
Model-Driven V&V Processes for Computer

Based Control Systems: A Unifying Perspective

Francesco Flammini1, Stefano Marrone2, Nicola Mazzocca3,
Roberto Nardone3, and Valeria Vittorini3

1 AnsaldoSTS, Innovation and Competitiveness Unit (Italy),
via Nuova delle Brecce 260, 80147 - Napoli, Italy

francesco.flammini@ansaldo-sts.com
2 Seconda Università di Napoli, Dipartimento di Matematica,

viale Lincoln, 5, 81100 - Caserta, Italy
stefano.marrone@unina2.it

3 Università di Napoli “Federico II”, Dipartimento di Informatica e Sistemistica,
Via Claudio 21, 80125 Napoli, Italy

{nicola.mazzocca,roberto.nardone,valeria.vittorini}@unina.it

Abstract. A recent trend in software engineering is to support the de-
velopment process by providing flexible tool chains allowing for effective
Model-Driven approaches. These solutions are very appealing in indus-
trial settings since they enable the creation of development and verifi-
cation processes, enhancing abstraction and reuse, and hence improving
productivity. This paper addresses advantages and challenges in extend-
ing Model-Driven approaches to system engineering and specifically to
verification and validation (V&V) of critical computer-based systems.
Specifically, the paper highlights the needs for real-world industrial con-
texts and proposes the definition of a unifying Model-Driven process
for V&V of functional and non-functional system properties. Some en-
abling techniques which aim at improving the reuse of Model-Driven
artifacts are addressed to deal with process scalability and effectiveness.
Two sample applications are described for ERTMS/ETCS signalling sys-
tem in order to show the advantages of the approach: formal modeling
for performance evaluation of message delivery between train and track
controllers and test case generation for the verification of functional re-
quirements of trains outdistancing.

Keywords: Model-Driven Engineering, Verification & Validation, Crit-
ical Systems, Domain Specific Languages, Railway Systems.

1 Introduction

Verification & Validation (V&V) processes within critical control systems devel-
opment must guarantee the fulfillment of both functional and RAMS (Reliability
Availability Maintainability Safety) requirements [11]. Two main approaches are
employed in order to predict/evaluate the dependability attributes of those sys-
tems: the first relies on simulation based techniques, e.g. fault-injection [14] at

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part II, LNCS 7610, pp. 190–204, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Model-Driven V&V Processes for Computer Based Control Systems 191

the hardware level (either physical or simulated) or software testing [8] at the
various abstraction and integration levels; the second is based on formal meth-
ods, which can be used at any abstraction level (both hardware and software)
and at any stage of system development and validation. Both simulative and
formal approaches are used in real world applications, for different or same pur-
poses, and can be classified as model-based techniques, as they require designers
to generate an accurate model of the system under analysis and of the external
environment (i.e. interacting entities). They may be used in combination with
formal models possibly interacting with simulative ones (an example of this is
the class of approaches known as model-based testing). Formal methods are
employed in a variety of industrial applications, from microprocessor design to
software engineering and verification (see [9] for a survey of widespread methods
and applications). Despite of such a variety of methods, tools and applications,
V&V activities are still critical in costs and results. The optimization of V&V
processes is the focus of several ongoing national and international projects car-
ried out in industrial settings [2]. A recent trend is to define and develop tool
chains to support the developer in the V&V process. They are based on the
Model Driven Engineering (MDE) paradigm and rely on the usage of models as
the primary artifact in the development cycle. The idea to derive dependabil-
ity models (e.g. Stochastic Petri Nets models) from high-level specifications of
the system to be developed (e.g. expressed by UML) is not new ([5,6,24,22,7]).
The cutting edge between those approaches and MDE may be summarized by
the following words: integration, automation and traceability. That means a
complete suite of integrated tools covering and linking all the stages of the V&V
process has to be available, featuring automated generation of artifacts (models,
test cases, log files, etc.) and requirements traceability. This paper describes how
MDE may provide a unifying framework for V&V activities for critical systems,
and specifically how this can be applied to railways control systems. Section 2
introduces some MDE concepts, starting from its primary nest: software devel-
opment; Section 3 presents a brief state-of-the-art on a) Model-Driven analysis
of non-functional properties of systems, according to its main fields of applica-
tion, b) Model-Driven approach to functional testing. In Section 4 an overview
of a Model-Driven approach to V&V is given; it is then applied to the railway
domain in Section 5. Section 6 contains a brief discussion on some open issues
and challenges.

