full version of the ar-
ticle examples of hash collisions for the Davies-Meyer mode. Note that finding



On the (In)Security of IDEA in Various Hashing Modes 175

semi-free-start collisions with this technique is impossible since we would have
to insert differences in the message input, which forbids the use of the null key
in the internal cipher.

Hirose. We already showed how to find free-start collisions for the Hirose mode.
However, finding semi-free-start collisions with this technique is impossible since
we would have to insert differences in the message input, which forbids the use
of the null key in the internal cipher. Also, concerning hash collisions, it seems
hard as well because forcing the null key during iteration i requires us to obtain a
chaining variable CV 2i−1 = 0 during the previous iteration. This half-preimage
already costs the same complexity as a generic collision search on the entire
compression function.

Abreast-DM. One can derive a free-start collision attack for the Abreast-DM
compression function using this technique. The attacker first fixes CV 1 = 0 and
M = 0. Then, he builds a set of 248.13 distinct values CV 2 and checks if a pair
of this set leads to a collision. The probability that a pair leads to a collision on
the first (top) branch is 2−32.26 (since the internal cipher on this part has the
null key), and 2−64 on the other half. Overall, using the birthday paradox on the
set of 248.13 values CV 2 is sufficient to have a good chance to obtain a collision.
Note that finding a semi-free-start collision for the compression function or a
collision for the hash function seems impossible with this method, for the same
reasons as the Hirose mode.

Tandem-DM. The situation of Tandem-DM is absolutely identical to the
Abreast-DM one: one can find free-start collisions for compression function us-
ing this technique. The attacker first fixes CV 1 = 0 andM = 0. Then, he builds a
set of 248.13 distinct values CV 2 and checks if a pair of this set leads to a collision.
The probability that a pair leads to a collision on the first (top) branch is 2−32.26

(since the internal cipher on this part has the null key), and 2−64 on the other half.
Overall, using the birthday paradox on the set of 248.13 values CV 2 is sufficient to
have a good chance to obtain a collision. Again, finding a semi-free-start collision
for the compression function or a collision for the hash function seems impossible
with this method, for the same reasons as the Hirose mode.

Peyrin et al.(II). We showed in previous section how to find (semi)-free-start
collisions with probability 1 for a certain subset of Peyrin et al.(II) constructions,
but here we provide attacks on a bigger subset. If all compression function inputs
CV 1, CV 2, M1 and M2 appear in at least one of the IDEA key inputs of f1,
f2, f3 (left side) and in at least one of the IDEA key inputs of f3, f4, f5 (right
side), then the attack will not apply. Indeed, for both left side and right side of
the compression function, the attacker will necessarily have to insert a difference
in at least one key input (since all inputs will be involved) and he will not be
able to use the null key completely. Note that these instances would be avoided
in practice because they would lead to more frequent rekeying and therefore



176 L. Wei et al.

reduce the overall performance of the hash function. However, if this condition
is not met, then we can apply the following free-start collision attack. Let X ∈
{CV 1, CV 2,M1,M2} denote the input that is missing in all the IDEA key inputs
of f1, f2, f3 (wlog the reasoning is the same with f3, f4, f5). The attacker first
fixes all inputs but X to 0 in order to get the null key in every internal IDEA
on the left side. Then he chooses 248.13 random values for X and checks among
them if any pair collides on the whole compression function output. Since he has
a probability 2−32.26 to get a collision on the left side and 2−64 on the right side,
using a birthday search the attacker finds a solution with complexity 248.13.
Again, if X �∈ {CV 1, CV 2}, then this attack finds semi-free-start collisions.
However, finding a collision for the hash function seems impossible with this
method, because at least one of the chaining variable inputs CV 1 and CV 2 will
be present as key input for one of the IDEA internal emcryption. Setting this word
to 0 is equivalent to a half-preimage that already costs the same complexity as
a generic collision search on the entire hash function.

MJH-Double. One can derive a semi-free-start collision attack on the MJH-
Double compression function instantiatedwithIDEA.TheattackerfirstfixesCV 2 =
0 andM2 = 0 and this will force the null key in both encryptions. Now he chooses
a random value for CV 1 (note that actually this value could be fixed by the chal-
lenger) and builds a set of 232.26 values M1. In this configuration, it is easy to see
that one will have random differences on the plaintext inputs to both encryptions.
Since the null key is used for both, we have a probability 2−64.52 that a pair ofM1
leads to a collision after the feed-forward of both encryptions (on the output of the
bottomblock and just before the application of g on the top block). Therefore,with
a birthday technique, one can find such a pair with only 232.26 computations. Note
that while this pair will directly lead to a collision on the bottom CV 1 output, the
difference onM1 is injected two times before computing the topCV 2 output. Two
times of the samedifferencewill cancel themselves andwe eventually get a full semi-
free-start collision. Note that it seems hard to extend this attack to a hash collision
since the attacker would require to force the incoming chaining variableCV 2 to be
equal to 0 and this half-preimage already costs the same complexity as a generic
collision search on the entire hash.

7 Preimage Attacks

Due to space limitations, all results regarding preimage attacks are given in the
full version of the article.

8 Results and Implementations

We depict in Table 1 our collision results for the block cipher to compression
function modes considered in this article when instantiated with IDEA. We im-
plemented all attacks of reasonable complexities and provide in the full version
of the article the collision/preimage examples obtained.



On the (In)Security of IDEA in Various Hashing Modes 177

Table 1. Summary of collision results for block cipher to compression function modes
when instantiated with IDEA (we did not include MDC-2 as it does not provide ideal
collision resistance). The results for Peyrin et al.(II) construction, marked with a *,
depend on the instance considered (see relevant parts of Sections 5 and 6 for more
details).

Mode

hash compression function hash function

output free-start semi-free-start collision

size collision attack collision attack attack

Davies-Meyer [1] 64 21 216.13

Hirose [19,20] 128 21

Abreast-DM [27,39] 128 248.13

Tandem-DM [27,39] 128 248.13

Peyrin et al.(II) [35] 128 21 / 248.13� 21 / 248.13�

MJH-Double [29] 128 232.26 232.26

9 Conclusion

In this article, we showed collision and preimage attacks for several single and
double-length block cipher based compression function constructionswhen instan-
tiated with the block cipher IDEA. Namely, we analyzed all known double-key
schemes such as Davies-Meyer, Hirose, Abreast-DM, Tandem-DM, Peyrin et al.
(II) andMJH-Double.While most of these constructions are conjectured or proved
to be secure in the ideal cipher model, we showed that their security is very weak
when instantiated with the block cipher IDEA, which remains considered as secure
in the secret keymodel. In particular, we answer in the negative for the 20-year-old
standing open question concerning the security of the Abreast-DM and Tandem-
DM instantiated with IDEA. All our practical attacks have been implemented and
they can work even for any number of IDEA rounds. Our results indicate that one
has to be very careful when hashingwith a block cipher that presents anyweakness
when the key is known or controlled by the attacker. Also, since we extensively use
the presence of weak-keys for IDEA, as a future work it would be interesting to look
at the security of hash functions based on block ciphers for which some key sets
are known to be weaker than others.

Acknowledgments. The authors would like to thank the anonymous referees
for their helpful comments.

References

1. Menezes, A., van Oorschot, P., Vanstone, S.: CRC-Handbook of Applied Cryptog-
raphy. CRC Press (1996)

2. Ayaz, E.S., Selçuk, A.A.: Improved DST Cryptanalysis of IDEA. In: Biham, E.,
Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 1–14. Springer, Heidelberg
(2007)



178 L. Wei et al.

3. Biham, E., Dunkelman, O., Keller, N.: New Cryptanalytic Results on IDEA. In:
Lai and Chen [25], pp. 412–427

4. Biham, E., Dunkelman, O., Keller, N.: A New Attack on 6-Round IDEA. In:
Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 211–224. Springer, Heidelberg
(2007)

5. Biham, E., Dunkelman, O., Keller, N., Shamir, A.: New Data-Efficient Attacks on
Reduced-Round IDEA. Cryptology ePrint Archive, Report 2011/417 (2011)

6. Biryukov, A., Nakahara Jr., J., Preneel, B., Vandewalle, J.: New Weak-Key Classes
of IDEA. In: Deng, R.H., Qing, S., Bao, F., Zhou, J. (eds.) ICICS 2002. LNCS,
vol. 2513, pp. 315–326. Springer, Heidelberg (2002)

7. Black, J.A., Rogaway, P., Shrimpton, T.: Black-Box Analysis of the Block-Cipher-
Based Hash-Function Constructions from PGV. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 320–335. Springer, Heidelberg (2002)

8. Brassard, G. (ed.): CRYPTO 1989. LNCS, vol. 435. Springer, Heidelberg (1990)
9. Chang, D.: Near-Collision Attack and Collision-Attack on Double Block Length

Compression Functions based on the Block Cipher IDEA. Cryptology ePrint
Archive, Report 2006/478 (2006), http://eprint.iacr.org/

10. Daemen, J., Govaerts, R., Vandewalle, J.: Weak Keys for IDEA. In: Stinson [37],
pp. 224–231

11. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer (2002)

12. Damg̊ard, I.: A Design Principle for Hash Functions. In: Brassard [8], pp. 416–427
13. Demirci, H., Selçuk, A.A., Türe, E.: A New Meet-in-the-Middle Attack on the

IDEA Block Cipher. In: Matsui and Zuccherato [32], pp. 117–129
14. den Boer, B., Bosselaers, A.: Collisions for the Compression Function of MD-5. In:

Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 293–304. Springer,
Heidelberg (1994)

15. Dobbertin, H.: Cryptanalysis of MD5 compress. Presented at the Rump Session of
EUROCRYPT 1996 (1996)

16. Fleischmann, E., Gorski, M., Lucks, S.: On the Security of Tandem-DM. In:
Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 84–103. Springer, Heidel-
berg (2009)

17. Fleischmann, E., Gorski, M., Lucks, S.: Security of Cyclic Double Block Length
Hash Functions including Abreast-DM. Cryptology ePrint Archive, Report
2009/261 (2009), http://eprint.iacr.org/

18. Hawkes, P.: Differential-Linear Weak Key Classes of IDEA. In: Nyberg, K. (ed.)
EUROCRYPT 1998. LNCS, vol. 1403, pp. 112–126. Springer, Heidelberg (1998)

19. Hirose, S.: Provably Secure Double-Block-Length Hash Functions in a Black-Box
Model. In: Park, C., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 330–342.
Springer, Heidelberg (2005)

20. Hirose, S.: Some Plausible Constructions of Double-Block-Length Hash Functions.
In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 210–225. Springer, Heidel-
berg (2006)

21. Kelsey, J., Schneier, B., Wagner, D.: Key-Schedule Cryptanalysis of IDEA, G-DES,
GOST, SAFER, and Triple-DES. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS,
vol. 1109, pp. 237–251. Springer, Heidelberg (1996)

22. Khovratovich, D., Leurent, G., Rechberger, C.: Narrow-Bicliques: Cryptanalysis of
Full IDEA. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 392–410. Springer, Heidelberg (2012)

23. Klimov, A., Shamir, A.: Cryptographic Applications of T-Functions. In: Matsui
and Zuccherato [32], pp. 248–261

http://eprint.iacr.org/
http://eprint.iacr.org/


On the (In)Security of IDEA in Various Hashing Modes 179

24. Knudsen, L.R., Rijmen, V.: Known-Key Distinguishers for Some Block Ciphers. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 315–324. Springer,
Heidelberg (2007)

25. Lai, X., Chen, K. (eds.): ASIACRYPT 2006. LNCS, vol. 4284. Springer, Heidelberg
(2006)

26. Lai, X., Massey, J.L.: A Proposal for a New Block Encryption Standard. In:
Damg̊ard, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 389–404. Springer,
Heidelberg (1991)

27. Lai, X., Massey, J.L.: Hash Functions Based on Block Ciphers. In: Rueppel, R.A.
(ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 55–70. Springer, Heidelberg (1993)

28. Lee, J., Kwon, D.: The Security of Abreast-DM in the Ideal Cipher Model. Cryp-
tology ePrint Archive, Report 2009/225 (2009), http://eprint.iacr.org/

29. Lee, J., Stam, M.: MJH: A Faster Alternative to MDC-2. In: Kiayias, A. (ed.)
CT-RSA 2011. LNCS, vol. 6558, pp. 213–236. Springer, Heidelberg (2011)

30. Lee, J., Stam, M., Steinberger, J.: The Collision Security of Tandem-DM in the
Ideal Cipher Model. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp.
561–577. Springer, Heidelberg (2011)

31. Luby, M., Rackoff, C.: How to Construct Pseudorandom Permutations from Pseu-
dorandom Functions. SIAM J. Comput. 17(2), 373–386 (1988)

32. Matsui, M., Zuccherato, R.J. (eds.): SAC 2003. LNCS, vol. 3006. Springer, Heidel-
berg (2004)

33. Merkle, R.C.: One Way Hash Functions and DES. In: Brassard [8], pp. 428–446
34. Muller, F., Peyrin, T.: Cryptanalysis of T-Function-Based Hash Functions. In:

Rhee, M.S., Lee, B. (eds.) ICISC 2006. LNCS, vol. 4296, pp. 267–285. Springer,
Heidelberg (2006)

35. Peyrin, T., Gilbert, H., Muller, F., Robshaw, M.J.B.: Combining Compression
Functions and Block Cipher-Based Hash Functions. In: Lai and Chen [25], pp.
315–331

36. Preneel, B., Govaerts, R., Vandewalle, J.: Hash Functions Based on Block Ciphers:
A Synthetic Approach. In: Stinson [37], pp. 368–378

37. Stinson, D.R. (ed.): CRYPTO 1993. LNCS, vol. 773. Springer, Heidelberg (1994)
38. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R.

(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)
39. Lai, X.: On the Design and Security of Block Ciphers. Hartung-Gorre Verlag, Kon-

stanz (1992)

http://eprint.iacr.org/


The Security of Ciphertext Stealing

Phillip Rogaway1, Mark Wooding2, and Haibin Zhang1

1 Dept. of Computer Science, University of California, Davis, USA
2 Thales e-Security Ltd, UK

Abstract. We prove the security of CBC encryption with ciphertext
stealing. Our results cover all versions of ciphertext stealing recently
recommended by NIST. The complexity assumption is that the under-
lying blockcipher is a good PRP, and the security notion achieved is the
strongest one commonly considered for chosen-plaintext attacks, indis-
tinguishability from random bits (ind$-security). We go on to generalize
these results to show that, when intermediate outputs are slightly de-
layed, one achieves ind$-security in the sense of an online encryption
scheme, a notion we formalize that focuses on what is delivered across
an online API, generalizing prior notions of blockwise-adaptive attacks.
Finally, we pair our positive results with the observation that the ver-
sion of ciphertext stealing described in Meyer and Matyas’s well-known
book (1982) is not secure.

Keywords: blockwise-adaptive attacks, CBC, ciphertext stealing, cryp-
tographic standards, modes of operation, provable security.

1 Introduction

Ciphertext stealing. Many blockcipher modes require the input be a se-
quence of complete blocks, each having a number of bits that is the blockcipher’s
blocksize. One approach for dealing with inputs not of this form is ciphertext
stealing. The classical combination is CBC encryption and ciphertext stealing, a
mode going back to at least 1982 [14].

In 2010, NIST put out an addendum [8] to Special Publication 800-38A [7],
the document that had defined blockcipher modes ECB, CBC, CFB, OFB, and
CTR. The addendum defines three ways to enrich CBC with ciphertext stealing.
The modes are named CBC-CS1, CBC-CS2, and CBC-CS3. See Fig. 1 for the
definition of these modes, which differ only in the ordering of ciphertext bits.

Despite the classicism of ciphertext-stealing, its adoption in standards, and
the strong preferences, these days, for proven-secure modes, there has, until now,
been no proof offered for CBC with ciphertext stealing. This paper fills in this
gap.

Our contributions. We begin by looking at the NIST ciphertext-stealing
modes, which we collectively call CBC-CS. Assuming a random IV, we show
that the CBC-CS schemes achieve the strongest conventional form of chosen-
plaintext-attack (CPA) security: what we call ind$, indistinguishability from

A. Canteaut (Ed.): FSE 2012, LNCS 7549, pp. 180–195, 2012.
� International Association for Cryptologic Research 2012



The Security of Ciphertext Stealing 181

C3

P3

EK EK

C4C3
∗ ∗∗

∗P4P2

EK

C2

P1

EK

C1

IV

0∗

d b-d

d b-d

10 algorithm CBC-CS IV
K (P )

11 n ← �|P |/b
12 P1 · · ·Pn−1P

∗
n ← P where |P1| = · · · = |Pn−1| = b

13 Pn ← P ∗
n 0b−d where d ← |P ∗

n |
14 C0 ← IV ;

15 C1 · · ·Cn ← CBC IV
K (P1 · · ·Pn) where |C1| = · · · = |Cn| = b

16 C∗
n−1 ← MSBd(Cn−1)

17-1 return C1 · · ·Cn−2C
∗
n−1Cn ⇐ for CS1

17-2 if d=b return C1· · ·Cn−2C
∗
n−1Cn else return C1· · ·Cn−2CnC

∗
n−1 ⇐ for CS2

17-3 return C1 · · ·Cn−2CnC
∗
n−1 ⇐ for CS3

20 algorithm CBC IV
K (P1 · · ·Pn) where |P1| = · · · = |Pn| = b

21 C0 ← IV
22 for i ← 1 to n do Ci ← EK(Ci−1 ⊕Pi)
23 return C1 · · ·Cn

Fig. 1. Encryption under NIST modes CBC-CS1, CBC-CS2, and CBC-CS3.
The schemes differ only in which version of line 17 is used. The schemes depend on a
blockcipher E: K×{0, 1}b → {0, 1}b that determines the key space K, the IV space IV,
and the message space P = {0, 1}≥b. We insist that K ∈ K, IV ∈ IV , and P ∈ P .

random bits under an adaptive chosen-plaintext attack. The definition, easily
shown to imply all conventional formulations of CPA-style semantic security,
formalizes that a ciphertext C is indistinguishable from as many random bits.

Next we show that delayed versions of CBC-CS achieve an analogous IND$ no-
tion that we define for online security. The idea of delayed CBC is from Fouque,
Martinet, and Poupard [11]. Our formulation for online security generalizes their
and subsequent work (further history and credits coming shortly). In particu-
lar, prior definitional approaches were specific to blockcipher-based schemes of
a specified form—restrictions not in keeping with identifying a general notion of
security. We levy no such restrictions, but do imagine that the encryption scheme
is written to an incremental API (application programming interface). Each time
a user presents a piece of plaintext to encrypt she will get back a correspond-
ing chunk of ciphertext. The length of both is arbitrary. One can understand
our definition of online security as establishing that a specified incremental API
introduces no new security vulnerabilities. Technically, we reconceptualize an



182 P. Rogaway, M. Wooding, and H. Zhang

encryption scheme as the incremental interface. We regard a general definition
for online security—a definition motivated by cryptographic APIs and not the
characteristics of any particular encryption mode—as an important and inde-
pendent contribution of this paper.

The workings of delayed CBC—the naturalness of this scheme and how much
one must delay—are clarified by freeing the definition of online security from a
demand on a scheme being blockcipher-based. Now it is the security analysis,
not the syntax, that surfaces by just how much one must delay—an amount that
is, in fact, slightly different for the CS1/CS2 and the CS3 versions of the scheme.
Absent a careful treatment of such matters the author of an incremental API
could well get these things wrong, buffering more than what is necessary or less
than what is needed.

Finally, we point out that a 30-year-old version of ciphertext stealing described
in the book of Meyer and Matyas [14] is essentially wrong: it will not achieve any
desirable security notion we know. The apparently unnoticed observation high-
lights the importance of having proofs in this domain, and underscores NIST’s
wisdom in selecting the versions of ciphertext stealing that it did.

Additional history. The provable-security treatment of CBC, and of other
blockcipher-based encryption modes, begins with Bellare, Desai, Jokipii, and
Rogaway [3]. The stronger ind$-definition that we adopt here is from Rogaway,
Bellare, Black, and Krovetz [16]. For online security, the delayed-CBC scheme
that we embellish with NIST’s versions of ciphertext stealing is due to Fouque,
Martinet, and Poupard [11].

Our definition of online security springs from the line of work on blockwise-
adaptive attacks that starts with Bellare, Kohno, and Namprempre [4] and
Joux, Martinet, and Valette [13] and continues with Fouque, Martinet, and
Poupard [11], Fouque, Joux, and Poupard [10], and Bard [2]. As explained, our
own security definitions take a different turn by divorcing the notion of online
security from its former association with blockcipher-based schemes. We instead
assume an arbitrary symmetric encryption scheme that is presented to the user
by way of an incremental API. The user provides the plaintext as a sequence
of chunks and the encryption algorithm, buffering what it needs, returns cor-
responding ciphertext chunks. The approach echos Gennaro and Rohatgi [12],
which likewise transplants a primitive (digital signatures) from a setting that
sees messages as atomic to one that sees messages as something produced and
consumed across an expanse of time.

Discussion. A possible reaction to any discussion of ciphertext stealing is to
say: forget it, use CTR mode instead. We are sympathetic to this point of view,
knowing no convincing reason to favor CBC encryption over CTR mode, which
natively handles plaintexts of arbitrary length. But the fact remains that CBC
encryption is widely used, and that ciphertext stealing is a classical, standard-
ized, and elegant way to extend it. This makes it worth attending to.

In justifying the use of ciphertext stealing in a mode that employed it,
Matt Ball writes that “[d]espite lacking a formal security proof, ciphertext



The Security of Ciphertext Stealing 183

stealing still has general approval in the cryptographic community” [1, p. 5].
Probably this statement is at some level true, but “general approval” is hard to
gauge and far removed from being a proof.

We think that security notions that attend to the vulnerabilities introduced by
the specifics of an envisioned API comprise an interesting direction in narrowing
the gap between conventional abstractions of cryptographic primitives and what
cryptographic practice actually exports. It is not just that protocols may segment
conceptually atomic messages (the original motivation for dealing with blockwise
adaptivity); rather, it is that the segmentation is actually surfaced to users, and
therefore desirable to directly model.

We do not discuss the security of CBC-CS when the IV fails to be unpre-
dictable; it would seem that no interesting or desirable security notion is achieved
in this case. NIST SP800-38A appropriately demands an unpredictable IV for
CBC [7, Appendix C].

The CBC-CS schemes predate NIST’s addendum [8]: CBC-CS2 goes back to
at least 1996 [17], while older versions of ciphertext stealing go back to at least
1982 [14]. Looking at these schemes from a modern vantage is long overdue.

2 Preliminaries

Notation. Strings are assumed to be binary, elements of {0, 1}∗. Both A ‖ B
and AB denote the concatenation of strings A and B. If X is a string then |X |
is its length. The empty string is denoted ε. Throughout this paper we fix an
integer b ≥ 1 called the blocksize. For a string X and a number d ≤ |X | let
MSBd(X) and LSBd(X) be the leftmost and rightmost d bits of X .

Blockciphers. A blockcipher is a map E: K × {0, 1}b → {0, 1}b where K ⊆
{0, 1}∗ is finite and EK(·) = E(K, ·) is a permutation for each K ∈ K. Let
Perm(b) be the set of all permutations on b bits. This may be regarded as a
blockcipher with a (2b!)-size key space. Let Advprp

E (A) = Pr[AEK(·)⇒ 1 ] −
Pr[Aπ(·)⇒ 1 ] with K

$←K and π
$← Perm(b). Similarly define Advprf

E (A) =
Pr[AEK(·)⇒ 1 ] − Pr[Aρ(·)⇒ 1 ] with K

$←K and ρ
$← Func(b) for Func(b) the

set of all functions from b bits to b bits. Here EK(·) need not be a permutation.

Encryption schemes. It has become traditional to regard blockciphers as fixed
functions but encryption schemes as tuples, as in Π = (K, E ,D). To simplify
and unify matters we formalize an encryption scheme more like a blockcipher:
an (IV-based, symmetric) encryption scheme is a function E : K× IV ×P → P .
We call K, IV , and P the key space, IV space, and message space. For simplicity
we assume that K is finite and IV is the set of all strings of some one particular
length. We write E IVK (P ) instead of E(K, IV , P ). To keep things simple we require
that E IVK (·) be a length-preserving permutation for all K ∈ K and IV ∈ IV . The
condition implies that E has a unique inverse, the map D where DIV

K (C) = P
when E IVK (P ) = C. Because there is no formal need to specify the decryption
direction D of an encryption scheme E , we never do so. Of course it is important
in practice that E and D have efficient realizations, it is simply that this doesn’t
show up in the statement of definitions or security results.



184 P. Rogaway, M. Wooding, and H. Zhang

Let E : K × IV × P → P be an IV-based encryption scheme and let A be an
adversary (algorithm) with one of two types of oracles. A real encryption ora-
cle Real(·) chooses a random K

$←K and then, on input P ∈ P , returns C ←
IV ‖ E IVK (P ) for a random IV

$←IV . A fake encryption oracle Fake(·) takes an
input P ∈ P and returns C

$←{0, 1}c where c = |IV |+ |P | (for IV ∈ IV). Define

Advind$
E (A) = Pr[AReal(·)⇒ 1 ] − Pr[AFake(·)⇒ 1 ]. This “indistinguishability-

from-random-bits” definition is easily shown to imply all conventional (CPA)
formulations of indistinguishability and semantic security [3]; that we have se-
lected a different syntax makes no difference in the proofs.

Note that even though the encryption function is formalized as taking, besides
the key, an IV and a plaintext, the security definition does not allow the adver-
sary to specify the IV; the adversary asks P and the IV is randomly generated,
used, and and returned. Our security notion thus formalizes security for random
IVs, not, for example, security for nonce IVs.

3 Conventional Security of the CBC-CS Schemes

We begin with a simple proposition about the security of conventional CBC
encryption (no ciphertext stealing) with a random IV. The result is needed
insofar as we deduce the security of CBC-CS from it. Recall that the mode was
defined in Fig. 1 and was proven secure by Bellare et al. [3]. That proof, however,
is for a somewhat weaker definition than the one we use here. The proof below
is a simple application of the game-playing technique [5,18].

Lemma 1. Suppose A asks queries totaling at most σ blocks. Then we have
Advind$

CBC[Perm(b)](A) ≤ σ2/2b.

Proof. The difference between Advind$
CBC[Perm(b)](A) and r = Advind$

CBC[Func(b)](A)

is at most 0.5 σ2/2b; this is a standard application of PRP/PRF switching [5].
It thus suffices to bound r by r ≤ 0.5 σ2/2b. To that end, consider the games of
Fig. 2. Observe that, with E = CBC[Func(b)], Pr[AReal(·)⇒ 1] = Pr[AG1(·)⇒ 1],
while Pr[AFake(·) ⇒ 1] = Pr[AG0(·) ⇒ 1]. As a consequence, we have that r =
Pr[AG1(·) ⇒ 1] − Pr[AG0(·) ⇒ 1] and, the two games being identical-until-bad,
we know that r ≤ Pr[AG0 sets bad]. Because in game G0 all of the Ci values
are uniform and independent of Pi, so too all of the Xi values are uniform and
independent of one another, so the probability that bad gets set—the probability
some two of the Xi’s collide—is at most (1+2+ · · · (σ−1))/2b ≤ 0.5 σ2/2b. This
completes the proof.

Turning now to the CBC-CS modes, we claim that these inherit CBC’s security
with no quantitative degradation. The needed observation is that CBC-CS1IVK (P )
is just CBCIV

K (P 0∗) (minimal padding to the next multiple of b bits) with some
bits excised and some bits reordered. Which bits are excised and how bits are
rearranged depends only on |P |. Thus if CBCIV

K (·) looks random, so too will look
CBC-CS1IVK (·). The same comments hold for CBC-CS2 and CBC-CS3; these are
just different rearrangements of the bits of CBCIV

K (P 0∗). The observation and
proof are formalized by the proposition below.



The Security of Ciphertext Stealing 185

100 algorithm Enc(P ) Game G0

101 P1 · · ·Pn ← P where |P1| = · · · = |Pn| = b Game G1

102 C0, . . . , Cn
$←{0, 1}b

103 for i ← 1 to n do
104 Xi ← Pi ⊕Ci−1

105 if ρ(Xi) then bad ← true, Ci ← ρ(Xi)
106 ρ(Xi) ← Ci

107 return C0 C1 · · ·Cn

Fig. 2. Proof of the ind$-security of CBC encryption with a random IV. This
application of game-playing is probably simple and well-known enough to be considered
folklore. Game G1 includes the boxed statement following the setting of bad; game G0

omits it. Variable bad is initialized to false and ρ is initialized to everywhere undefined,
a value treated as false if used as a boolean.

Theorem 1. Let E be any of CBC-CS1[Perm(b)], CBC-CS2[Perm(b)], or CBC-
CS3[Perm(b)] and suppose adversary A asks queries totaling at most σ blocks.

Then Advind$
E (A) ≤ σ2/2b.

Proof. Suppose that A, asking σ total blocks of queries, gets advantage δ at dis-
tinguishing oracles E = CBC-CS1(·) and $(·). The first of these oracles chooses a
random permutation π

$← Perm(n) and then, when asked a query P ∈ {0, 1}≥b
,

returns IV ‖ CBC-CS1IVπ (P ) for a random IV
$←{0, 1}b; the second oracle, when

asked a query P , returns a random string of length b+ |P |. We construct from A
an adversary B that, also asking σ blocks worth of queries, also gets advan-
tage δ, but now at distinguishing between CBC(·) and $(·). The first of these
oracle chooses a random permutation π

$← Perm(n) and then, when asked a

query P ∈ ({0, 1}b)+, returns IV ‖ CBC IV
π (P ) for a random IV

$←{0, 1}b. Ad-
versary B now works as follows: it runs A and when A generates a query of P ∈
{0, 1}≥b

adversary B queries its own oracle on P ′ = P 0∗, meaning P padded
on the right with the minimal number of zero-bits so that P ′ is a multiple of b
bits. Suppose this returns a ciphertext C = C0C1 · · ·Cn where |Ci| = n. Then B
returns to A the string C∗ = C0C1 · · ·C∗

n−1Cn where C∗
n−1 = MSBd(Cn−1) and

d = b− (|P | mod b). We observe that Pr[BCBC-CS1(·)⇒1] = Pr[ACBC(·)⇒1] (we
have reordered bits exactly as required by CBC-CS1) and that Pr[B$(·)⇒ 1] =
Pr[A$(·)⇒ 1] (reordered and pruned uniform random bits are still uniform), and

so δ = Advind$
CBC-CS1[Perm(b)](A) = Advind$

CBC[Perm(b)](B). By Proposition 1 we

thus have δ ≤ 0.5 σ2/2b. This establishes the first of the three results. The anal-
ogous results for CBC-CS2 and CBC-CS3 are obtained simply by modifying the
string C∗ returned to A: for CBC-CS2 return C∗ = C0C1 · · ·Cn−2C

∗
n−1Cn when

|P | is a multiple of b and C∗ = C0C1 · · ·Cn−2CnC
∗
n−1 otherwise; for CBC-CS3

always return C∗ = C0C1 · · ·Cn−2CnC
∗
n−1. This completes the theorem.

The proof’s simplicity stems from having unidentified a clean abstraction bound-
ary: directly modifying the proof of Lemma 1 to attend to the ciphertext stealing
would be much more complex.



186 P. Rogaway, M. Wooding, and H. Zhang

Finally, one can pass from the information-theoretic result to its complexity-
theoretic analog in the standard way, trading the family of random permutations
for a conventional blockcipher. Stating the result for completeness, we have the
following.

Corollary 1. Let E: K × {0, 1}b → {0, 1}b be a blockcipher and let E be any
of the encryption schemes CBC-CS1[E], CBC-CS2[E], or CBC-CS3[E]. Suppose
A asks queries that total σ blocks, runs in time t, and achieves advantage δ =
Advind$

E (A). Then there is an adversary B, explicitly known and constructed
from A in a blackbox manner, that asks at most σ queries, runs in time at most
t+ λbσ, and achieves advantage Advprp

E (B) ≥ δ − σ2/2b. Here λ is an absolute
constant depending only on details of the model of computation.

4 Defining Online Security

Syntax. We adjust the syntax of an encryption scheme to accommodate the
staged presentation of plaintexts and ciphertexts. Rather than messages being
atomic objects that get encrypted all at once, messages may be arbitrarily par-
titioned into chunks, each of which gets fed into a stateful encryption engine.
Breaking with former treatments, we do not assume that chunks are single blocks,
nor multiples of blocks, where the length of a block is the blocksize of some un-
derlying blockcipher. Instead, we provide a general definition where one assumes
nothing about the structure of the underlying encryption scheme (in particu-
lar, there is no assumption that it is blockcipher-based). As each installment of
plaintext is provided to the encryption interface, it is up to the algorithm to
decide how much ciphertext to spit out. The algorithm will thus return not only
a ciphertext chunk, but also an updated state.

Realizing the idea above, we choose to define an online encryption scheme
as a function E : K × V × {0, 1} × {0, 1}∗ → {0, 1}∗ × V . We write EV, δK (P ) for
E(K,V, δ, P ). We call K and V the key space and state space, respectively. The
key space is finite and the state space is a finite set of strings. The third argument
to E , a bit, is the end-of-message indicator. The final argument to E is the next
chunk of message. An online encryption scheme E must have an associated IV
space IV ⊆ V and message space P ⊆ {0, 1}∗. The former contains strings
of some one fixed length. Formally, an online encryption scheme is the tuple
(E , IV ,P), but we will usually use the first component as shorthand for the
whole.

We also impose a number of “syntactic” requirements on an online encryp-
tion scheme (E , IV ,P). First we define some additional notation. We write
(C1, . . . , Cn)← E IVK (P1, . . . , Pn) for the sequence:

V0 ← IV
for i← 1 to n− 1 do (Ci, Vi)← EVi−1, 0

K (Pi)

(Cn, Vn)← EVn−1, 1
K (Pn)

return (C1, . . . , Cn).
Alternatively, we can think of E IVK (P1, . . . , Pn) as returning a single string, setting
E IVK (P1, . . . , Pn) to C = C1 · · ·Cn where (C1, . . . , Cn)← E IVK (P1, . . . , Pn).



The Security of Ciphertext Stealing 187

Now fix an online encryption scheme (E , IV ,P).
The consistency requirement says that you get the same ciphertext regard-
less of how you split up the plaintext. More formally, if P1 ‖ · · · ‖ Pn =
P ′
1 ‖ · · · ‖ P ′

n′ = P ∈ P then E IVK (P1, . . . , Pn) = E IVK (P ′
1, . . . , P

′
n′). We can

therefore write this as E IVK (P ) without ambiguity.

The invertibility requirement is that E IVK (·) is injective on P (for all K ∈ K
and IV ∈ IV).
The length requirement is that the length of the first and second com-
ponents of EV, δK (P ) depend only on |V |, |P |, and δ. This ensures that,
when (C1, · · · , Cm) ← E IVK (P1, · · · , Pm), the lengths of C1, C2, . . . , Cm re-
veal nothing about P = P1 · · ·Pm beyond how it was partitioned up.

Indistinguishability. We define a very strong form of indistinguishability for
an online encryption scheme: indistinguishability from random bits. Fix an on-
line encryption scheme (E , IV ,P) and consider the following two E-dependent
oracles.

• Real(i,M, δ): At the beginning, set K
$←K and Vi

$←IV for all i ∈ N.

Then, on query (i, P, δ) ∈ N×{0, 1}∗×{0, 1}, compute (C, Vi)
$←EVi,δ

K (P )
and return C.

• Fake(i, P, δ): At the beginning, set K
$←K and Vi

$←IV for all i ∈ N.

Then, on query (i, P, δ) ∈ N×{0, 1}∗×{0, 1}, compute (C, Vi)
$←EVi,δ

K (P )
and return |C| random bits.

We define AdvIND$
E (A) = Pr[AReal⇒1]−Pr[AFake⇒1]. Informally, an online en-

cryption scheme is IND$-secure if an adversary can’t distinguish the ciphertexts
it is receiving from random bits.

Discussion. Some of our high-level definitional choices differ for conventional
and online encryption schemes. A conventional encryption scheme does not spit
out its IV, while an online scheme does. The former is needed to match NIST’s
definitions for the CBC-CS schemes, but it works less well in the online setting,
as here it is important that the algorithm can decide if and when to release the
IV. Typically, the IV does get discharged, and as the first part of the ciphertext,
so we say that an online encryption scheme (E , IV ,P) is IV-prefixed if C =
E IVK (P ) is always IV followed by some |P | additional bits (assuming K ∈ K
and IV ∈ IV). An IV-prefixed online encryption scheme (E , IV ,P) determines
a conventional encryption scheme Ê in the natural way, setting Ê IVK (P ) to be
E IVK (P ) stripped of its initial |IV | bits. Conversely, a conventional encryption

scheme Ê : K × IV × P → P is realized by an IV-prefixed online encryptions
scheme (E , IV ,P) if the latter determines the former in the manner just defined.
In this way one can speak of an encryption scheme E : K×IV ×P → P as being
online; the statement means that it has a secure online realization (the notion
of security soon to be defined).

While our notions make sense regardless of whether or not V is finite, its
being finite is the essence of what it means to be online: that one can encrypt
(and decrypt) streaming messages without having to buffer more than a constant



188 P. Rogaway, M. Wooding, and H. Zhang

number of bits. Equivalently, that one can implement an incremental API with a
fixed-size context. Our notions allow one to consider things in a more quantitative
manner, using |V| as a measure of worth. We say that E : K×V×{0, 1}×{0, 1}∗ →
{0, 1}∗×V uses v-bits of state if v is the smallest number such that V ⊆ {0, 1}≤v.

Since we concern ourselves only with chosen-plaintext security, we do not
formalize syntax or security for the decryption direction of an online encryption
scheme. Still, we comment that if an incremental encryption scheme is online
then it has an online (that is, finite state-space) decryption.

We regard the initialization vector IV as the initial value of the saved state V .
The embedding of the IV space into the state space doesn’t prevent a scheme
from performing “special” initialization; one can always distinguish the first
chunk of a message from subsequent chunks of message by arranging that point
in IV are never returned as a modified state.

An online encryption function has control over if and when the IV is revealed.
This can be essential for security: in particular, the Delayed CBC scheme we
will soon describe is insecure if the IV is revealed too soon.

Note that the IND$-definition allows interleaved querying of multiple streams;
this is the purpose of the index i. Fouque, Martinet, and Poupard earlier observed
that, with respect to their definitions for online indistinguishability, this made for
a stronger security notion [11]. The same is true for us; it is easy to see that if the
adversary were restricted to asking a sequence of messages with nondecreasing
indexes, a restriction that amounts to forbidding the interleaving of encryptions,
the resulting security notion would be properly weaker.

We do not find it necessary to demand that, once an oracle query (i, ·, 1) is
made, there are no subsequent queries (i, ·, ·). Nonetheless, this is the expected
behavior, as the setting of δ = 1 is meant to indicate that the message is com-
plete.

5 Online Security of the CBC-CS Schemes

Delayed CBC. We now present an online version of CBC mode. For the mo-
ment, assume all messages have a multiple of b bits. The most obvious approach
for defining an online version of CBC is to just spit out ciphertext blocks as they
are formed. But this does not work: if an adversary knows Ci−1 it can choose Pi

such that Ci−1 ⊕Pi = Pj ⊕Cj−1 for some j < i, whence Ci will be Cj if the ad-
versary has a “real” encryption oracle, while this is unlikely if the adversary has
a “fake” encryption oracle. We can defend against this attack and, more broadly,
get online-secure scheme, simply by delaying the last ciphertext block from each
plaintext chunk, holding onto it until the relevant blockcipher has already been
made. The idea is due to Fouque, Martinet, and Poupard [11]. The contents of
this section are a strengthening and extension of that work, adding ciphertext
stealing, employing less restrictive syntax, and establishing a stronger notion of
security.

The algorithm, detailed in Fig. 3, is called delayed CBC, or DCBC. The state
consists of two parts: a pending ciphertext block, which initially contains a ran-
domly generated IV, and unprocessed plaintext, a partial block, possibly empty,



The Security of Ciphertext Stealing 189

30 algorithm DCBC V, δ
K (P )

31 if |V | < b then return error
32 C0 P0 ← V where |C0| = b
33 P ← P0 P ; n ← � |P |/b �
34 P1 · · · Pn P ∗ ← P where |P1| = · · · = |Pn| = b
35 if δ = 1 and P ∗ �= ε then return error
36 for i ← 1 to n do Ci ← EK(Pi ⊕Ci−1)
37 if δ = 0 then (C, V ′) ← (C0 · · ·Cn−1, CnP

∗)
38 if δ = 1 then (C, V ′) ← (C0 · · ·Cn, ε)
39 return (C,V ′)

Fig. 3. Mode DCBC. An online encryption scheme, encryption now depends on the
saved state V ∈ {0, 1}∗. The first b bits of V comprise the pending ciphertext, C0, while
the remaining 0 to b−1 bits are unprocessed plaintext, P0. Bit δ signals if the plaintext
is over.

carried over from the previous message chunk. If the blockcipher acts on b bits
then the state will be at most v = 2b−1 bits. In the pseudocode of Fig. 3, regard
Ci · · ·Cj as the empty string if i > j.

Informally, the algorithm of Fig. 3 proceeds as follows. The algorithm receives
a key K, a state V , an end-of-message indicator δ, and a plaintext chunk P . It
parses the state into a b-bit delayed ciphertext block C0, and a partial plaintext
block P0 with 0 ≤ |P0| < b. The algorithm then adjusts the incoming plaintext
chunk P by prefixing it with P0. Next it splits P into b-bit blocks P1, . . . , Pn,
leaving a leftover and possibly empty partial block P ∗. Since DCBC can only
cope with messages that are an integral number of blocks long, the algorithm
fails (it reports an error) if P ∗ �= ε when δ = 1. The algorithm next performs
the CBC encryption: for 1 ≤ i ≤ n, set Ci = EK(Pi⊕Ci−1). Finally, if δ = 1
the algorithm outputs all of C = C0 · · ·Cn, and clears the state. If δ = 0 then it
outputs C = C0 · · ·Cn−1, holding V ′ = Cn ‖ P ∗ in the revised state.

Online security of DCBC. We now show that Delayed CBC achieves IND$
security.

Theorem 2. Suppose that adversary A asks queries totaling at most σ blocks
(each query P contributes � |P |/b � blocks). Then AdvIND$

DCBC[Perm(b)](A) ≤ σ2/2b.

Proof. Let r = AdvIND$
DCBC[Func(b)](A). As in the proof of Lemma 1, the PRF/PRP

switching gives us that
∣∣AdvIND$

DCBC[Perm(b)](A)−r
∣∣ ≤ σ2/2b+1. It remains to show

that r ≤ σ2/2b+1, for which we use the games in Fig. 4.
The games are constructed so that, with E = DCBC[Func(b)], we have

Pr[AReal(·,·,·)⇒ 1] = Pr[AG1(·,·,·)⇒ 1] and Pr[AFake(·,·,·)⇒ 1] = Pr[AG0(·,·,·)⇒ 1].
Furthermore, games G0 and G1 are identical-until-bad, and hence we get r =∣∣Adv[AG1(·,·,·)⇒ 1]−Adv[AG0(·,·,·)⇒ 1]

∣∣ = Pr[AG0 sets bad ].
In game G0, all of the Ci values are uniform and independent: all except C0 in

the initial call are generated explicitly by the oracle—and that C0 is the initial
state Vj , chosen uniformly as part of the initialization.



190 P. Rogaway, M. Wooding, and H. Zhang

300 algorithm Enc(j, P, δ) Game G0

301 if |Vj | < b then return error Game G1
302 C0 P0 ← Vj where |C0| = b
303 P ← P0 P ; n ← � |P |/b �
304 P1 · · · Pn P ∗ ← P where |P1| = · · · = |Pn| = b
305 if δ = 1 and P ∗ �= ε then return error
306 for i ← 1 to n do
307 Xi ← Pi ⊕Ci−1

308 Ci
$←{0, 1}b

309 if ρ(Xi) �= undefined then bad ← true, Ci ← ρ(Xi)
310 else ρ(Xi) ← Ci

311 if δ = 0 then (C, V ′
j ) ← (C0 · · ·Cn−1, CnP

∗)
312 if δ = 1 then (C, V ′

j ) ← (C0 · · ·Cn, ε)
313 return C

Fig. 4. Proof of the IND$-security of Delayed CBC. Game G1 includes the boxed
statement following the setting of bad; game G0 omits it. The variable bad is initialized
to false, Vj is initialized to a random b-bit string chosen uniformly at random for each
j ∈ N, and ρ is initialized to everywhere undefined.

Since the Pi are determined solely by the adversary’s inputs, we can think of
them as being selected directly by the adversary. We claim that the adversary
must choose each Pi before receiving any information about Ci−1. For i > 1 this
is clear, since Ci−1 is chosen uniformly at random after Pi has been determined.
It remains to show that C0 is uniformly distributed and independent of the
adversary’s view until P1 is determined. (Ensuring this property is the reason
for delaying the ciphertext block.) We do this inductively, and separately for
each index j ∈ N. The base case is the first encryption query with index j: then
C0 = Vj is the randomly selected initialization vector. Here the adversary can’t
know anything about its value at this stage since it hasn’t been used in any
computations at all. The state is empty and we return an immediate error if the
previous call’s end-of-message indicator was set, so there is no C0 to concern
ourselves with. In the remaining case, the value of C0 is equal to the value of Cn

from the previous encryption query with the same index; the inductive step,
therefore, is to show that Cn is uniform and independent of the adversary’s view
if C0 is also and δ = 0. But nothing dependent on Cn is part of the oracle’s
output if δ = 0, and Cn is either freshly generated (if n > 0), or equal to C0 and
therefore uniform and independent of the adversary by the induction hypothesis
(if n = 0).

It immediately follows that each Pi is independent of Ci−1, and therefore all of
the Xi values are uniform and independent of one another. Hence the probability
that two Xi collide—and bad is set—is at most σ2/2b+1, completing the proof.

As usual, it is easy to pass from the information-theoretic setting to complexity-
theoretic one.

Delayed CBC with ciphertext stealing. The algorithms DCBC-CS1,
DCBC-CS2, and DCBC-CS3 are defined in Fig. 5. Implicitly, the modes are



The Security of Ciphertext Stealing 191

40 algorithm DCBC-CS V, δ
K (P )

41 if |V | < b then return error
42 C−1 C0 P0 ← V where |C−1| ∈ {0, b}, |C0| = b, |P0| < b
43 P ← P0 P
44 if δ = 0 then P1 · · ·Pn P ∗ ← P where n ← �|P |/b�, |P1| = · · · = |Pn| = b

45 else P1 · · ·Pn←P 0b−d where n←�|P |/b, d←b+|P |−nb, |P1|= · · ·= |Pn|=b
46 for i ← 1 to n do Ci ← EK(Pi ⊕Ci−1)
47 if δ = 0 then
48-1 (C, V ′) ← (C0 · · ·Cn−1, CnP

∗) ⇐= for CS1
48-2 (C, V ′) ← (C0 · · ·Cn−1, CnP

∗) ⇐= for CS2
48-3 (C, V ′) ← (P ∗=ε)? (C−1C0 · · ·Cn−2, Cn−1Cn) : ⇐= for CS3

(C−1C0 · · ·Cn−1, Cn P ∗)
49 if δ = 1 then
50 if n > 0 then Cn−1 ← MSBd(Cn−1)
51-1 (C, V ′) ← (C0 · · ·Cn−2Cn−1Cn, ε) ⇐= for CS1
51-2 (C, V ′) ← (d = b)? (C0 · · ·Cn−2Cn−1Cn, ε) : ⇐= for CS2

(C0 · · ·Cn−2CnCn−1, ε)
51-3 (C, V ′) ← (C−1C0 · · ·Cn−2CnCn−1, ε) ⇐= for CS3
52 return (C,V ′)

Fig. 5. Delayed CBC with ciphertext stealing: DCBC-CS. Each online scheme
depends on E: K × {0, 1}b → {0, 1}b. String C−1C0 is pending ciphertext (with C−1

used only for DCBC-CS3). String P0 is unprocessed plaintext from the prior call.

all parameterized by a blockcipher E: K × {0, 1}b → {0, 1}b. The state V once
again maintains two portions: the pending ciphertext and the unprocessed plain-
text. The pending ciphertext is a single block—or possibly two blocks in the
cases of DCBC-CS3—that the algorithm retains until it is “safe” to spit this
out. This is followed by 0 to b − 1 bits of unprocessed plaintext. The dividing
line between the two portions is always clear from the length of the string V .
Note that for DCBC-CS3, the state has grown from 2b− 1 bits to 2b bits while,
for DCBC-CS1 and DCBC-CS2 the state remains at 2b− 1 bits.

The IND$ security of the DCBC-CS schemes can be inferred from the IND$
security of the DCBC schemes. This is done in the proof below.

Theorem 3. Let E be any of DCBC-CS1[Perm(b)], DCBC-CS2[Perm(b)], or
DCBC-CS3[Perm(b)], and suppose A asks queries totaling at most σ blocks.

Then AdvIND$
E (A) ≤ σ2/2b.

Proof. We use a different description of DCBC-CS, shown in Fig. 6, now writing
the algorithm in terms of DCBC. The state vector consists of three components:
a state W for DCBC, which is not interpreted; an additional delayed ciphertext
block C−1, which corresponds to C−1 in Fig. 5; and a length 0 ≤ � < b, which
keeps track of the amount of unprocessed plaintext maintained in W , so that
� = |P0|.

The theorem will follow from three observations about this new description
of DCBC. First, DCBC-CS is functionally identical to DCBC-CS. Second, if the



192 P. Rogaway, M. Wooding, and H. Zhang

400 algorithm DCBC-CSV, δ
K (P )

401 if |V | ≤ b then (W,C−1, �) ← (V, ε, 0) else [W,C−1, �] ← V
402 m ← �+ |P |, d ← m− b� (m− 1)/b �
403 if δ = 1 then P ← P 0b−d

404 (C,W ′) ← DCBCW, δ
K (P )

405 C0 · · · Cn ← C where n ← |C|/b − 1 and |C0| = · · · = |Cn| = b
406 if δ = 0 then
407-1 (C′, C′

−1) ← (C0 · · ·Cn, ε) ⇐= for CS1
407-2 (C′, C′

−1) ← (C0 · · ·Cn, ε) ⇐= for CS2
407-3 (C′, C′

−1) ← (d = b)? (C0 · · ·Cn−1, Cn) : (C0 · · ·Cn, ε) ⇐= for CS3
408 �′ ← (d = b)? 0 : d
409 if δ = 1 then
410 if n > 0 then Cn−1 ← MSBd(Cn−1)
411-1 C′ ← C0 · · ·Cn−2Cn−1Cn ⇐= for CS1
411-2 C′ ← (d = b)? C0 · · ·Cn−2Cn−1Cn : C0 · · ·Cn−2CnCn−1 ⇐= for CS2
411-3 C′ ← C0 · · ·Cn−2CnCn−1 ⇐= for CS3
412 �′ ← 0, C′

−1 ← ε
413 return (C, [W ′, C′

−1, �
′])

Fig. 6. Defining DCBC-CS in terms of DCBC. The notation [x1, . . . , xn] denotes
an unambiguous non-compressing encoding of the items x1, . . . , xn; used on the left-
hand side of an assignment, it implies a decoding operation.

call to function DCBC at line 404 were to instead call a function that returned
a random strings of the appropriate length, then so too would DCBC-CS. This
observation is immediate, since the strings returned DCBC-CS′ are derived from
those returned by DCBCV, δ

K by discarding and reordering particular fixed bits.
Third, DCBC-CS can be implemented using only oracle access to the DCBC
function: it doesn’t need to inspect or interpret the DCBC state vector W , nor
examine the key K, and it uses the state only in the “single-threaded” way
permitted by the online IND$ oracle.

Consequently, for any adversary A attacking DCBC-CS, we can construct an
adversary B attacking DCBC: B will run A against a simulated oracle built
from B’s (real or fake) DCBC oracle using DCBC-CS and, in the end, output
A’s guess as its own. We have

AdvIND$
DCBC-CS(A) = Pr[AReal⇒ 1]− Pr[AFake⇒ 1]

= Pr[ADCBC-CS[Real]⇒ 1]− Pr[ADCBC-CS[Fake]⇒ 1]

= Pr[BReal⇒ 1]− Pr[BFake⇒ 1]

= AdvIND$
E (B) ≤ σ2/2b

appealing to Theorem 2 for the final inequality.

As before, one can immediately conclude the corresponding complexity-theoretic
statement, which would read as follows.



The Security of Ciphertext Stealing 193

Corollary 2. Let E: K×{0, 1}b → {0, 1}b be a blockcipher and let E be any of
the encryption schemes DCBC-CS1[E], DCBC-CS2[E], or DCBC-CS3[E]. Sup-
pose A asks queries that total σ blocks, runs in time t, and achieves advantage
δ = AdvIND$

E (A). Then there is an adversary B, explicitly known and con-
structed from A in a blackbox manner, that asks at most σ queries, runs in time
t+ λbσ, and achieves advantage Advprp

E (B) ≥ δ − σ2/2b. Here λ is an absolute
constant depending only on details of the model of computation.

6 Insecurity of the Meyer-Matyas CBC-CS

The CBC ciphertext-stealing construction by Meyer and Matyas, what we will
call CBC-CSX, is defined in Fig. 7. This well-known scheme—it has been used
since the early 1980’s under the IBM CUSP architecture—is susceptible to a
simple chosen-plaintext attack, a fact that appears not to have been pointed out
before. Thus NIST did well in choosing not to standardize this form of ciphertext
stealing, but the alternative, “correct” variant.

Here is an attack on the ind$-security of CBC-CSX. The adversary makes two
encryption queries: M = 1b 0b−1 and M ′ = 1b 0b−1. As the IV is randomized,
asking the same plaintext twice is not without purpose. The oracle returns C =
C0C1C2 and C′ = C′

0C
′
1C

′
2 where C0 and C′

0 are randomly chosen IVs and
|C1| = |C′

1| = b− 1. If C2 = C′
2 the adversary returns 1; otherwise, it returns 0.

C3

P3

 EK  EK

C4C3
∗ ∗∗

∗P4P2

 EK

C2

P1

 EK

C1

IV

∗

d b-d

db-d
C3

∗∗

90 algorithm CBC-CSX IV
K (P )

91 n ← �|P |/b
92 P1 · · ·Pn−1P

∗
n ← P where |P1| = · · · = |Pn−1| = b and |P ∗

n | = d
94 C0 ← IV
95 for i ← 1 to n− 1 do Ci ← EK(Pi ⊕ Ci−1)
96 Cn ← EK((LSBb−d(Cn−1) ‖ P ∗

n)
97 C∗

n−1 ← MSBd(Cn−1)
98 return C0 C1 · · · Cn−2 C

∗
n−1 Cn

Fig. 7. Mode CBC-CSX. The mode is insecure and should not be used. This version
of ciphertext stealing is from Meyer and Matyas [14]. The mode depends on a block-
cipher E: K× {0, 1}b → {0, 1}b. That can be ideal, and the IV random, and still the
mode will fail to achieve standard (CPA) privacy definitions.



194 P. Rogaway, M. Wooding, and H. Zhang

Now if the adversary is given a CBC-CSX oracle, the probability that C2 = C′
2

is at least 1/2; otherwise, it’s about 1/2b. Thus we have a trivial but effective
ind$-attack.

We remark that, not surprisingly, CBC-CSX is not secure under conventional,
weaker notions of security, like left-or-right indistinguishability [3]; a similar
attack can easily be described. It is not that the definition is too strong; from a
modern point of view, the scheme is simply wrong.

Acknowledgments. Authors Rogaway and Zhang received support for this
project under NSF grant CNS 0904380. Many thanks to the NSF for their sup-
port.

References

1. Ball, M.: Follow-up to NIST’s consideration of XTS-AES as standardized by IEEE
Std 1619-2007. Public comments to NIST (2008),
http://tinyurl.com/nist-ball-xts

2. Bard, G.V.: Blockwise-Adaptive Chosen-Plaintext Attack and Online Modes of
Encryption. In: Galbraith, S.D. (ed.) Cryptography and Coding 2007. LNCS,
vol. 4887, pp. 129–151. Springer, Heidelberg (2007)

3. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of
symmetric encryption: analysis of the DES modes of operation. In: FOCS 1997,
pp. 394–403. IEEE Press (1997)

4. Bellare, M., Kohno, T., Namprempre, C.: Breaking and provably repairing the
SSH authenticated encryption scheme: a case study of the encode-then-encrypt-
and-MAC paradigm. ACM Transactions on Information and System Security (TIS-
SEC) 7(2), 206–241 (2004); Earlier version from CCS 2002

5. Bellare, M., Rogaway, P.: The Security of Triple Encryption and a Frame-
work for Code-Based Game-Playing Proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006)

6. Boldyreva, A., Taesombut, N.: Online encryption schemes: New security notions
and constructions. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 1–14.
Springer, Heidelberg (2004)

7. Dworkin, M.: Recommendation for block cipher modes of operation: method and
techniques. NIST Special Publication 800-38A, 2001 Edition (December 2001)

8. Dworkin, M.: Recommendation for block cipher modes of operation: three variants
of ciphertext stealing for CBC mode. Addendum to NIST Special Publication 800–
38A (October 2010)

9. Fouque, P., Joux, A., Martinet, G., Valette, F.: Authenticated On-line Encryption.
In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 145–159.
Springer, Heidelberg (2004)

10. Fouque, P., Joux, A., Poupard, G.: Blockwise Adversarial Model for On-line Ci-
phers and Symmetric Encryption Schemes. In: Handschuh, H., Hasan, M.A. (eds.)
SAC 2004. LNCS, vol. 3357, pp. 212–226. Springer, Heidelberg (2004)

11. Fouque, P., Martinet, G., Poupard, G.: Practical Symmetric On-Line Encryption.
In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 362–375. Springer, Heidel-
berg (2003)

12. Gennaro, R., Rohatgi, P.: How to Sign Digital Streams. In: Kaliski Jr., B.S. (ed.)
CRYPTO 1997. LNCS, vol. 1294, pp. 180–197. Springer, Heidelberg (1997)

http://tinyurl.com/nist-ball-xts


The Security of Ciphertext Stealing 195

13. Joux, A., Martinet, G., Valette, F.: Blockwise-Adaptive Attackers Revisiting the
(In)Security of Some Provably Secure Encryption Modes: CBC, GEM, IACBC. In:
Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 17–30. Springer, Heidelberg
(2002)

14. Meyer, C., Matyas, M.: Cryptography: a new dimension in data security. John
Wiley & Sons, New York (1982)

15. NIST. Proposal to extend CBC mode by “ciphertext stealing.” Anonymous draft
(May 6, 2007), Available from NIST’s website

16. Rogaway, P., Bellare, M., Black, J.: OCB: A block-cipher mode of operation for
efficient authenticated encryption. ACM Transactions on Information and System
Security 6(3), 365–403 (2003); Earlier version, with Krovetz, T.: ACM CCS 2001

17. Schneier, B.: Applied Cryptography: Protocols, Algorithms, and Source Code in
C, 2nd edn. Wiley, New York (1996)

18. Shoup, V.: Sequences of games: a tool for taming complexity. ePrint archive
2004/332 Revised (2006)

19. Vaudenay, S.: Security Flaws Induced by CBC Padding – Applications to SSL,
IPSEC, WTLS.. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 534–545. Springer, Heidelberg (2002)



McOE: A Family of Almost Foolproof On-Line

Authenticated Encryption Schemes

Ewan Fleischmann, Christian Forler, and Stefan Lucks

Bauhaus-University Weimar, Germany
{ewan.fleischmann,christian.forler,stefan.lucks}@uni-weimar.de

Abstract. On-Line Authenticated Encryption (OAE) combines privacy
with data integrity and is on-line computable. Most block cipher-based
schemes for Authenticated Encryption can be run on-line and are prov-
ably secure against nonce-respecting adversaries. But they fail badly for
more general adversaries. This is not a theoretical observation only – in
practice, the reuse of nonces is a frequent issue1.

In recent years, cryptographers developed misuse-resistant schemes
for Authenticated Encryption. These guarantee excellent security even
against general adversaries which are allowed to reuse nonces. Their dis-
advantage is that encryption can be performed in an off-line way, only.

This paper considers OAE schemes dealing both with nonce-respecting
and with general adversaries. It introduces McOE, an efficient design for
OAE schemes. For this we present in detail one of the family members,
McOE-X, which is a design solely based on a standard block cipher. As all
the other member of theMcOE family, it provably guarantees reasonable
security against general adversaries as well as standard security against
nonce-respecting adversaries.

Keywords: authenticated encryption, on-line encryption, provable se-
curity, misuse resistant.

1 Introduction

On-Line Authenticated Encryption (OAE). Application software often requires
a network channel that guarantees the privacy and authenticity of data be-
ing communicated between two parties. Cryptographic schemes able to meet
both of these goals are commonly referred to as Authenticated Encryption (AE)
schemes. The ISO/IEC 19772:2009 standard for AE [21] defines generic compo-
sition (Encrypt-then-MAC [4]) and five dedicated AE schemes: OCB2 [38], SIV
[41] (denoted as “Key Wrap” in [21]), CCM [13], EAX [6], and GCM [34]. To
integrate an AE-secure channel most seamlessly into a typical software architec-
ture, application developers expect it to encrypt in an on-line manner meaning
that the i-th ciphertext block can be written before the (i+1)-th plaintext block

1 A prominent example is the PlayStation 3 ’jailbreak’ [20], where application develop-
ers used a constant that was actually supposed to be a nonce for a digital signature
scheme.

A. Canteaut (Ed.): FSE 2012, LNCS 7549, pp. 196–215, 2012.
c© International Association for Cryptologic Research 2012



A Family of Almost Foolproof On-Line Authenticated Encryption Schemes 197

has to be read. A restriction to off-line encryption, where usually the entire plain-
text must be known in advance (or read more than once) is an encumbrance to
software architects.

Nonces and their reuse. Goldwasser andMicali [18] formalized encryption schemes
as stateful or probabilistic, because otherwise important security properties are
lost. Rogaway [37,39,40] proposed an unified point of view, by always defining a
cryptographic scheme as a deterministic algorithm that takes an user supplied
nonce (a number used once). So the application programmer – and not the en-
cryption scheme – is responsible for flipping coins or maintaining state. This re-
flects cryptographic practice since the algorithm itself is often implemented by a
multi-purpose cryptographic library which is more or less application-agnostic.

In theory, the concept of a nonce is simple. In practice, it is challenging to en-
sure that a nonce is never reused. Flawed implementations of nonces are ubiqui-
tous [9,20,28,44,45]. Apart from implementation failures, there are fundamental
reasons why software developers can’t always prevent nonce reuse. A persistently
stored counter, which is increased and written back each time a new nonce is
needed, may be reseted by a backup – usually after some previous data loss.
Similarly, the internal and persistent state of an application may be duplicated
when a virtual machine is cloned, etc.

Related Work and Our Contribution. We aim to achieve both simultaneously: se-
curity against nonce-reusing adversaries (sometimes also called nonce-misusing
adversaries) and support for on-line-encryption in terms of an AE scheme.
Apart from generic composition (Encrypt-then-Mac, EtM), none of the ISO/IEC
19772:2009 schemes – in fact, no previously published AE scheme at all – achieves
both of these goals, cf. Table 1. In this table, we classify a vast variety of prov-
ably secure block cipher-based AE scheme with respect to their on-line-ability
and against which adversaries (nonce-respecting versus -reusing) they are proven
secure.

Since EtM is not a concrete scheme but merely a generic construction tech-
nique, there are some challenges left in order to make it full on-line secure:
First, an appropriate on-line cipher has to be chosen. Second, a suitable, on-line
computable, secure deterministic MAC must be selected. And, third, the EtM
scheme requires at least two independent keys to be secure. Since two schemes
are used in parallel, is likely to squander resources in terms of run time and –
important for hardware designers – in terms of space. Since EtM first has to be
turned into an OAE scheme by making the appropriate choices, we don’t include
it in our analysis.

As it turned out, we actually found nonce-reuse attacks for all of those
schemes, cf. Table 2, Appendix A, and, especially, Appendix 1 in the full ver-
sion of this paper [14]. We present a new construction method for efficient AE
schemes, called McOE-X, that is actually able to fill the apparent gap in the
upper-right. It belongs to the family of McOE schemes [14]. We argue that
closing this gap is both practically relevant and theoretically interesting.



198 E. Fleischmann, C. Forler, and S. Lucks

Table 1. Classification of provably secure block cipher-based AE Schemes. CCM and
SSH-CTR are considered off-line because encryption requires prior knowledge of the
message length. Note that the family of McOE schemes, because of being on-line,
satisfies a slightly weaker security definition against nonce-reusing adversaries than
SIV, HBS, and BTM.

secure ... against nonce-respecting adversaries ag. nonce-reusing adversaries

on-line CCFB[33] CHM[22] CIP[23] CWC[29] EAX[6] McOE (this paper)

GCM[34] IACBC[26] IAPM[26] McOE

OCB1-3[40,38,30] RPC[10] TAE[31] XCBC[17]

off-line BTM[24] CCM[13] HBS[25] SIV[41] SSH-CTR[36] BTM[24] HBS[25] SIV[41]

Table 2. Overview of our nonce-reuse attacks on published AE schemes, excluding
SIV, HBS and BTM, which have been explicitly designed to resist nonce-reuse. Almost
all attacks achieve an advantage close to 1. An “attack workload” of X means that the
adversary is restricted to at most X units of time and at most X chosen texts. Details
are given in Appendix A and in the full version of this paper [14].

privacy authenticity

attack workload attack workload

CCFB [33] O(1) O(1)

CCM [13] O(1) � 2(n/2) [15]

CHM [22] O(1) O(1)

CIP [23] O(1) O(1)

CWC [29] O(1) O(1)

EAX [6] O(1) O(1)

GCM [34] O(1) O(1)

IACBC [26] O(1) O(1)

privacy authenticity

attack workload attack workload

IAPM [26] O(1) O(1)

OCB1 [40] O(1) O(1)

OCB2 [38] O(1) O(1)

OCB3 [30] O(1) O(1)

RPC [10] O(1) O(1)

TAE [31] O(1) O(1)

XCBC [17] O(2n/4) ?

Initial Value (IV) based AE schemes maximally forgiving of repeated IV’s have
been addressed in [41], coining the notion of “misuse resistance” and proposing
SIV as a solution. SIV and related schemes (HBS [25] and BTM [24]) actually
provide excellent security against nonce-reusing adversaries, though there are
other potential misuse cases, cf. the Appendix of the full version of this paper
[14]. Their main disadvantage is that they are inherently off-line: For encryption,
one must either keep the entire plaintext in memory, or read the plaintext twice.

Ideally, an adversary seeing the encryptions of two (equal-length) plaintexts P1

and P2 can’t even decide if P1 = P2 or not. When using a nonce more than once,
deciding about P1 = P2 is easy. SIV and its relatives ensure that nothing else is
feasible for nonce-reusing adversaries. In the case of on-line encryption, where
the first few bits of the encryption of a lengthy message must not depend on the
last few bits of that message, there is unavoidably something beyond P1 = P2.
The adversary can compare any two ciphertexts for their longest common prefix,
and then conclude about common prefixes of the secret plaintexts. Our notion



A Family of Almost Foolproof On-Line Authenticated Encryption Schemes 199

of misuse resistance means that this is all the adversary can gain. Even in the
case of a nonce-reuse, the adversary

1. can’t do anything beyond determining the length of common plaintext pre-
fixes and

2. the scheme still provides the usual level of authenticity for AE (INT-CTXT).

The first property is common for on-line ciphers/permutations (OPRP) [1].
Recently, [43] studied the design of on-line ciphers from tweakable block ciphers
bearing some similarities to our approach, especially to TC3. In contrast to
the McOE family, the constructions from [43] provide no authentication. The
McOE schemes are, e.g., based on a normal block cipher or a tweakable block
cipher.

Design Principles for AE Schemes. The question how to provide authenticated
encryption (without stating that name) when given a secure on-line cipher is
studied in [3], the revised and full version of [1]. The first idea in [3] only provides
security if all messages are of the same length. The second idea repairs that by
prepending the message’s length to the message, at the cost of being off-line,
since the message length must be known at the beginning of the encryption
process. The third idea is to prepend and append a random W to a message M
and then to perform the on-line encryption of (W ||M ||W ). This looks promising,
but the same W is used for two different purposes, putting different constraints
on the generation of W . For privacy, it suffices that W behaves like a nonce, not
requiring secrecy or unpredictability. Even if W is not a nonce, but the same W
is used for the encryption of several messages, all the adversary can determine
are the lengths of common plaintexts prefixes, as we required for nonce-reuse.
On the other hand, authenticity actually assumes a secret or unpredictable W ,
rather than a nonce. If the adversary can guess W before choosing a message,
she asks for the authenticated encryption of (M ||W ). Then she can predict the
authenticated encryption of M without actually asking for it.

The McOE family replaces the “random” W by a proper nonce and a value
τ which is key-dependent, performing a nonce-dependent on-line encryption of
(M ||τ). The encryption can also depend on some associated data, which turns
McOE into a family of schemes for OAEAD (On-Line Authenticated Encryption
with Associated Data).

Roadmap. In this paper we focus on one member of the McOE [14] family of
schemes called McOE-X. In Section 2 we describe a concrete block cipher based
OAE scheme – called McOE-X– and provide performance data when McOE-

X is instantiated with either AES-128 or Threefish-512 as the underlying block
cipher. Section 3 deals with general notions and definitions, and Section 4 defines
the security of OAE. The main result of the paper, the full McOE-X scheme and
its analysis, is presented in Section 5. The discussion in Section 6 concludes the
paper. The appendix deals with misuse attacks against published AE schemes.



200 E. Fleischmann, C. Forler, and S. Lucks

K

KK

K K

KKK

V M1 ML−1

ML

ML||τ [0 . . . n− l
∗ − 1]

τ

τ

E

EE

E E

EEE

C1 CL−1

CL

CL||T [0, . . . , n− l
∗ − 1] T [n− l

∗
, . . . , n− 1]||Z

τ
0n

T

|ML|

1n

Fig. 1. The McOE-X-AES/McOE-X-Threefish encryption process. If, after the last
complete message block has been encrypted, there is some incomplete block left,
McOE-X performs tag-splitting (upper variant), Else, the tag can be computed with-
out splitting (lower variant). The key used for the block cipher E is computed by the
injective function K⊕W which is given the secret key K and the chaining value input
W . The tag returned is the n-bit value T . The n − l-bit value Z is discarded. The
decryption process works in a similar way from ’left to right’ only the block cipher
component E is replaced by its counterpart E−1 apart from one exception: the first
call computing τ .

2 Practical On-Line Authenticated Encryption Using
AES and Threefish

We start with the fruits of our analysis by giving two concrete instances of
OAE schemes (illustrated in Figure 1) including performance data and reference
source code2. One instance, McOE-X-AES uses AES-128 as the core component
while McOE-X-Threefish uses the block cipher Threefish-512, a cipher with
512-bit block size and key size, which is the core working component inside the
SHA-3 finalist Skein[35]. We also introduce the tag-splitting (TS) method for
processing messages whose length is not a multiple of the block length. Without
TS, we would have to pad such messages and then encrypt the padded messages
– resulting in an expanded ciphertext. The effect of TS is similar to the well-
known length preserving method called ciphertext stealing (CTS), e.g. [12]. But
the technique itself is quite different since CTS requires to process the last block
before the last but one, which is not possible for McOE-X.

Let EK be a block cipher taking a k-bit key K and a plaintext/ciphertext of
size n-bit. Note that for our chosen instances, AES-128 and Threefish-512, we
have n = k. The pseudo code for these two McOE-X instances is given in Table
4 – on the upper side without TS, on the lower side with TS.

2 The reference source code is available on request; it will be published as open source.



A Family of Almost Foolproof On-Line Authenticated Encryption Schemes 201

Table 3. Performance values (cycles-per-byte, single core), measured on an Core i5
540M for AES-128 and Threefish-512. McOE-X is the main contribution in the current
paper, McOE-D invokes the underlying block cipher twice and McOE-G uses Galois
field arithmetic. For a comparsion, we also provide the performance of unauthenticated
AES-CBC. The AES software implementation is based on Gladman [16], whereas the
hardware implementation is based on the Intel AES-NI Sample Library[11]. The Three-
fish implementation is based on the NIST/SHA-3 reference source as provided by the
Skein authors [35]. Finally, the implementation of Galois field NI multiplication (GF-
NI) is based on the example-code from [19].

Block cipher Impl.
Message length in Bytes

64 256 512 1024 2048 8192 32768

McOE-X-AES software 31.2 23.9 22.7 22 21.7 21.5 21.5
McOE-X-AES AES-NI 14.2 11.2 10.7 10.5 10.4 10.3 10.3
McOE-X-Threefish software 19.5 9.9 8.3 7.5 7.1 6.8 6.7

McOE-D-AES software 40.1 29.4 27.6 26.7 26.3 25.9 25.9
McOE-D-AES AES-NI 11.6 8.3 7.2 6.7 6.4 6.3 6.2

McOE-G-AES software 33 25.4 24.1 23.5 23.2 22.9 22.8
McOE-G-AES GF-NI/AES-NI 12.5 9.7 9.3 9 8.9 8.8 8.8

AES-CBC encryption software 38.3 13.5 13.3 13.2 13.2 13.1 13.1
AES-CBC encryption AES-NI 4 3.6 3.5 3.5 3.5 3.5 3.5

The algorithms without TS, EncryptAuthenticate and DecryptAuthen-
ticate, are simplified algorithms for messages that are aligned on n-bit bound-
aries, i.e. M = (M1, . . . ,ML) ∈ ({0, 1}n)L for some integer L. The TS al-
gorithms are EncryptAuthenticateSplitTag and DecryptAuthenticate-
SplitTag. they can handle arbitrarily sized messages, i.e., M = (M1, . . . ,ML) ∈
({0, 1}n)L−1||{0, 1}l∗ where L and l∗ are integers with 0 < l∗ < n and ′||′ denotes
the string concatenation operator. See Figure 1 and Table 4.

In addition to McOE-X, we introduce two further authenticated encryption
schemes following the McOE design principles. The first one is called McOE-

D and is based on the THC-CBC construction [7]. The ratio of this scheme is
2-1, i.e. the block cipher is invoked twice to encipher resp. decipher one message
block. The second one is called McOE-G and is based on the HCBC-2 construc-
tion [2]. This scheme updates the chaining value by invoking a universal hash
function, i.e., a n-bit Galois-Field multiplication.

Remarks. For McOE-X we actually do need related key resistance for the block
cipher E since the adversary can ’partially control’ some relations among keys
used in the computation. This is not true for the other mentioned constructions.

All McOE schemes are easily extended to smoothly handle associated data,
i.e. data that is not encrypted but only authenticated. This is discussed in more
detail in Section 5.



202 E. Fleischmann, C. Forler, and S. Lucks

Table 4. Instances of McOE-X: upper side is for messages whose size is evenly divisible
by the block size n; Lower side is for arbitrarily sized messages (TS-variant); see text
for details

EncryptAuthenticate(V,M)
1. τ ← EK(V )
2. U ← V ⊕ τ ⊕K
3. for i = 1, . . . , L loop

Ci ← EU(Mi)
U ← Mi ⊕ Ci ⊕K

4. T ← EU (τ )
5. return (C1, . . . , CL, T )

EncryptAuthenticateSplitTag(V,M)
1. τ ← EK(V )
2. U ← V ⊕ τ ⊕K
3. for i = 1, . . . , L− 1 loop

Ci ← EU(Mi)
U ← Mi ⊕ Ci ⊕K

4. M∗ ← (ML||τ [0 . . . n− l∗ − 1])
5. M∗ ← M∗ ⊕ EK⊕1n(|ML|)
6. C∗ ← EU (M

∗)
7. Parse CL||T [0 . . . n− l∗ − 1] ← C∗

8. U ← M∗ ⊕ C∗ ⊕K
9. C∗∗ ← EU(τ )

10. T [n− l∗ . . . n− 1] ← C∗∗[0 . . . l∗ − 1]
11. return (C1, . . . , CL−1, C

∗
L, T )

DecryptAuthenticate(V,C, T )
1. τ ← EK(V )
2. U ← V ⊕ τ ⊕K
3. for i = 1, . . . , L loop

Mi ← E−1
U (Ci)

U ← Mi ⊕Ci ⊕K
4. if T = EU (τ ) then

return (M1, . . . ,ML)
else return ⊥

DecryptAuthenticateSplitTag(V,C, T )
1. τ ← EK(V )
2. U ← V ⊕ τ ⊕K
3. for i = 1, . . . , L− 1 loop

Mi ← E−1
U (Ci)

U ← Mi ⊕Ci ⊕K
4. C∗ ← CL||T [0 . . . n− l∗ − 1]
5. M∗ ← E−1

U (C∗)
6. U ← M∗ ⊕ C∗ ⊕K
7. M∗ ← M∗ ⊕ EK⊕1n (|CL|)
8. Parse ML||τ ′[0 . . . n− l∗ − 1] ← M∗

9. T ′ ← EU(τ )
10. if τ ′[0 . . . n− l∗−1] = τ [0 . . . n− l∗−1]

and T ′[0 . . . l∗−1] = T [n−l∗ . . . n−1]
then return (M1, . . . ,ML)
else return ⊥

3 On-Line Authenticated Encryption and Related
Notions

Length of Longest Common Prefix (LLCPn). The length of a string x ∈
{0, 1}n is denoted by |x| := n. For integers n, �, d ≥ 1, set Dd

n = ({0, 1}n)d, and
D∗

n :=
⋃

d≥0D
d
n, and D�,n =

⋃
0≤d≤�D

d
n. Note that D

0
n only contains the empty

string. For M ∈ Dd
n; we write M = (M1, . . . ,Md) with M1, . . . ,Md ∈ Dn. For

P,R ∈ D∗
n, say, P ∈ Dp

n and R ∈ Dr
n, we define the length of the longest common

n-prefix of P and R as

LLCPn(P,R) = max
i
{P1 = R1, . . . , Pi = Ri} .

Let Q a non-empty set of strings in D∗
n,. Then we define LLCPn(Q, P ) as

max
q∈Q

{LLCPn(q, P )}, e.g., if P ∈ Q, then LLCPn(Q, P ) = |P |/n.

For convenience, we introduce a notation for a restriction on a set. If Q =
{0, 1}a × {0, 1}b × {0, 1}c, we write Q|b,c = {(B,C) | ∃A : (A,B,C) ∈ Q}. This
generalizes in the obvious way.



A Family of Almost Foolproof On-Line Authenticated Encryption Schemes 203

3.1 Block Ciphers and On-Line Permutations

Block Ciphers. An (k, n) block cipher is a keyed family of permutations con-
sisting of two paired algorithms E : {0, 1}k×Dn → Dn and E−1 : {0, 1}k×Dn →
Dn, accepting a k-bit key and an input from Dn for some k, n > 0. For n > 0,
Block(k, n) is the set of all (k, n) block ciphers. For any E ∈ Block(k, n) and
a fixed key K ∈ {0, 1}k, the decryption E−1

K (Y ) := E−1(K,Y ) is the inverse
function of encryption EK(X) := E(K,X), so that E−1

K (EK(X)) = X holds for
any X ∈ Dn. We follow the usual convention to write oracles, that are provided
to an algorithm, as superscripts. We define the related key PRP-security of a
block cipher E by the success probability of an adversary trying to differentiate
between the block cipher and a random permutation.

Definition 1. Let E ∈ Block(k, n) and denote by E−1 the corresponding in-
verse. Let ϕ : {0, 1}k × {0, 1}n → {0, 1}k. A fixed related key adversary A
has access to an E oracle with two parameters such that she can query either
Eϕ(K,·)(·) or its inverse. Let Perm(n, n) be the set of n-bit permutations such
that the first parameter models the permutation and the second parameter the
value that is to be permuted, i.e. for π ∈ Perm(n, n) it holds that π(Z, ·) is a
random permutation for any given value of Z. The related-key (RK) advantage
[32] of A in breaking E is then defined as

AdvRK-CPA-PRP

E (A) = |Pr[K $← {0, 1}k : AEϕ(K,·)(·) ⇒ 1]

− Pr[π
$← Perm(n,n) : Aπ(·,·) ⇒ 1]|

AdvRK-CCA-PRP

E,E−1 (A) = |Pr[K $← {0, 1}k : A
Eϕ(K,·)(·),E−1

ϕ(K,·)(·) ⇒ 1]

− Pr[π
$← Perm(n,n) : Aπ(·,·),π−1(·,·) ⇒ 1]|.

On-Line Permutations. We aim for larger permutations that not only per-
mute single blocks but can handle multiple/variable block messages. Such a
permutation, from D∗

n to D∗
n, is (n-)on-line if the i-th block of the output is

determined completely by the first i blocks of the input.

Definition 2. Let n, k ≥ 0, K ∈ {0, 1}k, V ∈ Dn. A function Π : {0, 1}k ×
D∗

n → D∗
n is an (n-)on-line permutation if for any fixed K,V the function

Π(K,V, ·) is a permutation and there exists for any message M = (M1, . . . ,Mm)
a family of functions π̃i : {0, 1}k × {0, 1}n ×Di

n → Dn, i = 1, . . . ,m such that

Π(K,V,M) = π̃1
K(V,M1)||π̃2

K(V,M [1..2])

|| . . . ||
π̃m−1
K (V,M [1..m− 1])||π̃m

K (V,M [1..m]),

where M [a . . . b] := Ma||Ma+1|| . . . ||Mb with “||” being the concatenation of
strings, holds.

An encryption scheme is (n-)on-line if the encryption function is (n-)on-line. A
thorough discussion of on-line encryption and its properties can be found in [1].



204 E. Fleischmann, C. Forler, and S. Lucks

3.2 Authenticated Encryption (With Associated Data)

An authenticated encryption scheme is a tuple Π = (K, E ,D). Its aim is to
provide privacy and data integrity. The key generation function K takes no input
and returns a randomly chosen key K from the key space, e.g. from {0, 1}k.
The encryption algorithm E and the decryption algorithm D are deterministic
algorithms that map values from {0, 1}k×H×D∗

n to a string or – if the input is
invalid – the value ⊥. The headerH consists either only of the initial value/nonce
V ∈ Dn (if no data is to be authenticated/checked in the encryption/decryption
process) or is a combination of V and a value fromD∗

n. SoH ⊂ D+
n in either case.

For sake of convenience, we usually write EHK (M) for E(K,H,M) and DH
K(M) for

D(K,H,M), where the messageM is chosen fromD∗
n,H ∈ H and a key from the

key space. We require DH
K(EHK (M)) = M for any possibleK,M,H , and define the

tag size for a message M ∈ D∗
n and header H ∈ H as tag(H,M) := |EHK (M)| −

|M |. We denote an authenticated encryption scheme with the requirement that
the initial vector V is only used once in a nonce based scheme. Otherwise, we
call such a scheme deterministic. Similarly, we call an adversary nonce-respecting
(nr) if no nonce is used twice for any query. Otherwise, the adversary is called
nonce-ignoring (ni).

4 Security Notions for On-Line Authenticated Encryption

Authenticated (On-Line) Encryption tries to achieve privacy and authenticity at
the same time. Therefore we need security notions to handle this twofold goal.
For AE, there have been notions and their relations introduced for deterministic
[42] and nonce based [4,5,27,37,40] AE schemes. In order to have one convenient
toolset of notions, we adopt the notion of CCA3 security suggested in [42] as a
natural strengthening of CCA2 security.

We parameterize our definition in order to define different – but closely related
– notions by explicitly stating whether we mean an on-line or off-line scheme,
ω ∈ {ae,oae} and stating the adversary behavior as either nonce-respecting or
nonce-ignoring, ν ∈ {nr,ni}.

Definition 3 (CCA3(ω, ν)). Let Π = (K, E ,D) be an authenticated encryption
scheme with header space H and message space D∗

n, and fix an adversary A. The
advantage of A breaking Π is defined as

Adv
CCA3(ω,ν)
Π (A) =

∣∣∣Pr [K $← K : AEK(·,·),DK(·,·) ⇒ 1
]
− Pr

[
A$ω(·,·),⊥(·,·) ⇒ 1

]∣∣∣
The adversary’s random-bits oracle, $ae(·, ·) or $oae(·, ·), returns on a query with
header H ∈ H and plaintext X ∈ D∗

n a random string of length |EK(M)| which
is either on-line or not, depending on the variable ω. The ⊥(·, ·) oracle returns
⊥ on every input. We assume wlog. that the adversary A never ask a query which



A Family of Almost Foolproof On-Line Authenticated Encryption Schemes 205

Game GCPA, GCCA3

1 In i t i a l i z e (ω, ν)

2 b
$← {0, 1} ;

3 i f (b=1) then
4 K ← K() ;

5 Finalize(d)
6 return (b = d) ;

10 Encrypt(H,M)
11 i f (ν = nr and V ∈ B) then
12 return ⊥ ;
13 i f (b=1) then
14 C ← EK (H,M) ;
15 else
16 C ← $ω(H,M) ;
17 B ← B ∪ {V } ;

18 Q ← Q ∪ {(H,C)};
19 return C;

20 Decrypt (H,C)
21 i f ((H,C) ∈ Q) then
22 return ⊥ ;
23 i f (b=1) then
24 M ← DK (H,C) ;
25 else
26 M ← ⊥(H,C) ;
27 return M;

Fig. 2. GCPA(ω, ν) is the CPA
(ω,ν)
Π -Game and GCCA3(ω, ν) the CCA3

(ω,ν)
Π -Game where

Π = (K, E ,D). Game GCCA3 contains the code in the box while GCPA does not. The
oracle $ae(H,M) returns a string of length |M |+tag(H,M), this string is on-line com-
patible if ω = oae. V denotes the last block of the header representing the nonce/initial
value.

answer is already known. It is easy to see that we can rewrite the term given in
Definition 3 as∣∣∣Pr [K $← K : AEK(·,·),DK(·,·) ⇒ 1

]
− Pr

[
K

$← K : AEK(·,·),⊥(·,·) ⇒ 1
]

(1)

+ Pr
[
K

$← K : AEK(·,·),⊥(·,·) ⇒ 1
]
− Pr

[
A$ω(·,·),⊥(·,·) ⇒ 1

]∣∣∣ . (2)

One can interpret (1) as the advantage that an adversary has on the integrity
of the ciphertext and (2) as the advantage that an CPA adversary has on the
privacy. Using this decomposition as a motivational starting point, we now define
ciphertext integrity and what we mean by a CPA adversary on authenticated
encryption schemes. From now on, our definitions are based on the game playing
methodology. For example, we can restate Definition 3 using the game GCCA3

given in Figure 2 as

Adv
CCA3(ω,ν)
Π (A) = 2|Pr[AGCCA3(ω,ν) ⇒ 1]− 0.5|.

We denoteAdv
CCA3(ω,ν)
Π (q, t, �) as the maximum advantage over allCCA3(ω, ν)

adversaries run in time at most t, ask a total maximum of q queries to E and D,
and whose total query length is not more than � blocks.

4.1 Privacy and Integrity Notions for Authenticated Encryption
Schemes.

Similarly, we define the privacy and integrity of an authenticated (on-line) en-
cryption scheme Π = (K, E ,D) with header space D+

n , message space D∗
n and

tag-size function tag(H,M) as follows.

Definition 4. Let GCPA(ω, ν) be the CPAω,ν
Π game given in Figure 2. Fix an

adversary A. The advantage of A breaking Π is defined as

Adv
CPA(ω,ν)
Π (A) ≤ 2|Pr[AGCPA(ω,ν) ⇒ 1]− 0.5|.



206 E. Fleischmann, C. Forler, and S. Lucks

Game GINT−CTXT

1 In i t i a l i z e (ν)
2 K ← K();

3 Finalize ( )
4 return win ;

10 Encrypt (H,M)
11 i f (ν = nr and
12 V ∈ B) then
13 return ⊥ ;
14 C ← EK (H,M) ;
15 B ← B ∪ {V } ;
16 Q ← Q ∪ {(H,C)} ;
17 return C ;

20 Verify (H,C)
21 M ← DK (H,C) ;
22 i f ((H,C) �∈ Q
23 and M �= ⊥) then
24 win ← true ;
25 return (M �= ⊥) ;

Fig. 3. Game GINT−CTXT (ν) is the INT-CTXT
ω,ν
Π game where Π = (K, E ,D). V

denotes the last block of the header representing the nonce/initial value.

Definition 5. Let GINT-CTXT(ν) be the INT-CTXT
ν
Π game given in Figure 3.

Fix an adversary A. The advantage of A breaking Π is defined as

Adv
INT-CTXT(ν)
Π (A) ≤ Pr[AGINT-CTXT(ν) ⇒ 1].

We denote Adv
CPA(ω,ν)
Π (q, t, �) and Adv

INT-CTXT(ν)
Π (q, t, �) as the maximum

advantage over all CPA(ω, ν) resp. INT-CTXT(ν) adversaries run in time at
most t, ask a total maximum of q queries to E and D, and whose total query
length is not more than � blocks.

4.2 CCA3 Is Equal to INT-CTXT Plus CPA

We now give a generalization of Theorem 3.2 from Bellare and Namprempre
[4]. It simply states the equivalence of a scheme being CCA3 secure and both
INT-CTXT and CPA secure. These statements hold in the on-line and offline
case.

Theorem 1. Let Π = (K, E ,D) be an authenticated encryption scheme. Fix
ω ∈ {ae,oae} and ν ∈ {nr,ni}. Let A be an CCA3(ω, ν)Π-adversary running
in time t, making q queries with a total length of at most � blocks. Then there are
a CPA(ω, ν)-adversary Ap and an INT-CTXT(ω, ν)-adversary Ac such that

Adv
CCA3(ω,ν)
Π (A) ≤ Adv

CPA(ω,ν)
Π (Ap) +Adv

INT-CTXT(ω,ν)
Π (Ac).

Furthermore, Ac and Ap run in time O(t) and both make at most q queries in
each case.

The proof is given in the full version of this paper [14].

5 The On-Line Authenticated Encryption Scheme
McOE-X

In this section, we present McOE-X, a construction for an OAE scheme. We
prove that McOE-X achieves our two-fold goal. First, it guarantees a certain
minimum, well defined, security against a nonce-ignoring adversary. And, second,



A Family of Almost Foolproof On-Line Authenticated Encryption Schemes 207

we show – in the full version of the paper [14] – that the complete McOE family
of OAE schemes (including McOE-X) is fully secure against a nonce-respecting
adversary.

Since we already have presented two McOE-X instances in Section 2, we
proceed by formally defining McOE-X and giving its pseudocode. Indeed this
is very similar to the results presented in Section 2, but here our definitions are
slightly more general. Instead of fixing the key computation function to K ⊕ V ,
where R is the chaining value and K the secret key, we here use a key derivation
function ϕ(K,R). By this we make sure that our proof also works for tweakable
block ciphers - with K as key and R as tweak - leading to more efficient design.

Definition 6 (McOE-X). Let k, n ∈ N with k ≥ n, E ∈ Block(k, n), and
ϕ : {0, 1}k × {0, 1}v → {0, 1}k such that ϕ(K, ·) is injective. The encryption
function takes a header H ∈ DLH

n , a message M and returns a ciphertext C and
a tag T ∈ Dn. The decryption function takes a header H ∈ DLH

n , a ciphertext
C and a tag T ∈ Dn and returns either a plaintext M or the fail symbol ⊥.
(i) ’Non-TS’. Let M,C ∈ DL

N for some integer L, then McOE-X is defined by
the algorithms EncryptAuthenticate and DecryptAuthenticate given in
Table 5.

(ii) ’TS’. Let M,C ∈ DL
N ||{0, 1}l

∗
for some integers L and l∗, 0 < l∗ < n, then

McOE-X/TS is defined by the algorithms EncryptAuthenticateSplitTag
and DecryptAuthenticateSplitTag given in Table 5.

We now proceed to show the security of McOE-X. For this we use the results of
Theorem 1 and show the INT-CTXT and RK-CPA-PRP security separately.

Theorem 2

(i) Let Π = (K, E ,D) be a McOE-X scheme as in Definition 6 (i). We further
assume that the block cipher E is secure against related key attacks. Then

Adv
CCA3(oae,ni)
Π (q, �, t) ≤ 2(q + �)(q + �+ 1) + 3q + 2�

2n − (q + �)

+ 3AdvRK-CCA-PRP

E,E−1 (q + �).

(ii) Let Π = (K, E ,D) be a McOE-X scheme as in Definition 6 (ii). We further
assume that the block cipher E is secure against related key attacks. Then

Adv
CCA3(oae,ni)
Π (q, �, t) ≤ 4(q + �+ 2)(q + �+ 3) + 6(2q + �)

2n − (q + �)
+

3q(q + 1)

2n − q

+
q

2n/2 − q
+ 3AdvRK-CCA-PRP

E,E−1 (2q + �).

Proof. The proof of (i) follows from Theorem 1 together with Lemmas 1 and 2.
Due to the lack of of space the proof of (ii) it is skipped here and is available in
the full version of the paper [14].



208 E. Fleischmann, C. Forler, and S. Lucks

Table 5. Instances of McOE-X: Left side is for messages whose size is evenly divisible
by the block size n; Right side is for arbitrarily sized messages (TS-variant); see text
for details

EncryptAuthenticate(H,M)
1. U ← ϕ(K, 0n)
2. for i = 1, . . . , LH − 1 do

U ← ϕ(K,Hi ⊕ EU (Hi))
3. τ ← EU (HLH )
4. U ← ϕ(K,HLH ⊕ τ )
5. for i = 1, . . . , L do

Ci ← EU (Mi)
U ← ϕ(K,Mi ⊕ Ci)

6. T ← EU(τ )
7. return (C1, . . . , CL, T )

EncryptAuthenticate(H,C, T )
1. U ← ϕ(K, 0n)
2. for i = 1, . . . , LH − 1 do

U ← ϕ(K,Hi ⊕ EU (Hi))
3. τ ← EU (HLH )
4. U ← ϕ(K,HLH ⊕ τ )
5. for i = 1, . . . , L− 1 do

Ci ← EU (Mi)
U ← ϕ(K,Mi ⊕ Ci)

6. M∗ ← ML||τ [0 . . . n− l∗ − 1]
7. M∗ ← M∗ ⊕EK⊕1n (|ML|)
8. C∗ ← EU (M

∗)
9. Parse CL||T [0 . . . n− l∗ − 1] ←

10. C∗

11. U ← ϕ(K,M∗ ⊕ C∗)
12. C∗∗ ← EU (τ )
13. T [n− l∗ . . . n− 1] ←

C∗∗[0 . . . l∗ − 1]
14. return (C1, . . . , CL, T )

DecryptAuthenticate(H,C, T )
1. U ← ϕ(K, 0n)
2. for i = 1, . . . , LH − 1 do

U ← ϕ(K,Hi ⊕ EU (Hi))
3. τ ← EU (HLH )
4. U ← ϕ(K,HLH ⊕ τ )
5. for i = 1, . . . , L do

Mi ← E−1
U (Ci)

U ← ϕ(K,Mi ⊕ Ci)
6. if T = EU (τ ) then

return (M1, . . . ,ML) else
return ⊥

DecryptAuthenticateSplitTag(H,C, T )
1. U ← ϕ(K, 0n)
2. for i = 1, . . . , LH − 1 do

U ← ϕ(K,Hi ⊕ EU (Hi))
3. τ ← EU (HLH )
4. U ← ϕ(K,HLH ⊕ τ )
5. for i = 1, . . . , L do

Mi ← E−1
U (Ci)

U ← ϕ(K,Mi ⊕ Ci)
6. C∗ ← CL+1||T [0 . . . n− l∗ − 1]
7. M∗ ← E−1

U (C∗)
8. U ← ϕ(K,M∗ ⊕ C∗)
9. M∗ ← M∗ ⊕EK⊕1n (|CL|)

10. Parse ML||τ ′[0 . . . n− l∗−1] ← M∗

11. T ′ ← EU (τ )
12. if τ ′[0 . . . n − l∗ − 1] = τ [0 . . . n −

l∗ − 1]
and T ′[0 . . . l∗ − 1] = T [n −

l∗ . . . n− 1]
then return (M1, ...,ML) else

return ⊥

Lemma 1. Let Π = (K, E ,D) be a McOE-X scheme as in Definition 6 (i). Let
q be the number of total queries an adversary A is allowed to ask and � be an
integer representing the total length in blocks of the queries to E and D. Then,

Adv
INT-CTXT(ni)
Π (q, �, t) ≤ (q + �)(q + �+ 1)

2n − (q + �)
+

2q + �

2n − (q + �)

+AdvRK-CCA-PRP

E,E−1 (q + �).



A Family of Almost Foolproof On-Line Authenticated Encryption Schemes 209

Proof (Lemma 1). Our bound is derived by game playing arguments. Consider
games G1-G3 of Figure 4 and a fixed adversary A asking at most q queries with
a total length of at most � blocks. The functions Initialize and Finalize are
identical for all games in this proof. Lets denoteG0 as the Game INT-CTXT(ni)
as defined in Figure 3. Definition 5 states that

Adv
INT-CTXT(ni)
Π (A) ≤ Pr[AG0 ⇒ 1].

In G1, the encryption and verify placeholders are replaced by their specific

McOE-X counterparts as of Definition 6. Clearly, Pr[AG0 ⇒ 1] = Pr[AG1 ⇒ 1].
We now discuss the differences between G1 and G2. The set B is initialized to
{ϕ(K, 0n)} and then collects new key-input values U which are computed during
the encryption or verification process (in lines 204, 207, 213, 223, 226, 232 and
237). We note that, since ϕ is injective, a collision for the chaining values follows
if there is a collision in the U values.

In lines 203 and 222, the LLCPn oracle is inquired. Finally, the variable bad

is set to true if one of the if-conditions in lines 208, 214, 227, 233, or 238 is
true. None of these modifications affect the values returned to the adversary
and therefore

Pr[AG1 ⇒ 1] = Pr[AG2 ⇒ 1].

For our further discussion we require another game G4 which is explained in
more detail later in this proof3. It follows that

Pr[AG2 ⇒ 1] = Pr[AG3 ⇒ 1] + |Pr[AG2 ⇒ 1]− Pr[AG3 ⇒ 1|
≤ Pr[AG3 ⇒ 1] + Pr[AG3sets bad]

≤ Pr[AG4 ⇒ 1] + |Pr[AG3 ⇒ 1]− Pr[AG4 ⇒ 1]|+Pr[AG3sets bad].
(3)

We now proceed to upper bound any of the three terms contained in (3) – in
right to left order. The success probability of game G3 does not differ from the
success probability of G2 unless a chaining value U occurs twice. In this case,
the adversary must (i) either have ’found’ a collision for Eϕ(K,X)(Y )⊕Y , i.e. she
stumbles over (X,Y ) and (X ′, Y ′) such that Eϕ(K,X)(Y )⊕Y = Eϕ(K,X′)(Y

′)⊕Y ′

or, (ii), must have found a preimage of ϕ(K, 0n), which is always the starting
point of our chain. Note that that value ϕ(K, 0n) is initially stored in the set B.
In both cases, the variable bad would have been set to true, and it follows [8]
that

Pr[AG3sets bad] ≤ (q + �)(q + �+ 1)

2n − (q + �)
+

q + �

2n − (q + �)
.

3 Since the difference is very minor, we do not provide an extra figure.



210 E. Fleischmann, C. Forler, and S. Lucks

1 In i t i a l i z e ( )

2 K
$← K() ;

3 B ← {ϕ(K, 0n} ;

4 Finalize ( )
5 return win ;

100 Encrypt(H,M) Game G1

101 LH ← |H|/n ; L ← |M |/n ;
102 U ← ϕ(K, 0n) ;
103 for i = 1, ..., LH do
104 τ ← EU (Hi) ;
105 U ← ϕ(K,Hi ⊕ τ) ;
106 for i = 1, ..., L do
107 Ci ← EU (Mi) ;
108 U ← ϕ(K,Ci ⊕ Mi) ;
109 T ← EU (τ) ;
110 Q ← (H,M,C, T ) ;
111 return (C1, . . . , CL, T ) ;

112 Verify(H,C, T ) Game G1

113 LH ← |H|/n ; L ← |C|/n ;
114 U ← ϕ(K, 0n) ;
115 for i = 1, ..., LH do
116 τ ← EU (Hi) ;
117 U ← ϕ(K,Hi ⊕ τ) ;
118 for i = 1, ..., L do

119 Mi ← E
−1
U

(Ci) ;
120 U ← ϕ(K,Ci ⊕ Mi) ;
121 i f (T = EU (τ) and (H,C) �∈ Q|H,C)

122 then win ← true ;
123 Q ← (H,⊥, C,⊥) ;
124 return (T = EU (τ))

200 Encrypt(H,M) Game G2, G3

201 LH ← |H|/n ; L ← |M |/n ;
202 A ← A ∪ H ;
203 p ← LLCPn(Q|H,M , (H,M)) ;

204 U ← ϕ(K, 0n) ;
205 for i = 1, . . . , LH do
206 τ ← EU (Hi) ;
207 U ← ϕ(K,Hi ⊕ τ) ;
208 i f (U ∈ B and i > p) then

209 bad ← true ; U
$← {0, 1}n \ B;

210 B ← B ∪ U ;
211 for i = 1, . . . , L do
212 Ci ← EU (Mi) ;
213 U ← ϕ(K,Ci ⊕ Mi) ;
214 i f (U ∈ B and i + LH > p) then

215 bad ← true ; U
$← {0, 1}n \ B;

216 B ← B ∪ U ;
217 T ← EU (τ) ;
218 Q ← (H,M,C, T ) ;
219 return (C1, . . . , CL, T ) ;

220 Verify(H,C, T ) Game G2, G3

221 LH ← |H|/n ; L ← |C|/n ;
222 p ← LLCPn(Q|H,M , (H,M)) ;

223 U ← ϕ(K, 0n) ;
224 for i = 1, . . . , LH do
225 τ ← EU (Hi) ;
226 U ← ϕ(K,Hi ⊕ τ) ;
227 i f (U ∈ B and i > p) then

228 bad ← true ; U
$← {0, 1}n \ B;

229 B ← B ∪ U ;
230 for i = 1, . . . , L − 1 do

231 Mi ← E
−1
U

(Ci) ;
232 U ← ϕ(K,Ci ⊕ Mi) ;
233 i f (U ∈ B and i + LH > p) then

234 bad ← true ; U
$← {0, 1}n \ B;

235 B ← B ∪ U ;

236 ML ← E
−1
U

(CL) ;
237 U ← ϕ(K,CL ⊕ ML) ;
238 i f (U ∈ B and H �∈ A) then

239 bad ← true ; U
$← {0, 1}n \ B;

240 i f (T = EU (τ) and (H,C, T ) �∈ Q|H,C,T )

241 then win ← true ;
242 Q ← (H,⊥, C,⊥) ;
243 B ← B ∪ U ;
244 return (T = EU (τ)) ;

Fig. 4. Games G1-G3 for the proof of Lemma 1. Game G3 contains the code in the
box while G2 does not.



A Family of Almost Foolproof On-Line Authenticated Encryption Schemes 211

We now describe the new game G4. It is equal to G3 except that the block cipher
E and its inverseE−1 are replaced by randomly chosen functions EncryptBlock
and DecryptBlock, which are modeled as pseudo random permutations. We
assume that they are implemented via lazy sampling. More precisely, the call
EK(A) is replaced by an invocation of EncryptBlockK(A) and the call E−1

K (A)
is replaced by an invocation of DecryptBlockK (A). We now upper bound the
difference between G3 and G4.

So, by definition of G4, we have

|Pr[AG3 ⇒ 1]− Pr[AG4 ⇒ 1]| ≤ AdvRK-CCA-PRP

E,E−1 (q + �).

Finally, we have to upper bound the advantage for the adversary A to win the
game G4. A can only win this game if the condition in line 238 (resp. 438 for
game G4) is true. As usual, we assume wlog. that A doesn’t ask a question if
the answer is already known which implies that (H,C, T ) �∈ Q|H,C,T . For our
analysis we distinguish between three cases. So we formally adjust line 240 (i.e.
choose as the tag computation operation either E or E−1) such that we always
have enough randomness left for our result.
Case 1: H has already been used in an Encrypt or Verify query before and

U ∈ B. Since we already have computed τ in the past, the chance of success
is upper bounded by the probability Pr[E−1

U (T ) = τ ] which can be upper
bounded by 1/(2n − (q + �)).

Case 2: H has never been used before, also U has never been used as a chaining
value. Then the tagging operation uses a ’new key’ – essentially due since ϕ
is injective – and therefore the output of EU (τ) is uniformly distributed and
the success probability is ≤ 1/2n.

Case 3: H ∈ A but U has never been used as a chaining value. The chance of
success is upper bounded by Pr[E−1

U (T ) = τ ] which can be upper bounded
by 1/2n.

Note that the ’missing’ fourth case has been explicitly excluded by line 240 (resp.
440). Since these three cases are mutually exclusive, we can upper bound the
success probability for q queries as

Pr[AG4 ⇒ 1] ≤ q

2n − (q + �)
.

Our claim follows by adding up the individual bounds. ��

Lemma 2. Let Π = (K, E ,D) be a McOE-X scheme as in Definition 6 (i). Let
q be the number of total queries an adversary A is allowed to ask and � be an
integer representing the total length of the queries to E and D. Then,

Adv
CPA(aoe,ni)

Π (q, �, t) ≤ 2

(
(q + �)(q + �+ 1)

2n − (q + �)
+

q + �

2n − (q + �)

+AdvRK-CPA-PRP

E (q + �)
)
.

The proof is given in the full version of this paper [14].



212 E. Fleischmann, C. Forler, and S. Lucks

6 Discussion

New Challenges for Research. At the this point of time, cryptographic research
has developed an inpressive number of good schemes for encryption, authenti-
cation, and authenticated encryption. Many of these schemes have been proven
secure under standard assumptions on the underlying primitives. In practice,
however, such schemes are often used in a way that undermines security. Try-
ing to design cryptosystems as “misuse resistant” as possible still stands as a
challenge for cryptographers.

Furthermore, our research seems to pose new challenges for the design of sym-
metric primitives. Ideally, we would like to implement McOE using a tweakable
n-bit block cipher with n-bit tweaks, supporting fast random tweak changes. Due
to the current lack of such a primitive, we designed McOE-X, which requires
an ordindary n-bit block cipher being secure against XOR-related key attacks,
and supporting fast random key changes. Much beyond McOE, cryptosystem
designers could benefit from new tweak-agile tweakable block ciphers and new
key-agile ordinary block ciphers.

It is mentionable that McOE-X, when using Threefish-512 in software, per-
forms considerably better as when using software or even hardware AES-128.
(Note that Threefish-512 actually is a tweakable block cipher, but the 128-bit
tweak is too short for McOE.) As an alternative, we developed further vari-
ants of McOE using double encryption and Galois field arithmetic. These two
variants also don’t expose the underlying block cipher to related-key attacks.

Conclusion. Originally, this research has been inspired by the search for a default
authenticated encryption mode of operation for a general-purpose cryptographic
library. It should offer, by default, a huge failure tolerance for practical software
developers and still allow being used in an on-line manner.

Since the well-known schemes as, such as OCB and SIV, did not fit our require-
ments, we searched for other ways to achieve the security and functionality we
were looking for. Apart fromMcOE, generic composition (Encrypt-then-Mac) of
a secure on-line cipher for encryption and a secure deterministic MAC for authen-
tication, using two independent keys might be another solution. As it turned out,
using McOE, one can save the additional key and the time to generate the MAC
by using a slightly tweaked on-line cipher for both encryption and authentication.

Acknowledgments. We like to thank JakobWenzel for very helpful comments,
Phil Rogaway for making us aware of the Galois field native instructions, and
the participants of the Dagstuhl Seminar on Symmetric Cryptography 2012 for
inspiring discussions.

References

1. Bellare, M., Boldyreva, A., Knudsen, L.R., Namprempre, C.: Online Ciphers and
the Hash-CBC Construction. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139,
pp. 292–309. Springer, Heidelberg (2001)

2. Bellare, M., Boldyreva, A., Knudsen, L.R., Namprempre, C.: On-Line Ciphers and
the Hash-CBC Constructions. IACR Cryptology ePrint Archive, 2007:197 (2007)



A Family of Almost Foolproof On-Line Authenticated Encryption Schemes 213

3. Bellare, M., Boldyreva, A., Knudsen, L.R., Namprempre, C.: Online Ciphers and
the Hash-CBC Construction. Cryptology ePrint Archive, Report 2007/197; full
version of [1] (2007), http://eprint.iacr.org/

4. Bellare, M., Namprempre, C.: Authenticated Encryption: Relations among Notions
and Analysis of the Generic Composition Paradigm. J. Cryptology 21(4), 469–491
(2008)

5. Bellare, M., Rogaway, P.: Encode-Then-Encipher Encryption: How to Exploit
Nonces or Redundancy in Plaintexts for Efficient Cryptography. In: Okamoto,
T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 317–330. Springer, Heidelberg
(2000)

6. Bellare, M., Rogaway, P., Wagner, D.: The EAX Mode of Operation. In: Roy, B.,
Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 389–407. Springer, Heidelberg
(2004)

7. Black, J.A., Cochran, M., Shrimpton, T.: On the Impossibility of Highly-Efficient
Blockcipher-Based Hash Functions. In: Cramer, R. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 526–541. Springer, Heidelberg (2005)

8. Black, J.A., Rogaway, P., Shrimpton, T.: Black-Box Analysis of the Block-Cipher-
Based Hash-Function Constructions from PGV. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, p. 320. Springer, Heidelberg (2002)

9. Borisov, N., Goldberg, I., Wagner, D.: Intercepting Mobile Communications: The
Insecurity of 802.11. In: MOBICOM, pp. 180–189 (2001)

10. Buonanno, E., Katz, J., Yung, M.: Incremental Unforgeable Encryption. In: Matsui,
M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 109–124. Springer, Heidelberg (2002)

11. Intel Corporation. AES-NI Sample Library v1.2 (2010),
http://software.intel.com/en-us/articles/

download-the-intel-aesni-sample-library/
12. Daemen, J.: Hash Function and Cipher Design: Strategies Based on Linear and

Differential Cryptanalysis. Ph.D. thesis, Katholieke Universiteit Leuven, Leuven,
Belgium (March 1995)

13. Dworkin, M.: Special Publication 800-38C: Recommendation for block cipher
modes of operation: the CCM mode for authentication and confidentiality. National
Institute of Standards and Technology, U.S. Department of Commerce (May 2005)

14. Fleischmann, E., Forler, C., Lucks, S.: McOE: A Foolproof On-Line Authenticated
Encryption Scheme. IACR Cryptology ePrint Archive, 2011:644 (2011)

15. Fouque, P.-A., Martinet, G., Valette, F., Zimmer, S.: On the Security of the
CCM Encryption Mode and of a Slight Variant. In: Bellovin, S.M., Gennaro, R.,
Keromytis, A.D., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 411–428.
Springer, Heidelberg (2008)

16. Gladman, B.: Brian Gladman’s AES Implementation (June 19, 2006),
http://gladman.plushost.co.uk/oldsite/AES/index.php

17. Gligor, V.D., Donescu, P.: Fast Encryption and Authentication: XCBC Encryption
and XECB Authentication Modes. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355,
pp. 92–108. Springer, Heidelberg (2002)

18. Goldwasser, S., Micali, S.: Probabilistic Encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

19. Gueron, S., Kounavis, M.E.: Efficient implementation of the Galois Counter
Mode using a carry-less multiplier and a fast reduction algorithm. Inf. Process.
Lett. 110(14-15), 549–553 (2010)

20. Hotz, G.: Console Hacking 2010 - PS3 Epic Fail. 27th Chaos Communications
Congress (2010), http://events.ccc.de/congress/2010/Fahrplan/
attachments/1780 27c3 console hacking 2010.pdf

http://eprint.iacr.org/
http://software.intel.com/en-us/articles/download-the-intel-aesni-sample-library/
http://software.intel.com/en-us/articles/download-the-intel-aesni-sample-library/
http://gladman.plushost.co.uk/oldsite/AES/index.php
http://events.ccc.de/congress/2010/Fahrplan/attachments/1780_27c3_console_hacking_2010.pdf
http://events.ccc.de/congress/2010/Fahrplan/attachments/1780_27c3_console_hacking_2010.pdf


214 E. Fleischmann, C. Forler, and S. Lucks

21. ISO/IEC. 19772:2009, Information technology – Security techniques – Authenti-
cated Encryption (2009)

22. Iwata, T.: New Blockcipher Modes of Operation with Beyond the Birthday Bound
Security. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 310–327. Springer,
Heidelberg (2006)

23. Iwata, T.: Authenticated Encryption Mode for Beyond the Birthday Bound Secu-
rity. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 125–142.
Springer, Heidelberg (2008)

24. Iwata, T., Yasuda, K.: BTM: A Single-Key, Inverse-Cipher-Free Mode for Deter-
ministic Authenticated Encryption. In: Jacobson Jr., M.J., Rijmen, V., Safavi-
Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 313–330. Springer, Heidelberg
(2009)

25. Iwata, T., Yasuda, K.: HBS: A Single-Key Mode of Operation for Deterministic
Authenticated Encryption. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665,
pp. 394–415. Springer, Heidelberg (2009)

26. Jutla, C.S.: Encryption Modes with Almost Free Message Integrity. J. Cryptol-
ogy 21(4), 547–578 (2008)

27. Katz, J., Yung, M.: Unforgeable Encryption and Chosen Ciphertext Secure Modes
of Operation. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 284–299.
Springer, Heidelberg (2001)

28. Kohno, T.: Attacking and Repairing the WinZip Encryption Scheme. In: ACM
Conference on Computer and Communications Security, pp. 72–81 (2004)

29. Kohno, T., Viega, J., Whiting, D.: CWC: A High-Performance Conventional Au-
thenticated Encryption Mode. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS,
vol. 3017, pp. 408–426. Springer, Heidelberg (2004)

30. Iwata, T.: New Blockcipher Modes of Operation with Beyond the Birthday Bound
Security. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 310–327. Springer,
Heidelberg (2006)

31. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable Block Ciphers. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002)

32. Lucks, S.: Ciphers Secure against Related-Key Attacks. In: Roy, B., Meier, W.
(eds.) FSE 2004. LNCS, vol. 3017, pp. 359–370. Springer, Heidelberg (2004)

33. Lucks, S.: Two-Pass Authenticated Encryption Faster Than Generic Composition.
In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 284–298.
Springer, Heidelberg (2005)

34. McGrew, D.A., Viega, J.: The Security and Performance of the Galois/Counter
Mode (GCM) of Operation. In: Canteaut, A., Viswanathan, K. (eds.) IN-
DOCRYPT 2004. LNCS, vol. 3348, pp. 343–355. Springer, Heidelberg (2004)

35. Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas,
J., Walker, J.: Skein source code and test vectors,
http://www.skein-hash.info/downloads

36. Paterson, K.G., Watson, G.J.: Plaintext-Dependent Decryption: A Formal Security
Treatment of SSH-CTR. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110,
pp. 345–361. Springer, Heidelberg (2010)

37. Rogaway, P.: Authenticated-Encryption with Associated-Data. In: ACM Confer-
ence on Computer and Communications Security, pp. 98–107 (2002)

38. Rogaway, P.: Efficient Instantiations of Tweakable Blockciphers and Refinements
to Modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 16–31. Springer, Heidelberg (2004)

39. Rogaway, P.: Nonce-Based Symmetric Encryption. In: Roy, B., Meier, W. (eds.)
FSE 2004. LNCS, vol. 3017, pp. 348–359. Springer, Heidelberg (2004)

http://www.skein-hash.info/downloads


A Family of Almost Foolproof On-Line Authenticated Encryption Schemes 215

40. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: a block-cipher mode of
operation for efficient authenticated encryption. In: ACM Conference on Computer
and Communications Security, pp. 196–205 (2001)

41. Rogaway, P., Shrimpton, T.: A Provable-Security Treatment of the Key-Wrap
Problem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390.
Springer, Heidelberg (2006)

42. Rogaway, P., Shrimpton, T.: Deterministic Authenticated-Encryption: A Provable-
Security Treatment of the Key-Wrap Problem. Cryptology ePrint Archive, Report
2006/221; full version of [41] (2006), http://eprint.iacr.org/

43. Rogaway, P., Zhang, H.: Online Ciphers from Tweakable Blockciphers. In: Kiayias,
A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 237–249. Springer, Heidelberg (2011)

44. Sabin, T.: Vulnerability in Windows NT’s SYSKEY encryption. BindView Security
Advisory (1999), http://marc.info/?l=ntbugtraq&m=94537191024690&w=4

45. Wu, H.: The Misuse of RC4 in Microsoft Word and Excel. Cryptology ePrint
Archive, Report 2005/007 (2005), http://eprint.iacr.org/

A Misuse-Attacks: The Weak Point of Current
Authenticated Encryption (AE) Schemes

We now give a short overview on one of the attack patterns we have successfully
used (cf. Table 2). A more detail led analysis (including more attack patterns)
can be found in the full version of this paper [14].

Cipher-block-chaining (CBC) is an unauthenticated encryption mode which is
sometimes used as the encryption component of an AE scheme. It is well known
that, for constant nonces, the ciphertext of two different plaintexts do reveal the
full keystream. It was to be expected that a scheme using counter mode or CBC
inherits the nonce reuse issue from that mode. But, as it turned out, common
AE schemes also fail at the authenticity frontier, as was already indicated in
Table 2 using the following ’linear tag’ attack pattern. Schemes susceptible to
this attack are CWC [29], GCM [34], EAX [6], and CHM [22].

Linear Tag Attack. Assume an AE scheme which generate a keystream S =
FK(V ) depending on a secret key K and a nonce V encryption a message M by
computing a ciphertext C = S ⊕M . For AE schemes using the encrypt-then-
authenticate paradigm, we rewrite the authentication tag T as

T = f(V )⊕ g(C),

where V is the nonce, C is the ciphertext, and f and g are some key-dependent
functions. This enables the adversary to mount the following attack:
– Encrypt the plaintext M under the nonce V to (C, T ) with T = f(V )⊕g(C).
– Encrypt the plaintext M ′ �= M with |M ′| = |M | under the nonce V ′ �= V to

(C′, T ′) with the tag T ′ = f(V ′)⊕ g(C′).
– Set M ′′ := M ′ ⊕ C′ ⊕ C. Encrypt M ′′ under the nonce V ′ to (C′′, T ′′).

Observe C′′ = C, thus T ′′ = f(V ′)⊕ g(C).
– Set T ∗ = T ⊕T ′⊕T ′′ = f(V )⊕ g(C′), The adversary accepts (C′, T ∗) under

V .

http://eprint.iacr.org/
http://marc.info/?l=ntbugtraq&m=94537191024690&w=4
http://eprint.iacr.org/


Cycling Attacks on GCM, GHASH
and Other Polynomial MACs and Hashes

Markku-Juhani Olavi Saarinen

Revere Security
4500 Westgrove Drive, Suite 335, Addison, TX 75001, USA

mjos@reveresecurity.com

Abstract. The Galois/Counter Mode (GCM) of operation has been standardized
by NIST to provide single-pass authenticated encryption. The GHASH authen-
tication component of GCM belongs to a class of Wegman-Carter polynomial
hashes that operate in the field GF(2128). We present message forgery attacks
that are made possible by its extremely smooth-order multiplicative group which
splits into 512 subgroups. GCM uses the same block cipher key K to both en-
crypt data and to derive the generator H of the authentication polynomial for
GHASH. In present literature, only the trivial weak key H = 0 has been con-
sidered. We show that GHASH has much wider classes of weak keys in its 512
multiplicative subgroups, analyze some of their properties, and give experimen-
tal results on AES-GCM weak key search. Our attacks can be used not only to
bypass message authentication with garbage but also to target specific plaintext
bits if a polynomial MAC is used in conjunction with a stream cipher. These at-
tacks can also be applied with varying efficiency to other polynomial hashes and
MACs, depending on their field properties. Our findings show that especially the
use of short polynomial-evaluation MACs should be avoided if the underlying
field has a smooth multiplicative order.

Keywords: Cryptanalysis, Galois/Counter Mode, AES-GCM, Cycling Attacks,
Weak Keys.

1 Introduction

Authenticated encryption modes and algorithms provide confidentiality and integrity
protection in a single processing step. This results in performance and cost advantages
as data paths can be shared.

The Galois/Counter Mode (GCM) has been standardized by NIST [1] to be used in
conjunction with a 128-bit block cipher for providing authenticated encryption func-
tionality. When paired with the AES [2] algorithm, the resulting AES-GCM combi-
nation has been used as a replacement to dedicated hash-based HMAC [3] in popular
cryptographic protocols such as SSH [4], IPSec [5] and TLS [6].

In AES-GCM, data is encrypted using the Counter Mode (CTR). A single AES key
K is used to both encrypt data and to derive authentication secrets. The component that
is used by GCM to produce a message authentication code is called GHASH. GCM also
supports Additional Authenticated Data (AAD) which is authenticated using GHASH
but transmitted as plaintext.

A. Canteaut (Ed.): FSE 2012, LNCS 7549, pp. 216–225, 2012.
c© International Association for Cryptologic Research 2012



Cycling Attacks on GCM, GHASH and Other Polynomial MACs and Hashes 217

The GHASH algorithm belongs to a widely studied class of Wegman-Carter [7,8]
polynomial MACs. These were originally proposed in context of polynomial evalua-
tion independently by three authors [9,10,11]. A good overview of their genealogy and
evolution is by Bernstein [12,13]. The security bounds known for these algorithms in-
dicate that a n-bit tag will give 2−

n
2 security against forgery [12,14].

In this paper we give further evidence that this is not only the security lower bound
but an upper bound as well. It can be argued that universal hashes sacrifice commu-
nication bandwidth for convenience as traditional hash-based MACs are designed to
reach the information theoretic 2−n bound against message forgery and are therefore
technically somewhat inferior, especially for short MACs. The security against cycling
attacks depends very sharply on the properties of the underlying field.

This paper is structured as follows. We give a description of GHASH in Section
2, followed by a key observation regarding collisions derived from cycles in Section 3.
Section 4 contains an analysis of cycle lengths and group orders. In Section 5 we discuss
the probability of successful forgery. Section 6 briefly considers targeted attacks against
underlying protocols. Section 7 contains a test and experimental results related to cycle
lengths. We discuss the security of other polynomial mac constructions in Section 8 and
conclude in Section 9.

2 Description of GHASH

Let X be a concatenation of unencrypted authenticated data, CTR-encrypted ciphertext,
and padding. This data is split into m 128-bit blocks Xi:

X = X1 || X2 || · · · || Xm.

AES is used to derive the root authentication key H = EK(0). The same AES key K is
also used as the data encryption key. In the present work we assume that H is unknown
to the attacker as the scheme would be otherwise trivially breakable.

GHASH is based on operations in the finite field GF(2128). Horner’s rule is used in
this field to evaluate the polynomial Y .

Ym =

m∑
i=1

Xi ×Hm−i+1. (1)

Figure 1 illustrates how this value is usually computed (together with the CTR mode).
The authentication tag is finalized with T = Ym + EK(IV || 031 || 1), assuming that
a 96-bit Initialization Vector (IV) is used. The IV value must never be reused as that
would lead to the “forbidden attack” discussed by Joux in [15].

3 Collisions from Weak Keys

It has been observed that if EK(0) = H = 0, the polynomial Y evaluates to zero and
the security of GHASH breaks down. In fact, some sources assume that this patholog-
ical case is the only weak key [16]. AES keys K that produce this fixed point are not



218 M.-J.O. Saarinen

AES AES AES AES

P1 P2 P3 P4

C1 C2 C3 C4

AES

H

Y

K K K K

K

1 1 1

0

1

IV || 03010

Y1 Y2 Y3 Y4

Fig. 1. Basic operation of first four rounds of GCM-CTR (without unencrypted authenticated
data or padding). Here � denotes regular modular addition, ⊕ bitwise XOR operation, and ⊗
multiplication in GF(2128). The counter is initialized with IV and incremented by 1 for each
block. This is used to to produce a keystream that is XORed over plaintext blocks Pi to produce
ciphertext blocks Ci (or vice versa). The lower half of the diagram shows how the authentication
tag is processed; each authenticated block is XORed over the state Y and multiplied with H =
EK(0). The final processing of the authentication tag Y is omitted from this picture.

known.1 However, It is easy to see why such keys should exist for AES, especially when
the size of K is more than 128 bits.

Our main observation is that sometimes the powers of H will repeat in a relatively
short cycle. A trivial example occurs when H is equal to the identity element 1, which
will lead to all powers being equal. Due to the commutativity of addition in Equation
1, a GHASH collision can be achieved by swapping any two ciphertext blocks Xi and
Xj . This amounts to message forgery.

More generally, if we know that Hm−i+1 = Hm−j+1 with i �= j, we may simply
swap ciphertext blocks Xi and Xj and the resulting authentication tag stays unmodi-
fied which amounts to message forgery. This can be easily observed from Equation 1.
Elementary group theory tells us that the powers of H will repeat in cycles which are
determined by n = ord(H), the multiplicative order of H . Hence we may produce
collisions by swapping Xi and Xi+nm for arbitrary i and m.

4 Cycle Lengths and Group Orders

From Lagrange’s theorem in group theory we know that all subgroups divide the group
of order 2128 − 1. Numbers of this type factor into Fermat numbers

22
n − 1 =

n∏
i=1

22
i−1

+ 1. (2)

1 Some block ciphers such as GOST allow such fixed-point keys to be very easily found.



Cycling Attacks on GCM, GHASH and Other Polynomial MACs and Hashes 219

We can easily obtain the full factorization of 2128 − 1:

3 ∗ 5 ∗ 17 ∗ 257 ∗ 641 ∗ 65537 ∗ 274177 ∗ 6700417 ∗ 67280421310721. (3)

As this is a “smooth number”, we can see that there are classes of H and therefore K
values that produce cycles of length n = 1, 3, 5, 15, 17, 51, . . .; any one of the 29 = 512
subset products of the primes in Equation 3 is a valid group order.2

4.1 Illustrating Multiplicative Subgroup Cycles

Due to the peculiar way finite field arithmetic is defined in the GCM standard [1], the
identity element with ord(H) = 1 is:

H = 80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Apparently this was considered as the “first bit” by those who originally implemented
GCM. Otherwise standard polynomial arithmetic is used with the field representation
defined by the reducing polynomial x128 + x7 + x2 + x+ 1.

The following two elements will produce a cycle of length ord(H) = 3 (the cycle
obviously goes through the identity as well):

H = 10 D0 4D 25 F9 35 56 E6 9F 58 CE 2F 8D 03 5A 94
H = 90 D0 4D 25 F9 35 56 E6 9F 58 CE 2F 8D 03 5A 94

These four elements have ord(H) = 5:

H = 46 36 BD BD 1C 76 43 D3 4E E4 BB 1B F9 CA 08 4F
H = 92 17 8D 40 26 DA 1D CA 42 96 77 87 30 EB 9A 9E
H = 82 C7 C0 65 DF EF 4B 2C DD CE B9 A8 BD E8 C0 0A
H = D6 E6 F0 98 E5 43 15 35 D1 BC 75 34 74 C9 52 DB

We do not know which actual AES keys produce these H values, nor do we recommend
testing against these particular values as the probability of hitting them is exceedingly
small.

Note that a cycle of length such as 15 = 3 ∗ 5 also contains the beforementioned
component groups of order 1, 3 and 5, in addition to the 8 unique elements that can act
as a generator of the cycle of order 15. This is entirely analogous to arithmetic in the
addition group of integers modulo 15; 0 will generate a "cycle" of one element when
repeatedly added to itself, 5 and 10 will generate a cycles of order 3, the four elements
{ 3, 6, 9, 12 } cycles of order 5 and the rest of the numbers will have order 15. This is
illustrated in Figure 2.

5 Message Forgery

We know that the field GF(2128) offers a generous serving of 29 = 512 different multi-
plicative subgroups. Figure 3 shows that these are quite evenly distributed in the range
due to the nearly log-uniform progression of the factors.

2 The term smooth number comes from factorization theory and indicates that a number factors
into a large number of small primes.



220 M.-J.O. Saarinen

-H01-
C4F17DD8
C39908FF
932A02B3
4422C845

-H02-
D42130FD
3AAC5E19
0C72CC9C
C92192D1

-H03-
4636BDBD
1C7643D3
4EE4BB1B
F9CA084F

-H04-
44F17DD8
C39908FF
932A02B3
4422C845

-H06-
92178D40
26DA1DCA
42967787
30EB9A9E

-H09-
82C7C065
DFEF4B2C
DDCEB9A8
BDE8C00A

-H12-
D6E6F098
E5431535
D1BC7534
74C952DB

-H00-
80000000
00000000
00000000
00000000

-H05-
10D04D25
F93556E6
9F58CE2F
8D035A94

-H10-
90D04D25
F93556E6
9F58CE2F
8D035A94

-H07-
02C7C065
DFEF4B2C
DDCEB9A8
BDE8C00A

-H08-
542130FD
3AAC5E19
0C72CC9C
C92192D1

-H11-
56E6F098
E5431535
D1BC7534
74C952DB

-H13-
12178D40
26DA1DCA
42967787
30EB9A9E

-H14-
C636BDBD
1C7643D3
4EE4BB1B
F9CA084F

Fig. 2. The case of H = C4 F1 7D D8 C3 99 08 FF 93 2A 02 B3 44 22 C8 45 (clockwise). This
is one of eight elements that generate a multiplicative subgroup in GCM’s GF(2128) which is
isomorphic to the additive group Z15. The identity element and subgroups of sizes 3 and 5 are
also demonstrated. There are 512 multiplicative subgroups of different sizes in this particular
field.

In our attack the adversary does not know H but will simply attempt a blind forgery
by swapping two (or more) message blocks in transit as discussed in Section 3.

It is easy to show that it is sufficient that the group order divides the distance between
swapped elements. Since each subgroup of size n has exactly n elements, we arrive at
the following observation:

Theorem 1. Let n be a number satisfying gcd(2128 − 1, n) = n. Blindly swapping
blocks Xi and Xj , where i ≡ j (mod n) will result in a successful forgery with proba-
bility of at least n+1

2128 for some random H .

Proof. The distance congruence implies that the distance between Xi and Xj is a mul-
tiple of n. The gcd(2128 − 1, n) = n condition implies that n is one of the 29 = 512
possible multiplicative subgroup sizes in GF(2128). If indeed ord(H) | n thenHi = Hj

and the forgery is successful due to commutativity of equation 1. We observe that the
cycles are unique; there are n members in a subgroup of size n and the set of n elements
is unique to each subgroup size. Hence the probability of hitting one of these cycle el-
ements is n

2128 . In addition there is the pathological case H = 0 which completes the
proof. ��

If the gcd condition given in Theorem 1 does not hold, we have no reason to expect that
the forgery is successful with a probability higher than 1

2128 .



Cycling Attacks on GCM, GHASH and Other Polynomial MACs and Hashes 221

20 216 232 248 264 280 296 2112 2128

Cycle size / ord(H) bound.

2−0

2−16

2−32

2−48

2−64

2−80

2−96

2−112

2−128

P
ro

ba
bi

lit
y

w
it

h
a

ra
nd

om
ke

y.

Fig. 3. GCM / GHASH: probability of hitting a multiplicative subgroup (cycle) of given (or
smaller) size with a random authentication generator H in GF(2128). For comparison we also
graph the security for GF(2127), which is entirely contained in the lower and right borders of the
graph due to the fact that its multiplicative group order 2127 − 1 is a prime.

Assuming that an oracle has indicated a successful message forgery, any number of
consecutive forgeries can be produced with probability 1 if the key remains unchanged
(IV may change).

6 Targeted Multiple Bit Forgeries

Our attacks enable elaborate message forgeries against authenticated encryption hybrids
such as GCM due to the fact that the CTR encryption mode behaves like a stream cipher;
flipping a ciphertext bit will result the corresponding plaintext bit to be flipped. This is
especially true for lightweight protocols that combine a short binary polynomial MAC
with a stream cipher.

If ord(H)|(i− j) the authentication tag will remain valid as long as the equation

Xi ×Hm−i+1 +Xj ×Hm−j+1 = c (4)

holds for some (unknown) constant c related to the authentication tag. If we write
Hm−i+1 = Hm−j+1 = Hc, this can be simplified to

Xi +Xj = c×H−1
c . (5)

We see that the authentication tag will be valid if the sum of ciphertext blocks on the
left side of Equation 5 remains constant. One may therefore flip individual bits in block



222 M.-J.O. Saarinen

Xi if the corresponding bit in Xj is also flipped. Any number of such modifications can
be done to a message without affecting the probability of success (assuming that the
same distance is used) indicated by Theorem 1.

7 Testing for AES-GCM Weak Keys

We know that finding weak H values is easy, so a natural question arises on how to
determine weak AES keys K that produce these weak H roots.

To determine group order, we use a simple algorithm which is related to the Silver-
Pohlig-Hellman algorithm for discrete logarithms [17]. Our algorithm is based on the
following elementary observation:

Theorem 2. Let p be one of the prime divisors given in Equation 3. If and only if p
divides ord(H) we have

H
2128−1

p �= 1. (6)

Proof. Let g be a generator of the full multiplicative group; ord(g) = 2128 − 1. Then
each elementH �= 0 can be expressed as a powerH = gh for some h, 0 ≤ h < 2128−1.
Raising an element to power q, where q | 2128 − 1, sets the index modulo q to zero:
(gh)q = gqh. Since 2128−1

p is divisible with all prime divisors qi of the group order
except p, we see that the condition of Equation 6 only holds if h �= 0 (mod p), which
is equivalent to the condition p | ord(H). ��

By performing the exponentiation test of Theorem 2 for each one of the nine prime
divisors of 2128 − 1 in Equation 3, we may completely determine the multiplicative
order of H .

7.1 An Efficient Algorithm for Subgroup Size

Raising a finite field element to a Fermat Fn = 22
n

+ 1 power can be done efficiently.
It is well known that squaring operation is “linear” in GF(2n) [18]. For GF(2128), a
unique 128× 128 bit matrix M0 exists that satisfies

X2 = M0X (7)

for all X . In the followingM0X denotes a matrix multiplication where X is interpreted
as a vector of 128 bits and X ×X = X2 is a multiplication where X is interpreted as
a (polynomial) member of GF(2128).

By squaring M0, we obtain M1 = M2
0 which satisfies X4 = M1X for all X . By

repeating this process we can rapidly compute M0,M1, . . . ,M6 that satisfy

X22
i

= MiX. (8)

Once the matrices (table lookups) Mi have been initialized, raising the authentica-
tion key H to a Fermat number power can be achieved with:

HFn = MnH ×H. (9)



Cycling Attacks on GCM, GHASH and Other Polynomial MACs and Hashes 223

Therefore this operation can be made with a table lookup (multiplication with Mn) and
a single Galois Field multiplication. The matrices need to be computed only once as
they are independent from particular H .

Since 2128−1 =
∏6

i=0 Fi, checking whether the group order is of H is divisible with
Fermat number Fi involves raising H to all Fermat powers Fj except Fi. For example,
to check whether or not group order is divisible with F3 = 257, we may see if this
equation holds:

M6(M5(M4(M2(M1(M0H ×H)×H)×H)×H)×H)×H = 1. (10)

The Fermat numbers F5 and F6 are not primes (unlike F0, F1, F2, F3 and F4 which are
indeed the only known Fermat primes). Here the technique involves first powering H
to all Fermat powers except F5 = 641 ∗ 6700417 or F6 = 274177 ∗ 67280421310721.
Then then we use a conventional square-multiply exponentiation method to individually
check these two subfactors.

In practice the matrix Mi multiplication is implemented as byte-based table lookups
with seven 16 × 256 × 128 - bit tables. The initialization of these tables is very fast
as Mi+1 can be developed from Mi with a loop of 16 ∗ 256 table lookups. Significant
speedups are achieved by reusing partial results.

7.2 Experimental Results

Using the techniques outlined in the previous subsection, we have developed a reason-
ably efficient cycle determination code specifically for GCM’s GF(2128), together with
an AES-128 key setup and encryption function for deriving H values from K values.

Our implementation is currently able to fully determine the order of 25000 AES keys
per second on a low-end Linux laptop that has a single 1.7 gHz AMD V140 processor.

Over couple of days we tested 232 AES-128 keys and found progressively smaller
subgroups:

n ≈ 2126.4 K = 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 02

n ≈ 2125.6 K = 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 03

· · ·
n ≈ 296.52 K = 00 00 00 00 00 00 00 00 00 00 00 00 24 3E 8B 40

n ≈ 296.00 K = 00 00 00 00 00 00 00 00 00 00 00 00 37 48 CF CE

n ≈ 293.93 K = 00 00 00 00 00 00 00 00 00 00 00 00 42 87 3C C8

n ≈ 293.41 K = 00 00 00 00 00 00 00 00 00 00 00 00 EC 69 7A A8

As indicated by Figure 3, a significantly smaller group than 2128−32 = 296 was found
with 232 effort, due to the large number of multiplicative subgroup sizes available in
GF(2128).

There is clearly room for improvement. The search is fully parallelizable, and hence
a massively parallel FPGA or GPU-based search could be performed to find subgroups
of magnitude n ≈ 264 or less.



224 M.-J.O. Saarinen

8 Other Polynomial-Evaluation MACs

The security of Polynomial-evaluation MACs against attacks of this type can be de-
termined from the factorization of the group size in straightforward fashion. Trivial
changes can introduce radical differences.

One may consider this difference by comparing the binary field GF (2127) and the
prime field GF(2127 − 1). Here the binary field is perfectly secure due to the fact that
2127− 1 is indeed a prime (if the message is processed in 127-bit blocks). However, the
latter prime field has a multiplicative order 2127− 2 which factors spectacularly into 15
pieces and is exceptionally weak against a cycling attack! We note that the HASH127
MAC is based on the latter [19]. This is illustrated in Figure 3.

If a prime field is to be used, we recommend Sophie Germain primes where q =
(p− 1)/2 is also a prime. Such a field has well-understood cycle properties which may
be easily determined using the Legendre symbol from elementary number theory. A
practical alternative to GCM would use a Sophie Germain prime such as GF (2128 +
12451), which is slightly larger than the 2128 to deter trivial collisions.

It is clear that risks rise quadratically when GCM is used with a 64-bit block cipher
as suggested in Appendix A of [20]. There is a substantial risk of hitting a bad long-term
key and therefore we recommend against using the 64-bit GCM.

9 Conclusions and Future Work

We have shown that the GHASH algorithm has other weak key classes besides the trivial
H = 0 case considered in current literature [16]. This is a result of the multiplicative
group of GF(2128) having a particularly smooth order.

Our attacks allow specific plaintext bits to be targeted by modifying ciphertext bits,
which can have a devastating effect when a short polynomial MAC over a binary field
is combined with a stream cipher in a (lightweight) communication protocol. The prob-
ability of randomly hitting an exploitable weak key with a AES-GCM cryptographic
protocol such as SSH [4], IPSec [5] or TLS [6] is very small.

However, malicious players may exploit subtle weaknesses in cryptographic proto-
cols in surprising ways. One feature of cycle attacks is that an attacker may first test for
short cycles and then force a re-keying event if the test fails; once a long-term key with
a short cycle is found, she may exploit it any number of times.

We have also described a straightforward method of detecting GHASH weak keys.
We performed an exhaustive experiment that found many AES-128 keys that produce
H with order below n ≈ 296.

We suggest that binary fields GF(2n) with prime 2n − 1 or Sophie Germain prime
fields are used in constructions of this type as this minimizes the total number of weak
keys. This was illustrated with the surprising observation that GF(2127) is perfectly
secure against this type of attack while GCM’s GF(2128) is not.

One interesting future research direction and open question is the feasibility of map-
ping the weak H values to K symmetric keys with various block ciphers other than
AES.



Cycling Attacks on GCM, GHASH and Other Polynomial MACs and Hashes 225

References

1. NIST: Recommendation for block cipher modes of operation: Galois/counter mode (GCM)
and GMAC. NIST Special Publication 800-38D (2007)

2. NIST: The advanced encryption standard (AES). FIPS Publication 197 (2001)
3. Bellare, M., Canetti, R., Krawczyk, H.: Keying Hash Functions for Message Authentication.

In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer, Heidelberg (1996)
4. Igoe, K., Solinas, J.: AES Galois counter mode for the secure shell transport layer protocol.

IETF Request for Comments 5647 (2009)
5. Law, L., Solinas, J.: Suite B cryptographic suites for IPsec. IETF Request for Comments 4869

(2007)
6. Salter, M., Rescorla, E., Housley, R.: Suite B profile for transport layer security (TLS). IETF

Request for Comments 5430 (2009)
7. Wegman, M.N., Carter, J.L.: New classes and applications of hash functions. In: 20th Annual

Symposium on Foundations of Computer Science. IEEE Computer Society Press, New York
(1979)

8. Wegman, M.N., Carter, J.L.: New hash functions and their use in authentication and set
equality. Journal of Computer and System Sciences 22, 265–279 (1981)

9. den Boer, B.: A simple and key-economical unconditional authentication scheme. Journal of
Computer Security 2, 65–71 (1993)

10. Taylor, R.: An Integrity Check Value Algorithm for Stream Ciphers. In: Stinson, D.R. (ed.)
CRYPTO 1993. LNCS, vol. 773, pp. 40–48. Springer, Heidelberg (1994)

11. Bierbrauer, J., Johansson, T., Kabatianskii, G., Smeets, B.: On Families of Hash Functions
via Geometric Codes and Concatenation. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS,
vol. 773, pp. 331–342. Springer, Heidelberg (1994)

12. Bernstein, D.J.: Stronger Security Bounds for Wegman-Carter-Shoup Authenticators. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 164–180. Springer, Heidelberg
(2005)

13. Bernstein, D.J.: The Poly1305-AES Message-Authentication Code. In: Gilbert, H., Hand-
schuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 32–49. Springer, Heidelberg (2005)

14. Sarkar, P.: A trade-off between collision probability and key size in universal hashing using
polynomials. Designs, Codes and Cryptography 58(3), 271–278 (2011)

15. Joux, A.: Authentication failures in NIST version of GCM. NIST Comment (2006)
16. Handschuh, H., Preneel, B.: Key-Recovery Attacks on Universal Hash Function Based MAC

Algorithms. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 144–161. Springer,
Heidelberg (2008)

17. Pohlig, S., Hellman, M.: An improved algorithm for computing logarithms over GF (p) and
its cryptographic significance. IEEE Transactions on Information Theory 24(1), 106–110
(1978)

18. Ferguson, N.: Authentication weaknesses in GCM. NIST Comment (May 2005)
19. Bernstein, D.J.: Floating-point arithmetic and message authentication (1999),

http://cr.yp.to/papers.html#hash127
20. McGrew, D.A., Viega, J.: The Galois/counter mode of operation (GCM). Submission to NIST

(2005)

http://cr.yp.to/papers.html#hash127


Collision Attacks on the Reduced Dual-Stream

Hash Function RIPEMD-128

Florian Mendel1, Tomislav Nad2, and Martin Schläffer2

1 Katholieke Universiteit Leuven, ESAT/COSIC and IBBT, Belgium
2 Graz University of Technology, IAIK, Austria

Abstract. In this paper, we analyze the security of RIPEMD-128
against collision attacks. The ISO/IEC standard RIPEMD-128 was pro-
posed 15 years ago and may be used as a drop-in replacement for 128-
bit hash functions like MD5. Only few results have been published for
RIPEMD-128, the best being a preimage attack for the first 33 steps of
the hash function with complexity 2124.5. In this work, we provide a new
assessment of the security margin of RIPEMD-128 by showing attacks
on up to 48 (out of 64) steps of the hash function. We present a collision
attack reduced to 38 steps and a near-collisions attack for 44 steps, both
with practical complexity. Furthermore, we show non-random properties
for 48 steps of the RIPEMD-128 hash function, and provide an example
for a collision on the compression function for 48 steps.

For all attacks we use complex nonlinear differential characteristics.
Due to the more complicated dual-stream structure of RIPEMD-128
compared to its predecessor, finding high-probability characteristics as
well as conforming message pairs is nontrivial. Doing any of these steps
by hand is almost impossible or at least, very time consuming. We present
a general strategy to analyze dual-stream hash functions and use an au-
tomatic search tool for the two main steps of the attack. Our tool is able
to find differential characteristics and perform advanced message modi-
fication simultaneously in the two streams.

Keywords: hash functions, RIPEMD-128, collisions, near-collisions, dif-
ferential characteristic, message modification, automatic tool.

1 Introduction

In the last few years, the cryptanalysis of hash functions has become an impor-
tant topic within the cryptographic community. Especially the collision attacks
on the MD4 family of hash functions have weakened the security assumptions
of many commonly used hash functions. Still, most of the existing cryptanalytic
work has been published for this particular family of hash functions [17,19,20]. In
fact, practical collisions have been shown for MD4, MD5, RIPEMD and SHA-0.
For SHA-1, a collision attack has been proposed with a complexity of about
263 [18]. However, some members of this family including the ISO/IEC standard
RIPEMD-128 (the successor of RIPEMD) seems to be more resistant against
these attacks. In this paper, we analyze the security of RIPEMD-128 against
collision attacks and show that the security margin is less than expected.

A. Canteaut (Ed.): FSE 2012, LNCS 7549, pp. 226–243, 2012.
c© International Association for Cryptologic Research 2012



Collision Attacks on the Reduced Dual-Stream Hash Function RIPEMD-128 227

Related Work. Since its proposal 15 years ago only a few results have been
published for RIPEMD-128. Most published results are concerning the preim-
age resistance of the hash function [13, 16]. The best currently known attack is
a preimage attack for 33 steps and 36 intermediate steps of the hash function
with a complexity only slightly faster than the generic complexity of 2128 [16].
The only work regarding the collision resistance of RIPEMD-128 has been pub-
lished by Mendel et al. [11], where the application of the differential attacks on
RIPEMD by Dobbertin [5] and Wang et al. [17] is studied. However, due to the
increased number of steps and the fact that the two streams are more different
than in RIPEMD, they concluded that RIPEMD-128 is secure against this type
of attacks.

Our Contribution. In this paper, we first provide a general strategy to analyze
dual-stream hash functions in Sect. 2. We analyze different methods to find high-
probability differential characteristics which work for both streams. Similar as in
the attack on RIPEMD [17], characteristics in two streams are impossible with
a high probability. Therefore, in our attacks an automatic search tool is essential
for finding valid differential characteristics [4, 10]. This is especially important
in the first round of a hash function where characteristics are usually quite
dense. In this first round, one usually assumes that conditions imposed by the
characteristic can be fulfilled efficiently using message modification techniques.
However, message modification is much more difficult in the dual-stream case
since two state words are updated using a single message word. This reduced
freedom could in general be compensated with hand-tuned advanced message
modification techniques [8, 9, 15, 20]. However, another contribution of our work
is to provide a fully automatic tool which can be used to find conforming message
pairs in the first round of a dual-stream hash function.

Table 1. Summary of our new and previous results on RIPEMD-128

component attack steps complexity generic reference

hash collision 38 example, 214 264 Sect. 4

hash near-collision 44 example, 232 247.8 Sect. 5.1

hash non-randomness 48 270 276 Sect. 5.2

compression collision 48 example, 240 264 Sect. 5.3

hash preimage 33 2124.5 2128 [13]

hash preimage interm. 35 2121 2128 [13]

hash preimage interm. 36 2126.5 2128 [16]

We apply our attack strategy and tools to the ISO/IEC standard RIPEMD-128
which we describe in Sect. 3. Using our automatic tools, we are able to construct
the first practical collisions for up to 38 steps of RIPEMD-128 with a complexity
of 214. We describe the collision attack in details in Sect. 4. The attack can be
extended (Sect. 5) to practical near-collisions on 44 steps with complexity 232.
Furthermore, we provide a theoretical distinguisher of the hash function for 48



228 F. Mendel, T. Nad, and M. Schläffer

steps (3 out of 4 rounds) and show that 3 rounds of the RIPEMD-128 com-
pression function are not collision free. Our results are summarized in Table 1,
together with all known previous results. Finally, we conclude in Sect. 6 and
discuss directions of future work on hash functions with parallel state update
transformation.

2 Cryptanalysis of Dual-Stream Hash Functions

In this section, we describe our attack strategy for the cryptanalysis of dual-
stream hash functions. The general attack strategy is based on the recent results
in cryptanalysis of the MD4-family of hash functions [17, 20]. However, the ap-
plication of this strategy is nontrivial in the case of dual stream hash functions.
Since in each step, one message word is used to update two state words, the
freedom of an attacker in finding valid differential characteristics and perform-
ing message modification is limited. Hence, a more careful analysis is required
to overcome this problem.

2.1 Collision Attacks on Hash Functions

In the following, we first give a brief overview of the attack strategy used in the
recent collision attacks on the MD4-family of hash functions [17,20]. All attacks
basically use the same strategy which we adopt for dual-stream hash functions.
The high-level strategy can be summarized as follows:

1. Find a characteristic for the hash function that holds with high probability
after the first round of the hash function.

2. Find a characteristic (not necessary with high probability) for the first round
of the hash function.

3. Use message modification techniques to fulfill conditions imposed by the
characteristic in the first round. This increases the probability of the char-
acteristic.

4. Use random trials to find values for the remaining free message bits such
that the message follows the characteristic.

The most difficult and important part of the attack is to find a good differential
characteristic for both the first round and the remaining rounds of the hash
function, since this defines the final attack complexity. There are several methods
to find good differential characteristics. The second important part of the attack
is to find conforming inputs for the complex nonlinear differential characteristic
in the first round of the hash function using message modification techniques.

2.2 Collision Attacks on Dual-Stream Hash Functions

In the following, we will describe our approach to construct good differential
characteristics and find colliding message pairs for dual-stream hash functions.
We focus on hash functions like RIPEMD-128, but the general idea is applicable
to any hash function with two or more streams.



Collision Attacks on the Reduced Dual-Stream Hash Function RIPEMD-128 229

Finding Suitable Differential Characteristics. If the two streams of the
hash function are the same except for constant additions, the same differential
characteristic can be used in both streams. For instance, in the case of RIPEMD,
the permutation and rotation values are indeed equal for both streams. Hence,
it is sufficient to find a collision-producing characteristic for only one stream
(3 rounds) and apply it simultaneously to both streams [17]. Nevertheless, the
number of necessary conditions increases for two streams. Hence, it is more likely
to have contradicting conditions. In fact, Wang et al. reported that among 30
selected collision-producing characteristics only one can produce a real collision.

If the two streams are more different, we first need to find a differential charac-
teristic for the hash function after round 1, which holds with a high probability in
both streams. One approach is to find such characteristics is to use a linearized
model of the hash function and algorithms from coding theory [2, 7, 14]. This
works quite well for hash functions with a regular message expansion and step
update transformation (like SHA-1), and can be applied to dual-stream hash
functions in a straight-forward way.

However, the linearization approach does not work well for hash functions with
a permutation of words in the message expansion and different rotation values in
the state update transformation (RIPEMD-128 and RIPEMD-160). One usually
gets linear differential characteristics with high Hamming weight and hence, a
high complexity. However, for such hash functions, we can still make use of the
approach of Wang et al. in the attacks on MD4, RIPEMD and MD5 [17, 20].
The idea is to use differences in one or more message words to find local (or
inner) collisions within a few steps in the last round(s) of the hash function.
Then a suitable characteristic for the remaining steps, preferably also using short
local collisions, has to be constructed. Although this is obviously more difficult
for dual-stream hash functions, we were able to construct such high-probability
differential characteristics for reduced RIPEMD-128 (see Sect. 4.1).

Once, the characteristic after round 1 is fixed we need to find a characteristic
(not necessary with high probability) for the first round of the hash function
for both streams. Note that in the previous part of the attack it might still
be possible to construct inner collisions with hand by choosing the differences
carefully. However, to construct a valid nonlinear differential characteristic for
both streams in the first round, an automatic search tool is needed. While one can
use complex differential characteristics in both streams, we aim for differential
characteristics that are sparse in at least one of the two streams, since such sparse
characteristics will then also reduce the complexity of the message modification
step.

Using Message Modification Techniques. Once we have fixed the differen-
tial characteristic for both streams we start with the message search. In the first
round, the freedom of the whole message block can be used to get a conforming
message pair for the first 16 steps. For single-stream hash function, basic mes-
sage modification techniques simply choose conforming state words and invert
each step update transformation to get the message word [20]. However, as al-
ready noted by Wang et al. [17], message modification is more complicated for



230 F. Mendel, T. Nad, and M. Schläffer

two streams since the conditions on two state words need to be fulfilled using
a single message word. While in RIPEMD the same message word is used in
the same step of the left and right stream, this is not the case in RIPEMD-128,
which significantly increases the complexity of message modification.

In the attack on RIPEMD, two techniques have been proposed exploiting
the freedom of other message bits using carry effects, the Boolean function and
previous message words. The same rotation values in RIPEMD allow an easier
application of this idea since it is still possible to fulfill conditions from LSB to
MSB. However, for streams with different rotation values, previously corrected
conditions may become invalid again. In general, conditions on two state words
using a single message word can be fulfilled using advanced message modification
techniques. Many dedicated techniques have been proposed in recent years [8,
9, 15, 20], which could also be used to fulfill conditions in the first round of
dual-stream hash functions.

To simplify the message modification we use a more general approach. In-
stead of complicated, dedicated techniques, we use an automated tool for the
message modification in the first round. To be more precise, we use the same
tool as for the differential path search in the first round. Instead of searching
for valid differential characteristics in both streams, we search for valid bit-wise
assignments of 0’s and 1’s to the message and state bits in the first round. Since
we solve for conforming message words bit-wise, a different message word per-
mutation, different rotation values and carry effects are handled automatically,
similar as in the search for differential characteristics. Moreover, this approach
can be generalized to any ARX based design.

The disadvantage of our automated bit-wise approach is a slightly higher com-
plexity, compared to a hand-tuned word-wise approach. However, this increased
costs can be amortized by randomizing message words at the end of round 1 to
find solutions efficiently for the high-probability characteristic of the remaining
rounds.

2.3 Automatic Search Tool

The application of the above strategies is far from being trivial and requires an
advanced set of techniques and tools to be successful. Due to the increased com-
plexity of dual-stream hash functions with different streams, finding good differ-
ential characteristics by hand is almost impossible. Therefore, we have developed
an automatic tool which can be used for finding complex nonlinear differential
characteristics as well as for solving nonlinear equations involving conditions on
state words and free message bits, i.e. to find confirming message pairs. Our tool
is based on the approach of Mendel et al. [10] to find both complex nonlinear
differential characteristics and conforming message pairs for SHA-2.

The basic idea is to consider differential characteristics which impose arbi-
trary conditions on pairs of bits using generalized conditions [4]. Generalized
conditions are inspired by signed-bit differences and take all 16 possible condi-
tions on a pair of bits into account. Table 2 lists all these possible conditions
and introduces the notation for the various cases.



Collision Attacks on the Reduced Dual-Stream Hash Function RIPEMD-128 231

Table 2. Notation for possible generalized conditions on a pair of bits [4]

(Xi, Xi
∗) (0, 0) (1, 0) (0, 1) (1, 1)

? � � � �
- � - - �
x - � � -
0 � - - -
u - � - -
n - - � -
1 - - - �
# - - - -

(Xi, X
∗
i ) (0, 0) (1, 0) (0, 1) (1, 1)

3 � � - -
5 � - � -
7 � � � -
A - � - �
B � � - �
C - - � �
D � - � �
E - � � �

Using these generalized conditions and propagating them in a bitsliced man-
ner, we can construct complex differential characteristics in an efficient way. The
basic idea of the search algorithm is to randomly pick a bit from a set of bit
positions with predefined conditions, impose a more restricted condition and
compute how this new condition propagates. This is repeated until an inconsis-
tency is found or all unrestricted bits from the set are eliminated. Note that this
general approach can be used for both, finding differential characteristics and
conforming message pairs.

For example, the search strategy for finding nonlinear characteristics works
as follows (for a more detailed description of the search algorithm or how the
conditions are propagated we refer to [4, 10]):

1. Define a set of unrestricted bits (?) and unsigned differences (x).
2. Pick a random bit from the set.
3. Impose a zero-difference (-) on unrestricted bits (?), or randomly choose a

sign (u or n) for unsigned differences (x).
4. Check how the new conditions propagate.
5. If an inconsistency occurs, remember the last bit and jump back until this

bit can be restricted without leading to a contradiction.
6. Repeat from step 2 until all bits from the set have been restricted.

We use the same strategy to find conforming input pairs for a given differential
characteristic. Instead of picking an unrestricted bit (?) we pick an undetermined
bit without difference (-) and assign randomly a value (0 or 1) until a solution
is found:

1. Define a set of undetermined bits without difference (-).
2. Pick a random bit from the set.
3. Randomly choose the value of the bit (0 or 1).
4. Check how the new conditions propagate.
5. If an inconsistency occurs, remember the last bit and jump back until this

bit can be restricted without leading to a contradiction.
6. Repeat from step 2 until all bits from the set have been restricted.



232 F. Mendel, T. Nad, and M. Schläffer

Note that the efficiency of finding a conforming message pair can be increased
if the undetermined bits without difference (-) are picked in a specific order.
The order strongly depends on the specific hash function. In general, fully deter-
mining word after word turns out to be a good approach for word-wise defined
ARX-based hash functions. Using this approach, we can instantly (milliseconds)
find solutions for the first round of dual-stream hash functions without the need
for hand-tuned advanced message modification techniques.

3 Description of RIPEMD-128

RIPEMD-128 was designed by Dobbertin, Bosselaers and Preneel in [6] as a
replacement for RIPEMD. It is an iterative hash functions based on the Merkle-
Damg̊ard design principle [3,12] and processes 512-bit input message blocks and
produces a 128-bit hash value. To guarantee that the message length is a multiple
of 512 bits, an unambiguous padding method is applied. For the description of
the padding method we refer to [6].

S
tr
ea
m

1

S
tr
ea
m

2

Mj+1 Mj+1

≪ 64 ≪ 32 ≪ 96

Hj

Hj+1

Fig. 1. Structure of the RIPEMD-128 compression function

Like its predecessor, the function of RIPEMD-128 consists of two parallel
streams. In each stream the state variables are updated corresponding to the
message block and combined with the previous chaining value after the last
step, depicted in Figure 1. While RIPEMD consists of two parallel streams of
MD4, the two streams are designed differently in the case of RIPEMD-128. In
the following, we describe the compression function in detail.

Each stream of the compression function of RIPEMD-128 basically consists
of two parts: the state update transformation and the message expansion. Fur-
thermore, RIPEMD-128 consists of a feed-forward where the input and output
state words are added in a different order. For a detailed description we refer
to [6].



Collision Attacks on the Reduced Dual-Stream Hash Function RIPEMD-128 233

State Update Transformation. The state update transformation of each
stream starts from a (fixed) initial value IV of four 32-bit words B−4, B−3,
B−2, B−1. and updates them in 4 rounds of 16 steps each. In each step one
message word is used to update the four state variables. Figure 2 shows one step
of the state update transformation of each stream of RIPEMD-128.

Bi−3

Bi−4

Bi

Bi−1

Bi−1

Bi−2

Bi−2

Bi−3

Ki

Wi

f

≪ s

Fig. 2. The step update transformation of RIPEMD-128

The function f is different in each round. fr is used for the r-th round in the
left stream, and f5−r is used for the r-th round in the right stream (r = 1, . . . , 4):

f1(x, y, z) = x⊕ y ⊕ z,

f2(x, y, z) = (x ∧ y) ∨ (¬x ∧ z),

f3(x, y, z) = (x ∨ ¬y)⊕ z,

f4(x, y, z) = (x ∧ z) ∨ (y ∧ ¬z).

A step constantKr is added in every step; the constant is different for each round
and for each stream. For the actual values of the constants we refer to [6], since
we do not need them in the analysis. For both streams the following rotation
values s given in Table 3 are used.

Table 3. The rotation values s for each step and each stream of RIPEMD-128

Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

left
Round 1 11 14 15 12 5 8 7 9 11 13 14 15 6 7 9 8

stream
Round 2 7 6 8 13 11 9 7 15 7 12 15 9 11 7 13 12
Round 3 11 13 6 7 14 9 13 15 14 8 13 6 5 12 7 5
Round 4 11 12 14 15 14 15 9 8 9 14 5 6 8 6 5 12

right
Round 1 8 9 9 11 13 15 15 5 7 7 8 11 14 14 12 6

stream
Round 2 9 13 15 7 12 8 9 11 7 7 12 7 6 15 13 11
Round 3 9 7 15 11 8 6 6 14 12 13 5 14 13 13 7 5
Round 4 15 5 8 11 14 14 6 14 6 9 12 9 12 5 15 8



234 F. Mendel, T. Nad, and M. Schläffer

Message Expansion. The message expansion of RIPEMD-128 is a permuta-
tion of the 16 message words in each round. Different permutations are used for
the left and the right stream. For both streams the message words are permuted
according to Table 4.

Table 4. The index of the message words mi which are used as the expanded message
words Wi in each step and each stream of RIPEMD-128

Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

left
Round 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

stream
Round 2 7 4 13 1 10 6 15 3 12 0 9 5 2 14 11 8
Round 3 3 10 14 4 9 15 8 1 2 7 0 6 13 11 5 12
Round 4 1 9 11 10 0 8 12 4 13 3 7 15 14 5 6 2

right
Round 1 5 14 7 0 9 2 11 4 13 6 15 8 1 10 3 12

stream
Round 2 6 11 3 7 0 13 5 10 14 15 8 12 4 9 1 2
Round 3 15 5 1 3 7 14 6 9 11 8 12 2 10 0 4 13
Round 4 8 6 4 1 3 11 15 0 5 12 2 13 9 7 10 14

Feed-Forward. After the last step of the state update transformation, the ini-
tial values B−4, . . . , B−1 and the output values of the last step of the left stream
B63, . . . , B60 and the last step of the right stream B′

63, . . . , B
′
60 are combined,

resulting in the final value of one iteration (feed-forward). The result is the final
hash value or the initial value for the next message block:

B−1 �B62 �B′
61

B−4 �B63 �B′
62

B−3 �B60 �B′
63

B−2 �B61 �B′
60

4 Collision Attacks on RIPEMD-128

To find collisions in reduced RIPEMD-128 we use the strategy proposed in
Sect. 2.2. The attack consists of 3 major parts given as follows:

1. Starting Point: Find a good start setting, i.e. differences in only a few
specific message words that may lead in a differential characteristic with
high probability after step 15.

2. Differential Characteristic: Search for a high-probability differential char-
acteristic for the whole hash function where at most one stream has a low
probability in step 0-15.

3. Message Pair: Find a colliding message pair using automated message
modification and random trials.



Collision Attacks on the Reduced Dual-Stream Hash Function RIPEMD-128 235

4.1 Finding a Starting Point

In MD4-like hash functions, differences are introduced and canceled using dif-
ferences in the expanded message words. Since RIPEMD-128 has two streams
with different permutation of message words, the first step in the attack is to
determine those message words which may contain differences. We have several
constraints such that the whole attack can be carried out efficiently.

First of all, we aim for a high probability differential characteristics after
step 15 in both streams. Such high probability differential characteristics can
be constructed if the differences introduced by the message words are canceled
immediately using local collisions spanning over only a few steps. The shortest
local collision in the MD4 step update goes over 4 steps. However, due to the
different message permutation used in each stream, it is difficult to achieve short
local collisions in both streams simultaneously.

Another possibility is to cancel all differences in each stream as early as possi-
ble in round 2 and find message words, such that new differences are introduced
late in round 3. A further constraint is to have a short local collision and hence
sparse differential characteristic in one stream between step 0-15 such that the
message modification part can be carried out more efficiently (see Sect. 2.2).

A single message word which seems to be a good choice is m13. In this case,
we get one short local collision between round 1 and round 2 in the left stream
and one slightly longer local collision between round 1 and round 2 in the right
stream. Both local collisions end in the first few steps of round 2. Furthermore,
the message word m13 introduces differences very late in the last few steps of
round 3 (see Fig. 3). Note that a similar approach was used by Dobbertin in the
attack on RIPEMD [5]. Unfortunately, no local collision spanning over 5 steps
in the left stream between round 1 and 2 can be constructed which renders the
attack impossible.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 7 4 13 1 10 6 15 3 12 0 9 5 2 14 11 8 3 10 14 4 9 15 8 1 2 7 0 6 13 11 5 12

5 14 7 0 9 2 11 4 13 6 15 8 1 10 3 12 6 11 3 7 0 13 5 10 14 15 8 12 4 9 1 2 15 5 1 3 7 14 6 9 11 8 12 2 10 0 4 13

left

right

impossible

Fig. 3. Using only message word m13

A better choice is to use differences in two message words, like it was done by
Wang et al. in the attack on RIPEMD [17]. If we choose differences in m0 and
m6 then we get for the left stream one local collision over 6 steps in round 1,
and another local collision over 4 steps in round 2. Note that in the right stream
a short local collision over 4 steps (step 16-20) is actually impossible. This is



236 F. Mendel, T. Nad, and M. Schläffer

due to the fact that for f3 (ONX-function), a local collision over 4 steps with
differences in only two message does not exist. Hence, we combine in the right
stream the two local collisions resulting in one long local collision between step
3 and 20. In round 3, the first difference is added in step 38. Hence, using this
starting point we can get a collision for 38 steps of RIPEMD-128.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 7 4 13 1 10 6 15 3 12 0 9 5 2 14 11 8 3 10 14 4 9 15 8 1 2 7 0 6 13 11 5 12

5 14 7 0 9 2 11 4 13 6 15 8 1 10 3 12 6 11 3 7 0 13 5 10 14 15 8 12 4 9 1 2 15 5 1 3 7 14 6 9 11 8 12 2 10 0 4 13

left

right

Fig. 4. Using message words m0 and m6

4.2 Finding a Differential Characteristic

Once we have fixed the starting point, i.e. the message words which may contain
differences, we use an automated tool to find high-probability differential char-
acteristics. Note that we do not fix the message difference prior to the search to
allow the tool to find an optimal solution.

In order to get a differential characteristics resulting in a low attack complex-
ity, we aim for a low Hamming weight difference in state word B21. The best we
could find is a differential characteristic with 2 differences in B21 (see Table 8).
Furthermore, the Boolean function XOR in the first round of the left stream pro-
vides less freedom in constructing local collisions than the non-linear functions.
Hence, we first search for a differential characteristic in the left stream.

Once the characteristic in the left stream is fixed, we use an arbitrary first
message block to fulfill the conditions on the chaining value. Since we have
14 conditions on the chaining value (see Table 8), finding the 1st block has a
complexity of about 214.

Next, we search for a differential characteristic in the right stream. To get a
low complexity for the message search in round 2, we search for characteristics
with only a few differences in state words B′

14 and B′
15. Using our search tool,

we can find many differential characteristic for the left and right stream within
only a few minutes on an ordinary PC. A colliding differential characteristic for
38 steps of RIPEMD-128 is given in Table 8.

4.3 Finding a Confirming Message Pair

To fulfill all conditions imposed by the differential characteristic in the first
round, we need to apply message modification techniques. Since we have many
conditions in the first 6 steps of the left stream and the first 15 steps of the
right stream this may not be an easy task. However, using our tool and general-
ized conditions, we can do message modification for the first 16 steps efficiently



Collision Attacks on the Reduced Dual-Stream Hash Function RIPEMD-128 237

and immediately within milliseconds on a PC. Of course, by hand-tuning basic
message modification the complexity might be improved, but using our tool this
phase of the message search can be fully automated. Furthermore, the cost of
message modification is fully amortized by randomizing e.g. message word m12

to find a solution also for the high-probability characteristic in round 2 (and 3).
Using the approximately 230 possible value for m12, we can find a solution for
the differential characteristic (complexity 214 after round 1) including message
modification in less than a second on our PC. The resulting message pair for a
collision on 38 steps of RIPEMD-128 is given in Table 5.

Table 5. Collision for 38 steps of RIPEMD-128

M1
9431bddf 7b9827d6 f54a64a9 df41a58a fd707a50 dad10eb6 48b0cc76 be66cb8c

ab3b7afa 084ba98e ab0a4798 2a4b0d06 a79bf8b7 3fd6008a 4da2112d 849c5b9c

M2
952bc70f d0840848 eafffa57 0ca3c38a 45383ffb ddc6a9a1 796f1e20 0b9ff55f

ddb80113 f0ffe1b5 b7d75dc0 82c7298f f2c442f4 96cbf293 c441d662 06e9eec2

M∗
2

952bc50e d0840848 eafffa57 0ca3c38a 45383ffb ddc6a9a1 79ef1e21 0b9ff55f

ddb80113 f0ffe1b5 b7d75dc0 82c7298f f2c442f4 96cbf293 c441d662 06e9eec2

ΔM2
00000201 00000000 00000000 00000000 00000000 00000000 00800001 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

H2 a0a00507 fd4c7274 ba230d53 87a0d10a

H∗
2 a0a00507 fd4c7274 ba230d53 87a0d10a

ΔH2 00000000 00000000 00000000 00000000

5 Extending the Attack to More Steps

In this section, we will show how the collision attack on 38 steps can be ex-
tended to more steps of the hash function by using a weaker attack setting, i.e.
near-collisions and subspace distinguisher. Furthermore, we present a free-start
collision for 48 steps of RIPEMD-128 compression function.

5.1 Near-Collisions for the Hash Function

It is easy to see that by appending 6 steps to the characteristic for 38 steps one
gets a near-collision for 44 steps of the hash function with only 6 differences in
the hash value. However, note that while in the collision attack one can always
append a message block with the correct padding this can not be done for a
near-collision. Hence, in order to construct a near-collision for the hash function
the padding has to be fixed on beforehand. Luckily, we have such a high amount
of freedom in our attack the we can easily fix m15,m14 and parts of m13 in the
attack to guarantee that the padding is correct. The result is a practical near-
collision (see Table 6) for 44 steps of RIPEMD-128 with complexity of 232. Note
that the generic attack to find a near-collision with only 6 differences in the hash
value has a complexity of about 247.8.



238 F. Mendel, T. Nad, and M. Schläffer

Table 6. Near-collision for 44 steps of RIPEMD-128

M1
2ca95052 425a8f73 08be4537 c790e019 0dcc7d4e 29075123 75327262 8d0d4803

1e57a6a4 73550688 59263eb1 98c6f6ce f03b8b4b 62d3fdf7 638db196 68c0b7b3

M2
aa1437ef f3646663 c339343a 52c43a1a 779995d5 7b6bd784 e927bb74 5e7cb217

7af2ac15 93392ccf 07e847cf 86318b70 d9d33105 809693dd 000003b8 00000000

M∗
2

aa1435ee f3646663 c339343a 52c43a1a 779995d5 7b6bd784 e9a7bb75 5e7cb217

7af2ac15 93392ccf 07e847cf 86318b70 d9d33105 809693dd 000003b8 00000000

ΔM2
00000201 00000000 00000000 00000000 00000000 00000000 00800001 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

H2 92dd7ef7 b1f15ee4 b3e6a250 9db2131b

H∗
2 929d5ef7 b1f15ee4 b3e6a250 bdb21b5f

ΔH2 00402000 00000000 00000000 20000844

5.2 Non-randomness for the Hash Function

In this section, we show non-random properties for 48 steps (3 rounds) of the
hash function. It is based on the differential q-multicollision distinguisher and
the differential characteristic for 44 steps which is extended to 48 steps.

Differential q-multicollisions were introduced by Biryukov et al. in the crypt-
analysis of the block cipher AES-256 [1]. Note that in [1] the attack is described
for a block cipher. However, it can be easily adapted for a hash function. Below we
repeat the basic definition and lemma, we need for the attack on RIPEMD-128.

Definition 1. A set of one difference and q inputs

{ΔM ; (M1), (M2), · · · , (M q)}

is called a differential q-multicollision for h(·) if

h(M1)� h(M1 �ΔM) = h(M2)� h(M2 �ΔM)

= · · · = h(M q)� h(M q �ΔM).

The complexity of the generic attack is measured in the number of queries.

Lemma 1. To construct a differential q-multicollision for an ideal has function
with an n-bit output an adversary needs at least

O(q · 2
q−1
q+1 ·n

)

queries on the average for small q.

The proof for Lemma 1 works similar as in [1] for an ideal cipher. Finally,
we construct a differential q-multicollision to show non-random properties for
RIPEMD-128 reduced to 48 steps. The attack has a complexity of about 4 · 268
while the generic attack has a complexity of about 276.

5.3 Collisions for the Compression Function

When attacking the compression function an adversary has additional the pos-
sibility to inject difference in the chaining input. Using this additional freedom



Collision Attacks on the Reduced Dual-Stream Hash Function RIPEMD-128 239

and the same techniques as for the collision attack on the RIPEMD-128 hash
function (see Section 4), we can construct a collision for the compression function
of RIPEMD-128 reduced to 48 steps. In Table 9 the differential characteristic is
shown, resulting in a practical collision for 48 steps of the compression function
with a complexity of 240. The example is given in Table 7.

Table 7. Free-start collision for 48 steps of RIPEMD-128

H0 5a1d2fbd cd6d40c7 128dd546 900e0e65

H∗
0 5a1927bd edad5cc7 128dd542 900e0e65

ΔH0 00040800 20c01c00 00000004 00000000

M1
06083719 9ae0b19b 7ffae1ec 637041ad 28d722d7 fa0082c3 5e78f84e 416ee5e7

faf2b4fc 56738a9f 363c6155 cc7d7ae3 0cb5fc95 b362a16f 6cac81a9 cc11fedd

M∗
1

06083719 9ae0b19b 7ffae1ec 637041ad 28d722d7 fa0082c3 5e78f84e 416ee5e7

faf2b4fc 56738a9f 363c6155 cc7d7ae3 0cb5fc95 b362a16f 6cac81a9 cc11fedd

ΔM1
00000200 00000000 00000000 00000000 00000000 00000000 00000001 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

H1 e6428c57 a9f1f589 fc045baf a9cdbc1f

H∗
1 e6428c57 a9f1f589 fc045baf a9cdbc1f

ΔH1 00000000 00000000 00000000 00000000

6 Conclusions and Future Work

In this work, we have presented new results on the ISO/IEC standard
RIPEMD-128, a dual-stream hash function where the message permutation and
rotation values are different in the two streams. More specifically, we have pre-
sented a collision attack on reduced RIPEMD-128 and get practical collisions
for 38 steps of the hash function with a complexity of about 214. Furthermore,
our attack can be extended to near-collisions on 44 steps with complexity 232

and a theoretical distinguisher on the hash function for 48 steps (3 out of 4
rounds) with complexity 270. Furthermore, we present practical collisions for
the RIPEMD-128 compression function, also reduced to 48 steps with complex-
ity 240.

Apart from these new results, we have outlined a strategy to analyze ARX-
based dual-stream hash functions more efficiently. More precisely, we have shown
how to automate the most difficult parts of an attack involving more than one
stream: finding a differential characteristic and performing message modification
in the first round. In particular, message modification had to be hand-tuned or
was omitted in previous attacks on ARX-based hash functions. What remains
for an attacker is to determine a good starting point (possibly using tools from
coding theory) and to assist the tools in the order of guessing words or parts of
the state, to improve the overall complexity.

Ideally, these tools can immediately be applied to more complicated hash
functions. However, the obtained results depend mainly on the choice of the
starting point for the nonlinear tool. If no good starting point can be found or
the search space is too large, no attack can be obtained. Future work is to analyze
also other, stronger dual-stream hash functions like RIPEMD-160. Furthermore,



240 F. Mendel, T. Nad, and M. Schläffer

the tools and techniques used in this paper can also be applied to other ARX-
based hash functions, where more than one state word is updated using a single
message word. Examples are SHA-2 or the SHA-3 candidates Blake and Skein.

Acknowledgments. This work was supported in part by the Research Coun-
cil KU Leuven: GOA TENSE (GOA/11/007), by the IAP Programme P6/26
BCRYPT of the Belgian State (Belgian Science Policy) and by the European
Commission through the ICT programme under contract ICT-2007-216676
ECRYPT II. In addition, this work was supported by the Research Fund KU
Leuven, OT/08/027 and by the Austrian Science Fund (FWF, project P21936).

References

1. Biryukov, A., Khovratovich, D., Nikolić, I.: Distinguisher and Related-Key Attack
on the Full AES-256. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
231–249. Springer, Heidelberg (2009)

2. Brier, E., Khazaei, S., Meier, W., Peyrin, T.: Linearization Framework for Collision
Attacks: Application to CubeHash and MD6. In: Matsui, M. (ed.) ASIACRYPT
2009. LNCS, vol. 5912, pp. 560–577. Springer, Heidelberg (2009)

3. Damg̊ard, I.B.: A Design Principle for Hash Functions. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

4. De Cannière, C., Rechberger, C.: Finding SHA-1 Characteristics: General Results
and Applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 1–20. Springer, Heidelberg (2006)

5. Dobbertin, H.: RIPEMD with Two-Round Compress Function is Not Collision-
Free. J. Cryptology 10(1), 51–70 (1997)

6. Dobbertin, H., Bosselaers, A., Preneel, B.: RIPEMD-160: A Strengthened Ver-
sion of RIPEMD. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 71–82.
Springer, Heidelberg (1996)

7. Indesteege, S., Preneel, B.: Practical Collisions for EnRUPT. In: Dunkelman, O.
(ed.) FSE 2009. LNCS, vol. 5665, pp. 246–259. Springer, Heidelberg (2009)

8. Joux, A., Peyrin, T.: Hash Functions and the (Amplified) Boomerang Attack. In:
Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 244–263. Springer, Heidel-
berg (2007)

9. Kĺıma, V.: Tunnels in Hash Functions: MD5 Collisions Within a Minute. IACR
Cryptology ePrint Archive 2006, 105 (2006)

10. Mendel, F., Nad, T., Schläffer, M.: Finding SHA-2 Characteristics: Searching
through a Minefield of Contradictions. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 288–307. Springer, Heidelberg (2011)

11. Mendel, F., Pramstaller, N., Rechberger, C., Rijmen, V.: On the Collision Re-
sistance of RIPEMD-160. In: Katsikas, S.K., López, J., Backes, M., Gritzalis, S.,
Preneel, B. (eds.) ISC 2006. LNCS, vol. 4176, pp. 101–116. Springer, Heidelberg
(2006)

12. Merkle, R.C.: One Way Hash Functions and DES. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)

13. Ohtahara, C., Sasaki, Y., Shimoyama, T.: Preimage Attacks on Step-Reduced
RIPEMD-128 and RIPEMD-160. In: Lai, X., Yung, M., Lin, D. (eds.) Inscrypt
2010. LNCS, vol. 6584, pp. 169–186. Springer, Heidelberg (2011)



Collision Attacks on the Reduced Dual-Stream Hash Function RIPEMD-128 241

14. Pramstaller, N., Rechberger, C., Rijmen, V.: Exploiting Coding Theory for Col-
lision Attacks on SHA-1. In: Smart, N.P. (ed.) Cryptography and Coding 2005.
LNCS, vol. 3796, pp. 78–95. Springer, Heidelberg (2005)

15. Sugita, M., Kawazoe, M., Imai, H.: Gröbner Basis Based Cryptanalysis of SHA-1.
IACR Cryptology ePrint Archive 2006, 98 (2006)

16. Wang, L., Sasaki, Y., Komatsubara, W., Ohta, K., Sakiyama, K.: (Second) Preim-
age Attacks on Step-Reduced RIPEMD/RIPEMD-128 with a New Local-Collision
Approach. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 197–212.
Springer, Heidelberg (2011)

17. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the hash functions
MD4 and RIPEMD. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 1–18. Springer, Heidelberg (2005)

18. Wang, X., Yao, A., Yao, F.: New Collision Search for SHA-1. Presented at rump
session of CRYPTO (2005)

19. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

20. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)



242 F. Mendel, T. Nad, and M. Schläffer

A Differential Characteristics and Conditions

Table 8. Characteristic for a collision on 38 steps of RIPEMD-128. Bits with gray
background have one additional conditions.

i ∇Bi ∇B′
i ∇mi

-4 --------------------------------

-3 --------------------------------

-2 --------------------------------

-1 --------------------------------

0 -------unnnnunnnnnnnn----------- -------------------------------- ----------------------u--------u

1 ------n--------------nuuuunnnnnn -----------0--------0----------- --0-----------------------------

2 ------unnunnnnnnnnnnnnnnnnnnnnnn -----------0--------0----------- --------------------------------

3 -------------------------------- --0100-----u--------u----0110--- --------------------------------

4 -------------------------------- --1101----1-1-------1----1111--- ---0----------------------------

5 -------------------------------- --unnn00--1-1-------1----unnn-00 --------------------------------

6 -------------------------------- --000010--n-u---00--n----0111-10 --------n----------------------n

7 -------------------------------- 001nuuuu--0-----11111----1001-nu --------------------------------

8 -------------------------------- 110100----1-----un11n-------u--- --------------------------------

9 -------------------------------- un1n00----------1-unn---1---1--- --------------------------------

10 -------------------------------- --n0u1----------0-10000-----1--- --------------------------------

11 -------------------------------- --0nuu------------01n11-----n--- --------------------------------

12 -------------------------------- --110--------------nuuu--------- --------------------------------

13 -------------------------------- ---01--------------11-1--------- --------------------------------

14 -------------------------------- -------------------00-1--------0 --------------------------------

15 -------------------------------- ----------------------n--------n --------------------------------

16 -------------------------------- ----------------------n--------n

17 -------------------------------- ----------------------0--------0

18 -------------------------------- --------------------------------

19 -------------------------------- --------------------------------

20 -------------------------------- --------------------------------

21 ----------------------n--------n --------------------------------

22 ----------------------0--------0 --------------------------------

23 ----------------------1--------1 --------------------------------

24 -------------------------------- --------------------------------

25 -------------------------------- --------------------------------

26 -------------------------------- --------------------------------

27 -------------------------------- --------------------------------

28 -------------------------------- --------------------------------

29 -------------------------------- --------------------------------

30 -------------------------------- --------------------------------

31 -------------------------------- --------------------------------

32 -------------------------------- --------------------------------

33 -------------------------------- --------------------------------

34 -------------------------------- --------------------------------

35 -------------------------------- --------------------------------

36 -------------------------------- --------------------------------

37 -------------------------------- --------------------------------



Collision Attacks on the Reduced Dual-Stream Hash Function RIPEMD-128 243

Table 9. Characteristic for a free-start collision for 48 steps of RIPEMD-128 compres-
sion function. Bits with gray background have one additional conditions.

i ∇Bi ∇B′
i ∇mi

-4 -------------u------u-----------

-3 --0-----00---------011-------1--

-2 -00-00--10-011-----101---10--u--

-1 -1n-11--nu-011-----nnn---10--1-1

0 un1nnnnn00nu01---un101nuunnnn0n0 010-1u-----nuu--1-101101-010-1-1 -----------0----------u--------1

1 nnnnnnnnnnnnnnnnn--010---01--n-u 1nn-n1-----n00-01-110110-n11-00u -------------------100----------

2 --0-----10--unnnnnnnnnnnnnnnnnnn u1n--1000-1n10-0n-un-nnn-unu---1 -----------11--------0---1------

3 --1-----00---------110---10----0 0n0--n1111-01u-u---01uu--1---nu1 -------------------------------1

4 -------------------110---10----1 u11---unn0u11111---001---10--0nu ------------------------110--111

5 -------------------------------- u1----011uuun010-0-1nu----0-01u1 --------------------------------

6 -------------------------------- 0u----10u11uu0n--1-n----10u---0u -------------------------------n

7 -------------------------------- 00------n1n0101--n-0----111---11 -------------------0------------

8 -------------------------------- -1------0unnnnn0000u0000un1----0 --------------------------------

9 -------------------------------- --------110---n11u10111-10n00--- 0----------1---------0----------

10 -------------------------------- ---------01---0unnnnnnnn1u011--- --------------------------------

11 -------------------------------- --------------1011-----nuuuuu--- -------0------------------------

12 -------------------------------- ---------------100-----010------ --------------------------------

13 -------------------------------- -----------------------101------ ------------------------------11

14 -------------------------------- ----------------------0--------- --------------------------------

15 -------------------------------- ----------------------n--------- ------------------------1-------

16 -------------------------------- ----------------------n---------

17 -------------------------------- ----------------------0---------

18 -------------------------------- --------------------------------

19 -------------------------------- --------------------------------

20 -------------------------------- --------------------------------

21 ----------------------n--------- --------------------------------

22 ----------------------0--------- --------------------------------

23 ----------------------1--------- --------------------------------

24 -------------------------------- --------------------------------

25 -------------------------------- --------------------------------

26 -------------------------------- --------------------------------

27 -------------------------------- --------------------------------

28 -------------------------------- --------------------------------

29 -------------------------------- --------------------------------

30 -------------------------------- --------------------------------

31 -------------------------------- --------------------------------

32 -------------------------------- --------------------------------

33 -------------------------------- --------------------------------

34 -------------------------------- --------------------------------

35 -------------------------------- --------------------------------

36 -------------------------------- --------------------------------

37 -------------------------------- --------------------------------

38 -------------------------------- -------------------------n------

39 -------------------------------- -------------------------0------

40 -------------------------------- -------------------------1------

41 ---------0---------------------- --------------------------------

42 ---------u---------------0------ --------------------n-----------

43 ---------1---------------n--0--- --------------------0-----------

44 ---------1---------------1--10-- --------------------1-----------

45 --0---------------0--0---1--nu-- ---------u----------------------

46 --u---------------u--n------11-- ---------0---n------------------

47 -------------------nu----------- --------------------------------



Bicliques for Preimages: Attacks on Skein-512

and the SHA-2 Family�

Dmitry Khovratovich1, Christian Rechberger2, and Alexandra Savelieva3

1 Microsoft Research Redmond, USA
2 DTU MAT, Denmark

3 National Research University Higher School of Economics, Russia

Abstract. We present a new concept of biclique as a tool for preim-
age attacks, which employs many powerful techniques from differential
cryptanalysis of block ciphers and hash functions.

The new tool has proved to be widely applicable by inspiring many
authors to publish new results of the full versions of AES, KASUMI,
IDEA, and Square. In this paper, we show how our concept leads to
the first cryptanalysis of the round-reduced Skein hash function, and
describe an attack on the SHA-2 hash function with more rounds than
before.

Keywords: SHA-2, SHA-256, SHA-512, Skein, SHA-3, hash function,
meet-in-the-middle attack, splice-and-cut, preimage attack, initial struc-
ture, biclique.

1 Introduction

Major breakthrough in preimage attacks on hash functions happened in 2008
when the so-called splice-and-cut framework was introduced. Its applications to
MD4 and MD5 [2,25], and later to Tiger [11] brought amazing results. Internal
properties of message schedule appeared to be limiting application of this frame-
work to SHA-x family [1,3]. However, the concept of biclique introduced in this
paper allows to mitigate such obstacles, as demonstrated by our results.

This is the first work on the concept of biclique cryptanalysis. We focus on
new definitions and algorithms and concentrate on the hash function setting.
As applications, we present an attack on the Skein hash function (the only one
existing so far) and the SHA-2 family . Our findings are summarized in Table 1.

Splice-and-cut framework and its progress. Both splice-and-cut and meet-in-the-
middle attacks exploit the property that a part of a primitive does not make use
of particular key/message bits (called neutral bits). If the property holds, the
computation of this part remains the same when we flip those bits in the other

� This work was supported by the European Commission under contract ICT-2007-
216646 (ECRYPT II) and the Federal Target Program “Scientific and scientific-
pedagogical personnel of innovative Russia“ in 2009-2013 under contract No. P965
from 27 May, 2010.

A. Canteaut (Ed.): FSE 2012, LNCS 7549, pp. 244–263, 2012.
c© International Association for Cryptologic Research 2012



Bicliques for Preimages: Attacks on Skein-512 and the SHA-2 Family 245

part of a primitive. Assume that neutral bits can be found for both parts (also
called chunks). Then a cryptanalyst prepares a set of independent computations
for all possible values of those bits and subsequently checks for a match in the
middle. Efficiency of the attack depends on the number of neutral bits.

Sasaki and Aoki observed [2,25] that compression functions with permutation-
based message schedule are vulnerable to this kind of attack as chunks can be
long. They proposed several ways to improve splice-and-cut framework, including
a very interesting trick referred to as initial structure [3,26]. It can be informally
defined as an overlapping of chunks, where neutral bits, although formally be-
longing to both chunks, are involved in the computation of the proper chunk
only. In our work we aimed to explore the potential of initial structure.

Our Contributions. We replace the idea of the initial structure with a more
formal and general concept of biclique that provides us with a new level of
understanding. In terms of graph theory, bicliques are structures represented by
two sets of states with each state having a relation with all states in another set.
We derive a system of functional equations linking internal states several rounds
apart, and show that it is equivalent to a system of differentials, so the full
structure of states can be built out of a set of trails. The differential view allows
us to apply numerous tools from collision search and differential cryptanalysis.
We propose three generic and flexible algorithms for constructing the bicliques.

Our simple example of biclique application is an attack on round-reduced
Skein-512 hash function, the SHA-3 finalist which currently lacks any other at-
tacks in the hash setting. We penetrate 22 rounds of Skein-512, which is com-
parable to the best attacks on the compression function that survived the last
tweak. Our attack on the compression function of Skein-512 covers 37 rounds.

Our second group of applications is the SHA-2 family. We heavily use differ-
ential trails in SHA-2, message modification techniques from SHA-1 and SHA-0,
trail backtracking techniques from RadioGatun, Grindahl, SHA-1, etc., to build
attacks on 45-round SHA-256 and 50-round SHA-512 (both the best attacks
in the hash mode). For the compression functions, we penetrate up to 7 more
rounds, reaching 52 rounds and violating the security of about 80% of SHA-256.

Table 1. New (second) preimage attacks on Skein-512 and the SHA-2 family

Reference Target Steps Complexity Memory

Pseudo-preimage Second Preimage Preimage (words)

Section 4 Skein-512 22 2508 2511 - 26

Section 6 Skein-512 37 2511.2 - - 264

[1,11] SHA-256 43 2251.9 2254.9 2254.9 26

Section 5 SHA-256 45 2253 2255.5 2255.5 26

Section 6 SHA-256 52 2255 - - 26

[1,11] SHA-512 46 2509 2511.5 2511.5 26

Section 5 SHA-512 50 2509 2511.5 2511.5 24

Section 6 SHA-512 57 2511 - - 26



246 D. Khovratovich, C. Rechberger, and A. Savelieva

2 Bicliques

In this section we introduce preimage attacks with bicliques. We consider hash
functions with block cipher based compression functions H = EN (X)⊕X , where

E is the block cipher keyed with parameter N (notation
N−→ and

N←− will be used
for E computed in forward and backward direction respectively). Depending on
the design, parameters (N , X) will be either (M , CV ) for the most popular
Davies-Meyer mode, or (CV , M) for Matyas-Meyer-Oseas mode, where CV is
the chaining variable and M is the message.

Let f be a sub-cipher of E, and N = {N [i, j]} be a group of parameters for
f . Then a biclique of dimension d over f for N is a pair of sets {Qi} and {Pj}
of 2d states each such that

Qi
N [i,j]−−−−→

f
Pj . (1)

A biclique is used in the preimage search as follows (Figure 1). First, we note
that if N [i, j] yeilds a preimage, then

E : X
N [i,j]−−−−→ Qi

N [i,j]−−−−→
f

Pj
N [i,j]−−−−→ H.