2 The Model-Driven Approach

MDE approaches are very used in software development to support software
production: they are the starting point from which source code, can be gener-
ated in an automatic or semi-automatic way. Models of software systems are
usually constructed by using visual modeling languages like UML, SysML, Mat-
Lab Simulink/Stateflow; successively, transformational approaches are applied
to automate the overall process.

In this context, the Object Management Group (OMG) has developed a set
of standards providing an advanced meta-modeling architecture (Model Driven

192 F. Flammini et al.

Architecture, MDA [4]) whose primary goals are to cope with complexity and
heterogeneity of different platforms and application domains and obtain automa-
tion and reuse. These goals are pursued by abstracting at three different levels:
the platform independent model (PIM) is a model of the system structure and
functions which must be independent by specific technical details related to its
implementation, it is translated by proper Model to Model (M2M) transforma-
tions into one or more platform specific models (PSMs) and then to system code.

MDA relies on OMG standards including MOF (Meta-Object Facility, which
is used to define modeling languages), UML (that is a MOF model), and QVT
(Query/View/Transformation, a standard language for model transformation).
MDA processes are supported by well established workbenches and tool chains,
based on easily extensible plug-in systems such as Eclipse. Nevertheless, MDE
is more general than MDA. Its strength is in using abstract representations of
concepts and activities that characterize a specific application domain. Hence,
it could be applied to several fields and to different purposes. In this paper we
show how MDE may be used to define a V&V process for critical control sys-
tems according to a unifying perspective able to held together (semi) automatic
generation of code, test cases, and dependability models. This may be done by
exploiting the usage of proper languages to represent domain specific concepts
and solutions at the conceptual level. This is a tricky aspect of the question that
is briefly discussed here below.

2.1 Domain Specific Languages

UML is a general purpose modeling language, rich of modeling notations and
semantic, which can be applied to a wide class of application domains. Despite of
this great advantage, the effective usage of Model-Driven Development solutions
in industrial settings asks for the availability of specialized modeling languages
for several reasons: Domain Specific Modeling Languages (DSMLs) are small
and well focused on domain scope, they simplifies the design process, tracing
recurring design patterns in the application domain, and promote communica-
tion by standardizing the terminology and the best practices to be used in the
specific application domain. Domain specific concepts are grouped into a domain
meta-model, which defines the relationships among them and precisely specifies
semantics and constraints associated with the domain concepts. The definition
of a DSML is an activity performed by “language engineers” and it is still an
emerging discipline with few established guidelines and patterns. Three main
approaches to the definition of a DSML are reported in the literature [23]: (1)
definition of a new modeling language from scratch; (2) extension of an existing
modeling language by supplementing it with fresh domain specific constructs;
and (3) refinement of an existing more general modeling language, as UML, by
specializing some of its general constructs to represent domain specific concepts.
Clearly the first one allows a precise characterization of domain specific concepts,
but it requires the implementation of the model editors that involves an extra
effort when put into practice. The second one suffers from the same problems
but it can rely on the experience. The third one is more practical and presents

Model-Driven V&V Processes for Computer Based Control Systems 193

minor development and maintenance costs: it bases on UML profiling techniques
when UML is the general modeling language chosen.

The proposed approach is based on the third solution since inheriting UML
syntax and semantics avoids the re-definition of existing concepts (e.g. state
machines); moreover UML (and its good tool support) shortens the time to
realization of languages that is of great interest for industries.

3 Model Driven V&V of Critical Systems

Model-driven approaches have been extended to support V&V activities, both for
software and complex systems in general, in order to prove properties (Model-
Driven Analysis) and to generate test cases (Model-Driven Testing). This is
possible applying the two main principles, described previously, on which a
Model-Driven process is based: the definition and usage of an high-level model
for the system, and model transformation techniques. Model-Driven Analysis
and Model-Driven Testing are separate techniques and are also supported by
different tools but, since they rely on the same high-level model, some attempt
to integrate them have been tried and are still under study: an ARTEMIS on-
going project MBAT [2] is an example of a European project that will provide
a new leading-edge V&V technology in form of a Reference Technology Plat-
form (MBAT RTP) for effective and cost-reducing validation and verification,
primarily focusing on transportation domain combining Model-Driven Analysis
and Testing techniques.