An adversary selects a variable v outside of f (w.l.o.g. between Pj and H) and
checks, for appropriate choices of sub-ciphers g1 and g2, if

∃i, j : Pj
N [i,j]−−−−→
g1

v
?
= v

N [i,j]←−−−−
g2

Qi.

A positive answer yields a candidate preimage. Here, to compute v from Qi, the
adversary first computes X and then derives the output of E as X ⊕H .

To benefit from the meet-in-the-middle framework, the variable v is chosen
so that g1 and g2 are independent of i and j respectively:

Pj
N [∗,j]−−−−→
g1

v
?
= v

N [i,∗]←−−−−
g2

Qi.

Then the complexity of testing 22d messages for preimages is computed as fol-
lows:

C = 2d(Cg1 + Cg2) + Cbicl + Crecheck,

where Cbicl is the biclique construction cost, and Crecheck is the complexity
of rechecking the remaining candidates on the full state. We explain how to
amortize the biclique construction in the next section. Clearly, one needs 2n−2d

bicliques of dimension d to test 2n parameters.

3 Biclique Construction Algorithms

Here we introduce several algorithms for the biclique construction. They differ
in complexity and requirements to the dimension of a biclique and properties of
the mapping f .



Bicliques for Preimages: Attacks on Skein-512 and the SHA-2 Family 247

Q0

Q2

P0

P1

message

CV
P2

Q1

M [3, 3]

M [0, 0]

M [∗, j]

Q3 P3

M [i, j]

M [∗, 3]

M [∗, 0]

M [3, ∗]

M [0, ∗]

H

M [i, ∗] M [∗, j]

M [∗, 0]

M [∗, 3]

Fig. 1. Biclique of dimension 2 in the meet-in-the-middle attack on a Davies-Meyer
compression function

Consider a single mapping in Equation (1)

Q0
N [0,0]−−−−→

f
P0. (2)

We call this a basic computation. Consider the other mappings as differentials
to the basic computation:

∇i

ΔN
i,j−−−→
f

Δj , (3)

so that

Qi = Q0 ⊕∇i, Pj = P0 ⊕Δj , N [i, j] = N [0, 0]⊕ΔN
i,j .

Vice versa, if a computation (2) is a solution to 22d differentials in (3), then it
is a basic computation for a biclique.

The algorithms presented below allow us to reduce the number of differentials
needed for a biclique, and hence construct a biclique efficiently.

Algorithm 1. Let the differences in the set N be defined as the following linear
function:

ΔN
i,j = ΔN

j ⊕∇N
i (4)

Let us fix Q0 and construct Pj as follows:

Q0
N [0,j]−−−−→

f
Pj . (5)

As a result, we get a set of trails:

0
ΔN

j−−→
f

Δj . (6)



248 D. Khovratovich, C. Rechberger, and A. Savelieva

Let us also construct Qi out of P0:

Qi
N [i,0]←−−−−

f
P0, (7)

and get another set of trails:

∇i
∇N

i←−−
f

0. (8)

Suppose that the trails (8) do not affect active non-linear elements in the trails
(6). Then Qi are solutions to the trails (6), so we get the biclique equation:

Qi
N [i,j]−−−−→

f
Pj . (9)

Assume that the computation (7) does not affect active non-linear elements in
the trails (6) with probability 2−t. The probability that 2d computations affect

no condition is 2−t2d . Equation (9) is satisfied with probability 2−t2d , so we need

2t2
d

solutions to Equation (6) to build a biclique (feasible for small d).
This algorithm is used in the preimage attack on the hash function Skein-

512. For non-ARX primitives with predictable diffusion it can even be made
deterministic. For example, for AES [8] and Square it is easy to build truncated
differential trails that do not share active non-linear components with probability
1. As a result, the biclique construction can be simply explained using a picture
of trails (Figure 2). �

Trails
share no active elements

Biclique

Fig. 2. Biclique construction out of non-interleaving trails

Algorithm 2. (Modification of Algorithm 1 for the case when the hash function
operates in DM mode, and we can control internal state and injections of message
M within the biclique). Assume that the mapping f uses several independent
parts (blocks) of message M via message injections (like in SHA-2). Consider
a message group with property (4) but do not define the messages yet. Choose
a state Q0 satisfying sufficient conditions to build sets of trails (6) and (8)
that do not share active non-linear components. Then find N [0, 0] such that

Q0
N [0,0]−−−−→

f
P0 conforms to both sets of trails. Since the sets do not share active

non-linear components, we get

Qi
N [i,j]−−−−→

f
Pj ,

where Qi = Q0 ⊕∇i, Pj = P0 ⊕Δj .



Bicliques for Preimages: Attacks on Skein-512 and the SHA-2 Family 249

We can control message injections in f , and therefore, are able to define
N [0, 0] block by block similarly to the trail backtracking [5]. The procedure that
ensures that the message N [0, 0] is well-defined, and the trails (6) and (8) do not
contradict, was first proposed in [1] and referred to as message compensation. �

Algorithm 3. (for bicliques of dimension 1) We apply this rebound-style [20]
algorithm if the mapping f is too long for differential trails with reasonable
number of sufficient conditions. Then we split it into two parts f1 and f2 and
consider two differential trails with probabilities p and q, respectively:

0
ΔN

−−→
f1

Δ, ∇ ∇N

−−→
f2

0. (10)

We fix the state S between f1 and f2, and consider a quartet of states:

S, S ⊕Δ, S ⊕∇, S ⊕Δ⊕∇.

Suppose that a quartet of states is a quartet in the middle of the boomerang
attack, which happens with probability p2q2 for a randomN under an approriate
independency assumption. Then we derive input states Q0, Q1 and output states
P0, P1, which are linked as follows (see also Figure 3):

Q0
N−→
f1

S
N−→
f2

P0; Q0
N⊕ΔN

−−−−−→
f1

S ⊕Δ
N⊕ΔN

−−−−−→
f2

P1;

Q1
N⊕∇N

−−−−−→
f1

S ⊕∇ N⊕∇N

−−−−−→
f2

P0; Q1
N⊕ΔN⊕∇N

−−−−−−−−→
f1

S ⊕Δ⊕∇ N⊕ΔN⊕∇N

−−−−−−−−→
f2

P1.

Therefore, we get a biclique, where the set of parameters N is defined as follows:

N [0, 0] = N ; N [0, 1] = N ⊕ΔN ; N [1, 0] = N ⊕∇N ; N [1, 1] = N ⊕ΔN ⊕∇N .�

??

? ?

N [0, 0] N [1, 1]

N [1, 0]

N [0, 1]

Guess
difference

in computations

Resolve
in the middle

Q0 Q1

P1P0

Construct
solutions

Fig. 3. Rebound-style algorithm for biclique construction

We use Algorithm 2 in the attacks on SHA-256 and SHA-512, and Algorithm 3
is applied in the preimage attack on the Skein compression function. In practice,
we use freedom in the internal state and in the message injection fulfill conditions
in both trails with tools like message modification and auxiliary paths.



250 D. Khovratovich, C. Rechberger, and A. Savelieva

4 Simple Case: Second Preimage Attack on Skein-512

Skein [10] is a SHA-3 finalist, and gets a lot of cryptanalytic attention. Differ-
ential [4] and rotational cryptanalysis [17] led the authors of Skein to tweak the
design twice. As a result, the rotational property, which allowed cryptanalysts
to penetrate the highest number of rounds, does not exist anymore in the new
version of Skein. Hence the best known attack are near-collisions on up to 24
rounds (rounds 20-43) of the compression function of Skein [4,27]. Very recently
near-collisions attacks on up to 32 rounds of Skein-256 were demonstrated [29].

The cryptanalysis of Skein in the hash setting is very limited. Rotational
attacks did not extend to the Skein hash function, and the differential attacks
were not applied in this model. In our paper, we demonstrate the first attack in
this arguably much more relevant setting. At the time of publication this is the
only cryptanalytic attack on round-reduced version of Skein hash function.

We chose to give the simplest example in the strongest model rather than
to attack the highest number of rounds. The attack we present is on a 22-
round version of Skein-512 hash function. In addition to the biclique concept, an
interesting feature of our attack is the application of statistical hypothesis test
at the matching phase. This technique is applied for the first time and allows
to cover more rounds than direct or symbolic (indirect) matching with the same
computational complexity.

4.1 Second Preimage Attack on the Reduced Skein-512 Hash

Details of Skein specification are provided in Appendix A. We consider Skein-512
reduced to rounds 3–24. In the hash function setting we are given the messageM
and the tweak value T , and have to find a second preimage. We produce several
pseudo-preimages (CV,M ′) to a call of the compression function that uses 512
bits of M , and then find a valid prefix that maps the original IV to one of the
chaining values that we generated. Let f map the state after round 11 to the
state before round 16. We construct a biclique of dimension 3 for f following
Algorithm 1 (Section 3):

1. Define ΔN
j = (0, j $ 58, j $ 58, 0, 0, 0, 0, 0) and ∇N

i = (0, 0, 0, i $ 55, i $
55, 0, 0, 0).

2. Generate Q0 and compute P0, P1, . . . , P7. If the trails 0
ΔN

j−−→
f

Δj are not

based on the linear difference propagation, repeat the step.
3. Compute Qi and check if the condition on active non-linear elements is

fulfilled. If so, output a biclique.

We use a differential trail that follows a linear approximation that is a variant of
the 4-round differential trail, which can be obtained in a similar way to the one
presented in the paper [4]. The number of active bits is given in Table 2. Further
details of the trail are provided Appendix A in Table 5. For the trails based on



Bicliques for Preimages: Attacks on Skein-512 and the SHA-2 Family 251

the 3-bit difference ΔN
j we have 206 sufficient conditions in total. Computations

of Qi out of P0 do not affect those conditions with probability 2−0.3 (verified
experimentally). Therefore, for the eight states Pj the probability is 2−0.3·8 ≈
2−3. We construct a 4-round biclique with complexity at most 2206+3 = 2209.
Note that we have 1024− 209 = 815 degrees of freedom left.

Table 2. Number of active bits in the most dense Δ-trail in 4 rounds of Skein-512

I0 I1 I2 I3 I4 I5 I6 I7 Conditions in the round

S12−A 3 3

S13−A 6 3 9

S14−A 6 3 3 12 24

S15−A 3 6 3 24 12 6 6 3 63

S15−P 21 9 12 4 3 18 3 37 107 (message addition)

Probabilistic matching. The matching variable v consists of bits 30, 31, 53 of
the word 1 after round 24. Due to carry effects, there is a small probability that
those bits require the knowledge of the full message to be computed in both
directions. This probability was experimentally estimated as 0.09. The matching
bits can be computed from both chunks independently with probability 0.91, so
with probability ≈ 2−0.1 we have a type-I error [22], i.e. a false positive, and
the candidate is discarded (insisting on probability 1, as in earlier work, would
have resulted in an attack on a smaller number of rounds).

Layout of the attack is as follows:

1. Build a biclique of dimension 3 in rounds 12-15 with key additions (key
addition + 4 rounds + key addition).

2. Compute forward chunk in rounds 16-19, backward chunks in rounds 8-11,
and bits I130,31,53 of the the state S24−P in both directions in the partial
matching procedure.

3. Check for the match in these bits, produce 23 key candidates, which get
reduced to 22.9 due to the type-I error. Check them for the match on the full
state.

4. Generate a new biclique out of the first one by change of key bits.
5. Repeat steps 2-5 2507.5 times and generate 2507.5−509+2.9 = 21.6 full pseudo-

preimages.
6. Match one of the pseudo-preimages with the real CV0.

Complexity. The biclique construction cost can be made negligible, since many
bicliques can be produced out of one. Indeed, we are able to flip most of the bits
in the message so that the biclique computation between the message injections
remain unaffected, and only output states are changed. Every new biclique needs
half of rounds 8-11 and 16-19 recomputing, and half of rounds 3-5 and 21-24
computing to derive the value of the matching variable. Hence each biclique tests
26 preimage candidates at cost of (2+ 2+1.5) · 8+ (2+ 2+2) · 8 = 92 rounds of



252 D. Khovratovich, C. Rechberger, and A. Savelieva

22-round Skein, or 22.3 calls of the compression function, taking a recheck into
account. As a result, a full pseudo-preimage is found with complexity 2508.4.
We need 21.6 ≈ 3 pseudo-preimages to match one of 2510.4 prefixes, so the total
complexity is 2511.2.

5 Preimage Attacks on the SHA-2 Hash Functions

The SHA-2 family is the object of very intensive cryptanalysis in the world of
hash functions. We briefly review parts of the specification [23] needed for the
cryptanalysis in Appendix B. In contrast to its predecessors, collision attacks
are no longer the major threat with the best attack on 24 rounds of the hash
function [13,24]. So far the best attacks on the SHA-2 family are preimage at-
tacks on the hash function in the splice-and-cut framework [1] and a boomerang
distinguisher that is only applicable for the compression function [18].

We demonstrate that our concept of biclique adds two rounds to the attack on
SHA-256, four rounds to the attack on SHA-512, and many more when attacking
the compression functions. The full layout of our attacks is provided in Table 3.
The biclique is based on a 6-round trail with few conditions, easy to use as a ∇-
differential. The number of attacked rounds depends significantly on its position,
because:

– message injections in rounds 14-15 are partially determined by the padding
rules;

– chunks do not bypass the feedforward operation due to high nonlinearity of
the message schedule;

– chunks do not have maximal length, otherwise the biclique trail becomes too
dense.

SHA-256. We construct a 6-round biclique with Algorithm 2, Section 3 and
place it in rounds 17-22 (see Appendix C for more details of the attack).

SHA-512. The biclique is similar to the one we build for SHA-256. However,
our attack on SHA-512 does not fix all the 129 padding bits of the last block.
This approach still allows to generate short second preimages by using the first
preimage to invest the last block that includes the padding and perform the
preimage attack in the last chaining input as the target.

For a preimage attack without a first preimage, expandable messages such as
described in [16] can be used. This adds no noticeable cost as the effort is only
slightly above the birthday bound.

In addition, the compression function attack needs to fulfill the following two
properties. Firstly, the end of the message (before the length encoding, i.e., the
LSB of W 13) has to be ’1’. Secondly, the length needs to be an exact multiple
of the block length, i.e., fix the last nine bits of W 15 to ”1101111111” (895). In
total 11 bits need to be fixed.

Details of the attack are presented in Appendix D.



Bicliques for Preimages: Attacks on Skein-512 and the SHA-2 Family 253

Table 3. Parameters of the preimage attack on reduced SHA-2 hash functions

Target Attack layout

Biclique

Rounds Dimension ΔM bits: ∇M bits: Complexity Freedom used

SHA-256 17-22 3 W 17
25,26,27 W 22

22,23,31 232 416

hash Message compensation

function Equations Constants used in the biclique

(45-round 9 2

version) Chunks Matching

Forward Backward Partial matching Matching bits Complexity per match

2-16 23-36 37 → 38 ← 1 A38
0,1,2,3 23

Biclique

Rounds Dimension ΔM bits: ∇M bits: Complexity Freedom used

SHA-512 21-26 3 W 21
60,61,62 W 26

53,54,55 232 832

hash Message compensation

function Equations Constants used in the biclique

(50-round 9 2

version) Chunks Matching

Forward Backward Partial matching Matching bits Complexity per match

6-20 27-40 41 → 43 ← 5 A43
0,1,2 23

6 Attacks on the Compression Functions: SHA-2 and
Skein

6.1 Preimage Attacks on the Skein Compression Functions

In this section we provide an attack on the 37-round Skein-512 compression
function. Control over the tweak value gives us additional freedom both in chunks
and the biclique construction.

The attack parameters are listed in Table 4. We build a biclique in rounds 16-
23, and apply the attack to rounds 2-38. Bicliques are constructed by Algorithm
3 (Section 3). We use two differential trails: based on ΔM (Δ-trail) for rounds
16-19 (including key addition in round 19) and based on ∇M (∇-trail) for rounds
20-23. The Δ- and ∇- trails are based on the evolution of a single difference in
the linearized Skein and have probability 2−52 and 2−29 respectively.

The biclique is constructed as follows. First, we restrict to rounds 19-20, where
the compression function can be split into two independent 256-bit transforma-
tions. A simple approach with table lookups gives a solution to restricted trails
with amortized cost 1 (more efficient methods certainly exist). Then we ex-
tend this solution to an 8-round biclique by the bits of K5. We use K5 in the
messagemodification-like process and adjust the sufficient conditions in rounds
16-23. We have 221 degrees of freedom for that (computed experimentally). As
many as 96 bits of freedom do not affect the biclique at all and are used to reduce
the amortized cost to only a single round.



254 D. Khovratovich, C. Rechberger, and A. Savelieva

Table 4. Parameters of the preimage attack on the 37-round Skein-512 compression
function

Biclique

Rounds Dimension ΔM bits ∇M bits Complexity Freedom used

16-23 1 K[0] K[4]63 2256 162

Chunks Matching

Forward Backward Partial matching Matching bit Matching pairs Complexity

8-15 24-31 32 → 38 = 2 ← 7 I325 22 21.1

In the matching part we recompute 29 rounds per biclique. However, a single
key bit flip affects only half of rounds 12-15 and 24-27, and also we need to
compute only a half of rounds 2-5 and 35-38. In total, we recompute 42 rounds,
or 21.2 calls of the compression function per structure, and get 2 candidates
matching on one bit. The full preimage is found with complexity 2511.2.

6.2 Preimage Attacks on the SHA-2 Compression Functions

In this section we provide short description of attacks on the SHA-2 compression
functions. The number of rounds we obtain for the compression function setting
is in both cases comparable to [18], the latter however does not allow extension
to the hash function nor does it violate any “traditional” security requirement.
The preimage attack on the compression function is relevant if it is faster than
2n, though not all these attacks are convertible to the hash function attacks. As a
result, we can apply the splice-and-cut attack with the minimum gain to squeeze
out the maximum number of rounds. This implies that we consider bicliques of
dimension 1. In differential terms, we consider single bit differences ΔM

1 and
∇M

1 . As a result, we get sparse trails with few conditions, and can extend them
to more rounds.

– Build 11-round biclique out of a 11-round ∇-trail in rounds 17-27 (SHA-256)
and 21-31 (SHA-512). The trail is a variant of the trail in Table 7 that starts
with one-bit difference.

– Construct message words in the biclique as follows. In SHA-256 fix all
the message words to constants, then apply the difference ΔM

1 to W 17,
and assume the linear evolution of ΔM

1 when calculating ΔW 17+i from
W 2, . . . ,W 17. Assume also the linear evolution of ∇M when calculating
∇W 27−i from W 28, . . . ,W 42. Analogously for SHA-512.

– Build the biclique using internal message words as freedom, then spend the
remaining 5 message words to ensure the Δ and ∇-trails in the message
schedule. As a result, we get the longest possible chunks (2-16 and 28-42 in
SHA-256).

Therefore, we gain 5 more rounds in the biclique, and two more rounds in the
forward chunk. This results in a 52-round attack on the SHA-256 compression
function, and a 57-round attack on the SHA-512 compression function.



Bicliques for Preimages: Attacks on Skein-512 and the SHA-2 Family 255

7 Discussion and Conclusions

We introduced a new concept of bicliques for meet-in-the-middle attacks. We pre-
sented several applications of biclique cryptanalysis, including the best preimage
attacks so far on SHA-256, SHA-512, and the SHA-3 finalist Skein. In line with
most cryptanalytic work, we focused on obtaining results on as many rounds as
possible. Though all the functions in this paper are ARX-based, our technique
can also be applied to other narrow-pipe designs.

Overall, the differential view gives a cryptanalyst much more freedom and
flexibility compared to previous attacks. We can outline the following benefits
of applying the biclique concept:

– Use of differential trails in a biclique with a small number of sufficient con-
ditions;

– Deterministic algorithms to build a biclique, which can be adapted for a
particular primitive;

– Use of various tools from differential cryptanalysis like trail backtracking [5],
message modification and neutral bits [6,15,21,28], condition propagation [9],
and rebound techniques [20].

Status of SHA-2 and Skein-512. For SHA-256, SHA-512, and Skein-512, we
considered both the hash function and the compression function setting. In all
settings we obtained cryptanalytic results on more rounds than any other known
method. Based on these results we conclude that Skein-512 is more resistant
against splice-and-cut cryptanalysis than SHA-512.

Other Applications of Biclique Cryptanalysis. Soon after the initial cir-
culation of this work, the idea of biclique cryptanalysis found other applications.
Bicliques have large potential in attacks on block ciphers, as has been demon-
strated by recent attacks on the full versions of popular block ciphers. Among
them we mention key recovery faster than brute force for AES-128, AES-192,
and AES-256 by Bogdanov et al. [8]. Cryptanalysis of AES employed algorithms
for biclique construction which are partly covered in Section 3. In this context we
also mention new and improved results on Kasumi by Jia et al. [14] and IDEA
by Biham et al. [7] as well as more results announced both publicly [12,19,30]
and privately.

Acknowledgements. Part of this work was done while Christian Rechberger
was with KU Leuven and visiting MSR Redmond, and while Alexandra Savelieva
was visiting MSR Redmond. The authors would like to thank Eik List and
anonymous reviewers for useful comments on earlier versions of the paper.

References

1. Aoki, K., Guo, J., Matusiewicz, K., Sasaki, Y., Wang, L.: Preimages for Step-
Reduced SHA-2. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
578–597. Springer, Heidelberg (2009)



256 D. Khovratovich, C. Rechberger, and A. Savelieva

2. Aoki, K., Sasaki, Y.: Preimage Attacks on One-Block MD4, 63-Step MD5 and
More. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381,
pp. 103–119. Springer, Heidelberg (2009)

3. Aoki, K., Sasaki, Y.: Meet-in-the-Middle Preimage Attacks Against Reduced SHA-
0 and SHA-1. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 70–89.
Springer, Heidelberg (2009)

4. Aumasson, J.-P., Çalık, Ç., Meier, W., Özen, O., Phan, R.C.-W., Varıcı, K.: Im-
proved Cryptanalysis of Skein. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS,
vol. 5912, pp. 542–559. Springer, Heidelberg (2009)

5. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: RadioGatun, a belt-and-mill
hash function. In: NIST Cryptographic Hash Workshop (2006),
http://radiogatun.noekeon.org/

6. Biham, E., Chen, R.: Near-Collisions of SHA-0. In: Franklin, M. (ed.) CRYPTO
2004. LNCS, vol. 3152, pp. 290–305. Springer, Heidelberg (2004)

7. Biham, E., Dunkelman, O., Keller, N., Shamir, A.: New Data-Efficient Attacks on
Reduced-Round IDEA. Cryptology ePrint Archive, Report 2011/417 (2011),
http://eprint.iacr.org/

8. Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique cryptanalysis of the
full AES. In: Lee, D.H. (ed.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 344–371.
Springer, Heidelberg (2011), http://eprint.iacr.org/2011/449

9. De Cannière, C., Rechberger, C.: Finding SHA-1 Characteristics: General Results
and Applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 1–20. Springer, Heidelberg (2006)

10. Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas,
J., Walker, J.: The Skein hash function family, version 1.3 (October 1, 2010)

11. Guo, J., Ling, S., Rechberger, C., Wang, H.: Advanced Meet-in-the-Middle Preim-
age Attacks: First Results on Full Tiger, and Improved Results on MD4 and SHA-2.
In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 56–75. Springer, Hei-
delberg (2010)

12. Hong, D.: Biclique attack on the full HIGHT. To appear in ICISC 2011 (2011)
13. Indesteege, S., Mendel, F., Preneel, B., Rechberger, C.: Collisions and Other Non-

random Properties for Step-Reduced SHA-256. In: Avanzi, R.M., Keliher, L., Sica,
F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 276–293. Springer, Heidelberg (2009)

14. Jia, K., Yu, H., Wang, X.: A meet-in-the-middle attack on the full KASUMI.
Cryptology ePrint Archive, Report 2011/466 (2011), http://eprint.iacr.org/

15. Joux, A., Peyrin, T.: Hash Functions and the (Amplified) Boomerang Attack. In:
Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 244–263. Springer, Heidel-
berg (2007)

16. Kelsey, J., Schneier, B.: Second Preimages on n-Bit Hash Functions for Much Less
than 2n Work. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp.
474–490. Springer, Heidelberg (2005)

17. Khovratovich, D., Nikolić, I., Rechberger, C.: Rotational Rebound Attacks on Re-
duced Skein. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 1–19.
Springer, Heidelberg (2010)

18. Lamberger, M., Mendel, F.: Higher-order differential attack on reduced SHA-256
(2011), http://eprint.iacr.org/2011/037.pdf

19. Mala, H.: Biclique cryptanalysis of the block cipher SQUARE. Cryptology ePrint
Archive, Report 2011/500 (2011), http://eprint.iacr.org/

http://radiogatun.noekeon.org/
http://eprint.iacr.org/
http://eprint.iacr.org/2011/449
http://eprint.iacr.org/
http://eprint.iacr.org/2011/037.pdf
http://eprint.iacr.org/


Bicliques for Preimages: Attacks on Skein-512 and the SHA-2 Family 257

20. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The Rebound Attack:
Cryptanalysis of Reduced Whirlpool and Grøstl. In: Dunkelman, O. (ed.) FSE
2009. LNCS, vol. 5665, pp. 260–276. Springer, Heidelberg (2009)

21. Naito, Y., Sasaki, Y., Shimoyama, T., Yajima, J., Kunihiro, N., Ohta, K.: Improved
Collision Search for SHA-0. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 21–36. Springer, Heidelberg (2006)

22. Neyman, J., Pearson, E.S.: The testing of statistical hypotheses in relation to
probabilities a priori. In: Proc. Camb. Phil. Soc. (1933)

23. NIST. FIPS-180-2: Secure Hash Standard (August 2002),
http://www.itl.nist.gov/fipspubs/

24. Sanadhya, S.K., Sarkar, P.: New Collision Attacks against Up to 24-Step SHA-
2. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS,
vol. 5365, pp. 91–103. Springer, Heidelberg (2008)

25. Sasaki, Y., Aoki, K.: Preimage Attacks on Step-Reduced MD5. In: Mu, Y., Susilo,
W., Seberry, J. (eds.) ACISP 2008. LNCS, vol. 5107, pp. 282–296. Springer, Hei-
delberg (2008)

26. Sasaki, Y., Aoki, K.: Finding Preimages in Full MD5 Faster Than Exhaustive
Search. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 134–152.
Springer, Heidelberg (2009)

27. Su, B., Wu, W., Wu, S., Dong, L.: Near-Collisions on the Reduced-Round Compres-
sion Functions of Skein and BLAKE. Cryptology ePrint Archive, Report 2010/355
(2010), http://eprint.iacr.org/

28. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

29. Yu, H., Chen, J., Jia, K., Wang, X.: Near-Collision Attack on the Step-Reduced
Compression Function of Skein-256. Cryptology ePrint Archive, Report 2011/148
(2011), http://eprint.iacr.org/

30. Chen, S.Z., Xu, T.M.: Biclique Attack of the Full ARIA-256. Cryptology ePrint
Archive, Report 2012/011 (2012), http://eprint.iacr.org/

A Skein Specification and Details of Differential Trail
Design

Skein-512 is based on the block cipher Threefish-512 — a 512-bit block cipher
with a 512-bit key parametrized by a 128-bit tweak. Both the internal state I
and the key K consist of eight 64-bit words, and the tweak T is two 64-bit words.
The compression function F (CV, T,M) of Skein is defined as:

F (CV, T,M) = ECV,T (M)⊕M,

where EK,T (P ) is the Threefish cipher, CV is the previous chaining value, T
is the tweak, and M is the message block. The tweak value is a function of
parameters of message block M .

Threefish-512 transforms the plaintext P in 72 rounds as follows:

P → Add K0 → 4 rounds → Add K1 → . . . →→ Add K18 → C.

http://www.itl.nist.gov/fipspubs/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/


258 D. Khovratovich, C. Rechberger, and A. Savelieva

The subkey Ks = (Ks
0 ,K

s
1 , . . . ,K

s
7) is produced out of the key K = (K[0],K[1],

. . . ,K[7]) as follows:

Ks
j = K[(s+ j) mod 9], 0 ≤ j ≤ 4; Ks

5 = K[(s+ 5) mod 9] + T [s mod 3];

Ks
6 = K[(s+ 6) mod 9] + T [(s+ 1) mod 3]; Ks

7 = K[(s+ 7) mod 9] + s,

where the additions are all modulo 264, s is a round counter, T [0] and T [1] are

tweak words, T [2] = T [0] + T [1], and K[8] = C240 ⊕
⊕7

j=0 K[j] with constant
C240 optimized against rotation attacks.

One round transforms the internal state as follows. Eight words I0, I1, . . . , I7

are grouped into pairs and each pair is processed by a simple 128-bit function
MIX. Then all the words are permuted by the operation PERM. Details of these
operations are irrelevant for the high-level description and can be found in [10].
We use the following notation for the internal states in round r:

Sr−A MIX−−−→ Sr−M PERM−−−−−→ Sr−P

Local collision in Skein-512. If an attacker controls both the IV and the tweak
he is able to introduce difference in these inputs so that one of subkeys has zero
difference. As a result, he gets a differential which has no difference in internal
state for 8 rounds. The lowest weight of input and output differences is achieved
with the combination ΔK[6] = ΔK[7] = ΔT [1] = δ, which gives difference
(0, 0, . . . , 0, δ) in the subkey K0 and (δ, 0, 0, . . . , 0) in K8, and zero difference
in the subkey K4. The local collisions for further rounds are constructed anal-
ogously. We use the following differences in the compression function attack to
make a local collision in rounds 8-15 and 24-31:

ΔK[0] = ΔT [0] = ΔT [1] = 1$ 63; ΔK[3] = ΔK[4] = ΔT [1] = 1$ 63.

B Specification of the SHA-2 Family of Hash Functions

The SHA-2 hash functions are based on a compression function that updates
the state of eight 32-bit state variables A, . . . , H according to the values of 16
32-bit words M0, . . . , M15 of the message. SHA-384 and SHA-512 operate on
64-bit words. For SHA-224 and SHA-256, the compression function consists of
64 rounds, and for SHA-384 and SHA-512 — of 80 rounds. The full state in
round r is denoted by Sr.

The i-th step uses the i-th word W i of the expanded message. The message
expansion works as follows. An input message is split into 512-bit or 1024-bit
message blocks (after padding). The message expansion takes as input a vector
M with 16 words and outputs a vector W with n words. The words W i of
the expanded vector are generated from the initial message M according to the
following equations (n is the number of steps of the compression function):

W i =

{
M i for 0 ≤ i < 15

σ1(W
i−2) +W i−7 + σ0(W

i−15) +W i−16 for 15 ≤ i < n
. (11)



Bicliques for Preimages: Attacks on Skein-512 and the SHA-2 Family 259

Table 5. Details of the most dense Δ-trail for the result on the reduced Skein-512 hash
function

Round Active bits

Before Round 12 0000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000

0001110000000000000000000000000000000000000000000000000000000000

After Round 12 0000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000

0001110000000000000000000000000000000000000111000000000000000000

0001110000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000

After Round 13 0001110000000000000000000000000000000000000111000000000000000000

0000000000000000000000000000000000000000000000000000000000000000

0001110000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000

0001110000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000

0001110000000000011100000000000000000000000111000000000001110000

After Round 14 0001110000000000000000000000000000000000000000000000000000000000

0001110000000000000000000000000000000000000111000000000000000000

0001110000000000000000000000000000000000000000000000000000000000

1111110000000011111100001110000000000011100111000000000001110000

0001110000000000011100000000000000000000000111000000000001110000

0001110000000000000000000000111000000000000000000000000000000000

0001110000000000000000000000000000000000000111000000000000000000

0001110000000000000000000000000000000000000000000000000000000000

After Round 15 1110000000000011111100001110000000000011100111000000000001110000

0000000000000000000000000000000000011100000111000000000000011100

0000000000000000011100000000111000000000000111000000000001110000

0000000000000000000000000000000000000000000110110000000000000000

0000000000000000000000000000000000000000000111000000000000000000

0000000000011100011100000000111000001110000111000000000001110000

0000000000000000000000000000000000000000000111000000000000000000

1111110011100011111100110110011111100011100000111000011101110000

The round function of all the SHA-2 functions operates as follows:

T
(i)
1 = Hi +Σ1(E

i) + Ch(Ei, F i, Gi) +Ki +W i,

T
(i)
2 = Σ0(Ai) +Maj(Ai, Bi, Ci),

Ai+1 = T
(i)
1 + T

(i)
2 , Bi+1 = Ai, Ci+1 = Bi, Di+1 = Ci,

Ei+1 = Di + T 1
(i), F

i+1 = Ei, Gi+1 = F i, Hi+1 = Gi.

Here Ki is a round constant. The bitwise boolean functions Maj and Ch as well
as two GF(2)-linear functions Σ0(x) and Σ1(x) used in the round function, and
message schedule functions σ0(x) and σ1(x) are defined in Table 6. A ≫ x and
A% x denote bit-rotation and bit-shift of A by x positions to the right.

C Details on the 46-Round SHA-256 Attack

C.1 Biclique Construction

Here we provide more details on the biclique construction algorithm:



260 D. Khovratovich, C. Rechberger, and A. Savelieva

Table 6. Details of SHA-2 hash family internal operation

Function SHA-2 Family

SHA-224 and SHA-256 SHA-384 and SHA-512

Ch(x, y, z) x ∧ y ⊕ x ∧ z

Maj(x, y, z) x ∧ y ⊕ x ∧ z ⊕ y ∧ z

Σ0(x) (x ≫ 2)⊕ (x ≫ 13)⊕ (x ≫ 22) (x ≫ 28) ⊕ (x ≫ 34)⊕ (x ≫ 39)

Σ1(x) (x ≫ 6)⊕ (x ≫ 11)⊕ (x ≫ 25) (x ≫ 14) ⊕ (x ≫ 18)⊕ (x ≫ 41)

σ0(x) (x ≫ 7)⊕ (x ≫ 18) ⊕ (x � 3) (x ≫ 1) ⊕ (x ≫ 8)⊕ (x � 7)

σ1(x) (x ≫ 17) ⊕ (x ≫ 19) ⊕ (x � 10) (x ≫ 19) ⊕ (x ≫ 61) ⊕ (x � 6)

1. Fix a group of 6-round differential trails ∇i
∇M

i−−→ 0 (the one based on 3-bit
difference is listed in Table 7). Derive a set of sufficient conditions on the
internal states (Table 8).

2. Fix the message compensation equations with constants c1, c2, . . . , c9 (Sec-
tion C.2).

3. Fix an arbitrary Q0 and modify it so that most of conditions in the compu-
tation Q0 → P0 are fulfilled. Derive Qi out of Q0 by applying ∇i.

4. Fix a group of 2-round trails (the one based on 3-bit difference is given in
Table 7) (ΔW 17 → ΔS19) as a Δ-trail (Equation (6)) in rounds 17-19.

5. Choose W 17,W 18, . . . ,W 22 and constants c8, c9 so that the conditions in the
computations Q0 → Pj , j = 0, . . . , 7 are fulfilled. Produce all Pj .

Finally, we produce Q0, . . . , Q7 and P0, . . . , P7 that conform to the biclique equa-
tions.

The complexity of building a single biclique is estimated as 232. 7 message
words left undefined in the message compensation equations give us enough
freedom to reuse a single biclique up to 2256 times. The complexity to recalculate
the chunks is upper bounded by 22 calls of the compression function. The total
amortized complexity of running a single biclique and producing 22 matches on
4 bits is 23 calls of the compression function. Since we need 2252 matches, the
complexity of the pseudo-preimage search is 2253. A full preimage can be found
with complexity approximately 21+(253+256)/2 ≈ 2255.5 by restarting the attack

procedure 2
256−253

2 = 21.5 times. Memory requirements are ≈ 21.5 × 24 words.

C.2 Message Compensation

Since any consecutive 16 message words in SHA-2 bijectively determine the rest
of the message block at an iteration of compression function, we need to place the
initial structure within a 16-round block and define such restrictions on message
dependencies that maximize the length of chunks.

We discovered that with W 17 and W 22 selected as the words with for a 6-step
initial structure, it is possible to expand 16-round message block {W 12, . . . ,W 27}
by 10 steps backwards and 9 steps forwards, so that {W 2, . . . ,W 16} are calcu-
lated independently of W 17 , and {W 23, ...,W 36} are calculated independently



Bicliques for Preimages: Attacks on Skein-512 and the SHA-2 Family 261

of W 22. Below we define the message compensation conditions that make such
chunk separation possible (neutral bit words are outlined in frames):

−σ1(W
25) +W 27 = c1; −W 19 − σ1(W

24) +W 26 = c2

−σ1(W
23) +W 25 = c3 − W 17 +W 24 = c4

−σ1(W
21) +W 23 = c5; − σ1(W

19) +W 21 = c6

−σ1( W
17 ) +W 19 = c7; W 12 + σ0(W

13) = c8;

W 13 + W 22 = c9

(12)

W 14, . . . ,W 16,W 18, and W 20 can be chosen independently of both W 17 and
W 22, so we can assign W 14 and W 15 with 64-bit length of the message to satisfy
padding rules (additionally, 1 bit of W 13 needs to be fixed). W 18 and W 20 are
additional freedom for constructing the biclique. We use bits 25, 26, 27 as neutral
in W17. To prevent this difference from interleaving with the backward trail
difference in round 19, we restrict the behavior of the forward trail as specified
in Table 7 (aggregated conditions are given in Table 8).

C.3 Trails

The basic differential trail for the biclique is a 6-round trail in the backward
direction (ΔQ ← ∇M) that starts with the difference in bits 22, 23, and/or 31
in W22. The trail is briefly depicted in Table 7 with references to the sufficient
conditions (which work out for all the 7 possible differences) in Table 8.

Table 7. Details for biclique in SHA-256. Differential ∇- and Δ- trails (active bits).

Λ′ = {6, 11, 12, 16, 17, 20, 23, 24, 29, 30}, Φ = Σ1{25, 26, 27} = {0, 1, 2, 14, 15, 16, 19, 20, 21},
∗ refers to an arbitrary difference.

Trail R-nd A B C D E F G H W Cond-s

∇ 17 - - 22,23,31 - - Λ′ - * - 1
∇ 18 - - - 22,23,31 - - Λ′ - - 3,4
∇ 19 - - - - 22,23,31 - - Λ′ - 7-11
∇ 20 - - - - - 22,23,31 - - - 12
∇ 21 - - - - - - 22,23,31 - - 13
∇ 22 - - - - - - - 22,23,31 -
∇ 23 - - - - - - - - 22,23,31

Δ 18 * - - - 25,26,27 - - - - 2
Δ 19 * * - - Φ 25,26,27 - - - 5,6

With three neutral bits we construct a biclique with 8 starting points for
chunks in each direction. First, we choose the initial state A17, . . . , H17 so that
the conditions 1 and 5 are fulfilled. Then we proceed with a standard trail
backtracking procedure modifying the starting state if needed. Next, in round
18 we check whether the value of E stops carries in the forward trail. If not, we



262 D. Khovratovich, C. Rechberger, and A. Savelieva

Table 8. Sufficient conditions for the Δ- and ∇-trails in SHA-256

F – how the conditions are fulfilled (IC – initial configuration, SM – state modification).
C – total number of independent conditions; DW – conditions fulfilled by message words.

Ai – i-th bit of A; Λ = Σ1{22, 23, 31} = {6, 11, 12, 16, 17, 20, 25, 29, 30}

Round Conditions Purpose F C DW

17 1: A22,23,31 = B22,23,31 Absorption (MAJ) IC 3 0

2 : (W⊕E18)
25,26,27 = 0 Stop forw. carry SM 6 0

18 3 : EΛ′
= 1, Absorption (IFF) SM 9 0

4 : (D ⊕ E19)
22,23,31 = 0 Stop carry SM 3 0

5 : F 25,26,27 = G25,26,27, Absorption (IFF) IC 9 0

6 : (S1⊕ E19)
Φ = 0 Stop forw. carry SM 2 0

19 7: F 22,31 = G22,31 Absorption (IFF) SM 2 0

8: F 23 �= G23 Pass (IFF) SM 1 0

9: CH25 �= S125 Force carry (H) SM 1 0

10: (S1⊕H)Λ = 1 Stop carry (H) SM 9 0

11: (CH ⊕H)24 = 0 Force carry (H) SM 1 0

11’: (CH ⊕H)23 = 0 Force carry (H) SM 1 0

20 12 : E22,23,31 = 0 Absorption (IFF) W 19 21 21

21 13 : E22,23,31 = 1 Absorption (IFF) W 20 21 21

change the value of D in the starting state accordingly. Then we sequentially
modify the initial state to fulfill the conditions 2-11.

The last two conditions are affected by the message words W19 and W20. We
need to fulfill three bit conditions for everyW17, used in the attack. Therefore, we
spend 3 ·8 ·2 = 48 degrees of freedom in message wordsW17,W18,W19,W20,W21.
Note that there is a difference in W19 determined by the difference in W17 due to
the message compensation. We have fixed the constants c6 and c7 from Eq. 12
while defining W19 and W21. In total, we construct the biclique in about 232

time required to find proper W19 and W20.
Amount of freedom used. In total, we have 512 degrees of freedom in the

message and 256 degrees of freedom in the state. The biclique is determined by
the state in round 17 and message wordsW17–W21. The choice ofW19 andW21 is
equivalent to the choice of constants c6, c7 in Eq. 12. We spend 256+5 ·32 = 416
degrees of freedom for the biclique fulfilling as few as 47+42 (Table 8) conditions.
After the biclique is fixed, there are 768 − 416 = 352 degrees of freedom left.
We spend 32 + 32 + 2 = 66 for the padding, leaving 286 degrees of freedom.
Therefore, one biclique is enough for the full attack.

D Details on the 50-Round SHA-512 Attack

D.1 Biclique Construction

Steps of the algorithm are similar to those in Section C.1, except the trails are
described in Table 9. By applying similar reasoning, we estimated that a full
preimage can be found with complexity ≈ 2511.5 and memory ≈ 21.5× 24 words.



Bicliques for Preimages: Attacks on Skein-512 and the SHA-2 Family 263

D.2 Message Compensation

The system of compensation equations is defined as follows:

−σ1(W
29) +W 31 =c1;−W 23 − σ1(W

28) +W 30 = c2;W
17 + W 26 = c9

−σ1(W
27) +W 29 =c3;− W 21 +W 28 = c4; −σ1(W

25) +W 27 = c5;

−σ1(W
23) +W 25 =c6;−σ1( W

21 ) +W 23 = c7; W 16 + σ0(W
17) = c8;

We use 1 LSB of W 13 and 10 LSB of W 15 for padding. The choice of constants
c8, c9 and fixed lower 53 bits of W 26 provide us with sufficient freedom. By
choosing c9 we define lower 53 bits of W 17. Having c8 chosen, we derive 45 lower
bits of W 16 fixed due to σ0. We get lower 37 bits of W 15, 29 bits of W 14 and 21
bit of W 13 fixed. As we need only one LSB of W 13 and 10 LSB of W 15 to be
fixed, we use lower 33 bits of W 26 and c9, and lower 25 bits of c8.

D.3 Trails

The basic differential trail for the biclique is a 6-round trail in the backward
direction (ΔQ ← ∇M) that starts with the difference in bits 53, 54, and/or 55
in W 26. We also use bits 60, 61, 62 as neutral in W 21. To prevent this difference
from interleaving with the backward trail difference in round 19, we restrict the
behavior of the forward trail. The trails are depicted in Table 9.

Table 9. Details for biclique in SHA-512. Differential ∇- and Δ-trails (active bits).

Λ = Σ1{53, 54, 55} = {12, 13, 14, 35, 36, 37, 39, 40, 41}, Φ = Σ1{60, 61, 62} ={17, 20, 21, 42, 43, 44, 46, 47, 48},
∗ refers to an arbitrary difference.

Trail Round A B C D E F G H Cond-s

∇ 21 - - 53,54,55 - - Λ - * 3
∇ 22 - - - 53,54,55 - - Λ - 12
∇ 23 - - - - 53,54,55 - - Λ 12
∇ 24 - - - - - 53,54,55 - - 24
∇ 25 - - - - - - 53,54,55 - 24
∇ 26 - - - - - - - 53,54,55

Δ 22 * - - - 60,61,62 - - - 3
Δ 23 * * - - Φ 60,61,62 - - 18



Converting Meet-In-The-Middle Preimage

Attack into Pseudo Collision Attack:
Application to SHA-2

Ji Li1, Takanori Isobe2, and Kyoji Shibutani2

1 Sony China Research Laboratory, China
Ji.Li@sony.com.cn

2 Sony Corporation, Japan
{Takanori.Isobe,Kyoji.Shibutani}@jp.sony.com

Abstract. In this paper, we present a new technique to construct a
collision attack from a particular preimage attack which is called a par-
tial target preimage attack. Since most of the recent meet-in-the-middle
preimage attacks can be regarded as the partial target preimage attack,
a collision attack is derived from the meet-in-the-middle preimage at-
tack. By using our technique, pseudo collisions of the 43-step reduced
SHA-256 and the 46-step reduced SHA-512 can be obtained with com-
plexities of 2126 and 2254.5 , respectively. As far as we know, our results
are the best pseudo collision attacks on both SHA-256 and SHA-512 in
literature. Moreover, we show that our pseudo collision attacks can be
extended to 52 and 57 steps of SHA-256 and SHA-512, respectively, by
combined with the recent preimage attacks on SHA-2 by bicliques. Fur-
thermore, since the proposed technique is quite simple, it can be directly
applied to other hash functions. We apply our algorithm to several hash
functions including Skein and BLAKE, which are the SHA-3 finalists.
We present not only the best pseudo collision attacks on SHA-2 family,
but also a new insight of relation between a meet-in-the-middle preimage
attack and a pseudo collision attack.

Keywords: hash function, narrow-pipe, SHA-2, Skein, BLAKE, meet-
in-the-middle attack, preimage attack, pseudo collision attack.

1 Introduction

Cryptographic hash functions play a central role in the modern cryptography. A
secure hash function, which produces a fixed length hash value from an arbitrary
length message, is required to satisfy at least three security properties: preimage
resistance, second preimage resistance and collision resistance.

While there has not been a generic method to convert a collision attack into
a preimage attack, it has been known that the preimage attack that can find at
least two distinct preimages from the same target can be directly converted into
a collision attack. However, the converted collision attack is often not efficient
due to that the birthday bound of a collision attack (2n/2) is far lower than

A. Canteaut (Ed.): FSE 2012, LNCS 7549, pp. 264–286, 2012.
c© International Association for Cryptologic Research 2012



Converting Meet-In-The-Middle Preimage Attack 265

the generic bound of the preimage attack (2n), where n is the bit size of the
hash value. Thus, it is left as open question that how to convert an efficient
preimage attack into an efficient collision attack. In the case of the reduced
SHA-256 regarding the number of attacked rounds, a preimage attack, covering
43 steps [4], is much better than the best known collision attack, with only 27
steps [17]. Moreover, basically, a collision attack and a preimage attack require
quite different techniques. In other words, in general, the techniques used for the
collision attack do not work well for a preimage attack, and vice versa. In fact,
most of the recent collision attacks are based on a differential attack [32,31], in
contrast to that most of the recent preimage attacks are based on a meet-in-the-
middle (MITM) attack [2]. Though converting the differential collision attack
to a (pseudo) preimage attack was discussed in [8], there is no generic way to
construct a collision attack from a MITM preimage attack.

In this paper, we give a generic method to convert a particular preimage at-
tack into a collision attack. By using our technique, an efficient collision attack
which works faster than a generic collision attack can be constructed from a
partial target preimage attack even if the complexity of the preimage attack is
more than the birthday bound (2n/2). Our method is especially fit for convert-
ing a MITM preimage attack into a pseudo collision attack, since most of the
recent MITM preimage attacks can be considered as the partial target preimage
attack as long as its matching point is located in the end of the compression
function. We first apply our algorithm to SHA-256 and SHA-512 and show the
best pseudo collision attacks on them in literature. Specifically, pseudo collisions
of the 43-step (out of 64-step) reduced SHA-256 and the 46-step (out of 80-step)
reduced SHA-512 can be derived faster than a generic attack. Combined with
the recent preimage attacks on SHA-2 [14], these attacks are extended to the
52-step and 57-step reduced SHA-256 and SHA-512, respectively. Then we show
some other applications of our conversion techniques including a pseudo collision
attack on the 37-round reduced Skein-512 and pseudo collision attacks on the
4-round reduced BLAKE-256/512 without the initialization function. While it
seems hard to extend our pseudo collision attacks to collision attacks, the pro-
posed conversion technique is a generic, and thus it is expected to be widely
used for security evaluations of hash functions.

This paper is organized as follows. Some security notions and a meet-in-the-
middle preimage attack are introduced in Section 2. Section 3 introduces our
approach for constructing a pseudo collision attack. Then, applications of our
technique to SHA-256 and SHA-512 are presented in Section 4. The result on
Skein is described in Section 5. Finally, we conclude in Section 6.

2 Preliminaries

In this section, we first give security notions used throughout this paper, then
briefly refer a meet-in-the-middle (MITM) preimage attack.



266 J. Li, T. Isobe, and K. Shibutani

2.1 Security Notions

Let f be a compression function which outputs an n-bit chaining variable hi from
an n-bit input chaining variable hi−1 and a k-bit input message mi, i.e., hi =
f(hi−1,mi). Similarly, let H be an iterated hash function consisting of f , which
produces an n-bit hash value d from an initial value IV (= h0) and an arbitrary
length message M , i.e., d = H(IV,M) = f(· · · f(f(IV,m1),m2), · · · ,mt), where
pad(M) = (m1|m2| · · · |mt) and pad denotes a padding function. This type of
hash function, in which the size of an intermediate chaining variable is the same
as that of a hash value, is called a narrow-pipe hash function. On the other
hand, a hash function having a larger internal state size is called a wide-pipe
hash function, i.e., the size of a final hash value is smaller than that of a chaining
variable. We use the terminology introduced in [15] for a collision attack and a
pseudo (or free-start) collision attack on hash functions as follows.

Definition 1 (Collision attack). Given IV , find (M,M ′) such that M �= M ′

and H(IV,M) = H(IV,M ′).

Definition 2 (Free-start or pseudo collision attack). Find (IV , IV ′, M ,
M ′) such that H(IV,M) = H(IV ′,M ′) and (IV,M) �= (IV ′,M ′).

Additionally, we give several definitions for (pseudo) preimage attacks on hash
functions and (pseudo) preimage attacks on compression functions.

Definition 3 (Preimage attack). Given IV and d(= H(IV,M)), find M ′

such that H(IV, M ′) = d.

Definition 4 (Pseudo preimage attack). Given d(= H(IV,M)), find (IV ′,
M ′) such that H(IV ′,M ′) = d.

Definition 5 ((t-bit) partial target preimage attack). Given IV and t-bit
partial target of d(= H(IV,M)), find M ′ such that t-bit of d′(= H(IV,M ′))
is the same as the t-bit of d at the same position, and the other part of d′ is
randomly obtained.

Definition 6 (Preimage attack on compression function). Given hi−1

and hi(= f(hi−1, mi)), find m′
i such that f(hi−1,m

′
i) = hi.

Definition 7 (Pseudo preimage attack on compression function). Given
hi(= f(hi−1, mi)), find (h′

i−1,m
′
i) such that f(h′

i−1,m
′
i) = hi.

Definition 8 ((t-bit) partial target preimage attack on compression
function). Given hi−1 and t-bit partial target of hi(= f(hi−1,mi)), find m′

i

such that t-bit of h′
i(= f(hi−1,m

′
i)) is the same as the t-bit of hi at the same

position, and the other part of h′
i is randomly obtained.

Definition 9 ((t-bit) pseudo partial target preimage attack on com-
pression function). Given t-bit partial target of hi(= f(hi−1,mi)), find (h′

i−1,
m′

i) such that t-bit of h′
i(= f(h′

i−1,m
′
i)) is the same as the t-bit of hi at the same

position, and the other part of h′
i is randomly obtained.



Converting Meet-In-The-Middle Preimage Attack 267

x
y

z

z1 z2

(forward process) (backward process)

matching point

f

f1 f2

m
m1 m2

n-bitn-bit

k-bit

w-bit

Fig. 1. Meet-in-the-middle preimage attack

2.2 Meet-In-The-Middle Preimage Attack

The basic concept of the MITM preimage attack was introduced in [22,16]. Since
then, the MITM preimage attacks have been drastically improved and applied
to several hash functions [2,28,27,3,13,4,10]. Also, the techniques for the MITM
preimage attacks on hash functions have been extended to the attacks on several
block ciphers [7,12].

As shown in Fig. 1,1 in the MITM preimage attack on a compression function,
the compression function f is assumed to be divided into two sub-functions: f1
(forward process) and f2 (backward process) so that the w-bit matching point z
calculated by f1 does not depend on m2 which is some message bits of m, and z
calculated by f2 does not depend on m1 which is other message bits of m. Such
m1 and m2 are called neutral bits of f2 and f1, respectively. Then, the MITM
preimage attack finds a preimage m′ such that f(x,m′) = y from a given x and
y(= f(x,m)) as follows.

Step 1. Choose a random m except for m1 and m2.
Step 2. For all possible m1, calculate w-bit z1(= f1(x,m1)), and add a pair of

(z
(i)
1 ,m

(i)
1 ) to a list, where (1 ≤ i ≤ 2|m1|), and | ∗ | denotes the bit size of ∗.

Step 3. For all possible m2, calculate w-bit z2(= f−1
2 (x ⊕ y,m2)), and add a

pair of (z
(j)
2 ,m

(j)
2 ) to a list, where (1 ≤ j ≤ 2|m2|).

Step 4. Compare two lists to find pairs satisfying z
(p)
1 = z

(q)
2 . If such pair is

found, then check if the other bits of the matching point derived from m
(p)
1

and m
(q)
2 are the same value.

Step 5. If the other parts are also the same, then outputs such m including

m
(p)
1 and m

(q)
2 . Otherwise, go back to Step 1 and repeat the computation.

From Steps 2 and 3, we have 2|m1| and 2|m2| values of w-bit z1 and z2, i.e.,
we have 2|m1|+|m2| values of (z1 ⊕ z2). Since the probability of (z1 ⊕ z2 = 0)
is 2−w, we have 2|m1|+|m2| · 2−w pairs such that z1 = z2 in Step 4. Thus, by
repeating this algorithm about 2n−w · 2−(|m1|+|m2|) · 2w times, we expect to
obtain a desired preimage. The required computation for the one process from

1 Here, we show the MITM preimage attack on Davies-Meyer mode as an example.
MITM preimage attacks on other modes like Matyas-Meyer-Oseas mode can be
performed in a similar way.



268 J. Li, T. Isobe, and K. Shibutani

Step 1 to 4 is at most max(2|m1|, 2|m2|) calls of the compression function. Thus,
the total computation to find a preimage of the compression function is about
2n · 2−(|m1|+|m2|) ·max(2|m1|, 2|m2|).2

For a narrow-pipe hash function, by replacing x and y by IV and d, this
MITM preimage attack on a compression function can be directly converted
into a preimage attack on a hash function. However, for an attack on a hash
function, some of the message bits related to the padding bits are required to be
controlled by the attacker to set appropriate padding data.

3 Method to Convert Preimage Attack into Collision
Attack

In this section, we present how to efficiently convert a particular preimage at-
tack into a pseudo collision attack. First, we introduce a generic technique to
construct a pseudo collision attack from a partial target preimage attack. Then,
we introduce the MITM preimage attack whose matching point is located at the
end of the compression function. We show that such class of the MITM preimage
attack is regarded as the partial target preimage attack. Finally, we show that a
pseudo collision attack can be efficiently constructed from the MITM preimage
attack whose matching point is at the end by showing how to efficiently obtain
many partial target preimages.

3.1 Generic Conversion of Partial Target Preimage Attack into
Collision Attack

We consider the oracle A that can find a t-bit partial target preimage with
a complexity of 2s. Also, A is assumed to return different M ′ for each call.
Obviously, we can construct a collision attack with a complexity of 2s · 2(n−t)/2

by iteratively calling A as follows.

– Set t-bit random data as d′

– Call A with the parameter IV and d′ in 2(n−t)/2 times

After this procedure, we have 2(n−t)/2 of (n − t)-bit random data, and thus
there exists a colliding data with a high probability. Once the colliding data are
found, we have a collision of the hash function since the rest of the hash value
d′ is fixed. The total complexity is 2(n−t)/2 · 2s. The memory requirement can
be reduced to the memory requirement of finding a partial target preimage by
using memory free birthday attack [29,21]. This conversion itself can be applied
to not only a narrow-pipe hash function but also a wide-pipe hash function,
since the required complexity depends only on the size of the digest. The basic

2 The estimated complexity does not depend on the size of the matching point w.
However, as discussed in [10], if w is extremely small like w = 1, the total complexity
is dominated by the recomputations in Step 4 which is ignored in our estimation.
Thus, in our evaluation, we assume that w is sufficiently large.



Converting Meet-In-The-Middle Preimage Attack 269

x
y

z

z1

z2

starting state

S

(forward process)(backward process)

matching point

f

f1f2

m
m1m2

n-bit n-bit

k-bit

w-bit

Fig. 2. MITM preimage attack with the matching point in the last step

concept of this attack that fixes t-bit of the target with the complexity of 2s

has been used to find a collision of (new) FORK-256 in [22] and a collision and
a second preimage of LUX in [33]. However, the method does not work if the
partial target preimage attack is not efficient, i.e., (s ≥ t/2). In this case, the
required complexity in total will be higher than 2n/2.

3.2 Meet-In-The-Middle Attack with Matching Point in Last Step

We consider a similar model explained in Section 2.2. The difference from the
model shown in Fig. 1 is that the matching point is restricted to be in the last
step as shown in Fig. 2. In this scenario, the MITM pseudo preimage attack on a
compression function finds a preimage m′ and a random x′ such that f(x′,m′) =
y from a given y(= f(x,m)) as follows.

Step 1. Choose a randomm except form1 and m2, and a random starting state
S.

Step 2. For all possible m1, calculate w-bit z1(= f1(S,m1)), and add a pair of

(z
(i)
1 ,m

(i)
1 ) to a list, where (1 ≤ i ≤ 2|m1|).

Step 3. For all possible m2, calculate w-bit z2(= f−1
2 (S,m2)), and add a pair

of (z
(j)
2 ,m

(j)
2 ) to a list, where (1 ≤ j ≤ 2|m2|).

Step 4. Compare two lists to find pairs satisfying that z
(p)
1 ⊕ z

(q)
2 equals the

t-bit of y. If such pair is found, then check if the XORed other bits of the

matching point derived from m
(p)
1 and m

(q)
2 is the same as the rest of y.

Step 5. If the XORed other bits are also the same as y, then output such m

including m
(p)
1 and m

(q)
2 , and x′ calculated from the data of the matching

point. Otherwise, go back to Step 1 and repeat the computation.

Note that, this attack basically cannot obtain a preimage from the given x unlike
the attack described in Section 2.2, since x′ will be randomly derived. Thus, this
attack is considered as a pseudo preimage attack on a compression function.
However, for a narrow-pipe hash, it has been known that a pseudo preimage
attack on a compression function can be converted into a preimage attack on
a hash function assuming that the attacker can set valid padding bits [19,10].
The estimated complexity to find a desired pseudo preimage is the same as that
presented in Section 2.2, i.e., 2n · 2−(|m1|+|m2|) ·max(2|m1|, 2|m2|).



270 J. Li, T. Isobe, and K. Shibutani

3.3 Conversion of MITM Preimage Attack into Pseudo Collision
Attack

If we can construct the MITM pseudo preimage attack whose matching point is
located at the end of the compression function, we can control part of the output
variables as explained in the previous subsection. In other words, the MITM
pseudo preimage attack described in the previous subsection can be regarded
as the pseudo partial target preimage attack on a compression function. For
the MITM preimage attack, at least 2t/2 computations are required to derive a
preimage of an t-bit partial target. Thus, the directly converted pseudo collision
attack will at least have the complexity of 2(n−t)/2+t/2 = 2n/2, that is not an
efficient pseudo collision attack.

In order to overcome this problem, we exploit extra freedom of a neutral
word after finding a partial target preimage. For example, in the case of t = 10
and |m1| = |m2| = 8 (> t/2), we can find 26(= 28+8/210) 10-bit partial target
preimages with the complexity of 28. It essentially means that a 10-bit partial
target preimage is found with the complexity of 22(= 28/26) < 25(= 210/2).
When t ≤ w, the required complexity to find a partial target preimage from a
given t-bit partial target is estimated as

2t−(|m1|+|m2|) ·max(2|m1|, 2|m2|),

where recall that w denotes the bit size of the matching point. In particular,
s < t/2, which is the condition for a successful attack as mentioned in Section 3.1,
holds when min(|m1|, |m2|) > t/2, where recall that 2s represents the required
complexity to find a t-bit partial target preimage. Therefore, if we can move the
matching point of the MITM attack to the end of the compression function and
there is enough freedom in neutral words, we can construct an efficient pseudo
collision attack on a compression function.

Moreover, for a narrow-pipe hash function, it has been known that a (pseudo)
collision attack on a compression function can be directly converted to a (pseudo)
collision attack on a hash function by appending another message block il-
lustrated in Fig. 3, which is called multi-block message technique. By using
the multi-block message technique, an attacker can append arbitrary messages.
Thus, unlike the conversion to a (pseudo) preimage attack on a hash function, for
the conversion to a pseudo collision attack on a hash function, there is no restric-
tion on controllability of message bits for a MITM pseudo preimage attack on a
compression function. This will relax conditions on the position of the matching
point for the MITM pseudo preimage attack on a compression function, and thus
may allow us to attack larger number of steps. Note that, for a wide-pipe hash
function, even though a (pseudo) collision attack on a compression function can
not be directly converted to a (pseudo) collision attack on a hash function by
using multi-block message, we still can convert a MITM pseudo preimage attack
on a hash function to a pseudo collision attack on a hash function since the
conversion of a partial target preimage attack into a collision attack is generic.
Furthermore, in our attack, t-bit of the colliding digest can be determined by
the attacker unlike the usual collision attack that derives a completely random



Converting Meet-In-The-Middle Preimage Attack 271

M1

M
′
1 M2

M2

IV
′

IV
′′

CVCV

CVCV

CFCF

CFCF

digest

digest

Pseudo Collision of CF

Pseudo Collision of Hash Function

Satisfy the padding issue

Fig. 3. Multi-block pseudo collision

digest. This is another feature of our approach. On the other hand, the required
complexity of our converted (pseudo) collision attack is likely to be high due to
a few gains from the MITM procedure, though it is still more efficient than the
generic attack. This is considered as one of the limitations of our approach.

4 Pseudo Collision Attacks on SHA-2

In this section, we apply our conversion technique to SHA-2. At first, we briefly
describe the algorithm of SHA-2. Then, we review the previous collision attacks
on SHA-2. After that, we introduce the known MITM preimage attack on the
43-step SHA-256 presented in [4]. After we modify these results in order to fit
our conversion technique, i.e., moving the matching point to the end of the com-
pression function, we show the pseudo collision attack on the 43-step SHA-256.
Moreover, we present the pseudo collision attack on the 46-step SHA-512 based
on the MITM preimage attack on the 46-step SHA-512 [4]. Furthermore, pseudo
collision attacks on the 40-step reduced SHA-224 and SHA-384 are demonstrated
as well. Finally, we discuss pseudo collision attacks based on the recent MITM
preimage attacks [14], which significantly improve the results of [4] in terms of
the number of attacked steps by using bicliques. These results on SHA-2 are
summarized in Table 1.

4.1 Description of SHA-2

While our target is both SHA-256 and SHA-512, we only explain the structure
of SHA-256, since SHA-512 is structurally equivalent to SHA-256 except for the
number of steps, the amount of rotations and the word size. The compression
function of SHA-256 consists of a message expansion function and a state update
function. The message expansion function expands a 512-bit message block into



272 J. Li, T. Isobe, and K. Shibutani

Table 1. Summary of collision attacks on the reduced SHA-2

algorithm type of attack steps complexity based attack paper

SHA-256

collision 24 228.5 - [11]
collision 27 (practical) - [17]

semi-free-start-collision∗1 24 217 - [11]
semi-free-start-collision∗1 32 (practical) - [17]
pseudo-near-collision 31 232 - [11]

pseudo collision 42 2123 [4] Our (Section 4.7)
pseudo collision 43 2126 [4] Our (Section 4.4)
pseudo collision 45 2126.5 [14] Our (Section 4.9)
pseudo collision 52 2127.5 [14] Our (Section 4.9)

SHA-224 pseudo collision 40 2110 [4] Our (Section 4.8)

SHA-512

collision 24 228.5 - [11]
pseudo collision 42 2244 [4] Our (Section 4.7)
pseudo collision 46 2254.5 [4] Our (Section 4.6)
pseudo collision 50 2254.5 [14] Our (Section 4.9)
pseudo collision 57 2255.5 [14] Our (Section 4.9)

SHA-384 pseudo collision 40 2183 [4] Our (Section 4.8)

∗1: semi-free-start-collision attack finds (IV ′,M,M ′) such that H(IV ′,M) =
H(IV ′,M ′) and M �= M ′.

64 32-bit message words (W0, · · · ,W63) as follows:

Wi =

{
Mi (0 ≤ i < 16),
σ1(Wi−2) +Wi−7 + σ0(Wi−15) +Wi−16 (16 ≤ i < 64),

where the functions σ0(X) and σ1(X) are defined by

σ0(X) = (X ≫ 7)⊕ (X ≫ 18)⊕ (X % 3),

σ1(X) = (X ≫ 17)⊕ (X ≫ 19)⊕ (X % 10).

The state update function updates eight 32-bit chaining variables, A, B, · · · , G,
H in 64 steps as follows:

T1 = Hi +Σ1(Ei) + Ch(Ei, Fi, Gi) +Ki +Wi,

T2 = Σ0(Ai) +Maj(Ai, Bi, Ci),

Ai+1 = T1 + T2, Bi+1 = Ai, Ci+1 = Bi, Di+1 = Ci,

Ei+1 = Di + T1, Fi+1 = Ei, Gi+1 = Fi, Hi+1 = Gi,

where Ki is the i-th step constant and the functions Ch, Maj, Σ0 and Σ1 are
given as follows:

Ch(X,Y, Z) = XY ⊕XZ,

Maj(X,Y, Z) = XY ⊕ Y Z ⊕XZ,

Σ0(X) = (X ≫ 2)⊕ (X ≫ 13)⊕ (X ≫ 22),

Σ1(X) = (X ≫ 6)⊕ (X ≫ 11)⊕ (X ≫ 25).

After 64 steps, a feed-forward process is executed with initial state variables by
using word-wise addition modulo 232.



Converting Meet-In-The-Middle Preimage Attack 273

4.2 Known Collision Attacks on SHA-2

The first collision attack on reduced SHA-256 was presented in [18] which is a 19-
step near collision attack. Since then, the collision attacks on SHA-2 have been
improved [20,23,25,24,26,11,17]. The previously published best collision attacks
in terms of the number of attacked steps are the 27 steps on SHA-256 [17] and
the 24 steps on SHA-512 [11,25]. A non-random property, which is a second-
order differential collision, of the 47-step reduced SHA-256 compression function
was reported in [6].

4.3 Known MITM Preimage Attack on 43-Step SHA-256 [4]

The MITM preimage attack on the 43-step SHA-256 presented in [4] uses the
33-step two chunks Wj , . . . ,Wj+32 including the 4-step initial structure (IS),
the 2-step partial fixing (PF), the 7-step partial matching (PM) and the 1-step
indirect partial matching (IPM). In the following, we review the details of these
techniques.

33-step Two Chunks with the 4-Step IS. The message words of length 33 is
divided into two chunks as {Wj , . . . ,Wj+14,Wj+18} and {Wj+15, Wj+16, Wj+17,
Wj+19, . . . ,Wj+32}. Using message compensation technique [4], the first chunk
and the second chunk are independent from Wj+15 and Wj+18, respectively.
In particular, the following constraints ensure the above message words to be
neutral words with respect to each chunk;

Wj+17 = σ1(Wj+15), Wj+19 = σ2
1(Wj+15), Wj+21 = σ3

1(Wj+15),
Wj+22 = Wz+5, Wj+23 = σ4

1(Wj+15), Wj+24 = 2σ1(Wj+15),
Wj+25 = σ5

1(Wj+15),
(1)

where σ2
1(X) means σ1 ◦ σ1(X).

These two chunks include the 4-step IS, which essentially exchanges the order
of the words Wi and Wi+3 by exploiting the absorption property of the function
Ch. After the swapping, the final output after the step (i + 3) still keeps un-
changed. Here, Wj+18 is moved to the first chunk and Wj+15, Wj+16 and Wj+17

are moved to the second chunk.
In the forward direction, a state value of pj+33 = Aj+33|| . . . ||Hj+33 can be

computed independently of the first chunk. In the backward direction, a state
value of pj = Aj || . . . ||Hj can be computed independently of the second chunk.
Note that the 33-step two-chunk is valid regardless of the choice of j for j > 0.

7-step PM. In the backward computation, Aj can be computed from pj+7

without knowing {Wj , · · · ,Wj+6} for any j as used in [13].

2-step PF. PF is a technique to enhance PM by fixing a part of a neutral word.
The equation for Hj−1 is as follows:⎧⎨⎩

Hj−1 = Aj −Σ0(Bj)−Maj(Bj , Cj , Dj)−Σ1(Fj)
−Ch(Fj , Gj , Hj)−Kj−1 −Wj−1,

Wj−1 = Wj+15 − σ1(Wj+13)−Wj+8 + σ0(Wj).



274 J. Li, T. Isobe, and K. Shibutani

If we fix the lower � bits of Wj+15, which is assumed to be a neutral word for
the other chunk, the lower � bits of Hj−1 can be computed without using the
value of the higher (32 − �) bits of Wj+15. Furthermore, the equation for Hj−2

is expressed as follows:⎧⎨⎩
Hj−2 = Aj−1 −Σ0(Bj−1)−Maj(Bj−1, Cj−1, Dj−1)−Σ1(Fj−1)

−Ch(Fj−1, Gj−1, Hj−1)−Kj−2 −Wj−2,
Wj−2 = Wj+14 − σ1(Wj+12)−Wj+7 + σ0(Wj−1).

The lower (� − 18) bits of Hj−2 can be computed if we can obtain the lower
� bits of Ch(Fj−1, Gj−1, Hj−1) and the lower (� − 18) bits of σ0(Wj−1). Note
that these values can be computed by using only the lower � bits of Wj+15.
Thus, when we fix the lower � bits of Wj+15, the lower (� − 18) bits of Hj−2

can be computed without knowing the higher (32− �) bits of Wj+15. Therefore,
by combining the 7-step PM with the 2-step PF, 9 steps can be skipped in the
backward computation.

1-step IPM. For the forward computation, Aj+34 can be expressed as a sum
of two independent functions ψF , ξF of each neutral word as follows;

⎧⎨⎩
Aj+34 = Σ0(Aj+33) +Maj(Aj+33, Bj+33, Cj+33) +Hj+33 +Σ1(Aj+33)

+Ch(Aj+33, Bj+33, Cj+33) +Kj+33 +Wj+33,
Wj+33 = σ1(Wj+31) +Wj+26 + σ0(Wj+18) +Wj+17,

⇒ Aj+34 = ψF (Wj+15) + ξF (Wj+18).

Then, we can compute ψF (Wj+15) and ξF (Wj+18) independently. It is equivalent
to move the computation of ξF (Wj+18) to the backward chunk. In this case,
ξF (Wj+18) = σ0(Wj+18).

Attack Overview. These techniques enable us to construct the 43 (= 33 + 7
+ 2 + 1)-step attack on SHA-256. Here, we have the freedom of choice of j as
long as 36 steps (Wj−2 to Wj+34) is located sequentially.

For the actual attack in [4], j is chosen as j = 3, because W13, W14 and
W15 can be freely chosen to satisfy the message padding rule. The matching
state is the lower 4 bits of A37. In addition, the number of fixed bits � for PF
is chosen as � = 23. Then, neutral words of W18 and W21 have 5- and 4-bit
freedom degrees, respectively. As a result, a pseudo preimage is found with the
complexity of 2251.9. After that, pseudo preimages are converted into a preimage
with the complexity of 2254.9. See [4] for more details about this attack.

4.4 Pseudo Collision Attack on 43-Step SHA-256

As discussed in Section 3.3, to convert a MITM preimage attack into a pseudo
collision attack, the matching point is located into the end of the compression
function, i.e., the addition of the feed-forward. As mentioned in section 4.3, the



Converting Meet-In-The-Middle Preimage Attack 275

Partial Matching Partial Fixing Initial Structure Indirect Partial Matching

Matching

First Chunk Second Chunk
CV

Fixed

0 10 20 24 27 30 40

: variables not depending on W24 : variables depending on both W24 and W27

: variables that can be expressed as a sum module 232 of W24 and W27

: variables not depending on W27 : a few bits of variables depending only on W27

Fig. 4. 43-step pseudo collision attack on SHA-256

matching point of the 43-step MITM preimage attack is selected at the state
after the step 37 (j = 3) due to the padding bits.

However, for a (pseudo) collision attack, we do not need to control message
words for satisfying the padding rules, since we can generate correct padding by
simply adding another message block as discussed in Section 3.3. It means that
the last block of a compression function is used only for satisfying the padding
condition in the collision attack when pseudo collision can be found before the
last compression function as shown in Fig. 3. As a result, for a (pseudo) collision
attack, we can move the matching point to the state after the step 43 (j = 9)
that is the end of the compression function.3

Let a 256-bit output of the compression function be CV = {ZA|| · · · ||ZH},
where each word is 32 bits. For j = 9, W24 and W27 are neutral words, and the
matching point is the lower 4 bits of A43(= A0 ⊕ ZA).

In order to construct the pseudo collision attack, we give the efficient method
to obtain 4-bit partial target preimages by using the MITM technique [4]. Fig-
ure 4 shows the overview of the 43-step pseudo collision attack.

Attack Procedure

1. Choose the lower 4 bits of ZA, which are target values.
2. Randomly choose the value of p25 and message W25. Randomly fix the lower

23 bits of W24. Then we can find 25 values of W24 on average from 9 free
bits that correctly construct the 4-step initial structure and store them in
the table TW .

3. Randomly choose message words not related to the initial structure and the
neutral words, i.e., W19, W20, W21, W22, W23 and W29 (called an initial
configuration).

3 It is also pointed out in [10] as the matching point can be rotated to the end of the
compression function.



276 J. Li, T. Isobe, and K. Shibutani

4. For all 25 possible W24 in TW , compute W26, W28, W30, W31, W32, W33 and
W34 following Eq. (1). Compute forward and find ψF (W24). Then, store the
pairs (W24, ψF (W24)) in a list LF .

5. For all 24 possible values (the lower 4 bits) of W27, compute backward and
find ξF (W27) and the lower 4 bits of A0. Then, store the pairs (W27, ZA ⊕
A0 − σ0(W27)) in a list LB.

6. If a match is found, i.e., ψF (W24) = ZA ⊕A0 − σ0(W27), then compute two
group of states A43, B43, · · · , H43 and A0, B0, · · · , H0 with corresponding
W24 and W27, respectively. Then obtain 25 (= 29/24) CV whose 4-bit are
fixed, i.e., the lower 4 bits of ZA, and store these in a List L1.

7. Repeat (3)-(6) 2121 times with different values of the initial configuration.

After the above procedures, we obtain 2126 (= 25 × 2121) pairs whose 4 bits are
fixed.4 Thus, there exists a colliding pair with a high probability, because of the
equation of (2126 = 2(256−4)/2).

Evaluation. We assume that the complexity for the 1-step function and the
1-step message expansion is 1/43 compression function operation of the 43-step
SHA-256. As estimated in [10], the complexity of Step 2 in the presented attack
is 29, and that of Steps 3-6 is 24.878, which is the complexity for finding 25 4-bit
partial target preimages. Thus, whole complexity of the pseudo collision attack
on the 43-step SHA-256 is estimated as 2126 ≈ 29 + (2121 × 24.878).

4.5 Known MITM Preimage Attack on 46-Step SHA-512 [4]

The MITM preimage attack on the 46-step SHA-512 presented in [4] uses the
31-step two chunks Wj , . . . ,Wj+30 including the 2-step IS, the 8-step PF for
Wj−1, . . . ,Wj−6 and Wj+31,Wj+32 and the 7-step PM. In this attack, we can
choose j as long as 39 step (Wj−6 to Wj+32) are located sequentially. For the
actual attack in [10], j is chosen as j = 6 to satisfy the padding rule. Then, the
neutral words W21 and W22 have 4 and 3-bit freedom degrees, respectively, and
the bit size of the matching point is 3. Thus, a preimage of the 46-step SHA-512
is found with the complexity of 2511.5. See [4] for more details about this attack.

4.6 Pseudo Collision Attack on 46-Step SHA-512

Similarly to the attack on the reduced SHA-256, we can move the matching
point to the end of the compression function, because the padding issue can be
avoided by using multi-block message technique in the pseudo collision attack.
In the case of SHA-512, since the bit size of the matching point is 3, we utilize
the 3-bit partial target preimages for the attack. Then, the complexity of the
attack is estimated as 2254.5 = (2(512−3)/2).

4 It is noted that we need a slightly more than 2121 times repeated experiments to get
2126 pairs that will achieve a probability higher than 2−1. However the difference is
so small that we ignore it here.



Converting Meet-In-The-Middle Preimage Attack 277

4.7 Pseudo Collision Attacks on 42-step SHA-256 and 42-step
SHA-512

We consider pseudo collision attacks on smaller number of rounds of SHA-2 in
order to save the time complexity. For the 42-step reduced SHA-256, we can use
10 bits of freedom in both directions to find a 10-bit partial target preimage as
discussed in Section 5.4 of [4]. This implies that a 10-bit partial target preimage
is obtained with the complexity 1 (< 25). Thus, a pseudo collision is found with
the complexity of 2123(= 2(256−10)/2× 210/210). Similarly to this, for the 42-step
reduced SHA-512, we can use 24 bits of freedom in both directions to find a
24-bit partial target preimage as discussed in Section 6.5 of [4]. Therefore, a
pseudo collision of the 42-step reduced SHA-512 is found with the complexity of
2244(= 2(512−24)/2 × 224/224).

4.8 Pseudo Collision Attacks on Reduced SHA-224 and SHA-384

The pseudo collision attack on the 43-step SHA-256 described in Section 4.4 is
applicable to the 43-step SHA-224 in the similar manner. However, we can not
use the multi-block message technique straightforwardly, because the pseudo
collision attack on SHA-224 needs to be done in the last compression function
whose output ZH is disregarded. Thus, due to the padding issue, we can mount
only pseudo collision attack on a compression function of 43-step, not a hash
function. The estimated complexity is 2110 for this attack.

However, the smaller number of rounds of SHA-224 hash function can be
attacked by using another MITM attack. The 40-step SHA-224 hash function
can be attacked by using the same two chunks for the 43-step preimage attack on
SHA-256 in [4], i.e., the case of j = 3. The 7-step partial matching for backward
computation are replaced by the 4-step one. Then the message words W13, W14

and W15 are left as free message words to satisfy the padding rule. Instead of
the lower 4 bits of ZA, we use the lower 4 bits of ZD as the target value. Here,
we need additional one step: when finding matches at the lower 4 bits of A37,
we compute forward from the matching point to the end of the compression
function (40-th step) by using these values that are computed forward from the
starting point. Since A37 = D40 = D0 ⊕ ZD for the 40-step SHA-224, the lower
4 bits of ZD will keep unaffected by the additional step. Thus, we can still get a
partial target preimage. It can be converted into a pseudo collision attack on a
hash function, because we can set W13, W14 and W15 to follow the padding rule.

The detail of the attack procedure is as follows.

1. Choose the lower 4 bits of ZD, which are target values.
2. Randomly choose the value of p19 and message W19. Randomly fix the lower

23 bits of W18. Then we can find 25 values of W18 on average from 9 free
bits that correctly construct the 4-step initial structure and store them in
the table TW .

3. Randomly choose message words not related to the initial structure and
the neutral words, i.e., W13, W14, W15, W16, W17, W23 (called an initial
configuration [4]).



278 J. Li, T. Isobe, and K. Shibutani

4. For all 25 possible W18 in TW , compute W20, W22, W24, W25, W26, W27,
W28 following Eq, (1). Compute forward and find ψF (W18). Store the pairs
(W18, ψF (W18)) in a list LF .

5. For all 24 possible values (the lower 4 bits) of W21, compute backward and
find ξF (W21) and the lower 4 bits of A37 (= D40 = ZD ⊕ D0). Store the
pairs (W21, ZD ⊕D0 − σ0(W27)) in a list LB.

6. If a match is found, i.e., ψF (W24) = ZD ⊕ D0 − σ0(W27), then compute
forward to get the states A40, B40, · · · , H40 with correspondingW24 andW27,
respectively. D40 will keep unaffected in this step. Then obtain 25 (= 29/24)
CV whose 4 bits are fixed, i.e., the lower 4 bits of ZD, and store these in a
List.

7. Repeat (3)-(6) 2105 times with different values of the initial configuration.

The complexity of the attack is estimated as 2110.
Similarly, the pseudo collision attack on the 46-step SHA-512 hash function

described in 4.6 can also be applied to the 46-step SHA-384 compression function
with the complexity of 2190.5 = (2(384−3)/2). For a pseudo collision attack on the
reduced SHA-384 hash function, we use the 43-step preimage attack on SHA-
384 [4]. Combining the result in [4] with our conversion technique, a pseudo
collision attack on the 40-step SHA-384 hash function can be constructed. The
matching bit is 18 when chosen parameter of partial matching as � = 27. The
complexity of the pseudo collision attack on the 40-step SHA-384 is estimated
as 2(384−18)/2 = 2183. These 40-step pseudo collision attacks give examples that
the matching point is not at but near the end of compression function. That is
compatible to solve padding problem.

4.9 Application to Other Results of SHA-2

Recently, the MITM preimage attacks on the reduced SHA-2 are improved by us-
ing “bicliques” technique which is considered as generalized initial structure [14].
This technique enables us to construct longer initial structures than those of the
attacks [4]. In the following, let us consider pseudo collision attacks based on [14].

For SHA-256, the 36-step two independent chunks including the 6-step IS
based on bicliques are constructed. Combining the 2-step PM with the 7-step
PM and the 1-step IPM, the MITM preimage attack on the 45-step SHA-2
is derived. In this attack, both neutral words have 3-bit freedom degrees, and
the matching point is 4-bit. Since our conversion technique does not need to
consider the padding issue, the matching point can be moved to the end of
the compression function similar to the 43-step attack. Then, we can convert
it into the 45-step pseudo collision attack on SHA-256 with the complexity of
2126.5 (= 2(256−3)/2)5. Similarly, we can construct the 50-step pseudo collision
attack on SHA-512 based on the 50-step MITM preimage attack [14]. In this
attack, both neutral words have 3-bit freedom degrees, and the bit size of the
matching point is 3. Thus, the complexity of the attack is estimated as 2254.5

(= 2(512−3)/2).

5 Our attack uses only 3 bits for the matching and find 3-bit partial target preimages,
because this setting is optimal with respect to the time complexity.



Converting Meet-In-The-Middle Preimage Attack 279

In addition, [14] showed pseudo preimage attacks on the 52-step SHA-256 and
the 57-step SHA-512. For the setting of a pseudo preimage attack, the cost of
converting a pseudo preimage to a preimage is omitted. Thus, larger number
of rounds can be attacked. Note that in these attacks, the amount of freedom
degrees for both neutral words are only 1-bit, and the bit size of the matching
point is 1. In order to construct a pseudo collision attack by using our conversion
technique, it is sufficient to obtain a pseudo preimage on a compression function,
i.e., a preimage on a hash function is not needed. Therefore, the above explained
pseudo preimage attacks can also be converted into pseudo collision attacks in
a similar way. The complexities of the pseudo collision attacks on the 52-step
SHA-256 and the 57-step SHA-512 are estimated as 2127.5 (= 2(256−1)/2) and
2255.5 (= 2(512−1)/2), respectively.

5 Application to Skein

In this section, we show pseudo collision attacks on the reduced Skein-512 [9]
based on the preimage attacks presented in [14].

5.1 Description of Skein

Skein is built from the tweakable block cipher Threefish EK,T (P ), where K, T
and P denote a key, a tweak and a plaintext message, respectively. The com-
pression function F (CV, T,M) of Skein outputs the next chaining variable as
F (CV, T,M) = ECV,T (M)⊕M , where CV is the previous chaining variable and
M is an input message block.

Threefish-512 supports a 512-bit block and a 512-bit key, and operates on
64-bit words. The subkey Ks = (Ks

0 ,K
s
1 , . . . ,K

s
7) injected every four rounds is

generated from the secret key K = K[0], K[1], . . . ,K[7] as follows:

Ks
j = K[(s+ j) mod 9], (0 ≤ j ≤ 4); Ks

5 = K[(s+ 5) mod 9] + T [s mod 3];
Ks

6 = K[(s+ 6) mod 9] + T [(s+ 1) mod 3]; Ks
7 = K[(s+ 7) mod 9] + s,

where s denotes a round counter, T [0] and T [1] denote tweak words, T [2] =

T [0]+T [1], and K[8] = C240⊕
⊕7

j=0 K[j] with a constant C240. Each Threefish-
512 round consists of four MIX functions followed by a permutation of the eight
64-bit words. The 128-bit function MIX processes the pairs of eight words of
internal state I0, I1, . . . , I7 after key addition.

5.2 Known Pseudo Preimage Attacks on Skein [14].

We briefly review twoMITM preimage attacks on Skein-512 presented in [14]: one
is a preimage attack on the 22-round reduced Skein-512 hash function starting
from the 3rd round, and the other is a preimage attack on the 37-round reduced
Skein-512 compression function starting from the 2nd round.

For the 22-round attack, the 3-dimension biclique at rounds 12-15 is obtained
with the complexity of 2200. Since many bicliques can be produced out of one,



280 J. Li, T. Isobe, and K. Shibutani

the cost of constructing the bicliques is negligible in the total complexity of the
attack. In this attack, we can obtain 23 pairs matched in 3 bits by 22.3 calls
of the 22-round Skein-512 compression function. As a result, a preimage of the
22-round reduced Skein is found with the complexity of 2511.2.

Table 2. Parameters of the (pseudo) preimage attacks on the reduced Skein-512 [14]

Parameters of the preimage attack on the 22-round Skein-512 hash function

Chunks Matching

Forward Backward Biclique Partial matching Matching bits Total matching pairs Complexity

8-11 16-19 12-15 20 → 24 = 3 ← 7 I130,31,53 23 22.3

Parameters of the pseudo preimage attack on the 37-round Skein-512 compression function

Chunks Matching

Forward Backward Biclique Partial matching Matching bits Total matching pairs Complexity

8-15 24-31 16-23 32 → 38 = 2 ← 7 I325 2 21.2

Considering a pseudo preimage attack on the compression function, it is nat-
ural to assume that tweak bits T can also be controlled by the attacker. Due to
additional freedom, the pseudo preimage attack on the 37-round reduced Skein-
512 is feasible by using the 1-dimension biclique at rounds 16-23. In this attack,
we can obtain 2 pairs matched in 1 bit by 21.2 calls of the 37-round Skein-512
compression function. Consequently, a pseudo preimage of the 37-round reduced
Skein is found with the complexity of 2511.2.

The parameters for the preimage attacks on the 22-round and the 37-round
reduced Skein-512 hash function and compression function are summarized in
Table 2. See [14] for more details about this attack.

5.3 Pseudo Collision Attacks on Skein

Since the matching point used in the MITM preimage attack on the 22-round
reduced Skein-512 hash function [14] is located in the end of the compression
function, our conversion technique can directly convert it to the pseudo collision
attack on the 22-round reduced Skein-512. In this attack, the neutral words have
3-bit freedom degrees, and the bit size of the matching point is 3. As reported
in [14], a 3-bit matching candidate can be found with the complexity of 22.3/23.
Thus, the complexity of the pseudo collision attack on the 22-round reduced
Skein-512 hash function is estimated as 2253.8 (= 2(512−3)/2 × 22.3/23).

The pseudo preimage attack on the 37-round reduced Skein compression func-
tion can be converted into a pseudo collision attack on a hash function in a simi-
lar way. The required complexity for the pseudo collision attack on the 37-round
reduced Skein hash function is estimated as 2255.7 (= 2(512−1)/2 × 21.2/2).

6 Conclusion

In this paper, we gave a generic method to convert preimage attacks to pseudo
collision attacks. It provides a new insight to evaluate the security of hash



Converting Meet-In-The-Middle Preimage Attack 281

functions. The essence of the method is converting a partial target preimage
attack to a pseudo collision attack. That is especially compatible to meet-in-the-
middle preimage attacks since it can be converted into a partial target preimage
attack if the matching point can be moved to the end of a hash function or a
compression function and enough freedom on neutral bits are left.

Using the proposed approach, we presented the best pseudo collision attacks
on SHA-2 based on the known preimage attacks, which has been left as open
question. We showed pseudo collision attacks on the 43- and 46-step reduced
SHA-256 and SHA-512 based on the MITM preimage attacks presented in [4].
Also, pseudo collision attacks on the 52- and 57-step reduced SHA-256 and SHA-
512 based on the more advanced MITM preimage attacks in [14] were demon-
strated. We also applied the conversion technique to other hash functions in-
cluding Skein and BLAKE with the meet-in-the-middle preimage attacks, which
showed the widely usage of this method. The pseudo collision attacks on the 22-
and 37-round reduced Skein-512 were presented. The 4-round reduced BLAKE-
256/512 without the initialization function can be attacked by the converted
pseudo collision attack (see Appendix A). Our technique may also apply to
other hash functions, such as Tiger [1]. Based on the MITM preimage attack
on the full Tiger [10], we might construct the pseudo collision attack on the full
Tiger. We believe that the technique can be used for more hash algorithms once
their preimage or pseudo preimage attacks are found.

By this method, now we only can get pseudo collision attacks. It is left as fu-
ture works that how to construct collision attacks from known preimage attacks.

Acknowledgments. The author would like to thank the anonymous reviewers
for their helpful comments.

References

1. Anderson, R.J., Biham, E.: Tiger: A Fast New Hash Function. In: Gollmann, D.
(ed.) FSE 1996. LNCS, vol. 1039, pp. 89–97. Springer, Heidelberg (1996)

2. Aoki, K., Sasaki, Y.: Preimage Attacks on One-Block MD4, 63-Step MD5 and
More. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381,
pp. 103–119. Springer, Heidelberg (2009)

3. Aoki, K., Sasaki, Y.: Meet-in-the-Middle Preimage Attacks Against Reduced SHA-
0 and SHA-1. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 70–89.
Springer, Heidelberg (2009)

4. Aoki, K., Guo, J., Matusiewicz, K., Sasaki, Y., Wang, L.: Preimages for Step-
Reduced SHA-2. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
578–597. Springer, Heidelberg (2009)

5. Aumasson, J.-P., Henzen, L., Meier, W., Phan, R.C.-W.: SHA-3 proposal BLAKE
(version 1.3). Submission to NIST (December 2010),
http://131002.net/blake/blake.pdf

6. Biryukov, A., Lamberger, M., Mendel, F., Nikolić, I.: Second-Order Differential
Collisions for Reduced SHA-256. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 270–287. Springer, Heidelberg (2011)

http://131002.net/blake/blake.pdf


282 J. Li, T. Isobe, and K. Shibutani

7. Bogdanov, A., Rechberger, C.: A 3-Subset Meet-in-the-Middle Attack: Cryptanaly-
sis of the Lightweight Block Cipher KTANTAN. In: Biryukov, A., Gong, G., Stin-
son, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 229–240. Springer, Heidelberg
(2011)

8. De Cannière, C., Rechberger, C.: Preimages for Reduced SHA-0 and SHA-1. In:
Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 179–202. Springer, Heidel-
berg (2008)

9. Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas,
J., Walker, J.: The Skein hash function family (version 1.3, October 1, 2010),
http://www.schneier.com/skein1.3.pdf

10. Guo, J., Ling, S., Rechberger, C., Wang, H.: Advanced Meet-in-the-Middle Preim-
age Attacks: First Results on Full Tiger, and Improved Results on MD4 and SHA-2.
In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 56–75. Springer, Hei-
delberg (2010)

11. Indesteege, S., Mendel, F., Preneel, B., Rechberger, C.: Collisions and Other Non-
random Properties for Step-Reduced SHA-256. In: Avanzi, R.M., Keliher, L., Sica,
F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 276–293. Springer, Heidelberg (2009)

12. Isobe, T.: A Single-Key Attack on the Full GOST Block Cipher. In: Joux, A. (ed.)
FSE 2011. LNCS, vol. 6733, pp. 290–305. Springer, Heidelberg (2011)

13. Isobe, T., Shibutani, K.: Preimage Attacks on Reduced Tiger and SHA-2. In:
Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 139–155. Springer, Heidelberg
(2009)

14. Khovratovich, D., Rechberger, C., Savelieva, A.: Bicliques for Preimages: Attacks
on Skein-512 and the SHA-2 Family. In: Canteaut, A. (ed.) FSE 2012. LNCS,
vol. 7549, pp. 244–263. Springer, Heidelberg (2012)

15. Lai, X., Massey, J.L.: Hash Functions Based on Block Ciphers. In: Rueppel, R.A.
(ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 55–70. Springer, Heidelberg (1993)

16. Leurent, G.: MD4 is Not One-Way. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086,
pp. 412–428. Springer, Heidelberg (2008)

17. Mendel, F., Nad, T., Schläffer, M.: Finding SHA-2 characteristics: Searching
through a minefield of contradictions. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 288–307. Springer, Heidelberg (2011)

18. Mendel, F., Pramstaller, N., Rechberger, C., Rijmen, V.: Analysis of Step-Reduced
SHA-256. In: Robshaw, M.J.B. (ed.) FSE 2006. LNCS, vol. 4047, pp. 126–143.
Springer, Heidelberg (2006)

19. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy. CRC Press (1997)

20. Nikolić, I., Biryukov, A.: Collisions for Step-Reduced SHA-256. In: Nyberg, K.
(ed.) FSE 2008. LNCS, vol. 5086, pp. 1–15. Springer, Heidelberg (2008)

21. Quisquater, J.-J., Delescaille, J.-P.: How Easy Is Collision Search? Application to
DES (Extended Summary). In: Quisquater, J.-J., Vandewalle, J. (eds.) EURO-
CRYPT 1989. LNCS, vol. 434, pp. 429–434. Springer, Heidelberg (1990)

22. Saarinen, M.-J.O.: A Meet-in-the-Middle Collision Attack Against the New FORK-
256. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS,
vol. 4859, pp. 10–17. Springer, Heidelberg (2007)

23. Sanadhya, S.K., Sarkar, P.: 22-step collisions for SHA-2. CoRR, abs/0803.1220
(2008)

24. Sanadhya, S.K., Sarkar, P.: Attacking Reduced Round SHA-256. In: Bellovin, S.M.,
Gennaro, R., Keromytis, A.D., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp.
130–143. Springer, Heidelberg (2008)

http://www.schneier.com/skein1.3.pdf


Converting Meet-In-The-Middle Preimage Attack 283

25. Sanadhya, S.K., Sarkar, P.: New Collision Attacks against Up to 24-Step SHA-
2. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS,
vol. 5365, pp. 91–103. Springer, Heidelberg (2008)

26. Sanadhya, S.K., Sarkar, P.: Non-linear Reduced Round Attacks against SHA-
2 Hash Family. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP 2008. LNCS,
vol. 5107, pp. 254–266. Springer, Heidelberg (2008)

27. Sasaki, Y., Aoki, K.: Finding Preimages in Full MD5 Faster Than Exhaustive
Search. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 134–152.
Springer, Heidelberg (2009)

28. Sasaki, Y., Aoki, K.: Preimage Attacks on 3, 4, and 5-Pass HAVAL. In: Pieprzyk,
J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 253–271. Springer, Heidelberg
(2008)

29. Sedgewick, R., Szymanski, T.G., Yao, A.C.-C.: The complexity of finding cycles in
periodic functions. SIAM J. Comput. 11(2), 376–390 (1982)

30. Wang, L., Ohta, K., Sakiyama, K.: Free-start preimages of round-reduced Blake
compression function. Rump session at ASIACRYPT 2009 (2009)

31. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

32. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

33. Watanabe, D.: OFFICIAL COMMENT: LUX. NIST mailing list (2009),
http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/

documents/LUX Comments.pdf

Appendix

A Application to BLAKE

We apply our technique to BLAKE hash function family consisting of BLAKE-
224, BLAKE-256, BLAKE-384 and BLAKE-512 [5]. We utilize the result pre-
sented in [30] which showed a pseudo preimage attack on the 4-round reduced
BLAKE compression function without the initialization function. While the
practical impact on the attack for this reduced BLAKE compression function
is debatable, a pseudo collision on the reduced BLAKE can be directly derived
by using our conversion technique. As a result, we can find a pseudo collision of
the 4-round reduced BLAKE-256 compression function without the initialization
with the complexity of 2112. Similarly, a pseudo collision of the 4-round reduced
BLAKE-512 compression function without the initialization can be found with
the complexity of 2224.

A.1 Description of BLAKE

The compression function of BLAKE-256 consists of initialization, round func-
tion and finalization.

http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/documents/LUX_Comments.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/documents/LUX_Comments.pdf


284 J. Li, T. Isobe, and K. Shibutani

Table 3. Message and Constants Permutation

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

σ0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
σ1 14 10 4 8 9 15 13 6 1 12 0 2 11 7 5 3
σ2 11 8 12 0 5 2 15 13 10 14 3 6 7 1 9 4
σ3 7 9 3 1 13 12 11 14 2 6 5 10 4 0 15 8

Initialization. 8 words of chaining variables h0, . . . , h7 are transformed into
16 words of an initial state v0, . . . , v15 as vi = hi for 0 ≤ i < 8, where hi, vj
∈ {0, 1}32. The other 8 words of the initial state vi (8 ≤ i < 16) are determined
from the given salts s0, ..., s3 and counter t0, t1, where si, tj ∈ {0, 1}32.

Round Function. An initial state v is updated by 14 round functions with
message words m0, ...,m15 and constants c0, ..., c7, where mi, cj ∈ {0, 1}32. Each
round function includes the following steps, G0(v0, v4, v8, v12), G1(v1, v5, v9,
v13), G2(v2, v6, v10, v14), G3(v3, v7, v11, v15), G4(v0, v5, v10, v15), G5(v1, v6, v11,
v12), G6(v2, v7, v8, v13), G7(v3, v4,v7, v14). The function Gi(a, b, c, d) is defined
as:

a← a+ b+ (mσr(2i) ⊕ cσr(2i+1)), d← (d⊕ a) ≫ 16,
c ← c+ d, b ← (b⊕ c) ≫ 12,
a← a+ b+ (mσr(2i+1) ⊕ cσr(2i)), d← (d⊕ a) ≫ 8,
c ← c+ d, b ← (b⊕ c) ≫ 7,

where permutations σr(j) (0 ≤ j < 16) of the first 4 rounds refer to Table 3.
The functions G0 to G3 and G4 to G7 denote the column transforms and the
diagonal transforms, respectively.

Finalization. After the round functions, the new chaining variables are ex-
tracted with the updated state, the salts and the feed-forward of the initial
chaining variables as follows.

h
′
0 ← h0 ⊕ s0 ⊕ v0 ⊕ v8 h

′
1 ← h1 ⊕ s1 ⊕ v1 ⊕ v9

h
′
2 ← h2 ⊕ s2 ⊕ v2 ⊕ v10 h

′
3 ← h3 ⊕ s3 ⊕ v3 ⊕ v11

h
′
4 ← h4 ⊕ s0 ⊕ v4 ⊕ v12 h

′
5 ← h5 ⊕ s1 ⊕ v5 ⊕ v13

h
′
6 ← h6 ⊕ s2 ⊕ v6 ⊕ v14 h

′
7 ← h7 ⊕ s3 ⊕ v7 ⊕ v15

BLAKE-512 operates on 64-bit words and outputs 512 bits. The compression
function of BLAKE-512 is similar to that of BLAKE-256 except for the number
of rounds (16 instead of 14), and the constants and the amount of rotation used
in G functions.

A.2 Known MITM Preimage Attacks on 4-Round Compression
Function of BLAKE [30]

In the setting of the pseudo preimage attack on the reduced BLAKE compression
function presented in [30], the initialization step is disregarded, and an attacker



Converting Meet-In-The-Middle Preimage Attack 285

can select a random start value from the start of round functions (the end of
initialization step) as shown in Fig. 5.

initialization finalization
rounds

message saltsalt counter

input CV

output CV

random start value

Fig. 5. MITM preimage attack for finalization

Figure 6 shows the overview of the pseudo preimage attack on the 4-round
reduced BLAKE compression function without the initialization. Let an input
state of the round i be vi−1 = {vi−1

0 , . . . , vi−1
15 }, where vij ∈ {0, 1}32. In this

attack, message wordsm4 and m6 are used as the neutral words, and the starting
point of the attack is the state after the column transformation of the round 3.
In the forward computation from the starting point, v46 , v

4
14 can be computed

without using m6. Similarly, in the backward computation, v06 can be computed
without using m4. Therefore, storing m4, v

4
6 , v

4
14 in a list LF , and m6, v

0
6 in a list

LB, we expect to find matching pairs satisfying h′
6 = v06 ⊕ v46 ⊕ v414. As a result,

a pseudo preimage of the 4-round reduced BLAKE without the initialization is
found with the complexity of 2224.

A.3 Pseudo Collision Attacks on BLAKE Compression Function

Since the matching point of the known pseudo preimage attack is at the end of
the compression function, a pseudo collision attack can be directly constructed
from it.

Attack Procedure

1. Randomly choose the 7-th word of the output value h′
6, which is the target

value.
2. Randomly choose the values of state words and message words except for

m4 and m6.
3. For all 232 possible m4, compute forward and find v46 and v414. Store the pairs

(m4, v
4
6 ⊕ v414) in a list LF

4. For all 232 possible m6, compute forward and find v06 . Store the pairs (m4,
h′
6 ⊕ v06) in a list LB.

5. Compare the value v46 ⊕ v414 and h′
6 ⊕ v06 in two lists LF and LB.

6. Once matching, compute states v00 , v
0
1 , · · · , v015 and v40 , v

4
1 , · · · , v415. Compute

output values h′
0, h

′
1, . . . , h

′
15 according to finalization steps and store with

message words together. Then obtain 232 items in which the value of h′
6 are

fixed.



286 J. Li, T. Isobe, and K. Shibutani

v
0

v
1

v
2

v
3

v
4

m4

m4

m4

m4

m6

m6

m6

m6

v0
6

v4
6

v4
14

Column

Column

Column

Column

Diagonal

Diagonal

Diagonal

Diagonal

start point

: not depending on m6 : not depending on m4

: depending on m4 and m6

Fig. 6. Pseudo preimage attacks on reduced BLAKE compression function

7. Repeat steps (2) - (6) 280 times.

We can obtain 2112 items in which the value of h′
6 are fixed. A colliding pair

exists with a high probability that the other 224 bits of output values are also
same. Finally, we can find a pseudo collision of the 4-round reduced BLAKE-256
compression function with the complexity of 2112 = 280 · 232.

The attack is applicable to the reduced BLAKE-512 in a similar way, since
the components of BLAKE-512 are similar to those of BLAKE-256. In BLAKE-
224, the variable h′

7 is truncated and discarded. However, the truncation does not
affect our conversion, since we use h′

6 as a partial target preimage. Thus, a pseudo
collision attack on the 4-round reduced BLAKE-224 without the initialization
can be constructed with the complexity of 296(= 2(224−32)/2). For BLAKE-384,
in contrast to the other variants, the variable h′

6 is discarded by the truncation
as well. Therefore, it is hard to straightforwardly apply our conversion to the
reduced BLAKE-384, since h′

6 cannot be used as a partial target preimage.



UNAF: A Special Set of Additive Differences

with Application to the Differential
Analysis of ARX�

Vesselin Velichkov1,2,��, Nicky Mouha1,2,� � �,
Christophe De Cannière1,2,†, and Bart Preneel1,2

1 Department of Electrical Engineering ESAT/SCD-COSIC,
Katholieke Universiteit Leuven. Kasteelpark Arenberg 10, B-3001 Heverlee, Belgium

2 Interdisciplinary Institute for BroadBand Technology (IBBT), Belgium
Vesselin.Velichkov@gmail.com, Nicky.Mouha@esat.kuleuven.be

Abstract. Due to their fast performance in software, an increasing num-
ber of cryptographic primitives are constructed using the operations ad-
dition modulo 2n, bit rotation and XOR (ARX). However, the resistance
of ARX-based ciphers against differential cryptanalysis is not well under-
stood. In this paper, we propose a new tool for evaluating more accu-
rately the probabilities of additive differentials over multiple rounds of a
cryptographic primitive. First, we introduce a special set of additive dif-
ferences, called UNAF (unsigned non-adjacent form) differences. Then,
we show how to apply them to find good differential trails using an al-
gorithm for the automatic search for differentials. Finally, we describe
a key-recovery attack on stream cipher Salsa20 reduced to five rounds,
based on UNAF differences.

Keywords: UNAF, ARX, Salsa20, additive differential probability, dif-
ferential cryptanalysis.

1 Introduction

Differential cryptanalysis [4] and linear cryptanalysis [14] have shown to be two
of the most powerful techniques in the cryptanalysis of symmetric-key crypto-
graphic primitives. Security against linear and differential cryptanalysis is there-
fore typically a major design criterion for modern ciphers. An example of this is
the wide-trail design strategy, used to provide provable resistance against linear
and differential cryptanalysis for the AES block cipher [6].

� This work was supported in part by the Research Council K.U.Leuven: GOA
TENSE, and by the IAP Program P6/26 BCRYPT of the Belgian State (Bel-
gian Science Policy), and in part by the European Commission through the ICT
program under contract ICT-2007-216676 ECRYPT II.

�� DBOF Doctoral Fellow, K.U.Leuven, Belgium.
� � � This author is funded by a research grant of the Institute for the Promotion of

Innovation through Science and Technology in Flanders (IWT-Vlaanderen).
† Postdoctoral Fellow of the Research Foundation – Flanders (FWO).

A. Canteaut (Ed.): FSE 2012, LNCS 7549, pp. 287–305, 2012.
c© International Association for Cryptologic Research 2012



288 V. Velichkov et al.

In order to achieve a fast performance in software, an increasing number
of cryptographic primitives are built using the operations addition modulo 2n,
rotation and XOR (ARX). Examples include the block cipher FEAL [17], the
Salsa20 stream cipher family [3], as well as the SHA-3 finalists BLAKE [2] and
Skein [9]. Although ARX-based algorithms are very popular, their resistance to
differential cryptanalysis [4] is not well understood.

The probability with which differences propagate through a sequence of oper-
ations must be calculated efficiently and accurately, in order to correctly assess
the security of a cipher against differential cryptanalysis. Lipmaa et al. studied
the xor-differential probability of addition (xdp+) in [12], and the additive dif-
ferential probability of XOR (adp⊕) in [13]. These results were generalized using
the S-functions framework, introduced by Mouha et al. [15].

As shown by Velichkov et al. [18], the additive differential probability of ARX
(adpARX) can differ significantly from the multiplication of the differential prob-
ability of the separate components – addition, rotation and XOR. Although an
algorithm was proposed in [18] for the exact calculation of adpARX, unfortunately
their method does not scale to analyze larger components. The accurate calcu-
lation of the probability of a differential characteristic therefore still remains an
open problem for ARX constructions.

In this paper we take a different approach. Namely, we do not calculate the
exact differential probability of a component consisting of more than one ARX

operations. Instead, we multiply the differential probabilities of several ARX op-
erations in order to estimate the total probability. As we want to avoid that
this calculation differs significantly from the actual probability (e.g. due to de-
pendencies between the inputs as noted in [18]), we propose to use a new type
of difference: the UNAF difference, which represents a set of specially chosen
additive differences.

We apply UNAF differences to the cryptanalysis of the ARX-based stream
cipher Salsa20. A general algorithm for automatic search of differentials is briefly
discussed. We apply it to find several differentials for three rounds of Salsa20.
By multiplying the probabilities adpARX of separate ARX components, we estimate
that the best differential has a probability of 2−10. Using UNAF differences, the
same probability is evaluated as 2−4. Experimentally, we estimate the probability
of this differential to be 2−3.39. We observe that the probability obtained using
UNAF differences is much closer to the experimental value.

Finally, we apply UNAF differences to mount key-recovery attack on a version
of Salsa20 reduced to 5 rounds. Note that this is not the best known attack on
Salsa20. It is therefore provided only as a demonstration of a practical application
of UNAF differences. Furthermore, we expect that our attack can be extended
to more rounds.

The outline of the paper is as follows. In Sect. 2, we describe the UNAF
framework. It is applied to the differential analysis of stream cipher Salsa20 in
Sect. 3. Sect. 4 concludes the paper. Notation is defined in Table 1.



UNAF: A Special Set of Additive Differences 289

Table 1. Notation

Symbol Meaning

n Number of bits in a word
x n-bit word
x[i] Select the (i mod n)-th bit (or element) of the n-bit word x,

x[0] is the least-significant bit (or element)
|x| The absolute value of x
x The negation of x i.e. x = −x (e.g. 1 = −1)

#A Number of elements in the set A
+, - Addition modulo 2n, subtraction modulo 2n

⊕ Exclusive-OR (XOR)
≪ t Left bit rotation by t positions
α → β Input difference α propagates to output difference β
wr

i 32-bit word i from the input state to round r + 1 of Salsa20
Δr

i Additive difference in word i of the input to round r + 1 of Salsa20
0ri Zero difference in word i of the input to round r + 1 of Salsa20

{ΔU}ri UNAF difference in word i of the input to round r + 1 of Salsa20
ARX The sequence of the operations: +,≪,⊕ as a single operation

HW(x) Hamming weight of x (number of non-zero bits in x)

2 The UNAF Framework

In this section, we describe the UNAF framework. We define UNAF differences
and state the main UNAF theorem. The UNAF differential probability of ARX
(udpARX) is defined and a general algorithm for the automatic search for high-
probability differentials is briefly discussed.

2.1 Preliminaries

Before we give the formal definition of UNAF differences, we first recall a few
related concepts: the binary-signed digit (BSD) difference and the non-adjacent
form (NAF) difference.

Definition 1. (BSD difference) A BSD difference is a difference whose bits are
signed and take values in the set {1, 0, 1}:

Δ±a : Δ±a[i] = (a2[i]− a1[i]) ∈ {1, 0, 1}, 0 ≤ i < n . (1)

An additive difference Δ+a can be composed of more than one BSD difference
Δ±a. From any BSD difference, the corresponding additive difference can be
computed as: Δ+a =

∑n−1
i=0 Δ±a[i] · 2i.

All BSD differences corresponding to Δ+a can be obtained by replacing 01
with 11̄ and vice versa and by replacing 01̄ with 1̄1 and vice versa [7,16]. Note
also that the number of pairs (a1, a2) that satisfy the n-bit difference Δ+a is



290 V. Velichkov et al.

2n, while the number of pairs that satisfy any of its BSD differences Δ±a is
2k, where k is the number of zeros in the word Δ±a. Therefore, the following
inequality holds: 2k ≤ 2n, k = n−HW(Δ±a).

The non-adjacent form (NAF) difference is a special BSD difference and is
defined as follows:

Definition 2. (NAF) A NAF (non-adjacent form) difference is a BSD differ-
ence in which no two adjacent bits are non-zero:

ΔNa : �i : (ΔNa[i] �= 0) ∧ (ΔNa[i+ 1] �= 0), 0 ≤ i < n− 1 . (2)

For every additive difference Δ+a, there is exactly one NAF difference ΔNa
(ignoring the sign of the MSB). No other BSD difference has a lower Hamming
weight than ΔNa [16]. We illustrate this with the following example:

Example 1. Let n = 4 and Δ+a = 3. Then all possible BSD differences cor-
responding to Δ+a are 0011, 0101̄, 011̄1, 11̄1̄1, 1̄1̄1̄1, 11̄01̄ and 1̄1̄01̄. Of them,
only 0101̄ is in non-adjacent form (NAF). It also has the lowest Hamming weight
among all BSD differences, namely 2.

By enumerating all possible combinations of signs of the non-zero bits of ΔNa,
we can construct a special set of additive differences. What is special about this
set, is that all of its elements correspond to the same unsigned NAF difference.
This set is a UNAF difference and is denoted by ΔUa. More formally:

Definition 3. (UNAF) A UNAF difference is a set of additive differences that
correspond to the same unsigned NAF difference (i.e. a NAF difference with the
signs ignored):

ΔUa = {Δ+x : |ΔNx| = |ΔNa|} . (3)

It is easy to see that the size of the UNAF setΔUa is 2k, where k is the Hamming
weight of the n-bit wordΔNa, excluding the MSB. We further clarify the concept
of a UNAF difference with the following example:

Example 2. Consider again an example where n = 4. Let Δ+a = 3, thus ΔNa =
0101̄. Then, ΔUa = {Δ+x1 = 3, Δ+x2 = −3, Δ+x3 = 5, Δ+x4 = −5}. This
follows from |ΔNx1| = |ΔNx2| = |ΔNx3| = |ΔNx4| = |ΔNa|, because |0101̄| =
|01̄01| = |0101| = |01̄01̄| = 0101.

2.2 Main UNAF Theorem

The main UNAF theorem provides the motivation for applying UNAF differences
to the differential analysis of ARX. Before we state it, we define the additive
differential probability of XOR (adp⊕).

The differential probability of the operation XOR, when differences are ex-
pressed using addition modulo 2n, is denoted by adp⊕. For fixed additive dif-
ferences α, β and γ, adp⊕ is equal to the number of pairs (a1, b1) for which the
equality ((a1 +α)⊕ (b1+ β))− (a1⊕ b1) = γ holds, divided by the total number
of such pairs. More formally, adp⊕(α, β → γ) is defined as:



UNAF: A Special Set of Additive Differences 291

Definition 4. (adp⊕)

adp⊕(α, β → γ) =
#{(a1, b1) : c2 − c1 = γ}

#{(a1, b1)}
= 2−2n ·#{(a1, b1) : c2 − c1 = γ} , (4)

where c1 = a1⊕ b1, c2 = (a1 +α)⊕ (b1 + β) and 22n is the total number of pairs
(a1, b1).

Efficient algorithms for the computation of adp⊕ were studied in [13,15]. Next
we state the main UNAF theorem. Its proof is given in Appendix A.

Theorem 1. (Main UNAF theorem) If the probability with which input additive
differences Δ+a and Δ+b propagate to output difference Δ+c through XOR is
non-zero, then the probability with which any of the input additive differences
belonging to the corresponding UNAF sets resp. ΔUa and ΔU b propagate to any
of the output additive differences belonging to the UNAF set ΔU c is also non-
zero:

adp⊕(Δ+a,Δ+b→ Δ+c) > 0 =⇒ adp⊕(Δ+ai, Δ
+bj → Δ+ck) > 0 ,

∀i, j, k : Δ+ai ∈ ΔUa,Δ+bj ∈ ΔU b,Δ+ck ∈ ΔUc . (5)

Theorem 1 states that if a given additive differential is possible w.r.t. the XOR

operation, then all additive differentials whose inputs and outputs belong to the
same UNAF sets, are also possible. This is illustrated with the following example.

Example 3. Let n = 4 and Δ+a = 5, Δ+b = 1, Δ+c = 6. Because adp⊕(5, 1 →
6) = 0.15625 > 0, we can use Theorem 1 to show that adp⊕(Δ+ai, Δ

+bj →
Δ+ck) > 0 for any Δ+ai ∈ ΔUa = {3,−3, 5,−5}, Δ+bj ∈ ΔU b = {1,−1} and
Δ+ck ∈ ΔU c = {6,−6}.
In the next section we investigate the probability with which UNAF differences
propagate through the ARX operation.

2.3 The UNAF Differential Probability of ARX

The UNAF differential probability of ARX represents the probability with which
the sets of input additive differences ΔUa, ΔU b and ΔUd propagate to the set
of output additive differences ΔUe. It is defined as:

Definition 5. (udpARX)

udpARX(ΔUa,ΔU b,ΔUd
t−→ ΔUe) =

#{(a1, b1, d1) : Δ+a ∈ ΔUa,Δ+b ∈ ΔU b,Δ+d ∈ ΔUd,Δ+e ∈ ΔUe}
#{(a1, b1, d1) : Δ+a ∈ ΔUa,Δ+b ∈ ΔU b,Δ+d ∈ ΔUd} , (6)

where

Δ+e = e2 − e1 = ARX(a1 +Δ+a, b1 +Δ+b, d1 +Δ+d, t)− ARX(a1, b1, d1, t),

and ARX(x, y, z, t) = ((x + y) ≪ t)⊕ z.



292 V. Velichkov et al.

The probability udpARX is computed using a method conceptually similar to
the one proposed for the computation of adpARX in [18]. The main difference is
that in this case we are dealing with sets of input and output additive differences.
Details on this computation are provided in Appendix B.

2.4 An Algorithm for Finding the Best Output Difference

To demonstrate how the UNAF framework can be used to construct high-
probability differential characteristics, we have developed a general algorithm
for the automatic search of differentials. It is capable of computing the highest
probability output difference from a given operation. The proposed algorithm
is applicable to any type of difference and any operation. The only condition is
that the propagation of the difference through the operation can be represented
as an S-function. The method to find the best output difference is based on the
A* search algorithm [11].

Space constraints do not allow us to present the algorithm here in detail.
However, a full description of the algorithm accompanied by pseudo-code can
be found in Appendix C. Furthermore, a software toolkit that implements this
algorithm is available.1

In the following sections we describe an application of the algorithm and of
UNAF differences to the differential analysis of stream cipher Salsa20.

3 Applications

We describe several applications of the UNAF framework to the differential
analysis of stream cipher Salsa20. UNAF differences can be used to obtain more
accurate estimations of the probabilities of differentials through multiple rounds
of ARX operations. We describe a key-recovery attack using UNAF differentials
on a version of Salsa20, reduced to 5 rounds.

3.1 Description of Salsa20

Salsa20 is a stream cipher proposed by Bernstein in [3]. It is one of the finalists
of the eSTREAM competition [8]. Salsa20 operates on 32-bit words. The inputs
are a 256-bit key (k0, k1, . . . , k7), a 64-bit nonce (v0, v1), a 64-bit counter (t0, t1)
and four predefined 32-bit constants c0, c1, c2, c3. These inputs are mapped to a
two-dimensional square matrix as follows:⎡⎢⎢⎣

c0 k0 k1 k2
k3 c1 v0 v1
t0 t1 c2 k4
k5 k6 k7 c3

⎤⎥⎥⎦→
⎡⎢⎢⎣
w0

0 w0
1 w0

2 w0
3

w0
4 w0

5 w0
6 w0

7

w0
8 w0

9 w0
10 w0

11

w0
12 w0

13 w0
14 w0

15

⎤⎥⎥⎦ . (7)

1 http://www.ecrypt.eu.org/tools/s-function-toolkit

http://www.ecrypt.eu.org/tools/s-function-toolkit


UNAF: A Special Set of Additive Differences 293

wr
0 wr

4 wr
8 wr

12 wr
5 wr

9 wr
13 wr

1 wr
10 wr

14 wr
2 wr

6 wr
15 wr

3 wr
7 wr

11

quarterround quarterround quarterround quarterround

ws
0 ws

4 ws
8 ws

12 ws
5 ws

9 ws
13 ws

1 ws
10 ws

14 ws
2 ws

6 ws
15 ws

3 ws
7 ws

11

Fig. 1. Round s = r + 1 of Salsa20

The basic operation of Salsa20 is the quarterround. One quarterround transforms
four of the input words to round r + 1: wr

0 , w
r
1, w

r
2, w

r
3 into four output words:

wr+1
0 , wr+1

1 , wr+1
2 , wr+1

3 by the means of four consecutive ARX operations:

wr+1
1 = wr

1 ⊕ ((wr
0 + wr

3) ≪ 7) = ARX(wr
0 , w

r
3, w

r
1 , 7) , (8)

wr+1
2 = wr

2 ⊕ ((wr+1
1 + wr

0) ≪ 9) = ARX(wr+1
1 , wr

0, w
r
2 , 9) , (9)

wr+1
3 = wr

3 ⊕ ((wr+1
2 + wr+1

1 ) ≪ 13) = ARX(wr+1
2 , wr+1

1 , wr
3, 13) , (10)

wr+1
0 = wr

0 ⊕ ((wr+1
3 + wr+1

2 ) ≪ 18) = ARX(wr+1
3 , wr+1

2 , wr
0, 18) . (11)

One round of Salsa20 consists of four parallel applications of the quarterround
transformation. Each transformation is applied to the elements (in permuted
order) of one of the four columns of the input state matrix, followed by a per-
mutation of the words, as shown on Fig. 1.

Salsa20 has a total of 20 rounds, although versions with eight and twelve
rounds have been proposed, resp. Salsa20/8 and Salsa20/12. The output state
after the last round is added to the initial input state by means of a feed-forward
operation. This produces sixteen 32-bit words (512 bits) of key stream.

3.2 Estimating the Probability of Differentials Using UNAF
Differences

We apply the algorithm of Sect. 2.4 to search for high probability differential
characteristics in Salsa20. We use a greedy strategy in which at every ARX oper-
ation we select the output UNAF difference with the highest probability, before
proceeding with the next ARX operation. In this way we find the following trun-
cated differential for three rounds:

Δ0
8 = 0x80000000→ Δ3

9 = 0x80000000 . (12)



294 V. Velichkov et al.

000 Δ0
8 0012

quarterround quarterround quarterround quarterround

011 Δ1
3

Δ1
0 014 0112 0110 Δ1

2 016

quarterround quarterround quarterround quarterround

0211 Δ2
8

025 Δ2
9 Δ2

1

quarterround quarterround quarterround quarterround

Δ3
9

Fig. 2. Three round differential characteristic satisfying the differential Δ0
8 → Δ3

9

The expression (12) implies that all words of the input state have zero differ-
ence, except for the word at position 8, which has difference 0x80000000. A
three round differential characteristic that satisfies (12) is shown on Fig. 2. The
probability with which the differential (12) holds, obtained experimentally over
220 chosen plaintexts, is pexper = 2−3.39.

We compute two theoretical estimations of pexper. The first estimation is based
on single additive differences and is denoted p̂add. It is computed as a multipli-
cation of adpARX probabilities:

p̂add =
∏

adpARX = 2−10 . (13)

The second estimation of pexper is based on UNAF differences and is denoted
p̂unaf . It is computed as a multiplication of udpARX probabilities:

p̂unaf =
∏

udpARX = 2−4 . (14)

The computations (13) and (14) are shown in Table 2 and Table 3 respectively.
Clearly p̂unaf is a better estimation of pexper than p̂add. The reason is that

multiple differential characteristics connect the input and output differences of



UNAF: A Special Set of Additive Differences 295

Table 2. The estimated probability p̂add (13) of the differential (12); adpARX refers to

adpARX((Δ+a+Δ+b),Δ+d
t−→ Δ+e)

Δ Δ+a Δ+b Δ+d t Δ+e = Δ adpARX

Δ1
2 0 0 80000000 9 80000000 1

Δ1
3 80000000 0 0 13 fffff000 2−1

Δ1
0 fffff000 80000000 0 18 40020000 2−2.41

Δ2
1 40020000 0 0 7 01000020 2−2.99

Δ2
8 0 0 80000000 9 80000000 1

Δ2
9 80000000 0 0 13 fffff000 2−1

Δ3
9 0 01000020 fffff000 7 80000000 2−2.58

p̂add = 2−10

Table 3. The estimated probability p̂unaf (14) of the differential (12); udpARX refers to

udpARX(ΔUa,ΔU b,ΔUd
t−→ ΔUe)

ΔU ΔUa ΔUb ΔUd t ΔUe = ΔU udpARX

{ΔU}12 0 0 80000000 9 80000000 1

{ΔU}13 80000000 0 0 13 00001000 1
{ΔU}10 00001000 80000000 0 18 40020000 2−0.41

{ΔU}21 40020000 0 0 7 01000020 2−0.99

{ΔU}28 0 0 80000000 9 80000000 1
{ΔU}29 80000000 0 0 13 00001000 1

{ΔU}39 0 01000020 00001000 7 80000000 2−2.58

p̂unaf = 2−4

the differential (12). The estimation p̂add is based upon a single one among all
possible characteristics, while the estimation p̂unaf takes into account several
characteristics at once. This effect is illustrated in Fig. 3. Note that the input
{ΔU}08 and output {ΔU}39 UNAF sets contain a single element – the additive dif-
ference 80000000. Because of that {ΔU}08 = Δ0

8 and {ΔU}39 = Δ3
9 and therefore

the estimations (13) and (14) can be compared to each other.
In the case where the output UNAF set contains more than one element (i.e.

{ΔU}39 �= Δ3
9), we propose to divide the resulting probability by the size of the

output UNAF set #ΔU :

p̂unaf =

∏
udpARX

#ΔU
. (15)

The estimation (15) is based on the assumption that all additive differences from
the output UNAF set ΔU hold with approximately the same (or very close)
probabilities. For the case of Salsa20, our experiments confirm this assumption.

We use (15) to estimate the probabilities with which several differences from
the output state after Salsa20/3 hold, given input UNAF difference {ΔU}08 =
0x80000000. The results are shown in Table 4 and in Fig. 4.



296 V. Velichkov et al.

{ΔU}08 = Δ0
8

80000000

80000000 {ΔU}12

00001000 fffff000 {ΔU}13

40020000 3ffe0000 c0020000 bffe0000 {ΔU}10 80000000 {ΔU}28

01000020 00ffffe0 ff000020 feffffe0 {ΔU}21 00001000 fffff000 {ΔU}29

80000000

{ΔU}39 = Δ3
9

1

2−1
1

2−2.41

1

2−2.99 2−1

2−2.58

Fig. 3. A single UNAF characteristic, satisfying the differential Δ0
8 → Δ3

9. It is com-
posed of multiple additive characteristics.

The results presented in Table 4 and Fig. 4 show that although the probability
estimations p̂unaf/#ΔU computed using UNAF differences with (15) deviate
from the values obtained experimentally pexper, they are still more accurate
than the estimations p̂add based on single additive differences and computed
with (13).

3.3 Key-Recovery Attack on Salsa20/5

In this section, we apply UNAF differences to mount a key-recovery attack on
a version of stream cipher Salsa20 reduced to 5 rounds, denoted as Salsa20/5.
Although its complexity is lower than exhaustive key search, the attack does not
improve the best known attack on the cipher. Therefore it is described only as
a demonstration of a practical application of UNAF differences.

Using the best-first search algorithm from Sect. 2.4 we find the following
UNAF differential for 3 rounds of Salsa20:

{ΔU}08 = 0x80000000→ {ΔU}311 = 0x01000024 . (16)



UNAF: A Special Set of Additive Differences 297

Table 4. Estimating the probabilities of differentials for three rounds of Salsa20 using
UNAF differences

i Δ3
i {ΔU}3i p̂add p̂unaf/#ΔU pexper

9 80000000 80000000 2−10.00 2−4.00 2−3.38

13 ffe00100 00200100 2−15.75 2−7.75 2−4.93

14 ff00001c 01000024 2−16.29 2−8.31 2−6.35

1 00e00fe4 01201024 2−23.01 2−13.04 2−10.18

2 00000800 00000800 2−35.59 2−16.62 2−11.08

3 fff000a0 001000a0 2−41.48 2−20.04 2−14.68

6 01038020 01048020 2−41.76 2−21.91 2−15.68

7 ffefc000 00104000 2−44.65 2−22.15 2−17.42

The input UNAF set {ΔU}08 = 0x80000000 consists of one element: the additive
difference 0x80000000. The output UNAF set {ΔU}311 = 0x01000024 contains
the following 23 additive differences: 0x01000024, 0x0100001c, 0x00ffffe4,
0x00ffffdc, 0xff000024, 0xff00001c, 0xfeffffe4, 0xfeffffdc. The prob-
ability that an additive difference Δ3

11 falls into the set {ΔU}311 was determined
experimentally to be pexper = 2−3.38.

In our attack, we first invert the feed-forward operation to compute the dif-
ferences Δ5

5, Δ
5
6, . . ., Δ

5
10 of the state after round 5. Next, we guess 5 of the 8

words of the secret key, in order to compute the differences Δ5
1,Δ

5
2,Δ

5
3,Δ

5
4,Δ

5
11.

Therefore, we do not only know the differences Δ5
1,Δ

5
2,. . .,Δ

5
11, but also the cor-

responding values of the word pairs. This allows us to compute the differences
Δ4

12,Δ
4
13,Δ

4
14 from the state after round 4. Using the latter, we can finally com-

pute the UNAF difference {ΔU}311. If it is equal to 0x01000024, then our guess
of the key words was correct with some probability. This process is illustrated
in Appendix D.

Since the probability of the differential (16) is 2−3.38 ≥ 2−4, from M = 26

chosen plaintext pairs we expect that 2−4 · 26 = 22 = 4 pairs will follow the
differential (i.e. will satisfy the output difference {ΔU}311).

We assume that a pair encrypted under a wrong key results in a uniformly
random difference. The probability that this difference falls into the set {ΔU}311
is Prand = 23/232 = 2−29. Therefore the probability that at least 4 plaintext
pairs turn out to be all false positives (i.e. they satisfy the differential, but are
encrypted under a wrong key) can be calculated using the binomial distribution:

64∑
i=4

(
64

i

)
(2−29)i(1 − 2−29)64−i ≈ 2−96.72 . (17)

As explained, because we guess 160 bits (5 words) of the secret key, in the attack
we have to make 2160 guesses. For each guess, we encrypt 26 chosen plaintext
pairs and we partially decrypt the resulting ciphertext pairs for 2 rounds in order
to compute the output difference. From 2160 guesses, the expected number of
wrong keys that result in at least 4 pairs with the right difference is 2−96.72·2160 ≈



298 V. Velichkov et al.

-50

-40

-30

-20

-10

 0
1 2 3 4 5 6 7 8

P
ro

ba
bi

lit
y 

(L
og

2)

3-Round Differentials for Salsa20 (Index)

Estimating the Probabilities of ARX Differentials Using UNAF

Estimated experimentally
UNAF

Additive

Fig. 4. Three estimates of the probabilities of eight differentials for three rounds of
Salsa20, based on the data from Table 4: (1) estimation obtained experimentally, (2)
based on UNAF differences and (3) based on single additive differences.

263. For each of those keys, we guess the remaining 96 bits (3 words) i.e. we make
296 guesses per candidate key. For each guess we encrypt one plaintext pair (i.e.
two encryptions are performed) under the full key and check if the encryption
matches the corresponding ciphertext pair. This results in 2 · 263 · 296 = 2160

additional operations. Thus we estimate the total number of encryptions of our
attack to be:

2 · 26 · 2160 + 2 · 263 · 296 = 2167 + 2160 ≈ 2167 . (18)

Therefore the presented attack on Salsa20/5 has data complexity 27 chosen plain-
texts and time complexity 2167 encryptions. As shown in Table 5, it is comparable
to the attack proposed by Crowley [5].

Table 5. Overview of key-recovery attacks on Salsa20

Rounds Reference Time Data Type of Differences

Salsa20/5 Our result 2167 27 Additive
Salsa20/5 Crowley [5] 2165 26 XOR

Salsa20/6 Fischer et al. [10] 2177 216 XOR

Salsa20/7 Aumasson et al. [1] 2151 226 XOR

Salsa20/8 Aumasson et al. [1] 2251 231 XOR



UNAF: A Special Set of Additive Differences 299

4 Conclusion

In this paper, we introduced UNAF differences. These are sets of specially chosen
additive differences used to estimate the probabilities of differentials through
sequences of ARX operations more accurately.

We presented the main UNAF theorem, which shows how a UNAF difference
groups several possible additive differences together. Further, we investigated
the propagation of UNAF differences through the ARX operation. We defined
the UNAF differential probability of ARX and noted that it can be computed
efficiently using the S-functions framework proposed by Mouha et al.

UNAF differences were applied to the cryptanalysis of the stream cipher
Salsa20. We found that for three rounds of Salsa20, the probability of the best
differential based on additive differences is estimated as 2−10. Evaluating the
same probability using UNAF differences leads to the value 2−4. The latter is
closer to the the probability of the differential 2−3.39 that was determined ex-
perimentally.

A general algorithm for the automatic search for differentials was briefly dis-
cussed. It was used to find high-probability UNAF differentials for three rounds
of Salsa20. One of them was used to mount a key-recovery attack on Salsa20
reduced to five rounds. The attack has a time complexity of 27 and a data
complexity of 2167. It therefore does not improve the best-known attack on the
cipher. Nevertheless, to the best of our knowledge, this is the first cryptanalysis
result on Salsa20 that is based on additive differences. Furthermore, we expect
that the attack can be extended to more rounds. One possibility in this direction
is to group two or more ARX operations and consider them as a single operation.
Another is to improve the method for finding differential characteristics for mul-
tiple rounds.

The results in this paper were obtained for the Salsa20 stream cipher. We
see the application of UNAF differences to other ARX-based ciphers as another
interesting topic for future research.

Acknowledgments. The authors would like to thank Florian Mendel for his
detailed comments and for his suggestions on the overall structure of the paper.
His feedback was critical for improving the quality of the final text. We thank
prof. Vincent Rijmen for reviewing the draft version of the paper. We also thank
our colleagues at COSIC for the useful discussions, as well as the anonymous
reviewers for their detailed comments.

References

1. Aumasson, J.-P., Fischer, S., Khazaei, S., Meier, W., Rechberger, C.: New Features
of Latin Dances: Analysis of Salsa, ChaCha, and Rumba. In: Nyberg, K. (ed.) FSE
2008. LNCS, vol. 5086, pp. 470–488. Springer, Heidelberg (2008)

2. Aumasson, J.-P., Henzen, L., Meier, W., Phan, R.C.-W.: SHA-3 proposal BLAKE.
Submission to the NIST SHA-3 Competition (Round 2) (2008)



300 V. Velichkov et al.

3. Bernstein, D.J.: The Salsa20 Family of Stream Ciphers. In: Robshaw, M., Billet,
O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 84–97. Springer, Hei-
delberg (2008)

4. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. J.
Cryptology 4(1), 3–72 (1991)

5. Crowley, P.: Truncated differential cryptanalysis of five rounds of Salsa20. In: SASC
2006 Workshop: Stream Ciphers Revisted. eSTREAM, ECRYPT Stream Cipher
Project, Report 2005/073 (2005), http://www.ecrypt.eu.org/stream

6. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer (2002)

7. Ebeid, N.M., Hasan, M.A.: On binary signed digit representations of integers. In:
Des. Codes Cryptography, vol. 42(1), pp. 43–65 (2007)

8. eSTREAM. ECRYPT stream cipher project, http://www.ecrypt.eu.org/stream
9. Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas,

J., Walker, J.: The Skein Hash Function Family. Submission to the NIST SHA-3
Competition (Round 2) (2009)

10. Fischer, S., Meier, W., Berbain, C., Biasse, J.-F., Robshaw, M.J.B.: Non-
randomness in eSTREAM Candidates Salsa20 and TSC-4. In: Barua, R., Lange, T.
(eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 2–16. Springer, Heidelberg (2006)

11. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determina-
tion of minimum cost paths. IEEE Transactions on Systems Science and Cyber-
netics 4(2), 100–107 (1968)

12. Lipmaa, H., Moriai, S.: Efficient Algorithms for Computing Differential Properties
of Addition. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 336–350. Springer,
Heidelberg (2002)

13. Lipmaa, H., Wallén, J., Dumas, P.: On the Additive Differential Probability of
Exclusive-Or. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 317–
331. Springer, Heidelberg (2004)

14. Matsui, M., Yamagishi, A.: A New Method for Known Plaintext Attack of FEAL
Cipher. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 81–91.
Springer, Heidelberg (1993)

15. Mouha, N., Velichkov, V., De Cannière, C., Preneel, B.: The Differential Analysis
of S-Functions. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS,
vol. 6544, pp. 36–56. Springer, Heidelberg (2011)

16. Reitwiesner, G.W.: Binary arithmetic. Advances in Computers 1, 231–308 (1960)
17. Shimizu, A., Miyaguchi, S.: Fast Data Encipherment Algorithm FEAL. In: Price,

W.L., Chaum, D. (eds.) EUROCRYPT 1987. LNCS, vol. 304, pp. 267–278.
Springer, Heidelberg (1988)

18. Velichkov, V., Mouha, N., De Cannière, C., Preneel, B.: The Additive Differential
Probability of ARX. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 342–358.
Springer, Heidelberg (2011)

A Proof of Theorem 1

The following Lemma provides the condition under which the probability adp⊕

is non-zero.

http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream


UNAF: A Special Set of Additive Differences 301

Lemma 1 (Theorem 2 of [13]). All differences Δ+a, Δ+b and Δ+c for which
adp⊕(Δ+a,Δ+b→ Δ+c) > 0, are Δ+a = Δ+b = Δ+c = 0, and

Δ+a = Δ+a[n− 1 . . . q + 1] ‖ Δ+a[q] ‖ 0∗ , (19)

Δ+b = Δ+b[n− 1 . . . q + 1] ‖ Δ+b[q] ‖ 0∗ , (20)

Δ+c = Δ+c[n− 1 . . . q + 1] ‖ Δ+c[q] ‖ 0∗ , (21)

where ¬(Δ+a[q] = Δ+b[q] = Δ+c[q] = 0) and Δ+a[q] ⊕ Δ+b[q] = Δ+c[q].
Each of the sub-word differences Δ+a[n − 1 . . . q + 1], Δ+b[n − 1 . . . q + 1] and
Δ+c[n − 1 . . . q + 1] can take any arbitrary value. The symbol ∗ represents the
Kleene star.

We proceed next with the proof of Theorem 1.

Proof. From Reitwiesner’s algorithm for the construction of the NAF [16], it
follows that if the first non-zero bit (starting from the LSB) ofΔ+ai is at position
q, then the first non-zero bit of its NAF representation ΔNai is also at position
q. Since all Δ+ai in (5) belong to the same UNAF set ΔUa, the first non-zero
bit for all of them is in the same position q. The same observation holds for
Δ+bj and Δ+ck. From adp⊕(Δ+a,Δ+b → Δ+c) > 0 and Lemma 1, it follows
that Δ+a[q]⊕Δ+b[q] = Δ+c[q]. Therefore Δ+ai[q]⊕Δ+bj [q] = Δ+ck[q], ∀i, j, k.
Again by Lemma 1, it follows that if Δ+a is replaced by any Δ+ai belonging to
the same UNAF set ΔUa, the resulting probability adp⊕ is still non-zero. The
same observation can be made for Δ+b and Δ+c, which completes the proof. ��

B Computation of udpARX

The probability udpARX can be efficiently computed using the S-function frame-
work [15,18]. We briefly describe this computation below. It is also a part of a
toolkit that will be made publicly available.

The propagation of input UNAF differences ΔUa, ΔU b and ΔUd to output
UNAF difference ΔUe is represented as an S-function. The latter is used to
compute 16 adjacency matrices. Each of them corresponds to a given value of
the i-th bit of each of the four UNAF differences and connects a set of possible
input states to a set of possible output states.

The differential (ΔUa[i], ΔU b[i], ΔUd[i + t]
t−→ ΔUe[i + t]) at bit position i is

written as the bit string w[i] ← (ΔUa[i] ‖ ΔUb[i] ‖ ΔUd[i + t] ‖ ΔUe[i + t]). At
each bit position 0 ≤ i < n, the index w[i] ∈ {0, . . . , 15} selects one of the 16
adjacency matrices Aw[i]. The probability udpARX is computed as follows:

udpARX(ΔUa,ΔU b,ΔUd
t−→ ΔUe) =

14∑
j=0

Lj

(
n−1∏

i=n−t

Aw[i]

)
R

(
n−t−1∏
i=0

Aw[i]

)
Cj . (22)

In (22), the summation is performed over each of the 14 possible initial states.
The reason for having multiple initial states is the bit rotation by t positions, as



302 V. Velichkov et al.

explained in [18]. The multiplication by the projection matrix R at bit position
t is necessary because of the rotation operation. The column vectors Cj , 0 ≤
j < 15 represent the 15 possible initial states. The row vectors Lj , 0 < j < 15
represent their corresponding final states. For further details, we refer to [18].

Note that the matrices Aw[i] are of dimension 540 × 540, but these can be
minimized to 60× 60 by combining equivalent states using the algorithm of [15,
§3.5] .

C An Algorithm for Finding the Best Output Difference

Let� be an operation that takes a finite number of n-bit input words a1, b1, d1, . . .
and computes an n-bit output word c1 = �(a1, b1, d1, . . .). Let • be a type of
difference. Let α,β,ζ,. . . and γ be differences of type • such that a1 • a2 = α,
b1 • b2 = β, d1 • d2 = ζ, . . . and c1 • c2 = γ for some a2,b2,d2,. . . and some
c2. The differential probability with which input differences α, β, ζ, . . . prop-
agate to output difference γ with respect to the operation � is denoted as
•dp�(α, β, ζ, . . . → γ). Finally, let the difference • be such that it is possible
to express its propagation through the operation � as an S-function consist-
ing of N states. Therefore, there exist adjacency matrices Aw[i] such that the

probability •dp� can be efficiently computed as LAw[n−1] . . . Aw[1]Aw[0]C, where

L = [1 1 · · · 1 ] is a 1 × N matrix and C = [1 0 · · · 0 ]T is an N × 1 matrix (as
in [15]). The problem is to find an output difference γ such that its probability
pγ over all possible output differences is maximal:

pγ = •dp�(α, β, ζ, . . .→ γ) = max
j

• dp�(α, β, ζ, . . . → γj) . (23)

We represent (23) as a problem of finding the shortest path in an node-weighted
binary tree. We define the binary tree T = (N,E), where N is the set of nodes
and E is the set of edges. The height of T is n + 1 with a dummy start node
positioned at level −1 and the leaves positioned at level n − 1. Each node at
level i : 0 ≤ i < n contains a value of γ[i], where i = 0 is the LSB and i = n− 1
is the MSB. Every node on level i has two children at level i+1. Since the input
differences α, β, ζ, . . . are fixed, at every bit position i we can choose between two
matrices Aw[i], corresponding to the two possibilities for the output difference
γ[i].

To find the output difference with the highest probability, we use the A* search
algorithm [11]. In this algorithm, an evaluation function f can be computed for
every node in the search tree. The f -function represents the weight of a node,
and is based on the cost of the path from the start node, and a heuristic that
estimates the distance to the goal node. The algorithm always expands the node
with the highest f -value (corresponding to the highest probability). The A*
search algorithm guarantees that the optimal solution will be found, provided
that the evaluation function f never underestimates the probability of the best
output difference. After introducing some definitions, we will define an evaluation
function f and prove in Theorem 2 that this f satisfies the required condition.



UNAF: A Special Set of Additive Differences 303

Let vector Xi = [xi,0 xi,1 · · · xi,N−1 ] be a transition probability vector, i.e.

xi,r ≥ 0 for 0 ≤ r < N and
∑N−1

r=0 xi,r ≤ 1. We define Hr as a column vec-
tor of length N , of which the r-th element (counting from 0) is 1 and all other
elements are 0. The cost of a node at level i is then denoted by ‖Xi‖ (the
1-norm of Xi) and is calculated as ‖Aw[i]Aw[i−1] · · ·Aw[0]C‖. Let us define a

sequence of row vectors Ĝi,r, 0 ≤ r < N and 0 ≤ i < n. Each Ĝi,r is a prod-
uct of matrices LAw[n−1]Aw[n−2] . . . Aw[i+1], where each of the A-matrices are

chosen such that Ĝi,rHr is maximized. The choice of the A-matrices may differ
for different values of r. We define row vector Gi as the product of matrices
LAw[n−1]Aw[n−2] . . . Aw[i+1], where the A-matrices are chosen such that GiXi is
maximized. For a node at level i with cost ‖Xi‖, the evaluation function f is

defined as
∑N−1

r=0 Ĝi,rHrxi,r .

Theorem 2. The evaluation function f =
∑N−1

r=0 Ĝi,rHrxi,r never underesti-
mates the probability of the best output difference.

Proof. The following inequality holds: Ĝi,rHr ≥ GiHr for 0 ≤ r < N . The

latter can be proven by contradiction: if Ĝi,rHr < GiHr for some r, then Ĝi,r

is not the product of A-matrices that maximizes Ĝi,rHr, which contradicts its
definition. Because probabilities are non-negative, we can multiply both sides of
the inequality by the state probability xi,r, to obtain Ĝi,rHrxi,r ≥ GiHrxi,r ,
0 ≤ r < N . By summing the left and the right sides of the N inequalities, we
obtain

∑N−1
r=0 Ĝi,rHrxi,r ≥

∑N−1
r=0 GiHrxi,r = GiXi. By definition, GiXi is the

best choice of A-matrices, starting from transition probability Xi. This proves
that the left-hand side of the inequality never underestimates the probability,
which proves the theorem. ��

Before we can apply the A* algorithm to compute the best output difference,
we must determine the values of Ĝi,rHr for 0 ≤ i < n and 0 ≤ r < N . This is
done by again running the A* algorithm for the most significant bit, then for
the two most significant bits, and so on until we process the entire word. For
the MSB, we define Ĝn−1,r = L for 0 ≤ r < N . For the two MSBs, we run
the A* algorithm for every 0 ≤ r < N , setting the transition probability vector
Xn−2 to Hr. This allows us to compute Ĝn−2,rHr. This process is continued

until Ĝ0,rHr for 0 ≤ r < N is calculated. Having calculated all values of Ĝi,rHr,
we then use the A* algorithm to search for the best output difference by setting
the state transition probability vector X−1 = C. Pseudo-code of the entire A*
search algorithm is provided in Algorithm 1.

D Attack on Salsa20/5 Using UNAF Differences

Fig. 5 illustrates the attack presented in Sect. 3.3. Gray boxes denote guessed
words and white boxes denote words that are either known or can be computed.



304 V. Velichkov et al.

Algorithm 1. Find the Best Output Diff. of Type • w.r.t. Operation �.

Input: Matrices Aw[i] for •dp�; input diffs. α, β, ζ, . . .,; num. states N .
Output: Output difference γ and probability pγ such that

pγ = •dp�(α, β, ζ, . . . → γ) = max
j

• dp�(α, β, ζ, . . . → γj) .

1: Define struct node = {index, γ, findex−1, Ĥindex−1}
2: Init priority queue of nodes ordered by f : Q = ∅
3: Init output difference: γ ← ∅
4: for i = n− 1 downto 0 do
5: if i = n− 1 then
6: Ĝi ← L = [1 1 · · · 1 ]
7: else
8: Ĝi ← [ Ĝi,0 Ĝi,1 . . . Ĝi,N−1 ]
9: end if
10: if i = 0 then
11: N = 1
12: end if
13: for r = 0 to N − 1 do
14: Reset priority queue: Q = ∅
15: Init the total probability of node vi−1: fi−1 ← 1
16: Init the transition probability vector vi: Ĥi−1 ← Ĥi−1,r

17: Init node vi ← {i, γ, fi−1, Ĥi−1}
18: Add new node to the queue: Q.push(vi)
19: vbest ← Q.top(); {j, γ, fj−1, Ĥj−1} ← vbest
20: while j �= n do
21: Remove vbest from the queue: Q.pop()
22: for q = 0 to 1 do
23: Set the j-th bit of γ: γ[j] ← q
24: Estimate the total probability: fj ← ĜjA

q
w[j]Ĥj−1

25: Compute the transition probability vector: Ĥj ← Aq
w[j] Ĥj−1

26: Init child of vbest: node vqj+1 ← {j + 1, γ, fj , Ĥj}
27: Add the child to the queue: Q.push(vqj+1)
28: end for
29: Extract the node with the lowest total cost: vbest ← Q.top()
30: {j, γ, fj−1, Ĥj−1} ← vbest
31: end while
32: vbest ← Q.top(); fbest ← get cost(vbest)
33: Set the r-th element of Ĝi: Ĝi,r ← fbest
34: end for
35: end for
36: Extract the node with highest total probability: vbest ← Q.top()
37: Get the output difference associated to vbest: γ, pγ ← get gamma(vbest)
38: return γ, pγ



UNAF: A Special Set of Additive Differences 305

{ΔU}08

3 ROUNDS

{ΔU}311

quarterround quarterround quarterround quarterround

Δ4
12 Δ4

13 Δ4
14

quarterround quarterround quarterround quarterround

Δ5
4 Δ5

8 Δ5
5 Δ5

9 Δ5
1 Δ5

10 Δ5
2 Δ5

6 Δ5
3 Δ5

7 Δ5
11

Fig. 5. Key-recovery attack on Salsa20/5 using the 3-round UNAF differential
{ΔU}08 → {ΔU}311. Gray boxes denote guessed words; white boxes denote words that
are either known or can be computed.



ElimLin Algorithm Revisited

Nicolas T. Courtois1, Pouyan Sepehrdad2,�,
Petr Sušil2,��, and Serge Vaudenay2

1 University College London, UK
n.courtois@ucl.ac.uk

2 EPFL, Lausanne, Switzerland
{pouyan.sepehrdad,petr.susil,serge.vaudenay}@epfl.ch

Abstract. ElimLin is a simple algorithm for solving polynomial systems
of multivariate equations over small finite fields. It was initially proposed
as a single tool by Courtois to attack DES. It can reveal some hidden
linear equations existing in the ideal generated by the system. We report
a number of key theorems on ElimLin. Our main result is to characterize
ElimLin in terms of a sequence of intersections of vector spaces. It implies
that the linear space generated by ElimLin is invariant with respect to any
variable ordering during elimination and substitution. This can be seen
as surprising given the fact that it eliminates variables. On the contrary,
monomial ordering is a crucial factor in Gröbner basis algorithms such as
F4. Moreover, we prove that the result of ElimLin is invariant with respect
to any affine bijective variable change. Analyzing an overdefined dense
system of equations, we argue that to obtain more linear equations in
the succeeding iteration in ElimLin some restrictions should be satisfied.
Finally, we compare the security of LBlock and MIBS block ciphers with
respect to algebraic attacks and propose several attacks on Courtois Toy
Cipher version 2 (CTC2) with distinct parameters using ElimLin.

Keywords: block ciphers, algebraic cryptanalysis, systems of sparse
polynomial equations of low degree.

[Breaking a good cipher should require]
“as much work as solving a system of simultaneous equations

in a large number of unknowns of a complex type.”

Claude Elwood Shannon [45]

1 Introduction

Various techniques exist in cryptanalysis of symmetric ciphers. Some involve
statistical analysis and some are purely deterministic. One of the latter methods
is algebraic attack recognized as early as 1949 by Shannon [45]. Any algebraic
attack consists of two distinct stages:

� This work has been supported in part by the European Commission through the
ICT program under contract ICT-2007-216646 ECRYPT II.

�� Supported by a grant of the Swiss National Science Foundation, 200021 134860/1.

A. Canteaut (Ed.): FSE 2012, LNCS 7549, pp. 306–325, 2012.
c© International Association for Cryptologic Research 2012



ElimLin Algorithm Revisited 307

– Writing the cipher as a system of polynomial equations of low degree often
over GF(2) or GF(2k), which is feasible for any cipher [48,20,42].

– Recovering the secret key by solving such a large system of polynomial equa-
tions.

Algebraic attacks have been successful in breaking several stream ciphers (see
[1,18,11,24,19,14,23,10] for instance) and a few block ciphers such as Keeloq [37]
and GOST [15], but they are not often as successful as statistical attacks. On
the other hand, they often require low data complexity. This is not the case for
statistical attacks.

General purpose algebraic attack techniques were developed in the last few
years by Courtois, Bard, Meier, Faugère, Raddum, Semaev, Vielhaber, Dinur and
Shamir to solve these systems [16,21,20,18,11,30,31,44,47,23,24]. The problem of
solving such polynomial systems of multivariate equations is called MQ problem
and is known to be NP hard for a random system. Currently, for a random
system in which the number of equations is equal to the number of unknowns,
there exists no technique faster than an exhaustive key search which can solve
such systems. On the other hand, the equations derived from symmetric ciphers
turn out to be overdefined and sparse for most ciphers. So, they might be easier
to solve. This sparsity is coming from the fact that due to the limitations in
hardware and the need for lightweight algorithms, simple operations arise in
the definition of cryptosystems. They are also overdefined due to the non-linear
operations.

The traditional method for solving overdefined polynomial systems of equa-
tions are known to be various Gröbner basis algorithms such as Buchberger
algorithm [9], F4 and F5 [30,31] and XL [21]. The most critical drawback of the
Gröbner basis approach is the elimination step where the degree of the system
increases. This leads to an explosion in memory space and even the most current
efficient implementations of Faugère algorithm [30,31] under PolyBoRi framework
[8] or Magma [40] are not capable of handling large systems of equations effi-
ciently. On the other hand, they are faster than other methods for overdefined
dense systems or when the equations are over GF(q) where q > 2. In fact, to-
gether with SAT solvers, they are currently the most successful methods for
solving polynomial systems.

Nevertheless, due to the technical reasons mentioned above, the system of
equations extracted from symmetric ciphers turns out to be sparse. Unfortu-
nately, the Gröbner basis algorithms can not exploit this property. In such cases,
algorithms such as XSL [20], SAT solving techniques [4,27,3], Raddum-Semaev
algorithm [44] and ElimLin [16] are of interest.

In this paper, we study the elimination algorithm ElimLin that falls within
the remit of Gröbner basis algorithms, though it is conceptually much simpler
and is based on a mix of simple linear algebra and substitution. It maintains the
degree of the equations and it does not require any fixed ordering on the set of
all monomials. On the contrary, we need to work with ad-hoc monomial order-
ings to preserve the sparsity and make it run faster. This simple algorithm reveals



308 N.T. Courtois et al.

some hidden linear equations existing in the ideal generated by the system. We
show in Sec. 7 that ElimLin does not find all such linear equations.

As far as the authors are aware, no clue has been found yet which demonstrates
that ElimLin at some stage stops working. This does not mean that ElimLin can
break any system. As mentioned earlier, for a random system this problem is NP
hard and Gröbner basis algorithms behave much better for such dense random
systems. But, the equations derived from cryptosystems are often not random
(see [32] for the huge difference between a random system and the algebraic
representation of cryptographic protocols). What we mean here is that if for
some small number of rounds ElimLin performs well but then it stops working for
more rounds, we can increase the number of samples and it will become effective
again. The bottleneck is having an efficient data structure for implementing
ElimLin together with a rigorous theory behind it to anticipate its behaviour.
These two factors are currently missing in the literature.

Except two simple theorems by Bard (see Chapter 12, Section 5 of [4]), almost
nothing has been done regarding the theory behind ElimLin. As ElimLin can also
be used as a pre-processing step in any algebraic attack, building a proper theory
is vital for improving the state of the art algebraic attacks. We are going to shed
some lights on the way this ad-hoc algorithm works and the theory behind it.

In this paper, we show that the output of ElimLin is invariant with respect to
any variable ordering. This is a surprising result, i.e., while the spaces generated
are different depending on how substitution is performed, we prove that their
intersection is exactly the same. Furthermore, we prove that no affine bijective
variable change can modify the output of ElimLin. Then, we prove a theorem on
how the number of linear equations evolves in each iteration of ElimLin.

An unannounced competition is currently running for designing lightweight
cryptographic primitives. This includes several designs which have appeared in
the last few years (see [7,22,39,34,29,36,46,2,35,6]). These designs mainly com-
pete over the gate equivalent (GE) and throughput. This might not be a fair
comparison of efficiency, since they do not provide the same level of security with
respect to distinct types of attacks. In this paper, we compare the two lightweight
Feistel-based block ciphers MIBS [38] and LBlock [49] and show that with the
same number of rounds, LBlock provides a much lower level of security compared
to MIBS with respect to algebraic attacks. In fact, we attack both ciphers with
ElimLin and F4 algorithm. Finally, we provide several algebraic attacks against
Courtois Toy Cipher version 2 (CTC2) with distinct parameters using ElimLin.

In Sec. 2, we elaborate the ElimLin algorithm. Then, we remind some basic
theorems on ElimLin in Sec. 3. As our main contribution (Theorem 7), we prove
in Sec. 4 that ElimLin can be formulated as an intersection of vector spaces.
We also discuss its consequences in Sec. 4.2 and prove a theorem regarding the
evolution of linear equations in Sec. 4.3. We perform some attacks simulations
on CTC2, LBlock and MIBS block ciphers in Sec. 5.2, 5.3 and 5.4 respectively.
In Sec. 6, we compare ElimLin and F4. We mention some open problems and a
conjecture in Sec. 7 and we conclude.



ElimLin Algorithm Revisited 309

2 ElimLin Algorithm

ElimLin stands for Eliminate Linear and it is a technique for solving polynomial
systems of multivariate equations of low degree d mostly: 2, 3, or 4 over a finite
field specifically GF(2). It is also known as “inter-reduction” step in all major
algebra systems. As a single tool, it was proposed in [16] to attack DES. It broke
5-round DES. Later, it was applied to break 5-round PRESENT block cipher
[43] and to analyze the resistance of Snow 2.0 stream cipher against algebraic
attacks [17]. It is a simple but a powerful algorithm which can be applied to
any symmetric cipher and is capable of breaking their reduced versions. There
is no specific requirement for the system except that there should exist at least
one linear term, otherwise ElimLin trivially fails. The key question for such an
algorithm is to predict its behavior. Currently, very similar to most other types of
algebraic attacks such as [47,23,24], multiple parts of the algorithm are heuristic,
so it is worthwhile to prove which factors can improve its results, make it run
faster or does not have any influence on its ultimate result. This will yield a
better understanding of how ElimLin works.
ElimLin is composed of two sequential distinct stages, namely:

– Gaussian Elimination: All the linear equations in the linear span of initial
equations are found. They are the intersection between two vector spaces:
The vector space spanned by all monomials of degree 1 and the vector space
spanned by all equations.

– Substitution: Variables are iteratively eliminated in the whole system based
on linear equations until there is no linear equation left. Consequently, the
remaining system has fewer variables.

This routine is iterated until no linear equation is obtained in the linear span of
the system. See Fig. 1 for a more precise definition of the algorithm. Clearly, the
algorithm shall depend on ordering strategies to apply in step 5, 11, and 12 of
Fig. 1. We will see that it is not, i.e., the span of the resulting SL is invariant.

We observe that new linear equations are derived in each iteration of the
algorithm that did not exist in the former spans. This phenomenon is called
avalanche effect in ElimLin and is the consequence of Theorem 7. At the end,
the system is solved linearly (when SL is large enough) or ElimLin fails. If the
latter occurs, we can increase the data complexity 1 and re-run the attack.

3 State of the Art Theorems

The only theoretical analysis of ElimLin was done by Bard in [4]. He proved the
following theorem and corollary for one iteration of ElimLin:

Theorem 1 ([4]). All linear equations in the linear span of a polynomial equa-
tion system S0 are found in the linear span of linear equations derived by per-
forming the first iteration of ElimLin algorithm on the system.

1 For instance, the number of plaintext-ciphertext pairs.



310 N.T. Courtois et al.

1: Input : A system of polynomial equations S0 = {Eq01, . . . ,Eq0m0
} over GF(2).

2: Output : An updated system of equations ST and a system of linear equations SL.
3: Set SL ← ∅ and ST ← S0 and k ← 1.
4: repeat
5: Perform Gaussian elimination Gauss(.) on ST with an arbitrary ordering of equa-

tions and monomials to eliminate non-linear monomials.
6: Set SL′ ← Linear equations from Gauss(ST ).
7: Set ST ← Gauss(ST ) \ SL′ .
8: Set flag.
9: for all � ∈ SL′ in an arbitrary order do
10: if � is a trivial equation then
11: if � is unsolvable then
12: Terminate and output “No Solution”.
13: end if
14: else
15: Unset flag.
16: Let xtk be a monomial from �.
17: Substitute xtk in ST and S ′

L using �.
18: Insert � in SL.
19: k ← k + 1
20: end if
21: end for
22: until flag is set.
23: Output ST and SL.

Fig. 1. ElimLin algorithm

The following corollary (also from [4]) is the direct consequence of the above
theorem.

Corollary 2. The linear equations generated after performing the first Gaussian
elimination in ElimLin algorithm form a basis for all possible linear equations in
the linear span of the system.

This shows that any method to perform Gaussian elimination does not affect the
linear space obtained at an arbitrary iteration of ElimLin. All linear equations
derived from one method exist in the linear span of the equations cumulated
from another method. This is trivial to see.

4 Algebraic Representation of ElimLin

4.1 ElimLin as an Intersection of Vector Spaces

We also formalize ElimLin in an algebraic way. This representation is used in
proving Theorem 7. First, we define some notations.

We call an iteration a Gaussian elimination preceding a substitution; The
system of equations for ElimLin can be stored as a matrix Mα of dimension



ElimLin Algorithm Revisited 311

mα × Tα, where each mα rows represents an equation and each Tα columns
represents a monomial at iteration α. Also, rα denotes the rank of Mα. Let
nα be the number of variables at iteration α. We use a reverse lexicographical
ordering of columns during Gaussian elimination to accumulate linear equations
in the last rows of the matrix. Any arbitrary ordering can be used instead. In
fact, we use the same matrix representation as described in [4].

Let K = GF(2) and x = (x1, . . . , xn) be a set of free variables. We denote
by K[x] the ring of multivariate polynomials over K. For S ⊂ K[x], we denote
Span (S) the K-vector subspace of K[x] spanned by S. Let γ = (γ1, γ2, . . . , γn)
be a power vector in Nn. The term xγ is defined as the product xγ = xγ1

1 ×xγ2

2 ×
· · · × xγn

n . The total degree of xγ is defined as deg(xγ)
def
= γ1 + γ2 + · · ·+ γn. Let

Ideal (S) be the ideal spanned by S and Root (S) be the set of all tuples m ∈ Kn

such that f(m) = 0 for all f ∈ S. Let

Rd = Span (monomials of degree ≤ d) /Ideal
(
x2
1 − x1, x

2
2 − x2, . . . , x

2
n − xn

)
Let Sα be ST after the α-th iteration of ElimLin and S0 be the initial system.
Moreover, nα

L is the number of non-trivial linear equations in SL′ at the α-th

iteration. We denote Sα
L the SL after the α-th iteration. Also, Cα def

= #Sα
L .

Let assume that S0 has degree bounded by d. We denote by Var(f) the set
of variables xi expressed in f . Let xt1 , . . . , xtk be the sequence of eliminated
variables. We define Vk = {x1, . . . , xn}\{xt1 , . . . , xtk}. Also, let �1, �2, . . . , �k be
the sequence of linear equations as they are used during elimination (step 11 of
Fig. 1). Hence, we have xtk ∈ Var(�k) ⊆ Vk−1.

We prove the following crucial lemma which we use later to prove Theorem 7.

Lemma 3. After the α-th iteration of ElimLin, an arbitrary equation Eqαi in the
system (Sα ∪ Sα

L) for an arbitrary i can be represented as

Eqαi =

m0∑
t=1

βα
ti · Eq0t +

Cα∑
t=1

�t(x) · gαti(x) (1)

where βα
ti ∈ K and gαti(x) is a polynomial in Rd−1 and Var(gαti) ⊆ Vt.

Proof. Let xt1 be one of the monomials existing in the first linear equation
�1(x) and this specific variable is going to be eliminated. Substituting xt1 in an
equation xt1 · h(x) + z(x), where h(x) has degree at most d − 1, xt1 /∈ Var(h)
and xt1 /∈ Var(z) is identical to subtracting h(x) · �1(x). Consequently, the proof
follows by induction on α. ��
Now, we prove the inverse of the above lemma.

Lemma 4. For each i and each α, there exists β′α
ti ∈ K and g′αti (x) such that

Eq0i =

mα∑
t=1

β′α
ti · Eqαt +

Cα∑
t=1

�t(x) · g′αti (x) (2)

where g′αti (x) is a polynomial in Rd−1 and Var(g′αti ) ⊆ Vt.



312 N.T. Courtois et al.

Proof. Gaussian elimination and substitution are invertible operations. We can
use a similar induction as the previous lemma to prove the above equation. ��

In the next lemma, we prove that Sα
L contains all linear equations which can be

written in the form of Eq. (1).

Lemma 5. If there exists � ∈ R1 and some βt and g′′t (x) such that

�(x) =

m0∑
t=1

βt · Eq0t +
Cα∑
t=1

�t(x) · g′′t (x) (3)

at iteration α, where g′′t (x) is a polynomial in Rd−1, then there exists ut ∈ K
and vt ∈ K such that

�(x) +

Cα∑
t=1

ut · �t(x) =
mα∑
t=1

vt · Eqαt

So, �(x) ∈ Span (Sα
L).

Proof. We define uk iteratively: uk is the coefficient of xtk in

�(x) +
k−1∑
t=1

ut · �t(x)

for k = 1, . . . , Cα. So, Var(�(x)+
∑k

t=1 ut ·�t(x)) ⊆ Vk. By substituting Eq0i from
Eq. (2) in Eq. (3) and integrating ut and g′′t in g′αti , we obtain

�(x) +

Cα∑
t=1

ut · �t(x)︸ ︷︷ ︸
⊆V1

=

mα∑
t=1

vt · Eqαt︸ ︷︷ ︸
⊆V1

+

Cα∑
t=1

�t(x) · g′t(x)︸ ︷︷ ︸
=⇒ ⊆V1

(4)

with g′t(x) ∈ Rd−1. All g
′
t(x) where t > 1 can be written as ḡt(x) + xt1 · ¯̄gt(x)

with Var(ḡt) ⊆ V1, Var(¯̄gt) ⊆ V1 and ¯̄gt(x) ∈ Rd−2. Since,

�1(x) · g′1(x) + �t(x) · g′t(x) = �1(x) · (g′1(x) + �t(x) · ¯̄gt(x))︸ ︷︷ ︸
new g′

1(x)

+�t(x)︸ ︷︷ ︸
⊆V1

· (ḡt(x) + ¯̄gt(x) · (xt1 − �1(x)))︸ ︷︷ ︸
(new g′

t(x)) ⊆V1

we can re-arrange the sum in Eq. (4) using the above representation and obtain
Var(g′t) ⊆ V1 for all t > 1. Also, xt1 only appears in �1(x) and g′1(x). So, the
coefficient of xt1 in the expansion of �1(x) · g′1(x) must be zero. In fact, we have

�1(x) · g′1(x) = (xt1 + (�1(x)− xt1)) · (ḡ1(x) + xt1 · ¯̄gt(x))
= xt1 · (¯̄g1(x) · (1 + �1(x)− xt1) + ḡ1(x)) + ḡ1(x) · (�1(x)− xt1)



ElimLin Algorithm Revisited 313

So, ḡ1(x) = ¯̄g1(x) · (xt1 − �1(x) − 1) and we deduce,

g′1(x) = ¯̄g1(x) · (�1(x) + 1)

over GF(2). But, then �1(x) · g′1(x) = 0 over R, since �1(x) · (�1(x) + 1) = 0.
Finally, we iterate and obtain

�(x) +
Cα∑
t=1

ut · �t(x) =
mα∑
t=1

vt · Eqαt

��
From another perspective, ElimLin algorithm can be represented as in Fig. 2.
In fact, as a consequence of Lemma 3 and Lemma 5, Fig. 2 presents a unique
characterization of Span (SL) in terms of a fixed point:

1: Input : A set S0 of polynomial equations in Rd.
2: Output : A system of linear equations SL.
3: Set S̄L := ∅.
4: repeat
5: S̄L ← Span

(
S0 ∪ (Rd−1 × S̄L)

)
∩R1

6: until S̄L unchanged
7: Output SL: a basis of S̄L.

Fig. 2. ElimLin algorithm from another perspective

Lemma 6. At the end of ElimLin, Span (SL) is the smallest subset S̄L of R1,
such that

S̄L = Span
(
S0 ∪ (Rd−1 × S̄L)

)
∩R1

Proof. By induction, at step α we have S̄L ⊆ Span (Sα
L), using Lemma 5. Also,

Sα
L ⊆ S̄L using Lemma 3. So, S̄L = Span (Sα

L) at step α. Since

S̄L �→ Span
(
S0 ∪ (Rd−1 × S̄L)

)
∩R1

is increasing, we obtain the above equation. ��
ElimLin eliminates variables, thus it looks very unexpected that the number
of linear equations in each step of the algorithm is invariant with respect to
any variable ordering in the substitution step and the Gaussian elimination.
We finally prove this important invariant property. Concretely, we formalize
ElimLin as a sequence of intersection of vector spaces. Such intersection in each
iteration is between the vector space spanned by the equations and the vector
space generated by all monomials of degree 1 in the system. This implies that
if ElimLin runs for α iterations (finally succeeds or fails), it can be formalized
as a sequence of intersections of α pairs of vector spaces. These intersections of
vector spaces only depend on the vector space of the initial system.



314 N.T. Courtois et al.

Theorem 7. The following relations exist after running ElimLin on a polynomial
system of equations Q:

1. Root
(
S0
)
= Root(ST ∪ SL)

2. There is no linear equation in Span
(
ST
)
.

3. Span (SL) is uniquely defined by S0.
4. SL consists of linearly independent linear equations.
5. The complexity is O

(
nd+1
0 m2

0

)
, where d is the degree of the system and n0

and m0 are the initial number of variables and equations, respectively.

Proof (1). Due to Lemma 3 and Lemma 4, S0 and (ST ∪SL) are equivalent. So,
a solution of S0 is also a solution of (ST ∪ SL) and vice versa.

Proof (2). Since ElimLin stops on ST , the Gaussian reduction did not find any
linear polynomial.

Proof (3). Due to Lemma 6.

Proof (4). SL includes a basis for S̄L. So, it consists of linearly independent
equations.

Proof (5). n0 is an upper bound on #SL due to the fact that SL consists of
linearly independent linear equations. So, the number of iterations is bounded
by n0. The total number of monomials is bounded by

T0 ≤
d∑

i=0

(
n0

i

)
= O

(
nd
0

)
The complexity of Gaussian elimination is O(m2

0T0), since we have T0 columns
and m0 equations. Therefore, overall, the complexity of ElimLin is O

(
nd+1
0 m2

0

)
.
��

4.2 Affine Bijective Variable Change

In the next theorem, we prove that the result of ElimLin algorithm does not
change for any affine bijective variable change. It is an open problem to find an
appropriate non-linear variable change which improves the result of the ElimLin
algorithm.

Theorem 8. Any affine bijective variable change A : GF(2)n0 → GF(2)n0 on
a n0-variable system of equations S0 does not affect the result of ElimLin algo-
rithm, implying that the number of linear equations generated at each iteration
is invariant with respect to an affine bijective variable change.

Proof. In Lemma 6, we showed that Span (SL) is the output of the algorithm in
Fig. 2, iterating

S̄L ← Span
(
S0 ∪ (Rd−1 × S̄L)

)
∩R1

We represent the composition of a polynomial f1 with respect to A by Com(f1).
We then show that there is a commutative diagram.



ElimLin Algorithm Revisited 315

S0 Com(S0)

S̄L Com(S̄L)

Com

ElimLin

Com

ElimLin

We consider two parallel executions of the algorithm in Fig. 2, one with S0 and
the other with Com(S0).

If we compose the polynomials in S0 with respect to A, in the above relation
Rd−1 remains the same. Since the transformation A is affine,

Com(Span
(
S0 ∪ (Rd−1 × S̄L)

)
∩R1) = Span

(
Com(S0) ∪ (Rd−1 × Com(S̄L))

)
∩R1

So, at each iteration, the second execution has the result of applying Com to the
result of the first one. ��

4.3 Linear Equations Evolution

An open problem regarding ElimLin is to predict how the number of linear equa-
tions evolves in the preceding iterations. In the following theorem, we give a nec-
essary (but not sufficient) condition for a dense overdefined system of equations
to have an additional linear equation in the next iteration of ElimLin. Proving a
similar result for a sparse system is not straightforward.

Theorem 9. If we apply ElimLin to an overdefined dense system of quadratic
equations over GF(2), for nα+1

L > nα
L to hold, it is necessary to have

bα
2
− aα < nα

L <
bα
2

+ aα

where bα = 2nα − 1 and aα =

√
b2α−8nα

L

2 .

Proof. For the system to generate linear equations, it is necessary that the suffi-
cient rank condition [4] is satisfied. More clearly, we must have rα > Tα−1−nα,
otherwise no linear equations will be generated. This is true if the system of
equations is overdefined. Hence, we obtain,

nα
L = rα + nα + 1− Tα (5)

If some columns of the matrixMα are pivotless, it will shift the diagonal strand
of ones to the right. Therefore, nα

L will be more than what the above equation
expresses. Assuming the system of equations is dense, this phenomenon hap-
pens with a very low probability. Suppose the above equation is true with high
probability, then we get

nα+1
L = rα+1 + nα+1 + 1− Tα+1 (6)



316 N.T. Courtois et al.

In the (α + 1)-th iteration, the number of variables is reduced by nα
L. Thus,

nα+1 = nα − nα
L. If the system of equations is dense, in a quadratic system,

Tα =

(
nα

2

)
+ nα + 1

and so,

Tα+1 =

(
nα − nα

L

2

)
+ nα − nα

L + 1

Consequently, we have

Tα − Tα+1 = nα
L

(
nα −

1

2
(nα

L − 1)

)
(7)

Therefore, using Eq. (5), Eq. (6) and Eq. (7), we obtain,

nα+1
L = (rα+1 − rα) + (rα + nα − Tα + 1) + nα

L(− 1
2n

α
L + nα − 1

2 )

= nα
L(− 1

2n
α
L + nα + 1

2 )− (rα − rα+1)

If nα+1
L > nα

L, then nα
L(− 1

2n
α
L + nα + 1

2 )− (rα − rα+1) > nα
L and this leads to

nα
L
2 + (1− 2nα)n

α
L + 2(rα − rα+1) < 0

Δ = (1 − 2nα)
2 − 8(rα − rα+1), and if the above inequality holds, Δ should be

positive and assuming bα = 2nα − 1, then, bα −
√
Δ < 2nα

L < bα +
√
Δ.

ConsideringΔ is positive, nα >
√
2(rα − rα+1)+

1
2 . We also know that rα+1 ≤

rα−nα
L, which together lead to nα > 1

2 +
√
2nα

L. Therefore, for n
α+1
L > nα

L, it is

necessary to have nα > 1
2 +

√
2nα

L, but not visa versa. Simplifying bα −
√
Δ <

2nα
L < bα +

√
Δ and deploying rα − rα+1 ≥ nα

L results in

bα − 2aα < 2nα
L < bα + 2aα

where bα = 2nα − 1 and 2aα =
√
b2α − 8nα

L.
Notice that nα > 1

2+
√
2nα

L, which was obtained in the first stage of the proof,
has been originated from the fact that b2α − 8nα

L should be non-negative. ��

5 Attacks Simulations

In this section, we present our experimental results against CTC2, LBlock and
MIBS block ciphers. The simulations for CTC2 were run on an ordinary PC
with a 1.8 Ghz CPU and 2 GB RAM. All the other simulations were run on
an ordinary PC with a 2.8 Ghz CPU and 4 GB RAM. The amount of RAM
required by our implementation is negligible.



ElimLin Algorithm Revisited 317

In our attacks, we build a system of quadratic equations with variables rep-
resenting plaintext, ciphertext, key and state bits, which allows to express the
system of equations of high degree as quadratic equations. Afterwards, for each
sample we set the plaintext and ciphertext according to the result of the in-
put/output of the cipher. In order to test the efficiency of the algebraic attack,
we guess some bits of the key and set the key variables corresponding to the guess.
Then, we run the solver (ElimLin, F4 or SAT solver) to recover the remaining
key bits and test whether the guess was correct. Therefore, the complexity of our
algebraic attack can be bounded by 2g · C(solver), where C(solver) represents
the running time of the solver and g is the number of bits we guess. C(solver) is
represented as the the “Running Time” in all the following tables.

For a comparison with a brute force attack, we consider a fair implementation
of the cipher, which requires 10 CPU cycles per round. This implies that the
algebraic attack against t rounds of the cipher is faster than an exhaustive search
for the 1.8 Ghz and 2.8 Ghz CPU iff recovering c bits of the key is faster than
5.55 · t · 2c−31 and 3.57 · t · 2c−31 seconds respectively. This is already twice
faster than the complexity of exhaustive search. All the attacks reported in the
following tables are faster than exhaustive search with the former argument.
In fact, we consider the cipher to be broken for some number of rounds if the
algebraic attack that recovers (#key − g) key bits is faster than an exhaustive
key search over (#key − g) bits of the key.

5.1 Simulations Using F4 Algorithm under PolyBoRi Framework

The most efficient implementation of the F4 algorithm is available under Poly-
BoRi framework [8] running alone or under SAGE algebra system. PolyBoRi is a
C++ library designed to compute Gröbner basis of an ideal applied to Boolean
polynomials. A Python interface is used, surrounding the C++ core. It uses
zero-suppressed binary decision diagrams (ZDDs) [33] as a high level data struc-
ture for storing Boolean polynomials. This representation stores the monomials
more efficiently in memory and it makes the Gröbner basis computation faster
compared to other algebra systems.

We use polybori-0.8.0 for our attacks. Together with ElimLin, we also attack
LBlock and MIBS with F4 algorithm and then compare PolyBoRi’s efficiency
with our implementation of ElimLin.

5.2 Simulations on CTC2

Courtois Toy Cipher (CTC) is an SPN-based block cipher devised by Courtois
[13] as a toy cipher to evaluate algebraic attacks on smaller variants of cryp-
tosystems. It was designed to show that it is possible to break a cipher using an
ordinary PC deploying a small number of known or chosen plaintext-ciphertext
pairs.



318 N.T. Courtois et al.

Since the system of equations of well-known ciphers such as AES is often large,
it is not feasible by the current algorithms and computer capacities to solve them
in a reasonable time, therefore smaller but similar versions such as CTC can be
exploited to evaluate the resistance of ciphers against algebraic cryptanalysis.
This turns out to yield a benchmark on understanding the algebraic structure
of ciphers. Ultimately, this might lead to break of a larger system later.

CTC was not designed to be resistant against all known types of attacks like
linear and differential cryptanalysis. Nevertheless, in [25], it was attacked by
linear cryptanalysis. Subsequently, CTC Version 2 or CTC2 was proposed [12]
to resolve the flaw exists in CTC structure. CTC2 is very similar to CTC with a
few changes. It is an SPN-based network with scalable number of rounds, block
and key size. For the full specification, refer to [12]. In CT-RSA 2009, differential
and differential-linear attacks could reach up to 8 rounds of CTC2 [26], but as
stated before, the objective of the CTC designer was not applying statistical
attacks to his design. Finally, there is a cube attack on 4 rounds of one variant
of this cipher in [41].

Since block size and key size are flexible in CTC2 cipher, we break various
versions with distinct parameters (see Table 1) using ElimLin. The block size is
specified by a parameter B, which specifies the number of parallel S-boxes per
round. CTC2 S-box is 3 × 3, hence the block size is computed as 3B. We guess
some LSB bits of the key and we show that recovering the remaining is faster
than exhaustive search.

It might be possible that during the intermediate steps of ElimLin, a quadratic
equation in only key bits (possibly linear) appears. In such cases, approximately
O(#key2) samples are enough to break the system. This is due to the fact that
we can simply change the plaintext-ciphertext pair and generate a new linearly
independent equation in the key. Finally, when we have enough such equations,
we solve a system of quadratic equations in only key bits using the linearization
technique. When such phenomenon occurs, intuitively the cipher is close to be
broken but not yet. We can increase the number of samples and most often it
makes the cipher thoroughly collapse.

5.3 Simulations on LBlock

LBlock is a new lightweight Feistel-based block cipher, aimed at constrained
environments, such as RFID tags and sensor networks [49] proposed at ACNS
2011. It operates on 64-bit blocks, uses a key of 80 bits and iterates 32 rounds.
For a detailed specification of the cipher, refer to [49]. As far as the authors are
aware, there is currently no cryptanalysis results published on this cipher.

We break 8 rounds of LBlock using 6 samples deploying an ordinary PC by
ElimLin. Our results are summarized in Table 2. In the same scenario, PolyBoRi
crashes due to running out of memory.



ElimLin Algorithm Revisited 319

Table 1. CTC2 simulations using ElimLin up to 6 rounds with distinct parameters

B Nr #key g Running Time1 Running Time2 Data Attack
(in hours) (in hours) notes

16 3 48 0 0.03 5 KP ElimLin
16 3 48 0 0.12 14 KP ElimLin
64 3 192 155 0.03 1 KP ElimLin
85 3 255 210 0.04 1 KP ElimLin
16 4 48 0 0.01 2 CP ElimLin
16 4 48 0 0.05 4 CP ElimLin
40 4 120 85 0.00 1 KP ElimLin
40 4 120 85 0.84 16 KP ElimLin
48 4 144 100 0.12 4 KP ElimLin
64 4 192 148 0.05 1 KP ElimLin
64 4 192 155 2.21 5 KP ElimLin
85 4 255 220 0.29 1 KP ElimLin
85 4 255 215 0.64 1 KP ElimLin
85 4 255 220 0.26 2 KP ElimLin
85 4 255 215 0.90 3 KP ElimLin
85 4 255 210 1.33 4 KP ElimLin
16 5 48 0 3 8 CP ElimLin
40 5 120 85 0.03 2 CP ElimLin
32 6 96 60 2.5 16 CP ElimLin
40 6 120 80 1 8 CP ElimLin
64 6 192 155 2.4 4 CP ElimLin
85 6 255 210 3 2 CP ElimLin
85 6 255 220 3 16 CP ElimLin
85 6 255 210 180.5 64 CP ElimLin
128 6 384 344 4.5 2 CP ElimLin

B : Number of S-boxes per round. To obtain the block size, B is multiplied by 3.
Nr : Number of rounds
g: Number of guessed LSB of the key
Running Time1: Running time until we achieve equations only in key variables (no
other internal variables). When this is achieved, the cipher is close to be broken, but
not yet (see Sec. 5.2).
Running Time2: Attack running time for recovering (#key − g) bits of the key.
KP: Known plaintext
CP: Chosen plaintext

5.4 Simulations on MIBS

Similar to the LBlock block cipher, MIBS is also a lightweight Feistel-based
block cipher, aimed at constrained environments, such as RFID tags and sensor
networks [38]. It operates on 64-bit blocks, uses keys of 64 or 80 bits and iterates
32 rounds. For a detailed specification of the cipher, see [38].

Currently,thebestcryptanalysisresults isa linearattackreaching18-roundMIBS
with data complexity 261 and time complexity of 276 [5]. In fact, statistical attacks
often requirevery largenumberof samples.This isnotalwaysachievable inpractice.



320 N.T. Courtois et al.

Table 2. Algebraic attack complexities on reduced-round LBlock using ElimLin and
PolyBoRi

Nr #key g Running Time Data Attack
(in hours) notes

8 80 32 0.252 6 KP ElimLin
8 80 32 crashed 6 KP PolyBoRi

Nr : Number of rounds
g: Number of guessed LSB of the key
KP: Known plaintext
CP: Chosen plaintext

We break 4 and 3 rounds of MIBS80 and MIBS64 using 32 and 2 samples
deploying an ordinary PC by ElimLin. Our results are summarized in Table 3. In
2 out of 3 experiments, PolyBoRi crashes due to running out of memory. This is
the first algebraic analysis of the cipher.

The designers in [38] have evaluated the security of their cipher with respect to
algebraic attacks. They used the complexity of XSL algorithm for this evaluation,
which is not a precise measurement for evaluating resistance of a cipher against
algebraic attacks, since effectiveness of XSL is still controversial and under specu-
lation. There are better methods such as SAT solvers [3] which solve MQ problem
faster than expected due to the system being overdefined and sparse.

Let assume XSL can be precise enough to evaluate the security of a cipher
with respect to algebraic attacks. According to [20,38], the complexity of XSL
can be evaluated with the work factor. For MIBS, work factor is computed as:

WF = Γω
(
(Block Size) ·N2

r

)ω�T
r �

whereΓ is a parameterwhichdepends only on theS-box.ForMIBS,Γ = 85.56.The
value r = 21 is the number of equations the S-box can be representedwith. T = 37
is the number of monomials in that representation. ω = 2.37 is the exponent of the
Gaussian elimination complexity. The work factor for attacking 5-round MIBS is
WF = 265.65 which is worse than an exhaustive key search for MIBS64. Deploying
SAT solving techniques using MiniSAT 2.0 [28], we can break 5 rounds of MIBS64
(see Table 3). Our strategy is exactly the same as [3]. Table 3 already shows that
we can do better than 265.65 for MIBS64. We can perform a very similar attack
on MIBS80. This already shows that considering the complexity of XSL is not a
precisemeasure to evaluate the security of a cipher against algebraic cryptanalysis.
Complexity of attacking such system with XL is extremely high.

We believe that due to the similarity between the structure of MIBS and
LBlock, we can compare them with respect to algebraic attacks. As can be seen
from the table of attacks, LBlock is much weaker. This is not surprising though,
since the linear layer of LBlock is much weaker than MIBS, since it is nibble-
wise instead of bit-wise. So, we could attack twice more rounds of LBlock. Thus,
although LBlock is lighter with respect to the number of gates, but it provides
a lower level of security with respect to algebraic attacks.



ElimLin Algorithm Revisited 321

Table 3. Algebraic attack complexities on reduced-round MIBS using ElimLin, Poly-
BoRi and MiniSAT 2.0

Nr #key g Running Time Data Attack
(in hours) notes

4 80 20 0.137 32 KP ElimLin
4 80 20 crashed 32 KP PolyBoRi
5 64 16 0.395 6 KP MiniSAT 2.0
5 64 16 crashed 6 KP PolyBoRi
3 64 0 0.006 2 KP ElimLin
3 64 0 0.002 2 KP PolyBoRi

Nr : Number of rounds
g: Number of guessed LSB of the key
KP: Known plaintext
CP: Chosen plaintext

6 A Comparison between ElimLin and PolyBoRi

Gröbner basis is currently one of the most successful methods for solving polyno-
mial systemsof equations.However, it has its ownrestrictions.Themainbottleneck
of the Gröbner basis techniques is the memory requirement and therefore most of
the Gröbner basis attacks use relatively small number of samples. It is worthwhile
tomention thatElimLin is a subroutine isGröbner basis computations.But,ElimLin
algorithm as a single tool requires a large number of samples to work.

The Gröbner basis solve the system by reductions according to a pre-selected
ordering, which can lead to high degree dense polynomials. ElimLin uses the
fact that multiple samples provide an additional information to the solver, and
therefore the key might be found even if when we restrict the reduction to
degree 2.

Next, we compare the current state of the art implementation of F4 algo-
rithm PolyBoRi and our implementation of ElimLin. In the cases where ElimLin
behaves better than PolyBoRi, it does not mean that ElimLin is superior to F4
algorithm. In fact, it just means that there exists a better implementation for
ElimLin than for F4 for some particular systems of equations. F4 uses a fixed
ordering for monomials and therefore it does not preserve the sparsity in its
intermediate steps. On the other hand, our implementation of ElimLin performs
several sparsity preserving techniques by changing the ordering. This drops the
total number of monomials and makes it memory efficient.

Table 2 and Table 3 show that PolyBoRi requires too much memory and crashes
for a large number of samples. At the same time, our implementation of ElimLin
is slightly slower than PolyBoRi implementation attacking 2 samples of 3-round
MIBS64 as in Table 3. This demonstrates that our implementation of ElimLin can
be more effective than PolyBoRi and vice versa, depending on memory require-
ments of PolyBoRi. However, whenever the system is solvable by our implementa-
tion of ElimLin, our experiments revealed that PolyBoRi does not give a significant
advantage over ElimLin because the memory requirements are too high.



322 N.T. Courtois et al.

While PolyBoRimay yield a solution for a few samples, the success of ElimLin is
determined by the number of samples provided to the algorithm. The evaluation
of the number of sufficient samples in ElimLin is still an open problem.

We see that often preserving the degree by simple linear algebra techniques
can outperform the more sophisticated Gröbner basis algorithms, mainly due
to the structural properties of the system of equations of a cryptographic prim-
itive (such as sparsity). ElimLin takes advantage of such structural properties
and uncovers some hidden linear equations using multiple samples. According
to our experiments, PolyBoRi does not seem to be able to take advantage of
these structural properties as would be expected which results in higher mem-
ory requirements than would be necessary and ultimately their failure for large
systems, even though it is clearly possible for the algorithm to find the solution
in reasonable time. Finally, we need more efficient implementations and data
structures for both ElimLin and Gröbner basis algorithms.

7 Further Work and Some Conjectures

An interesting area of research is to estimate the number of linear equations
in ElimLin or anticipate how this number evolves in the succeeding iterations
or evaluate after how many iterations ElimLin finishes. Also, to anticipate how
many samples is enough to make the system collapse by ElimLin. Last but not
least, it is prominent to find a very efficient method for implementing ElimLin
and to find the most appropriate data structure to choose.

There are some evidence which illustrate that ElimLin does not reveal all
hidden linear equations in the structure of the cipher up to a specific degree. We
give an example, demonstrating such an evidence:

Assume there exists an equation in the system which can be represented as
�(x)g(x) + 1 = 0 over GF(2), where �(x) is a polynomial of degree one and g(x)
is a polynomial of degree at most d− 1. Running ElimLin on this single equation
trivially fails. But, if we multiply both sides of the equation by �(x), we obtain
�(x)g(x) + �(x) = 0. Summing these two equations, we derive �(x) = 1. This
hidden linear equation can be simply captured by the XL algorithm, but can not
be captured by ElimLin. There exist multiple other examples which demonstrate
that ElimLin does not generate all the hidden linear equations. To generate all
such linear equations, the degree-bounded Gröbner basis can be used.
For big ciphers, for example the full AES, it is also plausible that:

Conjecture 1. For each number of rounds X, there exists Y such that AES is
broken by ElimLin given Y Chosen or Known Plaintext-Ciphertext pairs.

Disproving the above conjecture leads to the statement that “AES can not be
broken by algebraic attack at degree 2”. But maybe this conjecture is true, then
the capacities of the ElimLin attack are considerable and it works for any number
of rounds X . As a consequence, if for X = 14 this Y is not too large, say less
than 264, the AES-256 will be broken faster than brute force by ElimLin at degree



ElimLin Algorithm Revisited 323

2, which is much simpler than Gröbner basis objective of breaking it at degree
3 or 4 with 1 KP.

ElimLin is a polynomial time algorithm. If it can be shown that a polyno-
mial number of samples is enough to gain a high success rate for ElimLin, this
can already be considered a breakthrough in cryptography. Unfortunately, the
correctness of this statement is not clear.

8 Conclusion

In this paper, we proved that ElimLin can be formulated in terms of a sequence of
intersections of vector spaces. We showed that different monomial orderings and
any affine bijective variable change do not influence the result of the algorithm.
We did some predictions on the evolution of linear equations in the succeeding
iterations in ElimLin. We presented multiple attacks deploying ElimLin against
CTC2, LBlock and MIBS block ciphers.