3.1 Model-Driven Analysis

The goal of Model-Driven Analysis is to construct formal models or artifacts, able
to verify requirements, from input design models (high-level model) assuring the
achievement of system quality, such as safety targets. Several projects addresses
the analysis of dependability attributes of complex systems, based on MDE
principles (e.g. the projects PRIDE [3], CHESS [1]), even if performance evalu-
ation is perhaps the most addressed feature assessed in the literature by means
of Model-Driven Analysis (see for example [18], [20] and [21]) The ArgoSPE
tool [12] implements a performance3 evaluation process translating some perfor-
mance annotated UML diagrams into Stochastic Petri nets models. MARTE [17]
is a UML profile which intends to replace the UML profile for Schedulability, Per-
formance and Time, adding capabilities to UML for Model-Driven development
of Real Time and Embedded Systems. The MARTE profile is able to annotate,
in an high-level model, system non functional properties (NFPs), according to
a well-defined Value Specification Language (VSL) syntax. In a recent work [6]
the “Dependability Analysis and Modeling” (DAM) profile has been proposed
to extend MARTE with dependability concepts (e.g., annotating a UML State
Machine transition as a failure step). Hence, DAM is useful to annotate de-
pendability requirements and properties in UML specifications, in particular,
reliability, availability, maintainability and safety. The DAM domain model rep-
resents the main dependability concepts according to a component-based view

194 F. Flammini et al.

of the system under analysis. The system is defined as a set of components and
delivers a set of services that can be detailed as a set of steps. Possible hw/sw
redundancies are modeled through the redundant structure, made of fault tol-
erant components which can play different roles. The system can be affected by
threats according to the fault, error, impairment (failure or hazard) chain. The
maintenance actions are modeled through maintenance model, which includes
the concepts necessary to represent components repair and service restore.

3.2 Model Driven Testing

Model-Driven Testing techniques deal with the efficient and automated genera-
tion of test cases from different kinds of models. Model-Driven Testing promises
higher quality and conformance to the respective functional safety and quality
standards at reduced costs through increased coverage, advanced test gener-
ation techniques, and increased automation of the process, including support
for certification. As depicted in Fig. 1, Model-Driven Testing applies the same
abstraction of platform independent model (PIM) and platform specific models
(PSM) concepts into the test design model: it have been introduced the concepts
of platform specific test design model (PST) that can be derived from platform
independent test design model (PIT) ([10]). Both PIT and PST can be refined
and enriched with test specific properties and it is possible to obtain from them
executable test suites (and code) with the aim to verify the properties. To date
transformations between the different abstraction levels (from platform indepen-
dent to platform specific, and from models to executable test) have been made,
but only few progress in the transformations between system models and test
models are remarkable, in particular for non-software systems.

A recent OMG standard, the UML Testing Profile (UTP), defines a language
for designing, visualizing, specifying, analyzing, constructing and documenting
test cases [19]. This language can work with all major object and component
technologies and can be applied in various application domains. UTP defines
a MOF-based meta-model, enabling compliance between MOF-based tools and
UTP standard. In4 of the profile, in which the behavioral aspects are left out
because they are considered not relevant and require an inclusion of a significant
portion of the UML 2.0 meta-model. For these reasons the UTP can be used
standalone or in an integrated way with UML. This profile introduces four log-
ical concept groups, that include test specific concepts, covering the following
aspects: test architecture, test behavior, test data and test time. The test architec-
ture contains the concepts able to describe the organization and the realization
of test cases. One or more objects can be stereotyped as the SUT (system under

Platform Independent
Test (PIT)

Platform Specific
Test (PST)