References

1. Armknecht, F., Ars, G.: Algebraic Attacks on Stream Ciphers with Gröbner Bases.
In: Gröbner Bases, Coding, and Cryptography, pp. 329–348 (2009)

2. Aumasson, J.-P., Henzen, L., Meier, W., Naya-Plasencia, M.: Quark: A
Lightweight Hash. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS,
vol. 6225, pp. 1–15. Springer, Heidelberg (2010)

3. Bard, G., Courtois, N., Jefferson, C.: Efficient Methods for Conversion and Solution
of Sparse Systems of Low-Degree Multivariate Polynomials over GF(2) via SAT-
Solvers. Presented at ECRYPT Workshop Tools for Cryptanalysis (2007),
http://eprint.iacr.org/2007/024.pdf

4. Bard, G.V.: Algebraic Cryptanalysis. Springer (2009)
5. Bay, A., Nakahara Jr., J., Vaudenay, S.: Cryptanalysis of Reduced-Round MIBS

Block Cipher. In: Heng, S.-H., Wright, R.N., Goi, B.-M. (eds.) CANS 2010. LNCS,
vol. 6467, pp. 1–19. Springer, Heidelberg (2010)

6. Bogdanov, A., Knežević, M., Leander, G., Toz, D., Varıcı, K., Verbauwhede, I.:
spongent: A Lightweight Hash Function. In: Preneel, B., Takagi, T. (eds.) CHES
2011. LNCS, vol. 6917, pp. 312–325. Springer, Heidelberg (2011)

7. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher. In:
Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

8. Brickenstein, M., Dreyer, A.: PolyBoRi: A framework for Gröbner basis computa-
tions with Boolean polynomials. In: Electronic Proceedings of MEGA 2007 (2007),
http://www.ricam.oeaw.ac.at/mega2007/electronic/26.pdf

9. Buchberger, B.: Bruno Buchberger’s PhD thesis 1965: An algorithm for finding
the basis elements of the residue class ring of a zero dimensional polynomial ideal.
Journal of Symbolic Computation 41(3-4), 475–511 (2006)

10. Courtois, N.T.: Higher Order Correlation Attacks, XL Algorithm and Cryptanaly-
sis of Toyocrypt. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp.
182–199. Springer, Heidelberg (2003)

http://eprint.iacr.org/2007/024.pdf
http://www.ricam.oeaw.ac.at/mega2007/electronic/26.pdf


324 N.T. Courtois et al.

11. Courtois, N.T.: Fast Algebraic Attacks on Stream Ciphers with Linear Feedback.
In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 176–194. Springer, Hei-
delberg (2003)

12. Courtois, N.: CTC2 and Fast Algebraic Attacks on Block Ciphers Revisited. In:
Cryptology ePrint Archive (2007), http://eprint.iacr.org/2007/152.pdf

13. Courtois, N.: How Fast can be Algebraic Attacks on Block Ciphers? In: Symmetric
Cryptography. Dagstuhl Seminar Proceedings, vol. 07021 (2007)

14. Courtois, N.: The Dark Side of Security by Obscurity - and Cloning MiFare Classic
Rail and Building Passes, Anywhere, Anytime. In: SECRYPT, pp. 331–338 (2009)

15. Courtois, N.: Algebraic Complexity Reduction and Cryptanalysis of GOST. In:
Cryptology ePrint Archive (2011), http://eprint.iacr.org/2011/626

16. Courtois, N.T., Bard, G.V.: Algebraic Cryptanalysis of the Data Encryption Stan-
dard. In: Galbraith, S.D. (ed.) Cryptography and Coding 2007. LNCS, vol. 4887,
pp. 152–169. Springer, Heidelberg (2007)

17. Courtois, N.T., Debraize, B.: Algebraic Description and Simultaneous Linear Ap-
proximations of Addition in Snow 2.0. In: Chen, L., Ryan, M.D., Wang, G. (eds.)
ICICS 2008. LNCS, vol. 5308, pp. 328–344. Springer, Heidelberg (2008)

18. Courtois, N.T., Meier, W.: Algebraic Attacks on Stream Ciphers with Linear Feed-
back. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 345–359.
Springer, Heidelberg (2003)

19. Courtois, N.T., O’Neil, S., Quisquater, J.-J.: Practical Algebraic Attacks on the
Hitag2 Stream Cipher. In: Samarati, P., Yung, M., Martinelli, F., Ardagna, C.A.
(eds.) ISC 2009. LNCS, vol. 5735, pp. 167–176. Springer, Heidelberg (2009)

20. Courtois, N.T., Pieprzyk, J.: Cryptanalysis of Block Ciphers with Overdefined
Systems of Equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501,
pp. 267–287. Springer, Heidelberg (2002)

21. Courtois, N.T., Klimov, A.B., Patarin, J., Shamir, A.: Efficient Algorithms for
Solving Overdefined Systems of Multivariate Polynomial Equations. In: Preneel,
B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg
(2000)

22. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — A
Family of Small and Efficient Hardware-Oriented Block Ciphers. In: Clavier, C.,
Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg
(2009)

23. Dinur, I., Shamir, A.: Cube Attacks on Tweakable Black Box Polynomials. In: Joux,
A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–299. Springer, Heidelberg
(2009)

24. Dinur, I., Shamir, A.: Breaking Grain-128 with Dynamic Cube Attacks. In: Joux,
A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 167–187. Springer, Heidelberg (2011)

25. Dunkelman, O., Keller, N.: Linear Cryptanalysis of CTC. In: Cryptology ePrint
Archive (2006), http://eprint.iacr.org/2006/250.pdf

26. Dunkelman, O., Keller, N.: Cryptanalysis of CTC2. In: Fischlin, M. (ed.) CT-RSA
2009. LNCS, vol. 5473, pp. 226–239. Springer, Heidelberg (2009)

27. Eén, N., Sörensson, N.: MiniSat 2.0. An open-source SAT solver package,
http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/

28. Een, N., Sorensson, N.: Minisat - A SAT Solver with Conflict-Clause Minimization.
In: Theory and Applications of Satisfiability Testing (2005)

29. Engels, D., Saarinen, M.-J.O., Schweitzer, P., Smith, E.M.: The Hummingbird-2
Lightweight Authenticated Encryption Algorithm. In: Juels, A., Paar, C. (eds.)
RFIDSec 2011. LNCS, vol. 7055, pp. 19–31. Springer, Heidelberg (2012)

http://eprint.iacr.org/2007/152.pdf
http://eprint.iacr.org/2011/626
http://eprint.iacr.org/2006/250.pdf
http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/


ElimLin Algorithm Revisited 325

30. Faugère, J.: A new effcient algorithm for computing Gröbner bases (F4). Journal
of Pure and Applied Algebra 139(1-3), 61–88 (1999)

31. Faugère, J.: A new efficient algorithm for computing Gröbner bases without re-
duction to zero (F5). In: Symbolic and Algebraic Computation - ISSAC, pp. 75–83
(2002)

32. Fusco, G., Bach, E.: Phase transition of multivariate polynomial systems. Journal
of Mathematical Structures in Computer Science 19(1) (2009)

33. Ghasemzadeh, M.: A New Algorithm for the Quantified Satisfiability Problem,
Based on Zero-suppressed Binary Decision Diagrams and Memoization. PhD thesis,
University of Potsdam, Germany (2005)

34. Gong, Z., Nikova, S., Law, Y.W.: KLEIN: A New Family of Lightweight Block
Ciphers. In: Juels, A., Paar, C. (eds.) RFIDSec 2011. LNCS, vol. 7055, pp. 1–18.
Springer, Heidelberg (2012)

35. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON Family of Lightweight Hash
Functions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222–239.
Springer, Heidelberg (2011)

36. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.J.B.: The LED Block Cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer,
Heidelberg (2011)

37. Indesteege, S., Keller, N., Dunkelman, O., Biham, E., Preneel, B.: A Practical
Attack on KeeLoq. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965,
pp. 1–18. Springer, Heidelberg (2008)

38. Izadi, M., Sadeghiyan, B., Sadeghian, S., Arabnezhad, H.: MIBS: A New
Lightweight Block Cipher. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS
2009. LNCS, vol. 5888, pp. 334–348. Springer, Heidelberg (2009)

39. Knudsen, L., Leander, G., Poschmann, A., Robshaw, M.J.B.: PRINTcipher: A
Block Cipher for IC-Printing. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010.
LNCS, vol. 6225, pp. 16–32. Springer, Heidelberg (2010)

40. Magma, software package, http://magma.maths.usyd.edu.au/magma/
41. Mroczkowski, P., Szmidt, J.: The Cube Attack on Courtois Toy Cipher. In: Cryp-

tology ePrint Archive (2009), http://eprint.iacr.org/2009/497.pdf
42. Murphy, S., Robshaw, M.J.B.: Essential Algebraic Structure within the AES. In:

Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 1–16. Springer, Heidelberg
(2002)

43. Nakahara Jr., J., Sepehrdad, P., Zhang, B., Wang, M.: Linear (Hull) and Algebraic
Cryptanalysis of the Block Cipher PRESENT. In: Garay, J.A., Miyaji, A., Otsuka,
A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 58–75. Springer, Heidelberg (2009)

44. Raddum, H., Semaev, I.: Solving Multiple Right Hand Sides linear equations. Jour-
nal of Designs, Codes and Cryptography 49(1-3), 147–160 (2008)

45. Shannon, C.E.: Communication theory of secrecy systems. Bell System Technical
Journal 28 (1949)

46. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo:
An Ultra-Lightweight Blockcipher. In: Preneel, B., Takagi, T. (eds.) CHES 2011.
LNCS, vol. 6917, pp. 342–357. Springer, Heidelberg (2011)

47. Vielhaber, M.: Breaking ONE.FIVIUM by AIDA an Algebraic IV Differential At-
tack. In: Cryptology ePrint Archive (2007), http://eprint.iacr.org/2007/413

48. Weinmann, R.: Evaluating Algebraic Attacks on the AES. Master’s thesis, Tech-
nische Universität Darmstadt (2003)

49. Wu, W., Zhang, L.: LBlock: A Lightweight Block Cipher. In: Lopez, J., Tsudik, G.
(eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011)

http://magma.maths.usyd.edu.au/magma/
http://eprint.iacr.org/2009/497.pdf
http://eprint.iacr.org/2007/413


Short-Output Universal Hash Functions

and Their Use in Fast and Secure Data
Authentication

Long Hoang Nguyen and A.W. Roscoe

Oxford University, Department of Computer Science
hn2503@gmail.com, Bill.Roscoe@cs.ox.ac.uk

Abstract. Message authentication codes usually require the underlining
universal hash functions to have a long output so that the probability of
successfully forging messages is low enough for cryptographic purposes.
To take advantage of fast operation on word-size parameters in modern
processors, long-output universal hashing schemes can be securely con-
structed by concatenating several different instances of a short-output
primitive. In this paper, we describe a new method for short-output
universal hash function termed digest() suitable for very fast software
implementation and applicable to secure message authentication. The
method possesses a higher level of security relative to other well-studied
and computationally efficient short-output universal hashing schemes.
Suppose that the universal hash output is fixed at one word of b bits,
then the collision probability of ours is 21−b compared to 6 × 2−b of
MMH, whereas 2−b/2 of NH within UMAC is far away from optimality.
In addition to message authentication codes, we show how short-output
universal hashing is applicable to manual authentication protocols where
universal hash keys are used in a very different and interesting way.

1 Introduction

Universal hash functions (or UHFs) first introduced by Carter and Wegman [4]
have many applications in computer science, including randomised algorithms,
database, cryptography and many others. A UHF takes two inputs which are a
key k and a message m: h(k,m), and produces a fixed-length output. Normally
what we require of a UHF is that for any pair of distinct messages m and m′ the
collision probability h(k,m) = h(k,m′) is small when key k is randomly chosen
from its domain. In the majority of cryptographic uses, UHFs usually have long
outputs so that combinatorial search is made infeasible. For example, UHFs can
be used to build secure message authentication codes or MAC schemes where
the intruder’s ability to forge messages is bounded by the collision probability of
the UHF. In a MAC, parties share a secret universal hash key and an encryption
key, a message is authenticated by hashing it with the shared universal hash key
and then encrypting the resulting hash. The encrypted hash value together with
the message is transmitted as an authentication tag that can be validated by the
verifier. We note however that our new construction presented here is applicable

A. Canteaut (Ed.): FSE 2012, LNCS 7549, pp. 326–345, 2012.
c© International Association for Cryptologic Research 2012



Short-Output Universal Hash Functions 327

to other cryptographic uses of universal hashing, e.g., manual authentication
protocols as seen later as well as non-cryptographic applications.

Since operating on short-length values of 16, 32 or 64 bits is fast and conve-
nient in ordinary computers, long-output UHFs can be securely constructed by
concatenating the results of multiple instances of short-output UHFs to increase
computational efficiency. To our knowledge, a number of short-output UHF
schemes have been proposed, notably MMH (Multilinear-Modular-Hashing) of
Halevi and Krawczyk [8] and NH within UMAC of Black et al. [3]. We note
that widely studied polynomial universal hashing schemes GHASH, PolyP and
PolyQ [12] can also be designed to produce a short output. While polynomial
based UHFs only require short and fixed length keys, they suffer from an un-
pleasant property relating to security as will be discussed later in the paper.

Our main contribution presented in Section 3 is the introduction of a new
short-output UHF algorithm termed digest(k,m) that can be efficiently com-
puted on any modern microprocessors. The main advantage of ours is that it
provides a higher level of security regarding both collision and distribution prob-
abilities relative to MMH and NH described in Section 4. Our digest() algorithm
operates on word-size parameters via word multiplication and word addition in-
structions, i.e. finite fields or non-trivial reductions are excluded, because the
emphasis is on high speed implementation using software.

Let us suppose that the universal hash output is fixed at one word of b bits then
the collision probability of ours is 21−b compared to 6 × 2−b of MMH, whereas
2−b/2 of NH is much weaker in security. For clarity, the security bounds of our
constructions as well as MMH and NH are independent of the length of message
being hashed, which is the opposite of polynomial universal hashing schemes
mentioned earlier. For multiple-word output universal hashing constructions as
required in MACs, the advantage in security of ours becomes more apparent.
When the universal hash output is extended to n words or n × b bits for any
n ∈ N∗, then the collision probability of ours is 2n−nb as opposed to 6n × 2−nb

of MMH and 2−nb/2 of NH. There is however a trade-off between security and
computational cost as illustrated by our estimated operation counts and software
implementations of these constructions. On a 1GHz AMD Athlon processor, one
version of digest() (where the collision probability εc is 2−31) achieves peak
performance of 0.53 cycles/byte (or cpb) relative to 0.31 cpb of MMH (for εc =
2−29.5) and 0.23 cpb of NH (for εc = 2−32). Another version of digest(k,m) for
εc = 2−93 achieves peak performance of 1.54 cpb. For comparison purpose, 12.35
cpb is the speed of SHA-256 recorded on our computer. A number of files that
provide the software implementations in C programming language of NH, MMH
and our proposed constructions can be downloaded from [1] so that the reader
can run them and adapt them for other uses of the schemes.

We will briefly discuss the motivation of designing as well as the elegant graph-
ical structure of our digest() scheme which, we have only recently discovered,
relates to the multiplicative universal hashing schemes of Dietzfelbinger et al. [5],
Krawczyk [11] and Mansour et al. [15]. The latter algorithms are however not
efficient when the input message is of a significant size.



328 L.H. Nguyen and A.W. Roscoe

Although researchers from cryptographic community have mainly studied
UHFs to construct message authentication codes, we would like to point out
that short-output UHF on its own has found applications in manual authentica-
tion protocols [7,13,14,16,10,17,18,19,20,26]. In the new family of authentication
protocols, data authentication can be achieved without the need of passwords,
shared private keys as required in MACs, or any pre-existing security infras-
tructures such as a PKI. Instead human owners of electronic devices who seek
to exchange their data authentically would need to manually compare a short
string of bits that is often outputted from a UHF. Since humans can only com-
pare short strings, the UHF ideally needs to have a short output of say 16 or 32
bits. There is however a fundamental difference in the use of universal hash keys
between manual authentication protocols and message authentication codes, it
will be clear in Section 5 that none of the short-output UHF schemes includ-
ing ours should be used directly in the former. Thus we will propose a general
framework where any short-output UHFs can be used efficiently and securely to
digest a large amount of data in manual authentication protocols.

While existing universal hashing methods are already as fast as the rate infor-
mation is generated, authenticated and transmitted in high-speed network traf-
fic, one may ask whether we need another universal hashing algorithm. Besides
keeping up with network traffic, as excellently explained by Black et al. [3] —
the goal is to use the smallest possible fraction of the CPU’s cycles (so most of
the machine’s cycles are available for other work), by the simplest possible hash
mechanism, and having the best proven bounds. This is relevant to MACs as well
as manual authentication protocols where large data are hashed into a short
string, and hence efficient short-output UHF constructions possessing a higher
(or optimal) level of security are needed.

2 Notation and Definitions

We define M , K and b the bit length of the message, the key and the output of a
universal hash function. We denote R = {0, 1}K, X = {0, 1}M and Y = {0, 1}b.

Definition 1. [11] A ε-balanced universal hash function, h : R×X → Y , must
satisfy that for every m ∈ X \ {0} and y ∈ Y : Pr{k∈R}[h(k,m) = y] ≤ ε

Many existing UHF constructions [3,8,11] as well as our newly proposed scheme
rely on (integer or matrix) multiplications of message and key, and hence non-
zero input message is required; for otherwise h(k, 0) = 0 for any key k ∈ R.

Definition 2. [11,24] A ε-almost universal hash function, h : R×X → Y , must
satisfy that for every m,m′ ∈ X (m �= m′): Pr{k∈R}[h(k,m) = h(k,m′)] ≤ ε

Since it is useful particularly in manual authentication protocols discussed later
to have both the collision and distribution probabilities bounded, we combine
Definitions 1 and 2 as follows.



Short-Output Universal Hash Functions 329

Definition 3. An εd-balanced and εc-almost universal hash function, h : R ×
X → Y , satisfies

– for every m ∈ X \ {0} and y ∈ Y : Pr{k∈R}[h(k,m) = y] ≤ εd
– for every m,m′ ∈ X (m �= m′): Pr{k∈R}[h(k,m) = h(k,m′)] ≤ εc

3 Integer Multiplication Construction

We first discuss the multiplicative universal hashing algorithm of Dietzfelbinger
et al. [5] which obtains a very high level of security. Although this scheme is not
efficient with long input data, it strongly relates to our digest() method that
makes use of word multiplication instructions.

We note that there are two other universal hashing schemes which use arith-
metic that computer likes to do to increase computational efficiency, namely
MMH of Halevi and Krawczyk [8] and NH of Black et al. [3]. Both of which will
be compared against our construction in Section 4.

3.1 Multiplicative Universal Hashing

Suppose that we want to compute a b-bit universal hash of a M -bit message,
then the universal hash key k is drawn randomly from R = {1, 3, . . . , 2M − 1},
i.e. k must be odd. Dietzfelbinger et al. [5] define:

h(k,m) = (k ∗m mod 2M ) div 2M−b

It was proved that the collision probability of this construction is εc = 21−b on
equal length inputs [5]. While this has a simple description, for long input mes-
sages of several KB or MB, such as documents and images, it will become very
time consuming to compute the integer multiplication involved in this algorithm.

3.2 Word Multiplicative Construction

In this section, we will define and prove the security of a new short-output
universal hashing scheme termed digest(k,m) that can be calculated using word
multiplications instead of an arbitrarily long integer multiplication as seen in
Equation 1 or an example from Figure 1.

Let us divide message m into b-bit blocks 〈m1, . . . ,mt=M/b〉. An (M + b)-

bit key k = 〈k1, . . . , kt+1〉 is selected randomly from R = {0, 1}M+b. A b-bit
digest(k,m) is defined as

digest(k,m) =

t∑
i=1

[mi ∗ ki + (mi ∗ ki+1 div 2b)] mod 2b (1)

Here, * refers to a word multiplication of two b-bit blocks which produces a 2b-
bit output, whereas both ‘+’ and

∑
are additions modulo 2b. We note that (div

2b) is equivalent to a right shift (>> b) and hence is efficient to compute.



330 L.H. Nguyen and A.W. Roscoe

Fig. 1. A b-bit output digest(k,m): each parallelogram represents the expansion of a
word multiplication between a b-bit key block and a b-bit message block

To see why this scheme is related to the multiplicative method of Dietzfel-
binger et al. [5], one can study Figure 1 where all word multiplications involved
in Equation 1 are elegantly arranged into the same shape as the overlap of the
expanded multiplication between m and k.1

Essentially what we are doing here is to obtain a short b-bit window in the
middle of the product without computing the whole product.2 Such an idea is
very similar to the SQUASH hash function of Shamir [23] that produces an
excellent numeric approximation of the b middle bits by computing a longer
window of b+ u bits with u additional lower order bits so that the full effect of
the carry bits is significantly restored. There are however three crucial differences
between ours and SQUASH: (1) we do not need to compute the extra u lower
order words or bits, (2) we partially ignore the carry between words, and (3) as
opposed to SQUASH, the security of digest() does not rely on the Rabin public
key encryption scheme [23]. The first two of these make ours much faster in
computation.

Operation Count. To give an estimated operation count for an implementa-
tion of digest(), which will be subsequently compared against universal hashing
schemes MMH and NH, we consider a machine with the same properties as one
used by Halevi and Krawczyk [8]:3

1 If we further ignore the effect of the carry in (word) multiplications of both digest()
and the scheme of Dietzfelbinger et al. then they become very similar to the Toeplitz
matrix based construction of Krawczyk [11] and Mansour et al. [15]. Such a carry-less
multiplication instruction is available in a new Intel processor [2].

2 This idea was first reported in our patent application [21] dated back to 2006.
3 The same operation count given here is applicable to a (2b = 64)-bit machine. In
the latter, a multiplication of two 32-bit unsigned integer is stored in a single 64-bit
register, and High and Low are the upper and lower 32-bit halves of the register.



Short-Output Universal Hash Functions 331

– (b = 32)-bit machine and arithmetic operations are done in registers.

– A multiplication of two 32-bit integers yields a 64-bit result that is stored in
2 registers.

A pseudo-code for digest() on such machine may be as follows. For a ’C’ imple-
mentation, please see [1].

digest(key,msg)
1. Sum = 0
2. load key[1]
3. for i = 1 to t
4. load msg[i]
5. load key[i+ 1]
6. 〈High1, Low1〉 = msg[i] ∗ key[i]
7. 〈High2, Low2〉 = msg[i] ∗ key[i+ 1]
8. Sum = Sum+ Low1 +High2
9. return Sum

This consists of 2t = 2M/b word multiplications (MULT) and 2t = 2M/b ad-
dition modulo 2b (ADD). That is each message-word requires 1 MULT and 2
ADD operations. As in [8], a MULT/ADD operation should include not only
the actual arithmetic instruction but also loading the message- and key-words
to registers and/or loop handling.

The following theorem shows that the switch from a single (arbitrarily long)
multiplication of Dietfelbinger et al. into word multiplications of digest() does
not weaken the security of the construction. Namely the same collision proba-
bility of 21−b is retained while optimality in distribution is achieved. Moreover
this change not only greatly increases computational efficiency but also removes
the restriction of odd universal hash key as required in Dietfelbinger et al.

Theorem 1. For any t, b ≥ 1, digest() of Equation 1 satisfies Definition 3 with
the distribution probability εd = 2−b and the collision probability εc = 21−b on
equal length inputs.

Proof. We first consider the collision property. For any pair of distinct messages
of equal length: m = m1 · · ·mt and m′ = m′

1 · · ·m′
t, without loss of generality

we assume that m1 > m′
1.

4 A digest collision is equivalent to:

t∑
i=1

[mi ∗ ki + (mi ∗ ki+1 div 2b)] =

t∑
i=1

[m′
i ∗ ki + (m′

i ∗ ki+1 div 2b)] (mod 2b)

There are two possibilities as follows.

4 Please note that whenmi = m′
i for all i ∈ {1, . . . , j} then in the following calculation

we will assume that mj+1 > m′
j+1.



332 L.H. Nguyen and A.W. Roscoe

WHEN m1 −m′
1 is odd. The above equality can be rewritten as

(m1 −m′
1)k1 = y (mod 2b) (2)

where

y = (m′
1k2 div 2b)− (m1k2 div 2b) +

t∑
i=2

[
(m′

i −mi) ∗ ki + (m′
i ∗ ki+1 div 2b)− (mi ∗ ki+1 div 2b)

]
We note that y depends only on keys k2, . . .,kt+1, and hence we fix k2 through
kt+1 in our analysis. Since m1 −m′

1 is odd, i.e. m1 −m′
1 and 2b are co-prime,

there is at most one value of k1 satisfying Equation 2. The collision probability
in this case is therefore εc = 2−b < 21−b.

WHEN m1 −m′
1 is even. A digest collision can be rewritten as

(m1 −m′
1)k1 + (m1k2 div 2b)− (m′

1k2 div 2b) + (m2 −m′
2)k2 = y (mod 2b) (3)

where

y = (m′
2k3 div 2b)− (m2k3 div 2b) +

t∑
i=3

[
(m′

i −mi) ∗ ki + (m′
i ∗ ki+1 div 2b)− (mi ∗ ki+1 div 2b)

]
(mod 2b)

We note that y depends only on keys k3, . . .,kt+1. If we fix k3 through kt+1 in
our analysis, we need to find the number of pairs (k1, k2) such that Equation 3
is satisfied. We arrive at

εc = Prob{k1,k2}
[
(m1 −m′

1)k1 + (m1k2 div 2b)− (m′
1k2 div 2b) + (m2 −m′

2)k2 = y
]

Let us define

m1k2 = u2b + v

m′
1k2 = u′2b + v′

Since we assumedm1 > m′
1, we have u ≥ u′ and (m1−m′

1)k2 = (u−u′)2b+v−v′.

– When v ≥ v′: (m1k2 div 2b)− (m′
1k2 div 2b) = (m1 −m′

1)k2 div 2b

– When v < v′: (m1k2 div 2b)− (m′
1k2 div 2b) = [(m1 −m′

1)k2 div 2b] + 1

Let c = m1 −m′
1 and d = m2 −m′

2 (mod 2b), we then have 1 ≤ c < 2b and:

εc ≤ p1 + p2

where

p1 = Prob{0≤k1<2b

0≤k2<2b

} [ck1 + (ck2 div 2b) + dk2 = y (mod 2b)
]



Short-Output Universal Hash Functions 333

and

p2 = Prob{0≤k1<2b

0≤k2<2b

} [ck1 + (ck2 div 2b) + dk2 = y − 1 (mod 2b)
]

Using Lemma 1, we have p1, p2 ≤ 2−b, and thus εc ≤ 21−b.
As regards distribution, since m = m1 · · ·mt > 0 as specified in Definition 3,

without loss of generality we assume that m1 ≥ 1. If we fix k3 through kt+1 and
for any y ∈ {0, . . . , 2b − 1}, then the distribution probability εd is equivalent to:

εd = Prob{0≤k1<2b

0≤k2<2b

} [m1k1 + (m1k2 div 2b) +m2k2 = y (mod 2b)
]

Since 1 ≤ m1 < 2b, we can use Lemma 1 to deduce that εd = 2−b. ��

Lemma 1. Let 1 ≤ c < 2b and 0 ≤ d < 2b, then for any y ∈ {0, . . . , 2b − 1}
we have

Prob{0≤k1<2b

0≤k2<2b

} [ck1 + (ck2 div 2b) + dk2 = y (mod 2b)
]
= 2−b

Proof. We write c = s2l with s odd and 0 ≤ l < b. Since s and 2b are co-prime,
there exist a unique inverse modulo 2b of s, we call it s−1. Our equation now
becomes:

2lsk1 + (2lsk2 div 2b) + ds−1sk2 = y (mod 2b)

Let sk1 = γ (mod 2b−l) and sk2 = α2b−l + β (mod 2b), we then have 0 ≤ γ <
2b−l and 0 ≤ α < 2l. The above equation becomes:

2lγ + α+ ds−1(α2b−l + β) = y (mod 2b)

2lγ + α(1 + ds−12b−l) + βds−1 = y (mod 2b)

2lγ + αx = z (mod 2b)

where x = 1 + ds−12b−l (mod 2b) which is always odd because l < b, and
z = y − βds−1 (mod 2b). Since z is independent of γ and α, we fix z in our
analysis. We can then use Lemma 2 to derive that there is a unique pair (γ, α)
satisfying the above equation.

Since 0 ≤ γ < 2b−l and 0 ≤ α < 2l, γ and α together determine b bits of
the combination of k1 and k2. Consequently there are at most 2b different pairs
(k1, k2) satisfying the condition that we require in this lemma. ��

Lemma 2. Let 0 ≤ l < b and x ∈ {1, 3, . . . , 2b − 1} then for any z ∈
{0, . . . , 2b − 1} there is a unique pair (γ, α) such that 0 ≤ γ < 2b−l, 0 ≤ α < 2l,
and 2lγ + αx = z (mod 2b).

Proof. If there exist two distinct pairs (γ, α) and (γ′, α′) satisfying this condition,
then

2lγ + αx = 2lγ′ + α′x = z (mod 2b)



334 L.H. Nguyen and A.W. Roscoe

which implies that

2l(γ − γ′) = (α′ − α)x (mod 2b)

This leads to two possibilities.

– When α′ = α then 2l(γ−γ′) = 0, which means that 2b−l|(γ−γ′). The latter
is impossible because 0 ≤ γ, γ′ < 2b−l and γ �= γ′.

– When α′ �= α and since x is odd, we must have 2l|(α′ − α). This is also
impossible because 0 ≤ α, α′ < 2l.

��

REMARKS. The bound given by Theorem 1 for the distribution probability
(εd = 2−b) is tight: let m = 0b−11 and any y and note that any key k = k1k2
with k1 = y satisfying this equation digest(k,m) = y. The bound given by
Theorem 1 for the collision probability εc = 21−b also appears to be tight, i.e. it
cannot be reduced to 2−b. To verify this bound, we have implemented exhaustive
tests on single-word messages with small value of b. For example, when b = 7,
we look at all possible pairs of two different (b = 7)-bit messages in combination
with all (2b = 14)-bit keys, the obtained collision probability is 2−7 × 1.875.

We end this section by pointing out that truncation is secure in this digest
construction. For any b′ ∈ {1, . . . , b− 1}, we define

truncb′(digest(k,m)) =

t∑
i=1

[mi ∗ ki + (mi ∗ ki+1 div 2b)] mod 2b
′

(4)

where truncb′() takes the first b
′ least significant bits of the input. We then have

the following theorem whose proof is very similar to the proof of Theorem 1, and
hence it is not given here.

Theorem 2. For any n, t ≥ 1, b ≥ 1 and any integer b′ ∈ {1, . . . , b − 1},
truncb′(digest()) of Equation 4 satisfies Definition 3 with the distribution prob-
ability εd = 2−b′ and the collision probability εc = 21−b′ on equal length inputs.

3.3 Extending digest()

If we want to use digest functions as the main ingredient of a message authen-
tication code, we need to reduce the collision probability without increasing the
word bitlength b that is dictated by architecture characteristics. One possibility
is to hash our message with several random and independent keys, and con-
catenate the results. If we concatenate the results from n independent instances
of the digest function, the collision probability drops from 21−b to 2n−nb. This
solution however requires n times as much key material.

A much better and well-studied approach is to use the Toeplitz-extension:
given one key we left shift the key by one word to get the next key and di-
gest again. The resulting construction is called digestMW (), where MW stands



Short-Output Universal Hash Functions 335

Fig. 2. A 3b-bit (or three-word) output digestMW (k,m): each parallelogram represents
the expansion of a word multiplication between a b-bit key block and a b-bit message
block

for multiple-word output. The structure of digestMW () is again graphically il-
lustrated by an example in Figure 2 that shows a similar connection between
digestMW () and the multiplicative hashing scheme of Dietfelbinger et al.

We define a n-blocks or (n × b)-bit output digestMW (k,m) as follows. We
still divide m into b-bit blocks 〈m1, . . . ,mt=M/b〉. However, an (M + bn)-bit key

k = 〈k1, . . . , kt+n〉 will be chosen randomly from R = {0, 1}M+bn to compute a
nb-bit digest.

For all i ∈ {1, . . . , n}, we then define:

di = digest(ki···t+i,m) =

t∑
j=1

[mjki+j−1 + (mjki+j div 2b)] mod 2b

And
digestMW (k,m) = 〈d1 · · · dn〉

The following theorem and its proof show that digestMW () enjoys the best bound
for both collision and distribution probabilities that one could hope for.

Theorem 3. For any n, t ≥ 1 and b ≥ 1, digestMW () satisfies Definition 3 with
the distribution probability εd = 2−nb and the collision probability εc = 2n−nb

on equal length inputs.

Proof. We first consider the collision property of a digest function. For any pair
of distinct messages of equal length: m = m1 · · ·mt and m′ = m′

1 · · ·m′
t, without

loss of generality we assume that m1 > m′
1. Please note that when t = 1 or



336 L.H. Nguyen and A.W. Roscoe

mi = m′
i for all i ∈ {1, . . . , t − 1} then in the following calculation we will

assume that mt+1 = m′
t+1 = 0.

For i ∈ {1, . . . , n}, we define Equality Ei as

Ei :
t∑

j=1

[
mjki+j−1 + (mjki+j div 2b)

]
=

t∑
j=1

[
m′

jki+j−1 + (m′
jki+j div 2b)

]
mod 2b

and thus the collision probability is: εc = Prob{k∈R}[E1 ∧ · · · ∧ En].

Since all arithmetic operations are done over modulo 2b, for simplicity we
ignore (mod 2b) in our notation.

WHEN m1 −m′
1 is odd. We proceed by proving that for all i ∈ {1, . . . , n}

Prob[Ei is true | Ei+1, . . . , En are true] ≤ 2−b

For Equality En, the claim is satisfied due to Theorem 1. We notice that Equal-
ities Ei+1 through En depend only on keys ki+1, . . . , kn+t, whereas Equality Ei

depends also on key ki. Fix ki+1 through kn+t such that Equalities Ei+1 through
En are satisfied. We prove that there is at most one value of ki satisfying Ei. To
achieve this we let

z = (m′
1ki+1 div 2b)− (m1ki+1 div 2b) +

t∑
j=2

[
(m′

j −mj)ki+j−1 + (m′
jki+j div 2b)− (mjki+j div 2b)

]
we then rewrite Equality Ei as

(m1 −m′
1)ki = z

Since we assumed m1 − m′
1 is odd, there is at most one value of ki satisfying

this equation.

WHEN m1−m′
1 is even. We write m1−m′

1 = 2ls with s odd and 0 < l < b, and
s′ = (m′

2 −m2)s
−1. We further denote ski = xi2

b−l + yi for i ∈ {1, . . . , n + t},
where 0 ≤ xi < 2l and 0 ≤ yi < 2b−l.

For i ∈ {1, . . . , n}, if we define bi ∈ {0, 1} and

f(yi, xi+1) = 2lyi + xi+1[(m2 −m′
2)s

−12b−l + 1]

g(ki+2, . . . , ki+t) = (m′
2ki+2 div 2b) +

t∑
j=3

[
m′

jki+j−1 + (m′
jki+j div 2b)

]
−

(m2ki+2 div 2b)−
t∑

j=3

[
mjki+j−1 + (mjki+j div 2b)

]



Short-Output Universal Hash Functions 337

then, using similar trick as in the proof of Lemma 1, Equality Ei can be rewritten
as

(m1 −m′
1)ki + ((m1 −m′

1)ki+1 div 2b) + (m2 −m′
2)ki+1 = g(ki+2, . . . , ki+t)− bi

2lski + (2lski+1 div 2b) + (m2 −m′
2)s

−1ski+1 = g(ki+2, . . . , ki+t)− bi

2lyi + xi+1 + (m2 −m′
2)s

−1(xi+12
b−l + yi+1) = g(ki+2, . . . , ki+t)− bi

Rearranging gives

2lyi + xi+1[(m2 −m′
2)s

−12b−l + 1] = s′yi+1 − bi + g(ki+2, . . . , ki+t)

f(yi, xi+1) = s′yi+1 − bi + g(ki+2, . . . , ki+t)

Putting Equalities E1 through En together, we have

E1 : f(y1, x2) = s′y2 − b1 + g(k3, . . . , k1+t)

E2 : f(y2, x3) = s′y3 − b2 + g(k4, . . . , k2+t)

E3 : f(y3, x4) = s′y4 − b3 + g(k5, . . . , k3+t)

...
...
...

En−1 : f(yn−1, xn) = s′yn − bn−1 + g(kn+1, . . . , kn+t−1)

En : f(yn, xn+1) = s′yn+1 − bn + g(kn+2, . . . , kn+t)

We fix kn+2 through kt+n. We note that there are 2b−t values for yn+1 and two
values for bn. For each pair (yn+1, bn) there is a unique pair (yn, xn+1) satisfying
Equality En due to Lemma 2. Similarly, for each tuple 〈yn, kn+1, bn−1, bn〉 there
is also a unique pair (yn−1, xn) satisfying Equality En−1. We will continue this
process until we reach the pair (y1, x2) in Equality E1. Since Equalities E1

through En do not depend on x1 and there are 2l values for x1, there will be
at most 2l2n2b−l = 2n+b different tuples 〈k1 · · · kn+1〉 satisfying Equalities E1

through En. And thus the collision probability εc = 2n+b/2(n+1)b = 2n−nb.
Similar argument also leads to our bound on the distribution probability εd =

2−nb. ��

REMARKS. Even though Theorems 1 and 3 address the collision property, their
proofs can be easily adapted to show that our constructions are also εc-almost-
Δ-universal [8] as in the case of the MMH scheme considered in the next section.
The latter property requires that for every m,m′ ∈ X where m �= m′ and a ∈ Y :
Pr{k∈R}[digest(k,m)− digest(k,m′) = a] ≤ εc.

Operation Count. The advantage of this scheme is the ability to reuse the
result of each word multiplication in the computation of two adjacent digest
output words as seen in Figure 2 and the following pseudo-code, e.g. the mul-
tiplication m1k2 is instrumental in the computation of both d1 and d2. Using
the same machine as specified in subsection 3.2, each message-word therefore
requires (n+ 1) MULT and 2n ADD operations.



338 L.H. Nguyen and A.W. Roscoe

A pseudo-code for digestMW () on such machine may be as follows

digestMW (key,msg)
1. For i = 1 to n
2. d[i] = 0
3. load key[i]
4. For j = 1 to t
5. load msg[j]
6. load key[j + n]
7. 〈High[0], Low[0]〉 = msg[j] ∗ key[j]
8. For i = 1 to n
9. 〈High[i], Low[i]〉 = msg[j] ∗ key[j + i]
10. d[i] = d[i] + Low[i− 1] +High[i]
11. return 〈d[1] · · · d[n]〉

4 Comparative Analysis

In this section, we mainly compare our new digest scheme against well-studied
universal hashing algorithms MMH of Halevi and Krawczyk [8] and NH of Black
et al. [3] described in Subsections 4.1 and 4.2 respectively. Since digest() can
be extended to produce multiple-word output as in the case of MMH and NH
to build MACs, our analysis consider both single- and multiple-word output
schemes. We note that NH is the building block of not only UMAC but also
UHASH16 and UHASH32 [3]. For completeness, we will discuss another widely
studied UHF family based on polynomial over finite field, e.g. GHASH, PolyP,
PolyQ and PolyR [12]. While the polynomial universal hashing schemes only
require short keys, they suffer from two unpleasant properties: (1) the collision
probability decreases linearly with the message length, and (2) they are less
efficient, especially in software implementation, than our digest functions as well
as MMH and NH due to the involved modular arithmetic operations.

The properties of the three main schemes – MMH, NH and digest() – are
summarised in Table 1 where the upper and lower halves correspond to single-
word (b bits) and respectively multiple-word (nb bits) output schemes for any n ≥
1. This table indicates that the security level obtained in our digest algorithm
is higher than both MMH and NH with respect to the same output length.
In particular, the collision probability of digest() is a third of MMH, while NH
must double the output length to achieve the same order of security. For multiple-
word output schemes, this advantage in security of our proposed digest algorithm
becomes even more significant as seen in the lower half of Table 1.

We end this section by providing implementation results in Table 2 of Sec-
tion 4.3. As described earlier, C files which contain the implementations of NH,
MMH and digest() as well as their multiple-word output versions can be down-
loaded from [1] which allows readers to test the speed of the constructions.



Short-Output Universal Hash Functions 339

Table 1. A summary on the main properties of digest(), MMH and NH. MULT oper-
ates on b-bit inputs, whereas ADD operates on inputs of either b or 2b bits.

Scheme Key length MULTs/word ADDs/word εc εd Output bitlength

digest M + b 2 2 21−b 2−b b
MMH M 1 1 6× 2−b 22−b b

NH M 1/2 3/2 2−b 2−b 2b

digestMW M + nb n+ 1 2n 2n−nb 2−nb nb

MMHMW M + (n− 1)b n n 6n × 2−nb 22n−nb nb
NHMW M + 2(n− 1)b n/2 3n/2 2−nb 2−nb 2nb

4.1 MMH

Fix a prime number p ∈ [2b, 2b + 2b/2]. The b-bit output MMH universal hash
function is defined for any k = k1, . . . , kt and m = m1, . . . ,mt as follows

MMH(k,m) =

[[[
t∑

i=1

mi ∗ ki

]
mod 22b

]
mod p

]
mod 2b

It was proved in [8] that the collision probability of MMH is εc = 6 × 2−b as
opposed to only 21−b of digest(). By using the same proof technique presented
in [8], it is also not hard to show that the distribution probability of MMH is
εd = 22−b, as opposed to 2−b of digest().5

For single-word output, each message word in MMH requires 1 (b× b) MULT
and 1 ADD modulo 22b. We note however that this does not include the cost
of the final reduction modulo p. For n-word output MMH, using “the Toeplitz
matrix approach”, the scheme is defined as

MMHMW (k,m) = MMH(k1···t,m) ‖ MMH(k2···t+1,m) ‖ · · · ‖ MMH(kn···t+n−1,m)

MMHMW obtains εc = 6n2−nb and εd = 22n−nb, which are considerably weaker
than digestMW () (εc = 2n−nb, εd = 2−nb).

4.2 NH

The 2b-bit output NH universal hash function is defined for any k = k1, . . . , kt
and m = m1, . . . ,mt, where t is even, as follows

NH(k,m) =

t/2∑
i=1

(k2i−1 +m2i−1)(k2i +m2i) mod 22b

5 There is a Square Hash variant of MMH introduced by Etzel et al. [6] that is defined
as follows: SQH(k,m) =

[∑t
i=1((mi + ki) mod 2b)2

]
mod p. The collision probabil-

ity εc of SQH is 21−b. While squaring an integer is more efficient than multiplication,
SQH is not really faster than MMH because the summation of the squares does not
fit into 2b bits and hence extra words are required to store and add when long data
are hashed. Etzel et al. then optimise the implementation by ignoring the carry bits
in the computation, but this makes the collision probability bound bigger than 21−b.



340 L.H. Nguyen and A.W. Roscoe

The downside of NH relative to MMH and our digest method is the level of
security obtained, namely with a 2b-bit output, which is twice the length of both
digest() and MMH, NH was shown to have the collision probability εc = 2−b

and the distribution probability εd = 2−b, which are far from optimality. Its
computational cost is however lower than the other twos, i.e. each message-word
requires only 1/2 (b× b) MULT, 1 ADD modulo 2b, and 1/2 ADD modulo 22b.

For 2n-word output, also using “the Toeplitz matrix approach”, we have εc =
2−nb and εd = 2−nb. Each message-word requires n/2 MULT and 3n/2 ADD
operations as seen below.

NHMW (k,m) = NH(k1···t,m) ‖ NH(k3···t+2,m) ‖ · · · ‖ NH(k2n−1···t+2(n−1),m)

Table 2. Performance (cycles/byte) of digest, MMH and NH constructions. In each
row, the length of NH is always twice the length of MMH and digest.

digest MMH NH

Output εc Speed Output εc Speed Output εc Speed
bitlength (cpb) bitlength (cpb) bitlength (cpb)

32 2× 2−32 0.53 32 6× 2−32 0.31 64 2−32 0.23
64 22 × 2−64 1.05 64 62 × 2−64 0.57 128 2−64 0.39
96 23 × 2−96 1.54 96 63 × 2−96 0.76 192 2−96 0.62
160 25 × 2−160 2.13 160 65 × 2−160 1.37 320 2−160 1.15
256 28 × 2−256 3.44 256 68 × 2−256 2.31 512 2−256 1.90

4.3 Implementations of MMH, NH and Digest Constructions

We have tested the implementations of digest(), MMH, NH as well as their
multiple-word output versions on a workstation with a 1GHz AMD Athlon(tm)
64 X2 Dual Core Processor (4600+ or 512 KB caches) running the 2.6.30 Linux
kernel. All source codes were written in C making use of GCC 4.4.1 compiler.
The number of cycles elapsed during execution was measured by the clock()
instruction in the normal way (as in UMAC [25]) in our C implementations [1].

For comparison, we recompiled publicly available source codes for SHA-256
and SHA-512 [22] whose reported speeds on our workstation are 12.35 cpb and
8.54 cpb respectively.

For application of these primitives in MACs, normally a tree hash structure is
used to significantly reduce the length of universal hash key. The downsize of this
method is that the resulting collision probability is not constant but proportional
to the depth of the tree. For this reason, previously reported speeds for MMH
and NH [3,8] and our results do not include the cost of key generation.

Table 2 shows the results of the experiments, which were averaged over a
large number of random data inputs of at least 8 kilobytes. The speeds are
in cycles/byte or cpb. Our digest constructions, at the cost of higher security,
are slightly slower than MMH and NH due to extra multiplications, but still
considerably faster than standard cryptographic hash functions SHA-256/512.



Short-Output Universal Hash Functions 341

4.4 Polynomial Universal Hashing Schemes

In this section, we will study another well-studied class of UHF based on poly-
nomial over finite fields, including GHASH within Galois Counter Mode, PolyP,
PolyQ and PolyR [12].

For simplicity, we will give a simple version of polynomial universal hashing
that is the core of PolyP, PolyQ, PolyR and GHASH. Let the set of all messages
be {m = 〈m1, . . . ,mt〉;mi ∈ Fp}, here p is the largest prime number less than
2b and the message length is M = tb bits. For any key k ∈ Fp, we define:

Poly(k,m) = m1 +m2k +m3k
2 + · · ·+mtk

t−1 (mod p)

Such a scheme does have two nice properties as follows

– The key length of the b-bit output Poly() scheme is fixed at b bits regardless
of the message length.

– Poly() provides collision resistance for both equal and unequal length mes-
sages. Suppose that the bit lengths of two different messages m and m′

are bt and bt′, then the collision probability is max{t− 1, t′ − 1}/p. On the
other hand, MMH, NH and digest() only ensure collision resistance for equal
length data, but not unequal length messages. The latter is intuitively be-
cause unequal length messages in digest(), MMH and NH require unequal
length keys, which make them incomparable for collision analysis.

The main disadvantage of a polynomial universal hashing scheme is that its
security bound depends on the message length, which is the opposite of MMH,
NH and digest(). Namely, the collision probability of Poly() is ε = (t − 1)2−b

that is no where near the level of security obtained by our digest function when
message is of a significant size. The security downside of polynomial universal
hash functions does have a negative impact on their use in manual authentication
where short-output but highly secure universal hash functions are required.

5 Short-Output Universal Hash Functions in Manual
Authentication Protocols

In addition to MAC schemes, short-output universal hash functions have found
use in manual authentication protocols where parties A and B want to authenti-
cate their public datamA/B to each other without the need for passwords, shared
private keys as in MACs, or pre-established security infrastructures such as a
PKI. Instead authentication is bootstrapped from human trust and interactions.

Using notation taken from authors’ work [17,18,19] the N -indexed arrow
(−→N ) indicates an unreliable and high-bandwidth (or normal) link where mes-
sages can be maliciously altered, whereas the E-indexed arrow (−→E) represents
an authentic and unspoofable (or empirical) channel. The latter is not a private
channel (anyone can overhear it) and it is usually very low-bandwidth since it
is implemented by humans, e.g., human conversations or manual data transfers
between devices. hash() is a cryptographic hash function. Long random keys



342 L.H. Nguyen and A.W. Roscoe

kA/B are generated by A/B, and kA is kept secret until after kB is revealed in
Message 2. Operators ‖ and ⊕ denote bitwise concatenation and exclusive-or.

A pairwise manual authentication protocol [13,14,17]
1.A −→N B : mA, hash(A ‖ kA)
2.B −→N A : mB, kB
3.A −→N B : kA
4.A←→E B : h(k∗,mA ‖ mB)

where k∗ = kA ⊕ kB

To ensure devices agree on the same datamA ‖ mb, their human owners manually
compare the universal hash in Message 4. As human interactions are expensive,
the universal hash function needs to have a short output of b ∈ [16, 32] bits.

As seen from the above protocol, the universal hash key k∗ always varies
randomly and uniformly from one to another protocol run. In other words, no
value of k∗ is used to hash more than one message because kA/B instrumental
in the computation of k∗ are randomly chosen in each protocol run. This is
fundamentally different from MACs which often use the same private key to
hash multiple messages for a period of time,6 and hence attacks which rely on
the reuse of a single private key in multiple sessions are irrelevant in manual
authentication protocols. What we then want to understand is the collision and
distribution properties of the universal hash function. We stress that this analysis
is also applicable to group manual authentication protocols [17,18,19,26].

Should digest(), MMH or NH be used directly in Message 4 of the above
protocol, random and fresh keys kA/B of similar size as mA ‖ mB must be gen-
erated whenever the protocol is run. Obviously one can generate a long random
key stream from a short seed via a pseudo-random number generator, but it can
be computationally expensive especially when the authenticated data mA/B are
of a significant size. Of course we can use one of the polynomial universal hash-
ing functions (e.g. PolyP32, PolyQ32 or PolyR16 32 all defined in [12]) which
require a short key. But since humans only can compare short value over the
empirical channel, it is intolerable that the security bound of the universal hash
function degrades linearly along with the length of data being authenticated.

One possibility suggested in [7,20] is to truncate the output of a cryptographic
hash function to the b least significant bits:

h(k,m) = truncb (hash(k ‖ m))

Although it can be computationally infeasible to search for a full cryptographic
hash collision, it is not clear whether the truncated solution is sufficiently se-
cure because the definition of a hash function does not normally specify the
distribution of individual groups of bits.

What we therefore propose is a combination of cryptographic hashing and
short-output universal hash functions. Without loss of generality, we use our

6 Even when a new universal hash key is generated every time a message is hashed in
MAC as recommended by Handschuh and Preneel [9], the long key is stilled derived
from the same private and much shorter seed or key shared between the parties.



Short-Output Universal Hash Functions 343

digest method in the following construction which is also applicable to MMH
and NH. Let hash() be a B-bit cryptotgraphic hash function, e.g. SHA-2/3.
First the input key is split into two parts of unequal lengths k = k1 ‖ k2, where
k1 is B+b bits and k2 is at least 80 bits. Then our modified construction digest′()
which takes an arbitrarily length message m is computed as follows7

digest′(k,m) = digest(k1, hash(m ‖ k2))

We denotes θc the hash collision probability of hash(), and it should be clear
that θc % 2−b given that b ∈ [16, 32]. The following theorem shows that this
construction essentially preserves both the collision and distribution security
bounds, and at the same time removes the restriction on equal length input
messages because the hash function hash() always produces a fixed length value.

Theorem 4. digest′() satisfies Definition 3 with the distribution probability
εd = 2−b and the collision probability εc = 21−b + θc.

Proof. Let l1 and l2 denote the bitlengths of keys k1 and k2 respectively.
We first consider collision property of digest′(). For any pair of distinct mes-

sages m and m′, as key k2 varies uniformly and randomly the probability that
hash(m ‖ k2) = hash(m′ ‖ k2) is θc. So there are two possibilities:

– When hash(m ‖ k2) = hash(m′ ‖ k2) then digest(k1, hash(m ‖ k2)) =
digest(k1, hash(m

′ ‖ k2)) for any key k1 ∈ {0, 1}l1.
– When hash(m ‖ k2) �= hash(m′ ‖ k2) then digest(k1, hash(m ‖ k2)) =

digest(k1, hash(m
′ ‖ k2)) with probability 21−b.

Consequently the collision probability of digest′() is

θc + (1 − θc)2
1−b < θc + 21−b

As regards distribution probability of digest′(), we fix message m of arbitrarily
length and a b-bit value y in our analysis. For each value of k2, there will be
at most 2l1−b different keys k1 such that digest(k1, hash(m ‖ k2)) = y. Since
there are 2l2 different keys k2, there will be at most 2l1−b2l2 = 2l1+l2−b different
pairs (k1, k2) or different keys k such that digest(k1, hash(m ‖ k2)) = y. The
distribution probability of digest′() is therefore 2−b ��

There is another short-output universal hash function called UHASH16 (and
also UHASH32) of Krovetz [3] with 16-bit output and εc ≈ 2−15. The universal
hash key length is fixed at around 214 bits or 2KB that is much longer than
B+ b+80 of digest′(), but UHASH16 has the advantage of being more efficient
than a cryptographic hash function required in digest′().

UHASH16 is the result of a rather non-trivial combination (and tree hash
structure) of NH and polynomial universal hashing. First, NH is used to compress

7 The concatenation of m and k2 is hashed to make it much harder for the intruder
to search for collision because a large number of bits of the hash input will not be
controlled by the intruder.



344 L.H. Nguyen and A.W. Roscoe

input messages into strings which are typically many times (e.g. 512 times in
UHASH16) shorter than the original input message. Second, the compressed
message is hashed with a polynomial universal hash function into a 128-bit string.
Finally, the 128-bit string is hashed using an inner-product hash into a 16-bit
string. We should point out that there is a trade-off between key length and
computational efficiency, i.e. the shorter is the NH key the more computation is
required for polynomial hashing in the second stage.

Acknowledgements. Nguyen’s work on this paper was supported by a research
grant from the US Office of Naval Research. Roscoe’s was partially supported
by funding from the US Office of Naval Research.

The authors would like to thank Dr. Andrew Ker at Oxford University for his
help with statistical analysis of the digest constructions.

Progresses on the security proof of our digest functions were first made when
Nguyen visited Professor Bart Preneel and Dr. Frederik Vercauteren at the Com-
puter Security and Industrial Cryptography (COSIC) research group at the
Katholieke Universiteit Leuven in September and October 2010. The authors
would like to thank them for their time and support as well as Drs Nicky Mouha
and Antoon Bosselaers at COSIC for pointing out the relevance of the multi-
plicative universal hashing scheme of Dietzfelbinger et al.[5] and the literature
on hash function implementation and speed measurement for benchmarking.

We also received helpful comments from many anonymous referees as well as
had fruitful discussions and technical feedbacks from Professor Serge Vaudenay
and Dr. Atefeh Mashatan when Nguyen visited the Security and Cryptography
Laboratory (LASEC) at the Swiss Federal Institute of Technologies (EPFL) in
February and March 2011. The feedbacks significantly improve the technical
quality and presentation of the paper.

References

1. http://www.cs.ox.ac.uk/publications/publication5935-abstract.html
2. http://software.intel.com/en-us/articles/

carry-less-multiplication-and-its-usage-for-computing-the-gcm-mode/
3. Black, J., Halevi, S., Krawczyk, H., Krovetz, T., Rogaway, P.: UMAC: Fast and

Secure Message Authentication. In: Wiener, M. (ed.) CRYPTO 1999. LNCS,
vol. 1666, pp. 216–233. Springer, Heidelberg (1999)

4. Carter, J.L., Wegman, M.N.: Universal Classes of Hash Functions. Journal of Com-
puter and System Sciences 18, 143–154 (1979)

5. Dietzfelbinger, M., Hagerup, T., Katajainen, J., Penttonen, M.: A reliable random-
ized algorithm for the closest-pair problem. Journal Algorithms 25, 19–51 (1997)

6. Etzel, M., Patel, S., Ramzan, Z.: SQUARE HASH: Fast Message Authentication
via Optimized Universal Hash Functions. In: Wiener, M. (ed.) CRYPTO 1999.
LNCS, vol. 1666, pp. 234–251. Springer, Heidelberg (1999)

7. Gehrmann, C., Mitchell, C., Nyberg, K.: Manual Authentication for Wireless De-
vices. RSA Cryptobytes 7(1), 29–37 (2004)

8. Halevi, S., Krawczyk, H.: MMH: Software Message Authentication in the
Gbit/Second Rates. In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 172–189.
Springer, Heidelberg (1997)

http://www.cs.ox.ac.uk/publications/publication5935-abstract.html
http://software.intel.com/en-us/articles/carry-less-multiplication-and-its-usage-for-computing-the-gcm-mode/
http://software.intel.com/en-us/articles/carry-less-multiplication-and-its-usage-for-computing-the-gcm-mode/


Short-Output Universal Hash Functions 345

9. Handschuh, H., Preneel, B.: Key-Recovery Attacks on Universal Hash Function
Based MAC Algorithms. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 144–161. Springer, Heidelberg (2008)

10. Nguyen, L.H. (ed.): Information Technology – Security Techniques – Entity au-
thentication – Part 6: Mechanisms using manual data transfer, ISO/IEC 9798-6
(2010)

11. Krawczyk, H.: New Hash Functions for Message Authentication. In: Guillou,
L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 301–310.
Springer, Heidelberg (1995)

12. Krovetz, T., Rogaway, P.: Fast Universal Hashing with Small Keys and No Prepro-
cessing: The PolyR Construction. In: Won, D. (ed.) ICISC 2000. LNCS, vol. 2015,
pp. 73–89. Springer, Heidelberg (2001)

13. Laur, S., Nyberg, K.: Efficient Mutual Data Authentication Using Manually Au-
thenticated Strings. In: Pointcheval, D., Mu, Y., Chen, K. (eds.) CANS 2006.
LNCS, vol. 4301, pp. 90–107. Springer, Heidelberg (2006)

14. Lindell, A.Y.: Comparison-Based Key Exchange and the Security of the Numeric
Comparison Mode in Bluetooth v2.1. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS,
vol. 5473, pp. 66–83. Springer, Heidelberg (2009)

15. Mansour, Y., Nisan, N., Tiwari, P.: The Computational Complexity of Universal
Hashing. In: ACM STOC, pp. 235–243 (1990)

16. Mashatan, A., Stinson, D.: Practical Unconditionally Secure Two-channel Message
Authentication. Designs, Codes and Cryptography 55, 169–188 (2010)

17. Nguyen, L.H., Roscoe, A.W.: Authentication protocols based on low-bandwidth
unspoofable channels: A comparative survey. Journal of Computer Security 19(1),
139–201 (2011)

18. Nguyen, L.H., Roscoe, A.W.: Efficient group authentication protocol based on hu-
man interaction. In: FCS-ARSPA, pp. 9–31 (2006)

19. Nguyen, L.H., Roscoe, A.W.: Authenticating ad-hoc networks by comparison of
short digests. Information and Computation 206(2-4), 250–271 (2008)

20. Pasini, S., Vaudenay, S.: SAS-Based Authenticated Key Agreement. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 395–409.
Springer, Heidelberg (2006)

21. Roscoe, A.W., Nguyen, L.H.: Security in computing networks. World Intellectual
Property Organization. Application number: PCT/GB2006/004113. Publication
number: WO/2007/052045. Filed on November 03, 2006. Publication date, May 10
(2007)

22. http://www.aarongifford.com/computers/sha.html

23. Shamir, A.: SQUASH – A New MAC with Provable Security Properties for Highly
Constrained Devices Such as RFID Tags. In: Nyberg, K. (ed.) FSE 2008. LNCS,
vol. 5086, pp. 144–157. Springer, Heidelberg (2008)

24. Stinson, D.R.: Universal Hashing and Authentication Codes. In: Feigenbaum, J.
(ed.) CRYPTO 1991. LNCS, vol. 576, pp. 74–85. Springer, Heidelberg (1992)

25. The performance of UMAC can be found at, http://fastcrypto.org/umac/
26. Valkonen, J., Asokan, N., Nyberg, K.: Ad Hoc Security Associations for Groups.

In: Buttyán, L., Gligor, V.D., Westhoff, D. (eds.) ESAS 2006. LNCS, vol. 4357,
pp. 150–164. Springer, Heidelberg (2006)

http://www.aarongifford.com/computers/sha.html
http://fastcrypto.org/umac/


Lapin: An Efficient Authentication Protocol
Based on Ring-LPN

Stefan Heyse1, Eike Kiltz1, Vadim Lyubashevsky2,�,
Christof Paar1, and Krzysztof Pietrzak3,��

1 Ruhr-Universität Bochum
2 INRIA / ENS, Paris

3 IST Austria

Abstract. We propose a new authentication protocol that is provably secure
based on a ring variant of the learning parity with noise (LPN) problem. The pro-
tocol follows the design principle of the LPN-based protocol from Eurocrypt’11
(Kiltz et al.), and like it, is a two round protocol secure against active attacks.
Moreover, our protocol has small communication complexity and a very small
footprint which makes it applicable in scenarios that involve low-cost, resource-
constrained devices.

Performance-wise, our protocol is more efficient than previous LPN-based
schemes, such as the many variants of the Hopper-Blum (HB) protocol and the
aforementioned protocol from Eurocrypt’11. Our implementation results show
that it is even comparable to the standard challenge-and-response protocols based
on the AES block-cipher. Our basic protocol is roughly 20 times slower than AES,
but with the advantage of having 10 times smaller code size. Furthermore, if a few
hundred bytes of non-volatile memory are available to allow the storage of some
off-line pre-computations, then the online phase of our protocols is only twice as
slow as AES.

Keywords: HB protocols, RFID authentication, LPN problem, Ring-LPN
problem.

1 Introduction

Lightweight shared-key authentication protocols, in which a tag authenticates itself to
a reader, are extensively used in resource-constrained devices such as radio-frequency
identification (RFID) tags or smart cards. The straight-forward approach for construct-
ing secure authentications schemes is to use low-level symmetric primitives such as
block-ciphers, e.g. AES [DR02]. In their most basic form, the protocols consist of the
reader sending a short challenge c and the tag responding with AESK(c), where K is
the shared secret key. The protocol is secure if AES fulfils a strong, interactive security
assumption, namely that it behaves like a strong pseudo-random function.

Authentication schemes based on AES have some very appealing features: they are
extremely fast, consist of only 2 rounds, and have very small communication complex-
ities. In certain scenarios, however, such as when low-cost and resource-constrained
� Supported in part by the European Research Council.

�� Supported by the European Research Council / ERC Starting Grant (259668-PSPC).

A. Canteaut (Ed.): FSE 2012, LNCS 7549, pp. 346–365, 2012.
c© International Association for Cryptologic Research 2012



Lapin: An Efficient Authentication Protocol Based on Ring-LPN 347

devices are involved, the relatively large gate-count and code size used to implement
AES may pose a problem. One approach to overcome the restrictions presented by low-
weight devices is to construct a low-weight block cipher (e.g. PRESENT [BKL+07]),
while another approach has been to deviate entirely from block-cipher based construc-
tions and build a provably-secure authentication scheme based on the hardness of some
mathematical problem. In this work, we concentrate on this second approach.

Ideally, one would like to construct a scheme that incorporates all the beneficial prop-
erties of AES-type protocols, while also acquiring the additional provable security and
smaller code description characteristics. In the past decade, there have been proposals
that achieved some, but not all, of these criteria. Most of these proposals are extensions
and variants of the Hopper-Blum (HB) protocol, recently a protocol following a differ-
ent blueprint has been proposed by Kiltz et al. [KPC+11]. Our proposal can be seen as
a continuation of this line of research that contains all the advantages enjoyed by LPN-
based protocols, while at the same time, getting even closer to enjoying the benefits of
AES-type schemes.

OVERVIEW OF OUR RESULTS. In this work we present a new symmetric authentica-
tion protocol which (i) is provably-secure against active attacks (as defined in [JW05])
based on the Ring-LPN assumption, a natural variant of the standard LPN (learning
parity with noise) assumption; (ii) consists of 2 rounds; (iii) has small communication
complexity (approximately 1300 bits); (iv) has efficiency comparable to AES-based
challenge-response protocols (depending on the scenario), but with a much smaller
code size. To demonstrate the latter we implemented the tag part of our new proto-
col in a setting of high practical relevance – a low-cost 8-bit microcontroller which is
a typical representative of a CPU to be found on lightweight authentication tokens, and
compared its performance (code size and running time) with an AES implementation
on the same platform.

PREVIOUS WORKS. Hopper and Blum [HB00, HB01] proposed a 2-round authenti-
cation protocol that is secure against passive adversaries based on the hardness of the
LPN problem (we remind the reader of the definition of the LPN problem in Section
1.2). The characteristic feature of this protocol is that it requires very little workload
on the part of the tag and the reader. Indeed, both parties only need to compute vector
inner products and additions over F2, which makes this protocol (thereafter named HB)
a good candidate for lightweight applications.

Following this initial work, Juels and Weis constructed a protocol called HB+ [JW05]
which they proved to be secure against more realistic, so called active attacks. Subse-
quently, Katz et al. [KS06a], [KS06b, KSS10] provided a simpler security proof for
HB+ as well as showed that it remains secure when executed in parallel. Unlike the
HB protocol, however, HB+ requires three rounds of communication between tag and
reader. From a practical aspect, 2 round authentication protocols are often advantageous
over 3 round protocols. They often show a lower latency which is especially pronounced
on platforms where the establishment of a communication in every directions is accom-
panied by a fixed initial delay. An additional drawback of both HB and HB+ is that
their communication complexity is on the order of hundreds of thousands of bits, which
makes them almost entirely impractical for lightweight authentication tokens because of



348 S. Heyse et al.

timing and energy constraints. (The contactless transmission of data on RFIDs or smart
cards typically requires considerably more energy than the processing of the same data.)

To remedy the overwhelming communication requirement of HB+, Gilbert et al. pro-
posed the three-round HB� protocol [GRS08a]. A particularly practical instantiation of
this protocol requires fewer than two thousand bits of communication, but is no longer
based on the hardness of the LPN problem. Rather than using independent randomness,
the HB� protocol utilized a Toeplitz matrix, and is thus based on a plausible assumption
that the LPN problem is still hard in this particular scenario.

A feature that the HB,HB+, and HB� protocols have in common is that at some point
the reader sends a random string r to the tag, which then must reply with 〈r, s〉+ e, the
inner product of r with the secret s plus some small noise e. The recent work of Kiltz et
al. [KPC+11] broke with this approach, and they were able to construct the first 2-round
LPN-based authentication protocol (thereafter namedEC11) that is secure against active
attacks. In their challenge-response protocol, the reader sends some challenge bit-string
c to the tag, who then answers with a noisy inner product of a random r (which the
tag chooses itself) and a session-key K(c), where K(c) selects (depending on c) half
of the bits from the secret s. Unfortunately, the EC11 protocol still inherits the large
communication requirement of HB and HB+. Furthermore, since the session key K(c)
is computed using bit operations, it does not seem to be possible to securely instantiate
EC11 over structured (and hence more compact) objects such as Toeplitz matrices (as
used in HB� [GRS08a]).

1.1 Our Contributions

PROTOCOL. In this paper we propose a variant of the EC11 protocol from [KPC+11]
which uses an “algebraic” derivation of the session key K(c), thereby allowing to be
instantiated over a carefully chosen ring R = F2[X ]/(f). Our scheme is no longer
based on the hardness of LPN, but rather on the hardness of a natural generalization
of the problem to rings, which we call Ring-LPN(see Section 3 for the definition of
the problem.) The general overview of our protocol is quite simple. Given a challenge
c from the reader, the tag answers with (r, z = r · K(c) + e) ∈ R × R, where r is
a random ring element, e is a low-weight ring element, and K(c) = sc + s′ is the
session key that depends on the shared secret key K = (s, s′) ∈ R2 and the challenge
c. The reader accepts if e′ = r ·K(c) − z is a polynomial of low weight, cf. Figure 1
in Section 4. Compared to the HB and HB+ protocols, ours has one less round and a
dramatically lower communication complexity. Our protocol has essentially the same
communication complexity as HB�, but still retains the advantage of one fewer round.
And compared to the two-round EC11 protocol, ours again has the large savings in the
communication complexity. Furthermore, it inherits from EC11 the simple and tight
security proof that, unlike three-round protocols, does not use rewinding.

We remark that while our protocol is provably secure against active attacks, we
do not have a proof of security against man-in-the-middle ones. Still, as argued in
[KSS10], security against active attacks is sufficient for many use scenarios (see also
[JW05, KW05, KW06]). We would like to mention that despite man-in-the-middle at-
tacks being outside our “security model”, we think that it is still worthwhile investigat-
ing whether such attacks do in fact exist, because it presently seems that all previous



Lapin: An Efficient Authentication Protocol Based on Ring-LPN 349

Table 1. Summary of implementation results

Protocol Time (cycles) Code size
online offline (bytes)

Ours: reducible f (§5.1) 30, 000 82, 500 1, 356
Ours: irreducible f (§5.2) 21, 000 174, 000 459
AES-based [LLS09, Tik] 10, 121 0 4, 644

man-in-the middle attacks against HB-type schemes along the lines of Gilbert et al.
[GRS05] and of Ouafi et al. [OOV08] do not apply to our scheme. In Appendix A,
however, we do present a man-in-the-middle attack that works in time approximately
n1.5 ·2λ/2 (where n is the dimension of the secret and λ is the security parameter) when
the adversary can influence on the order of n1.5 · 2λ/2 interactions between the reader
and the tag. To resist this attack, one could simply double the security parameter, but
we believe that even for λ = 80 (and n > 512, as it is currently set in our scheme) this
attack is already impractical because of the extremely large number of interactions that
the adversary will have to observe and modify.

IMPLEMENTATION. We demonstrate that our protocol is indeed practical by providing
a lightweight implementation of the tag part of the protocol. (The reader is typically
not run on a constrained device and therefore we do not consider its performance.) The
target platform was an AVR ATmega163 [Atm] based smart card. The ATmega163 is
a small 8-bit microcontroller which is a typical representative of a CPU to be found on
lightweight authentication tokens. The main metrics we consider are run time and code
size. We compare our results with a challenge-response protocol using an AES imple-
mentation optimized for the target platform. A major advantage of our protocol is its
very small code size. The most compact implementation requires only about 460 bytes
of code, which is an improvement by factor of about 10 over AES-based authentication.
Given that EEPROM or FLASH memory is often one of the most precious resources
on constrained devices, our protocol can be attractive in certain situations. The draw-
back of our protocol over AES on the target platform is an increase in clock cycles
for one round of authentication. However, if we have access to a few hundred bytes of
non-volatile data memory, our protocol allows precomputations which make the on-line
phase only a factor two or three slower than AES. But even without precomputations,
the protocol can still be executed in a few 100 msec, which will be sufficient for many
real-world applications, e.g. remote keyless entry systems or authentication for financial
transactions. Table 1 gives a summary of the results, see Section 5 for details.

We would like to stress at this point that our protocol is targeting lightweight tags
that are equipped with (small) CPUs. For ultra constrained tokens (such as RFIDs in
the price range of a few cents targeting the EPC market) which consist nowadays of a
small integrated circuit, even compact AES implementations are often considered too
costly. (We note that virtually all current commercially available low-end RFIDs do not
have any crypto implemented.) However, tokens which use small microcontrollers are
far more common, e.g., low-cost smart cards, and they do often require strong authen-
tication. Also, it can be speculated that computational RFIDs such as the WISP [Wik]



350 S. Heyse et al.

will become more common in the future, and hence software-friendly authentication
methods that are highly efficient such as the protocol provided here will be needed.

1.2 LPN, Ring-LPN, and Related Problems

The security of our protocols relies on the new Ring Learning Parity with Noise
(Ring-LPN) problem which is a natural extension of the standard Learning Parity with
Noise (LPN) problem to rings. It can also be seen as a particular instantiation of the
Ring-LWE (Learning with Errors over Rings) problem that was recently shown to have
a strong connection to lattices [LPR10]. We will now briefly describe and compare these
hardness assumptions, and we direct the reader to Section 3 for a formal definition of
the Ring-LPN problem.

The decision versions of these problems require us to distinguish between two pos-
sible oracles to which we have black-box access. The first oracle has a randomly gen-
erated secret vector s ∈ Fn

2 which it uses to produce its responses. In the LPN problem,
each query to the oracle produces a uniformly random matrix1 A ∈ Fn×n

2 and a vector
As+e = t ∈ Fn

2 where e is a vector in Fn
2 each of whose entries is an independently gen-

erated Bernoulli random variable with probability of 1 being some public parameter τ
between 0 and 1/2. The second oracle in the LPN problem outputs a uniformly-random
matrix A ∈ Fn×n

2 and a uniformly random vector t ∈ Fn
2 .

The only difference between LPN and Ring-LPN is in the way the matrix A is gener-
ated (both by the first and second oracle). While in the LPN problem, all its entries are
uniform and independent, in the Ring-LPN problem, only its first column is generated
uniformly at random in Fn

2 . The remaining n columns of A depend on the first column
and the underlying ring R = F2[X ]/(f(X)). If we view the first column of A as a
polynomial r ∈ R, then the ith column (for 0 ≤ i ≤ n− 1) of A is just the vector rep-
resentation of rX i in the ring R. Thus when the oracle returns As+ e, this corresponds
to it returning the polynomial r · s + e where the multiplication of polynomials r and
s (and the addition of e) is done in the ring R. The Ring-LPNR assumption states that
it is hard to distinguish between the outputs of the first and the second oracle described
above. In Section 3, we discuss how the choice of the ring R affects the security of the
problem.

While the standard Learning Parity with Noise (LPN) problem has found extensive
use as a cryptographic hardness assumption (e.g., [HB01, JW05, GRS08b, GRS08a,
ACPS09, KSS10]), we are not aware of any constructions that employed the Ring-LPN
problem. There have been some previous works that considered some relatively similar
“structured” versions of LPN. TheHB� authentication protocol of Gilbert et al.[GRS08a]
made the assumption that for a random Toeplitz matrix S ∈ Fm×n

2 , a uniformly ran-
dom vector a ∈ Fn

2 , and a vector e ∈ Fm
2 whose coefficients are distributed as Berτ , the

output (a, Sa+ e) is computationally indistinguishable from (a, t) where t is uniform
over Fm

2 .
Another related work, as mentioned above, is the recent result of Lyubashevsky et

al. [LPR10], where it is shown that solving the decisional Ring-LWE (Learning with
1 In the more common description of the LPN problem, each query to the oracle produces one

random sample in Fn
2 . For comparing LPN to Ring-LPN, however, it is helpful to consider the

oracle as returning a matrix of n random independent samples on each query.



Lapin: An Efficient Authentication Protocol Based on Ring-LPN 351

Errors over Rings) problem is as hard as quantumly solving the worst case instances of
the shortest vector problem in ideal lattices. The Ring-LWE problem is quite similar to
Ring-LPN, with the main difference being that the ring R is defined as Fq[X ]/(f(X))
where f(X) is a cyclotomic polynomial and q is a prime such that f(X) splits com-
pletely into deg(f(X)) distinct factors over Fq .

Unfortunately, the security proof of our authentication scheme does not allow us
to use a polynomial f(X) that splits into low-degree factors, and so we cannot base
our scheme on lattice problems. For a similar reason (see the proof of our scheme in
Section 4 for more details), we cannot use samples that come from a Toeplitz matrix
as in [GRS08a]. Nevertheless, we believe that the Ring-LPN assumption is very natural
and will find further cryptographic applications, especially for constructions of schemes
for low-cost devices.

2 Definitions

2.1 Rings and Polynomials

For a polynomial f(X) over F2, we will often omit the indeterminate X and simply
write f . The degree of f is denoted by deg(f). For two polynomials a, f in F2[X ],
a mod f is defined to be the unique polynomial r of degree less than deg(f) such that
a = fg + r for some polynomial g ∈ F2[X ]. The elements of the ring F2[X ]/(f) will
be represented by polynomials in F2[X ] of maximum degree deg(f)− 1. In this paper,
we will only be considering rings R = F2[X ]/(f) where the polynomial f factors into
distinct irreducible factors over F2. For an element a in the ring F2[X ]/(f), we will
denote by â, the CRT (Chinese Remainder Theorem) representation of a with respect
to the factors of f . In other words, if f = f1 . . . fm where all fi are irreducible, then

â
.
= (a mod f1, . . . , a mod fm).

If f is itself an irreducible polynomial, then â = a. Note that an element â ∈ R has a
multiplicative inverse iff, for all 1 ≤ i ≤ m, a �= 0 mod fi. We denote by R∗ the set of
elements in R that have a multiplicative inverse.

2.2 Distributions

For a distribution D over some domain, we write r
$← D to denote that r is chosen

according to the distribution D. For a domain Y , we write U(Y ) to denote the uniform
distribution over Y . Let Berτ be the Bernoulli distribution over F2 with parameter (bias)
τ ∈ ]0, 1/2[ (i.e., Pr[x = 1] = τ if x← Berτ ). For a polynomial ring R = F2[X ]/(f),
the distribution BerRτ denotes the distribution over the polynomials of R, where each of
the coefficients of the polynomial is drawn independently from Berτ . For a ring R and
a polynomial s ∈ R, we write ΛR,s

τ to be the distribution over R×R whose samples are
obtained by choosing a polynomial r

$← U(R) and another polynomial e
$← BerRτ , and

outputting (r, rs+ e).



352 S. Heyse et al.

2.3 Authentication Protocols

An authentication protocol Π is an interactive protocol executed between a Tag T and a
readerR, both PPT algorithms. Both hold a secret x (generated using a key-generation
algorithm KG executed on the security parameter λ in unary) that has been shared in
an initial phase. After the execution of the authentication protocol, R outputs either
accept or reject. We say that the protocol has completeness error εc if for all λ ∈ N, all
secret keys x generated by KG(1λ), the honestly executed protocol returns reject with
probability at most εc. We now define different security notions of an authentication
protocol.

PASSIVE ATTACKS. An authentication protocol is secure against passive attacks, if there
exists no PPT adversaryA that can make the readerR return accept with non-negligible
probability after (passively) observing any number of interactions between reader and
tag.

ACTIVE ATTACKS. A stronger notion for authentication protocols is security against
active attacks. Here the adversary A runs in two stages. First, she can interact with the
honest tag a polynomial number of times (with concurrent executions allowed). In the
second phase A interacts with the reader only, and wins if the reader returns accept.
Here we only give the adversary one shot to convince the verifier.2 An authentication
protocol is (t, q, ε)-secure against active adversaries if every PPT A, running in time
at most t and making q queries to the honest reader, has probability at most ε to win the
above game.

3 Ring-LPN and Its Hardness

The decisional Ring-LPNR (Ring Learning Parity with Noise in ring R) assumption,
formally defined below, states that it is hard to distinguish uniformly random samples
in R× R from those sampled from ΛR,s

τ for a uniformly chosen s ∈ R.

Definition 1 (Ring-LPNR). The (decisional) Ring-LPNR
τ problem is (t, q, ε)-hard if for

every distinguisherD running in time t and making q queries,∣∣∣Pr [s $← R : DΛR,s
τ = 1

]
− Pr

[
DU(R×R) = 1

]∣∣∣ ≤ ε.

3.1 Hardness of LPN and Ring-LPN

One can attempt to solve Ring-LPN using standard algorithms for LPN, or by special-
ized algorithms that possibly take advantage of Ring-LPN’s additional structure. Some
work towards constructing the latter type of algorithm has recently been done by Hanrot
et al. [HLPS11], who show that in certain cases, the algebraic structure of the Ring-LPN
and Ring-LWE problems makes them vulnerable to certain attacks. These attacks essen-
tially utilize a particular relationship between the factorization of the polynomial f(X)
and the distribution of the noise.

2 By using a hybrid argument one can show that this implies security even if the adversary can
interact in k ≥ 1 independent instances concurrently (and wins if the verifier accepts in at least
one instance). The use of the hybrid argument looses a factor of k in the security reduction.



Lapin: An Efficient Authentication Protocol Based on Ring-LPN 353

Ring-LPN with an Irreducible f(X) When f(X) is irreducible over F2, the ring
F2[X ]/(f) is a field. For such rings, the algorithm of Hanrot et al. does not apply, and
we do not know of any other algorithm that takes advantage of the added algebraic
structure of this particular Ring-LPN instance. Thus to the best of our knowledge, the
most efficient algorithms for solving this problem are the same ones that are used to
solve LPN, which we will now very briefly recount.

The computational complexity of the LPN problem depends on the length of the se-
cret n and the noise distribution Berτ . Intuitively, the larger the n and the closer τ is
to 1/2, the harder the problem becomes. Usually the LPN problem is considered for
constant values of τ somewhere between 0.05 and 0.25. For such constant τ , the fastest
asymptotic algorithm for the LPN problem, due to Blum et al. [BKW03], takes time
2Ω(n/ logn) and requires approximately 2Ω(n/ log n) samples from the LPN oracle. If
one has access to fewer samples, then the algorithm will perform somewhat worse. For
example, if one limits the number of samples to only polynomially-many, then the al-
gorithm has an asymptotic complexity of 2Ω(n/ log logn) [Lyu05]. In our scenario, the
number of samples available to the adversary is limited to n times the number of execu-
tions of the authentication protocol, and so it is reasonable to assume that the adversary
will be somewhat limited in the number of samples he is able to obtain (perhaps at
most 240 samples), which should make our protocols harder to break than solving the
Ring-LPN problem. Levieil and Fouque [LF06] made some optimizations to the algo-
rithm of Blum et al. and analyzed its precise complexity. To the best of our knowledge,
their algorithm is currently the most efficient one and we will refer to their results when
analyzing the security of our instantiations.

In Section 5, we base our scheme on the hardness of the Ring-LPNR problem where
the ring is R = F2[X ]/(X532 + X + 1) and τ = 1/8. According to the analysis of
[LF06], the fastest algorithm to solve an LPN problem of dimension 512 with τ = 1/8
would require 277 memory (and thus at least that much time) to solve when given access
to approximately as many samples (see [LF06, Section 5.1]). Since our dimension is
somewhat larger and the number of samples will be limited in practice, it is reasonable
to assume that this instantiation has 80-bit security.

Note: After the appearance of this paper in the pre-proceedings of FSE, Tanja Lange
pointed us to an unpublished paper of Paul Kirchner [Kir11]. In section 4.3.2 of that
paper, the author uses the fact that the secret can come from the same distribution as the
error3, rather than being completely uniform, to achieve a slightly better running time
for solving certain instances of the LPN problem using generalized birthday attacks.
We have not yet studied the paper in detail to see how this improvement can be used in
conjunction with the work of [LF06], but it is conceivable that this improved algorithm
for LPN along with some additional techniques [Lan12], would require a slight increase
in the parameters of our scheme.

Ring-LPN with a Reducible f(X). For efficiency purposes, it is sometimes useful
to consider using a polynomial f(X) that is not irreducible over F2. This will allow us
to use the CRT representation of the elements of F2[X ]/(f) to perform multiplications,

3 For readers familiar with the lattice literature, this is analogous to the result of Applebaum
et al. [ACPS09, Lemma 2]



354 S. Heyse et al.

which in practice turns out to be more efficient. Ideally, we would like the polynomial
f to split into as many small-degree polynomials fi as possible, but there are some
constraints that are placed on the factorization of f both by the security proof, and the
possible weaknesses that a splittable polynomial introduces into the Ring-LPN problem.

If the polynomial f splits into f =
∏m

i=1 fi, then it may be possible to try and solve
the Ring-LPN problem modulo some fi rather than modulo f . Since the degree of fi is
smaller than the degree of f , the resulting Ring-LPN problem may end up being easier.
In particular, when we receive a sample (r, rs + e) from the distribution ΛR,s

τ , we can
rewrite it in CRT form as

(r̂, r̂s+ e) = ((r mod f1, rs+ e mod f1), . . . ,

(r mod fm, rs+ e mod fm)),

and thus for every fi, we have a sample

(r mod fi, (r mod fi)(s mod fi) + e mod fi),

where all the operations are in the ring (or field) F2[X ]/(fi). Thus solving the (decision)
Ring-LPN problem in F2[X ]/(f) reduces to solving the problem in F2[X ]/(fi). The
latter problem is in a smaller dimension, since deg(s) > deg(s mod fi), but the error
distribution of (e mod fi) is quite different than that of e. While each coefficient of e is
distributed independently as Berτ , each coefficient of (e mod fi) is distributed as the
distribution of a sum of certain coefficients of e, and therefore the new error is larger.4

Exactly which coefficients of e, and more importantly, how many of them, combine to
form every particular coefficient of e′ depends on the polynomial fi. For example, if

f(X) = (X3 +X + 1)(X3 +X2 + 1)

and e =
5∑

i=0

eiX
i, then,

e′ = e mod (X3+X+1) = (e0+e3+e5)+(e1+e3+e4+e5)X+(e2+e4+e5)X
2,

and thus every coefficient of the error e′ is comprised of at least 3 coefficients of the

error vector e, and thus τ ′ > 1
2 −

(1−2τ)3

2 .
In our instantiation of the scheme with a reducible f(X) in Section 5, we used the

f(X) such that it factors into fi’s that make the operations in CRT form relatively fast,
while making sure that the resulting Ring-LPN problem modulo each fi is still around
280-hard.

4 Authentication Protocol

In this section we describe our new 2-round authentication protocol and prove its active
security under the hardness of the Ring-LPN problem. Detailed implementation details
will be given in Section 5.

4 If we have k elements e1, . . . , ek
$← Berτ , then a simple calculation shows that the element

e′ = e1 + . . .+ ek is distributed as Berτ ′ where τ ′ = 1
2
− (1−2τ)k

2
.



Lapin: An Efficient Authentication Protocol Based on Ring-LPN 355

Public parameters: R, π : {0, 1}λ → R, τ, τ ′

Secret key: s, s′ ∈ R

Tag T Reader R
c←− c

$← {0, 1}λ

r
$← R∗; e

$← BerRτ ∈ R

z := r · (s · π(c) + s′) + e
(r,z)−−→

if r �∈ R∗ reject
e′ := z − r · (s · π(c) + s′)
if wt(e′) > n · τ ′ reject
else accept

Fig. 1. Two-round authentication protocol with active security from the Ring-LPNR assumption

4.1 The Protocol

Our authentication protocol is defined over the ring R = F2[X ]/(f) and involves a
“suitable” mapping π : {0, 1}λ → R. We call π suitable for ring R if for all c, c′ ∈
{0, 1}λ, π(c) − π(c′) ∈ R \ R∗ iff c = c′. We will discuss the necessity and existence
of such mappings after the proof of Theorem 1

– Public parameters. The authentication protocol has the following public parame-
ters, where τ, τ ′ are constants and n depend on the security parameter λ.
R, n ring R = F2[X ]/(f), deg(f) = n
π : {0, 1}λ → R mapping
τ ∈ (0, 1/2) parameter of Bernoulli distribution
τ ′ ∈ (τ, 1/2) acceptance threshold

– Key Generation. Algorithm KG(1λ) samples s, s′ $← R and returns s, s′ as the
secret key.

– Authentication Protocol. The Reader R and the Tag T share secret value s, s′ ∈
R. To be authenticated by a Reader, the Tag and the Reader execute the authentica-
tion protocol from Figure 1.

4.2 Analysis

For our analysis we define for x, y ∈]0, 1[ the following constant:

c(x, y) :=

(
x

y

)x(
1− x

1− y

)1−x

.

We now state that our protocol is secure against active adversaries. Recall that active
adversaries can arbitrarily interact with a Tag oracle in the first phase and tries to im-
personate the Reader in the 2nd phase.



356 S. Heyse et al.

Theorem 1. If ring mapping π is suitable for ring R and the Ring-LPNR problem is
(t, q, ε)-hard then the authentication protocol from Figure 1 is (t′, q, ε′)-secure against
active adversaries, where

t′ = t− q · exp(R) ε′ = ε+ q · 2−λ + c(τ ′, 1/2)−n (4.1)

and exp(R) is the time to perform O(1) exponentiations in R. Furthermore, the protocol
has completeness error εc(τ, τ ′, n) ≈ c(τ ′, τ)−n.

Proof. The completeness error εc(τ, τ ′, n) is (an upper bound on) the probability that
an honestly generated Tag gets rejected. In our protocol this is exactly the case when
the error e′ has weight ≥ n · τ ′, i.e.

εc(τ, τ
′, n) = Pr[wt(e′) > n · τ ′ : e

$← BerRτ ]

Levieil and Fouque [LF06] show that one can approximate this probability as εc ≈
c(τ ′, τ)−n.

To prove the security of the protocol against active attacks we proceed in sequences
of games. Game0 is the security experiment describing an active attack on our scheme
by an adversaryA making q queries and running in time t′, i.e.

– Sample the secret key s, s′ $← R.
– (1st phase of active attack) A queries the tag T on c ∈ {0, 1}λ and receives (r, z)

computed as illustrated in Figure 1.
– (2nd phase of active attack) A gets a random challenge c∗ $← {0, 1}λ and outputs
(r, z). A wins if the readerR accepts, i.e. wt(z − r · (s · π(c∗) + s′)) ≤ n · τ ′.

By definition we have Pr[A wins in Game0] ≤ ε′.
Game1 is as Game0, except that all the values (r, z) returned by the Tag oracle in the

first phase (in return to a query c ∈ {0, 1}λ) are uniform random elements (r, z) ∈ R2.
We now show that if A is successful against Game0, then it will also be successful
against Game1.

Claim. |Pr[A wins in Game1]− Pr[A wins in Game0]| ≤ ε+ q · 2−λ

To prove this claim, we construct an adversary D (distinguisher) against the Ring-LPN
problem which runs in time t = t′ + exp(R) and has advantage

ε ≥ |Pr[A wins in Game1]− Pr[A wins in Game0]| − q · 2−λ

D has access to a Ring-LPN oracle O and has to distinguish between O = ΛR,s
τ for

some secret s ∈ R and O = U(R× R).

– D picks a random challenge c∗ $← {0, 1}λ and a
$← R. Next, it runs A and simu-

lates its view with the unknown secret s, s′, where s ∈ R comes from the oracle O
and s′ is implicitly defined as s′ := −π(c∗) · s+ a ∈ R.

– In the 1st phase, A can make q (polynomial many) queries to the Tag oracle. On
query c ∈ {0, 1}λ to the Tag oracle, D proceeds as follows. If π(c) − π(c∗) �∈ R∗,
then abort. Otherwise, D queries its oracle O() to obtain (r′, z′) ∈ R2. Finally, D
returns (r, z) to A, where

r := r′ · (π(c) − π(c∗))−1, z := z′ + ra. (4.2)



Lapin: An Efficient Authentication Protocol Based on Ring-LPN 357

– In the 2nd phase, D uses c∗ ∈ {0, 1}λ to challenge A. On answer (r, z), D returns
0 to the Ring-LPN game if wt(z − r · a) > n · τ ′ or r �∈ R∗, and 1 otherwise. Note
that sπ(c∗) + s′ = (π(c∗)− π(c∗))s+ a = a and hence the above check correctly
simulates the output of a reader with the simulated secret s, s′.

Note that the running time of D is that of A plus O(q) exponentiations in R.
Let bad be the event that for at least one query c made by A to the Tag oracle, we

have that π(c) − π(c∗) �∈ R∗. Since c∗ is uniform random in R and hidden from A’s
view in the first phase we have by the union bound over the q queries

Pr[bad] ≤ q · Pr
c∗∈{0,1}λ

[π(c) − π(c∗) ∈ R \ R∗]

= q · 2−λ. (4.3)

The latter inequality holds because π is suitable for R.
Let us now assume bad does not happen. IfO = ΛR,s

τ is the real oracle (i.e., it returns
(r′, z′) with z′ = r′s+ e) then by the definition of (r, z) from (4.2),

z = (r′s+ e) + ra = r(π(c)s − π(c∗)s+ a) + e = r(sπ(c) + s′) + e.

Hence the simulation perfectly simulates A’s view in Game0. If O = U(R × R) is the
random oracle then (r, z) are uniformly distributed, as in Game1. That concludes the
proof of Claim 4.2.

We next upper bound the probability thatA can be successful in Game1. This bound
will be information theoretic and even holds if A is computationally unbounded and
can make an unbounded number of queries in the 1st phase. To this end we introduce
the minimal soundness error, εms, which is an upper bound on the probability that a tag
(r, z) chosen independently of the secert key is valid, i.e.

εms(τ
′, n) := max

(z,r)∈R×R∗
Pr

s,s′ $←R

[wt(z − r · (s · π(c∗) + s′)︸ ︷︷ ︸
e′

) ≤ nτ ′]

As r ∈ R∗ and s′ ∈ R is uniform, also e′ = z − r · (s · π(c∗) + s′ is uniform, thus εms

is simply
εms(τ

′, n) := Pr
e′ $←R

[wt(e′) ≤ nτ ′]

Again, it was shown in [LF06] that this probability can be approximated as

εms(τ
′, n) ≈ c(τ ′, 1/2)−n. (4.4)

Clearly, εms is a trivial lower bound on the advantage ofA in forging a valid tag, by the
following claim in Game1 one cannot do any better than this.

Claim. Pr[A wins in Game1] = εms(τ
′, n)

To see that this claim holds one must just observe that the answers A gets in the first
phase of the active attack in Game1 are independent of the secret s, s′. Hence A’s
advantage is εms(τ

′, n) by definition.
Claims 4.2 and 4.2 imply (4.1) and conclude the proof of Theorem 1.



358 S. Heyse et al.

We require the mapping π : {0, 1}λ → R used in the protocol to be suitable for R,
i.e. for all c, c′ ∈ {0, 1}λ, π(c) − π(c′) ∈ R \ R∗ iff c = c′. In Section 5 we describe
efficient suitable maps for any R = F2[X ]/(f) where f has no factor of degree ≤ λ.
This condition is necessary, as no suitable mapping exists if f has a factor fi of degree
≤ λ: in this case, by the pigeonhole principle, there exist distinct c, c′ ∈ {0, 1}λ such
that π(c) = π(c′) mod fi, and thus π(c) − π(c′) ∈ R \ R∗.

We stress that for our security proof we need π to be suitable for R, since otherwise
(4.3) is no longer guaranteed to hold. It is an interesting question if this is inherent, or
if the security of our protocol can be reduced to the Ring-LPNR problem for arbitrary
rings R = F2[X ]/(f), or even R = Fq[X ]/(f) (This is interesting since, if f has factors
of degree $ λ, the protocol could be implemented more efficiently and even become
based on the worst-case hardness of lattice problems). Similarly, it is unclear how to
prove security of our protocol instantiated with Toeplitz matrices.

5 Implementation

There are two objectives that we pursue with the implementation of our protocol. First,
we will show that the protocol is in fact practical with concrete parameters, even on
extremely constrained CPUs. Second, we investigate possible application scenarios
where the protocol might have additional advantages. From a practical point of view, we
are particularly interested in comparing our protocol to classical symmetric challenge-
response schemes employing AES. Possible advantages of the protocol at hand are (i)
the security properties and (ii) improved implementation properties. With respect to the
former aspect, our protocol has the obvious advantage of being provably secure under
a reasonable and static hardness assumption. Even though AES is arguably the most
trusted symmetric cipher, it is “merely” computationally secure with respect to known
attacks.

In order to investigate implementation properties, constrained microprocessors are
particularly relevant. We chose an 8-bit AVR ATmega163 [Atm] based smartcard, which
is widely used in myriads of embedded applications. It can be viewed as a typical rep-
resentative of a CPU used in tokens that are in need for an authentication protocol, e.g.,
computational RFID tags or (contactless) smart cards. The main metrics we consider
for the implementation are run-time and code size. We note at this point that in many
lightweight crypto applications, code size is the most precious resource once the run-
time constraints are fulfilled. This is due to the fact that EEPROM or flash memory is
often heavily constrained. For instance, the WISP, a computational RFID tag, has only
8 kBytes of program memory [Wik, MSP].