Executable
Test

transformation

transformation transformation

refinement refinement

Fig. 1. Model Driven Testing reference schema

Model-Driven V&V Processes for Computer Based Control Systems 195

test), that refers to a system, subsystem, or component that is being tested. The
features and behavior of the SUT is given entirely by the type of the property
to which the stereotype is applied; the internal portion of the SUT is not known
during the test execution due to its black-box nature. Different test cases can be
groupend into a TestContext, the TestContext is realized by a set of TestCom-
ponents able to communicate with the SUT. The TestContext is also connected
with an Arbiter able to determine the final outcome, the Verdict, of a test case.
The concepts of text behavior specify the behavior of test cases: one Behavior
is included into each TestCase. TestCases are connected with TestLog entities,
able to log information. The concepts of test data group are able to specify
data values. They include wildcards for a flexible data definition such as special
characters for ”any value” and ”any or omitted value” definition. At last test
time defines time concepts for a precise time specification using the primitives
of Time and Duration to define respectively time values and duration. In [10] a
set of transformations from UML model to UTP model is showed, proposing to
generate test cases using three layers of transformations that are UML to PIT,
PIT to PSM and PSM to testcase.

4 How It Could Be Used: A Unifying Approach

In this Section a unifying “industry-friendly” Model-Driven approach for V&V
processes (for both formal analysis and testing) is presented. In Fig. 2 a reference
schema for this approach is provided.

The first step is related to meta-modeling activities: proper languages, if not
available, should be created by means of extension and/or merging of exist-
ing languages. These may be domain-independent (as MARTE-DAM and UTP)
or domain-specific according to their focus on technical or business concepts.
In our approach we need both kinds of languages since the first improves re-
usability while the second improves usability. In the proposed approach the
Verification&Validation Profile (VVP) (an “horizontal” language) is created:
it extends MARTE-DAM and UTP. Moreover it could be possible to specialize
VVP concepts into a specific business domain (Specific).

Formalism/Text

specific2formalism
MARTE-DAM

UTP
vvp2formalism

VVP

Specific

Fig. 2. Unifying Model-Driven V&V approach

196 F. Flammini et al.

Model transformations are defined generating a formal model according to
a well specified formalism1 from an high level model expressed into VVP or
Specific. The definition of model transformations can be a modular task too,
since it is possible to exploit composition and inheritance techniques [16]. Best
results can be obtained if model transformations are defined on the basis of VVP
since these transformations allow every specific derived language to inherit them
improving reusability. Nevertheless some peculiarities of the Specific language
may need to partially create further model transformations in order to best
translate these features into the target formalism (specific2formalism).

4.1 Focus on the V&V Profile

In this subsection we define a V&V domain model to merge the concepts repre-
sented in the two cited UML profiles: MARTE-DAM and UTP. The first is used
to model both performance and dependability aspects and the second allows the
modeling of system and software testing. Fig. 3 depicts the V&V domain model
we constructed to obtain the VVP.

V&V

Testing

MARTE-DAM UTP

Component
SUT

AnalysisContext

Component

StateTransitionRequirement

+id: int

+version: int

+description: String

VerificationContext

TestCase
TestStep

TestContext

Full
Partial

verified by
covered by

source

destination

Fig. 3. Extract of V&V domain model

Notwithstanding these two languages need to be extended since they do not
provide to all the features required in real industrial processes. In general three
kinds of operations can be applied to existing profiles: merge: resulting domain
model contains all the concepts of existing ones; extension: resulting domain
model is refined by adding new concepts; synthesis : redundant concepts are re-
duced refactoring the resulting domain model. In the construction of the V&V
domain model, first we extended UTP domain model by adding some important
features in the modeling of the behaviour of system under test: under the hy-
pothesis to model the behaviour of a component in terms of state machines (a

1 If we think about performance analysis, suitable formalisms are: Queueing Networks,
Petri Nets, etc.

Model-Driven V&V Processes for Computer Based Control Systems 197

very common practice in industry), the UTP’s TestCase is refined by defining
TestStep, a elementary unit of the TestCase, that can be a State or a Transition
of the state machine. Other important added concepts are related to specifica-
tion of requirements (the Requirement class) and the VerificationContext (that
can be reported to a series of TestSteps). Testing specification and case can be
modeled by specializing VerificationContext in Partial and Full according to
the test detail level. Then some synthesis are made between some elements of
MARTE-DAM and UTP (e.g. Component for both MARTE-DAM’s Component
and UTP’s SUT). Finally the VVP is generated by the V&V domain model [15].