We implemented two variants of the protocol described in Section 4. The first variant
uses a ring R = F2[X ]/(f), where f splits into five irreducible polynomials; the second
variant uses a field, i.e., f is irreducible. For both implementations, we chose parameters
which provide a security level of λ = 80 bits, i.e., the parameters are chosen such that ε′

in (4.1) is bounded by 2−80 and the completeness εc is bounded by 2−40. This security
level is appropriate for the lightweight applications which we are targeting.



Lapin: An Efficient Authentication Protocol Based on Ring-LPN 359

5.1 Implementation with a Reducible Polynomial

From an implementation standpoint, the case of reducible polynomial is interesting
since one can take advantage of arithmetic based on the Chinese Remainder Theorem.

PARAMETERS. To define the ring R = F2[X ]/(f), we chose the reducible polynomial
f to be the product of the m = 5 irreducible pentanomials specified by the follow-
ing powers with non-zero coefficients: (127, 8, 7, 3, 0), (126, 9, 6, 5, 0), (125, 9, 7, 4, 0),
(122, 7, 4, 3, 0), (121, 8, 5, 1, 0)5. Hence f is a polynomial of degreen = 621. We chose
τ = 1/6 and τ ′ = .29 to obtain minimal soundness error εms ≈ c(τ ′, 1/2)−n ≤ 2−82

and completeness error εc ≤ 2−42. From the discussion of Section 3 the best known
attack on Ring-LPNR

τ with the above parameters has complexity > 280. The mapping
π : {0, 1}80 → R is defined as follows. On input c ∈ {0, 1}80, for each 1 ≤ i ≤ 5, pad
c ∈ {0, 1}80 with deg(fi) − 80 zeros and view the result as coefficients of an element
vi ∈ F2[X ]/(fi). This defines π(c) = (v1, . . . , v5) in CRT representation. Note that,
for fixed c, c∗ ∈ {0, 1}80, we have that π(c) − π(c∗) ∈ R \ R∗ iff c = c∗ and hence π
is suitable for R.

IMPLEMENTATION DETAILS. The main operations are multiplications and additions of
polynomials that are represented by 16 bytes. We view the CRT-based multiplication in
three stages. In the first stage, the operands are reduced modulo each of the five irre-
ducible polynomials. This part has a low computational complexity. Note that only the
error e has to be chosen in the ring and afterwards transformed to CRT representation. It
is possible to save the secret key (s, s′) and to generate r directly in the CRT represen-
tation. This is not possible for e because e has to come from BerRτ . In the second stage,
one multiplication in each of the finite fields defined by the five pentanomials has to
be performed. We used the right-to-left comb multiplication algorithm from [HMV03].
For the multiplication with π(c) we exploit the fact that only the first 80 coefficients
can be non-zero. Hence we wrote one function for normal multiplication and one for
sparse multiplication. The latter is more than twice as fast as the former. The subse-
quent reduction takes care of the special properties of the pentanomials, thus code reuse
is not possible for the different fields. The third stage, constructing the product poly-
nomial in the ring, is shifted to the prover (RFID reader) which normally has more
computational power than the tag T . Hence the response (r, z) is sent in CRT form to
the reader. If non-volatile storage — in our case we need 2 · 5 · 16 = 160 bytes —
is available we can heavily reduce the response time of the tag. At an arbitrary point
in time, choose e and r according to their distribution and precompute tmp1 = r · s
and tmp2 = r · s′ + e. When a challenge c is received afterwards, tag T only has to
compute z = tmp1 · π(c) + tmp2. Because π(c) is sparse, the tag can use the sparse
multiplication and response very quickly. The results of the implementation are shown
in Table 2 in Section 5.3. Note that all multiplication timings given already include the
necessary reductions and addition of a value according to Figure 1.

5.2 Implementation with an Irreducible Polynomial

PARAMETERS. To define the field F = F2[X ]/(f), we chose the irreducible trinomial
f(X) = X532 + X + 1 of degree n = 532. We chose τ = 1/8 and τ ′ = .27 to

5 (127, 8, 7, 3, 0) refers to the polynomial X127 +X8 +X7 +X3 + 1.



360 S. Heyse et al.

obtain minimal soundness error εms ≈ c(τ ′, 1/2)−n ≤ 2−80 and completeness error
εc ≈ 2−55. From the discussion in Section 3 the best known attack on Ring-LPNF

τ with
the above parameters has complexity > 280. The mapping π : {0, 1}80 → F is defined
as follows. View c ∈ {0, 1}80 as c = (c1, . . . , c16) where ci is a number between 1 and
32. Define the coefficients of the polynomial v = π(c) ∈ F as zero except all positions
i of the form i = 16 · (j − 1) + cj , for some j = 1, . . . , 16. Hence π(c) is sparse, i.e.,
it has exactly 16 non-zero coefficients. Since π is injective and F is a field, the mapping
π is suitable for F.

IMPLEMENTATION DETAILS. The main operation for the protocol is now a 67-byte
multiplication. Again we used the right-to-left comb multiplication algorithm from
[HMV03] and an optimized reduction algorithm. Like in the reducible case, the tag
can do similar precomputations if 2 · 67 = 134 bytes non-volatile storage are available.
Because of the special type of the mapping v = π(c), the gain of the sparse multipli-
cation is even larger than in the reducible case. Here we are a factor of 7 faster, making
the response time with precomputations faster, although the field is larger. The results
are shown in Table 3 in Section 5.3.

5.3 Implementation Results

All results presented in this section consider only the clock cycles of the actual arith-
metic functions. The communication overhead and the generation of random bytes is
excluded because they occur in every authentication scheme, independent of the un-
derlying cryptographic functions. The time for building e from BerRτ out of the random
bytes and converting it to CRT form is included in Overhead. Table 2 and Table 3 shows
the results for the ring based and field based variant, respectively.

Table 2. Results for the ring based variant w/o precomputation

Aspect time code size
in cycles in bytes

Overhead 17, 500 264
Mul 5× 13, 000 164
sparse Mul 5× 6, 000 170

total 112, 500 1356

The overall code size is not the sum of the other values because, as mentioned before,
the same multiplication code is used for all normal and sparse multiplications, respec-
tively, while the reduction code is different for every field (≈ 134 byte each). The same
code for reduction is used independently of the type of the multiplication for the same
field. If precomputation is acceptable, the tag can answer the challenge after approxi-
mately 30, 000 clock cycles, which corresponds to a 15 msec if the CPU is clocked at
2 MHz.

For the field-based protocol, the overall performance is slower due to the large
operands used in the multiplication routine. But due to the special mapping v = π(c),



Lapin: An Efficient Authentication Protocol Based on Ring-LPN 361

Table 3. Results for the field based variant w/o precomputation

Aspect time code size
in cycles in bytes

Overhead 3, 000 150
Mul 150, 000 161
sparse Mul 21, 000 148

total 174, 000 459

here the tag can do a sparse multiplications in only 21, 000 clocks cycles. This allows
the tag to respond in 10.5 msec at 2 MHz clock rate if non-volatile storage is available.

As mentioned in the introduction, we want to compare our scheme with a conven-
tional challenge-response authentication protocol based on AES. The tag’s main oper-
ation in this case is one AES encryption. The implementation in [LLS09] states 8, 980
clock cycles for one encryption on a similar platform, but unfortunately no code size is
given; [Tik] reports 10121 cycles per encryption and a code size of 4644 bytes.6 In com-
parison with these highly optimizedAES implementations, our scheme is around eleven
times slower when using the ring based variant without precomputations. If non-volatile
storage allows precomputations, the ring based variant is only three times slower than
AES. But the code size is by a factor of two to three smaller, making it attractive for
Flash constrained devices. The field based variant without precomputations is 17 to 19
times slower than AES, but with precompuations it is only twice as slow as AES, while
only consuming one tenths of the code size. From a practical point of view, it is im-
portant to note that even our slowest implementation is executed in less than 100 msec
if the CPU is clocked at 2 MHz. This response time is sufficient in many application
scenarios. (For authentications involving humans, a delay of 1 sec is often considered
acceptable.)

The performance drawback compared to AES is not surprising, but it is consider-
ably less dramatic compared to asymmetric schemes like RSA or ECC [GPW+04]. But
exploiting the special structure of the multiplications in our scheme and using only a
small amount of non-volatile data memory provides a response time in the same order
of magnitude as AES, while keeping the code size much smaller.

6 Conclusions and Open Problems

We proposed a new [KPC+11]-like authentication protocol with provable security
against active attacks based on theRing-LPN assumption, consisting of only two rounds,
and having small communication complexity. Furthermore, our implementations on an
8-bit AVR ATmega163 based smartcard demonstrated that it has very small code size
and its efficiency can be of the same order as traditional AES-based authentication pro-
tocols. Overall, we think that its features make it very applicable in scenarios that in-
volve low-cost, resource-constrained devices.

6 An internet source [Poe] claims to encrypt in 3126 cycles with code size of 3098 bytes but
since this is unpublished material we do not consider it in our comparison.



362 S. Heyse et al.

Our protocol cannot be proved secure against man-in-the-middle (MIM) attacks, but
using a recent transformation from [DKPW12] we can get a MIM secure scheme with
small extra cost (one application of a universal hash function.) Still, finding a more
direct construction which achieves MIM security (or proving that the current protocol
already has this property) but doesn’t require any hashing remains an interesting open
problem.

We believe that the Ring-LPN assumption is very natural and will find further cryp-
tographic applications, especially for constructions of schemes for low-cost devices.
In particular, we think that if the LPN-based line of research is to lead to a practical
protocol in the future, then the security of this protocol will be based on a hardness as-
sumption with some “extra algebraic structure”, such as Ring-LPN in this work, or LPN
with Toeplitz matrices in the work of Gilbert et al. [GRS08a]. More research, however,
needs to be done on understanding these problems and their computational complexity.
In terms of Ring-LPN, it would be particularly interesting to find out whether there ex-
ists an equivalence between the decision and the search versions of the problem similar
to the reductions that exist for LPN [BFKL93, Reg09, KS06a] and Ring-LWE [LPR10].

Acknowledgements. We would like to thank the anonymous referees of this confer-
ence and those of the ECRYPT Workshop on Lightweight Cryptography for very useful
comments, and in particular for the suggestion that the scheme is somewhat vulnerable
to a man-in-the-middle attack whenever an adversary observes two reader challenges
that are the same. We hope that the attack we described in Appendix A corresponds to
what the reviewer had in mind. We also thank Tanja Lange for pointing us to the pa-
per of [Kir11] and for discussions of some of her recent work. This work was partially
supported by the European Research Council.

References

[ACPS09] Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast Cryptographic Primitives and
Circular-Secure Encryption Based on Hard Learning Problems. In: Halevi, S. (ed.)
CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009)

[Atm] Atmel, ATmega163 datasheet,
www.atmel.com/atmel/acrobat/doc1142.pdf

[BFKL93] Blum, A., Furst, M.L., Kearns, M., Lipton, R.J.: Cryptographic Primitives Based on
Hard Learning Problems. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp.
278–291. Springer, Heidelberg (1994)

[BKL+07] Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

[BKW03] Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem, and
the statistical query model. J. ACM 50(4), 506–519 (2003)

[DKPW12] Dodis, Y., Kiltz, E., Pietrzak, K., Wichs, D.: Message Authentication, Revisited.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
355–374. Springer, Heidelberg (2012)

[DR02] Daemen, J., Rijmen, V.: The design of rijndael: AES - the advanced encryption stan-
dard. Springer (2002)

www.atmel.com/atmel/acrobat/doc1142.pdf


Lapin: An Efficient Authentication Protocol Based on Ring-LPN 363

[GPW+04] Gura, N., Patel, A., Wander, A., Eberle, H., Shantz, S.C.: Comparing Elliptic Curve
Cryptography and RSA on 8-bit CPUs. In: Joye, M., Quisquater, J.-J. (eds.) CHES
2004. LNCS, vol. 3156, pp. 119–132. Springer, Heidelberg (2004)

[GRS05] Gilbert, H., Robshaw, M., Sibert, H.: An active attack against HB+ – a provably se-
cure lightweight authentication protocol, Cryptology ePrint Archive, Report 2005/237
(2005), http://eprint.iacr.org/

[GRS08a] Gilbert, H., Robshaw, M.J.B., Seurin, Y.: HB�: Increasing the Security and Efficiency
of HB+. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 361–378.
Springer, Heidelberg (2008)

[GRS08b] Gilbert, H., Robshaw, M., Seurin, Y.: How to Encrypt with the LPN Problem.
In: Aceto, L., Damgard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 679–690. Springer,
Heidelberg (2008)

[HB00] Hopper, N., Blum, M.: A secure human-computer authentication scheme. Tech. Re-
port CMU-CS-00-139, Carnegie Mellon University (2000)

[HB01] Hopper, N.J., Blum, M.: Secure Human Identification Protocols. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 52–66. Springer, Heidelberg (2001)

[HLPS11] Hanrot, G., Lyubashevsky, V., Peikert, C., Stehlé, D.: Personal communication (2011)
[HMV03] Hankerson, D., Menezes, A.J., Vanstone, S.: Guide to elliptic curve cryptography.

Springer-Verlag New York, Inc., Secaucus (2003)
[JW05] Juels, A., Weis, S.A.: Authenticating Pervasive Devices with Human Protocols. In:

Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 293–308. Springer, Heidelberg
(2005)

[Kir11] Kirchner, P.: Improved generalized birthday attack. Cryptology ePrint Archive, Re-
port 2011/377 (2011), http://eprint.iacr.org/

[KPC+11] Kiltz, E., Pietrzak, K., Cash, D., Jain, A., Venturi, D.: Efficient authentication
from hard learning problems. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 7–26. Springer, Heidelberg (2011)

[KS06a] Katz, J., Shin, J.S.: Parallel and Concurrent Security of the HB and HB+ Protocols.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 73–87. Springer,
Heidelberg (2006)

[KS06b] Katz, J., Smith, A.: Analyzing the HB and HB+ protocols in the “large error” case.
Cryptology ePrint Archive, Report 2006/326 (2006),
http://eprint.iacr.org/

[KSS10] Katz, J., Shin, J.S., Smith, A.: Parallel and concurrent security of the HB and HB+
protocols. Journal of Cryptology 23(3), 402–421 (2010)

[KW05] Kfir, Z., Wool, A.: Picking virtual pockets using relay attacks on contactless smart-
card. In: International Conference on Security and Privacy for Emerging Areas in
Communications Networks, pp. 47–58 (2005)

[KW06] Kirschenbaum, I., Wool, A.: How to build a low-cost, extended-range RFID skimmer.
In: Proceedings of the 15th USENIX Security Symposium (SECURITY 2006), pp.
43–57. USENIX Association (August 2006)

[Lan12] Lange, T.: Personal communication (2012)
[LF06] Levieil, É., Fouque, P.-A.: An Improved LPN Algorithm. In: De Prisco, R., Yung, M.

(eds.) SCN 2006. LNCS, vol. 4116, pp. 348–359. Springer, Heidelberg (2006)
[LLS09] Lee, H., Lee, K., Shin, Y.: AES implementation and performance evaluation on 8-bit

microcontrollers. CoRR abs/0911.0482 (2009)
[LPR10] Lyubashevsky, V., Peikert, C., Regev, O.: On Ideal Lattices and Learning with Errors

over Rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/


364 S. Heyse et al.

[Lyu05] Lyubashevsky, V.: The Parity Problem in the Presence of Noise, Decoding Random
Linear Codes, and the Subset Sum Problem. In: Chekuri, C., Jansen, K., Rolim, J.D.P.,
Trevisan, L. (eds.) APPROX 2005 and RANDOM 2005. LNCS, vol. 3624, pp. 378–
389. Springer, Heidelberg (2005)

[MSP] MSP430 datasheeet
[OOV08] Ouafi, K., Overbeck, R., Vaudenay, S.: On the Security of HB# against a Man-in-

the-Middle Attack. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp.
108–124. Springer, Heidelberg (2008)

[Poe] Poettering, B.: AVRAES: The AES block cipher on AVR controllers,
http://point-at-infinity.org/avraes/

[Reg09] Regev, O.: On lattices, learning with errors, random linear codes, and cryptography.
J. ACM 56(6) (2009)

[Tik] Tikkanen, J.: AES implementation on AVR ATmega, 328 p.,
http://cs.ucsb.edu/˜koc/cs178/projects/JT/avr_aes.html

[Wik] WISP Wiki, WISP 4.0 DL hardware,
http://wisp.wikispaces.com/WISP+4.0+DL

A Man-In-The-Middle Attack

In this section, we sketch a man-in-the-middle attack against the protocol in Figure 1
that recovers the secret key in time approximately O

(
n1.5 · 2λ/2

)
when the adversary

is able to insert himself into that many valid interactions between the reader and the
tag. For a ring R = F2[X ]/(f) and a polynomial g ∈ R, define the vector g to be a
vector of dimension deg(f) whose ith coordinate is the X i coefficient of g. Similarly,
for a polynomial h ∈ R, let Rot(h) be a deg(f)×deg(f) matrix whose ith column (for

0 ≤ i < deg(f)) is
−−−→
h ·X i, or in other words, the coefficients of the polynomial h ·X i

in the ring R. From this description, one can check that for two polynomials g, h ∈ R,
the product

−−→
g · h = Rot(g) · h mod 2 = Rot(h) · g mod 2.

We now move on to describing the attack. The ith (successful) interaction between
a reader R and a tag T consists of the reader sending the challenge ci, and the tag
replying with the pair (ri, zi) where zi− ri · (s ·π(ci)+ s′) is a low-weight polynomial
of weight at most n · τ ′. The adversary who is observing this interaction will forward
the challenge ci untouched to the tag, but reply to the reader with the ordered pair
(ri, z

′
i = zi + ei) where ei is a vector that is strategically chosen with the hope that the

vector z′i−ri·(s·π(ci)+s′) is exactly of weight n·τ ′. It’s not hard to see that it’s possible
to choose such a vector ei so that the probability of z′i−ri ·(s·π(ci)+s′) being of weight
n · τ ′ is approximately 1/

√
n. The response (ri, z′i) will still be valid, and so the reader

will accept. By the birthday bound, after approximately 2λ/2 interactions, there will be
a challenge cj that is equal to some previous challenge ci. In this case, the adversary
replies to the reader with (ri, z

′′
i ), where the polynomial z′′i is just the polynomial z′i

whose first bit (i.e. the constant coefficient) is flipped. What the adversary is hoping for
is that the reader accepted the response (ri, z′i) but rejects (ri, z′′i ). Notice that the only
way this can happen is if the first bit of z′i is equal to the first bit of ri ·(s·π(ci)+s′), and
thus flipping it, increases the error by 1 and makes the reader reject. We now explain
how finding such a pair of responses can be used to recover the secret key.

http://point-at-infinity.org/avraes/
http://cs.ucsb.edu/~koc/cs178/projects/JT/avr_aes.html
http://wisp.wikispaces.com/WISP+4.0+DL


Lapin: An Efficient Authentication Protocol Based on Ring-LPN 365

Since the polynomial expression z′i− ri · (s ·π(ci) + s′) = z′i− ri ·π(ci) · s− ri · s′
can be written as matrix-vector multiplications as

z′
i −Rot(ri · π(ci)) · s−Rot(ri) · s′ mod 2,

if we let the first bit of z′
i be βi, the first row of Rot(ri · π(ci)) be ai and the first row

of Rot(ri) be bi, then we obtain the linear equation

〈ai, s〉+ 〈bi, s′〉 = βi.

To recover the entire secret s, s′, the adversary needs to repeat the above attack until
he obtains 2n linearly-independent equations (which can be done with O(n) successful
attacks), and then use Gaussian elimination to recover the full secret.



Higher-Order Masking Schemes for S-Boxes

Claude Carlet1, Louis Goubin2, Emmanuel Prouff3,�,
Michael Quisquater2, and Matthieu Rivain4

1 LAGA, Université de Paris 8
claude.carlet@univ-paris8.fr

2 Université de Versailles St-Quentin-en-Yvelines
louis.goubin@prism.uvsq.fr

michael.quisquater@prism.uvsq.fr
3 Agence Nationale de la Sécurité des Systèmes d’Information

e.prouff@gmail.com
4 CryptoExperts

matthieu.rivain@cryptoexperts.com

Abstract. Masking is a common countermeasure against side-channel
attacks. The principle is to randomly split every sensitive intermediate
variable occurring in the computation into d+1 shares, where d is called
themasking order and plays the role of a security parameter. The main is-
sue while applying masking to protect a block cipher implementation is to
design an efficient scheme for the s-box computations. Actually, masking
schemes with arbitrary order only exist for Boolean circuits and for the
AES s-box. Although any s-box can be represented as a Boolean circuit,
applying such a strategy leads to inefficient implementation in software.
The design of an efficient and generic higher-order masking scheme was
hence until now an open problem. In this paper, we introduce the first
masking schemes which can be applied in software to efficiently protect
any s-box at any order. We first describe a general masking method and
we introduce a new criterion for an s-box that relates to the best effi-
ciency achievable with this method. Then we propose concrete schemes
that aim to approach the criterion. Specifically, we give optimal meth-
ods for the set of power functions, and we give efficient heuristics for the
general case. As an illustration we apply the new schemes to the DES
and PRESENT s-boxes and we provide implementation results.

1 Introduction

Side-channel analysis is a class of cryptanalytic attacks that exploit the physical
environment of a cryptosystem to recover some leakage about its secrets. It
is often more efficient than a cryptanalysis mounted in the so-called black-box
model where no leakage occurs. In particular, continuous side-channel attacks in
which the adversary gets information at each invocation of the cryptosystem are
especially threatening. Common attacks as those exploiting the running-time,

� Part of this work has been done while the author was at Oberthur Technologies.

A. Canteaut (Ed.): FSE 2012, LNCS 7549, pp. 366–384, 2012.
c© International Association for Cryptologic Research 2012



Higher-Order Masking Schemes for S-Boxes 367

the power consumption or the electromagnetic radiations of a cryptographic
computation fall into this class.

Many implementations of block ciphers have been practically broken by con-
tinuous side-channel analysis — see for instance [6, 18, 20, 22] — and securing
them has been a longstanding issue for the embedded systems industry. A sound
approach is to use secret sharing [3, 30], often called masking in the context of
side-channel attacks. This approach consists in splitting each sensitive variable of
the implementation (i.e. variables depending on the secret key) into d+1 shares,
where d is called the masking order. It has been shown that the complexity of
mounting a successful side-channel attack against a masked implementation in-
creases exponentially with the masking order [7]. Starting from this observation,
the design of efficient masking schemes for different ciphers has become a fore-
ground issue.

The DES cipher has been the focus of first designs, with the notable work of
Goubin and Patarin in [13]. Further schemes have been subsequently published,
in particular for the AES cipher, applying masking in hardware or software
with different area-time-memory trade-offs [2,4,21,23,26,29]. All these schemes
deal with first-order masking, namely the intermediate variables are split in two
shares (a mask and a masked variable). As a result, they only thwart first order
side-channel attacks in which the adversary exploits the leakage of a single inter-
mediate computation. During the last years, several works have demonstrated
that this defense strategy was not sufficient for long term security purpose and
that higher-order attacks could be successfully performed against cryptographic
implementations (see e.g. [22]). This has raised the need for secure and efficient
higher-order masking schemes.

Higher-Order Masking. The principle of higher-order masking is to split
every sensitive variable x occurring during the computation into d+1 shares x0,
. . . , xd in such a way that the following relation is satisfied for a group operation
⊥:

x0 ⊥ x1 ⊥ · · · ⊥ xd = x . (1)

In the rest of the paper, we shall consider that ⊥ is the addition over some field of
characteristic 2. Usually, the d shares x1, . . . , xd (called the masks) are randomly
picked up and the last one x0 (called the masked variable) is processed such that
it satisfies (1). When d random masks are involved per sensitive variable the
masking is said to be of order d. The tuple (xi)i is further called a dth-order
encoding of x.

When higher-order masking is involved to protect a block cipher implemen-
tation, a so-called masking scheme must be designed to enable the computation
on masked data. Such a scheme must ensure that the final shares correspond
to the expected ciphertext on the one hand, and it must ensure the dth-order
security property for the chosen order d on the other hand. The latter property
states that every tuple of d or less intermediate variables is independent of any
sensitive variable. When satisfied, it guarantees that no attack of order lower
than or equal to d is possible.



368 C. Carlet et al.

Most block cipher structures (e.g. AES or DES) are iterative, meaning that
they apply several times a same transformation, called round, to an internal state
initially filled with the plaintext. The round itself is composed of a key addition,
one or several linear transformation(s) and one or several non-linear s-box(es).
Key addition and linear transformations are easily handled as linearity enables
to process each share independently. The main difficulty in designing masking
schemes for block ciphers hence lies in masking the s-box(es).

Masking and S-Boxes. Whereas many solutions have been proposed to deal
with the case of first-order masking (see e.g. [2, 4, 21, 25]), only a few solutions
exist for the higher-order case. A scheme has been proposed by Schramm and
Paar in [29] which generalizes the (first-order) table recomputation method de-
scribed in [2,21]. Although the authors apply their method in the particular case
of an AES implementation, it is generic and can be applied to protect any s-
box. Unfortunately, this scheme has been shown to be vulnerable to a 3rd-order
attack whatever the chosen masking order [8]. In other words, it only provides
2nd-order security. Further schemes were proposed by Rivain, Dottax and Prouff
in [26] with formal security proofs but still limited to 2nd-order security.

The first scheme achieving dth-order security for an arbitrary chosen d has
been designed by Ishai, Sahai and Wagner in [14]. The here-called ISW scheme
consists in masking the Boolean representation of an algorithm which is com-
posed of logical operations NOT and AND. Securing a NOT for any order d
is straightforward since x =

⊕
i xi implies NOT(x) = NOT(x0) ⊕ x1 · · · ⊕ xd.

The main contribution of [14] is a method to secure the AND operation for
any arbitrary order d (the description of this scheme is recalled in Section 2.1).
Although the ISW scheme is an important theoretical result, its practical ap-
plication faces some issues. At the hardware level, the obtained circuits may
have prohibitive area requirements, especially for being used in embedded sys-
tems (privileged targets of side-channel attacks). Moreover, Mangard et al. have
shown in [19,20] that masking at the hardware level is sensitive to glitches which
induce unpredicted flaws in masked circuits. Preventing glitches can be done
thanks to synchronization elements (e.g. registers or latches) [24] or by perform-
ing additional sharing [23] but in both cases, the circuit size is still significantly
increased. On the other hand, a direct application of the ISW scheme to secure
an s-box computation in software would consist in taking the Boolean repre-
sentation of the s-box and in processing every logical operation successively in
a masked way. Since the Boolean representation of common s-boxes involves a
huge number of logical operations, the resulting implementation would likely be
inefficient.

In the particular case of AES, a solution has been proposed by Rivain and
Prouff in [27] to efficiently mask the s-box processing at any order. Specifically,
the authors use the algebraic structure of the AES s-box, which is the com-
position of an affine function over F8

2 with the power function x �→ x254 over
F256, and they show that it can be expressed as a sequence of operations involv-
ing a few linear functions over F8

2 (easy to mask) and four multiplications over
F256. The latter are secured by applying the ISW scheme (generalized to F256).



Higher-Order Masking Schemes for S-Boxes 369

Subsequently, Kim, Hong and Lim have presented in [15] an extension of Rivain
and Prouff’s scheme, which is based on the tower-field approach from [28]. On the
other hand, Genelle, Prouff and Quisquater have proposed in [12] a higher-order
scheme based on the alternate use of Boolean masking and multiplicative mask-
ing. Although schemes in [15] and [12] achieve better performances than [27],
they are still restricted to the AES s-box and their generalization to any s-box
(or subclasses) is an open issue.

Our Contribution. The present paper introduces the first higher-order mask-
ing scheme which can be applied to efficiently protect any s-box processing in
software. We first give a general method that extends the Rivain and Prouff
approach to mask any s-box and we introduce a new criterion for an s-box that
relates to the best efficiency achievable with our method. Then we give concrete
schemes that aim to approach the so-called masking complexity. Specifically, we
give optimal methods for the set of power functions, and we give efficient heuris-
tics for the general case. As an illustration we apply our scheme to the DES and
PRESENT s-boxes and we provide implementation results.

2 Higher-Order Masking of any S-Box

In this section, we describe a general method to mask any s-box and we introduce
a related masking complexity criterion.

2.1 General Method

An s-box is a function from {0, 1}n to {0, 1}m with m ≤ n and n small (typically
n ∈ {4, 6, 8}). We shall use the terminology of (n,m) s-box when the dimensions
need to be specified. To design a higher-order masking scheme for such a function,
our approach is to express it as a sequence of affine functions over Fn

2 , and
multiplications over F2n . Such a strategy is always possible since any (n,m)

s-box can be represented by a polynomial function x �→
∑2n−1

i=0 aix
i over F2n

where the ai are constant coefficients in F2n . The ai can be obtained from the
s-box look-up table by applying Lagrange’s Interpolation Theorem. When m is
strictly lower than n, the m-bit outputs can be embedded into F2n by padding
them to n-bit outputs (e.g. by setting most significant bits to 0). The padding is
then removed after the polynomial evaluation. We recall hereafter the Lagrange
Interpolation Theorem applied to our context.

Theorem 1 (Lagrange Interpolation). Let S be a function F2n → F2n.
Then, for every x ∈ F2n , we have:

S(x) =
∑

α∈F2n

S(α)�α(x) , (2)

where, for every α ∈ F2n , �α is defined as:

�α(x) =
∏

β∈F2n
β �=α

x− β

α− β
. (3)



370 C. Carlet et al.

Remark 1. The �α are called the Lagrange basis polynomials and satisfy �α(x) =
1 if x = α and �α(x) = 0 otherwise. In particular, every �α is a monic polynomial
of degree 2n−1, and we have �α(x) = (x+α)2

n−1+1. Moreover, the coefficients
of S(x) can be directly computed from the Mattson-Solomon polynomial by:

ai =

⎧⎨⎩
S(0) if i = 0∑2n−2

k=0 S(αk)α−ki if 1 ≤ i ≤ 2n − 2

S(1) +
∑2n−2

i=0 ai if i = 2n − 1

for every primitive element α of F2n .

The polynomial representation of an s-box is based on four kinds of operations
over F2n : additions, scalar multiplications (i.e. multiplications by constants),
squares, and regular multiplications (i.e. of two different variables). Except for
the latter, all these operations are Fn

2 -linear (or Fn
2 -affine), that is the corre-

sponding function over Fn
2 are linear (resp. affine). The processing of any s-box

can then be performed as a sequence of Fn
2 -affine functions (themselves com-

posed of additions, squares and scalar multiplications over F2n) and of regular
multiplications over F2n , called nonlinear multiplications in the following. Mask-
ing an s-box processing can hence be done by masking every affine function and
every nonlinear multiplication independently. We recall hereafter how this can
be done for each category.

Masking of Fn
2 -affine functions. Let x =

∑
i xi be a shared variable. Every affine

function g with additive part cg satisfies:

g(x) =

{∑d
i=0 g(xi) if d is even,

cg +
∑d

i=0 g(xi) if d is odd.

The masked processing of g then simply consists in evaluating g for every share
xi, and possibly correcting one of them by addition of cg. Such a processing
clearly achieves dth-order security as the shares are all processed independently.

Masking of nonlinear multiplications. Every nonlinear multiplication can be pro-
cessed by using the ISW scheme. Let a, b ∈ F2n and let (ai)0≤i≤d and (bi)0≤i≤d

be dth-order encoding of a and b. To securely compute a dth-order encoding
(ci)0≤i≤d of c = ab, the ISW method over F2n performs as follows:1

1. For every 0 ≤ i < j ≤ d, pick up a random value ri,j in F2n .
2. For every 0 ≤ i < j ≤ d, compute rj,i = (ri,j + aibj) + ajbi.
3. For every 0 ≤ i ≤ d, compute ci = aibi +

∑
j �=i ri,j .

It can be checked that the obtained shares are a sound encoding of c. Namely,
we have:

d∑
i=0

ci =
( d∑
i=0

ai
)( d∑

i=0

bi
)
= ab = c.

1 The use of brackets indicates the order in which the operations are performed, which
is mandatory for the security of the scheme.



Higher-Order Masking Schemes for S-Boxes 371

In [14] it is shown that the above computation achieves (d/2)th-order security.
A tighter security proof is given in [27] which shows that dth-order security is
actually achieved as long as the masks of the two inputs are independent.

Remark 2. Another method to process a masked multiplication at an arbitrary
order is used in [10] to achieve provable security under specific leakage assump-
tions. However this method requires more operations and more random bits than
the ISW scheme does. For this reason, the ISW scheme should be preferred in a
usual dth-order security model.

2.2 Masking Complexity

The scheme described in the previous section secures the computation of any
(n,m) s-box S by masking its polynomial representation over F2n . The evalua-
tion of such a polynomial is composed of Fn

2 -affine functions g and of nonlinear
multiplications. The masked processing of each Fn

2 -affine function g merely in-
volves d+1 evaluations of g itself, while it involves (d+1)2 field multiplications,
2d(d+1) field additions and the generation of nd(d+1)/2 random bits for each
nonlinear multiplication. The masked processing of Fn

2 -affine functions hence
quickly becomes negligible compared to the masked processing of nonlinear mul-
tiplications as d grows. This observation motivates the following definition of the
masking complexity for an s-box.

Definition 1 (Masking Complexity). Let m and n be two integers such that
m ≤ n. The masking complexity of a (n,m) s-box is the minimal number of
nonlinear multiplications required to evaluate its polynomial representation over
F2n .

The following proposition directly results from this definition.

Proposition 1. The masking complexity of an s-box is invariant when composed
with Fn

2 -affine bijections in input and/or in output.

Remark 3. Since field isomorphisms are F2-linear bijections, the choice of the
irreducible polynomial to represent field elements does not impact the masking
complexity of an s-box.

In the next sections, we address the issue of finding polynomial evaluations of
an s-box that aim at minimizing the number of nonlinear multiplications. Those
constructions will enable us to deduce upper bounds on the masking complexity
of an s-box. We first study the case of power functions whose polynomial rep-
resentation has a single monomial (e.g. the AES s-box). For these functions, we
exhibit the exact masking complexity by deriving addition chains with minimal
number of nonlinear multiplications. We then address the general case and pro-
vide efficient heuristics to evaluate any s-box with a low number of nonlinear
multiplications.



372 C. Carlet et al.

3 Optimal Masking of Power Functions

In this section, we consider s-boxes for which the polynomial representation over
F2n is a single monomial. These s-boxes are usually called power functions in the
literature. We describe a generic method to compute the masking complexity of
such s-boxes. Our method involves the notion of cyclotomic class.

Definition 2. Let α ∈ [0; 2n−2]. The cyclotomic class of α is the set Cα defined
by:

Cα = {α · 2i mod 2n − 1; i ∈ [0;n− 1]}.

We have the following proposition.

Proposition 2. Let μ(m) denote the multiplicative order of 2 modulo m and
let ϕ denote the Euler’s totient function. For every divisor δ of 2n − 1, the
number of distinct cyclotomic classes Cα ⊆ [0; 2n− 2] with gcd(α, 2n− 1) = δ is
ϕ
(
2n−1

δ

)
/μ
(
2n−1

δ

)
. It follows that the total number of distinct cyclotomic classes

of [0; 2n − 2] equals: ∑
δ|(2n−1)

ϕ(δ)

μ(δ)
.

Proof. Proposition 2 can be deduced from the following facts:

– An integer α ∈ [0; 2n − 2] satisfies gcd(α, 2n − 1) = δ if and only if α = δβ,
with gcd(β, 2n−1

δ ) = 1. There are thus ϕ
(
2n−1

δ

)
integers α ∈ [0; 2n − 2] such

that gcd(α, 2n − 1) = δ.
– For any α such that gcd(α, 2n − 1) = δ (hence of the form α = δβ with

gcd(β, 2n−1
δ ) = 1), we have α · 2i ≡ α · 2j mod 2n − 1 if and only if β · 2i ≡

β · 2j mod 2n−1
δ , that is, if and only if 2i ≡ 2j mod 2n−1

δ . Hence Cα has

cardinality #Cα = μ
(
2n−1

δ

)
.

The set of integers α ∈ [0; 2n−2] such that gcd(α, 2n−1) = δ is partitioned into
cyclotomic classes, each of them having cardinality μ

(
2n−1

δ

)
. Hence the number

of such cyclotomic classes is ϕ
(
2n−1

δ

)
/μ
(
2n−1

δ

)
. It follows that the total number

of distinct cyclotomic classes of [0; 2n−2] equals
∑

δ|(2n−1) ϕ
(
2n−1

δ

)
/μ
(
2n−1

δ

)
=∑

δ|(2n−1) ϕ(δ)/μ(δ). �

The study of cyclotomic classes is interesting in our context since a power xα can
be computed from a power xβ without any nonlinear multiplication if and only
if α and β lie in the same cyclotomic class. Hence, all the power functions with
exponents within a given cyclotomic class have the same masking complexity
and computing the masking complexity for all the power functions over F2n thus
amounts to compute this complexity for each cyclotomic class over F2n . In what
follows, we perform such a computation for fields F2n of small dimensions n.



Higher-Order Masking Schemes for S-Boxes 373

To compute the masking complexity for an element in a cyclotomic class, we
use the following observation: determining the masking complexity of a power
function x �→ xα amounts to find the addition chain for α with the least number
of additions which are not doublings (see [16] for an introduction to addition
chains). This kind of addition chain is usually called a 2-addition chain.2 Let
(αi)i denote some addition chain. At step i, it is possible to obtain any element
within the cyclotomic classes (Cαj )j≤i using doublings only. As we are interested
in finding the addition chain with the least number of additions which are not
doublings, the problem we need to solve is the following: given some α ∈ Cα, find
the shortest chain Cα0 → Cα1 → · · · → Cαk

where Cα0 = C1, Cαk
= Cα and for

every i ∈ [1; k], there exists j, � < i such that αi = α′
j + α′

� where α′
j ∈ Cαj and

α′
� ∈ Cα�

.
We shall denote by Mn

k the class of exponents α such that x �→ xα has a
masking complexity equal to k. The family of classes (Mn

k )k is a partition of
[0; 2n − 2] and each Mn

k is the union of one or several cyclotomic classes. For
a small dimension n, we can proceed by exhaustive search to determine the
shortest 2-addition chain(s) for each cyclotomic class. We implemented such an
exhaustive search from which we obtained the masking complexity classes Mn

k

for n ≤ 11 (note that in practice most s-boxes have dimension n ≤ 8). Table
1 summarizes the obtained results for n ∈ {4, 6, 8} (usual dimensions). Results
for other dimensions are summarized in appendix. Additionally, Table 2 gives
the optimal 2-addition chains (in exponential notation) corresponding to every
cyclotomic class for n = 8.

It is interesting to note that for every n, the inverse function x �→ x2n−2

related to the cyclotomic class C2n−1−1 always has the highest masking com-
plexity. In particular, the inverse function x �→ x254 (for n = 8) used in the AES
has a masking complexity of 4 as it was conjectured in [27].

4 Efficient Heuristics for General S-Boxes

We now address the general case of an s-box having a polynomial representation∑2n−1
j=0 ajx

j over F2n . A straightforward solution is to successively compute every

power xj using xj = (xj/2)2 if j is even and xj = xj−1x if j is odd, while updating
the polynomial value by adding the monomial ajx

j at every step. Such a method
requires 2n−1 − 1 nonlinear multiplications. As we show hereafter, less naive
methods exist that substantially lower the number of nonlinear multiplications.
We propose two different methods and then compare their efficiency.

2 This problem has been studied in the general setting where the multiplication by q
(and not specifically by 2) is considered free and the obtained addition chains are
called q-addition chains [31]. The purpose is to find efficient exponentiation methods
in Fq (as in such field the Frobenius map x �→ xq is efficient). To the best of our
knowledge, apart from a specific application to the SFLASH signature algorithm
in [1], the case of 2-addition chains has not been particularly investigated.



374 C. Carlet et al.

Table 1. Cyclotomic classes for n ∈ {4, 6, 8} w.r.t. the masking complexity k

k Cyclotomic classes in Mn
k

n = 4
0 C0 = {0}, C1 = {1, 2, 4, 8}
1 C3 = {3, 6, 12, 9}, C5 = {5, 10}
2 C7 = {7, 14, 13, 11}

n = 6
0 C0 = {0}, C1 = {1, 2, 4, 8, 16, 32}
1 C3 = {3, 6, 12, 24, 48, 33}, C5 = {5, 10, 20, 40, 17, 34}, C9 = {9, 18, 36}
2 C7 = {7, 14, 28, 56, 49, 35}, C11 = {11, 22, 44, 25, 50, 37},

C13 = {13, 26, 52, 41, 19, 38}, C15 = {15, 30, 29, 27, 23},
C21 = {21, 42}, C27 = {27, 54, 45}

3 C23 = {23, 46, 29, 58, 53, 43}, C31 = {31, 62, 61, 59, 55, 47}
n = 8

0 C0 = {0}, C1 = {1, 2, 4, 8, 16, 32, 64, 128}
1 C3 = {3, 6, 12, 24, 48, 96, 192, 129}, C5 = {5, 10, 20, 40, 80, 160, 65, 130},

C9 = {9, 18, 36, 72, 144, 33, 66, 132}, C17 = {17, 34, 68, 136}
2 C7 = {7, 14, 28, 56, 112, 224, 193, 131}, C11 = {11, 22, 44, 88, 176, 97, 194, 133},

C13 = {13, 26, 52, 104, 208, 161, 67, 134}, C15 = {15, 30, 60, 120, 240, 225, 195, 135},
C19 = {19, 38, 76, 152, 49, 98, 196, 137}, C21 = {21, 42, 84, 168, 81, 162, 69, 138},

C25 = {25, 50, 100, 200, 145, 35, 70, 140}, C27 = {27, 54, 108, 216, 177, 99, 198, 141},
C37 = {37, 74, 148, 41, 82, 164, 73, 146}, C45 = {45, 90, 180, 105, 210, 165, 75, 150},

C51 = {51, 102, 204, 153}, C85 = {85, 170}
3 C23 = {23, 46, 92, 184, 113, 226, 197, 139}, C29 = {29, 58, 116, 232, 209, 163, 71, 142},

C31 = {31, 62, 124, 248, 241, 227, 199, 143}, C39 = {39, 78, 156, 57, 114, 228, 201, 147},
C43 = {43, 86, 172, 89, 178, 101, 202, 149}, C47 = {47, 94, 188, 121, 242, 229, 203, 151},
C53 = {53, 106, 212, 169, 83, 166, 77, 154}, C55 = {55, 110, 220, 185, 115, 230, 205, 155},
C59 = {59, 118, 236, 217, 179, 103, 206, 157}, C61 = {61, 122, 244, 233, 211, 167, 79, 158},
C63 = {63, 126, 252, 249, 243, 231, 207, 159}, C87 = {87, 174, 93, 186, 117, 234, 213, 171},
C91 = {91, 182, 109, 218, 181, 107, 214, 173}, C95 = {95, 190, 125, 250, 245, 235, 215, 175},

C111 = {111, 222, 189, 123, 246, 237, 219, 183}, C119 = {119, 238, 221, 187}
4 C127 = {127, 254, 253, 251, 247, 239, 223, 191}

Table 2. Optimal 2-addition chains (in exponential notation) for cyclotomic classes
for n = 8

k 2-addition chains with k nonlinear multiplications

1 x3 ← x × x2 – x5 ← x× x4

x9 ← x× x8 – x17 ← x× x16

x7 ← x × x2 × x4 – x11 ← x × x2 × x8

x13 ← x × x4 × x8 – x15 ← x3 × (x3)4

2 x19 ← x× x2 × x16 – x21 ← x × x4 × x16

x27 ← x3 × (x3)8 – x37 ← x × x4 × x32

x45 ← x5 × (x5)8 – x51 ← x3 × (x3)16

x85 ← x5 × (x5)16

x23 ← x × x2 × x4 × x16 – x29 ← x × x4 × x8 × x16

x31 ← x3 × (x3)4 × x16 – x29 ← x × x2 × x4 × x32

x43 ← x × x2 × x8 × x32 – x47 ← x3 × (x3)4 × x32

3 x53 ← x × x2 × x16 × x32 – x55 ← x3 × x4 × (x3)16

x59 ← x3 × (x3)8 × x32 – x59 ← x5 × x16 × (x5)8

x63 ← x7 × (x7)8 – x87 ← x2 × x5 × (x5)16

x91 ← x3 × (x3)8 × x64 – x95 ← x5 × (x5)2 × (x5)16

x111 ← x3 × (x3)4 × (x3)32 – x63 ← x7 × (x7)16

4 x127 ← x3 × (x3)4 × (x3)16 × x64



Higher-Order Masking Schemes for S-Boxes 375

4.1 Cyclotomic Method

Let q denote the number of distinct cyclotomic classes of [0; 2n − 2]. The poly-
nomial representation of S can be written as:

S(x) = a0 +
( q∑

i=1

Qi(x)
)
+ a2n−1 x

2n−1 ,

where the Qi are polynomials such that every Qi has powers from a single
cyclotomic class Cαi , namely we can write Qi(x) =

∑
j ai,jx

αi2
j

for some co-
efficients ai,j in F2n . Let us then denote Li the linearized polynomial Li(x) =∑

j ai,jx
2j which is a Fn

2 -linear function of x. We have Qi(x) = Li(x
αi) by

definition. The cyclotomic method simply consists in deriving the powers xαi

for each cyclotomic class Cαi as well as x2n−1 if a2n−1 �= 0, and in evaluating

S(x) = a0+
(∑q

i=1 Li(x
αi)
)
+a2n−1 x

2n−1. The powers xαi can each be derived

with a single nonlinear multiplication. This is obvious for the αi lying in Mn
1 .

Then it is clear that every power xαi with αi ∈ Mn
k+1 can be derived with a

single multiplication from the powers (xαi)αi∈Mn
k
. The power x2n−1 can then

be derived with a single nonlinear multiplication from the power x2n−2. The
cyclotomic method hence involves a number of nonlinear multiplications equal
to the number of cyclotomic classes, minus 2 (as x0 and x1 are obtained without
nonlinear multiplication), plus 1 (to derive x2n−1). By Proposition 2, we then
have the following result.

Proposition 3 (Cyclotomic Method). Let m and n be two positive integers
such that m ≤ n. The masking complexity of every (n,m) s-box is upper-bounded
by: ∑

δ|(2n−1)

ϕ(δ)

μ(δ)
− 1 .

An (n,m) s-box S is said to be balanced if for every y ∈ {0, 1}m, the number of
preimages of y for S is constant to 2n−m. The following lemma gives a well-known
folklore result.

Lemma 1. Let m and n be two positive integers such that m ≤ n. The polyno-
mial representation of every balanced (n,m) s-box has degree strictly lower than
2n − 1.

Proof. Since Lagrange basis polynomials are all monic of degree 2n − 1, the
coefficient a of the power to the 2n − 1 in the polynomial representation of S
satisfies a =

∑
α∈F2n

S(α), which equals 0 if S is balanced. �

When the polynomial representation of the s-box has degree strictly lower than
2n−1, the cyclotomic method saves one nonlinear multiplication since the power
x2n−1 is not required. Namely, we have the following corollary of Proposition 3.



376 C. Carlet et al.

Corollary 1 (Cyclotomic Method). Let m and n be two positive integers
such that m ≤ n and let S be a (n,m) s-box. If S is balanced, then the masking
complexity of S is upper-bounded by:

∑
δ|(2n−1)

ϕ(δ)

μ(δ)
− 2 .

4.2 Parity-Split Method

The parity-split method is composed of two stages. The first stage derives a
set of powers (xj)j≤q for some q using the straightforward method described
in the introduction of this section. The second stage essentially consists in an
application of the Knuth-Eve polynomial evaluation algorithm [9, 17] which is
based on a recursive use of the following lemma.

Lemma 2. Let n and t be two positive integers and let Q be a polynomial of
degree t over F2n [x]. There exist two polynomials Q1 and Q2 of degree upper-
bounded by (t/2) over F2n [x] such that:

Q(x) = Q1(x
2) +Q2(x

2)x . (4)

By applying Lemma 2 to the polynomial representation of S, we get S(x) =
Q1(x

2) + Q2(x
2)x, where Q1 and Q2 are two polynomials of degrees upper-

bounded by 2n−1 − 1. We deduce that S can be computed based on the set of
powers (x2j)j≤2n−1−1 plus a single multiplication by x. Then, applying Lemma

2 again to the polynomials Q1 and Q2 both of degrees upper bounded by 2n−1−
1, we get two new pairs of polynomials (Q11, Q12) and (Q21, Q22) such that
Q1(x

2) = Q11(x
4)+Q12(x

4)x2 and Q2(x
2) = Q21(x

4)+Q22(x
4)x2. The degrees

of the new polynomials are upper bounded by 2n−2− 1. We then deduce that S
can be computed based on the set of powers (x4j)j≤2n−2−1 plus 1 multiplication

by x and 2 multiplications by x2. Eventually, by applying Lemma 2 recursively
r times, we get an evaluation of S involving evaluations in x2r of polynomials of
degrees upper-bounded by 2n−r − 1, plus

∑r−1
i=0 2i = 2r − 1 multiplications by

powers of x of the form x2i with i ≤ r − 1. The overall evaluation of S hence
requires 2r − 1 nonlinear multiplications (the x2i being obtained with squares
only) plus the evaluation in x2r of polynomials of degrees upper-bounded by
2n−r− 1. The latter evaluation can be performed by first deriving all the powers
(x2rj)j≤2n−r−1 and then evaluating the polynomials (which only involves scalar
multiplications and additions once the powers have been derived). For every
j ≤ 2n−r − 1, the powers (x2rj)j≤2n−r−1 can be computed successively from

y = x2r by yj = (yj/2)2 if j is even and yj = yj−1x if j is odd. This takes some
squares plus 2n−r−1 − 1 nonlinear multiplications (i.e. one per odd integer in
[3, 2n−r − 1]).

We then deduce the following proposition.



Higher-Order Masking Schemes for S-Boxes 377

Proposition 4. Let m and n be two positive integers such that m ≤ n. The
masking complexity of every (n,m) s-box is upper-bounded by:

min
0≤r≤n

(2n−r−1 + 2r)− 2 =

{
3 · 2(n/2)−1 − 2 if n is even,

2(n+1)/2 − 2 if n is odd.
(5)

Note that the value of r for which the minimum is reached in (5) is r = (n2 ).

4.3 Comparison

Table 3 summarizes the number of nonlinear multiplications obtained by the
cyclotomic method (for balanced s-boxes) and by the parity-split method. We see
that the cyclotomic method works better for small dimensions (n ≤ 5) and the
parity-split method for higher dimensions (n ≥ 6). Furthermore, the superiority
of the parity-split method becomes significant as n grows.

Table 3. Number of nonlinear multiplications w.r.t. the evaluation method

Method \ n 3 4 5 6 7 8 9 10 11

Cyclotomic 1 3 5 11 17 33 53 105 192

Parity-Split 2 4 6 10 14 22 30 46 62

We emphasize that these bounds may not be optimal, namely they may be
higher than the maximum masking complexity of (n,m) s-boxes. We let open
the issue of finding more efficient (or provably optimal) methods in the general
case for further research.

5 Application to DES and PRESENT

In this section we apply the proposed methods to the s-boxes of two different
block ciphers: the well-known and still widely used Data Encryption Standard
(DES) [11], and the lightweight block cipher PRESENT [5]. The former uses
eight different (6, 4) s-boxes and the latter uses a single (4, 4) s-box. According
to Table 3, we shall prefer the parity-split method for the DES s-boxes (10
nonlinear multiplications), and the cyclotomic method for the PRESENT s-box
(3 nonlinear multiplications).

5.1 Parity-Split Method on DES S-Boxes

The parity-split method on a DES s-box uses a polynomial representation of the
s-box over F64 which satisfies:

S : x �−→ Q0(x
8) +Q1(x

8) · x4 +
(
Q2(x

8) +Q3(x
8) · x4

)
· x2

+
(
Q4(x

8) +Q5(x
8) · x4 +

(
Q6(x

8) +Q7(x
8) · x4

)
· x2
)
· x (6)



378 C. Carlet et al.

where the Qi are degree-7 polynomials, namely, there exist coefficients ai,j for
0 ≤ i, j ≤ 7 such that:

Qi(x
8) = ai,0 + ai,1x

8 + ai,2x
16 + ai,3x

24 + ai,4x
32 + ai,5x

40 + ai,6x
48 + ai,7x

56 .

We first derive the powers x8j for j = 1, 2, . . . , 7, which is done at the cost of 3
nonlinear multiplications by:

x8 ← ((x2)2)2; x16 ← (x8)2; x24 ← x8 · x16; x32 ← (x16)2;

x40 ← x8 · x32; x48 ← (x24)2; x56 ← x8 · x48;

Then we evaluate each polynomial Qi(x
8) as a linear combination of the above

powers. Finally, we evaluate (6) at the cost of 7 nonlinear multiplications and a
few additions. The nonlinear multiplications are computed using the ISW scheme
over F64 such as recalled in Section 2.1. A detailed implementation for the overall
masked s-box evaluation is given in the extended version of this paper.

5.2 Cyclotomic Method on PRESENT S-Box

The cyclotomic method on the PRESENT s-box starts from the straightforward
polynomial representation of the s-box over F16:

S : x �−→ a0 + a1x+ a2x
2 + · · ·+ a14x

14 ,

(where the degree is indeed strictly lower than 15 by Lemma 1). We then have:

S(x) = a0 + L1(x) + L3(x
3) + L5(x

5) + L7(x
7) . (7)

where:

L1 : x �→ a1x+ a2x
2 + a4x

4 + a8x
8

L3 : x �→ a3x+ a6x
2 + a12x

4 + a9x
8

L5 : x �→ a5x+ a10x
2

L7 : x �→ a7x+ a14x
2 + a13x

4 + a11x
8

and the Li are F4
2-linear.

We first derive the powers x3, x5, and x7, which is done at the cost of 3
nonlinear multiplications by: x3 ← x · x2; x5 ← x3 · x2; x7 ← x5 · x2. Then we
evaluate (7) which costs a few linear transformations and additions. A detailed
implementation for the overall masked s-box evaluation is given in the extended
version of this paper.

5.3 Implementation Results

In this section, we give implementation results for our scheme applied to DES
and PRESENT s-boxes. For comparison, we also give performances of some



Higher-Order Masking Schemes for S-Boxes 379

higher-order masking schemes for the AES s-box, as well as performances of
existing schemes for DES and PRESENT s-boxes at orders 1 and 2. For the
AES s-box processing, we implemented Rivain and Prouff’s method [27] and
its improvement by Kim et al. [15]. We did not implement Genelle et al. ’s
scheme [12] since it addresses the masking of an overall AES and is not interesting
while focusing on a single s-box processing. Regarding existing schemes for DES
and PRESENT s-boxes, we implemented the generic methods proposed in [25]
(for d = 1) and in [26] (for d = 2). We also implemented the improvement of
these schemes described in [26, §3.3] that consists in treating two 4-bit outputs
at the same time.3 Note that we did not implement the table re-computation
method (for d = 1) since it only makes sense for an overall cipher and not for a
single s-box processing.

Table 4 lists the timing/memory performances of the different implementa-
tions. We wrote the codes in assembly language for an 8051 based 8-bit archi-
tecture with bit-addressable memory. ROM consumptions (i.e. code sizes) are not
listed since they are not prohibitive.

As expected, the cyclotomic method is very efficient when applied to protect
the PRESENT s-box. The small input dimension of the s-box indeed implies a
low masking complexity (equal to 3). Moreover, it enables to tabulate the mul-
tiplication over F16. At first order, it is even slightly better than the method
in [25] (or its improvement). At second order, the cost of the secure multipli-
cations involved in the cyclotomic method is approximatively doubled, which
explains that the overall cost is multiplied by 1.8. This makes it less efficient
than [25] and [26], which are less impacted by the increase of the masking order
from 1 to 2. At third order, our method is the only one. The number of cycles
staying small (630), Table 4 shows that achieving resistance against 3rd-order
side-channel analysis is realistic for an implementation of PRESENT on a 8051
architecture. For DES s-boxes, the parity-split method is less efficient than the
state-of-the art methods for d = 1, 2. This is an expected consequence of the
high number of nonlinear multiplications (here 10) achieved with the parity-
split method in dimension 6 and of the fact that the field multiplications can no
longer be tabulated (and must therefore be computed thanks to log/alog look-up
tables). At third order, the timing efficiency of the method becomes very low.
The masked s-box processing is 5 (resp. 10) times slower than the efficiency of
the AES s-box protected thanks to [15] (resp. [27]), though its input dimension
is smaller.

The ranking of the timing efficiencies for AES, DES and PRESENT s-boxes
is correlated to the number of nonlinear multiplications in the used scheme (3,
4-5, and 10, for PRESENT, AES and DES respectively) which underline the
soundness of the masking complexity criterion. Therefore, while selecting an s-
box for a block cipher design, one should favor an s-box with small masking
complexity if side-channel attacks are taken into account.

3 This improvement is only described in [26] for d = 2 but it can be applied likewise
to the 1st-order scheme of [25].



380 C. Carlet et al.

Table 4. Comparison of secure s-box implementations

Method Reference cycles RAM (bytes)

First Order Masking

1. AES s-box [27] 533 10
2. AES s-box [15] 320 14
3. DES s-box Simple version [25] 1096 2
4. DES s-box Improved version [25] & [26] 439 14
5. DES s-box this paper 4100 50
6. PRESENT s-box Simple Version [25] 281 2
7. PRESENT s-box Improved Version [25] & [26] 231 14
4. PRESENT s-box this paper 220 18

Second Order Masking

1. AES s-box [27] 832 18
2. AES s-box [15] 594 24
3. DES s-box Simple version [26] 1045 69
4. DES s-box Improved version [26] 652 39
5. DES s-box this paper 7000 78
6. PRESENT s-box Simple Version [26] 277 21
7. PRESENT s-box Improved Version [26] 284 15
8. PRESENT s-box this paper 400 31

Third Order Masking

1. AES s-box [27] 1905 28
2. AES s-box [15] 965 38
3. DES s-box this paper 10500 108
4. PRESENT s-box this paper 630 44

6 Discussion

In previous sections we have introduced the first schemes that can be used to
mask any s-box at any order with fair performances in software. In particular,
these schemes enable to apply higher-order masking on random s-boxes (e.g. the
DES s-boxes) which have no specific mathematical structure. Prior to our work,
the only existing methods were the circuit-oriented proposals of Ishai et al. [14]
and of Faust et al. [10]. The main purpose of these works was a proof of concept
for applying higher-order masking to circuits with formal security proofs, but
they did not address efficient implementation. A direct application of [14] or [10]
to a block cipher consists in taking its Boolean representation and in replacing
every XOR and AND with O(d) and O(d2) logical operations respectively (where
d is the masking order). Applying such a strategy in software leads to inefficient
implementation as the Boolean representation of an s-box includes a huge num-
ber of nonlinear gates (with a O(d2) factor to be protected). Compared to these
techniques, our schemes achieve significant improvements. These are obtained
by starting from the field representation of the s-box and applying methods to
significantly reduce the number of nonlinear multiplications compared to the
Boolean representation of the s-box. For instance, we have shown that a DES



Higher-Order Masking Schemes for S-Boxes 381

s-box can be computed with 10 nonlinear multiplications whereas its Boolean
representation involves several dozens of logical AND operations.

We believe that our work opens up new avenues for research in block cipher
implementations and side-channel security. In particular, the issue of designing
s-boxes with low masking complexity and good cryptographic criteria is still to
be investigated. On the other hand, our work could be extended to take into ac-
count more general definitions of the masking complexity. Indeed Definition 1 is
software oriented and hence does not encompass the hardware case. As discussed
above, the complexity of masking in hardware merely depends on the number
of nonlinear gates [10, 14], that is on the number of nonlinear multiplications
in the (n-variate) s-box representation over F2, the so-called algebraic normal
form. One may also want to minimize the number of nonlinear multiplications
in the (�-variate) s-box representation over F2k for some k (and � = �n/k�). This
approach has actually already been followed in [15], where Kim et al. speeds up
the scheme in [27] by using the fact that the AES s-box can be processed with 5
nonlinear multiplications over F16 rather than 4 nonlinear multiplications over
F256. Although requiring an additional nonlinear multiplication, the resulting
implementation is faster since multiplications over F16 can be tabulated while
multiplications over F256 are computed based on the slower log/alog approach.
These observations motivate the following — more general — definition of the
masking complexity.

Definition 3 (Masking Complexity). Let m, n and k be three integers such
that m, k ≤ n. The masking complexity of a (n,m) s-box over F2k is the minimal
number of nonlinear multiplications required to evaluate its polynomial represen-
tation over F2k .

Here again, the masking complexity is independent of the representation of F2k

since one can go from one representation to another without any nonlinear mul-
tiplication. The issue of finding efficient methods with respect to the masking
complexity over a smaller field F2k is left open for further researches.

7 Conclusion

In this paper we have introduced new generic higher-order masking schemes for
s-boxes with efficient software implementation. Specifically, we have extended
the Rivain and Prouff’s approach for the AES s-box to any s-box. The method
consists in masking the polynomial representation of the s-box over F2n where n
is the input dimension. As argued, the complexity of this method mainly depends
on the number of nonlinear multiplications involved in the polynomial represen-
tation (i.e. multiplications which are not squares nor scalar multiplications).
We have then introduced the masking complexity parameter for an s-box as the
minimal number of nonlinear multiplications required for its evaluation. We have
provided the exact values of this parameter for the set of power functions and
upper bounds for all s-boxes. Namely, we have presented optimal methods to
mask power functions and efficient heuristics for the general case. Eventually we



382 C. Carlet et al.

have applied our schemes to the DES s-boxes and to the PRESENT s-box and we
have provided implementation results. Our work stresses interesting open issues
for further research. Among them the design of s-boxes taking into account the
masking complexity criterion and the extension of our approach to masking over
F2k with k < n (e.g. for efficient hardware implementations) are of particular
interest.

References

1. Akkar, M.-L., Courtois, N., Duteuil, R., Goubin, L.: A Fast and Secure Implemen-
tation of Sflash. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 267–278.
Springer, Heidelberg (2002)

2. Akkar, M.-L., Giraud, C.: An Implementation of DES and AES, Secure against
Some Attacks. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS,
vol. 2162, pp. 309–318. Springer, Heidelberg (2001)

3. Blakley, G.: Safeguarding cryptographic keys. In: National Comp. Conf., June 1979,
vol. 48, pp. 313–317. AFIPS Press, New York (1979)

4. Blömer, J., Guajardo, J., Krummel, V.: Provably Secure Masking of AES. In: Hand-
schuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 69–83. Springer,
Heidelberg (2004)

5. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

6. Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

7. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards Sound Approaches to
Counteract Power-Analysis Attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS,
vol. 1666, pp. 398–412. Springer, Heidelberg (1999)

8. Coron, J.-S., Prouff, E., Rivain, M.: Side Channel Cryptanalysis of a Higher Or-
der Masking Scheme. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS,
vol. 4727, pp. 28–44. Springer, Heidelberg (2007)

9. Eve, J.: The evaluation of polynomials. Comm. ACM 6(1), 17–21 (1964)
10. Faust, S., Rabin, T., Reyzin, L., Tromer, E., Vaikuntanathan, V.: Protecting Cir-

cuits from Leakage: the Computationally-Bounded and Noisy Cases. In: Gilbert,
H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 135–156. Springer, Heidelberg
(2010)

11. FIPS PUB 46. The Data Encryption Standard. National Bureau of Standards
(January 1977)

12. Genelle, L., Prouff, E., Quisquater, M.: Thwarting Higher-Order Side Channel
Analysis with Additive and Multiplicative Maskings. In: Preneel, B., Takagi, T.
(eds.) CHES 2011. LNCS, vol. 6917, pp. 240–255. Springer, Heidelberg (2011)

13. Goubin, L., Patarin, J.: DES and Differential Power Analysis. In: Koç, Ç.K., Paar,
C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172. Springer, Heidelberg (1999)

14. Ishai, Y., Sahai, A., Wagner, D.: Private Circuits: Securing Hardware against Prob-
ing Attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003)



Higher-Order Masking Schemes for S-Boxes 383

15. Kim, H., Hong, S., Lim, J.: A Fast and Provably Secure Higher-Order Masking of
AES S-Box. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp.
95–107. Springer, Heidelberg (2011)

16. Knuth, D.: The Art of Computer Programming, 3rd edn., vol. 2. Addison-Wesley
(1988)

17. Knuth, D.E.: Evaluation of polynomials by computers. Comm. ACM 5(12), 595–
599 (1962)

18. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

19. Mangard, S., Popp, T., Gammel, B.M.: Side-Channel Leakage of Masked CMOS
Gates. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 351–365. Springer,
Heidelberg (2005)

20. Mangard, S., Pramstaller, N., Oswald, E.: Successfully Attacking Masked AES
Hardware Implementations. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS,
vol. 3659, pp. 157–171. Springer, Heidelberg (2005)

21. Messerges, T.S.: Securing the AES Finalists Against Power Analysis Attacks. In:
Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 150–164. Springer, Heidelberg
(2001)

22. Messerges, T.S.: Using Second-Order Power Analysis to Attack DPA Resistant
Software. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 238–
251. Springer, Heidelberg (2000)

23. Nikova, S., Rijmen, V., Schläffer, M.: Secure Hardware Implementation of Non-
linear Functions in the Presence of Glitches. In: Lee, P.J., Cheon, J.H. (eds.) ICISC
2008. LNCS, vol. 5461, pp. 218–234. Springer, Heidelberg (2009)

24. Popp, T., Kirschbaum, M., Zefferer, T., Mangard, S.: Evaluation of the Masked
Logic Style MDPL on a Prototype Chip. In: Paillier, P., Verbauwhede, I. (eds.)
CHES 2007. LNCS, vol. 4727, pp. 81–94. Springer, Heidelberg (2007)

25. Prouff, E., Rivain, M.: A Generic Method for Secure SBox Implementation. In:
Kim, S., Yung, M., Lee, H.-W. (eds.) WISA 2007. LNCS, vol. 4867, pp. 227–244.
Springer, Heidelberg (2008)

26. Rivain, M., Dottax, E., Prouff, E.: Block Ciphers Implementations Provably Secure
Against Second Order Side Channel Analysis. In: Nyberg, K. (ed.) FSE 2008.
LNCS, vol. 5086, pp. 127–143. Springer, Heidelberg (2008)

27. Rivain, M., Prouff, E.: Provably Secure Higher-Order Masking of AES. In: Man-
gard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427.
Springer, Heidelberg (2010)

28. Satoh, A., Morioka, S., Takano, K., Munetoh, S.: A Compact Rijndael Hardware
Architecture with S-Box Optimization. In: Boyd, C. (ed.) ASIACRYPT 2001.
LNCS, vol. 2248, pp. 239–254. Springer, Heidelberg (2001)

29. Schramm, K., Paar, C.: Higher Order Masking of the AES. In: Pointcheval, D.
(ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 208–225. Springer, Heidelberg (2006)

30. Shamir, A.: How to Share a Secret. Commun. ACM 22(11), 612–613 (1979)
31. von zur Gathen, J.: Efficient and Optimal Exponentiation in Finite Fields. Com-

putational Complexity 1, 360–394 (1991)

A Masking Complexity of Power Functions

Table 5 summarizes the masking complexity classes (Mn
k )k for dimensions n in

the set {3, 5, 7, 9, 10, 11}.



384 C. Carlet et al.

Table 5. Cyclotomic classes for n ∈ {3, 5, 7, 9, 10, 11} w.r.t. the masking complexity k

k Cyclotomic classes in Mn
k

n = 3
0 C0 = {0}, C1 = {1, 2, 4}
1 C3 = {3, 6, 5}

n = 5
0 C0 = {0}, C1 = {1, 2, 4, 8, 16}
1 C3 = {3, 6, 12, 24, 17}, C5 = {5, 10, 20, 9, 18}
2 C7 = {7, 14, 28, 25, 19}, C11 = {11, 22, 13, 26, 21}, C15 = {15, 30, 29, 27, 23}

n = 7
0 C0 = {0}, C1 = {1, 2, 4, 8, 16, 32, 64}
1 C3 = {3, 6, 12, 24, 48, 96, 65}, C5 = {5, 10, 20, 40, 80, 33, 66},

C9 = {9, 18, 36, 72, 17, 34, 68}
2 C7 = {7, 14, 28, 56, 112, 97, 67}, C11 = {11, 22, 44, 88, 49, 98, 69},

C13 = {13, 26, 52, 104, 81, 35, 70}, C15 = {15, 30, 60, 120, 113, 99, 71},
C19 = {19, 38, 76, 25, 50, 100, 73}, C21 = {21, 42, 84, 41, 82, 37, 74},
C27 = {27, 54, 108, 89, 51, 102, 77}, C43 = {43, 86, 45, 90, 53, 106, 85}

3 C23 = {23, 46, 92, 57, 114, 101, 75}, C29 = {29, 58, 116, 105, 83, 39, 78},
C31 = {31, 62, 124, 121, 115, 103, 79}, C47 = {47, 94, 61, 122, 117, 107, 87},
C55 = {55, 110, 93, 59, 118, 109, 91}, C63 = {63, 126, 125, 123, 119, 111, 95}

n = 9
0 C0, C1

1 C3, C5, C9, C17

2 C7, C11, C13, C15, C19, C21, C25, C27, C35, C37, C41, C45, C51, C73, C75, C83, C85

3 C23, C29, C31, C39, C43, C47, C53, C55, C57, C59, C61,
C63, C75, C77, C79, C87, C91, C93, C95, C103, C107, C109,

C111, C117, C119, C123, C125, C127, C171, C175, C183, C187, C219

4 C191, C223, C239

n = 10
0 C0, C1

1 C3, C5, C9, C17, C33

2 C7, C11, C13, C15, C19, C21, C25, C27, C35, C37,
C41, C45, C49, C51, C69, C73, C85, C99, C147, C165

3 C23, C29, C31, C39, C43, C47, C53, C55, C57, C59, C61, C63, C71, C75, C77,
C79, C83, C87, C89, C91, C93, C95, C101, C103, C105, C107, C109, C111, C115,

C117, C119, C121, C123, C125, C149, C151, C155, C157, C167, C171, C173, C175, C179,
C181, C183, C187, C189, C205, C207, C213, C215, C219, C221, C231, C235, C237, C245,

C255, C341, C347, C363, C447, C495

4 C127, C159, C191, C223, C239, C247, C251, C253, C343,
C351, C367, C375, C379, C383, C439, C479, C511

n = 11
0 C0, C1

1 C3, C5, C9, C17, C33

2 C7, C11, C13, C15, C19, C21, C25, C27, C35, C37, C41, C45, C49, C51,
C67, C69, C73, C81, C85, C99, C137, C153, C163, C165, C293

3 C23, C29, C31, C39, C43, C47, C53, C55, C57, C59, C61, C63, C71, C75, C77,
C79, C83, C87, C89, C91, C93, C95, C101, C103, C105, C107, C109, C111, C113,
C115, C117, C119, C121, C123, C125, C139, C141, C143, C147, C149, C151, C155,
C157, C167, C169, C171, C173, C175, C179, C181, C185, C187, C189, C199, C201,

C203, C205, C207, C211, C213, C217, C219, C221, C229, C231, C243, C245,
C255, C295, C299, C301, C307, C309, C311,C315, C317, C331, C333, C335,
C343, C347, C359, C363, C365, C379, C411, C423, C427, C429, C339, C341,

C437, C439, C469, C495, C683, C703, C879, C887

4 C127, C159, C183, C191, C215, C223, C233, C235, C237, C239, C247, C249, C251,
C253, C303, C319, C349, C351, C367, C371, C373, C375, C381, C383,

C413, C415, C431, C443, C445, C447, C463, C471, C475, C477, C479, C491,
C493, C501, C503, C507, C509, C511, C687, C695, C699, C727, C731, C735, C751,

C759, C763, C767, C895, C959, C991, C1023



Recursive Diffusion Layers

for Block Ciphers and Hash Functions

Mahdi Sajadieh1, Mohammad Dakhilalian1,
Hamid Mala2, and Pouyan Sepehrdad3,�

1 Cryptography & System Security Research Laboratory,
Department of Electrical and Computer Engineering,

Isfahan University of Technology, Isfahan, Iran
sadjadieh@ec.iut.ac.ir, mdalian@cc.iut.ac.ir

2 Department of Information Technology Engineering,
University of Isfahan, Isfahan, Iran

h.mala@eng.ui.ac.ir
3 EPFL, Lausanne, Switzerland
pouyan.sepehrdad@epfl.ch

Abstract. Many modern block ciphers use maximum distance separa-
ble (MDS) matrices as the main part of their diffusion layers. In this
paper, we propose a new class of diffusion layers constructed from sev-
eral rounds of Feistel-like structures whose round functions are linear. We
investigate the requirements of the underlying linear functions to achieve
the maximal branch number for the proposed 4×4 words diffusion layer.
The proposed diffusion layers only require word-level XORs, rotations,
and they have simple inverses. They can be replaced in the diffusion layer
of the block ciphers MMB and Hierocrypt to increase their security and
performance, respectively. Finally, we try to extend our results for up to
8× 8 words diffusion layers.

Keywords: Block ciphers, Diffusion layer, Branch number, Provable
security.

1 Introduction

Block ciphers are one of the most important building blocks in many security
protocols. Modern block ciphers are cascades of several rounds and each round
consists of confusion and diffusion layers. In many block ciphers, non-linear sub-
stitution boxes (S-boxes) form the confusion layer, and a linear transformation
provides the required diffusion. The diffusion layer plays an efficacious role in
providing resistance against the most well-known attacks on block ciphers, such
as differential cryptanalysis (DC) [2] and linear cryptanalysis (LC) [10].

In 1994, Vaudenay [15,16] suggested using MDS matrices in cryptographic
primitives to produce what he called multipermutations, not-necessarily linear

� This work has been supported in part by the European Commission through the
ICT program under contract ICT-2007-216646 ECRYPT II.

A. Canteaut (Ed.): FSE 2012, LNCS 7549, pp. 385–401, 2012.
c© International Association for Cryptologic Research 2012



386 M. Sajadieh et al.

functions with this same property. These functions have what he called perfect
diffusion. He showed how to exploit imperfect diffusion to cryptanalyze functions
that are not multipermutations. This notion was later used by Daemen named as
the branch number. Block ciphers exploiting diffusion layers with small branch
number may suffer from critical weaknesses against DC and LC, even though
their substitution layers consist of S-boxes with strong non-linear properties.

Two main strategies for designing block ciphers are Feistel-like and substitu-
tion permutation network (SPN) structures. In the last 2 decades, from these two
families several structures have been proposed with provable security against DC
and LC. Three rounds of Feistel structure [11,12], five rounds of RC6-like struc-
ture [9] and SDS (substitution-diffusion-substitution) structure with a perfect or
almost perfect diffusion layer are examples of such structures [8].

1.1 Notations

Let x be an array of s n-bit elements x = [x0(n), x1(n), · · · , xs−1(n)]. The number
of non-zero elements in x is denoted by w(x) and is known as the Hamming
weight of x. The following notations are used throughout this paper:

⊕ : The bit-wise XOR operation
& : The bit-wise AND operation
Li : Any linear function
�i : The linear operator corresponding to the linear function Li

(L1 ⊕ L2)(x) : L1(x) ⊕ L2(x)
L1L2(x) : L1(L2(x))
L2
1(x) : L1(L1(x))

I(·) function : Identity function, I(x) = x
x % m (x $
m)

: Shift of a bit string x by m bits to the right (left)

x ≫ m (x ≪
m)

: Circular shift of a bit string x by m bits to the right (left)

| · | : Determinant of a matrix in GF(2)
a|b : Concatenation of two bit strings a and b
x(n) : An n-bit value x

For a diffusion layer D applicable on x, we have the following definitions:

Definition 1 ([4]). The differential branch number of a linear diffusion layer
D is defined as:

βd(D) = min
x �=0

{w(x) + w(D(x))}

We know that the linear function D can be shown as a binary matrix B, and
Dt is a linear function obtained from Bt, where Bt is the transposition of B.

Definition 2 ([4]). The linear branch number of a linear diffusion layer D is
defined as:

βl(D) = min
x �=0

{w(x) + w(Dt(x))}



Recursive Diffusion Layers for Block Ciphers and Hash Functions 387

It is well known that for a diffusion layer acting on s-word inputs, the maximal
βd and βl are s+1 [4]. A diffusion layer D taking its maximal βd and βl is called
a perfect or MDS diffusion layer. Furthermore, a diffusion layer with βd = βl = s
is called an almost perfect diffusion layer [8].

1.2 Our Contribution

In this paper, we define the notion of a recursive diffusion layer and propose a
method to construct such perfect diffusion layers.

Definition 3. A diffusion layer D with s words xi as the input, and s words yi
as the output is called a recursive diffusion layer if it can be represented in the
following form:

D :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
y0 = x0 ⊕ F0(x1, x2, . . . , xs−1)
y1 = x1 ⊕ F1(x2, x3, . . . , xs−1, y0)
...
ys−1 = xs−1 ⊕ Fs−1(y0, y1, . . . , ys−2)

(1)

where F0, F1,. . . , Fs−1 are arbitrary functions.

As an example, consider a 2-round Feistel structure with a linear round function
L as a recursive diffusion layer with s = 2. The input-output relation for this
diffusion layer is:

D :

{
y0 = x0 ⊕ L(x1)
y1 = x1 ⊕ L(y0)

The quarter-round function of Salsa20 is also an example of a non-linear recursive
diffusion layer [1].

D :

⎧⎪⎪⎨⎪⎪⎩
y1 = x1 ⊕ ((x0 + x3) ≪ 7)
y2 = x2 ⊕ ((x0 + y1) ≪ 9)
y3 = x3 ⊕ ((y1 + y2) ≪ 13)
y0 = x0 ⊕ ((y2 + y3) ≪ 18)

Also, the lightweight hash function PHOTON [5] and the block cipher LED [6]
use MDS matrices based on Eq. (1). In these ciphers, an m×m MDS matrix Bm

was designed based on the following matrix B for the performance purposes:

B =

⎛⎜⎜⎜⎜⎜⎝
0 1 0 · · · 0
0 0 1 · · · 0
...

. . .

0 0 0 · · · 1
Z0 Z1 Z2 · · · Zm−1

⎞⎟⎟⎟⎟⎟⎠
By matrixB, one elements ofm inputs is updated and other elements are shifted.
If we use Bm, all inputs are updated, but we must check if this matrix is MDS.
One example for m = 4 is the PHOTON matrix working over GF(28) :



388 M. Sajadieh et al.

B =

⎛⎜⎜⎝
0 1 0 0
0 0 1 0
0 0 0 1
1 2 1 4

⎞⎟⎟⎠⇒ B4 =

⎛⎜⎜⎝
1 2 1 4
4 9 6 17
17 38 24 66
66 149 100 11

⎞⎟⎟⎠
In this paper, we propose a new approach to design linear recursive diffusion
layers with the maximal branch number in which Fi’s are composed of one or two
linear functions and a number of XOR operations. The design of the proposed
diffusion layer is based on the invertibility of some simple linear functions in
GF(2). Linear functions in this diffusion layer can be designed to be low-cost
for different sizes of the input words, thus the proposed diffusion layer might be
appropriate for resource-constrained devices, such as RFID tags. Although these
recursive diffusion layers are not involutory, they have similar inverses with the
same computational complexity. Another approach which is not recursive was
picked by Junod and Vaudenay in [7] to design efficient MDS matrices.

This paper proceeds as follows: In Section 2, we introduce the general struc-
ture of our proposed recursive diffusion layer. Then, for one of its instances,
we systematically investigate the required conditions for the underlying linear
function to achieve the maximal branch number. In Section 3, we propose some
other recursive diffusion layers with less than 8 input words and only one linear
function. We use two linear functions to have a perfect recursive diffusion layer
for s > 4 in Section 4. Finally, we conclude the paper in Section 5.

2 The Proposed Diffusion Layer

In this section, we introduce a new perfect linear diffusion layer with a recursive
structure. The diffusion layerD takes s words xi for i = {0, 1, . . . , s−1} as input,
and returns s words yi for i = {0, 1, . . . , s− 1} as output. So, we can represent
this diffusion layer as:

y0|y1| · · · |ys−1 = D(x0|x1| · · · |xs−1)

The first class of the proposed diffusion layer D is represented in Fig. 1, where
L is a linear function, αk, βk ∈ {0, 1}, α0 = 1, and β0 = 0.

This diffusion layer can be represented in the form of Eq. (1) in which the Fi

functions are all the same and can be represented as

Fi(x1, x2, . . . , xs−1) =

s−1⊕
j=1

αjxj ⊕ L

⎛⎝s−1⊕
j=1

βjxj

⎞⎠
To guarantee the maximal branch number for D, the linear function L and the
coefficients αj and βj must satisfy some necessary conditions. Conditions on L
are expressed in this section and those of αj ’s and βj’s are expressed in Section 3.
The diffusion layer described by Eq. (2) is an instance that satisfies the necessary
conditions on αj and βj with s = 4. In the rest of this section, we concentrate



Recursive Diffusion Layers for Block Ciphers and Hash Functions 389

1: Input : s n-bit words x0, . . . , xs−1

2: Output : s n-bit words y0, . . . , xs−1

3: for i = 0 to s− 1 do
4: yi = xi

5: end for
6: for i = 0 to s− 1 do

7: yi = yi ⊕ (
s−1⊕

j=0,j �=i

α[(j−i) mod s]yj)⊕ L

⎛⎝ s−1⊕
j=0,j �=i

β[(j−i) mod s]yj

⎞⎠
8: end for

Fig. 1. The first class of the recursive diffusion layers

on the diffusion layers of this form and show that we can find invertible linear
functions L such that D becomes a perfect diffusion layer.

D :

⎧⎪⎪⎨⎪⎪⎩
y0 = x0 ⊕ x2 ⊕ x3 ⊕ L(x1 ⊕ x3)
y1 = x1 ⊕ x3 ⊕ y0 ⊕ L(x2 ⊕ y0)
y2 = x2 ⊕ y0 ⊕ y1 ⊕ L(x3 ⊕ y1)
y3 = x3 ⊕ y1 ⊕ y2 ⊕ L(y0 ⊕ y2)

(2)

As shown in Fig. 2, this diffusion layer has a Feistel-like (GFN) structure, i.e.,

F0(x1, x2, x3) = x2 ⊕ x3 ⊕ L(x1 ⊕ x3)

and for each i > 0, yi is obtained by (xi, xi+1, . . . , xs−1) and (y0, y1, . . . , yi−1).

The inverse transformation, D−1, has a very simple structure and does not
require the inversion of the linear function L. Based on the recursive nature of
D, if we start from the last equation of Eq. (2), x3 is immediately obtained from
yi’s. Then knowing x3 and yi’s, we immediately obtain x2 from the third line of
Eq. (2). x1 and x0 can be obtained in the same way. Thus, the inverse of D is:

D−1 :

⎧⎪⎪⎨⎪⎪⎩
x3 = y3 ⊕ y1 ⊕ y2 ⊕ L(y0 ⊕ y2)
x2 = y2 ⊕ y0 ⊕ y1 ⊕ L(x3 ⊕ y1)
x1 = y1 ⊕ x3 ⊕ y0 ⊕ L(x2 ⊕ y0)
x0 = y0 ⊕ x2 ⊕ x3 ⊕ L(x1 ⊕ x3)

D and D−1 are different, but they have the same structure and properties. To
show that D has the maximal branch number, first we introduce some lemmas
and theorems.

Theorem 4 ([4]). A Boolean function F has maximal differential branch num-
ber if and only if it has maximal linear branch number.

As a result of Theorem 4, if we prove that the diffusion layer D represented in
Eq. (2) has the maximal differential branch number, its linear branch number
will be maximal too. Thus, in the following, we focus on the differential branch
number.



390 M. Sajadieh et al.

L

L

L

L

x0 x1 x2 x3

y0 y1 y2 y3  

Fig. 2. The proposed recursive diffusion layer of Eq. (2)

Lemma 5. For m linear functions L1, L2, ..., Lm, the proposition

a �= 0⇒ L1(a)⊕ L2(a)⊕ ...⊕ Lm(a) �= 0

implies that the linear function L1 ⊕ L2 ⊕ ...⊕ Lm is invertible.

Proof. We know that (L1 ⊕ L2 ⊕ ...⊕ Lm)(x) is a linear function and it can be
represented as a binary matrix M. So, M is invertible if and only if |M| �= 0. ��

Lemma 6. Assume the linear operator �i corresponds to the linear function
Li(x). If the linear operator �3 can be represented as the multiplication of two
operators �1 and �2, then the corresponding linear function L3(x) = L2(L1(x))
is invertible if and only if the linear functions L1(x) and L2(x) are invertible.

Proof. If L1(x) and L2(x) are invertible, clearly L3(x) is invertible too. On the
other hand, if L3(x) is invertible then L1(x) must be invertible, otherwise there
are distinct x1 and x2 such that L1(x1) = L1(x2). Thus, L3(x1) = L2(L1(x1)) =
L2(L1(x2)) = L3(x2) which contradicts the invertibility of L3(x). The invertibil-
ity of L2(x) is proved in the same way. ��



Recursive Diffusion Layers for Block Ciphers and Hash Functions 391

Example 1. We can rewrite the linear function L3(x) = L3(x)⊕x (�3 = �3⊕ I)
as L3(x) = L1(L2(x)), where L1(x) = L(x) ⊕ x (�1 = � ⊕ I) and L2(x) =
L2(x)⊕L(x)⊕ x (�2 = �2 ⊕ �⊕ I). Thus, the invertibility of L3(x) is equivalent
to the invertibility of the two linear functions L1(x) and L2(x).

Theorem 7. For the diffusion layer represented in Eq. (2), if the four linear
functions L(x), x ⊕ L(x), x ⊕ L3(x), and x ⊕ L7(x) are invertible, then this
diffusion layer is perfect.

Proof. We show that the differential branch number of this diffusion layer is 5.
First, the 4 words of the output are directly represented as functions of the 4
words of the input:

D :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
y0 = x0 ⊕ L(x1)⊕ x2 ⊕ x3 ⊕ L(x3)
y1 = x0 ⊕ L(x0)⊕ x1 ⊕ L(x1)⊕ L2(x1)⊕ x2 ⊕ L2(x3)
y2 = L2(x0)⊕ x1 ⊕ L(x1)⊕ L3(x1)⊕ x2 ⊕ L(x2)⊕ x3 ⊕ L2(x3)⊕ L3(x3)
y3 = x0 ⊕ L2(x0)⊕ L3(x0)⊕ L(x1)⊕ L2(x1)⊕ L3(x1)⊕ L4(x1)

⊕L(x2)⊕ L2(x2)⊕ L2(x3)⊕ L4(x3)
(3)

Now, we show that if the number of active (non-zero) words in the input is m,
where m = 1, 2, 3, 4, then the number of non-zero words in the output is greater
than or equal to 5−m. The diffusion layer represented in Eq. (2) is invertible.
Consider m = 4, then all of the 4 words in the input are active, and we are sure
at least one of the output words is active too. Thus the theorem is correct for
m = 4. The remainder of the proof is performed for the 3 cases of w(Δ(x)) = m,
for m = 1, 2, 3 separately. In each of these cases, some conditions are forced on
the linear function L.

Case 1: w(*x) = 1

To study this case, first the subcase

(*x0 �= 0,*x1 = *x2 = *x3 = 0 or *x = *x0|0|0|0)

is analyzed. For this subcase, Eq. (3) is simplified to:

D :

⎧⎪⎪⎨⎪⎪⎩
*y0 = *x0

*y1 = (I ⊕ L)(*x0)
*y2 = L2(*x0)
*y3 = (I ⊕ L2 ⊕ L3)(*x0)

If D is a perfect diffusion layer then *y0, *y1, *y2 and *y3 must be non-zero.
Clearly, *y0 is non-zero, and based on Lemma 5, the conditions for *y1, *y2
and *y3 to be non-zero are that the linear functions I ⊕L, L2 and I ⊕L2 ⊕L3

must be invertible. Note that based on Lemma 6, the invertibility of L2 yields the
invertibility of L. Considering Lemma 6, if the other three sub-cases are studied,



392 M. Sajadieh et al.

it is induced that the linear functions x ⊕ L(x) ⊕ L2(x) and x ⊕ L(x) ⊕ L3(x)
must also be invertible.

Case 2: w(*x) = 2

In this case, there exist exactly two active words in the input difference and we
obtain some conditions on the linear function L to guarantee the branch number
5 for D. In the following, we only analyze the subcase

(*x0,*x1 �= 0 and *x2 = *x3 = 0 or *x = *x0|*x1|0|0)

With this assumption, Eq. (3) is simplified to:

D :

⎧⎪⎪⎨⎪⎪⎩
*y0 = *x0 ⊕ L(*x1)
*y1 = (I ⊕ L)(*x0)⊕ (I ⊕ L⊕ L2)(*x1)
*y2 = L2(*x0)⊕ (I ⊕ L⊕ L3)(*x1)
*y3 = (I ⊕ L2 ⊕ L3)(*x0)⊕ (L ⊕ L2 ⊕ L3 ⊕ L4)(*x1)

(4)

To show that w(*y) is greater than or equal to 3, we must find some conditions
on L such that if one of the *yi’s is zero, then the other three *yj’s cannot be
zero. Let *y0 = 0, then:

*x0 ⊕ L(*x1) = 0⇒*x0 = L(*x1)

If *x0 is replaced in the last three equations of Eq. (4), we obtain *y1, *y2
and *y3 as follows: ⎧⎨⎩

*y1 = *x1

*y2 = *x1 ⊕ L(*x1)
*y3 = L2(*x1)

Obviously, *y1 is not zero. Furthermore, for *y2 and *y3 to be non-zero, con-
sidering Lemma 5, we conclude that the functions x ⊕ L(x) and L2(x) must be
invertible. This condition was already obtained in the Case 1. We continue this
procedure for *y1 = 0.

*y1 = *x0 ⊕ L(*x0)⊕ x1 ⊕ L(*x1)⊕ L2(*x1) = 0⇒
*x0 ⊕ L(*x0) = x1 ⊕ L(*x1)⊕ L2(*x1)

From the previous subcase, we know that if *y0 = 0 then *y1 �= 0. Thus
we conclude that, *y0 and *y1 cannot be simultaneously zero. Therefore, by
contraposition we obtain that if *y1 = 0 then *y0 �= 0. So, we only check *y2
and *y3. From the third equation in Eq. (4), we have:

(I ⊕ L)(*y2) = L2(*x1)⊕ L3(*x1)⊕ L4(*x1)⊕*x1

⊕L2(*x1)⊕ L3(*x1)⊕ L4(*x1)
= *x1

x⊕L(x) is invertible, thus we conclude that with the two active words *x0 and
*x1 in the input, *y1 and *y2 cannot be zero simultaneously. With the same
procedure, we can prove that *y1 and *y3 cannot be zero simultaneously.



Recursive Diffusion Layers for Block Ciphers and Hash Functions 393

Here we only gave the proof for the case (*x0,*x1 �= 0, *x2 = *x3 = 0).
We performed the proof procedure for the other cases and no new condition was
added to the previous set of conditions in Case 1.

Case 3: w(*x) = 3

In this case, assuming three active words in the input, we show that the output
has at least 2 non-zero words. Here, only the case

(*x0,*x1,*x2 �= 0 and *x3 = 0 or *x = *x0|*x1|*x2|0)

is analyzed. The result holds for the other three cases with w(*x) = 3. Let
rewrite the Eq. (3) for *x3 = 0 as follows:

D :

⎧⎪⎪⎨⎪⎪⎩
*y0 = *x0 ⊕ L(*x1)⊕*x2

*y1 = (I ⊕ L)(*x0)⊕ (I ⊕ L⊕ L2)(*x1)⊕*x2

*y2 = L2(*x0)⊕ (I ⊕ L⊕ L3)(*x1)⊕ (I ⊕ L)(*x2)
*y3 = (I ⊕ L2 ⊕ L3)(*x0)⊕ (L⊕ L2 ⊕ L3 ⊕ L4)(*x1)⊕ (L⊕ L2)(*x2)

(5)
When *y0 = *y1 = 0, from the first 2 lines of Eq. (5), *x0 and *x1 are
obtained as the function of *x2.

⎧⎨⎩
*y0 = *x0 ⊕ L(*x1)⊕*x2 = 0
*y1 = *x0 ⊕ L(*x0)⊕*x1 ⊕ L(*x1)

⊕L2(*x1)⊕*x2 = 0
⇒
{
*x1 = L(*x2)
*x0 = *x2 ⊕ L2(*x2)

Now, replacing *x0 = *x2 ⊕ L2(*x2) and *x1 = L(*x2) into *y2 and *y3
yields:

⎧⎨⎩
*y2 = L2(*x0)⊕ (I ⊕ L⊕ L3)(*x1)⊕ (I ⊕ L)(*x2) = *x2

*y3 = (I ⊕ L2 ⊕ L3)(*x0)⊕ (L⊕ L2 ⊕ L3 ⊕ L4)(*x1)⊕ (L ⊕ L2)(*x2)
= (I ⊕ L)(*x2)

From Case 1, we know that the functions x ⊕ L(x) and x ⊕ L(x) ⊕ L2(x) are
invertible. Therefore, *y2 and *y3 are non-zero. If the other sub-cases with
three active words in the input are investigated, it is easy to see that no new
condition is added to the present conditions on L.

Finally, we conclude that the diffusion layer D presented in Fig. 1 is perfect
if the linear functions ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

L1(x) = L(x)
L2(x) = x⊕ L(x)
L3(x) = x⊕ L(x)⊕ L2(x)
L4(x) = x⊕ L(x)⊕ L3(x)
L5(x) = x⊕ L2(x)⊕ L3(x)



394 M. Sajadieh et al.

are invertible. We know that L3(L2(x)) = x ⊕ L3(x) and L5(L4(L2(x))) =
x ⊕ L7(x). Thus, by Lemma 6, we can summarize the necessary conditions on
the linear function L as the invertibility of L(x), (I ⊕ L)(x), (I ⊕ L3)(x) and
(I ⊕ L7)(x).

��

Next, we need a simple method to check whether a linear function L satisfies
the conditions of Theorem 7 or not. For this purpose, we use the binary matrix
representation of L. Assume that xi is an n-bit word. Hence, we can represent
a linear function L with an n × n matrix A with elements in GF(2). By using
Lemma 5, if L is invertible,A is not singular over GF(2) (|A| �= 0). To investigate
whether a linear function L satisfies the conditions of Theorem 7, we construct
the corresponding matrix An×n from L and check the non-singularity of the
matrices A, I⊕A, I⊕A3 and I⊕A7 in GF(2). We introduce some lightweight
linear functions with n-bit inputs/outputs in Table 1 that satisfy the above con-
ditions. Note that there exist many linear functions which satisfy the conditions
of Theorem 7.

Table 1. Some instances of the linear function L satisfying Theorem 7

n Some linear functions L

4 L(x) = (x⊕ x � 3) ≪ 1

8 L(x) = (x⊕ (x & 0x2) � 1) ≪ 1

16 L(x) = (x⊕ x � 15) ≪ 1

32 L(x) = (x⊕ x � 31) ≪ 15 or L(x) = (x ≪ 24) ⊕ (x & 0xFF)

64 L(x) = (x⊕ x � 63) ≪ 1 or L(x) = (x ≪ 8) ⊕ (x & 0xFFFF)

Unlike the shift and XOR operations, rotation cannot be implemented as a
single instruction on many processors. So, to have more efficient diffusion layers,
we introduce new L functions for 32-bit and 64-bit inputs in Table 2 that only
use shift and XOR operations.

Table 2. Some examples for the linear function L satisfying Theorem 7 without a
circular shift

n Sample linear functions L

32 L(x) = (x � 3)⊕ (x � 1)

64 L(x) = (x � 15)⊕ (x � 1)

We can use this diffusion layer with L(x) = (x$ 3)⊕ (x% 1) instead of the
diffusion layers used in the block ciphers MMB [3] or Hierocrypt [13]. In MMB,
the diffusion layer is a 4× 4 binary matrix with branch number 4. If we use the
proposed diffusion layer in this cipher, it becomes stronger against LC and DC
attacks. This change also prevents the attacks presented on this block cipher in



Recursive Diffusion Layers for Block Ciphers and Hash Functions 395

[17]. By computer simulations, we observed that this modification reduces the
performance of MMB by about 10%. Also, if we use our proposed diffusion layer
with the same L(x), instead of the binary matrix of the block cipher Hierocrypt
(called MDSH [13]), we can achieve a 2 times faster implementation with the
same level of security.

Moreover, in the nested SPN structure of Hierocrypt, we replaced the MDS
matrix of AES in GF(232) (because inputs of MDSH are 4 32-bit words) with
irreducible polynomial x32 + x7 + x5 + x3 + x2 + x+1 [14] instead of the binary
matrix MDSH. We observed that the replacement of our proposed diffusion layer
instead of MDSH yields 5% better performance than the replacement of the AES
matrix in GF(232).

In Eq. (1), if Fi(x1, x2, x3) = F0(x1, x2, x3) = L(x1) ⊕ x2 ⊕ L2(x3), where
L(x) = 2x and x ∈ GF(24), PHOTON MDS matrix is obtained [5]. If we change
B to Eq. (2) and define L(x) = 2x, we have:

B =

⎛⎜⎜⎝
0 1 0 0
0 0 1 0
0 0 0 1
1 2 1 3

⎞⎟⎟⎠⇒ B4 =

⎛⎜⎜⎝
1 2 1 3
3 7 1 4
4 11 3 13
13 30 6 20

⎞⎟⎟⎠
3 Other Desirable Structures for the Proposed Diffusion

Layer

In Section 2, the general form of the proposed diffusion layer was introduced
in Fig. 1. Then by assuming a special case of αi’s and βi’s, an instance of this
diffusion layer was given in Eq. (2). In this section, we obtain all sets of αi’s
and βi’s such that the diffusion layer of Fig. 1 becomes perfect. We know some
properties of αi’s and βi’s; for instance if all the words of the output are directly
represented as the function of input words, a function of each xi (0 ≤ i ≤ s− 1)
must appear in each equation. Another necessary condition is obtained for two
active words of the input. Assume there exist only two indices i, j such that
xi, xj �= 0. If we write each two output words yp, yq in a direct form as a
function of xi and xj , we obtain:{

yp = Lpi(xi)⊕ Lpj(xj)
yq = Lqi(xi)⊕ Lqj (xj)

If
�pi
�qi

=
�pj
�qj

or
∣∣∣ �pi �pj
�qi �qj

∣∣∣ = 0

then, yp = 0 is equivalent to yq = 0. Thus, the minimum number of active words
in the input and output is less than or equal to s, and the branch number will
not reach the maximal value s + 1. This procedure must be repeated for 3 and
more active words in the input. As an extension, we can use Lemma 3 of [14].



396 M. Sajadieh et al.

Table 3. Perfect regular recursive diffusion layers for s < 8 with only one linear
function L

s Diffusion Layer D Function that must be invertible

2

{
y0 = x0 ⊕ L(x1)
y1 = x1 ⊕ L(y0)

L(x) and x⊕ L(x)

3

⎧⎨⎩
y0 = x0 ⊕ L(x1 ⊕ x2)
y1 = x1 ⊕ L(x2 ⊕ y0)
y2 = x2 ⊕ L(y0 ⊕ y1)

L(x), x⊕ L(x) and x⊕ L3(x)

3

⎧⎨⎩
y0 = x0 ⊕ x1 ⊕ L(x1 ⊕ x2)
y1 = x1 ⊕ x2 ⊕ L(x2 ⊕ y0)
y2 = x2 ⊕ y0 ⊕ L(y0 ⊕ y1)

L(x), x⊕ L(x), x⊕ L3(x) and x⊕ L7(x)

3

⎧⎨⎩
y0 = x0 ⊕ x2 ⊕ L(x1 ⊕ x2)
y1 = x1 ⊕ y0 ⊕ L(x2 ⊕ y0)
y2 = x2 ⊕ y1 ⊕ L(y0 ⊕ y1)

L(x), x⊕ L(x), x⊕ L3(x) and x⊕ L7(x)

3

⎧⎨⎩
y0 = x0 ⊕ x1 ⊕ x2 ⊕ L(x1 ⊕ x2)
y1 = x1 ⊕ x2 ⊕ y0 ⊕ L(x2 ⊕ y0)
y2 = x2 ⊕ y0 ⊕ y1 ⊕ L(y0 ⊕ y1)

L(x), x⊕ L(x), and x⊕ L3(x)

4

⎧⎪⎪⎨⎪⎪⎩
y0 = x0 ⊕ x2 ⊕ x3 ⊕ L(x1 ⊕ x3)
y1 = x1 ⊕ x3 ⊕ y0 ⊕ L(x2 ⊕ y0)
y2 = x2 ⊕ y0 ⊕ y1 ⊕ L(x3 ⊕ y1)
y3 = x3 ⊕ y1 ⊕ y2 ⊕ L(y0 ⊕ y2)

L(x), x⊕ L(x), x⊕ L3(x) and x⊕ L7(x)

4

⎧⎪⎪⎨⎪⎪⎩
y0 = x0 ⊕ x1 ⊕ x2 ⊕ L(x1 ⊕ x3)
y1 = x1 ⊕ x2 ⊕ x3 ⊕ L(x2 ⊕ y0)
y2 = x2 ⊕ x3 ⊕ y0 ⊕ L(x3 ⊕ y1)
y3 = x3 ⊕ y0 ⊕ y1 ⊕ L(y0 ⊕ y2)

L(x), x⊕ L(x), x⊕ L3(x) and x⊕ L7(x)

4

⎧⎪⎪⎨⎪⎪⎩
y0 = x0 ⊕ x2 ⊕ L(x1 ⊕ x2 ⊕ x3)
y1 = x1 ⊕ x3 ⊕ L(x2 ⊕ x3 ⊕ y0)
y2 = x2 ⊕ y0 ⊕ L(x3 ⊕ y0 ⊕ y1)
y3 = x3 ⊕ y1 ⊕ L(y0 ⊕ y1 ⊕ y2)

L(x), x⊕ L(x), x⊕ L3(x), x⊕ L7(x)

and x⊕ L15(x)

4

⎧⎪⎪⎨⎪⎪⎩
y0 = x0 ⊕ x1 ⊕ x3 ⊕ L(x1 ⊕ x2 ⊕ x3)
y1 = x1 ⊕ x2 ⊕ y0 ⊕ L(x2 ⊕ x3 ⊕ y0)
y2 = x2 ⊕ x3 ⊕⊕y1 ⊕ L(x3 ⊕ y0 ⊕ y1)
y3 = x3 ⊕ y0 ⊕ y2 ⊕ L(y0 ⊕ y1 ⊕ y2)

L(x), x⊕ L(x), x⊕ L3(x), x⊕ L7(x)

and x⊕ L15(x)



Recursive Diffusion Layers for Block Ciphers and Hash Functions 397

Lemma 8. Assume the diffusion layer has m inputs/outputs bits and � is the
linear operator of L(x) and I is the linear operator of I(x). Moreover, MLD is
an m ×m matrix representation of the operator of the diffusion layer. If D is
perfect, then all the sub-matrices of MLD is non-singular.

If we construct the MLD of Eq. (2), we have:

MLD =

⎛⎜⎜⎝
I � I I ⊕ �

I ⊕ � I ⊕ �⊕ �2 I �2

�2 I ⊕ �⊕ �3 I ⊕ � I ⊕ �2 ⊕ �3

I ⊕ �2 ⊕ �3 �⊕ �2 ⊕ �3 ⊕ �4 �⊕ �2 �2 ⊕ �4

⎞⎟⎟⎠
If we calculate 69 sub-matrix determinant of MLD, we find the result of Theo-
rem 7. However, by following this procedure, it is complicated to obtain all sets
of αi’s and βi’s analytically. So, by systematizing the method based on Lemma
8, we performed a computer simulation to obtain all sets of αi’s and βi’s in the
diffusion layer in Fig. 1 that yield a perfect diffusion. We searched for all αi’s
and βi’s that make the diffusion layer of Fig. 1 a perfect diffusion layer. This
procedure was repeated for s = 2, 3, . . . , 8. We found one set of (αi, βi) for s = 2,
four sets for s = 3, and four sets for s = 4. The obtained diffusion layers along
with the conditions on the underlying linear function L are reported in Table 3.
We observed that for s = 5, 6, 7 the diffusion layer introduced in Fig. 1 cannot
be perfect.

Note that some linear functions in Table 1 and Table 2 such as L(x) = (x$
15)⊕ (x% 1) cannot be used in the diffusion layers for which x ⊕ L15(x) must
be invertible.

As we can see in Fig. 1 and its instances presented in Table 3, there exists
some kind of regularity in the equations defining yi’s, in the sense that the form
of yi+1 is determined by the form of yi and vice versa (Fi’s are all the same
in Eq. (1)). However, we can present some non-regular recursive diffusion layers
with the following more general form (Fi’s are different):

1: Input : s n-bit words x0, . . . , xs−1

2: Output : s n-bit words y0, . . . , xs−1

3: for i = 0 to s− 1 do
4: yi = xi

5: end for
6: for i = 0 to s− 1 do

7: yi = yi ⊕

⎛⎝ s−1⊕
j=0,j �=i

Ai,jyj

⎞⎠⊕ L

⎛⎝ s−1⊕
j=0,j �=i

Bi,jyj

⎞⎠
8: end for

Fig. 3. Non-regular recursive diffusion layers



398 M. Sajadieh et al.

where Ai,j , Bi,j ∈ {0, 1}. If Ai,j = α(j−i) mod s and Bi,j = β(j−i) mod s, then
Fig. 3 is equivalent to Fig. 1. The main property of this new structure is that it
still has one linear function L and a simple structure for the inverse. For example,
if s = 4, then, the diffusion layer D is:⎧⎪⎪⎨⎪⎪⎩

y0 = x0 ⊕A0,1 · x1 ⊕A0,2 · x2 ⊕A0,3 · x3 ⊕ L(B0,1 · x1 ⊕B0,2 · x2 ⊕B0,3 · x3)
y1 = x1 ⊕A1,0 · y0 ⊕A1,2 · x2 ⊕A1,3 · x3 ⊕ L(B1,0 · y0 ⊕B1,2 · x2 ⊕B1,3 · x3)
y2 = x2 ⊕A2,0 · y0 ⊕A2,1 · y1 ⊕A2,3 · x3 ⊕ L(B2,0 · y0 ⊕B2,1 · y1 ⊕B2,3 · x3)
y3 = x3 ⊕A3,0 · y0 ⊕A3,1 · y1 ⊕A3,2 · y2 ⊕ L(B3,0 · y0 ⊕B3,1 · y1 ⊕B3,2 · y2)

We searched the whole space for s = 3 and s = 4 (the order of search spaces are
212 and 224 respectively). For s = 3, we found 196 structures with branch number
4 and for s = 4, 1634 structures with branch number 5. The linear functions that
must be invertible for each case are different. Among the 196 structures for s = 3,
the structure with the minimum number of operations (only 7 XORs and one L
evaluation) is the following:

D :

⎧⎨⎩
y0 = x0 ⊕ x1 ⊕ x2

y1 = x1 ⊕ x2 ⊕ L(y0 ⊕ x2)
y2 = x2 ⊕ y0 ⊕ y1

where L(x) and x⊕ L(x) must be invertible.
This relation is useful to enlarge the first linear function of the new hash

function JH for 3 inputs [18]. For s = 4, we did not find any D with the number
of L evaluations less than four. However, the one with the minimum number of
XORs is given as below:

D :

⎧⎪⎪⎨⎪⎪⎩
y0 = x0 ⊕ x1 ⊕ x2 ⊕ L(x3)
y1 = x1 ⊕ x3 ⊕ y0 ⊕ L(x2 ⊕ y0)
y2 = x2 ⊕ x3 ⊕ y0 ⊕ L(x3 ⊕ y1)
y3 = x3 ⊕ y1 ⊕ y2 ⊕ L(y0)

Searching the whole space for s = 5, 6, ... is too time consuming (note that for
s = 5, the order of search has complexity 240) and we could not search all the
space for s ≥ 5.

4 Increasing the Number of Linear Functions

In Section 3, we observed that for s > 4 we cannot design a regular recursive dif-
fusion layer in the form of Fig. 1 with only one linear function L. In this section,
we increase the number of linear functions to overcome the regular structure of
the diffusion layer of Eq. (2). A new structure is represented in Fig. 4, where
αk, βk, γk ∈ {0, 1}, k ∈ {0, 1, ..., s− 1}, α0 = 1, β0 = 0 and γ0 = 0.

If L1 and L2 are two distinct linear functions, Fig. 4 is too complicated to
easily obtain conditions on L1 and L2 that make it a perfect diffusion layer. To
obtain simplified conditions for a maximal branch number, let L1 and L2 have a
simple relation like L2(x) = L2

1(x) or L2(x) = L−1
1 (x). For the linear functions in



Recursive Diffusion Layers for Block Ciphers and Hash Functions 399

1: Input : s n-bit words x0, . . . , xs−1

2: Output : s n-bit words y0, . . . , xs−1

3: for i = 0 to s− 1 do
4: yi = xi

5: end for
6: for i = 0 to s− 1 do

7: yi =

s−1⊕
j=0

α[(j−i) mod s]yj⊕L1

(
s−1⊕
j=0

β[(j−i) mod s]yj

)
⊕L2

(
s−1⊕
j=0

γ[(j−i) mod s]yj

)
8: end for

Fig. 4. Regular recursive diffusion layers with two linear functions L

Table 2 and Table 3, L2(x) is more complex in comparison with L(x). However,
there exist some linear functions L(x) such that L−1(x) is simpler than L2(x).
As an example, for L(x(n)) = (x(n) ⊕ x(n) % b) ≪ a, where b > n

2 we have
(x(n) % 2b = 0):

L−1(x(n)) = ((x(n) ≫ a)⊕ (x(n) ≫ a)% b)

In Table 4, we introduce some recursive diffusion layers with (L1 = L and L2 =
L−1) or (L1 = L and L2 = L2) that have maximal branch numbers. These
diffusion layers are obtained similar to that of Table 3. In this table, for each
case only y0 is presented. Other yi’s can be easily obtained from Fig. 4, since
Fi’s are all the same.

Table 4. Some perfect regular diffusion layers for s = 5, 6, 7, 8 with two linear functions

s y0 in a perfect diffusion Layer

5 y0 = x0 ⊕ x2 ⊕ x3 ⊕ L(x4)⊕ L2(x1)

5 y0 = L−1(x1 ⊕ x2)⊕ x0 ⊕ x1 ⊕ L(x1 ⊕ x3 ⊕ x4)

6 y0 = x0 ⊕ x2 ⊕ x4 ⊕ x5 ⊕ L(x3 ⊕ x5)⊕ L2(x1 ⊕ x2 ⊕ x3)

6 y0 = L−1(x1 ⊕ x3)⊕ x0 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ L(x1 ⊕ x3 ⊕ x4 ⊕ x5)

7 y0 = x0 ⊕ x2 ⊕ L(x3 ⊕ x4)⊕ L2(x1 ⊕ x2 ⊕ x4 ⊕ x5 ⊕ x6)

7 y0 = L−1(x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x6)⊕ x0 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ L(x1 ⊕ x2 ⊕ x3 ⊕ x5)

8 y0 = x0 ⊕ x1 ⊕ x3 ⊕ x4 ⊕ L(x2 ⊕ x3 ⊕ x5)⊕ L2(x1 ⊕ x5 ⊕ x6 ⊕ x7)

8 y0 = L−1(x1 ⊕ x2 ⊕ x3 ⊕ x5 ⊕ x7)⊕ x0 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x7 ⊕ L(x1 ⊕ x3 ⊕ x5 ⊕ x6 ⊕ x7)

If the 14 linear functions:

L(x) I ⊕ L(x) I ⊕ L3(x)
I ⊕ L7(x) I ⊕ L15(x) I ⊕ L31(x)
I ⊕ L63(x) I ⊕ L127(x) I ⊕ L255(x)
I ⊕ L511(x) I ⊕ L1023(x) I ⊕ L2047

I ⊕ L4095(x) I ⊕ L8191(x)



400 M. Sajadieh et al.

are invertible (all irreducible polynomials up to degree 13), then all the diffusion
layers introduced in Table 4 are perfect. One example for a 32-bit linear function
satisfying these conditions is:

L(x(32)) = (x(32) ⊕ (x(32) % 31)) ≪ 29

5 Conclusion

In this paper, we proposed a family of diffusion layers which are constructed using
some rounds of Feistel-like structures whose round functions are linear. These
diffusion layers are called recursive diffusion layers. First, for a fixed structure,
we determined the required conditions for its underlying linear function to make
it a perfect diffusion layer. Then, for the number of words in input (output)
less than 8, we extended our approach and found all the instances of the perfect
recursive diffusion layers with the general form of Fig. 1. Also, we proposed some
other diffusion layers with non-regular forms which can be used for the design
of lightweight block ciphers. Finally, diffusion layers with 2 linear functions were
proposed. By using two linear functions, we designed perfect recursive diffusion
layers for s = 5, 6, 7, 8 which cannot be designed based on Fig. 1, i.e., using only
one linear function.

The proposed diffusion layers have simple inverses, thus they can be deployed
in SPN structures. These proposed diffusion layers can be used to improve the
security or performance of some of the current block ciphers and hash functions
or in the design of the future block ciphers and hash functions (especially the
block ciphers with provable security against DC and LC).

References

1. Bernstein, D.J.: The Salsa20 Stream Cipher. Symmetric Key Encryption Work-
shop, SKEW (2005), http://www.ecrypt.eu.org/stream/salsa20p2.html

2. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. In:
Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21.
Springer, Heidelberg (1991)

3. Daemen, J.: Cipher and Hash Function Design Strategies Based on Linear and Dif-
ferential Cryptanalysis. PhD thesis, Elektrotechniek Katholieke Universiteit Leu-
ven, Belgium (1995)

4. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer (2002)

5. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON Family of Lightweight Hash Func-
tions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222–239. Springer,
Heidelberg (2011)

6. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED Block Cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer,
Heidelberg (2011)

7. Junod, P., Vaudenay, S.: Perfect Diffusion Primitives for Block Ciphers. In: Hand-
schuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 84–99. Springer,
Heidelberg (2004)

http://www.ecrypt.eu.org/stream/salsa20p2.html


Recursive Diffusion Layers for Block Ciphers and Hash Functions 401

8. Kang, J., Hong, S., Lee, S., Yi, O., Park, C., Lim, J.: Practical and Provable Se-
curity Against Differential and Linear Cryptanalysis for Substitution-Permutation
Networks. ETRI Journal 23(4), 158–167 (2001)

9. Lee, C., Kim, J., Sung, J., Hong, S., Lee, S.: Provable Security for an RC6-like
Structure and a MISTY-FO-like Structure Against Differential Cryptanalysis. In:
Gavrilova, M.L., Gervasi, O., Kumar, V., Tan, C.J.K., Taniar, D., Laganá, A.,
Mun, Y., Choo, H. (eds.) ICCSA 2006. LNCS, vol. 3982, pp. 446–455. Springer,
Heidelberg (2006)

10. Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

11. Matsui, M.: New Structure of Block Ciphers with Provable Security Against Differ-
ential and Linear Cryptanalysis. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039,
pp. 205–218. Springer, Heidelberg (1996)

12. Nyberg, K., Knudsen, L.: Provable Security Against a Differential Attack. Journal
of Cryptology 8(1), 27–37 (1995)

13. Ohkuma, K., Muratani, H., Sano, F., Kawamura, S.: The Block Cipher Hiero-
crypt. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp. 72–88.
Springer, Heidelberg (2001)

14. Sajadieh, M., Dakhilalian, M., Mala, H.: Perfect Involutory Diffusion Layers Based
on Invertibility of Some Linear Functions. IET Information Security Journal 5(1),
228–236 (2011)

15. Schnorr, C.-P., Vaudenay, S.: Black Box Cryptanalysis of Hash Networks Based on
Multipermutations. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950,
pp. 47–57. Springer, Heidelberg (1995)

16. Vaudenay, S.: On the Need for Multipermutations: Cryptanalysis of MD4 and
SAFER. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 286–297. Springer,
Heidelberg (1995)

17. Wang, M., Nakahara Jr., J., Sun, Y.: Cryptanalysis of the Full MMB Block Ci-
pher. In: Jacobson Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS,
vol. 5867, pp. 231–248. Springer, Heidelberg (2009)

18. Wu, H.: The Hash Function JH. Submission to NIST (2008)



Unaligned Rebound Attack:
Application to Keccak

Alexandre Duc1,�, Jian Guo2,��, Thomas Peyrin3,� � �, and Lei Wei3,†

1 Ecole Polytechnique Fédérale de Lausanne, Swizerland
alexandre.duc@epfl.ch

2 Institute for Infocomm Research, Singapore
{ntu.guo,thomas.peyrin}@gmail.com

3 Nanyang Technological University, Singapore
wl@pmail.ntu.edu.sg

Abstract. We analyze the internal permutations of Keccak, one of the
NIST SHA-3 competition finalists, in regard to differential properties. By
carefully studying the elements composing those permutations, we are
able to derive most of the best known differential paths for up to 5 rounds.
We use these differential paths in a rebound attack setting and adapt this
powerful freedom degrees utilization in order to derive distinguishers for
up to 8 rounds of the internal permutations of the submitted version
of Keccak. The complexity of the 8 round distinguisher is 2491.47 . Our
results have been implemented and verified experimentally on a small
version of Keccak.

Keywords: Keccak, SHA-3, hash function, differential cryptanalysis,
rebound attack.

1 Introduction

Cryptographic hash functions are used in many applications such as digital sig-
natures, authentication schemes or message integrity and they are among the
most important primitives in cryptography. Even if hash functions are tradi-
tionally used to simulate the behavior of a random oracle [3], classical security
requirements are collision resistance and (second)-preimage resistance.

� Part of the work was done while the author was visiting Nanyang Technological
University, supported by the NTU NAP Startup Grant M58110000. This work
has also partially been supported by the European Commission through the ICT
programme under contract ICT-2007-216676 ECRYPT II.

�� Part of the work was done while the author was visiting Tsinghua University,
supported by the National Natural Science Foundation of China under grant No.
61133013 and No. 60931160442.

� � � The author is supported by the Lee Kuan Yew Postdoctoral Fellowship 2011 and
the Singapore National Research Foundation Fellowship 2012.

† The author is supported by the Singapore National Research Foundation under
Research Grant NRF-CRP2-2007-03, the Singapore Ministry of Education under
Research Grant T206B2204 and by the NTU NAP Startup Grant M58110000.

A. Canteaut (Ed.): FSE 2012, LNCS 7549, pp. 402–421, 2012.
c© International Association for Cryptologic Research 2012



Unaligned Rebound Attack: Application to Keccak 403

Like any construction that builds a hash function from a subcomponent, the
cryptographic quality of this internal permutation is very important for a sponge
construction. Therefore, this permutation P should not present any structural
flaw, or should not be distinguishable from a randomly chosen permutation. Zero-
sum distinguishers [2] can reach an important number of rounds, but generally
with a very high complexity. For example, the latest results [9] provide zero-sum
partitions distinguishers for the full 24-round 1600-bit internal permutation with
a complexity of 21575. When looking at smaller number of rounds the complexity
would decrease, but it is unclear how one can describe the partition of a 1600-
bit internal state without using the Keccak round inside the definition of the
partition. Moreover, such zero-sum properties seem very hard to exploit when
the attacker aims at the whole hash function. On the other side, more classical
preimage attack on 3 rounds using SAT-solvers have been demonstrated [18].
Finally, Bernstein published [4] a 2511.5 computations (second)-preimage attack
on 8 rounds that allows a workload reduction of only half a bit over the generic
complexity with an important memory cost of 2508.

Our Contributions. In this article, we analyze the differential cryptanalysis
resistance of the Keccak internal permutation. More precisely, we first intro-
duce a new and generic method that looks for good differential paths for all
the Keccak internal permutations, and we obtain the currently best known
differential paths. We then describe a simple method to utilize the available
freedom degrees which allows us to derive distinguishers for reduced variants of
the Keccak internal permutations with low complexity. Finally, we apply the
idea of rebound attack [17] to Keccak. This application is far from being trivial
and requires a careful analysis of many technical details in order to model the
behavior of the attack. This technique is in particular much more complicated
to apply to Keccak than to AES or to other 4-bit Sbox hash functions [21,13].
One reason for that is that Keccak has weak alignment [6]. This is why we call
our attack “unaligned rebound attack”. The model introduced has been verified
experimentally on a small version of Keccak and we eventually obtained dif-
ferential distinguishers for up to 8 rounds of the submitted version of Keccak
to the SHA-3 competition. In order to demonstrate why differential analysis is
in general more relevant than zero-sum ones in regards to the full hash function,
we applied our techniques to the recent Keccak challenges [23] and managed to
obtain the currently best known practical collision attack for up to two rounds.

2 The Keccak Hash Function Family

Keccak [7,8] is a family of variable length output hash functions based on the
sponge construction [5]. In Keccak family, the underlying function is a permu-
tation chosen from a set of seven Keccak-f permutations, denoted as Keccak-
f [b] where b ∈ {1600, 800, 400, 200, 100, 50, 25} is the permutation width as
well as the internal state size of the hash function. The Keccak family is
parametrized by an r-bit bitrate and c-bit capacity with b = r + c.



404 A. Duc et al.

2.1 The Keccak-f Permutations

The internal state of the Keccak family can be viewed as a bit array of 5 × 5
lanes, each of length w = 2� where � ∈ {0, 1, 2, 3, 4, 5, 6} and b = 25w. The state
can also be described as a three dimensional array of bits defined by a[5][5][w]. A
bit position (x, y, z) in the state is given by a[x][y][z] where x and y coordinates
are taken over modulo 5 and the z coordinate is taken over modulo w. A lane
of the internal state at column x and row y is represented by a[x][y][·], while a
slice of the internal state at width z is represented by a[·][·][z].

Keccak-f [b] is an iterated permutation consisting of a sequence of nr rounds
indexed from 0 to nr − 1 and the number of rounds are given by nr = 12 + 2�.
A round R consists of a transformation of five step mappings and is defined by:
R = ι ◦ χ ◦ π ◦ ρ ◦ θ. These step mappings are discussed below.

θ Mapping. This linear mapping intends to provide diffusion for the state and
is defined for every x, y and z by: θ : a[x][y][z] ← a[x][y][z] +

⊕4
y′=0 a[x −

1][y′][z] +
⊕4

y′=0 a[x + 1][y′][z − 1].

ρ Mapping. This linear mapping intends to provide diffusion between the
slices of the state through intra-lane bit translations. For every x, y and z:
ρ : a[x][y][z]← a[x][y][z + T (x, y)], where T (x, y) is a translation constant.

π Mapping. This linear mapping intends to provide diffusion in the state
through transposition of the lanes.

χ Mapping. This is the only non-linear mapping of Keccak-f and is defined
for every x, y and z by: χ : a[x][y][z]← a[x][y][z]+((¬a[x+1][y][z])∧a[x+2][y][z]).
This mapping is similar to an Sbox applied independently to each 5-bit row of
the state and can be computed in parallel to all rows. We represent by s = 5w
the number of Sboxes/rows in Keccak internal state. Here ¬ denotes bit-wise
complement, and ∧ the bit-wise AND.

ι Mapping. This mapping adds constants derived from an LFSR to the lane
a[0][0][·]. These constants are different in every round i. This mapping aims at
destroying the symmetry introduced by the identical nature of the remaining
mappings in a round.

3 Finding Differential Paths for Keccak-f

We first study how to find “good” differential paths for all Keccak variants. In
this section, we describe our differential finding algorithms.

3.1 Special Properties of θ and χ

It is noted by the Keccak designers [7, Section 2.4.3] that when every column
of the state sums to 0, θ acts as identity. The set of such states is called column



Unaligned Rebound Attack: Application to Keccak 405

parity kernel (CPK ). Since θ is linear, this property applies not only to the state
values, but also to differentials. While θ expands a single bit difference into at
most 11 bits (2 columns and the bit itself), it acts as identity on differences
in the CPK. This property will be intensively used in finding low Hamming
weight bitwise differentials. Another interesting property is that θ−1 diffuses
much faster than θ, i.e., a single bit difference can be propagated to about half
state bits through θ−1 [7, Section 2.3.2]. However, the output of θ−1 is extremely
regular when the Hamming weight of the input is low.

The χ layer updates is a row-wise operation and can also be viewed as a 5-bit
Sbox. Similar to the analysis of other Sboxes, we build its differential distribution
table (DDT). We remark that when a single difference is present, χ acts as
identity with best probability 2−2, while input differences with more active bits
tend to lead to more possible output differences, but with lower probability. It
is also interesting to note that given an input difference to χ, all possible output
differences occur with same probability (however this is not the case for χ−1).

3.2 First Tools

Our goal is to derive “good” bitwise differential paths by maintaining the bit
difference Hamming weight as low as possible. The ι permutation adds predefined
constants to the first lane, and hence has no essential influences when such
differentials are considered. For the rest of the paper, we will ignore this layer.
We note that θ, ρ and π are all linear mappings, while χ acts as a non-linear Sbox.
Furthermore, ρ and π do not change the number of active bits in a differential
path, but only bit positions. Hence, θ and χ are critical when looking for a
“good” differential path. Since χ is followed by θ in the next round (ignoring ι),
we consider these two mappings together by treating a slice of the state as a
unit, and try to find the potential best mapping of the slice through χ with the
following two rules.

1. Given an input difference of the slice, i.e., 5 row differences, find all possible
output differences by looking into the DDT table. Then among all com-
binations of solutions of the 5 rows, choose the output combinations with
minimum number of columns with odd parity.

2. In case of a draw, we select the state with the minimum number of active
bits.

Rule 1 aims at reducing the amount of active bits after applying θ by choosing
each slice of the output of the χ closest to the CPK (i.e., with even parity for
most columns), and rule 2 further reduces the amount of active bits within the
columns. Although this strategy may not lead to the minimum number of active
bits after θ in the entire state , it finds the best slice-wise mappings with help
of a table of size 225.

3.3 Algorithm for Differential Path Search

Denote λ = π ◦ ρ ◦ θ (all linear mappings), and the state at round i before (resp.
after) applying the linear layer λ as ai (resp. bi). We start our search from a1,



406 A. Duc et al.

i.e., the input state to the second round, and compute backwards for one round,
and few rounds forwards.

The forward part is longer than the backward part because the diffusion of
θ−1 is much better than for θ, thus, it will be easier for us to control the bit
differences Hamming weight for several forward rounds (instead of backward
rounds).

We choose a1 from the CPK. Since it is impossible to enumerate all combi-
nations, we further restrict to a subset of the CPK with at most 8 active bits
and each column having exactly 0 or 2 active bits. Note also that any bitwise
differential path is invariant through position rotation along the z axis, so we
have to run through a set of size about 236. An example of 4 round path is given
in the full version of the paper [10]. We provide also in Table 1 some of the best
differential path probabilities found for all Keccak internal permutation sizes.

Table 1. Best differential path results for each version of Keccak internal permu-
tations, for 1 up to 5 rounds. The detailed differential paths for Keccak-f[1600] are
shown in the full version of the paper. Paths in bold are new results we found with the
method presented in this paper.

b
best differential path probability (differential complexity of the rounds)

3 rds 4 rds 5 rds

400 2−24 (8 - 8 - 8) 2−84 (16 - 14 - 12 - 42) 2−216 (16 - 32 - 40 - 32 - 96)
800 2−32 (4 - 4 - 24) 2−109 (12 - 12 - 12 - 73) 2−432 (32 - 64 - 80 - 64 - 192)
1600 2−32 (4 - 4 - 24) 2−142 (12 - 12 - 12 - 106) 2−709 (16 - 16 - 16 - 114 - 547)

A better path (2−510) was found
independently [20]

4 Simple Distinguishers for Reduced Keccak-f

Once the differential paths obtained, we can concentrate our efforts on how to
use at best the freedom degrees available in order to reduce the complexity
required to find a valid pair for the differential trails or to increase the amount
of rounds attacked. We present in this section a very simple method that allows
to obtain low complexity distinguishers on a few rounds of the Keccak internal
permutations.

4.1 A Very Simple Freedom Degrees Fixing Method

We first describe an extremely simple way of using the available freedom degrees,
which are exactly the b-bit value of the internal state (since we already fixed the
differential path). For all the best differential paths found from Table 1, we can
extend them by one round to the left or to the right by simply picking some
valid Sboxes differential transitions. We can use our available freedom degrees
specifically for this round so that its cost is null. One simply handles each of the



Unaligned Rebound Attack: Application to Keccak 407

active Sboxes differential transitions for this round one by one, independently,
by fixing a valid value for the active Sboxes. In terms of freedom degrees con-
sumption for this extra round, in the worst case we have all s Sboxes active and
a differential transition probability of 2−4 for each of them. Thus, we are ensured
to have at least 25s−4s = 2s freedom degrees remaining after handling this extra
round.

Note that some more involved freedom degree methods (such as message mod-
ification [24]) might even allow to also control some of the conditions of the
original differential path, thus further reducing the complexity.

4.2 Getting More Rounds

At the present time, we are able to find valid pairs of internal state values for
some differential paths on a few rounds with a rather low complexity. Said in
other words, we are able to compute internal state value pairs with a prede-
termined input/output difference. A direct application from this is to derive
distinguishers. For a randomly chosen permutation of b bits, finding a pair of
inputs with a predetermined difference that maps to a predetermined output dif-
ference costs 2b computations. Indeed, since the input and the output differences
are fixed, the attacker can not apply any birthday-paradox technique. Those dis-
tinguishers are called “limited-birthday distinguishers” and can be generalized in
the following way (we refer to [11] for more details): for a randomly chosen b-bit
permutation, the problem of mapping an input difference from a subset of size I
to an output difference from a subset of size J requires max{√2b/J, 2b/(I · J)}
calls to permutation (while assuming without loss of generality since we are
dealing with a permutation that I ≤ J).

Using the freedom degrees technique from the previous section and reading
Table 1, we are for example able to obtain a distinguisher for 5 rounds of the
Keccak-f [1600] internal permutation with complexity 2142 (while the generic
case is 21600).

5 The Rebound Attack on Keccak

The rebound attack is a freedom degrees utilization technique that was first
proposed by Mendel et al. in [17] as an analysis of round-reduced Grøstl and
Whirlpool. It was then improved in [16,15,11,22] to analyze AES and AES-like
permutations and also ARX ciphers [14].

With the help of rebound techniques, we show in this section how to extend
the number of attacked rounds significantly, but for a higher complexity. We will
see that the application of the rebound attack for Keccak seems quite difficult.
Indeed, the situation for Keccak is not as pleasant as the AES-like permutations
case where the utilization of truncated differential paths (i.e. path for which one
only checks if one cell is active or inactive, without caring about the actual
difference value) makes the application of rebound attacks very easy to handle.



408 A. Duc et al.

5.1 The Original Rebound Attack

Let P denote a permutation, which can be divided into 3 sub-permutations, i.e.,
P = EF ◦ EI ◦ EB. The rebound attack works in two phases.

– Inbound phase or controlled rounds: this phase usually starts with
several chosen input/output differences of EI that are propagated through
linear layers forward and backward. Then, one can carry out meet-in-the-
middle (MITM) match for differences through a single Sbox layer in EI and
generate all possible value pairs validating the matches.

– Output phase or uncontrolled rounds: With all solutions provided in
the inbound phase, check if any pair validates as well the differential paths
for both the backward part pB and the forward part pF .

The SuperSbox technique [15,11] extends the EI from one Sbox layer to two
Sbox layers for an AES-like permutation, by considering two consecutive AES-like
rounds as one with column-wise SuperSboxes. This technique is possible due to
the fact that one can swap few linear operations with the Sbox in AES, so that the
two layers of Sboxes in two rounds become close enough to form one SuperSbox
layer. However, in the case of Keccak, it seems very hard to form any partition
into independent SuperSboxes. For the same reason, using truncated differential
paths seems very difficult for Keccak, as it has recently been shown in [6].

5.2 Applying the Rebound Attack for Keccak Internal
Permutations

Assume that we know a set of nB differential trails (called backward trails) on
nrB Keccak rounds and whose DP is higher or equal to pB. For the moment,
we want all these backward paths to share the same input difference mask Δin

B

and we denote by Δout
B [i] the output difference mask of the i-th trail of the set.

Similarly, we consider that we also know a set of nF differential trails (called
forward trails) on nrF Keccak rounds and whose DP is higher or equal to pF .
We want all those forward paths to share the same output difference mask Δout

F

and we denote by Δin
F [i] the input difference mask of the i-th trail of the set.

Our goal here is to build a differential path on nrB +nrF +1 Keccak rounds
(thus one Sbox layer of inbound), by connecting a forward and a backward trail
with the rebound technique, and eventually to find the corresponding solution
values for the controlled round. We represent by pmatch the probability that a
match is possible from a given element of the backward set and a given element
of the forward set, and we denote by Nmatch the number of solution values that
can be generated once a match has been obtained.

For this connection to be possible, we need the inbound phase to be a valid
differential path, that is we need to find a valid differential path from a Δout∗

B to a
Δin

F . By using random Δout∗
B and Δin

F this will happen in general with very small
probability, because we need the very same set of Sboxes to be active/inactive
in both forward and backward difference masks to have a chance to get a match.



Unaligned Rebound Attack: Application to Keccak 409

λ χ . . . λ χ λ χ λ χ . . . λ χ

Δ
in

B [1] Δ
out

B [1] Δ
out∗
B [1] Δ

in

F [1] Δ
out

F [1]
...

...
...

...
...

Δ
in

B [Γ
in

B ] Δ
out

B [Γ out

B ] Δ
out∗
B [Γ out

B ] Δ
in

F [Γ
in

F ] Δ
out

F [Γ out

F ]

nrB-round backward part Inbound nrF -round forward part

Fig. 1. Rebound attack on Keccak

Even if the set of active Sboxes matches, we still require the differential transi-
tions through all the active Sboxes to be possible.

We can generalize a bit this approach by allowing a fixed set of differences
Δin

B (resp. Δout
F ) instead of just one. We call Γ in

B (resp. Γ out
B ) the size of the set

of possible Δin
B (resp. Δout

B ) values for the backward paths. Similarly, we call Γ in
F

(resp. Γ out
F ) the size of the set of possible Δin

F (resp. Δout
F ) values for the forward

paths. In fact, the number of possible differences in the backward or forward parts
will form a butterfly shape. We call Γmid

B (resp. Γmid
F ) the minimum number of

differences in the backward (resp. forward) part.
The total complexity C to find one valid internal state pair for the (nrB +

nrF + 1)-round path is

C = nF + nB +
1

pmatch
·
⌈

1
pF · pB ·Nmatch

⌉
+

1
pB · pF

, (1)

with
Γ out

B · Γ in
F =

1
pmatch

·
⌈

1
pF · pB ·Nmatch

⌉
. (2)

The first two terms are the costs to generate the backward and forward paths.
The term � 1

pF ·pB ·Nmatch
� denotes the number of time we will need to perform

the inbound and each inbound costs 1/pmatch. The last term is the cost for
actually performing the outbound phase. The condition (2) is needed since we
need enough differences to perform the inbound phase.

5.3 An Ordered Buckets and Balls Problem

We model the active/inactive Sboxes match as a limited capacity ordered
buckets and balls problem: the s = 5w ordered buckets (s = 320 for Keccak-
f [1600]) limited to capacity 5 will represent the s 5-bit Sboxes and the xB (resp.
xF ) balls will stand for the Hamming weight of the difference in Δout∗

B (resp. in
Δin

F ). Given a set B of s buckets in which we randomly throw xB balls and a
set F of s buckets in which we randomly throw xF balls, we call the result a
pattern-match when the set of empty buckets in B and F after the experiment
are the same.Before computing the probability of having a pattern-match, we
need the following lemma.



410 A. Duc et al.

Lemma 1. The number of possible combinations bbucket(n, s) to place n balls
into s buckets of capacity 5 such that no bucket is empty is

bbucket(n, s) :=
s∑

i=�n/5�
(−1)s−i

(
s

i

)(
5i

n

)
if s ≤ n ≤ 5s (3)

and 0 otherwise.

The proof of this lemma is given in the full version of the paper.
Using (3), we can derive the probability pbucket(n, s) that every bucket contains

at least one ball when n balls are thrown into s buckets with capacity 5 and the
expected number of active buckets when n balls are thrown into s buckets. We
can now relate this lemma to the more general pattern-match problem. This
model tells us that when the number of balls (i.e., active bits) is not too small
on both sides, most of the matches happen when (almost) all the Sboxes are
active. We analyze this behavior in more details in the full version of the paper.

A More General Problem. We can also look into a more general problem,
i.e., we characterize more precisely how the bits are distributed into the Sboxes.

Lemma 2. The probability pdist of distributing randomly n active bits into s
5-bit Sboxes such that exactly Ai Sboxes contain i bits, for i ∈ [1, 5] is

pdist(A1, . . . , A5) :=
s!
(
5
1

)A1(5
2

)A2(5
3

)A3(5
4

)A4(5
5

)A5

(s−A1 −A2 −A3 −A4 −A5)!A1!A2!A3!A4!A5!
(
5s
n

) , (4)

with n = A1 + 2A2 + 3A3 + 4A4 + 5A5.

Important Remark. Since most matches happen when all the Sboxes are
active, in order to simplify the analysis, we will use from now on only forward
and backward paths such that all Sboxes are active in the χ layer of the inbound
phase.

5.4 The Differential Paths Sets

In this section, we explain how we generate the forward and backward paths,
since this will have an impact on the derivation of pmatch and Nmatch (this will
be handled in the next two sections).

The Forward Paths. For the forward paths set (see Fig. 2), we start by
choosing a differential trail computed from the previous section and we derive
a set from it by exhausting all the possible Sbox differential transitions for the
inverse of the χ layer in its first round (all the paths will be the same except
the differences on their input and on the input of the χ layer in the first round).
For example, we can use the 2 first rounds of the 4-round differential path we
found (see full version) which have a total success probability 2−24 and present 6
active Sboxes during the χ layer of the first round. We randomize the χ−1 layer



Unaligned Rebound Attack: Application to Keccak 411

λ χ λ χ λ χ λ χ

Active bits

Active Sboxes

log DP of χ

Number of diffs

s = 320

Γ in
F = Γmid

F · 219 · 2−1.7

∗ ← 6

6

[−24,−12]

Γmid
F = 26

6 → 6

6

−12

Γmid
F

6 → [6, 18]

6

− −

Γmid
F · 212

≤ 198

2408 · Γmid
F ≥ Γ out

F

1st round 2nd round 3rd round 4th round

In
b
o
u
n
d

Fig. 2. The forward trails we are using. The distance between the two lines reflects the
number of differences.

differential transitions for the 6 active Sboxes of the first round, and we obtain
about 219 distinct trails in total. We analyzed that all the trails of this set have
a success probability of at least 2−24 · 2−2·6 = 2−36 (this is easily obtained with
the χ−1 DDT). Moreover, note that they will all have the same output difference
mask (at the third round), but distinct input masks (at the first round). Since
we previously forced the requirement that all Sboxes must be active for the
inbound match, we check experimentally that 217.3 of the 219 members of the
set fulfill this condition.1 We call τF the ratio of paths that verify this condition
over the total number of paths, i.e., τF = 2−1.7. Overall, we built a set of 217.3

forward differential paths on nrF = 2 Keccak-f [1600] rounds, all with DP
higher or equal to pF = 2−36. We can actually generate 64 times more paths by
observing that they are equivalent by translation along the Keccak lane (the z
axis). However, these paths will have distinct output difference masks (the same
difference mask rotated along the z axis), and we have Γmid

F = 26. The total
amount of input differences is Γ in

F := Γmid
F ·217.3 = 223.3 and we have to generate

in total nF = τF ·Γ in
F = 225 forward differential paths. We discuss the amount of

output differences in Section 5.8, since we extend there the path with two free
additional rounds.

The Backward Paths. Applying the same technique to the backward case
does not generate a sufficient amount of output differences Γ out

B , crucial for a
rebound-like attack. Thus, concerning the backward paths set, we build another
type of 2-round trails. We need first to ensure that we have enough differential
paths to be able to find a match in the inbound phase, i.e., we want Γ out

B · Γ in
F =

1/pmatch · � 1
pF ·pB ·Nmatch

� following (2). Moreover, we will require these paths to
verify two conditions:

1. First, we need to filter paths that have not all Sboxes active in the χ
layer of the inbound phase. This happens with a probability about τ full

B :
= bbucket(800, 320)/

(
5·320

n

)
= 2−15.9 if we assume that about half of the bits

1 The small amount of filtered forward paths (a factor 21.7) is due to the regularity
of the output of θ inverse. Thus, most of the paths have all Sboxes active when the
Hamming weight of the input is low.



412 A. Duc et al.

λ χ λ χ λ χ

Active Sboxes

Hamming weight

log DP of χ

Number of diffs

2X

[2X, 10X] ← 2X

−

Γ in
B(X) ≤ Γ mid

B · 92X/ε Γ mid
B /ε

×ε−−−→ Γ mid
B (X)

2X

2X → 2X + k

−4X

Γ mid
B (X) ·

(2X
k

)
2k

∑5
i=1 Ai

n

−2A1 − 3A2
−4(A3 + A4 + A5)

Γmid
B (X) ·

(2X
k

)
2kGB(n) · τ full

B

1st round 2nd round 3rd round
Inbound

Fig. 3. The backward trails we are using. The distance between the two arrows reflects
the number of differences.

are active. This assumption will be verified in our case (and was verified in
practice) since our control on the diffusion of the active bits will be reduced
greatly.

2. Moreover, all the paths we collect should have a DP of at least pB such
that the number of solutions Nmatch generated in the inbound phase is suffi-
cient. Indeed, we must have Nmatch ≥ 1/(pF · pB) in order to have a good
success probability to find one solution for the entire path. We call τDP

B the
probability that a path verifies this property. Hence, we need pB ≥ pmin

B =
1/(pF · Nmatch). We will show in Section 5.7 that Nmatch = 2486 and we
previously showed that pF = 2−36. Hence, pmin

B = 236−486 = 2−450.

These two filters induce a ratio τB := τ full
B · τDP

B of “good” paths. We have
nB · τB = Γ out

B , where nB is the number of paths we need to generate. Thus,
we need to generate nmin

B := 1/(pmatch · � 1
pF ·pB ·Nmatch

� · Γ in
F · τB) trails to per-

form the rebound. We will show in Section 5.7 that pmatch = 2−491.47, that
� 1

pF ·pB ·Nmatch
� = 1 and that τB = 2−15.9. We also know that Γ in

F = 223.3. Hence,
nmin

B = 2491.47+15.9−23.3 = 2484.07.
We show now how we generated these paths. Fig. 3 can help the reading.

We start at the beginning of the second round by forcing X columns of the
internal state to be active and each active column will contain only 2 active bits
(thus a total of 2X active bits). Therefore, we can generate

(
5
2

)X · ( s
X

)
distinct

starting differences and each of them will lead to a distinct input difference of
the backward path. Note also that all active columns are in the CPK and thus
applying the θ function on this internal state will leave all bit-differences at the
same place. Then, applying the ρ and π layers will move the 2X active bits to
random locations before the Sbox layer of the second round. If X is not too
large, we can assume that for a good fraction of the paths, all active bits are
mapped to distinct Sboxes and thus we obtain 2X active Sboxes, each with one
active bit on its input. We call ε this fraction of paths which is given by

ε := pdist(2X, 0, 0, 0, 0) , (5)



Unaligned Rebound Attack: Application to Keccak 413

where pdist is given by Lemma 2.2 We will need to take ε into account when we
count the total number of paths we can generate. This position in the paths, i.e.,
after the linear layer of the second round, is the part with the lowest amount
of distinct differences. Hence, we call the number of differences at this point
Γmid

B (X) :=
(
5
2

)X · ( s
X

) · ε.
Looking at the DDT from χ, one can check that with one active input bit in

an Sbox, there always exists:

– two distinct transitions with probability 2−2 for the Keccak Sbox such that
we observe 2 active bits on its output (we call it a 1 
→ 2 transition)

– one single transition with probability 2−2 and one single active bit on its
output (a 1 
→ 1 transition). This transition is in fact the identity.

We need to define how many 1 
→ 1 and 1 
→ 2 transitions we have to use, since
there is a tradeoff between the number of paths obtained and the DP of these
paths. Whatever choices we make, we always have that the success probability
of this χ transition (in the second round) is 2−4X . Let k be the number of 1 
→ 2
transitions among the 2X possible ones. We will observe 2X + k active bits
after χ. Before the χ transition, we have Γmid

B (X) different paths from the initial
choice. For each of these paths, we can now select

(
2X
k

)
distinct sets of 1 
→ 2

transitions each of which can generate 2k different paths. These 2X + k bits are
expanded through θ to at most 11 · (2X + k) = 22X + 11k bits. However, this
expansion factor (every active bit produces 11 one) is smaller when the number
of bits increases. Let n be the number of obtained active bits at the input of the
Sboxes in the third round. At the beginning of the third round, we have 2X + k
active bits. For Keccak-f [1600], given 2X + k active bits at the input of θ, we
get n ≈ u − (u · (u − 1))/1600 bits at the output, with u := 11(2X + k) for
X small enough. Indeed, the 2X + k bits are first multiplied by 11 due to the
property of θ. We suppose now that these u active bits are thrown randomly
and we check for collisions. Given u bits, we can form u · (u − 1)/2 different
pairs of bits. The probability that a pair collides is 2−1600, hence, we have about
u · (u − 1)/(2 · 1600) collisions of two bits. In a 2-collision, two active bits are
wasted (they become inactive). Hence, we can remove u · (u− 1)/1600 from the
overall number of active bits. For small X , we can neglect collisions between
three, four and five active bits, since the bits before θ are most likely separated
and will not collide. Hence, we verify the equation for n. This model has been
verified in simulations for the values we are using.

We need now to evaluate the number of active Sboxes in the χ layer of the
third round. However, in order to precisely evaluate the DP of this layer (that
we want to be higher than pmin

B ) and the expansion factor we get on the amount
of distinct differential paths, we also need to look at how the bits are distributed
into the input of the Sboxes. The probability pdist of distributing randomly n
active bits into s 5-bit Sboxes such that exactly Ai Sboxes contain i bits, for
i ∈ [1, 5] is given by Lemma 2.

2 Simulations verified this behavior in practice for the parameters we use in our attack.



414 A. Duc et al.

Lemma 3. Suppose that we have n active bits before χ in the third round. Then,
if n ≤ s, the expected number of useful (i.e., which have DP ≥ pmin

B ) paths GB(n)
we can generate verifies

GB(n) ≥
n

5 �∑
A5=0

N4∑
A4=0

N3∑
A3=0

N2∑
A2=0

F (X, A1, . . . , A5)·22A1+3A2+3.58A3+4(A4+A5) , (6)

where N4 := (n− 5A5)/4�, N3 := (n− 5A5 − 4A4)/3�,
N2 := (n− 5A5 − 4A4 − 3A3)/2�, A1 := n− 5A5 − 4A4 − 3A3 − 2A2, and

F (X, A1, . . . , A5) :=

{
pdist(A1, . . . , A5) if 2−4X−2A1−3A2−4(A3+A4+A5) ≥ pmin

B

0 else.
(7)

Note that we use F (. . . ) to filter the paths that have a too low DP.

The proof is given is the full version of the paper.
In practice, we compute GB(n) by summing over all possible values of A1, . . . ,

A5, such that n = A1 + 2A2 + 3A3 + 4A4 + 5A5.
We have now reached the inbound round and we discard all the paths that do

not have all Sboxes active. Hence, we keep only a fraction of τ full
B = 2−15.9 paths.

It is now easy to see that

τDP
B :=

�n/5�∑
A5=0

�(n−5A5)/4�∑
A4=0

�(n−5A5−4A4)/3�∑
A3=0

�(n−5A5−4A4−3A3)/2�∑
A2=0

F (X, A1, A2, A3, A4, A5) (8)

with F (. . . ) defined in (7) since this is exactly the fraction of path we keep.
To summarize, we have now reached the inbound round and we are able to

generate

Γ out
B = ε ·

(
5
2

)X

·
(

s

X

)
·
(

2X

k

)
· 2k ·GB(n) · τ full

B (9)

differences that have a good DP and all Sboxes active and the total number of
paths we have to generate is nB = Γ out

B /τB = Γ out
B /(τ full

B · τDP
B ).

By playing with the filter bound, we noticed the following behavior. The
stronger the filter is (i.e., the higher we set the bound on the DP), the higher
the expected value of the Hamming weight at the input of the Sboxes of the
inbound phase will be. This behavior will allow us to reduce the complexity of
our attack in Section 5.7, where we discuss the numerical application. Hence,
instead of filtering at pmin

B , we will filter at a higher value to get better results.

5.5 The Inbound Phase

Now that we have our forward and backward sets of differential paths, we need to
estimate the average probability pmatch that two trails can match during the in-
bound phase of the rebound attack. We recall that we already enforced all Sboxes



Unaligned Rebound Attack: Application to Keccak 415

to be active during this match, so pmatch only takes into account the probability
that the differential transitions through all the s Sboxes of the internal state are
possible.

A trivial method to estimate pmatch would be to simply consider an average
case on the Keccak Sbox. More precisely, the average probability that a dif-
ferential transition is possible through the Keccak Sbox, given two random
non-zero 5-bit input/output differences is equal to 2−1.605. Thus, one is tempted
to derive pmatch = 2−1.605·s. However, we observed experimentally that the event
of a match greatly depends on the Hamming weight of the input of the
Sboxes. Note that this effect is only strong regarding the input of the Sbox, but
there is no strong bias on the differential matching probability concerning the
output Hamming weight.

Therefore, in order to model more accurately the input Hamming weight effect
on the matching event, we first divide the backward paths depending on their
Hamming weight and treat each class separately. More precisely, we look at each
possible input Hamming weight division among the s Sboxes. To represent this
division, we only need to look at the number of Sboxes having a specific input
Hamming weight (their relative position do not matter). We denote by ci the
number of Sboxes having an input Hamming weight i and we need the following
equations to hold

∑5
i=1 ci = s since we forced that all Sboxes are active during

a match. Moreover, for a Hamming weight value w, we have
∑5

i=1 i · ci = w. The
set of divisions ci verifying the above mentioned equations is denoted by Cw.
The number of possible 5s-bit vectors satisfying (c1, . . . , c5) (i.e., c1 Sboxes with
1 active bit, c2 with 2 etc.) is denoted bc(c1, . . . , c5) and

bc(c1, . . . , c5) =
s!

c1!c2! . . . c5!
· 5c1+c4 · 10c2+c3 . (10)

We can now compute the probability of having a match pmatch depending on the
input Hamming weight divisions:

Theorem 1. The probability pmatch of having a match is

5s∑
w=s

Pr[Hwtot = w|full]
∑

(c1,...,c5)∈Cw

bc(c1, . . . , c5)
bbucket(w, s)

5∏
i=1

( ∑
y∈{0,1}5

∑
v∈{0,1}5:
Hw(v)=i

Pout(y)1DDT[v][y](
5
i

) )ci

(11)
where Pout(y) is the measured probability distribution of having y at the output
of an Sbox when we enforce all Sboxes to be active, Pr[Hwtot = w|full] is the mea-
sured probability distribution of the Hamming weight of the input of the Sboxes
when all Sboxes are active, bc(. . . ) is given by (10), bbucket(w, s) by Lemma 1 and
1DDT[v][y] is set to one if the entry [v][y] is non-zero in the DDT of the χ layer
and zero otherwise.3

3 Note that Pr[Hwtot = w|full] greatly depends on the backward paths we choose and
that these paths depends on pmatch. We explain how to solve this cyclic dependency
in Section 5.7.



416 A. Duc et al.

We leave the proof to the complete version of the paper. However, we define the
following intermediate result: pmatch(w) := Pr[match|Hwtot = w, full] which can
be written as∑
(c1,...,c5)∈Cw

Pr[match|(c1, . . . , c5), Hwtot = w, full] · Pr[(c1, . . . , c5)|Hwtot = w, full] . (12)

The measured distributions along with some intermediate values will be given
in the extended version of the paper.

We require to test 1/pmatch backward/forward paths combinations in order to
have a good chance for a match. Note that in the next section, we will actually
put an extra condition on the match in order to be able to generate enough
values in the worst case during the outbound phase.

5.6 The Outbound Phase

Now that we managed to obtain a match with complexity 1/pmatch, we need to
estimate how many solutions can be generated from this match. Again, one is
tempted to consider an average case on the Keccak Sbox: the average number
of Sbox values verifying a non-zero random input/output difference such that the
transition is possible is equal to 21.65. The overall number of solutions would then
be 21.65·s. However, as for pmatch, this number highly depends on the Hamming
weight of the input of the Sboxes and this can be easily observed from the DDT
of the χ layer (for example with an input Hamming weight of one the average
number of solutions is 23, while for an input Hamming weight of four the average
number of solutions is 21).

In order to obtain the expected number of values Nmatch we can get from a
match, we proceed like in the previous section and divide according to the input
Hamming weight.

Theorem 2. Let N be a random variable denoting the number of values we can
generate. Let also full be the event denoting that all the Sboxes are active for the
inbound phase. Given a Hamming weight of w at the input of the Sboxes, we can
get Nw := E[N |match, Hwtot = w, full] values from a match, with

Nw =
1

pmatch(w)

∑
(c1,...,c5)∈Cw

5∏
i=1

Zci · bc(c1, . . . , c5)
bbucket(w, s)

, (13)

with

Z :=
1(
5
i

)2
( ∑

v∈{0,1}5:
Hw(v)=i

DDT[v]

) ∑
y∈{0,1}5

∑
v∈{0,1}5:
Hw(v)=i

Pout(y) · 1DDT[v][y] ,

where DDT[v] is the value of the non-zero entries in line v of the DDT, Pout(y)
is the measured probability distribution of having y at the output of an Sbox when
we enforce all Sboxes to be active, pmatch(w) is given by (12), bc(. . . ) is given
by (10), bbucket(w, s) is given by Lemma 1 and 1DDT[v][y] is set to one if the entry
[v][y] is non-zero in the DDT of the χ layer and zero otherwise.



Unaligned Rebound Attack: Application to Keccak 417

The proof is given in the complete version of the paper.
One would be tempted to take the expected value of all the Nw and compute

Nmatch as ∑
w

E[N |match, Hwtot = w, full] · Pr[Hwtot = w|match, full] .

This expectancy would be fine if we were expecting a high number of matches.
This is however not necessarily our case. Hence, we need to ensure that the
number of values we can generate from the inbound is sufficient. To do this, first
note that Nw decreases exponentially while w increases. Similarly, pmatch(w)
increases exponentially while w increases. Thus, we are more likely to obtain a
match at a high Hamming weight which will lead to an insufficient Nmatch.

To solve this issue, we proceed as follows. First, we compute Nw for every w.
We look then for the maximum Hamming weight wmax we can afford, i.e., such
that Nwmax ≥ 1/(pB · pF ). This way, we are ensured to obtain enough solutions
from the match. However, we need to update our definition of a match: a match
occurs only when the Hamming weight of the input is lower than wmax. Hence,
instead of summing over all possible values of w, we sum only up to wmax and
need to update (11). The number of values we can then obtain from the inbound
is Nmatch ≥ Nwmax .

We can now apply this model to the Keccak-f [1600] internal permuta-
tion. Some useful intermediate results and relevant Nwmax (with their associated
pmatch) will be given in the extended version of the paper.

5.7 Finalizing the Attack and Improvements

In Section 5.4, we showed how to choose the backward paths given the probability
of having a match in the inbound phase (pmatch) and the number of solution
we can generate from this match (Nmatch). In Sections 5.5 and 5.6, we showed
how to compute pmatch and Nmatch. However, in these computations, we needed
the probability distribution of the Hamming weight of the input of the Sbox,
Pr[Hwtot = w|full]. This probability depends greatly on the paths we select in
Section 5.4.

To solve this circular dependency, we performed several iterations of the fol-
lowing algorithm until we found some parameters that verify all equations. First,
we estimated roughly Pr[Hwtot = w|full] by taking some random backward paths
with limited complexity. Using the worst case cost of these paths, we were able
to select wmax such that the number of values generated from the inbound is suf-
ficient. Then, we computed pmatch and Nmatch. With this first guess, we searched
for an X and a k such that the we can find a match with a good probability and
such that we can generate enough values from the inbound. Then, we computed
Pr[Hwtot = w|full] using these new paths generated by X , k and pB and started
our algorithm again with this new distribution. After some iterations, we found
a set of filtered backwards paths that provided a sufficient pmatch and Nmatch.



418 A. Duc et al.

When (X, k) = (8, 8), we have ε = 0.736 and Γmid
B =

(
5
2

)X · ( s
X

) · ε = 277.26. If
we filter all paths that have a DP smaller than 2−450, i.e., we set pB = 2−450,
we get for (X, k) = (8, 8) at least ε · (52)X · ( s

X

) · (2X
k

) · 2k · GB(n) · τ full
B =

2493.88−15.9 = 2477.98 distinct differences using (9) for the inbound (for these
parameters, the difference Hamming weight at the input of the χ layer in the
third round is n = 227.9). With these parameters, since we remove the paths
with a DP lower than pB, we keep τDP

B ≈ 1 − 10−10 of the paths, following (8),
i.e., we have almost no filtering on the DP. Hence, we filter the backward paths
with a ratio τB = τ full

B · τDP
B ≈ 2−15.9 · (1 − 10−10) = 2−15.9. We have also

pB = 2−450 and pF = 2−36. Therefore, we need Nmatch ≥ 2486. Computations
show that we have to set wmax = 1000. This leads to pmatch = 2−491.47. This
implies that the minimum total number of backward paths we need to generate
is nmin

B = 1/(pmatch · Γ in
F · τB) = 1/(pmatch · Γ in

F · τ full
B ) = 2484.07. All these paths

apply on nrB = 2 Keccak-f [1600] rounds, all with DP higher or equal to
pmin

B = 236−486 = 2−450.
To summarize, we have that the number of backward output differences is

Γ out
B = nmin

B · τB = 2484.07−15.9 = 2468.17 and that the number of forward input
differences is Γ in

F = 223.3. Hence, there is a total of 2491.47 couples of (Δout
B , Δin

F )
for the inbound phase, which is enough since it is equal to 1/pmatch. Once a
match is found, the worst case complexity of the connected path is 1/(pB ·pF ) ≤
2450+48 = 2486 which is lower or equal to Nmatch. Hence, we can generate enough
values from the inbound phase to find with a good probability values verifying
the differential path.

The overall complexity for the rebound attack given by (1) is C = 2491.47.
This model was verified on the Keccak-f [100] internal permutation. By ap-

plying this attack on it, we found a 4-round result together with solution pairs.
This gives a 6-round distinguisher with complexity 228.76.

5.8 The Distinguisher

We will use exactly the same type of limited-birthday distinguishers as in Sec-
tion 4.

Relaxing the Forward Paths. We analyze now the impact of this two additional
paths on Γ out

F , the set of reachable output differences. At the entrance of the
third round, every Sbox has one single active bit. Hence, according to the DDT,
there are only 4 different possibilities at the output of the Sboxes. Since we
have 6 active Sboxes in the third round, the number of possible differences at
the output of the third round is multiplied by 46 = 212. Thus, the number of
differences at the output of the third round is Γmid

F · 212 = 26 · 212 = 218.
We need now to look at the fourth round to obtain Γ out

F and compute the
generic complexity of the distinguisher. In the third round, every active Sbox
can produce at most 3 active bits at its output, since each active Sbox has only
one single active bit at its input. Hence, the maximum Hamming weight at the
output is 3 · 6 = 18. Each of these active bits can be expanded to at most 11
bits through θ and hence, we have at most 11 · 18 = 198 active bits at the input



Unaligned Rebound Attack: Application to Keccak 419

of the Sboxes of the fourth round. In the worst case, each of these bits will be
in a different Sbox and will produce four possible differences. Hence, we have
Γ out

F ≤ Γmid
F · 212 · 4198 = 218 · 2396 = 2414.

Relaxing the Backward Paths. Each Sbox with one single active bit at its output
can have 9 possible input differences and the maximum possible of input dif-
ferences that can occur for a given input difference is 12 (see χ−1 DDT). Since
we have 2X active Sboxes, the number of possible input differences is increased
by a factor of at most 92X . Therefore, Γ in

B ≤ Γmid
B · 92X/ε and we reduced the

complexity by a factor 24X .
We have Γ in

B ≤ Γmid
B (8) · 92·8/ε = 277.7+50.7 = 2128.4 and Γ out

F ≤ 2414. The
generic complexity of the distinguisher is, hence, greater than 21057.6. This is
much greater than the complexity of the rebound attack C = 2491.47.

6 Results and Conclusion

In this article, we analysed the internal permutations used in the Keccak fam-
ily of hash functions in regards to differential cryptanalysis. We first proposed
a generic method that looks for the best differential paths using CPK consid-
erations and better χ mapping. This new method provides some of the best
known differential paths for the Keccak internal permutations and we derived
distinguishers with rather low complexity exploiting these trails. In particular we
were able to obtain a practical distinguisher for 6 rounds of the Keccak-f [1600]
permutation. Then, aiming for attacks reaching more rounds, we adapted the
rebound attack to the Keccak case. This adaptation is far from trivial and
contains many technical details. Our model was verified by applying the attack
on the reduced version Keccak-f [100]. The main final result is a 8-round dis-
tinguisher for the Keccak-f [1600] internal permutation with a complexity of
2491.47. Our distinguisher results are summarized in Table 2. Note that our attack
does not endanger the security of the full Keccak. We believe that this work
will also help to apply the rebound attack on a much larger set of primitives.

This work might be extended in many ways, in particular by further refining
the differential path search or by improving the inbound phase of the rebound

Table 2. Best differential distinguishers complexities for each version of Keccak in-
ternal permutations, for 1 up to 8 rounds. Note that due to its technical complexity
when applied on Keccak, the rebound attack has only been applied to Keccak-f [100]
and Keccak-f [1600].

b
best differential distinguishers complexity

1 rd 2 rds 3 rds 4 rds 5 rds 6 rds 7 rds 8 rds

400 1 1 1 22 28 224 284 -

800 1 1 1 22 28 232 2109 -

1600 1 1 1 22 28 232 2142 2491.47



420 A. Duc et al.

attack such that the overall cost is reduced. Moreover, another research direction
would be to analyse how the differential paths derived in this article can lead to
collision attacks against reduced versions of the Keccak hash functions. Using
the techniques presented in [19] could help reducing the complexity of it.

Acknowledgements. The authors would like to thank the anonymous referees
for their helpful comments. We are extremely grateful to Guido Bertoni, Joan
Daemen, Michaël Peeters and Gilles Van Assche for their remarks on the first
drafts of this paper. Finally, we are very grateful to Praveen Gauravaram, Tao
Huang, Phuong Ha Nguyen, Wun-She Yap, Przemyslaw Sokolowski and Wenling
Wu for useful discussions.

References

1. Abe, M. (ed.): ASIACRYPT 2010. LNCS, vol. 6477. Springer, Heidelberg (2010)
2. Aumasson, J.-P., Meier, W.: Zero-sum distinguishers for reduced Keccak-f and for

the core functions of Luffa and Hamsi. Presented at the Rump Session of CHES
2009 (2009)

3. Bellare, M., Rogaway, P.: Random Oracles are Practical: A Paradigm for Designing
Efficient Protocols. In: CCS, pp. 62–73. ACM (1993)

4. Bernstein, D.J.: Second preimages for 6 (7? (8??)) rounds of Keccak? (November
2010), http://ehash.iaik.tugraz.at/uploads/6/65/
NIST-mailing-list_Bernstein-Daemen.txt

5. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge functions. In:
ECRYPT Hash Workshop 2007 (May 2007)

6. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On alignment in Keccak. In:
ECRYPT II Hash Workshop (2011)

7. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The KECCAK Reference.
Submission to NIST (Round 3) (2011)

8. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The KECCAK SHA-3 Sub-
mission. Submission to NIST (Round 3) (2011)

9. Boura, C., Canteaut, A., De Cannière, C.: Higher-Order Differential Properties of
Keccak and Luffa. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 252–269.
Springer, Heidelberg (2011)

10. Duc, A., Guo, J., Peyrin, T., Wei, L.: Unaligned Rebound Attack - Ap-
plication to Keccak. Cryptology ePrint Archive, Report 2011/420 (2011),
http://eprint.iacr.org/

11. Gilbert, H., Peyrin, T.: Super-Sbox Cryptanalysis: Improved Attacks for AES-Like
Permutations. In: Hong and Iwata [12], pp. 365–383

12. Hong, S., Iwata, T. (eds.): FSE 2010. LNCS, vol. 6147. Springer, Heidelberg (2010)
13. Khovratovich, D., Naya-Plasencia, M., Röck, A., Schläffer, M.: Cryptanalysis of

Luffa v2 Components. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010.
LNCS, vol. 6544, pp. 388–409. Springer, Heidelberg (2011)

14. Khovratovich, D., Nikolic, I., Rechberger, C.: Rotational Rebound Attacks on Re-
duced Skein. In: Abe [1], pp. 1–19

15. Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: Rebound
Distinguishers: Results on the Full Whirlpool Compression Function. In: Matsui,
M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 126–143. Springer, Heidelberg
(2009)

http://ehash.iaik.tugraz.at/uploads/6/65/NIST-mailing-list_Bernstein-Daemen.txt
http://ehash.iaik.tugraz.at/uploads/6/65/NIST-mailing-list_Bernstein-Daemen.txt
http://eprint.iacr.org/


Unaligned Rebound Attack: Application to Keccak 421

16. Mendel, F., Peyrin, T., Rechberger, C., Schläffer, M.: Improved Cryptanalysis of
the Reduced Grøstl Compression Function, ECHO Permutation and AES Block Ci-
pher. In: Jacobson Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS,
vol. 5867, pp. 16–35. Springer, Heidelberg (2009)

17. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The Rebound Attack:
Cryptanalysis of Reduced Whirlpool and Grøstl. In: Dunkelman, O. (ed.) FSE
2009. LNCS, vol. 5665, pp. 260–276. Springer, Heidelberg (2009)

18. Morawiecki, P., Srebrny, M.: A SAT-based preimage analysis of reduced Keccak
hash functions. Presented at Second SHA-3 Candidate Conference, Santa Barbara
(2010)

19. Naya-Plasencia, M.: How to Improve Rebound Attacks. In: Rogaway, P. (ed.)
CRYPTO 2011. LNCS, vol. 6841, pp. 188–205. Springer, Heidelberg (2011)

20. Naya-Plasencia, M., Röck, A., Meier, W.: Practical Analysis of Reduced-Round
Keccak. In: Bernstein, D.J., Chatterjee, S. (eds.) INDOCRYPT 2011. LNCS,
vol. 7107, pp. 236–254. Springer, Heidelberg (2011)

21. Rijmen, V., Toz, D., Varici, K.: Rebound Attack on Reduced-Round Versions of
JH. In: Hong and Iwata [12], pp. 286–303

22. Sasaki, Y., Li, Y., Wang, L., Sakiyama, K., Ohta, K.: Non-full-active Super-Sbox
Analysis: Applications to ECHO and Grøstl. In: Abe [1], pp. 38–55

23. Keccak team. Keccak Crunchy Crypto Collision and Pre-image Contest (2011),
http://keccak.noekeon.org/crunchy_contest.html

24. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

http://keccak.noekeon.org/crunchy_contest.html


Differential Propagation Analysis of Keccak

Joan Daemen and Gilles Van Assche

STMicroelectronics

Abstract. In this paper we introduce new concepts that help read and
understand low-weight differential trails in Keccak. We then propose ef-
ficient techniques to exhaustively generate all 3-round trails in its largest
permutation below a given weight. This allows us to prove that any 6-
round differential trail in Keccak-f [1600] has weight at least 74. In the
worst-case diffusion scenario where the mixing layer acts as the identity,
we refine the lower bound to 82 by systematically constructing trails
using a specific representation of states.

Keywords: cryptographic hash function, Keccak, differential crypt-
analysis, computer-aided proof.

1 Introduction

The goal of cryptanalysis is to assess the security of cryptographic primitives.
Finding attacks or properties not present in ideal instances typically contributes
to the cryptanalysis of a given primitive. Building upon previous results, attacks
can be improved over time, possibly up to a point where the security of the
primitive is severely questioned.

In contrast, cryptanalysis can also benefit from positive results that exclude
classes of attacks, thereby allowing research to focus on potentially weaker as-
pects of the primitive. Interestingly, weaknesses are sometimes revealed by chal-
lenging the assumptions underlying positive results. Nevertheless, both attacks
and positive results can be improved over time and together contribute to the
understanding and estimation of the security of a primitive by narrowing the
gap between what is possible to attack and what is not.

Differential cryptanalysis (DC) is a discipline that attempts to find and ex-
ploit predictable difference propagation patterns to break iterative cryptographic
primitives [6]. For ciphers, this typically means key retrieval, while for hash func-
tions, this is the generation of collisions or of second preimages. The basic version
makes use of differential trails (also called characteristics or differential paths)
that consist of a sequence of differences through the rounds of the primitive.
Given such a trail, one can estimate its differential probability (DP), namely,
the fraction of all possible input pairs with the initial trail difference that also
exhibit all intermediate and final difference when going through the rounds.

A more natural way to characterize the power of trails in unkeyed primitives is
by their weight w. In general the weight of a trail is is the sum of the weight of its
round differentials, where the latter is the negative of its binary logarithm. For

A. Canteaut (Ed.): FSE 2012, LNCS 7549, pp. 422–441, 2012.
c© International Association for Cryptologic Research 2012



Differential Propagation Analysis of Keccak 423

many round functions, including that of Keccak-f and Rijndael, the weight
equals the number of binary equations that a pair must satisfy to follow the
specified differences. Assuming that these conditions are independent, the weight
of the trail relates to its DP as DP = 2−w and exploiting such a trail becomes
harder as the weight increases. For a primitive with, say, b input and output bits,
the number of pairs that satisfy these conditions is then 2b−w. The assumption
of independence does not always apply. For instance, a trail with w > b implies
redundant or contradictory conditions on pairs, for which satisfying pairs may
or may not exist. Another example where this independence assumption breaks
down are the plateau trails that occur in Rijndael [10]. These trails, with weight
starting from w = 30 for 2 rounds, have a DP equal to 2z−w with z > 0 for a
fraction 2−z of the keys and zero for the remaining part. In general, they occur
in primitives with strong alignment [3] and a mixing layer based on maximum-
distance separable (MDS) codes.

In the scope of DC, positive results can be established by finding a lower
bound on the weight of any trail over a specified number of rounds. For instance,
the structure of Rijndael and the properties of its diffusion operations allow to
analytically derive such lower bounds [9]. Such results can be transposed to the
permutations underlying the hash function Grøstl [13]. Other examples include
a lower bound on the number of active S-boxes in JH [18] or computer-aided
proofs on the weight of trails in Noekeon [8] and on the minimum number of
active AND gates in MD6 [17,14].

Keccak is a sponge function submitted to the SHA-3 contest [16,4,2]. Re-
cently, new results were published on the differential resistance of this function
and among those heuristic techniques were proposed to build low-weight differ-
ential trails [12,15]. These gave the currently best trails for 3, 4 and 5 rounds
of the underlying permutation Keccak-f [1600]. In particular, Duc et al. found
a trail of weight 32 for 3 rounds, and this motivated us to systematically in-
vestigate whether trails of lower weight exist. Also, there are some similarities
between Keccak and MD6, but unlike MD6, the permutation used in the pro-
posed SHA-3 candidate Keccak has no significant lower bounds on the weight
of trails. So the philosophy behind [17,14] was another source of inspiration and
motivation for our research.

Lower bounds on symmetric trails were already proven in [4]. They provide
lower bounds with weight above the permutation width on Keccak-f [25] to
Keccak-f [200] but only partial bounds in the case of Keccak-f [1600]. Thanks
to the Matryoshka structure [4], a lower bound W on trails in Keccak-f [25w]

implies a lower bound W ′ = W w′
w on w-symmetric trail in Keccak-f [25w′] for

w′ > w. These are summarized in Table 1.
In this paper, we report on techniques to efficiently generate all the trails in

Keccak-f [1600] up to a given weight. We implemented these techniques in a
computer program, which allowed us at this point to completely scan the space
of 3-round differential trails up to weight 36. This confirmed that the trail found
by Duc et al. has minimum weight and allowed us to demonstrate that there are
no 6-round trails with weight below 74. These results are summarized in Table 2.



424 J. Daemen and G. Van Assche

Table 1. Lower bounds above the permutation width on 1- to 8-symmetric trails [4]

w Lower bound for Keccak-f [25w] Lower bound for Keccak-f [1600]

1 30 per 5 rounds 1920 per 5 rounds tight

2 54 per 6 rounds 1728 per 6 rounds tight

4 146 per 16 rounds 2336 per 16 rounds non-tight

8 206 per 18 rounds 1648 per 18 rounds non-tight

The source code of the classes and methods used in this paper is available in the
KeccakTools package [5].

As a by-product of this trail search, this paper proposes new techniques to
relate the properties of the θ mapping in Keccak to the weight of differential
trails. In the worst-case diffusion scenario where θ acts as the identity, we build
upon the results of [4] and [15] to systematically construct so-called in-kernel
trails using an efficient representation of states.

Table 2. Weight of differential trails in Keccak-f [1600]

Rounds Lower bound Best known

3 32 (this work) 32 [12]

4 - 134 [7]

5 - 510 [15]

6 74 (this work) 1360 [4]

24 296 (this work) -

Further discussions on how to exploit differential trails in Keccak can be
found in [3]. Also, the attacks in [11] combine algebraic techniques with a differ-
ential trail.

The paper is organized as follows. In Section 2, we recall the structure of
Keccak and mappings inside its round function. Section 3 focuses on how to
represent and extend the differential trails of Keccak. Section 4 sets up the
overall strategy and Section 5 introduces a basic trail generation technique. The
advanced techniques are covered in Sections 6 and 7, which address two comple-
mentary cases. Finally, Section 8 extends the results from 3 to 6 rounds.

2 Keccak

Keccak combines the sponge construction with a set of seven permutations
denoted Keccak-f [b], with b ranging from 25 to 1600 bits [1,4]. In this pa-
per, we concentrate on the permutation used in the SHA-3 submission, namely,
Keccak-f [1600].

The state of Keccak-f [1600] is organized as a set of 5 × 5 × 64 bits with
(x, y, z) coordinates. The coordinates are always considered modulo 5 for x and



Differential Propagation Analysis of Keccak 425

y and modulo 64 for z. A row is a set of 5 bits with given (y, z) coordinates, a
column is a set of 5 bits with given (x, z) coordinates and a slice is a set of 25
bits with given z coordinate.

The round function ofKeccak-f [1600] consists of the following steps, which are
only briefly summarized here. For more details, we refer to the specifications [4].

– θ is a linear mixing layer, which adds a pattern that depends solely on the
parity of the columns of the state. Its properties with respect to differential
propagation will be detailed and exploited in Section 6.

– ρ and π displace bits without altering their value. Jointly, their effect is

denoted by (x, y, z)
π◦ρ−→ (x′, y′, z′), with (x, y, z) a bit position before ρ and

π and (x′, y′, z′) its coordinates afterward.
– χ is a degree-2 non-linear mapping that processes each row independently.

It can be seen as the application of a translation-invariant 5-bit S-box. The
differential propagation properties will be detailed below.

– ι adds a round constant. As it has no effect on difference propagation, we
will ignore it in the sequel.

3 Representing and Extending Trails

In general, for a function f with domain Zb
2, we define the weight of a differential

(u′, v′) as

w(u′ f→ v′) = b− log2 |{u : f(u)⊕ f(u⊕ u′) = v′}| .

If the argument of the logarithm is non-zero (i.e., the DP is non-zero), we say
that u′ and v′ are compatible. Otherwise, the weight is undefined.

The weight of a trail is the sum of the weight of the differentials that compose
this trail. In Keccak-f , we specify differential trails with the differences before
each round function. For clarity, we adopt a redundant description by also spec-
ifying the differences before and after the linear steps λ = π ◦ ρ ◦ θ. An n-round
trail is of the following form, where each bi must be equal to λ(ai),

Q = a0
π◦ρ◦θ−→ b0

χ→ a1
π◦ρ◦θ−→ b1

χ→ a2
π◦ρ◦θ−→ . . .

χ→ an, (1)

and has weight w(Q) =
∑

iw(ai
χ◦π◦ρ◦θ−→ ai+1). Since bi = λ(ai), this expression

simplifies to w(Q) =
∑

iw(bi
χ→ ai+1).

3.1 Extending Forward and Trail Prefixes

Given a trail as in (1), it is possible to characterize all states that are compatible
with bn = λ(an) through χ and thus to find all n+ 1-round trails Q′ that have
Q as its leading part. This process is called forward extension.

The χ mapping has algebraic degree 2 and, for a given input difference bn, the
space of compatible output differences forms a linear affine variety A(bn) with



426 J. Daemen and G. Van Assche

|A(bn)| elements [4]. For a compatible an+1, the weight w(bn
χ→ an+1) depends

only on bn and is equal to w(bn) � log2 |A(bn)|, with the symbol � denoting a
definition. As χ operates on each row independently, the weight w(b) can also
be computed on each row independently and summed. To construct A(b), the
bases resulting from each active row are gathered. Table 3 displays offsets and
bases for the affine spaces of all single-row differences.

Table 3. Space of possible output differences, weight, minimum reverse weight and
Hamming weight of all row differences, up to cyclic shifts

forward propagation
Difference offset base elements w(·) wrev(·) || · ||
00000 00000 0 0 0
00001 00001 00010 00100 2 2 1
00011 00001 00010 00100 01000 3 2 2
00101 00001 00010 01100 10000 3 2 2
10101 00001 00010 01100 10001 3 3 3
00111 00001 00010 00100 01000 10000 4 2 3
01111 00001 00011 00100 01000 10000 4 3 4
11111 00001 00011 00110 01100 11000 4 3 5

As a consequence, the weight of a n-round trail Q is w(Q) =
∑n−1

i=0 w(bi) and
depends only on the n-tuple (b0, . . . , bn−1). We call the latter a trail prefix. All
n-round trails sharing this trail prefix and with an compatible with bn−1 through
χ have the same weight.

3.2 Extending Backward and Trail Cores

Similarly, given a trail as in (1), it is possible to construct all states that are
compatible with a0 through χ−1 and thus to find all n+ 1-round trails Q′ that
have Q as its trailing part. This process is called backward extension. In contrast
to χ, its inverse has algebraic degree 3 and the space of compatible differences
is not an affine variety in general. Yet, compatible values can be identified per
active row and combined.

For a difference a after χ, we define the minimum reverse weight wrev(a) as
the minimum weight over all compatible b before χ. Namely,

wrev(a) � min
b : a∈A(b)

w(b).

Like for the restriction weight, the minimum reverse weight wrev(a) can be com-
puted on each row independently and summed. Values are also shown in Table 3.

Given a n − 1-round trail prefix Q = (b1, . . . , bn−1), it is easy to construct a
difference b0 such that the trail prefix Q′ = b0||Q has weight given by w(Q′) =
w(Q) + wrev(λ−1(b1)). This is the smallest possible weight a n-round trail can



Differential Propagation Analysis of Keccak 427

have with Q as its trailing part. It follows that a sequence of n− 1 state values
Q̃ = (b1, . . . , bn−1) defines a set of n-round trails with a weight at least

w̃(Q̃) � wrev(λ−1(b1)) +

n−1∑
i=1

w(bi).

We denote the former by the term trail core and the latter by its weight. Note
that a n-round trail core is determined by only n− 1 states, although its weight
takes n individual weights into account.

KeccakTools implements the representation of trails, trail prefixes and trail
cores (see the Trail class), as well as the forward and backward extension (see
the KeccakFTrailExtension class) [5].

4 Towards a Bound for Trails in Keccak-f [1600]

To find a lower bound on differential trail weights in Keccak-f [1600], our strat-
egy is the following.

– First, we exhaustively generate all 3-round trails up to a given weight T3.
There exists a trail of weight 32 as found by Duc et al. [12]. So by scanning
the space of trails up to weight T3 ≥ 32, we are sure to hit at least one trail
and the trail with minimum weight yields a tight lower bound on 3-round
trails.

– Second, we derive a lower bound, not necessarily tight, on the weight of 6-
round trails by using the 3-round trails found. Any 6-round trail of weight
2T3+1 or less satisfies either w(b0)+w(b1) +w(b2) ≤ T3 or w(b3) +w(b4)+
w(b5) ≤ T3. We thus use forward and backward extension from 3-round trails
up to weight 2T3+1. If such trails are found, the one with the smallest weight
defines the lower bound, which is naturally tight. Otherwise, this establishes
a lower bound for the weight of 6-round trails to 2T3 + 2. In the latter case
no trail with weight 2T3 + 2 is known so the bound is not necessarily tight.

The reason for targeting 3-round trails in the first phase is the following. The
minimum weight of a 1-round trail is 2, with a single active bit in b0. For the
24 rounds of Keccak-f [1600], this amounts to a lower bound of 24 × 2 = 48.
Constructing a state a with only two active bits in the same column leads to
2-round trail core with weight 8. Hence, if we base ourselves only on 2-round
trail, we reach a lower bound of 12 × 8 = 96. If the 3-round trail of weight
32 found by Duc et al. [12] has minimum weight, this would mean that a 24-
round trail has weight at least 8 × 32 = 256. Also, 3-round trail cores can be
constructed by taking into account conditions across one layer of χ. Generating
exhaustively trails of 4 rounds or more up to some weight would probably yield
better bounds, but at the same time it is more difficult as several layers of χ
must be dealt with. Instead, the two-step approach described above can take
advantage of the exhaustive set of trails covered (i.e., all up to weight T3) to
derive a bound based on T3 instead of on the minimum weight over 3 rounds.



428 J. Daemen and G. Van Assche

4.1 Generating all 3-Round Trails Up to a Given Weight

In our approach we generate all 3-round differential trails of the form

Q = a0
π◦ρ◦θ−→ b0

χ→ a1
π◦ρ◦θ−→ b1

χ→ a2
π◦ρ◦θ−→ b2

χ→ a3, (2)

up to some weight limit w(Q) ≤ T3. We call this the target space. We do this by
searching for all trail cores (b1, b2) with weight below T3. Each such trail core
(b1, b2) thus represents a set 3-round trails of the form of Eq. (2) with weight
not below that of its core. In the scope of this paper, we limited ourselves to
T3 = 36.

We covered the set of all 3-round trails up to weight T3 in three sub-phases:

1. In Section 5, we start with all cores such that wrev(λ−1(b1)) ≤ 7, w(b1) ≤ 7
or w(b2) ≤ 7.

2. In Section 6, we generate all remaining cores, except where both a1 and a2
are in the kernel.

3. In Section 7, we finish by generating all cores where both a1 and a2 are in
the kernel.

4.2 Too Many States to Generate and Extend, Even When
Exploiting Symmetry

A way to generate all trails in the target space is to first generate all states up
to a given weight and then do backward and forward extensions to obtain trail
cores. If we define T1 �

⌊
T3

3

⌋
, then for w̃(b1, b2) ≤ T3 either wrev(λ−1(b1)) ≤ T1,

w(b1) ≤ T1 or w(b2) ≤ T1. To cover the target space, we need to consider these
cases:

– wrev(λ−1(b1)) ≤ T1, so we have to generate all states a1 with wrev(a1) ≤ T1,
compute b1 = λ(a1) and extend forward the 2-round trail cores (b1) to get
3-round trail cores.

– w(b1) ≤ T1, so we have to generate all states b1 with w(b1) ≤ T1 and extend
forward the 2-round trail cores (b1).

– w(b2) ≤ T1, so we have generate all states b2 with w(b2) ≤ T1 and extend
backward the 2-round trail cores (b2).

Unfortunately, this brute-force strategy requires a high number of states to
cover the whole space for an interesting target weight. E.g., if T3 = 36, then
T1 = 12 and there are about 1.42 × 1015 ≈ 250 states with weight up to 12 in
Keccak-f [1600].

We can reduce this number by taking the z symmetry into account. Ex-
cept for ι, which does not influence difference propagation, all the step map-
pings of Keccak-f are invariant when translated along z. Hence, for each trail
Q = (b0, b1, . . . , bn) there exists a trail Q′ = (z(b0), z(b1), . . . , z(bn)) of same
weight, with z the translation operator along the z axis. In the sequel, we will
always consider trails up to translations in z. This reduces the search space by
approximately a factor w = 64—not exactly a factor w because of states that
are periodic in z. Yet, the number of states to extend forward and backward is
still about 244.



Differential Propagation Analysis of Keccak 429

5 Generating Trails with a Low Number of Active Rows

In this section, we generate and extend states with weight up to T ′
1 = 7. This

does not cover the whole target space with T3 = 36 but the remaining portion
of the target space is limited to trails with a more flat weight profile, i.e., they
satisfy w(bi) ≥ T ′

1 + 1 = 8 for all i ∈ {0, 1, 2} and w(bi) + w(bi+1) ≤ T ′
2 =

T3 − (T ′
1 + 1) = 28 for all i ∈ {0, 1}.

More specifically, in this phase we look at the number of active rows in order to
generate all trail cores such that wrev(λ−1(b1)) ≤ T ′

1, w(b1) ≤ T ′
1 or w(b2) ≤ T ′

1,
for T ′

1 = 7. According to Table 3, each active row contributes for at least 2 to
the weight. Hence,

w(b) ≥ 2‖b‖row and wrev(b) ≥ 2‖b‖row,

and we can cover all the states up to weight 7 by generating all states with up

to (T
′
1

2 ) = 3 active rows.
This approach can be refined by looking at the number of active rows not only

for one state but for two consecutive states. With χ, the minimum weight a round
differential can have is 2. So, wrev(λ−1(b1)) ≥ 2 implies that wrev(λ−1(b2)) +
w(b2) ≤ w(b1) + w(b2) ≤ T3 − 2 = 34 and similarly w(b2) ≥ 2 implies that
wrev(λ−1(b1)) + w(b1) ≤ T3 − 2 = 34. Hence,

wrev(λ−1(bi))+w(bi) ≤ T3−2 = 34 ⇒ ‖λ−1(bi)‖row+‖bi‖row ≤
⌊
T3 − 2

2

⌋
= 17.

In practice, what we did was the following.

– Generate B = {b : (‖b‖row ≤ 3 or ‖λ−1(b)‖row ≤ 3) and ‖λ−1(b)‖row +
‖b‖row ≤ 17}. This is done by first generating all states b with up to 3 active
rows and filter on ‖λ−1(b)‖row, and then generate all states a with up to 3
active rows, compute b = λ(a) and filter on ‖b‖row.

– Do forward extension of all b1 ∈ B and keep the cores Q̃ = (b1, b2) with
w̃(Q̃) ≤ T3.

– Do backward extension of all b2 ∈ B and keep the cores Q̃ = (b1, b2) with
w̃(Q̃) ≤ T3.

We found a trail core (b1, b2) with wrev(λ−1(b1))+w(b1)+w(b2) = 4+4+24 = 32
(see also Table 4). It contains the 3-round trail found by Duc et al. [12].

There are
(
320
n

)
(31)n states with n active rows. As this function grows very

quickly, it was not reasonable to extend this search beyond 3 active rows.
The generation of trail cores based on a small number of active rows is im-

plemented in the KeccakFTrailCoreRows class [5].

6 Generating Trails Using the Properties of θ

To investigate the remaining part of the target space, we look at the properties
of states a with respect to θ, and specifically the parity of its columns, to limit



430 J. Daemen and G. Van Assche

the weight of two-round trails. An important parameter to classify the states a
is their column parity, so as to study states in sets of parities. From the column
parity, we derive the θ-gap, defined below. With θ-gap g, the effect of θ is to
flip 10g bits. There are thus at least 10g active bits, each either in a or in θ(a).
So, the higher the θ-gap the higher wrev(a) + w(λ(a)) is likely to be. We can
efficiently compute a lower bound for wrev(a) + w(λ(a)) over all a with a given
parity. For the target weights considered in this paper, this allows us to limit the
states to consider to those with a parity belonging to a mere handful of values.

We then use the generated states a are to build trail cores by forward and
backward extension. As the θ-gap increases, the number of states a to consider
decreases since more states a can immediately be excluded. An important case
is when all the columns of a have even parity, i.e., a is in the kernel. In this case,
the θ-gap is zero and a high number of states must be generated and extended.
For this reason, this section focuses only the case where either a1 or a2 is not in
the kernel. The complementary case is covered in Section 7.

6.1 Properties of θ

As θ is a linear function, its properties are the same whether applied on a state
absolute value or on a difference, so we just write “value”. The following defini-
tions are from [4].

The column parity (or parity for short) P (a) of a value a is defined as the parity
of the columns of a, namely P (a)[x][z] =

∑
y a[x][y][z]. A column is even (resp.

odd) if its parity is 0 (resp. 1). The parity can also be defined on a slice, namely
P (az)[x] =

∑
y a[x][y][z]. When the parity of a state or of a slice is zero (i.e., all its

columns are even), we say it is in the column-parity kernel (or kernel for short).
The mapping θ consists in adding a pattern to the state, which we call the θ-

effect. The θ-effect of a value a is E(a)[x][z] = P (a)[x− 1][z]+P (a)[x+1][z− 1].
For a fixed θ-effect e[x][z], θ comes down to adding the y-symmetric pattern
e[x][y][z] � e[x][z](∀y). So θ depends only on column parities and always affects
columns symmetrically in y.

A column of coordinates (x, z) is affected iff E(a)[x][z] = 1; otherwise, it is
unaffected. Note that the θ-effect always has an even Hamming weight so the
number of affected columns is even.

The θ-gap is defined as the Hamming weight of the θ-effect divided by two.
Hence, if the θ-gap of a value at the input of θ is g, the number of affected
columns is 2g and applying θ to it results in 10g bits being flipped.

We have introduced the θ-gap via the θ-effect, but it can be defined directly
using the parity itself. For this we introduce an alternative, single-dimensional,
representation of a parity p[x][z]. We map the (x, z) coordinates to a single
coordinate t as t → (x, z) = (−2t, t) and denote the result by p[t]. In this
representation a run is a sequence of ones delimited by zeroes. As illustrated on
Figure 1, each run induces two affected columns. First, if it starts in coordinates
(x, z), it implies an affected column in its right neighbor (x+1, z). And if it ends
in (x′, z′) it implies an affected column in its top-left neighbor (x′ − 1, z′ + 1).
The following lemma links the number of runs to the θ-gap.



Differential Propagation Analysis of Keccak 431

Fig. 1. Example of parity pattern. Each square represents a column. An odd column
contains a circle, while an affected column is denoted by a dot. A column can be both
odd and affected. The odd columns of a run are connected with a line. The affected
columns due to a run are located at the right (resp. top left) of the start (resp. end)
column of the run.

Lemma 1. The parity p has θ-gap g iff p[t] has g runs.

6.2 The Propagation Branch Number

The propagation branch number of a parity p is the minimum weight of the
2-round trail core (b) among states with this parity. More formally,

B(p) � min{w̃(b) : P (λ−1(b)) = p}.

Owing to the portion of the target space already covered in Section 5, we can
limit the propagation branch number to T ′

2 = 28. The strategy is as follows:

– First, we identify and exclude parity patterns p such that the propagation
branch number can be proven to exceed T ′

2 = 28.
– Then, for the remaining parity patterns p we look for all states b = λ(a)

with P (a) = p and w̃(b) ≤ T ′
2 = 28.