5 Application to Railway Signalling

The proposed V&V Model-Driven approach is here instantiated to the railway
signalling domain. In particular it will be studied the European Railway Traf-
fic Management System/European Train Control System (ERTMS/ETCS) [25]
that is a standard for the interoperability of the European railway signalling
systems in charge of providing the safe movement of trains and the optimal
regulation of traffic flows.

5.1 The ERTMS/ETCS System

The mission of ERTMS/ETCS is to ensure railway interoperability. To this
aim, it provides the specification of a traffic management and train control
system that enables the transit of high speed trains through national borders.
The ERTMS/ETCS standard ensures both technological compatibility among
transeuropean railway networks and integration of the new signalling system
with the existing national train interlocking systems. An ERTMS/ETCS sys-
tem consists of heterogeneous, distributed components that are installed on the
trains, along the tracks and in several control centers. A reference schema for
ERTMS/ETCS systems is shown in Fig. 4. It consists of the Radio Block Centre
(RBC), that is a central computer responsible of an entire track area, and the
European Vital Computer (EVC), that is the on board controller. The commu-
nication between these two subsystems is provided by the GSM-R network. The
control of the movement of the train is realized by means of a message that
RBC sends to EVC: the authorization to safely move within a defined area that
is called Movement Authority (MA)2. Attached to the MA, additional informa-
tion describing a Temporary Speed Restriction (TSR) inside the length of the
MA may be sent to the train.

In this paper we focus on V&V of both non-functional and functional prop-
erties of the delivery of the MA. We consider two representative requirements:

1. UTX < 1.6 ∗ 10−5 where UTX is the unavailability due to transmission error
of communication networks [26];

2 The MA is built according to the information about train position and speed each
EVC periodically sends via GSM-R to RBC (Position Report).

198 F. Flammini et al.

Fig. 4. ERTMS/ETCS reference schema

2. the message containing the TSR is sent periodically to EVC until EVC does
not ack; if EVC does not send any ack message, RBC must send a braking
command (Unconditionally Emergency Stop - UES) [25].

The first requirement can be verified by a performance evaluation of MA mes-
sage delivery while the second by means of a functional test. The performance
analysis is provided by automatic generation of Generalized Stochastic Petri
Nets (GSPN) in Subsection 5.2; the functional test case is generated by model
checking techniques in the Subsection 5.3 and is supported by the definition of
a model transformation into Promela language [13]. Hence the general schema
depicted in Fig. 2 is instantiated into the one depicted in Fig. 5.

Promela

ertms2gspn

MARTE-DAM

UTP
VVP2promela

GSPN

VVP

ERTMS

dam2gspn

Fig. 5. ERTMS specific Model-Driven V&V

5.2 A DSML for GSM-R Unavailability Analysis

The MA is also used in some implementations as a channel monitoring message.
If a train does not receive a new MA within a chosen number of seconds after the
last received message, EVC tries to re-establish the connection within a specified
timeout period and the following situations may happen: if EVC does not receive
any valid message within a timeout, it brakes and passes in a degraded mode
from which can exit after a reconnection procedure. VVP is specialized into
ERTMS/ETCS domain specific language. A sample of this domain model is

Model-Driven V&V Processes for Computer Based Control Systems 199

depicted in Fig. 6 where the three cited components are represented by three
UML classes, each of them containing proper attributes. The meaning of the
parameters of EVC and RBC classes are briefly described in the following:

– numRetry : number of reconnection attempts by the EVC;
– timeToRestore: mean time from a disconnection to the next balise group

commanding a recall to the RBC;
– timeToRetry: time between reconnection attempts;
– timeToBrake: time-out after that a received message is no more valid;
– messageCycle: time between monitoring messages sent by RBC;

GSM-R networks does not need to be fully characterized by specific attributes
since some quantitative parameters needed for a performance analysis are con-
tained in some clases derived from MARTE and MARTE-DAM:

– ssAvail (from MARTE-DAM): unavailability of GSM-R connection;
– packetTime (from MARTE): mean message transmission time (in millisec-

onds) on the GSM-R network;
– trasmissionError (newly added): probability of a messages being corrupted

during transmission.

According to this specific domain model (and the relative UML profile), we can
describe the situation where a EVC and a RBC are connected by a redundant
GSM-R network as in Fig. 7. The tagged value ftLevel is the level of fault toler-
ance of the RedundantStructure: if set to 1, it means that at least one operating
GSM-R is needed to accomplish delivery service.

Dam2gspn and ertms2gspn are defined after the definition of a metamodel for
GSPN language, omitted for brevity. These transformations are implemented in
Atlas Transformation Language (ATL): for clarity the rules defining the transfor-
mations are described bymeans of the generatedGSPN subnets. These rules trans-
late: the redundancy of GSM-R networks, single GSM-R behaviour and RBC. The
GSPNs are respectively depicted in Fig. 8 (DaRedundantStructure with ftLevel =
1), Fig. 9 (a) (GSMR stereotype) and Fig. 9 (b) (RBC stereotype).

The i-th “cloud” in the GSPN of Fig. 8 is filled with one of the GSPN of
Fig. 9 (a) by means of the superposition of transition couples (OK,Replicai out)
and (FROM RBC,Replicai in), then the in transition of RedundantStructure

VVP

Component

ERTMS/ETCS

<<stereotype>>

RBC

+messageCycle: int

<<stereotype>>

GSMR

+trasmissionError: double

<<stereotype>>

EVC

+numRetry: int

+timeToRestore: int

+timeToRetry: int

+timeToBrake: int

VvERTMSComponent

MARTE

CommunicationMedia

+packetTime: int

MARTE-DAM

Component

+ssAvail: double

Fig. 6. ERTMS/ETCS domain model

200 F. Flammini et al.

<<DaRedundantStructure>>

network

<<EVC>>
Train

<<RBC>>
MainController

<<GSMR>>
MainNetwork

<<GSMR>>
SpareNetwork

ftLevel = 1

Fig. 7. ERTMS/ETCS Performance
Model

Out In

Replica1_in

ReplicaN_in

ReplicaN_out

Replica1_out

Fig. 8. RedundantStructure GSPN
pattern

(b)

RBC_RX

(a)

RBC_OK

RBC_KO

BUFFER

TXOK

KO

TRASMISSION

ERROR
RE-TRASMISSION

RBC_DOWNRBC_UP

FROM_RBC

Fig. 9. GSPN patterns of GSM-R (a) and RBC (b)

net is superposed with RBC RX of RBC GSPN model Fig. 9 (b) while the
out transition is then linked to the EVC GSPN model. We can now apply the
dam2gspn and ertms2gspn transformations to this model, generating a complete
GSPN model not fully represented for sake of space.

5.3 Temporary Speed Restriction Behaviour Testing

In order to be industrial appealing, the verification of functional requirements
needs automatic test case generation. First steps concern with modeling of both
system behaviour and property to be tested.

Fig. 10 models the behaviour of the RBC in presence of TSR. This model
is based on state machines according to the VVP language. With respect to
the functional requirement expressed in Subsection 5.1, when a TSR must be
sent to EVC, RBC starts a timer and sends such kind of message until it does
not receive an ack from EVC or three attempts has not been made. In the
last case, an Unconditionally Emergency Stop message is sent to the EVC. A
model of the verification of the requirement is represented in Fig. 11: an UML
activity diagram is stereotyped with Partial VerificationContext and contains

Model-Driven V&V Processes for Computer Based Control Systems 201

<<VvState>>
TSR_START

do/ count=0

<<VvState>>
TIMER_ON

entry/ timer_state=ON; timer=0;
exit/ timer_state=OFF;

T01
/msg_out=TSR; count=count+1

T02
timer==TIMEOUT && counter < 3 && msg_in == NULL
/count=count+1; msg_out=TSR

T04
msg_in==ACK T03

counter == 3 && timer==TIMEOUT && msg_in ==NULL
/msg_out=UES

<<VvTransition>>

<<VvTransition>>

<<VvTransition>>
<<VvTransition>>

Fig. 10. Model of the RBC behaviour of TSR mechanism

<<VerificationContext>>

type=partial;

requirement=(id=01;version=03;

 description=RBC must send...)