– Finally, we forward and backward extend the states seen as 2-round trail
cores up to weight T3 = 36.

Clearly, the kernel states, i.e., states such that P (a) = 0 must be considered.
For instance, a state a with just two active bits in the same column will have
wrev(a) = 4. Then, b = λ(a) = π(ρ(a)) since θ has no effect in this case, and b



432 J. Daemen and G. Van Assche

also has two active bits. For Keccak-f [1600], all the rotation constants in ρ are
different and these two bits will not be in the same slice, so not in the same row
and wrev(a) + w(b) = 8. Hence, the propagation branch number of the all-zero
parity is at least 8 and thus the all-zero parity pattern must be included.

States that are out of the kernel are likely to have a higher propagation branch
number. We now concentrate on how to find a lower bound on the propagation
branch number of a given parity pattern.

6.3 Bounding the Row Branch Number

The row branch number of a parity p is the minimum number of active rows
before and after λ among states with this parity. More formally,

Brows(p) � min{‖λ−1(b)‖row + ‖b‖row : P (λ−1(b)) = p}.

Since an active row has at least propagation weight 2, this means that B(p) ≥
2Brows(p). We can thus use the row branch number as a way to limit the search
to parity patterns for which w̃(b) ≤ T ′

2.
For a given parity pattern, we classify the columns as either affected, unaf-

fected odd or unaffected even. We make use of the following properties to find a
lower bound on the row branch number.

Lemma 2. In terms of active rows, θ satisfies the following properties:

– An active bit in an affected column before θ will be passive after θ, and vice-

versa. So, for each bit (x, y, z)
π◦ρ−→ (x′, y′, z′) of an affected column, at least

one of row (y, z) in λ−1(b) and row (y′, z′) in b will be active.
– An odd unaffected column always contains at least one active bit and this bit

stays active after θ. So, for at least one bit (x, y, z)
π◦ρ−→ (x′, y′, z′) of an odd

unaffected column, both rows (y, z) in λ−1(b) and (y′, z′) in b will be active.

These properties are translated into Algorithm 1, which returns a lower bound
of Brows(p). The algorithm avoids counting twice an active row by marking (in
the sets a and b) the row positions already encountered.

6.4 Looking for Candidate Parity Patterns

To find trails such that any two consecutive rounds have weight up to T ′
2 = 28,

we have to consider the parity patterns listed in Lemma 3.

Lemma 3. A 2-round differential trail Q = (b0, b1, b2) in Keccak-f [1600] with
w(Q) ≤ 28 necessarily satisfies one of the following properties on the parity of
a1 = λ−1(b1):

– a1 is in the kernel, i.e., P (a1) = 0;
– the θ-gap of a1 is 1 with a single run of length 1 or 2; or
– the θ-gap of a1 is 2 or 3 with runs of length 1 each, all starting in the same

slice.



Differential Propagation Analysis of Keccak 433

Algorithm 1. Computing a lower bound of Brows(p)

Let a and b be sets of row positions, which are initially empty
B ← 0
for each affected column (x, z) do

for y ∈ Z5 do

Let (x, y, z)
π◦ρ−→ (x′, y′, z′)

if (y, z) /∈ a and (y′, z′) /∈ b then
B ← B + 1
a ← a ∪ {(y, z)} and b ← b ∪ {(y′, z′)}

end if
end for

end for
for each unaffected odd column (x, z) do

Let (x, i, z)
π◦ρ−→ (x′

i, y
′
i, z

′
i) for i ∈ Z5

if {(i, z), i ∈ Z5} ∩ a = ∅ then
B ← B + 1
a ← a ∪ {(i, z), i ∈ Z5}

end if
if {(y′

i, z
′
i), i ∈ Z5} ∩ b = ∅ then

B ← B + 1
b ← b ∪ {(y′

i, z
′
i), i ∈ Z5}

end if
end for
return B

If parities are considered up to translation along z, we can restrict ourselves to
parity patterns with runs starting in slice z = 0.

To prove this result, we conducted a recursive search as follows. Each parity is
represented as a set of runs. First, all parity patterns p with a single run (so

θ-gap 1) are investigated. All p with Brows(p) ≤ T ′
2

2 = 14 are stored into a set S.
Then, we recursively add runs not overlapping the already added ones (so as to

cover θ-gaps higher than 1), and all found p with Brows(p) ≤ T ′
2

2 = 14 are stored
into a set S.

To limit the search, we use the following monotonicity property on the number
of active rows. Using Lemma 2, changing an unaffected even column into either
an unaffected odd or an affected column cannot decrease the number of active
rows.

In the recursive search described above, adding a run to a parity pattern p can
turn an unaffected odd column into an affected column. Hence, we cannot use
the monotonicity property directly on the runs. However, adding a run never
turns an affected column back into an unaffected one. So, before recursively
adding a run to p, we apply a modified version of Algorithm 1 that does not
take unaffected odd columns into account; this modified algorithm is monotonic
in the runs. If the value returned by this modified algorithm is already above



434 J. Daemen and G. Van Assche

T ′
2

2 = 14, then there is no need to further add runs. This efficiently cuts the
search.

Before being added to the candidate set S, the parity pattern p is tested with
the unmodified Algorithm 1. For the remaining parity patterns, we explicitly
generated all states a with these parities up to w̃(λ(a)) ≤ T ′

2 = 28. This allowed
us to prove Lemma 3.

Algorithm 1 is implemented in the getLowerBoundTotalActiveRows function
and the recursive search in lookForRunsBelowTargetWeight [5].

6.5 Starting from Out-of-Kernel States

For a given parity pattern p, we can construct all states b = λ(a) with P (a) = p
and w̃(b) ≤ T ′

2 = 28. We proceed in two phases.

– In a first phase, we generate all states a such that P (a) = p by assigning
all possible 16 values to affected (odd or even) columns and by assigning a
single active bit in each unaffected odd column. These states are such that
||a|| + ||λ(a)|| is exactly 10g + 2c, with g the θ-gap and c the number of
unaffected odd columns.

– In a second phase, we take the states generated in the first phase and add
pairs of bits to all unaffected columns. By adding a pair of bits, we do not
alter P (a).

In both phases, we keep only the states b = λ(a) for which w̃(b) ≤ T ′
2 = 28. As

can be seen in Table 3, both the weight and the reverse minimum weight are
monotonic, i.e., adding an active bit to the state cannot decrease them. We can
therefore limit the search by stopping adding pairs of bits when w̃(b) is above
T ′
2 = 28.
In practice, what we did was the following.

– Let P be the set of parity patterns satisfying one of the conditions of
Lemma 3 except p = 0.

– By the method described above, we construct all states in the set B = {b :
P (λ−1(b)) ∈ P and w̃(b) ≤ T ′

2 = 28}.
– Finally, we forward and backward extend the states in B to 3-round trail

cores up to weight T3 = 36.

We again found the same trail core as in Section 5. The trail prefix of weight 32
has P (a1) = 0 (so a1 is in the kernel) and P (a2) has one run of length 2 (so a2
has θ-gap 1). No other trail cores were found.

When extending the states in B, we exhaustively scan all compatible states,
thereby including cases where P (a1) = 0 or P (a2) = 0. Hence, we covered the
whole target space, except for trails such that both P (a1) = 0 and P (a2) = 0.

7 Generating In-Kernel Trails

To close the target space, we must look at in-kernel trails of the form in Eq. (2)
with both P (a1) = 0 and P (a2) = 0. In the case of in-kernel trails, we were able to



Differential Propagation Analysis of Keccak 435

be completely cover the space up to weight T3 = 40, and we expect the techniques
presented here can cover trails of higher weight. As P (a1) = P (a2) = 0, the θ
operation has no effect and therefore bi = π(ρ(ai)). So this comes down to
looking for states a = a1, b = b1, c = a2 and d = b2 connected as:

a
π◦ρ−→ b

χ→ c
π◦ρ−→ d, with P (a) = P (c) = 0. (3)

We now summarize how we can efficiently generate all in-kernel three-round trail
cores up to some weight and provide more details in following subsections. The
key element in our method is the observation that any state b with P (a) = 0 and
for which there exists a state c with P (c) = 0 can be represented in a specific
way. The states a and b are iteratively constructed by adding active bits in the
form of bit sequences called chains and vortices, defined in Section 7.2 below.
Chains and vortices have an even number of active bits per column in a by
construction and hence ensure P (a) = 0.

In b, there can be zero, one or more slices called knots, which contain three
or more active bits. Each of these active bits is the end point of a chain that
leads to another knot or that connects back to the same knot. The intermediate
active bits of a chain appear pairwise in slices holding exactly two active bits in
one column (called orbital slices, see Section 7.1). On top of chains connecting
knots, a state b can exhibit a vortex, i.e., a cyclic sequence of active bits that
appear pairwise both in the columns of a and in the columns of b.

By starting with an empty state and progressively adding chains, knots and
vortices, one can quickly build states a and b that satisfy P (a) = 0 and for which
there exist c with P (c) = 0, leading to 3-round in-kernel trail cores. Any state
leading to a in-kernel trail can be represented in this way, and care is taken so
that all possible states are generated, up to a given target weight. At each step, a
lower bound on the weight of 3-round trail cores containing a and b is computed
so as to efficiently limit the search.

As a final step, the generated states a and b are forward-extended to states
c and d, limiting to c values in the kernel. Thanks to the properties of χ (see
Section 3.1), the compatible states c can be expressed as a linear affine space. It
is thereby easy to take the intersection of this affine space with the set of states
such that P (c) = 0.

7.1 Characterizing the Slices in b

Definition 1. A state b is tame if P (λ−1(b)) = 0 and such that there exists at
least one state c compatible with b through χ such that P (c) = 0.

To characterize states b such that P (c) = 0, we can reason on the slices bz of b
since χ and P can be jointly described in terms of slices. In particular, each slice
cz of c must be in the kernel, namely, P (cz) = 0, and we have to characterize
the slices bz under that constraint. First, if bz = 0 then cz = 0 and P (cz) = 0.
Then, a slice bz with a single active bit cannot be in the kernel after χ, as at
least one column of cz will have a single active bit. Finally, a slice bz with two



436 J. Daemen and G. Van Assche

active bits must have its two active bits in the same column for cz to be in the
kernel. By inspection of Table 3, a row with a single active bit at coordinate x,
e.g., 00100 transforms into an active row of the form uv100 with u, v ∈ {0, 1},
so the active bit stays active at x and zero, one or two active bits can appear at
x− 2 and x− 1 of the same row. So, if the two bits are not in the same column,
one of the active bits that stays after χ will not find another active bit in the
same column. We summarize this in the next lemma.

Lemma 4. If b is tame, then each of its slices has either

– no active bit,
– two active bits in the same column, or
– three or more active bits.

We call an empty slice a slice with no active bit, and an orbital slice is a slice
with two active bits in the same column. A slice that is neither empty not an
orbital slice is called a knot. We say that a knot is tame if it can transform after
χ into a slice in the kernel. According to Lemma 4, a tame knot has at least
three active bits.

7.2 Characterizing the Set of Active Bits

Since in the kernel θ acts as the identity, the active bits of a are just moved to
other positions in b and their number remains the same, i.e., ||a|| = ||b||. We
can therefore represent a and b by a list of active bit positions (pi)i=1...||a|| in
either the coordinates (xi, yi, zi) in a or the coordinates (x′

i, y
′
i, z

′
i) in b, with

(xi, yi, zi)
π◦ρ−→ (x′

i, y
′
i, z

′
i).

First, we start with the active bits in a. We say that active bits pi and pj are
peer if they are in the same column in a, i.e., xi = xj and zi = zj . Since each
column has an even number of active bits when P (a) = 0, an active bit thus
always has a peer.1

Then, we move to the active bits in b. We say that the two active bits pi and
pj are chained if they both lie in the same orbital slice in b. So x′

i = x′
j and

z′i = z′j and no other active bit is in slice z′i.
A chain is a sequence of bit positions of even length (p0, p1, p2, . . . , p2n−1)

such that p2k and p2k+1 are peer (∀k ∈ {0, . . . , n−1}) and that p2k+1 and p2k+2

are chained (∀k ∈ {0, . . . , n − 2}). In addition, the first and last active bits p0
and p2n−1 must be in knots (either the same one or different ones). The simplest
possible chain has length 2 and consists only in two peer active bits. Figure 2
depicts the concept of chain.

1 While for columns with two active bits, the peer relationship is unambiguous, in
the case of columns with four active bits, we choose which pairs of active bits are
peer. Thus we can see the representation of the states as being augmented with
additional attributes specifying the peer relationship and there may be several ways
to represent the same state. By generating states via this representation, the only
risk is to generate more states than necessary.



Differential Propagation Analysis of Keccak 437

Fig. 2. Schematic example of a chain. An active bit position is represented by a circle
with its index. Two active bits connected by a plain line (resp. dashed line) are peer
(resp. chained).

The definition of a vortex is the same as that of a chain (p0, p1, p2, . . . , p2n−1),
except that the first and last active bits p0 and p2n−1 must be chained. In other
words, a vortex forms a cycle of bit positions linked alternatively by peer and
chained relationships, all in orbital slices.

In a tame state, each active bit position has exactly one peer position. The
active bit positions in knots are the end points of chains, while the active bits in
orbital slices are chained and belong to chains or vortices. Therefore, any tame
state can be represented as a set of vortices and chains connecting knots.

7.3 Generating All Tame States

To generate all tame states up to a target weight T3, we generate states a and b
by representing them using the concepts of Sections 7.1 and 7.2. The generation
builds (initially empty) states a and b by iterating the following nested loops:

– In the outer loop, we add chains to the existing state. When adding a chain
(p0, p1, p2, . . . , p2n−1), the slices that receive the end points p0 and p2n−1

must become knots if they are not already. If n > 1, the pairs of (chained)
active bits (i2k+1, i2k+2) are added to empty slices, which become orbital
slices. Active bits cannot be added to already constructed orbital slices, as
it would contradict the definition of an orbital slice. Enough chains must be
added such that each knot contains at least 3 active bits (see Lemma 4).

– For a fixed set of chains produced in the previous step, the inner loop iterates
on the number and position of vortices. In a vortex, all active bits are chained,
so they must be added to empty slices, which become orbital slices.

With the monotonic lower bound function defined in the next section, we add
chains and vortices until this lower bound exceeds T3.



438 J. Daemen and G. Van Assche

7.4 Lower-Bounding the Weight of In-Kernel Trails

We wish to determine a lower bound on the weight of 3-round in-kernel trail
cores (b, d), namely, on wrev(a) + w(b) + w(d) with a = λ−1(b), from a and b
only, for use in our trail generation. Since only d is unknown, this implies finding
a lower bound on w(d). This can be done by first determining a lower bound on
the Hamming weight ||d|| and then bounding the weight of any state with given
Hamming weight.

To determine a lower-bound on ||d||, we work on each slice of b. If slice bz has
u = ‖bz‖row active rows, then the slice cz has at least u active bits. In addition,
P (cz) = 0 implies that the number of active bits must be even, so ||cz|| ≥ 2�u2 �.
Finally, we have ||d|| = ||c|| so

||d|| ≥ 2
∑
z

⌈
‖bz‖row

2

⌉
.

From Table 3, it is easy to verify the following lower bound:

w(d) ≥ ŵ(||d||) �
⌈
4||d||
5

⌉
+ [1 if ||d|| = 1 or 2 (mod 5)].

Hence, we define the lower weight of b as

L(b) � wrev(λ−1(b)) + w(b) + ŵ

(
2
∑
z

⌈
‖bz‖row

2

⌉)
.

The lower weight yields a lower bound on the weight of 3-round in-kernel trail
cores (b, d) regardless of d.

7.5 Limiting the Search by Lower-Bounding the Weight

At each level of the loop described in Section 7.3, the corresponding iteration is
aborted, and elements are not further added, if we can be sure that the lower
weight L(b) will become larger than the target weight T3. Adding a chain to
the state can potentially bring new knots and/or new orbital slices. Adding a
vortex necessarily brings new orbital slices. Therefore, there is a limit in the
number of knots and orbital slices that must be considered for the generation to
be complete up to the target weight.

As a preliminary step, the minimum reverse weight satisfies the following
inequality (see Table 3):

wrev(a) ≥ ŵrev(||a||) �
⌈
3||a||
5

⌉
.

We see from Lemma 4 that each tame knot contributes to at least 3 active bits
in a and in b. Furthermore, the number of bits in each slice of a must be even



Differential Propagation Analysis of Keccak 439

Table 4. Summary of all 3-round differential trail cores found in Keccak-f [1600] up
to weight 36, and up to weight 40 for in-kernel trails. The number indicates the number
of cores with the same properties indicated in the other columns.

Number w̃(·) wrev(a1) w(b1) w(b2) P (a1) P (a2) Structure of a1, b1

1 32 4 4 24 kernel θ-gap 1

1 35 12 12 11 kernel kernel vortex of length 6

7 36 12 12 12 kernel kernel vortex of length 6

7 39 12 12 15 kernel kernel vortex of length 6
2 39 12 11 16 kernel kernel 2 knots connected by 3 chains

41 40 12 12 16 kernel kernel vortex of length 6
4 40 12 12 16 kernel kernel 2 knots connected by 3 chains

(P (a) = 0), so ||a|| ≥ 2
⌈
3k
2

⌉
and wrev(a) ≥ ŵrev(||a||), with k the number of

knots. In b, each tame knot has at least 3 active bits on at least 2 different
active rows, hence contributing at least 5 to the weight, and so w(b) ≥ 5k. Each
active row in b contributes to at least one active bit in d so ||d|| ≥ 2k and
w(d) ≥ ŵ(||d||).

For instance, k = 5 knots implies that ||a|| ≥ 16 and wrev(a) ≥ ŵrev(16) = 10,
that w(b) ≥ 25 and that ||d|| ≥ 10 and w(d) ≥ ŵ(10) = 8, so a lower weight of at
least 43. If T3 ≤ 42, looking for configurations with from 0 to 4 knots is therefore
sufficient, not even counting the orbital slices that also compose chains.

We found cores of weight 35, 36, 39 and 40, as detailed in Table 4. For illustra-
tion purposes, examples of trail prefixes are shown in [7]. The search described in
this section is implemented in the TrailCore3Rounds and TrailCoreInKernel-

AtC classes [5].

8 Extension to Six-Round Trails

Table 4 summarizes all the 3-round cores found. These trail cores completely
represent all the 3-round trails up to weight 36 (or 40 for in-kernel trails). They
can be found in [5].

The second phase introduced in Section 4 consists in exhaustively extending
forward and backward all the 3-round trail cores into 6-round trails cores. As
no 6-round trail of weight up to 73 were found, we conclude that a 6-round
differential trail in Keccak-f [1600] has at least weight 74. In the specific case
of in-kernel trails, no 6-round trail of weight up to 81 were found and we conclude
that a 6-round in-kernel differential trail in Keccak-f [1600] has at least weight
82.

For the 24 rounds of Keccak-f [1600], a differential trail has at least weight
296, and an in-kernel trail has at least weight 328.



440 J. Daemen and G. Van Assche

9 Conclusions

We studied and implemented the exhaustive generation of 3-round differential
trails in the Keccak-f [1600] permutation, which allowed us to prove a lower
bound on the weight of differential trails. The techniques developed in this paper
exploit the properties of the mixing layer in its round function to provide better
bounds than what a brute-force method could provide. Table 2 shows that there
remains a gap between the best known trails and the lower bound beyond three
rounds that calls for future work. Finally, the concepts introduced in this paper,
such as chains, vortices, knots and parity runs, help read trails and understand
them.

References

1. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the Indifferentiability
of the Sponge Construction. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS,
vol. 4965, pp. 181–197. Springer, Heidelberg (2008), http://sponge.noekeon.org/

2. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Cryptographic sponge func-
tions (January 2011), http://sponge.noekeon.org/

3. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On alignment in Keccak.
In: ECRYPT II Hash Workshop 2011 (2011)

4. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak reference
(January 2011), http://keccak.noekeon.org/

5. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: KeccakTools software
(April 2012), http://keccak.noekeon.org/

6. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. In:
Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21.
Springer, Heidelberg (1991)

7. Daemen, J., Van Assche, G.: Differential propagation analysis of Keccak. Cryp-
tology ePrint Archive, Report 2012/163 (2012), http://eprint.iacr.org/

8. Daemen, J., Peeters, M., Van Assche, G., Rijmen, V.: Nessie proposal: the block
cipher Noekeon, Nessie submission (2000), http://gro.noekeon.org/

9. Daemen, J., Rijmen, V.: The design of Rijndael — AES, the advanced encryption
standard. Springer (2002)

10. Daemen, J., Rijmen, V.: Plateau characteristics and AES. IET Information Secu-
rity 1(1), 11–17 (2007)

11. Dinur, I., Dunkelman, O., Shamir, A.: New Attacks on Keccak-224 and Keccak-
256. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 447–463. Springer,
Heidelberg (2012)

12. Duc, A., Guo, J., Peyrin, T., Wei, L.: Unaligned rebound attack: Application to
Keccak. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 407–426. Springer,
Heidelberg (2012)

13. Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C.,
Schläffer, M., Thomsen, S.S.: Grøstl – a SHA-3 candidate. Submission to NIST
(round 3) (2011)

http://sponge.noekeon.org/
http://sponge.noekeon.org/
http://keccak.noekeon.org/
http://keccak.noekeon.org/
http://eprint.iacr.org/
http://gro.noekeon.org/


Differential Propagation Analysis of Keccak 441

14. Heilman, E.: Restoring the differential security of MD6. In: ECRYPT II Hash
Workshop 2011 (2011)

15. Naya-Plasencia, M., Röck, A., Meier, W.: Practical Analysis of Reduced-Round
Keccak. In: Bernstein, D.J., Chatterjee, S. (eds.) INDOCRYPT 2011. LNCS,
vol. 7107, pp. 236–254. Springer, Heidelberg (2011)

16. NIST, Announcing request for candidate algorithm nominations for a new crypto-
graphic hash algorithm (SHA-3) family. Federal Register Notices 72(212), 62212–
62220 (2007), http://csrc.nist.gov/groups/ST/hash/index.html

17. Rivest, R., Agre, B., Bailey, D.V., Cheng, S., Crutchfield, C., Dodis, Y., Fleming,
K.E., Khan, A., Krishnamurthy, J., Lin, Y., Reyzin, L., Shen, E., Sukha, J., Suther-
land, D., Tromer, E., Yin, Y.L.: The MD6 hash function – a proposal to NIST for
SHA-3. Submission to NIST (2008), http://groups.csail.mit.edu/cis/md6/

18. Wu, H.: The hash function JH. Submission to NIST (round 3) (2011)

http://csrc.nist.gov/groups/ST/hash/index.html
http://groups.csail.mit.edu/cis/md6/


New Attacks on Keccak-224 and Keccak-256

Itai Dinur1, Orr Dunkelman1,2, and Adi Shamir1

1 Computer Science Department, The Weizmann Institute, Rehovot, Israel
2 Computer Science Department, University of Haifa, Israel

Abstract. The Keccak hash function is one of the five finalists in NIST’s
SHA-3 competition, and so far it showed remarkable resistance against
practical collision finding attacks: After several years of cryptanalysis
and a lot of effort, the largest number of Keccak rounds for which actual
collisions were found was only 2. In this paper we develop improved col-
lision finding techniques which enable us to double this number. More
precisely, we can now find within a few minutes on a single PC actual
collisions in standard Keccak-224 and Keccak-256, where the only mod-
ification is to reduce their number of rounds to 4. When we apply our
techniques to 5-round Keccak, we can get in a few days excellent near
collisions, where the Hamming distance is 5 in the case of Keccak-224
and 10 in the case of Keccak-256. Our new attack combines differential
and algebraic techniques, and uses the fact that each round of Keccak
is only a quadratic mapping in order to efficiently find pairs of messages
which follow a high probability differential characteristic.

Keywords: Cryptanalysis, SHA-3, Keccak, collision, near-collision, prac-
tical attack.

1 Introduction

The Keccak hash function [4] uses the sponge construction [3] to map arbitrary
long inputs into fixed length outputs, and is one of the five finalists of NIST’s
SHA-3 competition. The Keccak versions submitted to the SHA-3 competition
have an internal state size of b = 1600 bits, and an output size n of either 224,
256, 384 or 512 bits. The internal permutation of Keccak consists of 24 appli-
cation of a non-linear round function, applied to the 1600-bit state. Previous
papers on Keccak, such as [14], include analysis of Keccak versions with a re-
duced internal state size, or with different output sizes. However, in this paper,
we concentrate on the standard Keccak versions submitted to the SHA-3 com-
petition, and the only way in which we modify them is by reducing their number
of rounds.

Previous results on Keccak’s internal permutation include zero-sum distin-
guishers presented in [1], and later improved in [5,6,9]. Although zero-sum distin-
guishers reach a significant number of rounds of Keccak’s internal permutation,
they have very high complexities, and they seem unlikely to threaten the core
security properties of Keccak (namely, collision resistance, preimage resistance
and second-preimage resistance). Other results on Keccak’s internal permutation

A. Canteaut (Ed.): FSE 2012, LNCS 7549, pp. 442–461, 2012.
c© International Association for Cryptologic Research 2012



New Attacks on Keccak-224 and Keccak-256 443

include a differential analysis given in [10]. Using techniques adapted from the
rebound attack [13], the authors construct differential characteristics which give
distinguishers on up to 8 rounds of the permutation, with complexity of about
2491. However, in their method it is not clear how to reach the starting state
differences of these characteristics from valid initial states of Keccak’s internal
permutation, since in sponge constructions a large portion of the initial state
of the permutation is fixed and cannot be chosen by the cryptanalyst. Thus,
although the results of [10] seem to be more closely related to the core security
properties of Keccak than zero-sum distinguishers, they still do not lead to any
attacks on the Keccak hash function itself.

Currently, there are very few results that analyze reduced-round variants of
the full Keccak (rather than its building blocks): in [2], Bernstein described
preimage attacks which extend up to 8 rounds of Keccak, but are only marginally
faster than exhaustive search, and use a huge amount of memory. More recently,
Naya-Plasencia, Röck and Meier presented practical attacks on Keccak-224 and
Keccak-256 with a very small number of rounds [15]. These attacks include a
preimage attack on 2 rounds, as well as collisions on 2 rounds and near-collisions
on 3 rounds. In this paper, we extend these collision attacks on Keccak-224 and
Keccak-256 by 2 additional rounds: we find actual collisions in 4 rounds and
actual near-collisions in 5 rounds of Keccak-224 and Keccak-256, with Hamming
distance 5 and 10, respectively.

The collisions and near-collisions of [15] were obtained using low Hamming
weight differential characteristics, starting from the initial state of Keccak’s per-
mutation. Such low Hamming weight characteristics are also the starting point
of our new attacks, but we do not require the characteristics to start from the
initial state of the permutation. Given a low Hamming weight starting state dif-
ference of a characteristic, we can easily extend it backwards by one round, and
maintain its high probability (as done in [10]). However, due to the very fast
diffusion of the inverse linear mapping used by Keccak’s permutation, the new
starting state difference of the extended characteristic has a very high Hamming
weight. We call this starting state difference a target difference, since our goal is
to find message pairs which have this difference after one round of the Keccak
permutation (after the fixed round, this difference will evolve according to the
characteristic with high probability).1 One of the main tools we develop in this
paper is an algorithm that aims to achieve this goal, namely, to find message
pairs which satisfy a given target difference after one Keccak permutation round.
We call this algorithm a target difference algorithm, and it allows us to extend
our initial characteristic by two additional rounds (as shown in Figure 1): we
first extend the characteristic backwards by one round to obtain the target dif-
ference (while maintaining the characteristic’s high probability). Then, we use
the target difference algorithm to link the characteristic to the initial state of

1 We note that the target difference is not a valid initial difference of the permutation,
which fixes many of the state bits to pre-defined values. As a result, the high prob-
ability characteristic cannot be used to extend the results of [15] by an additional
round.



444 I. Dinur, O. Dunkelman, and A. Shamir

Keccak’s permutation, through an additional round. We note that the final link,
which efficiently bypasses Keccak’s first Sbox layer, uses algebraic techniques
rather than standard probabilistic techniques.

The target difference algorithm is related to several hash function cryptana-
lytic techniques that were developed in recent years. In particular, it is related
to the work of Khovratovich, Biryukov and Nikolic [12], where, similarly to our
algorithm, the authors use linear algebra to quickly satisfy many conditions of
a differential characteristic. However, these techniques seem to work best on
byte-oriented hash functions, whose internal structure can be described using a
few sparse equations, which is not the case for Keccak. Our algorithm is also
closely related to the work of Khovratovich [11] that exploits structures (which
aggregate internal states of the hash function) in order to reduce the amortized
complexity of collision attacks: the attacker first finds a truncated differential
characteristic and searches for a few pairs of initial states that satisfy it. Then,
using the structures and the initially found pairs, the attacker efficiently obtains
many additional pairs that satisfy the truncated characteristic. However, in the
case of Keccak, there are very few characteristics that can lead to a collision
with high probability, and it seems unlikely that they can be joined in order to
form the truncated differential characteristic required in order to organize the
state differences into such structures. Moreover, it seems difficult to find even
one pair of initial states that satisfy the target difference for Keccak. Another at-
tack related to the target difference algorithm is the rebound attack [13]. In this
attack, the cryptanalyst uses the available degrees of freedom to efficiently link
and extend two truncated differential characteristics, both forwards and back-
wards, from an intermediate state of the hash function. However, once again,
such high probability truncated characteristics are unlikely to exist for Keccak.
Moreover, it is not clear how to use the rebound attack to link the backward
characteristic to the initial state of the permutation. Thus, our target difference
algorithm can be viewed as an asymmetric rebound attack, where one side of
the characteristic is fixed.

Our full attacks have two parts, where in the first part we execute the target
difference algorithm in order to obtain a sufficiently large set of message pairs
that satisfy the target difference after the first round. In the second part of the
attack, we try different message pairs in this set in order to find a pair whose
difference evolves according to a characteristic whose starting state is the target
difference. Since the target difference algorithm does not control the differences
beyond the first round, the second part of the attack is a standard probabilistic
differential attack (which only searches for collisions or near-collisions obtained
from message pairs within a specific set). The high probability differential char-
acteristic beyond the first round ensures that the time complexity of the second
part of the attack is relatively low.

Although the target difference algorithm is heuristic, and there is no prov-
able bound on its running time, it was successfully applied with its expected
complexity to many target differences defined by the high probability differen-
tial characteristics. Consequently, we were able to find actual collisions for 4



New Attacks on Keccak-224 and Keccak-256 445

rounds of Keccak-224 and Keccak-256 within minutes on a standard PC. By
using good differential characteristics for an additional round, we found near-
collisions for 5 rounds of Keccak-224 and Keccak-256. However, this required
more computational effort (namely, a few days on a single PC), since the ex-
tended characteristics have lower probabilities.

The paper is organized as follows. In Section 2, we briefly describe Keccak, and
in Section 3 we introduce our notations. In Section 4, we give a comprehensive
overview of the target difference algorithm and describe the properties of Keccak
that it exploits. In Section 5, we present our results on round-reduced Keccak.
In the full version of the paper [8], we describe the full details of the target
difference algorithm, and propose an alternative algorithm, which has a better
understood time complexity. Since the original algorithm gave us very good
results in practice, we did not use this alternative version. However, it may be
more efficient in some cases, especially if someone finds longer high probability
characteristics for Keccak’s permutation.

4-Round Keccak

1 Round

Target Difference
Algorithm

1 Round

Characteristic
extended
backwards

2 Rounds

High Probability
Differential Characteristic

Fig. 1. Extending a 2-Round Differential Characteristic by Two Additional Rounds

2 Description of Keccak

In this section we give short descriptions of the sponge construction and the
Keccak hash function. More details can be found in the Keccak specification [4].

The sponge construction [3] works on a state of b bits, which is split into two
parts: the first part contains the first r bits of the state (called the outer part of
the state) and the second part contains the last c = b− r bits of the state (called
the inner part of the state).

Given a message, it is first padded and cut into r-bit blocks, and the b state
bits are initialized to zero. The sponge construction then processes the message in
two phases: In the absorbing phase, the message blocks are processed iteratively
by XORing each block into the first r bits of the current state, and then applying
a fixed permutation on the value of the b-bit state. After processing all the blocks,
the sponge construction switches to the squeezing phase. In this phase, n output
bits are produced iteratively, where in each iteration the first r bits of the state
are returned as output and the permutation is applied.

The Keccak hash function uses multi-rate padding: given a message, it first
appends a single 1 bit. Then, it appends the minimum number of 0 bits followed
by a single 1 bit, such that the length of the result is a multiple of r. Thus,
multi-rate padding appends at least 2 bits and at most r + 1 bits.



446 I. Dinur, O. Dunkelman, and A. Shamir

The Keccak versions submitted to the SHA-3 competition have b = 1600 and
c = 2n, where n ∈ {224, 256, 384, 512}. The 1600-bit state can be viewed as a
3-dimensional array of bits, a[5][5][64], and each state bit is associated with 3
integer coordinates, a[x][y][z], where x and y are taken modulo 5, and z is taken
modulo 64.

The Keccak permutation consists of 24 rounds, which operate on the 1600
state bits. Each round of the permutation consists of five mappings R = ι ◦ χ ◦
π ◦ ρ ◦ θ. Keccak uses the following naming conventions, which are helpful in
describing these mappings:

– A row is a set of 5 bits with constant y and z coordinates, i.e. a[∗][y][z].
– A column is a set of 5 bits with constant x and z coordinates, i.e. a[x][∗][Z].

– A lane is a set of 64 bits with constant x and y coordinates, i.e. a[x][y][∗].
– A slice is a set of 25 bits with a constant z coordinate, i.e. a[∗][∗][z].

The five mappings are given below, for each x,y, and z (where the state addition
operations are over GF (2)):

1. θ is a linear map, which adds to each bit in a column, the parity of two other
columns.

θ: a[x][y][z]← a[x][y][z] +

4∑
y′=0

a[x− 1][y′][z] +
4∑

y′=0

a[x+ 1][y′][z − 1]

In this paper, we also use the inverse mapping, θ−1, which is more compli-
cated and provides much faster diffusion: for θ−1, flipping the value of any
input bit, flips the value of more than half of the output bits.

2. ρ rotates the bits within each lane by T(x,y), which is a predefined constant
for each lane.
ρ: a[x][y][z]← a[x][y][z + T (x, y)]

3. π reorders the lanes.

π: a[x][y][z]← a[x′][y′][z], where
(
x
y

)
=

(
0 1
2 3

)
·
(
x′

y′

)
4. χ is the only non-linear mapping of Keccak, working on each of the 320 rows

independently.
χ: a[x][y][z]← a[x][y][z] + ((¬a[x+ 1][y][z]) ∧ a[x+ 2][y][z])
Since χ works on each row independently, in can be viewed as an Sbox layer
which simultaneously applies the same 5 bits to 5 bits Sbox to the 320 rows
of the state. We note that the Sbox function is an invertible mapping, and
we will use the extremely important observation that the algebraic degree
of each output bit of χ as a polynomial in the five input bits is only 2. As
noted in [4], the algebraic degree the inverse mapping χ−1 is 3.

5. ι adds a round constant to the state.
ι: a← a+ RC[ir]
We omit the values of RC[ir], as they are not needed for our analysis.



New Attacks on Keccak-224 and Keccak-256 447

3 Notations

Given a message M , we denote its length in bits by |M |. Unless specified oth-
erwise, in this paper we assume that |M | = r − 8, namely we consider only
single-block messages of maximal length such that |M |(modulo 8) ≡ 0 (which
give us the maximal number of degrees of freedom, for single-block messages
containing an integral number of bytes). Given M , we denote the initial state of
the Keccak permutation as the 1600-bit word M � M ||p||02n, where || denotes
concatenation, and p denotes the 8-bit pad 10000001.

The first three operations of Keccak’s round function are linear mappings,
and we denote their composition by L � ρ ◦ π ◦ θ. We denote the Keccak
nonlinear function on 5-bit words defined by varying the first index by χ|5.
The difference distribution table (DDT ) of this function is a two-dimensional
32 × 32 integer table, where all the differences are assumed to be over GF (2).
The entry DDT (δin, δout) specifies the number of input pairs to this Sbox
with difference δin that give the output difference δout (i.e., the size of the set
{x ∈ {0, 1}5 | χ|5(x) + χ|5(x+ δin) = δout}).

We denote the 1600-bit target difference, which is the input of the target
difference algorithm, by ΔT . The output of the algorithm is a subset of ordered
pairs of single block messages {(M1

1 ,M
2
1 ), (M

1
2 ,M

2
2 ), ..., (M

1
k ,M

2
k )} that satisfy

this difference after one roundR, namelyR(M
1

i )+R(M
2

i ) = ΔT ∀i ∈ {1, 2, ..., k}.

4 Overview of the Target Difference Algorithm

When designing the target difference algorithm, we face two problems: first, the
target difference extends backwards, beyond the first Keccak Sbox layer, with
very low probability (due to its high Hamming weight). The second problem
is that the initial state of the permutation fixes many of the state bits to pre-
defined values, and the initial states that we use must satisfy these constraints.
On the other hand, Keccak has several useful properties that we can exploit in
our target difference algorithm. In this section, we describe these properties in
detail and give an overview of the algorithm.

4.1 The Properties of Keccak Exploited by the Target Difference
Algorithm

The First Property. Keccak-224 and Keccak-256 allow the user to control
many of the 1600 state bits of the initial state of the permutation. Thus, given a
target difference, we expect many solutions to exist (namely, one-block message
pairs which have the 1600-bit target difference after one permutation round):
since we consider message pairs, where each message is of length r− 8 = 1600−
8− 2n bits (1144 for Keccak-224, and 1080 for Keccak-256), given an arbitrary
1600-bit target difference, there is an expected number of 22(1600−8−2n)−1600 =
21584−4n message pairs of this length that satisfy this difference (regardless of



448 I. Dinur, O. Dunkelman, and A. Shamir

the value of the inner part of the state). Thus, the algorithm has 704 and 560
degrees of freedom for Keccak-224 and Keccak-256, respectively.

Despite the large number of available degrees of freedom, the number of pos-
sible solutions varies significantly according to the target difference. To demon-
strate this, we use the fact that L−1 has very fast diffusion (i.e., even an input
with one non-zero bit is mapped by L−1 into a roughly balanced output). We
consider the case where t > 0 out of the 320 Sboxes of the target difference are
active (i.e., they have a non-zero output difference). Each one of the 320 − t
non-active Sbox zero output differences is uniquely mapped backwards to a zero
input difference into the first Sbox layer. Using the Keccak Sbox DDT , it is easy
to see that each one of the t active Sbox output differences is mapped to more
than 8 possible input differences. Thus, the number of possible state differences
after the first linear layer (or before the first Sbox layer) is more than 8t = 23t.
Since L is invertible and acts deterministically on the differences, the number of
possible input differences to the Keccak compression function remains the same.
We now recall from the first difference constraint in Section 4, that we require
that the 2n+ 8 MSBs of ΔI are zero. However, for t large enough, we still ex-
pect more than 23t−2n−8 valid solutions. When the target difference is chosen at
random, we have t ≈ 310 (since the probability that an Sbox output difference
is zero is 1

32 ). This gives more than 2930−448−8 = 2474 expected solutions for
Keccak-224, and more than 2930−512−8 = 2410 expected solutions for Keccak-
256. On the other hand, consider the extreme case of t = 1 (i.e., the target
difference has only one active Sbox). Clearly, this Sbox cannot contribute more
than 31 possible differences after the first linear layer. Since L−1 has very fast
diffusion, these possible differences are mapped to at most 31 roughly balanced
non-zero possible input differences, and we do not expect the 2n+8 MSBs of any
of them to be zero. To conclude, target differences with a small number of active
Sboxes are likely to have no solutions at all. On the other hand, a majority of the
target differences have a very large number of expected solutions for Keccak-224
and Keccak-256. Note that having a large number of solutions does not imply
that it is easy to find any one of them, since their density is still minuscule.

The Second Property. The algebraic degree of the Keccak Sboxes is only 2.
This implies that given a 5-bit input difference δin and a 5-bit output difference
δout, the set of values {v1, v2, ..., vl} such that χ|5(vi) + χ|5(vi + δin) = δout

is an affine subset. Since (vi + δin) + δin = vi, then vi + δin ∈ {v1, v2, ..., vl},
implying {v1, v2, ..., vl} = {v1+δin, v2+δin, ..., vl+δin}. Thus, both coordinates
of the ordered pairs give the same subset, and we denote it by A(δin, δout) (note
that |A(δin, δout)| = DDT (δin, δout)). On the other hand, since the algebraic
degree of the inverse Sbox is 3, which is reduced to 2 (rather than 1) after
differentiation, the output values that satisfy an input and an output difference
do not necessarily form an affine subset.

The Third Property. For any non-zero 5-bit output difference δout to a Keccak
Sbox, the set of possible input differences, {δin|DDT (δin, δout) > 0}, contains at
least 5 (and up to 17) 2-dimensional affine subspaces. These affine subspaces can



New Attacks on Keccak-224 and Keccak-256 449

be easily pre-computed using the DDT , for each one of the 31 possible non-zero
output differences. However, we note that there is no output difference for which
the set of possible input differences contains an affine subspace of dimension 3
or higher.

4.2 Formulating the Problem

Given ΔT , an arbitrary message pair (M1,M2) in which |M1| = |M2| = r − 8

is a solution to our problem if R(M
1
) + R(M

2
) = ΔT . This can be formulated

using two constraints on the 1600-bit words (M1,M2):

1. The 2n + 8 MSBs of M
1
and M

2
are equal to p||02n, where p denotes the

8-bit pad 10000001.

2. R(M
1
) +R(M

2
) = ΔT (where R is the permutation round of Keccak).

We can easily formulate the first constraint using linear equations on the bits of
M1 andM2. Since Keccak’s Sbox has an algebraic degree of 2 overGF (2), we can
formulate the second constraint as a system of quadratic equations on these bits.
Standard heuristic techniques for solving such systems include using the available
degrees of freedom to fix some message values (or values before the first Sbox
layer) in order to linearize the system. However, these techniques require many
more than the available number of degrees of freedom. For example, in order to
get linear equations after one round of Keccak’s permutation, we can fix 3 out
of the 5 bits entering an Sbox (after the first linear layer), such that there are
no two consecutive unknown input bits entering the Sbox. Using this technique
reduces the single quadratic term in the symbolic form of each of the Sbox’es
output bits to a linear term. However, this requires fixing 320 · 3 = 960 bits per
massage, and 2 ·960 = 1920 bits in total, which is significantly more than the 704
available degrees of freedom for Keccak-224 (and clearly more than the available
number of degrees of freedom for the other Keccak versions). Consequently, we
have to repeat the linearization procedure a huge number of times, with different
fixed values, in order to find a solution.

A Two-Phase Algorithm. Although we expect our quadratic system to have
many solutions, solving all the equations at once seems difficult. Thus, we split
the problem into easier tasks by exploiting the low algebraic degree of Keccak’s
Sbox to a greater extent than in the standard techniques: as described in the
second property of Section 4.1 given an input difference and an output difference
to an Sbox, all the pairs of input values that satisfy them form an affine subset.2

This suggests an algorithm with two phases, where in the first phase (called the
difference phase) we find an input difference to all the Sboxes, and in the second

2 Similar observations were used in [7] to suggest that when DDT (δin, δout) = 2
or 4, the same holds. In the specific case of Keccak, we also use 3-dimensional
affine subsets of pairs that satisfy the Sbox difference transition (δin, δout), for which
DDT (δin, δout) = 8.



450 I. Dinur, O. Dunkelman, and A. Shamir

phase (called the value phase) we obtain the actual values of the message pairs
that lead to the target difference.

Using this two-phase approach, the ordered pairs produced by our algorithm
satisfy two additional properties: the 1600-bit input difference of the initial states

is fixed to some 1600-bit value ΔI (i.e. M
1

i +M
2

i = ΔI ∀i ∈ {1, 2, ..., k}), and the
set composed of all the initial states defined by the first message in each ordered

pair (i.e.
⋃
{M1

i } ∀i ∈ {1, 2, ..., k}), forms an affine subset. The algorithm outputs
the ordered pairs as the fixed 1600-bit input difference ΔI , and some basis for the

affine subset
⋃
{M1

i } ∀i ∈ {1, 2, ..., k}. We note that the large number of degrees
of freedom allows us to restrict the set of solutions (i.e. the set of message pairs
that satisfy the target difference) to a smaller subset (but still large enough for
our purposes) that can be found relatively easily. In particular, the algorithm
considers only message pairs with a fixed differenceΔI , for which all the solutions
can be found by solving linear equations.

The two constraints above, which define our quadratic equation system, are
broken into two sets of constraints, since we have to simultaneously enforce two
difference constraints (given as constraints on the 1600-bit word ΔI):

Difference Constraint 1. The 2n + 8 most significant bits (MSBs) of ΔI

are equal to zero.
Difference Constraint 2. L(ΔI) is a valid input difference to the Sbox layer,
i.e. there exists some 1600-bit word W such that χ(W ) + χ(W + L(ΔI)) = ΔT

(note that since L is a linear function, L(ΔI) is well-defined).

The first difference constraint simply equates bits of the input difference ΔI

to zero (456 bits for Keccak-224 and 520 bits for Keccak-256), while the second
difference constraint assigns to every 5 bits of L(ΔI) that enter an Sbox, several
possible values which are not related by simple affine equations.

In the second phase, we enforce additional value constraints (given on the

1600-bit word M
1
):

Value Constraint 1. The 2n + 8 MSBs of M
1
are equal to p||02n, where p

denotes the 8-bit pad 10000001.

Value Constraint 2. R(M
1
) +R(M

1
+ΔI) = ΔT .

Note that the first difference constraint and the first value constraint on each
M

1

i also ensure that the same value constraint holds for M
2

i (i.e., the 2n + 8

MSBs of M
2

i are equal to p||02n).
Given a single 1600-bit Sbox layer input difference, the second property of

Section 4.1 implied that enforcing the two value constraints simply reduces to
solving a union of two sets of linear equations. On the other hand, it is not clear
how to simultaneously enforce both of the difference constraints, since given an
output difference to an Sbox δout, all the possible input differences δin such that
DDT (δin, δout) > 0, are not related by simple affine relations.



New Attacks on Keccak-224 and Keccak-256 451

4.3 The Difference Phase

Unsuccessful Attempts to Enforce the Difference Constraints. We can
try to enforce both difference constraints by assigning the undetermined 1600−
2n− 8 bits of ΔI , in such a way that the second difference constraint will hold.
This usually involves iteratively constructing an assignment for ΔI , by guessing
several undetermined bits at a time, and filtering the guesses by verifying the
second difference constraint. However, this is likely to have a very large time
complexity, since L diffuses the bits of ΔI in a way that forces us to guess many
bits before we can start filtering the guesses. Moreover, for any ΔT , the fraction
of input differences satisfying the first difference constraint that also satisfy the
second difference constraint is very small. Thus, most of the computational effort
turns out to be useless, since the guesses are likely to be discarded at later stages
of the algorithm. Another approach is to guess L(ΔI) by iteratively guessing
the 5-bit Sbox input differences, and filtering the guesses by verifying the first
difference constraint. For similar reasons, this approach is likely to have a very
large time complexity.

A Better Approach. Both of these approaches are very strict, since each guess
made by the algorithm commits to a specific value for some of the bits of ΔI ,
or L(ΔI), and restricts the solution space significantly. Thus, we use the third
property of Section 4.1, which gives us more flexibility, and significantly reduces
the time complexity: given any non-zero 5-bit output difference to a Keccak Sbox,
the set of possible input differences contains at least five 2-dimensional affine
subspaces. Consequently, in order to enforce the second difference constraint,
for each Sbox with a non-zero output difference (i.e., an active Sbox), we choose
one of the affine subsets (which contains 4 potential values for the 5 Sbox input
bits of L(ΔI)), instead of choosing specific values for these bits. This enables us
to maintain an affine subspace of potential values for L(ΔI), starting with the
full 1600-dimensional space, and iteratively reducing its dimension by adding
affine equations in order to enforce the second difference constraint for each
Sbox. In addition to these affine equations that we add per active Sbox, we also
have to add the linear equations for the non-active Sboxes (which equate their
5 input difference bits to zero), and the additional 2n+ 8 linear equations that
enforce the first difference constraint. All of these equations are added to a linear
system of equations that we denote by EΔ.

Since the 2n+ 8 equations that enforce the first difference constraint do not
depend on the target difference, we add them to EΔ before we iterate the Sboxes.
While iterating over the active Sboxes, we add equations on L(ΔI) in order to
enforce the second difference constraint and hope that for each Sbox, we can add
equations such that EΔ is consistent. Note that the equations in EΔ in each stage
of the algorithm depend on the order in which we consider the active Sboxes,
and on the order in which we consider the possible affine subsets of input differ-
ences for each Sbox. Thus, if we reach an Sbox for which we cannot add equations



452 I. Dinur, O. Dunkelman, and A. Shamir

in order to enforce the second constraint (while maintaining the consistency of
EΔ), it does not imply that it is impossible to satisfy the difference constraints.
In this case, we can simply change the order in which we consider the active
Sboxes, or the order in which we consider the affine subsets for each Sbox, and
try again. Since we cannot predict in advance the orderings that give the best
result, we choose them heuristically, as described in the full version of the paper
[8].

4.4 The Value Phase

In case the difference phase procedure described above succeeds, it actually out-
puts an affine subspace of candidate input differences, rather than a single value
for ΔI . Next, we can commit to a specific value for ΔI and run the value phase,
hoping that the set of all linear equations defined by the value constraints has
a solution. Namely, we allocate another system of equations, which we denote

by EM , and add the equations on M
1
that enforce the first value constraint.

We then add the additional linear equations that enforce the second value con-
straints for all the Sboxes, and output the solution to the system, if it exists.
However, once again, this approach is too strict, and may force us to repeat the
value phase a huge number of times with different values for ΔI , until we find
a solution. Thus, we do not choose a single value for ΔI in advance. Instead,
we reduce the linear subset of candidates for ΔI gradually by fixing the input
difference to each one of the active Sboxes, until a single value for ΔI remains.
Thus, we continue to maintain EΔ throughout the value phase, and iteratively
add the additional 2 equations which are required to uniquely specify a 5-bit
input difference for each active Sbox, among the 2-dimensional affine subsets
chosen in the difference phase. Once we fix the input difference to an Sbox, we

immediately obtain linear equations on M
1
, and we can check their consistency

with the current equations in EM . In case the equations in EM are not con-
sistent for a certain Sbox, we can try to choose another input difference for it.

This gives different equations on M
1
, which may be consistent and allow us to

continue the process.
Similarly to the difference phase, the equations in EM in each stage of the

algorithm depend on the order in which we consider the active Sboxes, and on
the order in which we consider the possible input differences for each Sbox. Thus,
once again, if at some stage of the value phase we cannot add any consistent
equations to EM , we can change one of these orderings and try again, hoping to
obtain a valid solution.

We stress again that both phases of the algorithm are not guaranteed to
succeed. The success of each phase depends on the target difference, and on
orderings which are chosen heuristically. As a result, we may have to iterate
both phases of the algorithm an undetermined number of times with modified
orderings, hoping to obtain better results.



New Attacks on Keccak-224 and Keccak-256 453

5 Application of the Target Difference Algorithm to
Round-Reduced Keccak

Since we would like to use the target difference algorithm in order to find colli-
sions and near-collisions in Keccak, it is crucial to verify the algorithm’s success
on target differences which lead to these results. Thus, before we run the algo-
rithm, we have to find such high probability differential characteristics, and to
obtain the target differences which are likely to be the most successful inputs to
the algorithm. As described in the introduction, once we find a high probability
differential characteristic with a low Hamming weight starting state difference,
we extend it backwards to obtain the target difference (while maintaining its high
probability). We then use the target difference algorithm to link the extended
characteristic backwards to the initial state of Keccak’s permutation, with an
additional round. Thus, any low Hamming weight characteristic for r rounds of
Keccak’s permutation can be used to obtain results on a round-reduced version
of Keccak with r+ 2 round. Specifically, in this section we demonstrate how we
use 2-round characteristics in order to find collisions for 4 rounds of Keccak-
224 and Keccak-256, and how to use 3-round characteristics in order to find
near-collisions for 5 rounds of these Keccak versions.

5.1 Searching for Differential Characteristics

We reuse the notion of a column parity kernel or CP-kernel that was defined
in the Keccak submission document [4]: a 1600-bit state difference is in the
CP-kernel if all of its columns have even parity. It is easy to see that such
state differences are fixed points of the function θ, which does not increase their
Hamming weight. Since ρ and π just reorder the bits of the state, the application
of L to a CP-kernel does not change its total Hamming weight. In addition, there
is a high probability that such low Hamming weight differential states are fixed
points of χ. Thus, when we start a differential characteristic from a low Hamming
weight CP-kernel, we can extend it beyond the Sbox layer, χ, to one additional
round of the Keccak permutation, with relatively high probability and without
increasing its Hamming weight. However, extending such a characteristic to more
rounds in a similar way is more challenging, since we have to ensure that the state
difference before the application of θ remains in the CP-kernel at the beginning
of each round.

Using Previous Results. In [10] and [15], the authors propose algorithms for
constructing low Hamming weight differential characteristics for Keccak. Both
of these algorithms successfully find differential characteristics that stay in the
CP-kernel for 2 rounds (named double kernel trails in [15]), some of which lead
to collisions on the n-bit extract taken from the final state after 2 rounds, with
high probability. However, when trying to extend each one of these character-
istics by another round, the state difference is no longer in the CP-kernel and
thus its Hamming weight increases significantly (from less than 10 to a few dozen
bits). Nevertheless, the Hamming weight of the characteristics is still relatively



454 I. Dinur, O. Dunkelman, and A. Shamir

low, and they can lead with reasonably high probability to near-collisions on
the n output bits extracted. Beyond 3 rounds, the Hamming weight of the char-
acteristics becomes very high (more than 100), and it seems unlikely that they
can be extended to give collisions or near-collisions with reasonable probability.
The currently known double kernel differential trails only extend forward to at
most three rounds with reasonably high probability (higher than 2−100). Finding
new high probability differential characteristics, starting from a low Hamming
weight state difference and extending forwards more than 3 rounds, remains a
challenging task, which we do not deal with in this paper.

Our attacks on round-reduced Keccak make use of the type of differential
characteristics that were found in [10] and [15], namely low Hamming weight
characteristics that stay in the CP-kernel for 2 rounds. The double kernel trails
with the highest probability have Hamming weight of 6 at the input to the ini-
tial round, and due to their low hamming weight, we could easily find all these
characteristics within a minute on a standard PC. There are 571 such charac-
teristics out of which, 128 can give collisions for Keccak-224 and 64 can give
collisions for Keccak-256. However, when trying to extend the characteristics by
an additional round, we were not able to find any characteristic that gives colli-
sions for Keccak-224 (or Keccak-256) with reasonable probability. Thus, our best
3-round characteristics lead only to near-collisions, rather than collisions. The
characteristics that give the near-collisions with the smallest difference Ham-
ming weight for Keccak-224 and Keccak-256 are, again, double kernel trails with
6 non-zero input bits. The best 3-round characteristics for Keccak-224 lead to
near-collisions with a difference Hamming weight of 5, and for Keccak-256, the
best 3-round characteristics leads to a near-collision difference Hamming weight
of 8. Examples of these characteristics are found in Appendix A.

Extending the Characteristics Backwards. Since the characteristics that
we use start with a low Hamming weight state difference, we can extend them
backwards by one round without reducing their probability significantly (as done
in [10]): we take this low Hamming weight initial state difference, and choose a
valid state difference input to the previous Sbox layer which could produce it.
We then apply L−1, and obtain a new initial state difference for the extended
characteristic, which serves as a target difference for our new algorithm. Note
that the target difference is not in the CP-kernel (otherwise, we would have found
a low Hamming weight differential characteristic that stays in the CP-kernel for
3 rounds). Thus, when we apply L−1 to the state difference that enters the
Sbox layer, we usually obtain a roughly balanced target difference, with only a
few non-active Sboxes. This is significant to the success of the target difference
algorithm, which strongly depends on the number of active Sboxes in the target
difference.3 In case the target difference obtained from a characteristic has too

3 As demonstrated in Section 4.1, we expect a large number of non-active Sboxes to
foil the target difference algorithm. This should be contrasted to differential attacks,
where the attacker searches for differential characteristics with many non-active
Sboxes, which ensure that the differential transitions occur with high probability.



New Attacks on Keccak-224 and Keccak-256 455

many non-active Sboxes, we can try to select another target difference for the
characteristic, by tweaking the state difference input to the second Sbox layer.

Assuming that the algorithm succeeds and we obtain a sufficiently large linear
subspace of message pairs (such that it contains at least one pair whose difference
evolve according to the characteristic), we can find collisions for 4 rounds and
near-collisions for 5 rounds of Keccak-224 and Keccak-256. For example, given
an extended characteristic which results in collisions for 3 round of Keccak-256
with probability 2−24, we need a linear subspace containing at least 224 message
pairs in order to find a collision on 4-round Keccak-256 with high probability.

5.2 Applying the Target Difference Algorithm to the Selected
Differential Characteristics

We tested our target difference algorithm using a standard PC, on dozens of
double-kernel trails with Hamming weight of 6. For each one of them, after
tweaking the state difference input to the second Sbox layer at most once, we
could easily compute a target difference where all of the 320 Sboxes are active.
We then ran the target difference algorithm on each one of these targets. For
both Keccak-224 and Keccak-256, the target difference algorithm eventually suc-
ceeded: the basic procedure of the difference phase always succeeded within the
first two attempts (after changing the order in which we considered the Sboxes),
while the value phase was more problematic, and we had to iterate its basic pro-
cedure dozens to thousands of times in order to find a good ordering of the Sboxes
and obtain results. For Keccak-224, the algorithm typically returned an affine
subspace of message pairs with a dimension of about 100 within one minute. For
Keccak-256, the dimension of the affine subspaces of message pairs returned was
typically between 35 and 50, which is smaller compared to the typical result size
for Keccak-224 (as expected since we have fewer degrees of freedom). In addi-
tion, unlike Keccak-224, for Keccak-256 we had to rerun the algorithm (starting
from the difference phase) a few times, when the value phase did not seem to
succeed for the choice of candidate input difference subset. Hence, the running
time of the algorithm was typically longer – between 3 and 5 minutes, which is
completely practical.

5.3 Obtaining Actual Collisions and Near-Collisions for
Round-Reduced Keccak-224 and Keccak-256

Obtaining Collisions. After successfully running the target difference algo-
rithm, we were able to find collisions for 4-round Keccak for each tested double-
kernel trail with Hamming weight of 6 (which leads to a collision). Since the
probability of each one of these differential characteristics is greater than 2−30,
the probability that a random pair which satisfies its corresponding target differ-
ence leads to a collision, is greater than 2−30. Thus, we expect to find collisions
quickly for both Keccak-224 and Keccak-256, once the target difference algo-
rithm returns a set of more than 230 message pairs. However, even though the
subsets we used contained more than 230 message pairs, we were not able to find



456 I. Dinur, O. Dunkelman, and A. Shamir

collisions within several of these subsets for Keccak-224, and for many of the
subsets for Keccak-256. As a result, we had to rerun the target difference algo-
rithm and obtain additional sets of message pairs, until a collision was found.
Thus, the entire process of finding a collision typically takes about 2–3 minutes
for Keccak-224, and 15–30 minutes for Keccak-256. The reason that there were
no 4-round collisions within many of the message pair subsets, is the incomplete
diffusion of the Keccak permutation within the first two rounds. Since our sub-
sets of message pairs are relatively small (especially for Keccak-256), and the
values of all the message pairs within a subset are closely related, some close
relations between a small number of bits still hold before the Sbox layer of the
second round (e.g., the value of a certain bit is always 0, or the XOR of two
bits is always 1). Some of these relations make the desired difference transition
into the second Sbox layer impossible, for all the message pairs within a sub-
set. We note that we were still able to find collisions rather quickly, since it is
easy to detect the cases where the difference transition within the second Sbox
layer is impossible4(which allowed us to immediately rerun the target difference
algorithm). In addition, when this difference transition is possible, we were al-
ways able to find collisions within the subset. Two concrete examples of colliding
message pairs for Keccak-224 and Keccak-256 are given in Appendix B.

Obtaining Near-Collisions. In order to obtain near-collisions on 5-round
Keccak-224 and Keccak-256, we again start by choosing suitable differential
characteristics. Out of all the characteristics that we searched, we chose the dif-
ferential characteristics described in Appendix A, which lead to near-collisions
of minimal Hamming weight for the two versions of Keccak. The results of the
target difference algorithm when applied to targets chosen according to these
characteristics, were similar to the results described in Section 5.2. However,
compared to the probability of the characteristics leading to a collision, the
probability of these longer characteristics is lower: the probability of the charac-
teristics are 2−57 and 2−59 for Keccak-224 and Keccak-256, respectively. Thus,
obtaining message pairs whose differences propagate according to these charac-
teristics, and lead to 5-round near-collisions, is more difficult than obtaining col-
lisions for 4 rounds of Keccak-224 and Keccak-256. However, for each such main
characteristic, there are several secondary characteristics which diverge from the
main one in final two rounds and give similar results. Thus, the probabilities of
finding near collisions with a small Hamming distance for 5 rounds of Keccak-224
and Keccak-256, are higher than the ones stated above. In addition, by using
some simple message modification techniques within the subsets returned by the
target difference algorithm, we were able to improve these probabilities further.
Thus, for Keccak-224, we obtained near-collisions with a Hamming distance of

4 In order to detect that the difference transition within the second Sbox layer is
impossible for all the pairs in our subset, we try several arbitrary pairs in the subset,
and observe if at least one has the desired difference after two rounds. Since we only
need to check one Sbox layer transition, we expect that if this transition is indeed
possible, we will find a corresponding message pair very quickly. Otherwise, we have
to find a different set of message pairs by running the difference phase again.



New Attacks on Keccak-224 and Keccak-256 457

5, which is the same as the output Hamming distance of the main characteristic
that we used. For Keccak-256, the main characteristic that we used has an out-
put Hamming distance of 8, but we were only able to find message pairs which
give a near-collision with a slightly higher Hamming distance of 10. All of these
near-collisions were found within a few days on a standard PC. Examples of such
near-collisions are given in Appendix B.

6 Conclusions and Future Work

In this paper, we presented practical collision and near-collision attacks on
reduced-round variants of Keccak-224 and Keccak-256. Our attacks are based on
a novel target difference algorithm, which is used to link high probability differ-
ential characteristics for the Keccak internal permutation to legal initial states
of the hash function. Consequently, we were able to significantly improve the
best known previous results on Keccak, by doubling (from 2 to 4) the number
of rounds for which collisions can be found in a practical amount of time.

Our target difference algorithm is clearly limited by the number of available
degrees of freedom, and it seems difficult to extend it to reach target differences
spanning 2 or more rounds of the Keccak permutation. However, it seems very
likely that the algorithm will be useful in the future if longer high probability
differential characteristics are found for the Keccak permutation.

References

1. Aumasson, J.-P., Meier, W.: Zero-sum distinguishers for reduced Keccak-f and for
the core functions of Luffa and Hamsi. NIST Mailing List (2009)

2. Bernstein, D.J.: Second preimages for 6 (7 (8??)) rounds of keccak? NIST mailing
list (2010)

3. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge functions. Presented
at the ECRYPT Hash Workshop (2007)

4. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak SHA-3 submis-
sion. Submission to NIST (Round 3) (2011)

5. Boura, C., Canteaut, A.: Zero-Sum Distinguishers for Iterated Permutations and
Application to Keccak-f and Hamsi-256. In: Biryukov, A., Gong, G., Stinson, D.R.
(eds.) SAC 2010. LNCS, vol. 6544, pp. 1–17. Springer, Heidelberg (2011)

6. Boura, C., Canteaut, A., Canniére, C.D.: Higher-order differential proper-
ties of keccak and luffa. Cryptology ePrint Archive, Report 2010/589 (2010),
http://eprint.iacr.org/

7. Daemen, J., Rijemn, V.: Plateau Characteristics. IET Information Security 1(1),
11–17 (2007)

8. Dinur, I., Dunkelman, O., Shamir, A.: New attacks on Keccak-224 and Keccak-256.
Cryptology ePrint Archive, Report 2011/624 (2011), http://eprint.iacr.org/

9. Duan, M., Lai, X.: Improved zero-sum distinguisher for full round Keccak-f per-
mutation. Cryptology ePrint Archive, Report 2011/023 (2011)

10. Duc, A., Guo, J., Peyrin, T., Wei, L.: Unaligned rebound attack - application to
keccak. Cryptology ePrint Archive, Report 2011/420 (2011)

http://eprint.iacr.org/
http://eprint.iacr.org/


458 I. Dinur, O. Dunkelman, and A. Shamir

11. Khovratovich, D.: Cryptanalysis of Hash Functions with Structures. In: Jacobson
Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp.
108–125. Springer, Heidelberg (2009)

12. Khovratovich, D., Biryukov, A., Nikolic, I.: Speeding up Collision Search for Byte-
Oriented Hash Functions. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473,
pp. 164–181. Springer, Heidelberg (2009)

13. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The Rebound Attack:
Cryptanalysis of Reduced Whirlpool and Grøstl. In: Dunkelman, O. (ed.) FSE
2009. LNCS, vol. 5665, pp. 260–276. Springer, Heidelberg (2009)

14. Morawiecki, P., Srebrny, M.: A SAT-based preimage analysis of reduced KECCAK
hash functions. Cryptology ePrint Archive, Report 2010/285 (2010)

15. Naya-Plasencia, M., Röck, A., Meier, W.: Practical Analysis of Reduced-Round
Keccak. In: Bernstein, D.J., Chatterjee, S. (eds.) INDOCRYPT 2011. LNCS,
vol. 7107, pp. 236–254. Springer, Heidelberg (2011)

A Appendix: Differential Characteristics for Keccak

In this section, we give examples of 3-round differential characteristics, which
lead to collisions on 4-round Keccak-224 and Keccak-256, and 4-round charac-
teristics, which lead to near-collisions on 5-round Keccak-224 and Keccak-256.

The differential characteristics are given as a sequence of the starting state dif-
ferences in each round. In all the presented characteristics, all the active Sboxes
get an input difference with a Hamming weight of 1, and we assume that they
produce the same differences as outputs (which occurs with probability 2−2). In
order to calculate the probability of the final transition, we only consider active
Sboxes which effect the output bits (since we truncate the final state to obtain
the hashed output). Each state difference is given as a matrix of 5 × 5 lanes of
64 bits, ordered from left to right, where each lane is given in hexadecimal using
the little-endian format. The symbol ’-’ is used in order to denote a zero 4-bit
difference value. For example, consider the second state difference in Character-
istic 1: each of the first two lanes has a zero difference, and only the LSB of the
third lane contains a non-zero difference.

B Appendix: Actual Collisions and Near-Collisions for
Round-Reduced Keccak-224 and Keccak-256

We give several examples of collisions and near-collisions for Keccak-224 and
Keccak-256. The padded messages and output values are given in blocks of 32-
bits ordered from left to right, where each block is given in hexadecimal using
the little-endian format.



New Attacks on Keccak-224 and Keccak-256 459

|26978AF134CB835E|AF224C4D78366789|C4DAE35E2656F26B|357C4789AF3-6AF1|78D3526BC6A74C4D|
|26978AF134CB835E|AF224C4D78366789|C4DAE35E2656F26B|357C4789AF3-6AF1|78D3526BC6A74C4D|
|26978AF134CB835E|AF224C4D78366789|C4DAE35E2676F26B|357C4789AF3-6AF1|78D3526BC4A74C4D|
|26978AF134CB835E|AF224C4D78366789|C4DAE35E265EF26B|357C4789AF3-4AF1|78D3526BC6A74C4D|
|26978AF134CB835E|AF226C4D78366789|C4DAE35E2656F26B|35FC4789AF3-6AF1|78D3526BC6A74C4D|

|----------------|----------------|---------------1|-------4--------|----------------|
|----------------|----------------|----------------|----------------|----------------|
|----------------|----------------|----------------|----------------|----------------|
|----------------|----------------|----------------|-------4--------|----8-----------|
|----------------|----------------|---------------1|----------------|----8-----------|

|----------------|----------------|----------------|--8-------------|2---------------|
|4---------------|----------------|----------------|----------------|2---------------|
|----------------|----------------|----------------|--8-------------|----------------|
|----------------|----------------|----------------|----------------|----------------|
|4---------------|----------------|----------------|----------------|----------------|

|----------------|----------------|----------------|----------------|----------------|
|-----------8----|-----------2----|----------------|----------------|----------------|
|----------------|----------------|-----------1----|----------------|-----------1----|
|---------1------|-------4--------|----------------|----------------|----------------|
|----------------|----------------|----------------|----------------|----------------|

The probability of each one of the first two transitions is 2−12. The probability of the
third transition is 1, since there are no active Sboxes which affect the output.
Characteristic 1: A 3-round characteristic leading to collisions on Keccak-224 and
Keccak-256 with probability 2−24

|BD135E2FA6BD1346|12D789A92F12D78F|D7E26BC344D7E224|E69AF134B5E69AD5|98BC4D6BF898BC58|
|BD135E2FA6BD1346|12D789A82F12D78F|D7E26BC344D7E264|E69AF134B5E69AD5|98BC4D6BF898BC58|
|BD135E2FA6BD1346|12D789AB2F12D78F|D7E26BC344D7E224|E69AF134B5E29AD5|98BC4D6BF898BC58|
|BD135E2FA6BD1346|12D789A92F12D78F|D7E26BC344D7E224|E69AF134B5E69AD5|98BC4D6BF898BC58|
|BD135E2FA6BD1346|12D789A92F12D78F|D7E26BC344D7E224|E29AF134B5E69AD5|98BC4D7BF898BC58|

|----------------|------------1---|----------------|----------------|---4------------|
|----------------|----------------|----------------|----------------|----------------|
|----------------|------------1---|-----8----------|----------------|----------------|
|----------------|----------------|-----8----------|----------------|---4------------|
|----------------|----------------|----------------|----------------|----------------|

|----------------|----------------|----------4-----|----------------|----------------|
|----------------|----------------|----------------|----------------|----------------|
|------------2---|----------------|----------------|-4--------------|----------------|
|------------2---|----------------|----------4-----|-4--------------|----------------|
|----------------|----------------|----------------|----------------|----------------|

|----------------|----------------|----------------|------------8---|----------------|
|----------------|----------------|-----------1----|----------------|----------------|
|----------------|----------------|-----------8----|----------------|----------------|
|----------------|----------------|----------------|------2---------|----------------|
|----------1-----|----------------|----------------|--4-------------|----------------|

|----------------|2---------------|48-----4---2----|-4---12---------|---8---82-----1-|
|----98----------|-2---2-8-----4--|----------------|4---------------|--1----8----2---|
|-----------4----|2---1-----------|----12----------|4---2---2-8-----|------4---------|
|---1-4-----2---1|----------------|---------8------|--2-----8-----4-|----4--------9--|
|--2---1-----4---|-------------48-|1-4-----2---1---|----------------|-----------8----|

The characteristic leads to near-collisions with a Hamming distance of 5 for Keccak-
224, and 8 for Keccak-256. The probability of each one of the first three transitions
is 2−12. The probability of the final transition is 2−21 for Keccak-224 and 2−23 for
Keccak-256. The total probability is 2−57 for Keccak-224 and 2−59 for Keccak-256.
Characteristic 2: A 4-round characteristic leading to near-collisions on Keccak-224
and Keccak-256



460 I. Dinur, O. Dunkelman, and A. Shamir

M1=
C4F31C32 4C59AE6D 5D19F0F4 25C4E44B D8853032 8D5E12F2 BB6E6EE2 27C33B1E 6C091058 EB9002D5
3BA4A06F 4A0CC7F1 CCB55E51 8D0DD983 2B0A0843 9B21D3B0 53679075 526DDED2 48294844 6FF4ED2C
1ACE2C15 471C1DC7 D4098568 F1EBF639 EAF7B257 09FDAE87 688878E6 4875EB30 C9C32D80 3C9E6FCB
3C2ABCFA E6A4807B 2AB281B8 812332B3

M2=
A4D30EF7 80BB8F69 90C048DF EB7213B9 A6650424 3A65F63E 8C268881 B651B81F AADAFA3C EE2CA5C3
DB78EAC2 C8EAE779 442F9C35 3221E287 B3017A5A 90790712 1B1C8BDC E08B10A8 9A9D25CA 1BE7AAAC
4E2F3E9C 73717DAD 5566015A A198CFB9 5A1CA8C2 A0E3348A AE6C0BB1 3980F9E4 A4FA8B91 6E81A989
89A9BCAA E12BF1F1 30EF9595 812E8B45

Output=
61FB1891 F326B6D5 24DD94DF 73274984 05DA9A1D 3FD359B9 78B8393B F2E7990B

The messages were found using the target difference algorithm on the target difference
given by Characteristic 1.

Collision 1: A collision for 4-round Keccak-256

M1=
FAC7AC69 2710BE04 8462C382 7ABF1BF9 D065CD30 DB64DEB8 1410CD30 C837D79B 22E446B7 31E9BD55
A6B2074C C86E32CC DE50A10A F7BAAA58 D96CBC88 9FBD75F6 5E0D735A D22AA663 16A574AA 7DB08692
558AB029 109B4D30 86CE5DCA 13A295C7 E7C9D94B 648794D2 62EE3CF8 69439337 8CAB9F15 AC7C3267
90F41CBE A20E6893 B4781F24 0BA37647 F29A67A0 81F628D0

M2=
CE5FBC81 47710FCC 462C92E0 48F5D2CF F92F6EC3 053E64E1 570780B9 F838EC54 8F74809F 66B4AC6F
70DD1843 BF34F0C5 5010C89A D8791148 D5CC073E 3239AEBC 7DF48D79 0EC7767B FB081604 AFA975B9
F8EFAE0F ED793473 479E931C F2F80A74 7192D08F 5EB5AB27 F1CAC04E F394232D 48656B2A A3471644
DB74E60A 05FB3B18 41DC27C3 8384BF53 32534C3E 811C00B5

Output=
826B10DC 0670E4E1 5B510CDA AB876AA8 B50557ED 267932FB AA4D38E8

The messages were found using the target difference algorithm on the target difference
given by Characteristic 1.

Collision 2: A collision for 4-round Keccak-224



New Attacks on Keccak-224 and Keccak-256 461

M1=
23296F07 44536A2B 16E1E363 09B509F9 639CA324 2B834133 61457E6D 9CF07597 6797B3D4 D1715ABA
6D8F4F9F 70D12920 E014BB37 54C32ADE 6117B3FB 30114566 4BA7D70A 00F055F0 71CFFDD4 B53F2563
E223A16D CC8DDAC4 7A59836B A53FBDDE 9FFEC45F 6A3476DC 7349BB92 56AF6E92 83866932 56624032
A936E410 60AC00FA 7E7C61F9 81583CAC

M2=
49D48DE2 9FA843CA 747C88E0 55425134 098CA5B3 C97DC68A B82BC6FD 0F864996 26B13425 D9F73B75
932CD02F FB12E036 47706100 9DEFFFE4 79435F9C DA727EF0 D9CA67C6 520BE2D1 19CF3933 3136D1A9
EEBEA9DD 150CA247 D494BF4A 492EFB26 11CB4C8D F5A10A05 69128FF4 B142742F CA59FE32 4FE68436
068F76AB 041A673E 461575B5 81AA2A54

Output1=
407D4466 FEA8B231 EC968181 DF902165 23C219FF 54571D70 2800F506 E818644B

Output2=
407D4466 FEA8B231 EC928181 FF902165 23C019FF 1C571D74 2800F516 E810656B

The messages were found using the target difference algorithm on the target difference
given by Characteristic 2.

Near-Collision 1: A near collision with Hamming distance of 10 for 5-round
Keccak-256

M1=
7DBC1AA9 62A70B2A C2BDAF81 4A4D484B 672F6FAF ED312C83 24BC1974 16946039 6B46EDF6 1AE571A0
EDA59D6E 7561766D 8F0B4C57 3C05C569 715B7DF9 53F81761 F6D43507 6E040495 9B5C08AB 5130BA66
22AF7F5C 755840F2 2E893F59 4C4A730F 8C4F425D 182F8D00 E98515ED E29251AD 853AB863 DC46A7AC
9FB7BB08 14767EFC 5345C7AF AA774E81 8A01A570 81D65453

M2=
5659C936 AF3BA787 809C1CE6 B287F81B E0A5E769 ECCEB8A0 72506F44 1A1B2A02 EE9AE408 D16A9358
BF03C4D6 90845C46 0C0441CC 8203EA8D 6D122EB1 9193F64F 55C3A6A7 47377ED6 D26E806F DEC2CBF8
A3B8949E A91B248D 420B13BC BEAB4166 EE348CF6 DB6CCD82 122F6BDA 2FBFA7E4 75E8A429 F397BC46
7E9DE824 6A973A22 371FD02D 92035083 267D1C7A 812EDE70

Output1=
85373497 97D871C2 FBD0A823 584C0ED4 C1B3BF4F BC408766 0584B08D

Output2=
85373497 97D871C2 FBD0A823 784C0ED4 E1B1BF5F BC408776 0584B08D

The messages were found using the target difference algorithm on the target difference
given by Characteristic 2.

Near-Collision 2: A near collision with Hamming distance of 5 for 5-round Keccak-
224



Author Index

Bogdanov, Andrey 29

Carlet, Claude 366
Chen, Jiazhe 90
Courtois, Nicolas T. 306

Daemen, Joan 422
Dakhilalian, Mohammad 385
De Cannière, Christophe 287
Dinur, Itai 9, 442
Dong, Le 127
Duc, Alexandre 402
Dunkelman, Orr 9, 442

Feng, Dengguo 127
Fleischmann, Ewan 196
Forler, Christian 196

Goubin, Louis 366
Gu, Dawu 90
Guo, Jian 127, 402

Heyse, Stefan 346

Isobe, Takanori 264

Jean, Jérémy 110

Khovratovich, Dmitry 244
Kiltz, Eike 346

Li, Ji 264
Li, Leibo 90
Li, Wei 90
Ling, San 163
Liu, Ya 90
Liu, Zhiqiang 90
Lu, Jiqiang 69
Lucks, Stefan 196
Lyubashevsky, Vadim 346

Mala, Hamid 385
Mendel, Florian 226
Mouha, Nicky 287

Nad, Tomislav 226
Naya-Plasencia, Maŕıa 110, 146
Nguyen, Long Hoang 326
Nyberg, Kaisa 1

Paar, Christof 346
Peyrin, Thomas 110, 146, 163, 402
Pieprzyk, Josef 163
Pietrzak, Krzysztof 346
Preneel, Bart 49, 287
Prouff, Emmanuel 366

Quisquater, Michael 366

Rechberger, Christian 244
Rivain, Matthieu 366
Rogaway, Phillip 180
Roscoe, A.W. 326

Saarinen, Markku-Juhani Olavi 216
Sajadieh, Mahdi 385
Savelieva, Alexandra 244
Schläffer, Martin 226
Sepehrdad, Pouyan 306, 385
Shamir, Adi 9, 442
Shibutani, Kyoji 264
Soko�lowski, Przemys�law 163
Sun, Yue 49
Sušil, Petr 306

Tischhauser, Elmar 49

Van Assche, Gilles 422
Vaudenay, Serge 306
Velichkov, Vesselin 287

Wang, Huaxiong 163
Wang, Meiqin 29, 49
Wang, Xiaoyun 90
Wei, Lei 163, 402
Wooding, Mark 180
Wu, Shuang 127
Wu, Wenling 127

Zhang, Haibin 180
Zou, Jian 127


	Title
	Preface
	Conference Organization
	Table of Contents
	Invited Talk
	“Provable” Security against Differential and Linear Cryptanalysis
	Nonlinearity of S-Boxes
	CRADIC
	Linear Hulls
	Provable Security in Practice
	Linear Approximations and Distributions
	References


	Block Ciphers
	Improved Attacks on Full GOST
	Introduction
	Overview of Our New Attacks on the Full GOST
	Obtaining Two 8-Round Input-Output Pairs for GOST
	The Reflection Property 3,2
	The Fixed Point Property

	Simple Meet-In-The-Middle Attacks on 8 Rounds of GOST
	The Basic Meet-In-The-Middle Attack
	An Improved Meet-In-The-Middle Attack Using Equivalent Keys

	A New Attack on 8 Rounds of GOST with Lower Memory Complexity
	Overview of the ``Guess and Determine'' Attack on 4-Round GOST
	Notations
	An Attack on 4 Rounds of Simplified GOST
	Extending the Attack to 4 Rounds of the Real GOST

	A New 2-Dimensional Meet-In-The-Middle Attack on 8 Rounds of GOST
	Details of the 8-Round Attack
	Details of the 4-Round Attacks
	The Complexity of the 8-Round Attack on GOST

	Conclusions and Open Problem
	References

	Zero Correlation Linear Cryptanalysis with Reduced Data Complexity
	Introduction
	Motivation
	Contributions
	Outline

	Basic Zero Correlation Linear Cryptanalysis
	Linear Approximations with Correlation Zero
	Two Examples
	Key Recovery with Zero Correlation Linear Approximations

	Reduction of Data Complexity with Many Approximations
	Distinguishing between Two Normal Distributions
	A Known Plaintext Distinguisher with Many Zero Correlation Linear Approximations
	Correlation under Right and Wrong Keys
	Distribution of the Statistic
	Data Complexity of the Distinguisher

	Linear Approximations with Correlation Zero for TEA and XTEA
	The Block Ciphers TEA and XTEA
	Notations
	Linear Approximation of Modular Addition
	Linear Approximation of One TEA/XTEA Round
	Zero Correlation Approximations for 14 and 15 Rounds of TEA/XTEA

	Zero Correlation Linear Cryptanalysis of Round-Reduced (X)TEA
	Key Recovery for 21 Rounds of TEA
	Key Recovery for 25-Round XTEA
	Attacking More Rounds with the Full Codebook

	References


	Differential Cryptanalysis
	A Model for Structure Attacks, with Applications to PRESENT and Serpent
	Introduction
	Brief Description of Blondeau et al.'s Multiple Differential Cryptanalysis
	Structure Attack
	Principle of the Attack
	Ratio of Weak Keys for Multiple Differentials

	Attack on 18-Round PRESENT
	Searching Differential Paths for PRESENT
	Key Recovery Attack on 18-Round PRESENT-80

	Attack on Reduced-Round Serpent
	Conclusion
	References

	A Methodology for Differential-Linear Cryptanalysis and Its Applications
	Introduction
	Preliminaries
	Notation
	Differential Cryptanalysis
	Linear Cryptanalysis
	General Assumptions Used in Practice

	Differential-Linear Cryptanalysis: Previous and Our Methodologies
	Langford and Hellman's Methodology
	Biham et al.'s Methodology
	Our Methodology
	Implications

	Application to the DES Block Cipher
	A 11-Round Differential-Linear Distinguisher with Bias 2-24.05
	Differential-Linear Attack on 13-Round DES

	Application to the CTC2 Block Cipher
	The CTC2 Block Cipher
	A Flaw in Previous Differential-Linear Cryptanalysis of CTC2
	An 8.5-Round Differential-Linear Distinguisher with Bias 2-68
	Differential-Linear Attack on 10-Round CTC2 with a 255-Bit Block Size and Key

	Possible Extensions of Our Methodology
	Conclusions
	References

	New Observations on Impossible Differential Cryptanalysis of Reduced-Round Camellia
	Introduction
	Preliminaries
	Some Notations
	Overview of Camellia

	a
	7-Round Impossible Differentials of Camellia for Weak Keys
	Impossible Differential Attack on 10-Round Camellia-128
	Attack on 11-Round Camellia-192
	The Attack on 12-Round Camellia-256
	The Attacks Including Two FL/FL-1 Layers

	a
	The Construction of 8-Round Impossible Differentials of Camellia
	Impossible Differential Attack on 13-Round Camellia-256
	Impossible Differential Attack on 12-Round Camellia-192
	Impossible Differential Attack on 11-Round Camellia-128

	Conclusion
	References


	Hash Functions I
	Improved Rebound Attack on the Finalist Grøstl
	Introduction
	Generalities
	Description of Grøstl
	Distinguishers

	Distinguishers for Reduced Grøstl-256 Permutations
	The Truncated Differential Characteristic
	Finding a Conforming Pair
	Comparison with Ideal Case

	Distinguishers for Reduced Grøstl-512 Permutations
	The Truncated Differential Characteristic
	Finding a Conforming Pair
	Comparison with Ideal Case

	Conclusion
	References

	(Pseudo) Preimage Attack on Round-Reduced Grøstl Hash Function and Others
	Introduction
	Our Contributions.
	Outline of This Paper.


	Specification of Grøstl
	Outline of the Attack on the Grøstl Hash Function
	Pseudo Preimage Attack on 5-Round Grøstl-256
	Fixed Position Partial Preimage Attack on P(X)X
	The Colors in the Chunk Separation.
	Freedom Degrees and Size of the Matching Point.
	The Attack Algorithm and Its Complexity.
	Application to Grøstl's Output Transformation.
	On the Choice of the Chunk Separation.

	Chosen Position Partial Preimage Attack on P(H')H'
	Minimizing the Overall Complexity

	Pseudo Preimage Attack on 8-Round Grøstl-512
	Fixed Position Partial Preimage Attack on P(X)X
	On the Choice of the Chunk Separation.

	Chosen Position Partial Preimage Attack on P(H')H'
	Minimizing the Overall Complexity

	Conclusion
	Acknowledgement.

	References
	Preimage Attack on Round-Reduced Whirlpool
	Specification of Whirlpool
	Improved Second Preimage Attack on Whirlpool
	First Preimage Attack on Whirlpool
	Dealing with Message Padding.
	Expandable Messages.
	Turns Pseudo Preimage into Preimage.



	Practical Cryptanalysis of ARMADILLO2
	Introduction
	The ARMADILLO2 Function
	First Tools
	Parity Preservation
	Controlled Diffusion: Practical Free-Start Collision Attack
	General Description
	Using the Freedom Degrees
	Complexity Results

	Local Linearization: Practical Semi-free-Start Collision Attack
	General Description
	Colliding on X
	Complexity Results

	Related-Key Recovery in Stream Cipher Mode
	Using Related-Keys for Recovering the Key
	Generic Complexity Estimation

	Conclusion
	References

	On the (In)Security of IDEA in Various Hashing Modes
	Introduction
	The IDEA Block Cipher
	Hashing with a Double-Length Key Block Cipher
	Simple-Length Compression Function
	Double-Length Compression Function

	Weak-Keys for IDEA
	Analysis of the Internal Functions
	Weak-Keys Classes
	The Null Weak-Key

	Simple Collision Attacks
	Improved Collision Attacks
	Exploiting the Almost Half-Involution
	Improving Collision Attacks

	Preimage Attacks
	Results and Implementations
	Conclusion
	References


	Modes of Operation
	 The Security of Ciphertext Stealing
	Introduction
	Preliminaries
	Conventional Security of the CBC-CS Schemes
	Defining Online Security
	Online Security of the CBC-CS Schemes
	Insecurity of the Meyer-Matyas CBC-CS
	References

	McOE: A Family of Almost Foolproof On-Line Authenticated Encryption Schemes
	Introduction
	Practical On-Line Authenticated Encryption Using AES and Threefish
	On-Line Authenticated Encryption and Related Notions
	Block Ciphers and On-Line Permutations
	Authenticated Encryption (With Associated Data)

	Security Notions for On-Line Authenticated Encryption
	Privacy and Integrity Notions for Authenticated Encryption Schemes.
	CCA3 Is Equal to INT-CTXT Plus CPA

	The On-Line Authenticated Encryption Scheme McOE-X
	Discussion
	References

	Cycling Attacks on GCM, GHASH and Other Polynomial MACs and Hashes
	Introduction
	Description of GHASH
	Collisions from Weak Keys
	Cycle Lengths and Group Orders
	Illustrating Multiplicative Subgroup Cycles

	Message Forgery
	Targeted Multiple Bit Forgeries
	Testing for AES-GCM Weak Keys
	An Efficient Algorithm for Subgroup Size
	Experimental Results

	Other Polynomial-Evaluation MACs
	Conclusions and Future Work
	References


	Hash Functions II
	Collision Attacks on the Reduced Dual-Stream Hash Function RIPEMD-128
	Introduction
	Cryptanalysis of Dual-Stream Hash Functions
	Collision Attacks on Hash Functions
	Collision Attacks on Dual-Stream Hash Functions
	Automatic Search Tool

	Description of RIPEMD-128
	Collision Attacks on RIPEMD-128
	Finding a Starting Point
	Finding a Differential Characteristic
	Finding a Confirming Message Pair

	Extending the Attack to More Steps
	Near-Collisions for the Hash Function
	Non-randomness for the Hash Function
	Collisions for the Compression Function

	Conclusions and Future Work
	References

	 Bicliques for Preimages: Attacks on Skein-512 and the SHA-2 Family
	Introduction
	Bicliques
	Biclique Construction Algorithms
	Simple Case: Second Preimage Attack on Skein-512 
	Second Preimage Attack on the Reduced Skein-512 Hash

	Preimage Attacks on the SHA-2 Hash Functions
	Attacks on the Compression Functions: SHA-2 and Skein
	Preimage Attacks on the Skein Compression Functions
	Preimage Attacks on the SHA-2 Compression Functions

	Discussion and Conclusions
	References

	Converting Meet-In-The-Middle Preimage Attack into Pseudo Collision Attack: Application to SHA-2
	Introduction
	Preliminaries
	Security Notions
	Meet-In-The-Middle Preimage Attack

	Method to Convert Preimage Attack into Collision Attack
	Generic Conversion of Partial Target Preimage Attack into Collision Attack
	Meet-In-The-Middle Attack with Matching Point in Last Step
	Conversion of MITM Preimage Attack into Pseudo Collision Attack

	Pseudo Collision Attacks on SHA-2
	Description of SHA-2
	Known Collision Attacks on SHA-2
	Known MITM Preimage Attack on 43-Step SHA-256 DBLP:conf/asiac
	Pseudo Collision Attack on 43-Step SHA-256
	Known MITM Preimage Attack on 46-Step SHA-512 DBLP:conf/asiacrypt/AokiGMSW09
	Pseudo Collision Attack on 46-Step SHA-512
	Pseudo Collision Attacks on 42-step SHA-256 and 42-step SHA-512
	Pseudo Collision Attacks on Reduced SHA-224 and SHA-384
	Application to Other Results of SHA-2

	Application to Skein
	Description of Skein
	Known Pseudo Preimage Attacks on Skein KhovratovichRS111.
	Pseudo Collision Attacks on Skein

	Conclusion
	References


	New Tools for Cryptanalysis
	UNAF: A Special Set of Additive Differences with Application to the Differential Analysis of ARX
	Introduction
	The UNAF Framework
	Preliminaries
	Main UNAF Theorem
	The UNAF Differential Probability of ARX
	An Algorithm for Finding the Best Output Difference

	Applications
	Description of Salsa20
	Estimating the Probability of Differentials Using UNAF Differences
	Key-Recovery Attack on Salsa20/5

	Conclusion
	References

	ElimLin Algorithm Revisited
	Introduction
	ElimLin Algorithm
	State of the Art Theorems
	Algebraic Representation of ElimLin
	ElimLin as an Intersection of Vector Spaces
	Affine Bijective Variable Change
	Linear Equations Evolution

	Attacks Simulations
	Simulations Using F4 Algorithm under PolyBoRi Framework
	Simulations on CTC2
	Simulations on LBlock
	Simulations on MIBS

	A Comparison between ElimLin and PolyBoRi
	Further Work and Some Conjectures
	Conclusion
	References


	New Designs 
	Short-Output Universal Hash Functions and Their Use in Fast and Secure Data Authentication
	Introduction
	Notation and Definitions
	Integer Multiplication Construction
	Multiplicative Universal Hashing
	Word Multiplicative Construction
	Extending digest()

	Comparative Analysis
	MMH
	NH
	Implementations of MMH, NH and Digest Constructions
	Polynomial Universal Hashing Schemes

	Short-Output Universal Hash Functions in Manual Authentication Protocols
	References

	Lapin: An Efficient Authentication Protocol Based on Ring-LPN
	Introduction
	Our Contributions
	LPN, Ring-LPN, and Related Problems

	Definitions
	Rings and Polynomials
	Distributions
	Authentication Protocols

	Ring-LPN and Its Hardness
	Hardness of LPN and Ring-LPN

	Authentication Protocol
	The Protocol
	Analysis

	Implementation
	Implementation with a Reducible Polynomial
	Implementation with an Irreducible Polynomial
	Implementation Results

	Conclusions and Open Problems
	References

	Higher-Order Masking Schemes for S-Boxes
	Introduction
	Higher-Order Masking of any S-Box
	General Method
	Masking Complexity

	Optimal Masking of Power Functions
	Efficient Heuristics for General S-Boxes
	Cyclotomic Method
	Parity-Split Method
	Comparison

	Application to DES and PRESENT
	Parity-Split Method on DES S-Boxes
	Cyclotomic Method on PRESENT S-Box
	Implementation Results

	Discussion
	Conclusion
	References

	Recursive Diffusion Layers for Block Ciphers and Hash Functions
	Introduction
	Notations
	Our Contribution

	The Proposed Diffusion Layer 
	Other Desirable Structures for the Proposed Diffusion Layer
	Increasing the Number of Linear Functions
	Conclusion
	References


	Keccak
	Unaligned Rebound Attack: Application to Keccak
	Introduction
	The Keccak Hash Function Family
	The Keccak-f Permutations

	Finding Differential Paths for Keccak-f
	Special Properties of  and 
	First Tools
	Algorithm for Differential Path Search

	Simple Distinguishers for Reduced Keccak-f
	A Very Simple Freedom Degrees Fixing Method
	Getting More Rounds

	The Rebound Attack on Keccak
	The Original Rebound Attack
	Applying the Rebound Attack for Keccak Internal Permutations
	An Ordered Buckets and Balls Problem
	The Differential Paths Sets
	The Inbound Phase
	The Outbound Phase
	Finalizing the Attack and Improvements
	The Distinguisher

	Results and Conclusion
	References

	Differential Propagation Analysis of Keccak
	Introduction
	Keccak
	Representing and Extending Trails
	Extending Forward and Trail Prefixes
	Extending Backward and Trail Cores

	Towards a Bound for Trails in Keccak-f[1600]
	Generating all 3-Round Trails Up to a Given Weight
	Too Many States to Generate and Extend, Even When Exploiting Symmetry

	Generating Trails with a Low Number of Active Rows
	Generating Trails Using the Properties of 
	Properties of 
	The Propagation Branch Number
	Bounding the Row Branch Number
	Looking for Candidate Parity Patterns
	Starting from Out-of-Kernel States

	Generating In-Kernel Trails
	Characterizing the Slices in b
	Characterizing the Set of Active Bits
	Generating All Tame States
	Lower-Bounding the Weight of In-Kernel Trails
	Limiting the Search by Lower-Bounding the Weight

	Extension to Six-Round Trails
	Conclusions
	References

	New Attacks on Keccak-224 and Keccak-256
	Introduction
	Description of Keccak
	Notations
	Overview of the Target Difference Algorithm
	The Properties of Keccak Exploited by the Target Difference Algorithm
	Formulating the Problem
	The Difference Phase
	The Value Phase

	Application of the Target Difference Algorithm to Round-Reduced Keccak
	Searching for Differential Characteristics
	Applying the Target Difference Algorithm to the Selected Differential Characteristics
	Obtaining Actual Collisions and Near-Collisions for Round-Reduced Keccak-224 and Keccak-256

	Conclusions and Future Work
	References


	Author Index