<<VvState>>
TSR_START

<<VvTransition>>
T03

Fig. 11. Specification of TSR mechanism requirement

the necessary TestSteps to develop in a full specified Full VerificationContext
(the object of the automatic generation).

In order to generate the related test case (full specification of input and out-
put conditions), we use model checking technique. In particular we rely on SPIN
model checker [13] and Promela language. After the definition of a metamodel
for Promela language, both M2M and M2T tranformations can be defined start-
ing from VVP. These transformations can be used to translate both the system
behaviour and the requirement for which generate the test case; then the two
parts are merged into a single Promela model and translated into Promela con-
crete syntax. Formal definition of the model transformations is out of the scope
of the paper; notwithstanding we report a snippet of the Promela file generated
by the TSR model.

202 F. Flammini et al.

...

:: (state == TIMER_ON) ->

atomic {

if

:: (timer==TIME_OUT && count < 3 && msg_in == NULL) ->

// exit - state

timer_state = OFF;

// applicable transition

transition = T02;

state = TIMER_ON;

// transition action

msg_out = TSR;

count = count + 1;

// entry - state

timer_state = ON;

:: (count == 3 && timer==TIME_OUT && msg_in ==NULL) ->

// exit - state

timer_state = OFF;

// applicable transition

transition = T03;

state = END_STATE;

// transition action

msg_out = UES;

:: (msg_in == ACK) ->

// exit - state

timer_state = OFF;

// applicable transition

transition = T04;

state = END_STATE;

fi;

}

...

The code snippet is the result of the translation of the TIMER ON state: it’s
possibile to see the three transitions that start from this state with trigger con-
ditions as specified in the high level. For each transition a “case” statement is
generated containing all the actions that must be accomplished: state exiting
activities, transition activation, new state entering tasks.

If a specified test is feasible, SPIN finds a counterexample and a full detailed
trace containing all the changes in Promela variables can be generated. This trace
can be used to extract the sequence of states-transitions on the state machines
inducing the sequence of inputs to give to system during the test execution phase.

6 Conclusions and Open Issues

This papers has presented a novel approach in Verification&Validation of crit-
ical railway systems that exploits the benefits of formal analysis and sofwt-
ware/system testing. An important point is related to the capability of defined

Model-Driven V&V Processes for Computer Based Control Systems 203

process to be both theoretically unifiying and be appealing in real industrial
contexts. The methodology has been applied to the railway domain specifically
addressing the two different aspects: two applications of ERTMS/ETCS sig-
nalling control systems show complementary features and advantages of the
proposed approach. Indeed the applications show how to develop novel tech-
incal and business oriented specific languages and mode transformations both
improving language usability and transformation reuse. It’s important to remark
that this is part of an ongoing work and the VVP is currently in development
phase: future research efforts will investigate on extends VVP in particural in
the interaction between the analysis and testing subparts of the approach.

References

1. ARTEMIS-2008-1-100022 CHESS - composition with guarantees for high-integrity
embedded components software assembly, https://www.artemis-ju.eu/chess

2. MBAT: Combined Model-based Analysis and Testing of Embedded Systems,
http://www.mbat-artemis.eu/

3. PRIDE - ambiente di progettazione integrato per sistemi dependable, transforma-
tions for dependability analysis, deliverable 2.1 (February 2003)

4. Model driven architecture guide, Version 1.0.1, OMG document (2003)

5. Bernardi, S., Flammini, F., Marrone, S., Merseguer, J., Papa, C., Vittorini, V.:
Model-Driven Availability Evaluation of Railway Control Systems. In: Flammini,
F., Bologna, S., Vittorini, V. (eds.) SAFECOMP 2011. LNCS, vol. 6894, pp. 15–28.
Springer, Heidelberg (2011)

6. Bernardi, S., Merseguer, J., Petriu, D.C.: A dependability profile within MARTE.
Journal of Software and Systems Modeling (2009)

7. Bondavalli, A., Dal Cin, M., Latella, D., Majzik, I., Pataricza, A., Savoia, G.:
Dependability analysis in the early phases of UML-based system design. Comput.
Syst. Sci. Eng. 16(5), 265–275 (2001)

8. Causevic, A., Sundmark, D., Punnekkat, S.: An industrial survey on contemporary
aspects of software testing. In: 2010 Third International Conference on Software
Testing, Verification and Validation (ICST), pp. 393–401 (April 2010)

9. Clarke, E.M., Wing, J.M.: Formal methods: state of the art and future directions.
ACM Comput. Surv. 28(4), 626–643 (1996)

10. Dai, Z.: Model-driven testing with UML 2.0. In: Proceedings of the 2nd European
Workshop on Model Driven Architecture (2004)

11. Flammini, F.: Railway safety, reliability, and security: Technologies and systems
engineering. IGI Global (2012)

12. Gómez-Mart́ınez, E., Merseguer, J.: ArgoSPE: Model-Based Software Performance
Engineering. In: Donatelli, S., Thiagarajan, P.S. (eds.) ICATPN 2006. LNCS,
vol. 4024, pp. 401–410. Springer, Heidelberg (2006)

13. Holzmann, G.J.: The SPIN model checker (September 2003)

14. Hsueh, M.C., Tsai, T.K., Iyer, R.K.: Fault injection techniques and tools. Com-
puter 30(4), 75–82 (1997)

15. Lagarde, F., et al.: Improving UML profile design practices by leveraging con-
ceptual domain models. In: 22nd Int.l Conf. on Automated Software Engineering,
Atlanta, USA, pp. 445–448. ACM (November 2007)

https://www.artemis-ju.eu/chess
http://www.mbat-artemis.eu/

204 F. Flammini et al.

16. Marrone, S., Papa, C., Vittorini, V.: Multiformalism and Transformation Inheri-
tance for Dependability Analysis of Critical Systems. In: Méry, D., Merz, S. (eds.)
IFM 2010. LNCS, vol. 6396, pp. 215–228. Springer, Heidelberg (2010)

17. UML profile for modeling and analysis of real-time and embedded systems (marte),
Version 1.0, OMG document (2009)

18. Moreno, G.A., Merson, P.: Model-driven performance analysis. In: Proceedings of
the 4th International Conference on the Quality of Software Architectures, QoSA
(2008)

19. UML testing profile, Version 1.1, OMG document (2012)
20. Petriu, D.B., Woodside, M.: A metamodel for generating performance models from

UML designs. In: Proceedings of the 7th Int. Conference on the Unified Modeling
Language. Modelling Languages and Applications, pp. 41–53 (2004)

21. Petriu, D.B., Woodside, M.: An intermediate metamodel with scenarios and re-
sources for generating performance models from UML designs. In: Software and
Systems Modeling, Special Issue, SoSyM, pp. 163–184 (2007)

22. Rugina, A., Kanoun, K., Kaâniche, M.: A system dependability modeling frame-
work using AADL and GSPNs, pp. 14–38. Springer, Heidelberg (2007)

23. Selic, B.: A systematic approach to domain-specific language design using UML.
In: 10th IEEE Int.l Symposium on Object and Component-Oriented Real-Time
Distributed Computing (ISORC 2007), pp. 2–9 (2007)

24. Tadano, K., Xiang, J., Kawato, M., Maeno, Y.: Automatic Synthesis of SRN Mod-
els from System Operation Templates for Availability Analysis. In: Flammini, F.,
Bologna, S., Vittorini, V. (eds.) SAFECOMP 2011. LNCS, vol. 6894, pp. 296–309.
Springer, Heidelberg (2011)

25. UIC. ERTMS/ETCS class1 system requirements specification, ref. SUBSET-026,
issue 2.2.2 (2002)

26. UNISIG. ERTMS/ETCS RAMS requirements specification, ref. 96s1266

	Model-Driven V&V Processes for Computer
Based Control Systems: A Unifying Perspective
	Introduction
	The Model-Driven Approach
	Domain Specific Languages

	Model Driven V&V of Critical Systems
	Model-Driven Analysis
	Model Driven Testing

	How It Could Be Used: A Unifying Approach
	Focus on the V&V Profile

	Application to Railway Signalling
	The ERTMS/ETCS System
	A DSML for GSM-R Unavailability Analysis
	Temporary Speed Restriction Behaviour Testing

	Conclusions and Open Issues
	References

